Borland” G++ ’
Programmer’s
Gude.

C++ Programmer S
Guide

Borland®
C++

Borland International, Inc., 100 Borland Way
P.O. Box 660001, Scotts Valley, CA 95067-0001

Borland may have patents and/or pending patent applications covering subject matter in '[hIS document. The
furnishing of this document does not give you any license to these patents.

COPYRIGHT © 1996 Borland International. Al rights reserved. All Borland products are trademarks or registered
trademarks of Borland International, Inc. Other brand and product names are trademarks or registered trademarks of
their respective holders. ,

Printed in the U.S.A.

1E0R0196 WBC1350WW21771
9697989900-987 654321

D2

ISBN 0-672-30923-8

Contents

Introduction 1
How this book is organized 1
Typefaces and icons used in thisbook. 2
PartI
Programming with Borland C++ 3
How this partis organized 3
Chapter 1 ‘
Lexical elements 5
Whitespace. e 5
Linesplicingwith X. 6
Comments 6
Ccomments. 6
CH+comments & . .« oo vv e et 7
Nested comments 7
Delimiters and whitespace 7
Tokens 8
Keywords 8
Table of C++-specifickeywords 8
Borland C++ keyword extensions9
Identifiers. 10
Naming and length restrictions 10
Casesensitivity 10
- Uniquenessandscope. 10
Constants. 11
Integerconstants e 12
Decimal 12
Octal. o 12
Hexadecimal 12
long and unsigned suffixes. 12
Floating-point constants. 13
Character constants 14
The three chartypes. 15
Escape sequences 16
Wide-character and multi-character
constants 17
Multi-character constants. 17
Stringconstants. 17
Enumeration constants 18
Constants and internal representation . . . 19
Constant expressions 20
Punctuators 21
21

Brackets

Parentheses e 21
"Braces oL 22
Comma 22
Semicolon, 22
Colon. S .22
Ellipsis D 23
Asterisk (pointer declaration) 23
Equal sign (initializer) 23
Pound sign (preprocessor directive). 23
Chapter 2 .
Language structure 25
Declarations 25-
Objects 25
Objects and declarations 26
Ivalues 26
rvalues. 26
Storage classesand types 26
Scope. i 27
Namespaces J 27
Visibility oL 28
Duration. 28
Static. 29
Local 29
Dynamic. 29
Translationunits 29
Linkage. 30
External and internal linkage rules 30
, Namemangling 31
Introduction to declaration syntax.-. 31
Tentative definitions 32
Possible declarations. 32
External declarations and definitions 34
Typespecifiers 36
Typecategories 36
Typevoid 37
The fundamentaltypes 38
Integraltypes 38
Floating-pointtypes 39
Standard arithmetic conversions. 39
Special char, int, and enum conversions . . 40
Initialization. 40
Syntax for initializers s 40
Rules governing initializers. 41
Arrays, structures, and unions 41

Declarations and declarators42 Evaluationorder76

Storage class specifiers 43 Errorsand overflows.77
Variable modifiers 44 Operatorssummary 77
COII‘S:ﬂ """"""""" S 3‘; Primary expression operators 78
volatile.,) . :
Mixed-language calling conventions. 46 Tostfix expression operators 79
cdecl, cdecl, __cdecl 47 Arraysubscriptoperator 80
pascal, _pascal, __pascal e 47 Functioncalloperator 80
_stdeall, __stdecall. 48 Direct member selector I 81
_fastcall, _fastcall. 48 Indirect memberselector 81
Multithread variables. 48 Increment/decrement operators. 82
Pointer modifiers 49 Increment operator (++). 82
" Functionmodifiers 49 Postincrementoperator 82
_ _interrupt functions 51 Preincrement operator. 82
Pointers., 52 Decrement operator (). 83
Pointers to objects L 5p Unaryoperators. RERERE 83
Pointers to functions 53 Reference/indirect operators. 83
Pointer declarations. 53 Refgen;ing operator (&). e e 83’
Pointerconstants 54 Indirection operator (*). 84
Pointer arithmetic 55 Plus operator + e e S 84
Pointer conversions. 55 Minus operator—. s 85
. C++ reference declarations 56 Bitwise complement operator ~ 85
Arrays 56 Logical negation operator! 85
P A Co 58 Increment operator ++. 85
unctions R Sy Decrement operator—— 85
Declarat}ons and definitions. 58 The sizeof Operator. 86
Dec‘la‘ra}hons and prototypes 58 Binary operators P 87
Definitions 60 L
, : Additiveoperators. 88
Formal parameter declarations 61 o
Functi Ils and t . 61 Addition+. L L L. 88
S runction calls and argument CONVersions. . Subtraction— 88
tructures. e 62 Multiplicative operators. 89
Untagged structures and typedefs 62 Bitwise logic operators. 89
Structure member declarations 63 AND&. o o o oo 89
Structures and functions. 63 Exclusive ORA . o oo 90
Structure member access. 64 Inclusive OR | . . o oo oo, 90
Structure word alignment 65 Bitwise shift operators. 90
Structurenamespaces 65 Shift(<<and>>)o 90
Incomplete declarations 66 Relational operators 91
Bitfields 66 Lessthan< 91
Unionsouvviunne... 67 Greater-than> 92
Anonymous unions (C++only). 68 Less-thanorequal-to<= 92
Union declarations 68 Greater-than or equalto >=. 92
Enumerations 69 Equality operators 92
: Equalto==................... 92
How to overload enum operators70 Tnequality '= %3
A551gnment toenum types 71 Logical operators. e 93
Expressions 72 CAND & . e 93
Precedence of operators 75 OR || .o 93
Expressionsand C++. 76 Conditional?: %4

Assignment operators 9%
Simple assignment=.". 95
Compound-assignment 95

Commaoperator 95

C++ specificoperators 96

Statements 96

Blocks. 98

Labeled statements, 98

Expressionstatements 98

Selection statements 98

Iteration statements. 9

Jumpstatements. oL 99

The main() function. e 99
Argumentstomain(). 9
Example of how arguments are passed
tomain().................... 100
Wildcard arguments 101
Example of using wildcard arguments
withmain() 101
Windowsusers 102
DOSusers 102
Using _ _p (Pascal calling
conventions) 102
The value main() returns. 102
Passing file information to child
Processes 103
Multithread programs 103
Chapter 3
C++ specifics 105
Namespaces 105

Defining anamespace 106

Declaring anamespace. 107

Namespacealias. 107

Extending anamespace 107

~ Anonymousnamespaces 108

Accessing elements of a namespace 109
Accessing namespaces in classes. 109

Using directive... 110

Using declaration 110

Explicit access qualification 111

New-style typecasting 112

const cast. 112

dynamic cast 112

reinterpret_cast 114

114

static cast., L

iii

Run-time type identification (RTTI) 115
The typeid operator 116
__rttiand the-RToption 117
-RT option and destructors 118
Referencing 119
Simple references.119
Reference arguments. 119
Scope resolution operator::. 121
The new and delete operators 121
Operatornew 121
Operatordelete. 123
Example of the new and delete
operators. 123
Operator new placement syntax. 124
Operator new witharrays. 125
Operator delete with arrays. 126
noperatornew. 126
Overloading the operatornew 126
Overloading the operator delete 127
Example of overloading the new and
deleteoperators. 127
Classes i, 128
Class memory model specifications. 129
Classnames e 129
Classtypes. 129
Classnamescope. 130
Classobjects. 130
Classmemberlist. 130
Member functions 131
Thekeywordthis. 131
Staticmembers 131
Inlinefunctions 132
Inline functions and exceptions 133
Memberscope. oL 134
Nestedtypes 135
Member accesscontrol 136
Base and derived class access 137
Virtual baseclasses. 138
Constructors for virtual base classes. 139
Friendsofclasses 139
Constructors and destructors. :. 140
Constructors. 142
Constructor defaults. 142
The copy constructor 143
Overloading constructors.143
Order of calling constructors. 144
Class initialization 145

Destructors. 147
Invoking destructors. 148
atexit, #pragma exit, and destructors148
exitand destructors 148
abort and destructors 148
Virtual destructors 149

Overloading operators. 150

Example for overloading operators 151

Overloading operator functions 153

Overloaded operators and inheritance. . . .153
Overloading unary operators. 153
Overloading binary operators 154
Overloading the assignment

operator =. 154
Overloading the function call
operator ()l 154
Overloading the subscript
operator [] 155
Overloading the class member access
operator > 155
Polymorphicclasses 155
-~ Virtualfunctions 155
Virtual function return types 156
Abstractclasses 157
CHtscopeo v o 158
- Classscope. . ..o 159
Hiding 159
C++ scoping rules summary 159
Usingtemplates. 160

Templatesyntax. 160

Template body parsing. 161

Function templates 162
Overriding a template function 162
Implicit and explicit template

functions. 163

Classtemplates 164
Template arguments. 165
Using angle brackets in templates 165

Using type-safe generic lists in templates. .165

Eliminating pointers in templates 166
Compiler template switches 167
Using template switches. 167
Separate file template compilation 168
Exporting and importing templates 169
Exportable/importable template
dedlarations 169
Compiling exportable templates. 170
Using import templates 170

- Resource script files

iv

Chapter 4
Exception handling
C++ exception handling
Exception declarations
Throwing an exception
Handling an exception.
Exception specifications
Sample output when ‘a’ is the input.

Constructors and destructors.
Unhandled exceptions.

C-based structured exceptions
Using C-based exceptions in C++
Handling C-based exceptions

Chapter 5
Programming for portability

Compiling and linking a Windows
_ program

Module definitionfiles.

_export, __export.,
_import, _ _import
Prologs, epilogs, and exports: a

keyword

Making your code STRICT-compliant . .
STRICT conversion hints.
The UINT and WORD types
The WINAPI and CALLBACK
calling conventions.
Extracting messagedata.
Message crackers
Porting DOS system calls
Common compiler errors and

173
173
174
174
175
176
178
179
180

180 -
181
181

183
183
184
184
185

186

186
187
188

189

Chapter 6 '
Using dynamic-link libraries

LibMain and DllEntryPoint
WEP (Windows Exit Procedure)
Exporting and importing functions
Exporting functions. ,
Importing functions. L
DLLs and 16-bit memory models
‘Exporting and importing classes "
Static data in 16-bit DLLs I
Borland DLLs

Chapter 7
Using inline assembly

Inline assembly syntax and usage

Inline assembly references to data and

functions

Inline assembly and register

variables

Inline assembly, offsets, and size

overrides. e

Using C structure members
Using jump instructions and labels. . . .
Compiling with inline assembly
Using the built-in assembler (BASM)
Opcodes
String instructions
Jump instructions. i
Assembly directives

Chapter 8
Header files summary

Using precompiled headers.
Setting filenames
Precompiled header file overview ,
Precompiled header limits.
Precompiled headerrules.
Optimizing precompiled headers
alloch................... ...
casserth . ..o oL

conioh oL 224
ctypeh ... 225
dich., 226
directh....................... 227
direnth............. 227
dosh 227
errnoho 230
fentlth. 231
floath........................ 231
generich 232
ioh e 232
jomaniph 0. 233
Lmitsh 233
localeh 234
malloch 234
mathh 235
memh 236
memory.h Lo L 237
newh........ 237
processh........... 237
searchh. L oL 238
seimph L o oL 238
shareh e 239
signalh. 239
stdargh. o el 239
stddefh. 240
stdioh. L 240
stdiostrh. e e 241
stdlibh e e 241
stingh L o oL L oL 243
sys\lockingh e 243
sys\stath. e 244
sys\timebh 244
sys\typesh 244
timeh. 245
utimeh. 245
valuesh., 246
varargsh. 246

excpth E 247

Chapter 9
Using EasyWin
Converting DOS applications to
Windows
EasyWin C example
EasyWin C++ example
Using EasyWin from within a
Windows program

Scrolling buffer
Autoscrolling
Saving text in an output file
Clipboard support
Example

Chapter 10
Math
Floating-point I/O
Floating-point options
Emulating the 80x87 chip
Using the 80x87 code
No floating-point code
Faist floating-point option
The 87 environment variable
Registers and the 80x87
Disabling floating-point exceptions
Using complex types
Using bed types
Converting bed numbers.
Number of decimal digits

Chapter 11
16-bit memory management
Running out of memory

Memory models
The 8086 registers
General-purpose registers

247
247

248

249

249
250
250

250
250
251
251
252
252
252
253
253

255
255

255

256
256
256
256
257
257
258
258
259

260
260

vi

- Segmentregisters. I 265
Special-purpose registers 265
Theflagsregister. 265

Memory segmentation. 266
Address calculation 266
Pointers. 267
Nearpointers 267
Farpointers 267
Hugepointers. 268
The six memory models. 269
Mixed-model programming: .

Addressing modifiers ".273
Segmentpointers. 274
Declaring farobjects 275
Declaring functions to be near or far. 275

Declaring pointers to be near, far, or huge . 276
Pointing to a given segment:offset

address.
Using library files. 277
Linking mixed modules. 277
Chapter 12
ANSI| implementation-specific
standards 279
Part II
Borland C++ DOS
programmer’s guide 291
Chapter 13
DOS memory management 293
Overlays (VROOMM) for DOS.293
Howoverlayswork 293
Guidelines for using Borland C++
overlays effectively. 295
Requirements 295
Exception handling and overlays 296
Usingoverlays 296
Overlayexample. 297
Overlaid programs. 297
The far call requirement. 297
Buffersize. 297
Whatnottooverlay 298
Debuggingoverlays 298
External routines inoverlays. 298
Swapping 299

Chapter 14

Video functions 301
Videomodes. 301
Windows and viewports. 302
Programming in graphicsmode 302
The graphics library functions 303
~ Graphics system control. 303
A more detailed discussion 304
Drawingandfilling 305
Manipulating the screen and k
viewport. oL 306
Text output in graphlcs mode 307
Colorcontrol 309
Pixelsand palettes 309
Background and drawing color 310
ColorcontrolonaCGA 310
CGAlowresolution. 310
CGAhighresolution 311
CGA paletteroutines 311
Color control on the EGA and VGA. 311
Error handling in graphicsmode 312
Statequery.t 313
Part Il
Borland C++ class
libraries guide 315
Chapter 15
Using Borland container classes 317
Container library implementation 318
ADTand FDSclasses. 318
ADTclasses 318
FDSclasses 319
Class naming conventions. 319
Class functioncodes 321
Simplified class template names 322
Using containers 322
Using class templates. 322
Using direct and indirect classes 323
Handli-ig pointers in direct and
indirect containers 324
Using memory-managed classes 324
Using sorted classes. 324
Using iterator classes 325
Using iterator members 326
Callback functions 327
Deleting container objects 327

vii

Objectownership.
The user programming interface
Creating a container object
Adding objects to a container.
Searching for an existing object in
a container
Removing an object from a container
Retrieving objects from a container
Iterating through objects stored in a
container
Displaying data stored in containers
Container coding guidelines
Selecting and defining your container
class
Modifying your container class
Coding your program
Code example
Output

Chapter 16
Using iostreams classes

The iostream library
The streambuf class-
The ios class

Stream output
Fundamental types
I/0 formatting
Manipulators
Filling and padding

Stream input

I/0 of user-defined types

Simple file 1/0

String stream processing.
Screen output streams

Chapter 17 ‘
Using persistent streams classes
What's new with streaming
Object versioning
Reading and writing base classes
Reading and writing integers
Multiple inheritance and virtual base
support

The ReadVirtualBase and WriteVirtual-

Base function templates

The ReadBaseObject and WriteBase-
Object function templates

335
335
335

336
336

1337

337
338
338
340
340
341

342

344

Creating streamable objects

.......... 350
Defining streamable classes 351
Implementing streamable classes. 352
The nested class Streamer 354
Writing the Read and Write functions. . . .354
Objectversioning 356
Chapter 18
Using the mathematical classes 359
Using complextypes. 359
Usingbedtypes. 360
- Convertingbcd numbers. 361
Number of decimal digits 361
Part IV

Standard class libraries
guide

Reading thispart 363
Typeface conventions used in this part . . . 364
What is the Standard C++ Library? 364
Does the Standard C++ Library differ
from other libraries? 365
What are the effects of
non-object-oriented design?. 365
Smaller sourcecode. 365
Flexibility. 366
Efficiency. 366
Iterators: mismatches and
invalidations 366
Templates: errors and “code bloat” 366
Multithreading problems 367
How should T use the Standard C++
Library?.ot 367
Using the Standard Library 368
Using the Standard Template Library
withBorland C++. 368
Member function templates. 368
Template parameters. 369
Default template arguments. 369
Using template parameters to define
defaulttypes. 369
Using the STL headerfiles. 370
Running the tutorial programs 370
Terminology used in thispart. 370

Chapter 19
lterators
Varieties of iterators
Input iterators
Output iterators
Forward iterators
Bidirectional iterators
Random-access iterators
Reverse iterators
Stream iterators
Input stream iterators
Output stream iterators
Insert iterators

Iterator operations

..................

. Chapter 20

Functions and predicates
Functions
Predicates
Function objects
Negators and binders

Chapter 21
Container classes
Selecting a container
How are values going to be accessed?. . . .
Is the order in which values are
maintained in the collection important?. .
Will the size of the structure vary widely

Is testing to see whether a value is
contained in the collection a

Is the collection indexed? That is,
can the collection be viewed as a

Is finding and removing the largest
value from the collection a frequent

At what positions are values inserted
into or removed from the structure?. . . .
Is a frequent operation the merging of

Memory managementissues 393
Container types not found in the

standard library e 394
Chapter 22
vector and vector<bool> 397
The vector data abstraction 397
Vectorincludefiles 398
Vectoroperations 398
Declaration and initialization of '
vectors. e 399
Type definitions. 400
Subscripting avector PP 400
Extent and size-changing operations. 401
Inserting and removing elements. ~. 402
Iteration. 403
Vector test for inclusion 403
Sorting and sorted vector operations. 404
Useful generic algorithms 404
Booleanvectors 405
Example program: sieve of
Fratosthenes 405
Chapter 23
list 407
The list data abstraction 407
Listincludefiles. 407
Listoperations. 407
Declaration and initialization of lists.409
Type definitions. e 410
Placing elementsintoalist. 411
Removing elements. 412
Extent operations e 414
~ Accessand iteration. 414
List test forinclusion 414
Sorting and sorted list operations. 415
Searching operations 415
In-place transformations. 415
Other operations 416
. Example program: an inventory
system. 416
-Chapter 24
deque 419
Deque data abstraction. 419

Dequeincludefiles 419

Dequeoperations. 420
Example program: radixsort. 421
Chapter 25
set, multiset, and bit_set 425
The set data abstraction e 425
Setincludefiles 425
Set and multiset operations425
Creation and initialization. 426
Type definitions. 427
Imsertion 428
Removal of elements fromaset 428
Searching and counting 429
Iterators 429
Setoperations. 429
Subsettest. 430
Set union or intersection. 430
Setdifference 431
Other genericalgorithms™. 431
Example program: a spelling checker 431
Theclassbit_set. e 432
Initialization and creation. 432
Accessing and testing elements 433
Setoperations. 433
Conversions. 434
Chapter 26
map and multimap A 435
The map data abstraction 435
Mapincludefiles. 436
Map and multimap operations. 436
Creation and initialization. 437
Type definitions. 438
Insertionand access 438
Removal of values R 439
Iterators 439
Searchingand counting 439
Element comparisons 440
Other map operations 440
- Example programs440
Example program: a telephone
database e 440
Example program: graphs. 442
Example program: a concordance 444

Chapter 27

- stack and queue 447
The stack data abstraction. 448
Example program: an RPN calculator. . . . 448
The queue data abstraction 450

' Example program: bank teller simulation. .451
Chapter 28
priority_queue , 455
The priority queue data abstraction 455
The priority queue operations 456
Application: event-driven simulation 457

An ice cream store simulation. 459
Chapter 29

- Generic algorithms 463

Initialization algorithms 465
Fill a sequence with an initial value 465
Copy one sequence onto another

SEQUENCE viiae 466
Initialize a sequence with generated

values. L 468
Swap values from two parallel ranges. . . .469

Searching operations 470
Find an element satisfying a condition. . . .471
Find consecutive duplicate elements. 472
Find a subsequence within a sequence . . .473

Locate maximum or minimum element. . .474
Locate the first mismatched elements

in parallel sequences 475
In-place transformations. 476
Reverse elements in a sequence. 476
Replace certain elements with fixed value .477
" Rotate elements around a midpoint 478
Partition a sequence into two groups479
Generate permutations in sequence 480
Merge two adjacent sequences into one . . .481
Randomly rearrange elements in a
sequence, 482
Removal algorithms 483
Removeunwanted elements 484
Removeruns of similar values 485
Algorithms that produce a scalar
result. o 486

| Sorting algorithms

‘Heap operations

Reduce sequence to a single value.
Generalized inner product
Test two sequences for pairwise ~
equality.
Lexical comparison.
Sequence generating algorithms
.Transform one or two sequences.
Partialsums
Adjacent differences
Miscellaneous algorithms

Apply a function to all elements in a
collection.,

‘Chapter 30

Ordered collection algorithms
Algorithm include files

Partial sort
Nth element
Binary search
Merge ordered sequenceé
Set operations

....................

...................

...................

Chapter 31

Exception handling

The standard exception hierarchy
Using exceptions ;
Example program: exception handling

Chapter 32
auto_ptr

Creating and using auto pointers
Example program: auto_ptr

Chapter 33
complex
Creating and using complex numbers
Header files '
Declaring complex numbers
Accessing complex number values
- Arithmetic operations
Comparing complex values.
Stream input and output
Norm and absolutevalue

..........

505
505
506
507

509
509
510

Trigonometric functions 515
Transcendental functions 515
Example program: roots of a
polynomial. 516
Chapter 34
string , 517
The string abstraction 517
Stringincludefiles 518
String operations 518
Declaring string variables 518
_ Resetting sizeand capacity 518
Assignment, append, andswap 519
Characteraccess. +..520
Iterators. 520
Insertion, removal, and replacement. 520
Copy and substring. S 521
String comparisons 521
Searching operations 521
Example function: split a line into
words 522
Chapter 35
Numeric limits 523
Numeric limits overview 523
Fundamental datatypes. 523
Numeric limit members 524
Members commontoalltypes 524
Members specific to floating point
values. Ll 525
Part V
ObjectComponents
programmer’s guide 527
Chapter 36 :
- Overview of ObjectComponents 529
OLE 2 features supported by
ObjectComponents 530
How ObjectComponents works 532
How ObjectComponents talks to OLE. . . .532
How ObjectComponents talks to you533
Linking and embedding connections533
Automation connections. 534

Building an ObjectComponents
application.

ObjectComponents Programming
Tools
Utility programs

Chapter 37

Turning an application into an
OCX or OLE container using
ObjectComponents

Step 1: Including ObjectComponents
headerfiles.

........................

| Step 2: Creating an OLE memory

allocatorobject.
Step 3: Creating OLE registration tables . .
Step 4: Connecting an

‘ObjectComponents application

object to the main window
Step 5: Connecting an

ObjectComponents view

object to the view window.
Step 6: Handling OLE messages

Using the new message-handlin,
classes. e

Step 7: Handling OLE menu
commands
Handling the InsertObject command . . .
Handling other OLE commands
Step 8: Creating a registrar object

..........

Step 9: Compiling and linking the

application

~ Chapter 38

Turning an application into
an OLE server using
ObjectComponents
Step 1: Including ObjectComponents
headerfiles.
Step 2: Creating an OLE memory
allocatorobject.
Step 3: Creating registration tables
and a document listobject.

~ Step 4: Connecting an

ObjectComponents application
object to the main window

539
540

540

540

541

542
543

545

545

. 546

546
547

Step 5: Connecting an ObjectComponents

view object to the view window 552
Step 6: Handling OLE messages 553
Handling selected application events554
Handling selected view events 554
Painting the document 555
Using the new message-handling class . . .555

Step 7: Creating a factory callback function. 555
" Step 8: Creating an ObjectComponents

registrarobject. 557
Step 9: Compiling and linking the
application, 558
CreatingaDLLOLEserver. 558
Prosand consof DLLservers. 559
Advantages 559
Disadvantages 559
Debugging a DLL OLE server 560
Tools for DLL OLEservers 561
REGISTEREXE 561
DLIRUNEXE. 561
Chapter 39
Turning an application into an OLE
automation server 563
Step 1: Including ObjectComponents ‘
headerfiles. 563
Step 2: Creating a registration table 564
Step 3: Creating a registrar object. 564
Step 4: Declaring automatable methods
andproperties 565
Writing declaration macros 565
Providing optional hooks for validation
andfiltering 567
- Step 5: Defining external methods and
properties. 568
The parts of a definition macro 569
Data type specifiers in an automation
definition. 570
Step 6: Compiling and linking an
automationsetrver. 570

Exposing collections of objects
Constructing and exposing a collection
class
Other ways to expose a collection
object
Implementing an iterator for the
collection

Adding other members to the collection
class

Exposing data for enumeration.
Combining multiple C++ objects into a
single OLE automation object
Telling OLE when the object goes away . . .
Localizing symbol names

Putting translations in the resource
script
Marking translatable strings in the
source code

Creating a type library

Chapter 40

Turning an application into an OLE
automation controller

Step 1: Including ObjectComponents
header files

Step 2: Creating a memory allocator object. .

............

....................

Step 3: Declaring proxy classes
Step 4: Implementing proxy classes
Specifying arguments in a proxy

method
Step 5: Creating and usmg proxy
objects
Step 6: Compiling and lmkmg an
automation controller
Enumerating automated collections

Declaring a proxy collection class
Implementing the proxy collection

‘class
Declaring a collection property '
Sending commands to the collection

.......................

.............

Xii

Part VI
Visual Database Tools

developer’s guide 595
How this partis organized 596
~ Visual Database Tool architecture 596
Datasources. 598
Visual Database Tools components 598
Data-access components. 599
Data-awarecontrols 600
Database Desktop.601
Developing applications for desktop and
remoteservers. 601
Database application development
methodology. 602
Development scenarios. 602
Database application development cycle . .603
Designphase604
Implementationphase. 604
Deploymentphase. 605
Deploying an application 605
Deploying 16-bit applications. 605
Deploying 32-bit applications.606
Deploying BDE support S 607
Languagedrivers. 607
ODBCSocket 607
Using third-party VBX controls. 607
Chapter 41
Creating applications with Visual .
~Database Tools 609
Programming with components 609
Properties. 609
Methods 610
Events. e 610
Setting properties 610
Setting properties at design time 610
Setting properties atruntime 611
Callingmethods. 611
Responding toevents. 612
Defining the eventsource 612
Defining the eventsink. 613
Connecting the event sink to the '

handlermethod e e e 613

Connecting the event source to the

eventsink 614
Event handling summary 614
An event-handling example 614

Creating the containerclass. 615
Connecting the event source to
theeventsink 615
Changing the form’scolor 616
Component Object Model (COM)
classes. 617
Building database forms. 618
Making the connections: linking ‘

database componernits 619

Creating a master-detail form 620
Sample database applications 621 .
Chapter 42 !

Using data-access components

and tools 623
Data-access components hierarchy 623
Usingdatasets. 624

Datasetstates 625

Opening and closing datasets. 626

Navigating datasets 627

The Next and Prior methods 627
The First and Last methods. 627
The AtBOF and AtEOF properties. 628
The MoveBy method 629
Modifying data in datasets 630
The CanModify property 630
Posting data to the database 630
Editing records e 631
Addingnewrecords. 631
Deletingrecords 631
Cancelingchanges 631
Working with entirerecords 631
Setting the updatemode 633

Bookmarkingdata 634

Disabling, enabling, and refreshing

data-awarecontrols 635
Using datasetevents J 635
Using OnCalcFields 635
UsingTTable 636
Specifying the database table. 636
The TableType property. 637

Searchingatable 637

Using Gotomethods. 637
UsingFindmethods 639
Using the KeyExclusive property in
searches 639
Limiting records retrieved by an
application 640
Using partialkeys 641
The KeyExclusive property . . .-. 641
Indexes 642
The Exclusive property. 643
Other properties and methods 643
The ReadOnly and CanModify
properties 643
The GotoCurrent method 643
Creating master-detail forms 644
- The Field Link Designer. 644
Using TDataSource. 645
Using TDataSource properties 645
The DataSet property 645
The Enabled property 645
Using TDataSourceevents. 645
The OnDataChangeevent. 645
The OnStateChangeevent. 646
Using TField components and the F1e1ds
editor, 646
What are TField components?. 647
Using the Fields editor 647
Starting the Fields editor 648
Adding a TField component 648
Deleting a TField component. 649
" Defining a calculated field 649
Programming a calculated field 650
Writing an OnCalcFields event handler . 650
A calculated field example 651
Modifying a TField component 653
Formatting fields 654
Handling TFieldevents 654
Using TField conversion functions. 655
Changingafield’svalue. 656
Displaying data with standard controls. . . 656
Using the Fields property 656
Using the FieldByName method 657
Using the TBatchMove component 657
Batchmovemodes 657
* Datatypemappings 658
Executingabatchmove 660
Handling batch moveerrors. 660
e T e 660

Using TSession

Controlling database connections

Getting database information.
Accessing the Borland Database Engme

directly

Chapter 43
Using data-aware controls
Data-aware component basics
Placing data-aware controls on forms. . .
Updating fields
Displaying data with TDBText
Displaying and editing fields with
TDBEdit
Editing a field
Viewing and modifying data witha
data grid
Setting grid options
Editinginthedatagrid
Navigating and manipulating records
with TDBNavigator.
Hiding and disabling navigator
buttons.
Displaying and editing BLOB text with
TDBMemo
Displaying BLOB graphics with
TDBlImage
Using list and combo boxes
TDBListBox
TDBCOmMboBOX . . « v v e v v e e
TDBLookupCombo
A TDBLookupCombo example
TDBLookupList
TDBCheckBox

TDBRadioGroup

Chapter 44
Using SQL in applications
Using the TQuery component
When to use TQuery
How to use TQuery
The SQL property
Creating the query text
Executing a query
The UniDirectional property
Getting aliveresultset.

Xiv

663
664

~665

665
666

666
666

667

667
668

668

669

670

670
671
671
672
673
674
674
675

676 -

Syntax requirements for live

resultsets 681
Dynamic SQL statements e 682
' Supplying values to parameters 682
Preparingaquery. 683
Using the Params property 683
Using the ParamByName method 684
Using the DataSource property. 684
Creating heterogenous queries 685
Chapter 45
Building a client/server application 687
Portability versus optimization. 687
Server portability688
Client/server communication
portability 688
Connecting to a database server 689
Connectivity 639
Using TCP/IP. S P 689.
Connection parameters. 689
UsingODBC. 690
Handling server security. 690
' Using the TDatabase component. 691
Connecting to a database server 691
Creating application-specific aliases 692
Understanding transaction control. 693
Handling transactions in applications693
Implicit transaction control 694
Explicit transaction control 694
Setting the SQL passthrough mode 694
Transaction isolationlevels 695
Using stored procedures. 696
Input and output parameters 696
Executing a stored procedure. 697
Oracle overloaded stored procedures698
Upsizing [698
~ Upsizing thedatabase 698
Upsizing the application. 699
Deploying support for remote server
access B T 700
Oracle servers TP 700
Sybase and Microsoft SQL servers 701

Informixservers. 701

16-bit InterBase clients. 702
TCP/IP Interface 702
Other communication protocols. 703

32-bit InterBase clients. 703
TCP/IP Interface. 703
Other communication protocols. 703

Chapter46
Programming with third-party

VBX controls ‘ 705
Installing a VBX control in the Borland

C+IDE 705
The TVbxControlclass. 706
Using the VbxGen utility706
Loading and initializing the Visual

Basicemulator. 706
Using the BIVBX library functions. 707
Chapter 47
Using local SQL 709
Naming conventions for tables. 709
Naming conventions for columns 710
Data manipulation L. .710

Parameter substitutions in DML
statements oL 710

Supported set (aggregate) functions. 710

Supported string functions 711

Supported date function. 711

Supported operators 711

Using SELECT e . 712
Using the FROMclause 712
Using the WHERE clause. 712
Using the ORDERBY clause 712
Using the GROUP BY clause 713
Heterogeneousjoins. e 713

UsingINSERT. 713

UsingUPDATE.:......713

Using DELETE e 713

Data definition 714

Using CREATETABLE 714

Using ALTERTABLE. 715

UsingDROPTABLE. 716

Using CREATEINDEX 716

Using DROPINDEX. 716

Part VII
Borland Windows Custom

7

................. 733

' Opening an object toeditit 734
Controls guide Glossal‘y:cf;l S::eE terms. 77?;§
Aggregation, 736
Chapter 48 . Automatedobject. 736
Using Borland Windows custom Automated application. 736
controls 719 Automation 736
Usmg the Borland custom dlalog Automation controller 737
class, 719 Automationserver 737
Customizing eXJStmg applications for BOCOLE support hbrary EEERERRE 737
Borland Windows custom controls. 719 COMobject.ol 737
Loading BWCC to enable Borland Compounj glocumenf """""" 737
customeontrols 720 gompou“ b‘e' I ;gg

Borland custom controls. 720 onnector bject. . . . - ...
Container. 738
Borland button and check box DLL server 738
enhancements 721 Document738
: Embedded object 738
Chapter 49 _ EXESeIVero, 739
Designing Borland Windows GUID . ..o 739
Custom Control dialog boxes 723 IDispatch interface 739
Panels. 723 In-placeediting 739
. In-processserver 739
Mal.n panel 1 """ Lttt 723 Interface 739
Achqn panel.o 724 . IUnknown interface. 740
Fonts 724 Linked object. . « .« .ot at L 740
Groupboxes. 724 Linksource. 740
P Localization 740

itle. L. 725 POMAREGEDIL e s e
gigﬁp Egi thi Ienents 7;; ObjectComponents framework 740
PDOXEIEMENLS v eeve e ObjectWindows library. 741
Pushbuttons. 725 OLE. ..ol 741
Action panel push buttons. e 726 OLEinterface 741
Examining your dialogbox 726 Openediting. 741
) Part 741
Appendix A) Reference cl;)unt-ing e 7g

. n Registrarobject 7

What is OLE) 727 Registration database. 742
Commonuses forOLE. 727 Registration table 742
Linking and embedding 727 Remoteview. 743
Automation 728 geled -------------------- ;ig

5 CIVEL . . o o v et e
What does OLE look like?. 728 System registration database 743
Inserting an object. R 729 Typelibrary 743
Editing an object in Place ,,,,,,,,, 730 V.erb 744
Activating, deactivating, and selecting View.o 744
anobject. 731 Index 745

Finding an object’sverbs. 732

XVi

Linking an object

| | Introduction

Borland C++ is akpowerfuln professional programming tool for creating and maintaining
DOS, Win16, and Win32 applications. Borland C++ supports both the C and C++
langugages with its integrated development environment and command-line tools.

How this book is organized
This book is divided into the following parts:

¢ PartI, “Programming with Borland C++” describes the implementation and
extensions to the C and C++ programming languages. It provides you with
programming information on C++ streams, container classes, persistent streams,
inline assembly, and ANSI implementation details.

¢ Part 1], “Borland C++ DOS programmer’s guide,” provides information you might
need to develop 16-bit applications that are targeted to run under DOS.

e PartIII, “Borland C++ class libraries guide,” is a programmer’s guide to using
Borland’s implementation of container classes, iostreams classes, persistent streams
classes, and mathematical classes.

e PartlV, “Standard class libraries guide,” documents the Rogue Wave Software, Inc.,
implementation of the Standard C++ Library.

¢ PartV, “ObjectComponents programmer’s guide,” describes how to create different
kinds of programs using ObjectComponents, a set of classes for creating OLE 2
applications in C++.

¢ Part VI, “Visual Database Tools developer’s guide,” explains how to use Visual
Database Tools to build database applications using C++.

* Part VII, “Borland Windows Custom Controls guide,” explains how to use the
Borland custom dialog class to change the appearance of your dialog window
depending on the target display device. It also presents design considerations for
custom dialog boxes.

. Appendlx A, “What is OLE?,” discusses support for OLE in Borland C++.

“introduction 1

Typefacés and icons used in this book

This book uses the following special fonts:

Monospace This type represents text that you type or text as it appears onscreen.

Italics These are used to emphasize and introduce words, and to indicate
variable names (identifiers), function names, class names, and structure
names. _ ‘

Bold This type indicates reserved keywords words, format specifiers, and
command-line options.

Keycap ~ This type répresents a particular key you should press on your

’ keyboard. For example, “Press Del to erase the character.”

Key1+Key2 This indicates a command that requires you to press Key? with Key2. For
example, Shift+a (although not a command) indicates the uppercase
letter “A.”

' ALL CAPS This type represents disk directories, file names, and application
names. (However, header file names are presented in lowercase to be
consistent with how these files are usually written in source code.)

Menu | Choice This represents menu commands. Rather than use the phrase “choose
the Save command from the File menu,” Borland manuals use the
convention “choose File | Save.”

Note This icon indicates material that you should take special notice of.

2 C++ Programmer’s Guide

Programming with Borland C++

Part I contains materials for the advanced programmer. If you already know how to
program well (whether in C, C++, or another language), this manual is for you. It
describes the implementation and extensions to the C and C++ programming p
languages. It is a language reference, and provides you with programming information
on C++ streams, container classes, persistent streams, inline assembly, and ANSI
implementation details.

How this part is organized

Chapters 1-5 describe the C and C++ languages as implemented in Borland C++.

- Together they provide a formal language definition, reference, and syntax for both the
C++ and C aspects of Borland C++. These chapters do not provide a language tutorial.
We use a modified Backus-Naur form notation to indicate syntax, supplemented where
necessary by brief explanations and program examples. The chapters are orgamzed in
this manner:

¢ Chapter 1, “Lexical elements,” shows how the 1ex1ca1 tokens for Borland C++ are
categorized. It covers the different categories of word-like units, known as tokens,
recognized by a language.

¢ Chapter 2, “Language structure,” explains how to use the elements of Borland C++..
It details the legal ways in which tokens can be grouped together to form expressions,
statements, and other significant units.

e Chapter 3, “C++ specifics,” covers those aspects specific to C++.

“o Chapter 4, “Exception handling,” describes the exceptlon-handhng mechanisms
available to C and C++ programs.

Part |, Programming wit'h Borland C++ 3

¢ Chapter 5, “Programming for portability,” explains the basics of programming
under Windows. See Part II, “Borland C++ DOS guide” for information on DOS
programming.

¢ Chapter 6, “Using dynamlc-hnk libraries,” explams dynamlc-hnk libraries and
dynamic linking.

¢ Chapter 7, “Using inline assembly,” explains how to embed assembly language
instructions within your C/C++ code.

¢ Chapter 8, “Header files summary,” explains how to use precompiled headers to
greatly speed up compilation times.

¢ Chapter 9, “Using Easme, explains how to compile standard DOS applications
that use traditional “TTY style” input and output so they run as Windows programs.

¢ Chapter 10, “Math,” covers floating-point issues. Much of the mformatlon regarding
math operations is specific to DOS applications.

¢ Chapter 11, “16-bit memory management,” explains what memory models are, how
to choose one, and why you would (or wouldn’t) want to use a particular memory
model. :

¢ Chapter 12, “ANSI implementation—specific standards,” describes those aspects of
the ANSI C standard that have been left loosely defined or undefined by ANSI. This
chapter tells how Borland C++ operates in respect to each of these aspects.

Borland C++ is a full implementation of AT&T’s C++ version 3.0, the object-oriented
superset of C developed by Bjarne Stroustrup of AT&T Bell Laboratories. This manual
refers to AT&T’s previous version as C++ 2.1. In addition to offering many new features
and capabilities, C++ often veers from C in varying degrees. These differences are
noted. All Borland C++ language features derived from C++ are discussed in Chapter 3.

Borland C++ also fully implements the ANSI C standard, with several extensions as
indicated in the text. You can set options in the compiler to warn you if any such
extensions are encountered. You can also set the compiler to treat the Borland C++
extension keywords as normal identifiers (see Chapter 3 of the C++ User’s Guide).

There are also “conforming” extensions provided via the #pragma directives offered by
ANSI C for handling nonstandard, implementation-dependent features.

4 C++ Programmer’s Guide

Chapter

Lexical elements

These topics provide a formal definition of the Borland C++ lexical elements. They
describe the different categories of word-like units (tokens) recognized by a language.

The tokens in Borland C++ are derived from a series of operations performed on your
programs by the compiler and its built-in preprocessor.

A Borland C++ program starts as a sequence of ASCII characters representing the
source code, created by keystrokes using a suitable text editor (such as the Borland C++
editor). The basic program unit in Borland C++ is the file. This usually corresponds to a
named file located in RAM or on disk and having the extension .C or .CPP.

The preprocessor first scans the program text for special preprocessor directives. For

_example, the directive #include <inc_file> adds (or includes) the contents of the file
inc_file to the program before the compilation phase. The preprocessor also expands any
macros found in the program and include files.

- In the tokemzmg phase of compilation, the source code file is parsed (that is, broken
down) into tokens and whitespace.

Whitespace

* the collective name given to spaces (blanks), horizontal and vertical tabs, newline .
characters, and comments. Whitespace can serve to indicate where tokens start and end,
but beyond this function, any surplus whitespace is discarded. For example, the two
sequences ‘

int i; float £;
and

int i;
float £;

are lexically equivalent and parse identically to give the six tokens:

Chapter 1, Lexical elements 5

The ASCII characters representing whitespace can occur within literal strings, in which
case they are protected from the normal parsing process (they remain as part of the
string). For example,

char name[] = "Borland International";

 parses to seven tokens, including the single literal-string token “Borland International.”

Line splicing with \

A special case occurs if the final newline character encountered is preceded by a
backslash (\). The backslash and new line are both discarded, allowing two physical
lines of text to be treated as one unit.

"Borland\
International™®

is parsed as “Borland International” (see “String constants” later in this chapter for more
information).

Comments

Comments are pieces of text used to annotate a program. Comments are for the
programmer’s use only; they are stripped from the source text before parsing.

There are two ways to delineate comments: the C method and the C++ method. Both are
supported by Borland C++, with an additional, optional extension permitting nested
comments. If you are not compiling for ANSI compatibility, you can use any of these
kinds of comments in both C and C++ programs.

You should also follow the guidelines on the use of whitespace and dehrruters in
comments discussed later in this topic to avoid other portability problems.

Ccomments
A C comment is any sequence of characters placed after the symbol pair /*. The
comment terminates at the first occurrence of the pair */ following the initial /*. The
entire sequence, mcludmg the four comment-delimiter symbols, is replaced by one
space after macro expansion. Note that some C nnplementa‘aons remove comments
- without space replacements.

Borland C++ does not support the nonportable token pasting strategy using /**/. Token
pasting in Borland C++ is performed with the ANSI-specified pair ##, as follows:

6 C++ Programmer’s Guide

#define VAR(i,j) (i/**/3) /* won't work */

#define VAR(i,j) (i##3) /* OK in Borland C++ */
#define VAR(i,3) (i ## J) /* Also OK */
In Borland C++,

int /* declaration */ i /* counter */;
parses as these three tokens:
int i;

See “Token Pasting with ##” in the online Help for a description of token pasting.

C++ comments ‘ ;
C++ allows a single-line comment using two adjacent slashes (/ /). The comment can
start in any position, and extends until the next new line:

class X { // this is a comment
B

You can also use // to create comments in C code. This is specific to Borland C++.

Nested comments , 7
ANSI C doesn’t allow nested comments. The attempt to comment out a line

/* int /* declaration */ i /* counter */; */

fails, because the scope of the first /* ends at the first */. This gives
i */)

which would generate a syntax error.

By default, Borland C++ won't allow nested comments, but you can override this with
compiler options. See the C++ User’s Guide, Chapter 3 for mformahon on enablmg
nested comments.

Delimiters and whitespace
In rare cases, some whitespace before /* and //, and after */, although not syntactically
mandatory, can avoid portability problems. For example, this C++ code:

int i = j//* divide by k*/k;

+m; :

parses as inti=j+m, not as
int i = 3/k;
+m; .

as expected under the C convention. The more legible
int 1 = j/ /* divide by k*/ k;

+m;

avoids this problem.

Chapter 1, Lexical elements 7

Tokens

. Tokens are word-like units recognized by a language. Borland C++ recognizes six classes
of tokens. '

~ Here is the formal definition of a token:
keyword
identifier
constant
striﬁg—liteml
operator
punctuator (also known as separators)

As the source code is scanned, tokens are extracted in such a way that the longest
possible token from the character sequence is selected. For example, external would be
parsed as a single identifier, rather than as the keyword extern followed by the identifier
al.

See “Token Pasting with ##” in the online Help for a description of foken pasting.

Keywords

Keywords are words reserved for special purposes and must not be used as normal
identifier names.

You can use options to select ANSI keywords only, UNIX keywords, and so on; see the
- C++ User’s Guide, Chapter 3, for information on these options.

If you use non-ANSI keywords in a program and you want the program to be ANSI-
compliant, always use the non-ANSI keyword versions that are prefixed with double
underscores. Some keywords have a version prefixed with only one underscore; these
keywords are provided to facilitate porting code developed with other compilers. For
ANSI-specified keywords there is only one version.

Note Note that the keywords _ _try and try are an exception to the discussion above. The
keyword try is required to match the catch keyword in the C++ exception-handling
mechanism. try cannot be substituted by _ _try. The keyword _ _try can only be used to
match the __except or _ _finally keywords. See the discussions on C++ exception
handling and C-based structured exceptions for more information.

Table of C++-specific keywords
There are several keywords specific to C++. They are not available if you are writing a
C-only program. o ‘ '

8 C++ Programmer’s Guide

Table 1.1 All Borland C++ keywords
asm mutable this
bool namespace throw
catch new true
class operator try
const_cast private typeid
delete protected typename
dynamic_cast public using
explicit reinterpret_cast virtual
false _ rth wchar_t
friend static_cast :
inline template
Table1.2 Table of Borland C++ register pseudovariables)
_AH _CL _EAX _ESP
_AL _Cs _EBP _FLAGS
_AX _CX _EBX" _Fs
_BH _DH _ECX _GS
_BL _DI _EDI _SI
_BP DL _EDX -SP
_BX DS _ES _SS
_CH DX _ESI

These pesudovariables are always available to the 32-bit compiler. The 16-bit compiler
can use these only whe you use the option to generate 80386 instructions. :

Borland C++ keyword extensions
Borland C++ provides additional keywords that are not part of the ANSI or UNIX
conventions. You cannot use these keywords in your programs if you set the IDE or
command-line options to recognize only ANSI or UNIX keywords.

Table1.3 Borland C++ keyword extensions

_asm __except _interrupt _rttd
__asm _export interrupt _ _saveregs
_cdecl far _loadds _saveregs
cded _far _ _loadds __seg
e __huge néar _seg

_ _declspec _huge _ _riear _ss

. ds ' huge _near _ _th}ead
_ds _import ~ _pascal __try
__.s _ irhport _ _pascal :

_es _ _interrupt pascal

Chapter 1, Lexical elements 9

Identifiers

Here is the formal definition of an identifier:
identifier:
nondigit
identifier nondigit
identifier digit
nondigit: one of
abcdefghijklmnopqrstuvwxyz_
ABCDEFGHIJKLMNOPQRSTUVWXYZ
digit: one of ’
0123456789,

Naming and length restrictions

Identifiers are arbitrary names of any length given to classes, objects, functions, variables,
user-defined data types, and so on. (Identifiers can contain the letters 2 to z and A to Z,
the underscore character (_), and the digits 0 to 9.) There are only two restrictions:

¢ The first character must be a letter or an underscore.

* By default, Borland C++ recognizes only the first 32 characters as significant. The
number of significant characters can be reduced by menu and command-line options,
but not increased. See Chapter 3 of the C++ User’s Guide for information on these
options.

Case sensitivity
Borland C++ identifiers are case sensitive, so that Sum, sum, and suM are distinct
identifiers.

Global identifiers imported from other modules follow the same naming and
significance rules as normal identifiers. However, Borland C++ offers the option of
suspending case sensitivity to allow compatibility when linking with case-insensitive
languages. With the case-insensitive option, the globals Sum and sum are considered
identical, resulting in a possible "Duplicate symbol" warning during linking.

An exception to these rules is that identifiers of type _ _pascal are always converted to
all uppercase for linking purposes.

Uniqueness and scope ,
Although identifier names are arbitrary (within the rules stated), errors result if the
same name is used for more than one identifier within the same scope and sharing the

same name space. Duplicate names are legal for different name spaces regardless of scope
rules.

10 C++ Programmer’s Guide

Constants

Constants are tokens representing fixed numeric or character values.

Borland C++ supports four classes of constants: integer, floating point, character
(including strings), and enumeration.

Internal representation of numerical types shows how these types are represented
internally.

7

The data type of a constant is deduced by the compiler usihg such clues as numeric
value and the format used in the source code. The formal definition of a constant is

shown in the following table.

Table 1.4 - Constants: formal definitions

constant
floating-constant:
integer-constant
numeration-constant
character-constant

floating-constant:

fractional-constant <exponent-part> <floating-
suffix>

digit-sequence exponent-part <floating-suffix>
fractional-constant:

<digit-sequence> . digit-sequence

digit-sequence .

exponent-part:
e <sign> digit-sequence
E <sign> digit-sequence
sigh: one of
+ -

dzgzt—sequence
digit
digit-sequence digit
floating-suffix: one of
f1FL
integer-constant:
decimal-constant <integer-suffix>
octal-constant <integer-suffix>
hexadecimal-constant <integer- sufﬁx>

decimal-constant:
nonzero-digit
decimal-constant digit

octal-constant:
ol
octal-constant octal- dzglt

hexadecimal-constant:
0 x hexadecimal-digit
0 X hexadecimal-digit
hexadecimal-constant hexadecimal-digit

nonzero-digit: one of
123456789

octal-digit:
oneof01234567

hexadecimal-digit: one of
0123456789
abcdef
ABCDEF

integer-suffix:
unsigned-suffix <long-suffix>
long-suffix <unsigned-suffix>
unsigned-suffix: one of

ulU

long-suffix: one of
1L

enumeration-constant:
identifier
character-constant:
c-char-sequence

c-char-sequence:
c-char
c-char-sequence c-char
c-char:
Any character in the source character set

except the single-quote (), backslash (\), or
newline character escape-sequence.

escape-sequence: one of the following
\" \' \? \\

\a \b \f \n

\o \oo \ooo \r

At \v \Xh... \xh..

Chapter 1, Lexical elements

11

Integer constants

Integer constants can be decimal (base 10), octal (base 8), or hexadecimal (base 16). In the
absence of any overriding suffixes, the data type of an integer constant is derived from
its value, as shown in Borland C++ integer constants without L or U. Note that the rules
vary between decimal and nondecimal constants.

Decimal , ‘
Decimal constants from 0 to 4,294,967,295 are allowed. Constants exceeding this limit are
truncated. Decimal constants must not use an initial zero. An integer constant that has
an initial zero is interpreted as an octal constant. Thus,

int i = lO; /*decimal 10 */

int 1 = 010 /*decimal 8 */

int i = 0; /*decimal 0 = octal 0 */
Octal

All constants with an initial zero are taken to be octal. If an octal constant contains the
illegal digits 8 or 9, an error is reported. Octal constants exceeding 037777777777 are
truncated.

Hexadecimal
All constants starting with Ox (or 0X) are taken to be hexadecimal. Hexadecimal
constants exceeding OXFFFFFFFF are truncated.

long and unsigned suffixes

The suffix L (or [) attached to any constant forces the constant to be represented as a
long. Similarly, the suffix U (or u) forces the constant to be unsigned. It is unsigned
long if the value of the number itself is greater than decimal 65,535, regardless of which
base is used. You can use both L and U suffixes on the same constant in any order or
case: ul, lu, UL, and so on. See the table of Borland constants.

The data type of a constant in the absence of any suffix (U, u, L, or I) is the first of the
following types that can accommodate its value:

Decimal int, long int, unsigned long int
Octal int, unsigned int, long int, unsigned long int
Hexadecimal - int, unsigned int, long int, unsigned long int

If the constant has a U or u suffix, its data type will be the first of unsigned int, un31gned
long int that can accommodate its value. ‘

If the constant has an L or suffix, its data type will be the first of long int, un51gned
long int that can accommodate its value.

If the constant has both u and 1 suffixes (ul, lu, Ul, IU, uL, Lu, LU, or UL), its data type will
be unsigned long int.

12 “C++ Programmer’s Guide S

Borland C++ integer constants without L or U summarizes the representations of
integer constants in all three bases. The data types indicated assume no overriding L or

U suffix has been used.
Table 1.5 Borland C++ integer constants without L or U
Decimal constants
0 to 32767 int
32,768 to 2,147/483,647 long
2,147483,648 to 4,294,967,295 unsigned long
> 4294967295 truncated
Octal constants :
00 to 077777 - int
010000 to 0177777 unsigned int
02000000 to 017777777777 long
020000000000 to 037777777777 unsigned long
> 037777777777 truncated
Hexadecimal constants
0x0000 to Ox7FFF int
0x8000 to OxFFEF unsigned int
0x10000 to OX7FEFFFFF long
0x80000000 to . OxFFFFFFFF unsigned long’
>0xFFFFFFFF truncated

Floating-point constants
A floating-point constant consists of:

¢ Decimal integer
¢ Decimal point

® Decimal fraction

¢ cor E and a signed integer exponent (optional)

¢ Type suffix: f or Forl or L (optional)

You can omit either the decimal integer or the decimal fraction (but not both). You can
omit either the decimal point or the letter e (or E) and the signed integer exponent (but
not both). These rules allow for conventional and scientific (exponent) notations.

Negative ﬂoatmg constants are taken as positive constants with the unary operator

minus (-) prefixed.

Chapter 1, Lexical elements 13

Here are some examples:

.
23.45¢6 2345 x 106
0 0
o 0
1 10x100=1.0
123 123
2e-5 20x10-5
3E+10 3.0x 1010
09E34 0.09 %1034

In the absence of any sulffixes, floating-point constants are of type double. However,
you can coerce a floating constant to be of type float by adding an f or F suffix to the
constant. Similarly, the suffix] or L forces the constant to be data type long double. The
table below shows the ranges available for float, double, and long double.

Table 1.6

Akﬂoat ’

double 64 1.7x 107308 0 1.7 x 10308
long double 80 34x107%%52 0 1.1 x 10492
Character constants

A character constant is one or more characters enclosed in single quotes, suchas 'a', '+,
or "\n'. In C, single-charactrer constants have data type int. The number of bits used to
internally represent a character constant is sizeof(int). In a 16-bit program, the upper
byte is zero or sign-extended. In C++, a character constant has type char. Multicharacter
constants in both C and C++ have data type int.

To learn more about character constants, see

* “Three char types” later in this chapter

* “Escape sequences” later in this chapter

¢ “Wide-character and multi-character constants” later in this chapter

Note To compare sizes of character types, compile this as a C program and then as a C++

‘program.

#include <stdio.h>

#define CH 'x' /* A CHARACTER CONSTANT */

void main(void) { '
char ch = 'x'; /* A char VARIABLE */
‘printf ("\nSizeof int = %d", sizeof(int));
printf ("\nSizeof char = %d", sizeof(char));
printf("\nSizeof ch = %d", sizeof(ch));.

printf ("\nSizeof CH . = %d", sizeof (CH));

14 C++ Programmer’s Guide

Note

Note

printf ("\nSizeof wchar_ t = %d", sizeof (wchar_t));
} ’ ’

Sizes are in bytes.

Table 1.7 Sizes of chéracter types

Sizeof int = 2 4 Sizeof int = 2 4
Sizeof char = 1 1 Sizeof char = 1 1
‘Sizeof ch = 1 1 Sizeof ch = 1 1
Sizeof CH = 2 4 Sizeof CH = 1 1
Sizeof wchar t = 2 2 Sizeof wchar t = 2 2

‘The three char types

One-character constants, such as 'A' "\t, and '007', are represented as int values. In this
case, the low-order byte is sign extended into the high bit; that is, if the value is greater
than 127 (base 10), the upper bit is set to -1 (=0xFF). This can be disabled by declaring
that the default char type is unsigned, which forces the high bit to be zero regardless of
the value of the low bit. See Chapter 3 of the C++ User’s Guide for information on these
options.

The three character types, char, signed char, and unsigned char, require an 8-bit (one
byte) storage. In C and Borland C++ programs prior to version Borland C++ 4.0, char is
treated the same as signed char. The behavior of C programs is unaffected by the
distinction between the three character types.

To retain the old behavior, use the -K2 command-line option and Borland C++ 3.1
header files and libraries. -

In a C++ program, a function can be overloaded with arguments of type char, signed
char, or unsigned char. For example, the following function prototypes are valid and
distinct:

void func(char ch);

void func(signed char ch);

void func(unsigned char ch);

If only one of the above prototypes exists, it will accept any of the three character types.
For example, the following is acceptable:

void func(unsigned char ch);
void main(void) {

signed char ch = 'x';

func (ch) ; ‘

}
See Chapter 3 of the C++ User’s Guide for a description of code-generation options.

Chapter 1, Lexical elements 15

Escape sequences

The backslash character (\) is used to introduce an escape sequence, which allows the
visual representation of certain nongraphic characters. For example, the constant \n is
used to the single newline character.

A backslash is used with octal or hexadecimal numbers to represent the ASCII symbol
or control code corresponding to that value; for example, "\03' for Ctrl-C or "\x3F for
the question mark. You can use any string of up to three octal or any number of
hexadecimal numbers in an escape sequence, provided that the value is within legal
range for data type char (0 to Oxff for Borland C++). Larger numbers generate the
compiler error Numeric constant too large. For example, the octal number \777 is.
larger than the maximum value allowed (\377) and will generate an error. The first
nonoctal or nonhexadecimal character encountered in an octal or hexadecimal escape
sequence marks the end of the sequence.

Originally, Turbo C allowed only three digits in a hexadecimal escape sequence. The
ANSI C rules adopted in Borland C++ might cause problems with old code that
assumes only the first three characters are converted. For example, using Turbo C 1.

prlntf(" \x0072.1A Simple Operating System");

This is intended to be interpreted as \x007 and "2.1A Simple Operating System".
However, Borland C++ compiles it as the hexadecimal number \x0072 and the literal
string "1A Simple Operating System".

To avoid such problems, rewrite your code like this:
printf ("\x007" "2.1A Simple Operating System");

Ambiguities might also arise if an octal escape sequence is followed by a nonoctal digit.
For example, because 8 and 9 are not legal octal digits, the constant \258 would be
interpreted as a two-character constant made up of the characters \25 and 8.

The following table shows the available escape sequences.

Note Youmustuse \\ to represent an ASCII backslash, as used in operating system paths.

Table 1.8 Borland C++ escape sequences

\a 07 TUBEL Audiblebell

\b 0x08 BS Backspace

\f 0x0C FF Formfeed

\n Ox0A LF Newline (linefeed)

\r 0x0D CR Carriage return

\t ’ 0x09 HT Tab (horizontal)

\v 0x0B VT Vertical tab

A\ 0x5¢ \ Backslash

\' 0x27 ' Single quote (apostrophe)

\" ' 0x22 " , Double quote

\? Ox3F 7) Question mark

\O : , » any , O=a string of up to three
. . octal digits

16 C++ Programmer’s Guide —

Table 1.8 Borland C++ escape sequences

o e . , Ty - H=aistr1~ngofhe>/{vg‘itév\
\XH any H=a string of hex digits

Wide-character and multi-character constants

Wide-character types can be used to represent a character that does not f1t into the
storage space allocated for a char type. A wide character is stored in a two-byte space. A
character constant preceded immediately by an L is a wide-character constant of data
type wchar_t (defined in stddef.h). For example:

wchar_t ch = L'AB';

When wchar_t is used in a C program it is a type defined in the stddef.h header file. In a
C++ program, wchar_tis a keyword that can represent distinct codes for any element of
the largest extended character set in any of the supported locales. In C++, wchar_t is the
same size, signedness, and alignment requirement as an int type.

A string preceded immediately by an L is a wide-character strihg. The memory
allocation for a string is two bytes per character. For example:

wchar_t str = L"ABCD";

Multi-character constants

Borland C++ also supports multi-character constants. When using the 32-bit compiler,
multi-character constants can consist of as many as four characters. The 16-bit compiler
is restricted to two-character constants. For example, 'An’, \n\t,, and "\007\007" are
acceptable in a 16-bit program. The constant, "\006\007\008\009" is valid only in a
32-bit program. When using the 16-bit compiler, these constants are represented as 16-
bit int values with the first character in the low-order byte and the second character in
the high-order byte. For 32-bit compilers, multi-character constants are always 32-bit int
values. The constants are not portable to other C compilers.

String constants
String constants, also known as string literals, form a special category of constants used
to handle fixed sequences of characters. A string literal is of data type array-of-char and
storage class static, written as a sequence of any number of characters surrounded by
double quotes:

"This is literally a string!"

The null (empty) string is written

The characters inside the double quotes can include escape sequences. This code, for
example:

"\t\t\ "Name\ "\\\tAddress\n\n"
prints like this:
"Name" \ Address

Chapter 1, Lexical elements 17

"Name" is preceded by two tabs; Address is preceded by one tab. The line is followed by
two new lines. The \" provides interior double quotes.

If you compile with the -A option for ANSI compatibility, the escape character sequence
"\\"is translated to "\" by the compiler.

A literal string is stored internally as the given sequence of characters plus a final null
character ('\0'). A null string is stored as a single '\0' character.

Adjacent string literals separated only by whjtespace are concatenated during the
parsing phase, as in the following example:

#include <stdio.h>
int main() {
char *p;
_InitEasyWin() ;
p = "This is an example of how Borland C++"
" will\nconcatenate verj(long strings for you"
" automatically, \nresulting in nicer"
" Jooking programs.";
printf (p);
return(0) ;

}

The output of the program is

This is an example of how Borland C++ will
concatenate very long strings for you automatically,
resulting in nicer looking programs.

You can also use the backslash (\) as a continuation character to extend a string constant
across line boundaries:

puts ("This is really \
a one-line string");

Enumeration constants :

Enumeration constants are identifiers defined in enum type declarations. The identifiers
are usually chosen as mnemonics to assist legibility. Enumeration constants are integer
data types. They can be used in any expression where integer constants are valid. The
identifiers used must be unique within the scope of the enum declaration. Negative
initializers are allowed. See the C++ Language Reference for a detalled look at enum
declarations.

The values acquired by enumeration constants depend on the format of the
enumeration declaration and the presence of optional initializers. In this example,

enum team { giants, cubs, dodgers };

giants, cubs, and dodgers are enumeration constants of type team that can be assigned to
any variables of type team or to any other variable of integer type. The values acquired
by the enumeration constants are

giants = 0, cubs = 1, dodgers = 2

18 C++ Programrﬁer's Guide

in the absence of explicit initializers. In the following example,

enum team { giants, cubs=3, dodgers = giants + 1 };

the constants are set as follows:

gliants = 0, cubs = 3, dodgers = 1

The constant values need not be unique:

enum team { giants, cubs = 1, dodgers = cubs - 1 };

Constants and internal representation
ANSI C acknowledges that the size and numeric range of the basic data types (and their
various permutations) are implementation-specific and usually derive from the
architecture of the host computer. For Borland C++, the target platform is the IBM PC
family (and compatibles), so the architecture of the Intel 8088 and 80x86 '

_ microprocessors governs the choices of internal representations for the various data

types.

The following tables list the sizes and resulting ranges of the data types for Borland
C++. Internal representation of numerical types shows how these types are represented
internally.

- Table 1.9

ges

16-bit data types, sizes, and ran
- e .

ey

. . . |
unsigned char 8 0t0255 Smaéﬁ numbers and full PC character set
char ' 8 —128 to 127 ' Very small numbers and ASCII characters
enum 16 =32,768 to 32,767 Ordered sets of values
unsigned int 16 0t0 65,535 v Larger numbers and loops
short int 16 —32,768 t0 32,767 Counting, small numbers, loop control
int 16 32,768 to 32,767 Counting, small numbers, loop control
unsigned lbng 32 0t0 4,294,967,295 Astronomical distances
long 32 —2,147 483,648 to 2,147 483,647 Large numbers, populations
float 32 34x108t034%10% - Scientific (7-digit precision)
double 64 17x10%0%8 4517 x 10308 Scientific (15-digit precision)
long double 80 34x 10743240 1.1 x 104932 i Financial (18-digit precision)
near pointer 16 Not applicable , Manipulating memory addresses
far pointer 32 Not applicable Manipulating addresses outside current segment

, Sizes, and ranges

0to 265

-128 to 127 g Very small numbers and ASCII characters
short int . 16 -32,768 t0 32,767 Counting, small numbers, loop control
unsigned int 32 0 to 4,294,967,295 ~ Large numbers and loops
int 32 —2,147 483,648 t0 2,147 483,647 Counting, small numbers; loop control

unsigned long 32 - 0104,294,967,295 : * Astronomical distances

Chapter 1, Lexical elements 19

Table 1.10

enum

A}

32-bit data types, sizes, and ranges (continued)

32 2,147 483,648 t0 2,147 483,647 Ordered sets of values
long 32 —2,147,483,648 t0 2,147 483,647 Large numbers, populations
float 32 34x108t01.7x 1038 Scientific (7-digit precision)
double 64 1.7 x1073%8 t0 3.4 x 10°08 Scientific (15-digit precision)
long double 80 34 %1052 40 1.1 x 10432

Financial (18-digit precision)

Figure 1.1 Internal representations of numerical types

16-bit integers
e
int ‘s Magnitude " (2's complement)
5T T
long int ‘s Magnitude | (2's complement)
311,,,, G S ,,0
' 32-bit integers
short int {‘s Magnitude ‘ (2's complement)
5 N 0 ‘
i -) ”""\‘
int, long is \ Magnitude © (2's complement)
. Floating-point types, always
Biased i |
float S exponent Significand J
e
R o ‘
| Biased - ‘
double ‘;s exponent Significand ‘ J
g et
PR - i,, — — e e e — y
1 Biased — ‘
long J s exponent 1 Significand

Exponent bias (normalized values):
float: 127 (7FH)
double: 1,023 (3FFH)
long double:16,383 (3FFFH)

s = Sign bit (0 = positive, 1 = negative)
i= Position of implicit binary point
1 = Integer bit of significance:

Stored in long double -
Implicit (always 1) in float, double

Constant expressions

A constant expression is an expression that always evaluates to a constant (and it must
evaluate to a constant that is in the range of representable values for its type). Constant

20 C++ Programmer’s Guide

expressions are evaluated just as regular expressions are. You can use a constant
expression anywhere that a constant is legal. The syntax for constant expressions is:

constant-expression:
Conditional-expression

Constant expre'ssions cannot contain any of the following operators, unless the
operators are contained within the operand of a sizeof operator:

* Assignment
e Comma

¢ Decrement

¢ Function call

¢ Increment

Punctuators

The punctuators (also known as separators) in Borland C++ are defined as follows:
punctuator: one of
L1 C) O}, 5 s e * = 4

Brackets
Open and close brackets [] indicate single and multidimensional array subscripts:
char ch, str[] = "Stan";

int mat[3][4]; © /*'3 x 4 matrix */
ch = str[3]; /* 4th element */
Parentheses

Open and close parentheses () are used to group expressions, isolate conditional
expressions, and indicate function calls and function parameters: -

d=c* (a+ b); /* override normal precedence */

if (d == z) ++x; /* essential with conditional statement */
func () ;) /* function call, no args */

int (*fptr) (); /* function pointer declaration */

fptr = func; /* no () means func pointer */

void func2(int n); /* function declaration with parameters */

Parentheses are recommended in macro definitions to avoid potential precedence
problems during expansion:

#define CUBE(x) ((x) * (x) * (x))

The use of parentheses to alter the normal operator precedence and associativity rules is
covered in “Expressions” in the online Help.

Chapter 1, Lexical elements 21

22

. Braces

Open and close braces {} indicate the start and end of a compound statement:

if (d == z)
{
++X;
func();

}

The closing brace serves as a terminator for the compound statement, so a’; (semicolon)
is not required after the }, except in structure or class declarations. Often, the semicolon
isillegal, as in '

if (statement)

{r: /*illegal semicolon*/
else

Comma |
The comma (,) separates the elements of a function argument list:

void func(int n, float £, char ch);
The comma is also used as an operator in comma expressions. Mixing the two uses of
comma is legal, but you must use parentheses to distinguish them:

func(i, j); } /* call func with two argé */
func((expl, exp2), (exp3, exp4d, exp5)); /* also calls func with two args! */

Semicolon ‘

The semicolon (;) is a statement terminator. Any legal C or C++ expression (including
the empty expression) followed by a semicolon is interpreted as a statement, known as
an expression statement. The expression is evaluated and its value is discarded. If the
expression statement has no side effects, Borland C++ might ignore it.

a + b; /* maybe evaluate a + b, but discard value */
++a; /* side effect on a, but discard value of ++a */
H . /* empty expression = null statement */

Semicolons are often used to create an empty statement:

for (1 = 0; i < n; i++)

{
}

Colon .
Use the colon (:) to indicate a labeled statement:

start: x=0;

goto start;

Labels are discussed in “Labeled statements” in the online Help.

C++ Programmer’s Guide

Ellipsis

The e1]1p51s (-..) is three successive periods with no intervening whitespace. E]]lpses are
used in the formal argument lists of function prototypes to indicate a variable number of
arguments, or arguments with varying types:

vold func(int n, char-ch,...);

This declaration indicates that func will be defined in such a way that calls must have at
least two arguments, an int and a char, but can also have any number of additional

arguments.
In C++, you can omit the comma before the ellipsis.

Asterisk (pointer declaration)
The asterisk (*) in a variable declaration denotes the creation of a pointer to a type:

char *char_ptr; /* a pointer to char is declared */

Pointers with multiple levels of indirection can be declared by indicating a pertinent
number of asterisks:

int **int_ptr; /* a pointer to an integer array */

double ***double_ptr; /* a pointer to a matrix of doubles */

You can also use the asterisk as an operator to either dereference a pointer or as the
muluphcanon operator

i *1nt_ptr,

b * 3.14;

a

‘Equal sign (initializer)
The equal sign (=) separates variable declarations from initialization lists:
char array[5] = { 1, 2, 3, 4, 5 }; ‘
int x = 5;
In C++, declarations of any type can appear (with some restrictions) at any point within
the code. In a C function, no code can precede any variable declarations.
In a C++ function argument list, the equal sign indicates the default value for a
parameter:

int f{int i = 0) { ... } /* Parameter i has default value of zero */

The equal sign is also used as the assignment operator in expressions:

int a,‘b, c;
a=D>b+c;
float *ptr = (float *) malloc(sizeof(float) * 100);

Pound sign (preprocessor dlrectlve)

The pound sign (#) indicates a preprocessor directive when it occurs as the first
nonwhitespace character on a line. It signifies a compiler action, not necessarily
associated with code generation. See “Preprocessor directives” in the online Help for
more on the preprocessor directives.

Chapter 1, Lexical elements 23

and ## (double pound signs) are also used as operators to perform token replacement
and merging during the preprocessor scanning phase.

24 C++ Programmer’s Guide

Chapter

Language structure

These topics provide a formal definition of Borland C++ language structure. They
describe the legal ways in which tokens can be grouped together to form expressions,
statements, and other significant units.

Declarations

This section briefly reviews concepts related to declarations: objects, storage classes,
types, scope, visibility, duration, and linkage. A general knowledge of these is essential
before tackling the full declaration syntax. Scope, visibility, duration, and linkage
determine those portions of a program that can make legal references to an identifier in
order to access its object.

Objects

An object is an identifiable region of memory that can hold a fixed or variable value (or
set of values). (This use of the word object is different from the more general term used in
object-oriented languages.) Each value has an associated name and type (also known as .
a data type). The name is used to access the object. This name can be a simple identifier,

or it can be a complex expression that uniquely “points” to the object. The type is used

* To determine the correct memory allocation required initially.
e To interpret the bit patterns found in the object during subsequent accesses.
* In many type-checking situations, to ensure that illegal assignments are trapped.

Borland C++ supports many standard (predefined) and user-defined data types,
including signed and unsigned integers in various sizes, floating-point numbers in
various precisions, structures, unions, arrays, and classes. In addition, pointers to most
of these objects can be established and manipulated in various memory models.

‘Chapter 2, Language structure 25

The Borland C++ standard libraries and your own program and header files must
provide unambiguous identifiers (or expressions derived from them) and types so that
Borland C++ can consistently access, interpret, and (possibly) change the bit patterns in
memory corresponding to each active object in your program.

Objects and declarations

Declarations establish the necessary mapping between identifiers and objects. Each
declaration associates an identifier with a data type. Most declarations, known as
defining declarations, also establish the creation (where and when) of the object; that is,
the allocation of physical memory and its possible initialization. Other declarations,
known as referencing declarations, simply make their identifiers and types known to the
compiler. There can be many referencing declarations for the same identifier, especially
in a multifile program, but only one defining declaration for that identifier is allowed.

Genefa]ly speaking, an identifier cannot be legally used in a program before its
declaration point in the source code. Legal exceptions to this rule (known as forward
references) are labels, calls to undeclared functions, and class, struct, or union tags.

Ivalues

An lvalue is an object locator: an expression that designates an object. An example of an
Ivalue expression is *P, where P is any expression evaluating to a non-null pointer. A
modifiable lvalue is an identifier or expression that relates to an object that can be accessed
and legally changed in memory. A const pointer to a constant, for example, is not a
modifiable lvalue. A pointer to a constant can be changed (but its dereferenced value
cannot).

Historically, the I stood for “left,” meaning that an Ivalue could legally stand on the left
(the receiving end) of an assignment statement. Now only modifiable Ivalues can legally
stand to the left of an assignment statement. For example, if 2 and b are nonconstant
integer identifiers with properly allocated memory storage, they are both modifiable
Ivalues, and assignments such asa = 1; and b = a + b are legal.

rvalues

The expression a + b is not an lvalue: a + b = a is illegal because the expression on the left
is not related to an object. Such expressions are often called rvalues (short for right
values).

Storage classes and types

Associating identifiers with objects requires each identifier to have at least two
attributes: storage class and type (sometimes referred to as data type). The Borland C++
compiler deduces these attributes from implicit or explicit declarations in the source
code.

Storage class dictates the location (data segment, register, heap, or stack) of the object
and its duration or lifetime (the entire running time of the program, or during execution

- of some blocks of code). Storage class can be established by the syntax of the declaration,
by its placement in the source code, or by both of these factors.

26 C++ Programmer’s Guide

The type determines how much memory is allocated to an object and how the program

will interpret the bit patterns found in the object’s storage allocation. A given data type
can be viewed as the set of values (often implementation-dependent) that identifiers of
that type can assume, together with the set of operations allowed on those values. The
compile-time operator, sizeof, lets you determine the size in bytes of any standard or
user-defined type. See “The sizeof operator” later in this chapter for more on this
operator.

Scope

The scope of an identifier is that part of the progrém in which the identifier can be used
to access its object. There are five categories of scope: block (or local), function, function
prototype, file, and class (C++ only). These depend on how and where identifiers are
declared.

Block. The scope of an identifier with block (or local) scope starts at the declaration
point and ends at the end of the block containing the declaration (such a block is
known as the enclosing block). Parameter declarations with a function definition also
have block scope, limited to the scope of the block that defines the function.

Function. The only identifiers having function scope are statement labels. Label

names can be used with goto statements anywhere in the function in which the label
is declared. Labels are declared implicitly by writing label_name: followed by a
statement. Label names must be unique within a function.

Function prototype. Identifiers declared within the list of parameter declarations in a
function prototype (not part of a function definition) have function prototype scope.
This scope ends at the end of the function prototype.

File. File scope identifiers, also known as globals, are declared outside of all blocks
and classes; their scope is from the point of declaration to the end of the source ﬁle.

Class (C++). A class is a named collection of members, including data structures and
functions that act on them. Class scope applies to the names of the members of a
particular class. Classes and their objects have many special access and scoping rules.

Condition (C++). Declarations in conditions are supported. Variables can be
declared within the expression of if, while, and switch statements. The scope of the
variable is that of the statement. In the case of an if statement, the variable is also in
scope for the else block.

Name spaces
Name space is the scope within which an identifier must be unique. C uses four distinct
classes of identifiers:

goto label names. These must be unique within the function in which they are
declared.

Structure, ﬁnion, and enumeration tags. These must be unique within the block in
which they are defined. Tags declared outside of any function must be unique with-
inall.

Chapter 2, Language structure 27

e Structure and union member names. These must be unique . within the structure or
union in which they are defined. There is no restriction on the type or offset of
members with the same member name in different structures.

¢ Variables, typedefs, functions, and enumeration members. These must be uniqué
within the scope in which they are defined. Externally declared identifiers must be
unique among externally declared variables.

Note Structures, classes, and enumerations are in the same name space in C++.

Visibility

The vzszbzlzty of an identifier is that region of the program source code from which legal
access can be made to the identifier’s associated object.

~ Scope and VISIbﬂlty usua]ly coincide, although there are circumstances under which an
object becomes temporarily hidden by the appearance of a duplicate identifier: the object
still exists but the original identifier cannot be used to access it until the scope of the
duplicate identifier is ended.

Note Visibility cannot exceed scope, but scopé can exceed visibility.

int i; char ch; // auto by default

i=3; // int i and char ch in scope and visible
{
double 1i;
= 3.0e3; // double 1 in scope and visible
// int i1=3 in scope but hidden
ch = 'A'; » // char ch in scope and visible

}
// double i out of scope
1 +=1; // int i visible and = 4

// char ch still in scope & visible = 'A’
}

// int i and char ch out of scope

Again, special rules apply to hidden class names and class member names: C++
operators allow hidden identifiers to be accessed under certain conditions.

Duration

Duration, closely related to storage class, defines the period during which the declared

. identifiers have real, physical objects allocated in memory. We also distinguish between
compile-time and run-time objects. Variables, for instance, unlike typedefs and types,
have real memory allocated during run time. There are three kinds of duration: static,
local, and dynamic.

28 C++ Programmer’s Guide

Note

Static

Memory is allocated to ob]ects with static duration as soon as execution is underway,
this storage allocation lasts until the program terminates. Static duration objects usually
reside in fixed data segments allocated according to the memory model in force. All
functions, wherever defined, are objects with static duration. All variables with file
scope have static duration. Other variables can be given static duration by using the
explicit static or extern storage class specifiers.

Static duration objects are initialized to zero (or null) in the absence of any explicit
initializer or, in C++, constructor.

Don’t confuse static duration with file or global scope. An object can have static duration
and local scope. ‘

Local

Local duration objects, also known as automatic objects, lead a more precarious existence.
They are created on the stack (or in a register) when the enclosing block or function is
entered. They are deallocated when the program exits that block or function. Local
duration objects must be explicitly initialized; otherwise, their contents are
unpredictable. Local duration objects must always have local or function scope. The
storage class specifier auto can be used when declaring local duration variables, but is’
usually redundant, because auto is the default for variables declared within a block. An
object with local duration also has local scope, because it does not exist outside of its ’
enclosing block. The converse is not true: a local scope object can have static duration.

When declaring variables (for example, int, char, float), the storage class specifier
register also implies auto; but a request (or hint) is passed to the compiler that the object
be allocated a register if possible. Borland C++ can be set to allocate a register to a local
integral or pointer variable, if one is free. If no register is free, the variable is allocated as
an auto, local object with no warning or error.

The Borland C++ compiler can ignore requests for register allocation. Register allocation

“is based on the compiler’s analysis of how a variable is used.

~ Dynamic

Dynamic duration objects are created and destroyed by specific function calls during a
program. They are allocated storage from a special memory reserve known as the heap,
using either standard library functions such as malloc, or by using the C++ operator
new. The corresponding deallocations are made using free or delete.

Translation units

The term translation unit refers to a source code file together with any included files, but
less any source lines omitted by conditional preprocessor directives. Syntactlcally,
translation unit is defined as a sequence of external declarations:

translation-unit:
external-declaration

translation-unit external-declaration

Chaptetr 2, Language structure 29

external-declaration
function-definition
declaration

The word external has several connotations in C; here it refers to declarations made

* outside of any function, and which therefore have file scope. (External linkage is a
distinct property; see the section “Linkage.”) Any declaration that also reserves storage
for an object or function is called a definition (or defining declaration). For more details,
see “External declarations and definitions.”

Linkage

An executable program is usually created by compiling several independent translation
units, then linking the resulting object files with preexisting libraries. A problem arises
when the same identifier is declared in different scopes (for example, in different files),
‘or declared more than once in the same scope. Linkage is the process that allows each
instance of an identifier to be associated correctly with one particular object or function.
All identifiers have one of three linkage attributes, closely related to their scope: external
linkage, internal linkage, or no linkage. These attributes are determined by the
placement and format of your declarations, together with the explicit (or implicit by -
default) use of the storage class specifier static or extern. '

Each instance of a particular identifier with external linkage represents the same object or
function throughout the entire set of files and libraries making up the program. Each -
instance of a particular identifier with internal linkage represents the same object or
function withjn one file only. Identifiers with rno linkage represent unique entities.

External and internal linkage rules
¢ Any object or file identifier having file scope will have internal linkage if its
declaration contains the storage class specifier static.

* For C++, if the same identifier appears with both mternal and extemal linkage within
the same file, the identifier will have external lmkage In C, it will have internal
linkage.

o If the declaration of an object or function identifier contains the storage class specifier
extern, the identifier has the same linkage as any visible declaration of the identifier
with file scope. If there is no such visible declaration, the identifier has external
linkage.

¢ Ifa function is declared without a storage class specifier, its linkage is determined as
if the storage class specifier extern had been used. :

¢ If an object identifier with file scope is declared without a storage class specifiér, the
identifier has external linkage.

Identifiers with no linkage attribute:

i

e Any identifier declared to be other than an ob]ect or a function (for example, a
typedef identifier)

- 30 C++ Programmer’s Guide

e Function parameters

* Block scope identifiers for objects declared without the storage class specifier extern

Name mangling

When a C++ module is compiled, the compiler generates function names that include an
encoding of the function’s argument types. This is known as name mangling. It makes
overloaded functions possible, and helps the linker catch errors in calls to functions in
other modules. However, there are times when you won't want name mangling. When
compiling a C++ module to be linked with a module that does not have mangled
names, the C++ compiler has to be told not to mangle the names of the functions from
the other module. This situation typically arises when linking Wlth libraries or .OBJ files
compiled with a C compiler.

To tell the C++ compiler not to mangle the name of a function, declare the function as
extern "c",like this: '

extern "C" void Cfunc{ int);

This declaration tells the compiler that references to the function Cfunc should not be
mangled.

You can also apply the extern "cr declaration to a block of names:

extern "C" {
void Cfuncl(int);
void Cfunc2(int);
void Cfunc3(int);
};
As with the declaration for a single funiction, this declaration tells the compiler that
references to the functions Cfuncl, Cfunc2, and Cfunc3 should not be mangled. You can
also use this form of block declaration when the block of function names is contained in
a header file: :
extern "C" {
#include "locallib.h"
}:)

Introduction to declaration syntax

All six interrelated attributes (storage classes, types, scope, visibility, duration, and
linkage) are determined in diverse ways by declarations.

Declarations can be defining declarations (also known as definitions) or referencing
declarations (sometimes known as nondefining declarations). A defining declaration, as the
name implies, performs both the duties of declaring and defining; the nondefining
declarations require a definition to be added somewhere in the program. A referencing
declaration introduces one or more identifier names into a program. A definition
actually allocates memory to an object and associates an identifier with that object.

Chapter 2, Language structure 31

Tentative definitions

The ANSI C standard supports the concept of the tentative deﬁmtlon Any external data
declaration that has no storage class specifier and no initializer is considered a tentative
definition. If the identifier declared appears in a later definition, then the tentative
definition is treated as if the extern storage class specifier were present. In other words,
the tentative definition becomes a simple referencing declaration.

If the end of the translation unit is reached and no definition has appeared with an
initializer for the identifier, then the tentative definition becomes a full definition, and
the object defined has uninitialized (zero-filled) space reserved for it. For example,

int x; -

int x; /*legal, one copy of x is reserved */ .

int y;

int y = 4; /* legal, y is initialized to 4 */

int z = 5; . . .
int z = 6; /* not legal, both are initialized definitions */

Unlike ANSI C, C++ doesn’t have the concept of a tentative declaration; an external data
declaration without a storage class specifier is always a definition.

Possible declarations

The range of objects that can be declared includes
¢ Variables ’
¢ Functions

* C(lasses and class members (C++)

¢ Types

* Structure, union, and enumeration tags

* Structure members

¢ Union members |

¢ Arrays of other types

¢ Enumeration constants

e Statement labels

¢ Preprocessor macros -

The full syntax for declarations is shown in Tables 2.1 through 2.3. The recursive nature
of the declarator syntax allows complex declarators. You'll probably want to use
typedefs to improve legibility.

In Borland C++ declaration syntax, note the restrictions on the number and order of
modifiers and qualifiers. Also, the modifiers listed are the only addition to the

32 C++ Programmer’'s Guide

declarator syntax that are not ANSI C or C++. These modifiers are each discussed in

greater detail in “Variable modifiers,” “Pointer modifiers,” and “Function modifiers.”

Table21 Borland C++ declaration syntax ‘
declaration: elaborated-type-specifier:
<decl-specifiers> <declarator-list>; class-key identifier
asm=declaration class-key class-name
function-declaration enum enum-name
linkage-specification class-key: (C++ specific)
decl-specifier: class
storage-class-specifier struct
type-specifier union
function-specifier enum-specifier:
friend (C++ specific) enum <idént1ﬁ'er> { <enum-list> }
typedef " enum-list:
decl-specifiers: ~enymerator

<decl-specifiers> decl-specifier
storage-class-specifier:
auto
register
static
extern
function-specifier: (C++ specific)
inline
virtual
simple-type-name:
class-name
typedef-name
char
short
int
long
signed
unsigned
float
double
void
declarator-list:
init-declavator
 declarator-list , init-declarator
init-declarator:
“declarator <initializer>
declarator:
dname

enumerator-list , enumerator
enumerator:

identifier

identifier = constant-expression
constant-expression:

conditional-expression
linkage-specification: (C++ specific) -

extern string { <declaration-list> }

extern string declaration
type-specifier:

simple-type-name

class-specifier

enum-specifier

elaborated-type-specifier

const

volatile
declaration-list:

declaration

declaration-list ; declaration

type-name:
type-specifier <abstract-declarator>
abstract-declarator:
pointer-operator <abstract-declarator>
<abstract-declarator> (argument-declaration-list)
<cv-qualifier-list>
<abstract-declarator> | <constant-expression> |

Chapter 2, Language structure

33

Table 2.1 Borland C++ declaration syntax

modifier-list ’
pointer-operator declarator
. declarator (parameter-declaration-list) .
<cv-qualifier-list >
(The <cv-qualifier-list > is for C++ only.)
declarator [<constant-expression>
(declarator)
modifier-list:
modifier
modifier-list modifier
modifier:
__cdecl:
__pascal
_ _interrupt
near

__far
__huge
pointer-operator:
* <cv-qualifier-list>
& <cv-qualifier-list> (C++ specific)
class-name :: * <cv-qualifier-list>
(C++ specific)
co-qualifier-list:
co-qualifier <co-qualifier-list>
cv-qualifier '
- const
volatile
dname:
name
class-name (C++ specific)
~ class-name (C++ specific)

(abstract-declarator)
argument-declaration-list:
<arg-declaration-list>
' arg-declaration-list , ...
<arg-declaration-list> ... (C++ specific)
arg-declaration-list:
argument-declaration
arg-declaration-list , argument-declaration

. argument-declaration:

decl-specifiers declarator
decl-specifiers declarator = expression
(C++ specific)
decl-specifiers <abstract-declarator>
decl-specifiers <abstract-declarator> = expression
(C++ specific)
function-definition:
function-body:
compound-statement
initializer:
= expressioh
={ initializer-list } '
(expression-list) (C++ specific) -
initializer-list:
expression
initializer-list , éxpression
{ initializer-list <,> }

type-defined-name

External declarations and definitions

The storage class specifiers auto and register cannot appear in an external declaration.
For each identifier in a translation unit declared with internal linkage, no more than one

- external definition can be given.

An external definition is an external declaration that also defines an object or function;
that is, it also allocates storage. If an identifier declared with external linkage is used in
an expression (other than as part of the operand of sizeof), then exactly one external
definition of that identifier must be somewhere in the entire program.

34 C++ Programmer’s Guide

Borland C++ allows later re-declarations of external names, such as arrays, structures,
and unions, to add information to earlier declarations. Here’s an example:

int all; // no size

struct mystruct;

// tag only, no member declarators

int a[3] = {1, 2, 3}; // supply size and initialize

struct mystruct {
int i, j;

Y // add member declarators

Table 2.2 covers class declaration syntax. In the section on classes (beginning with
“Classes”), you can find examples of how to declare a class. Referencing covers C++
reference types (closely related to pointer types) in detail.

Table2.2 Borland C++ class declaration syntax (C++ only)

class-head { <member-list> }
class-head:

class-key <identifier> <base-specifier>

class-key class-name <base-specifier>
member-list:

member-declaration <member-list>

access-specifier : <member-list>
member-declaration:

<decl-specifiers> <member-declarator-list> ;

function-definition <;>

qualified-name ;
member-declarator-list:

member-declarator

member-declarator-list, member-declarator
member-declarator:

declarator <pure-specifier>

<identifier> : constant-expression
pure-specifier:

=0
member-initializer-list:

member-initializer

member-initializer , member-initializer-list
member-initializer:

class name (<argument-list>)

identifier (<arqument-list>)
operator-function-name:

operator operator-name

: base-list
base-list:
base-specifier

base-list , base-specifier
base-specifier:
class-name
virtual <access-specifier> class-name
access-specifier <virtual> class-name
access-specifier: '
private
protected
public
conversion-function-name:
operator conversion-type-name
conversion-type-name:
type-specifiers <pointer-operator>
constructor-initializer:
“: member-initializer-list

operator-name: one of
new delete 1 typeid
+ -/ % A

& | ~! =<
+= = =* [= Y%= A=

= |= << >> >>= <<=
= = <= >= && |/
o, > >0
(1=

Chapter 2, Language structure 35

Type specifiers

The type speci'fier with one or more optional modifiers is used to specify the type of the
declared identifier:

int i; // declare i as a signed integer
unsigned char chl, ch2; . // declare two unsigned chars

By long-standing tradition, if the type specifier is omitted, type signed int (or
equivalently, int) is the assumed default. However, in C++, a missing type specifier can
lead to syntactic ambiguity, so C-++ practice requires you to explicitly declare all int type
specifiers. ' :

Type categories
‘The four basic type categories (and their subcategories) are as follows:

* Aggregate
e Array

® struct
'# union

s class (C++ only)
* Function
¢ Scalar

¢ Arithmetic

¢ Enumeration

¢ Pointer

¢ Reference (C++ only)
e void \
Types can also be viewed in another way: they can be fundamental or derived types. The
fundamental types are void, char, int, float, and double, together with short, long,
signed, and unsigned variants of some of these. The derived types include pointers and

references to other types, arrays of other types, function types, class types, structures,
and unions.

A class object, for example, can hold a number of objects of different types together with
functions for manipulating these objects, plus a mechanism to control access and
inheritance from other classes.

36 C++ Programmer’s Guide

Given any nonvoid type type (with some provisos), you can declare derived types as
follows:

Table2.3 Declaring types

typet; : ob]£t of type typ

type array[10]; Ten types: array[0] - array[9]

type *ptr; _ ptr is a pointer to type

type &ref = t; v ref is a reference to type (C++)
type func(void); func returns value of type type
void funcl(type t); funcl takes a type type parameter
struct st {type t1; type 12}; structure st holds two #ypes

Note type& var, type &var, and type & var are all equivalent.
Type void

Syntax

void identifier

Description
void is a special type indicating the absence of any value. Use the void keyword as a
function return type if the function does not return a value.

void hello(char *name)

{
printf("Hello, %s.",name);
}
Use void as a function heading if the function does not take any parameters.
int init(void)

{

return 1;

}
Void pointers :
Generic pointers can also be declared as void, meaning that they can point to any type.

void pointers cannot be dereferenced without explicit casting because the compiler
cannot determine the size of the pointer object.

Example

int x;

float r;

void *p = &x; /* p points to x */
int main (void)

*(int *) p = 2;

Chapter 2, Language structure 37

p = &r; /* p points to r */
*(float *)p = 1.1;

The fundamental types

The fundamental type specifiers are built from the following keywords
char . _int signed

double long ~ unsigned

float ' short

From these keywords you can build the integral and floating-point types, which are
together known as the arithmetic types. The modifiers long, short, signed, and unsigned
can be applied to the integral types. The include file limits.h contains definitions of the
value ranges for all the fundamental types.

Integral types
char, short, int, and long, together with their unsigned variants, are all considered

integral data types. Integral types shows the mtegral type specifiers, with synonyms
listed on the same line.

Table2.4 Integral types
char, signed char Synonyms if default char set to signed.
unsigned char
char, unsigned char Synonyms if default char set to unsigned.
signed char '
int, signed int

unsigned, unsigned int

short, short int, signed short int
unsigned short, unsigned short int
long, long int, signed long int
unsigned long, unsigned long int

Note These synonyms aré not valid in C++. See “The three char types” in Chapter 1.

Only signed or unsigned can be used with char, short, int, or long. The keywords
signed and unsigned, when used on their own, mean signed int and un51gned int,
respectively.

In the absence of unsigned, signed is usually assumed. An exception arises with char.
Borland C++ lets you set the default for char to be signed or unsigned. (The default, if
you don't set it yourself, is signed.) If the default is set to unsigned, then the declaration
char chdeclares ch as unsigned. You would need to use signed char chto override
the default. Similarly, with a signed default for char, you would need an explicit
unsigned char chto declare an unsigned char.

38 C++ Programm.er‘s Guide

Only long or short can be used with int. The keywords long and short used on their
own mean long int and short int.

ANSI C does not dictate the sizes or internal representations of these types, except to
indicate that short, int, and long form a nondecreasing sequence with "short <= int <=
long." All three types can legally be the same. This is important if you want to write
portable code aimed at other platforms.

In a Borland C++ 16-bit program, the types int and short are equivalent, both being 16
bits. In a Borland C++ 32-bit program, the types int and long are equivalent, both being
32 bits. The signed varieties are all stored in two’s complement format using the most
significant bit (MSB) as a sign bit: 0 for positive, 1 for negative (which explains the
ranges shown in 16-bit data types, sizes, and ranges and 32-bit data types, sizes, and
ranges). In the unsigned versions, all bits are used to give a range of 0- (2 - 1), where 1 is
8,16, or 32.

Floating-point types

The representations and sets of values for the floating-point types are implementation
dependent; that is, each implementation of C is free to define them. Borland C++ uses
the IEEE floating-point formats. See Chapter 12, “ANSI Implementa‘aon—speaﬁc
standards,” for more information.

float and double are 32- and 64-bit floating-point data types, respectively. long can be
used with double to declare an 80-bit precision floating-point identifier: long double
test_case, for example.

16-bit data types, sizes, and ranges and 32-bit data types, sizes, and ranges indicate the
storage allocations for the floating-point types.

Standard arithmetic conversions

When you use an arithmetic expression, such as a + b, where 2 and b are different
arithmetic types, Borland C++ performs certain internal conversions before the
expression is evaluated. These standard conversions include promotions of “lower”
types to “higher” types in the interests of accuracy and consistency.

Here are the steps Borland C-++ uses to convert the operands in an arithmetic
expression: :

1 Any small integral types are converted as shown in Table 2.5. After this, any two
values associated with an operator are either int (including the long and unsigned
modifiers), or they are of type double, float, or long double.

2 If either operand is of type long double, the other operand is converted to long
double. v A

3 Otherwise, if either operand is of type double, the other operand is converted to
double.

4 Otherwise, if either operand is of type float, the other operand is converted to float.

5 Otherwise, if either operand is of type un31gned long, the other operand is converted
to unsigned long.

Chapter 2, Language structure 39

6 Otherwise, if either operand is of type long, then the other operand is converted to
long.

7 Otherwise, if either operand is of type unsigned, then the other operand is-.converted
to unsigned.

8 Otherwise, both operands are of type int.

The result of the expression is the same type as that of the two operands.

Table 2.5 Methods used in standard arithmetic conversions

char int Zero or sign-extended (depends on default char type)

unsigned char int - Zero-filled high byte (always)
signed char int ‘ Sign-extended (always)

short int Same value; sign extended.
unsigned short ‘ unsigned int Same value; zero filled

enum int ' Same value

Special char, int, and enum conversions
Note The conversions discussed in this section are specific to Borland C++

Assigning a signed character object (such as a variable) to an integral object results in
automatic sign extension. Objects of type signed char always use sign extension; objects
of type unsigned char always set the high byte to zero when converted to int.

Converting a longer integral type to a shorter type truncates the higher order bits and
leaves low-order bits unchanged. Converting a shorter integral type to a longer type
either sign-extends or zero-fills the extra bits of the new value, depending on whether
the shorter type is signed or unsigned, respectlvely

Initialization

Initializers set the initial value that is stored in an object (variables, arrays, structures, and
so on). If you don’t initialize an object, and it has static duration, it will be lmtlahzed by
default in the following manner:

¢ To zero if it is an arithmetic type
¢ Tonullif itis a pointer type

Note If the object has automatic storage duration, its value is indeterminate.

Syntax for initializers
initializer
= expression
= {initializer-list} <>}
(expression list)

initializer-list

40 C++ Programmer’s Guide

expression
initializer-list, expression

{initializer-list} <> }

Rules governing initializers

¢ The number of initializers in the initializer list cannot be larger than the number of
objects to be initialized.

‘¢ The item to be initialized must be an object (for example, an array) of unknown size.

* For C (not required for C++), all expressions must be constants if they appear in one
of these places:.

¢ In an initializer for an object that has static duration.

¢ Inan initializer list for an array, structure, or union (expressions using sizeof are
also allowed).

¢ If a declaration for an identifier has block scope, and the identifier has external or
internal linkage, the declaration cannot have an initializer for the identifier.

e If a brace-enclosed list has fewer initializers than members of a stfucture, the
remainder of the structure is initialized implicitly in the same way as objects with
static storage duration. :

Scalar types are initialized with a smgle expression, Wthh can ophonally be enclosed in
braces. The initial value of the object is that of the expression; the same constraints for
type and conversions apply as for simple assignments.

For unions, a brace-enclosed initializer initializes the member that first appears in the
union's declaration list. For structures or unions with automatic storage duration, the
initializer must be one of the following:

* An initializer list (as described in “Arrays, structures, and unions”).

* A single expression with compatible union or structure type. In this case, the initial
value of the object is that of the expression.

Arrays, structures, and unions

You initialize arrays and structures (at declaration time, if you like) with a brace-
enclosed list of initializers for the members or elements of the object in question. The
initializers are given in increasing array subscript or member order. You initialize
unions with a brace-enclosed initializer for the first member of the union. For example,
you could declare an array days, which counts how many times each day of the week
appears in a month (assuming that each day will appear at least once), as follows:

int days[7] = {1, 1, 1, 1, 1, 1, 1)
The following rules initialize character arrays and wide character arrays:

* You can initialize arrays of character type with a literal string, optionally enclosed in
-braces. Each character in the string, including the null terminator, initializes
successive elements in the array. For example, you could declare

/Chapter 2, Language structure 41 -

char name[] = { "Unknown" };

which sets up an eight-element array, whose elements are ‘U’ (for name[0]), n’ (for
name[1]), and so on (and including a null terminator).

* You can initialize a wide character array (one that is compatible with wchar_t) by
using a wide string literal, optionally enclosed in braces. As with character arrays, the
codes of the wide string literal initialize successive elements of the array.

Here is an example of a structure initialization:

struct mystruct {
int i;
char str(21];
double d;
} s = { 20, "Borland", 3.141 };

Complex members of a structure, such as arrays or structures, can be initialized with
suitable expressions inside nested braces.

Declarations and declarators

A declaration is a list of names. The names are sometimes referred to as declarators or
identifiers. The declaration begins with optional storage class specifiers, type specifiers,
and other modifiers. The identifiers are separated by commas and the list is terminated
by a semicolon.

Simple declarations of variable identifiers have the followmg pattern:
data-type varl <=initl>, var2 <=init2>, ...;

where varl, var2, ... are any sequence of distinct identifiers with optional initializers.
Each of the variables is declared to be of type data-type. For example,

int x=1, vy = 2;

creates two integer variables called x and y (and initializes them to the values 1 and 2,
respectively).

These are all defining declarations; storage is allocated and any optional initializers are
applied.

The initializer for an automatic object can be any legal expression that evaluates to an
assignment-compatible value for the type of the variable involved. Initializers for static
objects must be constants or constant expressions.

In C++, an initializer for a static object can be any expression involving constants and
previously declared variables and functions.

The format of the declarator indicates how the declared name is to be interpreted when
used in an expression. If type is any type, and storage class specifier is any storage class
specifier, and if D1 and D2 are any two declarators, then the declaration

storage-class-specifier type D1, D2;

indicates that each occurrence of D1 or D2 in an expression will be treated as an object of
type type and storage class storage class specifier. The type of the name embedded in the

42 C++ Programmer’s Guide ‘

Note

" i

declarator will be some phrase containing type, such as “type,” “pointer to type,” “array
of type,” “function returning type,” or “pointer to function returning type,” and so on.

7 ois

For example, in Table 2.6, each of the declarators could be used as rvalues (or possibly
Ivalues in some cases) in expressions where a single int object would be appropriate.
The types of the embedded identifiers are derived from their declarators as follows:

Table2.6 Declaration syntax examples

s

type name; type i int count;

type name][]; (open) array of type int count(];
type name[3]; . Fixed array of three elements, all of type int count{3];
(name[Q], name[1], and nume[2])
type *name; Pointer to type int *count;
type *name[]; (open) array of pointers to type int *count[];
type *(name][]); Same as above ' ' int *(count{]);
type (*name)[]; Pointer to an (open) array of type int (*count) [];
type &name; "~ Reference to type (C++ only) int &count;
type name(); , * Function returning type : int count();
type *name(); - Function returning pointer to type int *count();
type *(name()); Same as above int *(count());
type (*name)(); Pointer to function returning type int (*count) ();

Note the need for parentheses in (*name)[] and (*name)(); this is because the precedence
of both the array declarator [] and the function declarator () is thher thari the pointer
declarator *. The parentheses in *(name[]) are optional.

See Table 2.1 for the declarator syntax. The definition covers both identifier and funcnon
declarators ’

Storage class specifiers

Storage classes specifiers are also called type specifiers. They dictate the locatlon (data
segment, register, heap, or stack) of an object and its duration or lifetime (the entire
running time of the program, or during execution of some blocks of code). Storage class
can be established by the declaration syntax, by its placement in the source code, or by
both of these factors.

The keyword mutable does not affect the lifetime of the class member to which it is
applied. :

The sforage class spéciﬁers in Borland C++ are:

auto mutable typedef
__declspec register
extern static

Chapter 2, Language structure 43

i

Variable modifiers

' In addition to the storage class specifier keywords, a declaration can use certain modifiers
to alter some aspect of the identifier. The modifiers available with Borland C++ are
summarized in Table 2.8.

const

Syntax

const <variable name> [= <value>] ;
<function name> (const <type>*<variable name> ;)
<function name> const;

‘Description .
Use the const modifier to make a variable value unmodifiable.

Use the const modifier to assign an initial value to a variable that cannot be changed by
the program. Any future assignments to a const result in a compiler error.

A const pointer cannot be modified, though the object to which it points can be changed.
Consider the following examples.

const float pi = 3.14;

. const maxint = 12345; // When used by itself, const is equivalent to int.
char *const strl = "Hello, world"; // A constant pointer
char const *str2 = "Borland International"; // A pointer to a constant

// character string.

Given these declarations, the following statements are legal.

pi = 3.0; // Assigns a value to a const.
i = maxint++; // Increments a const.
strl = "Hi, there!" // Points. strl to something else.

Using the const keyword in C++ programs

C++ extends const to include classes and member functions. In a C++ class definition,
use the const modifier following a member function declaration. The member function
is prevented from modifying any data in the class.

A class object defined with the const keyword attempts to use only member functions
that are also defined with const. If you call a member function that is not defined as -
const, the compiler issues a warning that the a non-const function is being called for a
const object. Using the const keyword in this manner is a safety feature of C.

Warning A pointer can indirectly modify a const variable, as in the following:
' *(int *)&my_age = 35;

If you use the const modifier with a pointer parameter in a function’s parameter list, the
function cannot modify the variable that the pointer points to. For example,

int printf (const char *format, ...);

44 C++ Programmer’s Guide

printf is prevented from modifying the format string.

Example 1
class X {
int j;
public:
X::X() { J=0; };
int lowerBound() const; ~// DOES NOT MODIFY ANY DATA MEMBERS
int dimension(X x1, const X &x2) { // x2 DATA MEMBERS WON'T BE MODIFIED
x1l.j = 3; // OKAY; x1 OBJECT IS MODIFIABLE
x2.j = 5; // ERROR; x2 IS NOT MODIFIABLE
return x2.3j;
}
}:
Example 2

#include <iostream.h>

class Alpha {
int num;
public:)
Alpha(int j = 0) { num = j; }
int func(int i) comnst {
cout << "Non-modifying function." << endl;
return i++;
}
int func(int i) { .
cout << "Modify private data" << endl;
return num = i;

}
};

void main() {

int f£(int i) { cout << "Non-const function called with i = " << i << endl; return i;}

Alpha alpha_mod; // Calls the non-const functions.
const Alpha alpha_inst; // Attempts to call the const functions.

alpha_mod. func (1) ;

alpha_mod.f(1); // Causes a compiler warning.

alpha_inst.func(l);
alpha inst.f(1);

}
Output
Modify private data
Non-const function called with i = 1
Non-modifying function.
Non-const function called with i = 1

Chapter 2, vLanguage structure 45

volatile

Syntax

volatile <data definition> ;

Description
Use the volatile modifier to md1cate that a variable can be changed by a background
routine, an interrupt routine, or an I/O port. Declaring an object to be volatile warns the
compiler not to make assumptions concerning the value of the object while evaluating

~ expressions in which it occurs because the value could change at any moment. It also
prevents the compiler from making the variable a register variable.

The routines in this example (assuming titner has been properly associated with a
hardware clock interrupt) implement a timed wait of ticks specified by the argument
interval. A highly optimizing compiler might not load the value of ticks inside the test of
the while loop since the loop doesn’t change the value of ticks.

Note C++ extends volatile to include classes and member functions. If you've declared a
volatile object, you can use only its volatile member functions. :

Mixed-language calling conventions

Borland C++ allows your programs to easﬂy call routines written in other languages,
and vice versa. When you mix languages, you have to deal with two unportant issues:
identifiers and parameter passing.

By default, Borland C++ saves all global identifiers in their original case (lower, upper,
or mixed) with an underscore “_" prepended to the front of the identifier. To remove the
default, you can select the -u command-line option, or uncheck the compiler option
setting in the IDE.

Note The section “Linkage” tells how to use extern, which allows C names to be referenced
from a C++ program.

Table 2.7 summarizes the effects of a modifier applied to a called function. For every
modifier, the table shows the order in which the function parameters are pushed on the

- stack. Next, the table shows whether the calling program (the caller) or the called
function (the callee) is responsible for popping the parameters off the stack. Finally, the
table shows the effect on the name of a global function.

Table 2.7 Calling conventions

_prepende
'@ prepended
Uppercase
No change

1. This is the default.

46 C++ Programmer’s Guide

Note

_ _fastcall and _ _stdcall are subject to name mangling. See the description of the -VC
option . .

cdecl, cdecl, cdecl

'Syntax

cdecl <data/function definition> ;
_cdecl <data/function definition> ;
__ _cdecl <data/function definition> ;

Description

Use a cdecl, _cdecl, or _ _cdecl modifier to declare a variable or a function using the
C-style naming conventions (case-sensitive, with a leading underscore appended).
When you use cdecl, _cdecl, or _ _cdecl in front of a function, it effects how the
parameters are passed (last parameter is pushed first, and the caller cleans up the stack).
The _ _cdecl modifier overrides the compiler directives and IDE options and allows the
function to be called as a regular C function.

The cdecl, _cdecl, and _ _cdecl keywords are specific to Borland C++.

Example

int cdecl FileCount;
long far cdecl HisFunc (int x);

pascal, _pascal, __pascal

Syntax

pascal <data-definition/function-definition> ;
_pascal <data—definition/function‘definition> :
_ _pascal <data-definition/function-definition> ;

Description
Use the pascal, _pascal, and __pascal keywords to declare a variable or a function using
a Pascal-style naming convention (the name is in uppercase).

In addition, pascal declares Pascal-style parameter-passing conventions when applied
to a function header (first parameter pushed first; the called function cleans up the - -
stack).

In C++ programs, functions declared with the pascal modifer will still be mangled.

Examples

int.pascal FileCount;
far pascal long ThisFunc(int x, char *s);

Chapter 2, Language structure 47

_stdcall, ;;stdcall

Syntax

_ _stdcall <function—na1ne>
_stdecall <function-name>

Description ‘

The _stdcall and __stdcall keywords force the compiler to generate function calls using:
the Standard calling convention. The resulting function calls are smaller and faster.
Functions must pass the correct number and type of arguments; this is unlike normal C
use, which permits a variable number of function arguments. Such functions comply
with the standard WIN32 argument-passing convention.

Note The __stdcall modifier is subject to name mangling. See the description of the -VC
option.

_fasteall, __fastcall

Syntax

_fastcall function-name |,
_ _fastecall function-name

Description

Use the _fastcall modifiers to declare functions that expect parameters to be passed in
registers.

The compiler treats this calling convention as a new language specifier, along the lines
of _cdecl and _pascal.

Functions declared using _cdecl or _pascal cannot also have the _fastcall modifiers
because they use the stack to pass parameters. Likewise, the _fastcall modifiers cannot
be used together with _export or _loadds.

The compiler generates a warning if you mix functions of these types or if you use the
_fastcall modifiers in a dangerous situation. You can, however, use functions that use
the _fastcall or __fastcall conventions in overlaid modules (for example, with modules
that will use VROOMM).

The compiler prefixes the _fastcall function name with an at-sign (@). This prefix
applies to both unmangled C function names and to mangled C++ function names.

Note The __fastcall modifier is sub]ect to name mangling. See the description of the -VC
: optlon

Multithread variables

The keyword _ _thread is used in multithread programs to preserve a unique copy of
global and static class variables. Each program thread maintains a private copy of a
_ _thread variable for each threaded process.

48 C++ Programmer’s Guide

Note

The syntax is Type _ _thread variable_ _name. For example
int _ _thread x;

declares an integer type variable that will be global but private to each thread in the
program in which the statement occurs.

. The _ _thread modifier can be used with global (file-scope) and static variables. The

modifier cannot be used with pointers or functions. (However, you can have pointers to
_ _thread objects.) A program element that requires run-time initialization or run-time
finalization cannot be declared to be a _ _thread type. The following declarations
require run-time 1mt1ahzat10n and are therefore illegal.

int £();
int _ _thread x = £(); // illegal

Instantiation of a class with a user-defined constructor or destructor requires run-time
initialization and is therefore illegal. ,
class X {
X();
C XY
b : '
X _ _thread myclass; // 1llegal

Pointer modifieyrs

Borland C++ has modifiers that affect the pointer declarator (*); that is, they modify
pointers to data. These are _ _near, __far, __huge, __cs, __ds, __es, __seg and __ss.

You can compile a program using one of several memory models. The model you use
determines (among other things) the internal format of pointers. For example, if you use
a small data model (small or medium), all data pointers contain a 16-bit offset from the
data segment (DS) register. If you use a large data model (compact or large), all pointers
to data are 32 bits long and give both a segment address and an offset.

Sometimes when you're using one size of data model, you want to declare a pointer to
be of a different size or format than the current default. You do so using the pointer
modifiers.

See _ _near, __far, and _huge for an m—depth explanation of these types of pointers,

y J——

anda description of normalized pointers. Also see the additional discussions of _ _cs,
__ds,__es,__seg,and __ss.

Function modiﬁers

This section presents descriptions of the Borland C++ function modifiers

In addition to their use as pointer modifiers, the - _near, __far, and _ _huge modifiers
can also be used as function type modifiers; that is, they can modify functions and '
function pointers as well as data pointers. In addition, you can use the _ _loadds,
_export, __import, and _ _saveregs modifiers to modify functions.

Tiny and huge memory models are not supported in Windows programs.

Chapter 2, Language structure 49

Also see “Class memory model specifications” in Chapter 3.

- In a 16-bit program, the _ _import can be used only as a modifier for class declarations.
In 32-bit programs the keyword can be apphed to class, function, and variable
declarations.

The _ _near, _ _far, and _ _huge function modifiers can be combined with __cdecl or
_ _pascal, but not with _ _interrupt.

Functions of type _ _huge are useful when interfacing with code in assembly language
that doesn’t use the same memory allocation as Borland C++.

A function that is not an _ _interrupt type can be declared to be _ _near, _ _far, or
_ _huge in order to override the default settings for the current memory model.

'A __near function uses _ _near calls; a _ _far or _ _huge function uses _ _far call
instructions.

In the small and compact memory models, an unqualified function defaults to type
_ _near. In the medium and large models, an unqualified function defaults to type
__far.

A _ _huge function is the same as a _ _far function, except that the DS register is set to
the data segment address of the source module when a_ _huge function is entered, but
left unset for a _ _far function.

The _ _export modifier makes the function exportable from Windows. The _ _import
modifier makes a function available to a Windows program. The keywords are used in
an executable (if you don’t use smart callbacks) or in a DLL.

The _ _loadds modifier indicates that a function should set the DS_register, just as a
_ _huge function does, but does not imply _ _near or _ _far calls. Thus, _ _loadds __far
is equivalent to _ _huge.

The _ _saveregs modifier causes the function to preserve all register values and restore
them before returning (except for explicit return values passed in registers such as AX or
DX).

The _ _loadds and _ _saveregs modifiers are useful for writing low-level interface
routines, such as mouse support routines.

Functions declared with the _ _fastcall modifier have different names than their non-

_fastcall counterparts. The compﬂer prefixes the _ _fastcall function name with an @.
This prefix applies to both unmangled C function names and to mangled C++ function
names.

Table2.8 Borland C++ modifiers

const Variables Prevents changes to object.
volatile! Variables Prevents register allocation and some optimization. Warns
’ compiler that object might be subject to outside change
_ during evaluation.
__cdect? Functions Forces C argument-passing convention. Affects Linker and
link-time names.

50 C++ Programmer’'s Guide

Table 2.8 Borland C++ modifiers

 Forces global 1dentlﬁer case-sensmVlty and leadmg

_ _cdecl Variables
underscores.
_ _interrupt Functions - . Function compiles with the additional regxster—housekeepmg
. code needed when writing interrupt handlers.
__pascal Functions Forces Pascal argument-passing convention. Affects Linker
and link-time names.
_ _pascal Variables Forces global identifier case-insensitivity with no leading
' underscores.
_ _near,
_far, '
__huge Pointer types Overrides the default pointer type specified by the current
memory model.
__Cs, '
—_ds,
__es,
__seg,
__8ss Pointer types Segment pointers.
_ _near,
_far, :
__huge Functions Opverrides the default function type specified by the current
memory model.
__near, o
__far . Variables Directs the placement of the object in memory.
__export Functions/classes Tells the compiler which functions or classes to export.
__import Functions/classes Tells the compiler which functions or classes to import. (In 16-
b1t rograms, this keyword can be used only for class
} clarations.)
_ _loadds ' Functions Sets DS to point to the current data segment.
_ _saveregs Functions Preserves all reg1$ter values (except for return values) during
_ execution of the function.
_ _fastcall Functions) Porces register parameter passing convenﬁon. Affects the
linker and link-time names.
_ _stdcall Functions Forces the standard WIN32 argument-passing convention.

1 C++ extends const and volatile to include classes and member functions.

2 This is the default.
_interrupt functions

Syntax
interrupt <function-definition> ;

_interrupt <function-definition> ;
_interrupt <function-definition> ;

Description
Use the _ _interrupt function modifier to defme a function as an interrupt handler.

Chapter 2, Language structure 51

The _ _interrupt modifier is épeciﬁc to Borlalnd C++. _ _interrupt functions are
designed to be used with interrupt vectors.

Interrupt functions compile with extra function entry and exit code so that all CPU
registers are saved. The BP, SP, SS, CS, and IP registers are preserved as part of the
C-calling sequence or as part of the interrupt handling itself. The function uses an IRET
instruction to return, so that the funcnon can be used as harware and software
interrupts. '

Declare interrupt functions to be of type void and can be declared in any memory
model. For all memory models except huge, DS is set to the program data segment. For
the huge memory model, DS is set to the module’s data segment.

- Example

void interrupt myhandler ()

{

}

Pointers

Pointers fall into two main categories: pointers to objects and pointers to functions. Both
types of pointers are special objects for holding memory addresses.

The two pointer classes have distinct properties, purposes, and rules for manipulation,
although they do share certain Borland C++ operations. Generally speaking, pointers to
functions are used to access functions and to pass functions as arguments to other
functions; performing arithmetic on pointers to functions is not allowed. Pointers to
objects, on the other hand, are regularly incremented and decremented as you scan
arrays or more complex data structures in memory.

Although pointers contain numbers with most of the characteristics of unsigned
integers, they have their own rules and restrictions for assignments, conversions, and
arithmetic. The examples in the next few sections illustrate these rules and restrictions.

Note See “Referencing” in Chapter 3 for a discussion of referencing and dereferencing.

Pointers to objects

A pointer of type)’pointer to object of type” holds the address of (that is, points to) an

- object of type. Since pointers are objects, you can have a pointer pointing to a pointer
(and so-on). Other objects commonly pointed at mclude arrays, structures, unions, and
classes.

The size of pointers to objects is dependent on the memory model and the size and
disposition of your data segments, possibly influenced by the optlonal pomter modifiers
(discussed starting with “Pointer modlﬁers”)

52 C++ Programmer’s Guide

Warning!

Pointers to functions

A pointer to a function is best thought of as an address, usually in a code segment,
where that function’s executable code is stored; that is, the address to which control is
transferred when that function is called. The size and disposition of your code segments
is determined by the memory model in force, which in turn dictates the size of the
function pointers needed to call your functions.

A pointer to a function has a typé called “pointer to function returning type,” where
type is the function’s return type. For example,

void (*func) ();

In C++, this is a pointer to a function taking no arguments, and returning void. InC, it's
a pointer to a function taking an unspecified number of arguments and returning void.
In this example,

void (*func) (int);

*func is a pointer to a function taking an int argument and returning void.

~ For C++, such a pointer can be used to access static member functions. Pointers to class

members must use pointer-to-member operators. See “static_cast typecast operator” in
Chapter 3 for details. :

Pointer declarations

A pointer must be declared as pointing to some particular type, even if that type is void
(which really means a pointer to anything). Once declared, though, a pointer can
usually be reassigned so that it points to an object of another type. Borland C++ lets you
reassign pointers like this without typecasting, but the compiler will warn you unless
the pointer was originally declared to be of type pointer to void. And in C, but not C++,
you can assign a void* pomter to a non-void* pointer. See “Type void” earlier in this
chapter for details.

You need to initialize pointers before using them.
If type is any predefined or user-defined type, including void, the declaration
type *ptr; /* Uninitialized pointer */

declares ptr to be of type “pointer to type.” All the scoping, duration, and V151b111ty rules
apply to the ptr object just declared.

A null pointer value is an address that is guaranteed to be different from any valid
pointer in use in a program. Assigning the integer constant 0 to a pointer assigns a null
pointer value to it.

The mnemonic NULL (defined in the standard library header files, such as stdio.h) can

be used for legibility. All pointers can be successfully tested for equality or inequality to
NULL.

The pointer type “pointer to void” must not be confused with the null pointer. The
declaration

void *vptr;

Chapter 2, Language structure 53

declares that vptr is a generic pointer capable of being assigned to by any “pointer to
type” value, including null, without Complajnt Assignments without proper casting
between a “pointer to typel” and a pomter to type2,” where typel and type2 are
different types, can invoke a compiler warning or error. If typelisa function and type2
isn’t (or vice versa), pointer assignments are illegal. If type1 is a pointer to void, no cast
is needed. Under C, if type2 is a pointer to void, no cast is needed.

Assignment restrictions also apply to pointers of different sizes (_ _near, _- far, and
_huge). You can assign a smaller pointer to a larger one without error, but you can’t

assign a larger pointer to a smaller one unless you are using an explicit cast. For

example,
char'_ _near *ncp;
char _ _far “*fcp;
char _ _huge *hcp;
fcp = ncp; // legal
hep = fep; - . // legal
fcp = hep; // not legal
ncp = fcp; // not legal
ncp. = (char _ _near*)fcp; // now legal
Pointer constants

A pointer or the pointed-at object can be declared with the const modifier. Anything
declared as a const cannot be have its value changed. It is also illegal to create a pointer
that might violate the nonassignability of a constant ob]ect Consider the following

examples:
int i; // 1 is an int
int * pi; // pi is a pointer to int (uninitialized)
int * const cp = &i; // cp is a constant pointer to int
const int ci = 7; // ci is a constant int
const int * pci; ' // pci is a pointer to constant int

const int * const cpc = &ci; // cpc is a constant pointer to a
// constant int

The following assignments are legal:

i=ci;- // Assign const-int to int

*cp = ci; ' // Assign const-int to

// object-pointed-at-by-a-const-pointer
++pci; // Increment a pointer-to-const
pci = epe; // Assign a const-pointer-to-a-const to a

// pointer-to- const

The following assignments are illegal: ‘ - ’

ci=0; // NO--camnot assign to a const-int
ci--; // NO--cannot change a const-int
*pei = 3; // NO--cannot assign to an object
// pointed at by pointer-to-const
cp = &Ci; // NO--cannot assign to a const-pointer,
.) // even if value would be unchanged)
cpc++; // NO--cannot change const-pointer
pi = pci; . // NO--if this assignment were allowed,

54 C++ Programmer’s Guide

// you would be able to assign to *pci
// (a const value) by assigning to *pi.

Similar rules apply to the volatile modifier. Note that const and volatile can both
appear as modifiers to the same identifier.

Pointer arithmetic

Pointer arithmetic is limited to addition, subtraction, and comparison. Arithmetical
operations on object pointers of type “pointer to type” automatically take into account
the size of type; that is, the number of bytes needed to store a type object.

The internal arithmetic performed on pointers depends on the memory model in force
and the presence of any overriding pointer modifiers.

When performing arithmetic with pointers, it is assumed that the pointer points to an
array of objects. Thus, if a pointer is declared to point to type, adding an integral value
to the pointer advances the pointer by that number of objects of type. If type has size 10
bytes, then adding an integer 5 to a pointer to type advances the pointer 50 bytesin
memory. The difference has as its value the number of array elements separating the
two pointer values. For example, if ptr1 points to the third element of an array, and
ptr2 points to the tenth element, then the result of ptr2 - ptrl wouldbe?7.

The difference between two pointers has meaning only if both poinfers point into the
same array. '

When an integral value is added to or subtracted from a “pointer to type,” the result is
also of type “pointer to type.”

There is no such element as “one past the last element,” of course, but a pointer is
allowed to assume such a value. If P points to the last array element, P + 1 is legal, but

P+ 2is undefined. If P points to one past the last array element, P - 1 is legal, giving a
pointer to the last element. However, applying the indirection operator * to a “pointer to
one past the last element” leads to undefined behavior. :

Informally, you can think of P + as advancing the pointer by (1 * s1zeof(type)) bytes, as
long as the pointer remains within the legal range (first element to one beyond the last
element).

Subtracting two pointers to elements of the same array object gives an integral value of
type ptrdiff_t defined in stddef.h (signed long for _ _huge and _ _far pointers; signed int
for all others). This value represents the difference between the subscripts of the two
referenced elements, provided it is in the range of ptrdiff_t. In the expression P1 - P2,
where P1 and P2 are of type pointer to type (or pointer to qualified type), P1 and P2

_ must point to existing elements or to one past the last element. If P1 points to the i-th
element, and P2 points to the j-th element, P1 - P2 has the value (i - j).

Pointer conversions

Pointer types can be converted to other pointer types using the typecasting mechanism:

char *str;
int *ip;
str = (char *)ip;

Chapter 2, Language structure 55

More génerally, the cast (type*) will convert a pointer to type “pointer to typé.”
See Chapter 3 for a discussion of C++ typecast mechanisms. :

C++ reference declarations

C++ reference types are closely related to pointer types. Reference types create aliases for
objects and let you pass arguments to functions by reference. C passes arguments only
by value. In C++ you can pass arguments by value or by reference. See “Referencing” for
complete details. :

Arrays

The declaration
-type declarator [<constant-expression>]

declares an array composed of elements of type. An array consists of a contiguous
region of storage exactly large enough to hold all of its elements.

If an expression is given in an array declarator, it must evaluate to a positive constant
integer. The value is the number of elements in the array. Each of the elements of an
array is numbered from 0 through the number of elements minus one.

Multidimensional arrays are constructed by declaring arrays of array type. The
following example shows one way to declare a two-dimensional array. The

implementation is for three rows and five columns but it can be very easily modified to -
accept run-time user input.

Setup rows Setup columns
0 1 n-1
0| 4bytes ————>| 10bytes | 10 bytes | | 10bytes |
. .) 0 1’ . . n-1
m-1| 4bytes |———[10bytes | 10bytes [- | 10bytes |

/* DYNAMIC MEMORY ALLOCATION FOR A MULTIDIMENSIONAL OBJECT. */
- #include <stdio.h>
#include <stdlib.h>

typedef long double TYPE;
typedef TYPE *OBJECT;
unsigned int rows = 3, columns = 5;

void de_allocate (OBJECT) ;

int main (VOID) {

OBJECT matrix;
unsigned int i, J;

/* STEP 1: SET UP THE ROWS. */

56 C++ Programmer’s Guide

matrix = (OBJECT) calloc{ rows, sizeof (TYPE *));

/* STEP 2: SET UP THE COLUMNS. */
for (i'= 0; i < rows; ++i)
matrix([i] = (TYPE *) calloc(columns, sizeof (TYPE)):;

for (i,= 0; 1 < rows; i++)
for (j = 0; J < columns; Jj++)
matrix{i][j] = 1 + J; /* INITIALIZE */

for (1= 0; i < rows; ++1i) {
printf ("\n\n") ;
for (j = 0; j < columns; ++3j)
printf ("$5.2LE", matrix[i][3]);
de_allocate (matrix);
return 0; -
}

void de_allocate(OBJECT x) {

int 1i;

for (i =A0; i < rows; i++) /* STEP 1: DELETE THE COLUMNS */
free(x[i]);

free (%) ; /* STEP 2: DELETE THE ROWS. */

}

- This code produces the following output:

0.00 1.00 2.00 3.00 4.00
1.00 2.00 3.00 4.00 5.00
2.00 3.00 4.00 5.00 6.00

Note See Chapter 2 in the C++ Language Reference for a description of calloc, free, and printf.

In certain contexts, the first array declarator of a series might have no expression inside
the brackets. Such an array is of indeterminate size. This is legitimate in contexts where
the size of the array is not needed to reserve space.

For example, an extern declaration of an array object does not need the exact dimension
of the array; neither does an array function parameter. As a special extension to ANSIC,

- Borland C++ also allows an array of indeterminate size as the final member of a
structure. Such an array does not increase the size of the structure, except that padding
can be added to ensure that the array is properly aligned. These structures are normally
used in dynamic allocation, and the size of the actual array needed must be explicitly
added to the size of the structure in order to properly reserve space.

Except when it is the operand of a sizeof or & operator, an array type expression is
converted to a pointer to the first element of the array.

Chapter 2, Language structur'e 57

Functions

Functions are central to C and C++ programming. Languages such as Pascal distinguish
between procedure and function. For C and C++, functions play both roles.

Declarations and definitions

Each program must have a single external function named main marking the entry point
of the program. Functions are usually declared as prototypes in standard or user-
supplied header files, or within program files. Functions are external by default and are
normally accessible from any file in the program. They can be restricted by using the
static storage class specifier (see “Linkage”).

Functions are defined in your source files or made avallable by hnkmg precompiled
libraries.

A given function can be declared several times in a program, provided the declarations
are compatible. Nondefining function declarations using the function prototype format
provide Borland C++ with detailed parameter information, allowing better control over
argument number and type checking, and type conversions.

Note In C++ youmust always use function prototypes. We recommend that you also use
them in C.

Excluding C++ function overloading, only one definition of any given function is
allowed. The declarations, if any, must also match this definition. (The essential
difference between a definition and a declaration is that the definition has a function
body.)

Declarations and prototypes

In the Kernighan and Ritchie style of declaration, a function could be irhplicitly declared
by its appearance in a function call, or explicitly declared as follows:

<type> func()

where type is the optional return type defaulting to int. In C++, this declaration means
<type> func(void). A function can be declared to return any type except an array or
function type. This approach does not allow the compiler to check that the type or
number of arguments used in a function call match the declaration.

This problem was eased by the introduction of function prototypes with the following
declaration syntax:

<type> func(pummeter—declam‘tor—list) ;

Note: You can enable a warning within the IDE or with the command-line compiler:
Function called without a prototype

Declarators specify the type of each function parameter. The compller uses this
information to check function calls for validity. The compiler is also able to coerce
arguments to the proper type. Suppose you have the following code fragment:

58 C++ Programmer’s Guide

Note

extern long lmax(long vl, long v2); /* prototype */
foo()
{

int limit = 32;

char ch = 'A’;

long mval;

mval = lmax(limit,ch); /* function call */

}

Since it has the function prototype for Imax, this program converts limit and ch to long,
using the standard rules of assignment, before it places them on the stack for the call to
Imax. Without the function prototype, limit and ch would have been placed on the stack
as an integer and a character, respectively; in that case, the stack passed to Imax would
not match in size or content what Imax was expecting, leading to problems. The classic
declaration style does not allow any checking of parameter type or number, so using
function prototypes aids greatly in tracking down programming errors.

Function prototypes also aid in documenting code. For example, the function strcpy
takes two parameters: a source string and a destination string. The question is, which is
which? The function prototype

char *strcpy(char *dest, const char *source);

makes it clear. If a header file contains function prototypes, then you can print that file to
get most of the information you need for writing programs that call those functions. If
you include an identifier in a prototype parameter, it is used only for any later error
messages involving that parameter; it has no other effect.

A function declarator with parentheses containing the single word void indicates a
function that takes no arguments at all:

func (void) ;
In C++, func() also declares a function takmg no arguments

A function prototype normally declares a function as accepting a fixed number of
parameters. For functions that accept a variable number of parameters (such as printf), a
function prototype can end with an ellipsis (...), like this:

f(int *count, long total, ...)

With this form of prototype, the fixed parameters are checked at compile time, and the
variable parameters are passed with no type checking.

stdarg.h and varargs.h contain macros that you can use in user-defined functions with
variable numbers of parameters.

Here are some more examples of function declarators and prototypes:
int £(); * In C, a function returning an int with '
no information about parameters.
This is the K&R "classic style." */

int £(); * In C++, a function taking no arguments */

int f(void); * A function returning an int that takes no parameters. */

Chapter 2, Language structure 59

int p(int,long);/ * A function returning an int that
accepts two parameters: the first,
an int; the secorid, a long. */

int _ _pascal g(void); /* A pascal function returning
an int that takes no parameters at all. */

char _ _far *s(char *source, int kind); /*A function returning
a farpointer to a char .
and accepting two parameters:
the first,a pointer to
a char;the second, an int. */°

int printf(char *format,...; /* function returning an int and
accepting a pointer to a char fixed
parameter and any number of additional
‘parameters of unknown type. */

int (*fp) (int) /* A pointer to a function returning an int
and accepting a single int parameter. */

Definitions

‘Table 2.9 gives the general syntax for external function definitions.

" Table2.9 External function definitions

file ‘
externaldefinition
file externaldefinition

externaldefinition: '
functiondefinition
declaration
asmstatement

functiondefinition:
<declarationspecifiers> declarator <declaraionlist>

compoundstatement

In general, a function definition consists of the following sectlons (the grammar allows
for more complicated cases):

1 Optional storage class specifiers: extern or static. The default is extern.
2 A return type, possibly void. The default is int. ‘

3 Optional modifiers: _ _pascal, _ _cdecl, _ _export, __interrupt, _ _near, __far,
_huge, _ _loadds, _ _saveregs. The defaults depend on the memory model and
compller option settings.

4 The name of the function.

60 C++ Programmer’s Guide

Note

5 A parameter declaration list, possibly empty, enclosed in parentheses. In C, the
preferred way of showing an empty list is func (void). The old style of funcis legal in
C but antiquated and possibly unsafe.

6 A function body representing the code to be executed when the function is called.

You can mix elements from 1 and 2.

Formal parameter declarations

The formal parameter declaration list follows a syntax similar to that of the declarators
found in normal identifier declarations. Here are a few examples:

int func(void) { // no args
int func(T1 tl, T2 t2, T3 t3=1) { // three simple parameters, one
// with default argument

int func(T1* ptrl, T2& tref) { // A pointer and a reference arg
int func(register int i) { // Request register for arg
int func(char *str,...) { / * One string arg with a variable number of other

args, or with a fixed number of args with varying types */

In C++, you can give default arguments as shown. Parameters with default values must
be the last arguments in the parameter list. The arguments’ types can be scalars,
structures, unions, or enumerations; pomters or references to structures and unions; or
pointers to functions or classes.

The ellipsis (...) indicates that the function will be called with different sets of arguments
on different occasions. The ellipsis can follow a sublist of known argument declarations.
This form of prototype reduces the amount of checking the compiler can make.

The parameters declared all have automatic scope and duration for the duration of the
function. The only legal storage class specifier is register.

The const and volatile modifiers can be used with formal parameter declarators.

Function calls and argument conversions

A function is called with actual arguments placed in the same sequence as their
matching formal parameters. The actual arguments are converted as if by initialization
to the declared types of the formal parameters.

Here is a summary of the rules governing how Borland C++ deals with language
modifiers and formal parameters in function calls, both with and without prototypes:

¢ The language modifiers for a function definition must match the modifiers used in
the declaration of the function at all calls to the function.

* A function can modify the values of its formal parameters, but this has no effect on
the actual arguments in the calling routine, except for reference arguments in C++.

When a function prototype has not been previously declared, Borland C++ converts
integral arguments to a function call according to the integral widening (expansion)
rules described in Standard arithmetic conversions. When a function prototype is in

Chapter 2, Language structure 61

scope, Borland C++ converts the given argument to the type of the declared parameter
as if by assignment.

When a function prototype includes an elhps1s (...), Borland C++ converts all given
function arguments as in any other prototype (up to the ellipsis). The compiler widens
any arguments given beyond the fixed parameters, according to the normal rules for
function arguments without prototypes.

- Ifa prototype is present, the number of arguments must match (unless an ellipsis is
present in the prototype). The types need to be compatible only to the extent that an
assignment can legally convert them. You can always use an explicit cast to convert an
argument to a type that is acceptable to a function prototype.

Note If your function prototype does not match the actual function definition, Borland C++
' will detect this if and only if that definition is in the same compilation unit as the
- prototype. If you create a library of routines with a corresponding header file of
prototypes, consider including that header file when you compile the library, so that
any discrepancies between the prototypes and the actual definitions will be caught.
C++ provides type-safe linkage, so differences between expected and actual parameters
will be caught by the linker.

Structures

A structure is a derived type usually representing a user-defined collection of named
members (or components). The members can be of any type, either fundamental or
derived (with some restrictions to be noted later), in any sequence. In addition, a
structure member can be a bit field type not allowed elsewhere. The Borland C++
structure type lets you handle complex data structures almost as easily as single
variables. Structure initialization is discussed in “Arrays, structures, and unions” earlier
in this chapter.

In C++, a structure type is treated as a class type with certain differences: default access
is public, and the default for the base class is also public. This allows more sophisticated
control over access to structure members by using the C++ access specifiers: public (the
default), private, and protected. Apart from these optional access mechanisms, and
from exceptions as noted, the following discussion on structure syntax and usage
applies equally to C and C++ structures.

. Structures are declared using the keyword struct. For example
struct mystruct { ... }; // mystruct is the structure tag
struct mystruct s, *ps, arrs[l0];

/* s is type struct mystruct; ps is type pointer to struct mystruct;
arrs is array of struct mystruct. */

Untagged structures and typedefs

If you omit the structure tag, you can get an untagged structure. You can use untagged
structures to declare the identifiers in the comma-delimited struct-id-list to be of the

62 C++ Programmer’s Guide

Note

given structure type (or derived from it), but you cannot declare additional objects of
this type elsewhere:

struct { ... } s, *ps, arrs[10]; // untagged structure

It is possible to create a typedef while declaring a structure, with or without a tag:

typedef struct mystruct { ... } MYSTRUCT;
MYSTRUCT s, *ps, arrs[10]; // same as struct mystruct s, etc.
typedef struct { ... } YRSTRUCT; // no tag

YRSTRUCT y, *yp, arry[20];

Usually, you don’t need both a tag and a typedef: either can be used in structure
declarations.

Untagged structure and union members are ignored during initialization.

‘Structure member declarations -

The member-decl-list within the braces declares the types and names of the structure
members using the declarator syntax shown in Borland C++ declaration syntax.

A structure member can be of any type, with two exceptions:
e The member type cannot be the same as the struct type being currently declared:
struct mystruct { mystruct s } sl, s2; // illegal -

However, a member can be a pointer to the structure being declared, as in the
following example:

struct mystruct { mystruct *ps } si, sZ, /7 OK

Also, a structure can contain prev1ously defined structure types when declarmg an
instance of a declared structure.

¢ Except in C++, a member cannot have the type “function returning...,” but the type
“pointer to function returning...” is allowed In C++, a struct can have member
functions.

You can omit the struct keyword in C++.

Structures and functions

A function can return a structure type or a pointer to a structure type:

mystruct funcl(void); // funcl() returns a structure
mystruct *func2(void); // func2() returns pointer to structure

A structure can be passed as an argument to a function in the following ways:

void funcl (mystruct s); . // directly
void func2 (mystruct *sptr) ; // via a pointer
void func3 (mystruct &sref); // as a reference (C++ only)

Chapter 2, Language structure

63

Structure member access

Structure and union members are accessed using the following two selection operators:
. (period)
-> (right arrow)

Suppose that the object s is of struct type S, and sptr is a pointer to S. Then if m is a
member identifier of type M declared in S, the expressions s.m and sptr->m are of type
M, and both represent the member object m in S. The expression sptr->m is a convenient
synonym for (*sptr) .m.

The operator . is called the direct member selector and the operator -> is called the
indirect (or pointer) member selector. For example:

struct mystruct
{
int i;
char str[21];
double d;
} s, *sptr = &s;

s.i = 3; // assign to the i member of mystruct s
sptr -> d = 1.23; //‘assign to the d member of mystruct s

The expression s.m is an lvalue, provided that s is an lvalue and m is not an array type.
The expression sptr->m is an lvalue unless m is an array type.

If structure B contains a field whose type is structure A, the members of A can be
accessed by two applications of the member selectors:

struct A {
int j;
double x;

}i

struct B {
int i;
struct A a;
double d;

} s, *sptr;

s.i = 3; // assign to the i member of B
s.a.j = 2; // assign to the j methber of A
sptr->d = 1.23; // assign to the d member of B
(sptr->a) .x = 3.14 // assign to x member of A

Each structure declaration introduces a unique structure type, so that in

struct A {
int 1i,3;
double d;

} a, al;

struct B {
int 1i,3;

64 C++ Programmer’s Guide

double .d;
} b;

the objects 2 and a1 are both of type struct A, but the objects a and b are of different
structure types. Structures can be assigned only if the source and destination have the
same type:)

a = al; // OK: same type, so member by member assignment

a = b; // ILLEGAL: different types

a.1 =b.i; a.j =b.j; a.d = b.d /* but you can assign member-by-member */

Structure word alignment

Memory is allocated to a structure member-by-member from left to right, from low to
high memory address. In this example,
struct mystruct {
int 1i;
char str([21];
double d;
}os;

the object s occupies sufficient memory to hold a 2-byte integer for a 16-bit program, or a
4-byte integer for a 32-bit program, a 21-byte string, and an 8-byte double. The format of
this object in memory is determined by selecting the word alignment option. Without
word alignment, s will be allocated 31 contiguous bytes (by the 16-bit compiler) or 33
contiguous bytes (by the 32-bit compiler).

Word alignment is off by default. If you turn on word alignment, Borland C++ pads the
structure with bytes to ensure the structure is aligned as follows:

1 The structure will start on a word boundary (even address).
2 Any non-char member will have an even byte offset from the start of the structure.

3 A final byte is added (if necessary) at the end to ensure that the whole structure
contains an even number of bytes.

For the 16-bit compiler, with word alignment on, the structure would therefore have a
byte added before the double makmg a 32-byte object.

1 The structure boundaries are defined by 4-byte multiples.

2 For any non—char member, the offset will be a multiple of the member size. A short
will be at an offset that is some multiple of 2 ints from the start of the structure.

3 One to three bytes can be added (if necessary) at the end to ensure that the whole
structure contains a 4-byte multiple.

For the 32-bit compiler, with word alignment on, three bytes would be added before the
double, making a 36-byte object.

Structure name spaces

Structure tag names share the same name space with union tags and enumeration tags
(but enums within a structure are in a different name space in C++). This means that

Chapter 2, Language structure 65

such tags must be uniquely named within the same scope. However, tag names need
not differ from identifiers in the other three name spaces: the label name space, the
member name space(s), and the single name space (which consists of variables,
functions, typedef names, and enumerators).

Member names within a given structure or union must be unique, but they can share the
names of members in other structures or unions. For example,

goto s;

s: // Label

struct s { . // OK: tag and label name spaces different
int s; // OK: label, tag and.member name spaces different
float s; // ILLEGAL: member name duplicated

} s; // OK: var name space different. In C++, this can only

// be done if s does not have a. constructor.
union s { // ILLEGAL: tag space duplicate

int s; // OK: new member space

float f£;
£ // OK: var name space
struct t { '

int s; // OK: different member space
} s; // ILLEGAL: var name duplicate

Incomplete declarations

A pointer to a structure type A can legally appear in the declaration of another structure
B before A has been declared:

struct A; // incomplete
struct B { struct A *pa };
struct A { struct B *pb };

The first appearance of A is called incomplete because there is no definition for it at that
point. An incomplete declaration is allowed here, because the definition of B doesn’t
need the size of A.

Bit fields

When you write an application for a 16-bit platform, you can declare signed or
unsigned integer members as bit fields from 1 to 16 bits wide. For 32-bit platforms, a bit
field can be as much as 32 bits wide. You specify the b1t-f1eld width and optional
identifier as follows:

type-specifier<bitfield-id> : width;

where type-specifier<bitfield-id> is char, unsigned char, int, or unsigned int. Bit fields
are allocated from low-order to high-order bits within a word. The expression width
must be present and must evaluate to a constant integer in the range 1 to 32, depending
on the target platform.

66 C++ Programmer’'s Guide

Unions

If the bit field identifier is omitted, the number of bits specified in width is allocated, but
the field is not accessible. This lets you match bit patterns in, say, hardware registers
where some bits are unused. For example:

struct mystruct

int i 2;

unsigned i o 5;

int : 4

int k o+ 1;

unsigned m : 4; ’ -
) a, b, c;

produces the following layout:

15 |14 |13 (12 [11 |10 |9 |8 |7 |6 |5 |4 |3]2 |1 0
X X X X X X X X X X X X X X X X
Qrmmmmmn e e e e > [<> | < > | < > Lrmmmmm >

m k (unused) i i

Integer fields are stored in two’s-complement form, with the leftmost bit being the MSB
(most significant bit). With int (for example, signed) bit fields, the MSB is interpreted as
a sign bit. A bit field of width 2 holding binary 11, therefore, would be interpreted as 3 if
unsigned, but as -1 if int. In the previous example, the legal assignmenta.i = 6 would
leave binary 10 = -2 in a.i with no warning. The signed int field k of width 1 can hold
only the values -1 and 0, because the bit pattern 1 is interpreted as -1.

Bit fields can be declared only in structures, unions, and classes. They are accessed with
the same member selectors (. and ->) used for non-bit-field members. Also, bit fields
pose several problems when writing portable code, since the organization of bits-
within-bytes and bytes-within-words is machine dependent.

The expression &mystruct.x is illegal if x is a bit field identifier, because there is no
guarantee that mystruct.x lies at a byte address.

Note

Union types are derived types sharing many of the syntactical and functional features of
structure types. The key difference is that a union allows only one of its members to be
“active” at any one time. The size of a union is the size of its largest member. The value
of only one of its members can be stored at any time. In the following simple case,

union myunion { /* union tag = myunion */
int i;)
double d;
char ch;

} mu, *muptr=μ

the identifier mu, of type union nﬁyunion, can be used to hold a 2-byte int, an 8-byte
double, or a single-byte char, but only one of these at the same time.

Unions correspond to the variant record types of Pascal and Modula-2.

Chapter 2, Language étructure 67

sizeof(union myunion) and sizeof(mu) both return 8, but 6 bytes are unused (padded)
when mu holds an int object, and 7 bytes are unused when mu holds a char. You access
union members with the structure member selectors (. and ->), but care is needed:

mu.d = 4.016;

printf ("mu.d = $f\n",mu.d); .//OK: displays mu.d = 4.016
printf("mu.i = %d\n",mu.1); //peculiar result

mu.ch = 'A';

printf("mu.ch = %c\n”,mu.ch); //OK: displays mu.ch = A
printf("mu.d = %$f\n",mu.d); //peculiar result

muptr->i = 3;

printf("mu.i = %d\n",mu.i); //OK: displays mu.i = 3

The second printf is legal, since mu.i is an integer type. However, the bit pattern in mu.i
corresponds to parts of the double previously assigned, and will not usually provide a
useful integer interpretation.

When properly converted, a pointer to a union points to each of its members, and vice
versa.

Anonymous unions (C++ only)

A union that doesn’t have a tag and is not used to declare a named object (or other type)
is called an anonymous union. It has the following form:

union { member-list };

Its members can be accessed directly in the scope where this union is declared, without
using the x.y or p->y syntax.

Anonymous unions can’t have member functions and at file level must be declared
static. In other words, an anonymous union cannot have external linkage.

Union declarations

The general declaration syntax for unions is similar to that for structures. The
differences are

* Unions can contain bit fields, but only one can be active. They all start at the
beginning of the union. (Note that, because bit fields are machine dependent, they can pose
problems when writing portable code.)

* Unlike C++ structures, C++ union types cannot use the class access specifiers: public,
private, and protected. All fields of a union are public.

¢ Unions can be initialized only through their first declared member:

union local87 {

int 1i;
double d;
Ya=1{201};

* A union can’t participate in a class hierarchy. It can’t be derived from any class, nor
can it be a base class. A union can have a constructor.

68 C++ Programmer’s Guide

Enumerations

An enumeration data type is used to provide mnemonic identifiers for a set of integer
values. For example, the following declaration,

enum days { sun, mon, tues, wed, thur, fri, sat } anyday;

establishes a unique integral type, enum days, a variable anyday of this type, and a set of
enumerators (sun, mon, ...) with constant integer values

Borland C++ is free to store enumerators in a single byte when Treat enums as ints is
unchecked (O|C1Code Generation) or the -b flag is used. The default is on (meaning.
enums are always ints) if the range of values permits, but the value is always promoted
to an int when used in expressions. The identifiers used in an enumerator list are -
implicitly of type signed char, unsigned char, or int, depending on the values of the
enumerators. If all values can be represented in a signed or unsigned char, that is the
type of each enumerator.

In C, a variable of an enumerated type can be assigned any value of type int—no type
checking beyond that is enforced. In C++, a variable of an enumerated type can be
assigned only one of its enumerators. That-is,

anyday = mon; // OK

anyday = 1; // illegal, even though mon ==
The identifier days is the optional enumeration tag that can be used in subsequent
declarations of enumeration variables of type enum days:

enum days payday, holiday; // declare two variables

In C++, you can omit the enum keyword if days is not the name of anything else in the
same scope. o

As with struct and union declarations, you can omit the tag if no further variables of
this enum type are required:
enum { sun, mon, tues, wed, thur, fri, sat } anyday;

/* anonymous enum type */

The enumerators listed inside the braces are also known as enumeration constants. Each is
assigned a fixed integral value. In the absence of explicit initializers, the first enumerator
(sun) is set to zero, and each succeeding enumerator is set to one more than its
predecessor (mon =1, tues = 2, and so on). See “Enumeration constants” in Chapter 1 for
more on enumeration constants.

With explicit integral initializers, you can set one or more enumerators to specific
values. Any subsequent names without initializers will then increase by one. For
example, in the following declaration,

/* Initializer expression can include previously declared. enumerators */

enum coins { penny = 1, tuppence, nickel = penny + 4, dime = 10,
quarter = nickel * nickel } smallchange;

tuppence would acquire the valué 2, nickel the value 5, and quarter thé value 25.

The initializer can be any éxpression yielding a positive or negative integer value (after
‘possible integer promotions). These values are usually unique, but duplicates are legal.

Chapter 2, Language structure 69

enum types can appear wherever int types are permitted:
enum days { sun, mon, tues, wed, thur, fri, sat } anyday;

enum days payday;
typedef enum days DAYS;
DAYS *daysptr;

int 1 = tues;

anyday = mon; // OK
*daysptr = anyday; // OK
mon = tues; // ILLEGAL: mon is a constant

Enumeration tags share the same name space as structure and union tags. Enumerators
share the same name space as ordinary varlable 1dent1f1ers

int mon = 11;

{
enum days { sun, mon, tues, wed, thur, fri, sat } anyday;
/* enumerator mon hides outer declaration of int mon */
struct days { int i, j;}; // ILLEGAL: days duplicate tag
double sat; ' // ILLEGAL: redefinition of sat

}

mon = 12; // back in int mon scope
In C++, enumerators declared within a class are in the scope of that class.

In C++ itis possible to overload most operators for an enumeration. However, because
the =, [], (), and -> operators must be overloaded as member functions, it is not possible
to overload them for an enum. See the following example on how to overload the
postfix and prefix increment operators.

How to overload enum operators

// OVERLOAD THE POSTFIX AND PREFIX INCREMENT OPERATORS FOR enum

#include <iostream.h>
enum _SEASON { spring, summer, fall, winter };
_SEASON operator++ (_SEASON &s) { // PREFIX INCREMENT
__SEASON tmp = g; //.SAVE THE ORIGINAL VALUE
// DO MODULAR ARITHMETIC AND CAST THE RESULT TO _SEASON TYPE
s = _SEASON((s + 1) % 4); // INCREMENT THE ORIGINAL
return s; // RETURN THE OLD VALUE
} .
// UNNAMED int ARGUMENT IS NOT USED
_SEASON operator++(_SEASON &s, int) { // POSTFIX INCREMENT
_SEASON tmp = ‘
switch (s) {
case spring: s
case summer: S
case fall: s
case winter: s
}
return (tmp);
}

i

= summer; break;
fall; break;

winter; break;
= gpring; break;

70 C++ Programmer’'s Guide

int main(void) {
_SEASON season = fall;
cout << "\nThe season is " << season;
cout << "\nIncrement the season: "<< ++season; R
cout << "\nNo change yet when using postfix: " << season++;

c¢out << "\nFinally:" << season;
return 0;

}

This code produces the following output:

The season is 2

Increment the season: 3

No change yet when using postfix: 3
Finally:0

Assignment to enum types \

The rules for expressions involving enum types have been made stricter. The compiler
enforces these rules with error messages if the compiler switch -A is turned on (which
means strict ANSI C++).

Assigning an integer to a variable of enum type results in an error:
enum color '

{

red, green, blue
}:

int £()

{
color c;
c = 0;
return c;

}

The same applies when passing an integer as a parameter to a function. Notice that the

result type of the expression flagl | flag?2 is int:

enum e

{ .
flagl 0x01,
flag2 = 0x02

}i

void p(e);

void £ ()
{

p(flagl|flag2); -
}

Chépter 2, Language structure 71

To make the example compile, the expression flagl | flag2 must be cast to the enum
type: e (flagl|flag2).

Expressions

An expression is a sequence of operators, operands, and punctuators that specifies a
computation. The formal syntax, listed in Table 2.10, indicates that expressions are
defined recursively: subexpressions can be nested without formal limit. (However, the
compiler will report an out-of-memory error if it can’t compile an expression that is too
complex.) ‘

Note Borland C++ expressions, shows how 1dent1f1ers and operators are combined to form
grammatically legal “phrases.”

- Expressions are evaluated according to certain conversion, grouping, associativity, and
precedence rules that depend on the operators used, the presence of parentheses, and
the data types of the operands.The standard conversions are detailed in Table 2.5. The
way operands and subexpressions are grouped does not necessarily specify the actual
order in which they are evaluated by Borland C++ (see “Evaluation order”).

Expressions can produce an lvalue, an rvalue, or no value. Expressions might cause side
effects whether they produce a value or not.

The precedence and associativity of the operators are summarized in associativity and
precidence in Borland C++ operators. The grammar in Table 2.10, completely defines
the precedence and associativity of the operators.

Table 2.10 Borland C++ expressions

primary-expression:

literal
this (C++ specific)
s identifier (C++ specific)
2 operator-function-name (C++ specific)
:: qualified-name (C++ specific)
(expression)
name
literal:
integer-constant
character-constant
floating-constant
string-literal
name:
identifier
operator-function-name (C++ specific)
conversion-function-name (C++ specific)
. ~class-name (C++ specific)
qualified-name (C++ specific)

72 C++ Programmer's'Guide

Table 2.10. Borland C++ expressions (continued)
qualified-name: (C++ specific)
qualified-class-name :: name
postfix-expression:
primary-expression
postfix-expression [expression]
postfix-expression (<expression-list>)
simple-type-name (<expression-list>) (C++ specific)
postfix-expression . name
postfix-expression -> name

postfix-expression ++
postfix-expression --
const_cast < type-id > (expression) (C++ specific)
dynamic_cast < type-id > (expression) (C++ specific)
. reinterpret_cast < type-id > (expression) (C++ specific)
static_cast < type-id > (expression) (C-++ specific)
typeid (expression) (C++ specific))
typeid (type-name) (C++ specific)
expression-list:
assignment-expression
expression-list , assignment-expression
unary-expression:
postfix-expression
++ unary-expression
~ ~ Unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-name)
allocation-expression (C++ specific)
deallocation-expression (C++ specific)
unary-operator: one of & * + - !
allocation-expression: (C++ specific)
<> new <placement> new-type-name <initializer>
<> new <placement> (type-name) <initializer>
placement: (C++ specific)
(expression-list)
new-type-name: (C++ specific)
- type-specifiers <new-declarator>
new-declarator: (C++ specific)
ptr-operator <new-declarator>
new-declarator [<expression>]
deallocation-expression: (C++ specific)
<> delete cast-expression
<> delete [] cast-expression

Chapter 2, Language structure 73,

74

Table 2.10 Borland C++ expressions (continued)

cast-expression:

unary-expression

(type-name) cast-expression
pm-expression:

cast-expression .

pm-expression .* cast-expression (C++ specific)

pm-expression ->* cast-expression (C++ specific)
multiplicative-expression:

pm-expression

multiplicative-expression * pm-expression

multiplicative-expression | pm-expression

multiplicative-expression % pm-expression
additive-expression:

multiplicative-expression

additive-expression + multiplicative-expression

additive-expression - multiplicative-expression
shift-expression:

additive-expression

shift-expression << uddztwe expresszon

shift-expression >> additive-expression
relational-expression:
- shift-expression

relational-expression < shift-expression

relational-expression > shift-expression

relational-expression <= shift-expression

relational-expression >= shift-expression
equality-expression:

relational-expression

equality expression == relational-expression

equality expression != relational-expression
AND-expression:

equality-expression

AND-expression & equality-expression
exclusive-OR-expression:

AND-expression

exclusive—OR;expression A AND-expression
inclusive-OR-expression:

exclusive-OR-expression

inclusive-OR-expression | exclusive-OR-expression

’

C++ Programmer’s Guide

Table 210 Borland C++ expressions (continued)

logical-AND-expression:

inclusive-OR-expression

logical-AND-expression && inclusive-OR-expression
logical-OR-expression:

logical-AND-expression

logical-OR-expression | | logical-AND-expression
conditional-expression:

logical-OR-expression

logical-OR-expression ? expression : conditional-expression
assignment-expression:

conditional-expression

unary-expression assignment-operator assignment-expression
assignment-operator: one of
= *= |= %= += =
<< => >= &= M= |=

expression:
assignment-expression
ekpression , assignment-expression
constant-expression:
conditional-expression

Precedence of operators

There are 17 precedence categories, some of which contain only one operator. Operators
in the same category have equal precedence with each other.

Where duplicates of operators appear in the table, the first occurrence is unary, the
second binary. Each category has an associativity rule: left to right, or right to left. In the
absence of parentheses, these rules resolve the grouping of expressions with operators
of equal precedence.

‘The precedence of each operator category in the following table is indicated by its order
in the table. The first category (the first line) has the highest precedence.

Table 2.11 Associativity and precedence of Borland C++ operators

Ol - =. - Left to right
!~ 4 = 44 == & * (typecast) ~ Right toleft
sizeof new delete typeid Right to left .
Fo* ‘Left to right
*/ % Left to right
+ - \ Left to right
<< >> ‘ , Left to right
< <= > >= : Left to right
== = Left to right

Chapter 2, Language structure 75

Table 2.11 Assomatlwty and precedence of Borland C++ operators (contmued)

NS e ‘“Lefttorlght

A Left to right
- Left to right
&& Left to right
I Left to right
2: (conditional expression) Right to left
=*= /= %= 4= = &= Right to left
A= = <<= >>=
, Left to right
Expressions and C++

' C++ allows the overloading of certain standard C operators. An overloaded operator is
defined to behave in a special way when applied to expressions of class type. For
instance, the equality operator == might be defined in class complex to test the equality of
two complex numbers without changing its normal usage with non-class data types.

An overloaded operator is implemented as a function; this function determines the
operand type, Ivalue, and evaluation order to be applied when the overloaded operator
is used. However, overloading cannot change the precedence of an operator. Similarly,
C++ allows user-defined conversions between class objects and fundamental types.
Keep in mind, then, that some of the C language rules for operators and conversions
might not apply to expressions in C++.

Evaluation order

The order in which Borland C++ evaluates the operands of an expression is not
specified, except where an operator specifically states otherwise. The compiler will try
to rearrange the expression in order to improve the quality of the generated code. Care
is therefore needed with expressions in which a value is modified more than once. In
general, avoid writing expressions that both modify and use the value of the same
object. For example, consider the expression

i = v[i++]; // i is undefined

The value of i depends on whether i is incremented before or after the assignment.
Similarly,

int total 0; .

sum = (total = 3) + (++total); // sum = 4 or sum = 7 ??
is ambiguous for sum and fotal. The solution is to revamp the expression, using a
temporary variable:

int temp, total = 0;
temp = ++to,ta1;
sum = (total = 3) + temp;

76 C++ Programmer’s Guide

Where the syntax does enforce an evaluation sequence, it is safe to have multiple
evaluations:

sum = (i = 3, i++, i++); // OK: sum = 4, i =5

Each subexpression of the comma expression is evaluated from left to fight, and the
whole expression evaluates to the rightmost value.

Borland C++ regroups expressions, rearranging associative and commutative operators
regardless of parentheses, in order to create an efficiently compiled expression; in no
case will the rearrangement affect the value of the expression.

You can use parentheses to force the order of evaluation in expressions. For example, if
you have the variables 4, b, ¢, and f, then the expression f =a + (b +c) forces (b + c) to be
evaluated before adding the result to a.

Errors and overflows

Associativity and precidence of Borland C++ operators summarizes the precedence and
associativity of the operators. During the evaluation of an expression, Borland C++ can
encounter many problematic situations, such as division by zero or out-of-range
floating-point values. Integer overflow is ignored (C uses modulo 2" arithmetic on n-bit
registers), but errors detected by math library functions can be handled by standard or
user-defined routines. See _matherr and signal. .

Operators summary

Operators are tokens that trigger some computation when applied to variables and
other objects in an expression.

e Arithmetic

* Assignment

¢ Bitwise

* C++ specific

¢ Comma

¢ Conditional

¢ Equality

* Logical

¢ Postfix Expression.
¢ Primary Expression
® Preprocessor

¢ Reference/Indirect

¢ Relational

Chapter 2, Language structure 77

* sizeof
* typeid ,
All operators can be oVerloaded.except the following:
C++ direct component selector
E C++ dereference
G+ scope access/resolution
?: Conditional

Depending on context, the same operator can have more than one meaning. For
example, the ampersand (&) can be interpreted as:

¢ abitwise AND (A & B)
¢ an address operator (&A)
- ¢ in C++, a reference modifier

Note No spaces are allowed in compound operators. Spaces change the meaning of the
operator and will generate an error.

Primary expression operators

For ANSI C, the primary expressions are literal (also sometimes referred to as constant),
identifier, and (expression). The C++ language extends this list of primary expressions
to include the keyword this, scope resolution operator ::, name, and the class destructor
~ (tilde).

The primary expressions are summarized in the following list.

primary-expression:
literal
this (C++ specific)
:: identifier (C++ specific)
«: operator-function-name (C++ specific)
2 qualified-name (C++ speciﬁc)
(expression)
name
literal:
integer-constant
character-constant
floating-constant
string-literal
name:
identifier
operator-function-name (C++ specific)
conversion-function-name (C++ specific)

78 C++ Programmer’s Guide

.~ class-name (C++ specific)
qualified-name (C++ specific)
qualified-name: (C++ specific)
- qualified-class-name :: name

For a discussion of the primary expression this, see Chapter 3. The keyword this cannot
be used outside a class member function body.

The scope resolution operator allows reference to a type, object, function, or enumerator
even though its identifier is hidden.

The parentheses surrounding an expression do not change the unadorned expression
itself.

The primary expression name is restricted to the category of primary expressions that
sometimes appear after the member access operators . (dot) and —> . Therefore, name
must be either an Ivalue or a function. See also the discussion of member access
operators.

An identifier is a primary expression, provided it has been suitably declared. The
description and formal definition of identifiers is shown in Chapter 1.

See “Constructors and destructors,” in Chapter 3 on how to use the destructor operator
~ (tilde).

Postfix expression operators

Syntax

postfix-expression(<arg-expression-list>)
array declaration [constant-expression]
compound statement { statement list }
postfix-expression . identifier
postfix-expression -> identifier

Remarks
O use to group expressions, isolate conditional expressions, indicate function
calls and function parameters
{} use as the start and end of compound statements
[] use to indicate single and multidimensional array subscripts
' use to access structure and union members

-> use to access structure and union members

Chapter 2, Language structure 79

The following postfix expressions let you make séfe, explicit typecasts in a C++
program:

const_cast< T > (expression)

dynamic_cast< T > (expression)

reinterpret_cast< T > (expression)

static_cast< T > (expression)

To obtain run-time type identification (RTTI), use the typeid() operator. The syntax is as
follows: ,
typeid(expression)
typeid(type-name)

Array subscript operator

v

Brackets ([‘]) indicate single and multidimensional array subscripts. The expression
<expl>[exp2]

is defined as
*((expl) + (exp2))

where either:

* expl is a pointer and exp2 is an integer or |

o explis an integer and exp2 is a pointer

Function call operator

Syntax

postfix-expression (<arg-expression-list>)
Remarks
Parentheses ()
* group expressions
* isolate conditional expressions
¢ indicate function calls and function parameters

The value of the function call expression, if it has a value, is determined by the return
statement in the function definition.

- This is a call to the function given by the postfix expression.

arg-expression-list is a comma-delimited list of expressions of any type representing the
actual (or real) function arguments.

80 C++ Programmer’s Guide

Direct member selector

Syntax
postfix-expression . identifier
postfix-expression must be of type union or structure.

' identifier must be the name of a member of that structure or union type.

* Remarks : |
Use the selection operator (.) to access structure and union members.

Suppose that the object s is of struct type S and sptr is a pointer to S. Then, if m is a
member identifier of type M declared in S, this expression:

s.m

are of type M, and represent the member object 7 in s.

Example

struct mystruct {
int i
char str[21]
double d

} s, *sptr=&s

s.i =3 // assign to the i member of mystruct s

The expression s. is an Ivalue, provided that s is not an lvalue and m is not an array
type.

If structure B contains a field whose type is structure A, the members of A can be
accessed by two applications of the member selectors.

Indirect member selector

Syntax

postfix-expression -> identifier
postfix-expression must be of type pointer to structure or pointer to union.
identifier must be the name of a member of that structure or union type.

The expression designates a member of a structure or union object. The value of the
expression is the value of the selected member it will be an Ivalue if and only if the
- postfix expression is an lvalue.

Remarks
You use the selection operator -> to access structure and union members.

Chapter 2, Language structure

81

Suppose that the ob]ect s is of struct type S and sptr is a pointer to S. Then ifmisa
member identifier of type M declared in S, this expressmn

sptr->m) '
is of type M, and represents the member object m in s.
The expression

s—>‘sptr

is a convenient synonym for (*sptr).m.

Example

struct mystruct {
int 1
char stri2l]
double d

} s, *sptr=&s

sptr->d = 1.23 // assign to the d member of mystruct s
The expression sptr->m is an lvalue unless m is an array type.

If structure B contains a field whose type is structure A, the members of A can be
accessed by two applications of the member selectors.

Increment/decrement operators

Increment operator (++)

Syntax
postfix~eXpression ++ (postincrement)
++ unary-expression (preincrement)

The expression is called the operand it must be of scalar type (arithmetic or pointer
types) and must be a modifiable lvalue.

Postincrement operator
The value of the whole expression is the value of the postfix expression before the
increment is applied.

After the postfix expression is evaluated, the operand is incremented by 1.

Preincrement operator
The operand is incremented by 1 before the expression is evaluated the value of the
whole expression is the incremented value of the operand.

The increment value is appropriate to the type of the operand.

Pointer types follow the rules for pointer arithmetic.

82 C++ Programmer’s Guide

Decrement operator (--)

Syntax
postfix—expression‘—— (postdecrement)
-- unary-expression (predecrement)

The decrement operator follows the same rules as the increment operator, except that
the operand is decremented by 1 after or before the whole expression is evaluated.

- Unary operators

| Syntax

<unary-operator> <unary expression>

or

<unary-operator> <type><unary expression>
Remarks
Unary operators group right-to-left. »
Borland C++ provides the following unary operators:
* ! Logical negation
e * Indirection
¢ ++ Increment
* ~ Bitwise complement
¢ — Decrement
¢ - Unary minus

* + Unary pius

Reference/indirect operators

Syntax

& cast-expression
* cast-expression

Remarks

The & and * operators work together to reference and dereference pointers that are
passed to functions.

Referencing operator (&)
Use the reference operator to pass the address of a pointer to a function outside of
main(). '

Chapter 2, Language'structure 83

The cast-expression operand must be one of the following:
* a function designator

¢ anlvalue designating an object that is not a bit field and is not declared with a register
storage class specifier

If the operand is of type <type>, the result is of <type> pointef to type.

Some non-lvalue identifiers, such as function names and array names, are automatically
converted into “pointer-to-X” types when they appear in certain contexts. The &
operator can be used with such objects, but its use is redundant and therefore
discouraged.

Consider the following example:
Ttl=1, t2=2;

T *ptr = &t1; // Initialized pointer
*ptr = t2; // Same effect as tl = t2
2

T *ptr = &tl istreated as

T *ptr;
ptr = &tl;

So it is ptr, or *ptr, that gets assigned. Once pfr has been initialized with the address &t1,
it can be safely dereferenced to give the lvalue *ptr.

Indirection operator (*)
Use the asterisk (*) in a variable expression to create pointers. And use the indirect
operator in external functions to get a pointer’s value that was passed by reference.

If the operand is of type pointer to function, the result is a function designator.

If the operand is a pointer to an object, the result is an Ivalue designating that object.
The result of indirection is undefined if either of the following occur:

¢ The cast-expression is a null pointer.

* The cast-expression is the address of an automatic variable and execution of its block
has terminated.

Note & can also be the bitwise AND operator.

* can also be the multiplication operator.

Plus operator +

In the expression

+ cast-expréssion

the cast-expression operand must be of arithmetic type. The result is the value of the
operand after any required integral promotions.

84 C++ Programmer’s Guide

Minus operator -

In the expression
— cast-expression

- the cast-expression operand must be of arithmetic type. The result is the negative of the
value of the operand after any required integral promotions.

Bitwise complement operator ~

In the expression

~ cast-expression

the cast-expression operand must be of integral type. The result is the bitwise
complement of the operand after any required integral promotions. Each 0 bit in the
operand is set to 1, and each 1 bit in the operand is set to 0.

Logical negation operator !

In the expression
! cast-expression. .

the cast-expression operand must be of scalar type. The result is of type int and is the
logical negation of the operand: 0 if the operand is nonzero; 1 if the operand is zero. The
expression /E is equivalent to (0 == E).

Increment operator ++

In the expressions

++ unary-expression
unary-expression ++

the unary expression is the operand; it must be of scalar type and must be a modifiable
Ivalue. The first expression shows the syntax for the prefix increment operator, also
known as the preincrement operator. The operand is incremented by 1 before the
expression is evaluated; the value of the whole expression is the incremented value of
the operand. The 1 used to increment is the appropriate value for the type of the

- operand. Pointer types follow the rules of pointer arithmetic.

The second expression shows the syntax for the postfix increment operator (also known
as the postincrement operator). The operand is incremented by 1 after the expression is
evaluated. ‘ .

Decrement operator - -

The following expressions show the syntax for prefix and postfix decrementation. The
prefix decrement is also known as the predecrement; the postfix decrement is also known
as the postdecrement.

- Chapter 2, Language structure 85

— — Unary-expression
unary-expression ——

The operator follows the same rules as the increment operator, except that the operand
is decremented by 1.

The sizeof operator

The sizeof operator has two distinct uses:

sizeof unary-expression
sizeof (type-name)

The result in both cases is an integer constant that gives the size in bytes of how much
memory space is used by the operand (determined by its type, with some exceptions).
The amount of space that is reserved for each type depends on the machine. In the first
use, the type of the operand expression is determined without evaluating the expression
(and therefore without side effects). When the operand is of type char (signed or

- unsigned), sizeof gives the result 1. When the operand is a non-parameter of array type,
the result is the total number of bytes in the array (in other words, an array name is not
converted to a pointer type). The number of elements in an array equals sizeof array/
sizeof array[0]. o

If the operand is a parameter declared as array type or function type, sizeof gives the
size of the pointer. When applied to structures and unions, sizeof gives the total number
of bytes, including any padding.

sizeof cannot be used with expressions of function type, incomplete types,
parenthesized names of such types, or with an Ivalue that designates a bit field object.

The integer type of the result of sizeof is size_t, defined as unsigned int in stddef.h.
You can use sizeof in preprocessor directives; this is speciﬁc to Borland C++.

In C++, sizeof(classtype), where classtype is derived from some base class, returns the
size of the object (remember, this includes the size of the base class).

Source
/* USE THE sizeof OPERATOR TO GET SIZES OF DIFFERENT DATA TYPES. */
#include <stdio.h>

struct st {) .
char *name; /* 2 BYTES IN SMALL-DATA MODELS; 4 BYTES IN LARGE-DATA MODEL */
int age; /* 2 BYTES IN SMALL-DATA MODELS; 4 BYTES IN LARGE-DATA MODEL */
double height; /* EIGHT BYTES */ ‘

i
‘ struct st St Arrayl[]= { /* AN ARRAY OF structs */

{ "Jr.", 4, 34.20 }, /* ST Array[0] */
{ "Suzie", 23, 69.75 1}, /* ST Array([l] */
}:

int main() {
long double LD Array[] = { 1.3, 501.09, 0.0007, 90.1, 17.08 };

86 C++ Programmer’s Guide

printf (" ("\nNumber of elements in LD Array = %d4",
sizeof (LD Array) / sizeof(LD_Array([0]1));

/***% THE NUMBER OF ELEMENTS IN THE ST Array. ****/
printf ("\nSt_Array has %4 elements",
sizeof (St_Array) /sizeof (St_ArrayI[01));

/**** THE NUMBER OF BYTES IN EACH ST Array ELEMENT, ****/
printf("\nSt_Array[0] = %d", sizeof(St_Array[01));

/***% THE TOTAL NUMBER OF BYTES IN ST _Array. ***%*/
printf ("\nSt_Array=%d", sizeof (St_Array));
return 0; .

}

Output
Number of elements in LD_Array = 5
St_Array has 2 elements : R
St_Array[0] = 12
St_Array= 24

Binary operators

This section presents the binary operators, which are operators that require two
operands. :

Table 212 Binary operators

Additive ' + Binary plus (addition)
- Binary minus (subtraction)
Multiplicative - * Multiply
/ Divide
% Remainder
Shift << Shift Jeft
>> Shift right
Bitwise - & Bitwise AND
A Bitwise XOR (exclusive OR)
[' Bitwise inclusive OR
Logical && Logical AND
[Logical OR
Assignment = Assignment
*= o Assign product
/= Assign quotient
Y%= Assign remainder (modulus)
+= Assign sum
—= . Assign difference
<<= - Assign left shift
>>= Assign right shift

Chapter 2, Language structure

Table 212 Binary operators (continued)

1
&= " Assign bitwise AND
A=, . Assign bitwise XOR
. I= Assign bitwise OR

Relational < : Less than
> Greater than
<= - Less than or equal to
>= Y Greater than or equal to

Equality == Equal to
1= Not equal to

Direct component selector

Component selection .
- Indirect component selector

C++ operators & Scope access/resolution
X Dereference pointer to class member
—>* Dereference pointer to class member
: Class initializer

Conditional . a?x:y “if a then x; else y”

Comma , Evaluate; for exainple, a, b, c;fromleftto
‘ right

Additive operators

There are two additive operators: + and —. The syntax is

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression — multiplicative-expression

Addition +

The legal operand types for opl + op2 are

* Both opI and op2 are of arithmetic type.

* oplis of integral type, and op2 is of pointer to object type.

e op2is of integral type, and op1 is of pointer to object type.

In the first case, the operands are subjected to the standard arithmetical conversions,

and the result is the arithmetical sum of the operands. In the second and third cases, the
rules of pointer arithmetic apply.

Subtraction -

The legal operand types for opl — op2 are

88 C++ Programmer’s Guide

Note

* Both opl and o0p2 are of arithmetic type.

¢ Both opl and op2 are pointers to compahble object types. The unquahﬁed type type is
considered to be compatible with the quahﬁed types const type, volatile type, and
const volatile type.

* oplisof pomter to object type, and op2 is mtegral type.

In the first case, the operands are subjected to the standard arithmetic convérswns, and
the result is the arithmetic difference of the operands. In the second and third cases, the
rules of pointer arithmetic apply.

Multiplicative operators

There are three multiplicative operators: *,/, and %. The s;yntax is

multiplicative-expression:
cast-expression
multiplicative-expression cast-expression
multiplicative-expression | cast-expression
multiplicative-expression % cast-expression

The operands for *(multiplication) and / (division) must be of arithmetical type. The -
operands for % (modulus, or remainder) must be of integral type. The usual arithmetic
conversions are made on the operands.

The result of (op1 * op2) is the product of the two operands. The results of (op1 / 0p2) and
(0p1 % op2) are the quotient and remainder, respectively, when op1 is divided by op2,
provided that op2 is nonzero. Use of / or % with a zero second operand results inan
error.

When opl and op2 are integers and the quotient is not an integer, the results are as
follows:

* Ifopl and op2 have the same sign, op1 / op2 is the largest integer less than the true
quotient, and op1 % op2 has the sign of op1.

* Ifopl and op2 have opposite signs, op1 / op2 is the smallest integer greater than the
true quotient, and op1 % op2 has the sign of op1.

Rounding is always toward zero.
Bitwise logic operators
There are three bitwise logical operators: &, A, and |.

AND &
The syntax is

‘ AND-expression:
equality-expression
AND-expression & equality-expression

Chapter 2,-Language structure 89

In the expression E1 & E2, both operands must be of integral type. The usual
arithmetical conversions are performed on EI and E2, and the result is the bitwise AND
of E1 and E2. Each bit in the result is determined as shown in Table 2.13.

Table 2 13 ButW|se operators truth table

0 0 0 0 0
1 0 0 1 1
0 1 0 1 1
1 1 1 0. 1
Exclusive OR *
The syntax is

exclusive-OR-expression:
AND-expression
exclusive-OR-expression » AND-expression

Inthe expreséion E1 A E2, both operands must be of integral type. The usual arithmetic
conversions are performed on E1 and E2, and the result is the bitwise exclusive OR of E1
and E2. Each bit in the result is determined as shown in Table 2.13.

Inclusive OR |
The syntax is

inclusive-OR-expression:
exclusive-OR-expression
inclusive-OR-expression | exclusive-OR-expression

In the expression E1 | E2, both operands must be of integral type. The usual arithmetic
conversions are performed on E1 and E2, and the result is the bitwise inclusive OR of E1
and E2. Each bit in the result is determined as shown in Table 2.13.

Bitwise shift operators

There are two bitwise shift operators: << and >>. The syntax is

shift-expression:
 additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

Shift (<< and >>)

In the expressions E1 << E2 and E1 >> E2, the operands E1 and E2 must be of mtegral

type. The normal integral promotions are performed on EI and E2, and the type of the
result is the type of the promoted E1. If E2 is negative or is greater than or equal to the
width in bits of E1, the operation is undefined.

" The result of E1 << E2 is the value of E1 left-shifted by E2 bit positions, zero-filled from
the right if necessary. Left shifts of an unsigned long E1 are equivalent to multiplying

90 C++ Programmet’s Guide

Note

E1 by 2E2, reduced modulo ULONG MAX + 1; left shifts of unsigned ints are

equivalent to multiplying by 252 reduced modulo UINT_MAX + 1. If E1 is a signed
integer, the result must be interpreted with care, because the sign bit might change.

The constants ULONG MAX and UINT_MAX are defmed in limits.h.

The result of E1 >> E2 is the value of E1 rlght-shlfted by E2 bit positions. If ET is of -
unsigned type, zero-fill occurs from the left if necessary. If E1 is of signed type, the fill
from the left uses the sign bit (0 for positive, 1 for negative EI). This sign-bit extension
ensures that the sign of E1 >> E2 is the same as the sign of E1. Except for signed types,
the value of E1 >> E2 is the integral part of the quotient E1/ 2F2

Relational operators

There are four relational operators: <, >, <=, and >=. The syntax for these operators is

relational-expression:
shift-expression .
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

Less-than <
In the expression E1 < E2, the operands must conform to one of the following sets of
conditions:

* Both E1 and E2 are of arithmetic type.

e Both E1 and E2 are pointers to qualified or unqualified versions of compatible object
types.

e Both E1 and E2 are pointers to qualified or unqualified versions of compatible
incomplete types.

In the first case, the usual arithmetic conversions are performed. The result of E1 < E2 is
of type int. If the value of E1 is less than the value of E2, the result is 1 (true); otherwise,
the result is zero (false).

In the second and third cases, in which E1 and E2 are pointers to compatible types, the
result of E1 < E2 depends on the relative locations (addresses) of the two objects being
pointed at. When comparing structure members within the same structure, the “higher”
pointer indicates a later declaration. Within arrays, the “higher” pointer indicates a
larger subscript value. All pointers to members of the same union object compare as
equal. -

Normally, the comparison of pointers to different structure, array, or union objects, or
the comparison of pointers outside the range of an array object give undefined results;
however, an exception is made for the “pointer beyond the last element” situation. If P -
points to an element of an array object, and Q points to the last element, the expression P
<Q+1lisallowed, evaluating to 1 (true), even though Q + 1 doesnot point to an element
of the array object. :

Chapter 2, Language structure 91

Greater-than >

The expression E1 > E2 gives 1 (true) if the value of E1 is greater than the value of E2;
otherwise, the result is O (false), using the same interpretations for arithmetic and
pointer comparisons as are defined for the less-than operator. The same operand rules
and restrictions also apply

Less-than or equal-to <=

Similarly, the expression E1 <= E2 gives 1 (true) if the value of E1 is less than or equal to
the value of E2. Otherwise, the result is 0 (false), using the same interpretations for
arithmetic and pointer comparisons as are defined for the less-than operator. The same
operand rules and restrictions also apply.

Greater-than or equal-to >=

Finally, the expression E1 >= E2 gives 1 (true) if the value of El is greater than or equal
to the value of E2. Otherwise, the result is 0 (false), using the same interpretations for
arithmetic and pointer comparisons as are defined for the less—than operator. The same
operand rules and restrictions also apply.

Equality operators

There are two equality operators: == and !=. They test for equality and inequality
between arithmetic or pointer values, following rules very similar to those for the
relational operators.

Note Notice that == and != have a lower precedence than the relational operators < and >, <=,
and >=. Also, == and != can compare certain pointer types for equality and inequality
where the relational operators would not be allowed.

The syntax is

equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

Equal-to == .
In the expression E1 == E2, the operands must conform to one of the following sets of
conditions:

* Both EI and E2 are of arithmetic type.
* Both E1 and E2 are pointers to qualified or unqualified versions of compatible types.

* Oneof E1 and E2 is a pointer to an ob]ect or incomplete type, and the other isa
pointer to a qualified or unqualified version of void.

* One of E1 or E2 is a pointer and the other is a null pointer constant.

92 C++ Programmer’s Guide

If E1 and E2 have types that are valid operand types for a relational operator, the same
comparison rules just detailed for EI < E2, E1 <= E2, and so on, apply.

In the first case, for example, the usual arithmetic conversions are performed, and the
result of E1 == E2 is of type int. If the value of E1 is equal to the value of E2, the result is
1 (true); otherwise, the result is zero (false).

In the second case, E1 == E2 gives 1 (true) if E1 and E2 point to the same object, or both
point “one past the last element” of the same array object, or both are null pointers.

If E1 and E2 are pointers to function types, EI1 == E2 gives 1 (‘rrue) if they are both null or
if they both point to the same function. Conversely, if E1 == E2 gives 1 (true), then either
E1 and E2 point to the same function, or they are both null.

In the fourth case, the pointer to an object or incomplete type is converted to the type of
the other operand (pointer to a qualified or unqualified version of void).

Inequality !=

The expression E1 != E2 follows the same rules as those for E1 == E2, except that the
result is 1 (true) if the operands are unequal, and 0 (false) if the operands are equal.

Logical operators

There are two logical operators: && and | I.

AND &&
The syntax is

logical-AND-expression:
inclusive-OR-expression
logical-AND-expression && inclusive-OR-expression

In the expression E1 && E2, both operands must be of scalar type. The result is of type
int, and the result is 1 (true) if the values of E1 and E2 are both nonzero; otherwise, the
result is O (false).

Unlike the bitwise & operator, && guarantees left-to-right evaluation. E1 is evaluated
first; if ET is zero, E1 && E2 gives 0 (false), and E2 is not evaluated.

OR| (
The syntax is '
logical-OR-expression:
logical-AND-expression
logical-OR-expression | § logical-AND-expression

In the expression E1 | | E2, both operands must be of scalar type. The result is of type
int, and the result is 1 (true) if either of the values of E1 and E2 are nonzero. Otherwise,
the result is O (false).

Unlike the bitwise | operator, | | guarantees left-to-right evaluation. ET is evaluated
first; if E1 is nonzero, E1 | | E2 gives 1 (true), and E2 is not evaluated

Chapter 2, Language structure 93

Conditional ? :
The syntax is

conditional-expression
logical-OR-expression
logical-OR-expression ? expression : conditional-expression

In the expression E1 ? E2 : E3, the operand E1 must be of scalar type. The operands E2
and E3 must obey one of the following rules: ‘

* Rule 1: Both are of arithmetic type.
* Rule 2: Both are of compatible structure or union types.
* Rule 3: Both are of void type.

* Rule 4: Both are of type pointer to quahfled or unqualified versions of compatible
types.
* Rule 5: One operand is of pointer type, the other is a null pointer constant.

* Rule 6: One operand is of type pointer to an object or incomplete type, the other is of
type pointer to a qualified or unqualified version of void.

Note In C++, the result is an Ivalue.

First, E1 is evaluated; if its value is nonzero (true), then E2 is evaluated and E3 is
ignored. If E1 evaluates to zero (false), then E3 is evaluated and E2 is ignored. The result
of E1 ? E2 : E3 will be the value of whichever of E2 and E3 is evaluated.

In rule 1, both E2 and E3 are subject to the usual arithmetic conversions, and the type of
the result is the common type resulting from these conversions. In rule 2, the type of the
result is the structure or union type of E2 and E3. In rule 3, the result is of type void.

In rules 4 and 5, the type of the result is a pointer to a type qualified with all the type
qualifiers of the types pointed to by both operands. In rule 6, the type of the result is that
of the nonpointer-to-void operand. ,

Assignment operators

There are 11 assignment operators. The = operator is the simple assignment operator;
the other 10 are known as compound assignment operators.

- The syntax is

assignment-expression:
conditional-expression
unary-expression assignment-operator assigrment-expression

assignment-operator: one of

' = * /= '%: = -

<= >>= &= A= I=

94 C++ Programmer’s Guide

Note:

Simple assignment=

In the expression E1 = E2, E1 must be a modifiable lvalue. The value of E2, after
conversion to the type of E1, is stored in the object designated by EI (replacing E1’s
previous value). The value of the assignment expression is the value of E1 after the
assignment. The assignment expression is not itself an lvalue.

The operands E1 and E2 must obey one of the following rules: ‘
* Rule 1: E1 is of qualified or unqualified arithmetic type and E2is of arithmetic type. -

® Rule 2: E1 has a qualified or unqualified version of a structure or union type
compatible with the type of E2.

* Rule 3: EI and E2 are pointers to qualified or unqualified versions of compatible
types, and the type pointed to by the left has all the qualifiers of the type pointed to
by the right. :

® Rule 4: One of E1 or E2 is a pointer to an object or incomplete type and the other is a
pointer to a qualified or unqualified version of void. The type pointed to by the left
has all the qualifiers of the type pointed to by the right.

* Rule 5: E1 is a pointer and E2 is a null pointer constant.

In C++, the result is an lvalue.

Compound assignment

" The compound assignments op=, where op can be any one of the 10 operator

symbols * / % +-<< >> & A |, are interpreted as follows:
Elop=E2

has the same effect as
El1=ElopE2

except that the lvalue E1 is evaluated only once. (For example, E1 +=E2 is the same as
El1=E1+E2)

The rules for compound assignment are therefore covered in the previous section (on
the simple assignment operator =).

Comma operator

The syntax is

expression:
assignment-expression
expression , assignment-expression

In the comma expression
E1,E2

Chapter 2, Language structure 95

the left operand E1 is evaluated as a void expression, then E2 is evaluated to give the
result and type of the comma expression. By recursion, the expression

E1,E2,..,En

results in the left-to-right evaluation of each Ei, with the value and type of En giving the
result of the whole expression. To avoid potential ambiguity (which might arise from
the commas being used in both function arguments and in initializer lists), parentheses
-must be used. For example,

func(i, (3 =1, 3+ 4), k);
calls func with three arguments, not four. The arguments are 7, 5, and k.
Note In C++, the result is an lvalue. ‘

C++ speCific operators

The operators specific to C++ are:

scope access (or resolution) operator

K dereference pointers to class members

->* - dereference pointers to pointers to class members

const_cast adds or removes the const or volatile modifier from a type

delete dynamically deallocates memory

dynamic_cast converts a pointer to a desired type

new dynamically allocates memory

reinterpret_cast replaces casts for conversions that are unsafe or implementation dependent
static_cast converts a pointer to a desired type

typeid gets run-time identification of types and expressions

Use the scope access (or resolution) operator ::(two semicolons) to access a global (or file
duration) name even if it is hidden by a local redeclaration of that name.

Use the .* and ->* operators to dereference pointers to class members and pointers to
pointers to class members.

Statements

Statements specify the flow of control as a program executes. In the absence of specific
jump and selection statements, statements are executed sequentially in the order of
appearance in the source code. Borland C++ statements shows the syntax for
statements. ‘ ‘

96 C++ Prbgrammer’s Guide

Table 2.14 Borland C++ Statements

statement:

Iabeled-statement

compound-statement

expression-statement

selection-statement

iteration-statement

jump-statement

asm-statement

declaration (C++ specific)
labeled-statement:

identifier : statement

case constant-expression : statement

default : statement
compound-statement:

{ <declaration-list> <statement-list> |
declaration-list:

declaration

declaration-list declaration
statement-list:

statement

statement-list statement
expression-statement:

<expression> ;
asm-statement:

asm tokens newline

asm fokens;

asm { tokens; <tokens;>= <tokens;>}
selection-statement:

if (expression) statement

if (expression) statement else statement

switch (expression) statement
iteration-statement:

while (expression) statement

do statement while (expression) ;

for (for-init-statement <expression> ; <expression>) statement
for-init-statement: i

expression-statement

declaration (C++ specific)

. jump-statement:
goto identifier ;
cont‘inué ;

Chapter 2, Language structure 97

Table 2.14 Borland C++ Statements

break ;
return <expression> ;

Blocks

A compound statement, or block, is a'list (possibly empty) of statements enclosed in
matching braces ({ }). Syntactically, a block can be considered to be a single statement,
but it also plays a role in the scoping of identifiers. An identifier declared within a block
has a scope starting at the point of declaration and ending at the closing brace. Blocks
can be nested to any depth.

Labeled statements

A statement can be labeled in two ways:
* label-identifier : statement

The label identifier serves as a target for the unconditional goto statement. Label
identifiers have their own name space and have function scope. In C++ you can Jabel
both declaration and non-declaration statements.

* case constant-expression : statement
default : statement

Case and default labeled statements are used only in conjunction with switch
statements. ‘

Expression statements

Any expression followed by a semicolon forms an expression statement:
<expression>;

Borland C++ executes an expression statement by evaluating the expression. All side
effects from this evaluation are completed before the next statement is executed. Most
expression statements are assignment statements or function calls.

The null statement is a special case, consisting of a single semicolon (). The null statement
does nothing, and is therefore useful in situations where the Borland C++ syntax
expects a statement but your program does not need one.

Selection statements

Selection or flow-control statements select from alternative courses of action by testing
certain values. There are two types of selection statements: the if...else and the switch.

98 C++ Programmer’s Guide

lteration statements

Iteration statements let you loop a set of statements. There are three forms of iteration in
Borland C++: while, do while, and for loops.

Jump statements

A jump statement, when executed, transfers control unconditionally. There are four
such statements: break, continue, goto, and return.

The main() function

Every C and C++ program must have a program-startup function.

¢ Console-based programs call the main function at startup.
¢ Windows GUI programs call the WinMain function at startup.

Where you place the startup function is a matter of preference. Some pfogrammers
place main at the beginning of the file, others at the end. Regardless of its location, the
following points about main always apply:

¢ Arguments to main
¢ Wildcard arguments
¢ Using -p (Pascal calling conventions)

¢ Value main() returns

~ Arguments to main()

Three parameters (arguments) are passed to main by the Borland C++ startup routine:
argc, argu, and env.

* grgc, an integer, is the number of command-line arguments passed to main, including
the name of the executable itself.

* argois an array of pointers to strings (char *{]).
¢ argu[0] is the full path name of the program being run.

¢ argu[1] points to the first string typed on the operating system command line after
the program name.

= argu[2] points to the second string typed after the program name.
e argulargc-1] points to the last argument passed to main.
¢ argulargc] contains NULL.

* envis also an array of pointers to strings. Each element of env] holds a string of the
form ENVVAR=value.

¢ ENVVAR is the name of an environment variable, such as PATH or COMSPEC.

Chapter 2, Language structure - 99

¢ value is the value to which ENVVAR is set, such as C:\APPS;C:\TOOLS; (for
PATH) or C:ADOS\COMMAND.COM (for COMSPEC).

If you declare any of these parameters, you must declare them exactly in the order giVen:
argc, argv, env. For example, the followmg are all valid declarations of arguments to

nuun
int main() .

© int main(int argc) /* legal but very unlikely */
int main(int argc, char * argvl[])
int main(int argc, char * argv[], char * env[])]

The declaration int main(int argc) is legal, but it is very unlikely that you would use argc
in your program without also using the elements of argv.

The argument env is also availablé through the global variable _environ.

For all platforms, argc and argv are also available via the global variables _argc and
_argv. » .

Example of how arguments are passed to main()

Here is an example that demonstrates a simple way of using these arguments passed to
main():

/* Program ARGS.C */
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv([], char *env[]) {
int i;

printf ("The value of argc is %d \n\n", argc);
printf ("These are the %d command-line arguments passed to"
" main:\n\n", argc);

for (i = 0; i < argce; i++)
printf (" argv([%d]: %$s\n", i, argv[il);

printf ("\nThe environment string(s) on this system are:\n\n");

for (i = 0; env[i] != NULL; i++)
printf(" env[%d]: %s\n", i, env[i]);
" return 0;

}

Suppose you run ARGS.EXE at the command prompt with the following command
ine: : ‘

C:> args first_arg "arg with blanks" 3 4 "last but one" stop!

Notice that you can pass arguments with embedded blanks by surrounding them with
quotes, as shown by “argument with blanks” and “last but one” in this example '
command line.

100 C++ Programmer’s Guide

The output of ARGS.EXE (assuming that the environment variables are set as shown
here) would then be like this:

The value of argc is 7
These are the 7 command-line arguments passed to main:

argv{0]: C:\BC4\ARGS.EXE
argvil]: first_arg
argv[2]: arg with blanks
argv[3]: 3

argv(4]: 4

argv[b]: last but one
argv[6]: stop!

The environment string(s) on this system are

env[0]: COMSPEC=C:\COMMAND.COM
env[l]: PROMPT=$p S$g
env[2]: PATH=C:\SPRINT;C:\DOS;C:\BC4

The maximum combined length of the command-line arguments passed to main
(including the space between adjacent arguments and the program name itself) is

¢ 128 for DOS
e 260 for Win16
o 255 for Win32

Wildcard arguments

Command-line arguments containing wildcard characters can be expanded to all the
matching file names, much the same way DOS expands wildcards when used with
commands like COPY. All you have to do to get wildcard expansion is to link your
program with the WILDARGS.OB]J object file, which is included with Borland C++.

Note Wildcard arguments are used only in console-mode applications.

Once WILDARGS.OB] is linked into your program code, you can send wildcard
arguments (such as *.*) to your main function. The argument will be expanded (in the
argu array) to all files matching the wildcard mask. The maximum size of the argv array
varies, depending on the amount of memory available in your heap.

If no matching files are found, the argument is passed unchanged. (That is, a string
consisting of the wildcard mask is passed to main.)

"o

Arguments enclosed in quotes ("...") are not expanded. -

Example of usi'ng wildcard arguments with main()

‘The following commands compile the file ARGS.C and link it with the wildcard
expansion module WILDARGS.OBJ, then run the resulting executable file ARGS.EXE:

Chapter 2, Language structure 101

BCC ARGS.C WILDARGS.OBJ
ARGS C:\BCA\INCLUDE*.H "*.C"

When you run ARGS.EXE, the first argument is expanded to the names of all the *.H
files in your Borland C++ INCLUDE directory. Note that the expanded argument
strings include the entire path. The argument *.C is not expanded because it is enclosed
in quotes.

In the IDE, simply spec1fy a project file from the Project menu that contains the
following lines:

ARGS
WILDARGS.OBJ

If you prefer the wildcard expansion to be the default, modify your standard
CW32?.LIB library files to have WILDARGS.OB]J linked automatically. To do so, remove
SETARGV and INITARGS from the libraries and add WILDARGS. The following
commands invoke the Turbo librarian (TLIB) to modify all the standard library files
(assuming the current directory contains the standard C and C++ libraries and

WILDARGS.OBJ):

Windows users
tlib Cw32 ‘_setargv +wildargs
tlib CW32MT -setargv +wildargs
tlib -setargv +wildargs

DOS users

tlib c¢s -setargv +wildargs
tlib cc¢ -setargv . +wildargs
tlib cm -setargv +wildargs
tlib ¢l -setargv +wildargs
tlib ch -setargv +wildargs

Using_ p (Pascal calling conventions)

If you compile your program using Pascal calling conventions, you must remember to
explicitly declare main as a C type. Do this with the _ _cdecl keyword, like this:

int _ _cdecl main(int argc, char* argv[], char* envpl[])

The value main() returns

The value returned by main is the status code of the program: an int. If, however, your
‘program uses the routine exit (or _exit) to terminate, the value returned by main is the
argument passed to the call to exit (or to _exit).

For example, if your program contains the call

102 C++ Programmer’s Guide

exit(1)

the status is 1.

Passing file information to child processes

If your program uses the exec or spawn functions to create a new process, the new
process will normally inherit all of the open file handles created by the original process.
Some information, however, about these handles will be lost, including the access mode
used to open the file. For example, if your program opens a file for read-only access in
binary mode, and then spawns a child process, the child process might corrupt the file
by writing to it, or by reading from it in text mode.

To allow child processes to inherit such information about open files, you must link
your program with the object file FILEINFO.OB].

For example:
BCC32 TEST.C \BC4\LIB\FILEINFO.OBJ

* The file information is passed in the environment variable C_FILE_INFO. This variable
contains encoded binary information. Your program should not attempt to read or
modify its value. The child program must have been built with the C++ run-time library
to inherit this information correctly.

Other programs can ighore _C_FILE_INFO, and will not inherit file information.

Multithread programs

32-bit programs can create more than one thread of execution. If your program creates
multiple threads, and these threads also use the C++ run-time hbrary, you must use the
CW32MT.LIB or CW32MTI library instead.

The multithread libraries provide the following functions that you use to create threads:

® _beginthread
® _beginthrendNT
The multithread libraries also prov1de

_endthread — a function that terminates threads

_threadid - a global variable that contains the current identification number of the
thread (also known as the thread ID).

The header fﬂe stddef.h contains the declaration of threadid

When you compile or link a program that uses multiple threads, you must use the -WM
compiler switch. For example:

BCC32 -WM THREAD.C

Chapter 2, Language structure 103

Note Take special care when using the signal function in a multithread program. The SIGINT,
- SIGTERM, and SIGBREAK signals can be used only by the main thread (thread one) ina
non-Win32 application. When one of these signals occurs, the currently executing
thread is suspended, and control transfers to the signal handler (if any) set up by thread
one. Other signals can be handled by any thread. ‘

A signal handler should not use C++ run-time library functions because a semaphore
deadlock might occur. Instead, the handler should simply set a flag or post a semaphore
and return immediately.

104 C++ Pro\grammer’s Guide

Chapter

C++ specifics

- C++ is an object-oriented programming language based on C. Generally speaking, you
-can compile C programs under C++, but you can’t compile a C++ program under C if
the program uses any constructs specific to C++. Some situations require special care.
For example, the same function func declared twice in C with different argument types

invokes a duplicated name error. Under C++, however, func will be interpreted as an
overloaded function; whether or not this is legal depends on other circumstances.

Although C++ introduces new keywords and operators to handle classes, some of the
capabilities of C++ have applications outside of any class context. This topic discusses
the aspects of C++ that can be used independently of classes, then describes the specifics
of classes and class mechanisms.

See “C++ exception handling” and “C-based structured exceptions” in Chaptef 4 for
details on compiling C and C++ programs with exception handling.

Namespaces

Most nontrivial applications consist of more than one source file. The files can be
authored and maintained by more than one developer. Eventually, the separate files are
organized and linked to produce the final application.

Traditionally, the file organization requires all names that aren’t encapsulated within a
defined name space (such as function or class body, or translation unit) to share the
same global name space. Therefore, multiple definitions of names discovered while
linking separate modules require some way to distinguish each name. C++ namespaces
provide the solution to the problem of name clashes in the global scope.

Namespaces allow an application to be partitioned into a number of subsystems. Each
subsystem can define and operate within its own scope. Each developer can introduce
whatever identifiers are convenient within a subsystem without worrying about
whether such identifiers are being used by someone else. The subsystem scope is known
throughout the application by a unique identifier. :

Chapter 3, C++ specifics 105

It takes only two steps to use C++ namespaces:
1 You must uniquely identify a name space using the keyword namespace.

2 You can then access the elements of an identified namespace by applying the using
keyword.

Defining a namespace

The grammar for defining a namespace is

original-namespace-name:
identifier

namespace-definition:
original-namespace-definition
extension-namespace-definition
unnamed-namespace-definition

Grammatically, there are three ways to define a namespace with the namespace
keyword: o - :

original-namespace-definition:
namespace identifier { namespace-body }
extension-namespace-definition:
" namespace original-namespace-name { namespace-body }
unnamed-namespace-definition:
namespace { namespace-body }

The body is an optional sequence of declarations. The grammar is

namespace-body:
declaration-seq opt

Example

// An example of the using directive
#include <iostream.h>
namespace F {
float x = 9;
}
namespace G {
using namespace F;
float v = 2.0;
namespace INNER_G {
float z = 10.01;
}

int main() {
using namespace G; // THIS DIRECTIVE GIVES YOU EVERYTHING DECLARED IN "G"
using namespace G::INNER G; // THIS DIRECTIVE GIVES YOU ONLY "INNER_G"

106 C++ Programmer’s Guide

float x = 19.1; // LOCAL DECLARATION TAKES PRECEDENCE

cout << "x = " << x << endl;
cout << "y = " << y << endl;
cout << "z = " << z << endl;
return 0;
}
Output:
x =19.1
y =2
z = 10.01
Declaring a namespace

An original namespace declaration should use an identifier that has not been previously
used as a global identifier.

namespace ALPHA { /* ALPHA is the identifier of this namespace. */
/* your program declarations */
long double LD;
float f(float y) { return y; }
}

A namespace identifier must be known in all translation units where you intend to
access its elements.

Namespace alias

You can use an alternate name to refer to a namespace identifier. An alias is useful when
you need to refer to a long, unwieldy namespace identifier.

namespace BORLAND_INTERNATIONAL {
/* namespace-body */
namespace NESTED_BORLAND_INTERNATIONAL {
. /* namespace-body */
}

// Alias namespace
namespace BI = BORLAND_INTERNATIONAL;

// Use access qualifier to alias a nested namespace
namespace NBI = BORLAND_INTERNATIONAL: :NESTED_BORLAND INTERNATIONAL;

Extending a namespace

Namespaces are discontinuous and open for additional development. If you redeclare a
namespace, you extend the original namespace by adding new declarations. Any
extensions that are made to a namespace after a using declaration will not be known at
the point at which the using declaration occurs. Therefore, all overloaded versions of
some function should be included in the namespace before you declare the function to
be in use.

Chapter 3, C++ specifics 107

Example for extending namespaces

// Bn exampleé for extending namespaces
#include <iostream.h>

struct S { };

class C { };

namespace ALPHA { // ALPHA is an original identifier.
void g(struct S). {
cout << "Processing a structure argument" << endl;

}

using ALPHA::g; // using declaration

/*** After the using declaration above, subsequent attempts
to overload the g() function are ignored. *kk
namespace ALPHA { // Extending the ALPHA namespace
void g(C&) { // Overloaded version of function
cout << "Processing a class argument." << endl;

}

int main() {
S mystruct;
C myclass;

g (mystruct);

// The following function call fails at compile—timé

// because there is no overloaded version for this case.
// g (myclass) ;

return 0;

: }
Output:

Processing a structure argument

Anonymous hamespaces

The C++ grammar allows you to define anonymous namespaces. To do this, you'use the
keyword namespace with no identifier before the enclosing brace.

namespace { // Anonymous namespace
// Declarations

}

All anonymous, unnamed namespaces in global scope (that is, unnamed namespaces
that are not nested) of the same translation unit share the same namespace. This way
‘you can make static declarations without using the static keyword.

Each identifier that is enclosed within an unnamed namespace is unique within the
translation unit in which the unnamed namespace is defined.

108 C++ Programmer’s Guide

Example
In file ANON1.CPP:

#include <iostream.h>
extern void func (void);

namespace { // Anonymous
float pi = 3.14; // Unique identifier known only in this file
3)

void main() {
- float pi = 0.1;

cout << "pi = " << pi << endl;
func () ;
}

In file ANON2.CPP:

#include <iostream.h>

namespace { // Anonymous namespace
float pi = 10.0001; .// Unique identifier known only in this file
void func(void) {
cout << "First func() called; pi = " << pi;
}
}

void func(void) {

cout << "Second func() called; pi = " << pi;
}
Program output:
pi = 0.1

Second func{) called; pi = 10.0001

Accessing elements of a namespace

You can access the elements of a namespace in three ways:

* By explicit access qualification
* By the using declaration
¢ By the using directive

Remember that no matter which namespace you add to your local scope, identifiers in
global scope (global scope is just another namespace) are still accessible by using the
scope resolution operator ::.

Accessing namespaces in classes
You cannot use a using directive inside a class. However, the using declarative is -
allowed and can be quite useful.

Chapter 3, C++ specifics 109

Using directive

If you want to use several (or all of) the members of a namespace, C++ provides an easy
way to get access to the complete namespace. The using directive specifies that all
identifiers in a namespace are in scope at the point that the using directive statement is
made. The grammar for the using directive is as follows:

-using-directive:
using namespace :: opt nested-name-specifier opt namespace-name;

The using directive is transitive. That means that when you apply the using directive to
anamespace that contains using directives within itself, you get access to those
namespaces as well. For example, if you apply the using directive in your program, you
also get namespaces A, ONE, and TWO.

namespace A {
u51ng namespace ONE; . // This has been defined previously
‘using namespace TWO; // This also has been defined previously

}

The using directive does not add any identifiers to your local scope. Therefore, an
“identifier defined in more than one namespace won't be a problem until you actually

attempt to use it. Local scope declarations take precedence by hiding all other similar
~ declaratiorns.

Using declaration

You can access namespace members individually with the using declaration syntax.
When you make a using declaration, you add the declared identifier to the local
namespace. The grammar is

using-declaration:

using :: unqualified-identifier;

Example

// An example of the using declaration.
//- The function g{) is defined in two different namespaces.
#include <iostream.h>

namespace ALPHA { /* ALPHA is the name of this namespace. */
float f£(float y) { return y; }
void g() { cout << "ALPHA version" << endl; }
}
namespace BETA { /* BETA is the name of this namespace. */
void g() { cout << "BETA version" << endl; }

}

void main(void) {

// The using declaration identifies the desired version of ag().
using ALPHA::f; // Qualified declaration
using BETA::g; // Qualified declaration

110 C++ Programmer’'s Guide

float x = 0;

// Access qualifiers are no longer needed.
x = £(2.1);

g();

}

Explicit access qualification

You can explicitly qualify each member of a namespace. To do so, you use the
namespace identifier together with the :: scope resolution operator followed by the
member name. For example, to access a specific member of namespace ALPHA, you
write:

ALPHA::LD; // Acces$ a variable
ALPHA: : f; // BAccess a function

Explicit access qualification can always be used to resolve ambiguity. No matter which
namespace (except anonymous namespace) is being used in your subsystem, you can
apply the scope resolution operator :: to access identifiers in any namespace (including a
namespace already being used in the local scope) or the global namespace. Therefore,
any identfier in the application can be accessed with sufficient qualification.

Example

// An example for accessing a namespace within a class.
// This allows us to overload a function which is a base class member.

#include <iostream.h>
class A {
public:)
void func(char ch) { cout << "char = " << ch << endl; }
}:

class B : public A {

public:
/7 using namespace A; // ERROR. The using directive isn't. allowed
void func(char *str) { cout << "string = " << str << endl; }

// The using declarative
using A::func; // Overload B::func()
}:

int main() {

B b;

b.func('c'); // Calls A::func()
b.func("c"); // Calls B::func()
return 0;

Chapter 3, C++ specifics 111

New-style typecasting

This section presents a discussion of alternate methods for making a typecast. The
methods presented here augment the earlier cast expressions available in the C

language.
Types cannot be defined in a cast.

const_cast

Syntax

const_cast< T > (arg)

Descrlptlon
Use the const_cast operator to add or remove the const or volatile modifier from a type.
In the statement,

const_cast< T > (arg)

T and arg must be of the same type except for const and volatile modifiers. The cast is
resolved at compile time. The result is of type T. Any number of const or volatile
modifiers can be added or removed with a single const_cast expression.

A pointer to const can be converted to a pointer to non-const that is in all other respects
an identical type. If successful, the resulting pointer refers to the original object.

A const object or a reference to const_cast results in a non-const object or reference that is
otherwise an identical type.

The const_cast operator performs similar typecasts on the volatile modifier. A pointer to
volatile object can be cast to a pointer to non-volatile object without otherwise changing
the type of the object. The result is a pointer to the original object. A volatile-type object
or a reference to volatile-type can be converted into an identical non-volatile type.

dynamic_cast :

In the expression,
dynamic_cast< T > (ptr)

T must be a pointer or a reference to a defined class type or void*. The argument ptr
must be an expression that resolves to a pointer or reference.

If T is void* then ptr must also be a pointer. In this case, the resulting pointer can access
any element of the class that is the most derived element in the hlerarchy Such a class
cannot be a base for any other class.

Conversions from a derived class to a base class, or from one derived class to another,
are as follows: if T is a pointer and ptr is a pointer to a non-base class that is an element
of a class hierarchy, the resultis a pointer to the unique subclass. References are treated
similarly. If T is a reference and ptr is a reference to a non-base class, the resultis a
reference to the unique subclass.

112 C++ Programmer’s Guide

Note

A conversion from a base class to a derived class can be performed only if the base is a

polymorphic type. The conversion to a base class is resolved at compile time. A

conversion from a base class to a derived class, or a conversion across a hlerarchy is

resolved at run time.

If successful, dyhamic_cast< T > (ptr) converts ptr'to the desired type. If a pointer cast

fails, the returned pointer is valued 0. If a cast to a reference type fails, the Bad_cast
exception is thrown.

Run-time type identification (RTTI) is required for dynamic_cast.

Example

// HOW TO MAKE DYNAMIC CASTS
// This program must be compiled with the -RT (Generate RTTI) option.
#include <iostream.h>
#include <typeinfo.h>
class Basel
{ .
// In order for the RTTI mechanism to function correctly,
// a base class must be polymorphic.
virtual void f (void) { /* A virtual function makes the class polymorphic */ }
}: ‘
class Base2 { };
class Derived : public Basel, public Base2 { };
int main(veid) {
try {
Derived d, *pd;
~ Basel *bl = &d;
// Perform a downcast from a Basel to a Derived.
if ((pd = dynamic_cast<Derived *>(bl)) != 0) {
cout << "The resulting pointer is of type "
<< typeid(pd) .name() << endl;

.

}
else throw Bad_cast();
// Attempt cast across the hierarchy. That is, cast from
// the first base to the most derived class and then back
// to another accessible base.
Base2 *b2;
if ((b2 = dynmamic_cast<Base2 *>(b1)) 1= 0) {
cout << "The resulting pointer is of type "
. << typéid(b2) .name() << endl;
}
else throw Bad_cast();
} ‘
catch (Bad_cast) {
cout << "dynamlc cast failed" << endil;
return 1;
}
catch (...) {
cout << "Exceptlon.handllng error." << endl;
return 1;

}

Chapter 3, C++ specifics

113

return 0;

reinterpret_cast

Syntax

reinterpret_cast< T > (arg)

Description
In the statement,

reinterpret_cast< T > (arg)

T must be a pointer, reference, arithmetic type, pointer to function, or pointer to
member.

A pointer can be explicitly converted to an integral type. An integral arg can be
converted to a pointer. Converting a pointer to an integral type and back to the same
pointer type results in the original value. A yet undefined class can be used in a pointer
or reference conversion. -

A pointer to a function can be explicitly converted to a pointer to an object type
provided the object pointer type has enough bits to hold the function pointer. A pointer
to an object type can be explicitly converted to a pointer to a function only if the function
pointer type is large enough to hold the object pointer.

Example

// Use reinterpret_cast<Type>(expr) to replace (Type)expr casts
// for conversions that are unsafe or implementation dependent.

void func{void *v} {

// Cast from pointer type to integral type.
int i = reinterpret_cast<int>(v);
?
}
void main() {)
// Cast from an integral type to pointer type.
func (reinterpret_cast<void *>(5));
// Cast from a pointer to function of one type to
// pointer to function of another type.
typedef void (* PFV) ();
PFV pfunc = reinterpret_cast<PFV>(func);
pfunc();
}

static_cast

Syntax

static_cast< T > (arg)

114 C++ Programmer’s Guide

Description
In the statement,

static_cast< T > (arg)

T must be a pointer, reference, arithmetic type, or enum type. The arg-type must match
the T-type. Both T and arg must be fully known at compile time.

If a complete type can be converted to another type by some conversion method already
provided by the language, then making such a conversion by using static_cast achieves
exactly the same thing.

Integral types can be converted to enum types. A request to convert arg to a value that is
not an element of enum is undefined. The null pointer is converted to itself. A pointer to
one object type can be converted to a pointer to another object type. Note that merely
pointing to similar types can cause access problems if the similar types are not similarly
aligned. :

You can explicitly convert a pointer to a class X to a pointer to some class Y if X is a base
class for Y. A static conversion can be made only under the following conditions:

¢ If an unambiguous conversion exists from Y to X
e If Xisnota virtual base class

An object can be explicitly converted to a reference type X& if a pointer to that object can
be explicitly converted to an X*. The result of the conversion is an Ivalue. No
constructors or conversion functions are called as the result of a cast to a reference.

An object or a value can be converted to a class object only if an appropriate constructor
- or conversion operator has been declared.

A pointer to a member can be explicitly converted into a different pointer-to-member
type only if both types are pointers to members of the same class or pointers to members
of two classes, one of which is unambiguously derived from the other.

When T is a reference, the result of static_cast< T > (arg) is an Ivalue. The result of a
pointer or reference cast refers to the original expression.

Run-time type identification (RTTI)

Run-time type identification (RTTT) lets you write portable code that can determine the
actual type of a data object at run time even when the code has access only to a pointer
or reference to that object. This makes it possible, for example, to convert a pointer to a
virtual base class into a pointer to the derived type of the actual object. Use the
dynamic_cast operator to make run-time casts.

The RTTI mechanism also lets you check whether an object is of some particular type
and whether two objects are of the same type. You can do this with typeid operator,

- which determines the actual type of its argument and returns a reference to an object of
type const typeinfo, which describes that type.

You can also use a type name as the argument to typeid, and typeid will return a
reference to a const typeinfo object for that type. The clﬁss typeinfo provides an operator

Chapter 3, C++ specifics 115

116

== and an operator != that you can use to determine whether two objects are of the same
type. Class typeinfo also provides a member function name that returns a pointer to a
character string that holds the name of the type.

For more information, refer to the Bad_typeid class, the -RT option and des‘truétors, and
the typeinfo class.

Example
/* How to get RTTI for polymorphic classes.*/
#include <iostream.h>
#include <typeinfo.h>
class _ _rtti Alpha { /* Provide RTTI for this class and */
/* all classes derived from it */
virtual void func() {}; /* A virtual function makes */
) /* Alpha a polymorphic class. */
Y '
class B : public Alpha {};
int main(void) {
B Binst; // Instantiate class B
B *Bptr; // Declare a B-type pointer
Bptr = &Binst; // Initialize the pointer
// THESE TESTS ARE DONE AT RUN TIME
try {
if (typeid(*Bptr) == typeid(B))
// Ask "WHAT IS THE TYPE FOR *Bptr?"
cout << "Name is " << typeid(*Bptr) .name();

if (typeid(*Bptr) != typeid(Alpha))
cout << "\nPointer is not an Alpha-type.";
return 0;

}
catch (Bad_typeid) {
cout << "typeid() has failed.";
return 1;
}
}

'Program output

Name is B
Pointer is not an Alpha-type.

The typeid operator

Syntax
typeid(expression)

typeid(type-name)

C++ Programmer’s Guide

Description

You can use typeid to get run-time identification of types and expressions. A call to
typeid returns a reference to an object of type const typemfo The returned object
represents the type of the typeid operand.

If the typeid operand is a dereferenced pointer or a reference to a polymorphlc type,
typeid returns the dynamic type of the actual object pointed or referred to. If the
operand is non-polymorphic, typeid returns an object that represents the static type.

You can use the typeid operafor with fundamental data types as well as user-defined
types. If the typeid operand is a dereferenced NULL pointer, the Bad_typeid exception
is thrown.

-For more information, see the Bad_typeid class and _ _rtti.

Example
// HOW TO USE operator typeid, Type_info::before(), AND
Type_info: :name () .
#include <iostream.h>
#include <typeinfo.h>
class A { };
class B : A { };
void main() {

char C;

float X;

// USE THE typeinfo::operator==()TO MAKE COMPARISON
if (typeid(C) == typeid(X))

cout << "C and X are the same type." << endl;

else cout << "C-and X are NOT the same type." << 'endl;

// USE true AND false LITERALS TO MAKE CCOMPARISON

cout << typeid(int) .name();

cout << " before " << typeid{(double).name() << ": " << X
(typeid(int) .before (typeid(double)) ? true : false) << ehdl;

cout << typeid(double) .name();)

cout << " before " << typeid(int).name() << ": " << »
(typeid(double) .before(typeid(int)) ? true : false) << endl;

cout << typeid(A) .name();

cout << " before " << typeid(B).name() << ": " <<]
(typeid (A) .before (typeid(B)) ? true : false) << endl;

Program output

C and X are NOT the same type.
int before double: 0

double before int: 1

A before B: 1

_riti and the -RT option

RTTI is enabled by default in Borland C++. You can use the -RT command-line option
to disable it (-RT-) or to enable it (-RT). If RTTTis disabled or if the argument to typeid

Chapter 3, C++ specifics 117

118

Note

is a pointer or a reference to a non-polymorphic class, typeid returns a reference to a
const typeinfo object that describes the declared type of the pointer or reference, and not
the actual object that the pointer or reference is bound to.

In addition, even when RTTI is disabled, you can force all instances of a particulai' class
and all classes derived from that class to provide polymorphic run-time type
identification (where appropriate) by using the Borland C++ keyword _rtti in the class
definition.

When you use the -RT- compiler option, if any base class is declared _ _rtti, then all
polymorphic base classes must also be declared _ _rtti.

struct _ _rtti S1 { virtual slfunc(); }; /* Polymorphic */
struct _ _rtti 82 { virtual s2func(); }; . /* Polymorphic */
struct X : 81, 82 { };

If you turn off the RTTI mechanism (by using the -RT- compiler option), RTTI might not
be available for derived classes. When a class is derived from muitiple classes, the order

‘and type of base classes determines whether or not the class inherits the RTTI capability.

When you have polymorphic and non-polymorphic classes, the order of inheritance is
important. If you compile the following declarations with -RT-, you should declare X
with the _ _rtti modifier. Otherwise, switching the order of the base classes for the class
X results in the compile-time error: Can't inherit non-RTTI class from RTTI base
'Sl

struct _ _rtti S1 { virtual func(); }; /* Polymorphic class */

struct S2 { }; /* Non-polymorphic class */

struct _ _rtti X : 81, $2 { };

The class X is explicitly declared with _ _rtti. This makes it safe to mix the order and
type of classes.

In the following example, class X inherits only non-polymorphic classes. Class X does
not need to be declared _ _rtti.

struct _ _rtti S1 { }; // Non~-polymorphic class
struct 82 { };
struct X : 82, S1 { }; // The order is not essential

Applying either __rtti or using the -RT compiler option will not make a static class into
a polymorphic class.

-RT option and destructors

When -xd is enabled, a pointer to a class with a virtual destructor can’t be deleted if that
class is not compiled with -RT. The -RT and -xd options are on by default.

Example

class Alpha {
public:
virtual ~Alpha() { }
Y
void func(Alpha *Aptr) {
delete Aptr; // Error. Alpha is not a polymorphic class

C++ Programmer’s Guide

type

Referencing

Note

~ While in C, you pass arguments only by value; in C++, you can pass arguments by
value or by reference. C++ reference types, closely related to pointer types, Create aliases
for objects and let you pass arguments to functions by reference.

C++ specific pointer referencing and dereferencmg is discussed in C++ specific

.operators.

Simple references

The reference declarator can be used to declare references outside functions:
int i = 0;
int &ir = 1; // ir is an alias for i
ir = 2; // same effect as i = 2

Note that type& var, type &var, and type & var are all equivalent.

This creates the Ivalue ir as an alias for 7, provided the initializer is the same type as the
reference. Any operations on ir have precisely the same effect as operations on i. For
example, ir = 2 assigns 2 to, and &ir returns the address of i.

Reference arguments

The reference declarator can also be used to declare reference type parameters within a
function: :

void funcl (int i);

N

void func2 (int &ir); // ir is type "reference to int"
int sum=3;) :

funcl (sum) ; // sum passed by value

func2 (&sum) ; // sum passed by reference

- The sum argument passed by reference can be changed directly by furnc2. On the other

hand, funcl gets a copy of the sum argument (passed by value), so sum itself cannotbe
altered by funcl. :

When an actual argument x is passed by value, the matching formal argument in the
function receives a copy of x. Any changes to this copy within the function body are not
reflected in the value of x itself. Of course, the function can return a value that could be
used later to change x, but the function cannot directly alter a parameter passed by
value.

The C method for changing x uses the actual argument &x, the address of x, rather than

" xitself. Although &x is passed by value, the function can access x through the copy of

&x it receives. Even if the function does not need to change x, it is still useful (though

Chapter 3, C++ specifics 119

subject to potentially dangerous side effects) to pass &x, especially if x is a large data
structure. Passing x directly by value involves wasteful copying of the data structure.

Compare the three implementations of the function treble:

Implementation 1

int treble_1(int n)
{

" ‘return 3 * n;

}

int x, 1 = 4;

x = treble_1(i); // xnow = 12, i = 4

Implementation 2

void treble 2 (int* np)
{

*np = (*np) * 3;
} '

treble 2 (int& 1i); // i now = 12

Implementation 3
void treble 3 (int& n) // n is a reference type

{
n =3 *n;

}
treble 3(i); // i now = 36

The formal argument declaration types t (or equivalently, fypes t) establishes t as
type “reference to type.” So, when treble_3 is called with the real argument 7, 7 is used to
initialize the formal reference argument n. n therefore acts as an alias for i, son = 3*n
also assigns 3 *i to i.

If the initializer is a constant or an object of a different type than the reference type,
create a temporary object for which the reference acts as an alias:

int& ir = 6; /* temporary int object created, aliased by ir, gets value 6 */
float f; ‘
int& ir2 = £; /* creates temporary int object aliased by ir2; f converted

before assignment */
ir2 = 2.0 // ir2 now = 2, but f is unchanged

The automatic creation of temporary objects permits the conversion of reference types
when formal and actual arguments have different (but assignment-compatible) types. .
When passing by value, of course, there are fewer conversion problems, since the copy
of the actual argument can be physically changed before assignment to the formal

argument.

120 C++ Programmer’s Guide

Scope resolution operator ::

The scope access (or resolution) operator :: (two colons) lets you access a global (or file
duration) member name even if it is hidden by a local redeclaration of that name. For
example:

int i; // global i

void func(void) {

int i=0; // local i hides global i
i=3; // this i is the local i
1l = 4; // this i is the global i
printf ("%d",1); // prints out 3

}
Note This code also works if the global i is a file- level static. ‘
The :: operator has other uses with class types, as discussed throughout t}us chapter.
You also can use a global identifier by prefixing it with the resolution operator.

You access a nested member name by specifying the class name and using the
resolution operator. Therefore, Alpha::func() and Beta::func() are two different functions.

The new and delete operators

The new and delete operators offer dynamic storage allocation and deallocation, similar
but superior to the standard library functions malloc and free. See the C++ Language
Reference, Chapter 3, for information on malloc and free.

Operator new

Syntax
<::> new <placement> type-name <(initializer)>

<::> new <placement> (type-name) <(initializer)>

Descnptmn

The new operator offers dynamlc storage allocation, similar but superior to the standard
library function malloc.

The new operator must always be supplied with a data type in place of type-name. Items
surrounded by angle brackets are optional. The optional arguments can be as follows:

* The :: operator invokes the global version of new.

¢ placement can be used to supply additional arguments to new. You can use thls
syntax only if you have an overloaded version of new that matches the optional
arguments. See the discussion of the placement syntax.

Chapter 3, C++ specifics 121

* initializer, if present, is used to initialize the allocation. Arrays cannot be initialized by
the allocation operator.

A request for non-array allocation uses the appropriate operator new() function. Any
request for array allocation will call the appropriate operator new[]() function. The
selection of the allocation operator is done as shown below.

Allocation of arrays of Type:
1 Attempts to use a class-specific array allocator:
Type::operator new[]() ’
2 If the class-specific array allocator is not defined, the global version is used:
:operator new[]() k
Allocation of non-arrays of Type: |
1 Attempts to use the class-specific allocator:
Type::dpéra’tor new() |
2 If the class-specific array allocator is not defined, the global version is used:
~ operator new() /
Allocation of single objects (that are not class-type) which are not held in arrays:

1 Memory allocation for a non-array object is by using the ::operator new(). Note that
this allocation function is always used for the predefined types. It is possible to
overload this global operator function. However, this is generally not advised.

Allocation of arrays:
1 Use the global allocation operator:
uoperator new[] () ,
Note Arrays of classes require the default constructor.

new tries to create an object of type Type by allocating (if possible) sizeof(Type) bytes in
free store (also called the heap). new calculates the size of Type without the need for an
explicit sizeof operator. Further, the pointer returned is of the correct type, “pointer to
Type,” without the need for explicit casting. The storage duration of the new object is
from the point of creation until the operator delete destroys it by deallocating its
memory, or until the end of the program.

If successful, new returns a pointer to the allocated memory. By default, an allocation
failure (such as insufficient or fragmented heap memory) results in the predefined .
exception xalloc being thrown. Your program should always be prepared to catch the
xalloc exception before trying to access the new object (unless you use a new-handler).

A request for allocation of 0 bytes returns a non-null pointer. Repeated requests for zero-
size allocations return distinct, non-null pointers.

122 C++ Programmer’s Guide

‘Operator delete

Syntax
<::> delete <cast-expression>
<::> delete [] <cast—expression>

delete <array-name> [];

Description

The delete operator offers dynamic storage deallocation, deallocating a memory block
allocated by a previous call to new. It is similar but superior to the standard library
function free.

You should use the delete operator to remove arrays that you no longer need. Failure to
free memory can result in memory leaks.

Example of the new and delete operators

The following example shows you one way to allocate and delete memory for a
two-dimensional array. The order of operations taken to allocate the space must be
reversed when you delete the space. The illustration shows the amount of space
allocated for 32-bit programs.

Setup rows Setup columns
0 1 n-1
0| 4bytes pemmmmegs-| 10 bytes | 10 bytes . 10 bytes
0 ! 1 . n-1
m4| 4bytes fremmmmmagee! 10 bytes | 10 bytes . 10 bytes

// ALLOCATE A TWO-DIMENSIONAL SPACE, INITIALIZE, AND DELETE IT.
#include <except.h>
#include <iostream.h>
void display(long double **);
void de_allocate(long double **);)
int m = 3; // THE NUMBER OF ROWS.
int n = 5; // THE NUMBER OF COLUMNS.
int main(void) { ‘
long double **data;
try { // TEST FOR EXCEPTIONS.
data = new long double* [m]; // STEP 1: SET UP THE ROWS.
for (int j = 0; Jj < m; J++)
datal[j] = new long double[n]; // STEP 2: SET UP THE COLUMNS
}
catch (xalloc) { // ENTER THIS BLOCK ONLY IF xalloc IS THROWN.
// YOU COULD REQUEST OTHER ACTIONS BEFORE TERMINATING
cout << "Could not allocate. Bye ...";
exit(-1);
}

Chapter 3, C++ specifics 123

for (int i = 0; i < m; i++)
for (int j = 0; J < n; Jj++))
data[i][j] =1 + 3; *// ARBITRARY INITIALIZATION
display(data) ; : o
de_allocate(data) ;.
return 0;
}
void display(long double **data) {
for (int 1 = 0; i <m; i++) {
for (int j = 0; J < n; j++)
cout << datali][j] << " ";
cout << "\n" << endl;
}
}
void de_allocate(long double **data) {
for (int i = 0; 1 < m; 1++)

delete[] datalil; // STEP 1: DELETE THE COLUMNS
delete[] data; , // STEP 2: DELETE THE ROWS
}
Output
01234
12345
23456

Operator new placement syntax

The placement syntax for operator new() can be used only if you have overloaded the
allocation operator with the appropriate arguments. You can use the placement syntax
when you want to use and reuse a memory space which you set up once at the
beginning of your program.

When you use the overloaded operator new() to specify where you want an allocation
to be placed, you are responsible for deleting the allocation. Because you call your
version of the allocation operator, you cannot depend on the global ::operator delete() .
to do the cleanup.

To release memory, you make an explicit call on the destructor. This method for -
cleaning up memory should be used only in special situations and with great care. If
you make an explicit call of a destructor before an object that has been constructed on
the stack goes out of scope, the destructor will be called again when the stackframe is
cleaned up.

Operator new placement syntax example

// An example of the placement syntax for operator new()
‘#include <iostream.h>
class Alpha {
union {
char ch;
char buf[10];
};)

124 C++ Programmer’s Guide

public:
Alpha(char ¢ = '\0') : ch(c) {
cout << "character constructor" << endl;
})
Alpha(char *s) {

cout << "string constructor" << endl;

strepy (buf, s) ;

1 .
~Alpha(:) { cout << "Alpha::~Alpha() " << endl; }
void * operator new(size t, void * buf) {

return buf;

}

}i

void main() {
char *str = new char[sizeof(Alpha)];
.// Place 'X' at start of str.
Alpha* ptr = new(str) Alpha('X');
cout << "str[0] = " << str[0] << endl;
// Explicit call of the destructor
ptr -> Alpha::~Alpha();
// Place a string in str buffer.
ptr = new(str) Alpha('"my string");
cout << "\n str = " << str << endl;
// Explicit call of the destructor
ptr -> Alpha::~Alpha();
delete[] str; ’
}

Output
character constructor
str[0] =X

Alpha: :~Alpha ()
string constructor
str = my string

Alpha: :~Alpha()

Operator new with arrays

If Type is an array, the pointer returned by operator new[1() points to the first element of
the array. When creating multidimensional arrays with new, all array sizes must be
supplied (although the leftmost dimension doesn’t have to be a compile-time constant): -

mat_ptr = new int([3][10][12]; // OK
mat_ptr = new int[n][10][12]; // OK

mat ptr = new int[3][]1[12]; // illegal
mat_ptr = new int[][10][12]; // illegal

Although the first array dimension can be a variable, all following dimensions must be
constants.

Chapter 3, C++ specifics 125

Operator delete with arrays

Arrays are deleted by operator delete[](). You must use the syntax delete [] expr
when deleting an array. After C++ 2.1, the array dimension should not be specified
~within the brackets:

char * p;
void func()

{

p = new char[10]; ~// allocate 10 chars
deletel] p; // delete 10 chars
} - i

C++ 2.0 code required the array size. In order to allow 2.0 code to compile, Borland C++
issues a warning and simply ignores any size that is specified. For example, if the
preceding example reads delete[10] pand is compiled, the warning is as follows:

Warning: Array size for 'delete' ignored in function func()

::operator new

By default, if there is no overloaded version of new, a request for dynamic memory
allocation always uses the global version of new, ::operator new(). A request for array
allocation calls ::operator new[](). With class objects of type name, a specific operator
called name::operator new() or name::operator new(]() can be defined. When new is
applied to class name objects it invokes the appropriate name::operator new if it is
present; otherwise, the global ::operator new is used.

Only the operator new() function will accept an optional 1rut1ahzer The array allocator
version, operator new([](), will not accept initializers. In the absence of explicit
initializers, the object created by new contains unpredictable data (garbage). The objects
allocated by new, other than arrays, can be initialized with a suitable expression in
parentheses:

int_ptr = new int(3);

Arrays of classes with constructors are initialized with the default constructor. The user-
defined new operator with customized initialization plays a key role in C++
constructors for class-type objects.

Overloading the operator new

The global ::operator new() and ::operator new[]() can be overloaded. Each overloaded
instance must have a unique signature. Therefore, multiple instances of a global
allocation operator can coexist in a single program.

Class-specific memory allocation operators can also be overloaded. The operator new
can be implemented to provide alternative free storage (heap) memory-management
routines, or implemented to accept additional arguments. A user-defined operator new
‘must return a void* and must have a size_t as its first argument. To overload the new
operators, use the following prototypes declared in the new.h header file.

126 C++ Programmer’'s Guide

Note

void * operator new(size t Type size); // For Non-array
void * operator new(] (size_t Type_size); // For arrays

The Borland C++ compiler provides Type_size to the new operator. You can substitute

- any data type for Type_size except function names (although a pointer to function is

permitted), class declarations, enumeration declarations, const, and volatile.

Overloading the operator delete

The global operators, ::operator delete() and ::operator delete[](), cannot be overloaded.
However, you can override the default version of each of these operators with your own
implementation. Only one instance of the each global delete function can exist in the

program.

The user-defined operator delete must have a void return type and void* as its first
argument; a second argument of type size_t is optional. A class T can define at most one
version of each of T::operator delete[]() and T::operator delete(). To overload the delete
operators, use the following prototypes.

void operator delete(void *Type ptr, [size_t Type sizel); // For non-array
void operator deletel] (size_t Type ptr, [size_t Type_sizel]); // For arrays

Example of overloading the new and delete operators

#include <stdlib.h>
class X {
?
public:
void* operator new(size_t size) { return newalloc(size);}
void operator delete(void* p) { newfree(p); }
X() { /* initialize here */ }
X(char ch) { /* and here */ }
~X{) { /* clean up here */ }
5

}:

Destructors are called only if you use the ~xd compiler option and an exception is
thrown.

The size argument gives the size of the object being created, and newalloc and newfree are
user-supplied memory allocation and deallocation functions. Constructor and
destructor calls for objects of class X (or objects of classes derived from X that do not
have their own overloaded operators new and delete) invoke the matching user-
defined X::operator new() and X::operator delete(), respectively.

The X::operator new(), X::operator new[](), X::operator delete() and X::operator
delete[]() operator functions are static members of X whether explicitly declared as
static or not, so they cannot be virtual functions.

The standard, predefined (global) new(), new[1(), delete(), and delete[]() operators can
still be used within the scope of X, either explicitly with the global scope operator

Chapter 3, C++ specifics 127‘

(::operator new(), ::opefator new[](), ::operator delete(), and ::operator delete[10)), or
implicitly when creating and destroying non-X or non-X-derived class objects.

For example, you could use the standard new and delete when defining the overloaded
versions:

void* X::operator new(size t s)

{

void* ptr = new char[s]; // standard new called

return ptr;

}

void X::operator delete(void* ptr)

{
delete (void*) ptr; // standard delete called
} |

The reason for the size argument is that classes derived from X ihherit the X::operator
new() and X::operator new[](). The size of a derived class object might differ from that
of the base class.

Classes

C++ classes offer extensions to the predefined type system. Each class type represents a
unique set of objects and the operations (methods) and conversions available to create,
manipulate, and destroy such objects. Derived classes can be declared that inherit the
members of one or more base (or parent) classes.

In C++, structures and unions are considered as classes with certain access defaults.
A simplified, “first-look” syntax for class declarations is

class-key {<distance-attrib> <distance-attrib>} <type-info> class-name

<: base-list> { <member-list> };
class-key is one of class, struct, or union.

The optional type-info indicates a request for run-time type information about the class.
You can compile with the -RT compiler option, or you can use the _ _rtti keyword. See
the discussion of class typeinfo for more information.

The optional base-list lists the base class or classes from which the class class-name wﬂl
derive (or inherit) objects and methods. If any base classes are specified, the class class-
name is called a derived class. The base-list has default and optional overriding access
specifiers that can modify the access rights of the derived class to members of the base
classes.

The optional member-list declares the class members (data and functions) of class-name
with default and optional overriding access specifiers that can affect which functions
can access which members.

128 C++ Programmer’s Guide

Class memory model speclflcatlons

‘For 16-bit applications only, distance modifiers can be apphed to aclass declaration. The
modifier(s) applied to a class declaration determine the addressing of the class’s this
pointer and the class’s table of virtual functions (vtable). The distance modifiers allowed
for class declarations, and their effect on the addressing of this and the vtable are as
follows:

Table 3.1 Class memory model specifications

__near near near
__far far near
__huge far far
__huge __near near far
_ _export far far
_ _import far far

If you're importing classes that are declared with the modifier _ _huge, you must
change the modifier to the keyword _ _import. The _ _huge modifier merely causes far
addressing of the virtual tables (the same effect as the —Vf compiler option). The

_ _import modifier makes all function and static addresses default to far.

See “Exporting and importing classes” in Chapter 6 for a discussion of declaration of
classes used in DLLs.

Class names:

class-name is any identifier unique within its scope. With structures, classes, and unions,
class-name can be omitted. See “Untagged structures and typedefs” in Chapter 6 for
discussion of untagged structures.

Class typés

The declaration creates a unique type, class type class-name. This lets you declare further
class objects (or instances) of this type, and objects derived from this type (such as pointers
to, references to, arrays of class-name, and so on):

class X { ... };

X x, &xr, *xptr, xarray[10];

/* four objects: type X, reference to X, pointer to X and array of X */
struct Y { ... };

Yy, &z, *yptr, varray[10];

// C would have

// struct Y vy, *yptr, yarray[10];

union Z { ... };

Z z, &zr, *zptr, zarray[l10];

// C would have

// union 7 z, *zptr, zarray[l10];

Chapter 3, C++ specifics 129

Note the difference between C and C++ structure and union declarations: The
keywords struct and union are essential in C, but in C++, they are needed only when
the class names, Y and Z, are hidden.

‘Class name scope

The scope of a class name is local. There are some special requirements if the class name
appears more than once in the same scope. Class name scope starts at the point of
declaration and ends with the enclosing block. A class name hides any class, object,
enumerator, or function with the same name in the enclosing scope. If a class name is
declared in a scope containing the declaration of an object, function, or enumerator of
the same name, the class can be referred to only by using the elaborated type specifier. This
means that the class key, class, struct, or union, must be used with the class name. For
example,

struct S { ... };

int S(struct S *Sptr):
void func(void) {

S t; // ILLEGAL declaration: no class key and function S in scope
struct S s; // OK: elaborated with class key
S(&s); // OK: this is a function call

}
C++ also allows an incomplete class declaration:
class X; // no members, yet!

Incomplete declarations permit certain references to class name X (usually references to
pointers to class objects) before the class has been fully defined. See “Structure member
declarations” for more information. Of course, you must make a complete class
declaration with members before you can define and use class objects.

Class objects

Class objects can be assigned (unless copying has been restricted), passed as arguments
to functions, returned by functions (with some exceptions), and so on. Other operations
on class objects and members can be user-defined in many ways, including definition of
member and friend functions and the redefinition of standard functions and operators
when used with objects of a certain class.

Redefined functions and operators are said to be overloaded. Operators and functions
that are restricted to objects of a certain class (or related group of classes) are called
member functions for that class. C++ offers the overloading mechanism that allows the
same function or operator name can be called to perform different tasks, dependmg on
the type or number of arguments or operands.

Class member list

The optional member-list is a sequence of data declarations (of any type, including
enumerations, bit fields, and other classes), function declarations, and definitions, all

130 C++ Programmerb’s Guide

with optional storage class specifiers and access modifiers. The objects thus defined are
called class members. The storage class specifiers auto, extern, and register are not
allowed. Members can be declared with the static storage class specifiers.

Member functions

A function declared without the friend specifier is known as a member function of the
class. Functions declared with the friend modifier are called friend functions.

The same name can be used to denote more than one function, provided they differ in
argument type or number of arguments.

The keyword this

Nonstatic member functions operate on the class type object they are called with. For
example, if x is an object of class X and f{) is a member function of X, the function call
x.£() operates on x. Similarly, if xptr is a pointer to an X object, the function call
xptr->f () operates on *xptr. But how does f know which instance of X it is operating
on? C++ provides f with a pointer to x called this. this is passed as a hidden argument in
all calls to nonstatic member functions.

this is a local variable available in the body of any nonstatic member function. this does
not need to be declared and is rarely referred to explicitly in a function definition.
However, it is used implicitly within the function for member references. If x.f(y) is
called, for example, where y is a member of X, this is set to &x and y is set to this->y,
which is equivalent to x.y.

Static members

The storage class specifier static can be used in class declarations of data and function
members. Such members are called static members and have distinct properties from
nonstatic members. With nonstatic members, a distinct copy “exists” for each instance
of the class; with static members, only one copy exists, and it can be accessed without
reference to any particular object in its class. If x is a static member of class X, it can be
referenced as X::x (even if objects of class X haven’t been created yet). It is still possible
to access x using the normal member access operators. For example, y.x and yptr->x,
where y is an object of class X and yptr is a pointer to an object of class X, although the
expressions y and yptr are not evaluated. In particular, a static member function can be
. called with or without the special member function syntax:

class X {
int member_int;
public:
static void func(int i, X* ptr);
};
void g(void); {

X obj;

func(l, &obj); // error unless there is a global func()
// defined elsewhere

X::func(l, &obj); // calls the static func() in X

// OK for static functions only

Chapter 3, C++ specifics 131

obj.func(l, &obj); // so does this (OK for static-and -
// nonstatic- functions)

}

Because static member functions can be called with no particular object in mind, they
don’t have a this pointer, and therefore cannot access nonstatic members without
explicitly specifying an object with . or ->. For example, with the declarations of the
previous example, func might be defined as follows:

void X::func(int i, X* ptr)

{

member_int = i; // which object does member _int
// refer to? Error

ptr->member_int = i; // OK: now we know!

}

Apart from inline functions, static member functions of global classes have external
linkage. Static member functions cannot be virtual functions. It is illegal to have a static
and nonstatic member function with the same name and argument types.

The declarahon of a static data member in its class declaration is not a definition, so a
definition must be provided elsewhere to allocate storage and provide initialization.

Static members of a class declared local to some function have no linkage and cannot be
initialized. Static members of a global class can be initialized like ordinary global objects,
but only in file scope. Static members, nested to any level, obey the usual class member
access rules, except they can be initialized.

class X {

static int x;
class inner {
static float f;
void func(void); - // nested declaration:
Y ‘
}i
int X::x = 1;
float X::inner::f = 3.14; // initialization of nested static
X::inner: : func (void) { /* define the nested function */ }

The principal use for static members is to keep track of data common to all objects of a
class, such as the number of objects created, or the last-used resource from a pool shared
by all such objects. Static members are also used to

* Reduce the number ofkvi‘sible global names
¢ Make obvious which static objects logically belong to which class

‘o Permit access control to their names

Inline functions

You can declare a member function within its class and define it elsewhere.
Alternatively, you can both declare and define a member function within its class in
which case it is called an inline function.

132 C++ Programmer’s Guide

Borland C++ can sometimes reduce the normal function call overhead by substituting
the function call directly with the compiled code of the function body. This process,
called an inline expansion of the function body, does not affect the scope of the function
name or its arguments. Inline expansion is not always possible or feasible. The inline
specifier indicates to the compiler you would like an inline expansion.

Note The Borland C++ compiler can ignore requests for inline expansion.

Explicit and implicit inline requests are best reserved for small, frequently used
functions, such as the operator functions that implement overloaded operators. For
example, the following class declaration of func:
int i; '// global int
class X {
public:
char* func(void) { returnm i; } // inline by default
char* 1i; ’

};
is equivalent to:
inline char* X::func(void) { return i; }

func is defined outside the class with an explicit inline specifier. The i returned by func is
the char” i of class X (see “Member scope” later in this chapter)

Inline functions and exceptions
An inline function with an exception-specification will never be expanded inline by
Borland C++. For example,

inline void f1() throw(int)
{
// Warning: Functions with exception specif;i.cations are not expanded inline

}
The remaining restrictions apply only when destructor cleanup is enabled.
Note Destructors are called by default.

An inline function that takes at least one parameter that is of type ‘class with a
destructor’ will not be expanded inline. Note that th.lS restriction does not apply to
classes that are passed by reference. Example:

struct foo {
foo();
~foo () ;
}:
inline void £2(foo& x) {
// no warning, £2() can be expanded inline
}
inline void £3(foo x) {
// Warning: Functions taking class-by-value argument(s) are
// not expanded inline in function £3 (foo)

}

Chapter 3, C++ specifics 133

134

An inline function that returns a class with a destructor by value will not be expanded
inline whenever there are variables or temporaries that need to be destructed within the
return expression:

struct foo {

foo();
~foo () ;
};
inline foo f4() {
return £oo();
// no warning, f4() can be expanded inline
}
inline foo £5() {
foo X;)
return foo(); // Object X needs to be destructed
// Warning: Functions containing some return statements are
// not expanded inline in function £5()
}
inline foo £6() {
return (foo(), foo()); // temporary in return value
// Warning:Functions containing some return statements are
// not expanded inline in function £6()
}

Member scope

The expression X: : func () in the example in the “Inline functions and exceptions™
section earlier in this chapter uses the class name X with the scope access modifier to
signify that func, although defined “outside” the class, is indeed a member function of X
and exists within the scope of X. The influence of X:: extends into the body of the
definition. This explains why the i returned by func refers to X, the char* i of X, rather
than the global int i. Without the X:: modifier, the function func would represent an
ordinary non-class function, returning the global int i.

All member functions, then, are in the scope of their class, even if deﬁned outside the
class.

Data members of class X can be referenced using the selection operators . and -> (as with
C structures). Member functions can also be called using the selection operators (see
“The keyword this” earlier in this chapter). For example

class X {

public:
int i;
char name[20];
X *ptrl;,
X *ptr2;)
void Xfunc(char*data, X* left, X* right); // define elsewhere
}i
void f(void);
{
X x1, x2, *xptr=&x1;
x1.i = 0;

C++ Programmer’s Guide

x2.1 ='x1.i;

xptr->i = 1;

x1.Xfunc("stan", &x2, xptr):;
}

If m is a member or base member of class X, the expression X::m is called a qualified name;
it has the same type as m, and it is an lvalue only if m is an Ivalue. It is important to note
that, even if the class name X is hidden by a non-type name, the qualified name X::m
will access the correct class member, m.

Class members cannot be added to a class by another section of your program. The class
X cannot contain objects of class X, but can contain pointers or references to objects of
class X (note the similarity with C’s structure and union types).

Nested types

Tag or typedef names declared inside a class lexically belong to the scope of that class.
Such names can, in general, be accessed only by using the xxx::yyy notation, except
when in the scope of the appropriate class.

A class declared within another class is called a nested class. Its name is local to the
enclosing class; the nested class is in the scope of the enclosing class. This is a purely
lexical nesting. The nested class has no additional privileges in accessing members of the
enclosing class (and vice versa).

'Classes can be nested in this way to an arbitrary level. Nested classes can be declared
inside some class and defined later. For example,

struct outer

{
typedef int t; // 'outer::t' is a typedef name
struct inner // 'outer::immer' is a class
{
static int x;
}:
- static int x;

int £();
class deep; // nested declaration
))
int outer::x; // define static data member
int outer::f() {
t x; // 't' visible directly here
return x;
}
int outer::inner::x; // define static data member
outer::t x; - // have to use 'outer::t' here

class outer::deep { }; // define the nested class here

With Borland C++ 2.0, any tags or typedef names declared inside a class actually belong
to the global (file) scope. For example:

struct foo

{
enum bar { x }; // 2.0 ruleg: 'bar' belongs to file scope
// 2.1 rules: 'bar' belongs to 'foo' scope

Chapter 3, C++ specifics 135

}:
bar x;

The préceding fragment compiles without errors. But because the code is illegal under
the 2.1 rules, a warning is issued as follows:

Warning: Use qualified name to access nested type 'foo::bar'

Member access control

Members of a class acquire access attributes either by default (depending on class key
and declaration placement) or by the use of one of the three access specifiers: public,
private, and protected. The significance of these attributes is as follows:

public The member can be used by any function.

private The member can be used only by member functions and frlends of the
class it’s declared in.

protected Same as for private. Additionally, the member can be used by member
functions and friends of classes derived from the declared class, but only in
objects of the derived type. (Derived classes are explained in “Base and
derived class access.”)

Note Friend function declarations are not affected by access specifiers (see “Friends of
classes” later in this chapter for more information).

Members of a class are private by default, so you need explicit public or protected
access specifiers to override the default.

Members of a struct are public by default, but you can override this with the private or
protected access specifier.

Members of a union are public by default; this cannot be changed. All three access
specifiers are illegal with union members.

A default or overriding access modifier remains effective for all subsequent member
declarations until a different access modifier is encountered. For example,

class X {
int i; // X::1 is private by default
char ch; // so is X::ch
public:
int j; // next two are public
int k;
protected: .
int 1; // X::1 is protected
};
struct Y {
int 1i; // Y::i is public by default
private:
int j; // Y::J is private
public:
int k; // Y::k is public

};

136 C++ Programmer’s Guide

Note

- Note

Note

union Z {)
int i; // public by default; no other choice
double 4d;

Yi

The access specifiers can be listed and grouped in any convenient sequence. You can
save typing effort by declaring all the private members together, and so on.

Base and derived class access
When you declare a derived class D, you list the base classes B1, B2, ... in
comma-delimited base-list:

class-key D : base-list { <member-list> | -

D inherits all the members of these base classes. (Redefined base class members are
inherited and can be accessed using scope overrides, if needed.) D can use only the

. public and protected members of its base classes. But, what will be the access attributes

of the inherited members as viewed by D? D might want to use a public member from a
base class, but make it private as far as outside functions are concerned. The solution is
to use access specifiers in the base-list.

Since a base class can itself be a derived class, the access attribute question is recursive:
you backtrack until you reach the basest of the base classes, those that do not inherit.

When declaring D, you can use the access specifier public, protected, or prlvate in front
of the classes in the base-list:

' class D : public Bl, private B2, ... {
}
These modifiers do not alter the access attributes of base members as viewed by the base

class, though they can alter the access attributes of base members as viewed by the
derived class. :

The default is private if D is a class declaration, and public if D is a struct declaration.
Unions cannot have base classes, and unions cannot be used as base classes.
The derived class inherits access attributes from.a base class as follows:

e public base class: public members of the base class are public members of the
derived class. protected members of the base class are protected members of the
© derived class. private members of the base class remain private to the base class.

o profected base class: Both public and protected members of the base class are
protected members of the derived class. private members of the base class remain-
private to the base class.

e private base class: Both public and protected members of the base class are private
members of the derived class. private members of the base class remain private to the
base class.

Note that private members of a base c'ass are always inaccessible to member functions
of the derived class unless friend declarations are explicitly declared in the base class
granting access. For example,

/* class X is derived from class A */

Chapter 3, C++ specifics 137

class X : A { // default for class is private A

}
/* class Y is derived (multiple inheritance) from B and C
B defaults to private B */
class Y : B, public C { // override default for C
}
/* struct S is derived from D */
struct S : D { // default for struct is public D

3
. /* struct T is derived (multiple inheritance) from D and E
E defaults to public E */
struct T : private D, E { // override default for D
// E is public by default
} . :
The effect of access specifiers in the base list can be adjusted by using a qualified-name in
the public or protected declarations of the derived class. For example:
class B {
int a; // private by default
public:
int b, c;
int Bfunc (void) ;
Yi .
class X : private B { // a, b, ¢, Bfunc are now private in X
int d; ' // private by default, NOTE: a is not
// accessible in X
public:
B::c; // ¢ was private, now is public
int e;
int Xfunc(void)f
}i .
int Efunc(X& x); // external to B and X

The function Efunc() can use only the public names c, e, and Xfunc().

The function Xfunc() is in X, which is derived from private B, so it has access to
¢ The “adjusted-to-public” ¢

* The "’private-to—X” members from B: b and Bfunc()

* X’s own private and public members: d, ¢, and Xfunc()

However, Xfunc() cannot access the “private-to-B” member, 4.

Virtual base classes

A virtual class is a base class that is passed to more than one derived class, as might
~ happen with multiple inheritance.

138 C++ Programmer’s Guide

You cannot specify a base class more than once in a derived class:

class B { ...};
class D : B, B { ... }; // ILLEGAL

However, you can indirectly pass a base class to the derived class more than once:

class X : public B { ... }
class Y : public B { ... }
class Z : public X, public Y { ... } // OK

In this case, each object of class Z has two sub-objects of class B.
If this causes problems, add the keyword virtual to the base class specifier. For example,

class X : virtual public B { ... }
class Y : virtual public B { ... }
class Z : public X, public ¥ { ... }

B is now a virtual base class, and class Z has only one sub-object of class B.

Constructors for virtual base classes

Constructors for virtual base classes are invoked before any non-virtual base classes.

If the hierarchy contains multiple virtual base classes, the virtual base class constructors
invoke in the order they were declared.

Any non-virtual bases are then constructed before the derived class constructor is called.

If a virtual class is derived from a non-virtual base, that non-virtual base will be first, so
that the virtual base class can be properly constructed. For example, this code

class X : public Y, virtual public Z
X one;

produces this order:

Z(); // virtual base class™initialization
Y(); // non-virtual base class
X(); // derived class

Friends of classes

A friend F of a class X is a function or class, although not a member function of X, with
full access rights to the private and protected members of X. In all other respects, F is a
normal function with respect to scope, declarations, and definitions.

Since F is not a member of X, it is not in the scope of X, and it cannot be called with the
x.F and xptr->F selector operators (where x is an X object and xptr is a pointer to an X
object).

If the specifier friend is used witha functlon declaration or definition within the class X,
it becomes a friend of X.

friend functions defined within a class obey the same inline rules as member functions
(see Inline functions). friend functions are not affected by their position within the class
or by any access specifiers. For example:

Chapter 3, C++ specifics 139

class X {

int i; // private to X

friend void friend func(X*, int);
/* friend_func is not private, even though it's declared in the private section */
public:

void member__func(int;) ;

}i
/* definitions; note both functions access private int 1 */
void friend func(X* xptr, int a) { xptr—>i = a; }
void X::member_func(int a) { i = a; }

X xobj;

/* note difference in function calls */
friend func(&xobj, 6);

xobj .member_func (6) ;

You can make all the functions of class Y into friends of class X with a single declaration:
class Y; ' // incomplete declaration

class X {
friend Y;
int 1i;
void member_ funcX();
}i
class Y; { // complete the declaration
void friend X1 (X&) ;
void friend X2 (X*);

I

The functions declared in Y are friends of X, although they have no friend specifiers.
They can access the private members of X, such as i and member_funcX.

It is also possible for an individual member function of class X to be a friend of class Y:

class X {

void member_funcX() ;
}
class Y {
int i;
friend void X::member_funcX();

}i

Class fnendshlp is not transitive: X friend of Y and Y frlend of Z does not imply X friend
of Z. Frlendshlp is not inherited.

Constructors and destructors

There are several special member functions that determine how the objects of a class are
created, initalized, copied, and destroyed. Constructors and destructors are the most
important of these. They have many of the characteristics of normal member

140 C++ Programmer’'s Guide .

functions—you declare and define them within the class, or declare them within the
class and define them outside—but they have some unique features:

* They do not have return value declarations (not even void).

¢ They cannot be inherited, though a derived class can call the base class’s constructors
and destructors.

* Constructors, like most C++ functions, can have default arguments oi' use member
initialization lists.
¢ Destructors can be virtual, but constructors cannot. (See “Virtual destructors” later in
this chapter)
¢ You can't take their addresses
int main (void)
{
void *ptr = base::base; // illegal
}
¢ Constructors and destructors can be generated by Borland C++ if they haven’t been
explicitly defined; they are also invoked on many occasions without explicit calls in

your program. Any constructor or destructor generated by the compiler will be
public.

* You cannot call constructors the way you call a normal function. Destructors can be
called if you use their fully qualified name.

{

X *p;
p—>X::~X(); // iegal call of destructor

X::X(); // illegal call of constructor
}
* The compiler automatically calls constructors and destructors when defining and
destroying objects.
e Constructors and destructors can make implicit calls to operator new and operator
delete if allocation is required for an object.
* An object with a constructor or destructor cannot be used as a member of a union.

¢ If no constructor has been defined for some class X to accépt a given type, no attempt
is made to find other constructors or conversion functions to convert the assigned
value into a type acceptable to a constructor for class X. Note that this rule applies

" _n

only to any constructor with one parameter and no initializers that use the “=" syntax.

class X { /* ... */ X(int); };
class Y { /* ... */ Y(X); }:

Ya=1; // illegal: Y(X(1l)) not tried

Chapter-3, C++ specifics 141

If class X has one or more constructors, one of them is invoked each time you define an
object x of class X. The constructor creates x and initializes it. Destructors reverse the
process by destroying the class objects created by constructors.

Constructors are also invoked when local or temporary objects of a class are created;
destructors are invoked when these objects go out of scope.

Constructors

Constructors are distinguished from all other member functions by having the same
name as the class they belong to. When an object of that class is created or is being
copied, the appropriate constructor is called implicitly.

Constructors for global variables are called before the main function is called. When the
#pragma startup directive is used to install a function prior to the main function, global
variable constructors are called prior to the startup functions.

Local objects are created as the scope of the variable becomes active. A constructor is
also invoked when a temporary object of the class is created.

class X {
public:
X(}; // class X comnstructor
}i
A class X constructor cannot take X as an argument:
class X { '
public:
X(X); // illegal
};

The parameters to the constructor can be of any type except that of the class it's a
member of. The constructor can accept a reference to its own class as a parameter; when
it does so, it is called the copy constructor . A constructor that accepts no parameters is
called the default constructor .

Constructor defaults

The default constructor for class X is one that takes no arguments; it usually has the
form x: :x(). If no user-defined constructors exist for a class, Borland C++ generates a
default constructor. On a declaration such as X x, the default constructor creates the
object x.

Like all functions, constructors can have default arguments For example, the
constructor

X::X(int, int = 0)

can take one or two arguments. When presented with one argument, the missing second
argument is assumed to be a zero int. Similarly, the constructor

X::X(int = 5, int = 6)

could take two, one, or no arguments, w1th approprlate defaults. However, the
default constructor x: : X () takes no arguments and must not be confused with, say,

142 C++ Programmer’s Guide

X::X(int = 0), which can be called w1th no arguments as a default constructor, or can
take an argument.

You should avoid ambiguity in calling constructors. In the following case, the two
default constructors are ambiguous:

class‘ X
{
public:
X();
X(int 1 = 0);
}i

int main() {

X one(l0); // OK; uses X::X{(int)
X two; // illegal; ambiguous whether to call X::X() or
// X::X(int = 0)
return 0; ’
}
The copy constructor

A copy constructor for class X is one that can be called witha single argument of type X
as follows:

X:: X (X&)
or
X::X(const X&)
or
X::X(const X&, int = 0)

Default arguments are also allowed in a copy constructor. Copy constructors are
invoked when initializing a class object, typically when you declare with initialization
by another class object:

X x1;
X x2 = x1;
X x3(x1);

Borland C++ generates a copy constructor for class X if one is needed and no other
constructor has been defined in class X. The copy constructor that is generated by the
Borland C++ compiler lets you safely start programming with simple data types. You
need to make your own definition of the copy constructor if your program creates
aggregate, complex types such as class, struct, and arrays. The copy constructor is also
called when you pass a class argument by value to a function.

See also the discussion of member-by-member class assignment later in this chapter.
You should define the copy constructor if you overload the assignment operator.

Overloading constructors

Constructors can be overloaded, allowing objects to be created, depending on the values
being used for initialization.

Chapter 3, C++ specifics 143

class X {
int integer_part;
double double part;
public:)
X(int 1) { integer part = 1i; }
X(double d) { double part = d;. }
};
int main() {

X one(10); // invokes X::X(int) and sets integer_part to 10
X one(3.14); // invokes X::X(double) setting double part to 3.14
return 0; :

}

Order of calling constructors

In the case where a class has one or more base classes, the base class constructors are
invoked before the derived class constructor. The base class constructors are called in
the order they are declared.

For example, in this setup,

class Y {...}
class X : public ¥ {...}
X one; ’

the constructors are called in this order:

Y(); // base class constrictor
X();: // derived class constructor

For the case of multiple base classes,

class X : public Y, public Z
X one;

the constructors are called in the order of declaration:

Y(); // base class constructors come first
Z(); ‘
X();

Constructors for virtual base classes are invoked before any nonvirtual base classes. If
the hierarchy contains multiple virtual base classes, the virtual base class constructors
are invoked in the order in which they were declared. Any nonvirtual bases are then
constructed before the derived class constructor is called.

If a virtual class is derived from a nonvirtual base, that nonvirtual base will be first so
that the virtual base class can be properly constructed. The code:

class X : public Y, virtual public Z
X one;.

produces this order:

Z(); // virtual base class initialization
Y(); // nonvirtual base class
X(); // derived class

144 C++ Programmer’s Guide

Or, for a more complicated example:

class base;

class base2;

class levell : public base2, virtual public base;
class level2 : public base2, virtual public base;
class toplevel : public levell, Virtual public level2;
toplevel view; '

The construction order of view would be as follows:

base(); // virtual base class highest in hierarchy
// base is constructed only once

base2 () ; // nonvirtual base of virtual base level2
// must be called to construct level2

level2(); // virtual base class

base2 () ; // nonvirtual base of levell

levell(); // other nonvirtual base

toplevel () ;)

If a class hierarchy contains multiple instances of a virtual base class, that base class is
constructed only once. If, however, there exist both virtual and nonvirtual instances of
the base class, the class constructor is invoked a single time for all virtual instances and
then once for each nonvirtual occurrence of the base class.

Constructors for elements of an array are called in increasing order of the subscript.

Class initialization

An object of a class with only public members and no constructors or base classes
(typically a structure) can be initialized with an initializer list. If a class has a constructor,
its objects must be either initialized or have a default constructor. The latter is used for
-objects not explicitly initialized. :

Objects of classes with constructors can be initialized with an expression list in
parentheses. This list is used as an argument list to the constructor. An alternative is to
use an equal sign followed by a single value. The single value can be the same type as
the first argument accepted by a constructor of that class, in which case either there are
no additional arguments, or the remaining arguments have default values. It could also
be an object of that class type. In the former case, the matching constructor is called to
create the object. In the latter case, the copy constructor is called to initialize the object.

class X
{
int 1i;
public:) :
X(); // function bodies omitted for clarity
X(int x);
X(const X&) ;
}:
void main ()
{ :
X one; // default constructor invoked
X two(l); // constructor X::X(int) is used
X three = 1; // calls X::X(int) .

Chapter 3, C++ specifics 145

v

X four = one; // invokes X::X{(const X&) for copy
X five(two); // calls X::X{(const X&)
) .

The constructor can assign values to its members in two ways:

e It can accept the values as parameters and make assignments to the member
variables within the function body of the constructor:

class X
{
int a, b;
public:
X(int i, int j) {a=1; b=3 }
}:

~®_An initializer list can be used prior to the function body:
class X

{

int a, b, &cC; // Note the reference variable.
public: :

X(int i, int j) : a(i), b)), c(a) {}
}: :

The initializer list is the only place to initialize a reference variable.

In both cases, an initialization of X x(1, 2) assigns a value of 1 to x::a and 2 to x::b. The
second method, the initializer list, provides a mechanism for passing values along to
base class constructors.

Note Base class constructors must be declared as either public or protected to be called from a
derived class.

class basel
{
int x;
public:
basel(int i) { x = i; }
};

class base2
{
int x;
public:
base2(int i) : x(1) {}
}i
class top : public basel, public base2
{
int a, b;
public: }
top(int i, int j) : basel(i*5), base2(j+i), a(i) { b = j;}
}: N

146 C++ Programmer’s Guide

With this class hierarchy, a declaration of top one(1, 2) would result in the
initialization of basel with the value 5 and base2 with the value 3. The methods of
initialization can be intermixed. »

As described previously, the base classes are initialized in declaration order. Then the
members are initialized, also in declaration order, independent of the initialization list.

class X
{
int a, b;
public:
X(int i, J) : a(i), bla+3i) {}
}i

With this class, a declaration of x x(1,1) results in an assignment of 1 to x::a and 2 to
x:b. :

Base class constructors are called prior to the construction of any of the derived classes
members. If the values of the derived class are changed, they will have no effect on the
creation of the base class.

class. base
{
int x;
public: ;
base(int 1) : x(i) {}
};
class derived : base
{
int a;
public: .
derived(int 1) : a(i*10), base(a) { } // Watch out! Base will be
' // passed an uninitialized 'a’

Yi
With this class setup, a call of derived d(1) will not result in a value of 10 for the base
class member x. The value passed to the base class constructor will be undefined.
When you want an initializer list in a non-inline constructor, don’t place the list in the
class definition. Instead, put it at the point at which the function is defined.

~ derived::derived(int i) : a(i)

{

}

Destructors

The destructor for a class is called to free members of an object before the object is itself
destroyed. The destructor is a member function whose name is that of the class.
preceded by a tilde (~). A destructor cannot accept any parameters, nor will it have a
return type or value declared. '

#include <stdlib.h>
class X

Chapter 3, C++ specifics 147

{
public:

~X(){}; // destructor for class X
Y

If a destructor isn’t explicitly defined for a class, the compiler generates one. ’

Invoking destructors

A destructor is called implicitly when a variable goes out of its declared scope.
Destructors for local variables are called when the block they are declared in is no longer
active. In the case of global variables, destructors are called as part of the exit procedure
after the main function.

When pointers to objects go out of scope, a destructor is not implicitly called. This
means that the delete operator must be called to destroy such an object.

Destructors are called in the exact opposite order from which their corresponding
constructors were called (see “Order of calling constructors” earlier in this chapter).

atexit, #pragma exit, and destructors

All global objects are active until the code in all exit procedures has executed. Local
variables, including those declared in the main function, are destroyed as they go out of
scope. The order of execution at the end of a Borland C++ program is as follows:

* atexit() functions are executed in the order they were inserted.
* #pragma exit functions are executed in the order of their priority codes.

* Destructors for global variables are called.

exit and destructors

When you call exit from within a program, destructors are not called for any local
variables in the current scope. Global variables are destroyed in their normal order.

abdrt and destructors

If you call abort anywhere in a program no destructors are called, not even for variables
with a global scope.

A destructor can also be invoked explicitly in one of two ways: indirectly through a call
to delete, or directly by using the destructor’s fully qualified name. You can use delete
to destroy objects that have been allocated using new. Explicit calls to the destructor are
necessary only for objects allocated a specific address through calls to new:

#include <stdlib:h>
class X {
public:

~X(){};

148 C++ Programmer’s Guide

void* operator new(size t size, void *ptr)

{
return ptr

}

void main() {
X* pointer

7

char buffer[sizeof(X)];

= new X;

X* exact_pointer; o
exact_pointer = new(&buffer) X; // pointer initialized at

// address of buffer

delete pointer; // delete used to destroy pointer

exact_pointer—>X::~X(); // direct call used to deallocate
)
Virtual destructors

A destructor can be declared as virtual. This allows a pointer to a base class object to call

the correct destructor in the event that the pointer actually refers to a derived class

object. The destructor of a class derived from a class with a virtual destructor is itself

virtual.

/* How virtual affects the order of destructor calls.
Without a virtual destructor in the base class, the derived
class destructor won't be called. */

#include <iostream.h>

class color {
public:

virtual ~color() { // Virtual destructor

cout <<
}
}i

"color dtor\n";

class red : public colqr { {

public:
~red() { // This destructor is also virtual
cout << "red dtor\n";
}

};

class brightred : public red {

public:

~brightred() { // This destructor is also virtual
cout << "brightred dtor\n";

}
}i

int main() {

color *palette[3];

palette[0] = new red;
palette[l] = new brightred;
palette[2] = new color;

// The destructors for red and color are called.
delete palette[0];
cout << endl;

Chapter 3, C++ specifics

149

// The destructors for bright red, red, and color are called.
delete palettel[ll];
cout << endl;

// The destructor for color is called.
delete palette(2];
return 0;

}

Program output

red dtor
. color dtor

brightred dtor
red dtor
color dtor

color dtor

However, if no destructors are declared as virtual, delete palette[0], delete palette[1], and
delete palette[2] would all call only the destructor for class color. This would incorrectly
destruct the first two elements, which were actually of type red and brightred.

Overloading operators

C++ lets you redefine the actions of most operators, so that they perform specified
functions when used with objects of a particular class. As with overloaded C++
functions in general, the compiler distinguishes the different functions by noting the
context of the call: the number and types of the arguments or operands.

All operators can be overloaded except for:
Fouo
The following preprocessing symbols cannot be overloaded.
#i# '
The =,[], (), and -> operators can be overloaded only as nonstatic member functions.

These operators cannot be overloaded for enum types. Any attempt to overload a global
version of these operators results in a compile-time error.

The keyword operator followed by the operator symbol is called the operator function
name; it is used like a normal function name when deflmng the new (overloaded) action
for the operator.

A function operator called with arguments behaves like an operator working on its
operands in an expression. The operator function cannot alter the number of arguments
or the precedence and associativity rules applying to normal operator use.

150 C++ Programmer’s Guide

Example for overloading operators

The following example extends the class complex to create complex-type vectors. Several
of the most useful operators are overloaded to provide some customary mathematical
operations in the usual mathematical syntax.

Some of the issues illustrated by the example are:

The default constructor is defined. This is provided by the compﬂer only if you have
not defined it or any other constructor. '

The copy constructor is defined explicitly. Normally, if you have not defined any
constructors, the compiler will provide one. You should define the copy constructor
if you are overloading the assignment operator.

The assignment operator is overloaded. If you do not overload the assignment
operator, the compiler calls a default assignment operator when required. By
overloading assignment of cvector types, you specify exactly the actions to be taken.
Note that the assignment operator function cannot be inherited by derived classes.

The subscript operator is defined as a member function (a requirement when
overloading) with a single argument. The const version assures the caller that it will
not modify its argument—this is useful when copying or assigning. This operator
should check that the index value is within range—a good place to implement
exception handling.

The addition operator is defined as a member function. It allows addition only for
cvector types. Addition should always check that the operands’ sizes are compatible.

The multiplication operator is declared a friend. This lets you define the order of the
operands. An attempt to reverse the order of the operands is a compile-time error.

The stream insertion operator is overloaded to naturally display a cvector. Large
objects that don’t display well on a limited size screen might require a different
display strategy.

Source

/* HOW TO EXTEND THE complex CLASS AND OVERL.OAD THE REQUIRED OPERATORS. */
#pragma warn -inl // IGNORE not expanded inline WARNINGS.)
#include <complex.h> // THIS ALREADY INCLUDES iostream.h
// COMPLEX VECTORS
class cvector {
int size;
complex *data,
public:
cvector() { size = 0; data = NULL; };
cvector (int i = 5) : size(i) { // DEFAULT VECTOR SIZE.
data = new complex[size];
for (’int j = 0; j < size; j++)
datal[jl = 3 + (0.1 * j); // ARBITRARY INITIALIZATION.
Yi
/* THIS VERSION IS CALLED IN main() */
complex& operator [](int i) { return datalil; };
/* THIS VERSION IS CALLED IN ASSIGNMENT OPERATOR AND COPY THE CONSTRUCTOR */

Chapter 3, C++ specvifics 151

const complex& operator [](int i) const { return datalil; };
cvector operator +(cvector& A) { // ADDITION OPERATOR
cvector result(A.size); // DO NOT MODIFY THE ORIGINAL
for (int i = 0; 1 < size; i++)
result[i] = data[i] + A.datali];
return result;
}i
/* BECAUSE scalar * vector MULTIPLICATION IS NOT COMMUTATIVE, THE ORDER OF
THE ELEMENTS MUST BE SPECIFIED. THIS FRIEND OPERATOR FUNCTION WILL ENSURE
PROPER MULTIPLICATION. */
friend cvector operator *(int scalar, cvector& A) {
cvector result(A.size); // DO NOT MODIFY THE ORIGINAL
for (int i = 0; i < A.size; i++)
result.data[i] = scalar * A.datal[i];
return result;
} .
/* THE STREAM INSERTION OPERATOR. */
friend ostream& operator <<(ostream&/out_data, cvector& C) {
for (int i = 0; 1 < C.size; i++)
out_data << "[" << 1 << "]=" << C.data[i] << " "
cout << endl;
return out_data;
}: .
cvector(const cvector &) { // COPY CONSTRUCTOR
size = C.size;
data = new complexisize];
for (int i = 0; 1 < size; i++)
data[i] = C[i];
}
cvector& operator =(const cvector &C) { // ASSIGNMENT OPERATOR.
if (this == &C) return *this;
delete[] data;
size = C.size;
data = new complex[size]l;
for (int i = 0; i < size; i++)
datali]l =C[i];
return *this;
}; .
virtua1‘~cvector() { delete[] data; }; // DESTRUCTOR
};)
int main(void) { /* A FEW OPERATIONS WITH complex VECTORS. */ .
cvector cvectorl (4), cvector2(4), result(4);
// CREATE complex NUMBERS AND ASSIGN THEM TO complex VECTORS
cvectorl[3] = complex(3.3, 102.8);
cout <<. "Here is cvectorl:" << endl;
cout << cvectorl; '
cvector2[3] = complex(33.3, 81);
cout << "Here is cvector2:" << endl;
cout << cvector?;
result = cvectorl + cvector2;
cout << "The result of vector addition:" << endl;
cout << result;

152 C++ Programmer’s Guide

result = 10 * cvector2;
cout << "The result of 10 * cvector2:" << endl;
cout << result;

return 0;
}
Output
Here is cvectorl: :
[0]1=(0, 0) [11=(1.1, 0) [21=(2.2, 0) [31=(3.3, 102.8)
Here is cvector2: :
[0]=(0, Q) [1]1=(1.1, 0) [2]=(2.2, 0) [31=(33.3, 81)
The result of vector addition:
[0]=(0, 0) [11=(2.2, 0) [2]1=(4.4, 0) [31=(36.6, 183.8)
The result of 10 * cvector2:

[01=(0, 0) [11=(11, 0) [21=(22, 0) [31=(333, 810)

Overloading operétor functions

Operator functions can be called directly, although they are usually invoked indirectly
by the use of the overload operator:

c3 = cl.operator + (c2); // same as c3 = cl + c2

Apart from new and delete, which have their own rules, an operator function must
either be a nonstatic member function or have at least one argument of class type. The
operator functions =, (), [], and -> must be nonstatic member functions.

Enumerations can have overloaded operators. However, the operator functions =, (), [],
and -> cannot be overloaded for enumerations.

Overloaded operators and inheritance

With the exception of the assignment function operator =(), all overloaded operator
functions for class X are inherited by classes derived from X, with the standard

" resolution rules for overloaded functions. If X is a base class for Y, an overloaded
operator function for X could possibly be further overloaded for Y.

Overloading unary operators

You can overload a prefix or postfix unary operator by declaring a nonstatic member
function taking no arguments, or by declaring a nonmember function taking one
argument. If @ represents a unary operator, @x and x@ can both be interpreted as either
x.operator@() or operator@(x), depending on the declarations made. If both forms have
been declared, standard argument matching is applied to resolve any ambiguity.

* Under C++ 2.0, an overloaded operator ++ or - is used for both prefix and postfix
uses of the operator.

e With C++ 2.1, when an operator++ or operator- - is declared as a member function
with no parameters, or as a nonmember function with one parameter, it only
overloads the prefix operator++ or operator- -. You can only overload a postfix

Chapter 3, C++ specifics 153

operator++ or operator- - by defining it as a member function taking an int parame‘ter
or as a nonmember function taking one class and one int parameter.

When only the prefix version of an operator++ or operator- - is overloaded and the
operator is applied to a class object as a postfix operator, the compiler issues a warning,.
Then it calls the prefix operator, allowing 2.0 code to compile. The precedmg example
results in the following warnings:

Warning: Overloaded prefix 'operator ++' used as a postfix operator in functiOn'
func()

Warnlng Overloaded prefix 'operator --' used as a postfix operator in function
func ()

Overloading binary operators :
You can overload a binary operator by declaring a nonstatic member function taking
one argument, or by declaring a non-member function (usually friend) taking two
arguments. If @ represents a binary operator, x@y can be interpreted as either
x.operator@(y) or operator@(x,y) depending on the declarations made. If both forms

- have been declared, standard argument matching is applied to resolve any ambiguity.

Overloading the assignment operator =
The assignment operator=() can be overloaded by declaring a nonstatic member
function. For example,

class String {
String& operator = (String& str);

String (String&);
~String();
}

This code, with suitable definitions of String::operator =(), allows string assignments
strl = str2 in the usual sense. Unlike the other operator functions, the assignment
operator function cannot be inherited by derived classes. If, for any class X, there is no
user-defined operator =, the operator = is defined by default as a member-by-member
assignment of the members of class X:

X& X::operator = (const 'X& source)

{

// memberwise assignment

}
Overloading the function call operator ()

Syntax

postfix-expression (<expression-list>)
Description

In its ordinary use as a function call, the postfix-expression must be a function name, or
a pointer or reference to a function. When the postfix-expression is used to make a

154 C++ Programmer’s Guide

member function call, postfix-expression must be a class member function name or a
pointer-to-member expression used to select a class member function. In either case, the
postfix-expression is followed by the optional expression-list (possibly empty).

A call X(argl, arg2), where X is an object class X, is interpreted as X.operator()(argl,
arg?2).

The function call operator, operator()(), can only be overloaded as a nonstatic member
function. ,

Overloading the subscript operator []

Syntax

postfix-expression [expression]

Description

The corresponding operator function is operator{]() this can be user-defined for a class X
(and any derived classes). The expression X[y], where X is an object of class X, is
interpreted as x.operator[](y).

The operator[]() can only be overloaded as a nonstatic member function.
Overloading the class member access operator ->

Syntax

postfix-expression -> primary-expression

Description : \

The expression x->m, where X is a class X object, is interpreted as (x.operator->())->m, so
that the function operator->() must either return a pointer to a class object or return an
object of a class for which operator-> is defined.

The operator->() can only be overloaded as a nonstatic member function.

Polymorphic classes

Classes that provide an identical interface, but can be implemented to serve different

~ specific requirements, are referred to as polymorphic classes. A class is polymorphic if it
declares or inherits at least one virtual (or pure virtual) function. The only types that can
support polymorphism are class and struct.

Virtual functi'ons

virtual functions allow derived classes to provide different versions of a base class
function. You can use the virtual keyword to declare a virtual function in a base class.

" By declaring the function prototype in the usual way and then prefixing the declaration
with the virtual keyword. To declare a pure function (which automatically declares an

Chapter 3, C++ specifics 155

abstract class), prefix the prototype with the virtual keyword, and set the function equal

to zero.
virtual int functl(void); . // A virtual function declaration.
virtual int funct2(void) = 0; // A pure function declaration.
virtual void funct3(void) = 0 { // This is a valid declaration.

// Some code here.
};

Note See “Abstract classes” later in this chapfer for a discussion of pure virtual functions.
When you declare virtual functions, keep these guidelines in mind: |
. They can be member functions only.
¢ They can be declared a friend of another class.
¢ They cannot be a static member.

A virtual function does not need to be redefined in a derived class. You can supply one
definition in the base class so that all calls will access the base function.

To redefine a virtual function in any derived class, the number and type of arguments
must be the same in the base class declaration and in the derived class declaration. (The
case for redefined virtual functions differing only in return type is discussed below.) A -
redefined function is said to override the base class function.

You can also declare the functions int Base: :Fun(int) and int Derived: :Fun(int)
even when they are not virtual. In such a case, int Derived::Fun(int) is said to hide
any other versions of Fun (int) that exist in any base classes. In addition, if class Derived
defines other versions of Fun(), (that is, versions of Fun() with different signatures) such
versions are said to be overloaded versions of Fun().

Virtual function return types

Generally, when redefining a virtual function, you cannot change just the function
return type. To redefine a virtual function, the new definition (in some derived class)
must exactly match the return. type and formal parameters of the initial declaration. If
two functions with the same name have different formal parameters, C++ considers
them different, and the virtual function mechanism is ignored.

However, for certain virtual functions in a base class, their overriding version in a
derived class can have a return type that is different from the overridden function. This
is possible only when both of the following conditions are met:

* The overridden virtual function returns a pointer or reference to the base class. -
_* The overriding function returns a pointer or reference to the derived class.

If a base class B and class D (derived publicly from B) each contain a virtual function of,
then if vf is called for an object d of D, the call made is D: :v£ (), even when the access is
via a pointer or reference to B. For example,

struct X {};// Base class.
struct Y : X {};// Derived class.
struct B { '

156. C++ Programmer’s Guide

virtual void v£1l();
virtual void vf2();
virtual void vE£3();
void £();
virtual X* pf();// Return type is a pointer to base. This can
// be overridden.
Y
class D : public B {
public: .
virtual void vfl();// Virtual specifier is legal but redundant.
void vE2(int);// Not virtual, since it's using a different
// arg list. This hides B::vf2().
// char v£3();// Illegal: return-type-only change!
void £(); ’
Y* pf() // Overriding function differs only
// in return type. Returns a pointer to
// the derived class.
};
void extf() {
D d;// Instantiate D
B* bp = &d;// Standard conversion from D* to B*
// Initialize bp with the table of functions
// provided for object d. If there is no entry for a
// function in the d-table, use the function
// in the B-table.
bp->vEl(); // Calls D::vfl
bp—>vE2(); // Calls B::vf2 since D's vf2 has different args
Cbp—>£(); // Calls B::f (not virtual)
X* $<ptr = bp—>pf();// Calls D::pf() and converts the result
// to a pointer to X.
D* dptr = &d;
Y* yptr = dptr—>pf();// Calls D::pf() and initializes yptr.
// No further conversion is done.

}

The overriding function f1 in D is automatically virtual. The virtual specifier can be
used with an overriding function declaration in the derived class. If other classes will be
derived from D, the virtual keyword is required. If no further classes will be derived
from D, the use of virtual is redundant.

The interpretation of a virtual function call depends on the type of the object it is called
for; with nonvirtual function calls, the interpretation depends only on the type of the
pointer or reference denoting the object it is called for.

virtual functions exact a price for their versatility: each object in the derived class needs
to carry a pointer to a table of functions in order to select the correct one at run time (late
binding).

Abstract classes

An abstract class is a class with at least one pure virtual function. A virtual function is
specified as pure by setting it equal to zero.

Chapter 3, C++ specifics 157

An abstract class can be used only as a base class for other classes. No objects of an
abstract class can be created. An abstract class cannot be used as an argument type or as
a function return type. However, you can declare pointers to an abstract class.
~References to an abstract class are allowed, provided that a temporary object is not
needed in the initialization. For example,
class shape { // abstract class

point center;

public:

where() { return center; }

move (point p) { center = p; draw(); }

virtual void rotate(int) = 0; // pure virtual function
virtual void draw() = 0; // pure virtual function

virtual void hilite() = 0; // pure virtual function

} .
shape x;// ERROR:. attempt to create an object of an abstract classl
shape* sptr;// pointer to abstract class is OK.
shape f();// ERROR: abstract class cannot be a return type
int g(shape s);// ERROR: abstract class cannot be a function argument type
shape& h(shape&);// reference to abstract class as return
// value or functlon argument is OK

Suppose that D is a derived class with the abstract class B as its 1rnmed1ate base class.
Then for each pure virtual function pvf in B, if D doesn’t provide a definition for pof, pof
becomes a pure member function of D, and D will also be an abstract class. ~

For example, using the class shape previously outlined,
class circle : public shape {// circie derived from abstract class
int radius;// private
public:
void rotate(lnt) { }// virtual function defined: no action
// to rotate a circle
void draw(); // circle::draw must be defined somewhere

}

Member functions can be called from a constructor of an abstract class, but calling a

pure virtual function directly or indirectly from such a constructor provokes a run-time
error.

C++ scope

The 1ex1cal scoping rules for C++, apart from class scope, follow the general rules for C,
with the proviso that C++, unlike C, permits both data and function declarations to
appear wherever a statement might appear. The latter ﬂex1b1hty means that care is
needed when interpreting such phrases as “enclosing scope” and “point of declaration.”

158 C++ Programmer’s Guide

Class scope

The name M of a member of a class X has class scope “local to X”; it can be used only in
the following situations:

¢ In member functions of X
* In expressions such as x.M, where x is an object of X .
* In expressions such as xptr->M, where xptr is a pointer to an object of X

e In expressions such as X: :Mor D: :M, where D is a derived class of X

In forward references within the class of which it is a member

Names of functions declared as friends of X are not members of X; their names simply
have enclosing scope.

Hiding

A name can be hidden by an explicit declaration of the same name in an enclosed block
orin a class. A hidden class member is still accessible using the scope modifier with a
class name: X: :M. A hidden file scope (global) name can be referenced with the unary
operator :: (for example, ::g). A class name X can be hidden by the name of an object,
function, or enumerator declared within the scope of X, regardless of the order in which

the names are declared. However, the hidden class name X can still be accessed by
prefixing X with the appropriate keyword: class, struct, or union.

The point of declaration for a name x is immediately after its complete declaration but
before its initializer, if one exists.

C++ scoping rules summary

The following rules apply to all names, including typedef names and class names,
provided that C++ allows such names in the particular context discussed:

e The name itself is tested for ambiguity. If no ambiguities are detected within its
scope, the access sequence is initiated.

* If no access control errors occur, the type of the ob]ect function, class, typedef, and so
on, is tested. .

* If the name is used outside any function and class, or is prefixed by the unary scope
access operator ::, and if the name is not qualified by the binary :: operator or the.
member selection operators . and ->, then the name must be a global object, function,
or enumerator.

» If the name 7 appears in any of the forms X:in, x.n (where x is an object of X or a
reference to X), or ptr->n (where ptr is a pointer to X), then n is the name of a member
of X or the member of a class from which X is derived. :

* Any name that hasn’ tbeen discussed yet and that is used in a static member function
must either be declared in the block it occurs in or inan enclosing block, or be a global

Chapter 8, C++ specifics 159

name. The declaration of a local name # hides declarations of # in enclosing blocks
and global declarations of 7. Names in different scopes are not overloaded.

* Any name that hasn’t been discussed yet and that is used in a nonstatic member
function of class X must either be declared in the block it occurs in or in an enclosing
block, be a member of class X or a base class of X, or be a global name. The
declaration of a local name 1 hides declarations of 7 in enclosing blocks, members of
the function’s class, and global declarations of #.. The declaration of a member name
hides declarations of the same name in base classes.

* The name of a function argument in a function definition is in the scope of the
outermost block of the function. The name of a function argument in a nondefining
function declaration has no scope at all. The scope of a default argument is
determined by the point of declaration of its argument, but it can’t access local
variables or nonstatic class members. Default arguments are evaluated at each point
of call.

* A constructor 1mt1a11zer is evaluated in the scope of the outermost block of its
constructor, so it can refer to the constructor’s argument names.

Using templates

Templates, also called generics or parameterized types, let ydu construct a family of
related functions or classes.

Note For complete examples of templates and template-driven classes, see the source files for
' the ObjectWindows classes in the SOURCE\NOWL directories.

This section introduces the basic concept of templates, then provides some specific
points.

Template syntax

Use templates to construct a family of related functions or classes. The template syntax
is shown below.

Syntax .

template-declaration:

template < template-argument- list > declaratlon
template-argument-list:

template-argument

template-argument-list, template argument
template-argument :

type-argument

argument-declaration
type-argument :

class identifier
template-class-name:)

template-name < template-arg-list >
template-arg-list: :

" 160 C++ Programmer’'s Guide

template-arg

template-arg-list , template-arg
template-arg:

expression

type-name
‘< template-argument-list > declaration

Template body parsing

Earlier versions of the compiler didn’t check the syntax of a template body unless the
template was instantiated. A template body is now parsed immediately when seen like
every other declaration.

template <class T>'class X : T
{
Int Jj; // Error: Type name expected in template X<T>
'}
Let's assume that Int hasn’t been defined so far. This means that Int must be a member of
the template argument T. But it also might just be a typing error and should be int

instead of Int. Because the compﬂer can’t guess the right meaning it issues an error
message.

If you want to access types deﬁned by a template argument you should use a typedef to
make your intention clear to the compiler: :

template <class T> class X : T
{ .
typedef T::Int Int;
Int 3j;
};
You cannot just write
typedef T::Int;

as in earlier versions of the compiler. Not giving the typedef name was acceptable, but
this now causes an error message.

All other templates mentioned inside the template body are declared or defined at that -
point. Therefore, the following example is ill-formed and will not compile:

template <class T> class X
{ .y

void f(NotYetDefinedTemplate<T> x);
};

All template definitions must end with a semicolon. Earlier versions of the compiler did
not complain if the semicolon was missing.

Chapter 3, C++ svpecifics 161

Function templates

Consider a function max(x, y) that returns the larger of its two arguments. x and y can be
of any type that has the ability to be ordered. But, since C++ is a strongly typed
language, it expects the types of the parameters x and y to be declared at compile time.
Without using templates, many overloaded versions of max are required, one for each
data type to be supported even though the code for each version is essentially identical.
Each version compares the arguments and returns the larger.

One way around this problem is to use a macro:
#define max(x,y) ((x >y) ? X : v)

However, using the #define circumvents the type-checking mechanism that makes C++
such an improvement over C. In fact, this use of macros is almost obsolete in C++.
Clearly, the intent of max(x, y) is to compare compatible types. Unfortunately, using the
macro allows a comparison between an int and a struct, which are incompatible.

Another problem with the macro approach is that substitution will be performed where
you don't want it to be. By using a template instead, you can define a pattern for a
family of related overloaded functions by letting the data type itself be a parameter:

template <class T> T max(T x, T y){
. return (x >y) ? X = V;
};

The data type is represented by the template argument <class T>. When used in an
application, the compiler generates the appropriate code for the max function according
to the data type actually used in the call:

int i;
Myclass a, b;

int j = max(i,0); // arguments are integers
Myclass m = max(a,b); // arguments are type Myclass

Any data type (not just a class) can be used for <class T>. The compiler takes care of
calling the appropriate operator>(), so you can use max with arguments of any type for
which operator>() is defined. ,

Overriding a template function

The previous example is called a function template (or generic function, if you like). A
specific instantiation of a function template is called a template function. Template
function instantiation occurs when you take the function address, or when you call the
function with defined (non-generic) data types. You can override the generation of a
template function for a specific type with a non-template function:

#include <string.h>
char *max(char *x, char *y){

return(strcmp (x,y) > 0) ? x : y;
}

If you call the function with string arguments, it’s executed in place of the automatic
template function. In this case, calling the function avoided a meaningless comparison
between two pointers.

162 C++ Programmer’s ‘Guide,

Only trivial argument conversions are performed with compiler-generated template
functions.
The argument type(s) of a template function must use all of the template formal

arguments. If it doesn’t, there is no way of deducing the actual values for the unused
template arguments when the function is called.

Implicit and explicit template functions
When doing overload resolution (following the steps of looking for an exact match), the
compiler ignores template functions that have been generated implicitly by the
compiler.
template<class T>.T max(T a, T b){
return (a >b) ? a : b;

};

void f(int i, char c){

max (i, 1); // calls max(int ,int)
max(c, c); // calls max(char, char)
max(i, c); // no match for max(int,char)
max(c, 1i); // no match for max(char,int)

}
This code results in the following error messages:

Could not find a match for 'max(int,char)' in function f (int, char)
Could not find a match for 'max(char,int)' in function f(int,char)

If the user explicitly declares a template function, this function, on the other hand, will

participate fully in overload resolution. See the following example of explicit template
function. ’

template<class T> T max(T a, T b) {
return (a > b) ? a : b;
}i

// Declare explicit template function’

int max (int, int) ;

void f(int i, char c)

{ .
max (i, i); . // calls max(int ,int)
max(c, c); // calls max(char, char)
max(i, c¢); . // calls max(int,int)
max(c, 1i); . // calls max(int, int)

}

When searching for an exact match for template function parameters, trivial conversions
are considered to be exact matches. See the following example on trivial conversions.

template <class T> void func(const T)

{

}: . .
func(0); // This is illegal under ANSI C++: unresolved func(int).
// However, Borland C++ allows func(const int) to be called.

Chapter 3, C++ specifics 163

- Template functions with derived class pointer or reference argurhents are permitted to
match their public base classes. See the following example of base class referencing.

template <class T> class B
{ ,

// class declarations
}:
template <class T> class D : public B<T>
A i
// class declarations

}:

' template <class T> void func(B <T>. *Db)
{
// function body
}
// This is illegal under ANSI C++: unresolved func(int)
// However, Borland C++ calls func(B<int> *).
func(new D<int>);

Class templates

A class template (also called a generic class or class generator) lets you define a pattern for
class definitions. Consider the following example of a vector class (a one-dimensional
array). Whether you have a vector of integers or any other type, the basic operations
performed on the type are the same (insert, delete, index, and so on). With the element
type treated as a type parameter to the class, the system will generate type-safe class
definitions on the fly. '

// Bn example for defining a template class.
template <class T> class Vector
{

T *data;

int size;
public:

Vector (int) ;

~Vector() { delete[] data; }

T& operator[] (int i) { return datalil;. }
};
// Note the syntax for out-of-line definitions.
template <class T> Vector<Ts: :Vector (int n)
{

data = new T[n];

size = n;
}i
int main()
{ .
Vector<int> x(5); // Generate a vector to store five integers
for (int 1 = 0; 1 <'5; ++1) ¢
x[1] = i; // Initialize the vector.
return o; ’

164 C++ Programmer’s Guide

As with function templates, an explicit template class definition can be provided to
override the automatic definition for a given type:

class Vector<char *> { ... };

The symbol Vector must always be accompanied by a data type in angle brackets. It
cannot appear alone, except in some cases in the original template definition.

Template arguments
Multiple arguments are allowed as part of the class template declaration. Template
arguments can also represent values in addition to data types:

template<class T, int size = 64> class Buffer { ... };
Non-typ' e template arguments such as size can have default values. The value supplied
for a non-type template argument must be a constant expression:

const int N = 128;

int i = 256;

Buffer<int, 2*N> bl;// OK
Buffer<float, i> b2;// Error: i is not constant

Since each instantiation of a template class is indeed a class, it receives its own copy of
static members. Similarly, template functions get their own copy of static local variables.

Using angle brackets in templates
Be careful when using the right angle bracket character upon instantiation:

Buffer<char, (x > 100 ? 1024 : 64)> buf;

In the preceding example, without the parentheses around the second argument, the >
between x and 100 would prematurely close the template argument list.

Using type-safe generic lists in templates
In general, when you need to write lots of nearly identical things, consider using
templates. The problems with the following class definition, a generic list class,

class GList

. ;

public:
void insert(void *);
void *peek();

};

are that it isn’t type-safe and common solutions need repeated class definitions. Since
there’s no type checking on what gets inserted, you have no way of knowing what
results you'll get. You can solve the type-safe problem by wrltmg a wrapper class:

class FooList.: public Glist {

publlc .
void insert(Foo *f) { GList::insert(£); }

Foo *peek() { return (Foo *)GList::peek(); }

Chapter 3, C++ specifics 165

This is type-safe. insert will only take arguments of type pointer-to-Foo or object-
derived-from-Foo, so the underlying container will only hold pointers that in fact point
to something of type Foo. This means that the cast in FooList::peek() is always safe, and
you've created a true FooList. Now, to do the same thing for a BarList, a BazList, and so
on, you need repeated separate class definitions. To solve the problem of repeated class
definitions and be type-safe, you can once again use templates. See the following

- example for type-safe generic list class.

template <class T> class List : public GList
{
public:

void insert(T *t) { GList::insert(t

)i}
T *peek() { return (T *)GList::peek(); }

// Create a List object of Foo types and name it fList.
List<Foo> fList;

// Create a List object of Bar types and name it bList.
- List<Bar> blList;

// Create a List object of Baz types‘and name it zList.
List<Baz> zList;

By using templates, you can create whatever type-safe lists you want, as needed, with a
simple declaration. And there’s no code generated by the type conversions from each
wrapper class so there's no run-time overhead imposed by this type safety.

Eliminating pointers in templates

Another design technique is to include actual objects, making pointers unnecessary.
This can also reduce the number of virtual function calls required, since the compiler
knows the actual types of the objects. This is beneficial if the virtual functions are small
enough to be effectively inlined. It’s difficult to inline virtual functions when called
through pointers, because the compiler doesn’t know the actual types of the objects
being pointed to.

template <class T> aBase {

private:
T buffer;
};

class anObject : public aSubject, public aBase<aFilebuf> {

};

All the functions in aBase can call functions defined in aFilebuf directly, without having
to go through a pointer. And if any of the functions in aFilebuf can be inlined, you'll get a
speed improvement, because templates allow them to be inlined.

166 C++ Programmer’s Guide

Compiler template switches :

The -Jg family of switches controls how instances of templates are generated by the
compiler. Every template instance that the compiler encounters is affected by the value
of the switch when the compiler sees the first occurrence of that instance.

For template functions the switch applies to the function instances; for template classes,
it applies to all member functions and static data members of the template class. In all
cases, this switch applies only to compiler-generated template instances and never to
user-defined instances. It can be used, however, to tell the compiler which instances will
be user-defined so that they aren't generated from the template.

-Jg Default value of the switch. All template instances first encountered when this switch value
is in effect are generated, such that if several compilation units generate the same template
instance, the linker merges them to produce a single copy of the instance. This is the most
convenient approach to generating template instances because it's almost entirely
automatic. Note, though, that to be able to generate the template instances, the compiler
must have the function body (in case of a template function) or bodies of member functions
and definitions for static data members (in case of a template class).

-Jgd Instructs the compiler to generate public definitions for template instances. This is similar to
—Jg, but if more than one compilation unit generates a definition for the same template
instance, the linker will report public symbol redefinition errors.

—Jgx Instructs the compiler to generate external references to template instances. Some other
compilation unit must generate a public definition for that template instance (using the
—Jgd switch) so that the external references can be satisfied.

Using template switches

- When using the -Jg family of switches, there are two basic approaches for generating
template instances:

Approach 1
Include the function body (for a function template) or member function and static data
member definitions (for a template class) in the header file that defines the particular
template, and use the default setting of the template switch (-Jg). If some instances of the
template are user-defined, the declarations (prototypes, for example) for them should be
included in the same header but preceded by #pragma option -Jgx.

// Declare a template function and define it's body.
/* When this header file is included in a C++ source file, the sort template can
be used without worrying about how the various instances are generated (with the
exception of sort for integer arrays which is a user- deflned instance. Its
definition must be provided by the user. */
template<class T> void sort (T* array, int size)
{
// Body of template goes here.
}
// Sorting of integer elements done by user-define instance.
#pragma option -Jgx
extern void sort(int *array, int size);
// Restore the template switch to its orlglnal state.
#pragma option -Jg

Chapter 3, C++ specifics 167

Approach 2 , ~ ‘ :

Compile all of the source files comprising the program with the -Jgx switch (causing
external references to templates to be generated). In order to provide the definitions for
all of the template instances, add a file (or files) to the program that includes the
template bodies (including any usér-defined instance definitions), arid list all the
template instances needed in the rest of the program to provide the necessary public
symbol definitions. Compile the file (or files) with the -Jgd switch. See the example for
separate file template compilation in the next section. -

Separate file template compilation

// In vector.h :
template <class elem, int size> class vector
{
elem * value;
public:
vector () ;
elem & operator [] (int index) {
return value[index];
}
};

// In main.cpp source file.
#include "vector.h"
/** Let the compiler know that the following template instances will be defined
elsewhere. **/
#pragma option -Jgx
// Use two instances of the vector template class.
vector<int, 100> int_100;
vector<char, 10> char_10;
int main()
{
return int_100[0 1 + char 10{ 0];

// In template.cpp source file.
#include <string.h>
#include "vector.h"
// Define any template bodies.
template <class elem, int size> vector <elem, size> :: vector()
{ .

value = new elem[size];

nmemset (value, 0, size * sizeof (elem));
}
// Generate the necessary instances.
#pragma option -Jgd
typedef vector<int, 100> fake_int_ 100;
typedef vector<char, 10> fake char_ 10;

168 C++ Programmer’s Guide

»

Exporting and importing templates

The declaration of a template function or template class needs to be sufficiently flexible
so it can be used in either a DLL or an EXE file. The same template declaration should be
available as an import and/or export, or without a modifier. To be completely flexible,
the header file template declarations should not use _ _export or _ _import modifiers.
This allows you to apply the appropriate modifier at the point of instantiation
depending on how the instantiation is to be used.

The following steps demonstrate exporting and importing of templates. The source code
is organized in three files. Using the header file, code is generated in the DLL. A DLL
library is created and linked to an EXE file.

Exportable/importable template declarations

The header file contains all template class and template function declarations. An
export/import version of the templates can be instantiated by defining the appropriate
macro at compile time.

For example:

// In file EXPORTER.H
#include<iostream.h>
if defined (BUILD DLIL_EXPORTS)

define DECLSPEC _ export

elif defined (USING_DLL_IMPORTS)
define DECLSPEC __ import

endif :

11777770077 707077777717717777777777777777777717777
// Receive CLASS DEFINITIONS
template <class T> class Receive
{
T value;
" public: .
Receive(const T val) : value(val){}
T display();
}:
tamplate<class T> T Receive<T>::display()
{
return value;
}
// TEMPLATE FUNCTION DEFINITION
template <class T> :
T another min(T a, T b) { return a <b ? a : b;}
#if (defined (BUILD_DLL_EXPORTS) || defined(USING DLL_IMPORTS))
////// INSTANTIATED TEMPLATE CLASSES /////
template class DECLSPEC Receive<double>;
template class DECLSPEC Receive<int>;
template class DECLSPEC Receive<char>;
////// INSTANTIATED TEMPLATE FUNCTIONS /////
template int DECLSPEC another min<.nt>(int, int);
template double DECLSPEC another_ min<double> (double, double)
#endif

Chapter 3, C++ specifics 169

Compiling exportable templates ,
Write the source code for a DLL. When compiled, this DLL has reusable export code.

For example:

// In file DLL_SRC.CPP. -
.// GENERATE CODE FOR EXPORTABLE CLASSES AND FUNCTIONS.
// TO COMPILE THIS FILE, USE BCC32 -tWD -DBUILD_DLI, EXPORTS
DLIL_SRC.CPP
#define STRICT
#include <windows.h> ,
#include "exporter.h" N
BOOL WINAPTI DllEntryPo;Lnt(HINSTANCE hinstdll,
DWORD fdwReason, LPVOID lpvReserved)

return 1;

Using import templates

Now you can write a calling function that uses templates. This file is linked to the DLL.
Only objects that are not declared in the header file and which are instantiated in the
main function cause the compiler to generate new code. Code for a newly instantiated
object is written into the MAIN.OB] file.

For example:

// Before you compile this file you need to create the dynamic link library.
// You can use the command IMPLIB DLL, SRC.LIB DLIL,_SRC.DLL
// TO COMPILE THIS FILE, USE BCC32 -DUSING_DLL_IMPORTS MAIN
DLIL_SRC.LIB
#include <iostream.h>
#include "exporter.h"
int main () { .

int small = 5;

int big = 10;

double smalld = 1.2;

double bigd = 12,3;

// No new code is generated for these objects.

Receive <double> Test_d(0.01);

Receive <int> Test_i(5);

// Generate code in MAIN.OBJ for this object

Receive <float> Test_f(3.14);

cout << "Test_d.display() = " << Test_d.display() << endl;
cout << "Test_i.display() = " << Test_i.display() << endl;
cout << "min(5, 10): " << another min(small, big) << endl;
cout << "min(12.3, 1.2): " << another min(bigd, smalld)<<endl;
cout << "Test_f.display() = " << Test_f.display() << endl;
return 0; '

170 C++ Programmer’s Guide

Program output

Test_d.display() = 0.01
Test_i.display() = 5
min(5, 10): 5
min(12.3, 1.2): 1.2
Test_f.display() = 3.14

Chapter 3, C++ specifics 171

172 C++ Programmer’'s Guide

Chapter

Exception handling

This chapter describes the Borland C++ error-handling mechanisms generally referred
to as exception handling. The Borland C++ implementation of C++ exception handling is
consistent with the proposed ANSI specification. The exception-handling mechanisms
that are available in C programs are referred to as structured exceptions. Borland C++
provides full compiling, linking, and debugging support for C programs with
structured exceptions. See the section “C-based structured exceptions” later in this
chapter, and the C++ User’s Guide for a discussion of compiler options for programming
with exceptions.

C++ exception havndling

The C++ language defines a standard for exception handling. The standard ensures that
the power of object-oriented design is supported throughout your program.

In accordance with the specifications of the ANSI/ISO C++ working paper, Borland
C++ supports the termination exception-handling model. When an abnormal situation
arises at run time, the program could terminate. However, throwing an exception lets
you gather information at the throw point that could be useful in diagnosing the causes
that led to failure. You can also specify in the exception handler the actions to be taken
before the program terminates. Only synchronous exceptions are handled, meaning that
the cause of failure is generated from within the program. An event such as Ctrl-C (which
is generated from outside the program) is not considered to be a synchronous exception.

C++ exceptions can be handled only in a try/catch construct.
Syntax:
try-block:
try compound-statement handler-list

handler-list:

handler handler-list o,

Chapter 4, Exception handling 173

handler:
- catch (exception-declaration) compound-statement

exception-declaration:
type-specifier-list declarator
type-specifier-list abstract-declarator

type-specifier-list

thfow-expression: 7
throw assignment-expression gy

Note The catch and throw keywords are not allowed in a C program.
The try-block i is a statement that specifies the flow of control as the program executes.
The try-block is designated by the try keyword. Braces after the keyword surround a
program block that can generate exceptions. The language structure specifies that any
exceptions that occur should be raised within the try-block. See Chapter 2 for a
discussion about statements.

The handler is a block of code designed to handle an exception. The C++ language
requires that at least one handler be available immediately after the try-block. There
should be a handler for each exception that the program can generate.

When the program encounters an abnormal situation for which it is not designed, you
can transfer control to some other part of the program that is designed to deal with the
problem. This is done by throwing an exception.

The exception-handling mechanism requires the use of three keywords: try, catch, and
throw. The try-block specified by try must be followed immediately by the handler
specified by catch. If an exception is thrown in the try-block, program control is -
transferred to the appropriate exception handler. The program should attempt to catch
any exception that is thrown by any function. Failure to do so could result in abnormal
termination of the program.

Exception declarations

Although C++ allows an exception to be of almost any type, it is useful to make
exception classes. The exception object is treated exactly the way any object would be
treated. An exception carries information from the point where the exception is thrown
to the point where the exception is caught. This is information that the program user
will want to know when the program encounters some anomaly at run time.

Predefined exceptions, specified by the C++ language, are documented in the C++
Language Reference, Chapter 16. Borland C++ provides additional support for exceptions.
These extensions are also documented in the C++ Language Reference, Chapter 11. See
also Chapter 3 of this book for a discussion of the new operator and the predefined
xalloc exception.

Throwing an exception

A block of code in which an excepﬁon can occur must be prefixed by the keyword try.
Following the try keyword is a block of code enclosed by braces. This indicates that the

174 -C++ Programmer’s Guide

program is prepared to test for the existence of exceptioné. If an exception occurs, the
program flow is interrupted The sequence of steps taken is as follows:

1 The program searches for a matching handler
2 If a handler is found, the stack is unwound to that pomt
3 Program control is transferred to the handler

If no handler is found, the program will call the terminate function. If no exceptions are
thrown, the program executes in the normal fashion.

A throw expression is also referred to as a throw-point. You can specify whether an
exception can be thrown by using one of the following syntax specifications:

1. throw throw_expression;
2. throw;
3. void my_ funcl() throw (A, B)
{
// Body of function.
}
4. void my_func2() throw ()
{
// Body of this function.
3 .

The first case specifies that throw_expression is to be passed to a handler.

The second case specifies that the exception currently being handler is to be thrown
again. An exception must currently exist. Otherwise, terminate is called.

The third case specifies a list of exceptions that my_funcl can throw. No other exceptions
should propagate out of my_funcl. If an exception other than A or B is generated within
my_funcl, it is considered to be an unexpected exception and program control will be
transferred to the unexpected function. By default, the unexpected function ends with a
call to abort but it can throw an exception. See the C++ Language Reference, Chapter 16,
for a description of unexpected.

The final case specifies that my_func2 should throw no exceptions. If some other
function (for example, operator new) in the body of my_func2 throws an exception, such
an exception should be caught and handled within the body of my_func2. Otherwise,
such an exception is a violation of my_func2 exception specification. The unexpected
function is then called.

When an exception occurs, the throw expression initializes a temporary object of the
type T (to match the type of argument arg) used in throw(T arg). Other copies can be
generated as required by the compiler. Consequently, it can be useful to define a copy
constructor for the exception object.

Handling an exception

The exception handler is indicated by the catch keyword. The handler must be placed
immediately after the try-block. The keyword catch can also occur immediately after
another catch. Each handler will only handle an exception that matches, or can be

Chapter 4, Exception handling 175

converted to, the type specified in its argument llst The possible conversions are hsted
after the try-block syntaxes.

The following syntaxes, following the try-block, are valid:

try {
" // Include any code that might throw an exception
}

1. catch (T X)
{

// Take some actions

}
2. catch (...)
{
// Take some actions

}

The first statement is specifically defined to handle an object of type T. If the argument is
T, T&, const T, or const T&, the handler will accept an object of type X if any of the
- following are true:

. ® Tand X are of the same type
¢ Tis an accessible base class for X in the throw expression
* Tisapointer type and X'is a pointer type that can be converted to T by a standard
pointer conversion at the throw point

The statement catch (...) will handle any exception, regardless of type. This statement, if
used, must be the last handler for its try-block. -

Every exception thrown by the program must be caught and processed by the exception
handler. If the program fails to provide an exception handler for a thrown exception, the
program will call terminate.

Exception handlers are evaluated in the order that they are encountered. An exception is
caught when its type matches the type in the catch statement. Once a type match is
made, program control is transferred to the handler. The stack will have been unwound
upon entering the handler. The handler specifies what actions should be taken to deal
with the program anomaly.

A goto statement can be used to transfer program control out of a handler or try-block
but such a statement can never be used to enter a handler or try-block.

After the handler has executed, the program can continue at the point after the last -
handler for the current try-block. No other handlers are evaluated for the current
exception.

Exception specifications

The C++ language makes it possible for you to specify any exceptions that a function
can throw. This exception specification can be used as a suffix to the function declaration.
The syntax for exception specification is as follows:

exception-specification:
throw (type-id-list o)

type-id-list:

176 C++ Programmer’s Guide

type-id
type-id-list, type-id

The function suffix is not considered to be part of the function’s type. Consequently, a
pointer to a function is not affected by the function’s exception specification. Such a
pointer checks only the function’s return and argument types. Therefore, the following
is legal:

void f2(void) throw(); // Should not throw exceptions

void £3(void) throw (BETA); // Should only throw BETA objects

void (* fptr) (); // Pointer to a function returning wvoid
fptr = £2;

fptr = £3;

Extreme care should be taken when overriding virtual functions. Again, because the
exception specification is not considered part of the function type, itis possible to violate
the program design. In the following example, the derived class BET A::vfunc is defined
so that it throws an exception—a departure from the original function declaration.

class ALPHA {
public:
virtual void vfunc(void) throw () {}; // Exception specification
}i
class BETA : public ALPHA {
struct BETA_ERR {};
void vfunc(void) throw(BETA_ERR) {}; // Exception specification is changed
}; ‘

The following are examples of functions with exception specifications.
void £f1(); // The function can throw any exception
void f2() throw(); // Should‘not throw any exceptions

void £3() throw(A, B*); // Can throw exceptions publicly derived from A,
// or a pointer to publicly derived B

The definition and all declarations of such a function must have an exception
specification containing the same set of type-id’s. If a function throws an exception not
listed in its specification, the program will call unexpected. This is a run-time issue—it
will not be flagged at compile time. Therefore, care must be taken to handle any
exceptions that can be thrown by elements called within a functmn

Example 2
// HOW TO MAKE EXCEPTION-SPECIFICATIONS AND HANDLE ALL EXCEPTIONS

#include <iostream.h>

// EXCEPTION DECLARATIONS
class Alpha {
// Include something that shows why you chose to throw this exception.
}i
Alpha alpha_inst;

class Beta { i)
// Include something that shows why you chose to throw this exception.

_Chapter 4, Exception handling 177

}:
Beta beta_inst;

// THROW ONLY Alpha OR Beta TYPE OBJECTS
void f£3(char ¢) throw (Alpha, Beta) {
cout << "£3() was called" << endl;

if (¢ == 'a")
throw(alpha_inst);
if (¢ == 'b")

throw(beta_inst);
else ; // DO NOTHING WITH OTHER CHARACTERS
} : ’ .

// SHOULD NOT THROW EXCEPTIONS
void f2(char ch) throw() {

try { . // WRAP ALL CODE IN A TRY-BLOCK
cout << "f2() was called" << endl;
£3(ch);

} .
// HERE ARE HANDLERS FOR THE EXCEPTIONS WE KNOW COULD BE THROWN
catch (Alpha& alpha_inst) { cout << "Caught Alpha exception.";}
catch (Beta& beta_inst) { cout << "Caught Beta exception.";}

// IF THE CODE IS MODIFIED LATER SO THAT SOME
// OTHER EXCEPTION IS THROWN, IT IS HANDLED HERE
// AND WE AVOID ViOLATING THE f£2() THROW SPECIFICATION
catch (...) { ’
// BUT, WE POST OURSELVES A WARNING MESSAGE.
cout << "Warning: f£2() has elements with exceptions!" << endl;

}

int main(void) {
char trigger;

try {
cout‘<<'"Input a character:";
cin >> trigger;
2 (trigger) ;
cout << "\nSuccess.";
return 0; // WE.GET HERE ONLY IF EVERYTHING EXECUTES WELL.
} ’ :
catch (...) {
cout << "Need more handlers!";
return 1;

}

Sample output when ‘a’ is the input

Input a character: a
f2() was called

178 C++ Programmer’'s Guide

£3() was called
Caught Alpha exception.
Success.

If an exception is thrown that is not listed in the exception specification, the unexpected
function will be called. The following diagrams illustrate the sequence of events that can
occur when unexpected is called. See the C++ Language Reference, Chapter 15, for a
description of the set_terminate, set_unexpected, and unexpected functions. The chapter
also describes the terminate_function and unexpected_function types.

Program behavior when a function is registered with set_unexpected():
unexpected() // CALLED AUTOMATICALLY
I
// DEFINE YOUR UNEXPECTED HANDLER

|
I
| unexpected_function my unexpected(void)
l {

l // DEFINE ACTIONS TO TAKE

| // POSSIBLY MAKE ADJUSTMENTS

| }

l

|

|

// REGISTER YOUR HANDLER
set_unexpected(my unexpected) ;

my_unexpected() ;

Program behavior when no function is registered with set_unexpected() but there is a
function registered with set_terminate():

unexpected() // CALLED AUTOMATICALLY

terminate ()

// DEFINE YOUR TERMINATION SCHEME
terminate_ function my_terminate(void)
{
// TAKE ACTIONS BEFORE TERMINATING
// SHOULD NOT THROW EXCEPTIONS
exit(l); // MUST END SOMEHOW.

|
|
|
|
|
|
|
l
| "// REGISTER YOUR TERMINATICON FUNCTIO!
| set_terminate(my_terminate) i
| .

|
my_terminate()
// PROGRAM ENDS.

Constructors and destructors

When an exception is thrown, the copy constructor is called for the thrown value. The
‘copy constructor is used to initialize a temporary object at the throw point. Other copies
can be generated by the program. See Chapter 3 for a discussion of the copy constructor.

Chapter 4, Exception handling 179

Note

When program flow is interrupted by an exception, destructors are called for all
automatic objects that were constructed since the beginning of the try-block was
entered. If the exception was thrown during construction of some object, destructors
will be called only for those objects that were fully constructed. For example, if an array
of objects was under construction when an exception was thrown, destructors will be
called only for the array elements that were already fully constructed.

Destructors are called by default. See the C++ User s Guide for information about
exception-handling switches.

When a C++ exception is thrown, the stack is unwound. By default during stack
unwinding, destructors are called for automatic ob]ects You can use the —xd compiler
opuon to switch the default off. .
Unhandled exceptions

If an exception is thrown and no handler has found it, the program will call the terminate
function. The following diagram illustrates the series of events that can occur when the
program encounters an exception for which no handler can be found. See the C++

- Language Reference, Chapter 16, for a description of the terminate function.

Default program behavior for unhandled exceptions:

terminate () ;

|
1

abort () ;
// PROGRAM ENDS.

C-based structured exceptions

180

Note

Borland C++ provides support for program development that makes use of structured
exceptions. You can compile and link a C source file that contains an implementation of .
structured exceptions. In a C program, the ANSI-compatible keywords used to
implement structured exceptions are _ _except, __finally, and _ _try. Note that the
_ _finally and _ _try keywords can appear only in C programs.

For portability, you can use the try and except macros defined in excpt.h.
For try-except exception-handling implementations the syntax is as follows:

try-block:
_ _try compound-statement (in a C module)
try compound-statement (in a C++ module)

handler: v
_ _except (expression) compound-statement

For try-finally termination implementations the syntax is as follows:

try-block:
__try compound—statement

termination:
_ _finally compound—statement

C++ Programmer’s Guide

Note

Using C-based exceptions in C++

Borland C++ supports substantial interaction between C and C++ error handling
mechanisms. The implementation of exception handling mechanisms lets you port code
across platforms. The following interactions are supported:

* Cstructured exceptions can be used in C++ programs.

* C++ exceptions cannot be caught in a C module because C++ exceptions require that
their handler be specified by the catch keyword, and catch is not allowed ina C
program. N

* An exception generated by a call to the RaiseException function is handled by a try/
__exceptor __try/__except block. All handlers of try/catch blocks are ignored
when RaiseException is called.

The following C exception support functions can be used in C and C++ programs:

o GetExceptionCode

» GetExceptionInformation

o SetUnhandledExceptionFilter
» UnhandledExceptionFilter

Borland C++ does not require that the UnhandledExceptionFilter funchon be used only in
the except filter of _ _try/_ _exceptor try/_ _exceptblocks.However, program behavior
is undefined when this function is called outside of the __try/__exceptor try/
_ _except block. :

Handling C-based exceptions

The full functionality of an _ _except block is allowed in C++. If an exception is
generated in a C module, it is possible to provide a handler-block in a separate calling
C++ module.

If a handler can be found for the generated structured exception, the following actions
can be taken: :

¢ Execute the actions specified by the handler
¢ Ignore the generated exception and resume program execution
* Continue the search for some other handler (regenerate the exception)

These actions are consistent with the design of structured exceptions. The following
example shows how to mix C and C++ exceptions. Note that the C mechanism uses the
try and _ _except keywords. The C++ mechanism uses the required try and catch
keywords :

/* In PROG.C */
void func(void) {

/* generate an exception */
RaiseException(/* specify your arguments */);

}
// In CALLER.CPP

Chapter 4, Exception handling 181

// How to test for C++ or C-based exceptions.
#include - <excpt.h>
#include <iostream.h>

int main(void). {
try
{ // test for C++ exceptions
try
{ // test for C-based structured exceptions
func () ;
}
_,;except(/* filter—expression */)
{

cout << "A structured exception was generated.";

/* specify actions to take for this structured exception */
return -1;

}

return 0;

}
catch (...)

{
// handler for any C++ exception
cout << "A C++ exception was thrown.";
return 1;
}
}

Structured exceptions also allow you to program a termination handler. The
termination handler can be used only in a C module and is specified by the _ _finally
keyword. The termination handler ensures that the code in the _ _finally block is

- executed no matter how the flow within the _ _try exits. The _ _finally keyword is not
allowed in a C++ program. Consequently the _ _try/_ _finally block is not supported in
a C++ program.

Even though the _ _try/_ _finally block is not supported in a C++ program, a C-based
exception generated by the operating system or the program will still result in proper
stack unwinding of objects with destructors. You can use this to emulate a _ _finally
block by creating a local object whose destructor does the necessary cleanup. Any
module compiled with the —xd compiler option (this option is on by default) will have
destructors invoked for all objects with auto storage. Stack unwinding occurs from the
point where the exception is thrown to the point where the exception is caught.

Note Destructors are called by default. See the C++ User’s Guide for information about
~ exception-handling switches.

182 C++ Programmer’'s Guide

Chapter

- Programming for portability

If you are new to programming, or need to know about moving 16-bit applications to
Windows NT or Windows 95, this topic is for you. This topic describes a variety of
16-bit and 32-bit programming topics, including

® Resource script files
Module definition files

Import libraries

The Borland heap manager

32-bit Windows programming

In addition to compiling source code and linking .OB] files, a Windows programmer
must compile resource script files, and bind resources to an executable. A Windows
programmer must also know about dynamic linking, dynamic link libraries (DLLs), and
import libraries. Also, if you are using the Borland C++ IDE, it is helpful to know how to
use the Borland project manager which uses project files to automate and manage
application building. See the discussion of compiling and linking a Windows program
for an illustration of the process of building a Windows application.

Note The intricacies of designing and developing Windows applications go beyond the scope
of this document.

Compiling and linking a Windows program
These are the steps for compiling and linking a Windows program:

1 Source code is compiled or assembled producing .OBJ files.

2 Module definition files (.DEF) tell the linker what kind of executable you want to
produce.

Chapter 5, Programming for portability 183

3 Resource Workshop (or some other resource editor) creates resources, like icons or
bitmaps. A resource file (RC) is produced. See Part II of the C++ User’s Guide.

4 The RC file is compiled by a resource compﬂer or Resource Workshop, and a binary
RES file is output.

5 Linking produces an .EXE file with bound resources.

Resource script files

Windows applications typically use resources. Resources are icons, menus, dialog boxes,
fonts, cursors, bitmaps, or other user-defined resources. Resources are defined in a file
called a resource script file, also known as a resource file. These files have the file name
extension .RC.

To make use of resources, you must use the Borland Resource Compiler (BRC32) to
compile your .RC file into a binary format. Resource compilation creates a .RES file.

" TLINK32 then binds the .RES file to the .EXE file output by the linker. This process also
marks the .EXE file as a Windows executable.

Note See the discussion of BRCC32.EXE in Chapter 10 of the C++ User’s Guide.

Module definition files

A module definition (.DEF) file prov1des information to the linker about the contents
and system requirements of a Windows application. This information includes heap
and stack size, and code and data characteristics. .DEEF files also list functions that are to

~ be made available for other modules (export functions), and functions that are needed
from other modules (import functions). Because Borland linkers have other ways of
finding out the information contained in a module definition file, module definition files
are not always required for Borland’s linker to create a Windows application.

Here’s the module definition file for the WHELLO example:

NAME WHELLO

DESCRIPTION 'C++ Windows Hello World'
EXETYPE WINDOWS

CODE PRELOAD MOVEARBLE

DATA PRELOAD MOVEABLE MULTIPLE
HEAPSIZE 1024

STACKSIZE 5120

Let's take this file apart, statement by statement:

* NAME specifies a name for a program. If you want to build a DLL instead of a
program, you would use the LIBRARY statement. Every module definition file
should have either a NAME statement or a LIBRARY statement, but never both. The
name specified must be the same name as the executable file. WINDOWAPI
identifies this program as a Windows executable.

o DESCRIPTION lets you specify a string that describes your application or library.

184 C++ Programmer’s Guide

¢ EXETYPE marks the executable as a Windows executable. This is necessary for all
Windows executables.

¢ CODE describes attributes of the executable’s code segment. The PRELOAD option
instructs the loader to load this portion of the irnage when the application is loaded
into memory. The MOVEABLE option means Windows can move the code around
in memory.

¢ DATA defines the default attributes of data segments. The MULTIPLE option
ensures that each instance of the application has its own data segment.

* HEAPSIZE specifies the size of the application’s local heap.

¢ STACKSIZE specifies the size of the application’s local stack. You can’t use the
STACKSIZE statement to create a stack for a DLL.

Two important statements not used in this .DEF file are the EXPORTS and IMPORTS
statements.

The EXPORTS statement lists functions in a program or DLL that will be called by other
applications or by Windows. These functions are known as export functions, callbacks,

or callback functions. Exported functions are identified by the linker and entered into an
export table.

To help you avoid the necessity of creating and maintaining long EXPORTS sections in
your module definition files, Borland C++ provides the _ _export keyword. Functions
flagged with _ _export will be identified by the linker and entered into the export table
for the module. This is why the WHELLO example has no EXPORT statement in its
module definition file.

Note Prior to Borland C++ 5.0, the __export keyword was required to immediately precede
the function name. To help port applications that use a different syntax for funtion
- modifiers, Borland C++ now provides the _ _declspec keyword.

The WHELLO application doesn’t have an IMPORTS statement either because the only
funictions it calls from other modules are those from the Windows Application Program
Interface (API); those functions are imported via the automatic inclusion of the
IMPORT.LIB or IMPORT32.LIB import libraries. When an application needs to call -
other external functions, these functions must be listed in the IMPORTS statement, or
included via an import library.

Import libraries

When you use DLLs, you must give the linker definitions of the functions you want to
import from DLLs. This information temporarily satisfies the external references to the
functions called by the compiled code, and tells the Windows loader where to find the
functions at run time.

There are two ways to tell the linker about import functions:

~* You can add an IMPORTS section to the module definition file and list every DLL
function that the module will use.

* You can include an import library for the DLLs when you link the module.

Chapter.5, Programming for portability 185 .

An import library contains import definitions for some or all of the exported functions
for one or more DLLs. A utility called IMPLIB creates import libraries for DLLs. IMPLIB
creates import libraries directly from DLLs or from a DLL’s module definition files, or
from a combination of the two.

Import libraries can be substituted for all or part of the IMPORTS section of a module
definition file.

WinMain

Syntax

"int PASCAL WinMain (HINSTANCE hCurInstance, HINSTANCE hPrevInstance,
LPSTR lpCmdLine, int nCmdShow)

Description
This function is the main entry point for a Windows apphcatlon It must be supplied by
the user.

H]NSTANCE hCurInstance The instance handle of the application. Each instance of an
‘ application has a unique instance handle. It is used as an
argument to several Windows functions and can be used to
distinguish between multiple instarnces of a given application.

HINSTANCE hPrevInstance The handle of the previous instance of this application. This
: value is NULL if this is the first instance.

LPSTR IpCmdLine A far pointer to a null-terminated command-line. Specify this
‘ value when invoking the application from the program manager
or from a call to WinExec.

int nCmdShow An integer that specifies the application’s window display. Pass
this value to ShowWindow.

Under Win32, there are two d1fferences in the values passed through these parameters:
* hPrevInstance always returns NULL.

¢ IpCmdLine points to a string containing the entire command line, not just the
parameters.

Return Value
The return value from WinMain is not currently used by Windows. It is useful during
debugging because you can display this value upon termination of your program.

Prologs and epllogs

When you compile a module for Windows, the compiler needs to know what kind of
prolog and epilog needs to be created for each of a module’s functions. IDE settings and
command-line compiler options control the creation of the prolog and epilog. The
prolog and epilog perform several duties, including ensuring that the correct data

186 C++ Programmer’s Guide

segment is active during callback functions, and marking stack frames for the Windows
stack-crawling mechanism.

The prolog/epilog code is automatically generated by the compiler, though various
compiler options or IDE settings dictate which sets of instructions are contained in the
generated code.

See the following topics for further discussion:

¢ The _export keyword * Prologs, epilogs, and exports: a summary
¢ The _import keyword * Entry/exit code options

Figure 5.1 Compiling and linking a Windows program

_export, __export -

Form 1

class _export <class name>

F9rm 2

return_type _export <function name>

Chapter 5, Programming for portability 187

Form3

- data_type _export <data name>

Description
These modifiers are used to export classes, functions, and data.

The linker enters functions flagged with _export or _ _export into an export table for the
module. ,

Using _export or _ _export eliminates the need for an EXPORTS section in your module
definition file.

Note Exported functions must be declared as _ _far. You can use the FAR type, defined in
windows.h. v

Functions that are not modified with _export or _ _export receive abbreviated prolog
and epilog code, resulting in a smaller object file and slightly faster execution.

Note If you use _export or_ _export to export a function, that function will be exported By ‘
‘ name rather than by ordinal (ordinal is usually more efficient).

If you want to change various attributes from the default, you'll need a module
definition file.

_import, __import

Form1:

class _import <clagss name>
class __import <class name>

Form 2

return_type _import <function name> //32-bit only
return_type __import <function name> //32-bit only

‘ Form3

data_type _import <data name> //32-bit only
data_type __import <data name> //32-bit only

Description
This keyword can be used as a class modifier for 16-bit programs; and as a class,
function, or data modifier in 32-bit programs. If you're importing classes that are
declared with the modifier __huge, you must change the modifier to the keyword

~ _ _import. The _ _huge modifier merely causes far addressing of the virtual tables (the
same effect as the -Vf compiler option). The _ _import modifier makes all function and
static addresses default to _far. , :

188 C++ Programmver’s Guide

Prologs, epilogs, and exports: a summary

Prologs and epilogs are required when exporting functions in a 16-bit Windows
application. They ensure that the correct data segment is active during callback
functions and mark near and far stack frames for Windows stack crawling.

Two steps are required to export a function.
1 The compiler must create the correct prolog and epilog for the function.

2 The linker must create an entry for every export function in the header sect10n of the
executable.

In 32-bit Windows the binding of data segments does not apply However, DLLs must
have entries in the header so the loader can find the function to link to when an .EXE
loads the DLL.

If a function is flagged with the _ _export keyword and any of the Windows compiler
options are used, it will be compiled as exportable and linked as an export.

If a function is not flagged with the _ _export keyword, then one of the following
situations will determine whether the function is exportable:

¢ If you compile with the -tW /-tWC or tWD/-tWCD option (or with the All Functions
Exportable IDE equivalent), the function will be compiled as exportable.

o If the function is listed in the EXPORTS section of the module definition file, the
function will be linked as an export. If it is not listed in the module definition file, or if
no module definition file is linked, it won't be linked as an export.

* If you compile with the -tWE or tWDE/-tWCDE option (or with the Explicit ;
Functions Exported IDE equivalent), the function will not be compiled as exportable.
Including this function in the EXPORTS section of the module definition will cause it
be exported, but, because the prolog is incorrect, the program will run incorrectly.
You may get a Windows error message in the 16-bit environment.

See the table, Compiler options and the _export keyword, for a summary of the effect of
the combination of the Windows compiler options and the _ _export keyword.

Compiler options and the __export keyword

This table summarizes the effect of the combination of various Windows options and
the _ _export keyword:

Chapter 5, Programming for portability 189

Function flagged with

__export? Yes ~ Yes Yes Yes No No No
Function listed in
EXPORTS? Yes Yes No - No Yes Yes No
Is function exportable? ' . v

Yes Yes Yes - Yes Yes No Yes
Will function be " o
exported? Yes Yes Yes Yes Yes Yes ** No ***

* Or the 32-bit console-mode application equivalents.

** The function will be exported in some sense, but because the prolog and epllog will not be correct, the
function will not work as expected.

*##*This combination also makes little sense. It is mefﬁc1ent to compile all functions as exportable if you do not
actually export some of them.

The Borland heap manager

Windows supports dynamic memory allocations on two different heaps: the global heap
and the local heap.

The global heap is a pool of memory available to all applications. Although global
memory blocks of any size can be allocated, the global heap is intended only for large
memory blocks (256 bytes or more). Each global memory block carries an overhead of at
least 20 bytes, and under the Windows standard and 386 enhanced modes, there is a
system-wide limit of 8192 global memory blocks, only some of which are available to
any given application.

The local heap is a pool of memory available only to your application. It exists in the
upper part of an application’s data segment. The total size of local memory blocks that
can be allocated on the local heap is 64K minus the size of the application’s stack and
static data. For this reason, the local heap is best suited for small memory blocks (256
bytes or less). The default size of the local heap is 4K, but you can change this in your
applications .DEF file.

Borland C++ includes a heap manager which implements the new, delete, malloc, and free:
functions. The heap manager uses the global heap for all allocations. Because the global
heap has a system-wide limit of 8192 memory blocks (which certainly is less than what
some applications might require), the Borland C++ heap manager includes a sub-

- allocator algorithm to enhance performance and allow a substantially larger number of

blocks to be allocated.

This is how the segment sub-allocator works: When allocating a large block, the heap
manager simply allocates a global memory block using the Windows Global Alloc
routine. When allocating a small block, the heap manager allocates a larger global
memory block and then divides (sub-allocates) that block into smaller blocks as
required. Allocations of small blocks reuse all available sub-allocation space before the

190 C++ Programmer’s Guide

heap manager allocates a new global memory block, which, in turn, is further
sub-allocated.

The HeapLimit variable defines the threshold between small and large heap blocks.
HeapLimit is set at 64K bytes. The HeapBlock variable defines the size the heap manager
uses when allocating blocks to be assigned to the sub-allocator. HeapBlock is set at 4096
bytes.

32-bit Windows programming

Note

The following topics briefly describe the Win32 and Windows programming
environment, and explain how to port your code to this environment. This port makes
your code compilable to run on both 16- and 32-bit versions of Windows, and
compilable for future processors hosting Windows.

Borland C++ 32-bit tools support the production of 32-bit .OBJ and .EXE files in the
portable executable (PE) file format, which is the executable file format for Win32 and
Windows NT programs. Win32-conforming executables will run unchanged on
Windows NT.

See the topic on building Win32 executables for a discussion of 32-bit tool names,
options, and libraries.

Win32

Win32 is an operating system extension to Windows 3.1 that provides support for
developing and running Windows 32-bit executables. Win32 is a set of DLLs that handle
mapping 32-bit application program interface (API) calls to their 16-bit counterparts, a
virtual device driver (VxD) to handle memory management, and a revised API called
the Win32 APIL The DLL and VxD are transparent.

To make sure your code will compile and run under Win32 you should
1 Make sure your code adheres to the Win32 APL

2 Write portable code using types and macros provided in the windows.h, and
windowsx.h files.

See the topic on writing portable Windows code for some help in ertmg portable

. Windows code.

The Win32 API

The Win32 APl widens most of the existing 16-bit Windows API to 32 bits and adds new
API calls compatible with Windows NT. The Win32 APl is a subset of the Win32 API for
Windows NT. Those 16-bit API calls that have been converted to and are callable in the
32-bit environment, and those 32-bit API calls lmplementable in the 16-bit Windows
environment make up the Win32 APL

If a Win32 executable calls any of the Win32 API functions not supported under Win32,
appropriate error codes are returned at runtime. Writing applications that conform to
the Win32 API, and using the porting tips described under Writing portable Windows

Chapter 5, Programming for portability 191

code means your application will be portable across 16- and 32-bit Wlndows
environments. .

For complete descriptions of Win32 API functions, see the Microsoft Wlndows
documentation.

Writing portable Windows code

This topic provides information about portability constructs introduced in Windows 3.1
that will assist you in producing portable Windows code. Explanations of several
compiler error and warning messages you might likely see when developing portable
code are also included.

Existing Windows 16-bit code can be ported to Win32 and Windows NT with minimal
changes. Most changes revolve around substituting new macros and types for old, and
replacing any 16-bit-specific API calls with analogous Win32 API calls. Once these

changes have been made, your code can compile and run under 16- or 32-bit Windows.

A compile-time environment variable, STRICT, has been provided to assist you in
making your code portable.

STRICT

Windows 3.1 introduced support in windows.h for defining STRICT. Defining STRICT
enables strict compiler error checking. For example, if STRICT is not defined, passing an
HWND to a function that requires an HDC will not cause a compiler warning. Define
STRICT, and you will get a compiler error.

Using STRICT enables
e Strict handle type checking ;
¢ Correct and consistent parameter and return value type declarations

¢ Fully prototyped type definitions for callback function types (window, dialog, and
hook procedures)

¢ ANSI-compliant declaration of COMM, DCB, and COMSTAT structures

STRICT is Windows 3.0 backward compatible. It can be used with the 3.1 windows.h for
creating applications that will run under Windows 3.0.

~ Defining STRICT will assist you in locating and correcting type incompatibilities that
arise when migrating your code to 32 bits, and will aid portability between 16- and
32-bit Windows.

New types, constants, and macros have been provided so you can change your source
code to be STRICT-compliant. The table of STRICT-compliant types provides a list of the

192 C++ Programmer’s Guide

types, macros, and handle types that you can use to make your application STRICT-
compliant.

Table 5.1~ STRICT-compliant types, constants, helper macros, and handles

'CALLBACK Use instead of FAR PASCAL in your callback routines (for example,
window and dialog procedures). '
LPARAM Declares all 32-bit polymorphic parameters.
LPCSTR Same as LPSTR, except that is used for read-only string pointers.
LRESULT Declares all 32-bit poljrrnorphic return values.
UINT . Portable unsigned integer type whose size is determined by the targeted

environment. Represents a 16-bit value on Windows 3.1, and a 32-bit
value on Win32.

WINAPI Use instead of FAR PASCAL for API declarations. If you are writing a
DLL with exported API entry points, you can use this for the API
declarations.

WPARAM Declares all 16-bit polymorphic parameters.

FIELDOFFSET(type, field) Calculates the field offsets in a structure. type is the structure type, and
field is the field name.

MAKELP(sel,off) Takes a selector and offset and produces a FAR VOID*.

MAKELPARAM(low high) Makes an LPARAM out of two 16-bit values.

MAKERESULT(low,high) Makes an LRESULT out of two 16-bit values.

OFFSETOE(lp) - - Extracts the offset of a far pointer and returns a UINT.

SELECTOROFK(lp) Extracts the selector for a far pointer and returns a UINT.

HDRVR ' Driver handle (Windows 3.1 only)

HDWP Defer WindowPost() handle
HFILE File handle’

HGDIOBJ ~ Generic GDI object handle
HGLOBAL Global handle
HINSTANCE Instance handle
HLOCAL Local handle
HMETAFILE Metafile handie
HMODULE Module handle

HRSRC Resource handle

HTASK Task handle

Making your code STRICT-compliant
This steps will help to make your application STRICT-compliant.,

1 Decide what code you want to be STRICT-compliant. Converting your code to
STRICT can be done in stages.

2 Turn on the compiler’s highest error/warning level. In the IDE, use the Make | Break ‘
Make On options. On the command line, use the ~-w switch to display warnings. You
might want to compile at this stage, before taking the next step.

Chapter 5, Programming for portability - 193

3

#define STRICT before mcludmg windows.h and compile, or use -DSTRICT on the
command line.

Note Because of C++ type-safe 1h1king, linking STRICT and non-STRICT modules may cause
linker errors in C++ applications.

STRICT conversion hints ‘
This topic describes some common coding practices you should use when converting
your code to STRICT compliance.

Change HANDLE to the appropriate specific handle type, for example, HMODULE,
HINSTANCE, and so on.

Change WORD to UINT except where you spec:1f1cally want a 16-bit value on a 32-bit
platform.

Change WORD to WPARAM.
Change LONG to LPARAM or LRESULT as appropriate.
Change FARPROC to WNDPROC, DLGPROC, or HOOKPROC as appropriate.

For 16-bit Windows always declare function pointers with the proper function type,
rather than FARPROC. You'll need to cast function pointers to and from the proper
function type when using MakeProcInstance, FreeProcInstance, and other functrons that
take or return a FARPROC, for example:

BOOL CALLBACK DlgProc (HWND hwnd, UINT msg,
WPARAM wParam,
LPARAM 1Param); =
DLGPROC 1pfnDlg;
1pfnDlg= (DLGPROC)MakeProcInstance (DlgProc, hinst);

' FreeProcInstance ((FARPROC) 1pfnDlg) ; .

Take special care with HMODULEs and HINSTANCEs. For the most part, the Kernel
module management functions use HINSTANCES, but there are a few APIs that
return or accept only HMODULEs.

If you've copied any API function declarations from windows.h, they may have
changed, and your local declaration may be out of date. Remove your local
declarations.

Cast the results of LocalLock and GlobalLock to the proper kind of data pointer.
Parameters to these and other memory management functions should be cast to
LOCALHANDLE or GLOBALHANDLE, as appropriate.

Cast the result of Get WindowWord and Get WindowLong and the parameters to
Set WindowWord and SetWindowLong.

When casting SendMessage, DefWindowProc, and SenlegItemMsg, or any other
function that returns an LRESULT or LONG to a handle of some kind, you must first

. cast the result to a UINT:

HBRUSH hbr;
hbr = (HBRUSH) (UINT)SendMessage (hwnd, WM _CTLCOLOR, ..., ...);

194 C++ Programmer’'s Guide

* The CreateWindow and CreateWindowEx hmenu parameter is sometimes used to pass
an integer control ID. In this case you must cast this to an HMENU:

HWND hwnd;

int id;

hwnd = Createw:mdow("Button", "Ok", BS_PUSHBUTTON,
X, Y, X, ¢y, hwndParent,
(HMENU) id, //Cast required here
hinst, NULL);

* Polymorphic data types (WPARAM, LPARAM, LRESULT, void FAR*) should be
assigned to variables as soon as possible. You should avoid using them in your own
code when the type of the value is known. This will minimize the number of
potentially unsafe and non-32-bit-portable casting you will have to do in your code.
The macro APIs and message cracker mechanisms provided in windowsx.h will take
care of almost all packing and unpackjng of these data types in a 32-bit portable way.

¢ Become familiar with the common compller warmngs and errors that you're likely to
encounter as you convert to STRICT.

~ Some of the most common compiler errors and warnings you might encounter are
described under “The UINT and WORD types.”

See also the description of message crackers later in this chapter.

The UINT and WORD types

The type UINT has been created and used extensively in the API to create a data type
portable from Windows 3.x. UINT is defined as

typedef unsigned int UINT;

UINT is needed because of the difference in int sizes between 16-bit Windows and
Win32. For 16-bit Windows, int is a 16-bit unsigned integer; for Win32 int is a 32-bit
unsigned integer. Use UINT to declare integer objects expected to widen from 16 to 32
bits when compiling 32-bit applications.

The type WORD is defined as
typedef unsigned short WORD;

WORD declares a 16-bit value on both 16-bit Windows and Win32. Use WORD to create
objects that will remain 16 bits wide across both platforms. Note that because Win32
handles are w1dened to 32 bits, WORD can no longer be used for handles.

The WINAPI and CALLBACK calling conventions

The windows.h macro WINAPI defines the calling convention. WINAPI resolves to the
appropriate calling convention for the targeted platform. WINAPI should be used in
place of FAR PASCAL.

For example, here is an unportant change necessary for window procedure definitions.
The following is code as it would appear in 16-bit Windows:

LONG . FAR PASCAL WindowProc (HANDLE hWwnd, unsigned message
WORD wParam, LONG lParam)

Chapter 5, Programming for portability 195

Here is the Win32 version:

LONG WINAPI WindowProc (HWND hWnd, UINT message
"~ UINT wParam, LONG .1Param)

Using WINAPI allows specifying alternative calling conventions. Currently, Win32 uses
_stdcall. The fundamental type unsigned is changed to the more portable UINT. WORD
is also changed to UINT, in this case illustrating the expansion of wParam to 32 bits. Not
making this change to wParam will result in application failure durmg initial window
creation.

Use the CALLBACK calling convention in your callback function declarations. This
replaces FAR PASCAL.

Extracting message data ‘ :

In 32-bit Windows code you need to change the way you unpack message data from
IParam and wParam. In Win32 wParam grows from 16 to 32 bits in size, while [Param
remains 32 bits wide. But since [Param frequently contains a handle and another value in
16-bit Windows, and a handle grows to 32 bits under Win32, another packing scheme
was necessary for wParam and [Param.

For example, WM_COMMAND is one of the messages affected by the changes to extra
parameter size. Under Windows 3.x wParam contains a 16-bit identifier, and [Param
contains both a 16-bit window handle and a 16-bit command.

Under Win32 [Param contains the window handle, but nothing else since window
handles are now 32 bits. So the 16-bit command is moved from [Param to the low-order
16 bits of wParam (now 32 bits), with the high order 16 bits of wParam containing the
identifier. This repacking means changing the way you extract information from these
parameters. An easy, portable way of extracting message data is by using message

’ crackers

Message crackers

Message crackers are a portable way of extracting messages from wParam and [Param.
Depending on your environment (16-bit Windows or Win32), message crackers use an
appropriate technique for extracting the message data. Each Windows message has a set

of message crackers.

For example, here is the 32-bit version of the WM_COMMAND message crackers:
#define GET_WM_COMVAND ID(wp, 1p) LOWORD (wp) '
#define GET_WM_COMMAND_HWND(wp, 1p) (HWND) (1p)
#define GET WM_COMMAND_CMD(wp, 1p) HIWORD (wp)

#define GET WM_COMMAND_MPS (id, hwnd, cmd) \
(WPARAM) MAKELONG(id, cmd),

(LONG) (hwnd) .
And here is the 16-bit version of the WM_COMMAND message crackers:
#define GET.WM_COMMAND_ID(wp, lp) , (wp)

#define GET_WM_COMMAND_HWND (wp, 1p) (HWND) LOWORD (1p)

196 C++ Programmer's Guide

#define GET_WM COMMAND_CMD(wp, 1p) HIWORD (1p)
#define GET WM_COMMAND MPS{(id, hwnd, cmd) \
(WPARAM) (id) , MAKELONG (hwnd, cmd)

Using these message-cracker macros will ensure that your message extraction code is
portable to either platform.

Porting DOS system calls ,
Windows 3.0 provided the DOS3Call API function for calling DOS file I/O functions.
This function, and other INT 21H DOS functions, are replaced in Win32 by named 32-bit
calls. See the list of DOS INT 21H calls and their equivalent Win32 API functions.

Table5.2 INT 21H and Win32 equivalent functions

OEH B Select disk kSetCurrentDlrectory
19H Get current disk GetCurrentDirectory
2AH ~ Get date GetDateAndTime
2BH Set date SetDateAndTime
2CH Get time GetDateAndTime
2DH Set time SetDateAndTime
36H Get disk free space GetDiskFreeSpace

' 39H Create directory CreateDirectory
3AH Remove directory RemoveDirectory
3BH Set current directory SetCurrentDirectory
3CH Create handle CreateFile
3DH Open handle CreateFile
3EH Close handle CloseHandle
3FH Read handle ReadFile
40H Write handle WriteFile
41H Delete file DeleteFile
42H Move file pointer SetFilePointer
43H Get file attributes GetAttributesFile
43H Set file attributes SetAttributesFile
47H Get current directory GetCurrentDirectory
4FH Find first file FindFirstFile
4FH Find next file FindNextFile
56H Change directory entry MoveFile
57H Get file date/time GetDateAndTimeFile
57H Set file date/time SetDateAndTimeFile
59H ~ Get extended error GetLastError
5AH Create unique file GetTempFileName
5BH Create new file CreateFile
5CH Lock file LockFile
5CH Unlock file UnlockFile
67H Set handle count SetHandleCount

Chapter 5, Programming for portability 197

Common compiler errors and warnings
This topic describes some of the common compiler errors and warnings you might get

when trying to make your application compile cleanly with all messages enabled, and
with or without STRICT defined.

Warning: Call to function funcname with no prototype \
This means that a function was used before it was prototyped, or declared. It can also
arise when a function that takes no arguments is not prototyped with void:

void bar(); /* Should be: bar(void) */
void main(void)
{

bar();
}

Warning: Conversion may lose significant digits

This warning results when a value is converted by the compﬂer such as from LONG to
int. You're being warned because you might lose information from this cast. If you're
sure there are no information-loss problems, you can suppress this warning with the
appropriate explicit cast to the smaller type.

Warning: Function should return a value

This warning means that a function declared to return a value does not return a value.
In older, non-ANSI C code, it was common to declare functions that did not return a
value with no return type:

foo (i)
int i;
{
}

Functions declared in this manner are treated by the compiler as being declared to
return an int. If the function does not return anything, it should be declared void:

void foo(int i)

{

}

Error: Lvalue required

Error: Type mismatch in parameter :

These errors indicate that you are trying to assign or pass a non-pointer type when a
pointer type is required. With STRICT defined, all handle types as well as LRESULT,
WPARAM, and LPARAM are internally declared as pointer types, so trying to pass an
int, WORD, or LONG as a handle will result in these errors.

These errors should be fixed by properly declaring the non-pointer values you're
assigning or passing. In the case of special constants such as (HWND)1 to indicate
“insert at bottom” to the window positioning functions, you should use the new macro
(such as HWND_BOTTOM). Only in rare cases should you suppress a type mismatch
error with a cast. This can often generate incorrect code.

198 C++ Programmer’s Guide

Error: Type mismatch in redeclaration of paramname
This error will result if you have inconsistent declara’ﬂons of a variable, parameter, or
function in your source code.

Warning: Conversion may lose significant digits

This warning results when a value is converted by the compiler, such as from LONG to
int. You're being warned because you may lose information from this cast. If you're sure
there are no information-loss problems, you can suppress this warning with the
appropriate explicit cast to the smaller type.

Warning: Non-portable pointer conversion

This error results when you cast a near pointer or a handle to a 32-bit value such as
LRESULT, LPARAM, LONG, or DWORD. This warning almost always represents a bug,
because the high order 16 bits of the value will contain a non-zero value. The compiler
first converts the 16-bit near pointer to a 32-bit far pointer by placing the current data
segment value in the high 16 bits, then converts this far pointer to the 32-bit value.

To avoid this warning and ensure that a 0 is placed in the high 16 bits, you must first cast
- the handle to a UINT:

HWND hwnd;
LRESULT result = .(LRESULT) (UINT)hwnd;

In cases where you do want the 32-bit value to contain a far pointer, you can avoid the
warning with an explicit cast to a far pointer:
" char near* pch; '

LPARAM lParam = (LPARAM) (LPSTR)pch;

Error: Size of the type is unknown or zero

This error results from trying to change the value of a void pointer with + or +=. These
typically result from the fact that certain Windows functions that return pointers to
. arbitrary types (such as GlobalLock and LocalLock) are defined to return void FAR* rather
- than LPSTR.

To solve these problems, you should assign the void* value to a properly declared
variable (with the appropriate cast): :

BYTE FAR* lpb = (BYTE FAR*)GlobalLock(h);
lpb += sizeof (DWORD) ;

Error: Not an allowed type
This error typically results from trying to dereference a void pointer. This usually
results from directly using the return value of GlobalLock or LocalLock as a pointer. To
solve this problem, assign the return value to a variable of the appropriate type (with the
appropriate cast) before using the pointer:

BYTE FAR* lpb = (BYTE FAR*)GlobalLock(h);

*1pb = 0;

Warning: Parameter paramname is never used

This message can result in callback functions when your code does not use certain
parameters. You can either turn off this warning, use #pragma argsused to suppress it,
or you can omit the name of the parameter i in the function definition.

Chapter 5, Programming for portabitity 199

By adhering to the Win32 API, and using STRICT to make code changes, you w111 make
your Windows code portable.

Building Win32 executables
You must use the proper tools, switches, libraries, and startup code to build a Win32
application. The following table lists the compiler (BCC32) and linker (TLINK32)

switches, libraries, and startup code commonly needed when linking, and the resulting
executable type (.DLL or EXE)

Table 53 Win32 options, startup code, and libraries

~tW, ~WE /Tpe cw32.lib © cOw32.0bj EXE

import32.lib
—WD, +WDE /Tpd cw32lib - - <0d32.0bj DLL
: import32.lib ’
—WC /Tpe/ap = cw3lib c0x32.0bj Console .EXE
import32.lib
—tWCD,+WCDE /Tpd /ap cw32.lib c0d32.0bj DLL
' . import32.lib '

200 C++ Programmer’s Guide

Chapter

' Using dynamic-link libraries

Using DLLs in your applications reduces .EXE file size, conserves system memory, and
provides more flexibility in changing, extending, or upgrading your applications.
Windows supports both dynamic linking and static linking.

Creatmg aDLL

You create a DLL in much the same way you create an EXE:

Source files containing your code are compiled into .OBJ files
.OB]J files are linked together

The DLL, however, has no main function, and is therefore linked differently. »

The following topics describe how to write a DLL:

Borland DLLs

DLLs and 16-bit Memory Models
Exporting and Importing Classes
Exporting and Importing Functions
LibMain and DIlEntryPoint

WEP (Windows Exit Procedure)

Static linking

When an application uses a function from a static-link library (for example, the C run-
time library), a copy of that function is bound to your application by TLINK at link time.
Two applications running simultaneously that use the same function would each have
their own copy of that function. It is more efficient, however, if both applications shared

Chapter 6, Using dynamic-link libraries 201

a smgle copy of the function. Dynamic linking prov1des this capability by resolving your
application’s references to external functions at run time.

- Dynamic linking

When a program uses a function from a DLL, the function code is not linked into the
.EXE. Instead, dynamic linking uses a two-step method:

1 Atlink time, TLINK binds import records (which contain DLL and procedure-
location information) to your .EXE. This temporarily satisfies any external references
" to DLL functions in your code. These import records are supplied by module-
definition files or import libraries.

2 Atrun time, the import-record information is used to locate and bind the DLL
functions to your program.

With dynamic linking, your applications are smaller because: »
¢ Only one copy of the function code is linked into your application.

¢ System memory is conserved because DLL code and resources are shared among
applications.

DLL

A DLL is an executable library module containing functions or resources for use by
applications or other DLLs. A DLL has no main function, which is the usual entry point
for an application. Instead, a DLL has multiple entry points, one for each exported
function.

When a DLL is loaded by the operating system, the DLL can be shared among multiple
applications; one loaded copy of the DLL is all that’s necessary.

LibMain and DIIEntryPoiht

Syntax

int FAR PASCAL LibMain (HINSTANCE hInstance, WORD wDataSeg, WORD cheapslze
LPSTR lpCmdLine)

Description
You must supply the LibMain function for 16-bit programs, or the DIIEntryPoint (32-bit
Windows API) function for 32-bit programs as the main entry point for a DLL.

¢ For 16-bit programs, Windows calls LibMain once, when the hbrary is first loaded.
LibMain performs initialization for the DLL.

* For 32-bit programs, Windows calls DIIEntryPoint each time the DLL is loaded and
unloaded (it replaces WEP for 32-bit applications), each time a process attaches to or
detaches from the DLL, or each time a thread within the process is created or
destroyed

202 C++ Programmer’s Guide

DLL initialization depends almost entirely on the function of the particular DLL, but
might include the following typical tasks: '

e Unlocking the data segment with UnlockData, if it has been declared as MOVEABLE.
*_ Setting up global variables for the DLL, if it uses any.
The initialization code is executed only for the first application using the DLL.

The DLL startup code initializes the local heap automatically; you don't need to include
code in LibMain to do this.

The following parameters (defined in windows.h) are passed to LibMain:

WORD wDataSeg Value of the data segment (DS) register.

WORD ‘ cbHeapSize Size of the local heap specified in the module definition file for
the DLL.

LPSTR IpCmdLine A far pointer to the command line specified when the DLL was
loaded.

This value is almost always null because DLLs are typically
loaded automatically with no parameters. It is possible,
however, to supply a command line to a DLL when it is loaded
explicitly. ‘

Return value
On success, LibMain returns 1 (successful initialization).

On error, it returns 0 (failure in initialization).

Note If LibMain returns 0, Windows unloads the DLL from memory. -

WEP (Windows Exit Procedure)

Syntax

int FAR PASCAL WEP (int nParameter)
where nParameter is either

e WEP SYSTEM EXIT (indicates that all of Windows is shutting down)
e WEP_FREE_DLL (indicates that only this DLL is being unloaded)

Description ‘

The exit point for a 16-bit DLL is the function WEP (Windows Exit Procedure). This
function is not required in a DLL (because the Borland C++ run-time libraries provide a
default), but you can supply your own WEP to perform any DLL cleanup before the
DLL is unloaded from memory. Windows calls WEP just prior to unloading the DLL.

Under Borland C++, WEP does not need to be exported. Borland C++ defines its own
WEP that calls your WEP (if you have defined one), and then performs system cleanup.

Chapter 6, Using dynamic-link libraries 203

Return value

WEP returns 1 to indicate success. Windows currently does not do anything with this
return value.

Exporting and importing functions

To make your DLL functions accessible to other applications (.EXEs or other DLLs), the
function names must be exported. To use exported functions, the function names must be
imported. |

Exporting functions

There are two ways to export functions:

¢ Create a module-definition file with an EXPORTS section listihg all functions that -
will be used by other applications. The IMPDEF tool can help you do this.

¢ Precede every function name to be exported in the DLL with the keyword _export in
the function definition.

A function must be exported from a DLL before it can be imported to another DLL or
application.

Importing functions

If-a Windows application module or another DLL uses functions froma DLL, you must
tell the linker that you want to import the functions. There are three ways to do this:

o Add an IMPORTS section to the module-definition file and list every DLL function
that the module will use.-

¢ Include the import library for the DLLs when you link the module. The IMPLIB tool
creates an import library for one or more DLLs.

* Define your function uéing the _import keyWord (32-bit applications only).

DLLs and 16-bit memory models

Functions in a DLL are not linked directly into a Windows application. They are called
at run time instead. Calls to DLL functions, therefore, will be far calls because the DLL
will have a different code segment than the application. The data used by called DLL
functions also need to be far.

Suppose you have a Windows application called APP1, a DLL defined by
LSOURCEL1.C, and a header file for that DLL called Isourcel.h. Function fI, which
operates on a string, is called by the application.

If you want the function to work correctly regardless of the memory model used to
compile the DLL, you need to explicitly make the function and its data far. In the header
file Isourcel.h, the function prototype would take this form:

204 C++ Programmer’s Guide

extern int _export FAR f(char FAR *dstring)'

In the DLL source LSOURCEL1.C, the implementation of the function would take this
form:

int FAR f1(char far *dstring)

{

} .
For the application to use the function, the function must be compiled as exportable and
then exported. To accomplish this, you can either compile the DLL with all functions

exportable (-WD) and list fI in the EXPORTS section of the module-definition file, or
you can flag the function with the _export keyword, as follows:

int FAR _export fl(char far *dstring)

{

} -
If you compile the DLL under the large model (far data, far code), then you don't need to
explicitly define the function or its data as far in the DLL. In the header file, the

prototype would still take the form shown here because the prototype would need to be
correct for a module compiled with a smaller memory model:

extern int FAR f1 (char FAR *dstring);
In the DLL, however, the function could be deflned like this:
int _export f1(char *dstring)
{
}
Remember that before an application can use f1, it has to be imported into the

application, either by listing f1 in the IMPORTS section of a module-definition file or by
linking with an import library for the DLL.

Exporting and importing classes

To use classes in a DLL, the class must be exported from the .DLL file and imported by
the .EXE file. Conditionalized macro expansion can be used to support both of these
circumstances. For example, include something similar to the following code in a header
file:

#1f defined (BUILDING_YOUR_DLL)

#define _YOURCLASS _export
#elif defined(USING_YOUR_DLL)

#define _YOURCLASS _import
#else :

#define _YOURCLASS
#endif

Chapter 6, Using dynamic-link libraries 205

In your definitions, define your classes like this:
class _YOURCLASS classl {

...

}i

Define BUILD_YOUR_DLL (with the -D option, for example) when you are bulldmg
your DLL. The _"YOURCLASS macro will expand to _import. Define USE_YOUR_DLL
when you are building the .EXE which will use the DLL. The YOURCLASS macro will
expand to _import.

See also the discussion on using _export with C++ classes.

Static data in 16-bit DLLs

Through the functions in a DLL, all applications using the DLL have access to the global
data in the DLL. In 16-bit DLLs, a particular function will use the same data, regardless
of the application that called it (unlike 32-bit DLLs where all data is private to the
process). If you want a 16-bit DLL's global data to be protected for use by a single
application, you need to write that protection yourself. The DLL itself does not have a
mechanism for making global data available to a single application. If you need data to
be private for a given caller of a DLL, you need to dynamically allocate the data and
manage the access to that data manually. Statlc data in a 16-bit DLL is global to all callers
of a DLL.

Borland DLLs

General forms of compiler and linker command lines that use the DLL versions of the
Borland run-time libraries and class libraries are described below.

Here is a 16-bit compile and link using the DLL version of the run-time library:
bcc -¢ ~-D_RTLDLL —mlksource.cpp
tlink -C -Twe cOwl source, , , import crtldll
Note that the macro RTLDLL and the -ml switch are use.
Here is the 32-bit version:
bce32 -¢ -D_RTLDLL source.cpp
t1link32 -Tpe -ap c0x32 source, , , import32 cw32i
Here is a 16-bit compile and link using the DLL version of the class library:
bcc -¢ -D_BIDSDLL -ml source.cpp

tlink -C -Twe cOwl source, , , import bidsi crtldll

206 C++ Programmer’s Guide 7

Here is a 32-bit compile and link using the DLL version of the class library:
bce32 -¢ -D_BIDSDLL source.cpp

tlink32 -Tpe -ap c0x32 source, , , import32 bidsfi cw32i

Chapter 6, Using dynémic—!ink libraries 207

208 C++ Programmer’s Guide

Using inline assembly

Inline assembly is ass;embly—language instructions embedded within your C or C++
code. Inline assembly instructions are compiled or assembled along with your code
rather than being assembled in separate assembly modules.

This chapter describes how to use inline assembly with Borland C++. The followmg
topics are discussed:
¢ Inline assembly syntax and usage

‘e Using the asm keyword to place an assembly instruction within your C/C++ code
e Using C symbols in your asm statements to reference data and functions

s Using register variables, offsets, and size overrides

¢ Using C structure members

e Using jump instructions and labels

¢ Using the ~B compiler option and #pragma mlme statement to compile inline
assembly .

¢ Using the built-in assembler (BASM)

See the C++ User’s Guide for the IDE equivalents of command-line options.

Inline assembly syntax and usage

This section describes inline assembly syntax, and how to use inline assembly
instructions with C++ structures, pointers, and identifiers.

To place an assembly instruction in your C/C++ code, use the asm keyword. The
format is

- asm opcode operands ; or newline
where

* opcode is a valid 80x86 instruction. |

Chapter 7, Using inline assembly 209

e operands contains the operand(s) accéptablé to the opcode, and can reference C
constants, variables, and labels.

* The end of the asm statement is signaled by either ; (semjcolon) or by newline (a new
line). :

A new asm statement can be placed on the same line, following a semicolon, but no asm
statement can continue to the next line. To include multiple asm statements, surround
them with braces. The initial brace must appear on the same line as the asm keyword.

Three asm statements are shown here; two on one line, and one below them.

asm {
pop ax; pop ds
iret

}

Semicolons are not used to start comments (as they are in TASM). When commenting
asm statements, use C-style comments, like this: .

asm mov ax,ds; /* This comment is OK */
asm {pop ax; pop ds; iret;} ./* This comment is also legal */
asm push ds ;THIS COMMENT IS INVALID!!

The assembly-language portion of the statement is copied straight to the output,
embedded in the assembly language that Borland C++ is generating from your C or
C++ instructions. Any C symbols are replaced with appropriate assembly language
equivalents.

Each asm statement is considered to be a C statement. For example, the following
construct is a valid C if statement:

myfunc ()
{
int i;
int x;
if (1> 0)
asm mov Xx,4
else
i=17;

}

Note that a semicolon isn't needed after the mov x4 instruction. asm statements are the
only statements in C that depend on the occurrence of a new line to indicate that they
have ended. Although this isn’t in keeping with the rest of the C language, it is the
convention adopted by several UNIX-based compilers.

An asm statement can be used as an executable statement inside a function, or as an
external declaration outside of a function. asm statements located inside functions are
placed in the code segment, and asm statements located outside functions are placed in
the data segment.

210 C++ Programmer’s Guide

Inline assembly references to data and functions

You can use any C symbol in your asm statements, including automatic (local)
variables, register variables, and function parameters. Borland C++ automatically
converts these symbols to the appropriate assembly-language operands and appends
underscores onto identifier names.

In general, you can use a C symbol in any position where an address operand would be
legal. Of course, you can use a register variable wherever a register would be a legal
operand.

If the assembler encounters an identifier while parsing the operands of an inline-
assembly instruction, it searches for the identifier in the C symbol table. The names of
the 80x86 registers are excluded from this search. Either uppercase or lowercase forms
of the register names can be used.

Inline assembly and register variables

Inline assembly code can freely use SI or DI as scratch registers. If you use SI or DI in
inline assembly code, the compiler won’t use these registers for register variables.

In 16-bit code BX is available for use as a scratch register. In 32-bit code, the
corresponding EBX is not available for use as a scratch register.

When you use BCC32 or BCC32A to compile a C or C++ source file, including files with
inline assembly, the compiler preserves the EBX register. However, when you compile
an assembly .ASM source file, you are responsible for preserving the EBX register. This
is true whether you compile the .ASM source file with a 32-bit compiler or use TASM32.

Inline assembly, offsets, and size overrides
When programming, you don’t need to be concerned with the exact offsets of local
variables: using the variable name will include the correct offsets.

It might be necessary, however, to include appropriate WORD PIR, BYTE PTR, or other
size overrides on assembly instruction. A DWORD PTR override is needed on LES or
indirect far call instructions.

Using C structure members

You can reference structure members in an inline-assembly statement in the usual way
(that is, with variable.member). When you do this, you are working with variables, and
you can store or retrieve values in these structure members. However, you can also
directly reference the member name (without the variable name) as a form of numeric
constant. In this situation, the constant equals the offset (in bytes) from the start of the
structure containing that member. Consider the following program fragment:

struct myStruct {
int a_a;
int a_b;
int a_c;

} myA ;

myfunc ()

Chapter 7, Using inline assembly 211

asm {mov ax, WORD PTR myA.a_b
mov bx, WORD PIR myA.a_cC
}

}

This fragment declares a structure type named myStruct with three members: a_a, a_b,
and a_c. It also declares a variable myA of type myStruct. The first inline-assembly
statement moves the value contained in myA.a_b into the register AX. The second moves
the value at the address [di] + offset(a_c) into the register BX (it takes the address stored
in DI and adds to it the offset of a_c from the start of myStruct). In this sequence, these
assembler statements produce the following code:

mov ax, DGROUP : myA+2
mov bx, [di+4]

This way, if you load a register (such as DI) with the address of a structure of type
myStruct, you can use the member names to directly reference the members. The
member name can be used in any position where a numeric constant is allowed inan
assembly-statement operand.

The structure member must be preceded by a dot (.) to signal that a member name,
rather than a normal C symbol, is being used. Member names are replaced in the
assembly output by the numeric offset of the structure member (the numeric offset of
a_cis 4), but no type information is retained. Thus members can be used as compile-time
constants in assembly statements.

There is one restriction, however: if two structures that you're using in inline assembly
have the same member name, you must distinguish between them. Insert the structure
type (in parentheses) between the dot and the member name, as if it were a cast. For
example,

asm mov - bx, [di].(struct tm)tm hour

Using jump instructions and labels

You can use any of the conditional and unconditional jump instructions, plus the loop
instructions, in inline assembly. These instructions are valid only inside a function. Since
no labels can be defined in the asm statements, jump instructions must use C goto labels
as the object of the jump. If the label is too far away, the jump will not be automatically
converted to a long-distance jump. For this reason, you should be careful when inserting
conditional jumps. You can use the -B switch to check your jumps. Direct far jumps
cannot be generated.

In the following code, the jump goes to the C goto label a.

int x()
a: . /* This is the goto label "a" */

asm Jmp a i /* Goes to label "a" */

212 C++ Programmer’s Guide

Indirect j]umps are also allowed. To use an mdlrect jump, use a register name as the
operand of the jump instruction.

Compiling with inline assembly

Note

There are two ways Borland C++ can handle inline assembly code in your C or C++
code.

¢ Borland C++ can convert your C or C++ code into assembly language, then transfer
to TASM to produce an .OB] file. (This method is described in this section.)

¢ Borland C++ can use its built-in assembler (BASM) to insert your assembly :
statements directly into the compiler’s instruction stream (16-bit compiler only). (This
method is described in the following section.)

You can use the ~B compiler optloh for inline assembly in your C or C++ program. If
you use this option, the compiler first generates an assembly file, then invokes TASM on
that file to produce the .OB]J file.

By default -B invokes TASM or TASM32. You can override it with —Exxx, where xxx is
another assembler. See the C++ User’s Guide for details.

You can invoke TASM while omitting the -B option if you include the #pragma inline
statement in your source code. This statement enables the —-B option for you when the
compiler encounters it. You will save compile time if you put #pragma inline at the top
of your source file.

The —B option and #pragma inline tell the compiler to produce an .ASM file, which
might contain your inline assembly instructions, and then transfer to TASM to assemble
the .OB] file. The 16-bit Borland C++ compiler has another method, BASM, that allows
the compiler, not TASM, to assemble you inline assembly code.

Using the built-in assembler (BASM)

The 16-bit compiler can assemble your inline assembly instructions using the built-in
assembler (BASM). This assembler is part of the compiler, and can do most of the things
TASM can do, with the following restrictions: :

* It can’t use assembler macros.

¢ It can’t handle 80386 or 80486 instructions.

¢ It doesn’t permit Ideal mode syntax.

¢ It allows only a limited set of assembler directives (see page 216).

Because BASM isn’t a complete assembler, it might not accept some assembly-language
constructs. If this happens, Borland C++ will issue an error message. You then have two
choices: you can simplify your inline assembly-language code so the assembler will
accept it, or you can use the —B option to invoke TASM to catch whatever errors there
might be. TASM might not identify the location of errors, however, because the original
C source line number is lost.

Chapter 7, Using inline assembly 213

Opcodes

I

* You can include any of the 80x86 instruction opcodes as inline-assembly statements.
There are four classes of instructions allowed by the Borland C++ compiler:

Normal instructions—the regular 80x86 opcode set
String instructions—special string-handling codes
Jump instructions—various jump opcodes
Assembly directives—data allocation and definition

All operands are allowed by the compiler, even if they are erroneous or disallowed by
the assembler. The exact format of the operands is not enforced by the compiler.

Table 7.1 lists all allowable BASM opcodes. For 80286 mstruchons use the -2 command-
~ line compiler option.

Note If you're using inline assembly in routines that use ﬂoatmg point emulation (the
command-line compiler option —f), the opcodes marked with * aren’t supported.

Table7.1 BASM opcode mnemonics

aaa fdivrp fpatan Isl
aad feni fprem - mov
aam ‘ ffree* fptan mul
aas fiadd frndint neg
adc ficom frstor nop
add i ficomp fsave , not
and - fidiv o fscale) or
bound fidivr fsqrt out
call fild ' fst pop
cbw fimul fstew popa
cle fincstp* fstenv . popf
cld finit fstp ~ push
cli fist fstsw pusha
ame fistp _ fsub pushf
cnp fisub fsubp rcl
cwd , fisubr fsubr rer
daa ' fld fsubrp ret
das fid1 ftst rol
dec fldew fwait ror
div fldenv fxam \ sahf
enter fidlze fxch sal
f2xm1 fldt : fxtract sar
fabs fidig2 fylox sbb
fadd fidin2 fyl2xpl shl
faddp fidpi hlt , shr
fbld fldz idiv smsw
fbstp , fmul imul stc
fchs foulp in . std

214 C++ Programmer’'s Guide

Table 7.1 BASM opcode mnemonics (continued)

fclex fnclex inc - sti
fcom fndisi int sub
fcomp fneni into test
fcompp fninit iret verr
fdecstp fnop lahf verw
fdisi fnsave Ids wait
fdiv fnstcw lea xchg
fdivp fnstenv * leave xlat
fdivr fnstsw les Xor

* Not supported if you're using inline assembly in routines that use floating-point emulatlon (the
command-line compiler ophon —£).

When usmg 80186 instruction mnemonics in your inline-assembly statements, you must
include the -1 command-line option. This forces appropriate statements into the
assembly-language compiler output so that the assembler will expect the mnemonics. If
_you’re using an older assembler, these mnemonics might not be supported.

String instructions
In addition to the opcodes listed in Table 7.1, the string instructions given in Table 7.2
can be used alone or with repeat prefixes. -

Table7.2 BASM string instructions

cmps insw movsb coutsw stos
cmpsb lods movsw scas stosb
cmpsw lodsb scasb stosw

lodsw outsb scasw ‘

insb movs

The following preﬁxesrcan be used with the string instructions:

lock rep repe .repne repnz repz

Jump instructions

Jump instructions are treated specially. Because a label can’t be 1ncluded on the
instruction itself, jumps must go to C labels (see the “Using jump instructions and
labels” section on page 212). The allowed jump instructions are given in the next table.

Table7.3 Jump instructions

ja jge jnc jns loop
jae il jne nz loope
b Cle ing jo loopne
joe jmp jnge P loopnz
jc jna) jnl- jpe loopz
jexz jnae jle jpo

Chapter 7, Using inline assembly 215

Table 7.3 Jump instructions (continued)

je jnb- jo s
ig) jnbe . np jz
- Assembly directives ,
The following assembly directives are allowed in Borland C++ inline-assembly
statements:
db dd dw extrn

216 C++ Programmer’s Guide

Note

Chapte r

Header files summary

Header files, also called include files, provide function prototype declarations for library
functions. Data types and symbolic constants used with the library functions are also
defined in them, along with global variables defined by Borland C++ and by the library
functions. The Borland C++ library follows the ANSI C standard on names of header
files and their contents.

The middle column indicates C++ header files and header files defined by ANSI C.

alloch

assert.h
bcd.h

bios.h

bwcc.h
checks.h
complex.h

conio.h

constreah

cstring.h
ctype.h

date.h

ANSIC
C++

C++
C++

C++

CC++

ANSIC

C++

Declares memory-management functlons (allocation,
deallocation, and so on).

Defines the assert debugging macro.

Declares the C++ class bed and the overloaded operators
for bed and bed math functions:

Declares various functions used in calling IBM-PC ROM
BIOS routines.

Defines the Borland Windows Custom Control interface.

* Defines the class diagnostic macros.

Declares the C++ complex math functions.

Declares various functions used in calling the operatmg
system console I/O routines.

Defines the conbuf and constream classes.
Defines the string classes.

Contains information used by the character classification
and character conversion macros (such as isalpha and
toascii).

Defines the date class.

Chapter 8, Header files summary 217

' _defs.h -
dirh
direct.h
dirent.h
dos.h

errno.h
excepth
excpt.h
fentlh

file.h
float.h
fstream.h

generic.h
ioh

iomanip.h
iostream.h
limits.h
locale.h

malloc.h
math.h

mem.h

memory.h

new.h

ANSIC
C++

CH++
ANSIC

. C++

CH++

C++

C++
ANSIC

ANSIC

ANSIC

C++

218 C++ Prbgrammer’s Guide

Defmes the calling conventions for different apphcanon ‘
types and memory models.

Contains structures, macros, and functions for working
with directories and path names.

Defines structures, macros, and functions for dealing
with directories and path names.

Declares functions and structures for POSIX directory
operations.

Defines various constants and gives declarations needed
for DOS and 8086-specific calls.

Defines constant mnemonics for the error codes.
Declares the exception-handling classes and functions.
Declares C structured exception support.

Defines symbolic constants used in connection with the
library routine open.

. Defines the file class.

Contains parameters for floating-point routines.

Declares the C++ stream classes that support file input
and output.

Contains macros for generic class declarations.

Contains structures and declarations for low-level
input/output routines. :

Declares the C++ streams I/O manipulators and-
contains templates for creating parameterized
manipulators.

Declares the basic C++ streams (I/0) routines.

Contains environmental parameters, information about
compile-time limitations, and ranges of integral
quantities.’

Declares functions that provide country- and language-
specific information.

‘Declares memory-management functions and variables.

Declares prototypes for the math functions and math
error handlers.

Declares the memoty-manipulation functions. (Many of
these are also defined in string.h.)

Contains memory-manipulation functions.

Access to _new_handler and set_new handler.

_nfileh Defines the maximum number of open files.

_nullh . Defines the value of NULL.

process.h Contains structures and declarations for the spawn... and
exec... functions.

search.h Declares functions for searching and sorting.

setjimp.h ANSIC Declares the functions longjmp and setjmp and defines a

- type jmp_buf that these functions use. -

shareh Defines parameters used in functions that make use of
file-sharing.

signal.h ANSIC Defines constants and declarations for use by the signal

. and raise functions.
stdarg.h ANSIC Defines macros used for reading the argument list in

functions declared to accept a variable number of
arguments (such as vprintf, vscanf, and so on).

stddef.h ANSIC Defines several common data types and macros.

stdio.h ANSIC Defines types and macros needed for the standard I/O
package defined in Kernighan and Ritchie and extended
under UNIX System V. Defines the standard I/O
predefined streams stdin, stdout, stdprn, and stderr and
declares stream-level I/O routines.

stdiostr.h - C++ Declares thé C++ (version 2.0) stream classes for use
' with stdio FILE structures. You should use iostream.h for
new code.
stdlib.h - ANSIC Declares several commonly used routines such as
conversion routines and search/sort routines.
string.h ANSIC Declares several string-manipulation and memory-
manipulation routines. .
strstrea.h Ci++ Declares the C++ stream classes for use with byte arrays
in memory.
sys\locking.h Contains definitions for mode parameter of locking
function.
sys\stat.h Defines symbolic constants used for opening and
creating files.
sys\timeb.h Declares the function ftime and the structure timeb that
o ~ ftime returns.)
sys\types.h Declares the type time_t used with time functions.
thread.hy C++ Defines the thread classes.
time.h ANSIC Defines a structure filled in by the time-conversion

routines asctime, localtime, and gmtime, and a type used
by the routines ctime, difftime, gmtime, localtime, and
stime. It also provides prototypes for these routines.

Chapter 8, Header files summary 219

typeinfo.h C++ Declares the run-time type information classes.

utime.h : Declares the utime function and the utimbuf struct that it
returns. L

values.h ' Defines important constants, including machine
dependencies; provided for UNIX System V
compatibility.

varargs.h Definitions for accessing parameters in functions that

accept a variable number of arguments. Provided for
- UNIX compat1b1l1ty, you should use stdarg.h for new
code.

Using precompiled headers

Borland C++ can generate (and subsequently use) precompiled headers to speed up
your project compile times.

Precompiled headers are header files that are compiled once, then used over and over
again in their compiled state.

You can use a precompiled header if a compilation uses one or more of the same header
files, the same compiler options, the same macro defines, and so on, as is contained in
the precompiled header file.

To control the use of precompiled headers, do one of the following:

* From within the IDE, turn on the Precompiled Headers-option in the Compiler
settings page of the Project Options dialog box. The IDE bases the name of the
precompiled header file on the project name, creating<PROJECT_NAME>.CSM.
From the command line, use the following command-line options:
-H=<filename>, -Hc, -H<filename>, and -Hu. See Chapter 3 for more information.

¢ From within your code, use the hdrfile and hdrstop pragmas.

Setting file names

The compilere store all precorhpiled headers in one file, using the following naming
conventions:

¢ The 16-bit command-line compiler names the precompiled header file BCDEF.CSM.

¢ The 32-bit command-line compiler names the precompiled header file
~ BC32DEF.CSM. -

* The IDE names the precompiled header file <PROJECT_NAME>.CSM.

Note To explicitly set the precompiled file name from the command line, use the
-H=<filename> optlon or the #pragma hdrfile directive.

220 C++ Programmer's Guide

Precompiled header file overview

When compiling C and C++ programs, the compiler can spend up to half its time
parsing header files. When the compiler parses a header file, it enters declarations and
definitions into its symbol table. :

Precompiled headers cut this process short by creating and storing a binary image of the
symbol table on disk. By directly loading a binary image of the symbol table, the
compiler can increase the speed of this step by over ten times. The disadvantage is that
precompiled header files can become quite large because they can contain the symbol
table images for all the #include files encountered in your sources.

If, while compiling a source file, Borland C++ discovers that the first #include files are
identical to those of a previous compilation (of either the same or different source), it
loads the binary image for those #include files and parses the remaining #include files.

For a given module, either all or none of the precompiled headers are used—if
compilation of any included header file fails, the precompiled header file isn't updated
for that module. -

Precompiled header limits

When using precompiled headers, BCDEF.CSM can become very large because it
contains symbol table images for all sets of includes encountered in your sources. If you
don’t have sufficient disk space, you'll get a warning saying the write failed because of
the precompiled headers. To fix this, you must provide more disk space and retry the
compile. For information on reducing the size of the BCDEF.CSM file, see “Optimizing
precompiled headers.”

If you're using large macros in a makefile in addition to using precompiled headers,
there is a limit on the macro size: 4K for 16-bit applications and 16K for 32-bit
applications.

If a header file contains any code, it can’t be precompiled. For example, although C++
class definitions can appear in header files, you should ensure that only inline member
functions are defined in the header and heed warnings such as Functions containing
reserved word are not expanded inline. :

Precompiled header rules

The following rules apply when you create and use precompiled headers:

¢ A header that contains code can’t be precompiled. For example, although C++ class
definitions can appear in header files, make sure that only inline member functions
are defined in the header. Heed warnings such as Functions containing ' for!
are not expanded inline.

* Inorder to use a previously generated precompiled header, the source file must:
¢ Have the same set of include files, in the same order, as the precompiled header.

Chapter 8, Header files summary 221

o Have the same macros defined with identical values as the precompiled header.
¢ Use the same language (C or C++) as the precompiled header.
* Use header files with identical time stamps as the precompiled header.

¢ In addition, the following option settings must be identical to those used when you
generated the precompiled header:

* Memory model, including SS != DS (-mx)
¢ Underscores on externs (-u) - r

¢ Maximum identifier length (-iL)

» Target DOS or Windows (-W or -Wx)

¢ Generate word alignment (-a) -

¢ Pascal calls (-p)

® Treat enums as integers (-b)

¢ Default char is unsigned (-K)

s Virtual table control (-Vx and -Vmx)

¢ Expand intrinsic functions inline (-Oi)

* Templates (-Jx)

 String literals in code segment (-dc, 16-bit only)
* Debugging information (-v, -vi, and -R)

¢ Far variables (-Fx)

¢ Language compilance (-A)

o C++ compile (-P)

¢ DOS overlay-compatible code (-Y)

* If you're using large macros in addition to using precomplled headers, the compiler
limits the size of the macros as following:

¢ 4K macros for 16-bit applications
* 16K macros for 32-bit applications

Optimizing precompiled headers

. For the most efficiently compiled precompiled headers, follow these rules:
" Arrange your header files in the same sequencé in all source files.
* Put the largest header files first. i '
¢ Prime the precompiled header file with often-used initial sequences of header files.

o Use #pragma hdrstop to terminate the list of header files at well-chosen places. This
lets you make the list of header files in different sources look similar to the compiler.

For example, suppose you have the following two source files (A_SOURCE.CPP and
B_SOURCE.CPP), which both include windows.h and myhdr.h:

222 C++ Programmer’s Guide

/* A_SOURCE.CPP */

#include <windows.h>
#include “myhdr.h”
#include “xxx.h”
/...

/* B_SOURCE.CPP */
#include “yyy.h
#include <string.h>
#include “myhdr.h”
#include <windows.h>
/...

To optimize the precompiled headers for these source files, you would rearrange the
beginning of B_SOURCE.CPP as follows:

/* Revised B_SOURCE.CPP */
#include <windows.h>
#include “myhdr.h”
#include “yyy.h”

#include <string.h>

/! ...

Now, windows.h and myhdr.h are in the same order in both A_SOURCE.CPP and
B_SOURCE.CPP, and they are both located at the beginning of the #include list.

In addition, you could also create a new source file called PREFIX.CPP which contains
only the matching header files, like this:

/* PREFIX.CPP */
#include <windows.h>
#1nclude “myhdr.h”

If you compile PREFIX.CPP first (or insert a #pragma hdrstop inboth A_SOURCE.CPP
and B_SOURCE.CPP), the net effect is that after the initial compilation of PREFIX.CPP,
both A_SOURCE.CPP and B_SOURCE.CPP will be able to load the symbol table
produced by PREFIX.CPP. The compiler will then need to parse only xxx.h for
A_SOURCE.CPP, and yyy.h and strings.h for B_SOURCE.CPP.

alloc.h

Declares memory-management functions (allocation, deallocation, and so on).

Functions

calloc
farcalloc.
farfree -
farmalloc
farrealloc
free
heapcheck

Chapter 8,-Header files summary 223

heapcheckfree
heapchecknode
heapfillfree
heapwalk
malloc .

realloc.

Constants, data types, and global variables

¢ NULL
o ptrdiff t
* size_t

assert.h

Defines the assert debugging macro.

Functions

® assert

bios.h

Declares various functions used in calling IBM-PC ROM BIOS routines.

Functions

* _bios_equip

* _bios_disk (in Borland C++ DOS Support Help)

¢ _bios_equiplist

¢ _bios_keybrd (in Borland C++ DOS Support Help)
¢ _bios_memsize

* _bios_serialcom (in Borland C++ DOS Support Help)
¢ _bios_timeofday

* bioscom (in Borland C++ DOS Support Help)

* biosequip) o

* bioskey (in Borland C++ DOS Support Help)

* biosmemory -

* biosprint (in Borland C++ DOS Support Help)

* biostime

conio.h

Declares various functions used in calling the operating system console I/O routines.

224 C++ Programmer’'s Guide

Functions

cgets
clreol
clrscr
cprintf.
cputs
cscanf
delline
getch -
getche
getpass
gettext
gettextinfo
gotoxy
highvideo
inp

inport
inportb -
inpw
insline
kbhit
lowvideo
movetext
normvideo
outp
outport
outportb
outpw
putch
puttext
_setcursortype
textattr
textbackground
textcolor
textmode
ungetch
wherex
wherey
window

ctype.h

Contains information used by the character classification and character conversion
Macros.

Chapter 8, Header files summary 225

Functions and macros
isalnum
isalpha
isascii
isentrl
isdigit
isgraph
islower
isprint
ispunct
isspace
isupper
isxdigit
toascii
_tolower
tolower
_toupper
toupper

Constants, data types, and global variables

_IS_CTL
_IS_DIG
_IS_HEX
_IS_LOW
_IS_PUN
Is_sp
_Is_urp

dirh

Contains structures, macros, and functions for working with directories and path
names. ‘

Functions

chdir

findfirst

findnext

fnmerge

fnsplit

getcurdir « *
getcwd

getdisk

mkdir

mktemp

226 C++ Programmer’s Guide

e rmdir
¢ searchpath
¢ setdisk

Constants, data types, and global variables

DIRECTORY
DRIVE
EXTENSION
ffblk
FILENAME
MAXDIR
MAXDRIVE
MAXEXT
MAXFILE
MAXPATH

direct.h

Defines structures, macros, and functions for dealing with directories and path names.

Includes
e DIRH

Functions

e _chdrive
o _getdewd -

dirent.h

Declares functions and structures for POSIX directory operations.

Functions

closedir
opendir
readdir
rewinddir

dos.h

Defines various constants and gives declarations needed for DOS and 8086-specific
calls. : ‘

Chapter 8, Header files summary 227

Functions

allocmem (in Borland C++ DOS Support Help)
bdos
bdosptr
_chain_intr
_chmod
country
ctrlbrk »
delay (in Borland C++ DOS Support Help)
disable ‘
_dos_allocmem (in Borland C++ DOS Support Help)
_dos_close
_dos_commit
_dos_creat
_dos_creatnew
dosexterr
_dos_findfirst
_dos_findnext
_dos_freemem (in Borland C++ DOS Support Help)
_dos_getdate
_dos_getdiskfree
_dos_getdrive
_dos_getfileattr
_dos_getftime
_dos_gettime
_dos_getvect
_dos_keep (in Borland C++ DOS Support Help)
_dos_open
_dos_read
_dos_setblock (in Borland C++ DOS Support Help)
_dos_setdate
~dos_setdrive
_dos_setfileattr
_dos_settime
_dos_setvect
dostounix
_dos_write
emit
enable
FP_OFF
FP_SEG
geninterrupt
getcbrk
getdate
getdfree
getdta

...........O...........,..O.............‘..v...

228 C++ Programmer’s Guide,

getfat

getfatd

getftime

getpsp

gettime

getvect

getverify |

_harderr (in Borland C++ DOS Support Help)
_hardresume (in Borland C++ DOS Support Help)
_hardretn (in Borland C++ DOS Support Help)
inport

inportb

int86

int86x

intdos

intdosx

intr

keep (in Borland C++ DOS Support Help)
MK_FP

nosound (in Borland C++ DOS Support Help)
outport '

outportb

parsfnm

peek

peekb

poke

pokeb

randbrd (in Borland C++ DOS Support Help)
randbwr (in Borland C++ DOS Support Help)
segread

setcbrk

setdate

setdta

settime

setvect

setverify

sleep

sound (in Borland C++ DOS Support Help)
unixtodos

unlink

® 6 6 & 0 ¢ & 0 & & O O 0 O O 0. O 0 O O & O O O O O O O O O 0 0o O 0o o O 0o 0 o 0

Constants, data types, and global variables
_8087
_argc

_argv
COUNTRY

Chapter 8, Header files summary

229

date

devhdr

dfree

diskfree_t -

dosdate_t

‘DOSERROR

dostime_t

_doserrno

dosSearchInfo

errno

_environ

fatinfo

fcb

FA_*

ffblk '

_heaplen (in Borland C++ DOS Support Help)
NFDS o

_osmajor

_osminor

_osversion '
_ovrbuffer (in Borland C++ DOS Support Help)
—Psp

REGPACK

REGS

SEEK_CUR

SEEK_END

SEEK_SET

SREGS

_stklen (in Borland C++ DOS Support Help)
time

_version

xfcb

errno.h

. Defines constant mnemonics for the error codes.

Constants, data types, and global variables

e _doserrno
* errno
e _sys_errlist
* _sys_nerr ‘
¢ error number definitions

230 C++ Programmer’s Guide

fentlh

Defines open flags for open and similar library functions.

Functions

¢ _fmode
* _pipe

Constants

¢ O_APPEND

* O_BINARY

e O_CHANGED
¢ O_CREAT
O_DENYALL
¢ O_DENYNONE
¢ O_DENYREAD
* O_DENYWRITE
O_DEVICE

e O_EXCL -
O_NOINHERIT
O_RDONLY
O_RDWR

o O_TEXT

e O_TRUNC
O_WRONLY

float.h

» Cbntajns parameters for floating-point routines.

Functions

e _clear87
o _fpreset
.o _gtatus87

Constants, data types, and global variables

CW_DEFAULT
FPE_EXPLICITGEN
FPE_INEXACT
FPE_INTDIVO
FPE_INTOVFLOW
FPE_INVALID
FPE_OVERFLOW

‘Chapter 8, Header files summary 231

FPE_UNDERFLOW
FPE_ZERODIVIDE
ILL_EXECUTION
ILL_EXPLICITGEN
SEGV_BOUND
SEGV_EXPLICITGEN

generic.h

Contains macros for generic class declarations.

io.h

Contains structures and declarations for low-level input/output routines.

Functions

access
chmod

chsize

close

creat

creathew
creattemp

dup

dup2

eof

filelength
_get_osthandle
getftime '
_InitEasyWin
ioctl

isatty

lock

locking

Iseek

mktemp

open
_open_osthandle
_pipe

read

remove

rename
_rtl_chmod
_rtl_close -

232 C++ Progtammer’s Guide,

_rtl_creat
_rtl_open
_rtl read
_rtl_write
setftime
setmode
sopen
tell
umask
unlink
unlock
write

Constants, data types, and global variables

e ftime structure
e HANDLE MAX
e fseek/Iseek modes

iomanip.h

Declares the C++ streams I/0 manipulators and contains macros for creating
parameterized manipulators.

Includes

e jostream.h

Classes
iapply

imanip
ioapp
iomanip
Oapp
omanip -
sapp
smanip

Overloaded operators

<< >>

limits.h

Contains environmental parameters, information about compile-time limitations, and
ranges of integral quantities.

Chapter 8, Header files summary 233

Constants, data types, and global variables

CHAR_BIT
CHAR_MAX
CHAR_MIN
INT_MAX
INT_MIN
LONG_MAX
LONG_MIN
SCHAR_MAX
SCHAR_MIN
SHRT_MAX
SHRT_MIN
UCHAR_MAX
UINT_MAX
ULONG_MAX
USHRT_MAX

locale.h

Declares functions that provide information specific to languages and countries.

Functions

¢ localeconv
* gsetlocale

Constants, data types, and global variables

LC_ALL
LC_COLLATE
LC_CTYPE
LC_MONETARY
LC_NUMERIC
LC_TIME

Iconv (struct)
NULL

& e e & o o & o

malloc.h

Declares memory-management functions and variables.

Includes
ALLOCH

234 C++ Programmer’s Guide

Functions

_heapchk
_heapmin
_heapset
_msize
_rtl_heapwalk
stackavail

math.h

Declares prototypes for the math functions and math error handlers.

Functions

abs
acos, acosl
asin, asinl
atan, atanl
atan2, atan2l
atof, _atold
cabs, cabsl
ceil, ceill
cos, cosl
cosh, coshl
exp, expl

- fabs, fabsl
floor, floorl
fmod, fmodi
frexp, frexpl
hypot, hypotl
labs
Idexp, 1dexpl
log, logl
log10, log101
_matherr, _matherrl
modf, modfl
poly, polyl
pow, powl
pow10, pow101
sin, sinl
sinh, sinhl
sqrt, sqrtl
tan, tanl
tanh, tanhl

® 06 & 0 & ¢ & o & ¢ o o O 0 O 0 o 0 & o O O O O O O 0o 0o 0 o

‘Chapter 8, Header files summary 235

Constants, daia types, and global variables

complex (struct)
_complexl (struct)
EDOM

ERANGE
exception (struct)
_exceptionl (struct)
HUGE_VAL

ME

M_
M_
M-
M_
M._
M_

_SQRTPI
M_2_SQRTPI
'M_SQRT?2
M_SQRT 2

_mexcep

<
=g
(e

mem.h

Declares the memory-manipulation functlons (Many of these are also defined in
string.h.)

Functions

¢ _fmemccpy
¢ _fmemchr
¢ _fmemcmp
¢ _fmemcpy
e _fmemicmp
e _fmemmove
¢ _fmemset
e _fmovmem
* memccpy
¢ memchr

* memcmp

* memcpy

* memicmp
* memmove

236 C++ Programmer’s Guide

memset
movedata
movmem
setmem

Constants, data types, and global variables

e NULL
o ptrdiff_t
* size_t

memory.h

Contains memory-manipulation functions.

Includes
¢ MEM.H

new.h

Provides access to the the following functions:

¢ set_new_handler
* _new_handler (global variable)

process.h

Contains structures and declarations for the spawn... and exec... functions.

Functions

abort
_beginthread
_beginthreadNT
_c_exit
_cexit

cwait
_endthread
execl

execle

execlp
execlpe
execv

execve

execvp

Chapter 8, Header files summary 237

execvpe
exit

_exit
getpid
spawnl
spawnle
spawnlp
spawnlpe
spawnv
spawnve
spawnvp
spawnvpe
wait ‘

Constants, data types, and global variables

e .P_DETACH
P_NOWAIT
P_NOWAITO
P_OVERLAY
P_WAIT

search.h

Declares functions for searching and sorting.

Functions

¢ bsearch
¢ Ifind
¢ Isearch
* gsort

setjmp.h

Declares the functions longjmp and setjimp and defines a type jmp_bufj that these
functionsuse. -

Functions

¢ longjmp
* setjmp

Constants, data types, and global variables
¢ jmp_buf

238 C++ Programmer’s Guide

share.h

Defines parameters used in functions that make use of file-sharing.

Constants, data types, and global variables

SH COMPAT

- SH_DENYNO
SH_DENYNONE
SH_DENYRD
SH_DENYRW
SH_DENYWR

signal.h

Defines constants and declarations for use by the signal and raise functions.

Functions

® raise

* signal

Constants, data types, and global variables

predefined signal handlers
sig_atomic_t type
SIG_DFL
SIG_ERR
SIG_IGN
SIGABRT
SIGFPE

SIGILL

SIGINT
SIGSEGV
SIGTERM

stdarg.h

Defines macros used for reading the argument list in functions declared to accept a
variable number of arguments (such as vprintf, vscanf, and so on).

Macros

* va_arg
* va_end
e va_start

Chapter 8, Header files summary 239

Constants, data typés, and global variables

e va_list

stddef.h

Defines several common data types and macros.

Functions

e offsetof

Constants, data typeé, and global variables

NULL
ptrdiff_t
size_t
_threadid
wchar_t

stdio.h

Defines types and macros needed for the standard I/O package defined in Kernighan
and Ritchie and extended under UNIX System V. It defines the standard I/ O predefined
streams stdin, stdout, stdprn, and stderr, and declares stream-level I/O routines.

240 C++ Programmer’s Guide

Functions

clearerr _strnepy » spawnlp
fclose ftell - spawnlpe
fcloseall fwrite spawnv .
fdopen : getc spawnve
feof getchar spawnvp
ferror . gets spawnvpe
fflush getw sprintf
fgetc _pclose sscanf
fgetchar perror strerror
fgetpos _popen _strerror
fgets printf : strncpy
fileno putc tempnam
flushall putchar - tmpfile
fopen , puts : tmpnam
fprintf putw : ungetc
fputc remove unlink
fputchar rename viprintf
fputs rewind : vfscanf
fread rmtmp ' vprintf
freopen’ scanf vscanf
fscanf , ~setbuf ; vsprintf
- fseek \ ‘ setvbuf vsscanf
fsetpos spawnl
_fsopen spawnle

Constants, data types, and global variables

buffering modes ~ _F TERM SEEK_CUR
BUFSIZ _FE_WRIT 'SEEK_END
EOF FILE SEEK_SET
_F BIN fpos_t size_t

_F BUF fseek /1seek modes stdaux

_F EOF _IOFBF stderr

_F ERR ' _IOLBF stdin
_FIN ; ~ _IONBF : stdout
_F_LBUF L_ctermid ' stdprn

_F OUT L_tmpnam SYS OPEN
_F_RDWR NULL TMP_MAX
_F_READ FOPEN_MAX

" Chapter 8, Header files summary 241

stdiostrh

Declares the C++ (version 2.0) stream classes for use with stdio FILE structures. You

should use iostream.h for new code.

Includes

stdlib.h

IOSTREAM.H

STDIO.H

242 C++ Programmer’s Guide

Declares several commonly used routines such as conversion routines and search/sort

routines.

Functions

abort
abs
atexit
atof .
atoi
atol
bsearch
calloc

crotr

div

ecvt

exit
_exit
fevt

free
_fullpath
gevt

. getenv
itoa

Constants, data types, and global variables

div_t
_doserro
environ
errno

EXIT_FAILURE

labs
1div
Ifind
_lrotl
Irotr

: l—s'earch

Itoa
_makepath
malloc
max
mblen
mbstowcs
mbtowc
min
putenv
gsort
rand
random
randomize

realloc
_rotl
_rotr
_searchenv
_searchstr
_splitpath
srand
strtod
strtol
_strtold
strtoul
swab
system
time
ultoa
wcstombs
wctomb

string.h

EXIT_SUCCESS
_fmode -
Idiv_t

NULL
_osmajor
_osminor
RAND_MAX
size_t
sys_errlist
sys_nerr
_version
wchar_t

Declares several string-manipulation and memory-manipulation routines.

Includes
LOCALEH

Chapter 8, Header files summary

243

Functions

_fmemccpy © Lfstrrev
_fmemchr _fstrset
_fmememp _fstrspn
_fmemcpy _fstrstr
_fmemicmp _fstrtok
_fmemset _fstrupr
_fstr* memccpy
_fstrcat memchr
_fstrchr memcmp
_fstrcmp ' memcpy
_fstrepy , memicmp
_fstrespn ' memmove
_fstrdup memset
_fstricmp movedata
_fstrlen movmem
_fstrlwr setmem
_fstrncat _ stpcpy
_fstrnemp strcat
_fstrnepy » . strchr
_fstrnicmp . stremp
_fstrnset strempi
_fstrpbrk streoll
_fstrrchr strcpy

Constants, data types, and global variables

® size t

sys\locking.h

strespn
stedup
strerror
_strerror
stricmp
strlen
strlwr
strncat
strncmp
strnempi
strncpy
strnicmp
strnset
strpbrk.
strrchr
strrev
strset
strspn
strstr
strtok
strupr
strxfrm

Contains definitions for mode parameter of locking function. -

Constants

LK_LOCK
LK_NBLCK
LK_NBRLCK
LK_RLCK
LK_UNLCK

244 C++ Programmer’s Guide

sys\stat.h

Defines symbolic constants used for opening and creating files.

Includes
SYS\TYPES.H

Functions

e chmod
o fstat
e stat

Constants, data types, and global variables

o file status bits
¢ stat structure

sys\timeb.h

Functions
e ftime

Constants, data types, and global variables

* timeb structure
e _timezone

sys\types.h

~ Constants, data types, and global variables
e time t

~time.h

Defines a structure filled in by time-conversion routines asctime, localtime, and gmtime,
and a type used by the routines ctime, difftime, gmtime, localtime, and stime. It also
provides prototypes for these routines.

Functions

® asctime

Chapter 8, Header files summary 245

clock
ctime
difftime
gmtime
localtime
mktime
randomize
stime
_strdate
strftime
_strtime
time
tzset

Constants, data types, and global variables

CLK_TCK
clock_t
daylight
size_t
time_t
timezone
tm
tzname

Classes

e Time classes

utime.h

Declares the utime function and the utimbuf struct that it returns.

Function
~® utime

Constants, data types; and global variables

"o time_t
e utimbuf

values.h

Defines UNIX-compatible constants for limits to float and double values.
¢ BITSPERBYTE

246 C++ Programmer’s Guide

varargs.h

B
e 0 & ¢ 0 ¢ o & & O & © 0o O 0 o o o o o

DMAXEXP
DMAXPOWTWO
DMINEXP
DSIGNIF
FMAXEXP
FMAXPOWTWO
EMINEXP
FSIGNIF
_FEXPLEN
HIBITI

HIBITL

HIBITS
_LENBASE
MAXDOUBLE
MAXFLOAT
MAXINT
MAXLONG
MAXSHORT
MINDOUBLE
MINFLOAT

Note

excpt.h

Macros

e va_start

* va_arg
e va_end

Type

e va_list

Definitions for accessing parameters in functions that accept a variable number of
arguments. '

These macros are coinpatible with UNIX System V.
Use STDARG.H for ANSI C compatibility.
You can’t include both STDARG.H and VARARGS H.

The excpth header file contains the declarations and prototypes for structured
exception-handling values, types, and routines. Consult the Windows API
documentation for more details.

Chapter 8, Header files summary

247

bweec.h

The bwee.h header file defines the interface for Borland Wihdows Custom Control
library (BWCC).

. For details on using the Borland Windows Custom Control library, see the C++
Language Reference, Part VI.

_defs.h

The _defs.h header file contains common definitions for pointer size and calling
conventions.

Calling Conventions
_RTLENTRY Specifies the calling convention used by the Standard Run-time
: Library.
_USERENTRY - Specifies the calling convention the Standard Run-time Library
expects user-compiled functions to use for callbacks.

Export (and size for DOS) information

_EXPCLASS Exports the class if you are building a DLL version of a library.
_EXPDATA Exports the data if you are building a DLL version of a library.
_EXPFUNC Exports the function if you are building a DLL version of a library.

Note These export macros are provided as examples only and should not be used to create
user-defined functions.

_nfile.h

The _nfile.h header file defines _NFILE_, which specifies the maximum number of open
files you can have.

NFILE is defined as 50 for all applications.

nullh

The _null.h defines the value of NULL for different memory models and applications
- types:

Flat ((\)bid *0) ~ ifnot C++ or Windows application
Flat 0 ’

248 C++ Programmer’s Guide

Chapter

Using EasyWin

Borland C++ provides EasyWin, a feature that lets you compile standard DOS
applications which use traditional TTY style input and output so they can run as true
Windows programs. With EasyWin, you do not need to change a DOS program to run it
‘under Windows. '

Note You cannot use EasyWin with the DLL version of the run-time library.

EasyWin includes:
clreol gotoxy wherey
clrscr wherex

These functions have the same names (and uses) as functions in conio.h header file.
Classes in constrea.h provide console I/ O functionality for use with C++ streams.

The following routines can be ported to EasyWin programs but are not available in

16-bit Windows programs:
fgetchar kbhit puts
getch perror scanf
getchar printf vprintf
getche putch © vscanf
gets putchar

These functions are provided to simplify porting of existing DOS code into 16-bit
Windows applications.

Converting DOS applications to Windows

To convert console-based applications that use standard files or iostream functions,
check the EasyWin Target Type using TargetExpert in the IDE. Borland C++ will detect

Chapter 9, Using EasyWin 249

that your program does not contain a WinMain function (normally required for

- Windows applications) and link the EasyWin library. When you run your program in
the Windows environment, a standard window is created, and your program takes
input and produces output for that window as if it were the standard screen.

You can use the EasyWin window any time to request input to or specify output froma
TTY device. This means that in addition to stdin and stdout, all stderr, stdaux, and cerr
devices are all connected to this window.

EasyWin C example

#include <stdio.h>

int main()

{
printf ("Hello Windows\n");
return 0;

}

EasyWin C++ example

#include <iostream.h>

int main()

{
cout << "Hello Windows\n";
return 0;

}

Using EasyWin from within a Windows program

Borland C++ provides EasyWin so you can quickly and easily convert your DOS
applications to 16-bit Windows programs.

You can also use EasyWin from within 16-bit Windows programs. For example, you can
add printf functions to your program code to help debug a Windows program.

To use EasyWin from within a Windows program, call InztEasme() before
~ performing any standard input or output.

_InitEasyWin example

#include <stdio.h>

#include <windows.h>

#pragma argsused

© 250 C++ Programmer's Guide

int PASCAL WinMain(HANDLE hInstance, HANDLE hPrevInstance,
- LPSTR lpszCmdParam, int nCmdShow)
{

char *p;

_InitEasyWin();

p = "This is an example of how Borland C++"
" will automatically\nconcatenate"
" very long strings, \nresulting in nicer"
" looking programs.";

printf(p); .

return (0) ;

EasyWin features

Note

EasyWin now has support for several new features:
* Printing support lets you print the contents of the EasyWin window.

* Viewable scrolling buffer stores either 100 or 400 lines of text (depending on the
memory model). This buffer automa’aca]ly scrolls as you move the vertical or
horizontal scroll bar thumb tabs.

* Redirects output to a file of your choice when the buffer runs out of space.

* Full Windows Clipboard support, lets you paste to standard input and copy from the
buffer onto the Clipboard, using either the keyboard or the mouse.

 Printing

Use the Print command on the system menu to print the contents of an EasyWin
window. It activates the standard Print dialog from which you can specify printing
options.

By default, EasyWin prints 80 columns and approximately 54 lines on U.S. Letter size
(8.5" x 11") paper.

The Print command is grayed if you do not have a default printer installed under
Windows. If you have a printer installed but it is not the default, make it the default
printer before attempting to print from an EasyWin application.

If you have trouble printing on a dot-matrix printer, add the following global variable to
your main source file:

BOOL _UseDefaultPrinterFont;

Set this variable to TRUE and EasyWin will print using the default font for your printer
instead of the standard EasyWin printer font.

Chapter 9, Using EasyWin 251

You should declare this Varlable as external and set it to TRUE within your main()
function:

extern BOOL _UseDefaultPrinterFont;

int main()
{.
_UseDefaultPrinterFont = TRUE;
“
Note This variable is not recommended for use with laser or inkjet printers.

Scrolling buffer

EasyWin caches your screen output into a buffer of either:
* 400 lines (for compact and large memory models)
* 100 lines (for small and medium memory models)

You can view the buffer any time by using the scroll bar or any of the standard window
movement keys.

You can change the buffer size of your EasyWin application by declaring the following
global variable in your main source file with the appropriate initializer:

POINT _BufferSize = { X, Y };

where:

X is the number of columns you want. Setting X to a value other than 80 is not recommended as the
results are unpredictable.

Y is the number of lines you want. If you need to specify a value for Y greater than 100, use the
compact or large memory model. The small and medium memory models have limited local heap
space for the buffer.

Autoscrolling

If you click and drag either the vertical or horizontal scroll bar thumb tab, the text in the
buffer automatically scrolls up and down or left and right. This is a useful feature when
you want to quickly scan large amounts of data in the EasyWin window.

Saving text in an output file

_ If you want to redirect the output of your program | to a file, add the following global
variable to your main source file:

252 C++ Programmer’s Guide

Note

Note

char *_OutputFileName = "C:\\myoutput.txt";
Make _outputFileName the name of the file in which to store the redirected output.

If the output file you specified already exists, it is deleted without warning.

Clipboard support

EasyWin lets you cut, copy, and paste text from an EasyWin application window. .

To select text, use the Edit command from the system menu and choose Mark. This puts
you in Mark mode. You can use the mouse or the keyboard to select text. You can move
the cursor and select text using the standard rules and keystrokes for this feature.

Table

9.1 Actions thatimplement the Clipboard.

7

s

. . -
Enter Exits Mark mode. Any marked text is copied to thfwa]ipboard.
Escape Exits Mark mode. No text is selected.
Right mouse button Same as Enter.
Edit | Copy Same as Enter.
Edit| Paste Pastes text into stdin, receiving the contents of the Clipboard as input to your

program, merging it with any keyboard input.

Example

If you are writing a program that requests its data from the keyboard via scanf, cin, or
other similar stdio/conio functions:

* Write a data file that contains your entire input.
* Load that file into NotePad, select it, and copy it to the Clipboard.

* Run your program, go to the system Edit menu, and choose Paste.
Your program accepts the contents of Clipboard as input.

The Paste command is grayed if the Clipboard contains no objects of type CE_TEXT or if
your program has terminated.

¢ The Copy command is grayed if you have not selected a block of text.

Chapter 9, Using EasyWin 253

254 C++ Programmer’s Guide

Chapter

Math

This chapter describes the floating-point options and explains how to use complex and
bed numerical types.

Fldating-point o]

Floating-point output requires linking of conversion routines used by printf, scanf, and
any variants of these functions. To reduce executable size, the floating-point formats are
not automatically linked. However, this linkage is done automatically whenever your
program uses a mathematical routine or the address is taken of some floating-point
number. If neither of these actions occur, the missing floating-point formats can result in
a run-time error.

The following program illustrates how to set up your program to properly execute.

/* PREPARE TO. OUTPUT FLOATING-POINT NUMBERS. */
#include <stdio.h> .

#pragma extref _floatconvert

void main() {
printf("d = %$f\n", 1.3);
}

Floating-point options

There are two types of numbers you work with in C: integer, (int, short, long, and so on)
and floating point (float, double, and long double). Your computer’s processor can
easily handle integer values, but more time and effort are required to handle floating-
point values.

Chapter 10, Math 255

However, the iAPx86 family of processors has a corresponding family of math
coprocessors, the 8087, the 80287, and the 80387. We refer to this entire family of math
coprocessors as the 80x87, or “the coprocessor.”

The 80x87 is a special hardware numeric processor that can be installed in your PC. It
executes floating-point instructions very quickly. If you use floating point a lot, you'll
probably want a coprocessor. The CPU in your computer interfaces to the 80x87 via
special hardware lines. .

Note If you have an 80486 or Pentium processor, the numeric coprocessor is probably already
built in. B ‘

Emulating the 80x87 chip

The default Borland C++ code-generation option is emulation (the —£ coﬁmand-he
compiler option). This option is for programs that might or might not have floating
point, and for machines that might or might not have an 80x87 math coprocessor.

With the emulation option, the compiler will generate code as if the 80x87 were present,
but will also link in the emulation library (EMU.LIB). When the program runs, it uses
the 80x87 if it is present; if no coprocessor is present at run time, it uses special software
that emulates the 80x87. This software uses 512 bytes of your stack, so make allowance
for it when using the emulation option and set your stack size accordingly.

Using the 80x87 code

If your program is going to run only on machines that have an 80x87 math coprocessor,
you can save a small amount in your .EXE file size by omitting the 80x87 autodetection
and emulation logic. Choose the 80x87 floating-point code-generation option (the -£87
command-line compiler option). Borland C++ will then link your programs with
FP87.LIB instead of with EMU.LIB.

No floating-point code

If there is no floating-point code in your program, you can save a small amount of link
time by choosing None for the floating-point code-generation option (the —-f- command-
line compiler option). Then Borland C++ will not link with EMU.LIB, FP87.LIB, or
MATHx.LIB.

Fast floating-point option

Borland C++Borland C++ has a fast floating-point option (the —ff command-line
compiler option). It can be turned off with —ff- on the command line. Its purpose is to
allow certain optimizations that are technically contrary to correct C semantics. For
example,

double Xx;
x = (float) (3.5*x);

To execute this correctly, x is multiplied by 3.5 to give a double that is truncated to float
precision, then stored as a double in x. Under the fast floating-point option, the long

256 C++ Programmer’s Guide

Note

double product is converted directly.to a double. Since very few programs depend on
the loss of precision in passmg to a narrower floating-point type, fast floating pomt is
the default.

The 87 environment variable

If you build your program with 80x87 emulation, which is the default, your program
will automatically check to see if an 80x87 is available, and will use it if it is. :

There are some situations in which you might want to override this default
autodetection behavior. For example, your own run-time system might have an 80x87,
but you might need to verify that your program will work as intended on systems
without a coprocessor. Or your program might need to run on a PC-compatible system,
but that particular system returns incorrect information to the autodetection logic
(saying that a nonexistent 80x87 is available, or vice versa).

Borland C++ provides an option for overriding the start-up code s default autodetection -
logic; this option is the 87 environment variable.

You set the 87 environment variable at the DOS prompt with the SET command, like
this:

C> SET 87=N
or like this:
C> SET 87=Y

Don't include spaces on either side of the =. Setting the 87 environment variable to N
(for No) tells the start-up code that you do not want to use the 80x87 even though it
might be present in the system.

Setting the 87 environment variable to Y (for Yes) means that the coprocessor is there,
and you want the program to use it. Let the programmer beware: If you set 87 = Y when, in
fact, there is no 80x87 available on that system, your system will hang.

If the 87 environment variable has been defined (to any value) but you want to undefine
it, enter the following at the DOS prompt:

C> SET 87=

Press Enter immediately after typing the equal sign.

Registers and the 80x87

When you use floating point, make note of these points about registers:

* In 80x87 emulation mode, register wraparound and certain other 80x87 pecuharlhes
are not supported.

* If you are mixing floating point w1th inline assembly, you rmght need to take special
care when using 80x87 registers. Unless you are sure that enough free registers exist,
you might need to save and pop the 80x87 registers before calling functions that use -
the coprocessor.

Chapter 10, Math 257

Disabling floating-point exceptions

By default, Borland CH++ programs abort if a floating-point overflow or divide-by-zero
error occurs. You can mask these floating-point exceptions by a call to_control87 in main,
before any floating-point operations are performed. For example,

#include <float.h>
main() {
_control87 (MCW: EM, MCW_EM) ;

}

You can determine whether a floating-point exception occurred after the fact by calling
_status87 or _clear87. See the C++ Library Reference entries for these functions for details.

Certain math errors can also occur in library functions; for instance, if you try to take the
square root of a negative number. The default behavior is to print an error message to
the screen, and to return a NAN (an IEEE not-a-number). Use of the NAN is likely to
cause a floating-point exception later, which will abort the program if unmasked. If you
don’t want the message to be printed, insert the following version of _matherr into your
program:

#include <math.h>

int _matherr (struct _exception *e)

{

return 1; /* error has been handled */

}

Any other use of _matherr to intercept math errors is not encouraged; it is considered
obsolete and might not be supported in future versions of Borland C++.

Using complex types

Complex numbers are numbers of the form x + yi, where x and y are real numbers, and i
is the square root of -1. Borland C++ has always had a type

struct complex

{ .
double x, y;

}; :

* defined in math.h. This type is convenient for holding complex numbers, because they
can be considered a pair of real numbers. However, the limitations of C make arithmetic
with complex numbers rather cumbersome. With the addition of C++, complex math is
much simpler. :

A significant advantage to using the Borland C-++ complex numerical type is that all of
the ANSI C Standard mathematical routines are defined to operate with it. These
mathematical routines are not defined for use with the C struct complex.

Note See Part III of the C++ Language Reference for more information.

To use complex numbers in C++, all you have to do is to include complex.h. In
complex.h, all the following have been overloaded to handle complex numbers:

258 C++ Programmer’s Guide

¢ All of the binary arithmetic operators.
¢ The input and output operators, >> and <<.
¢ The ANSI C math functions.

The complex library is invoked only if the argument is of type complex Thus, to get the
complex square root of -1, use

sqrt (complex(-1))
and not
sqgrt(-1)
The following functions are defined by class complex:

double arg(complex&); // angle in the plane
complex conj (complex&); // complex conjugate
double imag(complex&); // imaginary part

double norm(complex&); // square of the magnitude
double real (complexs&); // real part

// Use polar coordinates to create a complex.
complex polar (double mag, double angle = 0);

Usmg bed types

Note

Borland C++, along with almost every other computer and compﬂer, does arithmetic on
bmary numbers (that is, base 2). This can sometimes be confusing to people who are
used to decimal (base 10) representations. Many numbers that are exactly representable

~ inbase 10, such as 0.01, can only be approximated in base 2.

See Part III of the C++ Language Reference for more information.

Binary numbers are preferable for most applications, but in some situations the round-
off error involved in converting between base 2 and 10 is undesirable. The most
common example of this is a financial or accounting application, where the pennies are
supposed to add up. Consider the followmg program to add up 100 pennies and
subtract a dollar:

#include <stdio.h>
int i;
float x = 0.0;
for (i = 0; 1 < 100; ++1i)
x += 0.01;
=1.0;
printf("100*%.01 - 1 = %g\n",x);

The correct answer is 0.0, but the computed answer is a small number close to 0.0. The
computation magnifies the tiny round-off error that occurs when converting 0.01 to base
2. Changing the type of x to double or long double reduces the error, but does not
eliminate it.

To solve this problem, Borland C++ offers the C++ type bcd, which is declared in bed.h.
With bcd, the number 0.01 is represented exactly, and the bcd variable x provides an
exact penny count. ;

Chapter 10, Math 259

#include <bcd.h>
int i;
bed x = 0.0;
for (1 = 0; 1 < 100; ++1i)
x += 0.01;
-=1.0;
cout << "100*.01 - 1 = " << x << "\n";

Here are some facts to keép in mind about bed:

* bed does not eliminate all round-off error: A computation like 1.0/3.0 will still have
round-off error.

* bcd types can be used with ANSI C math functions.

* bed numbers have about 17 decimal digits precision, and a range of about 1 x1
to1 x10'?

0—125

Converting bed numbers

bcd is a defined type distinct from float, double, or long double; decimal arlthmehc is
performed only when at least one operand is of the type bcd.

Note The bed member function real is available for converting a bed number back to one of the
usual formats (float, double, or long double), though the conversion is not done
automatically. real does the necessary conversion to long double, which can then
be converted to other types using the usual C conversions. For example, a bcd can be
printed using any of the following four output statements with cout and printf.

/* PRINTING bcd NUMBERS */

/* This must be .compiled as a C++ program. */
#include <bcd.h>

#include <iostream.h>

#include <stdio.h>

void main(void) {
bed a = 12.1;
double x = real(a); // This conversion required for printf().

printf("\na = %g", x);

printf("\na = $Lg", real(a));

printf(*\na = %g", (double)real(a));

cout << "\na = " << a; // The preferred method.

}

Note that since prmtf doesn’t do argument checking, the format speCLﬁer must have the
L if the long double value real(a) is passed.

Number of decimal digits

You can specify how many decimal digits after the decimal point are to be carried in a
conversion from a binary type to a bed. The number of places is an optional second

260 C++ Programmer’s Guide

argument to the constructor bcd. For example, to convert $1000.00/7 to a bed variable
rounded to the nearest penny, use

bed a = bed(1000.00/7, 2)

where 2 indicates two digits following the decimal point. Thus,

1000.00/7 = 142.85714...
bed (1000.00/7, 2) = 142.860
bcd (1000.00/7, 1) = 142.900
bcd (1000.00/7, 0) = 143.000
bed (1000.00/7, -1) = 140.000
bcd (1000.00/7, -2) = 100.000

The number is rounded using banker’s rounding (as specified by IEEE), which rounds
to the nearest whole number, with ties being rounded to an even digit. For example,

bed(12.335, 2) = 12.34
bed(12.345, 2) = 12.34
bod (12.355, 2) = 12.36

Chapter 10, Math 261

262 C++ Programmer’s Guide

Chapter

16-bit memory management

This chapter discusses
e Whattodo when you receive “Out of memory” errors.

¢ What memory models are: how to choose one, and why you would (or wouldn't)
want to use a particular memory model.

Running out of memory

Borland C++ does not generate any intermediate data structures to disk when it is

-compiling (Borland C++ writes only .OBJ files to disk); instead it uses RAM for

intermediate data structures between passes. Because of this, you might encounter the

‘message “Out of memory” if there isn't enough memory available for the compiler.

The solution to this problem is to make your functions smaller, or to split up the file that
has large functions. : :

Memory models

Note

Borland C++ gives you six memory models, each suited for different program and code
sizes. Each memory model uses memory differently. What do you need to know to use
memory models? To answer that question, you need to take a look at the computer
system you're working on. Its central processing unit (CPU) is a microprocessor
belonging to the Intel iAPx86 famlly, an 80286, 80386, 80486, or Pentium. For now, we’ll
just refer to it as an 8086.

See page 269 for a summary of each memory model.

Chapter 11, 16-bit memory management 263

The 8086 registers

The following figure shows some of the registers found in the 8086 processor. There are
other registers—because they can’t be accessed directly, they aren’t shown here.

Figure 11.1 8086 registers

General-purpose registers

AX accumulator (rﬁath operations)
H AL

T
base (indexing)
BX BH | BL
T
: count (indexing)
cx CH | cL
T
data (holding data)
DX DH | DL

Segment address registers:

cs code segment pointer
DS data segment pointer
SS stack segment pointer
ES extra segment pointer

Special-purpose registers

SP stack pointer
BP base pointer
St source index
DI destination index

General-purpose registers

The general-purpose registers are the registers used most often to hold and manipulate
data. Each has some special functions that only it can do. For example,

* Some math operations can only be done using AX.
- BX can be used as an index register.

¢ CXis used by LOOP and some string instructions.

* DX is implicitly used for some math operations.

~ But there are many operations that all these registers can do; in many cases, you can
- freely exchange one for another.

264 C++ Programmer’s Guide

Segment registers

- The segment registers hold the starting address of each of the four segments. As
described in the next section, the 16-bit value in a segment register is shifted left 4 bits -
(multiplied by 16) to get the true 20-bit address of that segment.

Special-purpose registers
The 8086 also has some special-purpose registers:

* The Sl and DI registers can do many of the things the general-purpose registers can,
plus they are used as index registers. They're also used by Borland C++ for register
variables.

e The SP register points to the current top-of-stack and is an offset into the stack
segment.

¢ The BP register is a secondary stack pointer, usually used to index into the stack in
order to retrieve arguments or automatic variables.

Borland C++ functions use the base pointer (BP) register as a base address for
arguments and automatic variables. Parameters have positive offsets from BP, which
vary depending on the memory model. BP points to the saved previous BP value if
there is a stack frame. Functions that have no arguments will not use or save BP if the
Standard Stack Frame option is Off.

- Automatic variables are given negative offsets from BP. The offsets depend on how
much space has already been assigned to local variables.

The flags register
The 16-bit flags register contains all pertinent information about the state of the 8086 and
the results of recent instructions.

Figure 11.2 Flags register of the 80x86 processors
Virtual 8086 Mode

Resume
Nested Task
1/0 Protection Level
Overflow
Direction
Interrupt Enable
Trap
Sign
Zero
- Auxiliary Carry
Parity -
Carry
31 23 15 7 0
LLL T PP T TP [[vir] I[nfiorfo[p[i]T[s[z[[A] [P] [c]
- oy > “Bosee> +———p’?3ciié?,?s———>|

Chapter 11, 16-bit memory managerhent 265

For example, if you wanted to know whether a subtraction produced a zero result, you
would check the zero flag (the Z bit in the flags register) immediately after the
instruction; if it were set, you would know the result was zero. Other flags, such as the
carry and overflow flags, similarly report the results of arithmetic and logical operations.

Other flags control the 8086 operation modes. The direction flag controls the direction in
which the string instructions move, and the interrupt flag controls whether external
hardware, such as a keyboard or modem, is allowed to halt the current code temporarily
so that urgent needs can be serviced. The trap flag is used only by software that debugs
other software.

The flags register isn’t usually modified or read directly. Instead, the flags register is
generally controlled through special assembler instructions (such as CLD, STI, and
CMC) and through arithmetic and logical instructions that modify certain flags.
Likewise, the contents of certain bits of the flags register affect the operation of
instructions such as JZ, RCR, and MOVSB. The flags register is not really used as a
storage location, but rather holds the status and control data for the 8086.

Memory segmentation

The Intel 8086 microprocessor has a segmented memory architecture. It has a total address
space of 1 MB, but is designed to directly address only 64K of memory at a time. A 64K
chunk of memory is known as a segment; hence the phrase ‘segmented memory
architecture.”

* The 8086 keeps track of four different segments: code, data, stack, and extra. The code
segment is where the machine instructions are; the data segment is where
information is; the stack is, of course, the stack; and the extra segment is also used for
extra data.

* The 8086 has four 16-bit segment registers (one for each segment) named CS, DS, SS,
and ES; these point to the code, data, stack;, and extra segments, respectively.

¢ A segment can be located anywhere in memory. In DOS real mode it can be located
almost anywhere. For reasons that will become clear as you read on, a segment must
start on an address that’s evenly divisible by 16 (in decimal).

Address calculation

Note This whole section is applicable only to real mode under DOS. You can safely ignore it
for Windows development.

A complete address on the 8086 is composed of two 16-bit values: the segment address
and the offset. Suppose the data segment address—the value in the DS register—is 2F84
(base 16), and you want to calculate the actual address of some data that has an offset of
0532 (base 16) from the start of the data segment: how is that done?

Address calculation is done as follows: Shift the value of the segment register 4 bits to
the left (equivalent to one hex digit), then add in the offset.

_ 'The resulting 20-bit value is the actual address of the data, as illustrated here:

DS register (shifted): 0010 1111 1000 0100 0000
Offset: 0000 0101 0011 0010

2F840
00532

266 C++ Programmer’s Guide

Note

address: 0010 1111 1101 0111 OOlO = 2FD72

A chunk of 16 bytes is known as a paragraph, so you could say that a segment always
starts on a paragraph boundary.

The starting address of a segment is always a 20-bit number, but a segment register only

_holds 16 bits—so the bottom 4 bits are always assumed to be all zeros. This means

segments can only start every 16 bytes through memory, at an address where the last 4
bits (or last hex digit) are zero. So, if the DS register is holding a value of 2F84, then the
data segment actually starts at address 2F840.

The standard notation for an address takes the form segment:offset; for example, the
previous address would be written as 2F84:0532. Note that since offsets can overlap, a
given segment:offset pair is not unique; the following addresses all refer to the same
memory location:

0000:0123
0002:0103
0008:00A3
0010:0023
0012:0003

Segments can overlap (but don t have to). For example, all four segments could start at -
the same address, which means that your entire program would take up no more than
64K—Dbut that’s all the space you’d have for your code, your data, and your stack.

Pointers

Although you can declare a pointer or function to be a specific type regardless of the
model used, by default the type of memory model you choose determines the default
type of pointers used for code and data. There are four types of pointers: near (16 bits),
far (32 bits), huge (also 32 bits), and segment (16 bits).

Near pointers

A near pointer (16-bits) relies on one of the segment registers to finish calculating its
address; for example, a pointer to a function would add its 16-bit value to the left-shifted
contents of the code segment (CS) register. In a similar fashion, a near data pointer
contains an offset to the data segment (DS) register. Near pointers are easy to
manipulate, since any arithmetic (such as addition) can be done without worrying about
the segment. -

Far pointers

A far pointer (32-bits) contains not only the offset w1thm the segment, but also the
segment address (as another 16-bit value), which is then left-shifted and added to the
offset. By using far pointers, you can have multiple code segments; this, in turn, allows
you to have programs larger than 64K. You can also address more than 64K of data.

When you use far pointers for data, you need to be aware of some potential problems in
pointer manipulation. As explained in the section on address calculation, you can have
many different segment:offset pairs refer to the same address. For example, the far

Chapter 11, 16-bit memory management 267

pointers 0000:0120, 0010:0020, and 0012:0000 all resolve to the same 20-bit address.
However, if you had three different far pointer variables—a, b, and c—containing those
three values respectively, then all the followmg expressions would be false:

if (a==b) - - -
if (b==2¢) « + -
if (a==¢) - - -

A related problem occurs when you want to compare far pointers using the >, >=, <,
and <= operators. In those cases, only the offset (as an unsigned) is used for comparison
purposes; given that a, b, and c still have the values previously listed, the following
expressions would all be true:

iﬁ (a@a>b) « ~ -
if (b>c)y - - -
if (a>c¢c) - - -

The equals (==) and not-equal (!=) operators use the 32-bit value as an unsigned long
(not as the full memory address). The comparison operators (<=, >=, <, and >) use just
the offset.

The == and != operators need all 32 bits, so the computer can compare to the NULL
pointer (0000:0000). If you used only the offset value for equality checking, any pointer
with 0000 offset would be equal to the NULL pointer, which is not what you want.

Note If you add values to a far pointer, only the offset is changed. If you add enough to cause
the offset to exceed FFFF (its maximum possible value), the pointer just wraps around
back to the beginning of the segment. For example, if you add 1 to 5031:FFFF, the result
would be 5031:0000 (not 6031:0000). Likewise, if you subtract 1 from 5031:0000, you
would get 5031:FFFF (not 5030:000F).

If you want to do pointer comparisons, it’s safest to use either near pointers—which all
use the same segment address—or huge pointers, described next.

‘Huge pointers

Huge pointers are also 32 bits long. Like far pointers, they contain both a segment
address and an offset. Unlike far pointers, they are normalized to avoid the problems
associated with far pointers.

A normalized pointer is a 32-bit pointer that has as much of its value in the segment
address as possible. Since a segment can start every 16 bytes (10 in base 16), this means
that the offset will only have a value from 0 to 15 (0 to F in base 16).

To normalize a pointer, convert it to its 20-bit address, then use the right 4 bits for your
offset and the left 16 bits for your segment address. For example, given the pointer
2F84:0532, you would convert that to the absolute address 2FD72, which you would
then normalize to 2FD7:0002. Here are a few more pointers with their normalized
equivalents:

-0000:0123 0012:0003
0040:0056 0045:0006
500D:9407 594D:0007
7418 :DO3F 811B:000F

" -268 C++ Programmer’s Guide

There are three reasons why it is important to always keep huge pointers normalized:

1 For any given memory address there is only one possible huge address
(segment:offset) pair. That means that the == and != operators return correct answers
for any huge pointers.

2 In addition, the >, >=, <, and <= operators are all used on the full 32-bit value for
huge pointers. Normalization guarantees that the results of these comparisons will
also be correct.

3 Finally, because of normalization, the offset in a huge pointer automatically wraps
“around every 16 values, but—unlike far pointers—the segment is adjusted as well.

For example, if you were to increment 811B:000F, the result would be 811C:0000;
likewise, if you decrement 811C:0000, you get 811B:000F. It is this aspect of huge
pointers that allows you to manipulate data structures greater than 64K in size. This
ensures that, for example, if you have a huge array of structs that’s larger than 64K,
indexing into the array and selecting a struct ﬁeld will always work with structs of
any size.

There is a price for using huge pointers: additional overhead. Huge pointer arithmetic is
done with calls to special subroutines. Because of this, huge pointer arlthmetlc is
significantly slower than that of far or near pointers.

The six memory models

Borland C++ gives you six memory models for 16-bit DOS programs: tiny, small,
medium, compact, large, and huge. Your program requirements determine which one
you pick. Here's a brief summary of each:

¢ Tiny. As you might guess, this is the smallest of the memory models. All four
segment registers (CS, DS, SS, ES) are set to the same address, so you have a total of
64K for all of your code, data, and stack. Near pointers are always used. Tiny model
programs can be converted to .COM format by linking with the /t option. Use this
model when memory is at an absolute premium.

e Small. The code and data segments are different and don’t overlap, so you have 64K
of code and 64K of data and stack. Near pointers are always used. This is a good size
for average applications.

* Medium. Far pointers are used for code, but not for data. As a result, data plus stack
are limited to 64K, but code can occupy up to 1 MB. This model is best for large
programs without much data in memory.

¢ Compact. The inverse of medium: Far pointers are used for data, but not for code.
Code is then limited to,64K, while data has a 1 MB range. This model is best if code is -
small but needs to address a lot of data.

* Large. Far pointers are used for both code and data, giving both a 1 MB range. Large
and huge are needed only for very large applications.

¢ Huge. Far pointers are used for both code and data. Borland C++ normally limits the
size of all static data to 64K; the huge memory model sets aside that limit, allowing
data to occupy more than 64K.

Chapter 11, 16-bit memory management 269

Figures 111.3 through 111.8 show how memory in the 8086 is apportioned for the
Borland C++ memory models. To select these memory models, you can either use menu
selections from the IDE or you can type options invoking the command-line compiler
version of Borland C++Borland C++.

Figure 11.3 Tiny model memory segmentation

Segment registers: Low address) Segment size:
CS, DS, SS— :

_TEXT class ‘CODE’
code

; _DATA class ‘DATA’
H initialized data

_BSS class ‘BSS’
initialized data

N HEAP ,L

DGROUP

i

SP(TOS) ———>|
Starting SP :
High address
Figure 11.4 Small model memory segmentation
‘Segment registers: Low address : Segment size:
Ccs >
_TEXT class ‘CODFE’
code Up to 64K
DS, SS >
_DATA class ‘DATA’
initialized data
_BSS class ‘BSS’
initialized data
DGROUP Up to 64K
HEAP
SP (TOS) ——>|* =
. STACK
Starting SP > 4

FAR HEAP Up to rest of memoryr

High address

270 C++ Programmer’s Guide

Figure 11.5 Medium model memory segmentation

Multiple sfiles:
sfile A
sfile B
: CS points to
T only one sfile
CS—>»| sfile Z at a time.

Segment registers:

Low address

code

TEXT class ‘CODE’

DS, 88 >

_DATA class ‘DATA’
initialized data

DGROUP -~

SP (TOS) —>|

Starting SP >

_BSS class ‘BSS’
initialized data

HEAP

High address

Figure 11.6 Compact model memory segmentation

Segment registers:

Low address

- CS >
_TEXT class ‘CODE’
code
DS >
__DATA class ‘DATA’
. initialized data
DGROUP
_BSS class ‘BSS’ .
initialized data
3§ —mm8m8 >
SP (TOS) ——>»|"
STACK T
Starting SP >
HEAP l,

High address

Segment size:

Each sfile up to 64K

_Upto 64K

Up to rest of memory

Segment size:

Up to 64K

‘Lr Up to 64K

Up to 64K

Up to rest of memory

Chapter 11, 16-bit memory management

271

272

Figure 11.7 Large model memory segm‘entation

Multiple sfiles:
sfile A
sfile B o
: CS points to
i only one sfile -
Cs—>| sfile Z at a time.
Segment registers: Low address
TEXT class ‘CODE’
' code

DS —>

_DATA class ‘DATA’
initialized data

DGROUP .
ss —»|

SP (TOS) —>»

_BSS class ‘BSS’
initialized data

Starting SP ~>

High address

Figure 11.8 Huge model memory segmentation

Multiple sfiles:
sfile A
sfile B
T CS points to
3 — only one sfile
cs sfile Z at a time.
Segment registers: Low address
Multiple
sfiles: TEXT class ‘CODE’
sfile A code
. DS —>| sfile B |
E— DATA class ‘FAR_DATA’
: sfile Z initialized data
SS
SP (TOS)
Starting SP >

C++ Programmer’s Guide

High address

_ Segment size:

Up to 64K

Up to 64K

Up to 64K

Up to rest of memory

Segment size:

Each sfile up to 64K

Each sfile up to 64K

Up to 64K

Up to rest of memory

Table 1.1 summarizes the different models and how they compare to one another. The
models are often grouped according to whether their code or data models are small
(64K) or large (16 MB); these groups correspond to the rows and columns in Table 1.1.

Table 11.1 Comparison of models

Tiny (data, code overlap; total size = 64K)

Small (no overlap; total size = 128K) Medium (small data, large code)

Compact (large data, small code) Large (large data, code)
16 MB '

Huge (same as large but static data > 64K)

The models tiny, small, and compact are small code models because, by default, code
pointers are near; likewise, compact, large, and huge are large data models because, by
default, data pointers are far.

When you compile a module (a given source file with some number of routines in it),
the resulting code for that module cannot be greater than 64K, since it must all fit inside
of one code segment. This is true even if you're using one of the larger code models
(medium, large, or huge). If your module is too big to fit into one (64K) code segment,
you must break it up into different source code files, compile each file separately, then
link them together. Similarly, even though the huge model permits static data to total
more than 64K, it still must be less than 64K in each module.

Mixed-model programming: Addressing modifiers

Borland C++ introduces eight new keywords not found in standard ANSI C. These
keywords are _ _near, _ _far, __huge, __cs, __ds, __es, __ss, and _ _seg. These
keywords can e used as modifiers to pointers (and in some cases, to functions), with
certain limitations and warnings.

In Borland C++, you can modify the declarations of pointers, objects, and functions with
the keywords _ _near, _ _far, or _ _huge. The _ _near, __far,and _ _huge data pointers
are described earlier in this chapter. You can declare far objects using the _ _far
keyword. _ _near functions are invoked with near calls and exit w1th near returns.
Similarly, _ _far functions are called __far and return far values. _ _huge functions are

like __far functions, except that _ _huge functions set DS to a new value, and _ _far
functions do not.

There are also four special _ _near data pointers: _ _cs, __ds, __es, and _ _ss. These are
16-bit pointers that are specifically associated with the corresponding segment register.

For example, if you were to declare a pointer to be

(J—

char _ss *p;

then p would contain a 16-bit offset into the stack segment.

Chapter 11, 16-bit memory management 273

Functions and pointers within a given program default to near or far, depending on the
memory model you select. If the function or pointer is near, it is automatically
associated with either the CS or DS register.

The next table shows how this works. Note that the size of the pointer corresponds to
whether it is working within a 64K memory limit (near, within a segment) or m31de the
general 1 MB memory space (far, has its own segment address).

Table 11.2 Defaults for functions and pointers

Tiny ‘ near, _cs near, _ds
Small near, _cs near, _ds
Medium < far near, _ds
Compact ' near, _cs far
Large . far far
- Huge far far
Segment pointers

Use _ _seg in segment pointer type declarators. The resulting pointers are 16-bit
segment pointers. The syntax for _ _seg is:

datatype _seg *identifier;
For example,
int _seg *name; '

Any indirection through identifier has an assumed offset of 0. In arithmetic involving
segment pointers the following rules hold true:

1 You can't use the ++, ~ =, +=, or —= operators with segment pointers.
2 You cannot subtract one segment pointer from another.

3 When adding a near pointer to a segment pointer, the result is a far pointer that is
formed by using the segment from the segment pointer and the offset from the near
pointer. Therefore, the two pointers must either point to the same type, or one must
be a pointer to void. There is no multiplication of the offset regardless of the type
pointed to.

4 When a segment pointer is used in an indirection expression, it is also implicitly -
converted to a far pointer.

5 When adding or subtracting an integer operand to or from a segment pointer, the
result is a far pointer, with the segment taken from the segment pointer and the offset
found by multiplying the size of the object pointed to by the integer operand. The
arithmetic is performed as if the integer were added to or subtracted from the far
pointer.

6 Segment pointers can be assigned, initialized, passed into and out of functions,
compared and so forth. (Segment pointers are compared as if their values were

274 C++.Programmer’s Guide

unsigned integers.) In other words, other than the above restrictions, they are treated
exactly like any other pointer.

Declaring far objects

You can declare far objects in Borland C++. For example,

int far x = 5;

‘int far z;

extern int far v = 4;
static long j;

- The command-line compiler options —zE, —zF, and —zH (which can also be set using
#pragma option) affect the far segment name, class, and group, respectively. When you
use #pragma option, you can make them apply to any ensuing far object declarations.
Thus you could use the following sequence to create a far object in a specific segment:

#pragma option —thrységment -zHmygroup -zFmyclass
int far x;
#pragma option -zE* -zH* —zF*

This will put x in segment MYSEGMENT "MYCLASS' in the group ‘"MYGROUPF’, then
reset all of the far object items to the default values. Note that by using these options,
several far objects can be forced into a single segment:

#pragma option -zEcombined -zFmyclass

int far x;

double far v;

#pragma option -zE* —zF*

Both x and y will appear in the segment COMBINED ‘MYCLASS’ with no group.

Declaring functions to be near or far -

On occasion, you'll want (or need) to override the default function type of your memory
model.

For example, suppose you're using the large memory model, but you have a recursive
(self-calling) function in your program, like this:
double power (double x,int exp) {
if (exp <= 0)
return(l) ;
else
return(x * power (x, exp-1));
}

Every time power calls itself, it has to do a far call, which uses more stack space and clock
cycles. By declaring power as _ _near, you eliminate some of the overhead by forcing all
calls to that function to be near:

double _ _near péwer(double x,int exp)

- This guarantees that power is callable only within the code segment in which it was
compiled, and that all calls to it are near calls.

Chapter 11, 16-bit memory management 275

This means that if you're using a large code model (medium, large, or huge), you can
only call power from within the module where it is defined. Other modules have their
own code segment and thus cannot call _ _near functions in different modules.
Furthermore, a near function must be either defined or declared before the first time it is
used, or the compiler won't know it needs to generate a near call.

Conversely, declaring a function to be far means that a far return is generated. In the
small code models, the far function must be declared or defined before its first use to
ensure it is invoked with a far call. . :

‘Look back at the power example at the beginning of this section. It is wise to also declare
power as static, since it should be called only from within the current module. That way,
being a static, its name will not be available to any functions outside the module.

Declaring pointers to be near, far, or huge

You've seen why you might want to declare functions to be of a different model than the
rest of the program. For the same reasons given in the preceding section, you might
want to modify pointer declarations: either to avoid unnecessary overhead (declaring

_ _near when the default would be _ _far) or to reference something outside of the
default segment (declaring _ _far or _ _huge when the default would be __ _near).

There are, of course, potential pitfalls in declaring functions and pointers to be of
nondefault types. For example, say you have the following small model program: -

void myputs(s) {
char *s;
int i;
for (1 = 0; s[i] != 0; i++) putc(slil]);

}

main() {
char near *mystr;
mystr = "Hello, world\n"
myputs (mystr);
}

This program works fine. In fact, the _ _near declaration on mystr is redundant, since all
pointers, both code and data, will be near. :

But what if you recompile this program using the compact (or large or huge) memory
model? The pointer mystr in main is still near (it’s still a 16-bit pointer). However, the
pointer s in myputs is now far, because that’s the default. This means that myputs will
pull two words out of the stack in an effort to create a far pointer, and the address it ends
up with will certainly not be that of mystr.

How do you avoid this problem? If you're going to explicitly declare pointers to be of
type _ _far or _ _near, be sure to use function prototypes for any functions that might
use them. The solution is to define myputs in ANSIC style, like this:

vbid myputs (char *s) {
/* body of myputs */
}

276 C++ Progfammer's Guide

Now when Borland C++ compiles your program, it knows that myputs expects a pointer
to char; and since you're compiling under the large model, it knows that the pointer
must be _ _far. Because of that, Borland C++ will push the data segment (DS) register
onto the stack along with the 16-bit value of mystr, forming a far pointer.

How about the reverse case: arguments to myputs declared as _ _far and compiled with
-a small data model? Again, without the function prototype, you will have problems,
because main will push both the offset and the segment address onto the stack, but
myputs will expect only the offset. With the prototype-style function definitions, though,
main will only push the offset onto the stack.

Pointing to a given segment:offset address

You can make a far pointer point to a given memory location (a specific segment:offset

address). You can do this with the macro MK_FP, which takes a segment and an offset
and returns a far pointer. For example,

MK_FP(segment_value, offget_value)

Given a _ _far pointer, fp, you can get the ségment component with FP_SEG(fp) and the
offset component with FP_OFF(fp). For more information about these three Borland
C++ library routines, refer to the C++ Library Reference.

Using library files

Borland C++ offers a version of the standard library routines for each of the six memory
models. Borland C++ is smart enough to link in the appropriate libraries in the proper
order, depending on which model you've selected. However, if you're using the
Borland C++ linker, TLINK, directly (as a standalone linker), you need to specify which
libraries to use. See the online Help for how to do this.

Linking mixed modules

Suppose you compiled one module using the small memory model and another module
using the large model, then wanted to link them together. This would present some
problems, but they can be solved. '

The files would link together fine, but the problems you would encounter would be
similar to those described in the earlier section, “Declaring functions to be near or far.” If
a function in the small module called a function in the large module, it would do so with
a near call, which would probably be disastrous. Furthermore, you could face the same
problems with pointers as described in the earlier section, “Declaring pointers to be
neatr, far, or huge,” since a function in the small module would expect to pass and
~ receive _ _near pointers, and a function in the large module would expect _ _far
pointers. .

The solution, again, is to use function prototypes. Suppose that you put myputs into its
own module and compile it with the large memory model. Then create a header file
called myputs.h (or some other name with a .h extension), which would have the
following function prototype in it:

Chapter 11, 16-bit memory management 277

» void far myputs (char fér *s); ‘
Now, put main into its own module (called MYMAIN.C), and set things up like this:

#include <stdio.h>
#include "myputs.h"

main() {
char near *mystr;

mystr = "Hello, world\n";
myputs (mystr) ;
}

When ydu compile this program, Borland C++ reads in the function prototype from
myputs.h and sees that itis a _ _far function that expects a _ _far pointer. Therefore, it
generates the proper calling code, even if it's compiled using the small memory model.

What if, on top of all this, you need to link in library routines? Your best bet is to use one

of the large model libraries and declare everything to be _ _far. To do this, make a copy

of each header file you would normally include (such as stdio.h), and rename the copy
'to something appropriate (such as fstdio.h).

Then edit each function prototype in the copy so that it is explicitly _ _far, like this:

int far cdecl printf(char far * format, ...);

That way, not only will _ _far calls be made to the routines, but the pointers passed will
also be _ _far pointers. Modify your program so that it includes the new header file:

#include <fstdio.h>
~ void main() {
char near *mystr;

mystr = "Hello, world\n";
printf (mystr) ;

}

Compile your program with the command-line compiler BCC and then link it with
TLINK, specifying a large model library, such as CL.LIB. Mixing models is tricky, but it
can be done; just be prepared for some difficult bugs if you do things wrong.

278 C++ Programmer’s Guide

2113

Chapter

ANSI implementation-specific
standards

Certain aspects of the ANSI C standard are not defined exactly by ANSI. Instead, each
implementor of a C compiler is free to define these aspects individually. This topic
describes how Borland has chosen to define these implementation-specific standards.
The section numbers refer to the February 1990 ANSI Standard. Remember that there
are differences between C and C++; this topic provides you with information on the C
language implementation.

How to identify a diagnostic.

When the compﬂer runs with the correct combmatlon of options, any messages it issues
beginning with the words Fatal, Error, or Warning are diagnostics in the sense that ANSI
specifies. The options needed to ensure this interpretation are as follows:

Table 12, 1 Idenhfymg dlagnostlcs in Borland C++

Enable oniy AN Ikhevywor‘ds.‘ h

- No nested comments allowed.
-i32 At least 32 significant characters in identifiers.
-p- Use C calling conventions.
—-w— Turn off all warnings except the following:

~ —wbei Turn on warning about inappropriate initializers.
—wbig Turn on warning about constants being too large.
-wept Turn on warning about nonportable pointer comparisons.
—wddl Turn on warning about declarations without type or storage class.
-wdup Turn on warning about duplicate nonidentical macro definitions.
-wext Turn on warning about variables declared both as external and as static.
—widt Turn on warning about function definitions using a typedef.
-wrpt Turn on warning about nonportable pointer conversion.

Chapter 12, ANSI implementation-specific standards 279

Table 12.1 Identi»fying diagnostics in Borland C++ (continued)

—wstu Tum on Warmng about undefined structures.

-wsus Turn on warning about suspicious pointer conversion.

-wucp Turn on warning about mixing pointers to signed and unsigned char.
~wvrt Turn on warning about void functions returning a value.

You cannot use the following options:

-ms! . SS must be the same as DS for small data models.
~mm! k SS must be the same as DS for small data models.
-mt! } SS must be the same as DS for small data models.
—zGxx The BSS group name cannot be changed.
~z5xx The data group name cannot be changed.

Other options not specifically mentioned here can be set to whatever you want.
2.1.22.1 The semantics of the arguments to main. k

The value of argo[0] is a pointer to a null byte when the program is run on DOS versions
prior to version 3.0. For DOS version 3.0 or later, argu[0] points to the program name.

The remaining argv strings point to each component of the DOS command-line
arguments. Whitespace separating arguments is removed, and each sequence of

- contiguous non-whitespace characters is treated as a single argument. Quoted strings
are handled correctly (that is, as one string containing spaces).

2,1.2.3 What constitutes an interactive device.
An interactive device is any device that looks like the console.
221 The collation sequence of the execution character set.

The collation sequence for the execution character set uses the signed value of the
character in ASCIL.

2.2.1 Members of the source and execution character sets.

The source and execution character sets are the extended ASCII set supported by the
IBM PC. Any character other than Ctrl+Z can appear in string literals, character
constants, or comments.

2.2.1.2 Multibyte characters.
Multibyte characters are supported in Borland C++.
222 The direction of printing. k
Printing is from left-to-right, the normal direction for the PC.
2242 The number of bits in a character in the execution character set.

There are 8 bits per character in the execution character set.

280 C++ Programmer’s Guide

3.1.2 The number of significant initial characters in identifiers.

‘The first 32 characters are significant, although you can use a command-line option ()
to change that number. Both internal and external identifiers use the same number of
significant characters. (The number of significant characters in C++ identifiers is
unlimited.)

3.1.2 Whether case distinctions are significant in external identifiers.

* The compiler normally forces the linker to distinguish between uppercase and
lowercase. You can use a command-line option (-1—c) to suppress the distinction.

3.1.25 The representations and sets of values of the various types of integers.

Table 12.2 ldentifying diagnostics in C++

127

12
0 , 255 0 255
signed short 32,768 32,767 -32,768 32,767
unsigned short 0 65,535 0 65,535
signed int -32,768 32,767 2,147 483,648 -2,147,483,647
unsigned int 0 65535 0 494,967,295
signed long 2,147,483 648 2,147 483,647 2,147 483,648 2,147 483,647
unsigned long 0 4294967295 0 4294,967,295

All char types use one 8-bit byte for storage.

All short and int types use 2 bytes (in 16-bit programs).
All short and int types use 4 bytes (in 32-bit programs).
All long types use 4 bytes.

If alignment is requested (-a), all nonchar integer type objects will be aligned to even
byte boundaries. If the requested alignment is —a4, the result is 4-byte alignment.
Character types are never aligned.

3.1.25 The representations and sets of values of the various types of floating-point numbers.

The IEEE floating-point formats as used by the Intel 8087 are used for all Borland C-++
floating-point types. The float type uses 32-bit IEEE real format. The double type uses
64-bit IEEE real format. The long double type uses 80-bit IEEE extended real format.

3.1.3.4 The mapping between source and execution character sets.

Any characters in string literals or character constants remain unchanged in the
executing program. The source and execution character sets are the same.

3.1.3.4 The value of an integer character constant that contains a character or escape
sequence not represented in the basic execution character set or the extended
character set for a wide character constant.

Wide characters are supported.

Chapter 12, ANSI implementation-specific standards 281

3134

3.1.34

3.2.1.2

3.21.3

3.21.4

3.3

3.3.23

3.3.3.4

3.3.4

The current locale used to convert multibyte characters 1nto correspondmg wide
characters for a wide character constant.

Wide character constants are recognized.

The value of an integer constant that contains more than one character, or a wide
character constant that contains more than one multibyte character. -

Character constants can contain one or two characters. If two characters are included,
the first character occupies the low-order byte of the constant, and the second character
occupies the high-order byte.

The result of converting an integer to a shorter signed integer, or the result of
converting an unsigned integer to a signed integer of equal length, if the value cannot
be represented.

These conversions are performed by simply truncating the high-order bits. Signed
integers are stored as two’s complement values, so the resulting number is interpreted
as such a value. If the high-order bit of the smaller integer is nonzero, the value is
interpreted as a negative value; otherwise, it is positive.

* The direction of truncation when an integral number is converted to a ﬂoatmg-pomt

number that cannot exactly represent the original value.

The integer value is rounded to the nearest representable value. Thus, for example, the
long value (23! -1) is converted to the float value 231, Ties are broken accordmg to the
rules of IEEE standard arithmetic.

The direction of truncation or roundlng when a floating-point number is converted to
a narrower floating-point number.

The value is rounded to the nearest representable value. Ties are broken according to
the rules of IEEE standard arithmetic.

The results of bitwise operations on signed integers.

The bitwise operators apply to signed integers as if they were their corresponding
unsigned types. The sign bit is treated as a normal data bit. The result is then interpreted
as a normal two’s complement signed integer.

What happens when a member of a union ob] ect is accessed using a member of a
different type.

The access is allowed and the different type member will access the bits stored there.
You'll need a detailed understanding of the bit encodings of floating-point values to
understand how to access a floating-type member using a different member. If the
member stored is shorter than the member used to access the value, the excess bits have
the value they had before the short member was stored.

The type of integer required to hold the maximum size of an array.

For a normal array, the type is un31gned int, and for huge arrays the type is signed
long.

The result of casting a pointer to an integer or vice versa.

282 C++ Programmer’s Guide .

3.3.5

3.3.6

3.3.7

3.5.1

3.5.2.1
3.5.2.1
3.5.2.1

3.5.2.1

3.5.2.2

When converting between integers and pointers of the same size, no bits are changed.

- When converting from a longer type to a shorter type, the high-order bits are truncated.

When converting from a shorter integer type to a longer pointer type, the integer is first
widened to an integer type the same size as the pointer type.

Thus signed integers will sign-extend to fill the new bytes. Similarly, smaller pointer
types being converted to larger integer types will first be widened to a pointer type as
wide as the integer type.

The sign of the remainder on integer division.

The sign of the remainder is negative when only one of the operands is negative. If
neither or both operands are negative, the remainder is positive.

The type of integer required to hold the difference between two pointers to elements
of the same array, ptrdiff_t.

The type is signed int when the pointers are near (or the program is a 32-bit
application), or signed long when the pointers are far or huge. The type of ptrdiff t
depends on the memory model in use. In small data models, the type is int. In large data
models, the type is long.

The result of a right shift of a negative signed integral type.
A negative signed value is sign extended when right shifted.

The extent to which objects can actually be placed in registers by using the register
storage-class specifier.

Objects declared with any two-byte integer or pointer types can be placed in registers.
The compiler places any small auto objects into registers, but objects explicitly declared
as register take precedence. At least two and as many as six registers are available. The
number of registers actually used depends on what registers are needed for temporary
values in the function.

Whether a plain int bit field is treated as a signed int or as an unsigned int bit field.
Plain int bit fields are treated as signed int bit fields.

The order of allocation of bit fields within an int.

Bit fields are allocated from the low-order bit position to the high-order.

The padding and alignment of members of structures.

By default, no padding is used in structures. If you use the word alignment option (-a),
structures are padded to even size, and any members that do not have character or
character array type are aligned to an even multiple offset.

Whether a bit field can straddle a storage-unit boundary.

When alignment (-a) is not requested, bit fields can straddle word boundaries, but are
never stored in more than two adjacent bytes.

The mteger type chosen to represent the values of an enumeration type.

Store all enumerators as full ints. Store the enumerations in a long or unsigned long if
the values don’t fit into an int. This is the default behavior as specified by -b compiler
opuon

Chapter 12, ANSI ,impIemen'tation-specificrstandards 283

353

3.5.4

3.6.4.2

3.8.1

3.8.2

3.8.2

3.8.2

284 C++

The —b— behavior specifies that enumerations should be stored in the smallest integer -
type that can represent the values. This includes all integral types, for example, signed
char, unsigned char, signed short, unsigned short, signed int, unsigned int, signed
long, and unsigned long,.

For C++ compliance, -b— must be specified because it is not correct to store all
enumerations as ints for C++.

What constitutes an access to an object that has volatile-qualified type.

Any reference to a volatile object will access the object. Whether accessing adjacent
memory locations will also access an object depends on how the memory is constructed
in the hardware. For special device memory, such as video display memory, it depends
on how the device is constructed. For normal PC memory, volatile objects are used only
for memory, that might be accessed by asynchronous interrupts, so accessing adjacent
objects has no effect.

The maximum number of declarators that can modlfy an anthmetlc, structure, or
union type.

There is no specific limit on the number of declarators. The number of declarators
allowed is fairly large, but when nested deeply within a set of blocks in a function, the
number of declarators will be reduced. The number allowed at file level is at least 50.

The maximum number of case values in a switch statement.

- There is no specific limit on the number of cases in a switch. As long as there is enough

memory to hold the case information, the compiler will accept them.

Whether the value of a single-character character constant in a constant expression
that controls conditional inclusion matches the value of the same character constant
in the execution character set. Whether such a character constant can have a negative
value.

All character constants, even constants in conditional directives, use the same character
set (execution). Single-character character constants will be negative if the character type
is signed (default and —K not requested).

The method for locating includable source files.

For include file names given with angle brackets, if include directories are given in the
command line, then the file is searched for in each of the include directories. Include
directories are searched in this order: first, using directories specified on the command
line, then using directories specified in TURBOC.CFG or BCC32.CFG. If no include
directories are specified, then only the current directory is searched.

The support for quoted names for includable source files.

For quoted file names, the file is first searched for in the current directory. If not found,
searches for the file as if it were in angle brackets.

The mapping of source file name character sequences.

Backslashes in include file names are treated as distinct characters, not as escape
characters. Case differences are ignored for letters.

Programmer’s Guide

3.8.8

The definitions for __DATE__and_ _TIME__ when they are unavailable.

The date and time are always available and will use the operating system date and time.
The decimal point character.

The decimal point character is a period (.).

The type of the sizeof operator, size_t.

The type size_t is unsigned.

The null pointer constant to which the macro NULL expands.

For a 16-bit application, an integer or a long zero, depending on the memory model.

For 32-bit applications, NULL expands to an int zero or a long zero. Both are 32-bit

_ signed numbers.

4.2

4.3
4.3.1

4.5.1

4.5.1
4.5.6.4

4.7.1.1
4.7.1.1

4741

The diagnostic printed by and the termination behavior of the assert function.

The diagnostic message printed is “Assertion failed: expression, file filename, line nn,” '
where expression is the asserted expression that failed, filename is the source file name,
and nn is the line number where the assertion took place.

Abort is called iminédiately after the assertion message is displayed.

The implementation-defined aspects of character testing and case-mapping
functions.

None, other than What is mentioned in 4.3.1.

The sets of characters tested for by the isalnum, isalpha, iscntrl, islower, ispt;int, and
isupper functions.

First 128 ASCII characters for the default C locale. Otherwise, all 256 characters.
The values returned by the mathematics functions on domain errors.
An IEEE NAN (not a number).

‘Whether the mathematics functions set the integer expression errno to the value of

the macro ERANGE on underflow range errors.
No, only for the other errors—domain, singularity, overflow, and total loss of precision.

Whether a domain error occurs or zero is returned when the finod function has a
second argument of zero.

No; fmod (x, 0) returns 0.
The set of signals for the signal function.

- SIGABRT, SIGFPE, SIGILL, SIGINT, SIGSEGV, and SIGTERM.

The semantics for each signal recognized by the signal function.
See the description of signal. |

The default handling and the handling at program startup for each signal recognized
by the signal function.

See the description of signal.

Chapter 12, ANSI implementation-specific standards 285

4.7.11

4.71.1

4.9.2

4.9.2

4.9.2

4.9.3

4.9.3

4.9.3

.4.9.3

4.9.3

4.9.41

4.9.4.2

If the equivalent of signal(sig, SIG_DFL) is not executed prior to the call of a signal
handler, the blocking of the signal that is performed.

~ The equivalent of signal(sig, SIG_DFL) is always executed.

Whether the default handling is reset if the SIGILL signal is received by a handler
specified to the signal function.

No, it is not.
Whether the last line of a text stream requires a terminating newline character.
No, none is required.

Whether space characters that are written out to a text stream immediately before a
newline character appear when read in.

Yes, they do.

The number of null characters that may be appended to data written to a binary
stream. \

None.

Whether the file position indicator of an append mode stream is initially positioned

~ at the beginning or end of the file.

The file position indicator of an append-mode stream is initially placed at the beginning
of the file. It is reset to the end of the file before each write.

Whether a write on a text stream causes the associated file to be truncated beyond that
point.

A wrrite of 0 bytes might or might not truncate the file, depending on how the file is
buffered. It is safest to classify a zero-length write as having indeterminate behavior.

The characteristics of file buffermg.

Files can be fully buffered, line buffered, or unbuffered. If a file is buffered, a default
buffer of 512 bytes is created upon opening the file.

Whether a zero-length file actually exists.

. Yes, it does.

Whether the same file can be open multiple times.
Yes, it can.
The effect of the remove function on an open file.

No special checking for an already 6pen file is performed; the responsibility is left up to
the programmer.

The effect if a file with the new name exists prior to a call to rename.

Rename returns a -1 and errno is set to EEXIST.

286 C++ Programmer’s Guide

4.9.6.1

4.9.6.2

4.9.6.2

4.9.9.1

4.9.10.4

The output for %p conversion in fprintf.

In near data models, four hex digits (XXXX). In far data models, four hex digits, colon,
four hex digits QOOXXXXX). (For 16-bit programs.)

Eight hex digits OOXXXXXXXX). (For 32-bit programs.)

The input for %p conversion in fscanf.
‘See 4.9.6.1.

The interpretation of a —(hyphen) character that is neither the first nor the last
character in the scanlist for a %[conversion in fscanf.

See the description of scanf.

The value the macro ERRNO is set to by the fgetpos or ftell function on fa1lure

EBADF Bad file number.

The messages generated by perror.

Table 12.3 Messages generated in both Win16 and Win32

* Arg list too big Math argument
Attempted to remove current directory Memory arena trashed
Bad address Name too long
Bad file number No child processes

. Block device required No more files
Broken pipe No space left on device
Cross-device link No such device
Error 0 No such device or address
Exec format error No such file or directory
Executable filein use No such process

File already exists Not a directory
File too large \ Not enough memory
Megal seek Not same device
Inappropriate I/O control operation Operation not permitted
Input/output error Path not found
Interrupted function call Permission denied .
Invalid access code Possible deadlock
Invalid argument Read-only file system
Invalid data Resource busy
Invalid environment Resource temporarily unavailable
Invalid format Result too large
Invalid function number Too many links
Invalid memory block address Too many open files
Is a directory

Chapter 12, ANSI implementatioﬁ-specific standards

287

4103

4.10.4.1

4.104.3

4.104.4

4.104.5

4.11.6.2

4.12.1

4.12.2.1

Table 124 - Messages generated only in Win32

Bad address

Block device required’
Broken pipe

Executable file in use
File too large

Ilegal seek -
Inappropriate I/O control operation
Input/ outpuf error
Interrupted function call
Is a directory

Name too long

No child processes

No space left on device

No such’device or address
No such process

Not a directory

Operation not permitted
Possible deadlock
Read-only file system
Resource busy

Resource temporarily unavailable
Too many links '

The behavior of calloc, malloc, or realloc if the size requested is zero.

calloc and malloc will ignore the request and return 0. realloc will free the block.

The behavior of the abort function with regard to open and temporary files.

The file buffers are not flushed and the files are not closed.

The status returned by exit if the value of the argument is other than zero,

EXIT_SUCCESS, or EXIT_FAILURE.

Nothing special. The status is returned exactly as it is passed. The status is a represented

as a signed char.

The set of environment names and the method for altering the environment list used

by getenv.

The environment strings are those defined in the operating system with the SET

" command. putenv can be used to change the strings for the duration of the current

program, but the SET command must be used to change an environment string

permanently.

The contents and mode of execution of the string by the system function.

The string is interpreted as an operating system command. COMSPEC is used or
COMMAND.COM is executed (for 16-bit programs) or CMD.EXE (for 32-bit programs)
and the argument string is passed as a command to execute. Any operating system
built-in command, as well as batch files and executable programs, can be executed.

The contents of the error message strings returned by strerror.

See 4.9.10.4.

The local time zone and Daylight Saving Time.

Defined as local PC time and date.
The era for clock.

Represented as clock ticks, with the orlgm being the begmmng of the program

execution.

288 C++ Programmer’s Guide

4.12.3.5 The formats for date and time.
Borland C++ implements ANSI formats.

Chapter 12, ANSI impiementation-specific standards 289

290 C++ Programmer’s Guide

Borland C++ DOS
programmer’s guide
Part II provides information you might need to develop 16-bit applications that are
targeted to run DOS. ‘

_ This part is organized into the following chapters:

Chapter 13, “DOS memory management,” describes overlays. Overlays are supported
only in DOS applications. See also Chapter 11, “16-bit memory management.”

Chapter 14, “Video functions,” discusses graphics in Borland C++. The topics
discussed in this chapter are available only for 16-bit DOS applications.

Part {I, Borland C++ DOS programmer’s guide 291

292 C++ Programmer’s Guide

Chapter

DOS memory management

This chapter discusses
¢ How overlays work, and how to use them.

¢ How to overlay modules with exception-handling constructs.

‘Overlays (VROOMM) for DOS

Opverlays are used only in 16-bit DOS programs; you can mark the code segments of a
Windows application as discardable to decrease memory consumption. Overlays are
parts of a program’s code that share a common memory area. Only the parts of the
program that are required for a given function reside in memory at the same time.

Overlays can significantly reduce a program'’s total run-time memory requirements.
With overlays, you can execute programs that are much larger than the total available
memory, since only parts of the program reside in memory at any given time.

How overlays work

Borland C++’s overlay manager (called VROOMM for Virtual Run-time Object-
Oriented Memory Manager) is highly sophisticated; it does much of the work for you.
In a conventional overlay system, modules are grouped together into a base and a set of
overlay units. Routines in a given overlay unit can call other routines in the same unit
and routines in the base, but not routines in other units. The overlay units are overlaid
against each other; that is, only one overlay unit can be in memory at a time, and each

~ unit occupies the same physical memory. The total amount of memory needed to run
the program is the size of the base plus the size of the largest overlay.

This conventional scheme is quite inflexible. It requires complete understanding of the
possible calling dependencies in the program, and requires you to have the overlays
grouped accordingly. It might be impossible to break your program into overlays if you
can’t split it into separable calling dependencies.

Chapter 13, DOS memory management 293

VROOMM; s scheme is quite different. It provides dynamic segment swapping. The basic
swapping unit is the segment. A segiment can be one or more modules. More ’
importantly, any segment can call any other segment.

- Memory is divided into an area for the base plus a swap area. Whenever a function is
called in a segment that is neither in the base nor in the swap area, the segment
containing the called function is brought into the swap area, possibly displacing other
segments. This is a powerful approach—it is like software virtual memory. You no
longer have to break your code into static, distinct, overlay units. You just let it run!

Suppose a segment needs to be brought into the swap area. If there is room for the
segment, execution continues. If there is not, then one or more segments in the swap
area must be thrown out to make room.

The algorithm for deciding which segment to throw out is quite sophisticated. Here’s a
simplified version: if there is an inactive segment, choose it for removal. Inactive
segments are those without executing functions. Otherwise, pick an active segment and
swap it out. Keep swapping out segments until there is enough room available. T}us
technique is called dynamic swappmg

The more memory you provide for the swap area, the better the program performs. The
swap area acts like a cache; the bigger the cache, the faster the program runs. The best
setting for the size of the swap area is the size of the program’s working set.

Once an overlay is loaded into memory, it is placed in the overlay buffer, which resides
in memory between the stack segment and the far heap. By default, the size of the
overlay buffer is estimated and set at startup, but you can change it using the global
variable ovrbuﬁfer (see the C++ Language Reference, Chapter 9, “DOS global variables”).
If there isn’t enough available memory, an error message is displayed by DOS
(“Program too big to fit in memory”) or by the C startup code (“Not enough memory to
run program”).

One important option of the overlay manager is the ability to swap the modules to
expanded or extended memory when they are discarded from the overlay buffer. Next
time the module is needed, the overlay manager can copy it from where the module
was swapped to mstead of reading from the file. This makes the overlay manager much
faster.

When using overlays, memory is used as shown in Figure 13.1.

294 C++ Programmer’s Guide

Figure 13.1 Memory maps for overlays

Medium model Large model Huge model
Class CODE Class CODE Class CODE
These segments Class OVRINFO Class OVRINFO | Class OVRINFO
are generated
automatically ’
by the linker Class STUBSEG Class STUBSEG
_DATA _DATA
Near heap and Class DATA Class Data
stack share - NEAR HEAP ¥
data segment y .
1 sTAcK STACK STACK
Overlay buffer Overlay buffer Overlay buffer
(allocated (allocated (allocated
at startup) at startup) at startup)
FAR HEAP FAR HEAP FAR HEAP
)

Guidelines for using Borland C++ overlays effectively
To get the best out of Borland C++ overlays,)

* Minimize resident code (resident run-time library, interrupt handlers, and device
drivers are a good starting point).

* Set overlay buffer size to be a comfortable working set (start with 128K and adjust up
and down to see the speed/size tradeoff). See page 297 for more information on
setting the size of the overlay buffer.

¢ Think versatility and variety: take advantage of the overlay system to provide
support for special cases, interactive help, and other end-user benefits you couldn’t
consider before.

Requirements

To create overlays, you'll need to remember a few rules:
e The smallest part of a program that can be made into an overlay is a segment.

¢ Overlaid applications must use the medium, large, or huge programming models;
the tiny, small, and compact models are not supported.

¢ Normal segment merging rules govern overlaid segments. That is, several .OB]
modules can contribute to the same overlaid segment.

The link-time generation of overlays is completely separated from the run-time overlay
management; the linker does not automatically include code to manage the overlays. In

Chapter 13, DOS memory management 295

fact, from the linker’s point of view, the overlay manager is just another piece of code
that gets linked in. The only assumption the linker makes is that the overlay manager
takes over an interrupt vector (typically INT 3FH) through which all dynamic loading is
controlled. This level of transparency makes it very easy to implement custom-built
overlay managers that suit the particular needs of each application.

Exception handling and overlays

If you overlay a C++ program that contains exception-handling constructs, there are a
number of situations that you must avoid. The following program elements cannot
contain an exception-handling construct:

¢ Inline functions that are not expanded inline
¢ Template functions
* Member functions of template classes

Exception-handling constructs include user-written try/catch and _ _try/_ _except
blocks. In addition, the compiler can insert exception handlers for blocks with automatic
class variables, exception specifications, and some new/delete expressions.

If you attempt to overlay any of the above exception-handling constructs, the linker
identifies the function and module with the following message:

Error: Illegal local public in function name in module module name

When this error is caused by an inline function, you can rewrite the function so that it is
not inline. If the error is caused by a template function, you can do the following;:

¢ Remove all exception-handling constructs from the function
* Remove the function from the overlay module

You need to pay special attention when overlaying a program that uses multiple
inheritance. An attempt to overlay a module that defines or uses class constructors or
destructors that are required for a multiple inheritance class can cause the linker to
generate the following message:

Error: Illegal local public in class_name:: in module module name

When such a message is generated, the module identified by the linker message should
not be overlaid.

The container classes (in the BIDS? LIB) have the excephon—handlmg mechanism turned
off by default. However, the diagnostic version of BIDS throws exceptions and should
not be used with overlays. By default, the string class can throw exceptions and should
not be used in programs that use overlays. See the C++ Language Reference, Part I1I,
“Borland C++ class libraries reference,” for a discussion of BIDS and the string class.

Using overlays

- Overlays can be used only in 16-bit DOS programs. To overlay a program, all of its
modules must be compiled with the Y compiler option enabled. To make a particular
module into an overlay, it needs to be compiled with the Yo optlon (-Yo automatically
enables -Y.)

296 C++ Programmer’s Guide

Note

Note

The -Yo option applies to all modules and libraries that follow it on the command line;
you can disable it with —~Yo—. These are the only command line options that are allowed
to follow file names. For example, to overlay the module OVL.C but not the library
GRAPHICS.LIB, either of the following command lines could be used:

BCC -ml -Yo ovl.c -Yo- graphics.lib
or
v BCC -ml graphics.lib -Yo ovl.c
If TLINK is invoked explicitly to link the .EXE file, the /o linker option must be specified

on the linker command line or response file, See Chapter 3 of the C++ User’s Guide for
details on how to use the /o option.

Overlay example , _
Suppose that you want to overlay a program consisting of three modules: MAIN.C,
01.C, and O2.C. Only the modules O1.C and O2.C should be made into overlays.
(MAIN.C contains time-critical routines and interrupt handlers, so it should stay

resident.) Let’s assume that the program uses the large memory model.

The following command accomplishes the task:

BCC —ml -Y main.c -Yo ol.c o2.c

The result will be an executable file MAIN.EXE, containing two overlays.

See the discussion of TargetExpert in the C++ User’s Guide, Chapter 2, for information on
programming with overlays. :

Overlaid programs.

This section discusses issues vital to well-behaved overlaid applications.

The far call requirement

Use a large code model (medium, large, or huge) when you want to compile an overlay
module. At any call to an overlaid function in another module, you must guarantee that
all currently active functions are far.

You must compile all overlaid modules with the ~Y option, which makes the compiler
generate code that can be overlaid.

Failing to observe the far call requirement in an overlaid program will cause
unpredictable and possibly catastrophic results when the program is executed.

Buffer size

The default overlay buffer size is twice the size of the largest overlay. This is adequate
for some applications. But imagine that a particular function of a program is
implemented through many modules, each of which is overlaid. If the total size of those
modules is larger than the overlay buffer, a substantial amount of swapping will occur if
the modules make frequent calls to each other.

Chapter 13, DOS memory management 297

The solution is to increase the size of the overlay buffer so that enough memory is
available at any given time to contain all overlays that make frequent calls to each other.
You can do this by setting the ovrbujfer global variable (see the C++ Language Reference, .
Chapter 9) to the required size in paragraphs. For example, to set the overlay buffer to
128K, include the following statement in your code:

- unsigned _ovrbuffer = 0x2000;

There is no general formula for determining the ideal overlay buffer size.

What not to overlay
Exception-handling constructs in overlays require special attention. See page 296 for a
discussion of exception handling.

Don't overlay modules that contain interrupt handlers, or small and time-critical
routines. Due to the non-reentrant nature of the DOS operating system, modules that
might be called by interrupt functions should not be overlaid.

Borland C++’s overlay manager fully supports passing overlaid functions as arguments,
assigning and initializing function pointer variables with addresses of overlaid
functions, and calling overlaid routines via function pointers.

Debuggmg overlays

Most debuggers have very limited overlay debugging capablhtles if any at all Not so
with Borland C++’s Turbo Debugger, the standalone debugger. The debugger fully
supports single-stepping and breakpoints in overlays in a manner completely .
transparent to you. By using overlays, you can easily engineer and debug huge
applications—all by using Turbo Debugger.

Note Overlays should not be used with any diagnostic version of the BIDS libraries.

External routines in overlays
Like normal C functions, external assembly language routines must observe certain
programming rules to work correctly with the overlay manager.

If an assembly language routine makes calls to any overlaid functions, the assembly
language routine must be declared FAR, and it must set up a stack frame using the BP
register. For example, assuming that OtherFunc is an overlaid function in another
module, and that the assembly language routine ExternFunc calls it, then ExternFunc
must be FAR and set up a stack frame, as shown:

ExternFunc PROC FAR
push bp : ;Save BP
mov bp, sp ;Set up stack frame
sub sp, LocalSize ;Allocate local variables
call OtherFunc ;Call another overlaid module
mov sp, bp ;Dispose local variables
pop bp ;Restore BP.
RET ;Return
ExternFunc ENDP ’

298 C++ Programmer’s Guide

where LocalSize is the size of the local variables. If LocalSize is zero, you can omit the two
lines to allocate and dispose local variables, but you must not omit setting up the BP
stack frame even if you have no arguments or variables on the stack.

These requirements are the same if ExternFunc makes indirect references to overlaid
functions. For example, if OtherFunc makes calls to overlaid functions, but is not itself
“overlaid, ExternFunc must be FAR and still has to set up a stack frame.

In the case where an assembly language routine doesn’t make any direct or indirect
references to overlaid functions, there are no special requirements; the assembly
language routine can be declared NEAR. It does not have to set up a stack frame.

Overlaid assembly language routines should ot create variables in the code segment,
since any modifications made to an overlaid code segment are lost when the overlay is
disposed. Likewise, pointers to objects based in an overlaid code segment cannot be
expected to remain valid across calls to other overlays, since the overlay manager freely
moves around and disposes overlaid code segments.

Swapping

If you have expanded or extended memory available, you can tell the overlay manager
to use it for swapping. If you do'so, when the overlay manager has to discard a module
from the overlay buffer (because it should load a new module and the buffer is full), it
can store the discarded module in this memory. Any later loading of this module is -
reduced to in-memory transfer, which is significantly faster than reading from a disk
file.

Inboth cases there are two possibilities: the overlay manager can either detect the
presence of expanded or extended memory and can take it over by itself, or it can use an
already detected and allocated portion of memory. For extended memory, the detection
of the memory use is not always successful because of the many different cache and
RAM disk programs that can take over extended memory without any mark. To avoid
this problem, you can tell the overlay manager the starting address of the extended
memory and how much of it is safe to use.

Borland C++ provides two functions that allow you to initialize expanded and extended
memory. See the C++ Language Reference, Chapter 7, for a descnptlon of the _OurlnitEms
and _OurInitExt functions.

Chapter 13, DOS memory management 299

300 Ca+ Programmer’s Guide

Chapter

Video functions

Borland C++ comes with a complete library of graphics functions, so you can produce
onscreen charts and diagrams. The graphics functions are available for 16-bit DOS-only

* applications. This chapter briefly discusses video modes and windows, then explains
how to program in graphics mode.

Video modes

Your PC has some type of video adapter. This can be a Monochrome Display Adapter
(MDA) for text-only display, or it can be a graphics adapter, such as a Color/Graphics
Adapter (CGA), an Enhanced Graphics Adapter (EGA), a Video Graphics Array
adapter (VGA), or a Hercules Monochrome Graphics Adapter. Each adapter can
operate in a variety of modes; the mode specifies whether the screen displays 80 or 40
columns (text mode only), the display resolution (graphlcs mode only), and the display
type (color or black and white).

The screen’s operating mode is defined when your program calls one of the mode-
defining functions textmode, initgraph, or setgraphmode. ‘

¢ In text mode, your PC’s screen is divided into cells (80 or 40 columns wide by 25, 43, or
50 lines high). Each cell consists of a character and an attribute. The character is the
displayed ASCII character; the attribute specifies how the character is displayed (its

- color, intensity, and so on). Borland C++ provides a full range of routines for
manipulating the text screen, for writing text directly to the screen, and for
controlling cell attributes.

¢ In graphics mode, your PC'’s screen is divided into pixels; each pixel displays a single
dot onscreen. The number of pixels (the resolution) depends on the type of video
adapter connected to your system and the mode that adapter is in. You can use
functions from Borland C++’s graphics library to create graphic displays onscreen:
You can draw lines and shapes, fill enclosed areas with patterns, and control the color
of each pixel.

Chapter 14, Video functions 301

In text modes, the upper left corner of the screen is position (1,1), with x-coordinates
increasing from left to right, and y-coordinates increasing from screen-top to screen-
bottom. In graphics modes, the upper left corner is position (0,0), with the x- and
y-coordinate values increasing in the same manner.

Windows and viewports

Borland C++ provides functions for creating and managing windows on your screen in
text mode (and viewports in graphics mode). If you aren’t familiar with windows and
viewports, you should read this brief overview. Borland C++'s window- and viewport-
management functions are explained in the “Programming in graphics mode” section.

A window is a rectangular area defined on your PC’s video screen when it’s in a text
mode. When your program writes to the screen, its output is restricted to the active
window. The rest of the screen (outside the window) remains untouched.

The default window is a full-screen text window. Your program can change this default
window to a text window smaller than the full screen (with a call to the window function,
which specifies the window’s position in terms of screen coordinates).

In graphics mode, you can also define a rectangular area on your PC’s video screen; this
is a viewport. When your graphics program outputs drawings and so on, the viewport
acts as the virtual screen. The rest of the screen (outside the viewport) remains
untouched. You define a viewport in terms of screen coordinates with a call to the
setviewport function.

Except for these window- and viewport-defining functions, all coordinates for text-mode
and graphics-mode functions are given in window- or viewport-relative terms, not in
absolute screen coordinates. The upper left corner of the text-mode window is the
coordinate origin, referred to as (1,1); in graphics modes, the viewport coordinate origin
is position (0,0).

Programming in graphics mode

. This section provides a brief summary of the functions used in graphics mode. For more
detailed information about these functions, refer to the C++ Language Reference, Chapter
6, “Borland graphics interface.”

Borland C++ provides a separate library of over 70 graphics functions, ranging from
high-level calls (like setviewport, bar3d, and drawpoly) to bit-oriented functions (like
getimage and putimage). The graphics library supports numerous fill and line styles, and
provides several text fonts that you can size, justify, and orient horizontally or vertically.

These functions are in the library file GRAPHICS.LIB, and they are prototyped in the
header file graphics.h. In addition to these two files, the graphics package includes
graphics device drivers (*.BGI files) and stroked character fonts (* CHR files); these files
are d1scussed in following sections.

302 C++ Programmer’s Guide

Note

To use the graphics functions with the BCC.EXE command-line compiler, you have to
list GRAPHICS.LIB on the command line. For example, if your program MYPROG.C
uses graphics, the BCC command line would be

BCC MYPROG GRAPHICS.LIB

See the C-++ User’s Guide discussion of TargetExpert in Chapter 2 for a description of
DOS programming with graphics. When you make your program, the linker
automatically links in the Borland C++ graphics library. ‘

Because graphics functions use far pointers, graphics aren’t supported in the tmy
memory model.

There is only one graphics library, not separate versions for each memory model (in
contrast to the standard libraries CS.LIB, CC.LIB, CM.LIB, and so on, which are
memory-model specific). Each function in GRAPHICS.LIB is a far function, and those
graphics functions that take pointers take far pointers. For these functions to work
correctly, it is important that you #include graphics.h in every module that uses
graphics.

The graphics library functions

There are seven categories of Borland C++ graphics functions:

Graphics system control

Drawing and filling

Manipulating screens and v1ewports
Text output :

Color control

Error handling

State query

Graphics system control
Here’s a summary of the graphics system control:

detectgraph : Ch(gﬁks the hardware and determines which graphics driver to use; recommends a
mode.

graphdefaults - Resets all graphics system variables to their default settings.

_graphfreemem Deallocates graphics memory; hook for defining your own routine.

_graphgetmem Allocates graphics memory; hook for defining your own routine.

getgraphmode Returns the current graphics mode.

getmoderange Returns lowest and highest valid modes for specified driver.

initgraph Initializes the graphics system and puts the hardware into graphics mode.

installuserdriver Installs a vendor-added device driver to the BGI device driver table.

installuserfont Loads a vendor-added stroked font file to the BGI character file table.

registerbgidriver Registers a linked-in or user-loaded driver file for inclusion at link time.

restorecrtmode Restores the original (pre-initgraph) screen mode.

Chapter 14, Video functions = 303

i i R a
setgraphbufsize Specifies size of the internal graphics buffer.

setgraphmode Selects the specified graphics mode, clears the screen, and restores all defaults.

Borland C++’s graphics package provides graphics drivers for the following graphics
adapters (and true compatibles):

Color/Graphics Adapter (CGA)
Multi-Color Graphics Array (MCGA)
Enhanced Graphics Adapter (EGA)
Video Graphics Array (VGA)
Hercules Graphics Adapter

AT&T 400-line Graphics Adapter
3270 PC Graphics Adapter

IBM 8514 Graphics Adapter

To start the graphics system, you first call the initgraph function. initgraph loads the
graphics driver and puts the system into graphics mode.

You can tell initgraph to use a particular graphics driver and mode, or to autodetect the
attached video adapter at run time and pick the corresponding driver. If you tell
initgraph to autodetect, it calls detectgraph to select a graphics driver and mode. If you tell
initgraph to use a particular graphics driver and mode, you must be sure that the
hardware is present. If you force initgraph to use hardware that is not present, the results
will be unpredictable.

Once a graphics driver has been loaded, you can use the gerdrivername function to find
out the name of the driver and the getmaxmode function to find out how many modes a
driver supports. getgraphmode will tell you which graphics mode you are currently in.
Once you have a mode number, you can find out the name of the mode with
getmodename. You can change graphics modes with setgraphmode and return the video
mode to its original state (before graphics was initialized) with restorecrtmode.
restorecrtmode returns the screen to text mode, but it does not close the graphics system
(the fonts and drivers are still in memory).

graphdefaults resets the graphics state’s settings (viewport size, draw color, fill color and
pattern, and so on) to their default values.

installuserdriver and installuserfont let you add new device drivers and fonts to your BGL

Finally, when you're through using graphics, call closegraph to shut down the graphics
system. closegraph unloads the driver from memory and restores the original video
mode (via restorecrtmode).

A more detailed discussion

The previous discussion provided an overview of how initgraph operates. In the
following paragraphs, we describe the behavior of initgraph, _gmphgetmem, and
_graphfreemem in some detail.

Normally, the initgraph routine loads a graphics driver by allocating memory for the
driver, then loading the approprlate BGlI file from disk. As an alternative to this

304 C++ Programmer’s Guide

Note

~ Note

dynamic loading scheme, you can link a graphics driver file (or several of them) directly
into your executable program file. You do this by first converting the .BGI file to an .OBJ
file (using the BGIOB] utility), then placing calls to registerbgidriver in your source code
(before the call to initgraph) to register the graphics driver(s). When you build your
program, you need to link the .OB]J files for the registered drivers.

After determining which graphics driver to use (via detectgraph), initgraph checks to see
if the desired driver has been registered. If so, initgraph uses the registered driver
directly from memory. Otherwise, initgraph allocates memory for the driver and loads
the .BGI file from disk.

Using registerbgidriver is an advanced programming technique, not recommended for
novice programmers. This function is described in more detail in the C++ Language
Reference, Chapter 6.

During run time, the graphics system might need to allocate memory for drivers, fonts,
and internal buffers. If this is necessary, it calls _graphgetmem to allocate memory and
_graphfreemem to free memory. By default, these routines call malloc and free,
respectively.

You can ovetride this default behavior by defining your own _graphgetmem and
_graphfreemem functions. By doing this, you can control graphics memory allocation
yourself. You must, however, use the same names for your own versions of these
memory-allocation routines: they will override the default functions with the same
names that are in the standard C libraries.

If you provide your own _graphgetmem or _graphfreemerm, you mlght get a “duplicate
symbols” warning message. Just ignore the warning.

Drawing and fiIIing
Here’s a quick summary of the drawing and filling functions:

arc Draws a circular arc.

circle Draws a circle.

drawpoly Draws the outline of a polygon.

ellipse Draws an elliptical arc.

getarccoords Returns the coordinates of the last call to arc or ellipse.
getaspectratio Returns the aspect ratio of the current graphics mode.
getlinesettings Returns the current line style, line pattern, and line thickness.
line Draws a line from (x0,y0) to (x1,y1).

linerel Draws a line to a point some relative distance from the current position (CP).
lineto - Draws a line from the current position (CP) to (x,).

moveto Moves the current position (CP) to (x,y).

moverel Moves the current position (CP) a relative distance.

rectangle Draws a rectangle.

setaspectratio Changes the default aspect ratio-correction factor.

setlinestyle Sets the current line width and style.

Chapter 14, Video functions 305

x ar i Draws and fills a bar.

bar3d Draws and fills a 3-D bar.

fillellipse Draws and fills an ellipse.

fillpoly Draws and fills a polygon.

floodfill Flood-fills a bounded region.

getfillpattern Returns the user-defined fill pattern.

getfillsettings Returns information about the current fill pattern and color.
pieslice Draws and fills a pie slice.

sector Draws and fills an elhphcal pie slice.

setfillpattern Selects a user-defined fill pattern.

setfillstyle Sets the fill pattern and fill color.

With Borland C++’s drawing and painting functions, you can draw colored lines, arcs,
circles, ellipses, rectangles, pie slices, two- and three-dimensional bars, polygons, and
regular or irregular shapes based on combinations of these. You can fill any bounded
shape (or any region surrounding such a shape) with one of eleven predefined patterns,
or your own user-defined pattern. You can also control the thickness and style of the
drawing line, and the location of the current position (CP).

You draw lines and unfilled shapes with the functions arc, circle, drawpoly, ellipse, line,
linerel, lineto, and rectangle. You can fill these shapes with floodfill, or combine drawing
and filling into one step with bar, bar3d, fillellipse, fillpoly, pieslice, and sector. You use
setlinestyle to specify whether the drawing line (and border line for filled shapes) is thick
or thin, and whether its style is solid, dotted, and so forth, or some other line pattern
you've defined. You can select a predefined fill pattern with setfillstyle, and define your
own fill pattern with seffillpattern. You move the CP to a specified location with moveto,
and move it a specified displacement with moverel.

To find out the current line style and thickness, call getlinesettings. For information about
the current fill pattern and fill color, call getfillsettings; you can get the user-defined fill
pattern with getfillpattern.

You can get the aspect ratio (the scaling factor used by the graphics system to make sure
circles come out round) with getaspectratio, and the coordinates of the last drawn arc or
ellipse with getarccoords. If your circles aren’t perfectly round, use setaspectratio to correct
them.

Manipulating the screen and viewport
Here's a quick summary of the screen-, viewport-, image-, and pixel-manipulation

functions.
e ’
Screen manipulation
cleardevice " Clears the screen (active page).

setactivepage Sets the active page for graphics output.
setvisualpage Sets the visual graphics page number.

306 C++ Programmer’s Guide

V1ewport mampulatlon
clearviewport Clears the current viewport.
getviewsettings Returns information about the current viewport.

setviewport ' Sets the current output viewport for graphics output.

Image manipulation

getimage Saves a bit image of the specified region to memory.

imagesize Returns the number of bytes required to store a rectangular region of
the screen.

putimage Puts a previously saved bit image onto the screen.

Pixel manipulation

getpixel Gets the pixel color at (x,y).

putpixel " Plots a pixel at-(xy).

Besides drawing and painting, the graphics hbrary offers several functions for
manipulating the screen, viewports, images, and pixels. You can clear the whole screen
in one step with a call to cleardevice; this routine erases the entire screen and homes the
CP in the viewport, but leaves all other graphics system settings intact (the line, fill, and
text styles; the palette; the viewport settings; and so on).

Depending on your graphics adapter, your system has between one and four screen-
page buffer; these are areas in memory where individual whole-screen images are
stored dot-by-dot. You can specify the active screen page (where graphics functions
place their output) with setactivepage and the visual page (the one displayed onscreen)
with setvisualpage.

Once your screen is in graphics mode, you can define a viewport (a rectangular “virtual
screen”) on your screen with a call to setviewport. You define the viewport’s position in
terms of absolute screen coordinates and specify whether clipping is on (active) or off.
You clear the viewport with clearviewport. To find out the current viewport’s absolute
screen coordinates and clipping status, call getviewsettings.

You can capture a portion of the onscreen image with getzmage , call imagesize to calculate
the number of bytes required to store that captured image in memory, then put the
stored image back on the screen (anywhere you want) with putimage.

The coordinates for all output functions (drawing, filling, text, and so on) are viewport-
relative.

You can also manipulate the color of individual pixels with the functions getpzxel (Wh.lCh
returns the color of a given pixel) and putpixel (which plots a specified pixelina g1ven
color).

“Text output in graphics mode
Here’s a quick summary of the graphics-mode text output functions:

s

‘ gettextsettings Returns the current text font, direction, size, and justification.
outtext Sends a string to the screen at the current position (CP).

"Chapter 14, Video functions 307

outtextxy Sends a string to the screen at the specified position.
registerbgifont Registers a linked-in or user-loaded font.

settextjustify Sets text justification values used by outtext and outtextxy.
settextstyle Sets the current text font, style, and character magnification factor.
setusercharsize Sets width and height ratios for stroked fonts.

textheight Returns the height of a string in pixels.

textwidth Returns the width of a string in pixels. '

The graphics library includes an 8x8 b1t—mapped font and several stroked fonts for text
output while in graphics mode.

e In a bit-mapped font, each character is defined by a matrix of pixels.

* In a stroked font, each character is defined by a series of vectors that tell the graphics
system how to draw that character.

The advantage of using a stroked font is apparent when you start to draw large
characters. Since a stroked font is defined by vectors, it retains good resolution and
quality when the font is enlarged. On the other hand, when you enlarge a bit-mapped
font, the matrix is multiplied by a scaling factor; as the scaling factor becomes larger, the
characters’ resolution becomes coarser. For small characters, the bit-mapped font should
be sufficient, but for larger text you should select a stroked font.

You output graphics text by calling either outtext or outtextxy, and you control the
justification of the output text (with respect to the CP) with settextjustify. You choose the
character font, direction (horizontal or vertical), and size (scale) with settextstyle. You can
find out the current text settings by calling gettextsettings, which returns the current text
font, justification, magnification, and direction in a textsettings structure. setusercharsize
lets you modify the character width and height of stroked fonts. -

If clipping is on, all text strings output by outtext and outtextxy are clipped at the
viewport borders. If clipping is off, these functions throw away bit-mapped font output

© if any part of the text string would go off the screen edge; stroked font output is
truncated at the screen edges.

To determine the onscreen size of a given text string, call textheight (wWhich measures the
string’s height in pixels) and textwidth (which measures its width in pixels).

The default 8x8 bit-mapped font is built into the graphics package, so it’s always
available at run time. The stroked fonts are each kept in a separate .CHR file; they can be
loaded at run time or converted to .OB] files (with the BGIOB] utility) and linked into
your .EXE file.

Normally, the settextstyle routine loads a font file by allocating memory for the font, then
loading the appropriate .CHR file from disk. As an alternative to this dynamic loading
scheme, you can link a character font file (or several of them) directly into your
executable program file, You do this by first converting the .CHR file to an .OB]J file
(using the BGIOB] utility), then placing calls to registerbgifont in your source code (before
the call to settexistyle) to register the character font(s). When you build your program,
you need to link in the .OBJ files for the stroked fonts you register.

308 C++ Programmer’'s Guide

Note

Using registerbgifont is an advanced programming technique, not recommended for
novice programmers. '

Color control
Here’s a quick summary of the color control functions:

Get color informa 1on

getbkeolor Returns the current background color.

getcolor Returns the current drawing color.

getdefaultpalette Returns the palette definition structure.

getmaxcolor Returns the maximum color value available in the current graphics mode.
getpalette Returns the current palette and its size.

getpalettesize Returns the size of the palette look-up table.
Set one or more colors

setallpalette Changes all palette colors as specified.

setbkcolor Sets the current background color.

setcolor Sets the current drawing color.

setpalette Changes one palette color as specified by its arguments.

Before summarizing how these color control functions work, we first present a basic
description of how colors are actually produced on your graphics screen.

Pixels and palettes

The graphics screen consists of an array of pixels; each pixel produces a single (colored) -
dot onscreen. The pixel’s value does not specify the precise color dJrectly, itis an index
into a color table called a palette. The palette entry corresponding to a given pixel value
contains the exact color information for that pixel.

This indirection scheme has a number of implications. Though the hardware might be
capable of displaying many colors, only a subset of those colors can be displayed at any
given time. The number of colors in this subset is equal to the number of entries in the
palette (the palette’s size). For example, on an EGA, the hardware can display 64
different colors, but only 16 of them at a time; the EGA palette’s size is 16.

The size of the palette determines the range of values a pixel can assume, from 0 to
(size -1). getmaxcolor returns the highest valid pixel value (size —1) for the current
graphics driver and mode.

When we discuss the Borland C++’s graphics functions, we often use the term color,
such as the current drawing color, fill color and pixel color. In fact, this color is a pixel’s
value: it’s an index into the palette. Only the palette determines the true color on the
screen. By manipulating the palette, you can change the actual color displayed on the
screen even though the pixel values (drawing color, fill color, and so on) haven’t
changed.

Chapter 14, Video functions 309

Background and drawing color
The background color always corresponds to pixel value 0. When an area is cleared to the
background color, that area’s pixels are set to 0.

The drawing color is the value to which pixels are set when lines are drawn. You choose a
drawing color with setcolor (n), where n is a valid pixel value for the current palette.

Color control on a CGA

Due to graphics hardware differences, how you actually control color differs quite a bit
between CGA and EGA, so they’re presented separately. Color control on the AT&T -
.driver, and the lower resolutions of the MCGA driver is similar to CGA.

On the CGA, you can choose to display your graphics in low resolution (320x200),
which allows you to use four colors, or in high resolution (640x200), in which you can
use two colors.

CGA low resolution

In the low-resolution modes, you can choose from four predefined four-color palettes.
In any of these palettes, you can set only the first palette entry; entries 1, 2, and 3 are
fixed. The first palette entry (color 0) is the background color; it can be any one of the 16
available colors (see the following table of CGA background colors).

You choose which palette you want by selecting the appropriate mode (CGACO,
CGAC1, CGAC2, CGAC3); these modes use color palette 0 through color palette 3, as
detailed in the following table. The CGA drawing colors and the equivalent constants
are defined in graphics.h.

0 CGA_LIGHTGREEN CGA_LIGHTRED CGA_YELLOW

1 ' CGA_LIGHTCYAN CGA_LIGHTMAGENTA CGA_WHITE

2 CGA_GREEN CGA_RED : CGA_BROWN

3 CGA_CYAN CGA_MAGENTA CGA_LIGHTGRAY

To assign one of these colors as the CGA drawing color, call setcolor with either the
color number or the corresponding constant name as an argument; for example, if
you're using palette 3 and you want to use cyan as the drawing color:

setcolor (1) ;

or
setcolor (CGA_CYAN) ;

310 C++ Programmer’'s Guide

The available CGA background and foreground colors, defined in graphics.h, are listed
in the following table:

0 BLACK 8 DARKGRAY

1 BLUE 9 LIGHTBLUE

2 GREEN 10 LIGHTGREEN

3 CYAN 11 LIGHTCYAN

4 RED 12 LIGHTRED

5 MAGENTA 13 LIGHTMAGENTA
6 BROWN 14 YELLOW

7

LIGHTGRAY 15 WHITE

To assign one of these colors to the CGA background color, use setbkcolor(color), where
color is one of the entries in the preceding table. For CGA, this color is not a pixel value
(palette index); it directly specifies the actual-color to be put in the first palette entry.

CGA high resolution

In high-resolution mode (640x200), the CGA displays two colors: a black background
and a colored foreground. Pixels can take on values of either 0 or 1. Because of a quirk in
the CGA itself, the foreground color is actually what the hardware thinks of as its
background color; you set it with the setbkcolor routine. (Strange but true.)

The colors available for the colored foreground are those listed in the preceding table.
The CGA uses this color to dlsplay all pixels whose value equals 1.

The modes that behave in this way are CGAHI, MCGAMED, MCGAHI, ATT400MED,
and ATT400HL

CGA palette routines

Because the CGA palette is predetermined, you shouldn't use the sefallpalette routine on
a CGA. Also, you shouldn’t use setpalette(index, actual_color), except for index = 0. (This is
an alternate way to set the CGA background color to actual_ color)

Color control on the EGA and VGA

On the EGA, the palette contains 16 entries from a total of 64 possible colors each entry
is user-settable. You can retrieve the current palette with getpalette, which fills in a
structure with the palette’s size (16) and an array of the actual palette entries (the
“hardware color numbers” stored in the palette). You can change the palette entries
individually with setpalette, or all at once with setallpalette.

The default EGA palette corresponds to the 16 CGA colors, as given in the previous
color table: black is in entry 0, blue in entry 1, ..., white in entry 15. There are constants
defined in graphics.h that contain the corresponding hardware color values: these are
EGA_BLACK, EGA_WHITE, and so on. You can also get these values with getpalette.

The setbkcolor(color) routine behaves dlfferently on an EGA thanon a CGA. On an EGA,
setbkcolor coples the actual color value that’s stored in entry #color into entry #0.

Chapter 14, Video functions 311

As far as colors are concerned, the VGA driver behaves like the EGA driver; it just'has
higher resolution (and smaller pixels).

Error handling in graphics mode |
Here’s a quick summary of the graphics-mode error-handling functions:

o

grapherrormsg Returns an error messa
~ specified error code.

Returns an error code for the last graphics
operation that encountered a problem.

.

e .
ge string for the

graphresult

If an error occurs when a graphics library function is called (such as a font requested
with settextstyle not being found), an internal error code is set. You retrieve the error
code for the last graphics operation that reported an error by calling graphresult. A call to
grapherrormsg(graphresult()) returns the error strings listed in the following table.

The error return-code accumulates, changing only when a graphics function reports an
error. The error return code is reset to 0 only when initgraph executes successfully or
when you call graphresult. Therefore, if you want to know which graphics function
returned which error, you should store the value of graphresult into a temporary variable
and then test it.

g

.t

0 grOk No error
-1 grNoInitGraph (BGI) graphics not installed (use initgraph)
2 ngdtDetected Graphics hardwaren’t detected
-3 . grFileNotFound. Device driver file not found
-4 grinvalidDriver Invalid device driver file
5 grNoLoadMem Not enough memory to load driver
-6 grNoScanMem Out of memory in scan fill
-7 grNoFloodMem Out of memory in flood fill
-8 grFontNotFound Font file not found
-9 grNoFontMem Not enough memory to load font
-10 grinvalidMode Invalid graphics mode for selected driver
-1 grError Graphics error
12 grlOerror Graphics I/O-error
-13 grinvalidFont Invalid font file
-14 grinvalidFontNum Invalid font number
-15 grinvalidDeviceNum Invalid device number
-18 grinvalid Version Invalid version of file

312 C++ Programmer’'s Guide

State query
The following table summarizes the graphics mode state query functions:

Table 14.1 Graphics mode state query functions

getarccoords Information about the coordinates of the last call to arc or ellipse.
getaspectratio Aspect ratio of the graphics screen.

getbkcolor Current baékground color.

getcolor Current drawing color.

getdrivername Name of current graphics driver.

getfillpattern User-defined fill pattern.

geffillsettings Information about the current fill pattern and color.

getgraphmode Current graphics mode.
getlinesettings Current line style, line pattern, and line thickness.

getmaxcolor Current highest valid pixel value.
getmaxmode Maximum mode number for current driver.
getmaxx Current x resolution.
getmaxy Current y resolution.
getmodename. Name of a given driver mode.
getmoderange Mode range for a given driver.

 getpalette Current palette and its size.
getpixel Color of the pixel at x,y.
gettextsettings Current text font, direction, size, and justification.
getviewsettings Information about the current viewport.
getx x coordinate of the current position (CP).
gety y coordinate of the current position (CP).

Each of Borland C++s graphics function categories has at least one state query function.
These functions are mentioned under their respective categories and also covered here.
Each of the Borland C++ graphics state query functions is named get something (except
in the error-handling category). Some of them take no argument and return a single
value representing the requested information; others take a.pointer to a structure
defined in graphics.h, fill that structure with the appropriate information, and return no
value.

The state query functions for the graphics system control category are getgraphmode,
getmaxmode, and getmoderange: the first returns an integer representing the current
graphics driver and mode, the second returns the maximum mode number for a given
driver, and the third returns the range of modes supported by a given graphics driver.
getmaxx and getmaxy return the maximum x and y screen coordinates for the current
graphics mode.

The drawing and filling state query functions are getarccoords, getaspectratio, geﬁﬁllpa ttern,
getfillsettings, and getlinesettings. getarccoords fills a structure with coordinates from the
last call to arc or ellipse; getaspectratio tells the current mode’s aspect ratio, which the
graphics system uses to make circles come out round. getfillpattern returns the current
user-defined fill pattern. getfillsettings fills a structure with the current fill pattern and fill

Chapter 14, Video functions 313

color. getlinesettings fills a structure with the current line style (sélid, dashed, and so on),
line width (normal or thick), and line pattern.

In the screen- and viewport-manipulation category, the state query functions are
getviewsettings, getx, gety, and getpixel. When you have defined a viewport, you can find
out its absolute screen coordinates and whether clipping is active by calling ’
getviewsettings, which fills a structure with the information. getx and gety return the
(viewport-relative) x- and y-coordinates of the CP. getpixel returns the color of a
specified pixel.

The graphics mode text-output function category contains one all-inclusive state query
function: gettextsettings. This function fills a structure with information about the current
character font, the direction in which text will be displayed (horizontal or bottom-to-top
vertical), the character magnification factor, and the text-string justification (both
horizontal and vertical).

Borland C++’s color-control function category includes four state query functions.
getbkcolor returns the current background color, and getcolor returns the current drawing
color. getpalette fills a structure with the size of the current drawing palette and the
palette’s contents. getmaxcolor returns the highest valid pixel value for the current
graphics driver and mode (palette size -1).

Finally, getmodename and getdrivername return the name of a given driver mode and the
name of the current graphics driver, respectively.

314 C++ Programmer’s Guide

Borland C++ class libraries guide

Part Il is a programmer’s guide to using the container classes, iostreams classes, -
persistent streams classes, and mathematical classes. It is divided into the following
chapters:

e . Chapter 15, “Using Borland C++ container classes,” explains how to use the .
container class library, also known as Borland International Data Structures (BIDS),
which is a large collection of classes that encapsulate commonly used data structures.
Each container class encapsulates a specific type of data structure (for example, a
stack), and the operations that characterize that type of data structure (for example,
push and pop operations). .

& Chapter 16, “Using iostreams classes,” explains how to use the C++ input and
output classes, commonly known as iostreams. With the arrival of C++ and object-
oriented design, input and output operations became encapsulated in a series of
classes. Each iostreams class encapsulates some form of input, output, or input and
output from low-level character transfer to higher-level, file-oriented input/output
operations.

¢ Chapter 17, “Using persistent streams classes,” explains how to use classes that
support persistence. In computer programs, an example of persistence is retaining
information between application invocations—your application comes up in the
-same state you left it in the day before.

e Chapter 18, “Using the mathematical classes,” explains how to use the mathematical
classes, which encapsulate binary-coded decimal numbers (bed class) and complex
numbers (complex class).

Part Ill, Borland C++ class libraries guide 315

316 C++ 'Programmer’s Guide

Note

Qh&pi%}?.

Using Borland container classes

This chapter describes the Borland C++ container class library. It contains sections
describing container library organization, class naming conventions, and the
programming interface. See Chapter 10 of the C++ Language Reference for information
describing specific classes in this library.

A container is an object that can hold any number of other objects of a single specified
type. The specified type can be a built-in type like an int or a float, or it can be a user-
defined type, like a record containing fields of dlfferent types, or an object instantiated
from a C++ class you have defined.

Borland C++ containers place stored objects into one of thirteen predefined data
structures. Container classes support standard operations on data structures through a
coding interface that is easy to use and strongly standardized. You will not need to
create code defining a data structure or its operations. To use a data structure to store
data, instantiate a container object and then use existing container members to add,
search, find, change or remove data.

- Borland C++ containers also manage some operations without your intervention.

Borland C++ containers manage pointers to data stored in a list, tree or other data
structure, can resize the container, can sort stored data, can support your custom
memory manager class, and can throw exceptions for you.

A data structure is a collection of data items, where items are placed in a predefined
relationship to each other. This predefined relationship implies that a collection of
operations exists to manage that data. For example, a stack is a data structure designed
to store data in the order received, and to provide the last data item stored. Data placed
in a stack structure is accessed by using push and pop operations.

Chapter 15, Using Borland container classes 317

Container library implementation

The Borland C++ container class library includes 187 templates. They are organized into
a flat hierarchy. This minimizes your design and coding effort and makes these classes
easier to use.

The container class library is templatized, to make it easy for you to store objects of any
type. Because the library is templatized, you do not need to subclass a container class to
store data of your selected type. Simply pass your data type to the container class

. template when you instantiate the container object.

The container class library also minimizes the use of virtual functions, which would

require you to write specialized code defining those members before they are used, and
could require you to subclass a class. In most cases, virtual functions are present in class
declarations to implement private mechanisms which have already been coded for you.

To make it easier to select a class, Borland C++ has divided the library into thirteen
families of class templates. Each family includes a set of similar class templates which
support the same data structure. To create a Borland container, you will select the best
family to use for your purposes; identify the specialized class template within that
family to use; and then use that class template to instantiate a container object that stores
objects of your selected data type.

All container objects are specialized to perform a variety of data management tasks.
Specialized containers can manage pointers instead of objects; sort objects as they are
inserted into the container; maintain a running count of objects inserted into the
container; or accept your own memory manager class as an input parameter.

ADT and FDS classes

The container class library is composed of two interdependent collections of families:
The Abstract Data Types (ADT) class families, and the Fundamental Data Structures
(FDS) class families.

ADT classes -

ADT families focus on conceptual operations performed on data structures. ADT
families exist for stacks, queues, deques, bags, sets, arrays, and dictionaries. All ADT
classes rely on an FDS (Fundamental Data Structures) class to implement the data

structure they manage. For most coding purposes, you should select a class belonging to
an ADT family. The following table lists and describes ADT class families.

See “Class naming conventions” later in this chapter for ADS class naming conventions.

. Table151 ADT class families

Array arrays.h Stores data into a resizable, contiguous block of memory. Data
at any array position can be added, removed, or inspected at
any time. Supports index operators.

Association assoc.h Designed to support the dictionary family. This class contains
two data members: a key and a value, Given a key, an
association class returns a value. Key and value data may be of
different user types. -

318 C++ Programmer’s Guide

Table 151 ADT class families (continued)

Bag L bags.h - Stores objects as an unordered, undefined group. A bag is the
simplest structure that the container families support. A bag
can accept duplicate values.

Deque deques.h Stores data in a chain. Objects are placed into this structure in
the order received, into either head or tail positions (FIFO).
Data can be pushed and popped from either end of the queue.

Dictionary dicth Stores Association objects. When given a key, dictionary
containers return the value associated with that key.
Queue queues.h Stores data in a chain. Objects are placed into this structure in

the order received. Objects are pushed onto the head of the
queue and popped from the tail (FIFO).

Set ' sets.h Stores data in an unsequenced group. A set is a bag structure
that does not accept objects with duplicated values.
Stack stacksh Stores data in a chain. Objects are placed into this structure in

the order received, into the top position. Objects are pushed
and popped from the top of the stack (LIFO).

- FDS classes
- FDS families emphasize the way classes are stored in memory. These classes do not
have specialized members contained in ADT classes. FDS families support vectors, lists,
‘hash tables, and binary trees. The following table lists and describes FDS class families.

Table 15.2 FDS class families

Double List dlistimp.h Stores data in a linked chain of nodes, where each node contains
. pointers to the previous and to the next node in the list.
Hash Table hashimp.h Stores objects in a hash table data structure. The hash table
family implements the ADT Dictionary family.
List : listimp.h Stores objects in a linked chain of nodes, where each node
v ' contains a pointer to the next node in the list.
Vector vectimp.h Stores objects in a collection of blocks of contiguous memory.

The vector family implements most ADT class families.

Class naming conventions

A Borland C++ ADT class name is formatted to express the functions it performs for you
automatically, together with the FDS class family it uses to perform those functions. An
FDS class name is similarly formatted.

The following figures use typical class names to define and illustrate this naming
format:

Chapter 15, Using Borland container classes 319

Figure 15.1 Format of a typical ADT name

The letter “T” precedes all The ADT class family name The word “As” separates The word “lterator”

container class names. corresponds to a data the ADT name from the is appended to the ADT

“T” stands for Template. structure name, like array, FDS name. name to identify the
stack, set, queue or bag. lterator class designed
This class stores datain a to act on the container
one-dimensional array. class.

TMISArrayAsVectorIterator

Use your memory manager object or use default
* memory manager. Class function codes specify
whether this class is designed to contain objects
or pointers, or can automatically sort or count
objects as they are inserted. Some classes
have no function codes.

The codes in this example indicate that this class
takes your Memory Manager as an input
parameter, stores pointers (manages objects
indirectly), and places pointers in Sorted

order by object.

320 C++ Programmer’s Guide

The name of the FDS class used to implement
this ADT class. This class uses the FDS Vector
family to implement its array.

Most ADT classes use the FDS vector family,
but some families also use FDS list or double
list families. The ADT Dictionary family uses
the FDS hash table family.

Figure 15.2 Format of a typical FDS class name

The letter “T” precedes all The FDS class family name The word “Imp” is appended

container class names. corresponds to a data to FDS class names, and

“T” stands for Template. structure name, like binary, stands for implemenation.
tree, hash table, list or
vector.This class stores
data in a double-linked list.

TMISListImp TMISListIteratorImp
Use your memory manager object or use default memory The word “Iterator”
manager. Class function codes specify whether this class is is inserted into the container
designed to contain objects or pointers, or can automatically name to identify the iterator
sort or count objects as they are inserted. Some classes designed to support that
have no function codes. container.

The codes in this example indicate that this class takes your
Memory Manager as an input parameter, stores pointers
(manages objects indirectly), and places pointers in Sorted
order by object.

Class function codes ;‘
Every class template name is encoded with the mechanisms it uses to manage stored
objects. The following table lists and defines these mechanisms.

T

M Supports a user-supplied memory manager.

I Stores pointers to objects rather than the objects themselves (Indirect container).

S Places objects in sorted order as they are placed into the container. Indirect
containers hold pointers in sorted order by object.

C Keeps a count of objects stored in the container.

D Stores objects themselves (Direct container). Used in Association classes.

Chapter 15, Using Borland container classes 321

Simplified class template names

To simplify coding, the container class library includes a brief set of simplified class
names, that stand for the most commonly used container classes. The following table
lists these names together with the classes they stand for.

Table 15.4 Simplified class template names

o S
TArray TArrayAsVector
TArraylterator TArrayAsVectorlterator
TBag TBugAsVector
TBaglterator TBagAsVectorlterator
TBinaryTree TBinaryTreelmp
TBinaryTreelterator TBinaryTreelteratorimp
TDictionary TDictionaryAsHashTable

_ TDictionarylterator TDictionaryAsHashTablelterator
-TDeque TDequeAsVector
TDequelterator TDequeAsVectorlterator
TDoubleList TDoubleListlmp
TDoubleListListIterator . TDoubleListIteratorImp
TList TListImp
TListIterator TListlteratorlmp
TQueue TQueueAsVector ‘
TQueuelterator TQueueAsVectorlterator
TSet TSetAsVector
TSetlterator TSetAsVectorlterator
TStack TStackAsVector
TStacklterator TStackAsVectorTterator
Using containers

This section reviews major tasks involving containers, describes operations on data
stored in containers, and lists a general procedure you can follow to use container
classes in your program.

Using class templates

Borland C++ container classes are implemented using C++ templates. A template is a
class declaration that accepts a number of data types as input parameters, and produces
an instance of that class that supports those data types.You may specify a predefined
data type like a float, or you can specify the name of a class you have designed, declared
and named yourself. All Borland C++ templates take the data type of the object to be
stored in the container object, as a template parameter. Some Borland C++ containers
also take the data type of your memory-manager class as well.

322 C++ Programmer’s Guide

A class template instantiates a class that stores objects of the type you have specified as
the template parameter. It instantiates a class, not an object. Youmay create an object at
the same time you instantiate the class using the syntax in the following example:

TArrayAsVector<float> FloatArray(10);

This example instantiates an instance of the TArrayAsVector class that stores floats. It
then instantiates an object of that class called FloatArray, that stores 10 floats. The

Float Array object contains all the members you need to call, to add, search, change and
remove floats from the array—you don't need to write them.

Usmg direct and indirect classes

Contamers can store copies of ob]ects (direct containers) or pomters to objects (indirect
containers). Indirect containers contain the letter I in their template names. Class
template names without the letter I in their name instantiate dlrect containers. See the
following examples:

¢ This example instantiates a TArmyAs’Vector object that stores ten floats. This is a
direct container.

TArrayAsVector<float> FloatArray (10);

¢ This example instantiates a TIArrayAsVector object that stores ten pointers to floats.
The container manages pointers for you. This is an indirect container that works
almost exactly like the direct containe in the previous example.

TIArrayAsVector<float> FloatArray (10)

The type of object you need to store helps determine whether you need to use a direct or
indirect container. You would probably select a direct container to store an array of
floats because a float does not use much memory. You would probably use an indirect
container to store a group of structs, to reduce copying time.

The choice between direct and indirect containers is often not easy. Performance tuning
requires you to compare performance of different container implementations, and this
can involve lots of recoding. You can reduce this recoding effort by using Borland C++
containers, because direct and indirect containers in the same family use the same
members to perform the same data operations.

If your program includes a stored object that is accessed by more than one container,

then you will need use indirect containers to store pointers to that object. You must take
“care not to delete that stored object from memory until all containers have finished

using that object. Refer to “Deleting container objects” later in this chapter for details.

If you plan to store objects of your own defined type in either a direct or indirect
container, then you must supply a valid == operator, a default constructor, a less-than
(<) operator, and an assignment (=) operator within the class definition for your object.
Refer to the reference selection defining the container class you have selected to use, for
details concerning operators and methods you must provide before using.

Chapter 15, Using Borland container classes 323

Handling pointers in direct and indirect containers
In most cases, you should use an indirect container to store pointers—but it is still

. possible to use a direct container to store pointers. Direct and indirect containers handle
pointers differently.

When using the == and < operators to determine whether two objects are equal:

¢ Direct containers containing pointers to objects compare pointer values. The ==
operator returns true only if two pointer objects contain the same address.

¢ Indirect containers compare dereferenced object values. The == opefator returns true
only if the target objects contain the same value.

A direct container does not automatically dereference objects. It sorts pointers by
memory location, rather than by object value. When a direct object goes out of scope, it
automatically destroys the pointers to objects it held—you must provide code to
maintain access to those objects.

Using memory-managed classes

All containers can use the default memory manager class TStandard Allocator to manage
memory. You do not need to pass this default class to an unmanaged container—the
compiler handles this for you.

Some containers can support your own memory manager. If you use your own memory
manager class, you must use a managed container class template, and then pass the
class name of this memory manager to your managed class template when you
instantiate an object of that class. :

* Your custom memory manager must include static operator members. Because they are
static, you never instantiate your memory manager class. You must call memory
manager methods directly.

Because it will support stored objects of your own data type, your custom memory
manager class must define a class-specific new operator, a placement new operator that
takes a void* argument as its second parameter, and a delete operator. Use the
TStandard Allocator prototypes-in alloctr.h as an example for bulldmg your own
overloaded operators.

The following example uses a class template in the queue family that accepts your
memory manager of type MyMemManager as a template parameter. It instantiates a
queue object that can hold 100 objects of type MyClass.

TMQueueAsVector <MyClass, MyMemManager> MyQueue (100) ;

Using sorted classes

Some containers can automancally store objects in sorted order Indirect sorted
containers store pointers sorted by object.

If you plan to store objects of your own defined type in either a direct or indirect
container, then you must supply a valid < operator within the class definition for your
object. The Add member needs this < operator to resolve element ordering when it adds
an object to its container.

- 324 C++ Programmer’s Guide

Note

Using iterator classes

Many operations require you to iterate through all objects stored in a container object.
To simplify iteration, every class family includes a set of iterator class templates that
correspond to individual container class templates in the family. To iterate, pass a
reference to your container object to its iterator object.

Container iterators implement the following members:

Current is a member function which returns the current object.

Restart is a member function which resets the iterator to the first object in the '
container:.

++ pre- and postincrement operators move the object pointed to by Current, to the
next object in the container.

The deque family iterator classes also contain pre- and postdecrement operators.

You may also iterate without using iterators, by calling the ForEach, FirstThat, or LastThat
members built into your instantiated container object.

This example illustrates the iteration process using an iterator object:

1

Define your container and iterator objects. To minimize typing errors and make your
code more readable, you should typedef your container and iterator class templates
Also note that the iterator contains a nested template parameter list, ending in two
greater-than symbols. The compiler will misinterpret this symbol set as a streams
operator unless you place a space between these two symbols

typedef TArrayAsVector<float> arrayType;
typedef TArrayAsVectorIterator <TArrayAsVector<float> > iteratorType;

... place a space here.

Instantiate your container and iterator objects. Instantiate the container before you
instantiate an iterator.

- To begin iteration, instantiate an iterator object, and then pass your container to your

iterator. This code slice instantiates a container object named FloatArray and in
iterator object called iter. It then passes FloatArray to iter to begin 1teratmg through the
objects that FloatArray contains.

v

arrayType FloatArray(10);

iteratorType Iter (FloatArray) ; A
Iterate through the container using Current and ++ iterator members.

For clarity, the example below places iteration activity in a self-contained function,
Uselterator.

Uselterator instantiates an iterator object named iter and passes a reference to the
Float Array container to it. First, it uses the iter.Current member to return data stored at

_the object the iterator is currently pointing to. Then it prints that float value to your

screen and increments the Current pointer to the next object, until all floats stored in

Chapter 15, Using Borland container classes 325

Float Array have been printed to your screen. If you have stored objects of a type you
have defined, then you must overload the << operator to support that data type.

Note An iterator does not interate through a container automatically. You must increment the
iterator object in your code. This is not true for the ForEach container member function,
which iterate automatically. Refer to the ForEach member description for the container
class template you have selected to use, for details.

void Uselterator (const arrayType & FloatArray)
{ .
iteratorType Iter (FloatArray);

// loop through all objects in the
// FloatArray container

while (Iter != 0);
{

// print data stored in the current object

// to the screen.
‘

cout << Iter.Current () << endl;

// increment the Current pointer to the next object.
// Current returns zero when it reaches the end.

// operator int returns zero in an empty container

// before Current is called.

Iter++;

}

Using iterator members

Most container classes contain the members FirstThat, ForEach, and LastThat.

* ForEach provides a general mechanism you can use to access all data stored in your
container.

ForEach iterates through all objects your container currently holds. For each object, it
calls a callback function, which acts on data stored in that object. Then it procedes to
the next object and calls your function again, until it has visited all ob)ects stored in .
your container.

e FirstThat and LastThat call a callback function which tests data stored within the
current object. These members return either the first ob]ect or the last object passing
your test condition. :

“You must write the callback functions called by these methods. ‘They should accept a
reference to the type of object stored in your container, and a void pointer. FirstThat and
LastThat require that this function should receive a const reference to your type; should

326 C++ Programmer’'s Guide

Note

be a const function; and should return zero if data does not pass your test, and return a
nonzero value if data does pass your test.

You must take care never to call Detach or Flush from within your callback function.
Detach and Flush act on objects, not data, and will resize your container under some
conditions. Resizing a container while iterating through the objects it contains will
produce undefined results.

Callback functions

Your callback functions must conform precisely to the signature expected by ForEach,
FirstThat, and LastThat. For coding convenience, all container classes typedef these
signatures as follows:

¢ The IterFunc typedef defines a function taking a reference to your object type, and a
void pointer. It defines this function as an *IterFunc, and uses this typedef as the first
argument passed to a call to ForEach member.

Your custom iter function accesses data via the object reference, and returns nothing.

* The CondFunc typedef defines a function taking a const reference to your object type,
and a void pointer. It defines this function as a *CondFunc, and uses this typedef as
the first argument passed to a call to FirstThat and LastThat members.

Your custom cond function must access data via the const object reference and test
data. It must return zero if data fails your conditional test; nonzero if data passes your
conditional test.

You must use IterFunc and CondFunc typedefs when calling ForEach, FirstThat, and
LastThat.

Deletihg container objects

All containers store copies of objects, whether those objects are data, or are pointers to
data. Direct containers destroy objects automatically when they are removed, or when
the container goes out of scope. Indirect containers destroy the pointers they store, but
do not automatically destroy objects referenced by their pointers. You must decide
whether these objects should also be destroyed.

This is not a simple design decision. You may design a program that creates several
containers, each holding its own pointer to the same object. You may mistakenly delete
an object still in use by another indirect container.

In general, you can remove a pointer from an indirect container at any time, but you
should delete the object referenced by that pointer from memory only only after the last
container is through with that object. You are responsible for writing code that manages
the deletion of objects accessed by more than one container.

The container class library provides a mechanism to simplify this object management
process, called object ownership. It is described in the following section.

To delete objects from memory, follow these general guidelines:

Chapter 15, Using Borland container classes 327

¢ For an ADT container, call the Destroy member. For containers which do not prov1de
a Destroy member, ca]l Detach or Flush and pass TShouldDelete::Delete as an input
parameter.

* For an FDS container, call Detach or Flush, which takes a del value as an input
parameter. Set del equal to some nonzero value.

To remove objects from a container but leave it in memory, follow these guidelines:

“e Foran ADT container, call Detach or Flush and pass TShouldDelete::NoDelete as a
parameter. You should have determined that you can still access this object though a
pointer or other container before calling Detach or Flush.

e For an FDS container, call Detach or Flush and set the del input parameter to zero. You
should have determined that you can still access this object though a pointer or other:
container before calling Detach or Flush.

Object ownership

Indirect containers in ADT class families use the concept of object ownership to
determine if an object should be deleted when it is removed. A container object owns its
objects when it has the right to delete them from memory.

Ownership for a container object is determined by an object of the TShouldDelete class,
which is a base class. Every indirect ADT container object derives from an object of the
TShouldDelete class. TShouldDelete performs two similar tasks, accessed through the
members listed below.

TShouldDelete::OwnsElements determines the default behavior for your container’s
Detach and Flush functions. If OwnsElements specifies ownership, then Detach and Flush
will perform the actions set in the DeleteType enum defined in TShouldDelete. The
DeleteType value is passed as an input parameter by Detach and Flush. If OwnsElements
specifies no ownership, then Detach and Flush will not delete removed objects from
memory.

Set TShouldDelete::OwnsElements parameters as follows:

* Pass a zero to the TShouldDelete::OwnsElements input parameter for Detach and Flush,
if you do not want its container to own the objects it holds. Stored objects removed
from a container will be retained in memory.

¢ Pass any nonzero value to the TShouldDelete::OwnsElements input parameter for
Detach and Flush, if you do want its container to own the objects it holds. When set to
anonzero value, Detach and Flush perform the task specified by the DeleteType enum.

The DeleteType enum overrides behavior set by OwnsElements for your container.

* NoDelete never deletes objects from memory when they are removed from the
container.

¢ DefDelete performs the default behavior for your container. This behavior is listed in
the Flush and Delete member definitions for the class family which defmes your
container object.

* Delete always deletes objects from memory upon being removed from the container.

- 328 C++ Programmer’s Guide

The user programming interface

This section defines major container class library operations and lists important
members used to perform those operations. It does not list all members and does not
review all possible operations.

Creating a container object

Create a container object by instantiating it. To create a container, select a container
template that supports functions that meet your program requirements and pass the
type of the object your container will store, to your class template when you instantiate
your container object.

The following example instantiates an empty array container that can store 10 floats,
and places this object on the stack. This object calls its destructor when it goes out of
scope. '

TArrayAsVector <float> arrayObject(10);

The following example instantiates a TArrayAsVector<float> pointer and an empty array
container that can store ten floats. It places the container on the heap and sets the

pointer to point to the container. This object persists in your program until you explicitly
call the delete operator to delete the container from memory.

TArrayAsVector <float> *aPointer = new TArrayAsVector<float>(10);

Adding objects to a container

All containers are empty when they are created. Use the container Add member to add
objects to the container. Stack containers use their Push member to add objects to the
_stack. Deques use PutLeft and PutRight. Queues use Put.

Searching for an existing object in a container

"Most containers provide a Find member, which returns a pointer or a reference to the
first occurance of the value you pass to it. Array containers can also return an array
index value, The Dictionary Find member takes a value of type Key, and returns a
pointer or a reference to data of type Value

Removmg an object from a container

All containers provide a Detach member, which searches through stored objects and
removes the first object matching the value given as an input parameter. For indirect
containers, the stored pointer is always removed from the container, and an object
ownership input parameter determines whether its referenced object is also removed
from memory. See “Deleting container objects” and “Object ownership” earlier in this
chapter for details.

Most containers provide a Flush member, which removes all objects from a container.

. For indirect containers, stored pointers are always removed from the container, and an
‘object ownership input parameter determines whether their referenced objects are also
removed from memory. See “Deleting container ob]ects and “Object ownership” for
details. :

Chapter 15, Using Borliand container classes 329

Retrieving objects from a container

Most containers can use an iterator techmque to retrieve a stored value. See the
followmg section. :

Some containers provide a Find member, which can return a value stored at an array or
vector index, or can search for the value passed to it.

Stack objects use Pop.
Queue objects use Get.
Deque objects use GetLeft and GetRight.

lterating through objects stored in a container
The container class library provides two iteration techniques:

* Most container classes provide the member functions ForEach, FirstThat, and LastThat.
For each object, the member function calls a user-written function which accesses the
value it stores. To use ForEach, FirstThat, and LastThat, you must write a function
which acts on data stored in the current object. ForEach always visits each object

. stored in a container.

e Each container class has a corresponding iterator class. To iterate, pass the container
object to the iterator object. To act upon data stored at a current location within a
container, call the iterator Current function to return a stored value, write code which
acts upon that value, and then use the ++ operator to index the iterator to the next
object in the container. An iterator does not automatically visit every object stored in
a container.

Displaying data stored in containers

In general, you can use iostreams operators for built-in data types, but must supply
overridden insertion and extraction operators for your own data types. See the example
at the end of this chapter for a container stormg user-typed objects that prints values to
your terminal screen.

To print data of your own,type to your terminal screen, follow these general steps:

1 Ina class of your own type, provide an << operator. This function takes a reference to
‘an ostream object and a const reference to your class type, and returns the ostream.
The body of the function formats your data. :

2 You can now use cout and << to insert objects of your class type into the stream that
displays data on your screen.

Container coding guidelines

This section lists some general guidelines you can follow to use containers in your code.

330 C++ Programmer’s Guide

Selecting and defining your container class

1 Determine the type of elements you will store in your container. Decide whether to
store objects themselves, or to store pointers to those objects. Decide whether to use
the default memory manager or to manage memory yourself.

2 Select the container family that fits your program design. Containers can store data in
arrays, vectors, lists, double lists, stacks, queues, double queues, bags, sets,
dictionaries, hash tables, and binary trees. You can implement some choices as
vectors or as linked lists. You can use an FDS class to implement a data structure of
your own design. ,

3 From within a container template family, select the template that fits your program
design. Container classes can store data or pointers to data, can accept either default
or user-supplied memory managers, and can automatically sort elements as they are
added to the container. Selecting the appropriate family saves you time because you
won't have to write the code to accomplish what the container does for you
automatically.

For example, if you have chosen to store pointers to longs and want to build an array
that holds your pointers in sorted order, instantiate an object of the
TISArrayAsVector<long> class. An object of this class stores pointers to longs, and

- automatically places the pointer for your current object in sorted order in the array.
Objects in this class are always sorted.

Modifying your container class

1 Objects that you store in a container must provide functions listed in the reference
section of this guide. In general, containers storing predefined types already have
access to the functions they need. Containers supporting your user-defined objects
usually require you to supply specializations of the 10g1ca1 and streams operators
your program uses.

If you intend to use FirstThat, ForEach, and LastThat members to iterate through
objects stored in your container, you must write callback functions to act on that data.
Callback function signatures must conform to cond and iter typedefs listed in the
reference section.

Dictionary and hash table containers require access to a HashValue function. You
must supply this function to hash table containers. You may use the default
HashTable function supplied in a Dictionary container.

For user-defined classes, you must provide a copy constructor, overloaded
equivalence and assignment operators, and overridden streams operators for that
class. Classes that will be put into sorted containers require an overloaded less-than
operator.’

2 If you have decided to use your own memory manager, then you must overload the
new and delete operator member declarations in your memory manager class.

In all cases, you can declare these members by copying prototypes declared in
TStandard Allocator into your own class definition and implement them appropriately.
Refer to the TStandardAllocator class declaration in the alloctr.h file. Also refer to the

Chapter 15, Using Borland container classes 331

~

example at the end of this chapter, which overloads these members to support a class
which manages ints in an array container.

Coding your program

1 To promote code maintainability, you should typedef the container and iterator class
templates you have selected to use. This makes it easy to change a class template
while minimizing changes you may need to make to your working code. If you
change from a direct to an indirect container, you will also need to review your code
to change reference calls to pointer calls in appropriate places.

2 Instantiate a container class from the class template you have decided to use. Pass the
data type of the data you will store as a parameter to the class template upon
instantiation. Also pass the data type of your memory manager class to your class
template, if you have decided to use a managed container class template.

3 Instantiate a container object. Pass appropriate constructor parameters to your object
upon instantiation.

4 Instantiate an iterator object, if you have decided to use an iterator to access data
stored in your container. Pass your container to your iterator ob]ect upon
instantiation.

Code example

This example uses an array to store ob]ects of your own user-type, Contained. Contained
objects store ints.

Note Passing an int directly to a template will create two Detach functions with the same int
parameter. This will generate a compiler error. The solution is to pass a class of your
own user-type to a template upon instantiation, and to store ints within objects of that
new class. This example illustrates proper int storage, and also illustrates how to
declare, instantiate and store a class of your own user-type in a container of any family.

This example is similar to the array example found in the Array family reference section.
~ That example stored a built-in type (long), and did not require overloaded operators, a
custom class declaration, or other special handling.

#include <iostream.h>
#include <classlib/arrays.h>
/* Declare a custom class that your array container stores.
This example is named Contained. It contains '
examples of all the members which you are usually
required to provide any user-written class, including
" three constructors, two logical operators, and an ostream
operator. Contained also contains the intValue data member which
makes it possible for you to store ints in an array container.
*/
class Contained
{
public:
Contained(int i = 0) : 'intValue(i). {}

332 C++ Programmer's Guide

Contained (const Contained & c) // copy constructor
{intValue = c.intValue;}

int operator == (const Contained& c) //comparison operator
{ return intValue == c.intValue; } ' ’
int operator < (const Contained& c¢) //less-than operator
{ return intValue < c.intValue; }
private:
int intValue;
friend ostream& operator << (ostream&, const Containeds);

}; : .

ostream& operator << (ostream& os, const Contained& c)
{ return os << c.intValue; }

/* This is the code for the iteration function required by ForEach member.
This function, called Show, takes a reference to the current contained
object ¢, and prints it to the screen.

*/

void Show(Contained& c, void *)

{
cout << ¢ << endl;
}

/* This code illustrates the use of ForEach. It takes a
Contained-type object and calls the ForEach iteration
function named Show. Show executes, passes control
back to ForEach; ForEach iterates to the next object
in the array automatically, and calls Show again.

This process repeats until ForEach has visited
every element in the array.

*/

void UseForEach (TArrayAsVector<Contained>& vect)
{
vect .ForEach(Show, 0);

}

/* This code illustrates the use of an iterator object. It
instantiates an array iterator object named iter and
prints the array contents to your terminal screen.

The steam operator works because you have
overloaded it in your Contained class definition.
Note that you must increment iter in your code to
advance to the next object.

*/

void Uselterator(const TArrayAsVector<Contained>& vect)
{
TArrayAsVectorIlterator<Contained> iter(vect);
while(iter != 0)

{

cout << iter.Current() << endl;

iter++; _

} ’
}

/* The main function instantiates an array container

named vect, which holds ten objects of type Contained.
It creates several Contained objects and places

Chapter 15, Using Borland container classes

333

those objects into the array container. Then, it detaches the
contained object which holds the number seven.

It uses the ForEach vect member to print array

contents to your screen. Then it uses an Iterator

object to print out the same array contents to your:

screen.
*/
int main()
¢

TArrayAsVector<Contained> vect (10) ;

/* A Contained-type object is created and int i is added to it.
The Contained object is in turn added to the array
container named vect, using the vect Add member.

*/

for(int i = 0; 1 < 10; i++)
vect .Add(Contained(i));

// remove one Contained object from the vect container.

vect.Detach(Contained(7));

// vect calls its own ForEach member to iterate through the array.

cout. << "Using ForEach:\n";
UseForEach (vect) ;

/* vect uses an iterator object to iterate through the array.
This is a repeat of the UseForEach process.

*/

cout << "\nUsing Iterator:\n";
Uselterator (vect) ;
return 0;

Output

Using ForEach member function to iterate:

W oo Ul WP O

Using an iterator object to iterate:

0 0o Ul WO

334 C++ Programmer’s Guide

Chapter

Using iostreams classes

This chapter pr6v1des a brief, practical overview of how to use C++ stream I/0O. For
specific details on the C++ stream classes and their member functions, see the C++
Language Reference , Part I1L. :

Stream input/output in C++ (commonly referred to as iostreams, or just streams)
provides all the functionality of the stdio library in ANSI C and much more. Iostreams
are used to convert typed objects into readable text, and vice versa. Streams can also
read and write binary data. The C++ language lets you define or overload I/O functions
and operators that are then called automatically for corresponding user-defined types.

What is a stream?

A stream is an abstraction referring to any flow of data from a source (or producer) to a
sink (or consumer). We also use the synonyms extracting, getting, and fetching when
speaking of inputting characters from a source; and inserting, putting, or storing when
speaking of outputting characters to a sink. Classes are provided that support console
output (constrea.h), memory buffers (iostream.h), files (fstream.h), and strings
(strstrea.h) as sources or sinks (or both).

The iostream Iibrary

The iostream library has two parallel families of classes: those derived from streambuf,
and those derived from ios. Both are low-level classes, each doing a different set of jobs.
All stream classes have at least one of these two classes as a base class. Access from ios-
based classes to streambuf “-based classes is through a pointer.

Chapter 16, Using iostreams classes 335

The streambuf class

The streambuf class provides an interface to memory and physical devices. streambuf
provides underlying methods for buffering and handling streams when little or no
formatting is required. The member functions of the streambuf family of classes are used
by the ios-based classes. You can also derive classes from streambuf for your own
functions and libraries. The buffering classes conbuf, filebuf, and strstreambuf are derived
from streambuf.

Figure 16.1 Class streambuf and its derived classes

streambuf

TN

filebuf strstreambuf conbuf

The ios class

The class ios (and hence any of its derived classes) contains a pointer to a streambuf. It
performs formatted I/O with error-checking using a streambuf.

An inheritance diagram for all the ios family of classes is found in Figure 16.2. For
example, the ifstream class is derived from the istream and fstreambase classes, and
istrstream is derived from istream and strstreambase. This diagram is not a simple
hierarchy because of the generous use of multiple inheritance. With multiple inheritance,
asingle class can inherit from more than one base class. (The C++ language provides for
virtual inheritance to avoid multiple declarations.) This means, for example, that all the
members (data and functions) of iostream, istream, ostream, fstreambase, and ios are part of
objects of the fstream class. All classes in the ios-based tree use a streambuf (or a filebuf or
strstreambuf, which are special cases of a streambuf) as its source and/ or sink.

C++ programs start with four predefined open streams, declared as objects of withassign
classes as follows: :

extern istream withassign cin; // Corresponds to stdin; file descriptor 0.
extern ostream withassign cout; // Corresponds to stdout; file descriptor 1.
extern ostream withassign cerr; // Corresponds to stderr; file descriptor 2.
extern ostream withassign clog; // A buffered cerr; file descriptor 2.

336 C++ Programmer’s Guide

Figure 16.2 Class ios and its derived classes

ios
istream fstreambase strstreambase ostream
J \g\\\j\:///;(1 \:j\>///;(t ::i i///)(kl\:i?:i: \\\
fistream istrstream ofstream ostrstream constream
fstream strstream
iostream
A
istream_withassign iostream_withassign ostream_withassign

By accepted practice, the arrows point from the derived class to the base class.

Stream output

Stream output is accomplished with the insertion (or put to) operator, <<. The standard
left shift operator, <<, is overloaded for output operations. Its left operand is an object of
type ostream. Its right operand is any type for which stream output has been defined
(that is, fundamental types or any types you have overloaded it for). For example,

cout << "Hello!\n";

writes the string “Hello!” to cout (the standard output stream, normally your screen)
followed by a new line.

The << operator associates from left to right and returns a reference to the ostream ob]ect
it is invoked for. This allows several insertions to be cascaded as follows:

~int i = 8;
- double d = 2.34;
cout << "i = " << i << ", d =" << d << "\n";

This will write the following to standard output:
i=8,d=2.34

Fundamental types

The fundamental data types directly supported are char, short, int, long, char* (treated
as a string), float, double, long double, and void*. Integral types are formatted

Chapter 16, Using iostreams classes 337

according to the default rules for printf (unless you’ve changed these rules by setting
various ios flags). For example, the following two output statements give the same
result: '

int i;

long 1;

cout << i << " " << 1;

printf("%d $1d", i, 1);

The pointer (void *) inserter is used to display pointer addresses:

int i;
cout << &i; // display pointer address in hex

Read the description of ostream in the C++ Language Reference, Chapter 11, for other
output functions.

I/0 formatting

Formatting for both input and output is determined by various format state flags
contained in the class ios. The flags are read and set with the flags, setf, and unsetf
member functions.

Output formatting can also be affected by the use of the fill, width, and precision member
functions of class ios.

The format flags are detailed in the descr1pt10n of class ios in the C++ Language Reference
Chapter 11.

Manipulators

A simple way to change some of the format variables is to use a special function-like
operator called a manipulator. Manipulators take a stream reference as an argument and
return a reference to the same stream. You can embed manipulators in a chain of
insertions (or extractions) to alter stream states as a side effect without actually
performing any insertions (or extractions). Parameterized manipulators must be called
for each stream operation. For example,

#include <iostream.h>
#include <iomanip.h> // Required for parameterized manipulators.

int main(void) {)
int i = 6789, j = 1234, k = 10;

cout << setw(6) << 1 << j << i << k << J;

cout << "\n";

cout << setw(6) << 1 << setw(6) << j << setW(6) << k;
return(0) ;

}

produces this output:

678912346789101234
6789 1234 10

338 C++ Programmer’'s Guide

setw is a parameterized manipulator declared in iomanip.h. Other parameterized.
manipulators, setbase, setfill, setprecision, setiosflags, and resetiosflags, work in the same
way. To make use of these, your program must include iomanip.h. You can write your
own manipulators without parameters:

#include <iostream.h>

// Tab and prefix the output with a dollar sign.
ostream& money(ostream& output) {
return output << "\t$";

}

int main(void) {
float owed = 1.35, earned = 23.1;
cout << money << owed << money << earned;
return(0) ;
}

produces the following output:
$1.35 $23.1

The non-parameterized manipulators dec, hex, and oct (declared in iostream.h) take no
arguments and simply change the conversion base (and leave it changed):

int i = 36; :

cout << dec << i << " " << hex << i << " " << oct << i << endl;

cout << dec; // Must reset to use decimal base.

// displays 36 24 44

Table 16.1 Stream manipulators

dec . Set decimal ;:oirersio base format ﬂag)
hex Set hexadecimal conversion base format flag. N
oct Set octal conversion base format flag. ‘
ws - Extract whitespace characters.
endl Insert newline and flush stream.
ends Insert terminal null in string.
flush Flush an ostream.
setbase(int n) Set conversion base format to base 7 (0, 8, 10, or 16). 0
means the default: decimal on output, ANSI C rules for
literal integers on input.

resetiosflags(long f) Clear the format bits specified by f.
setiosflags(longf) Set the format bits specified by f.

seffill(int c) Set the fill character to c.
setprecision(intn) Set the floating-point precision to 7.
setw(int 1) Set field width to 7.

The manipulator endl inserts a newline character and flushes the stream. You can also
flush an ostream at any time with

ostream << flush;

Chapter 16, Using iostreams classes 339

Filling and padding

The fill character and the direction of the paddmg depend on the setting of the fill
character and the left, right, and internal flags.

The default fill character is a space. You can vary this by using the function fill:
int i = 123;
cout.fill('*");
cout.width(6) ;
cout << i; // dlsplay *H*123

The default direction of padding gives rlght—ahgnment (pad on the left) You can vary
these defaults (and other format flags) with the functions setf and unsetf:

int i = 56;

cout.width(6);
cout.fill('#');
cout.setf(ios::left,ios;:adjustfield);
cout << 1i; // display S6####

The second argument, ios::adjustfield, tells setf which bits to set. The first argument,
ioszleft, tells setf what to set those bits to. Alternatively, you can use the manipulators
‘setfill, setiosflags, and resetiosflags to modify the fill character and padding mode. See ios
data members in the C++ Language Reference, Chapter 11, for a list of masks used by setf.

Stream input

Stream input is similar to output but uses the overloaded right shift operator, >>,
known as the extraction (get from) operator or extractor. The left operand of >> is an
object of type class istream. As with output, the right operand can be of any type for
which stream input has been defined. -

By default, >> skips whitespace (as defined by the isspace function in ctype.h), then
reads in characters appropriate to the type of the input object. Whitespace skipping is

- controlled by the ios::skipws flag in the format state’s enumeration. The skipws flag is
normally set to give whitespace skipping. Clearing this flag (with setf, for example)
turns off whitespace skipping. There is also a special “sink” manipulator, ws, that lets
you discard whitespace.

Consider the following example:
int i;
double d;

cin >> i >> d;

When the last line is executed, the program‘sklps any leading whitespace. The integer
value (i) is then read. Any whitespace following the mteger is ignored. Finally, the
floating-point value (d) is read.

For type char (signed or unsigned), the effect of the >> operator is to skip whitespace
and store the next (non-whitespace) character. If you need to read the next character,

340 C++ Programmer’s Guide

whether it is whitespace or not, you can use one of the get member functions. See the
discussion of istream in the C++ Language Reference, Chapter 11.

For type char* (treated as a string), the effect of the >> operator is to skip whitespace and
store the next (non-whitespace) characters until another whitespace character is found.
A final null character is then appended. Care is needed to avoid “overflowing” a strmg
You can alter the default width of zero (meaning no limit) using width as follows:

char array{SIZE];
cin.width(sizeof (array)) ;
cin >> array; ! // Avoids overflow.

For all input of fundamental types, if only whitespace is encountered, nothing is stored
in the target, and the istream state is set to fail. The target will retain its prev1ous value; if
it was uninitialized, it remains uninitialized.

1/0 of user-defined types

To input or output your own defined types, you must overload the extraction and
insertion operators. Here is an example:

#include <iostream.h>

struct info {
char *name;
‘double val ;
char *units;

}i

// You can overload << for output as follows:
ostream& operator << (ostream& s, info& m) {
S << m.name << " " << m.val << " " << m.units;
return s;
}:

“// You can overload >> for input as follows:
istream& operator >> (istream& s, info& m) {
s >> m.name >> m.val >> m.units;
return s;
};

int main(void) {
info x;)
x.name = new char([15];
x.units = new char[10]; .
cout << "\nInput name, value and units:";
cin >> x;
cout << "\nMy input:" << x;
return(0) ;

}

Chapter 16, Using iostreams classes 341

Slmple file 1/0

The class ofstream inherits the insertion operatlons from ostream while ifstream inherits
the extraction operations from istream. The file-stream classes also provide constructors
and member functions for creating files and handling file I/O. You must mclude
fstream.h in all programs using these classes.

Consider the following example that copies the file FILE.IN to the file FILE.OUT:
#include <fstream.h>

int main(void) { .
char ch;
ifstream f1("FILE.IN");
ofstream f2("FILE.OUT");

if (!fl) cerr << "Cannot opén FILE.IN for input";
if (!1£f2) cerr << "Cannot open FILE.OUT for output";
while (£2 && fl.get(ch))

£2.put(ch) ;
return(0) ;

}

Note that if the ifstream or ofstream constructors are unable to open the specified files, the
appropriate stream error state is set.

The constructors let you declare a file stream without specifying a named file. Later, you
_can associate the file stream with a particular file:

ofstream ofile; // creates output file stream
ofile.open("payroll"); // ofile comnects to file "payroll"
// do some payrolling...

ofile.close(); // close the ofile stream
ofile.open("employee"); // ofile can be reused...

By default, files are opened in text mode. This means that on input, carriage-return/
linefeed sequences are converted to the “\n’ character. On output, the “\n’ character is
converted to a carriage-return/linefeed sequence. These translations are not done in
binary mode. The file-opening mode is set with an optional second parameter to the
open function or in some file-stream constructors. The file opening-mode constrants can
be used alone or they can be logically ORed together. See the description of class ios data
members in the C++ Language Reference, Chapter 11.

String stream processing

The functions defined in strstrea.h support in-memory formatting, similar to sscanf and
sprintf, but much more flexible. All of the istrearn member functions are available for
class istrstream (input string stream). This is the same for output: ostrstream inherits from
ostream.

342 C++ Programmer’s Guide

Given a text file with the following format:

101 191 Cedar Chest
102 1999.99 Livingroom Set

Each line can be parsed into three components: an integer ID, a floating-point price, and
a description. The output produced is

1: 101 191.00 Cedar Chest
2: 102 1999.99 Livingroom Set

Here is the program:

#include <fstream.h>
#include <strstrea.h>
#include <iomanip.h>
. #include <string.h>

int main(int argc, char **argv) {

int id;

float amount;

char‘description[4l];

if (argc == 1) {
cout << "\nInput file name required.";
return (-1);
}

ifstream inf (argvil]);

if (inf) {
char inbuf[81];
int lineno = 0; \
// Want floats to print as fixed point
cout.setf (ios::fixed, ios::floatfield);

// Want floats to always have decimal point
cout.setf (ios: :showpoint) ;

while (inf.getline(inbuf,81l)) {
// 'ins' is the string stream:
istrstream ins (inbuf, strlen(inbuf));
ins >> id >> amount >> ws;
ins.getline(description,41l); // Linefeed not copied.
cout << ++lineno << ": "

T << id << "\t'

<< setprecision(2) << amount << '\t'

<< description << "\n";

}
return(0);

}

Note the use of format flags and manipulators in this example. The calls to setf coupled
with setprecision allow floating-point numbers to be printed in a money format. The
manipulator ws skips whitespace before the description string is read.

Chapter 16, Using iostreams classes 343

Screen output streams

The class constream, derived from ostream and defined in constrea.h, provides the
functionality of conio.h for use with C++ streams. This lets you create output streams
that write to specified areas of the screen, in specified colors, and at specific locations.

~ As with conio.h functions, constreams are not available for GUI applications. The screen
area created by constream is not bordered or otherwise distinguished from the
surroundmg screen.

Console stream manipulators are provided to facilitate formatting of console streams.

These manipulators work in the same way as the corresponding function provided by
conio.h. For a detailed description of the manipulators’ behavior and valid arguments,
see the C++ Language Reference, Chapter 11.

Table 16.2 Console stream manipulators

clreol clreol Clears to end of line in text window.
delline . delline Deletes line in the text window.
highvideo highvideo Selects high-intensity characters.
insline insline Inserts a blank line in the text window.
lowvideo lowvideo Selects low-intensity characters.
normuideo normuvideo Selects normal-intensity characters.
setattr(int) textattr Sets screen attributes.

setbk(int) textcolor Sets new character color.

setclr(int) textcolor Sets the color.

setcrsriype(int) _setcursortype Selects cursor appearance.

setxy(int, int) gotoxy - Positions the cursor at the specified position.

Typical use of parameterized manipulators. See the C++ Language Reference, Chapter 11
for a description of class constream.

#include <constrea.h>

int main(void) {
constream winl;

winl.window(1l, 1, 40, 20); // Initialize the desired space.
winl.clrscr(); // Clear this rectangle.

// Use the parameterized manipulator to set screen attributes.
winl << setattr((BLUE<<4) | WHITE)
<< "This text is white on blue.";

// Use this parameterized manipulator to specify output area.
winl << setxy(10, 10)

<< "This text is in the middle of the window.";
return(0); V

}

You can create multiple constreams, each writing to its own portion of the screen. Then,
you can output toany of them without having to reset the window each time:

344 Cu+ Programmer’s Guide

#include <constrea.h>

int main(void) {
constream demol, demo2;

demol.window(1, 2, 40, 10);
demo2.window(1, 12, 40, 20);

7

demol.clrscr(
demo2.clrscr(

)
);

7

demol << "Text in first window" << endl;

demo2 << "Text in second window" << endl;

demol << "Back to the first window" << endl;
demo2 << "And back to the second window" << endl;
return(0) ;

}

Chapteri 16, Using iostreams classes 345 .

346 C++ Programmer’s Guide

Chapter

Using persistent streams classes

This section describes Borland’s object streaming support, then explains how to make
your objects streamable. ‘

Objects that you create when an application runs—windows, dialog boxes, collections,

. and so on—are temporary. They are constructed, used, and destroyed as the application
proceeds. Objects can appear and disappear as they enter and leave their scope, or when
the program terminates. By making your objects streamable you save these objects,
either in memory or file streams, so that they persist beyond their normal lifespan.

See Chapter 12 of the C++ Library Reference for reference details of persistent streams.

There are many applications for persistent objects. When saved in shared memory they
can provide interprocess communication. They can be transmitted via modems to other
systems. And, most significantly, objects can be saved permanently on disk using file
streams. They can then be read back and restored by the same application, by other
instances of the same application, or by other applications. Efficient, consistent, and safe
streamability is available to all objects.

Building your own streamable classes is straightforward and incurs little overhead. To
make your class streamable you need to add specific data members, member functions,
and operators. You also must derive your class, either directly or indirectly, from the
TStreamableBase class. Any derived class is also streamable.

To simplify creating streamable objects, the persistent streams library contains macros
that add all the routines necessary to make your classes streamable. The two most
important are:

¢ . DECLARE_STREAMABLE
¢ IMPLEMENT_STREAMABLE

These macros add the boilerplate code necessary to make your objects streamable. In
most cases you can make your objects streamable by adding these two macros at
appropriate places in your code, as explained later.

Chapter 17, Using persistent streams classes 347

- What’s new with streaming

Object streaming has been significantly changed from Borland’s earlier implementation
to make it easier to use and more powerful. These changes are compatible with existing
code developed with Borland’s ObjectWindows and Turbo Vision products.

The new streaming code is easier to use because it provides macros that relieve the
programmer of the burden of remembering most of the details needed to create a
streamable class. Its other new features include support for multiple inheritance, class
versioning, and better system isolation. In addition, the streamjng code has been
reorganized to make it easier to write 11brar1es that won't force streaming code to be
linked in if it isn’t used.

There have been several additions to the streaming capabilities. These changes are
intended to be backward compatible, so if you compile a working application with the
new streaming code, your application should be able to read streams that were written
with the old code. There is no provision for writing the old stream format, however. We
assume that you'll like the new features so much that you won’t want to be without
them.

The following sections describe the changes and new capabilities of streaming. Each of
these changes is made for you when you use the DECLARE_STREAMABLE and
IMPLEMENT _STREAMABLE macros.

Object versioning

Objects in streams now have a version number associated with them. An object version
number is a 32-bit value that should not be 0. Whenever an object is written to a stream,
its version number will also be written. With versioning you can recognize if there’s an
older version of the object you're reading in, so you can interpret the stream
appropriately.

Reading and writing base classes

In your current code, you might be reading and writing base classes directly, as shown
here:

void Derived::write(opstream& out)
{
Base::write(out);
/...
}

void *Derived::read(ipstream& in)
{
Base::read(in);

VA

348 C++ Programmer’s Guide

Note

This method will continue to work, but it won't write out any version numbers for the
base class. To take full advantage of versioning, you should change these calls to use the
new template functions that understand about versions:

void Derived::Write(opstream& out)

{
WriteBaseObject((Base *)this, out);
// ...

void *Derived::Read(ipstream& in, uint32 ver)

{
ReadBaseObject((Base *)this, in);
/] ...)

The cast to a pointer to the base class is essential. If you leave it out, your program may
crash.

~

Reading and writing integers

Old streams wrote int and unsigned data types as 2-byte values. To move easily to 32-
bit platforms, the new streams write int and unsigned values as 4-byte values. The new
streams can read old streams, and will handle the 2-byte values correctly.

The old streams provide two member functions for reading and writing integer values:
void writeWord (unsigned);
unsigned readword() ;
These have been changed in the new streams:
void writeWord(uint32);
uint32 readWord() ;

Existing code that uses these functions will continue to work correctly if it is recompiled
and relinked, although calls to read Word will generate warnings about a loss of precision

_ when the return value is assigned to an int or unsigned in a 16-bit application. But in

new code, all of these functions should be avoided. In general, you probably know the
true size of the data being written, so the streaming library now provides separate
functions for each data size:

void writeWordlé (uintl6) ;
void writeWord32 (uint32);
uintl6 readWordl6 (unitl6);

uint32 readWord32 (unit32);

Use of these four functions is preferred..

Multiple inheritance and virtual base support

The streaming code now provides four function templates that support virtual base
classes and multiple inheritance. The following sections describe these functions.

Chapter 17, Using persistent streams classes 349

The ReadVirtualBase and WriteVirtualBase function templates
Any class that has a direct virtual base should use the new ReadVirtualBase and
WriteVirtualBase function templates:

void Derived: :Write(opstream& out)

{ .
WriteVirtualBase((VirtualBase *)this, out);

/] ...

}

void *Derived::Read(ipstream& in, uint32 ver)

(.
ReadVirtualBase((VirtualBase *)this, in);

/] ...

}

A class derived from a class with virtual bases does not need to do anything special to
deal with those virtual bases. Each class is responsible only for its direct bases.

The ReadBaseObject and WriteBaseObject function templates
Object streams now support multiple inheritance. To read and write multiple bases, use
the new WriteBaseObject and ReadBaseObject function templates for each base:

void Derived: :Write(opstream& out)
{
WriteBaseObject((Basel *)this, out);
WriteBaseObject((Base2 *)this, out):
/...

void *Derived::Read(ipstream& in, uint32 ver)
(.
ReadBaseObject((Basel *)this, in);
ReadBaseObject ((Base2 *)this, in);
/] ...

Creating streamable objects

The easiest way to make a class streamable is by using the macros supplied in the
- persistent streams library. The following steps will work for most classes:

1 Make TStreamableBase a virtual base of your class, either directly or indirectly.
2 Add the DECLARE_STREAMABLE macro to your class definition.

3 Add the IMPLEMENT_STREAMABLE macro to one of your source fﬂes Adding the
IMPLEMENT_CASTABLE macro is also recommended.

4 Write the Reid and Write member function definitions in one of your source files.

The following sections provide details about defining and implementing streamable
classes. ‘

350 C++ Programmer’s Guide

Defining streamable classes

To define a streamable class you need to:

¢ Include objstrm.h
* Base your class on the TStreamableBase class
¢ Include macro DECLARE_STREAMABLE into your class definition. For example,

#include <objstrm.h>
class Sample : public TStreamableBase
{
public:
// member functions, etc.
private:
int 1i;
DECLARE_STREAMABLE (IMPEXPMACRO, ‘ Sample, 1);
Y

Header file objstrm.h provides the classes, templates, and macros that are needed to
define a streamable class.

Every streamable class must inherit, directly or indirectly, from the class
TStreamableBase. In this example, the class Sample inherits directly from TStreamableBase.
A class derived from Sample would not need to explicitly inherit from TStreamableBase
because Sample already does. If you are using multiple inheritance, you should make
TStreamableBase a virtual base instead of a nonvirtual base as shown here. This will
make your classes slightly larger, but won’t have any other adverse effect on them.

In most cases the DECLARE_STREAMABLE macro is all you need to usé when you're
defining a streamable class. This macro takes three parameters. The first parameter is
used when compiling DLLs. This parameter takes a macro that is meant to expand to
either _ _export, _ _import, or nothing, depending on how the class is to be used in the
DLL. See Chapter 12 and Chapter 15 of the C++ Language Reference for further
explanation. The second parameter is the name of the class that you're defining, and the
third is the version number of that class. The streaming code doesn’t pay any attention
to the version number, so it can be anything that has some significance to you. See the
discussion of the nested class Streamer for details.

DECLARE_STREAMABLE adds a constructor to your class that takes a parameter of
type Streamablelnit. This is for use by the streaming code; you won’t need to use it
directly. DECLARE_STREAMABLE also creates two inserters and two extractors for
your class so that you can write objects to and read them from persistent streams. For
the class Sample (shown earlier in this section), these functions have the following

prototypes:

opstream& operator <<
opstream& operator <<
ipstream& operator >>
ipstream& operator >>

(opstream&, const Sample&);

(opstream&, const Sample*); ‘

(ipstream&, Sample&);

(ipstream&, Sample*&);

The first inserter writes out objects of type Sample. The second inserter writes out objects
pointed to by a pointer to Sample. This inserter gives you the full power of object
streaming, because it understands about polymorphism. That is, it will correctly write
objects of types derived from Sample, and when those objects are read back in using the

Chapter 17, Using persistent streams classes 351

pomter extractor (the last extractor) they will be read in as their actual types. The
extractors are the inverse of the inserters.

Finally, DECLARE_STREAMABLE creates a nested class named Streamer, based on the
TStreamer class, which defines the core of the streaming code.

Implementing streamable classes

Most of the members added to your class by the DECLARE_STREAMABLE macro are
inline functions. There are a few, however, that aren’t inline; these must be implemented
outside of the class. Once again, there are macros to handle these definitions.

The IMPLEMENT_CASTABLE macro provides a rudimentary typesafe downcast
mechanism. If you are building with Borland C++ 5.0, you don’t need to use this
because Borland C++ supports RTTIL. However, if you need to build your code with a
compiler that does not support RTTI, you will need to use the
IMPLEMENT_CASTABLE macro to provide the support that object streaming requires.
Although it isn’t necessary to use IMPLEMENT_CASTABLE when using Borland C++,
you ought to do so anyway if you're concerned about being able to compile your code
with another compiler. See Chapter 3 of the C++ Language Reference for a discussion of
RTTL

IMPLEMENT_CASTABLE has several variants:

IMPLEMENT CASTABLE(cls)

IMPLEMENT CASTABLEl(cls, basel)

IMPLEMENT CASTABLE2(cls, basel, base2)

IMPLEMENT CASTABLE3(cls, basel, base2, base3)

IMPLEMENT CASTABLE4(cls, basel, base2, base3, base4d)
IMPLEMENT CASTABLES (cls, basel, base2, base3, based4, baseS5)

At some point in your source code you should invoke this macro with the name of your
streamable class as its first parameter and the name of all its streamable base classes
other than TStreamableBase as the succeeding parameters. For example:

class Basel : public virtual TStreamableBase

{

/7 ...

DECLARE STREAMABLE (IMPEXPMACRO,' Basel, 1);

}:

IMPLEMENT CASTABLE(Basel); // no streamable bases

class Base2 : public virtual TStreamableBase

{

/] ...

DECLARE_STREAMABLE (IMPEXPMACRO, Base2, 1);

}:

IMPLEMENT CASTABLE(Basel); // no streamable bases

class Derived : public Basel, public virtual Base2

{

/...

DECLARE_STREAMABLE (. IMPEXPMACRO, Derived, 1);

¥ .

IMPLEMENT CASTABLE2(Derived, Basel, Base2); //two streamable bases

352 C++ Programmer’s Guide

class MostDerived : public Derived

{)

DECLARE_STREAMABLE (IMPEXPMACRO, MostDerived, 1);

}i

IMPLEMENT CASTABLE1L (MostDerived, Derived); //one streamable base

The class Derived uses IMPLEMENT CASTABLE2 because it has two streamable base
classes.

In addition to the IMPLEMENT_CASTABLE macros, you should invoke the
appropriate IMPLEMENT_STREAMABLE macro somewhere in your code. The
IMPLEMENT- STREAMABLE macro looks like the IMPLEMENT_CASTABLE macros:

IMPLEMENT_ STREAMABLE(cls)

IMPLEMENT STREAMABLEL(cls, basel)

TMPLEMENT STREAMABLE2 (cls, basel, base2)

IMPLEMENT STREAMABLE3 (cls, basel, base2, base3)

IMPLEMENT STREAMARLE4(cls, basel, base2, base3, based)
IMPLEMENT STREAMABLES (cls, basel, base2, base3, base4, baseb B

The IMPLEMENT _STREAMABLE macros have one important difference from the
IMPLEMENT_CASTABLE macros: when using the IMPLEMENT_STREAMABLE
macros you must list all the streamable base classes of your class in the parameter list,
and you must list all virtual base classes that are streamable. This is because the
IMPLEMENT_STREAMABLE macros define the special constructor that the object
streaming code uses; that constructor must call the corresponding constructor for all of
its direct base classes and all of its virtual bases. For example:

class Basel : public virtual TStreamableBase .

{

/] ...

DECLARE_STREAMABLE (IMPEXPMACRO, Basel, 1);

}i '

IMPLEMENT. ' CASTABLE(Basel); / / no streamable bases
IMPLEMENT STREAMABLE(Basel); // no strea.mable bases

class Base2 : publlc virtual TStreamableBase

¢

/7 ..

DECLARE_STREAMABLE (IMPEXPMACRO, Base2, 1);

}i

IMPLEMENT_ CASTABLE(Basel ‘); // no streamable bases
IMPLEMENT STREAMABLE(Basel); // no streamable bases

class Derived : public Basel, public virtual Base?2
{

/7. .

DECLARE_STREAMABLE (IMPEXPMACRO, Derived, 1);

b

IMPLEMENT CASTABLE2 (Derived, Basel, Base2);
IMPLE‘MENT_S‘I"REAMABLEZ(Derived, Basel, Base2);

class MostDerived : public Derived

{

/7 ..

DECLARE_STREAMABLE (IMPEXPMACRO, MostDerived, 1 Y
}i

Chapter 17, Using persistent streams classes 353

IMPLEMENT CASTABLEL(MostDerived, Derived);
IMPLEMENT STREAMABLE2 (MostDerived, Derived, Base2);

The nested class Streamer

The nested class Streamer is the core of the streaming code for your objects. The
DECLARE_STREAMABLE macro creates Streamer insidé your class. It is a protected
member, so classes derived from your class can access it. Streamer inherits from
TNewStreamer, which is internal to the object streammg system. It inherits the following
two pure virtual functions:

virtual void Write(opstream&) const = 0;
virtual void *Read(ipstream&, uint32) const = 0;

Streamer overrides these two functions, but does not provide definitions for them. You
must write these two functions: Write should write any data that needs to be read back
in to reconstruct the object, and Read should read that data. Streamer::GetObject returns a
pointer to the object being streamed. For example:

“class Demo : public TStreamableBase
‘

int i;

int j;
public:

Demo(int ii, int 33) : i(ii), jF(33) {3}
DECLARE_STREAMABLE(IMPEXPMACRO, Demo, 1);
}:

IMPLEMENT_CASTABLE(Demo) ;
IMPLEMENT_STREAMABLE (Demo) ;

void *Demo::Streamer::Read(ipstream& in, uint32) const
{

in >> GetObject()->i >> GetObject () >j,

return GetObject();
}

void Demo::Streamer::Write(opstream& out) const
{ . .

out << GetObject()->i << GetObject()->j;
}

Writing the Read and Write functions

It is usually easiest to unplement the Read function before implementing the Write
function. To implement Read you need to:

* Know what data you need in order to reconstruct the new streamable object.
¢ Devise a sensible way of reading that data into the new streamable object.

Then implement Write to work in parallel with Read so that it sets up the data that Read
will later read. The streaming classes provide several operators to make this easier. For
example, opstream provides inserters for all the built-in types, just as ostream does. So all
you need to do to write out any of the built-in types is to insert them into the stream.

354 C++ Programmer’s Guide

You also need to write out base classes. In the old ObjectWindowé and Turbo Vision
streaming, this was done by calling the base’s Read and Write functions directly. This

doesn’t work with code that uses the new streams, because of the way class versioning

is handled.

The streaming library provides template functions to use when reading and writing

base classes. ReadVirtualBase and WriteVirtualBase are used for virtual base classes, and

ReadBaseObject and WriteBaseObject are used for nonvirtual bases. Just like

IMPLEMENT_CASTABLE, you only need to deal with direct bases. Virtual bases of

your base classes will be handled by the base class, as shown in this example:

class Basel : public virtual TStreamableBase
{
int i; ‘
DECLARE_STREAMABLE (IMPEXPMACRO, Basel, 1);
}:
IMPLEMENT CASTABLE(Basel); // no streamable bases
IMPLEMENT_STREAMABLE(Basel); // no streamable bases
void Basel::Streamer: :Write(opstream& out) const
{ v
. out << GetObject()->i;
}
class Base2 : public virtual TStreamableBase
{)
int j;
DECLARE,_STREAMABLE (IMPEXPMACRO, Base2, 1);
}: o
IMPLE:MENT_CAS:I‘ABLE(Basel); // no streamable bases
IMPLEMENT STREAMABLE(Basel); // no streamable bases
void Base2::Streamer::Write(opstream& out) const '
{
out << GetObject()->j;
}

class Derived : public Basel, public virtual Base2
{
int k;
DECLARE_STREAMABLE (IMPEXPMACRO, Derived, 1);
}:
IMPLEMENT CASTABLE2 (Derived, Basel, Base2);
IMPLEMENT STREAMABLE2 (Derived, Basel, Base2);
void Derived: :Streamer: :Wr;'.te(opstream& out) const
{
WriteBaseObject((Basel *)this, out);
WriteVirtualBase((Base2 *)this, out);
out << GetObject ()->k;
}

class MostDerived : public Derived

{

int m;

DECLARE_STREAMABLE({ IMPEXPMACRO, MostDerived, 1);
}i !

Chapter 17, Using persistent streams classes

355

IMPLEMENT CASTABLE]L (MostDerived, Derived ‘) ;
IMPLEMENT_ STREAMABLEZ (MostDerived, Derived, Base2);
void MostDerived::Streamer: :Writé(opstream& out) const
{ oo '
WriteBaseObject((Derived *)this, out);
~ out << GetObject ()->m;

} ’ .
When you're writing out a base class, don't forget to cast the this pointer. Without the
cast, the template function will think it's writing out your class and not the base class.
The result will be that it calls your Write or Read function rather than the base’s. This
results in a lengthy series of recursive calls, which will eventually crash.

Object versioning

You can assign version numbers to different implementations of the same class as you
change them in the course of maintenance. This doesn’t mean that you can use different
versions of the same class in the same program, but it lets you write your streaming
code in such a way that a program using the newer version of a class can read a stream
that contains the data for an older version of a class. For example:

class Sample : public TStreamableBase
{
int i;
DECLARE_STREAMABLE (IMPEXPMACRO, Sample, 1);
Yi
IMPLEMENT CASTABLE(Sample);
IMPLEMENT STREAMABLE(Sample);
void Sample::Streamer::Write(opstream& out) const
{ .
out << GetObject()->i;
}
void *Sample::Streamer::Read(ipstream& in, uint32) const
{ 1
in >> GetObject ()->i;
return GetObject();
}

Suppose you've written out several objects of this type into a file and you discover that
you need to change the class definition. You’d do it something like this:

class Sample : public TStreamableBase

{

int 1i; .

int j; // new data member

DECLARE, STREAMABLE(IMPEXPMACRO, Sample, 2);// new version number

}: ‘

IMPLEMENT CASTABLE(Sample);

TMPLEMENT STREAMABLE(Sample) ;

void Sample::Streamer: :Write(opstream& out) const

(.
out << GetObject ()->i;
out:- << GetObject()->j;

356 C++ Programmer’s Guide

} \
void *Sample::Streamer::Read(ipstream& in, uint32 ver) const
{
in >> GetObject()->i;
if(ver > 1)
in >> GetObject ()~->j;
else
GetObject ()->j = 0;
return GetObject();
}

Streams written with the old version of Sample will have a version number of 1 for all
objects of type Sample. Streams written with the new version will have a version number
of 2 for all objects of type Sample. The code in Read checks that version number to
determine what data is present in the stream.

The streaming library used in the previous versions of ObjectWindows and Turbo
Vision doesn’t support object versioning. If you use the new library to read files created
with that library, your Read function will be passed a version number of 0. Other than
that, the version number has no significance to the streaming library, and you can use it
however you want. :

Chapter 17, Using persistent streams classes 357

358 C++ 'Programmer's Guide

Chapter

~ Using the mathematical classes

This chapter explains how to use complex and bed numerical types.

Using complex types

Note

Complex numbers are numbers of the form x + yi, where x and y are real numbers, and i
is the square root of -1. Borland C++ has always had a type

struct complex

{
double x, vy;
}i

defined in math.h. This type is convenient for holding complex numbers, because they
can be considered a pair of real numbers. However, the limitations of C make arithmetic
with complex numbers rather cumbersome. With the addition of C++, complex math is
much simpler.

A significant advantage to using the Borland C++ complex numerical type is that all of
the ANSI C Standard mathematical routines are defined to operate with it. These
mathematical routines are not defined for use with the C struct complex.

See Part I, “Borland C++ class libraries guide,” for more information.

To use complex numbers in C++, all you have to do is to include complex.h. In
complex.h, all the following have been overloaded to handle complex numbers:

¢ All of the binary arithmetic operators.
¢ The input and output operators, >> and <<.
¢ The ANSI C math functions.

The complex library is invoked only if the argument is of type complex. Thus, to get the
complex square root of -1, use

sqrt (complex(-1))

Chapter 18, Using the mathematical classes 359

and not
sart (-1)
The following functions are defined by class complex:

double arg(complex&); // angle in the plane
complex conj(complex&) ; // complex conjugate
double imag(complexs) ; // imaginary part

double norm(complex&); P sqﬁare of the magnitude
double real (complex&) ; // real part

// Use polar coordinates to create a complex.
complex polar (double mag, double angle = 0);

Using bed types

Borland C++, along with almost every other computer and compiler, does arithmetic on
binary numbers (that is, base 2). This can sometimes be confusing to people who are
used to decimal (base 10) representations. Many numbers that are exactly representable
in base 10, such as 0.01, can only be approximated in base 2.

Note See Part III, “Borland C++ class libraries guide,” for more information.

Binary numbers are preferable for most applications, but in some situations the round-
off error involved in converting between base 2 and 10 is undesirable. The most
common example of this is a financial or accounting application, where the pennies are
supposed to add up. Consider the following program to add up 100 pennies and
subtract a dollar:

#include <stdio.h>
int i;
float x = 0.0;
for (i = 0; i < 100; ++i)
x += 0.01;
=1.0;
printf("100*.01 - 1 = %g\n",x);

The correct answer is 0.0, but the computed answer is a small number close to 0.0. The
computation magnifies the tiny round-off error that occurs when converting 0.01 to base
2. Changing the type of x to double or long double reduces the error, but does not
eliminate it.

To solve this problem, Borland C++ offers the C++ type bcd, which is declared in bed.h.
With bed, the number 0.01 is represented exactly, and the bed variable x provides an

exact penny count.
#include <bcd.h>
int i;
bcd x = 0.0;
for (1 = 0; 1 < 100; ++1)
x += 0.01;
x -=.1.0;
cout << "100*%.01 - 1 = " << x << "\n";

360 C++ Programmer’s Guide

Note -

Here are some facts to keep in mind about bed:

* bcd does not eliminate all round-off error: A computation like 1.0/ 3.0 will still have
round-off error.

e bed types can be used with ANSI C math functions.

* bed numbers have about 17 decimal digits precision, and a range of about 1 x 1072 to
1x 10

Converting bed numbers

bed is a defined type distinct from float, double, or long double; decimal arithmetic is
performed only when at least one operand is of the type bed.

The bcd member function real is available for converting a bed number back to one of the
usual formats (float, double, or long double), though the conversion is not done
automatically. real does the necessary conversion to long double, which can then

be converted to other types using the usual C conversions. For example, a bed can be
printed using any of the following four output statements with cout and printf.

' /* PRINTING bcd NUMBERS */
/* This must be compiled as a C++ program. */
#include <bcd.h>
#include <iostream.h>
#include <stdio.h>

void main(void) {-
bed a = 12.1; .
double x = real(a); // This conversion required for printf().

printf("\na = %g", X);

printf ("\na $Lg", real(a));

printf ("\na %g", (double)real(a));

cout << "\na = " << a; // The preferred method.

}

Note that since printf doesn’t do argument checking, the format specifier must have the
L if the long double value real(a) is passed.

non

Number of decimal digits

You can specify how many decimal digits after the decimal point are to be carried in a
conversion from a binary type to a bed. The number of places is an optional second
argument to the constructor bed. For example, to convert $1000.00/7 to a bed variable
rounded to the nearest penny, use

bed a = bed(1000.00/7, 2)

Chapter 18, Using the mathematical classes 361

‘where 2 indicates two digits following the decimal point. Thus,

1000.00/7 = 142.85714...
bed(1000.00/7, 2) = 142.860
bcd (1000.00/7, 1) = 142.900
bed (1000.00/7, 0) = - 143.000
bed (1000.00/7, -1) = 140.000
bed (1000.00/7, -2) = 100.000

The number is rounded using banker’s rounding (as specified by IEEE), which rounds
to the nearest whole number, with ties being rounded to an even digit. For example,

bed(12.335, 2) = 12.34
bed(12.345, 2) = 12.34
bed(12.355, 2) = 12.36

362 C++ Programmer’s Guide

Standard class libraries guide

Part IV documents the Rogue Wave Software, Inc., implementation of the Standard C++
Library. It assumes that you are already familiar with the basics features of the C++
programming language. If you are new to C++ you may wish to examine an
introductory text, such as the book The C++ Programming Language, by Bjarne Stroustrup
(Addison-Wesley, 1991).

Part1V, “Standard Class Libraries Guide” documents Rogue Wave’s
implementation of the Standard C++ Library.

Based on ANSI's Working Paper for Draft Proposed International Standard for
Information Systems—Programming Language C++. April 28, 1995.

Copyright @ 1995 Rogue Wave Software, Inc. All rights reserved.

Reading this part

There is a classic “chicken-and-egg” problem associated with the container class portion
of the standard library. The heart of the container class library is the definition of the
containers themselves, but you can’t really appreciate the utility of these structures
without an understanding of the algorithms that so greatly extend their functionality.
On the other hand, you can't really understand the algorithms without some
appreciation of the containers. '

Part 1V, Standard class libraries guide 363

Therefore, after reading Chapters 19, 20, and 21 carefully, Chapters 22 through 28
should be read concurrently with Chapters 29 and 30. Alternatively, simply skim over
Chapters 22 through 28 and Chapters 29 and 30 to gain a superficial understanding of
the overall structure, then go back and read these sections again in more detail.

Typeface conventions used in this part

We have presented both class_names and function_names () in a distinctive font the
first time they are introduced. In addition, when we wish to refer to a function name or
algorithm name but not draw attention to the arguments, we will follow the function
name with an empty pair of parenthesis. We do this even when the actual function
invocation requires additional arguments. We have used the term algorithm to refer to

- the functions in the generic algorithms portion of the standard library, so as to avoid
confusion with member functions, argument functions, and functions defined by the
programmer. Note that both class names and function names in the standard library
follow the convention of using an underline character as a separator. Throughout the
text, examples and file names are prmted in the same Courier font used for function
names.

In the text, it is common to omit printing the class name in the distinctive font after it has
been introduced. This is intended to make the appearance of the text less visually
disruptive. However, we return to the distinctive font to make a distinction between
several different possibilities, as for example between the classes vector and list used as
containers in constructing a stack.

What is the Standard C++ Library?

The International Standards Organization (ISO) and the American National Standards
Institute (ANSI) are completing the process of standardizing the C++ programming
language. A major result of this standardization process is the Standard C++ Library, a
large and comprehensive collection of classes and functions. This product is Rogue
Wave's implementation of the ANSI/ISO Standard Library.

The ANSI/ISO Standard C++ Library includes the following parts:

* Alarge set of data structures and algorithms formerly known as the Standard
Template Library (STL).

¢ AnIOStream facility.
* Alocale facility.

* A templatized string class.

/

* A templatized class for representing complex numbers.

* ' A uniform framework for describing the execution environment, through the use of a
template class named numeric_limits and specializations for each fundamental data

type.

* Memory management features.

364 C++ Programmer’s Guide

* Language support features.
¢ Exception handling features.

This version of the Rogue Wave Standard C++ Library includes the data structures and
algorithms libraries (STL), and the string, complex, and numeric_limits classes.

Does the Standard C++ Library differ from other libraries?

A major portion of the Standard C++ Library is comprised of a collection of class
definitions for standard data structures and a collection of algorithms commonly used
to manipulate such structures. This part of the library was formerly known as the
Standard Template Library or STL. The organization and design of the STL differs in
almost all respects from the design of most other C++ libraries, because it avoids
encapsulation and uses almost no inheritance.

An emphasis on encapsulation is a key hallmark of object-oriented programming. The
emphasis on combining data and functionality into an object is a powerful organization
principle in software development; indeed it is the primary organizational technique.
Through the proper use of encapsulation, even exceedingly complex software systems
can be divided into manageable units and assigned to various members of a team of
programmers for development.

Inheritance is a powerful technique for permitting code sharing and software reuse, but
it is most applicable when two or more classes share a common set of basic features. For
example, in a graphical user interface, two types of windows may inherit from a
common base window class, and the individual subclasses will provide any required
unique features. In another use of inheritance, object-oriented container classes may -
ensure common behavior and support code reuse by inheriting from a more general
class, and factormg out common member functions.

The de31gners of the STL decided against using an entirely object-oriented approach
and separated the tasks to be performed using common data structures from the
representation of the structures themselves. This is why the STL is properly viewed as a
collection of algorithms and, separate from these, a collection of data structures that can
be mampulated using the algorithms.

What are the effects of non-object-oriented design?

The STL portion of the Standard C++ Library was purposely designed with an

architecture that is not object-oriented. This design has some side effects, some

advantageous, and some not, that developers must be aware of as they investigate how
~ to most effectively use the library. We'll discuss a few of them here.

Smaller source code

There are approximately fifty different algorithms in the STL, and about a dozen major
data structures. This separation of has the effect of reducing the size of source code, and
decreasing some of the risk that similar activities will have dissimilar interfaces. Were it

Part IV, Standard class libraries guide 365

not for this separation, for example, each of the algorithms would have to be re-
implemented in each of the different data structures, requiring several hundred more
member functions than are found in the present scheme.

Flexibility

One advantage of the separation of algorithms from data structures is that such
algorithms can be used with conventional C++ pointers and arrays. Because C++ arrays
-are not objects, algorithms encapsulated within a class hierarchy seldom have this
ability.

Efficiency

The STL in particular, and the Standard C++ Library in general, provide a low-level,

“nuts and bolts” approach to developing C++ applications. This low-level approach can
be useful when specific programs requ1re an emphasis on efficient codlng and speed of
executlon

lterators: mismatches and invalidations

The Standard C++ Library data structures use pointer-like objects called iterators to
describe the contents of a container. (These are described in detail in Chapter 19,
“Iterators”.) Given the library’s architecture, it is not possible to verify that these iterator
elements are matched; i.e., that they are derived from the same container. Using (either
intentionally or by acc1dent) a beginning iterator from one container with an ending
iterator from another is a recipe for certain disaster. -

It is very important to know that iterators can become invalidated as a result of a
subsequent insertion or deletion from the underlying container class. This invalidation
is not checked, and use of an invalid iterator can produce unexpected results.

Familiarity with the Standard C++ L1brary will help reduce the number of errors related
to iterators.

Templates: errors and “code bloat”

The flexibility and power of templatized algorithms is, with most compilers, purchased
at a loss of precision in diagnostics. Errors in the parameter lists to generic algorithms
will sometimes be manifest only as obscure compiler errors for internal functions that
are defined many levels deep in template expansions. Again, familiarity with the
algorithms and their requirements is a key to successful use of the standard library.

Because of its heavy reliance on templates, the STL can cause programs to grow larger
than expected. You can minimize this problem by learning to recognize the cost of
instantiating a particular template class, and by making appropriate design decisions.
Be'aware that as compilers become more and more fluent in templates, this will become
less of a problem.

366 C++ Programmer’s Guide

Multithreading problems

The Standard C++ Library must be used carefully in a multithreaded environment.
Iterators, because they exist independently of the containers they operate on, cannot be
safely passed between threads. Since iterators can be used to modify a non const
container, there is no way to protect such a container if it spawns iterators in multiple
threads. Use “thread-safe" wrappers, such as those prov1ded by Tools.h++, if you need to
access a container from multiple threads.

How should | use the Standard C++ Library?

Within a few years the Standard C++ Library will be the standard set of classes and
libraries delivered with all ANSI-conforming C++ compilers. We have noted that the
design of a large portion of the Standard C++ Library is in many ways not object-
oriented. On the other hand, C++, excels as a language for manipulating objects. How
do we integrate the Standard Library’s non-object-oriented architecture with C++’s
strengths as a language for manipulating objects?

“The key is to use the right tool for each task. Object-oriented design methods and
programming techniques are almost without peer as guideposts in the development of
large complex software. For the large majority of programming tasks, object-oriented
techniques will remain the preferred approach. And, products such as Rogue Wave’s
Tools.h++ 7.0, which will encapsulate the Standard C++ Library with a familiar object-
oriented interface, will provide you with the power of the Library and the advantages of
object-orientation. ‘

Use Standard C++ Library components directly when you need flexibility and/or
highly efficient code. Use the more traditional approaches to object-oriented design,
such as encapsulation and inheritance, when you need to model larger problem
domains, and knit all the pieces into a full solution. When you need to devise an
architecture for your application, always consider the use of encapsulation and
inheritance to compartmentalize the problem. But if you discover that you need an
efficient data structure or algorithm for a compact problem, suich as data stream
manipulation in drivers (the kind of problem that often resolves to a single class), look to
the Standard C++ Library. The Standard C++ Library excels in the creation of reusable
classes, where low-level constructs are needed, while traditional OOP techniques really
shine when those classes are combined to solve a larger problem.

In the future, most libraries will use the Standard C++ Library as their foundation. By
using the Standard C++ Library, either directly or through an encapsulation such as
Tools.h++ 7.0, you help insure interoperability. This is especially important in large
projects that may rely on communication between several libraries. A good rule of
thumb is to use the highest encapsulation level available to you, but make sure that the
Standard C++ Library is available as the base for interlibrary communication and
operation.

The C++ language supports a wide range of programming approaches because the
problems we need to solve require that range. The language, and now the Standard C++
library that supports it, are designed to give you the power to approach each unique
problem from the best possible angle. The Standard C++ Library, when combined with

Part IV, Standard class libraries guide 367

more traditional OOP techniques, puts a very flexible tool into the hands of anyoné
buﬂdmg a collection of C++ classes, whether those classes are mtended to stand alone as
a library or are tailored to a specific task.

'Using the Standard Library

Because the Standard C++ Library consists largely of template declarations, on most
platforms it is only necessary to include in your programs the appropriate header files.
These header files will be noted in the text that describes how to use each algorithm or
“class.

Using the Standard Template Library with Borland C++

This document describes an implementation of the Standard Template Library (STL)
that is consistent with the ANSI/ISO C++ working paper. In order to provide a ;
completely flexible library, the working paper specifies the use of two template features
that are not yet supported in the current version of Borland C++. The template features
which are not yet supported are member function templates and the use of template
parameters to define default types.

Although the documentation includes some information about STL features which are
not yet supported, you don’t need to take any special actions to start using the library.
The header file for each container defines alternate forms which Borland C++
automatically inserts in your code. You must include the necessary header files in the
manner described by this document.

Member function templates

Member function templates are used in all containers provided by the Standard
Template Library. An example of this is the constructor for deque<T> that takes two
templated iterators:

template <class InputIterator>
deque (InputIterator, InputIterator);

deque also has an insert function of this type. Borland C++ does not support the use of
functions that would allow you to use any type of input iterator as arguments. The
header file for each container provides substitute functions that let you use an iterator
obtained from the same type of container as the one you are constructing (or calling a
member function on), or you can use a pointer to the type of element that’s in the
container.

For example, to avoid member function templates, you can construct a deque in the
following two ways:

int intarray[10];
deque<int> first_deque(intarray, intarray + 10);

deque<int>)
second_deque (first_deque.begin(), first_deque.end()) ;

368 C++ Programmer’s Guide

But you cannot construct a deque this way:

deque<long> :
long_deque(first_dequef.begin(), first_deque.end());

because the long deque and first_deque are not the same type.

A container can have other member function templates besides the constructor. In
general, the header file for each container provides an alternate non-template function

prototype.

Template parameters

A template function can use template parameters that are initialized with a default
value. The following topics describe the extent of Borland C++ support and how you
should use the STL.

Default template arguments

Borland C++ supports the following form of default template arguments:

template < class T = int > class Array;

- This syntax supports the construction of Array objects which, by default, are containers
for int types. It’s possible to use any type in place of int including other user-defined

types.

Using template parameters to define default types

Borland C++ does not support functions with template parameters which are used to
specify default types. Therefore, you must always supply all template arguments that
would otherwise use one of their parameters to generate a default type.

For example, there is a version of the stack container that uses a template parameter to
define a default type for another parameter. In the following declaration, the generic
type T is used to instantiate a deque object. But deque is a generic type that depends on a
generic type T.

The declaration is as follows.

template <class T, class Container = deque<T> >
class stack; // This form is not supported

The stack h header file provides an alternate form which is supported by Borland C++.
This class declaration does not extend the scope of template parameters to define other
parameters. The declaration is as follows.

template <class T, class Container> class stack;

- To construct a stack type, you must always supply all arguments. You must instantiate
your stack type by writing something like this:

stack<doub1e, deque<double> > MyStack;

Part 1V, Standard class libraries guide 369

Using the STL header files

For the STL implementation to work correctly, you must always include files as
specified in this document. For exaimple, to use the STL string implementation, you
must have the following in your code:

#include <string>

Similarly, to use the STL generic algorithms, you must have the following in your code:
#include <algorithm >

Running the tutorial programs

All the tutorial programs described in this text have been gathered together and are
available as part of the distribution package. You can compile and run these programs,
and use them as models for your own programming problems. Many of these example
programs have been extended with additional output commands that are not
reproduced here in the text. The expected output from each program is also included as
part of the distribution.

Terminology 'used in this part

bidirectional iterator An iterator that can be used for reading and writing, and which
can move in either a forward or backward direction.

binary function A function that requires two arguments.

binder A function adaptor that is used to convert a two-argument binary function
object into a one-argument unary function object, by bmdmg one of the argument
values to a specific constant.

constant iterator An iterator that can be used only for reading values, which cannot be
used to modify the values in a sequence.

container class A class used to hold a collection of similarly typed values. The
container classes provided by the standard library include vector, list, deque, set, map,
stack, queue, and priority_queue.

deque An indexable container class. Elements can be accessed by their position in the
container. Provides fast random access to elements. Additions to either the front or the
back of a deque are efficient. Insertions into the middle are not efficient.

forward iterator An iterator that can be used either for reading or writing, but which
moves only forward through a collection.

function object An instance of a class that defines the parenthe51s operator as one of
its member functions. When a function object is used in place of a function, the
parenthesis member function will be executed when the function would normally be
invoked.

370 C++ Programmer’s Guide

generic algorithm A templated algorithm that is not specialized to any specific
container type. Because of this, generic algorithms can be used with a wide variety of
different forms of container. ‘

heap A way of organizing a collection so as to permit rapid insertion of new values,
and rapid access to and removal of the largest value of the collection.

heterogeneous collection A collection of values that are not all of the same type. In the
standard library a heterogeneous collection can only be maintained by storing pointers
to objects, rather than objects themselves.

insert iterator An adaptor used to convert iterator write operations into insertions into
a container.

iterator A generalization of the idea of a pointer. An iterator denotes a specific element
in a container, and can be used to cycle through the elements being held by a container.

generator ' A function that can potentially return a different value each time it is
invoked. A random number generator is one example.

input iterator An iterator that can be used to read values in sequehce, but cannot be
used for writing.

list A linear container class. Elements are maintained in sequence. Provides fast access
only to the first and last elements. Insertions into the middle of a list are efficient.

map An indexed and ordered container class. Unlike a vector or deque, the index
values for a map can be any ordered data type (such as a string or character). Values are
maintained in sequence, and can be efficiently inserted, accessed or removed in any
order.

multimap A form of map that permits multiple elements to be indexed using the same
value.

multiset A form of set that permits multiple instances of the same value to be
maintained in the collection.

negator An adaptor that converts a predicate function object, producing a new
function object that when invoked yields the opposite value.

ordered collection A collection in which all values are ordered according to some
binary comparison operator. The set data type automatically maintains an ordered
collection. Other collections (vector, deque, list) can be converted into an ordered
collection.

output iterator An iterator that can be used only to write elements into a container, it
cannot be used to read values. :

past the end iterator An iterator that marks the end of a range of values, such as the
end of the set of values maintained by a container.

predicate A function or function object that when invoked returns a Boolean (true/
false) value or an integer value.

predicate function A predicate.

Part |V, Standard class libraries guide 371

priority_queue An adaptor container class, usually built on fop of a vector or deque.
The priority queue is designed for rapidly accessing and removmg the largest element
in the collection.

queue An adaptor container class, usually built on top of a list or deqﬁe The queue
provides rapid access to the topmost element. Elements are removed from a queue in
the same order they are inserted into the queue.

random access iterator An iterator that can be subscripted, so as to access the values in
a container in any order.

range A subset of the elements held by a container. A range is typlcally specified by
two iterators.

reverse iterator An iterator that moves over a sequence of values in reverse order,
such as back to front.

sequence A portion or all of the elements held by a container. A sequence is usually
described by a range.

set * An ordered container class. The set container is optimized for insertions, removals,
and tests for inclusion.

stack An adaptor container class, built usually on top of a vector or deque. The stack
provides rapid access to the topmost element. Elements are removed from a stack in the
reverse of the order they are inserted into the stack.

stream iterator An adaptor that converts iterator operations into stream operations.
Can be use to either read from or write to an iostream.

~unary function A function that requires only one argument. Applying a binder to a
binary function results in a unary function.

vector An indexable container class. Elements are accessed using a key that represents
their position in the container. Provides fast random access to elements. Addition to the
end of a vector is efficient. Insertion into the middle is not efficient.

wide string A string with 16-bit characters. Wide strings are necessary for many non-
roman alphabets, i.e., Japanese.

372 C++ Programmer’s Guide

Note

Note

Chapter

lterators

Iterators: Iterators are pointer-like objects, used to cycle through the elements stored in a
container.

Fundamental to the use of the container classes and the associated algorithms provided
by the standard library is the concept of an iterator. Abstractly, an iterator is simply a
pointer-like object used to cycle through all the elements stored in a container. Because
different algorithms need to traverse containers in variety of fashions, there are different
forms of iterator. Each container class in the standard library can generate an iterator
with functionality appropriate to the storage technique used in implementing the
container. It is the category of iterators required as arguments that chiefly distinguishes
which algorithms in the standard library can be used with which container classes.

Range: A range is a sequence of values held in a container. The range is described by a
pair of iterators, which define the beginning and end of the sequence.

Just as pointers can be used in a variety of ways in traditional programming, iterators
are also used for a number of different purposes. An iterator can be used to denote a

specific value, just as a pointer can be used to reference a specific memory location. On

the other hand, a pair of iterators can be used to describe a range of values, in a manner
analogous to the way in which two pointers can be used to describe a contiguous region
of memory. In the case of iterators, however, the values being described are not
necessarily physically in sequence, but are rather logically in sequence, because they are
derived from the same container, and the second follows the first in the order in which
the elements are maintained by the container.

Conventional pointers can sometimes be null, that is, they point at nothing. Iterators, as
well, can fail to denote any specific value. Just as it is a logical error to dereference a null
pointer, it is an error to dereference an iterator that is not denoting a value.

When two pointets that describe a region in memory are used in a C++ program, it is
conventional that the ending pointer is not considered to be part of the region. For
example, an array named x of length ten is sometimes described as extending from x to

Chapter 19, Iterators 373

x+10, even though the element at x+10 is not part of the array Instead, the pointer value
x+10 is the past-the-end value—the element that is the next value after the end of the
range being described. Iterators are used to describe a range in the same manner. The
second value is not considered to be part of the range being denoted. Instead, the second
value is a past-the-end element, describing the next value in sequence after the final value
‘of the range. Sometimes, as with pointers to memory, this will be an actual value in the

_container. Other times it may be a special value, specifically constructed for the purpose.
In either case, it is not proper to dereference an iterator that is being used to specify the
end of a range.

Just as with conventional pointers, the fundamental operation used to modify an
iterator is the increment operator (operator ++). When the increment operator is applied
to an iterator that denotes the final value in a sequence, it will be changed to the “past-
the-end” value. An iterator j is said to be reachable from an iterator i if, after a finite
sequence of applications of the expression ++1, the iterator i becomes equal to 3.

Note Iterator ranges: When iterators are used to describe a range of values in a container, it is
assumed (but not verified) that the second iterator is reachable from the first. Errors will
occur if this is not true.

Ranges can be used to describe the entire contents of a container, by constructing an
iterator to the initial element and a special “ending” iterator. Ranges can also be used to
describe subsequences within a single container, by employing two iterators to specific
values. Whenever two iterators are used to describe a range it is assumed, but not
verified, that the second iterator is reachable from the first. Errors can occur if this
expectation is not satisfied.

In the remainder of this section we will describe the different forms of iterators used by
the standard library, as well as various other iterator-related functions.

Varieties of iterators

There are five basic forms of iterators used in the standard library:

input iterator read only, forward moving

output iterator write only, forward moving

forward iterator both read and write, forward moving
bidirectional iterator ' read and write, forward and backward moving
random access iterator read and write, random access

Iterator categories are hierarchical. Forward iterators can be used wherever input or
output iterators are required, bidirectional iterators can be used in place of forward
iterators, and random access iterators can be used in situations requiring’
bidirectionality.

A second characteristic ofiterators is whether or not they can be used to modify the
values held by their associated container. A constant iterator is one that can be used for
access only, and cannot be used for modification. Output iterators are never constant,
and input iterators always are. Other iterators may or may not be constant, depending

374 C++ Programmer’s Guide

upon how they are created. There are both constant and non-constant bidirectional
iterators, both constant and non-constant random access iterators, and so on.

The following table summarizes speciﬁc ways that various categories of iterators are
generated by the containers in the standard library.

input iterator istream iterator

output iterator ostream iterator
’ inserter

front_inserter
back_inserter
bidirectional iterator list
set and multiset
map and multimap
random access iterator ordinary pointers
: vector
deque

In the following sections we will describe the capabilities and constructlon of each form
of iterator.

Input iterators

Input iterators are the simplest form of iterator. To understand their capabilities,
consider an example program. The £ind () generic algorithm (to be described in more
detail in “Searching operations”), performs a simple linear search, looking for a specific
value being held within a container. The contents of the container are described using
two iterators, here called first and last. While first is not equal to last the element denoted
by first is compared to the test value. If equal, the iterator, which now denotes the
located element, is returned. If not equal, the first iterator is incremented, and the loop
cycles once more. If the entire region of memory is examined without finding the
desired value, then the algorithm returns the end-of-range iterator.

template <class InputIterator, class T>

InputIterator
find (InputIterator flrst InputIterator last, const T& value)
{
while (first != last && *first != value)
++first;
return first;

}
This algorithm illustrates three requiremehts for an input iterator:

* An iterator can be compared for equality to another iterator. They are equal when
they point to the same position, and are otherwise not equal.

* An iterator can be dereferenced using the * operator, to obtain the value being
denoted by the iterator.

Chapter 19, lterators 375

e Aniterator can be incremented, so that it refers to the next element in sequence, using
the operator ++. ‘

Notice that these characteristics can all be provided with new meanings in a C++
program, since the behavior of the given functions can all be modified by overloading
the appropriate operators. It is because of this overloading that iterators are possible.
There are three main varieties of input iterators:

Ordinary pointers. Ordinary pointers can be used as input iterators. In fact, since we
can subscript and add to ordinary pointers, they -are random access values, and thus can
be used either as input or output iterators. The end-of-range pointer describes the end of
a contiguous region of memory, and the deference and increment operators have their
conventional meanings. For example, the following searches for the value 7 in an array
of integers:

intdata[100];

int * where = find(data, data+100, 7);

Note Ordinary pointers as iterators: Because ordinary pointers have the same functionality
as random access iterators, most of the generic algorithms in the standard library can be
used with conventional C++ arrays, as well as with the containers provided by the
standard library. ‘

Note that constant pointers, pointers which do not permit the underlying array to be
modified, can be created by simply placing the keyword const in a declaration.

const int * first = data;

const int * last = data + 100;

.// can't modify location returned by the following
const int * where = find(first, last, 7);

Container iterators. All of the iterators constructed for the various containers provided
by the standard library are at least as general as input iterators. The iterator for the first
element in a collection is always constructed by the member function begin (), while
the iterator that denotes the “past-the-end” location is generated by the member
function end () . For example, the following searches for the value 7 in a list of integers:

list<int>::iterator where = find(aList.begin(), alist.end(), 7);

Each container that supports iterators provides a type within the class declaration with
the name iterator. Using this, iterators can uniformly be declared in the fashion
shown. If the container being accessed is constant, or if the description const_iterator
is used, then the iterator is a constant iterator.

Input stream iterators. The standard library provides a mechanism to operate on an
input stream using an input iterator. This ability is provided by the class
istream_iterator, and will be described in more detail in “Input stream iterators.”

Output iterators

An output iterator has the opposite functionality from an input iterator. Oﬁtput iterators
can be used to assign values in a sequence, but cannot be used to access values. For

376 C++ Programmer’s Guide

Note

example, we can use an output iterator in a genenc algorithm that copies values from
one sequence into another:

N

template <class Inputlterator, classOutputlterator>
OutputIterator copy
(InputIterator first, Inputlterator last, Outputlterator result)
{
‘while (first != last)
*result++ = *first++;
return result;

}

Parallel sequences: A number of the generic algorithms manipulate two parallel
sequences. Frequently the second sequence is described using only a beginning iterator,
rather than an iterator pair. It is assumed, but not checked, that the second sequence has
at least as many elements as the first.

Two ranges are being manipulated here; the range of source values specified by a pair of
input iterators, and the destination range. The latter, however, is specified by only a
single argument. It is assumed that the destination is large enough to include all values,
and errors will ensue if this is not the case. :

As illustrated by this algorithm, an output iterator can modify the element to which it
points, by being used as the target for an assignment. Indeed, output iterators can use
the dereference operator only in this fashion, and carinot be used to return or access the
elements they denote.

As we noted earlier, ordinary pointers, as well as all the iterators constructed by
containers in the standard library, can be used as examples of output iterators.
(Ordinary pointers are random access iterators, which are a superset of output iterators.)
So, for example, the following code fragment copies elements from an ordinary C-style
array into an standard library vector:

int data[100];
vector<int> newdata (100) ;

copy (data, data+100, newdata.begin());

Just as the istream_iterator provided a way to operate on an input stream using the
input iterator mechanism, the standard library provides a data type ostream_iterator,
that permits values to be written to an output stream in an iterator-like fashion. These
will be described in “Output stream iterators.”

~ Yet another form of output iterator is an insert iterator. An insert iterator changes the

output iterator operations of dereferencing/assignment and increment into insertions
into a container. This permits operations such as copy () to be used with variable length
containers, such as lists and sets.

Forward iterators

A forward iterator combines the features of an input iterator and an output iterator. It
permits values to both be accessed and modified. One function that uses forward

Chapter 19, Iterators 377

iterators is the replace () generic algorithm, which replaces occurrences of specific
values with other values. This algorithm is written as follows:

témplate <class ForwardIterator, class T>
- void ‘ :
replace (ForwardIterator first, ForwardIterator last,
const T& o0ld._value, const T& new_value)

Bt

while (first != last) {
if (*first == old_value)
*first = new_value;
++first;

}
}

'Ordinary pointers, as well as any of the iterators produced by containers in the standard
library, can be used as forward iterators. The following, for example, replaces instances
of the value 7 with the value 11 in a vector of integers.

replace (aVec.begin(), aVec.end(), 7, 11);

Bidirectional iterators

A bidirectional iterator is similar to a forward iterator, except that bidirectional iterators
support the decrement operator (operator --), permitting movement in either a forward

~or a backward direction through the elements of a container. For example, we can use
bidirectional iterators in a function that reverses the values of a container, placing the
results into a new container.

template <class BldlrectlonalIterator, class OutputIterator>
OutputIterator
reverse_copy (BidirectionalIterator first,
BidirectionalIterator last,
OutputIterator result)
{
while (first != last)
*result++ = *--last;
return result;

}

As always, the value initially denoted by the last argument is not considered to be part
of the collection.

The reverse_copy () function could be used, for example, to reverse the values of a
linked list, and place the result into a vector:

list<int> alList;

vector<int> aVec (aList.size());
reverse_copy (aList.begin(), alist.end(), aVec.begin());

378 C++ Programmer’s Guide

Note

Random-access iterators

Some algorithms require more functionality than the ability to access values in either a
forward or backward direction. Random access iterators permit values to be accessed by
subscript, subtracted one from another (to yield the number of elements between their
respective values) or modified by arithmetic operations, all in a manner similar to
conventional pointers.

When using conventional pointers, arithmetic operations can be related to the
underlying memory; that is, x+10 is the memory ten elements after the beginning of x.
With iterators the logical meaning is preserved (x+10 is the tenth element after x),
however the physical addresses being described may be different.

Algorithms that use random-access iterators include generic operations such as sorting
and binary search. For example, the following algorithm randomly shuffles the
elements of a container. This is similar to, although simpler than, the function -
random_shuffle () provided by the standard library.

template <class RandomAccessIterator>
void 7
mixup (RandomAccessIterator first, RandomAccessIterator last)
{
while (first < last) {
iter_swap(first, first + fandomInteger(last - first));
++first;
}
}

randomInteger(): The function randomInteger described here is used in a number of
the example programs presented in later sections.

The program will cycle as long as first is denoting a position that occurs earlier in the
sequence than the one denoted by last. Only random-access iterators can be compared
using relational operators, all other iterators can be compared only for equality or
inequality. On each cycle through the loop, the expression last - first yields the
number of elements between the two limits. The function randomInteger () is assumed
to generate a random number between 0 and the argument. Using the standard random
number generator, this function could be written as follows:

unsigned int randomInteger (unsigned int n)
// return random integer greater than
// or equal to 0 and less than n
{
return rand() % n;
}

This random value is added to the iterator first, resulting in an iterator to a randomly
selected value in the container. This value is then swapped with the element denoted by
the iterator first.

Chapter 19, Iterators 379

Reverse iterators

An iterator naturally imposes an order on an underlying container of values. For a
vector or a map the order is given by increasing index values. For a set it is the
increasing order of the elements held in the container. For a list the order is explicitly
derived from the fashion in which values are inserted.

A reverse iterator will yield values in exactly the reverse order of those given by the
standard iterators. That is, for a vector or a list, a reverse iterator will generate the last
element first, and the first element last. For a set it will generate the largest element first,
and the smallest element last. Strictly speaking, reverse iterators are not themselves a
new category of iterator. Rather, there are reverse bidirectional iterators, reverse
random access iterators, and so on.

The list, set, and map data types provide a pair of member functions that produce
reverse bidirectional iterators. The functions rbegin () and rend() generate iterators
that cycle through the underlying container in reverse order. Increments to such
iterators move backward, and decrements move forward through the sequence.

. Similarly, the vector and deque data types provide functions (also named rbegin() and
rend ()) that produce reverse random access iterators. Subscript and addition operators,
as well as increments to such iterators move backward within the sequence.

Stream iterators

Stream iterators are used to access an existing input or output stream using iterator
operations.

Input stream iterators

Note Stream iterators: An input stream iterator permits an input stream to be read using
iterator operations. An output stream iterator similarly writes to an output stream when
iterator operations are executed.

As we noted in the discussion of input iterators, the standard library provides a
mechanism to turn an input stream into an input iterator. This ability is provided by the
class istream_iterator. When declared, the two template arguments are the element
type, and a type that measures the distance between elements. Almost always the latter
is the standard type ptrdiff_t. The single argument provided to the constructor for an
istream_iterator is the stream to be accessed. Each time the ++ operator is invoked on
an input stream iterator a new value from the stream is read (using the >> operator) and
stored. This value is then available through the use of the dereference operator (operator
*). The value constructed by istream_iterator when no arguments are provided to
the constructor can be used as an ending iterator value. The following, for example,
finds the first value 7 in a file of integer values:

istream iterator<int, ptrdiff_ t> intstream(cin), eof;
istream_iterator<int, ptrdiff_t>::iterator where =
find(intstream, eof, 7);

380 C++ Programmer's Guide

The element denoted by an iterator for an input stream is valid only until the next
element in the stream is requested. Also, since an input stream iterator is an input
iterator, elements can only be accessed, they cannot be modified by assignment. Finally,
elements can be accessed only once, and only in a forward moving direction. If you
want to read the contents of a stream more than one time, you must create a separate
iterator for each pass.

Output stream iterators

The output stream iterator mechanism is analogous to the input stream iterator. Each
time a value is assigned to the iterator, it will be written on the associated output stream,
using the >> operator. To create an output stream iterator you must specify, as an
argument with the constructor, the associated output stream. Values written to the
output stream must recognize the stream >> operation. An optional second argument to
the constructor is a string that will be used as a separator between each pair of values.
The following, for example, copies all the values from a vector into the standard output,
and separates each value by a space:

copy (newdata.begin(), newdata.end(),
ostream iterator<int> (cout, " "));

Simple file transformation algorithms can be created by combining input and output.
stream iterators and the various algorithms provided by the standard library. The
following short program reads a file of integers from the standard input, removes all
occurrences of the value 7, and copies the remainder to the standard output, separating
each value by a new line:

void main()

{

istream_ iterator<int, ptrdiff_t> input (cin), eof;
ostream ilterator<int> output (cout, "\n");

remove_copy (input, eof, output, 7);

}

Insert iterators

Assignment to the dereferenced value of an output iterator is normally used to overwrite
the contents of an existing location. For example, the following invocation of the

function copy () transfers values from one vector to another, although the space for the
second vector was already set aside (and even initialized) by the declaration statement:

vector<int> a(10);
vector<int> b(10);
copy (a.begin(), a.end(), b.begin());

Even structures such as lists can be overwritten in this fashion. The following assumes
that the list named c has at least ten elements. The initial ten locations in the list will be
replaced by the contents of the vector a.

Chapter 19, Iterators 381

list<int> c;

copy (a.begin(), a.end(), c.begin());

With structures such as lists and sets, which are dynamically enlarged as new elements
are added, it is frequently more appropriate to insert new values into the structure,
rather than to overwrite existing locations. A type of adaptor called an insert iterator
allows us to use algorithms such as copy (). to insert into the associated container, rather
than overwrite elements in the container. The output operations of the iterator are
changed into insertions into the associated container. The following, for example, inserts
the values of the vector a into an initially empty list:

list<int> d;

copy (a.begin(), a.end(), front_inserter(d));

There are three forms of insert iterators, all of which can be used to change a copy
operation into an insert operation. The iterator generated using front_inserter, shown
above, inserts values into the front of the container. The iterator generated by
back_inserter places elements into the back of the container. Both forms can be used
with lists, deques, and even vectors, but not with sets or maps.

The third, and most general, form is inserter, which takes two arguments; a container
and an iterator within the container. This form copies elements into the specified
location in the container. (For a list, this means elements are copied immediately before
the specified location). This form can be used with all the structures for which the
previous two forms work, as well as with sets and maps.

The following simple program illustrates the use of all three forms of insert iterators.
First, the values 3, 2, and 1 are inserted into the front of an initially empty list. Note that,
as they are inserted each value becomes the new front, so that the resultant list is
ordered 1, 2, 3. Next, the values 7, 8, and 9 are inserted into the end of the list. Finally,
the £ind () operation is used to locate an iterator that denotes the 7 value, and the
numbers 4, 5, and 6 are inserted immediately prior. The result is the list of numbers
from 1 to 9 in order.

void main() {

int threeToOne [] = {3, 2, 1};
~int fourToSix [] = {4, 5, 6};
int sevenToNine [1 = {7, 8, 9};

list<int> alist;

// first insert into the front
//note that each value becomes new front
copy (threeToOne, threeToOne+3, front_ inserter (alist));

// then insert into the back
copy {sevenTcNine, sevenToN1ne+3 back, 1nserter(aLlst))

// find the seven, and insert into mlddle
list<int>::iterator seven = find(alList.begin(), aList.end{(), 7);
copy (fourToSix, fourToSix+3, inserter(aList, seven));

// copy result to output
copy (alilst.begin(), aList.end(),

382 C++ Programmer’s Guide

ostream_iterator<int>(cout, " "));
cout << endl;

}

Observe that there is an important and subtle difference between the iterators created by
inserter(alist, alist.begin()) and front_inserter (aList).The call on
inserter (aList, aList.begin()) copies values in sequence, adding each one to the
front of a list, whereas front_inserter (aList) copies values making each value the
new front. The result is that front_inserter (aList) reverses the order of the original
sequence, while inserter (alist, alList.begin()) retains the original order.

lterator operations

The standard library provides two functions that can be used to manipulate iterators. .
The function advance () takes an iterator and a numeric value as argument, and
modifies the iterator by moving the given amount.

void advance (InputIterator & iter, Distance & n);

For random access iterators this is the same as iter + n, however the function is useful
because it is designed to operate with all forms of iterator. For forward iterators the
numeric distance must be positive, whereas for bidirectional or random access iterators
the value can be either positive or negative. The operation is efficient (constant time)
only for random access iterators. In all other cases it is implemented as a loop that
invokes either the operators ++ or -- on the iterator, and therefore takes time
proportional to the distance traveled. The advance () function does not check to ensure
the validity of the operations on the underlying iterator.

The second function, distance (), returns the number of iterator operations necessary
to move from one element in a sequence to another. The description of this function is as
follows:

void distance. (InputIterator first, Inputlterator last,
Distance &n);

The result is returned in the third argument, which is passed by reference. Distance
will increment this value by the number of times the operator ++ must be executed to
move from first to last. Always be sure that the variable passed through this
argument is properly initialized before invoking the function.

Chapter 19, lterators 383

384 C++ Programmer’s Guide

Chapter

Functions and predicates

This chapter describes functions, including a special function called a predicate.

Functions

A number of algorithms provided in the standard library require functions as
arguments. A simple example is the algorithm for_each (), which invokes a function,
passed as argument, on each value held in a container. The following, for example,
applies the printElement () function to produce output describing each element in a
list of integer values:

void printElement (int value)
{ .
cout << "The list contains " << value << endl;

}

main () {
list<int> alist;

for_each (aList.begin(), alist.end(), printElement);
} ‘ B

Binary functions take two arguments, and are often applied to values from two different
sequences. For example, suppose we have a list of strings, and a list of integers. For
each element in the first list we wish to replicate the string the number of times given by
the corresponding value in the second list. We could perform this easily using the
function transform() from the standard library. First, we define a binary function with
the desired characteristics:

string stringRepeat (const string & base, int number) - !
// replicate base the given number of times ' '

{ .

string result; // initially the result is empty

while (number--) result += base;

return result;

Chapter 20, Functions and predicaies 385

The following call on transform() then produces the desired effect:
list<string> words;
list<int> counts;
transform (words.begin(), words.end(),

counts.begin(), words.begin(), stringRepeat);

Transforming the words one, two, three with the values 3, 2, 3 would yield the result
oneoneone, twotwo, threethreethree.

Predicates

A predicate is simply a function that returns either a Boolean (true/false) value or an
integer value. Following the normal C convention, an integer value is assumed to be
true if nonzero, and false otherwise. An example function might be the following, which
takes as argument an integer and returns true if the number represents a leap year, and
false otherwise:

bool islLeapYear (int year)
// return true if year is leap year
{ .
// millenniums are leap Years
if (0 == year % 1000) return true;
// centuries are not
if (0 == year % 100) return false;
// every fourth year is
if (0 == year % 4) return true;
// otherwise not
return false;

}

A predicate is used as an argument, for example, in the generic algorithm named
find_if (). This algorithm returns the first value that satisfies the predicate, returning
the end-of-range value if no such element is found. Using this algorithm, the followmg
locates the first leap year in a list of years:

list<int>::iterator firstleap =
find if(alist.begin(), alList.end(), isLeapYear):;

Function objects

A function object is an instance of a class that defines the parenthesis operator as a
member function. There are a number of situations where it is convenient to substitute
function objects in place of functions. When a function object is used as a function, the
parenthesis operator is invoked whenever the function is called.

To illustrate, consider the following class definition:

class biggerThanThree {
public:
bool operator () (int val)

38 C++ Programmer’s Guide

{ return val > 3; }
}i

- If we create an instance of class biggerThanThree, every time we reference this object
using the function call syntax, the parenthesis operator member function will be
invoked. The next step is to generalize this class, by adding a constructor and a constant
data field, which is set by the constructor. '

class biggerThan {
public:
biggerThan (int x) : testValue(x) { }
const int testValue;

bool operator () (int Val)
{ return val > testValue; }
Y

The result is a general “bigger than X” function, where the value of X is determined
when we create an instance of the class. We can do so, for example, as an argument to
one of the generic functions that require a predicate. In this manner the following will
find the first value in a list that is larger than 12:

list<int>::iterator firstBig =
find if (aList.begin(), alList.end(), biggerThan(12));

- Three of the most common reasons to use function objects in place of ordinary functions
are when an existing function object provided by the standard library can be employed
instead of a new function, to improve execution by inlining function calls, or when the
function object must either access or set state information being held by an object. We
will give examples of each.

The following table illustrates the function objects provided by the standard library.

arithmetic functions]
plus ' additionx +y
minus subtraction x - y
tJ:.més multiplication x *y
divides divisionx /y
modulus remainder x % y
negate .

negation - x
comparison functions
equal_to equality testx =y
not_equal_to inequality testx !=y
greater greater comparisonx >y
less less-than comparisonx <y

greater_equal

greater than or equal comparison x >=y
less_equal

less than or equal comparison x <=y
logical functions
logical_and ’ logical conjunctionx && y

Chapter 20, Functions and predicates 387

Note

Note

logical_not logical negation ! x

Let’s look at a couple of examples that show how these might be used. The first example

uses plus () to compute the by-element addition of two lists of integer values, placing

the result back into the first list. This can be performed by the following:

transform (listOne.begin(), liétOne.ehd() , listTwo.begin(),
listOne.begin(), plus<int>()); .

The second example negates every element in a vector of boolean values:

transform (avVec.begin(), aVec.end(), aVec.begin(), .
logical not<bool>());

Location of the class definitions: The class definitions for unary_function and
binary_function can be incorporated by #including functional.

The base classes used by the standard library in the definition of the functions shown in
preceding table are available for the creation of new unary and binary function objects.
These base classes are defined as follows:

template <class ArgType, class ResultType>
class unary_function {
typedef ArgType argument_type;
typedef ResultType result_type;
};
template <class ArgTypel, class ArgType2, class ResultType>
struct binary function {
typedef ArgTypel first_argument_type;
typedef ArgType2 second_argument_type;
typedef ResultType result_type;
}i)

An example of the use of these functions is found in Example programs. Here we want
to take a binary function of type “Widget” and an argument of type integer, and
compare the widget identification number against the integer value. A function to do
this is written in the following manner:

struct WidgetTester : binary_ function<Widget, int, bool> {

public:
bool operator () (const Widget & wid, int testid) const

{ return wid.id == testid; }
}; ’

A second reason to consider using function objects instead of functions is faster code. In
many cases an invocation of a function object, such as the examples given in the calls on
transform() presented earlier, can be expanded in-line, thereby eliminating the
overhead of a function call.

Using function objects to store references: A more complex illustration of the use of a
function object occurs in the radix sorting example program given as an illustration of
the use of the list data type in Example program: radix sort. In this program references

388‘ C++ Programmer’s Guidé_

are initialized in the function object, so that during the sequence of invocations the
function object can access and modify local values in the calling program.

The third major reason to use a function object in place of a function is when each
invocation of the function must remember some state set by earlier invocations. An
example of this occurs in the creation of a generator, to be used with the generic
algorithm generate (). A generator is simply a function that returns a different value
each time it is invoked: The most commonly used form of generator is a random
number generator, but there are other uses for the concept. A sequence generator simply
returns the values of an increasing sequence of natural numbers (1, 2, 3, 4, and so on).
We can call this object iofaGen after the similar operation in the programming language
APL, and define it as follows: :

class iotaGen {

public:
iotaGen (int start = 0) : current(start) { }
int operator () () { return current++; }
private:

int current;

}i

An iota object maintains a current value, which can be set by the constructor, or defaults
to zero. Each time the function-call operator is invoked, the current value is returned,
and also incremented. Using this object, the following call on the standard library
function generate () will initialize a vector of 20 elements with the values 1 through 20:

vector<int> aVec (20) ;
generate (avVec.begin(), aVec.end(), iotaGen(l));

Negators and binders

Note

Negators and binders are function adaptors that are used to build new function objects
out of existing function objects. Almost always, these are applied to functions as part of
the process of building an argument list prior to mvokmg yet another function or
generic algorithm.

The negators not1 () and not2 () take a unary and a binary predicate function object,
respectively, and create a new function object that will yield the complement of the
original. For example, using the widget tester function object defined in the previous
section, the function object:

not2 (WidgetTester ())

yields a binary predicate which takes exactly the same arguments as the widget tester,
and which is true when the corresponding widget tester would be false, and false
otherwise. Negators work only with function objects defined as subclasses of the classes
unary_function and binary_function, given earlier.

A hot idea: The idea here described by the term binder is in other contexts often
described by the term curry. This is not, as some people think, because it is a hot idea.
Instead, it is named after the computer scientist Haskell P. Curry, who used the concept
extensively in an influential book on the theory of computation in the 1930s. Curry

Chapter 20, Furctions and predicates 389 .

himself attributed the idea to Moses Schonfinkel, leavmg one to wonder why we don’t
instead refer to binders as “Schonfinkels.”

A binder takes a two-argument function, and binds either the first or'second argument
to a specific value, thereby yielding a one argument function. The underlying function
must be a subclass of class binary function. The binder bindist () binds the first
argument, while the binder bind2nd () binds the second.

For example, the binder bind2nd (greater<int>(), 5) creates a function object that
tests for being larger than 5. This could be used in the following, which y1elds an iterator
representing the first value in a list larger than 5:

llst<;_nt>: :iterator where = find if(alist.begin(), alList.end(),
bind2nd (greater<int>(), 5));

Combining a binder and a negator, we can create a function that is true if the argument
is divisible by 3, and false otherwise. This can be used to remove all the multiples of 3

from a list.
list<int>::iterator where = remove_if (alist.begin(), aList.end(),

notl (bindan (modulus<int>(), 3)));

Abinder is used tie the widget number of a call on the binary function widgetTester (),
yielding a one-argument function that takes only a widget as argument. This is used to
find the first widget that matches the given widget type: '

list<Widget>: :iterator wehave =

find if(on_hand.begin(), on_hand.end(),
bind2nd (WidgetTester (), wid));

390 C++ Programmer’s Guide

- Container classes

The standard library provides no fewer than ten alternative forms of container. In this
chapter we will briefly describe the varieties, considering the characteristics of each, and
discuss how you might go about selecting which container to use in solving a particular
problem. Subsequent chapters will then go over each of the different containers in more
detail.

The following chart shows the ten container types provided by the standard library, and
gives a short description of the most significant characteristic for each.

vector random access to elements, efficient insertions at end

list efficient insertion and removal throughout

deque random access, efficient insertion at front or back

set . elements maintained in order, efficient test for inclusion, insertion and removal
multiset set with repeated copies ' ’

map access to values via keys, efficient insertion and removal

multimap map permitting duplicate keys

stack insertions and removals only from top

queue insertion at back, removal from front

priority queue efficient access and removal of largest value

Selecting a container

The following series of questions can help you determine which type of container is best
suited for solving a particular problem.

Chapter 21, Container classes 391

How are values going to be accessed?

If random access is important, than a vector or a deque should be used. If sequentlal
access is sufficient, then one of the other structures may be suitable.

Is the order in which values are mamtamed in the collection
important?

There are a number of different ways in which values can be sequenced. If a strict
ordering is important throughout the life of the container, then the set data structure is
an obvious choice, as insertions into a set are automatically placed in order. On the other
hand, if this ordering is important only at one point (for example, at the end of a long
series of insertions), then it might be easier to place the values into a list or vector, then
sort the resulting structure at the appropriate time. If the order that values are held in
the structure is related to the order of insertion, then a stack, queue, or list may be the
best choice.

Will the size of the structure vary wndely over the course of -
execution?

If true, then a list or set might be the best choice. A vector or deque will continue to
maintain a large buffer even after elements have been removed from the collection.
Conversely, if the size of the collection remains relatively fixed, than a vector or deque
will use less memory than will a list or set holding the same number of elements.

Is it possible to estimate the size of the collection?

The vector data structure provides a way to preallocate a block of memory of a given-
size (using the reserve () member function). This ability is not prov1ded by the other
containers.

Is testing to see whether a value is contained in the collection a
frequent operation?

If so, then the set or map containers would be a good choice. Testing to see whether a
value is contained in a set or map can be performed in a very small number of steps
(logarithmic in the size of the container), whereas testing to see if a value is contained in
one of the other types of collections might require comparing the value against every
element being stored by the container.

Is the collection indexed? That is, can the collection be viewed as a
series of key/value pairs?

If the keys are integers between 0 and some upper limit, then a vector or deque should
be employed. If, on the other hand, the key values are some other ordered data type
(such as characters, strings, or a user-defined type), then the map container can be used.

392 C++ Programmer’s Guide

“Can values be related to each other?

All values stored in any container provided by the standard library must be able to test
for equality against another similar value, but not all need to recognize the relational
less-than operator. However, if values cannot be ordered using the relational less-than
operator, then they cannot be stored in a set or a map.

Is finding and removing the largest value from the collection a
frequent operation?

If this is true, then the priority queue is the best data structure to use.

At what positions are values inserted into or removed from the
structure?

If values are inserted into or removed from the middle, then a listis the best choice. If
values are inserted only at the beginning, then a deque or a list is the preferred choice. If
values are inserted or removed only at the end, then a stack or queue may be a logical
choice.

s a frequent operatlon the merging of two or more sequences into |
one?

If true then a set or a list would seem to be the best choice, depending upon whether or
not the collection is maintained in order. Merging two sets is a very efficient operation. If
the collections are not ordered, but the efficient splice () member function from class
list can be used, then the list data type is to be preferred, since this operation is not
provided in the other containers.

In many situations any number of different containers may be applicable to a given
problem. In such cases one possibility is to compare actual execution timings to
determine which alternative is best.

Memory management issues

Containers in the standard library can maintain a variety of different types of elements.
These include the fundamental data types (integer, char, and so on), pointers, or user
defined types. Containers cannot hold references. In general, memory management is
handled automatically by the standard container classes, with little interaction by the
programmer.

Values are placed into a container using the copy constructor. For most container
classes, the element type held by the container must also define a default constructor.
Generic algorithms that copy into a container (such as copy ()) use the assignment
operator. .

Chapter 21, Container classes 393

When an entire container is duplicated (for example, through invoking a copy
constructor or as the result of an assignment), every value is copied into the new
structure using (depending on the structure) either the assignment operator or a copy
constructor. Whether such a result is a “deep copy” or a “shallow copy” is controlled by
the programmer, who can provide the assignment operator with whatever meaning is
desired. Memory for structures used internally by the various container classes is
allocated and released automatically and efficiently.

If a destructor is defined for the element type, this destructor will be invoked when
values are removed from a container. When an entire collection is destroyed, the
destructor will be invoked for each remaining value being held by the container.

A few words should be said about containers that hold pointer values. Such collections
are not uncommon. For example, a collection of pointers is the only way to store values
that can potentially represent either instances of a class or instances of a subclass. Such a
collection is encountered in an example problem discussed in “Application: event-
driven simulation.”

In these cases the container is responsible only for maintaining the pointer values
themselves. It is the responsibility of the programmer to manage the memory for the
values being referenced by the pointers. This includes making certain the memory
values are properly allocated (usually by invoking the new operator), that they are not
released while the container holds references to them, and that they are properly
released once they have been removed from the container.

Container types not found in the standard library

There are a number of “classic” container types that are not found in the standard
library. In most cases, the reason is that the containers that have been provided can
easily be adapted to a wide variety of uses, including those traditionally solved by these
alternative collections.

There is no tree collection that is described as such. However, the set data type is
internally implemented using a form of binary search tree. For most problems that
would be solved using trees, the set data type is an adequate substitute.

The set data type is specifically ordered, and there is no provision for performing set
operations (union, intersection, and so on) on a collection of values that cannot be
ordered (for example, a set of complex numbers). In such cases a list can be used as a
substitute, although it is still necessary to write special set operation functions, as the
generic algorithms cannot be used in this case. .

- There are no multidimensional arrays. However, vectors can hold other vectors as
elements, so such structures can be easily constructed.

There are no graphs. However, one representation for graphs can be easily constructed
as a map that holds other maps. This type of structure is described in the sample
problem discussed in “Example program: graphs.”

There are no sparse arrays. A novel solution to this problem is to use the graph
representation discussed in “Example program: graphs.”

-394 C++ Programmer’s Guide

There are no hash fables. A hash table provides amortized constant time access, insertion
and removal of elements, by converting access and removal operations into indexing
operations. However, hash tables can be easily constructed as a vector (or deque) that
holds lists (or even sets) as elements. A similar structure is described in the radix sort
sample problem discussed in “Example program: radix sort,” although this example
does not include invoking the hash function to convert a value into an index.

In short, while not providing every conceivable container type, the containers in the
standard library represent those used in the solution of most problems, and a solid
foundation from which further structures can be constructed.

Container classes 395

396 C++ Programmer’s Guide

Chapi‘ef

vector and vector<boo|>

This chapter describes the 'oector container class, mcludmg the special case of Boolean
vectors.

The vector data abstraction

The vector container class generalizes the concept of an ordinary C array. Like an array,
a vector is an indexed data structure, with index values that range from 0 to one less
than the number of elements contained in the structure. Also like an array, values are
most commonly assigned to and extracted from the vector using the subscript operator.
However, the vector differs from an array in the following important respects:

* A vector has more “self-knowledge” than an ordinary array. In particular, a vector
can be queried about its size, about the number of elements it can potentially hold
(which may be different from its current size), and so on.

* The size of the vector can change dynamically. New elements can be inserted on to
the end of a vector, or into the middle. Storage management is handled efficiently
and automatically. It is important to note, however, that while these abilities are
provided, insertion into the middle of a vector is not as efficient as insertion into the
middle of a list (The list data abstraction). If many insertion operations are to be
performed, the list container should be used instead of the vector data type.

. The vector container class in the standard library should be compared and contrasted to
the deque container class we will describe in more detail in deque data abstraction. Like a
vector, a deque (pronounced “deck”) is an indexed data structure. The major difference
between the two is that a deque provides efficient insertion at either the beginning or the
end of the container, while a vector provides efficient insertion only at the end. In many
situations, either structure can be used. Use of a vector generally results in a smaller
executable file, while, depending upon the particular set of operations being performed,
use of a deque may result in a slightly faster program.

Chapter 22, vector and vector<bool> 397

Vector include files

Whenever you use a vector, you must include the vector header file.

include <vector>

Vector operations

The following chart summarizes the member functions provided by the vector data
type. Each will shortly be described in more detail. Note that while member functions
provide basic operations, the utility of the data structure is greatly extended through the
use of the generlc algorithms described in Chapter 29.

vector ()
vector (size)
vector (size, value_type)
vector ’ template<class Iterator>
(Iterator, Iterator)
vector (const vector)
vector template<class Iterator>assign
. (Iterator, Iterator)
vector template<class Size, class T>
assign (Size, T)
reference at (size_type)
value_type back ()
RandomAccessIterator begin ()
size_type capacity (@]
bool empty ()
RandomAccessIterator end ()
.void ’ erase ' (iterator)
void erase (iterator, iterator)
value_type front ()
void insert (iterator, size_type, value__type)
iterator insert : (iterator, value type) ‘
void) insert template
<class Iterator>
(iterator, Iterator, Iterator)
size type max_size ()
void pop_ back ()
void push_back (value_type)
RandomAccessIterator rbegin / () :
RandomAccessIterator rend ()
void reserve (size_type)
void resize (size_type, value_type)
size type size ()
void © swap o (vector) ,
reference operator|[] (size_type)
vector operator = (vector)

398 C++ Prograrhmer’s Guide

Note

Note

_standard library that support iterators.

In subsequent chapters we will illustrate the basic operations that can be performed
with vectors.

Declaration and initialization of vectors

Requirements of an element type: Elements that are held by a vector must define a
default constructor (constructor with no arguments), as well as a copy constructor.
Although not used by functions in the vector class, some of the generic algorithms also
require vector elements to recognize either the equivalence operator (operator ==) or the
relational less-than operator (operator <). .

Because it is a template class, the declaration of a vector must include a designation of
the component type. This can be a primitive language type (such as integer or double), a
pointer type, or a user-defined type. In the latter case, the user-defined type must
implement a default constructor, as this constructor is used to initialize newly created
elements. A copy constructor, either explicitly or implicitly defined, must also exist for
the container element type. Like an array, a vector is most commonly declared with an
integer argument that describes the number of elements the vector will hold:

vector<int> vec_one(10);

The constructor used to create the vector in this situation is declared as explicit, which
prevents it being used as a conversion operator. (This is generally a good idea, since -
otherwise an integer might unintentionally be converted into a vector in certain
situations.)

There are a variety of other forms of constructor that can also be used to create vectors.
In addition to a size, the constructor can provide a constant value that will be used to
initialize each new vector location. If no size is provided, the vector initially contains no
elements, and increases in size automatically as elements are added. The copy
constructor creates a clone of a vector from another vector. '

vector<int> vec_two(5, 3); // copy constructor
vector<int> vec_three; : .
vector<int> vec_four(vec_two); // initialization by assignment

A vector can also be initialized using elements from another collection, by means of a
beginning and ending iterator pair. The arguments can be any form of iterator, thus
collections can be initialized with values drawn from any of the contamer classes in the

vector <int> vec_five (aList.begin(), aList.end());

Constructors and iterators: Because it requires the ability to define a method with a
template argument different from the class template, some compilers may not yet
support the initialization of containers using iterators. In the mean time, while compller

- technology catches up with the standard library definition, the Rogue Wave version of

the standard library will support conventional pointers and vector iterators in this
manner.

A vector can be assigned the values of another vector, in which case the target receives a
copy of the argument vector.

vec_three = vec_five;

Chapter 22, vector and vector<bool> 399

The assign () member function is similar to an assignment, but is more versatile and, in
some cases, requires more arguments. Like an assignment, the existing values in the
container are deleted, and replaced with the values specified by the arguments. There
are two forms of assign (). The first takes two iterator arguments that specify a
subsequence of an existing container. The values from this subsequence then become
the new elements in the receiver. The second version of assign () takes a count and an
optional value of the container element type. After the call the container will hold only
the number of elements specified by the count, which are equal to elther the default
value for the container type or the initial value specified.

vec_s:Lx.ass:.gn(llst._ten.begln() , list_ten.end());
- vec_four.assign(3, 7); // three copies of the value 7
vec_five.assign(12); // twelve copies of value zero

If a destructor is defined for the container element type, the destructor will be called for
each value removed from the collection.

Finally, two vectors can exchange their entire contents by means of the swap ()
operation. The argument container will take on the values of the receiver, while the
receiver will assume those of the argument. A swap is very efficient, and should be
used, where appropriate, in preference to an explicit element-by-element transfer.

vec_three.swap (vec_four) ;

Type definitions

‘The class vector includes a number of type definitions. These are most commonly used
in declaration statements. For example, an iterator for a vector of integers can be
declared in the following fashion:

vector<int>::iterator location;

In addition to i terator, the following types are defined:

value_type The type associated with the elements the vector maintains.

const_iterator An iterator that does not allow modification of the underlying sequence.

reverse_iterator An iterator that moves in a backward direction.

const_reverse_iterator A combination constant and reverse iterator.

reference A reference to an underlying element.

const_reference A reference to an underlying element that will not permit the element to
be modified.

size_type An unsigned integer type, used to refer to the size of containers.

difference_type A signed integer type, used to describe to distances between iterators.

Subscripting a vector

The value being maintained by a vector at a specific index can be accessed or modified
using the subscript operator, just like an ordinary array. And, like arrays, there currently
are no attempts to verify the validity of the index values (although this may change in
future releases). Indexing a constant vector yields a constant reference. Attempts to

400 C++ Programmer’s Guide

Note

index a vector outside the range of legal values will generate unpredictable and
spurious results:

cout << vec_five[l] << endl;
vec_fivel[l] = 17;

The member function at () can be used in place of the subscript operator. It takes
exactly the same arguments as the subscript operator, and returns exactly the same
values.

The member function front () returns the first element in the vector, while the member
function back () yields the last. Both also return constant references when applied to
constant vectors.

cout << vec_five.front() << " ... " << vec_five.back() << endl;

Extent and size-changing operations

There are, in general, three different “sizes” associated with any vector. The first is the
number of elements currently being held by the vector. The second is the maximum size
to which the vector can be expanded without requiring that new storage be allocated.
The third is the upper limit on the size of any vector. These three values are yielded by
the member functions size (), capacity(),and max_size (), respectively.

cout << "gize: " << vec_five.size() << endl;
cout << "capacity: " << vec_five.capacity() << endl;
cout << "max_size: " << vec_five.max size() << endl;

The maximum size is usually limited only by the amount of available memory, or the
largest value that can be described by the data type size_type. The current size and

‘capacity are more difficult to characterize. As we will note in the next section, elements

can be added to or removed from a vector in a variety of ways. When elements are

removed from a vector, the memory for the vector is generally not reallocated, and thus
the size is decreased but the capacity remains the same. A subsequent insertion does not
force a reallocation of new memory if the original capacity is not exceeded. '

Memory management: A vector stores values in a single large block of memory. A
deque, on the other hand, employs a number of smaller blocks. This difference may be
important on machines that limit the size of any single block of memory, because in
such cases a deque will be able to hold much larger collections than are possible with a
vector.

An insertion that causes the size to exceed the capacity generally results in a new block
of memory being allocated to hold the vector elements. Values are then copied into this
new memory using the assignment operator appropriate to the element type, and the

old memory is deleted. Because this can be a potentially costly operation, the vector data
type provides a means for the programmer to specify a value for the capacity of a vector.
The member function reserve () is a directive to the vector, indicating that the vector is

~ expected to grow to at least the given size. If the argument used with reserve () is

larger than the current capacity, then a reallocation occurs and the argument value
becomes the new capacity. (It may subsequently grow even larger; the value given as
argument need not be a bound, just a guess.) If the capacity is already in excess of the
argument, then no reallocation takes place. Invoking reserve () does not change the size

Chapter 22, vector and vector<bool> 401

of the vector, nor the element values themselves (with the exception that they may
potentially be moved should reallocation take place).

vec_five.reserve(20);

A reallocation invalidates all references, pointers, and iterators referring to elements
* being held by a vector.

The member function empty () returns true if the vector currently has a size of zero
(regardless of the capacity of the vector). Using this function is generally more efficient
than comparing the result returned by size () to zero.

cout << "empty is " << vec_five.empty() << endl;

The member function resize () changes the size of the vector to the value specified by
the argument. Values are either added to or erased from the end of the collection as
necessary. An optional second argument can be used to provide the initial value for any
new elements added to the collection. If a destructor is defined for the element type, the
destructor will be called for any values that are removed from the collection.

// become size 12, adding values of 17 if necessary
vec_five.resize (12, 17);

Inserting and removing elements

As we noted earlier, the class vector differs from an ordinary array in that a vector can,
in certain circumstances, increase or decrease in size. When an insertion causes the
number of elements being held in a vector to exceed the capacity of the current block of
memory being used to hold the values, then a new block is allocated and the elements
are copied to the new storage.

Note Costly insertions: Even adding a single element to a vector can, in the worst case,
require time proportional to the number of elements in the vector, as each element is
moved to a new location. If insertions are a prominent feature of your current problem,
then you should explore the possibility of using containers, such as lists or sets, which
are optimized for insert operations.

A new element can be added to the back of a vector using the function push_back().If
there is space in the current allocation, this operation is very efficient (constant time).

vec_five.push back(21l); ' // add element 21 to end of collection

The corresponding removal operation is pop_back (), which decreases the size of the
vector, but does not change its capacity. If the container type defines a destructor, the
destructor will be called on the value being eliminated. Again, this operation is very
efficient. (The class deque permits values to be added and removed from both the back
and the front of the collection. These functions are described in deque data abstraction,
which discusses deques in more detail.)

More general insertion operations can be performed using the insert () member
‘function. The location of the insertion is described by an iterator; insertion takes place
immediately preceding the location denoted. A fixed number of constant elements can
be inserted by a single function call. It is much more efficient to insert a block of
elements in a single call, than to perform a sequence of individual insertions, because
with a single call at most one allocation will be performed.

402 C++ Programmer's Guide

Note

Note

// £ind the location of the 7
vector<int>::iterator where =)
find(vec_five.begin(), vec_five.end(), 7);
// then ingsert the 12 before the 7
vec_five.insert (where, 12); .
vec_five.insert (where, 6, 14); // insert six.copies of 14

The most general form of the insert () member function takes a position and a pair of
iterators that denote a subsequence from another container. The range of values
described by the sequence is inserted into the vector. Again, because at most a single
allocation is performed, using this function is preferable to using a sequence of
individual insertions.

vec_five.insert (where, vec_three.begin(), vec_three.end());

Iterator invalidation: Once more, it is important to remember that should reallocation
occur as a result of an insertion, all references, pointers, and iterators that denoted a
location in the now-deleted memory block that held the values before reallocation
become invalid.

In addition to the pop_back () member function, which removes elements from the end
of a vector, a function exists that removes elements from the middle of a vector, using an
iterator to denote the location. The member function that performs this task is erase ().
There are two forms; the first takes a single iterator and removes an individual value,
while the second takes a pair of iterators and removes all values in the given range. The
size of the vector is reduced, but the capacity is unchanged. If the container type defines
a destructor, the destructor will be invoked on the eliminated values.

vec_five.erase(where) ;

// erase from the 12 to the end
where = find(vec_five.begin(), vec_five.end(), 12);
vec_five.erase(where, vec_five.end());

lteration

The member functions begin () and end () yield random access iterators for the
container. Again, we note that the iterators yielded by these operations can become
invalidated after insertions or removals of elements. The member functions rbegin ()
and rend () return similar iterators, however these access the underlying elements in
reverse order. Constant iterators are returned if the original container is declared as
constant, or if the target of the assignment or parameter is constant.

‘Vector test for inclusion

A vector does not directly provide any method that can be used to determine if a
specific value is contained in the collection. However, the generic algorithms find() or
count () (“Find an element satisfying a condition” and “Count the number of elements
that satisfy a condition”) can be used for this purpose. The following statement, for
example, tests to see whether an integer vector contains the element 17.

Note that count () returns its result through an argument that is passed by reference. It
is important that this value be properly initialized before invoking this function.

Chapter 22, vector and vector<bool> 403

int num = 0;

count (vec_five.begin(), vec_five.end(), 17, num);
)) '
if (num) .
cout << "contains a 17" << endl; ’
else

cout << "does not contain a 17" << endl;

Sorting and sorted vector operations

A vector does not automatically maintain its values in sequence. However, a vector can
be placed in order using the generic algorithm sort ()