
- --

VERSION

5 .

Borland® C++

c++ Programmer's
Guide

Borland®
c++
Borland International, Inc., 100 Borland Way
P.O. Box 660001, Scotts Valley, CA 95067-0001

Borland may have patents and/or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents.

COPYRIGHT © 1996 Borland International. All rights reserved. All Borland products are trademarks or registered
trademarks of Borland International, Inc. Other brand and product names are trademarks or registered trademarks of
their respective holders. .

Printed in the U.S.A.

lEOR0196 WBC1350WW21771
9697989900-9 8 7 6 5 4 3 2 1
D2
ISBN 0-672-30923-8

Contents
Introduction 1
How this book is organized. 1

Typefaces and icons used in this book. 2

Part I
Programming with Borland C++ 3

How this part is organized .3

Parentheses 21
Braces 22
Comma 22
Semicolon . 22
Colon ' 22
Ellipsis 23
Asterisk (pointer declaration) 23
Equal sign (initializer) 23
Pound sign (preprocessor directive) 23

Chapter 2 Chapter 1
Lexical elements 5 Language structure 25
Whitespace. 5

Line splicing with \. 6
Comments 6

C comments. 6
C++ comments 7
Nested comments 7
Delimiters and whitespace 7

Tokens 8
Keywords 8

Table of C++-specific keywords 8
Borland C++ keyword extensions. 9

Identifiers. 10
Naming and length restrictions 10
Case sensitivity 10
Uniqueness and scope. 10

Constants. 11
Integer constants 12

Decimal 12
Octal ; 12
Hexadecimal 12
long and unsigned suffixes. 12

Floating-point constants. 13
Character constants 14

The three char types. 15
Escape sequences 16
Wide-character and multi-character

constants 17
Multi-character constants. 17

String constants. 17
Enumeration constants. 18
Constants and internal representation ... 19
Constant expressions 20

Punctuators 21
Brackets 21

Declarations 25 .
Objects 25

Objects and declarations 26
lvalues 26
rvalues 26

Storage classes and types26
Scope 27

Name spaces 27
Visibility 28
Duration. .28

Static 29
Local '.' 29
Dynamic. 29

Translation units29
Linkage 30

External and internal linkage rules 30
Name mangling 31

Introduction to declaration syntax. 31
Tentative definitions.32
Possible declarations.32
External declarations and definitions34
Type specifiers36
Type categories.36

Type void . 37
The fundamental types38

Integral types 38
Floating-point types. 39
Standard arithmetic conversions 39
Special char, int, and enum conversions . . 40

Initialization.40
Syntax for initializers 40
Rules governing initializers. 41
Arrays, structures, and unions 41

Declarations and declarators . .
Storage class specifiers
Variable modifiers

42
43
44

const ' '.' 44
volatile . 46

Mixed-language calling conventions. 46
cdecl, _cdecl, __ cdecl 47
pascal, _pascal, __ pascal 47
_stdcall, __ stdcall. 48
_fastcall, __ fastcall. ; 48

Multithread variables. . . . 48
Pointer modifiers 49
Function modifiers 49

__ interrupt functions 51
Pointers. 52

. Pointers to objects 52
Pointers to functions . . . 53
Pointer declarations. . . . 53
Pointer constants 54
Pointer arithmetic. 55
Pointer conversions. 55

, C++ reference de.clarations 56

Arrays .. '.'56
Functions. I. • • • • • • • • 58

Declarations and definitions. 58
Declarations and prototypes . . 58
Definitions. 60
Formal parameter declarations. 61
function calls and argument conversions. 61

Structures. 62
Untagged structures and typedefs . 62
Structure member declarations. 63
Structures and functions. . . 63
Structure member access. . . 64
Structure word alignment. . 65
Structure name spaces 65
Incomplete declarations . . . 66
Bit fields 66

Unions 67
Anonymous unions (C++ only) 68
Union declarations 68

Enumerations . . ~ 69
How to overload enum operators 70
Assignment to enum types 71

Expressions . 72
Precedence of operators . 75
Expressions and C++ 76

ii

Evaluation order . . .
Errors and overflows.

Operators summary

... : .. 76

...... 77

77

Primary expression operators . . . 78

Postfix expression operators . . . 79
Array subscript operator80
Function call operator80
Direct member selector81
Indirect member selector81
Increment/ decrement operators.82

Increment operator (++). 82
Postincrement operator. 82
Preincrement operator. 82
Decrement operator (--) 83

Unary operators. 83
Reference / indirect operators. . .'.83

Referencing operator (&) 83'
Indirection operator (*). 84

Plus operator +84
Minus operator -.85
Bitwise complement operator - . .85
Logical negation operator!85
Increment operator ++.85
Decrement operator - - . •85
The sizeof operator.86

Binary operators'. . . '. 87
Additive operators.88
Addition +. .88
Subtraction -88
Multiplicative operators..89
Bitwise logic operators.89

AND& 89
Exclusive OR 1\ • • • • • • • • • • • • • • • • • 90
Inclusive OR I 90

Bitwise shift operators.90
Shift «< and ») 90

Relational operators91
Less-than < 91
Greater-than> 92
Less-than or equal-to <= . . . '.' 92
Greater-than or equal-to >=. 92

Equality operators92
Equal-to == 92
Inequality != 93

Logical operators.93
AND&& 93
OR II 93
Conditional?: 94

Assignment operators 94
Simple assignment =. 95
Compound assignment 95

Comma operator 95"
C++ specific operators 96

Statements . 96
Blocks 98
Labeled statements 98
Expression statements '. 98
Selection statements 98
Iteration statements. 99
Jump statements. 99

The mainO function. 99

Arguments to mainO." 99

Example of how arguments are passed
to main() . 100

Wildcard arguments 101

Example of using wildcard arguments
. with main() 101

Windows users102
DOS users . 102

Using __ p (Pascal calling
conventions) 102

The value mainO returns. 102

Passing file information to child
processes

Multithread programs .

Chapter 3
C++ specifics

103

103

105
Namespaces 105

Defining a namespace ~106
Declaring a namespace.107
Namespace alias.107
Extending a namespace 107
Anonymous namespaces108
Accessing elements of a namespace109

Accessing namespaces in classes.109
Using directive.110
Using declaration 110
Explicit access qualification111

New-style typecasting 112
consCcast. : 112
dynamic_cast112
reinterpret_cast114
static_cast. .114

iii

Run-time type identification (Rm)115
The typeid operator 116

__ rtti and the -RT option.117
-RT option and destructors.118

Referencing .119
Simple references 119
Reference arguments 119

Scope resolution operator ::.121

The new and delete operators 121
Operator new 121
Operator delete. 123
Example of the new and delete

operators. 123
Operator new placement syntax. 124
Operator new with arrays 125
Operator delete with arrays. 126
::operator new. 126
Overloading the operator new. . . '.' . . . 126
Overloading the operator delete. 127
Example of overloading the new and

delete operators. 127
Classes .128

Class memory model specifications. 129
Class names, 129
Class types. 129
Class name scope. 130
Class objects. 130
Class member list. 130
Member functions 131
The keyword this 131
Static members 131
Inline functions 132

Inline functions and exceptions 133
Member scope. 134

Nested types135
Member access control136

Base and derived class access 137
Virtual base classes. 138
Constructors for virtual base classes. 139
Friends of classes. 139

Constructors and destructors; ; .140
Constructors. 142

Constructor defaults. 142
The copy constructor143
Overloading constructors. ; .143
Order of calling constructors. 144
Class initialization 145

Destructors.147
Invoking destructors.148
atexit, #pragma exit, and destructors148
exit and destructors 148
abort and destructors148
Virtual destruCtors149

Overload:ing operators. ~ . . 150
Example for overloading operators 151

Overload:ing operator functions 153
Overloaded operators and inheritance. . . . 153

Overloading unary operators 153
Overloading binary operators154
Overloading the assignment

operator =. '.' . . . :154
Overloading the function call

operator ()154
Overloading the subscript .

operator []155
Overloading the class member access

operator -> 155
Polymorphic classes 155

Virtual functions 155
Virtual function return types.156

Abstract classes 157
C++ scope . 158

Class scope. '.' . . .159
Hiding 159
C++ scoping rules summary 159

Usmg templates .. -............... 160
Template syntax.160
Template body parsmg 161
Function templates 162

Overriding a template function162
Implicit and expliCit template

functions.163
Class templates 164

Template arguments 165
Us:irlg angle brackets in templates 165
Using type-safe generic lists in templates .. 165
Eliminating pointers in templates166
Compiler template switches167

Using template switches.167
Separate file template compilation.168
Exporting and importing templates 169

Exportable/importable template
declarations169

Compiling exportable templates 170
Using import templates 170

iv

Chapter 4
Exception handling 173
C++ exceptionhandlmg.. 173

Exception declarations 174
Throwing an exception 174
Handling an exception. 175

Exception specifications 176
Sample output when I a' is the input.178
Constructors and destructors 179
Unhandled exceptions.180

C-based structured exceptions 180
Using C-based exceptions m C++ 181
Handling C-based exceptions 181

ChapterS
Programming for portability
Compilmg and linking a Wmdows

program

Resource script files . ;

Module definition files.

183

.... 183

.. 184

. .. 184

Import libraries185

WmMam.186

Prologs and epilogs.186
_export, __ export. 187
_import, __ import : 188

Prologs, epilogs, and exports: a
summary.189

Compiler options and the __ export
keyword189

The Borland heap manager.190

32-bit Wmdows programming. •191
Win32 191

The Win32 API191
Writing portable Windows code. 192

STRICT 192·
Making your code STRICT-compliant .. 193
STRICT conversion hints. 194

The DINT and WORD types. 195
The WINAPI and CALLBACK

calling conventions 195
Extracting message data.196
Message crackers.196
Porting DOS system calls. 197
Common compiler errors and

warnings. 198
Building Win32 executables200

Chapter 6 .
~sing dynamic-link libraries 201
Creating a DLL 201

Static linking.201
Dynamic linking. "202
DLL 202

LibMain and DllEntryPoint. 202
WEP (Windows Exit Procedure) 203

Exporting and importing functions 204
Exporting functions.204
Importing functions. ~204

DLLs and 16-bit memory models 204

Exporting and importing classes. 205
Static data in 16-bit DLLs : 206
Borland DLLs 206

Chapter 7
Using inline assembly 209
Inlihe assembly syntax and usage 209

Inline assembly references to data and
functions .211

Inline assembly and register
variables .211

Inline assembly, offsets, and size
overrides.211

Using C structure members.211
Using jump instructions and labels.212

Compiling with inline assembly 213
Using the built-in assembler (BASM) 213

Opcodes 214
String instructions 215
Jump instructions 215
Assembly directives 216

Chapter 8
Header files summary 217
Using precompiled headers. 220

Setting file names220
Precompiled header file overview. 221
Precompiled header limits. 221
Precompiled header rules. 221
Optimizing precompiled headers 222
alloc.h. 223
assert.h 224

v

bios.h 224
conio.h224

ctype.h .225
dir.h 226
direct.h 227
dirent.h. .227
dos.h 227
errno.h .230
fcntl.h 231
£loat.h 231
generic.h .232
io.h 232
iomanip.h233
limits.h . ; . .233
locale.h .234
malloc.h 234
math.h 235
mem.h 236
memory.h 237

new.h 237

process.h. ' 237

search.h.238

setjmp.h .238

share.h 239

signal.h 239

stdarg.h. .239

stddef.h. .240

stdio.h. .240

stdiostr.h 241

stdlib.h 241

string.h .243

sys\locking.h 243

sys \stat.h. .244

sys\timeb.h 244

sys\types.h 244

time.h 245

utime.h. .245

values.h. .246

varargs.h. .246

excpt.h'247

bwcc.h 247

_defs.h . 247

_nfile.h . 247

_null.h. 248

Chapter 9
Using EasyWin
Converting DOS applications to

249

Windows 249
EasyWin C example250
EasyWin C++ example.250

Using EasyWin from within a
Windows program 250

_InitEasyWin example250
EasyWin features 251
, Printing 251

Scrolling buffer 252
Autoscrolling252
Saving text in an output file.252
Clipboard support.253
Example 253

Chapter 10
Math 255
Floating-point II 0 255

Floating-point options'. 255
Emulating the 80x87 chip256
Using the 80x87 code.256
No floating-point code 256
Fast floating-point option256
The 87 environment variable257
Registers and the 80x87257
Disabling floating-point exceptions258

Using complex types. 258

Using bcd types. 259
Converting bcd numbers.260
Number of decimal digits260

Chapter 11
16-bit memory management 263
Running out of memory. 263

Memory models. 263
The 8086 registers. . . . '.'264

General-purpose registers.264

vi

Segment registers.265
Special-purpose registers265
ThEdlags register.265

Memory segmentation~ 266
Address calculation266

Pointers. 267
Near pointers267
Farpointers 267
Huge pointers 268

The six memory models. 269
Mixed-model programming:

Addressing modifiers' .273
Segment pointers. 274
Declaring far objects 275
Declaring functions to be near or far. 275
Declaring pointers to be near, far, or huge . 276

Pointing to a given segment:offset
address.277

Using library files. 277
Linking mixed modules. 277

Chapter 12
ANSI implementation-specific

standards

Part II
Borland C++ DOS
programmer's guide

Chapter 13

279

291

DOS memory management 293
Overlays (VROOMM) for DOS ' ... 293

How overlays work 293
Guidelines for using Borland C++

overlays effectively.295
Requirements 295
Exception handling and overlays 296
Using overlays 296

Overlayexample.297
Overlaid programs. 297

The far call requirement.297
Buffer size .297
What notto overlay298
Debugging overlays298
External routines in overlays.298

Swapping . 299

Chapter 14
Video functions
Video modes. . .

301
301

Windows and viewports. 302

Programming in grCl-phics mode 302
The graphics library functions303

Graphics system control.303
A more detailed discussion. . . . ;304
Drawing and filling305
Manipulating the screen and

viewport 306
Text output in graphics mode307
Color control309
Pixels and palettes 309
Background and drawing color310
Color control on a CGA310

CGA low resolution.. 310
CGA high resolution 311
CGA palette routines 311

Color control on the EGA and VGA.311
Error handling in graphics mode312
State query. ~313

Part III
Borland C++ class
libraries guide

Chapter 15

315

Using Borland container classes 317
Container library implementation 318

ADT and FDS classes.318
ADT classes318
FDS classes319

Class na:m.mg conventions.319
Class function codes321
Simplified class template names322

Using containers 322
Using class templates 322
Using direct and indirect classes323

HandlL Lg pointers in direct and
indirect containers324

Using memory-managed classes.324
Using sorted classes 324
Using iterator classes 325
Using iterator members 326

Callback functions327
Deleting container objects327

vii

Object ownership. 328
The user program:m.mg interface. 329

Creating a container object329
Adding objects to a container.329
Sea,rching for an existing object in

a container 329
Removing an object from a container. . . .329
Retrieving objects from a container330
Iterating through objects stored in a

container.330
Displaying data stored in containers . . ~ .330·

Container coding guidelines 330
Selecting and defining your container

class 331
Modifying your container class331
Coding your program. ; . . .332

Code example. 332
Output 334

Chapter 16
Using iostreams classes 335
What is a stream? 335

The iostream library ~335
The streambuf class 336
The ios class. 336

Stream output.337
Fundamental types. 337
I/O formatting•.... 338
Manipulators 338
Filling and padding 340

Stream input.340

I/O of user-defined types 341

Simple file I/O 342

String stream processing.342
Screen output streams. 344

Chapter 17
Using persistent streams classes 347
What's new with streaming 348

Object versioning. ~ 348
Reading and writing base classes 348
Reading and writing integers. 349
Multiple inheritance and virtual base

support. 349
The ReadVirtualBase and WriteVirtual-

Base function templates.350
The ReadBaseObject and WriteBase-

Object function templates. . '.350

Creating streamable objects. 350
Defining streamable classes351
Implementing streamable classes.352
The nested class Streamer354
Writing the Read and Write functions. . . .354

Object versioning 356

Chapter 18
Using the mathematical classes 359
Using complex types. 359

Using bcd types. 360
Converting bcd numbers.361
Number of decimal digits361

PartN
Standard class libraries
guide 363

Reading this part 363

Typeface conventions used in this part. . . 364
What is the Standard c++ Library? 364
Does the Standard c++ Library differ

from other libraries? . . ., 365

What are the effects of
non-object-oriented design? 365

Smaller source code. 365
Flexibility. 366
Efficiency. .366
Iterators: mismatches and

invalidations.366
Templates: errors and "code bloat" 366
Multithreading problems367

How should·I use the Standard C++
Library? . 367

Using the Standard Library. ; . . 368

Using the Standard Template Library
with Borland C++. 368

Member function templates. 368

Template parameters : .. 369
Default template arguments 369
Using template parameters to define

default types.369
Using the STL header files. 370

Running the tutorial programs. 370

Terminology used in this part. . . " 370

viii

Chapter 19
Iterators 373
Varieties of iterators374

Input iterators. 375
Output iterators. : 376
Forward iterators., 377
Bidirectional iterators : : . . 378
Random-access iterators. 379
Reverse iterators 380

Stream iterators. . . ;380
Input stream iterators 380
Output stream iterators 381

Insert iterators 381

!terator operations383

Chapter 20
Functions and predicates 385
Functions. 385

Predicates 386

Fun~tion objects.386

Negators and binders 389

Chapter 21
Container classes 391
Selecting a container 391

How are values goingto be accessed? ; .. 392
Is the order in which values are

maintained in the collection important? . 392
Will the size of the structure vary widely

over the course of execution? 392
Is it possible to estimate the size of

the collection? 392
Is testing to see whether a value is

contained in the collection a
frequent operation? . . ; 392

Is the collection indexed? That is,
can the collection be viewed as a
series of key/value pairs? 392

Can values be related to each other? 393
Is finding and removing the largest

value from the collection a frequent
operation? 393

At what positions are values inserted
into or removed from the structure? . . . 393

Is a frequent operation the merging of
two or more sequences into one? 393

Memory management issues 393

Container types not found in the
standard library 394

Chapter 22
vector and vector<bool> 397
The vector data abstraction 397

Vector include files398
Vector operations. 398

Declaration and initialization of
vectors 399

Type definitions.400
Subscripting a vector.400
Extent and size-changing operations.401
Inserting and removing elements.402
Iteration. .403
Vector test for inclusion403
Sorting and sorted vector operations.404
Useful generic algorithms404

Boolean vectors 405

Example program: sieve of
Eratosthenes 405

Chapter 23
list 407
The list data abstraction 407

List include files407
List operations. 407

Declaration and initialization of lists.409
Type definitions.410
Placing elements into a list411
Removing elements.412
Extent operations414
Access and iteration.414
Listtest for inclusion414
Sorting and sorted list operations.415
Searching operations.415
In-place transformations.415
Other operations416

Example program: an inventory
system 416

Chapter 24
deque 419
Deque data abstraction. 419

Deque include files419

ix

Deque operations.420

Example program: radix sort.421

Chapter 25
set, multiset, and bit_set 425
The set data abstraction 425

Set include files 425
Set and multiset operations. 425

Creation and initialization. 426
Type definitions. 427
Insertion . 428
Removal of elements from a set 428
Searching and counting 429
Iterators 429
Set operations. 429

Subset test.430
Set union or intersection.430
Set difference431

Other generic algorithms·. 431
Example program: a spelling checker431

The class biCset.432
Initialization and creation. 432
Accessing and testing elements 433
Set operations. 433
Conversions. 434

Chapter 26
map and multimap 435
The map data abstraction435

Map include files. 436
Map and multimap operations.436

Creation and initialization. 437
Type definitions. 438
Insertion and access 438
Removal oEvalues 439
Iterators . 439
Searching and counting 439
Element comparisons 440
Other map operations. 440

Example programs.440.
Example program: a telephone

database 440
Example program: graphs. 442
Example program: a concordance 444

Chapter 27
, stack and queue 447

The stack data abstraction. 448

Example program: an RPN calculator... . . 448
The queue data abstraction 450

Example program: bank teller simulation. .451

Chapter 28
priority_queue 455
The priority queue data abstraction 455

The priority queue operations 456

Application: event..:driven simulation. . . . 457
An ice cream store simulation.459

Chapter 29
Generic algorithms A63
Initialization algorithms . . '. 465

Fill a sequence with an initial value465
Copy one sequence onto another

sequence .466
Initialize a sequence with generated

values 468
Swap values from two parallel ranges. . . .469

Searching operations. 470
Find an element satisfying a condition. . . .471
Find consecutive duplicate elements 472
Find a subsequence within a sequence . . .473
Locate maximum or minimum element ... 474
Locate the first mismatched elements

in parallel sequences475
In-place transformations. 476

Reverse elements in a sequence.476
Replace certain elements with fixed value .477
Rotate elements around a midpoint478
Partition a sequence into two groups479
Generate permutations in sequence480
Merge two adjacent sequences into one. . .481
Randomly rearrange elements in a

sequence '. .482
Removal algorithms 483

Remove unwanted elements484
Remove runs of similar values'. . .485

Algorithms that produce a scalar
result 486

Count the number of elements that
satisfy a condition.486

x

Reduce sequence to a single value.487
Generalized inner product'. . . . 488
Test two sequences for pairwise

equality. 488
Lexical comparison. 489

Sequence generating algorithms.490
Transform one or two sequences. 491
Partial sums 491
Adjacent differences 492

Miscellaneous algorithms.493
Apply a function to all elements in a

collection.' . . . 493

Chapter 30
Ordered collection algorithms 495

Algorithm include files 496
Sorting algorithms497

Partial sort .498

Nth element .498

Binary search499

Merge ordered sequences.501

Set operations502

Heap operations503

Chapter 31
Exception handling 505
The standard exception hierarchy505

Using exceptions 506

Example program: exception handling. . . .507

Chapter 32
auto-ptr 509
Creating and using auto pointers 509

Example program: auto_ptr510

Chapter 33
complex 513
Creating and using complex numbers .. .513

Header files . : 513
Declaring complex numbers 513
Accessing complex number values 514
Arithmetic operations " 514
Comparing complex values. 515
Stream input and output 515
Norm and absolute value. 515

Trigonometric functions515
Transcendental functions515

Example program: roots of a
polynomial. 516

Chapter 34
string 517
The string abstraction 517

String include files518
String operations 518

Declaring string variables ·.518
Resetting size and capacity518
Assignment, append, and swap'.519
Character access.520
Iterators. .520
Insertion, removal, and replacement.520
Copy and substring.521
String comparisons.521
Searching operations521

Example function: split a line into
words 522

Chapter 35
Numeric limits 523
Numeric limits overview 523

Fundamental data types. 523

Numeric limit members .'. 524
Members common to all types524
Members specific to floating point

values 525

Part V
ObjectComponents
programmer's guide

Chapter 36

527

Overview of ObjectComponents 529
OLE 2 features supported by

ObjectComponents 530

How ObjectComponents works 532
How ObjectCoinponents talks to OLE. . . .532
How ObjectComponents talks to you533
Linking and embedding connections533
Automation connections.534

xi

Building an ObjectComponents
application. 536

ObjectComponents Programming
Tools '.' 537

Utility programs 537

Chapter 37
Turning an application into an

OCX or OLE container using
ObjectComponents 539

Step 1: Including ObjectComponents
header files.540

Step 2: Creating an OLE memory
allocator object540

Step 3:. Creating OLE registration tables . . .540

Step 4: Connecting an
ObjectComponents application
object to the main window541

Step 5: Connecting an
ObjectComponents.view
object to the view window.542

Step 6: Handling OLE messages543
Using the new message-handling

classes. 545
Step 7: Handling OLE menu

commands '.' 545
Handling the InsertObject command 546
Handling other OLE commands. 546

Step 8: Creating a registrar object547

Step 9: Compiling and linking the
application.548

Chapter 38
Turning ari application into

an OLE server using
ObjectComponents 549

Step 1: Including ObjectComponents
header files.550

Step 2: Creating an OLE memory
allocator object 550

Step 3: Creating registration tables
and a document list object.550

Step 4: Connecting an
ObjectComponentsapplication
object to the main window551

Step 5: Connecting an ObjectComponents
view object to the view window 552

Step 6: Handling OLE messages 553
Handling selected application events554
Handling selected view events554
Painting the document.555
Using the new message-handling class . . .555

Step 7: Creating a factory callback function. 555

Step 8: Creating an ObjectComponents
registrar object. 557

Step 9: Compiling and linking the
application 558

Creating a DLL OLE server 558
Pros and cons of DLL servers.559

Advantages559
Disadvantages559

Debugging a DLL OLE server 560

Tools for DLL OLE servers 561
REGISTER.EXE561
DLLRVN.EXE 561

Chapter 39
Turning an application into an OLE

automation server 563
Step 1: Including ObjectComponents

header files. 563

Step 2: Creating a registration table 564

Step 3: Creating a registrar object. 564

Step 4: Declaring automatable methods
and properties 565

Writing declaration macros565
Providing optional hooks for validation

and filtering 567
Step 5: Defining external methods and

properties. '. 568
The parts of a definition macro569
Data type specifiers in an automation

definition.570
Step 6: Compiling and linking an

automation server. 570

xii

Exposing collections of objects571
Constructing and exposing a collection

class 571
Other ways to expose a collection

object i. • • • • • • • • • • • • • • 572
Implementing an iterator for the

collection. 573
Adding other members to the collection

class 575
Exposing data for enumeration.575

Combining multiple C++ objects into a
single OLE automation object 577

Telling OLE when the object goes away ... 578

Localizing symbol names579
Putting translations in the resource

script 581
Marking translatable strings in the

source code 581
Creating a type library.583

Chapter 40
Turning an application into ·an OLE

automation controller 585
Step 1: Including ObjectComponents

header files.585

Step 2: Creating a memory allocator object. .586

Step 3: Declaring proxy classes 586

Step 4: Implementing proxy classes587
Specifying arguments in a proxy

method 589
Step 5: Creating and using proxy .

objects. .590

Step 6: Compiling and linking an
automation controller590

Enumerating automated collections.591
Declaring a proxy collection class 591
Implementing the proxy collection

class 592
Declaring a collection property. 593
Sending commands to the collection 593

Part VI
Visual Database Tools
developer's guide 595

How this part is organized 596

Visual Database Tool architecture 596
Data sources598
Visual Database Tools components598

Data-access components.599
Data-aware controls600

Database Desktop.601
Developing applications for desktop and

remote servers. 601

Database application development
methodology. 602

Development scenarios.602
Database application development cycle . .603

Design phase 604
Implementation phase.604
Deployment phase.605

Deploying an application 605
Deploying 16-bit applications.605
Deploying 32-bit applications.606
Deploying BDE support.607

Language drivers.607
ODBC Socket ;607

Using third-party VBX controls. . .' 607

Chapter 41
Creating applications with Visual

Database Tools 609
Programming with components 609

Properties. .609
Methods .610
Events '.' 610

Setting properties. 610
Setting properties at design time610
Setting properties at run time 611

Calling methods. 611

Responding to events. 612
Defining the event source 612
Defining the event sink.613
Connecting the event sink to the

handler method613

xiii

Connecting the event source to the
event sink 614

Event handling summary 614
An event-handling example 614

Creating the container class 615
Connecting the event source to

the event sink.615
Changing the form's color 616

Component Object Model (COM)
classes. ..617

Building database forms 618
Making the connections: linking

database components 619
Creating a master-detail form 620

Sample database applications 621

Chapter 42
Using data-access components

and tools 623
Data-access components hierarchy . "623

Using datasets.624
Dataset states 625
Opening and closing datasets. 626
Navigating datasets 627

The Next and Prior methods.627
The First and Last methods.627
The AtBOF and AtEOF properties. 628
The MoveBy method629'

Modifying data in datasets '. 630
The CanModify property.630
Posting data to the database630
Editing records631
Adding new records.631
Deleting records631
Canceling changes631
Working with entire tecords 631
Setting the update mode633

Bookmarking data 634
Disabling, enabling, and refreshing

data-aware controls 635
Using dataset events 635

Using OnCalcFields635
Using TIable636

Specifying the database table. 636
The TableType property. 637
Searching a table 637

Using Goto methods 637
Using Find methods639
Using the KeyExclusive property in

searches ~639
Limitirig records retrieved by an

application640
Using partial keys 641
The KeyExclusive property ... -....... 641

Indexes .642
The Exclusive property;643
Other properties and methods643

The ReadOnly and CanModify
properties643

The GotoCurrent method.643
Creating master-detail forms644

The Field Link Designer.644
Using TDataSource. 645

Using TDataSource properties645
The DataSet property645
The Enabled property 645

Using TDataSource events 645
The OnDataChange event.645
The OnStateChange event.646

Using TField components and the Fields
editor 646

What ate TField components? 647
Using the Fields eciitor.647

Starting the Fields editor648
Adding a TField component648
Deleting a TField component.649
Defining a calculated field 649
Programming a calculated field 650

Writing an OnCalcFields event handler . 650
A calculated field example. 651

Modifying a TField component.653
Formatting fields654
Handling TField events654
Using TField conversion functions.655

Changing afield's value656
Displaying data with standard controls. . . 656

Using the Fields property ~656
Using the FieldByName method.657

Using the TBatchMove component 657
Batch move modes657
Data type mappings658
Executing a batch move660
Handling batch move errors.660

Using TSession : . ~ 660

xiv

Controlling database connections . , 660
Getting database information 661

Accessing the Borland Database Engine
directly 661

Chapter 43
Using data-aware controls 663
Data-aware component basics664

Placing data-aware controls on forms. . . .' 665
Updating fields665

Displaying data with TDBText 666

Displaying and editing fields with
TDBEdit 666

Editing a field 666
Viewing and modifying data with a

data grid .667
Setting grid options 667
Editing in the data grid 668

Navigating and manipulating records
with TDBNavigator 668

Hiding and disabling navigator
buttons . 669

Displaying and editing BLOB text with
TDBMemo 670

Displaying BLOB graphics with
TDBImage 670

Using list and combo boxes 671
TDBListBox 671
TDBComboBox. 672
TDBLookupCombo 673

A TDBLookupCombo example674
TDBLookupList 674

TDBCheckBox 675

TDBRadioGroup676

Chapter 44
Using SQl in applications 677
Using the TQuery component 677

When to use TQuery. 678
How to use TQuery 678
The SQL property 679

Creating the query text679
Executing a query 680

The UniDirectional property.681
Getting a live result set. 681

Syntax requirements for live
result sets 681

Dynamic SQL statements 682
Supplying values to parameters682
Preparing a query.683
Using the Params property683
Using the ParamByName method684
Using the DataSource property.684

Creating heterogenous queries. 685

Chapter 45
Building a client/server application 687
Portability versus optimization. 687

Server portability 688
Client! server communication

portability688
Connecting to a database server 689

Connectivity.689
Using TCP lIP. 689

Connection parameters. . . . ,689
Using ODBC.690
Handling server security. ; 690

Using the TDatabase component. 691
, Connecting to a database server691

Creating application-specific aliases692
Understanding transaction C011.trol. 693

Handling transactions in applications. . . .693
Implicit transaction control 694
Explicit transaction control 694
Setting the SQL passthrough mode694

Transaction isolation levels695
Using stored procedures. 696

Input and output parameters. 696
Executing a stored procedure.697
Oracle overloaded stored procedures698

Upsizing . 698
Up sizing the database698
Upsizing the application.699

Deploying support for remote server
access : 700

Oracle servers700
Sybase and Microsoft SQL servers.701
Informix servers.701

xv

16-bit InterBase clients 702
TCP lIP Interface.702
Other communication protocols.703

32-bit InterBase clients. 703
TCP lIP Interface.703
Other communication protocols.703

Chapter 46
Programming with third-party
vex controls

Installing a VBX control in the Borland
705

C++IDE 705

The TVbxControl class.706

Using the VbxGen utility 706

Loading and initializing the Visual
Basic emulator.706

Using the BIVBX library functions 707

Chapter 47
Using local SQl 709
Naming conventions for tables 709

Naming conventions for columns 710

Data manipulation 710
Parameter substitutions in DML

statements 710
Supported set (aggregate) functions 710
Supported string functions 711
Supported date function. 711
Supported operators. 711
Using SELECT ; 712

Using the FROM clause. 712
Using the WHERE clause.712
Using the ORDER BY clause. 712
Using the GROUP BY clause. 713
Heterogeneous joins.713

Using INSERT , 713
Using UPDATE ; 713
Using DELETE 713

.Data definition 714
Using CREATE TABLE 714
Using ALTER TABLE 715
Using DROP TABLE 716
Using CREATE INDEX 716
Using DROP INDEX. 716

Part VII
Borland Windows Custom
Controls guide 717

Chapter 48
Using Borland Windows custom

controls 719
Using the Borland custom dialog

class 719
Customizing existing applications for

Borland Windows custom controls.719
Loading BWCC to enable Borland

custom controls720
Borland custom controls.720
Borland button and check box

enhancements721

Chapter 49
Designing Borland Windows

Custom Control dialog boxes 723
Panels 723

Main panel.723
Action panel724

Fonts 724

Group boxes. 724
Group box title.725
Group box elements725

Push buttons. 725
Action panel push buttons.726

Examining your dialog box 726

Appendix A
What is OLE? 727
Common uses for OLE. 727
. Linking and embedding.727

Aut()mation728
What does OLE look like? 728

Inserting an object. 729

Editing an object in place 730

Activating, deactivating, and selecting
an object. 731

Finding an object's verbs. 732

xvi

Linking an object733

Opening an object to edit it734

Glossary of OLE terms.736

Index

Activate. 736
Aggregation 736
Automated object. 736
Automated application. 736
Automation 736
Automation controller 737
Automation server 737
BOCOLE support library 737
COM object. : 737
Compound document 737
Compound file. 737
Connector object. 738
Container. 738
DLL server.'. . 738
Document 738
Embedded object 738
EXE server'.'. 739
GUID 739
IDispatch interface 739
In-place editing 739
In-process server 739
Interface 739

. IUnknown interface. 740
Linked object 740
Link source. 740
Localization 740
ObjectComponents framework. 740
ObjectWindows library 741
OLE 741
OLE interface 741
Open editing. 741
Part 741
Reference counting 742
Registrar object 742
Registration database. 742
Registration table 742
Remote view. 743
Select 743
Server 743
System registration database 743
Type library 743
Verb 744
View 744

745

Introduction

Borland C++ is a powerful,. professional programming tool for creating and maintaining
DOS, Win16, and Win32 applications. Borland C++ supports both the C and C++
langugages with its integrated development environment and conunand-line tools.

How this book is organized
Thls book is divided into the following parts:

• Part I, "Programming with Borland C++" describes the implementation and
extensions to the C and C++ programming languages. It provides you with
programming information on C++ streams, container classes, persistent streams,
inline assembly, and ANSI implementation details.

• Part II, "Borland C++ DOS programmer's guide," provides information you might
need to develop 16-bit applications that are targeted to run under DOS.

• Part III, "Borland C++ class libraries guide," is a programmer's guide to using
Borland's implementation of container classes, iostreams classes, persistent streams
classes, and mathematical classes.

• Part IV, "Standard class libraries guide," documents the Rogue Wave Software, Inc.,
implementation of the Standard C++ Library.

• Part V, "ObjectComponents programmer's guide," describes how to create different
kinds of programs using ObjectComponents, a set of classes for creating OLE 2
applications in C++.

• Part VI, "Visual Database Tools developer's guide," explains how to use Visual
Database Tools to build database applications using C++.

• Part VII, "Borland Windows Custom Controls guide," explains how to use the
Borland custom dialog class to change the appearance of your dialog window
depending on the target display device. It also presents design considerations for
custom dialog boxes.

• Appendix A, "What is OLE?," discusses support for OLE in Borland C++.

. I n t rod u c-t ion 1

Typefaces and icons used in this book
This book uses the following special fonts:

Monospace

Italics

Bold

Keycap

Key 1 +Key2

ALL CAPS

This type represents text that you type or text as it appears onscreen.

These are used to emphasize and introduce words, and to indicate
variable names (identifiers), function names, class names, and structure
names.

This type indicates reserved keywords words, format specifiers, and
command-line options.

This type represents a particular key you should press on your
keyboard. For example, "Press Del to erase the character."

This indicates a command that requires you to press Key1 with Key2. For
example, Shift+a (although not a command) indicates the uppercase
letter "A."

This type represents disk directories, file names, and application
names. (However, header file names are presented in lowercase to be
consistent with how these files are usually written in source code.)

Menu I Choice This represents menu commands. Rather than use the phrase" choose
the Save command from the File menu," Borland manuals use the
convention" choose File I Save." .

Note This icon indicates material that you should take special notice of.

2 c++ Programmer's Guide

Programming with Borland C++
I

Part I contains materials for the advanced programmer. If you already know how to
program well (whether in C, C++, or another language), this manual is for you. It
describes the implementation and extensions to the C and C++ programming
languages. It is a language reference, and provides you with programming information
on C++ streams, container classes, persistent streams, inline assembly, and ANSI
implementation details.

How this part is organized
Chapters 1-5 describe the C and C++ languages as implemented in Borland C++.
Together they provide a formal language definition, reference, and syntax for both the
C++ and C aspects of Borland C++. These chapters do not provide a language tutorial.
We use a modified Backus-Naur form notation to indicate syntax, supplemented where
necessary by brief explanations and program examples. The chapters are organized in
this manner:

• Chapter 1, HLexical elements," shows how the lexical tokens for Borland C++ are
categorized. It covers the different categories of word-like units, known as tokens,
recognized by a language.

• Chapter 2, HLanguage structure," explains how to use the elements of Borland C++.
It details the legal ways in which tokens can be grouped together to form expressions,
statements, and other significant units.

• Chapter 3, HC++ specifics," covers those aspects specific to C++.

• Chapter 4, HException handling," describes the exception-handling mechanisms
available to C and C++ programs.

Part I, Programming with Borland C++ 3

• Chapter 5, IIProgrammingfor portability," explains the basics of programming
under Windows. See Part II, "Borland C++ DOS guide" for information on DOS
programming.

• Chapter 6, IIUsing dynamic-link libraries," explains dynamic-link libraries and
dynamic linking.

• Chapter 7, IIUsing inline assembly," explains how to embed assembly language
instructions within your C/C++ code.

• Chapter 8, IIHeader files summary," explains how to use precompiled headers to
greatly speed up compilation times.

• Chapter 9, IIUsing EasyWin," explains how to compile standard DOS applications
that use traditional "TTY style" input and output so they run as Windows programs.

• Chapter 10, IIMath," covers floating-point issues. Much of the information regarding
math operations is specific to DOS applications.

• Chapter 11, 1116-bit memory management," explains what memory models are, how
to choose one/and why you would (or wouldn't) want to use a particular memory
model.

• Chapter 12, II ANSI implementation-specific standards," describes those aspects of
the ANSI C standard that have been left loosely defined or undefined by ANSI. This
chapter tells how Borland C++ operates in respect to each of these aspects.

Borland C++ is a full implementation of AT&T's C++ version 3.0, the object-oriented
superset of C developed by Bjarne Stroustrup of AT&T Bell Laboratories. This manual
refers to AT&T's previous version as C++ 2.1. In addition to offering many new features
and capabilities, C++ often veers from C in varying degrees. These differences are
noted. All Borland C++ language features derived from C++ are discussed in Chapter 3.

Borland C++ also fully implements the ANSI C standard, with several extensions as
indicated in the text. You can set options in the compiler to warn you if any such
extensions are encountered. You can also set the compiler to treat the Borland C++
extension keywords as normal identifiers (see Chapter 3 of the C++ User's Guide).

There are also" conforming" extensions provided via the #pragma directives offered by
ANSI C for handling nonstandard, implementation-dependent features.

4 c++ Programmer's Guide

Lexical elements
These topics provide a formal definition of the Borland C++ lexical elements. They
describe the different categories of word-like units (tokens) recognized by a language.

The tokens in Borland C++ are derived from a series of operations performed on your
programs by the compiler and its built-in preprocessor.

A Borland C++ program starts as a sequence of ASCII characters representing the
source code, created by keystrokes using a suitable text editor (such as the Borland C++
editor). The basic program unit in Borland C++ is the file. This usually corresponds to a
named file located in RAM or on disk and having the extension .C or .CPP.

The preprocessor first scans the program text for special preprocessor directives. For
example, the directive #include <incJile> adds (or includes) the contents of the file
inc Jile to the program before the compilation phase. The preprocessor also expands any
macros found in the program and include files.

In the tokenizing phase of compilation, the source code file is parsed (that is, broken
down) into tokens and whitespace.

Whitespace
the collective name given to spaces (blanks), horiz~ntal and vertical tabs, newline
characters, and comments. Whitespace can serve to indicate where tokens start and end,
but beyond this function, any surplus whitespace is discarded. For example, the two
sequences

int i; float f;

and

int i;

float f;

are lexically equivalent and parse identically to give the six tokens:

Chapter 1, Lexical elements 5

• int

• i .. ,
• float

• f .. ,
The ASCII characters representing whitespace can occur within literal strings, in which
case they are protected from the normal parsing process (they remain as part of the
string). For example,

char name[] = "Borland International";

parses to seven tokens, including the single literal-string token "Borland International."

Line splicing with \
A special case occurs if the final newline character encounteredis preceded by a
backslash (\). The backslash and new line are both discarded, allowing two physical
lines of text to be treated as one unit.

"Borland\

International"

is parsed as "Borland International" (see "String constants" later in this chapter for more
information).

Comments
Comments are pieces of text used to annotate a program. Comments are for the
programmer's use only; they are stripped from the source text before parsing.

There are two ways to delineate comments: the C method and the C++ method. Both are
supported by Borland C++, with an additional, optional extension permitting nested
comments. If you are not compiling for ANSI compatibility, you can use any of these
kinds of comments in both C and C++ programs.

You should also follow the guidelines on the use of whitespace and delimiters in
comments discussed later in this topic to avoid other portability problems.

C comments
A C comment is any sequence of characters placed after the symbol pair /*. The
comment terminates at the first occurrence of the pair */ following the initial /*. The
entire sequence, including the four comment-delimiter symbols, is replaced by one
space after macro expansion. Note that some C implementations remove comments
without space replacements.

Borland C++ does not support the nonportable token pasting strategy using /** /. Token
pasting in Borland C++ is performed with the ANSI-specified pair ##, as follows:

6 c++ Programmer's Guide

1* won't work *1 #define VAR(i,j)
#define VAR(i,j)
#define VAR(i,j)

(i/**/j)
(i##j)
(i ## j)

1* OK in Borland c++ *1
1* Also OK *1

In Borland C++,

int 1* declaration *1 'i 1* counter *1;

parses as these three tokens:

int i;

See "Token Pasting with ##" in the online Help for a description of token pasting.

c++ comments
c++ allows a single-line comment using two adjacent slashes (I I). The comment can
start in any position, and extends until the next new line:

class X { II this is a comment
... };

You can also use II to create comments in C code. This is specific to Borland C++.

Nested comments
ANSI C doesn't allow nested comments. The attempt to comment out a line

1* int 1* declaration *1 i 1* counter *1; *1

fails, because the scope of the first /* ends ?-t the first * I. This gives

i ; * /

which would generate a syntax error.

By default, Borland C++ won't allow nested comments, but you can override this with
compiler options. See the c++ User's Guide, Chapter 3 for information on enabling
nested comments.

Delimiters and whitespace
In rare cases, some whitespace before 1* and II, and after *1, although not syntactically
mandatory, can avoid portability problems. For example, this C++ code:

int i = jll* divide by k*/k;
+m;

parses as int i = j +m, not as

int i = j/k;
+m;

as expected under the C convention. The more legible

int i = jl 1* divide by k*1 k;
+m;

avoids this problem.

Chapter 1, Lexical elements 7

Tokens
Tokens are word-like units recognized by a language. Borland C++ recognizes six classes
of tokens.

Here is the formal definition of a token:

keyword

identifier

constant

string-literal

operator

punctuator (also known as separators)

As the source code is scanned, tokens are extracted in such a way that the longest
possible token from the character sequence is selected. For example, external would be
parsed as a single identifier, rather than as the keyword extern followed by the identifier
al.

See "Token Pasting with ##" in the online Help for a description of token pasting.

Keywords
Keywords are words reserved for special purposes and must not be used as normal
identifier names;

You can use options to select ANSI keywords only, UNIX keywords, and so on; see the
. C++ User's Guide, Chapter 3, for information on these options.

If you use non-ANSI keywords in a program and you want the program to be ANSI­
compliant, always use the non-ANSI keyword versions that are prefixed with double
underscores. Some keywords have a version prefixed with only one underscore; these
keywords are provided to facilitate porting code developed with other compilers. For
ANSI-specified keywords there is only one version.

Note Note that the keywords __ try and try are an exception to the discussion above. The
keyword try is required to match the catch keyword in the C++ exception-handling
mechanism. try cannot be substituted by __ try. The keyword __ try can only be used to
match the __ except or __ finally keywords. See the discussions on C++ exception
handling and C-based structured exceptions for more information.

Table of C++-specific keywords
There are several keywords specific to C++. They are not available if you are writing a
C-only program.

8 c++ Programmer's Guide

Table 1.1 All Borland C++ keywords

asm mutable this

bool namespace throw

catch new true

class operator try

consCcast private typeid

delete protected typename

dynamic_cast public using

explicit reinterpret_cast virtual

false _rtti wchar_t

friend static_cast

inline template

Table 1.2 T~ble of Borland C++ register pseudovariables
_AH _CL _EAX _ESP
_AL _CS _EBP _FLAGS
_AX _CX _EBX· _FS

_BH _DH _ECX _GS

_BL _D1 _ED1 _S1

_BP _DL _EDX .:..SP
_BX _DS _ES _SS
_CH _DX _ES1

These pesudovariables are always available to the 32-bit compiler. The 16-bit compiler
can use these only whe you use the option to generate 80386 instructions.

Borland C++ keyword extensions
Borland C++ provides additional keywords that are not part of the ANSI or UNIX
conventions. You cannot use these keywords in your programs if you set the IDE or
command-line options to recognize only ANSI or UNIX keywords.

Table 1.3 Borland C++ keyword extensions

- asm __ except _interrupt --rtti

asm _export interrupt __ saveregs

cdecl far - loadds _saveregs

cdecl - far loadds __ seg

cs __ huge near _seg

__ declspec _huge near ss

ds huge - near thread

- ds _import _pa".:al --try
es __ import __ pascal

es __ interrupt pascal

Chapter 1, Lexical elements 9

Identifiers
Here is the formal definition of an identifier:

identifier:

nondigit

identifier nondigit

identifier digit

nondigit: one of

abc d ef ghij klmnop qrstu vwxy z_

ABC D E F G H IJK L M N or Q R S TUV W XY Z

digit: one of

o 1 2 3 4 56 7 8 9 .

Naming and ,length restrictions
Identifiers are arbitrary names of any length given to classes, objects, functions, variables,
user-defined data types, and so on. (Identifiers can contain the letters a to z and A to Z,
.the underscore character (J, and the digits 0 to 9.) There are only two restrictions:

• The first character must be a letter or an underscore.

• By default, Borland C++ recognizes only the first 32 characters as significant. The
number of significant characters can be reduced by menu and command-line options,
but not increased. See Chapter 3 of the C++ User's Guide for information on these
options.

Case sensitivity
Borland C++ identifiers are case sensitive, so that Sum, sum, and suM are distinct
identifiers.

Global identifiers imported from other modules follow the same naming and
significance rules as normal identifiers. However, Borland C++ offers the option of
suspending case sensitivity to allow compatibility when linking with case-insensitive
languages. With the case-insensitive option, the globals Sum and sum are considered
identical, resulting in a possible "Duplicate symbol" warning during linking.

An exception to these rules is that identifiers of type _ _ pascal are always converted to
all uppercase for linking purposes.

Uniqueness and scope
Although identifier names are arbitrary (within the rules stated), errors result if the
same name is used for more than one identifier within the same scope and sharing the
same name space. Duplicate names are legal for different name spaces regardless of scope
rules.

10 C++ Pro 9 ram mer's G u ide

Constants
Constants are tokens representing fixed numeric or character values.

Borland C++ supports four classes of constants: integer, floating point, character
(including strings), and enumeration.

Internal representation of numerical types shows how these types are represented
internally.

The data type of a constant is deduced by the compiler using such clues as numeric
value and the format used in the source code. The formal definition of a constant is
shown in the following table.

Table 1.4 Constants: formal definitions

constant
floating-constant:
integer-constant
numeration-constant
character-constant

floating-constant:
fractional-constant <exponent-part> <fLoating­

suffix>
digit-sequence exponent-part <floating-suffix>

fractional-constant:
<digit-sequence> . digit-sequence
digit-sequence .

exponent-part:
e <sign> digit-sequence
E <sign> digit-sequence

sign: one of
+ -

digit-sequence:
digit
digit-sequence digit

floating-suffix: one of
f 1 F L

integer-constant:
decimal-constant <integer-suffix>
octal-constant <integer-suffix>
hexadecimal-constant <integer-suffix>

decimal-constant:
nonzero-digit
decimal-constant digit

octal-constant:
01
octal-constant octal-digit

hexadecimal-constant:
o x hexadecimal-digit
o X hexadecimal-digit
hexadecimal-constant hexadecimal-digit

nonzero-digit: one of
123456789

octal-digit:
one of 0 1 2 3 4 5 6 7

hexadecimal-digit: one of
0123456789
abcdef
ABCDEF

integer-suffix:
unsigned-suffix <long-suffix>
long-suffix <unsigned-suffix>

unsigned-suffix: one of
uU

long-suffix: one of
lL

enumeration-constant:
identifier

character-constant:
c-char-sequence

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
Any character in the source character set
except the single-quote 0, backslash (\), or
newline character escape-sequence.

escape-sequence: one of the following
\" \' \? \ \
\a \b \f \n
\0 \00 \000 \r
\t \v \Xh... \xh ..

Chapter 1, Lexical elements 11

Integer constants
Integer constants can be decimal (base 10), octal (base 8), or hexadecimal (base 16). In the
absence of any overriding suffixes, the data type of an integer constant is derived from
its value, as shown in Borland Cf+ integer constants without Lor U. Note that the rules
vary between decimal and nondecimal constants.

Decimal
Decimal constants from 0 to 4,294,967,295 are allowed. Constants exceeding this limit are
truncated. Decimal constants must not use an initial zero. An integer constant that has
an initial zero is interpreted as an octal constant. Thus,

int i.= 10; /*decimal 10 */
int i = '010; /*decimal 8 */
int i = 0; /*decimal 0 = octal 0 */

Octal
All constants with an initial zero are taken to be octal. If an octal constant contains the
illegal digits 8 or 9, an error is reported. Octal constants exceeding 037777777777 are
truncated.

Hexadecimal
All constants starting with Ox (or OX) are taken to be hexadecimal. Hexadecimal
constants exceeding OxFFFFFFFF are truncated.

long and unsigned suffixes
The suffix L (or 1) attached to any constant forces the constant to be represented as a
long. Similarly, the suffix U (or u) forces the constant to be unsigned. It is unsigned
long if the value of the number itself is greater than decimal 65,535, regardless of which
base is used. You can use both L and U suffixes on the same constant in any order or
case: ul,lu, UL, and so on. See the table of Borland constants.

The data type of a constant in the absence of any suffix (U, U, L, or 1) is the first of the
following typ~s that can accommpdate its value:

Decimal

Octal

Hexadecimal

int, long int, unsigned long int

int, unsigned int, long int, unsigned long int

int, unsigned int, long int, unsigned long int

If the constant has a U or u suffix, its data type will be the first of unsigned int, unsigned
long int that can accommodate its value.

If the con~tant has an L or 1 suffix, its data type will be the first of long int, unsigned
long int that can accommodate its value.

If the constant has both u and I suffixes (ul, lu, Ul, lU, uL, Lu, LU, or UL), its data type will
be unsigned long int.

12 C++ Pro 9 ram mer's G u ide

Borland C++ integer constants without Lor U summarizes the-representations of
integer constants in all three bases. The data types indicated assume no overriding L or
U suffix has been used.

Table 1.5 Borland C++ integer constants without L or U

Decimal constants

0 to 32,767 int

32,768 to 2,147,483,647 long

2,147,483,648 to 4,294,967,295 unsigned long

> 4294967295 truncated

Octal constants

00 to 077777 int

010000 to 0177777 unsigned int

02000000 to 017777777777 long

020000000000 to 037777777777 unsigned long

> 037777777777 truncated

Hexadecimal constants

OxOOOO to Ox7FFF int

Ox8000 to OxFFFF unsigned int

OxlOOOO to Ox7FFFFFFF long

Ox80000000 to OxFFFFFFFF unsigned long

>OxFFFFFFFF truncated

Floating-point constants
A floating-point constant consists of:

• Decimal integer

• Decimal point

• Decimal fraction

• e or E and a signed integer exponent (optional)

• Type suffix: for For 1 or L (optional)

You can omit either the decimal integer or the decimal fraction (but not both). You can
omit either the decimal point or the letter e (or E) and the signed integer exponent (but
not both). These rules allow for conventional and scientific (exponent) notations.

Negative floating constants are taken as positive constants with the unary operator
minus (-) prefixed.

Chapter 1, Lexical elements 13

Here are some examples:

23.45e6 23.45 x 106

.0 0

O. 0

1. 1.0 x 100 = 1.0

-1.23 -1.23

2e-5 2.0x 10-5

3E+10 3.0 x 1010

.09E34 0.09 x 1034

In the absence of any suffixes, floating-point constants are of type double. However,
you can coerce a floating constant to be of type float by adding an f or F suffix to the
constant. Similarly, the suffix 1 or L forces the constant to be data type long double. The
table below shows the ranges available for float, double, and long double.

Table 1.6 Borland C++ floating constant sizes and ranges

double

long double 80

Character constants

3.4 x 10-4932 to 1.1 x 104932

A character constant is one or more characters enclosed in single quotes, such as 'A', '+',

or '\n'. In C, single-charactrer constants have data type int. The number of bits used to
intern~lly represent a character constant is sizeof(int). In a 16-bit program, the upper
byte is zero or sign-extended. In C++, a character constant has type char. Multicharacter
constants in both C and C++ have data type int.

To learn more about character constants, see

• "Three char types" later in this chapter

• "Escape sequences" later in this chapter

• "Wide-character and multi-character constants" later in this chapter

Note To compare sizes of character types, compile this as a C program and then as a C++
. program.

#include <stdio.h>

#defineCH 'x'
void main (void) {

/* A CHARACTER CONSTANT */

char ch = 'x'; /* A char VARIABLE */

. printf ("\nSizeof int = %d", sizeof (int));

printf (" \nSizeof char = %d", sizeof {char));
printf (" \nSizeof ch = %d", sizeof (ch));

printf (" \nSizeof CH = %d", sizeof (CH));

14 C++ Programmer's Guide

Note

printf ("\nSizeof wchar_t = %d" I sizeof(wchar_t)) ;

Sizes are in bytes.

Table 1.7 Sizes of character types

16-bit 32-bit 16-bit 32-bit

Sizeof int 2 4 Sizeof int 4

Sizeof char 1 1 Sizeof char 1 1

Sizeof ch 1 1 Sizeof ch 1 1

Sizeof CH 2 4 Sizeof CH 1 1

Sizeof wchar_t 2 2 Sizeof wchar_t 2 2

The three char types
One-character constants, such as 'A', '\t', and '007', are represented as int values. In this
case, the low-order byte is sign extended into the high bit; that is, if the value is greater
than 127 (base 10), the upper bit is set to -1 (=OxFF). This can be disabled by declaring
that the default char type is unsigned, which forces the high bit to be zero regardless of
the value of the low bit. See Chapter 3 of the C++ User's Guide for information on these
options.

The three character types, char, signed char, and unsigned char, require an 8-bit (one
byte) storage. In C and Borland C++ programs prior to version Borland C++ 4.0, char is
treated the same as signed char. The behavior of C programs is unaffected by the
distinction between the three character types.

Note To retain the old behavior, use the -K2 command-line option and Borland C++ 3.1
header files and libraries.

In a C++ program, a function can be overloaded with arguments of type char, signed
char, or unsigned char. For example, the following function prototypes are valid and
distinct:

void func(char ch);
void func (signed char ch);
void func(unsigned char ch);

If only one of the above prototypes exists, it will accept any of the three character,types.
For example, the following is acceptable:

void func(unsigned char ch);
void main (void) {

signed char ch = 'x';
func(ch) ;
}

See Chapter 3 of the C++ User's Guide for a description of code-generation options.

C hap t e r 1, Lex i c a I e I e men t s 15

Escape sequences
The backslash character (\) is used to introduce an escape sequence, which allows the
visual representation of certain nongraphic characters. For example, the constant \n is
used to the single newline character.

A backslash is used with octal or hexadecimal numbers to represent the ASCII symbol
or control code corresponding to that value; for example, '\03' for Ctrl-C or '\x3F' for
the question mark. You can use any string of up to three octal or any number of
hexadecimal numbers in an escape sequence, provided that the value is within legal
range for data type char (0 to Oxff for Borland C++). Larger numbers generate the
compiler error Numeric constant too large. For example, the octal nU1nber \777 is·
larger than the maximum value allowed (\377) and will generate an error. The first
nonoctal or nonhexadecimal character encountered in an octal or hexadecimal escape
sequence marks the end of the sequence.

Originally, Turbo C allowed only three digits in a hexadecimal escape sequence. The
ANSI C rules adopted in Borland C++ might cause problems with old code that
assumes only the first three characters are converted. For example, using Turbo C l.

printf (" \x0072 .1A Simple Operating System");

This is intended to be interpreted as.\x007 and "2.IA Simple Operating System".
However, Borland C++ compiles it as the hexadecimal number \x0072 and the literal
string "IA Simple Operating System".

To avoid such problems, rewrite your code like this:

printf("\x007" "2.1A Simple Operating System");

Ambiguities might also arise if an octal escape sequence is followed by a nonoctal digit.
For example, because 8 and 9 are not legal octal digits, the constant \258 would be
interpreted as a two-character constant made up of the characters \25 and 8.

The following table shows the available escape sequences.

Note You must use \ \ to represent an ASCII backslash, as used in operating system paths.

Table 1.8 Borland C++ escape sequences

\a Ox07 BEL Audible bell

\b Ox08 BS Backspace

\f OxOC FF Formfeed

\n OxOA LF Newline (linefeed)

\r OxOD CR Carriage return

\t Ox09 HT Tab (horizontal)

\v OxOB VT Vertical tab

\\ OxSc \ Backslash

\' Ox27 Single quote (apostrophe)

\" Ox22 Double quote

\? Ox3F ? Question mark

\0 any O=a string of up to three
octal digits

16 C++ Pro 9 ram mer J s G ui d e

Table 1.8

\xH

\XH

Borland C++ escape sequences

any

any

Wide-character and multi-character constants

H=a string of hex digits

H=a string of hex digits

Wide-character types can be used to represent a character that does not fit into the
storage space allocated for a char type. A wide character is stored in a two-byte space. A
character constant preceded immediately by an L is a wide-character constant of data
type wchar _t (defined in stddef.h). For example:

wchar_t ch = L'AB';

When wchar _t is used in a C program it is a type defined in the stddef.h header file. In a
C++ program, wchar_t is a keyword that can represent distinct codes for any element of
the largest extended character set in any of the supported locales. In C++, wchar_t is the
same size, signedness, and alignment requirement as an int type.

A string preceded immediately by an L is a wide-character string. The memory
allocation for a string is two bytes per character. For example:

wchar_t str = L"ABCD";

Multi-character constants
Borland C++ also supports multi-character constants. When using the 32-bit compiler,
multi-character constants can consist of as many as four characters. The 16-:-bit compiler
is restricted to two-character constants. For example, 'An', '\n \ t', and '\007\007' are
acceptable in a 16-bit program. The constant, '\006\007\008\009' is valid only in a
32-bit program. When using the 16-bit compiler, these constants are represented as 16-
bit int values with the first character in the low-order byte and the second character in
the high-order byte. For 32-bit compilers, multi-character constants are always 32-bit int
values. The constants are not portable to other C compilers.

String constants
String constants, also known as string literals, form a special category of constants used
to handle fixed sequences of characters. A string literal is of data type array-of-char and
storage class static, written as a sequence of any number of characters surrounded by
double quotes:

"This is literally a string!"

The null (empty) string is written" ".

The characters inside the double quotes can include escape sequences. This code, for
example:

"\t\t\"Name\" \\\tAddress\n\n"

prints like this:

"Name" \ Address

Chapter 1, Lexical elements 17

"Name" is preceded by two tabs; Address is preceded by one tab. The line is followed by
two new lines. The \" provides interior double quotes.

If you compile with the -A option for ANSI compatibility, the escape character sequence
"\ \" is translated to "\" by the compiler.

A literal string is stored internally as the given sequence of characters plus a final null
character ('\0'). A null string is stored as a single '\0' character.

Adjacent string literals separated only by whitespace are concatenated during the
parsing phase, as in the following example:

#include <stdio.h>
int main() {

char *p;
_Ini tEasyWin () ;
p = "This is an example of how Borland C++"
" will\nconcatenate very long strings for you"

" automatically, \nresulting in nicer"
" looking programs.";

printf(p) ;
return(O);

The output of the program is

This is an example of how Borland C++ will
concatenate very long strings for you automatically,
resulting in nicer looking programs.

You can also use the backslash (\) as a continuation character to extend a string constant
across line boundaries:

puts ("This is really \
a one-line string");

Enumeration constants
Enumeration constants are identifiers defined in enum type declarations. The identifiers
are usually chosen as mnemonics to assist legibility. Enumeration constants are integer
data types. They can be used in any expression where integer constants are valid. The
identifiers used must be unique within the scope of the enum declaration. Negative
initializers are allowed. See the C++ Language Reference for a detailed look at enum
declarations.

The values acquired by enumeration constants depend on the format of the
enumeration declaration and the presence of optional initializers. In this example,

enum team { giants, cubs, dodgers };

giants, cubs, and dodgers are enumeration constants of type team that can be assigned to
any variables of type team or to any other variable of integer type. The values acquired
by the enumeration constants are

giants = 0, cubs = 1, dodgers = 2

18 C++ Pro 9 ram mer's G u ide

in the absence of explicit initializers. In the following example,

enum team { giants, cubs=3, dodgers = giants + 1 }i

the constants are set as follows:

giants = 0, cubs = 3, dodgers = 1

The constant values need not be unique:

enum team { giants, cubs = 1, dodgers = cubs - 1 }i

Constants and internal representation
ANSI C acknowledges that the size and numeric range of the basic data types (and their
various permutations) are implementation-specific and usually derive from the
architecture of the host computer. For Borland C++, the target platform is the IBM PC
family (and compatibles), so the architecture of the Intel 8088 and 80x86
microprocessors governs the choices of internal representations for the various data
types.

The following tables list the sizes and resulting ranges of the data types for Borland
C++. Internal representation of numerical types shows how these types are represented
internally.

Table 1.9 16-bit data types, sizes, and ranges

unsigned char 8 Oto255 Small numbers and full PC character set

char 8 -128 to 127 Very small numbers and ASCn characters

enum 16 -32,768 to 32,767 Ordered sets of values

unsigned int 16 Ot065,535 Larger numbers and loops

shortint 16 -32,768 to 32,767 Counting, small numbers, loop control

int 16 -32,768 to 32,767 Counting, small numbers, loop control

unsigned long 32 o to 4,294,967,295 Astronomical distances

long 32 -2,147,483,648 to 2,147,483,647 Large numbers, populations

float 32 3.4 x 10-38 to 3.4 x 1038 Scientific (7-digit precision)

double 64 1.7 x 10-308 to 1.7 x 10308 Scientific (IS-digit precision)

long double 80 3 . .4 x 10-4932 to 1.1 x 104932 Financial (187digitprecision)

near pointer 16 Not applicable Manipulating memory addresses

far pointer 32 Not applicable Manipulating addresses outside current segment

Table 1.10 32-bit data types, sizes, and ranges

unsigned char 8 Ot0255 Small numbers and full PC character set

char 8 -128 to 127 Very small numbers and ASCn characters

short int 16 -32,768 to 32,767 Counting, small numbers, loop control

unsigned int 32 o to 4,294,967,295 Large numbers and loops

int 32 -2,147,483,648 to 2,147,483,647 Counting, small numbers, loop control

unsigned long 32 o to 4,294,967,295 Astronomical distances

C hap t e r 1, Lex i c a I e I e men t s 19

Table 1.10 32-bit data types, sizes, and ranges (continued)

enum

long

float

double

long double

32

32

32

64

80

-2,147,483,648 to 2,147,483,647 Ordered sets of values

-2,147,483,648 to 2,147,483,647 Large numbers, populations

3.4 x 10-38 to 1.7 X 1038 Scientific (7-digit precision)

1.7 x 10-308to 3.4 x 10308 Scientific (IS-digit precision)

3.4 x 10-4932 to 1.1 X 104932 Financial (18-digit precision)

Figure 1.1 Internal representations of numerical types

int

short int

int, long

float

double

long

16-bit integers
r-
I s Magnitude (2's complement)
1~ - ----- ------------"

Magnitude (2's complement)
I

31

32-bit integers

I,s Magnitude (2's complement)
I

15

!s Magnitude (2's complement)

31

; 1
Floating-point types, always

Biased
II S exponent

31 22
; 1

i Biased
! s exponent

63 51

79

Biased
exponent

Significand

64 63

s = Sign bit (0 = positive, 1 = negative)
i = Position of implicit binary point
1 = Integer bit of significance:

Stored in long double
Implicit (always 1) in float, double

I
___ I

o

Significand

Significand

Exponent bias (normalized values):
float: 127 (7FH)
double: 1,023 (3FFH)
long double:16,383 (3FFFH)

Constant expressions
A constant expression is an expression that always evaluates to a constant (and it must
evaluate to a constant that is in the range of representable values for its type). Constant

20 C++ Pro 9 r Ii m mer's G u ide

expressions are evaluated just as regular expressions are. You can use a constant
expression anywhere that a constant is legal. The syntax for constant expressions is:

constant-expression:

Conditio~al-expression

Constant expressions cannot contain any of the following operators, unless the
operators are contained within the operand of a sizeof operator:

• Assignment

• Comma

• Decrement

• Function call

• Increment

Punctuators
The punctuators (also known as separators) in Borland C++ are defined as follows:

punctuator: one of
[] () { } * #

Br~ckets
Open and close brackets [] indicate single and multidimensional array subscripts:

char ch, str[] = "Stan" i
int mat[3] [4] i

ch = str[3]i

Parentheses

/*3 x4 matrix */
/* 4th element */

Open and close parentheses () are used to group expressions, isolate conditional
expressions, and indicate function calls and function parameters: .

d = c * (a + b)i /* override normal precedence */

if (d == z) ++Xi /* essential with conditional statement */

funC()i /* function call, no args */
int (*fptr) ()i /* function pointer declaration */
fptr = funci /* no () means func pointer * /

void func2(int n)i /* function declaration with parameters */

Parentheses are recommended in macro definitions to avoid potential precedence
problems during expansion:

#define CUBE (x) «x) * (x) * (x))

The use of parentheses to alter the normal operator precedence and associativity rules is
covered in "Expressions" in the online Help.

Chapter 1, Lexical elements 21

Braces
Open and close braces f} :indicate the start and end of a compound statement:

if (d == z)

{

++Xi

func () i

The clos:ing brace serves as a term:inator forthe compound statement, so a-; (semicolon)
is not required after the }, except:in structure or class declarations. Often, the semicolon
is illegal, as :in

if (statement)

Oi
else

Comma

/*illegal semicolon*/

The comma (,) separates the elements of a function argument list:

void func(int n, float f, char Ch)i

The comma is also used as an operator :in comma-expressions.Mix:ing the two uses of
comma is legal, but you must use parentheses to distinguish them:

func(i, j)i /* call func with two args */
func((expl, exp2) , (exp3, exp4, exp5))i /* also calls func with two args! */

Semicolon
The semicolon (;) is a statement term:inator. Any legal C or C++ expression (:includ:ing
the empty expression) followed by a semicolon is :interpreted as a statement, known as
an expression statement. The expression is evaluated and its value is discarded. If the
expression statement has no side effects, Borland C++ might ignore it.

a + bi

++ai

/* maybe evaluate a + b, but discard value */
/* side effect on a, but discard value of ++a */
/* empty expression = null statement */

Semicolons are often used to create an empty statement:

for (i = Oi i < ni i++)

Colon
Use the colon (:) to :indicate a labeled statement:

start: X=Oi

goto starti

Labels are discussed:in uLabeled statements":in the online Help.

22 e++ Programmer's Guide

Ellipsis
The ellipsis (...) is three successive periods with no intervening whitespace. Ellipses are
used in the formal argument lists of function prototypes to indicate a variable number of
arguments, or arguments with varying types:

void func(int n, charch, ...);

This declaration indicates that func will be defined in such a way that calls must have at
least two arguments, an int and a char, but can also have any number of additional
arguments.

In C++, you can omit the comma before the ellipsis.

Asterisk (pointer declaration)
The asterisk. (*) in a variable declaration denotes the creation of a pointer to a type:

char *char-ptr; /* a pointer to char is declared */

Pointers with multiple levels of indirection can be declared by indicating a pertinent
number of asterisks:

int **int-ptr; /* a pointer to an integer array */
double ***double-ptr; /* a pointer to a matrix of doubles */

You can also use the asterisk as an operator to either dereference a pointer or as the
multiplication operator:

i = *int-ptr;

a = b * 3.14;

Equal sign (initializer)
The equal sign (=) separates variable declarations from initialization lists:

char array[5] = { 1, 2, 3, 4, 5 };

int x = 5;

In C++, declarations of any type can appear (with some restrictions) at any point within
the code. In a C function, no code can precede any variable declarations.

In a C++ function argument list, the equal sign indicates the default value for a
parameter:

int f(int i = 0) { ... } /* Parameter i has default value of zero */

The equal sign is also used as the assignment operator in expressions:

int a, b, c;
a = b + c;
float *ptr = (float *) malloc (sizeof (float) * 100);

Pound sign (preprocessor directive)
The pound sign (#) indicates a preprocessor directive when it occurs as the first
nonwhitespace character on a line. It signifies a compiler action, not necessarily
associated with code generation. See "Preprocessor directives" in the online Help for
more on the preprocessor directives.

Chapter 1, Lexical elements 23

and ## (double pound signs) are also used as operators to perform token replacement
and merging during the preprocessor scanning phase.

24 C++ Pro 9 ram mer's G u ide

Language structure
These topics provide a formal definition of Borland C++ language structure. They
describe the legal ways in which tokens can be grouped together to form expressions,
statements, and other significant units.

Declarations
This section briefly reviews concepts related to declarations: objects, storage classes,
types, scope, visibility, duration, and linkage. A general knowledge of these is essential
before tackling the full declaration syntax. Scope, visibility, duration, and linkage
determine those portions of a program that can make legal references to an identifier in
order to access its object.

Objects
An object is an identifiable region of memory that can hold a fixed or variable value (or
set of values). (This use of the word object is different from the more general term used in
object-oriented languages.) Each value has an associated name and type (also known as
a data type). The name is used to access the object. This name can be a simple identifier,
or it can be a complex expression that uniquely "points" to the object. The type is used

• To determine the correct memory allocation required initially.

• To interpret the bit patterns found in the object during subsequent accesses.

• In many type-checking situations, to ensure that illegal assignments are trapped.

Borland C++ supports many standard (predefined) and user-defined data types,
including signed and unsigned integers in various sizes, floating-point numbers in
various precisions, structures, unions, arrays, and classes. In addition, pointers to most
of these objects can be established and manipulated in various memory models.

Chapter 2, Language structure 25

The Borland C++ standard libraries and your own program and header fQes must
provide unambiguous identifiers (or expressions derived from them) and types so that
Borland C++ can consistently access, interpret, and (possibly) change the bit patterns in
memory corresponding to each active object in your program.

Objects and declarations
Declarations establish the necessary mapping between identifiers and objects. Each
declaration associates an identifier with a data type. Most declarations, known as
defining declarations, also establish the creation (where and when) of the object; that is,
the allocation of physical memory and its possible initialization. Other declarations,
known as referencing declarations, simply make their identifiers and types known to the
compiler. There can be many referencing declarations for the same identifier, especially
in a multifile program, but only one defining declaration for that identifier is allowed.

Generally speaking, an identifier cannot be legally used in a program before its
declaration point in the source code. Legal exceptions to this rule (known as forward
references) are labels, calls to undeclared functions, and class, struct, or union tags.

Ivalues
An lvalue is an object locator: an expr~ssion that designates an object. An example of an
lvalue expression is *P, where P is any expression evaluating to a non-null pointer. A
modifiable lvalue is an identifier or expression that relates to an object that can be accessed
and legally changed in memory. A const pointer to a constant, for example, is not a
modifiable lvalue. A pointer to a constant can be changed (but its dereferenced value
cannot).

Historically, the I stood for "left," meaning that an lvalue could legally stand on the left
(the receiving end) of an assignment statement. Now only modifiable lvalues can legally
stand to the left of an assignment statement. For example, if a and bare nonconstant
integer identifiers with properly allocated memory storage, they are both modifiable
lvalues, and assignments such as a = 1; and b = a + b are legal.

rvalues
The expression a + b is not an lvalue: a + b = a is illegal because the expression on the left
is not related to an object. Such expressions are often called rvalues (short for right
values).

Storage classes and types
Associating identifiers with objects requires each identifier to have at least two
attributes: storage class and type (sometimes referred to as data type). The Borland C++
compiler deduces these attributes from implicit or explicit declarations in the source
code.

Storage class dictates the location (data segment, register, heap, or stack) of the object
and its duration or lifetime (the entire running time of the program, or during execution
of some blocks of code). Storage class can be established by the syntax of the declaration,
by its placement in the source code, or by both of these factors.

26 C++ Pro 9 ram mer's G u ide

The type determines how much memory is allocated to an object and how the program
will interpret the bit patterns found in the object's storage allocation. A given data type
can be viewed as the set of values (often implementation-dependent) that identifiers of
that type can assume, together with the set of operations allowed on those values. The
compile-time operator, sizeof, lets you determine the size in bytes of any standard or
user-defined type. See "The sizeof operator" later in this chapter for more on this
operator.

Scope
The scope of an identifier is that part of the program in which the identifier can be used
to access its object. There are five categories of scope: block (or local), function, function
prototype, file, and class (C++ only). These depend on how and where identifiers are
declared.

• Block. The scope of an identifier with block (or local) scope starts at the declaration
point and ends at the end of the block containing the declaration (such a block is
known as the enclosing block). Parameter declarations with a function defuiition also
have block scope, limited to the scope of the block that defines the function.

• . Function. The only identifiers having function scope are statement labels. Label
names can be used with goto statements anywhere in the function in which thelabel
is declared. Labels are declared implicitly by writing labeCname: followed by a
statement. Label names must be unique within a function.

• Function prototype. Identifiers declared within the list of parameter declarations in a
function prototype (not part of a function definition) have function prototype scope.
This scope ends at the end of the function prototype.

• File. File scope identifiers, also known as globals, are declared outside of all blocks
and classes; their scope is from the point of declaration to the end of the source file.

• Class (C++). A class is a named collection of members, including data structures and
functions that act on them. Class scope applies to the names of the members of a
particular class. Classes and their objects have many special access and scoping rules.

• Condition (C++). Declarations in conditions are supported. Variables can be
declared within the expression of if, while, and switch statements. The scope of the
variable is that of the statement. In the case of an if statement, the variable is also in
scope for the else block.

Name spaces
Name space is the scope within which an identifier must be unique. C uses four distinct
classes of identifiers:

• goto label names. These must be unique within the function in which they are
declared.

• Structure, union, and enumeration tags. These must be unique within the block in
which they are defined. Tags declared outside of any function must be unique with­
in all.

Chapter 2, Language structure 27

• Structure and union member names. These must be unique within the structure or
union in which they are defined. There is no restriction on the type or offset of
members with the same member name in different structures.

• Variables, typedefs, functions, and enumeration members. These must be unique
within the scope in which they are defined. Externally declared identifiers must be
unique among externally declared variables.

Note Structures, classes, and enumerations are in the same name space in C++.

Visibility
The visibility of an identifier is that region of the program source code from which legal
access can be made to the identifier's associated object.

Scope and vi~ibility usually coincide, although there are circumstances under which an
object becomes temporarily hidden by the appearance of a duplicate identifier: the object
still exists but the original identifier cannot be used to access it until the scope of the
duplicate identifier is ended.

Note Visibility cannot exceed scope, but scope can exceed visibility.

int i; char Chi // auto by default
i = 3; // int i and char ch in scope and visible

double i;
i = 3.0e3;

ch = 'A';

i += 1;

// double i in scope and visible
// int i=3 in scope but hidden
// char ch in scope and visible

/1 double i out of scope
// int i visible and = 4

// char ch still in scope & visible = 'A'
}

/1 int i and char ch out of scope

Again, special rules apply to hidden class names and class member names: C++
operators allow hidden ideIltifiers to be accessed unde! certain conditions.

Duration
Duration, closely" related to storage class, defines the period during which the declared
identifiers have real, physical objects allocated in memory. We also distinguish between
compile-time and run-time objects. Variables, for instance, unlike typedefs and types,
have real memory allocated during run time. There are three kinds of duration: static,
local, and dynamic.

28 e++ Programmer's Guide

Static
Memory is allocated to objects with static duration as soon as execution is underway;
this storage allocation lasts until the program terminates. Static duration objects usually
reside in fixed data segments allocated according to the memory model in force. All
functions, wherever defined, are objects with static duration. All variables with file
scope have static duration. Other variables can be given static duration by using the
explicit static or extern storage class specifiers.

Static duration objects are initialized to zero (or null) in the absence of any explicit
initializer or, in C++, constructor.

Don't confuse static duration with file or global scope. An object can have static duration
and local scope.

Local
Local duration objects, also known as automatic objects, lead a more precarious existence.
They are created on the stack (or in a register) when the enclosing block or function is
entered. They are deallocated when the program exits that block or function. Local
duration objects must be explicitly initialized; otherwise, their contents are
unpredictable. Local duration objects must always have local or function scope. The
storage class specifier auto can be used when declaring local duration variables, but is
usually redundant, because auto is the default for variables declared within a block. An
object with local duration also has local scope, because it does not exist outside of its
enclosing block. The converse is not true: a local scope object can have static duration.

When declaring variables (for example, int, char, float), the storage class specifier
register also implies auto; but a request (or hint) is passed to the compiler that the object
be allocated a register if possible. Borland C++ can be set to allocate a register to a local
integral or pointer variable, if one is free. If no register is free, the variable is allocated as
an auto, local object with no ,warning or error. .

Note The Borland C++ compiler can ignore requests for register allocation. Register allocation
is based on the compiler's analysis of how a variable is used.

Dynamic
Dynamic duration objects are created and destroyed by specific function calls during a
program. They are allocated storage from a special memory reserve known as the heap,
using either standard library functions such as malloc, or by using the C++ operator
new. The corresponding deallocations are made using free or delete.

Translation units
The term translation unit refers to a source code file together with any included files, but
less any source lines omitted by conditional preprocessor directives. Syntactically, a
translation unit is defined as a sequence of external declarations:

translation-unit:

external-declaration

translation-unit external-declaration

C hap t e r 2, Lan 9 u age 5 t rue t u r e 29

external-declaration

function-definition

declaration

The word external has several connotations in C; here it refers to declarations made
outside of any function, and which therefore have file scope. (External linkage is a
distinct property; see the section ilLinkage.") Any declaration that also reserves storage
for an object or function is called a definition (or defining declaration). For more details,
see ilExternal declarations and definitions."

Linkage
An executable program is usually created by compiling several independent translation
units, then linking the resulting object files with preexisting libraries. A problem arises
when the same identifier is declared in different scopes (for example, in different files),
or declared more than once in the same scope. Linkage,is the process that allows each
instance of an identifier to be associated correctly with one particular object or function.
All identifiers have one of three linkage attributes, closely related to their scope: external
linkage, internal linkage, or no linkage. These attributes are determined by the
placement and format of your declarations, together with the explicit (or implicit by
default) use of the storage class specifier static or extern.

Each instance of a particular identifier with external linkage represents the same object or
function throughout the entire set of files and libraries making up th~ program. Each
instance of a particular identifier with internal linkage represents the same object or
function within one file only. Identifiers with no linkage represent unique entities.

External and internal linkage rules
• Any object or file identifier having file scope will have internal linkage if its

declaration contains the storage class specifier static.

• For C++, if the same identifier appears with both internal and external linkage within
the same file, the identifier will have extemallinkage. In C, it will have internal
linkage.

• If the declaration of an object or function identifier contains the storage class specifier
extern, the identifier has the same linkage as any visible declaration of the identifier
with file scope. If there is no such visible declaration, the identifier has external
linkage.

• If a function is declared without a storage class specifier, its linkage is determined as
if the storage class specifier extern had been used.

• If an object identifier with file scope is declared without a storage class specifier, the
identifier has external linkage. '

Identifiers with no linkage attribute:

• Any identifier declared to be other than an object, or a function (for example, a
typedef identifier)

30 c++ Programmer's Guide

• Function parameters

• Block scope identifiers for objects declared without the storage class specifier extern

Name mangling
When a C++ module is compiled, the compiler generates function names that include an
encoding of the function's argument types. This is known as name mangling. It makes
overloaded functions possible, and helps the linker catch errors in calls to functions in
other modules. However, there are times when you won't want name mangling. When
compiling a C++ module to be linked with a module that does not have mangled
names, the C++ compiler has to be told not to mangle the names of the functions from
the other module. This situation typically arises when linking with libraries or .OBJ files
compiled with a C compiler.

To tell the C++ compiler not to mangle the name of a function, declare the function as
extern " C " , like this:

extern "C" void Cfunc (int);

This declaration tells the compiler that references to the function Cfimc should not be
mangled.

You can also apply the extern "C" declaration to a block of names:

extern "C" {

} ;

void Cfuncl(int);
void Cfunc2(int);
void Cfunc3(int);

As with the declaration for a single function, this declaration tells the compiler that
references to the functions Cfunc1, Cfunc2, and Cfunc3 should notbe mangled. You can
also use this form of block declaration when the block of function names is contained in
a header file:

extern "C"
#include "locallib.h"

} ;

Introduction to declaration syntax
All six interrelated attributes (storage classes, types, scope, visibility, duration, and
linkage) are determined in diverse ways by declarations.

Declarations can be defining declarations (also known as definitions) or referencing
declarations (sometimes known as nondefining declarations). A defining declaration, as the
name implies, performs both the duties of declaring and defining; the nondefining
declarations require a definition to be added somewhere in the program. A referencing
declaration introduces one or more identifier names into a program. A definition
actually allocates memory to an object and associates an identifier with that object.

Chapter 2, Language structure 31

Tentative definitions
The ANSI C standard supports the concept of the tentative definition. Any external data
declaration that has no storage class specifier and no initializer is considered a tentative
definition. If the identifier declared appears in a later definition, then the tentative
definition is treated as if the extern storage class specifier were present. In other words,
the tentative definition becomes a simple referencing declaration.

If the end of the translation unit is reached and no definition has appeared with an
initializer for the identifier, then the tentative definition becomes a full definition, and
the object defined has uninitialized (zero-filled) space reserved for it. For example,

int x;

int x;
int y;
int y = 4; .
int z = 5;
int z = 6;

/*legal, one copy of x is reserved */

/* legal, y is initialized to 4 */

/* not legal, both are initialized definitions*/

Unlike ANSI C, C++ doesn't have the concept of a tentative declaration; an external data
declaration without a storage class specifier is always a definition.

Possible declarations
The range of objects that can be declared includes

• Variables

• Functions

• Classes and class members (C++)

• Types

• Structure, union, and enumeration tags

• Structure members

• Union members

• Arrays of other types

• Enumeration constants

• Statement labels

• Preprocessor macros

The full syntax for declarations is shown in Tables 2.1 through 2.3. The recursive nature
of the declarator syntax allows complex declaratdrs. You'll probably want to use
typedefs to improve legibility.

In Borland C++ declaration syntax, note the restrictions on the number and order of
modifiers and qualifiers. Also, the modifiers listed are the only addition to the

32 C++ P ra 9 ram mer's G u ide

declarator syntax that are not ANSI C or C++._These modifiers are each discussed in
greater detail in "Variable modifiers," "Pointer modifiers," and "Function modifiers."

Table 2.1 Borland C++ declaration syntax

declaration: elaborated-type-specifier:

<decl-specifiers> <declarator-list>;
asm-declaration
function-declaration

linkage-specification

decl-specifier:
storage-class-specifier

type-specifier

function-specifier

friend (C++ specific)

typedef

decl-specifiers:

<decl-specifiers> decl-specifier
storage-class-specifier:

auto

register

static

extern

function-specifier: (C++ specific)

inline

virtual

simple-type-name:
class-name

typedef-name

char

short

int
long

signed

unsigned

float

double

void

declarator-list:

init -declarator

declarator-list, init-declarator

init-declarator:
. declarator <initializer>

declarator:
dname

class-key identifier
class-key class-name

enum enum-name

class-key: (C++ specific)

class

struct

union

enum-specifier:

enum <identifier> { <enum-list> }
enum-list:
r~enumerator

enumerator-list I enumerator

enumerator:

identifier
identifier = constant-expression

constant-expression:

conditional-expression

linkage-specification: (C++ specific)

extern string { <declaration-list> }
extern string declaration

type-specifier:

simple-type-name

class-specifier
enum-specifier

elaborated.,-type-specifier

const

volatile

declaration-list:
declaration

declaration-list; declaration

type-name:
type-specifier <abstract-declarator>

abstract-declarator:

pointer-operator <abstract-declarator>

<abstract-declarator> (argument-declaration-list)

<cv-qualifier-Jist>
<abstract-declaratOr> [<constant-expression>]

Chapter 2, Language structure 33

Table 2.1 Borland C++ declaration syntax
modifier-list (abstract-declarator)

pointer-operator declarator

declarator (parameter-declaration-list)

<cv-qualifier-list >
(The <cv-qualifier-list > is for C++ only.)

declarator [<constant-expression>]
(declarator)

modifier-list:

modifier

modifier-list modifier

modifier:
__ cdecl

__ pascal

__ interrupt

__ near

__ far

__ huge

pointer-operator:

* <cv-qualifier-list>
& <cv-qualifier-list> (C++ specific)

class-name :: * <cv-qualifier-list>
(C++ specific)

cv-qualifier-list:

cv-qualifier <cv-qualifier-list>
cv-qualifier

const

volatile

dname:

name

class-name (C++ specific)

- class-name (C++ specific)

type-de fined-name

argument -declaration-list:

<arg-declaration-list>

arg-declaration-list , ...
<arg-declaration-list> ... (C++ specific)

arg-declaration-list:

argument-declaration

arg-declaration~list, argument-declaration
. argument-declaration:

decl-specifiers declarator

decl-specifiers declarator = expression

(C++ specific)

decl-specifiers <abstract-declarator>

decl-specifiers <abstract-declarator> = expression
(C++ specific)

function-definition:

function-body:

compound-statement
initializer:

= expression
= { initializer-list }
(expression-list) (C++ specific)

initializer:..list:

expression

initializer-list, expression

{ initializer-list <,> }

External declarations and definitions
The storage class specifiers auto and register cannot appear in an external declaration.
For each identifier in a translation unit declared with internal linkage, no more than one
external definition can be given.

An external definition is an external declaration that also defines an object or function;
that is, it also allocates storage. If an identifier declared with external linkage is used in
an expression (other th~n as part of the operand of sizeof), then exactly one external
definition of that identifier must be somewhere in the entire program.

34, c++ Programmer's Guide

Borland C++ allows later re-declarations of external names, such as arrays, structures,
and unions, to add information to earlier declarations. Here's an example:

int a[]; I I no size

struct mystruct; II tag only, no member declarators

int a[3] = {i, 2, 3}; II supply size and initialize
struct mystruct {

int i, j;
} ; II add member declarators

Table 2.2 covers class declaration syntax. In the section on classes (beginning with
"Classes"), you can find examples of how to declare a class. Referencing covers C++
reference types (closely related to pointer types) in detail.

Table 2.2 Borland C++ class declaration syntax (C++ only)

class-head { <member-list> }
class-head:

class-key <identifier> <base-Bpecifier>

class-key class-name <base-specifier>
member-list:

member-declaration <member-list>

access-specifier: <member-list>

member-declaration:

<decl-specifiers> <member-declarator-list> ;

function-definition <;>

qualified-name;

member-declarator-list:

member-declarator
member-declarator -list, member-declarator

member-declarator:

declarator <pure-specifier>

<identifier> : constant-expression

pure-specifier:

=0

member -initializer -list:

member-initializer
member-initializer ,member-initializer-list

member-initializer:

class name (<argument-list>)

identifier (<argument-list>)

operator-function-name:

operator operator-:name

: base-list

base-list:

base-specifier

base-list, base-specifier

base-specifier:

class-name

virtual <access-specifier> class-name

access-specifier <virtual> class-name

access-specifier:

private

protected

public

conversion-function-name:
operator conversion-type-name

conversion-type-name:

type-specifiers <pointer-operator>

constructor-initializer:

: member-initializer-list

operator-name: one of

new delete 1 typeid

+-*I%A

&I-!=<>
+= _= =* 1= 0/0= A=
&= 1= « » »= «=

!= <= >= && II

++ , ->* -> 0
[] .*

Chapter 2, Language structure 35

Type specifiers
The type specifier with one or more optional modifiers is used to specify the type of the
declared identifier: . '

int i; II declare i as a signed integer
unsigned char chI, ch2; II declare two unsigned chars

By long-standing tradition, if the type specifier is omitted, type signed int (or
equivalently, int) is the assumed default. However, in C++, a missing type specifier can
lead to syntac,tic ambiguity, soC++ practice requires you to explicitly declare all int type
specifiers.

Type categories
The four basic type categories (and their subcategories) are as follows:

• Aggregate

• Array
.. strud

'. union
• class (C++ only)

• Function

• Scalar

• Arithmetic

• Enumeration
III Pointer

• Reference (C++ only)

• void

Types can also be viewed in another way: they can be fundamental or derived types. The
fundamental types are void, char, int, float, and double, together ~ith short, long,
signed, and unsigned variants of some of these. The derived types include pointers and
references to other types, arrays of other types, function types, class types, structures,
and unions.

A class object, for example, can hold a number of objects of different types together with
functions for manipulating these objects, plus a mechanism to control access and
inheritance from other classes.

36 c++ Programmer's Guide

Given any nonvoid type type (with some provisos), you can declare derived types as
follows:

Table 2.3 Declaring types

typet;

type array[lO];
type *ptr;

type &ref=,t;
type func(void);

void func1 (type t);

struct st {type t1; type t2};

An object of type type

Ten types: array[O] - array[9]

ptr is a poihter to type

ref is a reference to type (C++)

func returns value of type type

func1 takes a type type parameter

structure st holds two types

Note type& var, type &var, and type & var are all equivalent.

Type void

Syntax
void identifier

Description
void is a special type indicating the absence of any value. Use the void keyword as a
function return type if the function does not return a value.

void hello (char *name)

printf("Hello, %s. II ,name) i

Use void as a function heading if the function does not take any parameters.

int init(void)

return 1i

Void pointers
Generic pointers can also be declared as void, meaning that they can point to any type.

void pointers cannot be dereferenced without explicit casting because the compiler
cannot determine the size of the pointer object.

Example
int Xi

float r;
void *p = &xi

int main (void)

*(int *) p = 2i

/* p points to X */

Chapter 2, Language structure 37

p = &r; /* p points to r */

*(float *)p = 1.1;

The fundamental types
The fundamental type specifiers are built from the following keywords:

char

double

float

int

long

short

signed

unsigned

From these keywords you can build the integral and ·floating-point types, which are
together known as the arithmetic types. The modifiers long, short, signed, and unsigned
can be applied to the integral types. The include file limits.h contains definitions of the
value ranges for all the fundamental types.

Integral types
char, short, int, and long, together with their unsigned variants, are all considered
integral data types. Integral types shows the integral type specifiers, with synonyms
listed on the same line.

Table 2.4 Integral types

char, signed char

unsigned char

char, unsigned char

signed char

int, signed int

unsigned, unsigned int

short; short int, signed short int

unsigned short, unsigned short int

long, long int, signed long int

unsigned long, unsigned long int

Synonyms if default char set to signed.

Synonyms if default char set to unsigned.

Note These synonyms are not valid in C++. See "The three char types" in Chapter l.

Only signed or unsigned can be used with char, short, int, or long. The keywords
signed and unsigned, when used on their own, mean signed int and unsigned int,
respectively.

In the absence of unsigned, signed is~ usually assumed. An exception arises with char.
Borland C++ lets you set the default for char to be signed or unsigned. (The default, if
you don't set it yourself, is signed.) If the default is set to unsigned, then the declaration
char ch declares ch as unsigned. You would need to use signed char ch to override
the default. Similarly, with a signed default for char, you would need an explicit
unsigned char ch to declare an unsigned char.

38 ett Programmer's Guide

Only long or short can be used with int. The keywords long and short used on their
own mean long int and short int.

ANSI C does not dictate the sizes or internal representations of these types, except to
indicate that short, int, and long form a nondecreasing sequence with "short <= int <=
long." All three types can legally be the same. This is important if you want to write
portable code aimed at other platforms.

In a Borland C++ 16-bit program, the types int and short are equivalent, both being 16
bits. In a Borland C++ 32 -bit program, the types int and long are equivalent, both being
32 bits. The signed varieties are all stored in two's complement format using the most
significant bit (MSB) as a sign bit: a for positive, 1 for negative (which explains the
ranges shown in 16-bit data types, sizes, and ranges and 32-bit data types, sizes, and
ranges). In the unsigned versions, all bits are used to give a range of 0- (2 -I), where n is
8,16, or 32.

Floating-point types
The representations and sets of values for the floating-point types are implementation
dependent; that is, each implementation of C is free to define them. Borland C++ uses
the IEEE floating-point formats. See Chapter 12, "ANSI Implementation-specific
standards," for more information.

float and double are 32- and 64-bit floating-point data types, respectively. long can be
used with double to declare an 80-bit precision floating-point identifier: long double
test_case, for example.

16-bit data types, sizes, and ranges and 32-bit data types, sizes, and ranges indicate the
storage allocations for the floating-point types.

Standard arithmetic conversions
When you use an arithmetic expression, such as a + b, where a and b are different
arithmetic types, Borland C++ performs certain internal conversions before the
expression is evaluated. These standard conversions include promotions of "lower"
types to "higher" types in the interests of accuracy and consistency.

Here are the steps Borland C++ uses to convert the operands in an arithmetic
expression:

Any small integral types are converted as shown in Table 2.5. After this, any two
values associated with an operator are either int (including the long and unsigned
modifiers), or they are of type double, float, or long double.

2 If either operand is of type long double, the other operand is converted to long
double.

3 Otherwise, if either operand is of type double,the other operand is converted to
double.

4 Otherwise, if either operand is of type float, the other operand is converted to float.

S Otherwise, if either operand is of type unsigned long, the other operand is converted
to unsigned long.

C hap t e r 2, Lan 9 u age s t rue t ur e 39

6 Otherwise, if either operand is of type long, then the other operand is converted to
long.

7 Otherwise, if either operand is of type unsigned, then the other operand is/converted
to unsigned.

8 Otherwise, both operands are of type into

The result of the expression is the same type as that of the two operands.

Table 2.5 Methods used in standard arithmetic conversions

char int Zero or sign-extended (depends on default char type)

unsigned char int Zero-filled high byte (always)

signed char int Sign-extended (always)

sh,ort int Same value; sign extended

unsigned short unsigned int Same value; zero filled

enum int Same value

Special char, int, and enum conversions
Note The conversions discussed in this section are specific to Borland C++.

Assigning a signed character object (such as a variable) to an integral object results in
automatic sign extension. Objects of type signed char always use sign extension; objects
of type unsigned char always set the high byte to zero when converted to into

Converting a longer integral type to a shorter type truncates the higher order bits and
leaves low-order bits unchanged. Converting a shorter integral type to a longer type
either sign-extends or zero-fills the extra bits of the new value, depending on whether
the shorter type is signed or unsigned, respectively.

Initialization
Initializers set the initial value that is stored in an object (variables, arrays, structures, and
so on). If you don't initialize an object, and it has static duration, it will be initialized by
default in the following manner:

• To zero if it is an arithmetic type

• To null if it is a pointer type

Note If the object has automatic storage duration, its value is indeterminate.

Syntax for initializers
initializer

= expression

= {initializer-list} <,>}

(expression list)

initializer-list

40 c++ Programmer's Guide

expression

initializer-list, expression

{initializer~list} <,>}

Rules governing initializers
• The number of initializers in the initializer list cannot be larger than the number of

objects to be initialized.

• The item to be initialized must be an object (for example, an array) of unknown size.

• For C (not required for C++), all expressions must be constants if they appear in one
of these places:

• In an initializer for an object that has static duration .

.. In an initializer list for an array, structure/or union (expressions using sizeof are
also allowed).

• If a declaration for an identifier has block scope, and the identifier has external or
internal linkage, the declaration cannot have an initializer for the identifier.

• If a brace-enclosed list has fewer initializers than members of a structure, the
remainder of the structure is initialized implicitly in the same way as objects with
static storage duration.

Scalar types are initialized with a single expression, which can optionally be enclosed in
braces. The initial value of the object is that of the expression; the same constraints for
type and conversions apply as for simple assignments.

For unions, a brace-enclosed initializer initializes the member that first appears in the
union's declaration list. For structures or unions with automatic storage duration, the
initializer must be one of the following:

• An initializer list (as described in "Arrays, structures, and unions").

• A single expression with compatible union or structure type. In this case, the initial
value of the object is that of the expression.

Arrays, structures, and unions
You initialize arrays and structures (at declaration time, if you like) with a brace­
enclosed list of initializers for the members or elements of the object in question. The
initializers are given in increasing array subscript or member order. You initialize
unions with a brace-enclosed initializer for the first member of the union. For example,
you could declare an array days, which counts how many times each day of the week
appears in a month (assuming that each day will appear at least once), as follows:

int days[7] = { 1, 1, 1, 1, 1, 1, 1 }

The following rules initialize character a.rrays and wide character arrays:

• You can initialize arrays of charact~r type with a literal string, optionally enclosed in
braces. Each character in the string, including the null terminator, initializes
successive elements in the array. For example, you could declare

C hap t e r 2, Lan 9 u age 5 t rue t u r e 41

char name [] = { "Unknown" };

which sets up an eight-element array, whose elements are 'U' (for name[O]), In' (for
name[l]), and so on (and including a null terminator).

• You can initialize a wide character array (one that is compatible with wchar _t) by
using a wide string literal, optionally enclosed in braces. As with character arrays, the
codes of the wide string literal initialize successive elements of the array.

Here is an example of a structure initialization:

struct mystruct {
:i,nt i;
char str [21] ;

double d;

} s = { 20, "Borland", 3.141 }i

Complex members of a structure, suchas arrays or structures, can be initialized with
suitable expressions inside nested braces.

Declarations and declarators
A declaration is a list of names. The names are sometimes referred to as declarators or
identifiers. The declaration begins with optional storage class specifiers, type specifiers,
and other modifiers. The identifiers are separated by commas and the list is terminated
by a semicolon.

Simple declarations of variable identifiers have the following pattern:

data-type varl <=init1>, var2 <=init2>, ... ;

where varl, var2, ... are any sequence of distinct identifiers with optional initializers.
Each of the variables is declared to be of type data-type. For example,

int x = 1, y = 2;

creates two integer variables called x and y (and initializes them to the values 1 and 2,
respectively).

These are all defining declarations; storage is allocated and any optional initializers are
applied.

The initializer for an automatic object can be any legal expression that evaluates to an
assignment-compatible value for the type of the variable involved. Initializers for static
objects must be constants or constant expressions.

In C++, an initializer for a static object can be any expression involving constants and
previously declared variables and functions.

The format of the declarator indicates how the declared name is to be interpreted when
used in an expression. If type is any type, and storage class specifier is any storage class
specifier, and if Dl and D2 are any two declarators, then the declaration

storage-dass-specifier type Dl, D2;

indicates that each occurrence of Dl br D2 in an expression will be treated as an object of
type type and storage class storage class specifier. The type of the name embedded in the

42 c++ Programmer's Guide

declarator will be some phrase containing type, such as "type," "pointer to type," "array
of type," "function returning type," or "pointer to function returning type," and so on.

For example, in Table 2.6, each of the declarators could be used as rvalues (or possibly
lvalues in some cases) in expressions where a single int object would be appropriate.
The types of the embedded identifiers are derived from their declarators as follows:

Table 2.6 Declaration syntax examples

type name; type int count;

type name[]; (open) array of type int count[];

type name[3]; Fixed array of three elements, all of type int count[3];
(name[O], name[l], and name[2])

type*name; Pointer to type int*count;

type *name[]; (open) array of pointers to type int *count[];

type *(name[]); Same as above int *(count[]);

type (*name)[]; Pointer to an (open) array of type int (*count) [];

type &name; Reference to type (C++ only) int&count;

typenameO; Function returning type intcountO;

type *nameO; Function returning pointer to type int *countO;

type *(name()); Same as above int *(count());

type (*name)O; Pointer to function returning type int (*count) 0;

Note the need for parentheses in (*name)[] and (*name)(); this is because the precedence
of both the array declarator [] and the function declarator () is higher than the pointer
declarator *. The parentheses in *(name[]) are optional.

Note See Table 2.1 for the declarator syntax. The definition covers both identifier and function
declarators.

Storage class specifiers
Storage classes specifiers are also called type specifiers. They dictate the location (data
segment, register, heap, or stack) of an object and its duration or lifetime (the entire
running time of the program, or during execution of some blocks of code). Storage class
can be established by the declaration syntax, by its placement in the source code, or by
both of these factors.

The keyword mutable does not affect the lifetime of the class member to which it is
applied.

The storage class specifiers in Borland C++ are:

auto

_declspec

extern

mutable

register

static

typedef

Chapter 2, Language structure 43

Variable modifiers
In addition to the storage class specifier keywords, a declaration can use certain modifiers
to alter some aspect of the identifier. The modifiers available with Borland C++ are
summarized in Table 2.8. '

canst

Syntax
canst <variable name> [= <value> 1 ;
<function name> (canst <type>*<variable name> ;)
<function name> canst;

Description .
Use the const modifier to make a variable value unmodifiable.

Use the const modifier to assign an initial value to a variable that cannot be changed by
the program. Any future assignments to a const result in a compiler error.

A const pointer cannot be modified, though the object to which it points can be changed.
Consider the following examples. ,

canst. float pi = 3 .14;
canst maxint = 12345; II When used by itself, canst is equivalent to into
char *const str1 = "Hello, world"; I I A constant pointer
char canst *str2 = "Borland International"; II A pointer to a constant

II character string.

Given these declarations, the following statements are legal.

pi = 3.0; II Assigns a value to a canst.
i = maxint++; II Increments a canst.
str1 = "Hi, there!" II Points str1 to something else.

Using the const keyword in C++ programs
C++ extends const to include classes and member functions. In a C++ class definition,
use the const modifier following a member function declaration. The member function
is prevented from modifying any data in the class.

A class object defined with the const keyword attempts to use only member functions
that are also defined with const. If you call a member function that is not defined as ;
const, the compiler issues a warning that the a non-const function is being called for a
const object. Using the const keyword in this manner is a safety feature of C.

Warning A pointer can indirectly modify a const variable, as in the following:

*(int *)&my_age = 35;

If you use the const modifier with a pointer parameter in a function's parameter list, the
function cannot modify the variable that the pointer points to. For example,

int printf (canst char * format , ...);

44 C++ Programmer's Guide

print! is prevented from modifymg the format string.

Example 1
class X

int ji
public:

X::X() {j = Oi}i
int lowerBound(} consti I I roES NOT MODIFY ANY DATA MEMBERS
int dimension(X xl, const X &x2} II x2 DATA MEMBERS WON'T BE MODIFIED

x1.j = 3i II OKAYi xl OBJECT IS MODIFIABLE
x2.j = 5i

return X2.ji
II ERRORi x2 IS NOT MODIFIABLE

} i

Example 2
#include <iostream.h>

class Alpha
int numi

public:
Alpha(int j = O} { num = ji }
int func(int i} const {

cout « "Non-modifying function." « endli
return i++i

int func(int i}
cout « "Modify private data" « endli
return num = i i

int f (int i) { cout « "Non-const function called with i = " « i « endli return ii}
} i

void main(}
Alpha alpha_modi
const Alpha alpha_insti

alpha_mod.func(l}i
alpha_mod. f (1) i

alpha_inst.func(l}i
alpha_inst. f (1) i

}

Output
Modify private data

II Calls the non-const functions.
II Attempts to call the const functions.

II Causes a compiler warning.

Non-const function called with i 1
Non-modifying function.
Non-const function called with i 1

Chapter 2, Language structure 45

volatile

Syntax
volatile <data definition>

Description
Use the volatile modifier to indicate that a variable can be changed by a background
routine, an interrupt routine, or an I/O port. Declaring an object to be volatile warns the
compiler not to make assumptions concerning the value of the object while evaluating
expressions in which it occurs because the value could change at any moment. It also
prevents the compiler from making the variable a register variable.

The routines in this example (assuming timer has been properly associated with a
hardware clock interrupt) implement a timed wait of ticks specified by the argument
interval. A highly optimizing compiler might not load the value of ticks inside the test of
the while loop since the loop doesn't change the value of ticks.

Note C++ extends volatile to include classes and member functions. If you've declared a
volatile object, you can use only its volatile member functions.

Mixed-language calling conventions
Borland C++ allows your programs to easily call routines written in other languages,
and vice versa. When you mix languages, you have to deal with two important issues:
identifiers and parameter passing.

By default, Borland C++ saves all global identifiers in their original case (lower, upper,
or mixed) with an underscore" _" prepended to the front of the identifier. To remove the
default, you can select the -u command-Jine option, or uncheck the compiler option
setting in the IDE.

Note The section "Linkage" tells how to use extern, which allows C names to be referenced
from a C++ program.

Table 2.7 summarizes the effects of a modifier applied to a called function. For every
modifier, the table shows the order in which the function parameters are pushed on the
stack. Next, the table shows whether the calling program (the caUer) or the called
function (the callee) is responsible for popping the parameters off the stack. Finally, the
table shows the effect on the name of a global function.

Table 2.7 Calling conventions

_ jastcall Left first

__ pascal

__ stdcall

1. This is the default.

Left first

Right first

46 C++ 'p r 0 9 ram me r 's G u ide

Callee

Callee

Uppercase

No change

Note __ fastcall and ~ _stdcall are subject to name mangling. See the description of the -VC
option.

cdecl, _cdecl, __ cdecl

Syntax
cdecl <data/function definition>
_cdecl <data/function definition> ;
__ cdecl <data/function definition>

Description
Use a cdecl, _cdecl, or __ cdecl modifier to declare a variable or a function using the
C-style naming conventions (case-sensitive, with a leading underscore appended).
When you use cdecl, _cdecl, or __ cdecl in front of a function, it effects how the
parameters are passed (last parameter is pushed first, and the caller cleans up the stack).
The __ cdecl modifier overrides the compiler directives and IDE options and allows the
function to be called as a regular C function.

The cdecl, _ cdecl, and __ cdecl keywords are specific to Borland C++.

Example
int cdecl FileCount;
long far cdecl HisFunc(int x);

pascal,._pascal, __ pascal

Syntax
pascal <data-definition/function-definition>
-pascal <data-definition/function-definition> ;
_ -pascal <data-definition/function-definition>

Description
Use the pascal, _pascal, and __ pascal keywords to declare a variable or a function using
a Pascal-style naming convention (the name is in uppercase).

In addition, pascal declares Pascal-style parameter-passing conventions when applied
to a function header (first parameter pushed first; the called function cleans up the ..
stack).

In C++ programs, functions declared with the pascal modifer will still be mangled.

Examples
int pascal FileCount;
far pascal long ThisFunc(int XI char *s);

C hap t e r 2, Lan 9 u age s t rue t u r e 47

_stdcall, __ stdcall

Syntax
__ stdcall <function-name>
_stdcall <function-name>

Description
The _stdcall and __ stdcall keywords force the compiler to generate function calls using
the Standard calling convention. The resulting function calls are smaller and faster.
Functions must pass the correct number and type of arguments; this is unlike normal C
use, which permits a variable number of function arguments. Such functions comply
with the standard WIN32 argument-passing convention.

Note The __ stdcall modifier is subject to name mangling. See the description of the -VC
option.

'_fastcall, __ fastcall

Syntax
_fastcall function-name

fastcall function-name

Description
Use the _fastcall modifiers to declare functions that expect parameters to be passed in
registers.

The compiler treats this calling convention as a new language specifier, along the lines
of _cded and _pascal.

Functions declared using _cded or _pascal cannot also have the _fastcall modifiers
because they use the stack to pass parameters. Likewise, the _fastcall modifiers cannot
be used together with _export or _loadds.

The compiler generates a warning if you mix functions of these types or if you use the
_fastcall modifiers in a dangerous situation. You can, however, use functions that use
the _fastcall or __ fastcall conventions in overlaid modules (for example, with modules
that will use VROOMM).

The compiler prefixes the _fastcall function name with an at-sign (@). This prefix
applies to both unmangled C function names and to mangled c++ function names.

Note The __ fastcall modifier is subject to name mangling. See the description of the -VC
option.

Multithread variables
The keyword _ _ thread is used in multithread programs to preserve a unique copy of
global and static class variables. Each program thread maintains a private copy of a
_ _ thread variable for each threaded. process.

48 c++ Programmer's Guide

The syntax is Type __ thread variable __ name. For example

int __ thread Xi

declares an integer type variable that will be global but private to each thread in the
program in which the statement occurs.

The __ thread modifier can be used with global (file-scope) and static variables. The
modifier cannot be used with pointers or functions. (However, you can have pointers to
__ thread objects.) A program element that requires run-time initialization or run-time
finalization cannot be declared to be a __ thread type. The following declarations
require run-time ~tialization and are therefore illegal.

int f() i

int __ thread x = f()i II illegal

Instantiation of a class with a user-defined constructor or destructor requires run-time
initialization and is therefore illegal.

class X {
X()i

-X() i

} i

X __ thread myclassi II illegal

Pointer modifiers
Borland C++ has modifiers that affect the pointer declarator(*); that is, they modify
pointers to data. These are __ near, __ far, __ huge, __ cs, __ ds, __ es, __ seg, and __ ss.

You can compile a program using one of several memory models. The model you use
determines (among other things) the internal format of pointers. For example, if you use
a small data model (small or medium), all data pointers contain a 16.;.bit offset from the
data segment (DS) register. If you use a large data model (compact or large), all pointers
to data are 32 bits long and give both a segment address and an offset.

Sometimes when you're using one size of data model, you want to declare a pointer to
be of a different size or format than the current default. You do so using the pointer
modifiers.

See __ near, __ far, and __ huge for an in-depth explanation of these types of pointers,
and a description of normalized pointers. Also see the additional discussions of __ cs,
__ ds, __ es, __ seg, and __ ss. .

Function modifiers
This section presents descriptions of the Borland C++ function modifiers

In addition to their use as pointer modifiers, the __ near, __ far, and __ huge modifiers
can also be used as function type modifiers; that is, they can modify functions and
function pointers .as well as data pointers. In addition, you can use the __ loadds,
__ export, __ import, and __ saveregs modifiers to modify functions.

Note Tiny and huge memory models are not supported in Windows programs.

C hap t e r 2, Lan 9 u age 5 t rue t u r e 49

Also see uClass memory model specifications" in Chapter 3.

m a 16-bit program, the __ import can be used only as a modifier for class declarations.
In 32-bit programs the keyword can be applied to class, function, and variable
declarations.

The _ ...:.near, __ far, and __ huge function modifiers can be combined with __ cdecl or
__ pascal, but not with __ interrupt.

Functions of type __ huge are useful when interfacing with code in assembly language
that doesn't use the same memory allocation as Borland C++.

A function that is not an __ interrupt type can be declared to be __ near, __ far, or
__ huge in order to override the default settings for the current memory model.

A _ ...,:near function uses __ near calls; a __ far or __ huge function uses __ far call
instructions.

In the small and compact memory models, an unqualified function defaults to type
__ near. In the medium and large models, an unqualified function defaults to type
__ far.

A __ huge function is the same as a __ far function, except that the DS register is set to
the data segment address of the source module when a __ huge function is entered; but
left unset for a __ far function.

The __ export modifier makes the function exportable from Windows. The __ import
modifier makes a function available to a Windows program. The keywords are used in
an executable (if you don't use smart callbacks) or in a DLL.

The __ loadds modifier indicates that a function should set the DS_register, just as a
__ huge function does, but does not imply __ near or __ far calls. Thus, __ loadds __ far
is equivalent to __ huge.

The __ saveregs modifier causes the function to preserve all register values and restore
them before returning (except for explicit return values passed in registers such as AX or
DX).

The __ loadds and __ saveregs modifiers are useful for writing low-level interface
routines, such as mouse support routines.

Functions declared with the __ fastcall modifier have different names than their non­
__ fastcall counterparts. The compiler prefixes the __ fastcall function name with an @.

This prefix applies to both unmangled C function names and to mangled C++ function
names.

Table 2.8 Borland C++ modifiers

volatilel Variables

Ftmctions

50 c++ Programmer's Guide

Prevents register allocation and some optimization. Warns
compiler that object might be subject to outside change
during evaluation.

Forces C argument-passing convention. Affects Linker and
link-time names.

Table 2.8

__ interrupt

__ pascal

__ near,
__ far,
__ huge

__ cs,
__ ds,
__ es,
__ seg,
__ ss

__ near,
__ far,
__ huge

__ near,
__ far

__ export

__ import

__ loadds

__ saveregs

__ fastcall

__ stdcall

Borland C++ modifiers

Functions

Functions

Variables

Pointer types

Pointer types

Functions

Variables

Functions / classes

Functions / classes

Functions

Functions

Functions

Functions

Forces global identifier case-sensitivity and leading
underscores. ,

Function compiles with the additional register-housekeeping
code needed when writing interrupt handlers.

Forces Pascal argument-passing convention. Affects LiTIker
and link-time names.

Forces global identifier case-insensitivity with no leading
underscores.

Overrides the default pointer type specified by the current
memory model.

Segment pointers.

Overrides the default function type specified by the current
memory model.

Directs the placement of the object in memory.

Tells the compiler which functions ordasses to export.

Tells the compiler which functions or classes to import. (In 16-
bit programs, this keyword can be used only for class
declarations.)

Sets DS to point to the current data segment.

Preserves all register values (except for return values) during
execution of the function.

Forces register parameter passing convention. Affects the
linker and link-time names.

Forces the standard WIN32 argument-passing convention.

1 C++ extends const and volatile to include classes and member functions.

2 This is the default.

__ interrupt functions

Syntax
interrupt <function-definition> i

_interrupt <function-definition> i

__ interrupt <function-definition>

Description
Use the _ _ interrupt function modifier to define a function as an interrupt handler.

C hap t e r 2, Lan 9 u age s t rue t u r e 51

The __ interrupt modifier is specific to Borlalnd C++. __ interrupt functions are
designed to be used with interrupt vectors.

Interrupt functions compile with extra function entry and exit code so that all CPU
registers are saved. The BP, SP, SS, CS, and IP registers are preserved as part of the
C-'calling sequence or· as part of the interrupt handling itself. The function uses an IRET
instruction to return, so that the function can be used as harware and software
interrupts.

Declare interrupt functions to be of type void and can be declared in any memory
model. For all memory models except huge, DS is set to the program data segment. For
the huge memory model, DS is set to the module's data segment.

Example

Pointers

void interrupt myhandler()
{

Pointers fall into two main categories: pointers to objects and pointers to functions. Both
types of pointers are special objects for holding memory addresses.

The two pointer classes have distinct properties, purposes, and rules for manipulation,
although they do share certain Borland C++ operations. Generally speaking, pointers to
functions are used to access functions and to pass functions as arguments to other
functions; performing arithmetic on pointers to functions is not allowed. Pointers to
objects, on the other hand, are regularly incremented and decremented as you scan
arrays or more complex data structures in memory.

Although pointers contain numbers with most of the characteristics of unsigned
integers, they have their own rules and restrictions for assignments, conversions, and
arithmetic. The examples in the next few sections illustrate these rules and restrictions.

Note See "Referencing" in Chapter 3 for a discussion of referencing and dereferencing.

Poi nters to objects
A pointer of type "pointer to object of type" holds the address of (that is, points to) an
object of type. Since pointers are objects, you can have a pointer pointing to a pointer
(and soon). Other objects commonly pointed at include arrays, structures, unions, and
classes.

The size of pointers to objects is dependent on the memory model and the size and
disposition of your data segments, possibly influenced by the optional pointer modifiers
(discussed starting with "Pointer modifiers").

52 c++ Pro 9 ram mer's G u ide

Pointers to functions
A pointer to a function is best thought of as an address, usually in a code segment,
where that function's executable code is stored; that is, the address to which control is
transferred when that function is called. The size and disposition of your code segments
is determined by the memory model in force, which in tum dictates the size of the
function pointers needed to call your functions.

A pointer to a function has a type called "pointer to function returning type," where
type is the function's return type. For example,

void (*func) ();

In C++, this is a pointer to a function taking no arguments, and returning void. In C, it's
a pointer to a function taking an unspecified number of arguments and returning void.
In this example,

void (*func) (int) ;

*func is a pointer to a function taking an int argument and returillng void.

For C++, such a pointer can be used to access static member functions. Pointers to class
members must use pointer-to-member operators. See" static_cast typecast operator" in
Chapter 3 for details.

Pointer declarations
A pointer must be declared as pointing to some particular type, even if that type is void
(which really means a pointer to anything). Once declared, though, a pointer can
usually be reassigned so that it points to an object of another type. Borland C++ lets you
reassign pointers like this without typecasting, but the compiler will warn you unless
the pointer was originally declared to be of type pointer to void. And in C, but not C++,
you can assign a void* pointer to a non-void* pointer. See "Type void" earlier in this
chapter for details.

Warning! You need to initialize pointers before· using them.

If type is any predefined or user-defined type, including void, the declaration

type *ptr; /* Uninitialized pointer */

declares pty to be of type "pointer to type." All the scoping, duration, and visibility rules
apply to the pty object just declared.

A null pointer value is an address that is guaranteed to be different from any valid
pointer in use in a program. Assigning the integer constant 0 to a pointer assigns a null
pointer value to it.

The mnemonic NULL (defined in the standard library header files, such as stdio.h) can
be used for legibility. All pointers can be successfully tested for equality or inequality to
NULL.

The pointer type "pointer to void" must not be confused with the null pointer. The
declaration

void *vptr;

Chapter 2, Language structure 53

declares that vptr is a generic pointer capable of being assigned to by any upointer to
type" value, including null, without complaint. Assignments without proper casting
between a upointer to typel" and a "pointer to type2," where typel and type2 are
different types, can invoke a compiler warning or error. If typel is a function and type2
isn't (or vice versa), pointer assigninents are illegal. If typel is a pointer to void, no cast
is needed. Under C, if type2 isa pointer to void, no cast is needed.

Assignment restrictions also apply to pointers of different sizes C _near, __ far, and
__ huge). You can assign a smaller pointer to a larger one without error, but you can't
assign a larger pointer to a smaller one unless you are using an explicit cast. For
example,

char __ near *ncp;
char __ far *fcp;
char __ huge *hcp;
fcp = ncp;
hcp = fcp;
fcp :=; hcp;
ncp = fcp;
ncp = (char __ near*)fcp;

Pointer constants

II legal
II legal
II not legal
II not legal
II now legal

A pointer or the pointed-at object can be declared with the const modifier. Anything
declared as a const cannot be have its value changed. It is also illegal to create a pointer
that might violate the nonassignability of a constant object. Consider the following
examples:

int i; II i is an int
int * pi; II pi is a pointer to int (uninitialized)
int * const cp = &i; II cp is a constant pointer to int
const int ci = 7; 1'/ ci is a constant int
const int * pci; II pci is a pointer to constant int
const int * const cpc = &ci; II cpc is a constant pointer to a

II constant int

The following assignments are legal:

i = ci; .
*cp = ci;

++pci;
pci = cpc;

II Assign const-int to int
II Assign const-int to
II object-pointed-at-by-a-const-pointer
II Increment a pointer-to-const
II Assign a cdnst-pointer-to-a-const to a
II pointer-to-const

The following assignments are illegal:

ci= 0;

ci--;
*pci = 3;

cp = &ci;

cpc++;
pi = pci;

54 c++ Programmer's Guide

II NO--cannot assign to a const-int
II NO--cannot change a const-int
II NO--cannot assign to an object
II pointed at by pointer-to-const
II NO--cannot assign to a const-pointer,
II even if value would be unchanged
II NO--cannot change const-pointer
II NO--if this assignment were allowed,

II you would be able to assign to *pci
II (a canst value) by assigning to *pi.

Similar rules apply to the volatile modifier. Note that const and volatile can both
appear as modifiers to the same identifier.

Pointer arithmetic
Pointer arithmetic is limited to addition, subtraction, and comparison. Arithmetical
operations on object pointers of type "pointer to type" automatically take into account
the size of type; that is, the number of bytes needed to store a type object.

The internal arithmetic performed on pointers depends on the memory model in force
and the presence of any overriding pointer modifiers.

When performing arithmetic with pointers, it is assumed that the pointer points to an
array of objects. Thus, if a pointer is deClared to point to type, adding an integral value
to the pointer advances the pointer by that number of objects of type. If type has size 10
bytes, then adding an integer 5 to a pointer to type advances the pointer 50 bytes in
memory. The difference has as its value the number of array elements separating the
two pointer values. For example, if ptrl points to the third element of an array, and
ptr2 points to the tenth element, then the result of ptr2 - ptrl would be 7.

The difference between two pointers has meaning only if both pointers point into the
same array.

When an integral value is added to or subtracted from a "pointer to type," the result is
also of type "pointer to type."

There is no such element as "one past the last element," of course, but a pointer is
allowed to assume such a value. If P points to the last array element, P + 1 is legal, but
P+ 2 is undefined. If P points to one past the last array element, P -1 is legal, giving a
pointer to the last element. However, applying the indirection operator * to a "pointer to
one past the last element" leads to undefined behavior.

Informally, you can think of P + n as advancing the pointer by (n * sizeo£(type)) bytes, as
long as the pointer remains within the legal range (first element to one beyond the last
element).

Subtracting two pointers to elements of the same array object gives an integral value of
type ptrdiff_t defined in stddef.h (signed long for __ huge and __ far pointers; signed int
for all others). This value represents the difference between the subscripts of the two
referenced elements, provided it is in the range of ptrdiff_t. In the expression Pl - P2,
where Pl and P2 are of type pointer to type (or pointer to qualified type), Pl and P2
must point to existing elements or to one past the last element. If Pl points to the i-th
element, and P2 points to the j-th element, Pl - P2 has the value (i - j).

Pointer conversions
Pointer types can be converted to other pointer types using the typecasting mechanism:

char *str;
int *ip;
str = (char *)ip;

Chapter 2, Language structure 55

Arrays

More generally, the ca$t (type*) will convert a pointer to type "pointer to type."
See Chapter 3 for a discussion of C++ typecast mechanisms.

c++ reference declarations
C++ reference types are closely related to pointer types. Reference types create aliases for
objects and let you pass arguments to functions by reference. C passes arguments only
by value. In C++ you can pass arguments by value or by reference. See "Referencing" for
complete details.

The declaration

type declarator [<constant-expression>]

declares an array composed of elements of type. An array consists of a contiguous
region of storage exactly large enough to hold all of its elements.

If an expression is given in an array declarator, it must evaluate to a positive constant
integer. The value is the number of elements in the array. Each of the elements of an
array is numbered from 0 through the number of elements minus one.

Multidimensional arrays are constructed by declaring arrays of array type. The
following example shows one way to declare a two-dimensional array. The
implementation is for three rows and five columns but it can be very easily modified to
accept run-time user input.

Setup rows

o 4 bytes ,

m-1 4 bytes ,

Setup columns
o i

110 bytes 110 bytes 1

o 1

110 bytes 110 bytes 1

n-1

110 bytes I

n-1

110 bytes 1

/* DYNAMIC MEMORY ALLOCATION FOR A MULTIDIMENSIONAL OBJECT. */
#include <stdio.h>
#include <stdlib.h>

typedef long double TYPE;
typedef TYPE *OBJECT;
unsigned int rows = 3, .columns = 5;

void de_allocate(OBJECT);

int main (VOID) {
OBJECT matrix;
unsigned int i, j;

/* STEP 1: SET UP THE ROWS. */

56 ett Programmer's Guide

matrix = (OBJECT) cal lac (rows, sizeof(TYPE *));

/* STEP 2: SET UP THE COLUMNS. */

for (i = 0; i < rows; ++i)
matrix[i] = (TYPE *) calloc(columns, sizeof(TYPE));

for (i.= 0; i < rows; i++)
for (j = 0; j < columns; j++)

matrix[i] [j] = i + j; /* INITIALIZE */

for (i = 0; i < rows; ++i)
printf (" \n\n") ;
for (j = 0; j < columns; ++j)

printf ("%5 .2Lf", matrix[i] [j]) ;
de_allocate (matrix) ;
return 0; .

void de_allocate(OBJECT x)
int i;

for (i = 0; i < rows; i++)
free(x[i]);

/* STEP 1: DELETE THE COLUMNS */

free (x) ;
}

/* STEP 2: DELETE THE ROWS. */

This code produces the following output:

0.00 1.00 2.00 3.00 4.00
1.00 2.00 3.00 4.00 5.00
2.00 3.00 4.00 5.00 6.00

Note See Chapter 2 in the C++ Language Reference for a description of calloc, free, and printf.

In certain contexts, the first array declarator of a series might have no expression inside
the brackets. Such an array is of indeterminate size. This is legitimate in contexts where
the size of the array is not needed to reserve space.

For example, an extern declaration of an array object does not need the exact dimension
of the array; neither does an array function parameter. As a special extension to ANSI C,
Borland C++ also allows an array of indeterminate size as the final member of a
structure. Such an array does not increase the size of the structure, except that padding
can be added to ensure that the array is properly aligned. These structures are normally
used in dynamic allocation, and the size of the actual array needed must be explicitly
added to the size of the structure in order to properly reserve space. .

Except when it is the operand of a sizeof or & operator, an array type expression is
converted to a pointer to the first element of the array.

C hap t e r 2, Lan 9 u age s t rue t u r e 57

Functions
Functions are central to C and C++ programming. Languages such as Pascal distinguish
between procedure and function. For C and C++, functions play both roles.

Declarations and definitions
Each program must have a single external function named main marking the entry point
of the program. Functions are usually declared as prototypes in standard or user­
supplied header files, or within program files. Functions are external by default and are
normally accessible from any file in the program. They can be restricted by using the
static storage class specifier (see "Linkage").

Functions are defined in your source files or made available by linking precompiled
libraries.

A given function can be declared several times in a program, provided the declarations
are compatible. Nondefining function declarations using the function prototype format
provide Borland C++ with detailed parameter information, allowing better control over
argument number and type checking, and type conversions.

Note In C++ you must always use function prototypes. We recommend that you also use
them in C.

Excluding C++ function overloading, only one definition of any given function is
allowed. The declarations, if any, must also match this definition. (The essential
difference between a definition and a declaration is that the definition has a function
body.)

Declarations and prototypes
In the Kernighan and Ritchie style of declaration, a function could be implicitly declared
by its appearance in a function call, or explicitly declared as follows:

<type> funcO

where type is the optional return type defaulting to int. In C++, this declaration means
<type> func(void). A function can be declared to return any type except an array or
function type. This approach does not allow the compiler to check that the type or
number of <:lrguments used in a function call match the declaration.

This problem was eased by the introduction of function prototypes with the following
declaration syntax:

<type> func(parameter-declanttor-list);

Note· You can enable a warning within the IDE or with the command-line compiler:
Function called without a prototype.

Declarators specify the type of each function parameter. The compiler uses this
information to check function calls for validity. The compiler is also able to coerce
arguments to the proper type. Suppose you have the following code fragment:

58 C++ Pro 9 ram mer's G u ide

extern long lmax(long vl, long v2); /* prototype */
foo()
{

int limit = 32;
char ch = 'A';
long mval;
mval = lmax(limit,ch); /* function call */

Since it has the function prototype for lmax, this program converts limit and ch to long,
using the standard rules of assignment, before it places them on the stack for the call to
lmax. Without the function prototype, limit and ch would have been placed on the stack
as an integer and a character, respectively; in that case, the stack passed to lmax would
not match in size or content what lmax was expecting, leading to problems. The classic
declaration style does not allow any checking of parameter type or number, so using
function prototypes aids greatly in tracking down programming errors.

Function prototypes also aid in documenting code. For example, the functionstrcpy
takes two parameters: a source string and a destination string. The question is, which is
which? The function prototype

char *strcpy(char *dest, const char *source);

makes it clear. If a header file contains function prototypes, then you can print that file to
get most of the information you need for writing programs that call those functions. If
you include an identifier in a prototype parameter, it is used only for any later error
messages involving that parameter; it has no other effect.

A function declarator with parentheses containing the single word void indicates a
function that takes no arguments at all:

func (void) ;

In C++, funcO also declares a function taking no arguments.

A function prototype normally declares a function as accepting a fixed number of
parameters. For functions that accept a variable number of parameters (such as print!), a
function prototype can end with an ellipsis (...),like this: .

f(int * count , long total, ...)

With this form of prototype, the fixed parameters are checked at compile time, and the
variable parameters are passed with no type checking.

Note stdarg.h and varargs.h contain macros that you can use in user-defined functions with
variable numbers of parameters.

Here are some more examples of function declarators and prototypes:

int f(); * In C, a function returning an int with
no information Q-bout parameters.

This is the K&R "classic style." */

int f(); * In C++, a function taking no arguments */

int f (void) ; * A function returning an int that takes no parameters. */

C hap t e r 2, Lan 9 u age 5 t rue t u r e 59

int p(int,long);/ * A function returning an int that
accepts two parameters: the first,

an int; the second, a long. */

int _ -pascal q(void); /* A pascal function returning
an int that takes no parameters at all. */

char __ far *s(char * source , int kind); /*A function returning
a farpointer to a char

and accepting two parameters:
the first,a pointer to
a char;the second, an into */

int printf(char *format, ... ; /* function returning an int and
accepting a pointer to a char fixed
parameter and any number of additional
. parameters of unknown type. * /

int (*fp) (int) /* A pointer to·a function returning an int
and accepting a single int parameter. */

Definitions
Table 2.9 gives the general syntax for external function definitions.

Table 2.9 External function definitions
file

externaldefinition
file externaldefinition

externaldefinition:

functiondefinition

declaration
asmstatement

functiondefinition:

<declarationspecifiers> declarator. <declaraionlist>
compoundstatement

In general, a function definition consists of the following sections (the grammar allows
for more complicated cases):

1 Optional storage class specifiers: extern or static. The default is extern.

2 . A return type, possibly void. The default is int.

3 Optional modifiers: __ pascal, __ cdec1, __ export, __ interrupt, __ near, __ far,
__ huge, __ loadds, __ saveregs. The defaults depend on the memory model and
compiler option settings.

4 The name of the function.

60 C++ Programmer's Guide

5 A parameter declaration list, possibly empty, enclosed in parentheses. In C, the
preferred way of showing an empty list is func (void) . The old style of func is legal in
C but antiquated and possibly unsafe.

6 A function body representing the code to be executed when the function is called.

Note You can mix elements from 1 and 2.

Formal parameter declarations
The formal parameter declaration list follows a syntax similar to that of the declarators
found in normal identifier declarations. Here are a few examples:

int func(void) {
int func(Tl tl, T2 t2, T3 t3=1)

int func(Tl* ptrl, T2& tref)

II no args
II three simple parameters, one
II with default argument
II A pointer and a reference arg

int func(register int i) { II ~equest register for arg
int func(char *str, ...) { I * One string arg with a variable number of other

args, or with a fixed number of args with varying types *1

In C++, you can give default arguments as shown. Parameters with default values must
be the last arguments in the parameter list. The arguments' types can be scalars,
structures, unions, or enumerations; pointers or references to structures and unions; or
pointers to functions or classes.

The ellipsis (...) indicates that the function will be called with different sets of arguments
on different occasions. The ellipsis can follow a sub list of known argument declarations.
This form of prototype reduces the amount of checking the compiler can make.

The parameters declared all have automatic scope and duration for the duration of the
function. The only legal storage class specifier is register.

The const and volatile modifiers can be used with formal parameter declarators.

Function calls and argument conversions
A function is called with actual arguments placed in the same sequence as their
matching formal parameters. The actual arguments are converted as if by initialization
to the declared types of the formal parameters.

Here is a summary of the rules governing how Borland C++ deals with language
modifiers and formal parameters in function calls, both with and without prototypes:

• The language modifiers for a function definition must match the modifiers used in
the declaration of the function at all calls to the function.

• A function can modify the values of its formal parameters, but this has no effect on
the actual arguments in the calling routine, except for reference arguments in C++.

When a function prototype has not been previously declared, Borland C++ converts
integral arguments to a function call according to the integral widening (expansion)
rules described in Standard arithmetic conversions. When a function prototype is in

Chapter 2, Language structure 61

scope, Borland C++ converts the given argument to the type of the declared parameter
as if by assignment.

When a function prototype includes an ellipsis (...), Borland C++ converts all given
function arguments as in any other prototype (up to the ellipsis). The compiler widens
any arguments given beyond the fixed parameters, according to the normal rules for
function arguments without prototypes.

If a prototype is present, the number of arguments must match (unless an ellipsis is
present in the prototype). The types need to be compatible only to the extent that an
assignment can legally convert them. You can always use an explicit cast to convert an
argument to a type that is acceptable to a function prototype.

Note If your function prototype does not match the actual function definition, Borland C++
will detect this if and only if that definition is in the same compilation'unit as the
prototype. If you create a library of routines with a corresponding header file of
prototypes, consider including that header file when you compile the library, so that
any discrepancies between the prototypes and the actual definitions will be caught.
C++ provides type-safe linkage, so differences between expected and actual parameters
will be caught by the linker.

Structures
A structure is a derived type usually representing a user-defined collection of named
members (or components). The members can be of any type, either fundamental or
derived (with some restrictions to be noted later), in any sequence. In addition, a
structure member can be a bit field type not allowed elsewhere. The Borland C++
structure type lets you handle complex data structures almost as easily as single
variables. Structure initialization is discussed in " Arrays, structures, and unions" earlier
in this chapter.

In C++, a structure type is treated as a class type with certain differences: default access
is public, and the default for the base class is also public. This allows more sophisticated
control over access to structure members by using the,C++ access specifiers: public (the
default), private, and protected. Apart from these optional access mechanisms, and
from exceptions as noted, the following discussion on structure syntax and usage
applies equally to C and C++ structures.

Structures are declared using the keyword stmct. For example

struct mystruct { ... }; II mystruct is the structure tag

struct mystruct s, *ps, arrs[lO];
1* s is type struct mystruct; ps is type pointer tostruct mystruct;

arrs is array of struct mystruct. *1

Untagged structures and typedefs
If you omit the structure tag, you cari get anuntagged structure. You can use untagged
structures to declare the identifiers in the comma-delimited struct-id-list to be of the

62 C++ Pro 9 ram mer's G u ide

given structure type (or derived from it), but you cannot declare additional objects of
this type elsewhere:

struct { ... } s, *ps, arrs[10]; II untagged structure

It is possible to create a typede£ while declaring a structure, with or without a tag:

typedef struct rnystruct { ... } MYSTRUCT;
MYSTRUCT s, *ps, arrs[10]; II same asstruct rnystruct 8, etc.
typedef struct { ... } YRSTRUCT; II no tag
YRSTRUCT y, *yp, arry[20];

Usually, you don't need both a tag and a typede£: either can be used in structure
declarations.

Untagged structure and union members are ignored during initialization.

Structure member declarations
The member-decl-list within the braces declares the types and names of the structure
members using the declarator syntax shown in Borland C++ declaration syntax.

A structure member can be of any type, with two exceptions:

• The member type cannot be the same as the strud type being currently declared:

struct mystruct { rnystruct s } sl, s2; II illegal

However, a member can be a pointer to the structure being declared, as in the
following example:

struct rnystruct { mystruct *ps } sl, s2; II OK

Also, a structure can contain previously defined structure types when declaring an
instance of a declared structure.

• Except in C++, a member cannot have the type "function returning ... ," but the type
"pointer to function returning ... " is allowed. In C++, a strud can have member
functions.

Note You can omit the strud keyword in C++.

Structures and functions
A function can return a structure type or a pointer to a structure type:

mystruct funcl(void); II funcl() returns a structure
mystruct *func2(void); II func2() returns pointer to structure

A structure can be passed as an argument to a function in the following ways:

void funcl(rnystruct s);
void func2(mystruct *sptr);
void func3(mystruct &sref);

II directly
II via a pointer
II as a reference (C++ only)

Chapter 2, Language structure 63

Structure member access
Structure and union members are accessed using the following two selection operators:

. (period)

-> (right arrow)

Suppose that the object s is of struct type 5,and sptr is a pointer to 5. Then if m is a
member identifier of type M declared in 5, the expressions s.m and sptr->m are of type
M, and both represent the member object m in 5. The expression sptr->m is a convenient
synonym for (* sptr) . m.

The operator. is called the direct member selector and the operator -> is called the
indirect (or pointer) member selector. For example:

struct mystruct
{

int ii
char str [21] i

double di

s, *sptr = &Si

s . i= 3 ii/ assign to the i member of mystruct s
sptr -> d = 1.23i I/assign to the d member of mystruct s

The expression 8.m is an lvalue, provided that s is an lvalue and m is not an array type.
The expression sptr->m is an lvalue unless in is an array type.

If structure B contains a field whose type is structure A, the members of A can be
accessed by two applications of the member selectors:

struct A {
int ji
double Xi

} i

struct B {
int ii
struct A ai

double di

s, *sptri

s.i = 3i

s.a.j = 2;
sptr->d = 1. 23 i
(sptr->a).x = 3.14

// assign to the i member of B
1/ assign to the j member of A
1/ assign to the d member of B
1/ assign to X member of A

Each structure declaration introduces a unique structure type, so that in

struct A {
int i,j;
double di

a, ali

struct B {
int i,ji

64 C++ Programmer's Guide

double.di

} bi

the objects a and al are both of type struct A, but the objects a and b are of different
structure types. Structures can be assigned only if the source and destination have the
same type:

a = a1 i I I OK: same type I so member by member assignment

a = bi II ILLEGAL: different types

a.i = b.ii a.j = b.ji a.d = b.d 1* but you can assign member-by-member *1

Structure word alignment
Memory is allocated to a structure member-:-by-member from left to right, from low to
high memory address. In this example,

struct mystruct {

int ii
char str [21] i

double di

Si

the object s occupies sufficient memory to hold a 2-byte integer for a 16-bit program, or a
4-byte integer for a 32-bit program, a 21-byte string, and an 8-byte double. The format of
this object in memory is determined by selecting the word alignment option. Without
word alignment, s will be allocated 31 contiguous bytes (by the 16-bit compiler) or 33
contiguous bytes (by the 32-bit compiler).

Word alignment is off by default. If you tum on word alignment, Borland C++ pads the
structure" with bytes to ensure the structure is aligned as follows:

The structure willstart on a word boundary (even address).

2 Any non-char member will have an e~en byte offset from the start of the structure.

3 A final byte is added (if necessary) at the end to ensure that the whole structure
contains an even number of bytes. .

For the 16-bit compiler, with word alignment on, the structure would therefore have a
byte added before the double, making "a 32-byte object.

1 The structure boundaries are defined by 4-byte multiples.

2 For any n~n-char member, the offset will be a multiple of the member size. A short
will be atan offset that is some multiple of 2 ints from the start of the structure.

3 One to three bytes can be added (if necessary) at the end to ensure that the whole
structure contains a 4-byte multiple.

For the 32-bit compiler, with word alignment on, three bytes would be added before the
double, making a 36-byte object.

Structure name spaces
StructUre tag names share the same name space with union tags and enumeration tags
(but enums within a structure are in a different name space in C++). This means that

Chapter 2, Language structure 65

such tags must be uniquely named within the same scope. However, tag names need
not differ from identifiers in the other three name spaces: the label name space, the
member name space(s), and the single name space (which consists of variables,
functions, typedef names, and enumerators).

Member names within a given structure or union must be unique, but they can share the
names of members in other structures or unions. For example,

goto Si

s:
struct s {

int Si

float Si

Si

union S

int Si

float fi

II Label
II OK: tag and label name spaces different
II OK: label, tag and member name spaces different
II ILLEGAL: member name duplicated
II OK: var name space different. In C++, this can only
I I be done i,f S does not have a constructor.
II ILLEGAL: tag space duplicate
II OK: new member space

fi II OK: var name space
struct t {

int Si II OK: different member space

Si II ILLEGAL: var name duplicate

Incomplete declarations
A pointer to a structure type A can legally appear in the declaration of another structure
B before A has been declared:

struct Ai II incomplete
struct B { struct A *pa }i

struct A { struct B *pb }i

The first appearance of A is called incomplete because there is no definition for it at that
point. An incomplete declaration is allowed here, because the definition of B doesn't
need the size of A.

Bit fields
When you write an application for a 16-bit platform, you can declare signed or
unsigned integer members as bit fields from 1 to 16 bits wide. For 32-bit platforms, a bit
field can be as much as 32 bits wide. You specify the bit-field width and optional
identifier as follows:

fype-specifier<bitfield-id> : width;

where fype-specifier<bitfield-id> is char, unsIgned char, int, or unsigned int. Bit fields
are allocated from low-order to high-order bits within a word. The expression width
must be present and must evaluate to a constant integer in the range 1 to 32, depending
on the target platform.

66 c++ Programmer's Guide

Unions

If the bit field identifier is omitted, the number of bits specified in width is allocated, but
the field is not accessible. This lets you match bit patterns in, say, hardware registers
where some bits are unused. For example:

struct mystruct
int i: 2;
unsigned j 5;
int : 4;
int k : 1;
unsigned m: 4;
a, b, c;

produces the following layout:

15 114 113 112 11 10 1 9 1 8 1 7 6 1 5 1 4 1 3 1 2 1 1 0

x 1 x 1 x 1 x x x 1 x 1 x 1 x x 1 x 1 x 1 x 1 x x 1 x
<---------------------------> <-> <---------------------------> <-----------------------------------> <--------->

m k (unused) j i

Integer fields are stored in two's-complement form, with the leftmost bit being the MSB
(most significant bit). With int (for example, signed) bit fields, the MSB is interpreted as
a sign bit. A bit field of width 2 holding binary 11, therefore, would be interpreted as 3 if
unsigned, but as -1 if int. In the previous example, the legal assignment a . i = 6 would
leave binary 10 = -2 in a.i with no warning. The signed int field k of width 1 can hold
only the values -1 and 0, because the bit pattern 1 is interpreted as -1.

Bit fields can be declared only in structures, unions, and classes. They are accessed with
the same member selectors (. and -» used for non-bit-field members. Also, bit fields
pose several problems when writing portable code, since the organization of bits­
within-bytes and bytes-within-words is machine dependent.

The expression &mystruct.x is illegal if x is a bit field identifier, because there is no
guarantee that mystruct.x lies at a byte address.

Union types are derived types sharing many of the syntactical and functional features of
structure types. The key difference is that a union allows only one of its members to be
"active" at anyone time. The size of a union is the size of its largest member. The value
of only one of its members can be stored at any time. In the following simple case,

union myunion {
int ii
double d;
char Chi

} mu, *muptr=&mui

/* union tag = myunion */

the identifier mu, of type union myunion, can be used to hold a 2-byte int, an 8-byte
double, or a single-byte char, but only one of these at the same time_

Note Unions correspond to the variant record types of Pascal and Modula-2.

C hap t e r 2, La n 9 u age s t rue t u r e 67

sizeof(union myunion) and sizeof(mu) both return 8, but 6 bytes are unused (padded)
when mu holds an int object, and 7 bytes are unused when mu holds a char. You access
union members with the structure member selectors (. and -», but care is needed:

mu.d = 4.016;
printf ("mu.d = %f\n" ,mu.d); IIOK: displays mu.d = 4.016
printf ("mu. i = %d\n" ,mu. i); Ilpeculiar result
mu.ch = 'A';
printf ("mu.ch = %c\n" ,mu.ch); IIOK: displays mu.ch = A
printf ("mu.d = %f\n" ,mu.d); Ilpeculiar result
muptr->i = 3;

printf ("mu. i = %d\n" ,mu. i); IIOK: displays mu. i = 3

The second print! is legal, since mu.i is an integer type. However, the bit pattern in mu.i
corresponds to parts of the double previously assigned, and will not usually provide a
useful integer interpretation.

When properly converted, a pointer to a union points to each of its members, and vice
versa.

Anonymous unions (C++ only)
A union that doesn't have a tag and is not used to declare a named object (or other type)
is called an anonymous union. It has the following form: '

union { member-list }i

Its members can be accessed d,irectly in the scope where this union is declared, without
using the x. y or p->y syntax.

Anonymous unions can't have member functions and at file level must be declared
static. In other words, an anonymous union cannot have external linkage.

Union declarations
The general declaration syntax for unions is similar to that for structures. The
differences are

• Unions can contain bit fields, but only one can be active. They all start at the
beginning of the union. (Note that, because bit fields are machine dependent, they can pose
problems when writing portable code.)

• Unlike C++ structures, C++ union types cannot use the class access specifiers: public,
private, and protected. All fields of a union are public.

• Unions can be initialized only through their first declared member:
union loca187 {

int i;
double d;
} a = { 20 };

• A union can't participate in a class hierarchy. It can't be derived from any class, nor
can it be a base class. A union can have a constructor.

68 c++ Programmer's Guide

Enumerations
An enumeration data type is used to provide mnemonic identifiers for a set of integer
values. For example, the following declaration,

enum days { SUll, man, tues, wed, thur, fri, sat} anydaYi

establishes a unique integral type, enum days, a variable anyday of this type, and a set of
enumerators (sun, mon, ...) with constant integer values

Borland C++ is free to store enumerators in a single byte when Treat enums as ints is
unchecked (0 I C I Code Generation) or the -b flag is used. The default is on (meaning
enums are always ints) if the range of values permits, but the value is always promoted
to an int when used in expressions. The identifiers used in an enumerator list are
implicitly of type signed char, unsigned char, or int, depending on the values of the
enumerators. If all values can be represented in a signed or unsigned char, that is the
type of each enumerator.

In C, a variable of an enumerated type can be assigned any value of type int-no type
checking beyond that is enforced. In C++, a variable of an enumerated type can be
assigned only one of its enumerators. That-is,

I I OK anyday = man;
anyday = 1; II illegal, even though man == 1

The identifier days is the optional enumeration tag that can be used in subsequent
declarations of enumeration variables of type enum days:

enum days payday, holidaYi II declare two variables

In C++, you can omit the enum keyword if days is not the name of anything else in the
same scope. . .

As with struct and union declarations, you can omit the tag if no further variables of
this enum type are required:

enum { SUll, man, tues, wed, thur, fri, sat} anydaYi
I * anonymous enum type * I

The enumerators listed inside the braces are also known as enumeration constants. Each is
assigned a fixed integral value. In the absence of explicit initializers, the first enumerator
(sun) is set to zero, and each succeeding enumerator is set to one more than its
predecessor (mon = 1, tues = 2, and so on). See "Enumeration constants" in Chapter 1 for
more on enumeration constants.

With explicit integral initializers, you can set one or more enumerators to specific
values. Any subsequent names without initializers will then increase by one. For
example, in the following declaration,

1* Initializer expression can include previously declared enumerators *1

enum coins { penny = 1, tuppence, nickel = penny + 4, dime = 10,
quarter = nickel * nickel } smallchange;

tuppence would acquire the value 2, nickel the value 5, and quarter the value 25.

The initializer can be any expression yielding a positive or negative integer value (after
possible integer promotions). These values are usually unique, but duplicates are legal.

C hap t e r 2, Lan 9 u age st rue t u r e 69

enum types can appear wherever int types are permitted:

enum days { sun, man, tues, wed, thur, fri, sat } anyday;

enum days payday;
typedef enum days DAYS;
DAYS *daysptr;
inti = tues;
anyday = man; I I OK

I I OK *daysptr = anyday;
man = trues; II ILLEGAL: man is a constant

Enumeration tags share the same name space as structure and union tags. Enumerators
share the same name space as ordinary variable identifiers:

int man = 11;

enum days { sun, mon,tues, wed, thur, fri, sat} anyday;
1* enumerator man hides outer declaration of int man *1
struct days { int i, j;}; II ILLEGAL: days duplicate tag
double sat; II ILLEGAL: redefinition of sat

man = 12; I I back in int man scope

In C++, enumerators declared within a class are in the scope of that class.

In C++ it is possible to overload most operators for an enumeration. However, because
the =, [], (), and -> operators must be overloaded as member functions, it is not possible
to overload them for an enum. See the following example on how to overload the
postfix and prefix increment operators.

How to overload enum operators
II OVERLOAD THE POSTFIX AND PREFIX INCREMENT OPERATORS FOR enum

#include <iostream.h>
enum _SEASON { spring, summer, fall, winter };
_SEASON operator++(_SEASON &s) { II PREFIX INCREMENT

_SEASON tmp = s; II . SAVE THE ORIGINAL VALUE
II DO MODULAR ARITHMETIC AND CAST THE RESULT TO _SEASON TYPE
s = _SEASON((s + 1) % 4); II INCREMENT THE ORIGINAL
return s; I I RETURN THE OLD VALUE

I I UNNAMED int ARGUMENT IS NOT USED
_SEASON operator++(~SEASON &s, int) { II POSTFIX INCREMENT

_SEASON tmp = s;
switch (s) {

case spring: s = summer; break;
case summer: s = fall; break;
case fall: s = winter; break;
case winter: s = spring; break;

return (tmp);

70 C++ Pro 9 ram mer's G u ide

int main (void) {
_SEASON season = fallj
cout « "\nThe season is " « seasonj
cout « "\nIncrement the season: "« ++seasonj
cout « "\nNo change yet when using postfix: " « season++j
cout « "\nFinally:" « seasonj
return OJ

This code produces the following output:

The season is 2
Increment the season: 3
No change yet when using postfix: 3
Finally: 0

Assignment to enum types
The rules for expressions involving enum types have been made stricter. The compiler
enforces these rules with error messages if the compiler switch -A is turned on (which
means strict ANSI C++).

Assigning an integer to a variable of enum type results in an error:

enum color

red, green, blue
} j

int f ()

color Ci

c = OJ

return Cj

The same applies when passing an intege:r as a parameter to a function. Notice that the
result type of the expression flagll flag2 is int:

enum e

} j

flagl OxOl,
flag2 Ox02

void p(e) j

void f ()
{

p (flagll flag2) j

Chapter 2, Language structure 71

To make the example compile, the expression flagl I flag2 must be cast to the enum
type: e (flagll flag2).

Expressions
An expression is a sequence of operators, operands, and punctuators that specifies a
computation. The formal syntax, listed in Table 2.10, indicates that expressions are
defined recursively: subexpressions can be nested without formal limit. (However, the
compiler will report an out-of-memory error if it can't compile an expression that is too
complex.)

Note Borland C++ expressions, shows how identifiers and operators are combined to form
grammatically legal "phrases."

. Expressions are evaluated according to certain conversion, grouping, associativity, and
precedence rules that depend on the operators used, the presence of parentheses, and
the data types of the operands.The standard conversions are detailed in Table 2.5. The
way operands and subexpressions are grouped does not necessarily specify the actual
order in which they are evaluated by Borland C++ (see "Evaluation order").

Expressions can produce an Ivalue, an tvalue, or no value. Expressions might cause side
effects whether they produce a value or not.

The precedence and associativity of the operators are summarized in associativity and
precidence in Borland C++ operators. The grammar in Table 2.10, completely defines
the precedence and associativity of the operators.

Table 2.10 Borland C++ expressions

primary-expression:

literal

this (C++ specific)

:: identifier (C++ specific)

:: operator-function-name (C++ specific)

:: qualified-name (C++ specific)

(expression)

name
literal:

integer-constant

character-constant

floating-constant

string-literal
name:

identifier

operator-function-name (C++ specific)

conversion-function-:name (C++ specific)

~ class-name (C++ specific)

qualified-name (C++ specific)

72 C++ Programmer's Guide

Table 2.10. Borland C++ expressions (continued)

qualified-name: (C++ specific)

qualified-class-name :: name

postfix-expression:
primary-expression

postfix-expression [expression]

postfix-expression «expression-list»

simple-type-name «expression-list» (C++ specific)

postfix-expression . name

postfix-expression -> name

postfix-expression ++

postfix-expression --
consCcast< type-id > (expression) (C++ specific)

dynamic_cast < type-id > (expression) (C++ specific)

reinterpreCcast < type-id > (expression) (C++ specific)

staticcast < type-id > (expression) (C++ specific)

typeid (expression) (C++ specific)

typeid (type-name) (C++ specific)

expression-list:

assignment-expression
expression-list, assignment-expression

unary-expression:

postfix-expression

++ unary-expression

- - unary-expression
unary-operator cast-expression

sizeof unary-expression
sizeof (type-name)

allocation-"expression (C++ specific)

deallocation-expression (C++ specific)

unary-operator: one of & * + - !

allocation-expression: (C ++ specific)

<::> new <placement> new-type-name <initializer>

<::> new <placement> (type-name) <initializer>

placement: (C++ specific)

(expression-list)

new-type-name: (C++ specific)

type-specifiers <new-declarator>

new-declarator: (C++ specific)

ptr -operator <new-declaratOr>

new-declarator r <expression>]

deallocation-expression: (C++ specific)

<::> delete cast-expression
<::> delete [1 cast-expression

Chapter 2, Language structure 731

Table 2.10 Borland C++ expressions (continued)
cast-expression:

unary-expression
(type-name) cast-expression

pm-expression:

cast-expression

pm-expression. * cast-expression (C++ specific)

pm-expression ->* cast-expression (C++ specific)

multiplicative-expression:

pm-expression

multiplicative-expression * pm-expression
multiplicative-expression I pm-expression

multiplicative-expression % pm-expression

additive-expression:

multiplicative-expression

additive-expression + multiplicative-expression

additive-expression - multiplicative-expression
shift-expression:

additive-expression

shift-expression «additive-expression

shift:...expression » additive-expression

relational-expression:
shift-expression

relational-expression < shift-expression

relational-expression> shift-expression

relational-expression <= shift-expression
relational-expression >= shift-expression

equality-expression:

relational-expression

equality expression == relational-expression

equality expression != relational-expression
AND-expression:

equality-expression

AND-expression & equality-expression
exclusive-OR-expression:

AND-expression

exclusive-OR-expression A AND-expression

inclusive-OR-expression:

exclusive-OR-expression
inclusive-OR-expression I exclusive-OR -expression

74 c++ Programmer's Guide

Table 2.10 Borland C++ expressions (continued)

logical-AND-expression:
inclusive-DR-expression
logical-AND-expression && inclusive-DR-expression

logical-DR -expression:
logical-AND-expression
logical-DR-expression I I logical-AND-expression

conditional-expression:
logical-DR-expression
logical-DR-expression ? expression: conditional-expression

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator: one of

= *= 1= %= += -=
« => >= &= 1\= 1=
expression:

a~signment-expression

expression, assignment-expression
constant-expression:

conditional-expression

Precedence of operators
There are 17 precedence categories, some of which contain only one operator. Operators
in the same category have equal precedence with each other.

Where duplicates of operators appear in the table, the first occurrence is unary, the
second binary. Each category has an associativity rule: left to right, or right to left. In the
absence of parentheses, these rules resolve the grouping of expressions with operators
of equal precedence.

The precedence of each operator category in the following table is indicated by its order
in the table. The first category (the first line) has the highest precedence.

Table 2.11 Associativity and precedence of Borland C++ operators

() [] -> :: .
! - + - ++ -- & * (typecast)
sizeof new delete typeid

.*->*

* / %
+ -
« »
< <= > >=
== !=

Left to right

Right to left

Right to left

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Chapter 2, Language structure 75

Table 2.11 Associativity and precedence of Borland C++ operators (continued)

&
/\

. I

&&
II

?: (conditional expression)

= *= /= 0/0= += _= &=
/\= 1= «= »=

Expressions and C++

Left to right

Left to right

Left to right

Left to right

Left to right

Right to left

Right to left

Left to right

C++ allows the overloading of certain standard C operators. An overloaded operator is
defined to behave in a special way when applied to expressions of class type. For
instance, the equality operator == might be defined in class complex to test the equality of
two complex numbers without changing its normal usage with non-class data types.

An overloaded operator is implemented as a function; this function determines the
operand type, lvalue, and evaluation order to be applied when the overloaded operator
is used. However, overloading cannot change the precedence of an operator. Similarly,
C++ allows user-defined conversions between class objects and fundamental types.
Keep in mind, then, that some of the C language rules for operators and conversions
might not apply to expressions in C++.

Evaluation order
The order in which Borland C++ evaluates the operands of an expression is not
specified, except where an operator specifically states otherwise. The compiler will try
to rearrange the expression in order to improve the quality of the generated code. Care
is therefore needed with expressions in which a value is modified more than once. In
general, avoid writing expressions that both modify and use the value of the same
object. For example, consider the expression

i = V[i++Ji II i is undefined

The value of i depends on whether i is incremented before or after the assignment.
Similarly,

int total = Oi

sum = (total = 3) + (++total)i II sum = 4 or sum = 7 ??

is ambiguous for sum and total. The solution is to revamp the expression, using a
temporary variable:

int temp, total = Oi

temp· = ++totali
sum = (total = 3) + tempi

76 C++ Pro 9 ram mer's G u ide

Where the syntax doeseriforce an evaluation sequence, it is safe to have multiple
evaluations:

sum = (i = 3, i++, i++); II OK: sum = 4, i = 5

Each sub expression of the comma expression is evaluated from left to right, and .the
whole expression evaluates to the rightmost value.

Borland C++ regroups expressions, rearranging associative and commutative operators
regardless of parentheses, in order to create an efficiently compiled expression; in no
case will the rearrangement affect the value of the expression.

You can use parentheses to force the order of evaluation in expressions. For example, if
you have the variables a, b, c, and /' then the expression f = a + (b + c) forces (b + c) to be
evaluated before adding the result to a.

Errors and overflows
Associativity and precidence of Borland C++ operators summarizes the precedence and
associativity of the operators. During the evaluation of an expression, Borland C++ can
encounter many problematic situations, such as division by zero or out-of-range
floating-point values. Integer overflow is ignored (C uses modulo 2n arithmetic on n-bit
registers), but errors detected by math library functions can be handled by standard or
user-defined routines. See _matherr and signal.

Operators summary
Operators are tokens that trigger some computation when applied to variables and
other objects in an expression.

• Arithmetic

•. Assignment

• Bitwise

• C++ specific

• Comma

• Conditional

• Equality

• Logical

• Postfix Expression.

• Primary Expression

• Preprocessor

•. Reference /Indirect

• Relational

Chapter 2, Language structure 77

• sizeof

• typeid

All operators can be overloaded .except the following:

*

? :

C++ direct component selector

C++ dereference

C++ scope access / resolution

Conditional

Depending on context, the same operator can have more than one meaning. For
example, the ampersand (&) can be interpreted as:

• a bitwise AND (A & B)

• an address operator (&A)

• in C++, a reference modifier

Note No spaces are allowed in compound operators. Spaces change the meaning of the
operator and will generate an error.

Primary expression operators
For ANSI C, the primary expressions are literal (also sometimes referred to as constant),
identifier, and (expression). The C++ language extends this list of primary expressions
to include the keyword this, scope resolution operator ::, name, and the class destructor
,." (tilde).

The primary expressions are summarized in the following list.

primary-expression:

literal

this (C++ specific)

:: identifier (C++ specific)

:: operator-function-name (C++ specific)

:: qualified-name (C++ specific)

(expression)

name

literal:

integer-constant

character-constant

floating-constant

string-literal
name:

identifier

operator-function-name (C++ specific)

conversion-function-name (C++ specific)

78 C++ Pro 9 ram mer's G u ide

- class-name (C++ specific)

qualified-name (C++ specific)

qualified-name: (C++ specific)

qualified-class-name :: name

For a discussion of the primary expression this, see Chapter 3. The keyword this cannot
be used outside a class member function body.

The scope resolution operator allows reference to a type, object, function, or enumerator
even though its identifier is hidden.

The parentheses surrounding an expression do not change the unadorned expression
itself

The primary expression name is restricted to the category of primary expressions that
sometimes appear after the member access operators. (dot) and -> . Therefore, name
must be either an lvalue or a function. See also the discussion of member access
operators.

An identifier is a primary expression, provided it has been suitably declared. The
description and formal definition of identifiers is shown in Chapter 1.

See "Constructors and destructors," in Chapter 3 on how to use the destructor operator
'""' (tilde).

Postfix expression operators

Syntax
postfix-expression «arg-expression-list»
array declaration [constant-expression]
compound statement { statement list
postfix-expression . identifier
postfix-expression -> identifier

Remarks

()

{ }

[]

->

use to group expressions, isolate conditional expressions, indicate function
calls and function parameters

use as the start and end of compound statements

use to indicate single and multidimensional array subscripts

use to access structure and union members

use to access structure and union members

Chapter 2, Language structure 79

The following postfix expressions let you make safe, explicit typecasts in a c++
program:

consCcast< T > (expression)

dynamic_cast< T > (expression)

reinterpreCcast< T> (expression)

static_cast< T > (expression)

To obtain run-time type identification (RTTI), use the typeidO operator. The syntax is as
follows:

typeid(expression)

typeid(type-name)

Array subscript operator
Brackets ([]) indicate single and multidimensional array subscripts. The expression

<expl> [exp2]

is defined as

*((expl) + (exp2))

where either:

• expl is a pointer and exp2 is an integer or

• expl is an integer and exp2 is a pointer

Function call operator

Syntax
postfix-expression «arg-expression-list»

Remarks
Parentheses 0
• group expressions

• isolate conditional expressions

• indicate function calls and function parameters

The value of the function call expression, if it has a value, is determined by the return
statement in the function definition.

This is a call to the function given by the postfix expression.

arg-expression-list is a comma-delimited list of expressions of any type representing the
actual (or real) function qrguments.

80 c++ Programmer's Guide

Direct member selector

Syntax
postfix-expression . identifier

postfix-expression must be of type union or structure.

identifier must be the name of a member of that structure or union type.

Remarks
Use the selection operator (.) to access structure and union members.

Suppose that the object s is of struct type S and sptr is a pointer to S. Then, if m is a
member identifier of type M declared in S, this expression:

s.m

are of type M, and represent the member objectm in s.

Example
struct mystruct

int i
char str[21]
double d

Sf *sptr=&s

s.i = 3 II assign to the imember of mystruct s

The expression s.m is an lvalue, provided that s is not an lvalue and m is not an array
type.

If structure B contains a field whose type is structure A, the members of A can be
accessed by two applications of the member selectors.

Indirect member selector

Syntax
postfix-expression -> identifier

postfix-expression must be of type pointer to structure or pointer to union.

identifier must be the name of a member of that structure or Union type.

The expression designates a member of a structure or union object. The value of the
expression is the value of the selected member it will be an lvalue if and only if the
postfix expression is an lvalue.

Remarks
You use the selection operator -> to access structure and union members.

C hap t e r 2, Lan 9 u age s t rue t u r e 81

Suppose that the object s is of struct type 5 and sptr is a pointer to S. Then, if m is a
member identifier of type M declared in 5, this expression:

sptr->m

is of type M, and represents the member object m in s.

The expression

s->sptr

is a convenient synonym for (*sptr).m.

Example
struct mystruct

int i
char str [21]
double d

s, *sptr=&s

sptr->d = 1.23 II assign to the d member of mystruct s

The expression sptr->m is an lvalue unless m is an array type.

If structure B contains a field whose type is structure A, the members of A can be
accessed by two applications of the member selectors.

Increment/decrement operators

Increment operator (++)

Syntax
postfix-expression ++
++ unary-expression

(postincrement)
(preincrement)

The expression is called the operand it must be of scalar type (arithmetic or pointer
types) and must be a modifiable lvalue.

Postincrement operator
The value of the whole expression is the value of the postfix expression before the
increment is applied.

After the postfix expression is evaluated, the operand is incremented by 1.

Preincrement operator
The operand is incremented by 1 before the expression is evaluated the value of the
whole expression is the incremented value of the operand.

The increment value is appropriate to the type of the operand.

Pointer types follow the rules for pointer arithmetic.

82 c++ Pro 9 ram mer J s G u ide

Decrement operator (..)

Syntax
postfix-expression -­
-- unary-expression

(postdecrement)
(predecrement)

The decrement operator follows the same rules as the increment operator, except that
the operand is decremented by 1 after or before the whole expression is evaluated.

Unary operators

Syntax
<unary-operator> <unary expression>

or

<unary-operator> <type><unary expression>

Remarks
Unary operators group right-to-left.

Borland C++ provides the following unary operators:

• ! Logical negation

• * Indirection

• ++ Increment

• - Bitwise complement

• -- Decrement

• - Unary minus

• + Unary plus

Reference/indirect operators

Syntax
& cast-expression
* cast-expression

Remarks

The & and * operators work together to reference and dereference pointers that are
passed to functions.

Referencing operator (&)
Use the reference operator to pass the address of a pointer to a function outside of
mainO.

Chapter 2, Language structure 83

The cast-expression operand must be one of the following:

• a function designator

• an lvalue designating an object that is not a bit field and is not declared with a register
storage class specifier

If the operand is of type <type>, the result is of <type> pointer to type.

Some non-Ivalue identifiers, such as function names and array names, are automatically
converted into "pointer-to-X" types when they appear in certain contexts. The &
operator can be used with such objects, but its use is redundant and therefore
discouraged.

Consider the following example:

T tl = 1, t2 = 2;

II Initialized pointer T *ptr = &tl;
*ptr = t2; II Same effect as tl = t2

T *ptr = &tl is treated as

T *ptr;
ptr = &tl;

)

So it is ptr, or *ptr, that gets assigned. Once ptr has been initialized with the address &t1,
it can be safely dereferenced to give the lvalue *ptr.

Indirection operator (*),
Use the asterisk (*) in a variable expression to create pointers. And use the indirect
operator in external functions to get a pointer's value that was passed by reference.

If the operand is of type pointer to function, the result is a function designator.

If the operand is a pointer to an object, the result is an lvalue designating that object.

The result of indirection is undefined if either of the following occur:

• The cast-expression is a null pointer.

• The cast-expression is the address of an automatic variable and execution of its block
has terminated.

Note & can also be the bitwise AND operator.

* can also be the multiplication operator.

Plus operator +
In the expression

+ cast -expression

the cast-expression operand must be of arithmetic type. The result is the value of the
operand after any required integral promotions.

84 c++ Programm,er's Guide

Minus operator -
In the expression

- cast-expression

the cast-expression operand must be of arithmetic type. The result is the negative of the
value of the operand after any required integral promotions.

Bitwise complement operator,..,·
In the expression

,.., cast-expression

the cast-expression operand must be of integral type. The result is the bitwise
complement of the operand after any required integral promotions. Each 0 bit in the
operand is set to I, and each 1 bit in the operand is set to O.

Logical negation operator!
In the expression

! cast-expression

the cast-expression operand must be of scalar type. The result is of type int and is the
logical negation of the operand: 0 if the operand is nonzero; 1 if the operand js zero. The
expression IE is equivalent to (0 == E).

Increment operator ++

In the expressions

++ unary-expression
unary-expression ++

the unary expression is the operand; it must be of scalar type and must be a modifiable
lvalue. The first expression shows the syntax forthe prefix increment operator, also
known as the preincrement operator. The operand is incremented by 1 before the
expression is evaluated; the value of the whole expression is the incremented value of
the operand. The 1 used to increment is the appropriate value for the type of the
operand. Pointer types follow the rules of pointer arithmetic.

The second expression shows the syntax for the postfix increment operator (also known
as the postincrement operator). The operand is incremented by 1 after the expression is
evaluated.

Decrement operator - -
The following expressions show the syntax for prefix and postfix decrementation. 'The
prefix decrement is. also known as the predecrement; the postfix decrement is also known
as the postdecrement.

Chapter 2, Language structure 85

- - unary-expression
unary-expression - -

The operator follows the same rules as the increment operator, except that the operand
is decremented by 1.

The sizeof operator
The sizeof operator has two distinct uses:

size of unary-expression
sizeof (type-name)

The result in both cases is an integer constant that gives the size in bytes of how much
memory space is used by the operand (determined by its type, with some exceptions).
The amount of space that is reserved for each type depends on the machine. In the first
use, the type of the operand expression is determined without evaluating the expression
(and therefore without side effects). When the operand is of type char (signed or
unsigned), sizeof gives the result 1. When the operand is a non-parameter of array type,
the result is the total number of bytes in the array (in other words, an array name is not
converted to a pointer type). The number of elements in an array equals sizeof array /
sizeof array[O].

If the operand is a parameter declared as array type or function type, sizeof gives the
size of the pointer. When applied to structures and unions, size of gives the total number
of bytes, including any padding.

size of cannot be used with expressions of function type, incomplete types,
parenthesized names of such types, or with an lvalue that designates a bit field object.

The integer type of the result of sizeof is size_t, defined as unsigned int in stddef.h.

You can use sizeof in preprocessor directives; this is specific to Borland C++.

In C++, sizeof(classtype), where class type is derived from some base class, returns the
size of the object (remember, this includes the size of the base class).

Source
/* USE THE sizeof OPERATOR TO GET SIZES OF DIFFERENT DATA TYPES. */

#include <stdio.h>

struct st {

char *namej /* 2 BYTES IN SMALL-DATA MODELSj 4 BYTES IN LARGE-DATA MODEL */

int agej /* 2 BYTES IN SMALL-DATA MODELSj 4 BYTES IN LARGE-DATA MODEL */

double heightj /* EIGHT BYTES */
} j

struct st St_Array[]= { /* AN ARRAY OF structs */

{ "Jr.", 4, 34.20}, /* ST_Array[O] */

{ "Suzie", 23, 69.75}, /* ST_Array[l] * /
} j

int main() {

long double LD_Array [] { 1.3, 501.09, 0.0007, 90.1, 17.08 }j

86 c++ Programmer's Guide

printf (" ("\nNumber of elements in LD_Array = %d" I

sizeof(LD_Array) / sizeof(LD_Array[O]));

/**** THE NUMBER OF ELEMENTS IN THE ST~ray. ****/

printf ("\nSt_Array has %d elements" I

sizeof(St_Array)/sizeof(St_Array[O]));

/**** THE NUMBER OF BYTES IN .EACH ST_Array ELEMENT. ****/

printf (" \nStJU'ray[O] = %d" I sizeof (St_Array[O])) ;

/**** THE TOTAL NUMBER OF BYTES IN ST_Array. ****/

printf (" \nSt_Array=%d" I sizeof (St_Array)) ;
return 0;

Output
Number of elements in LD_Array = 5
St_Array has 2 elements
St_Array[O] = 12
St_Array= 24

Binary operators
This section presents the binary operators, which are operators that require two
operands.

Table 2.12 Binary operators

Additive +

Multiplicative *
/
%

Shift «
»

Bitwise· &
1\

Logical &&
II

Assignment

*=
/=
%=
+=

«=
»=

Binary plus (addition)

Binary minus (subtraction)

Multiply

Divide

Remainder

Shlft left

Shift right

Bitwise AND

Bitwise XOR (exclusive OR)

Bitwise inclusive OR

Logical AND

Logical OR

Assignment

Assign product

Assign quotient

Assign remainder (modulus)

Assign sum

Assign difference

. Assign left shift

Assign right shift

C hap t e r 2, Lan 9 u age s t rue t u r e 87

Table 2.12 Binary operators (continued)

Relational

Equality

Component selection

C++ operators

Conditional

Comma

&=
1\=

1=

<
>

<=

>=

!=

->

->*

a?x:y

Additive operators'

Assign bitwise AND

Assign bitwise XOR

Assign bitwise OR

Less than

Greater than

Less than or equal to

Greater than or equal to

Equal to

Not equal to

Direct component selector

Indirect component selector

Scope access / resolution

Dereference pointer to class member

Dereference pointer to class member

Class initializer

"if a then x; else y"

Evaluate; for example, a I b Ie; from left to
right

There are two additive operators: + and -. The syntax is

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

Addition +
The legal operand types for opl + op2 are

• Both opl and op2 are of arithmetic type.
• opl is of integral type, and op2 is of pointer to object type.
• op2 is of integral type, and opl is of pointer to object type.

In the first case, the operands are subjected to the standard arithmetical conversions,
and the result is the arithmetical sum of the operands. In the second and third cases, the
rules of pointer arithmetic apply.

Subtraction -
The legal operand types for opl - op2 are

88 c++ Programmer's Guide

• Both opl and op2 are of arithmetic type.

• Both opl and op2 are pointers to compatible object types. The unqualified type type is
considered to be compatible with the qualified types const type, volatile type, and
const volatile type.

• opl is of pointer to object type, and op2 is integral type.

In the first case, the operands are subjected to the standard arithmetic conversions, and
the result is the arithmetic difference of the operands. In the second and third cases, the
rules of pointer arithmetic apply.

Multiplicative operators
There are three multiplicative operators: *, I, and %. The ~yntax is

multiplicative-expression:
cast-expression
multiplicative~expression cast-expression
multip licative-expression I cast-expression
multiplicative-expression % cast-expression

The operands for *(multiplication) and I (division) must be of arithmetical type. The
operands for % (modulus, or remainder) must be of integral type. The usual arithmetic
conversions are made on the operands.

The result of (opl * op2) is the product of the two operands. The results of (opllop2) and
(opl % op2) are the quotient and remainder, respectively, when opl is divided by op2,
provided that op2 is nonzero. Use of I or % with a zero second operand results in an
error.

When opl and op2 are integers and the quotient is not an integer, the results are as
follows:

• If opl and op2 have the same sign, opll op2 is the largest integer less than the true
quotient, and opl % op2 has the sign of opl.

• If opl and op2 have opposite signs, opll op2 is the smallest integer greater than the
true quotient, and opl % op2 has the sign of opl.

Note Rounding is always toward zero.

Bitwise logic operators
There are three bitwise logical operators: &, A, and I.

AND &
The syntax is

AND-expression:
equality-expression
AND-expression & equality-expression

C hap t e r 2, Lan 9 u age s t rue t u r e 89

In the expression El & E2, both operands must be of integral type. The usual
arithmetical conversions are performed on El and E2, and the result is the bitwise AND
of El and E2. Each bit in the result is determined as shown in Table 2.13.

Table 2.13 Bitwise operators truth table

a a a a a
1 a a 1 1

a 1 a 1 1

1 1 1 a 1

Exclusive OR 1\

The syntax is

exclusive-OR -expression:
AND-expression
exclusive-OR -expression A AND-expression

In the expression El A E2, both operands must be of integral type. The usual arithmetic
conversions are performed on El and E2, and the result is the bitwise exclusive OR of El
and E2. Each bit in the result is determined as shown in Table 2.13.

Inclusive OR I
The syntax is

inclusive-OR -expression:
exclusive-OR -expression
inclusive-OR-expression I exclusive-OR-expression

In the expression El I E2, both operands must be of integral type. The usual arithmetic
conversions are performed on El and E2, and the result is the bitwise inclusive OR of El
and E2. Each bit in the result is determined as shown in Table 2.13.

Bitwise shift operators
There are two bitwise shift operators: « and ». The syntax is

shift -expression:
additive-expression
shift-expression «additive-expression
shift-expression »additive-expression

Shift «< and »)
In the expressions El « E2 and El » E2, the operands El and E2 must be of integral
type. The normal integral promotions are performed on El and E2, and the type of the
result is the type of the promoted El. If E2 is negative or is greater than or equal to the
width in bits of El, the operation is undefined.

The result of El «E2 is the value of Elleft-shifted by E2 bit positions, zero-filled from
the right if necessary. Left shifts of an unsigned long El are equivalent to multiplying

90 c++ Programmer's Guide

El by 2E2, reduced modulo ULONG_MAX + 1; left shifts of unsigned ints are
equivalent to multiplying by 2E2 reduced modulo UINT_MAX + 1. If El is a signed
integer, the result must be interpreted with care, because the sign bit might change.

Note The constants ULONG_MAX and UINT_MAX are defined in limits.h.

The result of El » E2 is the value of El right-shifted by E2 bit positions. If El is of
unsigned type, zero-fill occurs from the left if necessary. If El is of signed type, the fill
from the left uses the sign bit (0 for positive, 1 for negative El). This sign-bit extension
ensures that the sign of El »E2 is the same as the sign of El. Except for signed types,
the value of El »E2 is the integral part of the quotient El/2E2.

Relational operators
There are four relational operators: <, >, <=, and >=. The syntax for these operators is

relational-expression:
shift-expression
relational-expression < shift -expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

Less-than <
In the expression El < E2, the operands must conform to one of the following sets of
conditions:

• Both El and E2 are of arithmetic type.

• Both El and E2 are pointers to qualified or unqualified versions of compatible object
types.

• Both El and E2 are pointers to qualified or unqualified versions of compatible
incomplete types.

In the first case, the usual arithmetic conversions are perf9rmed. The result of El < E2 is
of type int. If the value of El is less ~an the value of E2, the result is 1 (true); otherwise,
the result is zero (false). .

In the second and third cases, in which El and E2 are pointers to compatible types, the
result of El < E2 depends on the relative locations (addresses) of the two objects being
pointed at. When comparing structure members within the same structure, the "higher"
pointer indicates a later declaration. Within arrays, the "higher" pointer indicates a
larger subscript value. All pointers to members of the same union object compare as
equal.

Normally, the comparison of pointers to different structure, array, or union objects, or
the comparison of pointers outside the range of an array object give undefined results;
however, an exception is made for the "pointer beyond the last element" situation. If P .
points to an element of an array object, and Q points tothe last element, the expression P
< Q + 1 is allowed, evaluating to 1 (true), even though Q + 1 does not point to an element
of the array object.

C hap t e r 2, Lan 9 u age s t rue t u r e 91

Greater-than>
The expression El > E2 gives 1 (true) if the value of El is greater than the value of E2;
otherwise, the result is 0 (false), using the same interpretations for arithmetic and
pointer comparisons as are defined for the less-than operator. The same operand rules
and restrictions also apply.

Less-than or equal-to <=
Similarly, the expression El <= E2 gives 1 (true) if the value of El is less than or equal to
the value of E2. Otherwise, the result is 0 (false), using the same interpretations for
arithmetic and pointer comparisons as are defined for the less-than operator. The same
operand rules and restrictions also apply.

Greater-than or equal-to >=
Finally, the expression El >= E2 gives 1 (true) if the value of El is greater than or equal
to the value of E2 .. Otherwise, the result is 0 (false), using the same interpretations for
arithmetic and pointer comparisons as are defined for the less-than operator. The same
operand rules and restrictions also apply.

Equality operators
There are two equality operators: == and !=. They test for equality and inequality
between arithmetic or pointer values, following rules very similar to those for the
relational operators.

Note Notice that == and != have a lower precedence than the relational operators < and >, <=,
and >=.Also, == and!= can compare certain pointer types for equality and inequality
where the relational operators would not be allowed.

The syntax is

equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

Equal-to ==
In the expression El == E2, the operands must conform to one of the following sets of
conditions:

• Both El and E2 are of arithmetic type.

• Both El and E2 are pointers to qualified or unqualified versions of compatible types.

• One of El and E2 is a pointer to an object or incomplete type, and the other is a
pointer to a qualified or unqualified version of void.

• One of El or E2 is a pointer and the other is a null pointer constant.

92 C++ Pro 9 ram mer's G u ide

If El and E2 have types that are valid operand types for a relational operator, the same
comparison rules just detailed for EJ < E2, El <= E2, and so on, apply.

In the first case, for example, the usual arithmetic conversions are performed, and the
result of El == E2 is of type int. If the value of El is equal to the value of E2, the result is
1 (true); otherwise, the result is zero (false).

In the second case, El == E2 gives 1 (true) if El and E2 point to the same object, or both
point 1/ one past the last element" of the same array object, or both are null pointers.

If El and E2 are pointers to function types, El == E2 gives 1 (true) if they are both null or
if they both point to the same function. Conversely, if El == E2 gives 1 (true), then either
El and E2 point to the same function, or they are both null.

In the fourth case, the pointer to an object or incomplete type is converted to the type of
the other operand (pointer to a qualified or unqualified version of void).

Inequality !=
The expression El != E2 follows the same rules as those for El == E2, except that the
result is 1 (true) if the operands are unequal, and 0 (false) if the operands are equal.

Logical operators
There are two logical operators: &&and I I.

AND&&
The syntax is

logical-AND-expression:
inclusive-OR -expression
logical-AND-expression && inclusive-OR -expression

In the expression El && E2, both operands must be of scalar type. The result is of type
int, and the result is 1 (true) if the values of El and E2 are both nonzero; otherwise, the
result is 0 (false).

Unlike the bitwise & operator, && guarantees left-to-right evaluation. El is evaluated
first; if El is zero, El && E2 gives 0 (false), andE2 is not evaluated.

ORII
The syntax is

logical-OR -expression:
logical-AND-expression
logical-OR -expression I J logical-AND-expression

In the expression El I I E2, both operands must be of scalar type. The result is of type
int, and the result is 1 (true) if either of the values of El and E2 are nonzero. Otherwise,
the result is 0 (false).

Unlike the bitwise I operator, I I guarantees left-to-right evaluation. El is evaluated
first; if El is nonzero, El I I E2 gives 1 (true), and E2 is not evaluated.

C hap t e r 2, Lan 9 u age s t rue t u r e 93

Conditional? :
The syntax is

conditional-expression
logical-OR -expression
logical-OR-expression ? expression: conditional-:-expression

In the expression E1 ? E2: E3, the operand E1 must be of scalar type. The operands E2
and E3 mU,st obey one of the following rules:

• Rule 1: Both are of arithmetic type.

• Rule 2: Both are of compatible structure or union types.

• Rule 3: Both are of void type.

• Rule 4: Both are of type pointer to qualified or unqualified versions of compatible
types.

• Rule 5: One operand is of pointer type, the other is a null pointer constant.

• Rule 6: One operand is of type pointer to an object or incomplete type, the other is of
type pointer to a qualified or unqualified version of void.

Note In C++, the result is an lvalue.

First, E1 is evaluated; if its value is nonzero (true), then E2 is evaluated and E3 is
ignored. If E1 evaluates to zero (false), then E3 is evaluated and E2 is ignored. The result
of E1 ? E2 : E3 will be the value of whichever of E2 and E3 is evaluated.

In rule 1, both E2 and E3 are subject to the usual arithmetic conversions, and the type of
the result is the common type resulting from these conversions. In rule 2, the type of the
result is the structure or union type of E2 and E3. In rule 3, the result is of type void.

In rules 4 and 5, the type of the result is a pointer to a type qualified with all the type
qualifiers of the types pointed to by both operands. In rule 6, the type of the result is that
of the nonpqinter-to-void operand.

Assignment operators
There are 11 assignment operators. The = operator is the simple assignment operator;
the other 10 are known as compound assignment operators.

The syntax is

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator: one of

= *=
«= »=

94 C++ Pro 9 ram mer's G u ide

1=

&='

0/0= . += -=

1=

Simple assignment =
In the expression El = E2, El must be a modifiable lvalue. The value of E2, after
conversion to the type of El, is stored in the object designated by £1 (replacing El's
previous value). The value of the assignment expression is the valu~ of El after the
assignment. The assignment expression is not itself an lvalue.

The operands El and E2 must obey one of the following rules:

• Rule 1: El is of qualified or unqualified arithmetic type and E2 is of arithmetic type.

• Rule 2: El has a qualified or unqualified version of a structure or union type
compatible with the type of E2.

• Rule 3: El and E2 are pointers to qualified or unqualified versions of compatible
types, and the type pointed to by the left has all the qualifiers of the type pointed to
by the right.

• Rule 4: One of El or E2 is a pointer to an object or incomplete type and the other is a
pointer to a qualified or unqualified version of void. The type pointed to by the left
has all the qualifiers of the type pointed to by the right.

• Rule 5: El is a pointer and E2 is a null pointer constant.

Note \ In C++, the result is an lvalue.

Compound assignment
The compound assignments op=, where op can be anyone of the 10 operator
symbols * / % + -« » & A I, are interpreted as follows:

El op= E2

has the same effect as

El = El op E2

except that the lvalue El is evaluated only once. (For example, El += E2 is the same as
El = El + E2.)

The rules for compound assignment are therefore covered in the previous section (on
the simple assignment operator =).

Comma operator
The syntax is

expression:
assignment-expression
expression, assignment-expression

In the comma expression

El,E2

C hap t e r 2, Lan 9 u age s t rue t u r e 95

the left operand El is evaluated as a void expression, then E2 is evaluated to give the
result and type of the comma expression. By recursion, the expression

El, E2, ... , En

results in the left-to-right evaluation of each Ei, with the value and type of En giving the
result of the .whole expression. To avoid potential ambiguity (which might arise from
the commas being used in both function arguments and in initializer lists), parentheses
. must be used. For example,

func(i, (j = 1,j + 4), k) i

calls June with three arguments, not four. The arguments are i, 5, and k.

Note In C++, the result is an lvalue.

c++ specific operators
The operators specific to C++ are:

*
->*

consCcast

delete

dynamiccast

new

reinterpreCcast

staticcast

scope access (or resolution) operator

dereference pointers to class members

dereference pointers to pointers to class members

adds or removes the const or volatile modifier from a type

dynamically deallocates memory

converts a pointer to a desired type

dynamically allocates memory

replaces casts for conversions that are unsafe or implementation dependent

converts a pointer to a desired type

typeid gets run-time identification of types and expressions

Use the scope access (or resolution) operator ::(two semicolons) to access a global (or file
duration) name even if it is hidden by a local redeclaration of that name.

Use the.* and ->* operators to dereference pointers to class members and pointers to
pointers to class members.

Statements
Statements specify the flow of control as a program executes. In the absence of specific
jump and selection statements, statements are executed sequentially in the order of
appearance in the source code. Borland C++ statements shows the syntax for
statements.

96 c++ Programmer's Guide

Table 2.14 Borland C++ Statements
statement:

labeled-statement
compound-statement

expression-statement
selection-statement

iteration-statement

jump-statement

asm-statement

declaration (C++ specific)

labeled-statement:

identifier : statement
case constant-expression: statement

default : statement

compound-statement:

{ <declaration-list> <statement-list> }
declaration-list:

declaration

declaration-list declaration

statement-list:

statement
statement-list statement

expression-statement:

<expression> ;
asm-statement:

asm tokens newline
asm tokens;

asm {tokens; <tokens;>= <tokens;>}

selection-statement:

if (expression) statement

if (expression) statement else statement
switch (expression) statement

iteration-statement:

while (expression) statement

do statement while (expression);

for (jor-init-statement <expression> ; <expression» statement
for-init-statement:

expression-statement

declaration (C++ specific)

jump-statement:
goto identifier;

continue;

C hap t e r 2, Lan 9 u age s t rue t u r e 97

Table 2.14 Borland C++ Statements

break;

return <expression>;

Blocks
A compound statement, or block, is a'list (possibly empty) of statements enclosed in
matching braces ({ }). Syntactically, a block can be considered to be a single statement,
but it also plays a role in the scoping of identifiers. An identifier declared within a block
has a scope starting at the point of declaration and ending at the closing brace. Blocks
can be nested to any depth.

Labeled statements
A statement can be labeled in two ways:

• label-identifier: statement

The label identifier serves as a target for the unconditional goto statement. Label
identifiers have their own name space and have function scope. In C++ you can label
both declaration and non-declaration statements.

• case constant-expression: statement

default: statement

Case and default labeled statements are used only in conjunction with switch
statements.

Expression statements
Any expression followed by a semicolon forms an expression statement:

<expression> ;

Borland C++ executes an expression statement by evaluating the expression. All side
effects from this evaluation are completed before the next statement is executed. Most
expression statements are assignment sfatements or function calls.

The null statement is a special case, consisting of a single semicolon (i). The null statement
does nothing, and is therefore useful in situations where the Borland C++ syntax
expects a statement but your program does not need one.

Selection statements
Selection or flow-control statements select from alternative courses of action by testing
certain values. There are two types of selection statements: the if...else and the switch.

98 C++ Pro 9 ram mer's G u ide

Iteration statements
Iteration statements let you loop a set of statements. There are three forms of iteration in
Borland C++: while, do while, and for loops.

Jump statements
A jump statement, when executed, transfers control unconditionally. There are four
such statements: break, continue, goto, and return.

The main() function
Every C and C++ program must have a program-startup function.

• Console:"'based programs call the main function at startup.

• Windows CUI programs call the WinMain function at startup.

Where you place the startup function is a matter of preference. Some programmers
place main at the beginning of the file, others at the end. ~egardless of its location, the
following points about main always apply:

• Arguments to main

• Wildcard arguments

• Using -p (Pascal calling conventions)

• Value main() returns

Arguments to main()
Three parameters (arguments) are passed to main by the Borland C++ startup routine:
argc, argv, and env.

• argc, an integer, is the number of command-line arguments passed to main, including
the name of the executable itself.

• argv is an array of pointers to strings (char *[D.
• argv[Q] is the full path name of the program being run.

@ argv[l] points ,to the first string typed on the operating system command line after
the program name.

1\1 argv[2] points to the second string typed after the program name.

@ argv[argc-l] points to the last argument passed to main.

e argv[argc] contains NULL.

• env is also an array of pointers to strings. Each element of env[] holds a string of the
form ENVY AR=value.

• ENVY AR is the name of an environment variable, such as PATH or COMSPEC.

Chapter 2, Language structure 99

1& value is the value to which ENVV AR is set, such as C: \APPS;C: \ TOOLS; (for
PATH) or C: \DOS\COMMAND.COM (for COMSPEC).

If you declare any of these parameters, you must declare them exactly in the order given:
argc, argv, env. For example, the following' are all valid declarations of arguments to
main:

int main()
int main(int argc) /* legal but very unlikely */
int main(int argc, char * argv[])
int main(int argc, char * argv[] , char * env[])]

The declaration int main(int argc) is legal, but it is very unlikely that you would use argc
in your program without also using the elements of argv.

The argument env is also available through the global variable _environ.

For all platforms, argc and argv are also available via the global variables _argc and
_argv.

Example of how arguments are passed to main{)
Here is an example that demonstrates a simple way of using these arguments passed to
main():

/* Program ARGS.C */
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[], char *env[]) {
int i;

printf ("The value of argc is %d \n\n", argc);
printf("These are the %d cormnand-line arguments passed to"

" main: \n\n", argc);

for (i = 0; i < argc; i++)
printf (" argv[%d]: %s\n", L argv[i]);

printf("\nThe environment string(s) on this system are:\n\n");

for (i = 0; env[i] != NULL; i++)
printf (" env[%d]: %s\n", i, env[i]);

return 0;

Suppose you run ARGS.EXE at the command prompt with the following command
line:

C:> args first_arg "arg with blanks" 3 4 "last but one" stop!

Notice that you can pass arguments with embedded blanks by surrounding them with
quotes, as shown by "argument with blanks" and "last but one" in this example
command line.

100 C++ Pro 9 ram mer's G u 1 d e

The output of ARGS.EXE (assuming that the environment variables are,set as shown
here) would then be like this:

The value of argc is 7

These are the 7 command-line arguments passed to main:

argv[O]: C:\BC4\ARGS.EXE
argv[l]: first_arg
argv[2]: arg with blanks
argv[3]: 3
argv[4]: 4
argv[5]: last but one
argv[6]: stop!

The environment string(s) on this system are

env[O]: COMSPEC=C:\COMMAND.COM
env[l]: PROMPT=$p $g
env[2]: PATH=C:\SPRINT;C:\DOS;C:\BC4

The maximum combined length of the command-line arguments passed to main
(including the space between adjacent arguments and the program name itself) is

I

• 128forDOS

• 260 for Win16

• 255 for Win32

Wildcard arguments
Command-line arguments containing wildcard characters can be expanded to all the
matching file names, much the same way DOS expands wildcards when used with
commands like COPY. All you have to do to get wildcard expansion is to link your
program with the WILDARGS.OBJ object file, which is included with Borland C++.

Note Wildcard arguments are used only in console-mode applications.

Once WILDARGS.OBJ is linked into your program code, you can send wildcard
arguments (such as *.*) to your main function. The argument will be expanded (in the
argv array) to all files matching the wildcard'mask. The maximum size of the argv array
varies, depending on the amount of memory available in your heap.

If no matching files are found, the argument is passed unchanged. (That is, a string
consisting of the wildcard mask is passed to main.)

Arguments enclosed in quotes (" ... If) are not expanded.

Example of using wildcard arguments with main()
The following commands compile the file ARGS.C and link it with the wildcard
expansion module WILDARGS.OBJ, then run the resulting executable file ARGS.EXE:

C hap t e r 2, Lan 9 u age s t rue t u r e 101

BCC ARGS.C WILDARGS.OBJ
ARGS C:\BC4\INCLUDE*.H "*.C"

When you run ARGS.EXE, the first argument is expanded to the names of all the *.H
files in your Borland C++ INCLUDE directory. Note that the expanded argument
strings include the entire path. The argument *.C is not expanded because it is enclosed
in quotes.

In the IDE, simply specify a project file from the Project menu that contains the
following lines: .

ARGS
WILDARGS.OBJ

If you prefer the wildcard expansion to be the default, modify your standard
CW32?LIB library files fo have WILDARGS.OBJ linked automatically. To do so, remove
SETARGV and INITARGS from the libraries and add WILDARGS. The following
commands invoke the Turbo librarian (TLIB) to modify all the standard library files
(assuming the current directory contains the standard C and C++ libraries and
WILDARGS.OBJ):

Windows users
tlib CW32 -setargv +wildargs
tlib CW32MT -setargv +wildargs
tlib -setargv +wildargs

DOS users
tlib cs -setargv +wildargs
tlib cc' -setargv +wildargs
tlib cm -setargv +wildargs
tlib cl -setargv +wildargs
tlib ch -setargv +wildargs

Using _--p (Pascal calling conventions)
If you compile your program using Pascal calling conventions, you must remember to
explicitly declare main as a C type. Do this with the __ cdec1 keyword, like this:

int __ cdecl main(int argc, char* argv[], char* envp[])

The value mainO returns
The value returned by main is the status code of the program: an int. If, however, your
program uses the routine exit (or _exit) to terminate, the value returned by main is the
argument passed to the call to exit (or to _exit).

For example, if your program contains the call

102 c++ Pro 9 ram mer's G u ide

exit(l)

the status is 1.

Passing file information to child processes
If your program uses the exec or spawn functions to create a new process, the new
process will normally inherit all of the open file handles created by the original process.
Some information, however, about these handles willbe lost, including the access mode
used to open the file. For example, if your program opens a file for read-only access in
binary mode, and then spawns a child process, the child process might corrupt the file
by writing to it, or by reading from it in text mode.

To allow child processes to inherit such information about open files, you must link
your program with the object file FILEINFO.OBJ.

For example:

BCC32 TEST.C \BC4\LIB\FILEINFO.OBJ

The file information is passed in the environment variable _ C_FILE_INFO. This variable
contains encoded binary information. Your program should not attempt to read or
modify its value. The child program must have been built with the C++ run-time library
to inherit this information correctly.

Other programs can ignore _C_FILE_INFO, and will not inherit file information.

Multithread programs
32-bit programs can create more than one thread of execution. If your program creates
multiple threads, and these threads also use the C++ run-time library, you must use the
CW32MT.LIB or CW32MTI library instead.

The multithread libraries provide the following functions that you use to create threads:

• _begin thread

• _beginthreadNT

The multithread libraries also provide

a function that terminates threads _end thread

_threadid a global variable that contains the current identification number of the
thread (also known as the thread ID).

The header file stddef.h contains the declaration of _threadid.

When you compile or link a program that uses multiple threads, you must use the -WM
compiler switch. For example:

BCC32 -WM THREAD.G

Chapter 2, Language structure 103

Note Take special care when using the signal function in a multithread program. The SIGINT,
SIGTERM, and SIGBREAK signals can be used only by the main thread (thread one) in a
non-Win32 application. When one of these signals occurs, the currently executing
thread is suspended, and control transfers to the signal handler (if any) set up by thread
one. Other signals can be handled by any thread.

A signal handler should not use C++ run-time library functions because a semaphore
deadlock might occur. Instead, the handler should simply set a flag or post a semaphore
and return immediately.

104 C++ Pro 9 ram mer's G u ide

c++ specifics
C++ is an object-oriented programming language based on C. Generally speaking, you
. can compile C programs under C++, but you can't compile a C++ program under C if
the program uses any constructs specific to c++. Some situations require special care.
For example, the same function june declared twice in C with different argument types
invokes a duplicated name error. Under C++, however,june will be interpreted as an
overloaded function; whether or not this is legal depends on other circumstances.

Although C++ introduces new keywords and operators to handle classes, some of the
capabilities of C++ have applications outside of any class context. This topic discusses
the aspects of C++ that can be used independently of classes, then describes the specifics
of classes and class mechanisms.

See "C++ exception handling" and "C-based structured exceptions" in Chapter 4 for
details on compiling C and C++ programs with exception handling.

Namespaces
Most nontrivial applications consist of more than one source file. The files can be
authored and maintained by more than one developer. Eventually, the separate files are
organized and linked to produce the final application.

Traditionally, the file organization requires all names that aren't encapsulated within a
defined name space (such as function or class body, or translation unit) to share the
same global name space. Therefore, multiple definitions of names discovered while
linking separate modules require some way to distinguish each name. C++ namespaees
provide the solution to the problem of name clashes in the global scope.

Namespaces allow an application to be partitioned into a number of subsystems. Each
subsystem can define and operate within its own scope. Each developer can introduce
whatever identifiers ar,e convenient within a subsystem without worrying about
whether such identifiers are being used by someone else. The subsystem scope is known
throughout the application by a unique identifier.

Chapter 3, C++ specifics 105

It takes only two steps to use C++ namespaces:

1 You must uniquely identify a name space using the keyword namespace.

2 You can then access the elements of an identified namespace by applying the using
keyword.

Defining a namespace
The grammar for defining a namespace is

original-namespace-name:
identifier

namespace-definition:
original-namespace-definition
extension-namespace-definition
unnamed-namespace-definition

Grammatically, there are three ways to define a namespace with the namespace
keyword:

original-namespace-definition:
namespace identifier { namespace-body }

extension-namespace-definition:
namespace original-namespace-name { namespace-body }

unnamed-namespace-definition:
namespace { namespace-body }

The body is an optional sequence of declarations. The grammar is

namespace~body:
declaration-seq opt

Example
II An example of the using directive
#include <iostream.h>

namespace F {
float x = 9;
}

namespace G {
using namespace F;
float y = 2.0;

namespace INNER_G
float z = 10.01;
}

int main()
using namespace G; I I THIS DIRECTIVE GIVES YOU EVERYTHING DECLARED IN "G"
using namespace G: : INNER_G; I I THIS DIRECTIVE GIVES YOU ONLY "INNER_G"

106 C++ Pro 9 ram mer's G u ide

float x = 19.1; II LOCAL DECLARATION TAKES PRECEDENCE

Output:

cout « "x = " « x « endl;
cout « "y = " « y « endl;
cout «"z "« z « endl;
return 0;

x = 19.1
y = 2
z = 10.01

Declaring a namespace
An original namespace declaration should use an identifier that has not been previously
used as a global identifier.

namespace ALPHA { 1* ALPHA is the identifier of this namespace. *1
1* your program declarations *1
long double LD;
float f(float y) { return y;
}

A namespace identifier must be known in all translation units where you intend to
access its elements.

Namespace alias
You can use an alternate name to refer to a namespace identifier. An alias is useful when
you need to refer to a long, unwieldy namespace identifier.

namespace BORLAND_INTERNATIONAL {
1* namespace-body *1
namespace NESTED_BORLAND_INTERNATIONAL

1* namespace-body *1
}

II Alias namespace
namespace BI = BORLAND_INTERNATIONAL;

II Use access qualifier to alias a nested namespace
namespace NBI = BORLAND_INTERNATIONAL::NESTED_BORLAND_INTERNATIONAL;

Extending a namespace
Namespaces are discontinuous and open for additional development. If you redeclare a
namespace, you extend the original namespace by adding new declarations. Any
extensions that are made to a namespace after a using declaration will not be known at
the point at which the using declaration occurs. Therefore, all overloaded versions of
some function should be included in the namespace before you declare the function to
be in use.

Chapter 3, C++ specifics 107

Example for extending, namespaces
II An example for extending namespaces
#include <iostream.h>

struct S };
class C {};

namespace ALPHA I I ALPHA is an original identifier.
void g(struct S) {

cout « "Processing a structure argument" « endl;

using ALPHA: :g; I I using declaration

1*** After the using declaration above, subsequent attempts
to overload the g() function are ignored. ***1

namespace ALPHA { I I Extending the ALPHA namespace
void g(C&) { II Overloaded version of function

cout « "Processing a class argument." « endl;

int main()
S mystruct;
C myclass;

g(mystruct) ;

II The following function call fails at compile-time
II because there is no overloaded version for this case.

II g(myclass);
return 0;

Output:

Processing a structure argument

Anonymous namespaces
The c++ grammar allows you to define anonymous namespaces. To do this, you-use the
keyWord namespace with no identifier before the enclosing brace.

namespace { I I Anonymous namespace
II Declarations

All anonYmous, unnamed namespaces in global scope (that is, unnamed rtamespaces
that are not nested) of the same translation unit share the same namespace. This way
you can make static declarations without using the static keyword.

Each identifier that is enclosed within an unnamed namespace is unique within the
translation unit in which the unnamed namespace is defined.

108 c++ Programmer's Guide

Example
In file ANON1.CPP:

#include <iostream.h>
extern void func(void);

namespace { II Anonymous
float pi = 3.14; II Unique identifier known only in this file
}

void main()
float pi 0.1;
cout « "pi = " « pi « endl;
fimc () ;
}

In file ANON2.CPP:

#include <iostream.h>

namespace { I I Anonymous namespace
float pi = 10.0001; II Unique identifier known only in this file
void func(void) {

cout « "First func() called; pi = " « pi;

void func(void)
cout « "Second func() called; pi "« pi;

Program output:

pi = 0.1
Second func() called; pi = 10.0001

Accessing elements of a namespace
You can access the elements of a namespace in three ways:

• By explicit access qualification

• By the using declaration

• By the using directive

Remember that no matter which namespace you add to your local scope, identifiers in
global scope (global scope is just another namespace) are still accessible by using the
scope resolution operator ::.

Accessing namespaces in classes
You cannot use a using directive inside a class. However, the using declarative is
allowed and can be quite useful.

C hap t e r 3, C++ s pee i fie s 109

Using directive
If you want to use several (or all of) the members of a namespace, C++ provides an easy
way to get access to the complete namespace. The using directive specifies that all
identifiers in a namespace are in scope at the point that the using directive statement is
made. The grammar for the using directive is as follows:

using-directive:

using namespace :: opt nested-name-specifier opt namespace-name;

The using directive is transitive. That means that when you apply the using directive to
a namespace that contains using directives within itself, you get access to those
namespaces as well. For example, if you apply the using directive in your program, you
also get namespaces A, ONE, and TWO.

namespace A {
using namespace ONE; II This has been defined previously
using namespace TWO; II This also has been defined previously

The using directive does not add any identifiers to your local scope.· Therefore, an
, identifier defined in more than one namespace won't be a problem until you actually
attempt to use it. Local scope declarations take precedence by hiding all other similar
declarations.

Using declaration
You can access namespace members individually with the using declaration syntax.
When you make a using declaration, you add the declared identifier to the local
'namespace. The grammar is

using-declaration:

using :: unqualified-identifier;

Example
II An example of the using declaration.
II The function g() is defined in two different namespaces.
#include <iostream.h>

namespace ALPHA { 1* ALPHA is the name of this namespace. *1
float f(float y) { return y; }
void g() { cout « "ALPHA version" «' endl; }

namespace BETA 1* BETA is the name of this namespace. *1
void g () cout« "~ETA version" « endl; }

}

void main (void)
II The using declaration identifies the desired version of g().

using ALPHA::f; II Qualified declaration
using BETA::g; II Qualified declaration

110 C++ Programmer's Guide

float x = 0;

II Access qualifiers are no longer needed.
x=f(2.1);
g();

}

Explicit access qualification
You can explicitly qualify each member of a namespace. To do so, you use the
namespace identifier together with the :: scope resolution operator followed by the
member name. For example, to access a specific member of namespace ALPHA, you
write:

ALPHA::LD; II Access a variable
ALPHA::f; II Access a function

Explicit access qualification can always be used to resolve ambiguity. No matter which
namespace (except anonymous namespace) is being used in your subsystem, you can
apply the scope resolution operator :: to access identifiers in any namespace (including a
namespace already being used in the local scope) or the global namespace. Therefore,
any identfier in the application can be accessed with sufficient qualification.

Example
II An example for accessing a namespace within a class .

. 11 This allows us to overload a function which is a base class member.

#include <i9stream.h>
class A {

l/

public:
void func(char ch) { cout « "char = " « ch « endl; }

} ;

class B : public A {
public:

using namespace A;
void func(char *str)

II ERROR. The using directive isn't allowed
cout « "string = " « str « endl; }

II The USing declarative
using A: : func; I I Overload B: : func ()

} ;

int main()
B b;

b.func('c'); II Calls A::func()
b. func ("c"); I I Calls B:: func ()
return 0;

Chapter 3, C++ specifics 111

New-style typecasting
This section presents a discussion of alternate methods for making a typecast. The
methods presented here augment the earlier cast expressions available in the C
language.

Types cannot be defined in a cast.

const cast

Syntax
const_cast< T > (arg)

Description
Use the consCcast operator to add or remove the const or volatile modifier from a type.
In the statement,

const_cast< T > (arg)

T and arg must be of the same type except for const and volatile modifiers. The cast is
resolved at compile time. The result is of type T. Any number of const or volatile
modifiers can be added or removed with a single consCcast expre~sion.

A pointer to const can be converted to a pointer to non-const that is in all other respects
an identical type. If successful, the resulting pointer refers to the original object.

Aconst object or a reference to consCcast results in a non-const object or reference that is
otherwise an identical type.

The const_cast operator performs similar typecasts on the volatile modifier. A pointer to
volatile object can be cast to a pointer to non-volatile object without otherwise changing
the type of the object. The result is a pointer to the original object. A volatile-type object
or a reference to volatile-type can be converted into an identical non-volatile type.

In the expression,

dynamic_cast< T > (ptr)

T must be a pointer or a reference to a defined class type or void*. The argument ptr
must be an express~on that resolves to a pointer or reference.

If T is void* then ptr must also be a pointer. In this case, the resulting pointer can access
any element of the class that is the most derived element in the hierarchy. Such a class
cannot be a base for any other class.

Conversions from a derived class to a base class, or from one derived class to another,
are as follows: if T is a pointer and ptr is a pointer to a non-base class that is an element
of a class hierarchy, the result is a pointer to the unique subclass. References are treated
similarly. If T is a reference and ptr is a reference to a non-base class, the result is a
reference to the unique subclass.

112 C++ Pro 9 ram mer's G u ide

A conversion from a base class to a derived class can be performed only if the base is a
polymorphic type. The conversion to a base class is resolved at compile time. A
conversion from a base class to a derived class, or a conversion across a hierarchy is
resolved at run time.

If successful, dynamic_cast< T > (ptr) converts ptrto the desired type. If a pointer cast
fails, the returned pointer is valued O. If a cast to a reference type fails, the Bad_cast
exception is thrown.

Note Run-time type identification (RTTI) is required for dynamic_cast.

Example
I I HOW TO MAKE DYNAMIC CASTS
II This program must be compiled with the -RT (Generate RTTI) option.
#include <iostream.h>
#include <typeinfo.h>
class Basel

} ;

II In order for the RTTI mechanism to function correctly,
II a base class must be polymorphic.
virtual void f(void) { 1* A virtual function makes the class polymorphic *1 }

class Base2 { };
class Derived: public Basel, public Base2 { };
intmain(void) {

try {

Derived d, *pd;
Basel *bl = &d;
II Perform a downcast from a Basel .to a Derived.
if ((pd = dynamic_cast<Derived *> (bl)) ! = O){

cout « "The resulting pointer is of type "
«typeid(pd).name() «endl;

else throw Bad_cast();
II Attempt cast across the hierarchy. That is, cast from
II the first base to the most derived class and then back
II to another accessible base.
Base2 *b2;
if ((b2 = dynamic_cast<Base2 *>(bl)) != 0) {

cout « "The resulting pointer is of type "
« typeid(b2) .name() « endl;

else throw Bad_cast();

catch (Bad_cast) {
cout « "dynamic_cast failed" « endl;
return 1;

catch (...) {
cout « "Exception handling error." « endl;
return 1;

C hap t e r 3, C++ s pee i fie s 113

return 0;

reinterpret_cast

Syntax
reinterpret_cast< T > (arg)

Description
In the statement,

reinterpret_cast< T > (arg)

T must be a pointer, reference, arithmetic type, pointer to function, or pointer to
member.

A pointer can be explicitly converted to an integral type. An integral arg can be
converted to a pointer. Converting a pointer to an integral type and back to the same
pointer type results in the original value. A yet undefined class can be used in a pointer
or reference conversion.

A pointer to a function can be explicitly converted to a pointer to an object type
provided the object pointer type has enough bits to hold the function pointer. A pointer
to an object type can be explicitly converted to a pointer to a function only if the function
pointer type is large enough to hold the object pointer.

Example
II Use reinterpret_cast<Type>(expr) to replace (Type)expr casts
II for conversions that are unsafe or implementation dependent.
void f~~c(void *v) (

?

II Cast from pointer type to integral type.
int i = reinterpret_cast<int>(v);

void main()
II Cast from an integral type to pointer type.
func(reinterpret_cast<void *>(5));
II Cast from a pointer to function of one type to
II pointer to function of another type.
typedef void (* PFV) ();
PFV pfunc = reinterpret_cast<PFV>(func);
pfunc();
}

static cast

Syntax
static_cast< T > (arg)

114 c++ Programmer's Guide

Description
In the statement,

static_cast< T > (arg)

T must be a pointer, reference, arithmetic type, or enum type. The arg-type must match
the T-type.Both T and arg must be fully known at compile time.

If a complete type can be converted to.another type by some conversion method already
provided by the language, then making such a conversion by using static_cast achieves
exactly the same thing.

Integral types can be converted to enum types. A request to convert arg to a value that is
not an element of enum is undefined. The null pointer is converted to itself. A pointer to
one object type can be converted to a pointer to another object type. Note that merely
pointing to similar types can cause access problems if the similar types are not similarly
aligned.

You can explicitly convert a pointer to a class X to a pointer to some class Y if X is a base
class for Y. A static conversion can be made only under the following conditions:

• If an unambiguous conversion exists from Y to X

• If X is not a virtual base class

An object can be explicitly converted to a reference type X& if a pointer to that object can
be explicitly converted to an X*. The result of the conversion is. an lvalue. No
constructors or conversion functions are called as the result of a cast to a reference.

An object or a value can be converted to a class object only if an appropriate constructor
. or conversion operator has been declared.

A pointer to a member can be explicitly converted into a different pointer-to-member
type only if both types are pointers to members of the same class or pointers to members
of two classes, one of which is unambiguously derived from the other.

When T is a reference, the result of static_cast< T > (arg) is an lvalue. The result of a
pointer or reference cast refers to the original expression.

Run-time type identification (RTTI)
Run~time type identification (RTTI) lets you write portable code that can determine the
actual type of a data object at run time even when the code has access only to a pointer
or reference to that object. This makes it possible, for example, to convert a pointer to a
virtual base class into a pointer to the derived type of the actual object. Use the
dynamic_cast operator to make run-time casts.

The RTTI mechanism also lets you check whether an object is of some particular type
and whether two objects are of the same type. You can do this with typeid operator,
which determines the actual type of its argument and returns a reference to an object of
type const typeinfo, which describes that type.

You can also use a type name as the argument to typeid, and typeid will return a
reference to a const typeinfo object for that type. The clrss typeinfo provides an operator

C hap t e r 3, C++ s pee i fie s 115

== and an operator != that you can use to determine whether two objects are of the same
type. Class typeinfo also provides a member function name that returns a pointer to a
character string that holds the name of the type.

For more information, refer to the Bad_typeid class, the -RT option and destructors, and
the typeinfo class.

Example
1* How to get RTTI for polymorphic classes.*1
#include <iostream.h>
#include <typeinfo.h>
class __ rtti Alpha { 1* Provide RTTI for this class and *1

1* all classes derived from it *1

};

virtual void func() {}; 1* A virtual function makes *1
1* Alpha a polymorphic class. *1

class B : public Alpha {};
int main (void) {

B Binst; II Instantiate class B
B *Bptr; II Declare a B-type pointer
Bptr = &Binst; II Initialize the pointer
II THESE TESTS ARE DONE AT RUN TIME
try {

if (typeid(*Bptr) == typeid(B))
II Ask "WHAT IS THE TYPE FOR *Bptr?"
cout « "Name is " « typeid (*Bptr). name () ;

if (typeid(*Bptr) != typeid(Alpha))
cout « "\nPointer is not an Alpha-type.";

return 0;

catch (Bad_typeid)
cout « "typeid() has failed.";
return 1;

Program output
Name is B
Pointer is not an Alpha-type.

The typeid operator

Syntax
typeid(expression

typeid(type-name)

116 c++ Programmer's Guide

Description
You can use typeid to get run-time identification of types and expressions. A call to
typeid returns a reference to an object of type canst typeinfo. The returned object
represents the type of the typeid operand.

If the typeid operand is a dereferenced pointer or a reference to a polymorphic typef

typeid returns the dynamic type of the actual object pointed or referred to. If the
operand is non-polymorphicf typeid returns an object that represents the static type.

You can use the typeid operator with fundamental data types as well as user-defined
types. If the typeid operand is a dereferenced NULL pointerf the B~d_typeid exception
is thrown .

. For more informationf see the Bad_typeid class and __ rtti.

Example
II HOW TO USE operator typeid, Type_info::before(), AND
Type_info::name()
#include <iostream.h>
#include <typeinfo.h>
class A { };
class B : A { };
void main()

char C;
float X;
II USE THE typeinfo::operator==()TO MAKE COMPARISON
if (typeid(C) == typeid(X))

cout « "C and X are the same type." « endl;
else cout « "C and X are NOT the same type." «endl;
II USE true AND false LITERALS TO MAKE COMPARISON
cout« typeid(int) .name();
cout « " before" « typeid(double) .name() « ": " «

(typeid(int) .before(typeid(double)) ? true: false) « endl;
cout « typeid(double) .name();
cout « " before " « typeid(int) . name () « ": " «

(typeid(double) .before(typeid(int)) ? true: false) « endl;
cout « typeid(A) .name();
cout « " before " « typeid(B) . name () « ": " «

(typeid(A) .before(typeid(B)) ? true: false) « endl;

Program output
C and X are NOT the same type.
int before double: 0
double before int: 1
A before B: 1

__ rtti and the ·RT option
RTTI is enabled by default in Borland C++. You can use the -RT command-line option
to disable it (-RT-) or to enable it (-RT). If RTTI is disabled or if the argument to typ~id

C hap t e r 3, C++ s pee i fie s 117

is a pointer or a reference to a non-polymorphic class, typeid returns a reference to a
canst typeinfo object that describes the declared type of the pointer or reference, and not
the actual object that the pointer or reference is bound to.

In addition, even when RTTI is disabled, you can force all instances of a particular class
and all classes derived from that class to provide polymorphic run-time type
identification (where appropriate) by using the Borland C++ keyword __ rtti in the class
definition.

When you use the -RT - compiler option, if any base class is declared __ rtti, then all
polymorphic base classes must also be declared __ rtti.

struct __ rtti 81 { virtual slfunc();}; 1* Polymorphic */
struct __ rtti 82 { virtual s2func(); }; ,1* Polymorphic *1
struct X : 81, 82 { };

If you tum off the RTTI mechanism (by using the -RT - compiler option), RTTI might not
be available for derived classes. When a class is derived from multiple classes, the order

! and type of base classes determines whether or not the class inherits the RTTI capability.

When you have polymorphic and non-polymorphic classes, the order of inheritance is
important. If you compile the following declarations with -RT-, you should declare X
with the __ rtti modifier. Otherwise, switching the order of the base classes for the class
X results in the compile-time error: Can't inherit non-RTTi' class from RTTI base
, S1'.

struct __ rtti 81 { virtual func(); };
struct 82 { };
struct __ rtti X : 81, 82 { };

1* Polymorphic class *1
1* Non-polymorphic class *1

Note The class X is explicitly declared with __ rtti. This makes it safe to mix the order and
type of classes.

In the following example, class X inherits only non-polymorphic classes. Class X does
not need to be declared __ rtti.

struct __ rtti 81 }; II Non-polymorphic class
struct 82 { };
struct X : 82, 81 }; II The order is not essential

Applying either __ rtti or using the -RT compiler option will not make a static class into
a polymorphic class.

·RT option and destructors
When -xd is enabled, a pointer to a class with a virtual destructor can't be deleted if that
class is not compiled with -RT. The ~RT and -xd options are on by default.

Example
class Alpha
public:,

virtual -Alpha () { }
} ;

void func(Alpha *Aptr
delete Aptr;

118 C++ Pro 9 ram mer's G u ide

II Error. Alpha is not a polymorphic class

type
}

Referencing
While in C, you pass arguments only by value; in C++, you can pass arguments by
value or'by reference. C++ reference types, closely related to pointer types, create aliases
for objeds and let you pass arguments to functions by reference. .

Note C++ specific pointer referencing and dereferencing is discussed in C++ specific
operators.

Simple references
The reference declarator can be used to declare references outside functions:

int i = 0;

int &ir = i; II ir is an alias for i
ir = 2; II same effect as i = 2

Note that type& var, type &var, and type & var are all equivalent.

This creates the lvalue ir as all. alias for i, provided the initializer is the same type as the
reference. Any operations on ir have precisely the same effect as operations on i. For
example, ir = 2 assigns 2 to i, and &ir returns the address of i.

Reference arguments
The reference declarator can also be used to declare reference type parameters within a
function: .

void funcl (int i);

void func2 (int &ir);

int sum=3i
funcl (sum) ;
func2 (&sum) ;

II ir is type "reference to int"

II sum passed by value
II sum passed by reference

The sum argument passed by reference can be changed directly by func2. On the other
hand, func1 gets a copy of the sum argument (passed by value), so sum itself cannot be
altered by func1.

When an actual argument x is passed by value, the matching formal argument in the
function receives a copy of x. Any changes to this copy within the function body are not
reflected in the value of x itself. Of course, the function can return a value that could be
used later to change x, but the function cannot directly alter a parameter passed by
value.

The C method for changing x uses the actual argument &x, the address of x, rather than
. x itself. Although &x is passed by value, the function can access x through the copy of

&x it receives. Even if the function does not need to change x, it is still useful (though

C hap t e r 3, C++ s pee i fie s 119

subject to potentially dangerous side effects) to pass &x, especially if x is a large data
structure. Passing x directly by value involves wasteful copying of the data structure.

Compare the three implementations of the function treble:

Implementation 1
int treble_1(int n}
{

return 3 * ni

int x, i = 4i

x = treble_1(i}i

Implementation 2
void treble_2(int* np}
{

*np = (*np) * 3i

treble_2(int& i}i

Implementation 3
void treble_3(int& n}
{

n = 3 * ni

II x now = 12, i = 4

II i now = 12

II n is a reference type

II i now = 36

The formal argum~nt declaration type& t (or equivalently, type& t) establishes t as
type "reference to type." So, when treble_3 is called with the real argument i, i is used to
initialize the formal reference argument n. n therefore acts as an alias for i, so n = 3 *n
also assigns 3 * i to i.

If the initializer is a constant or an object of a different type than the reference type,
create a temporary object for which the reference acts as an alias:

int& ir = 6i 1* temporary int object created, aliased by ir, gets value 6 *1

float fi

int& ir2 = fi /* creates temporary int object aliased by ir2; f converted
before assignment *1

ir2 = 2.0 II ir2 now = 2, but f is unchanged

The automatic creation of temporary objects permits the conversion of reference types
when formal and actual arguments have different (but assignment-compatible) types.
When passing by value, of course, there are fewer conversion problems, since iPe copy
of the actual argument can be physically changed before assignment to the formal
argument.

120 C++ Pro 9 ram mer's G u ide

Scope resolution operator ::
The scope access (or resolution) operator:: (two colons) lets you access a global (or file
duration) member name even if it is hidden by a local redeclaration of that name. For
example:

int i;

void func(void)
int i=O;
i = 3;
::i = 4;

printf ("%d" I i);

II global i

II local i hides global i
II this i is the local i
II this i is the global i
I I prints out 3

Note This code also works if the global i is a file-level static.

The:: operator has other uses with class types, as discussed throughout this chapter.

You also can use a global identifier by prefixing it with the resolution operator.

You access a nested member name by specifying the class name and using the
resolution operator. Therefore, Alpha::junc() and Beta::junc() are two different functions.

The new and delete operators
The new and delete operators offer dynamic storage allocation and de allocation, similar
but superior to the standard library functions malloc and free. See the C++ Language
Reference, Chapter 3, for information on malloc and free.

Operator new

Syntax
<::> new <placement> type-name < (initializer) >

<::> new <placement> (type-name) «initializer»

Description
The new operator offers dynamic storage allocation, similar but superior to the standard
library function malloc.

The new operator must always be supplied with a data type in place of type-name. Items
surrounded by angle brackets are optional. The optional arguments can be as follows:

• The:: operator invokes the global version of new.

• placement can be used to supply additional arguments to new. You can use this
syntax only if you have an overloaded version of new that matches the optional
arguments. See the discussion of the placement syntax.

C hap t e r 3, C++ s pee i fie s 121

• initializer, if present, is used to initialize the allocation. Arrays cannot be initialized by
the allocation operator.

A request for non-array allocation uses the appropriate operator newO function. Any
request for array allocation will call the appropriate operator new[]O function. The
selection of the allocation operator is done as shown below.

Allocation of arrays of Type:

1 Attempts to use a class-specific array allocator:

Type::operator new[]O

2 If the class-specific array allocator is not defined, the global version is used:

::operator new[]O

Allocation of non-arrays of Type:

Attempts to use the class-specific allocator:

Type::operator newO

2 If the class-specific array allocator is n~t defined, th~ global version is used:

::operator newO

Allocation of single objects (that are not class-type) which are not held in arrays:

1 Memory allocation for a non-array object is by using the ::operator newO. Note that
this allocation function is always used for the predefined types. It is possible to
overload this global operator function. However, this is generally not advised.

Allocation of arrays:

1 Use the global allocation operator:

::operator new[] 0

Note Arrays of classes require the default constructor.

new tries to create an object of type Type by allocating (if possible) sizeof(Type) bytes in
free store (also called the heap). new calculates the size of Type without the need for an
explicit sizeof operator. Further, the pointer returned is of the correct type, "pointer to
Type," without the need for explicit casting. The storage duration of the new object is
from the point of creation until the operator delete destroys it by deallocating its
memory, or until the end of the program. .

If successful, new returns a pointer to the allocated memory. By default, an allocation
failure (such as insufficient or fragmented heap memory) results in the predefined /
exception xalloc being thrown. YOl,lr program should always be prepared to catch the
xalloc exception before trying to access the new object (unless you use a new-handler).

A request for allocation of 0 bytes returns a non-null pointer. Repeated requests for zero­
size allocations return distinct, non-null pointers.

122 C++ Pro 9 ram mer's G u ide

Operator delete

Syntax
<::> delete <cast-expression>

<: : > delete [.] <cast-expression>

delete <array-name> [];

Description
The delete operator offers dynamic storage deallocation, deallocating a memory block
allocated by a previous call to new. It is similar but superior to the standard library
function free.

You should use the delete operator to remove arrays that you no longer need. Failure to
free memory can result in memory leaks.

Example of the new and delete operators
The following example shows you one way to allocate and delete memory for a
two-dimensional array. The order of operations taken to allocate the space must be
reversed when you delete the space. The illustration shows the amount of space
allocated for 32-bit programs.

Setup rows Setup columns
o 1 n-1

4 bytes ... 110 bytes 110 bytes I. 110 bytes 1

o 1 n-1

m-1 4 bytes '" 110 bytes 1,10 bytes 1 110 bytes 1

II ALLOCATE A TWO-DIMENSIONAL SPACE, INITIALIZE, AND DELETE IT.

#include <except.h>
#include <iostream.h>
void display(long double **);
void de_allocate (long double **);
int m = 3;
int n = 5;
int main (void)

long double **data;
try {

data = new long double*[m];
for (int j = 0; j < m; j++j

data[j] = new long double[n];

II THE NUMBER OF ROWS.
II THE NUMBER OF COLUMNS.

II TEST FOR EXCEPTIONS.
II STEP 1: SET UP THE ROWS.

II STEP 2: SET UP THE COLUMNS

catch (xalloc) II ENTER THIS BLOCK,ONLY IF xalloc IS THROWN.
II YOU COULD REQUEST OTHER ACTIONS BEFORE TERMINATING
cout« "Could not allocate. Bye ... ";
exit(-1);
}

C hap t e r 3, C++ s pee i fie s 123

for (int i = 0; i < m; i++)
for (int j = 0; j < n; j++)

data[i] [j] = i + j;
display(data) ;
de_allocate(data);
return 0;

void display(long double **data)
for (int i = 0; i < m; i++) {

for (int j = 0; j < n; j++)
cout « data[i] [j]« " ";

cout « "\tl" « endl;

void de_allocate(long double **data)
for (int i = 0; i < m; i++)

delete[] data[i];
delete [] data;
}

Output
01234
12345
2 3 456

Operator new placement syntax

II ARBITRARY INITIALIZATION

II STEP 1: DELETE THE COLUMNS
II STEP 2: DELETE THE ROWS

The placement syntax for operator new() can be m~ed only if you have overloaded the
allocation operator with the appropriate arguments. You can use the placement syntax
when you want to use and reuse a memory space which you set up once at the
beginning of your program.

When you use the overloaded operator new() to specify where you want an alloc,ation
to be placed, you are responsible for deleting the allocation. Because you call your
version of the allocation operator, you cannot depend on the global ::operator delete()
to do the cleanup.

To release memory, you make an explicit call on the destructor. This method for
cleaning up memory should be used only in special situations and with great care. If
you make an explicit call of a destructor before an object that has been constructed on
the stack goes out of scope, the destructor will be called again when the stackframe is
cleaned up.

Operator new placement syntax example
II An example of the placement syntax for operator new()
#include <iostream.h>
class Alpha {

union {
char ch;
char buf [10] ;
} ;

124 C++ Programmer's Guide

public:

} ;

Alpha(char c = '\0') : ch(c) {
cout « "character constructor" « endl;

Alpha(char *s) {
cout « "string constructor" « endl;
strcpy(buf, s) ;
}

-Alpha () { cout « "Alpha:: -Alpha () " « endl; }
void * operator new (size_t, void * buf) {

return buf;

void main()
char *str = new char[sizeof(Alpha)];
II Place 'X' at start of str.
Alpha* ptr = new(str) Alpha ('X');
cout « "str[O] = " « str[O] « endl;
II Explicit call of the destructor
ptr -> Alpha::-Alpha();
II Place a string in str buffer.
ptr = new(str) Alpha("my string");
cout « "\n str = " « str « endl;
II Explicit call of the destructor
ptr -> Alpha::-Alpha();
delete [] str;
}

Output
character constructor
str[O] = X
Alpha: : -Alpha ()
string constructor
str = my string

Alpha: : -Alpha ()

Operator new with arrays
If Type is an array, the pointer returned by operator new[]O points to the first element of
the array. When creating multidimensional arrays with new, all array sizes must be
supplied (although the leftmost dimension doesn't have to be a compile-time constant):

mat-ptr = new int[3] [10] [12]; II OK
mat-ptr = new int[n] [10] [12]; II OK
mat-ptr = new int[3] [] [12]; II illegal
mat-ptr = new int[] [10] [12]; II illegal

Although the first array dimension can be a variable, all following dimensions must be
constants.

C h a pt e r 3, C++ 5 pee i fie 5 125

Operator delete with arrays,
Arrays are deleted by operator delete[]O. You must use the syntax delete [] expr
when deleting an array. After C++ 2.1, the array dimension should not be specified

I within the brackets:

char * Pi

void func ()
{

P = new char[10];
delete[] P;

II allocate 10 chars
II delete 10 chars

C++ 2.0 code required the array size. In order to allow 2.0 code to compile, Borland C++
issues a warning and simply ignores any size that is specified. For example, if the.
preceding example reads delete [10] p and is compiled, the warning is as follows:

Warning: Array size for 'delete' ignored in function func()

: :operator new
By default, if there is no overloaded version of new, a request for dynamic memory
allocation always uses the global version of new, ::operator newO. A request for array
allocation calls ::operator new[]O. With class objects of type name, a specific operator
called name::operator newO or name::operator new[]O can be defined. When new is
applied to class name objects it invokes the appropriate name::operator new if it is
present; otherwise, the global ::operator new is used. '

Only the operator newO function will accept an optional initializer. The array allocator
version, operator new[]O, will not accept initializers. In the absence of explicit
initializers, the object creat~d by new contains unpredictable data (garbage). The objects
allocated by new, other than arrays, can be initialized with a suitable expression in
parentheses:

int-ptr = new int(3);

Arrays of classes with constructors are initialized with the default constructor. The user­
defined new operator with customized initialization plays a key role in C++
constructors for class-type objects.

Overloading the operator new
The global ::operator newO and ::operator new[]O can be overloaded. Each oyerloaded
instance must have a unique signature. Therefore, multiple instances of a global
allocation operator can coexist in a single program.

Class-specific memory allocation operators can also be overload,ed. The operator new
can be implemented to provide alternative free storage (heap) memory-management
routines, or implemented to accept additional arguments. A user-defined operator new
'must return a void* and must have a size_t as its first argument. To overload the new
operators, use the following prototypes declared in the new.h header file. .

126 C++ Pro 9 ram mer's G u ide

void * operator new (size_t Type_size)i II For Non-array
void * operator new[] (size_t Type_size)i II For arrays

The Borland C++ compiler provides Type_size to the new operator. You can substitute
any data type for Type_size except function names (although a pointer to function is
permitted), class declarations, enumeration declarations, const, and volatile.

Overloading the operator delete
The global operators, ::operator deleteO and ::operator delete[]0, cannot be overloaded.
However, you can override the default version of each of these operators with your own
implementation. Only one instance of the each global delete function can exist in the
program.

The user-defined operator delete\must have a void return type and void* as its first
argument; a second argument of type size_t is optional. A class T can define at most one
version of each of T::operator delete[]O and T::operator deleteO. To overload the delete
operators, use the following prototypes.

void operator delete(void * Type-ptr , [size_t Type_size])i II For non-array
void operator delete[] (size_t Type-ptr, [size_t Type_size])i II For arrays

Example of overloading the new and delete operators
#include <stdlib.h>
class X {

?

public:
void* operator new(size_t size) { return newalloc(size)i}
void operator delete(void* p) { newfree(p)i }
X() { 1* initialize here *1 }
X(char ch) { 1* and here *1 }
-X() { 1* clean up here * I }
?

} i

Note Destructors are called only if you use the -xd compiler option and an exception is
thrown.

The size argument gives the size of the object being created, and newalloc and newfree are
user-supplied memory allocation and deallocation functions. Constructor and
destructor calls for objects of class X (or objects of classes derived from X that do not
have their own overloaded operators new and delete) invoke the matching user­
defined X::operator newO and X::operator deleteO, respectively.

The X::operator newO, X::operator new[]O, X::operator deleteO and X::operator
delete[]O operator functions are static members of X whether explicitly declared as
static or not, so they cannot be virtual functions.

The standard, predefined (global) newO, new[]O, deleteO, and delete[]O operators can
still be used within the scope of X, either explicitly with the global scope operator

C hap t e r 3, C++ s pee i fie s 127

(::operator newO, ::ope~ator new[]O, ::operator deleteO, and ::operator delete[]O), or
implicitly when creating and destroying non-X or non-X-derived class objects.

For example, you could use the standard new and delete when defining the overloaded
versions:

void* X::operator new(size_t s)

void* ptr = new char[S]i II standard new called

return ptri

void X::operator delete(void* ptr)
{

delete (void*) ptri II standard delete called

The reason for the size argument is that classes derived from X inherit the X::operator
newO and X::operator new[]O. The size of a derived class object might differ from that
of the base class.

Classes
C++ classes offer extensions to the predefined type system. Each class type represents a
unique set of objects and the operations (methods) and conversions available to create,
manipulate, and destroy such objects. Derived classes can be declared that inherit the
members of one or more base (or parent) classes.

In C++, structures and unions are considered as classes with certain access defaults.

A simplified, "first-look" syntax for class declarations is

class-key {<distance-attrib> <distance-attrib>}· <type-info> class-name

<: base-list> { <member-list> };

class-key is one of class, strud, or union.

The optional type-info indicates a request for run-time type information about the class.
You can compile with the -RT compiler option, or you can use the __ rtti keyword. See
the discussion of class typeinfo for more information.

The optional base-list lists the base class or classes from which the class class-name will
derive· (or inherit) objects and methods. If any base classes are specified, the class class­
name is called a derived class. The base-list has default and optional overriding access
specifiers that can modify the access rights of the derived class to members of the base
classes.

The optional member-list declares the class members (data and functions) of class-name
with default and optional overriding access specifiers that can affect which functions
can access which members.

128 C++ Pro 9 ram mer's G u ide

Class memory model specifications
For 16-bit applications only, distance modifiers can be applied to a class declaration. The
modifier(s) applied to a class declaration determine the addressing of the class's this
pointer and the class's table of virtual functions (vtable). The distance modifiers allowed
for class declarations, and their effect on the addressing of this and the vtable are as
follows:

Table 3.1 Class memory model specifications

__ near near near
__ far far near

__ huge far far

__ huge __ near near far

__ export far far
__ import far far

If you're importing classes that are declared with the modifier __ huge, you must
change the modifier to the keyword __ import. The __ huge modifier merely causes far
addressing of the virtual tables (the same effect as the -Vf compiler option). The
__ import modifier makes all function and static addresses default to far.

See "Exporting and importing classes" in Chapter 6 for a discussion of declaration of
classes used in DLLs.

Class n~mes
class-name is any identifier unique within its scope. With structures, classes, and unions,
class-name can be omitted .. See "Untagged structures and typedefs" in Chapter 6 for
discussion of untagged structures.

Class types
The declaration creates a unique type, class type class-name. This lets you declare further
class objects (or instances) of this type, and objects derived from this type (such as pointers
to, references to, arrays of class-name, and so on):

class X { .,. }i

X x, &xr, *xptr, xarray[10]i
1* four objects: type X, reference to X, pointer to X and array of X *1
struct y { ... };

y y, &yr, *yptr, yarray[10]i
II C would have
II struct y y, *yptr, yarray[10];
union z { ... } i
Z z, &zr, *zptr, zarray[10]i
I I C would have
II union Z z, *zptr, zarray[10] i

C hap t e r 3, C++ s pee i fie s 129

Note the difference between C and c++ structure and union declarations: The
keywords struct and union are essential in C, but in C++, they are needed only when
the class names, Yand Z, are hidden .

. Class name scope
The scope of a class name is local. There are some special requirements if the class name
appears more than once in the same scope. Class name scope starts at the point of
declaration and ends with the enclosing block. A class name hides any class, object,
enumerator, or function with the same name in the enclosing scope. If a class name is
declared in a scope containing the declaration of an object, functiori, or enumerator of
the same name, the class cm be referred to only by using the elaborated type specifier. This
means that the class key, class, strud, or union, must be used with the class name. For
example,

struct 8 { ... };

int 8(struct 8 *8ptr);
void func(void) {

8 t;

struct 8 s;
8(&s) ;

II ILLEGAL declaration: no class key and function 8 in scope
II OK: elaborated with class key
II OK: this is a function call

C++ also allows an incomplete class declaration:

class Xi II no members, yet!

Incomplete declarations permit certain references to class name X (usually references to
pointers to class objects) before the class has been fully defined. See UStructure member
declarations" for more information. Of course, you must make a complete class
declaration with members before you can define and use class objects.

Class objects
Class objects can be assigned (unless copying has been restricted), passed as arguments
to functions, returned by functions (with some exceptions), and so on. Other operations
on class objects and members can be user-defined in many ways, including definition of
member and friend functions and the redefinition of standard functions and operators
when used with objects of a certain class. .

Redefined functions and operators are said to be overloaded. Operators and functions
that are restricted to objects of a certain class (or related group of classes) are called
member functions for that class. C++ offers the overloading mechanism that allows the
same function or operator name can be called to perform different tasks, depending on
the type or number of arguments or operands.

Class member list
The optional member-list is a sequence of data declarations (of any type, including
enumerations, bit fields, and other classes), function declarations, and definitions, all

130 C++ Pro gram mer's G u ide

with optional storage class specifiers and access modifiers. The objects thus defined are
called class members. The storage class specifiers auto, extern, and register are not
allowed. Members can be declared with the static storage class specifiers.

Member functions
A function declared without the friend specifier is known as a member function of the
class. Functions declared with the friend modifier are called friend functions.

The same name can be used to denote more than one function, provided they differ in
argument type or number of arguments.

The keyword this
Nonstatic member functions operate on the class type object they are called with. For
example, if x is an object of class X and fO is a member function of X, the function call
x. f () operates on x. Similarly, if xptr is a pointer to an X object, the function call
xptr->f () operates on *xptr. But how does fknow which instance of X it is operating
on? C++ provides f with a pointer to x called this. this is passed as a hidden argument in
all calls to nonstatic member functions.

this is a local variable available in the body of any nonstatic member function. this does
not need to be declared and is rarely referred to explicitly in a function definition.
However, it is used implicitly within the function for member references. If xfCy) is
called, for example, where y is a member of X, this is set to &x and y is set to this->y,
which is equivalent to x.y.

Static members
The storage class specifier static can be used in class declarations of data and function
members. Such members are called static members and have distinct properties from
nonstatic members. With nonstatic members, a distinct copy "exists" for each instance
of the class; with static members, only one copy exists, and it can be accessed without
reference to any particular object in its class. If x is a static member of class X, it can be
referenced as X::x (even if objects of class X haven't been created yet). It is still possible
to access x using the normal member access operators. For example, y.x and yptr->x,
where y is an object of class X and yptr is a pointer to an object of class X, although the
expressions y and yptr are not evaluated. In particular, a static member function can be
called with or without the special member function syntax:

class X {

int member_int;
public:

static void func(int i, X* ptr) ;
} ;

void g(void); {
X obj;
func(l, &obj); II error unless there is a global func()

I I defined elsewhere
X::func(l, &obj); II calls the static func() in X

II OK for static functions only

Chapter 3, C++ specifics 131

obj.func(l, &obj); II so does this (OK for static and
II nonstaticfunctions)

Because static member functions can be called with no particular object in mind, they
don't have a this pointer, and therefore cannot access nonstatic members without
explicitly specifying an object with. or ->. For example, with the declarations of the
previous example, Junc might be defined as follows:

void X::func(int i, X* ptr)

II which object does member_int
II refer to? Error

ptr->member_int = i; II OK: now we know!

Apart from inline functions, static member functions of global classes have external
linkage. Static member functions cannot be virtual functions. It is illegal to have a static
and nonstatic member function with the same name and argument types. .

The declaration of a static data member in its class declaration is not a definition, so a
definition must be provided elsewhere to allocate storage and provide initialization.

Static members of a class declared local to some function have no linkage and cannot be
initialized. Static members of a global class can be initialized like ordinary global objects,
but only in file scope. Static members, nested to any level, obey the usual class member
access rules, except they can be initialized~

class X {

} ;

static int x;
class inner {

static float f;
void func (void) ;
} ;

int X::x = 1;

II nested declaration

float X::inner::f = 3.14; II initialization of nested static
X::inn~r::func(void) { 1* define the nested function *1

The principal use for static members is to keep track of data common to all objects of a
class, such as the number of objects created, or the last-used resource from a pool shared
by all such objects. Static members are also used to

• Reduce the number of visible global names

• Make obvious which static objects logically belong to which class

• Permit access control to their names

Inline functions
You can declare a member function within its class and define it elsewhere.
Alternatively, you can both declare and define a member function within its class in
which case it is called an in line Junction.

132 C· + + Pro 9 ram mer's G u ide

Borland C++ can sometimes reduce the normal function call overhead by substituting
the function call directly with the compiled code of the function body. This process,
called an inline expansion of the function body, does not affect the scope of the function
name or its arguments. Inline expansion is not always possible or feasible. The inline
specifier indicates to the compiler you would like an inline expansion.

Note The Borland C++ compiler can ignore requests for inline expansion.

Explicit and implicit inline requests are best reserved for small, frequently used
functions, such as the operator functions that implement overloaded operators. For
example, the following class declaration of June:

int i;

class X {
public:

II global int

char* func(void) {return i;} II inline by default
char* i;

} ;

is equivalent to:

inline char* X::func(void) { return i; }

June is defined outside the class with an explicit inline specifier. The i returned by June is
the char* i of class X (see "Member scope" later in this chapter).

Inline functions and exceptions
An inline function with an exception-specification will never be expanded inline by
Borland C++. For example,

inline void fl() throw (int)
{

II Warning: Functions with exception specifications are not expanded inline

The remaining restrictions apply only when destructor cleanup is enabled.

Note Destructors are called by default.

An inline function that takes at least one parameter that is of type I class with a
destructor' will not be expanded inline. Note that this restriction does not apply to
classes that are passed by reference. Example:

struct foo {
foo () ;
-foo () ;
} ;

inline void f2(foo& x)
II no warning, f2() can be expanded inline
}

inline void f3(foo x) {
II Warning: Functions taking class~by-value argument(s) are
II not expanded inline in function f3(foo)
}

C hap t e r 3, C++ s pee i fie s 133

An inline function that returns a class with a destructor by value will not be expanded
inline whenever there are variables or temporaries that need to be destructed within the
return expression:

struct foo

foo () ;
-foo () ;
} ;

inline foo f4() {
return foo();
I I no warning, f4 () can be expanded inline
}

inline foo f5() {
foo X;
return foo(); II Object X needs to be destructed
II Warning: Functions containing some return statements are
II not expanded inline in function f5()
}

inline foo f6() {
return (foo(), foo()); II temporary in return value
II Warning:Functions containing some return statements are
II not expanded inline in function f6()
}

Member scope
The expression X: : func () in the example in the "Inline functions and exceptions"
section earlier in this chapter uses the class name X with the scope access modifier to
signify thatJune, although defined "outside" the class, is indeed a member function of X
and exists within the scope of X. The influence of X:: extends into the body of the
definition. This explains why the i returned by June refers to X::i, the char* i of X, rather
than the global int i. Without the X:: modifier, the function June would represent an
ordinary non-class iqnction, returning the global int i.

All member functions, then, are in the scope of their class, even if defined outside the
class.

Data members of class X can be referenced using the selection operators. and -> (as with
C structures). Member functions can also be called using the selection operators (see
"The keyword this" earlier in this chapter). For example:

class X {

public:
int i;

} ;

char name [20] ;
X *ptrl;
X *ptr2;
void Xfunc(char*data, X* left, X* right); II define elsewhere

void f (void) ;
{

X xl, x2, *xptr=&xl;
x1.i = 0;

134 C++ Pro 9 ram mer's G u ide

x2.i = x1.i;
xptr->i = 1;
x1.Xfunc(lstan", &x2, xptr);

If m is a member or base member of class X, the expression X::m is called a qualified name;
it has the same type as m, and it is an lvalue only if m is an lvalue. It is important to note
that, even if the class name X is hidden by a non-type name, the qualified name X::m
will access the correct class member, m.

Class members cannot be added to a class by another section of your program. The class
X cannot contain objects of class X, but can contain pointers or references to objects of
class X (note the similarity with C's structure and union types).

Nested types
Tag or typedef names declared inside a class lexically belong to the scope of that class.
Such names can, in general, be accessed only by using the xxx::yyy notation, except
when in the scope of the appropriate class.

A class declared within another class is called a nested class. Its name is local to the
enclosing class; the nested class is in the scope of the enclosing class. This is a purely
lexical nesting. The nested class has no additional privileges in accessing members of the
enclosing class (and vice versa).

Classes can be nested in this way to an arbitrary level. Nested classes can be declared
inside some class and defined later. For example,

struct outer

typedef int t; II 'outer::t' is a typedef name
struct inner II 'outer::inner' is a class

static int x;

} ;

} ;

static int x;
int f () ;

class deep;

int outer: :x;
int outer:: f ()

t x;
return x;

II nested declaration

II define static data member

II 't' visible directly here

II define static data member int outer::inner::x;
outer::t x;
class outer::deep { };

II have to use 'outer::t' here
II define the nested class here

With Borland C++ 2.0, any tags or typedef names declared inside a class actually belong
to the global (file) scope. For example:

struct foo

enum bar { x}; II 2.0 rules: 'bar' belongs to file scope
II 2.1 rules: 'bar' belongs to 'foo' scope

C hap t e r 3, C++ s pee i fie s 135

} ;

bar x;

The preceding fragment compiles without errors. But because the code is illegal under
the 2.1 rules, a warning is issued as follows:

Warning: Use qualified name to access nested type 'foo::bar'

Member access control
Members of a class acquire access attributes either by default (depending on class key
and declaration placement) or by the use of one of the three access specifiers: public,
private, and protected. The significance of these attributes is as follows:

public The member can be used by any function.

private The member can be used only by member functions and friends of the
class it's declared in.

protected Same as for private. Additionally, the member can be used by member
functions and friends of classes derived from the declared class, but only in
objects of the derived type. (Derived classes are explained in "Base and
derived class access.")

Note Friend function declarations are not affected by access specifiers (see "Friends of
classes" later in this chapter for more information).

Members of a class are private by default, so you need explicit public or protected
access specifiers to override the default.

Members of a struct are public by default, but you can override this with the private or
protected access specifier.

Members of a union are public by defa,ult; this cannot be changed. All three access
specifiers are illegal with union members.

A default or overriding access modifier remains effective for all subsequent member
declarations until a different access modifier is encountered. For example,

class X {

int i; II x::i is private by default
char ch; I I so is X: :ch

public:
int j; II next two are public
int k;

protected:
int 1;

} ;

struct Y {
int i;

private:
int j;

public:
int k;

} ;

II X::l is protected

II Y::i is public by default

I I Y:: j .is private

II Y::k is public

136 C H· Pro 9 ram mer's G u ide

1lllion Z {
int i;
double d;

} ;

II public by default; no other choice

Note The access specifiers can be listed and grouped in any convenient sequence. You can
save typing effort by declaring all the private members together, and so on.

Base and derived class access
When you declare a derived class D, you list the base classes Bl, B2, ... in a
comma-delimited base-list:

class-key D : base-list { <member-list> }

D inherits all the members of these base classes. (Redefined base class members are
inherited and can be accessed using scope overrides, if needed.) D can use only the
public and protected members of its base classes. But, what will be the access attributes
of the inherited members as viewed by D? D might want to use a public member from a
base class, but make it private as far as outside functions are concerned. The solution is
to use access specifiers in the base-list.

Note Since a base class can itself be a derived class, the access attribute question is recursive:
you backtrack until you reach the basest of the base classes, those that do not inherit.

When declaring D, you can use the access specifier public, protected, or private in front
of the classes in· the base-list: .

\ class D : public Bl, private B2, ... {

These modifiers do not alter the access attributes of base members as viewed by the base
class, though they can alter the access attributes of base members as viewed by the
derived class.

The default is private if D is a class declaration, and public if D is a struct declaration.

Note Unions cannot have base classes, and unions cannot be used as base classes.

The derived class inherits access attributes from. a base class as follows:

• public base class: public members of the base class are public members of the
derived class. protected members of the base class are protected members of the
derived class. private members of the base class remain private to the base class.

• protected base class: Both public and protected members of the base class are
protected members of the derived class. private members of the base class remain .
private to the base class.

• private base class: Both public and protected members of the base class are private
members of the derived class. private members of the base class remain private to the
base class.

Note that private-members of a base class are always inaccessible to member functions
of the derived class unless friend declarations are explicitly declared in the base class
granting access.·For example,

1* class X is derived from class A *1

C hap t e r 3, C++ s pee i fie s 137

class X A { II default for class is private A

1* class Y is derived (multiple inheritance) from B and C
B defaults to private B *1

class Y : B, public C { II override default for C

1* struct S is derived from D *1
struct S : D { II default for struct is public D

. 1* struct T is derived (multiple inheritance) from D and E
E defaults to public E *1

struct T : private D, E { II override default for D
II E is public by default

The effect of access specifiers in the base list can be adjusted by using a qualified-name in
the public or protected declarations of the derived class. For example:

class B {

int a;
public:

int b, c;
int Bfunc (void) ;

} ;

class X : private B
int d;

public:

} ;

B: :c;

int e;
int Xfunc (void) ;

int Efunc (X& x) ;

II private by default

II a, b, c, Bfunc are now private in X
II private by default, NOTE: a is not
II accessible in X

II c was private, now is public

II external to B and X

The function EfuncO can use only the public names c, e, and XfuncO.

The function XfuncO is in X, which is derived from private B, so it has access to

• The" adjusted-to-public" c

• The "private-to-X" members from B: b and BfuncO

• X's own private and public members: d, e, and XfuncO

However, XfuncO cannot access the "private-ta-B" member, a.

Virtual base classes
A virtual class is a base class that is passed to more than one derived class, as might
happen with multiple inheritance.

138 C++ Pro 9 ram mer's G u ide

You cannot specify a base class more than once in a derived class:

class B { ... };
class D : BI B { ... }; II ILLEGAL

However, you can indirectly pass a base class to the derived class more than once:

class X public B { ... }
class Y : public B { ... }
class Z : public XI public Y { ... } II OK

In this case, each object of class Z has two sub-objects of class B.

If this causes problems, add the keyword virtual to the base class specifier. For example,

class X virtual public B { ... }
class Y : virtual public B { ... }
class Z : public XI public Y { .. .

B is now a virtual base class, and class Z has only one sub-object of class B.

Constructors for virtual base classes
Constructors for virtual base classes are invoked before any non-virtual base classes.

If the hierarchy contains multiple virtual base classes, the virtual base class constructors
invoke in the order they were declared.

Any non-virtual bases are then constructed before the derived class constructor is called.

If a virtual class is derived from a non-virtual base, that non-virtual base will be first, so
that the virtual base class can be properly constructed. For example, this code

class X : public Y I virtual public Z
X one;

produces this order:

Z(); II virtual base class'initialization
Y(); II non-virtual base class
X(); II derived class

Friends of classes
A friend F of a class X is a function or class, although not a member function of X, with
full access rights to the private and protected members of X. In all other respects, F is a
normal function with respect to scope, declarations, and definitions.

Since F is not a member of X, it is not in the scope of X, and it cannot be called with the
x.F and xptr->F selector operators (where x is an X object and xptr is a pointer to an X
object).

If the specifier friend is used with a function declaration or definition within the class X,
it becomes a friend of X.

friend functions defined within a class obey the same inline rules as member functions
(see Inline functions). friend functions are not affected by their position within the class
or by any access specifiers. For example:

C hap t e r 3, C++ s pee i fie s 139

class X {

int i; N private to X
friend void friend_func(X*, inti;

1* friend_func is not private, even though it's declared in the private section *1
public:

void member_func(int);
} ;

1* definitions; note both functions access private int i *1
void friend_func(X* xptr, int a) { xptr->i = a; }
void X::member_func(int a) { i = a; }

X xobj;
1* note difference in function calls *1
friend_func(&xobj, 6);
xobj.member_func(6);

You can make all the functions of class Y into friends of class X with a single declaration: .

class Y;

class X {
friend Y;
int i;
void member_funcX();

} ;

class Y; {

} ;

void friend_Xl(X&);
void friend_X2(X*);

II incomplete declaration

II complete the declaration

The functions declared in Yare friends of X, although they have no' friend specifiers.
They can access the private members of X, such as i and member JuncX.

It is also possible for an individual member function of class X to be a friend of class Y:

class X {

void member_funcX() ;

class Y {
int i;
friend void X::member_funcX();

} ;

Class friendship is not transitive: X friend of Y and Y friend of Z does not imply X friend
of Z. Friendship is not inherited.

Constructors and destructors
There are several special member functions that determine how the objects of a class are
created, initalized, copied, and destroyed. Constructors and destructors are the most.
important of these. They have many of the characteristics' of normal member

140 c++ Programmer's Guide.

functions-you declare and define them within the class, or declare them within the
class and define them outside-but they have some unique features:

• They do not have return value declarations (not even void).

• They cannot be inherited, though a derived class can call the base class's constructors
and destructors.

• Constructors, like most C++ functions, can have default arguments or use member
initialization lists.

• Destructors can be virtual, but constructors cannot. (See "Virtual destructors" later in
this chapter.)

• You can't take their addresses.

int main (void)

void *ptr = base::base; I I illegal

• Constructors and destructors can be generated by Borland C++ if they haven't been
explicitly defined; they are also invoked on many occasions without explicit calls in
your program. Any constructor or destructor generated by the compiler will be
public.

• You cannot call constructors the way you call a normal function. Destructors can be
called if you use their fully qualified name.

x *p;

p->X: :-X();
x: :X();

II legal call of destructor
II illegal call of constructor

• The compiler automatically calls constructors and destructors when defining and
destroying objects.

• Constructors and destructors can make implicit calls to operator new and operator
delete if allocation is required for an object.

• An object with a constructor or destructor cannot be used as a member of a union.

• If no constructor has been defined for some class X to accept a given type, no attempt
is made to find other constructors or conversion functions to convert the assigned
value into a type acceptable to a constructor for class X. Note that this rule applies
only to any constructor with one parameter and no initializers that use the "=" syntax.

class X { 1* *1 X(int); };
class Y { 1* ... *1 Y(X); };
Y a = 1; II illegal: Y(X(l)) not tried

C hap t e r 3, C++ s pee i fie s 141

If class X has one or more constructors, one of them is invoked each time you define an
object x of class X. The constructor creates x and initializes it. Destructors reverse the
process by destroying the class objects created by constructors.

Constructors are also invoked when local or temporary objects of a class are created;
destructors are invoked when these objects go out of scope.

Constructors
Constructors ate distinguished from all other member functions by having the same
name as the class they belong to. When an object of that class is created or is being
copied, the appropriate constructor is called implicitly.

Constructors for global variables are called before the main function is called. When the
#pragma starhtp directive is used to install a function prior to the main function, global
variable constructors are called prior to the startup functions.

Local objects are created as the scope of the variable becomes active. A constructor is
also invoked when a temporary object of the class is created.

class X {

public:

X()i II class X constructor

} i

A class X constructor cannot take X as an argument:

class X {

public:

X(X)i I I illegal

} i

The parameters to the constructor can be of any type except that of the class it's a
member of. The constructor can accept a reference to its own class as a parameter; when
it does so, it is called the copy constructor. A constructor that accepts no parameters is
called the default constructor.

Constructor defaults
The default constructor for class X is one that takes no arguments; it usually has the
form x: : X () • If no user-defined constructors exist for a class, Borland C++ generates a
default constructor. On a declaration such as X x, the default constructor creates the
objectx.

Like all functions, constructors can have default arguments. For example, the
constructor

X: :X(int, int = 0)

can take one or two arguments. When presented with one argument, the missing second
argument is assumed to be a zero into Similarly, the constructor

x: :X(int = 5,. int = 6)

could take two, one, or no arguments, with appropriate defaults. However, the
default constructor x: : X () takes no arguments and must not be confused with, say,

142 C++ Programmer's Guide

X: : X (int = 0), which can be called with no arguments as a default constructor, or can
take an argument.

You should avoid ambiguity in calling constructors. In the following case, the two
default constructors are ambiguous:

class X

public:
X()j

X(int i = 0) j

} j

II OKj uses X::X(int)
int main() {

X one (10) j

X tWOj II illegalj ambiguous whether to call X::X() or
I I X: :X(int = 0)

return OJ

The copy constructor
A copy constructor for class X is one that can be called with a single argument of type X
as follows:

X::X(X&)

or

X: :X(const X&)

or

X::X(const X&, int = 0)

Default arguments are also allowed in a copy constructor. Copy constructors are
invoked when initializing a class object, typically when you declare with initialization
by another class object:

X x1j

X x2 = xl;

X x3(xl)j

Borland C++ generates a copy constructor for class X if one is needed and no other
constructor has been defined in classX. The copy constructor that is generated by the
Borland C++ compiler lets you safely start programming with simple data types. You
need to make your own definition of the copy constructor if your program creates
aggregate, complex types such as class, strud, and arrays. The copy constructor is also
called when you pass a class argument by value to a function.

See also the discussion of member-by-member class assignment later in this chapter.
You should define the copy cohstructor if you overload the assignment operator.

Overloading constructors .
Constructors can be overloaded, allowing objects tobe created, depending on the values
being used for initialization.

Chapter 3, C++ specifics 143

class X {
int integer-part;
double double-part;

public:

} ;

X(int i)
X(double d)

int main() {

integer-part = i;
double-part = d; }

X one(10); II invokes X::X(int) and sets integer-part to 10
X one(3.14); II invokes X::X(double) setting double-part to 3.14
return 0;

Order of calling constructors
In the case where a class has one or more base classes, the base class constructors are
invoked before the derived class constructor. The base class constructors are called in
the order they are declared.

For example, in this setup,

class Y { ... }
class X : public Y { ... }
X one;

the constructors are called in this order:

Y(); II base class constrUctor
X(); II derived class constructor

For the case of multiple base classes,

class X : public Y, public Z
X one;

the constructors are called in the order of declaration:

Y(); II base class constructors come first
Z();

X();

Constructors for virtual base classes are invoked before any nonvirtual base classes. If
the hierarchy contains multiple virtual base classes, the virtual base class constructors
are invoked in the order in which they were declared. Any nonvirtual bases are then
constructed before the derived class constructor is called.

If a virtual class is derived from a nonvirtual base, that nonvirtual base will be first so
that the virtual base class can be properly constructed. The code:

class X : public Y, virtual public Z
X one;

produces this order:

Z(); II virtual base class initialization
Y(); II nonvirtual base class
X(); II derived class

144 c++ Programmer's Gulde

Or, for a more complicated example:

class base;
class base2;
class level1 : public base2, virtual public base;
class level2 : public base2, virtual public base;
class toplevel : public levell, virtual public level2;
toplevel view;

The construction order of view would be as follows:

base() ;

base2();

I eve 12 ();
base2 ();
I eve 11 ();
toplevel();

II virtual base class highest in hierarchy
II base is constructed only once
II nonvirtual base of virtual base level2
II must 'be called to construct level2
II virtual base class
II nonvirtual base of level1
II other nonvirtual base

If a class hierarchy contains multiple instances of a virtual base class, that base class is
constructed only once. If, however, there exist both virtual and nonvirtual instances of
the base class, the class constructor is invoked a single time for all virtual instances and
then once for each nonvirtual occurrence of the base class.

Constructors for elements of an array are called in increasing order of the subscript.

Class initialization
An object of a class with only public members and no constructors or base classes
(typically a structure) can be initialized with an initializer list. If a class has a constructor,
its objects must be either initialized or have a default constructor. The latter is used for
objects not explicitly initialized.

Objects of classes with constructors can be initialized with an expression list in
parentheses. This list is used as an argument list to the constructor. An alternative is to
use an equal sign followed by a single value. The single value can be the same type as
the first argument accepted by a constructor of that class, in which case either there are
no additional arguments, or the remaining arguments have default values. It could also
be an object of that class type. In the former case, the matching constructor is called to
create the object. In the latter case, the copy constructor is called to initialize the object.

class X

int i;
public:

} ;

X();

X(int x);
X(const X&);

void main()
{

X one;
X two(l);
X three = 1;

II function bodies omitted for clarity

II default constructor invoked
II constructor X::X(int) is used
II calls X::X(int)

Chapter 3, C++ specifics 145

X four = one; II invokes X::X(const X&) for copy
X five(two); II, callsX::X(const X&)

The constructor can assign values to its members in two ways:

• It can accept the values as parameters and make assignments to the member
variqbles within the function body of the constructor:

class X

int a, b;
public:

X(int i, int j) { a = i; b = j }
} ;

• An initializer list can be used prior to the function body:

class X

int a, b, &c; II Note the reference variable.
public:

X(int i, int j) : a(i), b(j), c(a) {}
} ;

The initializer ~ist is the only place to initialize a reference variable.

In both cases, an initialization of x x (1/ 2) assigns a value of 1 to x::a and 2 to x::b. The
second method, the initializer list, provides a mechanism for passing values ,along to
base class constructors.

Note Base class constructors must be declared as either public or protected to be called from a
derived class.

class basel

int x;
public:

basel(int i) { x = i;
} ;

class base2

int x;
public:

base2(int i) : x(i) {}
} ;

class top : public basel, public base2
{

int a, b;
public:

top(int i, int j) basel (i*5), base2(j+i), a(i) { b = j;}
} ;

146C + + Pro 9 ram mer's G u ide

With this class hierarchy, a declaration of top one (1, 2) would result in the
initialization of basel with the value 5 and base2 with the value 3. The methods of
initialization can be intermixed.

As described previously, the base classes are initialized in declaration order. Then the
members are initialized, also in declaration order, independent of the initialization list.

class X

int a, b;
public:

X(int i, j) : a(i), b(a+j) {}
} ;

With this class, a declaration of x x (1,1) results in an assignment of 1 to x::a and 2 to
x::b.

Base class constructors are called prior to the construction of any of the derived classes
members. If the values of the derived class are changed, they will have no effect on the
creation of the base class.

class base

int X;

public:
base(int i) : x(i) {}

} ;

class derived : base

int a;
public:

derived(int i) a(i*10), base (a) { } II Watch out! Base will be
II passed an uninitialized 'a'

} ;

With this class setup, a call of derived d(l) win not result in a value of 10 for the base
class member x. The value passed to the base class constructor will be undefined.

When you want an initializer list in a non-inline constructor, don't place the list in the
class definition. Instead, put it at the point at which the function is defined.

derived::derived(int i) : a(i)

Destructors
The destructor for a class is caned to free members of an object before the object is itself
destroyed. The destructor is a member function whose name is that of the class
preceded by a tilde (-). A destructor cannot accept any parameters, nor will it have a
return type or value declared.

#include <stdlib.h>
class X

C hap t e r 3, C++ s pee i fie s 147

public:

-X(){}; II destructor for class X
} ;

If a destructor isn't explicitly defined for a class, the compiler generates one.

Invoking destructors
A destructor is called implicitly when a variable goes out of its declared scope.
Destructors for local variables are called when the block they are declared in is no longer
active. In the case of global variables, destructors are called as part of the exit procedure
after the main function.

When pointers to objects go out of scope, a destructor is not implicitly called. This
means that the delete operator must be called to destroy such an object.

Destructors are called in the exact opposite order from which their corresponding
constructors were called (see "Order of calling constructors" earlier in this chapter).

atexit, #pragma exit, and destructors
All global objects are active until the code in all exit procedures has executed. Local
variables, including those declared in the main function, are destroyed as they go out of
scope. The order of execution at the end of a Borland C++ program is as follows:

• atexitO functions are executed in the order they were inserted.

• #pragma exit functions are executed in the order of their priority codes.

• Destructors for global variables are called.

exit and destructors
When you call exit from within a program, destructors are not called for any local
variables in the current scope. Global variables are destroyed in their normal order.

abort and destructors
If you call abort anywhere in a program, no destructors an~ called, not even for variables
with a global scope.

A destructor can also be invoked explicitly in one of two ways: !ndirectly through a call
to delete, or directly by using the destructor's fully qualified name. You can use delete
to destroy objects that have been allocated using new. Explicit calls to the destructor are
necessary only for objects allocated a specific address through calls to new:

#include <stdlib;h>
class X {
public:

-X(){};

} ;

148 c++ Programmer's Guide

void* operator new(size_t size, void *ptr)

return ptr;

char buffer[sizeof(X)];
void main () {

X* pointer = new X;
X* exact-pointer;
exact-pointer = new(&buffer) X; II pointer initialized at

II address of buffer

delete pointer;
exact-pointer->X::-X();

II delete used to destroy pointer
II direct call used to deallocate

Virtual destructors
A destructor can be declared as virtual. This allows a pointer to a base class object to call
the correct destructor in the event that the pointer actually refers to a derived class
object. The destructor of a class derived from a class with a virtual destructor is itself
virtual.

1* How virtual affects the order of destructor calls.
Without a virtual destructor in the base class, the derived
class destructor won't be called. *1

#include <iostream.h>
class color {
public:

virtual -color () II Virtual destructor
cout « "color dtor\n";

} ;

class red public color {
public:

-red() II This destructor is also virtual
cout « "red dtor\n";

} ;

class brightred public red {
public:

-brightred() II This destructor is also virtual
cout « "brightred dtor\n";

} ;

int main ()
color *palette[3];
palette [0] = new red;
palette [1] new brightred;
palette [2] = new color;

II The destructors for red and color are called.
delete palette[O];
cout « endl;

Chapter 3, C++ specifics 149

II The destructors for bright red, red, and color are called.
delete palette[l];
cout « endl;

II The destructor for color is called.
delete palette[2];
return 0;

Program output
red dtor
color dtor

brightred dtor
red dtor
color dtor

color dtor

However, if no destructors are declared as virtual, delete palette[O], delete palette[l], and
delete palette[2] would all call only the destructor for class color. This would incorrectly
destruct the first two elements, which were actually of type red and hrightred.

Overloading operators
C++ lets you redefine the actions of most operators, so that they perform specified
functions when used with objects of a particular class. As with overloaded C++
functions in general, the compiler distinguishes the different functions by noting the
context of the call: the number and types of the arguments or operands.

All operators can be overloaded except for:

.. * :: ?:

The following preprocessing symbols cannot be overloaded.

The =, [], (), and -> operators can be overloaded only as nonstatic member functions.
These operators cannot be overloaded for enum types. Any attempt to overload a global
version of these operators results in a compile-time error.

The keyword operator followed by the operator symbol is called the operator function
name; it is used like a normal function name when defining the new (ovedoaded) action
for the operator.

A function operator called with arguments behaves like an operator working on its
operands in an expression. The operator function cannot alter the number of arguments
or the precedence and associativity rules applying to normal operator use.

150 C++ Pro 9 ram mer's G u ide

Example for overloading operators
The following example extends the class complex to create complex-type vectors. Several
of the most useful operators are overloaded to provide some customary mathematical
operations in the usual mathematical syntax.

Some of the issues illustrated by the example are:

• The default constructor is defined. This is provided by the compiler only if you have
not defined it or any other constructor.

• The copy constructor is defined explicitly. Normally, if you have not defined any
constructors, the compiler will provide one. You should definethe copy constructor
if you are overloading the assignment operator.

• The assignment operator is overloaded. If you do not overload the assignment
operator, the compiler calls a default assignment operator when required. By
overloading assignment of cvector types, you specify exactly the actions to be taken.
Note that the assignment operator function cannot be inherited by derived classes.

• The subscript operator is defined as a member function (a requirement when
overloading) with a single argument. The const version assures the caller that it will
not modify its argument-this is useful when copying or assigning. This operator
should check that the index value is within range-a good place to implement
exception handling.

• The addition operator is defined as a member function. It allows addition only for
cvector types. Addition should always check that the operands' sizes are compatible.

• The multiplication operator is declared a friend. This lets you define the order of the
operands. An attempt to reverse the order of the operands is a compile-time error.

• The stream insertion operator is overloaded to naturally display a cvector. Large
objects that don't display well on a limited size screen might require a different
display strategy.

Source
I * HOW TO EXTEND THE c~lex CLASS AND OVERLOAD THE REQUIRED OPERATORS. * I
#p~agma warn -inl II IGNORE not expanded inline WARNINGS.
#include <complex.h> I I 'rHIS ALREADY INCLUDES iostream.h
I I COMPLEX VECTORS
class cvector {

int size;
complex *data;

public:
cvector() { size = 0; data = NULL; };
cvector(int i = 5) : size(i) { II DEFAULT VECTOR SIZE.

data = new complex[sizel;
for (int j = 0; j < size; j++)

data[jl = j + (0.1 * j); II ARBITRARY INITIALIZATION.
} ;

1* THIS VERSION IS CALLED IN main() *1
complex& operator [] (int i) { return data[il; };
1* THIS VERSION IS CALLED IN ASSIGNMENT OPERATOR AND COPY THE CONSTRUCTOR *1

C hap t e r 3, C++ s pee if i c s 151

const cornplex& operator [] (int i) const { return data[i]; };
cvector operator + (cvector& A) II ADDITION OPERATOR

cvector result(A.size); II DO NOT MODIFY THE ORIGINAL
for (int i = 0; i < size; iff)

result[i] = data[i] + A.data[i];
return result;
} ;

1* BECAUSE scalar * vector MULTIPLICATION IS NOT COMMUTATIVE, THE ORDER OF
THE ELEMENTS MUST BE SPECIFIED. THIS FRIEND OPERATOR FUNCTION WILL ENSURE
PROPER MULTIPLICATION. *1

friend cvector operator *(int scalar, cvector& A) {
cvector result(A.size); II DO NOT MODIFY THE ORIGINAL
for (int i = 0; i < A.size; iff)

result.data[i] = scalar * A.data[i];
return result;

1* THE STREAM INSERTION OPERATOR. *1
friend ostream& operator «(ostream&'out_data, cvector& C) {

for (int i = 0; i < C.size; iff)
out_data« "[" « i« "]=" «C.data[i] «" ";

cout « endl;
return out...:..data;
} ;

cvector (const cvector &C) ,{ I I COpy CONSTRUCTOR
size = C.size;
data = new complex[size];
for (int i = 0; i < size; iff)

data[i] = C[i];

cvector& operator =(const cvector &C) { II ASSIGNMENT OPERATOR.
if (this == &C) return *this;

} ;

delete [] data;
size = C.size;
data = new complex[size];
for (int i = 0; i < size; iff)

data[i] = C[i];
return *this;

virtual'-cvector() { delete[] data; }; II DESTRUCTOR
} ;

int main(void) { 1* A FEW OPERATIONS WITH complex VECTORS. *1
cvector cvectorl(4), cvector2(4), result(4);
II CREATE complex NUMBERS AND ASSIGN THEM TO complex VECTORS
cvectorl[3] = complex(3.3, 102.8);
cout « "Here is cvectorl:" « endl;
cout « cvectorl;
cvector2[3] = complex(33.3, 81);
cout « "Here is cvector2:" « endl;
cout « cvector2;
result = cvectorl + cvector2;
cout « "The result of vector addition:" « endl;
cout « result;

152 C++ Pro 9 ram mer's G u ide

result = 10 * cvector2;

cout « "The result of 10 * cvector2:" « endl;

cout « result;

return 0;

Output
Here is cvectorl:

[0]= (0, 0) [1]=(1.1, 0) [2]=(2.2, 0) [3]=(3.3, 102.8)

Here is cvector2:
[0]=(0, 0) [1]=(1.1, 0) [2]=(2.2, 0) [3]=(33.3, 81)

The result of vector addition:

[0] = (0, 0) [1]=(2.2, 0) [2]=(4.4, 0) [3]=(36.6, 183.8)

The result of 10 * cvector2:
[0] = (0, 0) [1] = (11, 0) [2]=(22, 0) [3]=(333, 810)

Overloading operator functions
Operator functions can be called directly, although they are usually invoked indirectly
by the use of the overload operator:

c3 = cl.operator + (c2); II same as c3 = cl + c2

Apart from new and delete, which have their own rules, an operator function must
either be a nonstatic member function or have at least one argument of class type. The
operator functions =, (), [], and -> must be nonstatic member functions.

Enumerations can have overloaded operators. However, the operator functions =, (), [],
and -> cannot be overloaded for enumerations.

Overloaded operators and inheritance
With the exception of the assignment function operator =(), all overloaded operator
functions for class X are inherited by classes derived from X, with the standard
resolution rules for overloaded functions. If X is a base class for Y, an overloaded
operator function for X could possibly be further overloaded for Y.

Overloading unary operators
You can overload a prefix or postfix unary operator by declaring a nonstatic member
function taking no arguments, or by declaring a nonmember function taking one
argument. If @ represents a unary operator, @x and x@ can both be interpreted as either
x.operator@O or operator@(x), depending on the declarations made. If both forms have
been declared, standard argument matching is applied to resolve any ambiguity.

• Under c++ 2.0, an overloaded operator ++ or -- is used for both prefix and postfix
uses of the operator.

• With C++ 2.1, when an operator++ or operator- - is declared as a member function
with no parameters, or as a nonmember function with one parameter, it only
overloads the prefix operator++ or operator- -. You can only overload a postfix

C hap t e r 3, C++ s pee i fie s 153

operator++ or operator- - by defining it as a member function taking an int parameter
or as a nonmember function taking one class and one int parameter. .

When only the prefix version of an operator++ or operator- - is overloaded and the
operator is applied to a class object as a postfix operator, the compiler issues a warning.
Then it calls the prefix operator, allowing 2.0 code to compile. The preceding example
results in the following warnings:

Warning: Overloaded prefix 'operator ++' used as a postfix operator in function
func()

I

Warning: Overloaded prefix 'operator --' used as a postfix operator in function
func()

Overloading binary operators
You can overload a binary operator by declaring a nonstatic member function taking
one argument, or by declaring a non-member function (usually friend) taking two
arguments. If @ represents a binary operator, x@y can be interpreted as either
x.operator@(y) or operator@(x,y) depending on the declarations made. If both forms
have been declared, standard argument matching is applied to resolve any ambiguity.

Overloading the assignment operator =
The assignment operator=() can be overloaded by declaring a nonstatic member
function. For example,

class String {

String& operator = (String& str);

String (String&);
-String() ;

This code, with suitable definitions of String::operator =0, allows string assignments
strI = str2 in the usual sense. Unlike the other operator functions, the assignment
operator function cannot be inherited by derived classes. If, for any class X, there is no
user-defined operator =, the operator = is defined by default as a member-by-member
assignment of the members of class X:

X& X::operator = (const'X& source)
{

Ilmemberwise assignment

Overloading the function call operator ()

Syntax
postfix-expression (<expression-list>)

Description
In its ordinary use as a function cali, the postfix-expression must be a function name, or
a pointer or reference to a function. When the postfix-expression is used to make a

154 C++ Pro 9 ram mer's G u ide

member function call, postfix-expression must be a class member function name or a
pointer-to-member expression used to select a class member function. In either case, the
postfix-expression is followed by the optional expression-list (possibly empty).

A call X(argl, arg2), where X is an object class X, is interpreted as X.operatorO(argl,
arg2).

The function call operator, operator()()l can only be overloaded as a nonstatic member
function.

Overloading the subscript operator []

Syntax
postfix-expression [expression 1

Description

The corresponding operator function is operator[]() this can be user-defined for a class X
(and any derived classes). The expression X[y], where X is an object of class X, is
interpreted as x.operator[](y).

TJ.:te operator[]() can only be overloaded as a nonstatic member function.

Overloading the class member access operator ->

Syntax
postfix-expression -> primary-expression

Description
The expressionx->m, where x is a class X object, is interpreted as (x.operator->O)->m, so
that the function operator->() must either return a pointer to a class object or return an
object of a class for which operator-> is defined.

The operator->() can only be overloaded as a nonstatic member function.

Polymorphic classes
Classes that provide an identical interface, but can be implemented to serve different

.. specific requirements, are referred to as polymorphic classes. A class is polymorphic if it
declares or inherits at least one virtual (or pure virtual) function. The only types that can
support polymorphism are class and struet.

Virtual functions
virtual functions allow derived classes to provide different versions of a base class
function. You can use the virtual keyword to declare a virtual function in a base class.

; By declaring the function prototype in the usual way and then prefixing the declaration
with the virtual keyword. To declare a pure function (which automatically declares an

C hap t e r 3, C++ 5 pee i fie 5 155

/

abstract class), prefix the prototype with the virtual keyword, and set the function equal
to zero.

virtual int functl(void)i II A virtual function declaration.

virtual int funct2(void) = Oi II A pure function declaration.
virtual void funct3(void) = 0 II This is a valid declaration.

II Some code here.
} i

Note See" Abstract classes" later in this chapter for a discussion of pure virtual functions.

When you declare virtual functions, keep these guidelines in mind:

• They can be member functions only.

• They can be declared a friend of another class.

• They cannot be a static member.

A virtual function does not need to be redefined in a derived class. You can supply one
definition in the base class so that all calls will access the base function.

To redefine a virtual function in any derived class, the number and type of arguments
must be the same in the base class declaration and in the derived class declaration. (The
case for redefined virtual functions differing only in return type is discussed below.) A
redefined function is said to override the base class function.

You can also declare the functions int Base: : Fun (int) and int Derived: :Fun(int)
even when they are not virtual. In such a case, int Derived: : Fun (int) is said to hide
any other versions of Fun (int) that exist in any base classes. In addition, if class Derived
defines other versions of Fun(), (that is, versions of Fun() with different signatures) such
versions are said to be overloaded versions of Fun().

Virtual function return types
Generally, when redefining a virtual function, you cannot change just the function
return type. To redefine a virtual function, the new definition (in some derived class)
must exactly match the return, type and formal parameters of the initial declaration. If
two functions with the same name have different formal parameters, C++ considers
them different, and the virtual function mechanism is ignored.

However, for certain virtual functions in a base class, their overriding version in a
derived class can have a return type that is different from the overridden function. This
is possible only when both of the following conditions are met:

• The overridden virtual function returns a pointer or reference to the base class.

• The overriding function returns a pointer or reference to the derived class.

If a base class B and class D (derived publicly from B) each contain a virtual function vf,
then if viis called for an object d of D, the call made is D: :vf (), even when the access is
via a pointer or reference to B. For example,

struct X {}ill Base class.
struct Y : X {}ill Derived class.
struct B {

156 c++ Programmer's Guide

virtual void vfl();
virtual void vf2();
virtual void vf3();
void f ();
virtual X* pf();11 Return type is a pointer to base. This can
II be overridden.
} ;

class D : public B {
public:

virtual void vfl();11 Virtual specifier is legal but redundant.
void vf2(int);11 Not virtual, since it's using a different

II arg list. This hides B::vf2().
I I char vf3 (); I I Illegal: return-type-only changel

void f () ;
y* pf();11 OVerriding function differs only
II in return type. Returns a pointer to

II the derived class.
} ;

void extf() {
D d;11 Instantiate D
B* bp = &d;11 Standard conversion from D* to B*
II Initialize bp with the table of functions

II provided for object d. If there is no entry for a
II function in the d-table, use the function

II in the B-table.
bp->vfl(); II Calls D::vfl
bp->vf2(); II Calls B::vf2 since D's vf2 has different args

, bp->f () ; I I Calls B:: f (not virtual)
X* xptr = bp->pf (); I I Calls D: :pf () and converts the result
II to a pointer to X.
D* dptr = &d;
Y* yptr = dptr->pf();11 Cal~s D::pf() and initializes yptr.
II No further conversion is done.

The overriding function vf1 in D is automatically virtual. The virtual specifier can be
used with an overriding function declaration in the derived class. If other classes will be
derived from D, the virtual keyword is required. If no further classes will be derived
from D, the use of virtual is redundant.

The interpretation of a virtual function call depends on the type of the object it is called
for; with nonvirtual function calls, the interpretation depends only on the type of the
pointer or reference denoting the object it is called for.

virtual functions exact a price for their versatility: each object in the derived class needs
to carry a pointer to a table of functions in order to select the correct one at run time (late
binding).

Abstract classes
An abstract class is a class with at least one pure virtual function. A virtual function is
specified as pure by setting it equal to zero.

C hap t e r 3, C++ s pee i fie s 157

An abstract class can be used only as a base class for other classes. No objects of an
abstract class can be created. An abstract class cannot be used as an argument type or as
a function return type. However, you can declare pointers to an abstract class.
References to an abstract class are allowed, provided that a temporary object is not
needed in the initialization. For example,

class shape { II abstract class

point center;

public:
where() { return center; }
move(point p) { center = p; draw(); }
virtual void rotate(int) = 0; II pure virtual function
virtual void draw() = 0; II pure virtual function
virtual void hilite() = 0; II pure virtual function

shape x;11 ERROR: attempt to create an object of an abstract class.
shape* sptr;11 pointer to abstract class is OK
shape f();11 ERROR: abstract class cannot be a return type

int g(shape s);11 ERROR: abstract class cannot be a function argument type
shape& h(shape&);11 reference to abstract class as return

II value or function argument is OK

Suppose that D is a derived class with the abstract class B as its immediate base class.
Then for each pure virtual function pvf in B, if D doesn't provide a definition for pvf, pvf
becomes a pure member function of D, and D will also be an abstract class.

For example, using the class shape previously outlined,

class circle: public shape {II circle derived from abstract class

int radius;11 private
public:

void rotate(int) { }II virtual function defined: no action
II to rotate a circle

void draw(); II circle::draw must be defined somewhere

Member functions can be called from a constructor of an abstract class, but calling a
pure virtual function directly or indirectly from such a constructor provokes a run-time
error.

c++ scope
The lexical scoping rules for C++, apart from class scope, follow the general rules for C,
with the proviso that C++, unlike C, permits both data and function declarations to
appear wherever a statement might appear. The latter flexibility means that care is
needed when interpreting such phrases as "enclosing scope" and "point of declaration."

158 c++ Pro 9 ram mer's G u ide

Class seope
The name M of a member of a class X has class scope "local to X"; it can be used only in
the following situations:

• In member functions of X

• In expressions such as x. M, where x is an object of X

• In expressions such as xptr->M, where xptr is a pointer to an object of X

• In expressions such as x: : M or D: : M, where D is a derived class of X

• In forward references within the class of which it is a member

Names of functions declared as friends of X are not members of X; their names simply
have enclosing scope.

Hiding
A name can be hidden by an explicit declaration of the same name in an enclosed block
or in a class. A hidden class member is still accessible using the scope modifier with a
class name: x: : M. A hidden file scope (global) name can be referenced with the unary
operator :: (for example, ::g). A class name X can be hidden by the name of an object,
function, or enumerator declared within the scope of X, regardless of the order in which
the names are declared. However; the hidden class name X can still be accessed by
prefixing X with the appropriate keyword: class, struct, or union.

The point of declaration for a name x is immediately after its complete declaration but
before its initializer, if one exists.

C++ seoping rules summary
The following rules apply to all names, including typedef names and class names,
provided that C++ allows such names in the particular context discussed:

• The name itself is tested for ambiguity. If no ambiguities are detected within its
scope, the access sequence is initiated.

• If no access control errors occur, the type of the object, function, class, typedef, and so
on, is tested.

• If the name is used outside any function and class, or is prefixed by the unary scope
access operator ::, and if the name is not qualified by the binary:: operator or the
member selection operators. and ->, then the name must be a global object, function,
or enumerator.

• If the name :z appears in any of the forms X::n, x.n (where x is an object of X or a
reference to X), or ptr->n (where ptr is a pointer to X), then n is the name of a member
of X or the member of a class from which X is derived.

• Any name that hasn't been discussed yet and that is used in a static member function
must either be declared in the block it occurs in or in an enclosing block, or be a global

C hap t e r 3, C++ s pee i fie s 159

name. The declaration of a local name n hides declarations of n in enclosing blocks
and global declarations of n. Names in different scopes are not overloaded.

• Any name that hasn't been discussed yet and that is used in a nonstatic member
function of class X must either be declared in the block it occurs in or in an enclosing
block, be a member of class X or a base class of X, or be a global name. The .
declaration of alocal name n hides declarations of n in enclosing blocks, members of
the function's class, and global declarations of n.The declaration of a member name
hides declarations of the same name in base classes.

• The name of a function argument in a function definition is in the scope of the
outermost block of the function. The name of a function argument in a nondefining
function declaration has no scope at all. The scope of a default argument is
determined by the point of declaration of its argument, but it (:an't access local
variables or nonstatic class members. Default arguments are evaluated at each point
of call.

• A constructor initializer is evaluated in the scope of the outermost block of its
constructor, so it can refer to the constructor's argument names~

Using templates
Templates, also called generics or parameterized types, let you construct a family of
related functions or classes.

Note For complete examples of templates and template-driven classes, see the source files for
the ObjectWindows classes in the SOURCE\OWL directories.

This section introduces the basic concept of templates, then provides some specific
points.

Template syntax
Use templates to construct a family of related functions or classes. The template syntax
is shown below.

Syntax
template-declaration:

template < tem~late-argument-list > declaration
template-argument-list:

template-argument
template-argument-list, template argument

template-argument:
type-argument
argument-declaration

type-argument:
class identifier

template-class-name:
template-name < template-arg-list >

template-arg-list:

160 C++ Pro 9 ram mer's G u ide

template-arg
template-arg-list I'template-arg

template-arg:
expression
type-name

'< template-argument-list' > declaration

Template body parsing
Earlier versions of the compiler didn't check the syntax of a template body unless the
template was instantiated. A template body is now parsed immediately when seen like
every other declaration.

template <class T>;class X : T

lnt ji II Error: Type name expected in template X<T>

} i

Let's assume that Int hasn't been defined so far. This means that Int must be a member of
the template argument T. But it also might just be a typing error and should be int
instead of Int. Because the compiler can't guess the right meaning it issues an error
message.

If you want to access types defined by a template argument you should use a typede£ to
make your intention clear to the compiler:

template <class T> class X : T

typedef T:: lnt lnt i

lnt ji

} i

You cannot just write

typedef T::lnti

as in earlier versions of the compiler. Not giving the typede£ name was acceptable, but
this now causes an error message.

All other templates mentioned inside the template body are declared or defined at that
point. Therefore, the following example is ill-formed and will not compile:

template <class T> class X

void f(NotYetDefinedTemplate<T> x);

} ;

All template definitions must end with a semicolon. Earlier versions of the compiler did
not complain if the semicolon was missing.

,Chapter 3, C++ specifics 161

Function templates
Consider a function max(x, y) that returns the larger of its two arguments. x and y can be
of any type that has the ability to be ordered. But, since C++ is a strongly typed
language, it expects the types of the parameters x and y to be declared at compile time. '
Without using templates, many overloaded versions of max are required, one for each
data type to be supported even though the code for each version is essentially identical.
Each version compares the arguments and returns the larger.

One way around this problem is to use a macro:

#define max (x, y) ((x > y) ? x : y)

However, using the #define circumvents the type-checking mechanism that makes C++
such an improvement over C. In fact, this use of macros is almost obsolete in C++.
Clearly, the intent of max(x, y) is to compare compatible types. Unfortunately, using the
macro allows a comparison between an int and a struct, which are incompatible.

Another problem with the macro approach is that substitution will be performed where
you don't want it to be. By using a template instead, you can define a pattern fora
family of related overloaded functions by letting the data type itself be a parameter:

template <class T> T max(T x, T y){
return (x > y) ? x : y;
} i

The data type is represented by the template argtiment <class T>. When used in an
application, the compiler generates the appropriate code for the max function according
to the data type actu)llly used in the call:

int ii
Myclass a, bi

int j = max(i,O); II arguments are integers
Myclass m = max(a,b); II arguments are type Myclass

Any data type (not just a class) can be used for <class T>. The compiler takes care of
calling the appropriate operator>O, so you can use max with arguments of any type for
which operator>O is defined.

Overriding a template function
The previous example is called afunction template (or generic function, if you like). A
specific instantiation of a function template is called a template function. Template
function instantiation occurs when you take the function address, or when you call the
function with defined (non-generic) data types. You can override the generation of a
template function for a specific type with a non-template function:

#include <string.h>

char *max(char *x, char *y){
return (strcmp (x,y) > 0) ? x : y;

If you call the function with string arguments, it's executed in place of the automatic
template function. In this case, calling the function avoided a meaningless comparison
between two pointers.

162 C++ Pro 9 ram mer's G u ide

Only trivial argument conversions are performed with compiler-generated template
functions.

The argument type(s) of a template function must use all of the template formal
arguments. If it doesn't, there is no way of deducing the actual values for the unused
template arguments when the function is calleq.

Implicit and explicit template functions
When doing overload resolution (following the steps of looking for an exact match), the
compiler ignores template functions that have been generated implicitly by the
compiler.

template<class T> T max(T a, T b){
return (a > b) ? a : b;

} ;

void f(int i, char c){
max(i, i);
max(c, c);

I I calls max (int ,int)
II calls max(char,char)

max(i, c);
max(c, i);

I I no match for max (int, char)
II no match for max(char,int)

This code results in the following error messages:

Could not find a match for 'max(int,char) , in function f(int,char)
Could not find a match for 'max(char,int)' in function f(int,char)

If the user explicitly declares a template function, this function, on the other hand, will
participate fully in overload resolution. See the following example of explicit template
function.

template<class T> T max(T a, T b)
return (a > b) ? a : b;

} ;

II Declare explicit template function
int max(int,int);

void f(int i, char c)

max(i, i) ; II calls max(int ,int)

max(c, c) ; II calls max(char,char)
max(i, c) ; II Calls max (int, int)
max(c, i) ; II calls max(int,int)

When searching for an exact match for template function parameters, trivial conversions
are considered to be exact matches. See the following example on trivial conversions.

template <class T> void func(const T)

} ;

func(O); II This is illegal under ANSI C++: unresolved func(int).
II However, Borland C++ allows func(const int) to be called.

C hap t e r 3, C++ s pee i fie s 163

Template functions with derived class pointer or reference arguments are permitted to
match their public base classes. See the following example of base class referencing.

template <class T> class B

II class declarations
} ;

template <class T> class D public B<T>

II class declarations
} ;

template <class T> void func(B <T> *b)
{

II function body

II This is illegal under ANSI C++: unresolved func(int)
II However, Borland c++ calls func(B<int> *).
func(new D<int>);

Class templates
A class template (also called a generic class or class generator) lets you define a pattern for
class definitions. Consider the following example of a vector class (a one-dimensional
array). Whether you have a vector of integers or any other type, the basic operations
performed on the type are the same (insert, delete, index, and soon). With the element
type treated as a type parameter to the class, the system will generate type-safe class
definitions on the fly.

II An example far defining a template class.
template <class T> class Vector
{

T *data;
int size;

public:
Vector (int) ;

,-Vectar() { delete [] data; }
T& operatar[] (int i) { return data[i];

} ;

II Note the syntax for out-af-line definitions.
template <class T> Vectar<T>::Vector(int n)
{

} ;

data = new T En] ;
size = n;

int main()

Vectar<int> x(5); II Generate a vector to stare five integers
for (int i. = 0; i < 5; ++i)

x[i] = i; I I Initialize the vector ..
return a;

164 C++ Pro 9 ram mer's G u ide

As with function templates, an explicit template class definition can be provided to
override the automatic definition for a given type:

class Vector<char *> { ... };

The symbol Vector must always be accompanied by a data type in angle brackets. It
cannot appear alone, except in 'some cases in the original template definition.

Template arguments
Multiple arguments are allowed as part of the class template declaration. Template
arguments can also represent values in addition to data types:

template<class T, int size = 64> class Buffer { ... };

Non-type template arguments such as size can have default values. The value supplied
for a non-type template argument must be a constant expression:

const int N = 128;
int i = 256;

Buffer<int, 2*N> b1;// OK
Buffer<float, i> b2;// Error: i is not constant

Since each instantiation of a template class is indeed a class, it receives its own copy of
static members. Similarly, template functions get their own copy of static local variables.

Using angle brackets in templates
Be careful when using the right angle bracket character upon instantiation:

Buffer<char, (x > lOa? 1024 : 64» buf;

In the preceding example, without the parentheses around the second argument, the>
between x and 100 would prematurely close the template argument list.

Using type-safe generic lists in templates
In general, when you need to write lots of nearly identical things, consider using
templates. The problems with the following class definition, a generic list class,

class GList

public:

} ;

void insert(void *);
void *peek();

are that it isn't type-safe and common solutions need repeated class definitions. Since
there's no type checking on what gets inserted, you have no way of knowing what
results you'll get. You can solve the type-safe problem by writing a wrapper class:

class.FooList : public Glist {
public:

} ;

void insert(Foo *f) { GList::insert(f); }
Foo *peek() { return (Foo *)GList::peek(); }

Chapter 3, C++ specifics 165

This is type-safe. insert will only take arguments of type pointer-to-Foo or object­
derived-from-Foo, so the underlying container will only hold pointers thafin fact point
to something of type Foo. This means that the cast in FooList::peekO is always safe, and
you've created a true FooList. Now, to do the same thing for a BarList, a BazList, and so
on, you need repeated separate class definitions. To solve the problem of repeated class
definitions .and be type-safe, you can once again use templates. See the following
example for type-safe generic list class.

template <class T> class List : public GList
{

public:

} ;

void insert(T *t) { GList::insert(t);
T *peek() { return (T *)GList::peek(); }

II Create a List object of Faa types and name it fList.
List<Foo> fList;

II Create a List object of Bar types and name it bList.
List<Bar> bList;

II Create a List object of Baz types and name it zList.
List<Baz> zList;

By using templates, you can create whatever type-safe lists you want, as needed, with a
simple declaration. And there's no code generated by the type conversions from each
wrapper class so there's no run-time overhead imposed by this type safety.

Eliminating pointers in templates
Another design technique is to include actual objects, making pointers unnecessary.
This can also reduce the number of virtual function calls required, since the compiler
knows the actual types of the objects. This is beneficial if the virtual functions are small
enough to be effectively inlined. It's difficult to inline virtual functions when called
through pointers, because the compiler doesn't know the actual types of the objects
being pointed to.

template <class T> aBase

private:
T buffer;

} ;

class anObject public aSubject, public aBase<aFilebuf> {

} ;

All the functions in aBase can call functions defined in aFilebuf directly, without having
to go through a pointer. And if any of the functions in aFilebuf can be inlined, you'll get a
speed improvement, because templates allow them to be inlined.

166 C++ Pro 9 ram mer's G u ide

Compiler template switches
The -Jg family of switches controls how instances of templates are generated by the
compiler. Every template instance that the compiler encounters is affected by the value
of the switch when the compiler sees the first occurrence of that instance.

For template functions the switch applies to the function instances; for template classes,
it applies to all member functions and static data members of the template class. In all
cases, this switch applies only to compiler-generated template instances and never to
user-defined instances. It can be used, however, to tell the compiler which instances will
be user-defined so that they aren't generated from the template.

-Jg Deiault value of the switch. All template instances first encountered when this switch value
is in effect are generated, such that if several compilation units generate the same template
instance, the linker merges them to produce a single copy of the instance. This is the most
convenient approach to generating template instances because it's almost entirely
automatic. Note, though, that to be able to generate the template instances, the compiler
must have the function body (in case of a template function) or bodies of member functions
and definitions for static data members (in case of a template class).

-Jgd Instructs the compiler to generate public definitions for template instances. This is sirnilarto
-Jg, but if more than one compilation unit generates a definition for the same template
instance, the linker will report public symbol redefinition errors.

-Jgx Instructs the compiler to generate external references to template instances. Some other
compilation unit must generate a public definition for that template instance (using the
-Jgd switch) so that the external references can be satisfied.

Using template switches
When using the -Jg family of switches, there are two basic approaches for generating
template instances:

Approach 1
Include the function body (for a function template) or member function and static data
member definitions (for a template class) in the header file that defines the particular
template, and use the default setting of the template switch (-Jg). If some instances of the
template are user-defined, the declarations (prototypes, for example) for them should be
included in the same header but preceded by #pragma option -Jgx.

II Declare a template function and define it's body.
1* When this header file is included in a c++ source file, the sort template can
be used without worrying about how the various instances are generated (with the
exception of sort for integer arrays which is a user-defined instance. Its
definition must be provided by the user. *1
template<class T> void sort (T* array, int size)

II Body of template goes here.

II Sorting of integer elements done by user-define instance.
#p~agma option -Jgx
extern void sort(int * array , int size);
II Restore the template switch to its original state.
#pragma option -Jg

C hap t e r 3, C++ s pee i fie s 167

Approach 2
Compile all of the source files comprising the'program with the ';'Jgx switch (causing
external references to templates to be generated). In order to provide the definitions for
all of the template instances, add a file (or files) to the program that includes the
template bodies (including any user-defined instance definitions), arid list all the
template instances needed in the rest of the program to provide the necessary public
symbol definitions. Compile the file (or files) with the -Jgd switch. See the example for
separate file templa~e compilation in the next section.

Separate file template compilation
II In vector.h
template <class elem, int size> class vector
{

elem * value;
public:

vector();

} ;

elem & operator [] (int index) {
return value[index];

II In main.cpp source file.
#include "vector.h"
1** Let the compiler know that the following template instances will be defined
elsewhere. **1
#pragma option -Jgx
II Use two instances of the vector template class.
vector<int, 100> int_100;
vector<char, 10> char~10;
int rnain(

return int_100[0] + char_10[0];

II In template.cpp source file.
#include <string.h>
#include "vector.h"
II Define any template bodies.
template <class elem, int size> vector <elem, size> .. vector()

value = new elem[size];
memset(value, 0, size * sizeof(elem));

II Generate the necessary instances.
#pragma option -Jgd
typedef vector<int, 100> fake_int_100;
typedef vector<char, 10> fake_char_10;

168 c++ Programmer's Guide

Exporting and importing templates
The declaration of.a template function or template class needs to be sufficiently flexible
so it can be used in either a DLL or an EXE file. The same template declaration should be
available as an import and/ or export, or without a modifier. To he completely flexible,
the header file template declarations should not use __ export or __ import modifiers.
This allows you to apply the appropriate modifier at the point of instantiation
depending on how the instantiation is to be used.

The following steps demonstrate exporting and importing of templates. The source code
is organized in three files. Using the header file/code is generated in the DLL. A DLL
library is created and linked to an EXE file.

Exportable/importable template declarations
The header file contains all template class and template function declarations. An
export/import version of the templates can be instantiated by defining the appropriate
macro at compile time.

For example:

// In file EXPORTER.H
#include<iostream.h>
if defined (BUILD_DLL_EXPORTS)
define DECLSPEC ~export
elif defined (USING_DLL_IMPORTS)
define DECLSPEC __ import
endif
///!///

// Receive CLASS DEFINITIONS
template <class T> class Receive

T value;
public:

} ;

Receive(const T val) value(val){}
T display () ;

template<class T> T Receive<T>: : display ()
{

return value;

// TEMPLATE FUNCTION DEFINITION
template <class T>
T another_min(T a, T b) { return a < b ? a : b;}
#if (defined (BUILD_DLL_EXPORTS) I I defined (USING_DLL_IMPORTS)
////// INSTANTIATED TEMPLATE CLASSES /////
template class DECLSPEC Receive<double>;
template class DECLSPEC Receive<int>;
template class DECLSPEC Receive<char>;
////// INSTANTIATED TEMPLATE FUNCTIONS /////
template int DECLSPEC another_min<:u1.t> (int, int);
template double DECLSPEC another_min<double> (double, double);
#endif

C hap t e r 3, C++ s pee i fie s 169

Compiling exportable templates
Write the source code for a DLL. When compiled, this DLL has reusable export code.

For example:

II In fileDLL_SRC.CPP.
,II GENERATE CODE FOR EXPORTABLE CLASSES AND FUNCTIONS.
II TO COMPILE THIS FILE, USE BCC32 -tWO -DBUILD_DLL_EXPORTS
DLL_SRC.CPP
#define STRICT
#include <windows.h>
#include "exporter.h"
BOOL WINAPI DllEntryPoint(HINSTANCE hinstdll,

DWORD fdwReason, LPVOID lpvReserved)

return 1;

Using import templates
Now you can write a calling function that uses templates. This file is linked to the DLL.
Only objects that are not declared in the header file and which are instantiated in the
main function cause the compiler to generate new code. Code for a newly instantiated
object is written into the MAIN.OBJ file.

For example:

II Before you compile this file you need to create the dynamic link library.
II You can use the command IMPLIB DLL_SRC.LIB DLL_SRC.DLL
II TO COMPILE THIS FILE, USE BCC32 -DUSING_DLL_IMPORTS MAIN
DLL_SRC.LIB
#include <iostream.h>
#include "exporter.h"
int main () {

int small = 5;
int big = 10;
double smalld = 1.2;
double bigd = 12.3;
II No new code is generated for these objects.
Receive <double> Test_d(O.Ol);
Receive <int> Test_i(S);

II Generate code in MAIN.OBJ for this object.
Receive <float> Test_f(3.14);
cout « "Test_d.display() = "« Test_d.display() « endl;
cout « "Test_i.display()· = "« Test_i.display() « endl;
cout « "min(S, 10):" « another_min{small, big) « endl;
cout« "min(12.3, 1.2): " « another_min (bigd, smalld) «endl;
cout « "Test_f . display () = "« Test_f . display () « endl;
return 0;

170 C++ Pro 9 ram mer's G u ide

Program output
Test_d. display () 0.01
Test_i. display () 5
min(5, 10): 5
min(12.3, 1.2): 1.2
Test_f.display() = 3.14

C hap t e r 3, C++ spec i fie s 171

172 c++ Programmer's Guide

Exception handling
This chapter describes the Borland C++ error-handling mechanisms generally referred
to as exception handling. The Borland C++ implementation of C++ exception handling is
consistent with the proposed ANSI specification. The exception-handling mechanisms
that are available in C programs are referred to as structured exceptions. Borland C++
provides full compiling, linking, and debugging support for C programs with
structured exceptions. See the section "C-based structured exceptions" later in this
chapter, and the C++ User's Guide for a discussion of compiler options for programming
with exceptions.

c++ exception handling
The c++ language defines a standard for exception handling. The standard ensures that
the power of object-oriented design is supported throughout your program.

In accordance with the specifications of the ANSI/ISO C++ working paper, Borland
C++ supports the termination exception-handling model. When an abnormal situation
arises at run time, the program could terminate. However, throwing an exception lets
you gather information at the throw point that could be useful in diagnosing the causes
that led to failure. You can also specify in the exception handler the actions to be taken
before the program terminates. Only synchronous exceptions are handled, meaning that
the cause of failure is generated from within the program. An event such as Ctrl-C (which
is generated from outside the program) is not considered to be a synchronous exception.

C++ exceptions can be handled only in a try/catch construct.

Syntax:

try-block:
try compound-statement handler-list

handler-list:
handler handler-list opt

C hap t e r 4, Ex c e p t ion han d lin 9 173

handler:
catch (exception,-declaration) compound-statement

exception-declaration:
type-specifier-list declarator
type-specifier-list abstract-declarator
type-specifier-list

throw-expression:
throw assignment-expression opt

Note The catch and throw keywords are not allowed in a C program.

The try-block is a statement that specifies the flow of control as the program executes.
The try-block is designated by the try keyword. Braces after the keyword surround a
program block that can generate exceptions. The language structure specifies that any
exceptions that occur should be raised within the try-block. See Chapter 2 for a
discussion about statements.

The handler is a block of code designed to handle an exception. The C++ language
requires that at least one handler be available immediately after the try-block. There
should be a handler for each exception that the program can generate.

When the program encounters an abnormal situation for which it is not designed, you
can transfer control to some other part of the program that is designed to deal with the
problem. This is done by throwing an exception.

The exception-handling mechanism requires the use of three keywords: try, catch, and
throw. The try-block specified by try must be followed immediately by the handler
specified by catch. If an exception is thrown in the try-block, program control is -
transferred to the appropriate exception handler. The program should attempt to catch
any exception that is thrown by any function. Failure to do so could result in abnormal
termination of the program.

Exception declarations
Although C++ allows an exception to be of almost any type, it is useful to make
exception classes. The exception object is treated exactly the way any object would be
treated. An exception carries information from the point where the exception is thrown
to the point where the exception is caught. This is information that the program user
will want to know when the program encounters some anomaly at run time.

Predefined exceptions, specified by the C++ language, are documented in the C++
Language Reference, Chapter 16. Borland c++ provides additional support for exceptions.
These extensions ar~ also documented in the C++ Language Reference, Chapter 11. See
also Chapter 3 of this book for a discussion of the new operator and the predefined
xalloc exception.

Throwing an exception
A block of code in which an exception can occur must be prefixed by the keyword try.
Following the try keyword is a block of code enclosed by braces. This indicates that the'

174 c++ Programmer's Guide

program is prepared to test for the existence of exceptions. If an exception occurs, the
program flow is interrupted. The sequence of steps taken is as follows:

The program searches for a matching handler
2 If a handler is found, the stack is unwound to that point
3 Program control is transferred to the handl~r

If no handler is found, the program will call the terminate function. If no exceptions are
thrown, the program executes in the normal fashion.

A throw expression is also referred to as a throw-point. You can specify whether an
exception can be thrown by using one of the following syntax specifications:

1. throw throw_expression;
2. throw;
3. void my _funcl () throw (A, B)

{

II Body of function.
}

4. void my _func2 () throw ()

{

II Body of this function.
}

The first case specifies that throw_expression is to be passed to a handler.

The second case specifies that the exception currently being handler is to be thrown
again. An exception must currently exist. Otherwise, terminate is called.

The third case specifies a list of exceptions that myJunc1 can throw. No other exceptions
should propagate out of myJunc1. If an exception other than A or B is generated within
myJunc1, it is considered to be an unexpected exception and program control will be
transferred to the unexpected function. By default, the unexpected function ends with a
call to abort but it can throw an exception. See the C++ Language Reference, Chapter 16,
for a description of unexpected.

The final case specifies that myJunc2 should throw no exceptions. If some other
function (for example, operator new) in the body of myJunc2 throws an exception, such
an exception should be taught and handled within the body of myJunc2. Otherwise,
such an exception is a violation of my Junc2 exception specification. The unexpected
function is then called.

When an exception occurs, the throw expression initializes a temporary object of the
type T (to match the type of argument arg) used in throw(T arg). Other copies can be
generated as required by the compiler. Consequently, it can be useful to define a copy
constructor for the exception object.

Handling an exception
The exception handler is indicated by the catch keyword. The handler must be placed
immediately after the try-block. The keyword catch can also occur immediately after
another catch. Each handler will only handle an exception that matches, or can be

C hap t e r 4, Ex c e p t ion han d lin 9 175

converted to, the type specified in its argument list. The possible conversions are listed
after the try-block syntaxes. .

The following syntaxes, following the try-block, are valid:

try {

II Include any code that might throw an exception

1. catch (T X)
{

II Take some actions

2. catch (...)
{

II Take some actions

The first statement is specifically defined to handle an object of type T. If the argument is
T, T&, const T, or const T&, the handler will accept an object of type X if any of the

. following are true:

• T and X are of the same type
• T is an accessibl~ase class for X in the throw expression
• T is a pointer type and X is a pointer type that can be converted to Tby a standard

pointer conversion at the throw point

The statement catc.\t (...) will handle any exception, regardless of type. This statement, if
used, must be the l~st handler for its try-block.

Every exception thro'wn by the program must be caught and processed by the exception
handler. If the prograIh fails to provide an exception handler for a thrown exception, the
program will call termin~te. .

Exception handlers are evaluated in the order that they are encountered. An exception is
caught when its type matches the type in the catch statement.·Once a type match is
made, program control is transferred to the handler. The stack will have been unwound
upon entering the handler. The handler specifies what actions should be taken to deal
with the program anomaly.

A goto statement can be used to transfer program control out of a handler or try-block
but such a statement can never be used to enter a handler or try-block.

After the handler has executed, the program can continue at the point after the last
handler for the current try-block. No other handlers are evaluated for the current
exception.

Exception specifications
The C++ language makes it possible for you to specify any exceptions that a function
can throw. This exception specification can be used as a suffix to the function declaration.
The syntax for exception specification is as follows:

exception-specification:
throw (type-id-list opt)

type-id-list:

176 c++ Programmer's G~ide

type-id
type-id-list, type-id

The function suffix is not considered to be part of the function's type. Consequently, a
pointer to a function is not affected by the function's exception specification. Such a
pointer checks only the function's return and argument types. Therefore, the following
is legal:

void f2(void) throw(); II Should not throw exceptions
void f3(void) throw (BETA); II Should only throw BETA objects
void (* fptr) (); II Pointer to a function returning void
fptr = f2;
fptr = f3;

Extreme care should be taken when overriding virtual functions. Again, because the
excep'tion specification is not considered part of the function type, it is possible to violate
the program design. In the following example, the derived class BET A::vfunc is defined
so that it throws an exception-a departure from the original function declaration.

class ALPHA· {
public:

virtual void vfunc(void) throw () {}; II Exception specification
} ;

class BETA : public ALPHA {
struct BETA_ERR {};
void vfunc(void) throw (BETA-ERR) {}; II Exception specification is changed

} ;

The following are examples of functions with exception specifications.

void f1 ();

void f2() throw () ;

II The function can throw any exception

II Should not throw any exceptions

void f3() throw (A, B*); II Can throw exceptions publicly derived from A,

II or a pointer to publicly derived B

The definition and all declarations of such a function must have an exception
specification containing the same set of type-id's. If a function throws an exception not
listed in its specification, the program will call unexpected. This is a run-time issue-it
will not be flagged at compile time. Therefore, care must be taken to handle any
exceptions that can be thrown by elements called within a function.

Example 2
II HOW TO MAKE EXCEPTION-SPECIFICATIONS AND HANDLE ALL EXCEPTIONS

#include <iostream.h>

II EXCEPTION DECLARATIONS
class Alpha {

II Include something that shows why you chose to throw this exception.
} ;

Alpha alpha_inst;

class Beta {
II Include something that shows why you chose to throw this exception.

Chapter 4,'Exception handling 177

} i

Beta beta_insti

II THROW ONLY Alpha OR Beta TYPE OBJECTS
void f3(char c) throw (Alpha, Beta) {

cout « "f3() was called" « endli
if (c == 'a')

throw (alpha_inst)i

if (c == 'b')

throw (beta_inst)i
else i II DO NOTHIN0 WITH OTHER CHARACTERS

II SHOULD NOT THROW EXCEPTIONS
void f2(char ch) throw() {

. try { II WRAP ALL, CODE IN A TRY-BLOCK
cout « "f2 () was called" « endl;
f3 (ch) i

}

I I HERE ARE HANDLERS FOR THE EXCEPTIONS WE KNOW COULD BE THROWN
catch (Alpha& alpha_inst) { cout « "Caught Alpha exception.";}
catch (Beta& beta_inst) { cout « "Caught Beta exception."i}

II IF THE CODE IS MODIFIED LATER SO THAT SOME
I I OTHER EXCEPTION IS THROWN, IT IS HANDLED HERE
I I AND WE AVOID VIOLATING THE f2 () THROW SPECIFICATION
catch (...) {

II BUT, WE POST OURSELVES A WARNING MESSAGE.
cout « "Warning: f2 () has elements with exceptions!" « endl;

int main(void)
char trigger;

try {

cout « "Input a character:";
cin » triggeri
f2 (trigger) i

cout « "\nSuccess.";
return 0; I I WE GET HERE ONLY IF EVERYTHING EXECUTES WELL.

catch (...)
cout « "Need more handlers!"i
return 1i

Sample output when 'a' is the input
Input a character: a
f2 () was called

178 C++ Pro 9 ram mer's G u ide

f3 () was called
Caught Alpha exception.
Success.

If an exception is thrown that is not listed in the exception specification, the unexpected
function will be called. The following diagrams illustrate the sequence of events that can
occur when unexpected is called. See the c++ Language Reference, Chapter 15, for a
description of the set_terminate, set_unexpected, and unexpected functions. The chapter
also describes the terminate Junction and unexpected Junction types.

Program behavior when a function is registered with seCunexpectedO:
unexpected ()

I
I
I
I
I
I
I
I
I
I
I
I

I I CALLED AUTOMATICALLY

II DEFINE YOUR UNEXPECTED HANDLER
unexpected_function IIW_unexpected (void)
{

II DEFINE ACTIONS TO TAKE
II POSSIBLY MAKE ADJUSTMENTS

I I REGISTER YOUR HANDLER
set_unexpected (IIW_unexpected);

my_unexpected();

Program behavior when no function is registered with set_unexpectedO but there is a
function registered with set _terminateO:

unexpected () I I CALLED AUTOMATICALLY

I
terminate ()

my_terminate ()

I I DEFINE YOUR TERMINATION SCHEME
terminate_function IIW_tenninate (void)

{

II TAKE ACTIONS BEFORE TERMINATING
II SHOULD NOT THROW EXCEPTIONS
exit(l); II MUST END SOMEHOW.

II REGISTER YOUR TERMINATION FUNCTION
set_terminate (my_terminate)

I I PROGRAM ENDS.

Constructors and destructors
When an exception is thrown, the copy constructor is called for the thrown value. The
copy constructor is used to initialize a temporary object at the throw point. Other copies
can be generated by the program. See Chapter 3 for a discussion of the copy constructor.

C hap t e r 4, Ex c e p t io n ha n d lin 9 179

When program flow is interrupted by an exception, destructors are called for all
automatic objects that were constructed since the beginning of the try-block was
entered. If the exception was thrown during construction of some object, destructors
will be called only for those objects that were fully constructed. For example, if an array
of objects was under construction when an exception was throWn, destructors will be
called only for the array elements that were already fully constructed.

Note Destructors are called by default. See the C++ User's Guide for information about
exception-handling switches.

When a C++ exception is thrown, the stack is unwound. By default, during stack
unwinding, destructors are called for automatic objects. You can use the -xd compiler
option to switch the default off.

Unhand led exceptions
If an exception is thrown and no handler has found it, the program will call the terminate
function. The following diagram illustrates the series of events that can occur when the
program encounters an exception for which no handler can be found. See the C++

. Language Reference, Chapter 16,.for a description of the terminate function.

Default program behavior for unhandled exceptions:

tenninate();

abort();
II PROGRAM ENDS.

C-based structured exceptions
Borland c++ provides support for program development that makes use of structured
exceptions. You can compile and link a C source file that contains an implementation of
structured exceptions. In a C program, the ANSI-compatible keywords used to
implement structured exceptions are __ except, __ finally, and __ try. Note that the
__ finally and __ try keywords can appear only in C programs.

Note For portability, you can use the try and except macros defined in excpt.h.

For try-except exception-handling implementations the syntax is as follows:

try-block:
__ try compound-statement (in a C module)
try compound-statement (in a C++ module)

handler:
__ except (expression) compound-statement

For try-finally termination implementations the syntax is as follows:

try-block:
__ try compound-statement

termination:
__ finally compound-statement

180 C++ Pro 9 ram mer's G u ide

Using C-based exceptions in C++
Borland c++ supports substantial interaction between C and C++ error handling
mechanisms. The implementation of exception handling mechanisms lets you port code
across platforms. The following interactions are supported:

• C structured exceptions can be used in C++ programs.

• C++ exceptions cannot be caught in a C module because C++ exceptions require that
their handler be specified by the catch keyword, and catch is not allowed in a C
program.

• An exception generated by a call to the RaiseException function is handled by a try /
__ except or __ try / __ except block. All handlers of try/catch blocks are ignored
when RaiseException is called.

The following C exception support functions can be used in C and C++ programs:

• GetExceptionCode
• GetExceptionlnformation
• SetUnhandledExceptionFilter
• UnhandledExceptionFilter

Note Borland C++ does not require that the UnhandledExceptionFilter function be used only in
the except filter of __ try / __ except or try / __ except blocks. However, program behavior
is undefined when this function is called outside of the __ try / __ except or try /
__ except block.

Handling C-based exceptions
The full functionality of an __ except block is allowed in C++. If an exception is
generated in a C module, it is possible to provide a handler-block in a separate calling
C++ module.

If a handler can be found for the generated structured exception, the following actions
can be taken:

• Execute the actions specified by the handler
• Ignore the generated exception and resume program execution
• Continue the search for some other handler (regenerate the exception)

These actions are consistent with the design of structured exceptions. The following
example shows how to mix C and C++ exceptions. Note that the C mechanism uses the
try and __ except keywords. The C++ mechanism uses the required try and catch
keywords.

1* In PROG.C *1
void filllc(void)

1* generate an exception *1
RaiseException(1* specify your arguments *1);

II In CALLER.CPP

C hap t e r 4, Ex c e p t ion han d lin 9 181

II How to test for c++ or C-based exceptions.
#include <excpt.h>
#include <iostream.h>

int main (void)
try

{ II test for c++ exceptions
try

{ II test for C-based structured exceptions
func() ;

_ -':'except(1* filter-expression *1)
{

cout « "A structured exception was generated."i

1* specify actions to take for this structured exception *1
return -Ii

return 0;

catch (...)
{

II handler for any c++ exception
cout « "A C++ exception was thrown."i
return 1;

Structured· exceptions also allow you to program a termination handler. The
termination handler can be used only in a C module and is specified by the __ finally
keyword. The termination handler ensures that the code in the __ finally block is

. executed no matter how the flow within the __ try exits. The __ finally keyword is not
allowed in a C++ program. Consequently the __ try / __ finally block is not supported in
a C++ program.

Even though the __ try / __ finally block is not supported in a C++ program, a C -based
exception generated by the operating system or the program will still result in proper
stack unwinding of objects with destructors. You can use this to emulate a __ finally
block by creating a local object whose destructor does the necessary cleanup. Any
module compiled with the -xd compiler option (this option is on by default) will have
destructors invoked for all objects with auto storage. Stack unwinding occurs from the
point where the exception is thrown to the point where the exceptiQll is caught.

Note Destructors are c~.lled by default. See the C++ User's Guide for information about
exception-handling switches.

182 C++ Pro 9 ram mer's G u ide

Programming for portability
If you are new to programming, or need to know about moving 16-bit applications to
Windows NT or Windows 95, this topic is for you. This topic describes a variety of
16-bit and 32-bit programming topics, including

• Resource script files

• Module definition files

• Import libraries

• The Borland heap manager

• 32-bitWindows programming

In addition to compiling source code and linking .OBJ files, a Windows programmer
must compile resource script files, and bind resources to an executable. A Windows
programmer must also know about dynamic linking, dynamic link libraries (DLLs), and
import libraries. Also, if you are using the Borland C++ IDE, it is helpful to know how to
use the Borland project manager which uses project files to automate and manage
application building. See the discussion of compiling and linking a Windows program
for an illustration of the process of building a Windows application.

Note The intricacies of designing and developing Windows applications go beyond the scope
of this document.

Compiling and linking a Windows program
These are the steps for compiling and linking a Windows program:

1 Source code is compiled or assembled producing .OBI files.

2 Module definition files (.DEF) tell the linker what kind of executable you want to
produce.

C hap t e r 5, Pro 9 ram min 9 for po r tab iii t Y 183

3 Resource Workshop (or some other resource editor) creates resources,like icons or
bitmaps. A resource file· (.RC) is produced. See Part II of the C++ User's Guide.

4 The .RC file is compiled by a resource compiler or Resource Workshop, and a binary
.RES file is output.

S Linking produces an .EXE file with bound resources.

Resource script files
Windows applications typically use resources. Resources are icons, menus, dialog boxes,
fonts, cursors, bitmaps, or other user-defined resources. Resources are defined in a file
called a resource script file, also known as a resource file. These files have the file name
extension .RC.

To make use of resources, you must use the Borland Resource Compiler (BRC32) to
compile your .RC file into a binary format. Resource compilation creates a .RES file.
TLINK32 then binds the .RES file to the .EXE file output by the linker. This process also
marks the .EXE file as a Windows executable.

Note See the discussion of BRCC32.EXE in Chapter 10 of the C++ User's Guide.

Module definition files
A module definition (.DEF) file provides information to the linker about the contents
and system requirements of a Windows application. This information includes heap
and stack size, and code and data characteristics .. DEF files also list functions that are to
be made available for other modules (export functions), and functions that are needed
from other modules (import functions). Because Borland linkers have other ways of
finding out the information contained in a module definition file, module definition files
are not always required for Borland's linker to create a Windows application.

Here's the module definition file for the WHELLO example:

NAME WHELLO

DESCRIPTION 'C++ Windows Hello World'

EXETYPE WINDOWS
CODE PRELOAD MOVEABLE
DATA PRELOAD MOVEABLE MULTIPLE
HEAPSIZE 1024
STACKSIZE 5120

Let's take this file apart, statement by statement:

• NAME specifies a name for a program. If you want to build a DLL instead of a
program, you would use the LIBRARY statement. Every module definition file
should have either a NAME statement or a LIBRARY statement, but never both. The
name specified must be the same name as the executable file. WINDOW API
identifies this program as a Windows executable.

• DESCRIPTION lets you specify a string that describes your application or library.

184 C++ Programmer's Guide

• EXETYPE marks the executable as a Windows executable. This is necessary for all
Windows executables.

• CODE describes attributes of the executable's code segment. The PRELOAD option
instructs the loader to load this portion of the image when the application is loaded
into memory. The MOVEABLE option means Windows can move the code around
in memory.

• DATA defines the default attributes of data segments. The'MULTIPLE option
ensures that each instance of the application has its own data segment.

• HEAPSIZE specifies the size of the application's local heap.

• STACKSIZE specifies the size of the application's local stack. You can't use the
STACKSIZE statement to create a stack for a DLL.

Two important statements not used in this .DEF file are the EXPORTS and IMPORTS
statements.

The EXPORTS statement lists functions in a program orDLL that will be called by other
applications or by Windows. These functions are known as export functions" callbacks,
or callback functions. Exported functions are identified by the linker and entered into an
export table.

To help you avoid the necessity of creating and maintaining long EXPORTS sections in
your module definition files, Borland C++ proyides the __ export keyword. Functions
flagged with __ export will be identified by the linker and entered into the export table
for the module. This is why the WHELLO example has no EXPORT statement in its
module definition file.

Note Prior to Borland C++ 5.0, the _ ~export keyword was required to immediately precede
the function name. To help port applications that use a different syntax for funtion
modifiers, Borland C++ now provides the __ declspec keyword.

The WHELLO application doesn't have an IMPORTS statement either because the only
functions it calls from other modules are those from the Windows Application Program
Interface (API); those functions are imported via the automatic inclusion of the
IMPORT. LIB or IMPORT32.LIB import libraries. When an application needs to call
other external functions, these functions must be listed in the IMPORTS statement, or
included via an import library.

Import libraries
When you use DLLs, you must give the linker definitions of the functions you want to
import from DLLs. This information temporarily satisfies the external references to the
functions called by the compiled code, and tells the Windows loader where to find the
functions at run time.

There are two ways to tell the linker about import functions:

• You can add an IMPORTS section to the module definition file and list every DLL
function that the module will use.

• You can include an import library for the DLLs when you link the module.

C hap t e r ,5, Pro gram min 9 for po r tab iii t Y 185

An import library contains import definitions for some or all of the exported functions
for one or more DLLs. A utility called IMPLIB creates import libraries for DLLs. IMPLIB
creates import libraries directly from DLLs or from a DLL's module definition files, or
from a combination of the two.

Import libraries can be substituted for all or part of the IMPORTS section of a module
definition file.

WinMain

Syntax
int PASCAL WinMain(HINSTANCE hCurlnstance, HINSTANCE hPrevlnstance,

LPSTR lpCmdLine, int nCmdShow)

Description
This function is the main entry point for a Windows application. It must be supplied by
the user.

HINSTANCE hCurlnstance

HINSTANCE hPrevlnstance

LPSTR IpCmdLine

int nCmdShow

The instance handle of the application. Each instance of an
application has a unique instance handle. It is used as an
argument to several Windows functions and can be used to
distinguish between multiple instances of a given application.

The handle of the previous instance of this application. This
value is NULL if this is the first instance.

A far pointer to a null-terminated command-line. Specify this
value when invoking the application from the program manager
or from a call to WinExec.

An integer that specifies the application's window display. Pass
this value to ShowWindow.

Under Win32, there are two differences in the values passed through these parameters:

• hPrevlnstance always returns NULL.

• lpCmdLine points to a string containing the entire command line, not just the
parameters.

Return Value
The return value from WinMain is not currently used by Windows. It is useful during
debugging because you can display this value upon termination of your program.

Prologs and epilogs '
When you compile a module for Windows, the compiler needs to know what kind of
prolog and epilog needs to be created for each of a module's functions. IDE settings and
command-line compiler options control the creation of the prolog and epilog. The
prolog and epilog perform several duties, including ensuring that the correct data

186 c++ Pro 9 ram mer J s G u ide

segment is active during callback functions, and marking stack frames for the Windows
stack-crawling mechanism.

The prolog/ epilog code is automatically generated by the compiler, though various
compiler options or IDE settings dictate which sets of instructions are contained in the
generated code.

See the following topics for further discussion:

• The _export keyword • Prologs, epilogs, and exports: a summary

• The _import keyword • Entry/exit code options

Figure 5.1 Compiling and linking a Windows program

_export, __ export

Form 1
class _export <class name>

Form 2
return_type _export <function name>

C hap t e r 5, Pro 9 ram min 9 for p 0 r tab iii t Y 187

Form 3
data_type _export <data name>

Description .
These modifiers are used to export classes, functions, and data.

The linker enters functions flagged with _export or __ export into an export table for the
module.

Using _export or __ export eliminates the need for an EXPORTS section in your module
definition file.

Note Exported functions must be declared as __ far. You can use the FAR type, defined in
windows.h.

Functions that are not modified with _export or __ export receive abbreviated prolog
and epilog code, resulting in a smaller object file and slightly faster execution.

Note If you use _export Of __ export to export a function, that function will be exported by
name rather than by ordinal (ordinal is usually more efficient).

If you want to change various attributes from the default, you'll need a module
definition file.

_import, __ import

Form 1
class _import <class name>
class __ import <class name>

Form 2
return_type _import <function name> 1132-bit only
return_type __ import <function name> 1132-bit only

Form 3
data_type _import <data name> 1132-bit only
data_type __ import <data name> 1132-bit only

Description
This keyword can be used as a class modifier for 16-bit programs; and as a class,
function, or data modifier in 32-bit programs. If you're importing classes that are
declared with the modifier __ huge, you must change the modifier to the keyword
__ import. The __ huge modifier merely causes far addressing of the virtual tables (the
same effect as the -Vf compiler option). The __ import modifier makes all function and
static addresses default to _far.

188 C++ Pro 9 ram mer's G u ide

Prologs, epilogs, and exports: a summary
Prologs and epilogs are required when exporting functions in a 16-bit Windows
application. They ensure that the correct data segment is active during callback
functions and mark near and far stack frames for Windows stack crawling.

Two steps are required to export a function.

The compiler must create the correct prolog and epilog for the function.

2 The linker must create an entry for every export function in the header section of the
executable.

In 32-bit Windows the binding of data segments does not apply. However, DLLs must
have entries in the header so the loader can find the function to link to when an .EXE
loads the DLL.

If a function is flagged with the __ export keyword and any of the Windows compiler
options are used, it will be compiled as exportable and linked as an export.

If a function is not flagged with the __ export keyword, then one of the following
situations will determine whether the function is exportable:

• If you compile with the -tW / -tWC or -tWD / .;.tWCD option (or with the All Functions
Exportable IDE equivalent), the function will be compiled as exportable.

• If the function is listed in the EXPORTS section of the module definition file, the
function will be linked as an export. If it is not listed in the module definition file, or if
no module definition file is linked, it won't be linked as an export.

• If you compile with the -tWE or -tWDE/ -tWCDE option (or with the Explicit
Functions Exported IDE equivalent), the function will not be compiled as exportable.
Including this function in the EXPORTS section of the module definition will cause it
be exported, but, because the prolog is incorrect, the program will run incorrectly.
You may get a Windows error message in the 16-bit environment.

See the table, Compiler options and the _export keyword, for a summary of the effect of
the combination of the Windows compiler options and the __ export keyword.

Compiler options and the __ export keyword
This table summarizes the effect of the combination of various Windows options and
the __ export keyword:

C hap t e r 5, Pro 9 ram min 9 for po r tab iii t Y 189

Function flagged with
_export? Yes Yes Yes Yes No No No

Function listed in
EXPORTS? Yes Yes No No Yes Yes No

Is function exportable?
Yes Yes Yes Yes Yes No Yes

Will function be
exported? Yes Yes Yes Yes Yes Yes ** No***

* Or the 32-bit console-mode application equivalents.

** The function will be exported in some sense, but because the prolog and epilog will not be correct, the
function will not work as expected.

*** This combination also makes little sense. It is inefficient to compile all functions as exportable if you do not
actually export some of them.

The Borland heap .manag~r
Windows supports dynamic memory allocations on two different heaps: the global heap
and the local heap.

The global heap is a pool of memory available to all applications. Although global
memory blocks of any size can be allocated, the global heap is intended only for large
memory blocks (256 bytes or mote). Each global memory block carries an overhead of at
least 20 bytes, and under the Windows standard and 386 enhanced modes, there is a
system-wide limit of 8192 global memory blocks, only some of which are available to
any given application.

The local heap is a pool of memory available only to your application. It exists in the
upper part of an application's data segment. The total size of local memory blocks that
can be allocated on the local heap is 64K minus the size of the application's stack and
static data. For this reason, the local heap is best suited for small memory blocks (256
bytes or less). The default size of the local heap is 4K, but you can change this in your
applications .DEF file.

Borland C++ includes a heap manager which implements the new, delete, malloe, and free)
functions. The heap manager uses the global heap for all allocations. Because the global
heap has a system-wide limit of 8192 memory blocks (which certainly is less than what
some applications might require), the Borland C++ heap manager includes a sub­
allocator algorithm to enhance performance and allow a substantially larger number of
blocks to be allocated.

This is how the segment sub-allocator works: When allocating a large block, the heap
manager simply allocates a global memory block using the Windows GlobalAlloc
routine. When allocating a small block, the heap manager allocates a larger global
memory block and then divides (sub-allocates) that block into smaller blocks as
required. Allocations of small blocks reuse all available sub-allocation space before the

190 c++ Programmer's Guide

heap manager allocates anew global memory block, which, in tum, is further
sub-allocated.

The HeapLimit variable defines the threshold between small and large heap blocks.
HeapLimit is set at 64K bytes. The HeapBlock variable defines the size the heap manager
uses when allocating blocks to be assigned to the sub-allocator. HeapBlockis set at 4096
bytes.

32·bit Windows programming
The following topics briefly describe the Win32 and Windows programming
environment, and explain how to port your code to this environment. This port makes
your code compilable to run on both 16- and32-bit versions of Windows, and
compilable for future processors hosting Windows.

Borland c++ 32-bit tools support the production of 32-bit .OBJ and .EXE files in the
portable executable (PE) file format, which is the executable file format for Win32 and
Windows NT programs. Win32-conforming executables will run unchanged on
Windows NT.

Note See the topic on building Win32 executables for a discussion of 32-bit tool names,
options, and libraries.

Win32
Win32 is an operating system extension to Windows 3.1 that provides support for
developing and running Windows 32-bit executables. Win32 is a set of DLLs that handle
mapping 32-bit application program interface (API) calls to their 16-bit counterparts, a
virtual device driver (VxD) to handle memory management, and a revised API called
the Win32 API. The DLL and VxD are transparent.

To make sure your code will compile and run under Win32 you should

1 Make sure your code adheres to the Win32 ~PI.

2 Write portable code using types and macros provided in the windows.h, and
windowsx.h files.

See the'topic on writing portable Windows code for some help in writing portable
Windows code.

The Win32 API
The Win32 API widens most of the existing 16-bit Windows API to 32 bits and adds new
API calls compatible with Windows NT. The Win32 API is a subset of the Win32 API for
Windows NT. Those 16-bit API calls that have been converted to and are callable in the
32-bit environment, and those 32-bit API calls implementable in the 16-bit Windows
environment make up the Win32·API.

If a Win32 executable cql1s any of the Win32 API functions not supported under Win32,
appropriate error codes are returned at runtime. Writing applications that conform to
the Win32 API, and using the porting tips described under Writing portable Windows

Chapter 5, Programming for portability 191

code means your application will be portable across 16- and 32-bit Windows
environments.

For complete descriptions of Win32 API functions, see the Microsoft Windows
documentation.

Writing portable Windows code
This topic provides information about portability constructs introduced in Windows 3.1
that will assist you in producing portable Windows code. Explanations of several
compiler error and warning messages you might likely see when developing portable
code are also included.

Existing Windows 16-bit code can be ported to Win32 and Windows NT with minimal
changes. Most changes revolve around substituting new macros and types for old, and
replacing any 16-bit-specific API calls with analogous Win32 API calls. Once these
changes have been made, your code can compile and run under 16- or 32-bit Windows.

A compile-time environment variable, STRICT, has been provided to assist you in
making your code portable.

STRICT
Windows 3.1 introduced support in windows.h for defining STRICT. Defining STRICT
enables strict compiler error checking. For example, if STRICT is not defined, passing an
HWND to a function that requires an HDC will not cause a compiler warning.· Define
STRICT, and you will get a compiler error.

Using STRICT enables

• Strict handle type checking

• Correct and consistent parameter and return value type declarations

• Fully prototyped type definitions for callback function types (window, dialog, and
hook procedures)

• ANSI-:compliant declaration of COMM, DCB, and COMSTATstructures

STRICT is Windows 3.0 backward compatible. It can be used with the 3.1 windows.h for
creating applications that will run under Windows 3.0.

Defining STRICT will assist you in locating and correcting type incompatibilities that
arise when migrating your code to 32 bits, and will aid portability between 16- and
32-bit Windows.

New types, constants, and macros have been provided so you can change your source
code to be STRICT -compliant. The table of STRICT -compliant types provides a list of the

192 C++ Pro 9 ram mer's G u ide

types, macros, and handle types that you can use to make your application STRICT­
compliant.

Table 5.1 STRICT-com.pliant types, constants, helper macros, and handles

CALLBACK

LPARAM

LPCSTR

LRESULT

UINT

WINAPI

WPARAM

FIELOOFFSET(type, field)

MAKELP(sel,off)

MAKELP ARAM(low,high)

MAKERESUL T(low,high)

OFFSETOF(lp)

SELECTOROF(lp)

HACCEL

HDRVR

HDWP

HFILE

HGDIOB!

HGLOBAL

HINSTANCE

HLOCAL

HMETAFILE

HMODULE

HRSRC

HTASK

Use instead of FAR PASCAL in your callback routines (for example,
window and dialog procedures).

Declares all 32-bit polymorphic parameters.

Same as LPSTR, except that is used for read-only string pointers.

Declares all 32-bit polymorphic return values.

Portable unsigned integer type whose size is determined by the targeted
environment. Represents a 16-bit value on Windows 3.1, and a 32-bit
value on Win32.

Use instead of F AR PASCAL for API declarations. If you are writing a
DLL with exported API entry points, you can use this for the API
declarations.

Declares all 16-bit polymorphic parameters.

Calculates the field offsets in a structure. type is the structure type, and
field is the field name. .

Takes a selector and offset and produces a FAR VOID*.

Makes an LP ARAM out of two 16-bit values.

Makes an LRESULT out of two 16-bit values.

Extracts the offset of a far pointer and returns a UINT.

Extracts the selector for a far pointer and returns a UINT.

Accelerator table handle

Driver handle (Windows 3.1 only)

Defer Window PostO handle

File handle'

Generic GDI object handle

Global handle

Instance handle

Local handle

Metafile handle

Module handle

Resource handle

Task handle

Making your code STRICT-compliant
This steps will help to make your application STRICT-compliant."

1 Decide what code you want to be STRICT-compliant. Converting your code to
STRICT can be done in stages;

2 Tum on the compiler's highest error/warning level. In the IDE, use the Make I Break
Make On options. On the command line, use the -w switch to display warnings. You
might want to compile at this stage, before taking the next step.

C hap t e r 5, Pro 9 ram min 9 for po r tab iii t Y 193

3 #define STRICT before including windows.h and compile, or use -DSTRICT on the
command line.

Note Because of C++ type-safe linking, linking STRICT and non-STRICT modules may cause
linker errors in C++ applications.

STRICT conversion hints
This topic describes some common coding practices you should use when converting
your code to STRICT compliance.

• Change HANDLE to the appropriate specific handle type, for example, HMODULE,
HINST ANCE, and so on.

• Change WORD to UINT except where you specifically want a 16-bit value on a 32-bit
platform.

• Change WORD to WPARAM.

• Change LONG to LPARAM or LRESULT as appropriate.

• Change FARPROC to WNDPROC, DLGPROC, or HOOKPROC as appropriate.

• For 16-bit Windows always declare function pointers with the proper function type,
rather than FARPROC. You'll need to cast function pointers to and from the proper
function type when using MakeProcInstance, FreeProcInstance, and other functions that
take or return a F ARPROC, for example:

BOOL CALLBACK DlgProc(HWND hwnd, UINT msg,
WPARAM wParam,
LPARAM lParam);
DLGPROC lpfnDlg;

lpfnDlg=(DLGPROC)MakeProcInstapce(DlgProc, hinst);

FreeProcInstance((FARPROC)lpfnDlg);

• Take special care with HMODULEs and HINST ANCEs. For the most part, the Kernel
module management functions use HINST ANCEs, but there are a few APIs that
return or accept only HMODULEs.

• If you've copied any API function declarations from windows.h, they may have
changed, and your local declaration may be out of date. Remove your lo~al
declarations. .

• Cast the results of LocalLock and GlobalLock to the proper kind of data pointer.
Parameters to these and other memory management functions should be cast to
LOCALHANDLE or GLOBALHANDLE, as appropriate.

• Cast the result of Get Window Word and Get WindowLong and the parameters to
Set Window Word and Set WindowLong.

• When casting SendMessage, DefWindowProc, and SendDlgltemMsg, or any other
function that returns an LRESULT or LONG to a handle of some kind, you must first
cast the result to a UINT:

HBRUSH hbr;
hbr = (HBRUSH) (UINT) SendMessage (hwnd, WM_CTLCOLOR, ... , ...);

194 C++ Pro 9 ram mer's G u ide

• The Create Window and Create WindowEx hmenu parameter is sometimes used to pass
an integer control ID. In this case you must cast this to an HMENU:

HWND hwnd;
int id;
hwnd = Createwindow("Button", "Ok", BS_PUSHBUTTON,

X, y, ex, ey, hwndParent,
(HMENU)id, //Cast required here
hinst, NULL);

• Polymorphic data types (WP ARAM, LP ARAM, LRESULT, void F AR*) should be
assigned to variables as soon as possible. You should avoid using them in your own
code when the type of the value is known. This will minimize the number of
potentially unsafe and non-32-bit-portable casting you will have to do in your code.
The macro APIs and message cracker mechanisms provided in wind()wsx.h will take
care of almost all packing and unpacking of these data types in a 32-bit portable way.

• Become familiar with the common compiler warnings and errors that you're likely to
encounter as you convert to STRICT.

Some of the most common compiler errors and warnings you might encounter are
described under "The UINT and WORD types."

See also the description of message crackers later in this chapter.

The UINT and WORD types
The type UINT has been created and used extensively in the API to create a data type
portable from Windows 3.x. UINT is defined as

typedef unsigned int UINT;

UINT is needed because of the difference in int sizes between 16-bit Windows and
Win32. For 16-bit Windows, int is a 16-bit unsigned integer; for Win32 int is a 32-bit
unsigned integer. Use UINT to declare integer objects expected to widen from 16 to 32
bits when compiling 32-bit applications.

The type WORD is defined as

typedef unsigned short WORD;

WORD declares a 16-bit value on both 16-bit Windows and Win32. Use WORD to create
objects that will remain 16 bits wide across both platforms. Note that because Win32
handles are widened to 32 bits, WORD can no longer be used for handles.

The WINAPI and CALLBACK calling conventions
The windows.h macro WINAPI defines the calling convention. WINAPI resolves to the
appropriate calling convention for the targeted platform. WINAPI should be used in
place of FAR PASCAL.

For example, here is an important change necessary for window procedure definitions.
The following is code as it would appear in 16-bit Windows:

LONG FAR PASCAL,WindowProe(HANDLEhWnd, unsigned message
WORD wParam, LONG lParam)

Chapter 5, Programming for portability 195

Here is the Win32 version:

LONGWINAPI WindowProc(HWND hWnd, UINT message
UINT wParam, LONG1Param)

Using WINAPI allows specifying alternative calling conventions. Currently, Win32 uses
_stdcall. The fundamental type unsigned is changed to the more portable UINT. WORD
is also changed to UINT, in this case illustrating the expansion of wParam to 32 bits. Not
making this change to wParam will result in application failure during initial window
creation.

Use the CALLBACK calling convention in your callback function declarations. This
replaces FAR PASCAL.

Extracting message data
In 32-bit Windows code you need to change the way you unpack message data from
lParam and wParam. In Win32 wParam grows from 16 to 32 bits in size, while lParam
remains 32 bits wide. But since lParam frequently contains a handle and another value in
16-bit Windows, and a handle grows to 32 bits under Win32, another packing scheme
was necessary for wParam and lParam.

For example, WM_ COMMAND is one of the messages affected by the changes to extra
parameter size. Under Windows 3.x wParam contains a 16-bit identifier, and lParam
contains both a 16-bit window handle and a 16-bit command.

Under Win32 lParam contains the window handle, but nothing else since window
handles are now 32 bits. So the 16-bit command is moved from lParam to the low-order
16 bits of wParam (now 32 bits), with the high order 16 bits of wParam containing the
identifier. This repacking means changing the way you extract information from these
parameters. An easy, portable way of extracting message data is by using message
crackers.

Message crackers
Message crackers are a portable way of extracting messages from wParam and lParam.
Depending on your environment (16-bit Windows or Win32), message crackers use an
appropriate technique for extracting the message data. Each Windows message has a set
of message crackers.

For example, here is the 32-bit version of the WM_COMMAND message crackers:

#define GET_WM_COMMAND_ID(wp, lp)

#define GET_WM_COMMAND_HWND(wp, lp)

#define GET_WM_COMMAND_CMD(wp, lp)
#define GET_WM_COMMAND_MPS(id, hwnd, cmd)

LOWORD(wp)

(HWND) (lp)

HIWORD(wp)

(WPARAM) MAKELONG (id, cmd),
(LONG) (hwnd)

And here is the 16-bit version of the WM_COMMAND message crackers:
#define GET_WM_COMMAND_ID(wp, lp)

#define GET_WM_COMMAND_HWND(wp, lp)

196 c++ Program"mer's Guide

(wp)

(HWND) LOWORD (lp)

HIWORD(lp)

#define GET_WM_COMMAND_MPS(id, hwnd, cmd)
(WPARAM) (id), MAKELONG(hwnd, cmd)

Using these message-cracker macros will ensure that your message extraction code is
portable to either platform.

Porting DOS system calls
Windows 3.0 provided the DOS3Call API function for calling DOS file I/O functions.
This function, and other INT 21H DOS functions, are replaced in Win32 by named 32-bit
calls. See the list of DOS INT 21H calls and their equivalent Win32 API functions.

Table 5.2 INT 21 Hand Win32 equivalent functions

OEH Select disk SetCurrentDirectory
19H Get current disk GetCurrentDirectory
2AH Get date GetDateAndTime
2BH Set date SetDateAndTime
2CH Get time GetDateAndTime
2DH Set time SetDateAndTime
36H Get disk free space GetDiskFreeSpace
39H Create directory CreateDirectory
3AH Remove directcry RemoveDirectory
3BH Set current directory SetCurrentDirectory
3CH Create handle CreateFile
3DH Open handle CreateFile
3EH Close handle CloseHandle
3FH Read handle ReadFile
40H Write handle WriteFile
41H Delete file DeleteFile
42H Move file pointer SetF ilePointer
43H Get file attributes GetAttributesFile
43H Set file attributes SetAttributesFile
47H Get current directory GetCurrentDirectory
4EH Find first file FindFirstFile
4FH Find next file FindNextFile
56H Change directory entry MoveFile
57H Get file date/time GetDateAndTimeFile
57H Set file date / time SetDateAndTimeFile
59H Get extended error GetLastError
5AH Create unique file GetTempFileName
5BH Create new file CreateFile
5CH Lock file LockFile
5CH Unlock file UnlockFile
67H Set handle count SetHandleCount

Chapter 5, Programming for portability 197

Common compiler errors ,and warnings
Thls topic describes some of the common compiler errors and warnmgs you might get
when trying to make your application compile cleanly with all messages enabled, and
with or without STRICT defined.

Warning: Call to function funcname with no prototype
Thls means that a function was used before it was prototyped, or declared. It can also
arise when a function that takes no arguments is not prototyped with void:

void bar(); /* Should be: bar (void) */

void main (void)

bar() ;

Warning: Conversion may lose significant digits
Thls warning results when a value is converted by the compiler, such as from LONG to
int. You're being warned because you might lose information frOlTI this cast. If you're
sure there are no information-loss problems, you can suppress this warillng with the
appropriate explicit cast to the smaller type.

Warning: Function should return a value
Thls warning means that a function declared to return a value does not return a value.
In older, non-ANSI C code, it was common to declare functions that did not return a
value with no return type:

foo(i)
int i;

Functions declared in this manner are treated by the compiler as being declared to
return an int. If the function does not return anything, it should be declared void:

void foo(int i)
{

Error: Lvalue required
Error: Type mismatch in parameter
These errors indicate that you are trying to assign or pass a non-pointer type when a
pointer type is required. With STRICT defined, all handle types as well as LRESULT,
WP ARAM, and LP ARAM are internally declared as pointer types, so trying to pass an
int, WORD, or LONG as a handle will result in these errors.

These errors should be fixed by properly declaring the non-pointer values you're
assigning or passing. In the case of special constants such as (HWND) 1 to indicate
"insert at bottom" to the window positioillng functions, you should use the new macro
(such as HWND_BOTTOM). Only in rare cases should you suppress a type mismatch
error with a cast. Thls can often generate incorrect code.

198 C++ Pro 9 ram mer's G u ide

Error: Type mismatch in redeclaration of paramname
This error will result if you have inconsistent declarations of a variable, parameter, or
function in your source code.

Warning: Conversion may lose significant digits
This warning results' when a value is converted by the compiler, such as from LONG to
int. You're being warned because you may lose information from this cast. If you're sure
there are no information-loss problems, you can suppress this warning with the
appropriate explicit cast to the smaller type.

Warning: Non-portable pointer conversion
This error results when you cast a near pointer or a handle to a 32-bit value-such as
LRESUr..T, LPARAM, LONG, or DWORD. This warning almost always represents a bug,
because the high order 16 bits of the value will contain a non~zero value. The compiler
first converts the 16-bit near pointer to a 32-bit far pointer by placing the current data
segment value in the high 16 bits, then converts this far pointer to the 32-bit value.

To avoid this warning and ensure that a a is placed in the high 16 bits, you must first cast
the handle to a UINT:

HWND hwnd;
LRESULT result = (LRESULT) (UINT) hwnd;

In cases where you do want the 32-bit value to contain a far pointer, you can avoid the
warning with an explicit cast to a far pointer:

char near* pch;
LPARAM lParam = (LPARAM) (LPSTR)pch;

Error: Size of the type is unknown or zero
This error results from trying to change the value of a void pointer with + or +=. These
typically result from the fact that certain Windows functions that return pointers to
arbitrary types (such as GlobalLock and LocalLock) are defined to return void FAR* rather
than LPSTR.

To solve these problems, you should assign the void* value to a properly declared
variable (with the appropriate cast):

BYTE FAR* lpb = (BYTE FAR*)GlobalLock(h);
lpb += sizeof(DWORD);

"Error: Not an allowed type
This error typically results from trying to dereference a void pointer. This usually
results from directly using the return value of GlobalLock or LocalLock as a pointer. To
solve this problem, assign the return value to a variable of the appropriate type (with the
appropriate cast) before using the pointer: .

BYTE FAR* lpb = (BYTE FAR*)GlobalLock(h);
*lpb = 0;

Warning: Parameter paramname is never used
This message can result in callback functions when your code does not use certain
parameters. You can either tum off this warning, use #pragma argsused to suppress it,
or you can omit the name of the parameter in the function definition.

C hap t e r 5, Pro 9 ram min 9 for po r tab iii t Y 199

By adhering to the Win32 API, and using STRICT to make code changes, you will make
your Windows code portable.

BuildingWin32executabies
You must use the proper tools, switches, libraries, and startup code to build a Win32
application. The following table lists the compiler (BCC32) and linker (TLINK32)
switches, libraries, and startup code commonly needed when linking, and the resulting
executable type (.DLL or .EXE).

Table 5.3 Win32 options, startup code, and libraries

-tWD,-tWDE ITpd cw32.lib cOd32.obj DLL
import32.lib

-tWC ITpe lap cw32.lib cOx32.obj Console .EXE
import32.lib

-tWCD, -tWCDE ITpd lap cw32.lib cOd32.obj DLL
import32.lib

200 C++ Pro 9 ram mer's G u ide

Using dynamic-link libraries
Using DLLs in your applications reduces .EXE file size, conserves system memory, and
provides more flexibility in changing, extending, or upgrading your applications.
Windows supports both dynamic linking and static linking.

Creating a DLL
You create a DLL in much the same way you create an EXE:

• Source files containing your code are compiled into .OB} files

• .OB} files are linked together

The DLL, however, has no main function, and is therefore linked differently.

The following topics describe how to write a DLL:

• Borland DLLs

• DLLs and 16-bit Memory Models

• Exporting and Importing Classes

• Exporting and Importing Functions

• LibMain and DllEntryPoint

• WEP (Windows Exit Procedure)

Static linking
When an application uses a function from a static-link library (for example, the C run­
time library), a copy of that function is bound to your application by TLINK at link time.
Two applications running simultaneo· sly that use the same function would each have
their own copy of that function. It is more efficient, however, if both applications shared

C hap t e r 6, U 5 i n 9 d Y n ami c - lin k lib r a r i e 5 201

a single copy of the function. Dynamic linking provides this capability by resolving your
application's references to external functions at run time.

Dynamic linking,
When a program uses a function from a DLL, the function code is not linked into the
.EXE. Instead, dynamic linking uses a two-step method:

1 At link time, TLINK binds import records (which contain DLL and procedure­
location information) to your .EXE. This temporarily satisfies any external references
to DLL functions in your code. These import records are supplied by module­
definition files or import libraries.

2 At run time, the import-record information is used to locate and bind the DLL
functions to your program.

With dynamic linking, your applications are smaller because:

- Only one copy of the function code is linked into your application.

- System memory is conserved because DLL code and resources are shared among
applications.

Dll
A DLL is an executable library module containing functions or resources for use by
applications or other DLLs. A DLL has no main function, which is the usual entry point
for an application. Instead, a DLL has multiple entry points, one for each exported
function.

When a DLL is loaded by the operating system, the DLL can be shared among multiple
applications; one loaded copy of the DLL is all that's necessary.

LibMain and DIlEntryPoint

Syntax
int FAR PASCAL LibMain (HINSTANCE hlnstance, WORD wDataSeg, WORD cbHeapSize,

LPSTR lpCmdLine)

Description
You must supply the LibMain function for 16-bit programs, or the DllEntryPoint (32-bit
Windows API) function for 32-bit programs as the main entry point for a DLL.

-For 16-bit programs, Windows calls LibMain once, when the library is first loaded.
LibMain performs initialization for the DLL.

• For 32-bit programs, Windows calls DllEntryPoint each time the DLL is loaded and
unloaded (it replacesWEP for 32-bit applications), each time a process attaches to or
detaches from the DLL, or each time a thread within the process is created or
destroyed. ~

202 c++ Programmer's Guide

DLL initialization depends almost entirely on the function of the particular DLL, but
might include the following typical tasks:

• Unlocking the data segment with UnlockData, if it has been declared as MOVEABLE.

• Setting up global variables for the DLL, if it uses any.-

The initialization code is executed only for the first application using the DLL.

The DLL startup code initializes the local heap automatically; you don't need to include
code in LibMain to do this.

The following parameters (defined in windows.h) are passed to LibMain:

HANDLE

WORD

WORD

LPSTR

Return value

hlnstance

wDataSeg

cbHeapSize

IpCmdLine

Instance handle of the DLL.

Value of the data segment (DS) register.

Size of the local heap specified in the module definition file for
the DLL.

A far pointer to the command line specified when the DLL was
loaded.

This value is almost always null because DLLs are typically
loaded automatically with no parameters. It is possible,
however, to supply a command line to a DLL when it is loaded
explicitly.

On success, LibMain returns 1 (successful initialization).

On error, it returns 0 (failure in initialization).

Note If LibMain returns 0, Windows unloads the DLL from memory.

WEP (Windows Exit Procedure)

Syntax
int FAR PASCAL WEP (int nParameter)

where nParameter is either

• WEP _SYSTEM_EXIT (indicates that all of Windows is shutting down)
• WEP _FREE_DLL (indicates that only this DLL is being unloaded)

Description
The exit point fora 16-bit DLL is the function WEP (Windows Exit Procedure). This
function is not required in a DLL (because the Borland C++ run-time libraries- provide a
default), but you can supply your own WEP to perform any DLL cleanup before the
DLL is unloaded from memory. Windows calls WEP just prior to unloading the DLL.

Under Borland C++, WEP does not need to be exported. Borland C++ defines its own
WEP that calls your WEP (if you have defined one), and then performs system cleanup.

C hap t e r 6, U sin 9 d Y n ami c - lin k lib r ar i e s 203

Return value
WEP returns 1 to indicate success. Windows currently does not do anything with this
return value.

Exporting and importing functions
To make your DLL functions accessible to other applications (.EXEs or other DLLs), the
function names must be exported. To use exported functions, the function names must be
imported.

Exporting functions
There are two ways to export functions:

• Create a module-definition file with an EXPORTS section listing all functions that
will be used by other applications. The IMPDEF tool can help you do this.

• Precede every function name to be exported in the DLL with the keyword _export in
the function definition.

A function must be exported from a DLL before it can be imported to another DLL or
application .

. Importing functions
If a Windows application module or another DLL uses functions from a DLL, you must
tell the linker that you want to import the functions. There are three ways to do this:

• Add an IMPORTS section to the module-definition file and list every DLL function
that the module will use.

• Include the import library for the DLLs when you link the module. The IMPLIB tool
creates an import library for one or more DLLs.

• Define your function using the _import keyword (32-bit applications only).

DLLs and 16·bit memory models
Functions in a DLL are not linked directly into a Windows application. They are called
at run time instead. Calls to DLL functions, therefore, will be far calls because the DLL
will have a different code segment than the application. The data used by called DLL
functions also need to be far.

Suppose you have a Windows application called APPI, a DLL defined by
LSOURCEl.C, and a header file for that DLL called lsourcel.h. Function fl, which
operates on a string, is called by the application.

If you want the function to work correctly regardless of "the memory model used to
compile the DLL, you need to explicitly make the function and its data far. In the header
file lsource I.h, the function prototype would take this form:

204 C++ Pro 9 ram mer's G u ide

extern int _export FAR f(char FAR *dstring);

In the DLL source LSOURCEl.C, the implementation of the function would take this
form:

int FAR fl(char far *dstring)

For the application to use the function, the function must be compiled as exportabl~ and
then exported. To accomplish this, you can either compile the DLL with all functions
exportable (-WD) and list f1 in the EXPORTS section of the module-definition file, or
you can flag the function with the _export keyword, as follows:

int FAR _export fl(char far *dstring)

If you compile the DLL under the large model (far data, far code), then you don't need to
explicitly define the function or its data as far in the DLL. In the header file, the
prototype would still take the form shown here because the prototype would need to be
correct for a module compiled with a smaller memory model:

extern int FAR fl(char FAR *dstring);

In the DLL, however, the function could be defined like this:

int _export fl(char *dstring)

Remember that before an application can use [1, it has to be imported into the
application, either by listing [1 in the IMPORTS section of a module-definition file or by
linking with an import library for the DLL.

Exporting and importing classes
To use classes in a DLL, the class must be exported from the .DLL file and imported by
the .EXE file. Conditionalized macro expansion can be used to support both of these
circumstances. For example, include something similar to the following code in a header
file:

#if defined (BUILDING_YOUR_DLL)

#define _YOURCLASS _export
#elif defined (USING_YOUR_DLL)

#define _YOURCLASS _import
#else

#define _YOURCLASS
#endif

C hap t e r 6, U sin 9 d Y n ami c - lin k lib r a r i e s 205

In your definitions, define your classes like this:

class _YOURCLASS classl {

II

} ;

Define BUILD _ YOUR_DLL (with the -D option, for example) when you are building
your DLL. The _ YOURCLASS macro will expand to _import. Define USE_ YOUR_DLL
when you are building the .EXE which will use the DLL. The _ YOURCLASS macro will
expand to _import. .

See also the discussion on using _export with C++ classes.

Static data in 16·bit DLLs
Through the functions in a DLL, all applications using the DLL have access to the global
data in the DLL. In 16-bit DLLs, a particular function will use the same data, regardless
of the application that called it (unlike 32-bit DLLs where all data is private to the
process). If you want a 16-bit DLL's global data to be protected for use by a single
application, you need to write that protection yourself. The DLL itself does not have a
mechanism for making global data available to a single application. If you need data to
be private for a given caller of a DLL, you need to dynamically allocate the data and
manage the access to that data manually. Static data in a 16-bit DLL is global to all callers
of a DLL.

Borland DLLs
General forms of compiler and linker command lines that use the DLL versions of the
Borland run-time libraries and class libraries are described below.

Here is a 16-bit compile and link using the DLL version of the run-time library:

bcc -c -D_RTLDLL -ml source.cpp

tlink -c -Twe cOwl source, , , import crtldll

Note that the macro _RTLDLL and the -ml switch are use.

Here is the 32-bit version:

bcc32 -c -D_RTLDLL source.cpp

tlink32 -Tpe -ap cOx32 source, , , import32 cw32i

Here is a 16-bit compile and link using the DLL version of the class library:

bcc -c -D_BIDSDLL -ml source.cpp

tlink -c -Tw~ cOwl source, , , import bidsi crtldll

206 C++ Pro 9 ram mer's G u ide

Here is a 32~bit compile and link using the DLL version of the class library:

bcc32 -c -D_BIDSDLL source.cpp

tlink32 -Tpe -ap cOx32 source, , , import32 bidsfi cw32i

C hap t e r 6, U sin 9 d Y n ami c - lin k lib r a r i e s 207

208 C++ Pro 9 ram mer's G u ide

Using inline assembly
Wine assembly is assembly-language instructions embedded within your C or C++
code. Wine assembly instructions are compiled or assembled along with your code
rather than being assembled in separate assembly modules.

This chapter describes how to use inline assembly with Borland C++. The following
topics are discussed:

• Wine assembly syntax and usage

• Using the asm keyword to place an assembly instruction within your C/C++ code
1/11 Using C symbols in your asm statements to reference data and functions
• Using register variables, offsets, and size overrides
• Using C structure members
• Using jump instructions and labels

• Using the -B compiler option and #pragma inline statement to compile inline
assembly .

• Using the built-in assembler (BASM)

See the C++ User's Guide for the IDE equivalents of command-line options.

Inline assembly syntax and usage
This section describes inline assembly syntax, and how to use inline assembly
instructions with C++ structures, pointers, and identifiers.

To place an assembly instruction in your C/C++ code, use the asm keyword. The
format is

asm apcade aperands ; or newline

where

• apcade is a valid 80x86 instruction.

C hap t e r 7, U sin gin lin e ass e m b I Y 209

• operands contains the operand(s) acceptable to the opcode, and can reference C
constants, variables, and labels.

• The end of the asm statement is signaled by either; (semicolon) or by newline (a new
line).

A new asm statement can be placed on the same line, following a semicolon, but no asm
statement can continue to the next line. To include multiple asm statements, surround
them with braces. The initial brace must appear on the same line as the asm keyword.

Three asm statements are shown here; two on one line, and one below them.
asm {

pop ax; pop ds
iret

Semicolons are not used to start comments (as they are in TASM). When commenting
asm statements, use C-style comments,like this:

asm mov ax,ds;
asm {pop ax; pop ds; iret;}
asm push ds

/* This comment is OK */

/* This comment is also legal */

;THIS COMMENT IS INVALID!!

The assembly-language portion of the statement is copied straight to the output,
embedded in the assembly language that Borland C++ is generating from your C or
C++ instructions. Any C symbols are replaced with appropriate assembly language
equivalents.

Each asm statement is considered to be a C statement. For example, the following
construct is a valid C if statement:

myfunc()
{

int i;
int x;

if (i > 0)

asm mov x,4
else

i = 7;

Note that a semicolon isn't needed after the mao x,4 instruction. asm statements are the
only statements in C that depend on the occurrence of a new line to indicate that they
have ended. Although this isn't in keeping with the rest of the C language, it is the
convention adoptedcby several UNIX-based compilers.

An asm statement can be used as an executable statement inside a function, or as an
external declaration outside of a function. asm statements located inside functions are
placed in the code segment, and asin statements located outside functions are placed in
the data segment.

210 C++ Pro 9 ram mer's G u ide

Inline assembly references to data and functions
You can use any C symbol in your asm statements, including automatic (local)
variables, register variables, and function parameters. Borland C++ automatically
converts these symbols to the appropriate assembly-language operands and appends
underscores onto identifier names.

In general, you can use a C symbol in any position where an address operand would be
legaL Of course, you can use a register variable wherever a register would be a legal
operand.

If the assembler encounters an identifier while parsing the operands of an inline­
assembly instruction, it searches for the identifier in the C symbol table. The names of
the 80x86 registers are excluded from this search. Either uppercase or lowercase forms
of the register names can be used.

Inline assembly and register variables
Inline assembly code can freely use SI or D1 as scratch registers. If you use SI or D1 in
inline assembly code, the compiler won't use these registers for register variables.

In 16-bit code BX is available for use as a scratch register. In 32-bit code, the
corresponding EBX is not available for use as a scratch register.

When you use BCC32 or BCC32A to compile a C or C++ source file, including files with
inline assembly~ the compiler preserves the EBX register. However, when you compile
an assembly .ASM source file, you are responsible for preserving the EBX register. This
is true whether you compile the .ASM source file with a 32-bit compiler or use TASM32.

Inline assembly, offsets, and size overrides
When programming, you don't need to be concerned with the exact offsets of local
variables: using the variable name will include the correct offsets.

It might be necessary, however, to include appropriate WORD PTR, BYTE PTR, or other
size overrides on assembly instruction. A DWORD PTR override is needed on LES or
indirect far call instructions.

USing C structure members
You can reference structure members in an inline-assembly statement in the usual way
(that is, with variable.member). When you do this, you are working with variables, and
you can store or retrieve values in these structure members. However, you can also
directly reference the member name (without the variable name) as a form of numeric
constant. In this situation, the constant equals the offset (in bytes) from the'start of the
structure containing that member. Consider the following program fragment:

struct myStruct {
int a_a;
int a_b;
int a_c;

} my A ;

myfunc()

C hap t e r 7, U sin gin lin e ass e m b I Y 211

asm {mov ax, WORD PTR myA.a_b

mov bx, WORD PTR myA.a_c

This fragment declares a structure type named myStruct with three members: aJl, a_b,
and a_c. It also declares a variable my A of type myStruct. The first inline-assembly
statement moves the value contained in myA.a_b into the register AX. The second moves
the value at the address [dil + offset(a_c) into the register BX (it takes the address stored
in Dr and adds to it the offset of a_c from the start of myStruct). In this sequence, these
assembler statements produce the following code:

mov ax, DGROUP : myA+2

mov bx, [di+4]

This way, if you load a register (such as Dr) with the address of a structure of type
myStruct, you can use the member names to directly reference the members. The
member name can be used in any position where a numeric constant is allowed in an
assembly-statement operand. '

The structure member must be preceded by a dot (.) to signal that a member name,
rather than a normal C symbol, is being used. Member names are replaced in the
assembly output by the numeric offset of the structure member (the numeric offset of
a_c is 4), but no type information is retained. Thus members can be used as compile-time
constants in assembly statements.

There is one restriction, however: if two structures that you're using in inline assembly
have the same member name, you must distinguish between them. Insert the structure
type (in parentheses) between the dot and the member name, as if it were a cast. For
example,

asm mov . bx, [di] . (struct tm) tm_hour

Using jump instructions and labels
You can lise any of the conditional and unconditiomH jump instructions, plus the loop
instructions, in inline assembly. These instructions are valid only inside a function. Since
no labels can be defined in the asm statements, jump instructions must use C goto labels
as the object of the jump. If the label is too far away, the jump will not be automatically
converted to a long-distance jump. For this reason, you should be careful when inserting
conditional jumps. You can use the -B switch to check your jumps. Direct far jumps
cannot be generated.

In the following code, the jump goes to the C goto label a.
int x()

a: / * This is the goto label "a" * /

asm jmp a /* Goes to label "a" */

212 C++ Pro 9 ram mer's G u ide

Indirect jumps are also allowed. To use an indirect jump, use a register name as the
operand of the jump instruction. '

Compiling with inline assembly
There are two ways Borland c++ can handle inline assembly code in your C or C++
code.

• Borland C++ can convert your C or C++ code into assembly language, then transfer
to TASM to produce an .OBJ file. (This method is described in this section.)

• Borland C++ can use its built-in assembler (BASM) to insert your assembly
statements directly into the compiler's instruction s~tream (16-bit compiler only). (This
method is described in the following section.)

You can use the -B compiler option for inline assembly in your C or C++ program. If
you use this option, the compiler first generates an assembly file, then invokes TASM on
that file to produce the .OBJ file.

Note By default -B invokes TASM or TASM32. You can override it with -Exxx, where xxx is
another assembler. See the c++ User's Guide for details. .

You can invoke TASM while omitting the -B option if you include the #pragma inline
statement in your source code. This statement enables the -B option for you when the
compiler encounters it. You will save compile time if you put #pragma inline at the top
of your source file.

The -B option and #pragma inline tell the compiler to produce an .ASM file, which
might contain your inline assembly instructions, and then transfer to TASM to assemble
the .OBJ file. The 16-bit Borland C++ compiler has another method, BASM, that allows
the compiler, not TASM, to assemble you inline assembly code.

Using the built-in assembler (BASM)
The 16-bit compiler can assemble your inline assembly instructions using the built-in
assembler (BASM). This assembler is part of the compiler, and can do most of the things
TASM can do, with the following restrictions:

• It can't use assembler macros.
• It can't handle 80386 or 80486 instructions.
• It doesn't permit Ideal mode syntax.
• It allows only a limited set of assembler directives (see page 216).

Because BASM isn't a complete assembler, it might not accept some assembly-language
constructs. If this happens, Borland C++ will issue an error message. You then have two
choices: you can simplify your inline assembly':'language code so the assembler will
accept it, or you can use the -B option to invoke TASM to catch whatever errors there
might be. TASM might not identify the location of errors, however, because the original
C source line number is lost.

C hap t e r 7, U sin gin lin e ass e m b I Y 213

214

Opcodes
You can include any of the 80x86 instruction opcodes as inline-assembly statements.
There are·four classes of instructions allowed by the Borland C++ compiler:

• Normal instructions-the regular 80x86 opcode set
• String instructions-special string-handling codes
• Jump instructions-various jump opcodes
• Assembly directives-data allocation and definition

All operands are allowed by the compiler, even if they are erroneous or disallowed by
the assembler. The exact format of the operands is not enforced by the compiler.

Table 7.1 lists all allowable BASM opcodes. For 80286 instructions, use the -2 command­
line compiler option.

Note If you're using inline assembly in routines that use floating-point emulation (the
command-line compiler option -f), the opcodes marked with * aren't supported.

Table 7.1 BASM opcode mnemonics

aaa fdivrp fpatan lsI

aad feni fprem mov

aam ffree* fptan mul

aas fiadd frndint neg

ade fieom frstor nop

add ficomp fsave not

and fidiv fseale or

bound fidivr fsqrt out

eall fild fst pop

ebw fimul fstew popa

ele finestp* fstenv popf

eld finit fstp push

eli fist fstsw pusha

eme fistp fsub pushf

emp fisub fsubp rel

ewd fisubr fsubr rer

daa fld fsubrp ret

das fldl ftst rol

dee fldew fwait ror

div fldenv fxam sahf

enter fld12e fxeh sal

f2xml fld12t fxtract sar

fabs fldlg2 fy12x sbb

fadd fld1n2 fy12xpl shl

faddp fldpi hlt shr

fbld fldz idiv smsw

fbstp fmul imul ste

fchs fmulp in std

c++ Programmer's Guide

Table 7.1

fdex

fcom

fcomp

fcompp

fdecstp

fdisi

fdiv

BASM opcode mnemonics (continued)

fndex

fndisi

fneni

fninit

fnop

fnsave

fnstcw

inc - sti

int sub

into test

iret verr

lahf verw

Ids wait

lea xchg

fdivp fnstenv leave xlat

fdivr fnstsw les xor

* Not supported if you're using inline assembly in routines that use floating-point emulation (the
command-line compiler option -f).

When using 80186 instruction mnemonics in your inline-assembly statements, you must
include the -1 command-line option. This forces appropriate statements into the
assembly-language compiler output so that the assembler will expect the mnemonics. If
you're using an older assembler, these mnemonics might not be supported.

String instructions
In addition to the opcodes listed in Table 7.1, the string instructions given in Table 7.2
can be used alone or with repeat prefixes .. '

Table 7.2 BASM string instructions

cmps insw movsb outsw stos

cmpsb lods movsw scas stosb

cmpsw lodsb scasb stosw

lodsw outsb scasw

insb movs

The following prefixes can be used with the string instructions:

lock rep repe .repne repnz repz

Jump instructions
Jump instructions are treated specially. Because a label can't be included on the
instruction itself, jumps must go to C labels (see the "Using jump instructions and
labels" section on page 212). The allowed jump instructions are given in the next table.

Table 7.3 Jump instructions

ja jge jnc jns loop

jae jl jne jnz loope

jb jle jng jo loopne.

Jbe jmp jnge jp loopnz

jc jna jnl- jpe loopz

jcxz jnae jnle jpo

C hap t e r 7, U sin gin lin e ass e m b I Y 215

Table 7.3 Jump instructions (continued)

je

jg

jnb

jnbe

Assembly directives

jno

jnp

js

jz

The following assembly directives are allowed in Borland C++ inline-assembly
statements:

db dd dw extrn

216 c++ Programmer's Guide

Header files summary
Header files, also called include files, provide function prototype declarations for library
functions. Data types and symbolic constants used with ,the library functions are also
defined in them, along with global variables defined by Borland C++ and by the library
functions. The Borland C++ library follows the ANSI C standard on names of header
file? and their contents.

Note The middle column indicates C++ header files and header files defined by ANSI C.

alloc.h

assert.h

bcd.h

bios.h

bwcc.h

checks.h

complex.h

conio.h

constrea.h

cstring.h

ctype.h

date.h

ANSIC

C++

C++

C++

C++

C++

ANSIC

C++

Declares memory-management functions (allocation,
deallocation, and so on).

Defines the . assert debugging macro.

Declares the C++ Class bed and the overloaded operators
for bed and bed math functions;

Declares various functions used in calling IBM-PC ROM
BIOS routines.

Defines the Borland Windows Custom Control interface.

Defines the class diagnostic macros.

Declares the C++ complex math functions.

Declares various functions used in calling the operating
system console 110 routines.

Defines the eonbuf and eonstream classes.

Defines the string classes.

Contains information used by the character classification
and character conversion macros (such as isalpha and
toaseii).

Defines the date class.

Chapter 8, Header files summary 217

_defs.h

dir.h

direct.h

dirent.h

dos.h

ermo.h

except.h

excpt.h

fcntl.h

file.h

float.h

fstream.h

generic.h.

io.h

iomanip.h

iostream.h

limits.h

locale.h

malloc.h

math.h

mem.h

memory.h

new.h

ANSIC

C++

c++

ANSIC

C++

c++

c++

c++

ANSIC

ANSIC

ANSIC

c++

218 C++ Pro 9 ram mer's G u ide

Defines the calling conventions for different application
types and memory models.

Contains structures, macros, and functions for working
with directories and path names.

Defines structures, macros, and functions for dealing
with directories and path names.

Declares functions and structures for POSIX directory
operations.

Defines various constants and gives declarations needed
for DOS and 8086-specific calls.

Defines constant mnemonics for the error codes.

Declares the exception-handling classes and functions.

Declares C structured exception support.

Defines symbolic constants used in connection with the
library routine open.

Defines the file class.

Contains parameters for floating-point routines.

Declares the C++ stream classes that support file input
and output.

Contains macros for generic class declarations.

Contains structures and declarations for low-level
input/ output routines.

Declares the C++ streams I/O manipulators and
contains templates for creating parameterized
manipulators.

Declares the basic C++ streams (I/O) routines.

Contains. environmental parameters, information about
compile-time limitations, and ranges of integral
quantities ..

Declares functions that provide country- and language­
specific information.

Declares memory-management functions and variables.

Declares prototypes for the math functions and math
error handlers.

Declares the memory-manipulation functions. (Many of
these are also defined in string.h.)

Contains memory-manipulation functions.

Access to _new_handler and set~new_handler.

_nfile.h

_null.h

process.h

search.h

se~mp.h

share.h

signal.h

stdarg.h

stddef.h

stdio.h

stdiostr.h

stdlib.h

string.h

strstrea.h

sys \locking.h

sys\ stat.h

sys \ timeb.h

sys \ types.h

thread.h

time.h

ANSIC

ANSIC

ANSIC

ANSIC

ANSIC

c++

ANSIC

ANSIC

c++

c++

ANSIC

Defines the maximum number of open files.

Defines the value of NULL.

Contains structures and declarations for the spawn ... and
exec ... functions.

Declares functions for searching and sorting.

Declares the functions longjmp and setjmp and defines a
type jmp _buf that these functions use.

Defines parameters used in functions that make use of
file-sharing.

Defines constants and declarations for use by the signal
and raise functions.

Defines macros used for reading the argument list in
functions declared to accept a variable number of
arguments (such as vprintf, vscanf, and so on).

Defines several common data types and macros.

Defines types and macros needed for the standard II 0
package defined in Kernighan and Ritchie and extended
under UNIX System V. Defines the standard I/O
predefined streams stdin, stdout, stdprn, and stderr and
declares stream-level I/O routines.

Declares the C++ (version 2.0) stream classes for use
with stdio FILE structures. You should use iostream.h for
new code.

Declares several commonly used routines such as
conversion routines and search/ sort routines.

Declares several string-manipulation and memory­
manipulation routines.

Declares the C++ stream classes for use with byte arrays
in memory.

Contains definitions for mode parameter of locking
function.

Defines symbolic constants used for opening and
creating files.

Declares the function ftime and the structure timeb that
ftime returns.

DeClares the type time _t used with time functions.

Defines the thread classes.

Defines a structure filled in by the time-conversion
routines asctime,localtime, and gmtime, and a type used
by the routines ctime, difftime, gmtime,localtime, and
stime. It also provides prototypes for these routines.

Chapter 8, Header files summary 219

typeinfo.h

utime.h

values.h

varargs.h

c++ Declares the run-time type information classes.

Declares the utime function and the utimbuf struct that it
returns.

Defines important constants, including machine
dependencies; provided for UNIX System V
compatibility.

Definitions for accessing parameters in functions that
accept a variable number of arguments. Provided for

, UNIX compatibility; you should use stdarg.h for new
code~

Using precompiled headers
Borland C++ can generate (and subsequently use) precompiled headers to speed up
your project compile times.

Precompiled headers are header files that are compiled once, then used over and over
again in their compiled state.

You can use a precompiled header if a compilation uses one or more of the same header
files, the same compiler options, the same macro defines, and so on, as is contained in
the precompiled header file.

To control the use of precompiled headers, do one of the following:

• From within the IDE, tum on the Precompiled Headers.-option in the Compiler
settings page of the Project Options dialog box. The IDE bases the name of the
precompiled header file on the project name, creating<PROJECT _NAME>.CSM.
From the command line, use the following command-line options:
-H=<filename>, -He, -H<filename>, and -Hu. See Chapter 3 for more information.

• From within your code, use the hdrfile and hdrstop pragmas.

Setting file names
The compilers store all precompiled headers in one file, using the following naming
conventions:

• The 16-bit command-line compiler names the precompiled header file BCDEF.CSM.

• The 32-bit command-line compiler names the precompiled header file
BC32DEF.CSM.

• The IDE names the precompiled header file <PROJECT _NAME>.CSM.

Note To explicitly set the precompiled file name from the command line, use the
-H=<filename> option or the #pragma hdrfile directive.

220 C++ Pro 9 ram mer's G u ide

Precompiled header file overview
When compiling C and c++ programs, the compiler can spend up to half its time
parsing header files. When the compiler parses a header file, it enters declarations and
definitions into its symbol table.

Precompiled headers cut this process short by creating and storing a binary image of the
symbol table on disk. By directly loading a binary image of the symbol table, the
compiler can increase the speed of this step by ,over ten times. The disadvantage is that
precompiled header files can become quite large because they can contain the symbol
table images for all the #include files encountered in your sources.

If, while compiling a source file, Borland C++ discovers that the first #include files are
identical to those of a previous compilation (of either the same or different source), it
loads the binary image for those #include files and parses the remaining #include files.

For a given module, either all or none of the precompiled headers are used-if
compilation of any included header file fails, the precompiled header file isn't updated
for that module.

Precompiled header limits
When using precompiled headers, BCDEF.CSM can become very large because it
contains symbol table images for all sets of includes encountered in your sources. If you
don't have sufficient disk space, you'll get a warning saying the write failed because of
the precompiled headers. To fix this, you must provide more disk space and retry the
compile. For information on reducing the size of the BCDEF.CSM file, see "Optimizing
precompiled headers."

If you're using large macros in a makefile in addition to using precompiled headers,
there is a limit on the macro size: 4K for 16-bit applications and 16K for 32-bit
applications.

If a header file contains any code, it can't be precompiled. For example, although C++
class definitions can appear in header files, you should ensure that only inline member
functions are defined in the header and heed warnings such as Functions containing
reserved word are not expanded inline.

Precompiled header rules
The following rules apply when you create and use precompiled headers:

• A header that contains code can't be precompiled. For example, although C++ class
definitions can appear in header files, make sure that only inline member functions
are defined in the header. Heed warnings such as Functions containing I for I

are not expanded inline.

• In order to use apreviously generated precompiled header, the source file must:

• Have the same set of include files, in the same order, as the precompiled header.

C hap t e r 8, H e ad e r f i I e 5 5 U m mar y 221

@ Have the same macros defined with identical values as the precompiled header.

.. Use the same language (C or C++) as the precompiled header.

@ Use header files with identical time stamps as the precompiled header.

• In addition, the following option settings must be identical to those used when you
generated the precompiled header:

.. Memory model, fucluding SS != DS (-rnx)

III Underscores on extems (-u)

• Maximum identifier length (-iL)

• Target DOS or Windows (-W or -Wx)

@ Generate word alignment (-a)

III Pascal calls (-p)

• Treat enums as integers (-b)
III Default char is unsigned (-K)

• Virtual table control (-Vx and -Vrnx)

• Expand intrinsic functions inline (-Oi)

.. Templates (-Jx)

III String literals in code segment (..;dc, 16-bit only)

• Debugging information (-v, -vi, and -R)

• Far variables (-Fx)

• Language compilance (-A)

• C++ compile (-P)

• DOS overlay-compatible code (-Y)

• If you're using large macros in addition to using precompiled headers, the compiler
limits the size of the macros as following:

.. 4K macros for 16-bit applications

• 16K macros for 32-bit applications

Optimizing precompiled headers
. For the most efficiently compiled precompiled headers, follow these rules:

• Arrange your header files in the same sequence in all source files.

• Put the largest header files first.

• Prime the precompiled header file with often-used initial sequences of header files .

•. Use#pragma hdrstop to terminate the list of header files at well-chosen places. This
lets you make the list of header files in different sources look similar to the compiler.

For example, suppose you have the following two source files (A_SOURCE.CPP and
B_SOURCE.CPP), which both include windows.h and myhdr.h:

222 C++ Programmer's Guide

alloc.h

/* A_SOURCE.CPP */

#include <windows.h>
#include "myhdr.h"
#include "xxx.h"
/ / ...

/* B_SOURCE.CPP */

#include "yyy.h
#include <string.h>
#include "myhdr.h"
#include <windows.h>
/ / ...

To optimize the precompiled headers for these source files, you would rearrange the
beginning of B_SOURCE.CPP as follows:

/* Revised B_SOURCE.CPP */

#include <windows.h>
#include "myhdr.h"
#include "yyy.h"
#include <string.h>
/ / ...

Now, windows.h and myhdr.h are in the same order in both A_SOURCE.CPP and
B_SOURCE.CPP, and they are both located at the beginning of the #include list.

In addition, you could also create a new source file.called PREFIX.CPP which contains
only the matching header files, like this:

/* PREFIX.CPP */

#include<windows.h>
#include "myhdr.h"

If you compile PREFIX.CPP first (or insert a #pragma hdrs top in both A_SOURCE.CPP
and B_SOURCE.CPP), the net effect is that after the initial compilation of PREFIX.CPP,
both A_SOURCE.CPP and B_SOURCE.CPP will be able to load the symbol table
produced by PREFIX.CPP. The compiler will then need to parse only xxx.h for
A_SOURCE.CPP, and yyy.h and strings.h for B_SOURCE.CPP.

Declares memory-management functions (allocation, deallocation, and so on).

Functions

• calloc
• farcalloc
• farfree·
• farmalloc
• farrealloc

.• free

• heapcheck

Chapter 8, Header files summary 223

• heapcheckfree
• heapchecknode
• heapfillfree .
• heapwalk
• malloc
• realloc.

Constants, data types, and global variables

• NULL
• ptrdiff_t
• size_t

assert.h
Defines the assert debugging macro.

Functions

• assert

bios.h
Declares various functions used in calling IBM-PC ROM BIOS routines.

Functions

• _bios_equip
• _bios_disk (in Borland c++ DOS Support Help)
• _bios_equiplist
• _bios_keybrd (in Borland C++ DOS Support Help)
• _bios_memsize
• _bios_serialcom (in Borland C++ DOS Support Help)
• _bios_timeofday
• bioscom (in Borland C++ DOS Support Help)
• biosequip
• bioskey (in Borland C++ DOS Support Help)
• biosmemory
• biosprint (in Borland C++ DOS Support Help)
• biostime

conio.h
Declares various functions used in calling the operating system console IIO routines.

224 C++ Pro 9 ram mer's Gu ide

ctype.h

Functions

• cgets
• cIreol
• cIrscr
• cprintf
• cputs
• cscanf
• delline
• getch
• getche
• getpass
• gettext
• gettextinfo
• gotoxy
• highvideo
• inp
• inport
• inportb
• inpw
• insline
• kbhit
• lowvideo
• movetext
• normvideo
• outp
• outport
• outportb
• outpw
• putch
• puttext
• _setcursortype
• textattr
• textbackground
• textcolor
• textmode
• ungetch
• wherex
• wherey
• window

Contains information used by the character classification and character conversion
macros.

Chapter 8, Header files summary 225

dir.h

Functions and macros

• isalnum
• isalpha
• isascii
• iscntrl
• isdigit
• isgraph
• islower
• isprint
• ispunct
• isspace
• isupper
• isxdigit
• toascii
• _tolower
• tolower
• _toupper
• toupper

Constants, data types, and global variables

• _IS_CTL
• _IS_DIG
• _IS_HEX
• _IS_LOW
• _IS_PUN
• _IS_SP
• _IS_UPP

Contains structures, macros, and functions for working with directories and path
names.

Functions

• chdir
• findfirst
• findnext
• fnmerge
• fnsplit
• getcurdir
• getcwd
• getdisk
• mkdir
• mktemp

226 C++ Pro 9 ram mer's G u ide

direct.h

• rmdir
• searchpath
• setdisk

Constants, data types, and global variables

• DIRECTORY
• DRIVE
• EXTENSION
• ffulk
• FILENAME
• MAXDIR
• MAXDRIVE
• MAXEXT
• MAXFILE
• MAXPATH

Defines structures, macros, and functions for dealing with directories and path names.

Includes

• DIR.H

Functions

• _chdrive
• ~etdcwd·

dirent.h

dos.h

Declares functions and structures for POSIX directory operations.

Functions

• closedir
• opendir
• readdir
• rewinddir

Defines various constants and gives declarations needed for DOS and 8086-specific
calls.

C hap t e r 8, H e ad e r f i I e s sum mar y 227

Functions

• allocmem (in Borland C++ DOS Support Help)
• bdos
• bdosptr
• _chain_intr
• _chmod

.• country
• ctrlbrk
• delay (in Borland C++ DOS Support Help)
• disable
• _dos_allocmem (in Borland C++ DOS Support Help)
• _dos_close
• _dos_colnmit
• _dos_creat
• _dos_creatnew
• dosexterr
• _dos_findfirst
• _dos_findnext
• _dos_freemem (in Borland C++ DOS Support Help)
• _dos~etdate
• _dos~etdiskfree
• _dos~etdrive
., _dos~etfileattr
• _dos~etftime
• _dos~ettime
• _dos~etvect
• _dos_keep (in Borland C++ DOS Support Help)
._dos_open .
• _dos_read
• _dos_setblock (in Borland C++ DOS Support Help)
• _dos_setdate
• _dos_setdrive
• _dos_setfileattr
• _dos_settime
• _dos_setvect
• dostounix
• _dos_write
• _emit_
• enable
• FP_OFF
• FP_SEG
• geninterrupt
• getcbrk
• getdate
• getdfree
• getdta

228 c++ Programmer's Guide:

• getfat
• getfatd
• getftime
• getpsp
• gettime
• getvect
• getverify
• _harderr (in Borland C++ DOS Support Help)
• .-:hardresume (in Borland C++ DOS Support Help)
• _hardretn (in Borland C++ DOS Support Help)
• inport
• inportb
• int86
• int86x
• intdos
• intdosx
• intr
• keep (in Borland C++ DOS Support Help)
• MK_FP
• nosound (in Borland C++ DOS Support Help)
• outport
• outportb
• parsfnm
./ peek
• peekb
• poke
• pokeb
• randbrd (in Borland C++ DOS Support Help)
• randbwr (in Borland C++ DOS Support Help)
• segread .
• setcbrk
• setdate
• setdta
• settime
• setvect
• setverify
• sleep

.• sound (in Borland C++ DOS Support Help)
• uni)dodos

• unlink

Constants, data types, and global variables

• _8087
• _argc
• _argv
• COUNTRY

C hap t e r 8, He a d e r f i Ie s sum mar y 229

• date
• devhdr
• dfree
• diskfree_t
• dosdate_t
• DOSERROR
• dostime_t
• _dosermo
• dosSearchInfo
• ermo
• _environ
• fatinfo
• feb
• FA_*
• ffblk
• _heaplen (in Borland C++ DOS Support Help)
• NFDS
• _osmajor
• _osminor
• _osversion
• _ovrbuffer (in Borland C++ DOS Support Help)
• _psp
• REGPACK
• REGS
• SEEK_CUR
• SEEK_END
• SEEK_SET
• SREGS
• _stklen (in Borland C++ DOS Support Help)

• time
• _version
• xfcb

errno.h
Defines constant mnemonics for the error codes.

Constants, data types, and global variables

• _dosermo
• ermo
• _sys_errlist
• _sys_nerr
• error number definitions

230 ett Programmer's Guide

fcntl.h
Defines open flags for open and similar library functions.

Functions

• _fmode
• _pipe

Constants

• O_APPEND
• O_BINARY
• O_CHANGED
• O_CREAT
• O_DENYALL
• O_DENYNONE
• O_DENYREAD
• O_DENYWRITE
• O_DEVICE
• O_EXCL
• O_NOINHERIT
• O_RDONLY
• O_RDWR
• O_TEXT
• O_TRUNC
• O_WRONLY

float.h
Contains parameters for floating-point routines.

Functions

• _clear87
• _£preset
• _status87

Constants, data types, and global variables

• CW_DEFAULT
• FPE_EXPLICITGEN
• FPE_INEXACT
• FPE_INTDIVO
• FPE_INTOVFLOW
• FPE_INV ALID
• FPE_OVERFLOW

Chapter 8, Header files summary 231

• FPE_UNDERFLOW
• FPE_ZERODIVIDE
• ILL_EXECUTION
• ILL_EXPLICITGEN
• SEGV _BOUND
• SEGV _EXPLICITGEN

generic.h
Contains macros for generic class declarations.

io.h
Contains structures and declarations for low-level input/ output routines.

Functions

• access
• chmod
• chsize
• close
• creat
• creatnew
• creattemp
• dup
• dup2
• eof
• filelength
• ~et_osfhandle
• getftime
• _InitEasyWin
• ioctl
• isatty
• lock
• locking
• lseek
• mktemp
• open
• _open_osfhandle
• _pipe
• read
• remove
• rename
• _rtLchmod
• _rtLclose

232 C++ Pro 9 [a m mer's G u ide.

• _rtLcreat
• _rtLopen
• _rtLread
• _rtLwrite
• setftime
• setmode
• sopen
• tell
• umask
• unlink
• unlock
• write

Constants, data types, and global variables

• ftime structure
• HANDLE_MAX
• fseek/lseek modes

iomanip.h

limits.h

Declares the C++ streams I/O manipulators and contains macros for creating
parameterized manipulators.

Includes

• iostream.h

Classes

• iapply
• imanip
• ioapp
• iomanip
• oapp
• omanip
• sapp
• smanip

Overloaded operators
« »

Contains environmental parameters, information about compile-time limitations, and
ranges of integral quantities.

Chapter 8, Header files summary 233

Constants, data types, and global variables

• CHAR_BIT
• CHAR_MAX
• CHAR_MIN
• INT_MAX
• INT_MIN
• LONG_MAX
• LONG_MIN
• SCHAR_MAX
• SCHAR_MIN
• SHRT_MAX
• SHRT_MIN
• UCHAR_MAX
• UINT_MAX
• ULONG_MAX
• USHRT_MAX

locale.h
Declares functions that provide information specific to languages and countries.

Functions

• localeconv
• setlocale

Constants, data types, and global variables
• LC_ALL
• LC_COLLATE
• LC_CTYPE
• LC_MONETARY
• LC_NUMERIC
• LC_TIME
• lconv (struct)
• NULL

malloc.h
Declares memory-management functions and variables.

Includes
ALLOC.H

234 c++ Programmer's Guide

math.h

Functions
·_heapchk
• _heapmin
• ~heapset
• _msize
• _rtLheapwalk
• stackavail

Declares prototypes for the math functions and math error handlers.

Functions

• abs
• acos, acosl
• asin, asinl
• atan, atanl
• atan2, atan21
• atof, _atold
• cabs, cabsl
• ceil, ceill
• cos, cosl
• cosh, coshl
• exp, expl
• fabs, fabsl
• floor, floorl
• fmod, fmodl
• frexp, frexpl
• hypot, hypotl
• labs
• ldexp,ldexpl
• log,logl
• 10gIO, 10gIOI
• _matherr,_matherrl
• modf, modfl
• poly, polyl
• pow, pawl
• powlO, powlOl
• sin, sinl
• sinh, sinh!
• sqrt, sqrtl
• tan, tanl
• tanh, tanhl

Chapter 8, Header files summary 235

mem.h

Constants, data types, and global variables

• complex (struet)
• _complexl (struet)
• EDOM
• ERANGE
• exception (struet)
• _exceptionl (struet)
• HUGE_VAL
• M_E
• M_LOG2E
• M_LOGIOE
'. M_LN2
• M_LNIO
• M_PI
• M_PI_2
• M~PL4
• M_l_PI
• M_2_PI
• M_l_SQRTPI
• M_2_SQRTPI
• M_SQRT2
• M_SQRT_2
• _mexcep

Declares the memory-manipulation functions. (Many of these are also defined in
string.h.)

Functions

• _fmemccpy
• _fmemchr
• _fmemcmp
• _fmemcpy
• _fmemicmp
• _fmemmove
• _fmemset
• _fmovmem
• memccpy
• memchr
• memcmp
• memcpy
• memicmp
• memmove

236 C++ Pro 9 ram mer's G u ide

• memset
• movedata
• movmem
• setmem

Constants, data types, and global variables

• NULL
• ptrdifLt
• size_t

memory.h
Contains memory-manipulation functions.

Includes

• MEM.H

new.h
Provides access to the the following functions:

• seCnew _handler
• _new_handler (global variable)

process.h
Contains structures and declarations for the spawn ... and exec ... functions.

Functions

• abort
• _beginthread
• _beginthreadNT
• _c_exit
• _cexit
• cwait
• _endthread
• execl
• execle
• execlp
• execlpe
• execv
• execve
• execvp

C hap t e r 8, H e a d e r f i I e s sum mar y 237

• execvpe
• exit
• _exit
• getpid
• spawnl
• spawnle
• spawnlp
• spawnlpe
• spawnv
• spawnve
• spawnvp
• spawnvpe
• wait

Constants, data types, and global variables

·P_DETACH
• P_NOWAIT
• P_NOWAITO
• P_OVERLAY
• P_WAIT

search.h
Declares functions for searching and sorting.

Functions

• bsearch
• Hind
• lsearch
• qsort

setjmp.h
Declares the functions longjmp and se~mp and defines a type jmp _bufj that these
functions use.

Functions

• longjmp
• se~mp

Constants,data types, and global variables

• jmp_buf

238 c++ Programmer's Guide

share.h
Defines parameters used in functions that make use of file-sharing.

Constants, data types, and global variables

• SH_COMPAT
• SH_DENYNO
• SH_DENYNONE
• SH_DENYRD
• SH_DENYRW
• SH_DENYWR

signal.h
Defines constants and declarations for use by the signal and raise functions.

Functions

• raise
• signal

Constants, data types, and global variables

• predefined signal handlers
• si~atomic_t type
• SIG_DFL
• SIG_ERR
• SIG_IGN
• SIGABRT
• SIGFPE
• SIGILL
• SIGINT
• SIGSEGV
• SIGTERM

stdarg.h
Defines macros used for reading the argument list in functions declared to accept a
variable number of arguments (such as vprintf, vscanf, and so on).

Macros

• va_arg
• va_end
• va_start

C hap t e r 8, H e a d e r f i I e s sum mar y 239

Constants, data types, and global variables

• va_list

stddef.h

stdio.h

Defines several common data types and macros.

Functions

• offsetof

Constants, data types, and global variables

• NULL
• ptrdifCt
• size_t
• _threadid
• wchar_t

Defines types and macros needed for the standard I/O package defined in Kernighan
and Ritchie and extended under UNIX System V. It defines the standard I/O predefined
streams stdin, stdout, stdpm, and stderr, and declares stream-level I/O routines.

240 C++ Pro 9 ram mer J s G u ide

Functions

clearerr _fstrncpy spawnlp
fclose ftell spawnlpe
fcloseall £Write spawnv
fdopen getc spawnve
feof getchar spawnvp
ferror gets spawnvpe
fflush getw sprintf
fgetc _pclose sscanf
fgetchar perror strerror
fgetpos _popen - strerror
fgets printf strncpy
fileno putc tempnam
flushall putchar tmpfile
fopen puts tmpnam
fprintf putw ungetc
fputc remove unlink
fputchar rename vfprintf
fputs rewind vfscanf
£read rmtmp vprintf
freopen scanf vscanf
fscanf setbuf vsprintf
fseek setvbuf vsscanf
fsetpos spawnl
_fsopen spawnle

Constants, data types, and global variables

buffering modes _F_TERM SEEK_CUR
BUFSIZ _F_WRIT SEEK_END
EOF FILE SEEK_SET
_F_BIN fpos_t size_t
o_F_BUF fseek/Iseek modes stdaux
_F_EOF _IOFBF stderr
_F_ERR _IOLBF stdin
_F_IN _IONBF stdout
_F_LBUF L_ctermid stdpm
_F_OUT L_tmpnam SYS_OPEN
_F_RDWR NULL TMP_MAX
_F_READ FOPEN_MAX

C hap t e r 8, He a d e r f i I e s sum mar y 241

stdiostr.h

stdlib.h

Declares the c++ (version 2.0) stream classes for use with stdio FILE structures. You
should use iostream.h for new code.

Includes
IOSTREAM.H

STDIO.H

Declares several commonly used routines such as conversion routines and search/ sort
routines.

Functions

abort labs realloc
abs ldiv _rotl
atexit lOOd _rotr
atof _IrotI _searchenv
atoi _Irotr _searchstr
atol lsearch _splitpath
bsearch ltoa srand
calloc _makepath strtod
_crotr malloc strtol
div max _strtold
ecvt mblen strtoul
exit mbstowcs swab
_exit mbtowc system
fcvt min time
free putenv ultoa
_fullpath qsort wcstombs
gcvt rand wctomb
getenv random
itoa randomize

Constants, data types, and global variables

• div_t
• _dosermo
• environ
• ermo
• EXIT_FAILURE

242 C++ Pro 9 ram mer' 5 G u ide

• EXIT_SUCCESS
• _fmode
• ldiv_t
• NULL
• _osmajor
• _osminor
• RAND_MAX
• size_t
• sys_errlist
• sys_nerr
• _version
• wchar_t

string.h
Declares several string-manipulation and memory-manipulation routines.

Includes
LOCALE.H

C hap t e r 8, He a d e r f i Ie s sum mar y 243

Functions

_fmemccpy _fstrrev
_fmemchr _fstrset
_fmemcmp _fstrspn
_fmemcpy _fstrstr
_fmemicmp _fstrtok
_fmemset _fstrupr
_fstr* memccpy
_fstrcat memchr
_fstrchr memcmp
_fstrcmp memcpy
_fstrcpy memicmp
_fstrcspn memmove
_fstrdup memset
_fstricmp movedata
Jstrlen movmem
_fstrlwr setmem
_fstrncat stpcpy
_fstrncmp strcat
_fstrncpy strchr
_fstrnicmp strcmp
_fstrnset strcmpi
_fstrpbrk strcoll
_fstrrchr strcpy

Constants, data types, and global variables

sys\locking.h

strcspn
strdup
strerror
_strerror
stricmp
strlen
strlwr
strncat
strncmp
strncmpi
strncpy
strnicmp
strnset
strpbrk
strrchr
strrev
strset
strspn
strstr
strtok
strupr
strxfrm

Contains definitions for mode parameter of locking function.

Constants

• LK_LOCK
• LK_NBLCK
• LK_NBRLCK
• LK_RLCK
• L~UNLCK

244 c++ Pro 9 ram mer's G u ide

sys\stat.h
Defines symbolic constants used for opening and creating files.

Includes
SYS\ TYPES.H

Functions

• chmod
• fstat
• stat

Constants, data types, and global variables

• file status bits
• stat structure

sys\timeb.h

Functions

• ftime l

Constants, data types, and global variables

• timeb structure
• _timezone

sys\types.h

time.h

Constants, data types, and global variables

• time_t

Defines a structure filled in by time-conversion routines asctime, localtime, and gmtime,
and a type used by the routines ctime, difftime, gmtime, localtime, and stime. It also
provides prototypes for these routines.

Functions

• asctime

C hap t e r 8, H e a d e r f i I e s sum mar y 245

• clock
• ctime
• difftime
• gmtime
• localtime
• mktime
• randomize
• stime
• _strdate
• strftime
• _strtime
• time
• tzset

Constants, data types, and global variables

• CLK_TCK
• clock_t
• daylight
• size_t
• time_t
• timezone

• tm
• tzname

Classes

• Time classes

utime.h
Declares the utime function and the utimbuf struct that it returns.

Function

• utime

Constants, data types, and global variables

• time_t
• utimbuf

values.h
Defines UNIX-compatible constants for limits to float and double values.

• BITSPERBYTE

246 C++ Pro 9 ram mer's G u. ide

• DMAXEXP
• DMAXPOWTWO
• DMINEXP
• DSIGNIF
• FMAXEXP
• FMAXPOWTWO
• FMINEXP
• FSIGNIF
• _FEXPLEN
• HIBITI
• HIBITL
• HffiITS
• _LENBASE
• MAXDOUBLE
• MAXFLOAT
• MAXINT
• MAXLONG
• MAXSHORT
• MINDOUBLE
• MINFLOAT

varargs.h
Definitions for accessing parameters in functions that accept a variable number of
arguments.

These macros are compatible with UNIX System v.
Use STDARG.H for ANSI C compatibility.

Note You can't include both STDARG.H and V ARARGS.H.

excpt.h

Macros

• va_start
• va_arg
• va_end

Type

The excpt.h header file contains the declarations and prototypes for structured
exception-handling values, types, and routines. Consult the Windows API
documentation for more details.

C hap t e r 8, H e a d e r f i I e s sum mar y 247

bwcc.h

defs.h

The bwcc.h header file defines the interface for Borland Windows Custom Control
library (BWCC).

For details on using the Borland Windows Custom Control library, see the c++
Language Reference, Part VI.

The _defs.h header file contains common definitions for pointer size and calling
conventions.

Calling Conventions

_RTLENTRY Specifies the calling convention used by the Standard Run-time
Library.

_ USERENTRY Specifies the calling convention the Standard Run-time Library
expects user-compiled functions to use for callbacks.

Export (and size for DOS) information

_EXPCLASS

_EXPDATA

_EXPFUNC

Exports the class if you are building a DLL version of a library.

Exports the data if you are building a DLL version of a library.

Exports the function if you are building a DLL version of a library.

Note These export macros are provided as eXanlples only and should not be used to create
user-defined functions.

nfile.h

nulI.h

The _nfile.h header file defines _NFILE_, which specifies the maximum number of open
files you can have.

NFILE is defined as 50 for all applications.

The _null.h defines the value of NULL for different memory models and applications
types:

Flat

Flat

«void *)0)

o
if not C++ or Windows application

248 C++ Pro 9 ram mer's G u ide

Using EasyWin
Borland c++ provides EasyWin, a feature that lets you compile standard DOS
applications which use traditional TTY style input and output so they can run as true
Windows programs. With EasyWin, you do not need to change a DOS program to run it
. under Windows.

Note You cannot use EasyWin with the DLL version of the run-time library.

EasyWin includes:

elreal gataxy wherey

elrser wherex

These functions have the same names (and uses) as functions in conio.h header file.
Classes in constrea.h provide console II 0 functionality for use with C++ streams.

The following routines can be ported to EasyWin programs but are not available in
16-bit Windows programs:

fgetehar kbhit puts

geteh perror seanf

getehar printf vprintf

getehe puteh vscanf

gets putehar

These functions are provided to simplify porting of existing DOS code into 16-bit
Windows applications.

Converting DOS applications to Windows
To convert console-based applications that use standard files or iostream functions,
check the EasyWin Target Type using TargetExpert in the IDE. Borland C++ will detect

C hap t e r 9, U sin 9 E as y Win 249

that your program does not contain a WinMain function (normally required for
Windows applications) and link the EasyWin library. When you run your program in
the Windows environment, a standard window is created, and your program takes
input and produces output for that window as if it were the standard screen.

You can use the EasyWin window any time to request input to or specify output from a
TTY device. This means that in addition to stdin and stdout, all stderr, stdaux, and cerr
devices are all connected to this window.

EasyWin C example
#include <stdio.h>

int main()
{

printf ("Hello Windows\n");
return 0;

EasyWin C++ example
#include <iostream.h>

int main()
{

cout « "Hello Windows\n";
return 0;

Using EasyWin from within a Windows program
Borland c++ provides EasyWin so you can quickly and easily convert your DOS
applications to 16-bitWindows programs.

You can also use EasyWin from within 16-bit Windows programs. For example, you can
add printffunctions to your program code to help debug a Windows progra~.

To use EasyWin from within a Windows program, call_InitEasyWinO before
performing any standard input or output.

_lnitEasyWin example
#include <stdio.h>

#include <windows.h>

#pragma argsused

250 c++ Pro 9 ram mer's G u ide

int PASCAL WinMain(HANDLE hInstance, HANDLE hPrevInstance,
LPSTR lpszOmdParam, int nOmdShow)

char *p;

_InitEasyWin();

p = "This is an example of how Borland C++"
" will automatically\nconcatenate"
" very long strings,\nresulting in nicer"
" looking programs.";

printf(p) ;

return (0) ;

EasyWin features
Easy.win now has support for several new features:

• Printing support lets you print the contents of the EasyWin window.

• Viewable scrolling buffer stores either 100 or 400 lines of text (depending on the
memory model). This buffer automatically scrolls as you move the vertical or
horizontal scroll bar thumb tabs.

• Redirects output to a file of your choice when the buffer runs out of space.

• Full Windows Clipboard support, lets you paste to standard input and copy from the
buffer onto the Clipboard, using either the keyboard or the mouse.

Printing
Use the Print command on the system menu to print the contents of an EasyWin
window. It activates the standard Print dialog from which you can specify printing
options.

By default, EasyWin prints 80 columns and approximately 54 lines on U.s. Letter size
(8.5" x 11") paper.

Note The Print command is grayed if you do not have a default printer installed under
Windows. If you have a printer installed but it is not the default, make it the default
printer before attempting to print from an EasyWin application.

If you have trouble printing on a dot-matrix printer, add the following global variable to
your main source file:

BOOL _UseDefaultPrinterFont;

Set this variable to TRUE and EasyWin will print using the default font for your printer
instead of the standard EasyWin printer font.

C hap t e r 9, Us i n 9 E as y Win 251

You should declare this variable as external and set it to TRUE within your mainO
function:

extern BaaL _UseDefaultPrinterFont;

int main()
{

_UseDefaultPrinterFont = TRUE;

Note This variable is not recommended for use with laser or iitkjet printers.

Scrolling buffer
EasyWin caches your screen output into a buffer of either:

• 400 lines (for compact and large memory models)

• 100 lines (for small and medium memory models)

You can view the buffer any time by using the scroll bar or any of the standard window
movement keys.

You can change the buffer size of your EasyWin application by declaring the following
global variable in your main source file with the appropriate initializer:

POINT _BufferSize = { x, y };

where:

X is the number of columns you want. Setting x to a value other than 80 is not recommended as the
results are unpredictable.

Y is the number of lines you want. If you need to specify a value for Y greater than 100, use the
compact or large memory model. 'The small and medium memory models have limited local heap
space for the buffer.

Autoscrolling
If you click and drag either the vertical or horizontal scroll bar thumb tab, the text in the
buffer automatically scrolls up and down or left and right. This is a useful feature when
you want to quickly scan large amounts of data in the EasyWin window.

Saving text in an output file
If you want to redirect the output of your program to a file, add the following global
variable to your main source file:

252 C++ Pro 9 ram mer's G u ide

char *_OutputFileName = "C:\\myoutput.txt";

Make _OutputFileName the name of the file in which to store the redirected output.

Note If the output file you specified already exists, it is deleted without warning.

Clipboard support
EasyWin lets you cut, copy, and paste text from an EasyWin application window.

To select text, use the Edit command from the system menu and choose Mark. This puts
you in Mark mode. You can use the mouse or the keyboard to select text. You can move
the cursor and select text using the standard rules and keystrokes for this feature.

Table 9.1 Actions that implement the Clipboard.

Enter

Escape

Right mouse button

Edit I Copy

Edit I Paste

Example

Exits Mark mode. Any marked text is copied to the Clipboard.

Exits Mark mode. No text is selected.

Same as Enter.

Same as Enter.

Pastes text into stdin, receiving the contents of the Clipboard as input to your
program, merging it with any keyboard input.

If you are writing a program that requests its data from the keyboard via scan!, cin, or
other similar stdiofconio functions:

• Write a data file that contains your entire input.

• Load that file into NotePad, select it, and copy it to the Clipboard.

• Run your program, go to the system Edit menu, and choose Paste.

Your program accepts the contents of Clipboard as input.

Note The Paste command is grayed if the Clipboard contains no objects of type CF _TEXT or if
your program has terminated.

• The Copy command is grayed if you have not selected a block of text.

Chapter 9, Using EasyWin 253

254 C++ Pro 9 ram mer's G ui d e

Math
This chapter describes the floating-point options and explains how to use complex and
bed numerical types.

Floating-point I/O
Floating-point output requires linking of conversion routines used by printf, scanf, and
any variants of these functions. To reduce executable size, the floating-point formats are
not automatically linked. However, this linkage is done automatically whenever your
program uses a mathematical routine or the address is taken of some floating-point
number. If neither of these actions occur, the missing floating-point formats can result in
a run-time error.

The following program illustrates how to set up your program to properly execute.
/* PREPARE TO OUTPUT FLOATING-POINT NUMBERS. */

#include <stdio.h>

#pragma extref _floatconvert

void main () {
printf("d = %f\n", 1.3);
}

Floating-point options
There are two types of numbers you work with in C: integer" (int, short, long, and so on)
and floating point (float, double, and long double). Your computer's processor can
easily handle integer values, but more time and effort are required to handle floating­
point values.

C hap t e r 1 0, Mat h 255

However, the iAPx86 family of processors has a corresponding family of math
coprocessors, the 8087, the 80287, and the 80387. We refer to this entire family of math
coprocessors as the 80x87, or ilthe coprocessor."

The 80x87 is a special hardware numeric processor that can be installed in your PC. It
executes floating-point mstructions very quickly. If you use floating point a lot, you'll
probably want a coprocessor. The CPU in your computer interfaces to the 80x87 via
special hardware lines.

Note If you have an 80486 or Pentium processor, the numeric coprocessor is probably already
built in. .

Emulating the 80x87 chip
The default Borland c++ code-generation option is emulation (the -f command -line
compiler option). This option is for programs that might or might not have floating
point, and for machines that might or might not have an 80x87 math coprocessor.

With the emulation option, the compiler will generate code as if the 80x87 were present,
but will also link in the emulation library (EMU. LIB). When the program runs, it uses
the 80x87 if it is present; if no coprocessor is present at run time, it uses special software
that emulates the 80x87. This software uses 512 bytes of your stack, so make allowance
for it when using the emulatio1) option and set your stack size accordingly.

Using the 80x87 code
If your program is going to run only on machines that have an 80x87 math coprocessor,
you can save a small amount in your .EXE file size by omitting the 80x87 auto detection
and emulation logic. Choose the 80x87 floating-point code-generation option (the -f87
command-line compiler option). Borland C++ will then link your programs with
FP87.LIB instead of with EMU.LIB.

No floating-point code
If there is no floating-point code in your program, you can save a small amount of link
time by choosing None for the floating-point code-generation option (the -f- command­
line compiler option). Then Borland C++ will not link with EMU. LIB, FP87.LIB, or
MATHx.LIB.

Fast floating-point option
Borland C++Borland C++ has a fast floating-point option (the -:-ff command-line
compiler option). It can be turned off with -ff- on the command line. Its purpose is to
allow certain optimizations that are technically contrary to correct C semantics. For
example,

double x;
x = (float) (3.5*x);

To execute this correctly, x is multiplied by 3.5 to give a double that is truncated to float
precision, then stored as a double in x. Under the fast floating-point option, the long

256 c++ Programmer's Guide

double product is converted directly to a double. Since very few programs depend on
the loss of precision in passing to a narrower floating-point type, fast floating point is
the default.

The 87 environment variable
If you build your program with 80x87 emulation, which is the default, your program
will automatically check to see if an 80x87 is available, and will use it if it is.

There are some situations in which you might want to override this default
auto detection behavior. For example, your own run-time system might have an 80x87,
but you might need to verify that your program will work as intended on systems
without a coprocessor. Or your program might need to run on a PC-compatible system,
but that particular system returns incorrect information to the auto detection logic
(saying that a nonexistent 80x87 is available, or vice versa).

Borland C++ provides an option for overriding the start-up code's default autodetection
logic; this option is the 87 environment variable.

You set the 87 environment variable at the DOS prompt with the SET command, like
this:

c> SET 87=N

or like this:

C> SET 87=Y

Don't include spaces on either side of the =. Setting the 87 environment variable to N
(for No) tells the start-up code that you do not want to use the 80x87, even though it
might be present in the system.

Note Setting the 87 environment variable to Y (for Yes) means that the coprocessor is there,
and you want the program to use it. Let the programmer beware: If you set 87 = Y when, in
fact, there is no 80x87 available on that system, your system will hang.

If the 87 environment variable has been defined (to any value) but you want to undefine
it, enter the following at the DOS prompt:

C> SET 87=

Press Enter immediately after typing the equal sign.

Registers and the 80x87
When you use floating point, make note of these points about registers:

• In 80x87 emulation mode, register wraparound and certain other 80x87 peculiarities
are not supported.

• If you are mixing floating point with inline assembly, you might need to take special
care when using 80x87 registers. Unless you are sure that enough free registers exist,
you might need to save and pop the 80x87 registers before calling functions that use
the coprocessor.

C hap t e r 1 0, Mat h 257

Disabling floating-paint exceptions
By default, Borland C++ programs abort if a floating-point overflow or divide-by-zero
error occurs. You can mask these Boating-point exceptions by a call to_control87 in main,
before any floating-point operations are performed. For example,

#include <float.h>
main() {

_contro187(MCW~EM,MCW~EM)i

You can determine whether a floating-point exception occurred after the fact by calling
_status87 or _clear87. See the C++ Library Reference entries for these functions for details.

Certain math errors can also occur in library functions; for instance, if you try to take the
square root of a negative number. The default behavior is to print an error message to
the screen, and to return a NAN (an IEEE not-a-number). Use of the NAN is likely to
cause a floating-point exception later, which will abort the program if unmasked. If you
don't want the message to be printed, insert the following version of _matherr into your
program:

#include <math.h>
int _matherr(struct _exception *e)

return 1i /* error has been handled */

Any other use of _matherr to intercept math errors is not encouraged; it is considered
obsolete and might not be supported in future versions of Borland C++.

Using complex types
Complex numbers are numbers of the form x + yi, where x and yare real numbers, and i
is the squar~ root of -1. Borland C++ has always had a type

struct complex

double x, Yi

} i

defined in math.h. This type is convenient for holding complex numbers, because they
can be considered a pair of real numbers. However, the limitations of C make arithmetic
with complex numbers rather cumbersome. With the addition of C++, complex math is
much simpler.

A significant advantage to using the Borland C++ complex numerical type is that all of
the ANSI C Standard mathematical routines are defined to operate with it. These
mathematical routines ,are not defined for use with the C strud complex.

Note See Part III of the C++ Language Reference for more information.

To use complex numbers in C++, all you have to do is to include complex.h. In
complex.h, all the following have been overloaded to handle complex numbers:

258 c++ Programmer's Guide

• All of the binary arithmetic operators.
• The input and output operators, » and «.
• The ANSI C math functions.

The complex library is invoked only if the argument is of type complex. Thus, to get the
complex square root of -1, use

sqrt(complex(-l))

and not

sqrt(-l)

The following functions are defined by class complex:
double arg(complex&)i
complex conj(complex&);
double imag (complex&) ;
double norm(complex&);
double real(complex&);

II angle in the plane
II complex conjugate
II imaginary part
I I square of the magnitude
I I real part

II Use polar coordinates to create a complex.
complex polar(double mag, double angle = O)i

USing bed types
Borland C++, along with almost every other computer and compiler, does arithmetic on
binary numbers (that is, base 2). This can sometimes be confusing to people who are
used to decimal (base 10) representations. Many numbers that are exactly representable
in base 10, such as 0.01, can only be approximated in base 2.

Note See Part III of the C++ Language Reference for more information.

Binary numbers are preferable for most applications, but in some situations the round­
off error involved in converting between base 2 and 10 is undesirable. The 'most
common example of this is a financial or accounting application, where the pennies are
supposed to add up. Consider the following program to add up 100 pennies and
subtract a dollar: .

include <stdio.h>
int ii
float x = 0.0;
for (i = 0; i < 100; ++i)

x += 0.01;
x -= 1.0i
printf("100*.01 - 1 = %g\n",x)i

The correct answer is 0.0, but the computed answer is a small number close to 0.0. The
computation magnifies the tiny round-off error that occurs when converting 0.01 to base
2. Changing the type of x to double or long double reduces the error, but does not
eliminate it.

To solve this problem, Borland C++ offers the C++ type bcd, which is declared in bcd.h.
With bcd, the number 0.01 is represented exactly, and the bcd variable x provides an
exact penny count.

C hap t e r 1 0, Mat h 259

#include <bcd.h>
int ij
bcd x = O.Oj
for (i = OJ i < 100j ++i)

x += O.Olj
x -= 1. OJ
cout « "100*.'01 - 1 = " « x « "\n"j

Here are some facts to keep in mind about bed:

• bed does not eliminate all round-off error: A computation like 1.0/3.0 will still have
round -off error. .

• bed types can be used with ANSI C math func~ons .

• bed numbers have about 17 decimal digits precision, and a range of about 1 x 10-125

to 1 x 10125. .

Converting bcd numbers
bed is a defined type distinct from float, double, or long double; decimal arithmetic is
performed only when at least one operand is of the type bed.

Note The bed member function real is available for converting a bed number back to one of the
usual formats (float, double, or long double)~ though the conversion is not done
automatically. real does the necessary conversion to long double, which can then
be converted to other types using the usual C conversions. For example, a bed can be
printed using any of the following four output statements with cout and printf.

1* PRINTING bcd NUMBERS *1
1* This must be compiled as a c++ program. *1
#include <bcd.h>
#include <iostream.h>
#include <stdio.h>

void main (void) {
bcd a = 12.1j
double x =real(a)j II This conversion required for printf().

printf (" \na = %g", x) j

printf (" \na = %Lg", real (a)) j

printf (" \na = %g", (double) real (a)) j

cout « "\na = " « aj II The preferred method.
}

Note that since printf doesn't do argument checking, the format specifier must have the
L if the long double value real(a) is passed.

Number of decimal digits
You can specify how many decimal digits after the decimal point are to be carried in a
conversion from a binary type to a bed. The number of places is an optional second

260 C++ Pro 9 ram mer's G u ide

argument to the constructor bed. For example, to convert $1000.00/7 to a bed variable
rounded to the nearest penny, use

bed a = bed(1000.00/7, 2)

where 2 indicates two digits following the decimal point. Thus,

1000.00/7 142.85714 ...

bed(1000.00/7, 2) 142.860

bed(1000. 00/7, 1) 142.900

bed(1000. 00/7, 0) 143.000

bed (1000.00/7, -1) 140.000

bed(1000.00/7, -2) 100.000

The number is rounded using banker's rounding (as specified by IEEE), which rounds
to the nearest whole number, with ties being rounded to an even digit. For example,

bed(12.335, 2)

bed(12.345, 2)

bed(12.355, 2)

12.34

12.34

12.36

C hap t e r 1 0, Mat h 261

262 C++ Pro 9 ram mer's G u ide

16-bit memory management
This chapter discusses

• What to do when you receive "Out of memory" errors.

• What memory models are: how to choose one, and why you would (or wouldn't)
want to use a particular memory model.

Running out of memory
Borland c++ does not generate any intermediate data structures to disk when it is
compiling (Borland C++ writes only .OBJ files to disk); instead it uses RAM for
intermediate data structures between passes. Because of this, you might encounter the
message "Out of memory" if there isn't enough memory available for the compiler.

The solution to this problem is to make your functions smaller, or to split up the file that
has large functions. .

Memory models
Borland C++ gives you six memory models, each suited for different program and code
sizes. Each memory model uses memory differently. What do you need to know to use
memory models? To answer that question, you need to take a look at the computer
system you're working on. Its central processing unit (CPU) is a microprocessor
belonging to the Intel iAPx86 family; an 80286, 80386, 80486, or Pentium. For now, we'll
just refer to it as an 8086.

Note See page 269 for a summary of each memory model.

C hap t e r 1 1, 1 6 - bit m e m 0 r y man age men t 263

The 8086 registers
The following figure shows some of the registers found in the 8086 processor. There are
other registers-because they can't be accessed directly, they aren't shown here.

Figure 11.1 8086 registers

General-purpose registers

AX accumulator (lath operations)
AH AL

BX base (i1deXing)
BH BL

ex count (irdeXing)
CH CL

OX data (hOlfing data)
DH DL

Segment address registers

es code segment pointer

OS data segment pointer

SS stack segment pOinter

ES extra segment pointer

Special-purpose registers

SP stack pointer

BP base pointer

SI source index

01 destination index

General-purpose registers
The general-purpose registers are the registers used most often to hold and manipulate
data. Each has some special functions that only it can do. For example,

• Some math operations can only be done using AX.
I • BX can be used as an index register.
• ex is used by LOOP and some string instructions.
• DX is implicitly used for some math operations.

But there are many operations that all these registers cando; in many cases, you can
freely exchange one for another.

264 e++ Programmer's Guide

Segment registers
The segment registers hold the starting address of each of the four segments. As
described in the next section, the 16-bit value in a segment register is shifted left 4 bits
(multiplied by 16) to get the true 20-bit address of that segment.

Special-purpose registers
The 8086 also has some special-purpose registers:

• The SI and D1 registers can do many of the things the general-purpose registers can,
plus they are used as index registers. They're also used by Borland C++ for register
variables.

• The SP register points to the current top-of-stack and is an offset into the stack
segment.

• The BP register is a secondary stack pointer, usually used to index into the stack in
order to retrieve arguments or automatic variables.

Borland C++ functions use the base pointer (BP) register as a base address for
arguments and automatic variables. Parameters have positive offsets from BP, which
vary depending on the memory model. BP points to the saved previous BP value if
there is a stack frame. Functions that have no arguments will not use or save BP if the
Standard Stack Frame option is Off.
Automatic variables are given negative offsets from BP. The offsets depend on how
much space has already been assigned to local variables.

The flags register
The 16-bit flags register contains all pertinent information about the state of the 8086 and
the results of recent instructions.

Figure 11.2 Flags register of the 80 x 86 processors
Virtual 8086 Mode

Resume

Nested Task

I/O Protection Level

Overflow

Direction

Interrupt Enable_

Trap

Sign

Zero
Auxiliary Carry

Parity
Carry

I
31 23 15 7 0

I I I I I I I I I I I I I I IvlRI INI loplolol I ITlslzl IAI Ipl lei

1

.... ~ _____ 80386 _____ .·1~028~+1~. ___ AII80x86 ...,-__ •• 1 '
only 80386 processors -

C hap t e r 11, 1 6 -bit me m 0 r y m an age men t 265

For example, if you wanted to know whether a subtraction produced a zero result, you
would check the zero flag (the Z bit in the flags register) immediately after the
instruction; if it were set, you would know the result was zero. Other flags, such as the
carry and overflow flags, similarly report the results of arithmetic and logical operations.

Other flags control the 8086 operation modes. The direction flag controls the direction in
which the string instructions move, and the interrupt flag controls whether external
hardware, such as a keyboard or modem, is allowed to halt the current code temporarily
so that urgent needs can be serviced. The trap flag is used only by software that debugs
other software.

The flags register isn't usually modified or read directly. Instead, the flags register is
generally controlled through special assembler instructions (such as CLD, STI, and
CMC) and through arithmetic and logical instructions that modify certain flags.
Likewise, the contents of certain bits of the flags register affect the operation of
instructions such as JZ, RCR, and MOVSB. The flags register is not really used as a
storage location, but rather holds the status and control data for the 8086.

Memory segmentation
The Intel 8086 microprocessor has a segmented memory architecture. It has a total address
space of 1 MB, but is designed to directly address only 64K of memory at a time. A 64K
chunk of memory is known as a segment; hence the phrase II segmented memory
architecture;"

• The 8086 keeps track of four different segments: code, data, stack, and extra. The code
segment is where the machine instructions are; the data segment is where
information is; the stack is, of course, the stack; and the extra segment is also used for
extra data.

• The 8086 has four 16-bit segment registers (one for each segment) named CS, DS, SS,
and ES; these point to the code, data, stack, and extra segments, respectively.

• A segment can be located anywhere in memory. In DOS real mode it can be located
almost anywhere. For reasons that will become clear as you read on, a segment must
start on an address that's evenly divisible by 16 (in decimal).

Address calculation
Note This whole section is applicable only to real mode under DOS. You can safely ignore it

for Windows development.

A complete address on the 8086 is composed of two 16-bit values: the segment address
and the offset. Suppose the data segment address-the value in the DS register-is 2F84
(base 16), and you want to calculate the actual address of some data that has an offset of
0532 (base 16) from the start of the data segment: how is that done?

Address calculation is done as follows: Shift the value of the segment register 4 bits to
the left (equivalent to one hex digit), then add in the offset.

The resulting 20-bit value is the actual address of the data, as illustrated here:

DS register (shifted): 0010 1111 1000 0100 0000 2F840
Offset: 0000 0101 0011 0010 = 00532

266 C++ Pro 9 ram mer's G u ide

address: 0010 1111 1101 0111 0010 = 2FD72

Note A chunk of 16 bytes is known as a paragraph, so you could say that a segment always
starts on a paragraph boundary.

The starting address of a segment is always a 20-bit number, but a segment register only
holds 16 bits-so the bottom 4 bits are always assumed to be all zeros. This means
segments can only start every 16 bytes through memory, at an address where the last 4
bits (or last hex digit) are zero. So, if the DS register is holding a value of 2F84, then the
data segment actually starts at address 2F840.

The standard notation for an address takes the form segment:offset; for example, the
previous address would be written as 2F84:0532. Note that since offsets can overlap, a
given segment:offset pair is not unique; the following addresses all refer to the same
memory location:

0000:0123
0002:0103
0008:00A3
0010:0023
0012:0003

Segments can overlap (but don't have to). For example, all four segments could start at
the same address, which means that your entire program would take up no more than
64K-but that's all the space you'd have for your code, your data, and your stack.

Pointers
Although you can declare a pointer or function to be a specific type regardless of the
model used, by default the type of memory model you choose determines the default
type of pointers used for code and data. There are four types of pointers: near (16 bits),
far (32 bits), huge (also 32 bits), and segment (16 bits).

Near pointers
A near pointer (16-bits) relies on one of the segment registers to finish calculating its
address; for example, a pointer to a function would add its 16-bit value to the left-shifted
contents of the code segment (CS) register. In a similar fashion, a near data pointer
contains an offset to the data segment (DS) register. Near pointers are easy to
manipulate, since any arithmetic (such as addition) can be done without worrying about
the segment.

Far pointers
A far pointer (32-bits) contains not only the offset within the segment, but also the
segment address (as another 16-bit value), which is then left-shifted and added to the
offset. By using far pointers, you can have multiple code segments; this, in tum, allows
you to have programs larger than 64K. You can also address more than 64K of data.

When you use far pointers for data, you need to be aware of some potential problems in
pointer manipulation. As explained in the section on address calculation, you can have
many different segment:offset pairs refer to the same address. For example, the far

C h apt e r 11, 1 6 - bit me m 0 r y man age men t 267

pointers 0000:0120, 0010:0020, and 0012:0000 all resolve to the same 20-bit address.
However, if you had three different far pointer variables~, b, and c----containing those
three values respectively, then all the following expressions would be false:

if (a == b)

if (b == c) . . .
if (a == c) ..•

A related problem occurs when you want to compare far pointers using the >, >=, <,
and <= operators. In those cases, only the offset (as an unsigned) is used for comparison
purposes; given that a, b, and c still have the values previously listed, the following
expressions would all be true:

if (a > b)

if (b > c) ••.

if (a > c) •••

The equals (==) and not-equal (!=) operators use the 32-bit value as an unsigned long
(not as the full memory address). The comparison operators «=, >=, <, and » use just
the offset.

The == and != operators need all 32 bits, so the computer can compare to the NULL
pointer (0000:0000). If you used only the offset value for equality checking, any pointer
with 0000 offset would be equal to the NULL pointer, which is not what you want.

Note If you add values to a far pointer, only the offset is changed. If you add enough to cause
the offset to exceed FFFF (its maximum possible value), the pointer just wraps around
back to the beginning of the segment. For example, if you add 1 to 5031:FFFF, the result
would be 5031:0000 (not 6031:0000). Likewise, if you subtract 1 from 5031:0000, you
would get 5031:FFFF (not 5030:000F).

If you want to do pointer comparisons, it's safest to use either near pointers-which all
use the same segment address-or huge pointers, described next.

Huge pOinters
Huge pointers are also 32 bits long. Like far pointers, they contain both a segment
address and an offset. Unlike far pointers, they are normalized to avoid the problems
associated with far pointers.

A normalized pOinter is a 32-bit pointer that has as much of its value in the segment
address as possible. Since a segment can start every 16 bytes (10 in base 16), this means
that the offset will only have a value from 0 to 15 (0 to F in base 16).

To normalize a pointer, convert it to its 20-bit address, then use the right 4 bits for your
offset and the left 16 bits for your segment address. For example, given the pointer
2F84:0532, you would convert t1;tat to the absolute address 2FD72, which you would
then normalize to 2FD7:0002. Here are a few more pointers with their normalized
equivalents:

0000:0123
0040:0056
500D:9407
7418:D03F

0012:0003
0045:0006
594D:0007
811B: OOOF

. 268 C++ Pro 9 ram mer's G u ide

There are three reasons why it is important to always keep huge pointers normalized:

1 For any given memory address there is only one possible huge address
(segment:offset) pair. That means that the == and !=operators return correct answers
for any huge pointers.

2 In addition, the >, >=, <, and <= operators are all used on the full 32-bit value for
huge pointers. Normalization guarantees that the results of these comparisons will
also be correct.

3 Finally, because of normalization, the offset in a huge pointer automatically wraps
/ around every 16 values, but-unlike far pointers-the segment is adjusted as well.
For example, if you were to increment 811B:OOOF, the result would be 811C:OOOO;
likewise, if you decrement 811C:OOOO, you get 811B:OOOF. It is this aspect of huge
pointers that allows you to manipulate data structures greater than 64K in size. This
ensures that, for example, if you have a huge array of structsthat's larger than 64K,
indexing into the array and selecting a struct field will always work with structs of
any size.

There is a price for using huge pointers: additional overhead. Huge pointer arithmetic is
done with calls to special subroutines. Because of this, huge pointer arithmetic is
significantly slower than that of far or near pointers.

The six memory models
Borland C++ gives you six memory models for 16-bit DOS programs: tiny, small,
medium, compact, large, and huge. Your program requirements determine which one
you pick. Here's a brief summary of each:

• Tiny. As you might guess, this is the smallest of the memory models. All four
segment registers (CS, DS, SS, ES) are set to the same address, so you have a total of
64K for all of your code, data, and stack. Near pointers are always used. Tiny model
programs can be converted to .COM format by linking with the It option. Use this
model when memory is at an absolute premium.

• Small. The code and data segments are different and don't overlap, so you have 64K
of code and 64K of data and stack. Near pointers are always used. This is a good size
for average applications.

• Medium. Far pointers are used for code, but not for data. As a result, data plus stack
are limited to 64K, but code can occupy up to 1 MB. This model is best for large
programs without much data in memory.

• Compact. The inverse of medium: Far pointers are used for data, but not for code.
Code is then limited to, 64K, while data has a 1 MB range. This model is best if code is
small but needs to address a lot of data.

• Large. Far pointers are used for both code and data, giving both a 1 MB range. Large
and huge are needed only for very large applications.

• Huge. Far pointers ~re used for both code and data. Borland C++ normally limits the
size of all static data to 64K; the huge memory model sets aside that limit, allowing
data to occupy more than 64K.

C hap t e r 1 1, 1 6 -bit m e m 0 r y man age men t 269

Figures 111.3 through 111.8 show how memory in the 8086 is apportioned for the
Borland C++ memory models. To select these memory models, you can either use menu
selections from the IDE or you can type options invoking the command-line compiler
version of Borland C ++Borland C++.

Figure 11.3 Tiny model memory segmentation

Low address Segment registers:,

CS,DS,SS--~-'·r-----------------------~··

DGROUP

SP{TOS) ------l~F;'

_TEXT class 'CODE'
code

_DATA class 'DATA'
initialized data

_BSS class '8SS'
initialized data

STACK
Starting SP ------Jl~L-________________!.. ____ ...J

High address

,Figure 11.4 Small model memory segmentation

Segment registers: Low address

CS-------~~~--------------------~

_TEXT class 'CODE'
code

DS,SS------~~r----------------------~

DGROUP

SP (TOS) ---+

_DATA class 'DATA'
initialized data

_8SS class '8SS'
initialized data

Starting SP ----JI>+-----------~----_+_----_I

High address

270 C++ Pro 9 ram mer's G u ide

Segment size:

Up to 64K

Segment size:

Up to 64K

Up to 64K

Up to rest of memory

Figure 11.5 Medium model memory segmentation
Multiple sfiles:

CS

Segment registers: Low address

class 'CODE'
code

DS,SS------~I------------------------;

DGROUP

_DATA class 'DATA'
initialized data

_BSS class 'BSS'
initialized data

HEAP

Starting SP --.... II-----~----I_-___1

High address

Figure 11.6 Compact model memory segmentation

Segment registers: Low address
CS-------~·~----------------------~

_TEXT class 'CODE'
code

DS--------.... lr---------------------~

DGROUP

_DATA class 'DATA'
initialized data

_BSS class 'BSS'
initialized data

SS== ••
SP (TOS)

Starting SP --~t---------_t--_____i

High address

Segment size:

Each sfile up to 64K

Up to 64K

Up to rest of memory

Segment size:

Up to 64K

Up to 64K

Up to 64K

Up to rest of memory

C hap t e r 1 1, 1 6 -bit m e m 0 r y man age men t 271

Figure 11.7 Large model memory segmentation
Multiple sfiles:

CS points to
only one sfile

CS 1....-___ at a time.

Segment registers:

class 'CODE'
code

DS--------.·r-----------------------~

DGROUP

SS --------...

SP (TOS) --..... ;

_DATA class 'DATA'
initialized data

_BSS class 'BSS'
initialized data

Starting SP --... ,------------1----1

Figure 11.8 Huge model memory segmentation
Multiple sfiles:

CS

Segment registers:

Multiple

DS

SS ----'----....

SP(TOS)--......

High address

Low address

EXT class 'CODE'
code

A class 'FAR_DATA'

Starting SP ----l~I----------_+--_i

High address

272 C++ Pro 9 ram mer's G u i'd e

Segment size:

Up to 64K

Up to 64K

Up to 64K

Up to rest of memory

Segment size:

Each stile up to 64K

Each stile up to 64K

Up to 64K

Up to rest of memory

Table 1.1 summarizes the different models and how they compare to one another. The
models are often grouped according to whether their code or data models are small
(64K) or large (16 MB); these groups correspond to the rows and columns in Table 1.1.

Table 11.1 Comparison of models

Tiny (data, code overlap; total size = 64K)

64K

Small (no overlap; total size = 128K)
v ~ •• ,., __ ~. ~ _." ••• _ ••• ~.." ~. • ~

Compact (large data, small code)

16MB

Medium (small data,large code)

Large (large data, code)

Huge (same as large but static data> 64K)

The models tiny, small, and compact are small code models because, by default, code
pointers are near; likewise, compact, large, and huge are large data models because, by
default, data pointers are far.

When you compile a module (a given source file with some number of routines in it),
the resulting code for that module cannot be greater than 64K, since it must all fit inside
of one code segment. This is true even if you're using one of the larger code models
(medium, large, or huge). If your module is too big to fit into one (64K) code segment,
you must break it up into different source code files, compile each file separately, then
link them together. Similarly, even though the huge model permits static data to total
more than 64K, it still must be less than 64K in each module.

Mixed-model programming: Addressing modifiers
Borland c++ introduces eight new keywords not found in standard ANSI C. These
keywords are __ near, __ far, __ huge, __ cs, __ ds, __ es, __ ss, and __ seg. These
keywords can be used as modifiers to pointers (and in some cases, to functions), with
certain limitations and warnings.

In Borland C++, you can modify the declarations of pointers, objects, and functions with
the keywords __ near, __ far, or __ huge. The __ near, __ far, and __ huge data pointers
are described earlier in this chapter. You can declare far objects using the __ far
keyword. __ near functions are invoked with near calls and exit with near returns.
Similarly, __ far functions are called __ far and return far values. __ huge functions are
like __ far functions, except that __ huge functions set DS to a new value, and __ far
functions do not.

There are also four special __ near data pointers: __ cs, __ ds, __ es, and __ ss. These are
16-bit pointers,that are specifically associated with the corresponding segment register.
For example, if you were to declare a pointer to be

char _55 *Pi

then p would contain a 16-bit offset into the stack segment.

C hap t e r 1 1, 1 6 - bit m e m 0 r y man age men t 273

Functions and pointers within a given program default to near or far, depending on the
memory model you select. If the function or pointer is near, it is automatically
associated with either the CS or DS register.

The next table shows how this works. Note that the size of the pointer corresponds to
whether it is working within a 64K memory limit (near, within a segment) or inside the
general 1 MB memory space (far, has its own segment address).

Table 11.2 Defaults for functions and pOinters

Tiny near,_cs near,_ds

Small near, _cs near,_ds

Medium far near,_ds

Compact near,_cs far

Large far far

Huge far far

Segment pOinters
Use __ seg in segment pointer type declarators. The resulting pointers are 16-bit
segment pointers. The syntax for __ seg is:

datatype _seg *identifier;

For example,

int _seg *namei

Any indirection through identifier has an assumed offset of O. In arithmetic involving
segment pointers the following rules hold true:

1 You can't use the ++, - -, +=, or -= operators with segment pointers.

2 You cannot subtract one segment pointer from another.

3 When adding a near pointer to a segment pointer, the result is a far pointer that is
formed by using the segment from the segment pointer and the offset from the near
pointer. Therefore, the two pointers must either point to the same type, or one must
be a pointer to void. There is no multiplication of the offset regardless of the type
pointed to.

4 When a segment pointer is used in an indirection expression, it is also implicitly
converted to a far pointer.

S When adding or subtracting an integer operand to or from a segment pointer, the
result is a far pointer, with the segment taken from the segment pointer and the offset
found by multiplying the size of the object pointed to by the integer operand. The
arithmetic is performed as if the integer were added to or subtracted from the far
pointer.

6 Segment pointers can be assigned, initialized, passed into and out of functions,
compar~d and so forth. (Segment pointers are compared as if their values were

274 C++. Pro 9 ram mer's G u ide

unsigned integers.) In other words, other than the above restrictions, they are treated
exactly like any other pointer.

Declaring far objects
You can declare far objects in Borland C++. For example,

int far x = 5;
·int far Zi

extern int far y = 4i

static long j;

The command-line compiler options -zE, -zF, and -zH (which can also be set using
#pragma option) affect the far segment name, class,and group, respectively. When you
use #pragma option, you can make them apply to any ensuing far object declarations.
Thus you could use the following sequence to create a far object in a specific segment:

#pragma option -zEmysegment -zHmygroup -zFmyclass
int far Xi

#pragma option -zE* -zH* -zF*

This will put X in segment MYSEGMENT 'MYCLASS' in the group 'MYGROUP', then
reset all of the far object items to the default values. Note that by using these options,
several far objects can be forced into a single segment:

#pragma option -zEcornbined -zFmyclass
int far Xi

double far Yi

#pragma option -zE* -zF*

Both X and y will appear in the segment COMBINED 'MYCLASS' with no group.

Declaring functions to be near or far
On occasion, you'll want (or need) to override the default function type of your memory
model.

For example, suppose you're using the large memory model, but you have a recursive
(self-calling) function in your program, like this:

double power(double x,int exp)
if (exp <= 0)

return (1) i

else
return(x * power (x, exp-1))i

Every time power calls itself, it has to do a far call, which uses more stack space and clock
cycles. By declaring power as __ near, you eliminate some of the overhead by forcing all
calls to that function to be near:

double __ near power(double x,int exp)

This guarantees that power is callable only within the code segment in which it was
compiled, and that all calls to it are near calls.

C hap t e r 1 1, 1 6 -bit m e m 0 r y man age men t 275

This means that if you're using a large code model (medium, large, or huge), you can
only call power from within the module where it is defined. Other modules have their
own code segment and thus cannot call __ near functions in different modules.
Furthermore, a near function must be either defined or declared before the first time it is
used, or the compiler won't know it needs to generate a near call.

Conversely, declaring a function to be far means that a far return is generated. In the
small code models, the far function must be declared or defined before its first use to
ensure it is invoked with a far call.

Look back at the power example at the beginning of this section. It is wise to also declare
power as static, since it should be called only from within the current module. That way,
being a static, its name will not be available to any functions outside the module.

Declaring pointers to be near, far, or huge
You've seen why you might want to declare functions to be of a different model than the
rest of the program. For the same reasons given in the preceding section, you might
want to modify pointer declarations: either to avoid unnecessary overhead (declaring
__ near when the default would be __ far) or to reference something outside of the
default segment (declaring __ far or _ ~huge when the default would be -'- _near).

There are, of course, potential pitfalls in declaring functions and pointers to be of
nondefault types. For example, say you have the following small model program:

void myputs(s) {
char *Si

int ii
for (i = Oi sri] != Oi i++) putc(s[i]) i

main()
char near *mystri

mystr = "Hello, world\n"
myputs (mystr)i
}

This program works fine. In fact, the __ near declaration on mystr is redundant, since all
pointers, both code and data, will be near.

But what if you recompile this program using the compact (or large or huge) memory
model? The pointer mystr in main is still near (it's still a 16-bit pointer). However, the
pointer sin myputs is now far, because that's the default. This means that myputswill
pull two words out of the stack in an effort to create a far pointer, and the address it ends
up with will certainly not be that of mystr.

How do you avoid this problem? If you're going to explicitly declare pointers to be of
type· __ far or __ near, be sure to use function prototypes for any functions that might
use them. The solution is to define.myputs in ANSI C style, like this:

void myputs(char *s) {
/* body of myputs */
}

276 C++ Pro 9 ram mer's G u ide

Now when Borland C++ compiles your program, it knows that myputs expects a pointer
to char; and since you're compiling under the large model, it knows that the pointer
must be __ far. Because of that, Borland C++ will push the data segment (DS) register
onto the stack along with the 16-bit value of mystr, forming a far pointer.

How about the reverse case: arguments to myputs declared as __ far and compiled with
a small data model? Again, without the function prototype, you will have problems,
because main will push both the offset and the segment address onto the stack; but
myputs will expect only the offset. With the prototype-style function definitions, though,
main will only push the offset onto the stack.

Pointing to a given segment:offset address
You can make a far pointer point to a given memory location (a specific segment:offset
address). You can do this with the macro MKJP, which takes a segment and an offset
and returns a far pointer. For example,

Given a __ far pointer,W, you can get the segment component with FP _SEGifp) and the
offset component with FP _OFFifp). For more information about these three Borland
C++ library routines, refer to the C++ Library Reference.

Using library files
Borland C++ offers a version of the standard library routines for each of the six memory
models. Borland C++ is smart enough to link in the appropriate libraries in the proper
order, depending on which model you've selected. However, if you're using the
Borland C++ linker, TLINK, directly (as a standalone linker), you need to specify which
libraries to use. See the online Help for how to do this.

Linking mixed modules
Suppose you compiled one module using the small memory model and another module
using the large model, then wanted to link them together. This would present some
problems, but they can be solved.

The files would link together fine, but the problems you would encounter would be
similar to those described in the earlier section, "Declaring functions to be near or far." If
a function in the small module called a function in the large module, it would do so with
a near call, which would probably be disastrous. Furthermore, you could face the same
problems with pointers as described in the earlier section, "Declaring pointers to be
near, far, or huge," since a function in the small module would expect to pass and
receive __ near pointers, and a function in the large module would expect __ far
pointers.

The solution, again, is to use function prototypes. Suppose that you put myputs into its
own module and compile it with the large memory modeL Then create a header file
called myputs.h (or some other name with a .h extension), which would have the
following function prototype in it:

C hap t e r 1 1, 1 6 -bit m e m 0 r y man age men t 277

void far myputs(char far *s);

Now, put main into its own module (called MYMAIN.C), and set things up like this:

#include <stdio.h>
#include "myputs.h"

main() {
char near *mystr;

mystr = "Hello, world\n";
myputs (mystr);
}

When you compile this program, Borland C++ reads in the function prototype from
myputs.h and sees that it is a __ far function that expects a __ far pointer. Therefore, it
generates the proper calling code,even if it's compiled using the small memory model.

What if, on top of all this, you need to link in library routines? Your best bet is to use one
of the large model libraries and declare everything to be __ far. To do this, make a copy
of each header file you would normally include (such as stdio.h), and rename the copy

. to something appropriate (such as fstdio.h).

Then edit each function prototype in the copy so that it is explicitly __ far, like this:'

int far cdecl printf(char far * format, ...);

That way, not only will __ far calls be made to the routines, but the pointers passed will
also be __ far pointers. Modify your program so that it includes the new header file:

#include <fstdio.h>

void main () {
char near *mystr;
mystr = "Hello, world\n";
printf (mystr);

Compile your program with the command-line compiler Bce and then link it with
TLINK, specifying a large model library, such as CL.LIB. Mixing models is tricky, but it
can be done; just be 'prepared for some difficult bugs if you do things wrong.

278 C++ Pro 9 ram mer's G u ide

ANSI implementation-specific
standards

Certain aspects of the ANSI C standard are not defined exactly by ANSI. Instead, each
implementor of a C compiler is free to define these aspects individually. This topic
describes how Borland has chosen to define these implementation-specific standards.
The section numbers refer to the February 1990 ANSI Standard. Remember that there
are differences between C and C++; this topic provides you with information on the C
language implementation.

2.1.1.3 How to identify a diagnostic.

When the compiler runs with the correct combination of options, any messages it issues
beginning with the words Fatal, Error, or Warning are diagnostics in the sense that ANSI
specifies. The options needed to ensure this interpretation are as follows:

Table 12.1 Identifying diagnostics in Borland C++

-A Enable only ANSI keywords.

-C- No nested comments allowed.

-i32 At least 32 significant characters in identifiers.

-p- Use C calling conventions.

-w- Turn off all warnings except the following.

-wbei Turn on warning about inappropriate initializers.

-wbig Turn on warning about constants being too large.

-wept Turn on warning about nonportable pointer comparisons.

-wdcl Turn on warning about declarations without type or storage class.

-wdup Turn on warning about duplicate nonidentical macro definitions.

-wext Turn on warning about variables declared both as external and as static.

-wfdt Turn on warning about function definitions using a typedef.

-wrpt Turn on warning about nonportable pointer conversion.

C hap t e r 1 2, A N S lim pie men tat ion - s pee i fie s tan dar d s 279

Table 12.1 Identifying diagnostics in Borlahd C++ (continued)

-wstu Turn on warning about undefined structures.

-wsus Turn on warning about suspicious pointer conversion.

-wucp Turn on warning about mixing pointers to signed and unsigned char.

-wvrt Turn on warning about void functions returning a value.

You cannot use the following options:

-ms!

-mm!

-mt!

-zGxx

-z5xx

55 must be the same as D5 for small data models.

55 must be the same as D5 for small data models.

55 must be the same as D5 for small data models.

The B55 group name cannot be changed.

The data group name cannot be changed.

Other options not specifically mentioned here can be set to whatever you want.

2.1.2.2.1 The semantics of the arguments to main.

The value of argv[O] is a pointer to a null byte when the program is run on DOS versions
prior to version 3.0. For DOS version 3.0 or later, argv[O] points to the program name.

The remaining argv strings point to each component of the DOS command-line
arguments. Whitespace separating arguments is removed, and each sequence of

. contiguous non-whitespace characters is treated as a single argument. Quoted strings
are handled correctly (that is, as one string containing spaces).

2.1.2.3 What constitutes an interactive device.

An interactive device is any device that looks like the console.

2.2.1 The collation sequence of the execution character set.

The collation sequence for the execution character set uses the signed value of the
character in ASCII.

2.2.1 Members of the source and execution character sets.

The source and execution character sets are the extended ASCII set supported by the
IBM PC. Any character other than Ctrl+Z can appear in string literals, character
constants, or comments.

2.2.1.2 Multibyte characters.

Multibytecharacters are supported in Borland C++.

2.2.2 The direction of printing.

Printing is from left-to-right, the normal direction for the PC.

2.2.4.2 The number of bits in a character in the execution character set.

There are 8 bits per character in the execution character set.

280 c++ Programmer's Guide

3.1.2 The number of significant initial characters in identifiers.

The first 32 characters are significant, although you can use a command-line option (-i)
to change that number. Both internal and external identifiers use the same number of
significant characters. (The number of significant characters in c++ identifiers is
unlimited.)

3.1.2 Whether case distinctions are significant in external identifiers.

The compiler normally forces the linker to distinguish between uppercase and
lowercase. You can use a command-line option (-l~) to suppress the distinction.

3.1.2.5 The representations and sets of values of the various types of integers.

Table 12.2 Identifying diagnostics in C++

signed char -128 ' 127 -128

unsigned char 0 255 0

signed short -32,768 32,767 -32,768

unsigned short 0 65,535 0

signed int -32,768 32,767 -2,147,483,648

unsigned int 0 65,535 0

signed long -2,147,483,648 2,147,483,647 -2,147,483,648

unsigned long 0 4,294,967,295 0

All char types use one 8-bit byte for storage.

All short and int types use 2 bytes (in 16-bit programs).

All short and int types use 4 bytes (in 32-bit programs).

All long types use 4 bytes.

127

255

32,767

65,535

-2,147,483,647

4,294,967,295

2,147,483,647

4,294,967,295

If alignment is requested (-a), all nonchar integer type objects will be aligned to even
byte boundaries. If the requested alignment is -a4, the result is 4-byte alignment.
Character types are never aligned.

3.1.2.5 The representations and sets of values of the various types of floating-point numbers.

The IEEE floating-point formats as used by the Intel 8087 are used for all Borland C++
floating-point types. The float type uses 32-bit IEEE real format. The double type uses
64-bit IEEE real format. The long double type uses 80-bit IEEE extended real format.

3.1.3.4 The mapping between source and execution character sets.

Any characters in string literals or character constants remain unchanged in the
~xecuting program. The source and execution character sets are the same.

3.1.3.4 The value of an integer character constant that contains a character or escape
sequence not represented in the basic execution character set or the extended
character set for a wide character constant.

Wide characters are supported.

C hap t e r 1 2, A N S lim pie men tat ion -s pee if ic s tan dar d s 281

3.1.3.4 The current locale used to convert multibyte characters into corresponding wide
characters for a wide character constant.

Wide character constants are recognized.

3.1.3.4 The value of an integer constant that contains more than one character, or a wide
character constant that contains more.than one multibyte character.

Character constants can contain one or two characters. If two characters are included,
the first character occupies the low-order byte of the constant, and the second character
occupies the high-order byte.

3.2.1.2 The result of converting an integer to a shorter signed integer, or the result of
converting an unsigned integer to a signed integer of equal length, if the value cannot
be represented.

These conversions are performed by simply truncating the high-order bits. Signed
integers are stored as two's complement values, so the resulting number is interpreted
as such a value. If the high-order bit of the smaller integer is nonzero, the value is
interpreted as a negative value; otherwise, it is positive.

3.2.1.3 The direction of truncation when an integral number is converted to a floating-point
number that cannot exactly represent the original value.

The integer value is rounded to the nearest representable value. Thus, for example, the
long value (231 -1) is converted to the float value 231. Ties are broken according to the
rules of IEEE standard arithmetic.

3.2.1.4 The direction of truncation or rounding when a floating-point number is converted to
a narrower Boating-point number.

The value is rounded to the nearest representable value. Ties are broken according to
the rules of IEEE standard arithmetic.

3.3 The results of bitwise operations on signed integers.

The bitwise operators apply to signed integers as if they were their corresponding
unsigned types. The sign bit is treated as a normal data bit. The result is then interpreted
as a normal two's complement signed integer.

3.3.2.3 What happens when a member of a union object is accessed using a member of a
different type.

The access. is allowed and the different type member will access the bits stored there.
You'll·need a detailed understanding of the bit encodings of floating-point values to
understand how to access a floating-type member using a different member. If the
member stored is shorter than the member used to access the value, the excess bits have
the value they had before the short member was stored.

3.3.3.4 The type of integer required to hold the maximum size of an array.

For a normal array, the type is unsigned int, and for huge arrays the type is signed
long.

3.3.4 The result of casting a pointer to an integer or vice versa.

282 C++ Pro 9 ram mer's G u ide

When converting between integers and pointers of the same size, no bits are changed.
When converting from a longer type to a shorter type, the high-order bits are truncated.
When converting from a shorter integer type to a longer pointer type, the integer is first
widened to an integer type the same size as the pointer type.

Thus signed integers will sign-extend to fill the new bytes. Similarly, smaller pointer
types being converted to larger integer types will first be widened to a pointer type as
wide as the integer type.

3.3.5 The sign of the remainder on integer division.

The sign of the remainder is negative when only one of the operands is negative. If
neither or both operands are negative, the remainder is positive.

3.3.6 The type of integer required to hold the difference between two pointers to elements
of the same array, ptrdiftJ.

The type is signed int when the pointers are near (or the program is a 32-bit
application), or signed long when the pointers are far or huge. The type of ptrdifLt
depends on the memory model in use. In small data models, the type is int. In large data
models, the type is long.

3.3.7 The result of a right shift of a negative signed integral type.

A negative signed value is sign extended when right shifted.

3.5.1 The extent to which objects can actually be placed in registers by using the register
storage-class specifier.

Objects declared with any two-byte integer or pointer types can be placed in registers.
The compiler places any small auto objects into registers, but objects explicitly declared

, as register take precedence. At least two and as many as six registers are available. The
number of registers actually used depends on what registers are needed for temporary
values in the function.

3.5.2.1 Whether a plain int bit field is treated as a signed int or as an unsigned int bit field.

Plain int bit fields are treated as signed int bit fields.

3.5.2.1 The order of allocation of bit fields within an int.

Bit fields are allocated from the low-order bit position to the high-order.

3.5.2.1 The padding and alignment of members of structures.

By default, no padding is used in structures. If you use the word alignment option (-a),
structures are padded to even size, and any members that do not have character or
character array type are aligned to an even multiple offset.

3.5.2.1 Whether a bit field can straddle a storage-unit boundary.

When alignment (-a) is not requested, bit fields can straddle word boundaries, but are
never stored in more than two adjacent bytes.

3.5.2.2 The integer type chosen to represent the values of an enumeration -type.

Store all enumerators as full ints. Store the enumerations in a long or unsigned long if
the values don't fit into an int. This is the default behavior as specified by -b compiler
option.

Chapter 12, ANSI implementation-specific standards 283

The -b- behavior specifies that enumerations should be stored in the smallest integer
type that can represent the values. This includes all integral types, for example, signed
char, unsigned char, signed short, unsigned short, signed int, unsigned int, signed
long, and unsigned long.

For C++ compliance, -b- must be specified because it is not correct to store all
enumerations as ints for C++.

3.5.3 What constitutes an access to an object that has volatile-qualified type.

Any reference to a volatile object will access the object. Whether accessing adjacent
memory locations will also access an object depends on how the memory is constructed
in the hardware. For special device memory, such as video display memory, it depends
on how the device is constructed. For normal PC memory, volatile objects are used only
for memory that might be accessed by asynchronous interrupts, so accessing adjacent
objects has no effect.

3.5.4 The maximum number of declarators that ca~ modify an arithmetic, structure, or
union type.

There is no specific limit on the number of declarators. The number of declarators
allowed is fairly large, but when nested deeply within a set of blocks in a function, the
number of declarators will be reduced. The number allowed at file level is at least 50.

3.6.4.2 The maximum number of case values in a switch statement.

There is no specific limit on the number of cases in a switch. As long as there is enough
memory to hold the case information, the compiler will accept them.

3.8.1 Whether the value of a single-character character constant in a constant expression
that controls conditional inclusion matches the value of the same character constant
in the execution character set. Whether such a character constant can have a negative
value.

All character constants, even constants in conditional directives, use the same character
set (execution). Single-character character constants will be negative if the character type
is signed (default and -K not requested).

3.8.2 The method for locating includable source files.

For include file names given with angle brackets, if include directories are given in the
command line, then the file is searched for in each of the include directories. Include
directories are searched in this order: first, using directories specified on the command
line, then using directories specified in TURBOC.CFG or BCC32.CFG. If no include
directories are specified, then only the current directory is searched.

3.8.2 The support for quoted names for includable source files.

For quoted file names, the file is first searched for in the current directory. If not found,
searches for the file as if it were in angle brackets.

3.8.2 The mapping of source file name character sequences.

Backslashes in include file names are treated as distinct characters, not as escape
characters. Case differences are ignored for letters.

284 c++ Programmer's Guide

3.8.8 The definitions for __ DATE __ and __ TIME __ when they are unavailable.

The date and time are always available and will use the operating system date and time.

4.1.1 The decimal point character.

The decimal point character is a period (.).

4.1.5 The type of the sizeof operator, size_to

The type size_t is unsigned.

4.1.5 The null pointer constant to which the macro NULL expands.

For a 16-bit application, an integer or a long zero, depending on the memory model.

For 32-bit applications, NULL expands to an int zero or a long zero. Both are 32-bit
signed numbers.

4.2 The diagnostic printed by and the termination behavior of the assert function.

The diagnostic message printed is II Assertion failed: expression, file filename, line nn,"
where expression is the asserted expression that failed, filename is the source file name,
and nn is the line number where the assertion took place.

Abort is called immediately after the assertion message is displayed.

4.3 The implementation-defined aspects of character testing and case-mapping
functions.

None, other than what is mentioned in 4.3.1.

4.3.1 The sets of characters tested Jor by the isalnum, isalpha, iscntrl, islower, isprint, and
isupper functions.

First 128 ASCII characters for the default C locale. Otherwise, all 256 characters.

4.5.1 The values returned by the mathematics functions on domain errors.

An IEEE NAN (not a number).

4.5.1 Whether the mathematics functions set the integer expression ermo to the value of
the macro ERANGE on underflow range errors.

No, only for the other errors-domain, singularity, overflow, and total loss of precision.

4.5.6.4 Whether a domain error occurs or zero is returned when the fmod functio~ has a
second argument of zero.

No; fmod (X, 0) returns O.

4.7.1.1 The set of signals for the signal function.

SIGABRT, SIGFPE, SIGILL, SIGINT, SIGSEGV, and SIGTERM .

. 4.7.1.1 The semantics for each signal recognized by the signal function.

See the description of signal.

4.7.1.1 The default handling and the handling at program startup for each signal recognized
by the signal function.

See the description of signal.

Chapter 12, ANSI implementation-specific standards 285

4.7.1.1 If the equivalent of signal(sig, SIG_DFL) is not executed prior to the call of a signal
handler, the blocking of the signal that is performed.

The equivalent of signal(sig, SIG_DFL) is always executed.

4.7.1.1 Whether the default handling is reset if the SIGILL signal is received by a handler ,
specified to the signal function.

No, it is not.

4.9.2 Whether the last line of a text stream requires a terminating newline character.

No, none is required.

4.9.2 Whether space characters that are written out to a text stream immediately before a
newline character appear when read in.

Yes, they do.

4.9.2 The number of null characters that may be appended to data written to a binary
stream.

None.

4.9.3 Whether the file position indicator of an append mode stream is initially positioned
at the beginning or end of the file.

The file position indicator of an append-mode stream is initially placed at the beginning
of the file. It is reset to the end of the file before each write.

4.9.3 Whether a write on a text stream causes the associated file to be truncated beyond that
point.

A write of 0 bytes might or might not truncate the file, depending on how the file is
buffered. It is safest to classify a zero-length write as having indeterminate behavior.

4.9.3 The characteristics of file buffering.

Files can be fully buffered, line buffered, or unbuffered. If a file is buffered, a default
buffer of 512 bytes is created upon opening the file.

4.9.3 Whether a zero-length file actually exists.

Yes, it does.

4.9.3 Whether the same file can be open multiple times.

Yes, it can.

4.9.4.1 The effect of the remove function on an open file.

No special checking for an already open file is performed; the responsibility is left up to
the programmer.

4.9.4.2 The effect if a file with the new name exists prior to a call to rename.

Rename returns a -1 and errno is set to EEXIST.

286 c++ Programmer's Guide

4.9.6.1 The output for %p conversion infprintf.

In near data models, four hex digits (XXXX). In far data models, four hex digits, colon,
four hex digits (XXXX:XXXX). (For 16-bit programs.)

Eight hex digits (XXXXXXXX). (For 32-bit programs.)

4.9.6.2 The input for %p conversion in fscanf.

See 4.9.6.1.

4.9.6.2 The interpretation of a ~(hyphen) character that is neither the first nor the last
character in the scanlist for a %[conversion in fscanf.

See the description of scanf.

4.9.9.1 The value the macro ERRNO is set to by the fgetpos or ftell function on failure.

EBADF Bad file number.

4.9.10.4 The messages generated by perror.

Table 12.3 Messages generated in both Win16 and Win32

, Arg list too big

Attempted to remove current directory

Bad address

Bad file number

Block device required

Broken pipe

Cross-device link

Error 0

Exec format error

Executable file in use

. File already exists

File too large

lliegalseek

Inappropriate I/O control operation

Input/ output error

Interrupted function call

Invalid access code

Invalid argument

Invalid data

Invalid environment

Invalid format

Invalid function number

Invalid memory block address

Is a directory

Math argument

Memory arena trashed

Name too long

No child processes

No more files

No space left on device

No such device

No such device or address

No such file or directory

No such process

Not a directory

Not enough memory

Not same device

Operation not permitted

Path not found

Permission denied .

Possible deadlock

Read-only tile system

Resource busy

Resource temporarily unavailable'

Result too large

Too many links

Too many open files

C hap t e r 1 2, A N S lim pie men tat ion - s pee i fie s tan dar d s 287

Table 12.4 Messages generated only in Win32

Bad address No child processes

Block device required·

Broken pipe

Executable file in use

File too large

lliegalseek

Inappropriate I/O control operation

Input/ output error

Interrupted function call

Is a directory

Name too long

No space left on device

No such device or address

No such process

Not a directory

Operation not permitted

Possible deadlock

Read-only file system

Resource busy

Resource temporarily unavailable

Too many links

4.10.3 The behavior of ealloe, malloe, or realloe if the size requested is zero.

eaUoe and maUoe will ignore the request andretum o. realloe will free the block.

4.10.4.1 The behavior of the abort function with regard to open and temporary files.

The file buffers are not flushed and the files are not closed.

4.10.4.3 The status returned by exit if the value of the argument is other than zero,
EXIT_SUCCESS, or EXIT_FAILURE.

Nothing special. The status is returned exactly as it is passed. The status is a represented
as a signed char.

4.10.4.4 The set of environment names and the method for altering the environment list used
by getenv.

The environment strings are those defined in the operating system with the SET
command. putenv can be used to change the strings for the duration of the current
program, but the SET command must be used to change an environment string
permanently.

4.10.4.5 The contents and mode of execution of the string by the system function.

The string is interpreted as an operating system command. COMSPEC is used or
COMMAND.COM is executed (for 16-bit programs) or CMD.EXE (for 32-bit programs)
and the argument string is passed as a command to execute. Any operating system
built-in command, as well as batch files and executable programs, can be executed.

4.11.6.2 The contents of the error message strings returned by strerror.

See 4.9.10.4.

4.12.1 The local time zone and Daylight Saving Time.

Defined as local PC time and date.

4.12.2.1 The era for dock.

Represented as clock ticks, with the origin being the beginning of the program
execution.

288 c++ Programmer's Guide

4.12.3.5 The formats for date and time.

Borland C++ implements ANSI formats.

Chapter 12, ANSI implementation-specific standards 289

290 c++ Programmer's Guide

Borland C++ DOS
programmer's guide

Part II provides information you might need to develop 16-bit applications that are
targeted to run DOS. '

This part is organized into the following chapters:

Chapter 13, liDOS memory management," describes overlays. Overlays are supported
only in DOS applications. See also Chapter II, 1/16-bit memory management."

Chapter 14,IIVideo functions," discusses graphics in Borland C++. The topics
discussed in this chapter are available only for 16-bit DOS applications.

Par t II, B 0 r I and C++ DOS pro 9 ram mer's 9 u ide 291

292 C++ Pro 9 ram mer's G u ide

DOS memory management
This chapter discusses

• How overlays work, and how to use them.

• How to overlay modules with exception-handling constructs.

Overlays (VROOMM) for DOS
Overlays are used only in 16-bit DOS programs; you can mark the code segments of a
Windows application as discardable to decrease memory consumption. Overlays are
parts of a program's code that share a common memory area. Only the parts oithe
program that are required for a given function reside in memory at the same time.

Overlays can significantly reduce a program's total run-time memory requirements.
With overlays, you can execute programs that are much larger than the total available
memory, since only parts of the program reside in memory at any given time.

How overlays work
Borland C++'s overlay manager (called VROOMM for Virtual Run-time Object­
Oriented Memory Manager) is highly sophisticated; it does much of the work for you.
In a conventional overlay system, modules are grouped together into a base and a set of
overlay units. Routines in a given overlay unit can call other routines in the same unit
and routines in the base, but not routines in other units. The overlay units are overlaid
against each other; that is, only one overlay unit can be in memory at a time, arid each
unit occupies the same physical memory. The total amount of memory needed to run
the program is the size of the base plus the size of the largest overlay.

This conventional scheme is quite inflexible. It requires complete understanding of the
possible calling dependencies in the program, and requires you to have the overlays
grouped accordingly. It might be impossible to break your program into overlays if you
can't split it into separable calling dependencies.

C hap t e r 1 3, DOS m em 0 r y man age men t 293

VROOMM's scheme is quite different. It provides dynamic segment swapping. The basic
swapping unit is the segment. A segment can be one or more modules. More
importantly, any segment can call any other segment.

Memory is divided into an area for the base plus a swap area. Whenever a function is
called in a segment that is neither in the base nor in the swap area, the segment
containing the called function is brought into the swap area, possibly displacing other
segments. This is a powerful approach-it is like software virtual memory. You no
longer have to break your code into static, distinct, overlay units. You just let it run!

Suppose a segment needs to be brought into the swap area. If there is room for the
segment, execution continues. If there is not, then one or more segments in the swap
area must be thrown out to make room.

The algorithm for deciding which segment to throw out is quite sophisticated. Here's a
simplified version: if there is an inactive segment, choose it for removal. Inactive
segments are those without executing functions. Otherwise, pick an active segment and
swap it out. Keep swapping out segments until there is enough room available. This
technique is called dynamic swapping.

The more memory you provide for the swap area, the better the program performs. The
swap area acts like a cache; the bigger the cache, the faster the program runs. The best
setting for the size of the swap area is the size of the program's working set.

Once an overlay is loaded into memory, it is placed in the overlay buffer, which resides
in memory between the stack segment and the far heap. By default, the size of the
overlay buffer is estimated and set at startup, but you can change it using the global
variable _ovrbuffer (see the c++ Language Reference, Chapter 9, "DOS global variables").
If there isn't enough available memory, an error message is displayed by DOS
("Program too big to fit in memory") or by the C startup code ("Not enough memory to
run program").

One important option of the overlay manager is the ability to swap the modules to
expanded or extended memory when they are discarded from the overlay buffer. Next
time the module is needed, the overlay manager can copy it from where the module
was swapped to instead of reading from the file. This makes the overlay manager much
faster.

When using overlays, memory is used as shown in Figure 13.1.

294 C++ Pro 9 ram mer's G u ide

Guidelines for using Borland C++ overlays effectively
To get the best out of Borland C++ overlays, .

• Minimize resident code (resident run-time library, interrupt handlers, and device
drivers are a good starting point).

• Set overlay buffer size to be a comfortable working set (start with 128K and adjust up
and down to see the speed/ size tradeoff). See page 297 for more information on
setting the size of the overlay buffer.

• Think versatility and variety: take advantage of the overlay system to provide
support for special cases, interactive help, and other end-user benefits you couldn't
consider before.

Requirements
To create overlays, you'll need to remember a few rules:

• The smallest part of a program that can be made into an overlay is a segment.

• Overlaid applications must use the medium, large, or huge programming models;
the tiny, small, and compact models are not supported.

• Normal segment merging rules govern overlaid segments. That is, several .OBJ
modules can contribute to the same overlaid segment.

The link-time generation of overlays is completely separated from the run-time overlay
management; the linker does not automatically include code to manage the overlays. In

C hap t e r 1 3, DOS m e m 0 r y man age men t 295

fact, from the linker's point of view, the overlay manager is just another piece of code
that gets linked in. The only assumption the linker makes is that the overlay manager
takes over an interrupt vector (typically !NT 3FH) through which all dynamic loading is
controlled. This level of transparency makes it very easy to implement custom-built
overlay managers that suit the particular needs of each application.

Exception handling and overlays
If you overlay a C++ program that contains exception-handling constructs, there are a
number of situations that you must avoid. The following program elements cannot
contain an exception-handling construct:

• Inline functions that are not expanded inline
• Template functions
• Member functions of template classes

Exception-handling constructs include user-written try/catch and __ try / __ except
blocks. In addition, the compiler can insert exception handlers for blocks with automatic
class variables, exception specifications, and some new/delete expressions.

If you attempt to overlay any of the above exception-handling constructs, the linker
identifies the function and module with the following message:

Error: Illegal local public in function_name in module module_name

When this error is caused by an inline function, you can rewrite the function so that it is
not inline. If the error is caused by a template function, you can do the following:

• Remove all exception-handling constructs from the function
• Remove the function from the overlay module

You need to pay special attention when overlaying a program that uses multiple
inheritance. An attempt to overlay a module that defines or uses class constructors or
destructors that are required for a multiple inheritance class can cause the linker to
generate the following message:

Error: Illegal local public in class_name:: in module module_name

When such a message'is generated, the module identified by the linker message should
not be overlaid.

The container classes (in the BIDS? .LIB) have the exception-handling mechanism turned
off by default. However, the diagnostic version of BIDS throws exceptions and should
not be used with overlays. By default, the string class can throw exceptions and should
not be used in programs that use overlays. See the c++ Language Reference, Part ill,

. if Borland C++ class libraries reference,if for a discussion of BIDS and the string class.

Using overlays
Overlays can be used only in 16-bit DOS programs. To overlay a program, all of its
modules must be compiled with the - Y compiler option enabled. To make a particular
module into an overlay, it needs to be compiled with the -Yo option. (-Yo automatically
enables - Y.) .

296 C++ Pro 9 ram mer's G u ide

The -Yo option applies to all modules and libraries that follow it on the command line;
you can disable it with -Yo-. These are the only command line options that are allowed
to follow file names. For example, to overlay the module OVL.C but not the library
GRAPHICS. LIB, either of the following command lines could be used:

Bee -ml -Yo ovl.c -Yo- graphics. lib

or

Bee -ml graphics.lib -Yo ovl.c

If TLINK is invoked explicitly to link the .EXE file, the 10 linker option must be specified
on the linker command line or response file. See Chapter 3 of the c++ User's Guide for
details on how to use the 10 option.

Overlay example
Suppose that you want to overlay a program consisting of three modules: MAIN.C,
Ol.C, and 02.C. Only the modules Ol.C and 02.C should be made into overlays.
(MAIN.C contains time-critical routines and interrupt handlers, so it should stay
resident.) Let's assume that the program uses the large memory model.

The following command accomplishes the task:

Bee -ml -Y main.c -Yo ol.e o2.c

The result will be an executable file MAIN.EXE, containing two overlays.

Note See the discussion of TargetExpert in the C++ User's Guide, Chapter 2, for information on
programming with overlays.

Overlaid programs.
This section discusses issues vital to well-behaved overlaid applications.

The far call requirement
Use a large code model (medium, large, or huge) when you want to compile an overlay
module. At any call to an overlaid function in another module, you must guarantee that
all currently active functions are far.

You must compile all overlaid modules with the - Y option, which makes the compiler
generate code that can be overlaid.

Note Failing to observe the far call requirement in an overlaid program will cause
unpredictable and possibly catastrophic results when the program is executed.

Buffer size
The default overlay buffer size is twice the size of the largest overlay. This is adequate
for some applications. But imagine that a particular function of a program is
implemented through many modules, each of which is overlaid. If the total size of those
modules is larger than the overlay buffer, a substantial amount of swapping will occur if
the modules make frequent calls to each other.

C hap t e r 1 3, DOS m e m 0 r y man age men t 297

The solution is to increase the size of the overlay buffer so that enough memory is
available at any given time to contain all overlays that make frequent calls to each other.
You can do this by setting the _ovrbuffer global variable (see the C++ Language Reference,
Chapter 9) to the required size in paragraphs. For example, to set the overlay buffer to
128K, include the following statement in your code:

unsigned _ovrbuffer = Ox2000;

There is no general formula for determining the ideal overlay buffer size.

What not to overlay
Exception-handling constructs in overlays require special attention. See page 296 for a
discussion of exception handling.

Don't overlay modules that contain interrupt handlers, or small and time-critical
routines. Due to the non-reentrant nature of the DOS operating system, modules that
might be called by interrupt functions should not be overlaid.

Borland C++' s overlay manager fully supports passing overlaid functions as arguments,
assigning and initializing function pointer variables with addresses of overlaid
functions, and calling overlaid routines via function pointers.

Debugging overlays
Most debuggers have very limited overlay debugging capabilities, if any at all. Not so
with Borland C++'s Turbo Debugger, the standalone debugger. The debugger fully
supports single-stepping and breakpoints in overlays in a manner completely
transparent to you. By using overlays, you can easily engineer and debug huge
applications-all by using Turbo Debugger. .

Note Overlays should not be used with any diagnostic version of the BIDS libraries.

External routines in overlays
Like normal C functions, external assembly language routines must observe certain
programming rules to work correctly with the overlay manager.

If an assembly language routine makes calls to any overlaid functions, the assembly
language routine must be declared FAR, and it must set up a stack frame using the BP
register. For example, assuming that OtherFunc is an overlaid function in another
module, and that the assembly language routine ExternFunc calls it, then ExternFunc
must be FAR and set up a stack frame, as shown:

ExternFunc PROC FAR
push bp ;Save BP
mov bp,sp ;Set up stack frame
sub sp,LocalSize ;Allocate local variables

call

mov
pop
RET

OtherFunc

sp,bp
bp

ExternFunc ENDP

298 c++ Programmer'.s Guide

;Call another overlaid module

;Dispose local variables
;Restore BP
; Return

where LocalSize is the size of the local variables. If LocalSize is zero, you can omit the two
lines to allocate and dispose local variables, but you must not omit setting up the BP
stack frame even if you have no arguments or variables on the stack.

These requirements are the same if ExternFunc makes indirect references to overlaid
functions. For example, if OtherFunc makes calls to overlaid functions, but is not itself
overlaid, ExternFunc must be FAR and still has to set up a stack frame.

In the case where an assembly language routine doesn't make any direct or indirect
references to overlaid functions, there are no special requirements; the assembly
language routine can be declared NEAR. It does not have to set up a stack frame.

Overlaid assembly language routines should not create variables in the code segment,
since any modifications made to an overlaid code segment are lost when the overlay is
disposed. Likewise, pointers to objects based in an overlaid code segment cannot be
expected to remain valid across calls to other overlays, since the overlay manager freely

. IlJ-oves around and disposes overlaid code segments.

Swapping
If you have expanded or extended memory available, you can tell the overlay manager
to use it for swapping. If you dOBo, when the overlay manager has to discard a module
from the overlay buffer (because it should load a new module and the buffer is full), it
can store the discarded module in this memory. Any later loading of this module is
reduced to. in-memory transfer, which is significantly faster than reading from a disk
file.

In both cases there are two possibilities: the overlay manager can either detect the
presence of expanded or extended memory and can take it over by itself, or it can use an
already detected and allocated portion of memory. For extended memory, the detection
of the memory use is not always successful because of the many different cache and '
RAM disk programs that can take over extended memory without any mark. To avoid
this problem, you can tell the overlay manager the starting address of the extended
memory and how much of it is safe to use.

Borland C++ provides two functions that allow you to initialize expanded and extended
memory. See the c++ Language Reference, Chapter 7, for a description of the _OvrlnitEms
and _OvrlnitExt functions.

C hap t e r 1 3, DOS m e m 0 r y man age men t 299

300 c++ Programmer's Guide

Video functions
Borland C++ comes with a complete library of graphics functions, so you can produce
onscreen charts and diagrams. The graphics functions are available for 16-bit DOS~only
applications. This chapter briefly discusses video modes and windows, then explains
how to program in graphics mode.

Video modes
Your PC has some type of video adapter. This can beft Monochrome Display Adapter
(MDA) for text-only display, or it can be a graphics adapter, such as a Color / Graphics
Adapter (CGA), an Enhanced Graphics Adapter (EGA), a Video Graphics Array
adapter (VGA), or a Hercules Monochrome Graphics Adapter. Each adapter can
operate in a variety of modes; the mode specifies whether the screen displays 80 or 40
columns (text mode only), the display resolution (graphics mode only), and the display
type (color or black and white).

The screen's operating mode is defined when your program calls one of the mode­
defining functions textmode, initgraph, or setgraphmode.

• In text mode, your PC's screen is divided into cells (80 or 40 columns wide by 25, 43; or
50 lines high). Each cell consists of a character and an attribute. The character is the
displayed ASCII character; the attribute specifies how the character is displayed (its
color, intensity, and so on). Borland C++ provides a full range of routines for
manipulating the text screen, for writing text directly to the screen, and for
controlling cell attributes.

• In graphics mode, your PC's screen is divided into pixels; each pixel displays a single
dot ortscreen. The number of pixels (the resolution) depends on the type of video
adapter connected to your system and the mode that adapter is in. You can use
functions from Borland C++'s graphics library to create graphic displays onscreen:
You can draw lines and shapes, fill enclosed areas with patterns, and control the color
of each pixel.

C hap te r 1 4, V ide 0 fun c t ion s 301

In text modes, the upper left comer of the screen is position (1,1), with x-coordinates
increasing from left to right, and y-coordinates increasing from screen-top to screen­
bottom. In graphics modes, the upper left corner is position (0,0), with the x- and
y-coordinate values increasing in the sa.me manner:

Windows and viewports
Borland c++ provides functions for creating and managing windows on your screen in
text mode (and viewports in graphics mode). If you aren't familiar with windows and
viewports, you should read this brief overview. Borland C++'s window- and viewport­
management functions are explained in the "Programming in graphics mode" section.

A window is a rectangular area defined on your PC's video screen when it's in a text
mode. When your program writes to the screen, its output is restricted to the active
window. The rest of the screen (outside the window) remains untouched.

The default window is a full-screen text window. Your program can change this default
window to a text window smaller than the full screen (with a call to the window function,
which specifies the window's position in terms of screen coordinates). .

In graphics mode, you can also define a rectangular area on your PC's video screen; this
is a viewport. When your graphics program outputs drawings and so on, the viewport
acts as the virtual screen. The rest of the screen (outside the viewport) remains
untouched. You define a viewport in terms of screen coordinates with a call to the
setviewportfunction.

Except for these window- and viewport-defining functions, all coordinates for text-mode
and graphics-mode functions are given in window- or viewport-relative terms, not in
absolute screen coordinates. The upper left comer of the text-mode window is the .
coordinate origin, referred to as' (1,1); in graphics modes, the viewport coordinate origin
is position (0,0).

Programming in graphics mode
This section provides a brief summary of the functions used in graphics mode. For more
detailed information about these functions, refer to the C++ Language Reference, Chapter
6, "Borland graphics interface."

Borland C++ provides a separate library of over 70 graphics functions, ranging from
high-level calls (like setviewport, bar3d, and drawpoly) to bit-oriented functions (like
getimage and putimage). The graphics library supports numerous fill and line styles, and
provides several text fonts that you can size, justify, and orient horizontally or vertically.

These functions are in the library file GRAPHICS. LIB, and they are prototyped in the
header file graphics.h. In addition to these two files, the graphics package i1;lcludes
graphics device drivers (*.BGI files) and stroked character fonts (*.CHR files); these files
are discussed in following sections.

302 C++ Pro 9 ram mer's G u ide

To use the graphics functions with the BCC.EXE command-line compiler, you have to
list GRAPHICS. LIB on the command line. For example, if your program MYPROG.C
uses graphics, the BCC command line would be

BCC MYPROG GRAPHICS.LIB

See the c++ User's Guide discussion of TargetExpert in Chapter 2 for a description of
DOS programming with graphics. When you make your program, the linker
automatically links in the Borland C++ graphics library.

Note Because graphics functions use far pointers, graphics aren't supported in the tiny
memory model.

There is only one graphics library, not separate versions for each memory model (in
contrast to the standard libraries CS.LIB, CC.LIB, CM.LIB, and so on, which are
memory-model specific). Each function in GRAPHICS. LIB is a far function, and those
graphics functions that take pointers take far pointers. For these functions to work
correctly, it is important that you #include graphics.h in every module that uses
graphics.

The graphics library functions
There are seven categories of Borland C++ graphics fpnctions:

• Graphics system control
• Drawing and filling
• Manipulating screens and viewports
• Text output
• Color control
• Error handling
• State query

Graphics system control
Here's a summary of the graphics system control:

detectgraph

graphdejaults

-$f'aphfreemem

-$f'aphgetmem
getgraphmode

getmoderange

initgraph

installuserdriver

insta?luserjont
registerbgidriver

restorecrtmode

Checks the hardware and determines which graphics driver to use; recommends a
mode.

Resets all graphics system variables to their default settings.

Deallocates graphics memory; hook for defining your own routine.

Allocates graphics memory; hook for defining your own routine.

Returns the current graphics mode.

Returns lowest and highest valid modes for specified driver.

Initializes the graphics system and puts the hardware into graphics mode.

Installs a vendor-added device driver to the BGI device driver table.

Loads a vendor-added stroked font file to the BGI character file table.

Registers a linked-in or user-loaded driver file for inclusion at link time.

Restores the original (pre-initgraph) screen mode ..

Chapter 14, Video functions 303

setgraphbuJsize
setgraphmode

Specifies size of the internal graphics buffer.

Selects the specified graphics mode, clears the screen, and restores all defaults.

Borland C++' s graphics package provides graphics drivers for the following graphics
adapters (and true compatibles):

• Color/Graphics Adapter (CGA)
• Multi-Color Graphics Array (MCGA)
• Enhanced Graphics Adapter (EGA)
• Video Graphics Array (VGA)
• Hercules Graphics Adapter
• AT&T 400-line Graphics Adapter
• 3270 PC Graphics Adapter
• IBM 8514 Graphics Adapter

To start the graphics system, you first call the initgraph function. initgraph loads the
graphics driver and puts the system into graphics mode.

You can tell initgraph to use a particular graphics driver and mode, or to auto detect the
attached video adapter at run time and pick the corresponding driver. If you tell
initgraph to auto detect, it calls detectgraph to select a graphics driver and mode. If you tell
initgraph to use a particular graphics driver and mode, you must be sure that the
hardware is present. If you force initgraph to use hardware that is not present, the results
will be unpredictable.

Once a graphics driver has been loaded, you can use the gerdrivername function to find
out the name of the driver and the getmaxmode function to find out how many modes a
driver supports. getgraphmode will tell you which graphics mode you are currently in.
Once you have a mode number, you can find out the name of the mode with
getmodename. You can change graphics modes with setgraphmode and return the video
mode to its original state (before graphics was initialized) with restorecrtmode.
restorecrtmode returns the screen to text mode, but it does not close the graphics system
(the fonts and drivers are still in memory).

graphdefaults resets the graphics state's settings (viewport size, draw color, fill color and
pattern, and so on) to their default values.

, ,

installuserdriver and installuserfont let you add new device drivers and fonts to your BGI.

Finally, when you're through using graphics, call close graph to shut down the graphics
system. close graph unloads the driver from memory and restores the original video
mode (via restorecrtmode).

A more detailed discussion
The previous discussion provided an overview of how initgrilph operates. In the
following paragraphs, we describe the behavior of in it graph, -$raphgetmem, and
-$raphfreemem in some detail.

Normally, the initgraph routine loads a graphics driver by allocating memory for the
driver, then loading the appropriate .BGI file from disk. As an alternative to this

304 c++ Programmer's Guide

dynamic loading scheme, you can link a graphics driver file (or several of them) directly
into your executable program file. You do this by first converting the .BCI file to an .OBJ
file (using the BCIOBJ utility), then placing calls to registerbgidriver in your source code
(before the call to initgraph) to register the graphics driver(s). When you build your
program, you need to link the .OBJ files for the registered drivers.

After determining which graphics driver to use (via detectgraph), initgraph checks to see
if the desired driver has been registered. If so, initgraph uses the registered driver
directly from memory. Otherwise, initgraph allocates memory for the driver and loads
the .BCI file from disk.

Note Using registerbgidriver is an advanced programming technique, not recommended for
novice programmers. This function is described in more detail in the C++ Language
Reference, Chapter 6.

During run time, the graphics system might need to allocate memory for drivers, fonts,
and internal buffers. If this is necessary, it calls ~raphgetmem to allocate memory and
-$raphfreemem to free memory. By default, these routines call malloc and free,
respectively.

You can override this default behavior by defining your own ~raphgetmem and
-$faphfreemem functions. By doing this, you can control graphics memory allocation
yourself. You must, however, use the same names for your own versions of these
memory-allocation routines: they will override the default functions with the same
names that are in the standard C libraries.

Note If you provide your own -$Yaphgetmem or ~raphfreemem, you might get a "duplicate
symbols" warning message. Just ignore the warning.

Drawing and filling
Here's a quick summary of the drawing and filling functions:

arc

circle

drawpoly

ellipse
getarccoords

getaspectratio

getlinesettings

line

linerel
lineto

moveto

moverel

rectangle
setaspectratio

setlinestyle

Draws a circular arc.

Draws a circle.

Draws the outline of a polygon.

Draws an elliptical arc.

Returns the coordinates of the last call to arc or ellipse.

Returns the aspect ratio of the current graphics mode.

Returns the current line style, line pattern, and line thickness.

Draws a line from (xO,yO) to (xl,yl).

Draws a line to a point some relative distance from the current position (CP).

Draws a line from the current position (CP) to (x,y).

Moves the current position (CP) to (x,y).

Moves the cUrrent position (CP) a relative distance.

Draws a rectangle.

Changes the default aspect ratio-correction factor.

Sets the current line width and style.

Chapter 14, Video functions 305

bar
bar3d
fillellipse
fillpoly
floodfill
getfillpattern

getfillsettings
pieslice
sector

setfillpattern
setfillstyle

Draws and fills a bar.

Draws and fills a 3-D bar.

Draws and fills an ellipse.

Draws and fills a polygon.

Flood-fills a bounded region.

Returns the user-defined fill pattern.

Returns information about the current fill pattern and color.

Draws and fills a pie slice.

Draws and fills an elliptical pie slice.

Selects a user-defined fill pattern.

Sets the fill pattern and fill color.

With Borland C++' s drawing and painting functions, you can draw colored lines, arcs,
circles, ellipses, rectangles, pie slice$, two- arid three-dimensional bars, polygons, and
regular or irregular shapes based on combinations of these. You can fill any bounded
shape (or any region surrounding such a shape) with one of eleven predefined patterns,
or your own user-defined pattern. You can also control the thickness and style of the
drawing line, and the location of the current position (CP).

You draw lines and unfilled shapes with the functions arc, circle, drawpoly, ellipse, line,
linerel,lineto, and rectangle. You can fill these shapes withfLoodfill, or combine drawing
and filling into one step with bar, bar3d, fillellipse, fillpoly, pies lice, and sector. You use
setlinestyle to specify whether the drawing line (and border line for filled shapes) is thick
or thin, and whether its style is solid, dotted, and so forth, or some other line pattern
you've defined. You can select a predefined fill pattern with setfillstyle, and define your
own fill pattern with setfillpattern. You move the CP to a specified location with moveto,
and move it a specified displacement with moverel.

To find out the current line style and thickness, call getlinesettings. For information about
the current fill pattern and fill color, call getfillsettings; you can get the user-defined fill
pattern with getfillpattern.

You can get the aspect ratio (the scaling factor used by the graphics system to make sure
circles come out round) withgetaspectratio, and the coordinates of the last drawn arc or
ellipse with getarccoords. If your circles aren't perfectly round, use setaspectratio to correct
them.

Manipulating the screen and viewport
Here's a quick summary of the screen-, viewport-, image-, and pixel-manipulation
functions.

Screen manipulation
cleardevice
setactivepage
setvisualpage

Clears the screen (active page).

Sets the active page for graphics output.

Sets the visual graphics page number.

306 c++ Programmer's Guide

Viewport manipulation
clearviewport Clears the current viewport.

getviewsettings Returns information about the current viewport.

setviewport . Sets the current output viewport for graphics output.

Image manipulation
getimage Saves a bit image of the specified region to memory.

imagesize Returns the number of bytes required to store a rectangular region of
the screen.

putimage Puts a previously saved bit image onto the screen.

Pixel manipulation
getpixel Gets the pixel color at (x,y).
putpixel Plots a pixel at(x,y).

Besides drawing and p~:linting, the graphics library offers several functions for
manipulating the screen, viewports, images, and pixels. You can clear the whole screen
in one step with a call to cleardevice; this routine erases the entire screen and homes the
CP in the viewport, but leaves all other graphics system settings intact (the line, fill, and
text styles; the palette; the viewport settings; and so on).

Depending on your graphics adapte:r, your system has between one and four screen­
page buffer; these are areas in memory where individual whole-screen images are
stored dot-by-dot. You can specify the active screen page (where graphics functions
place their output) with setactivepage and the visual page (the one displayed onscreen)
with setvisualpage.

Once your screen is in graphics mode, you can define a viewport (a rectangular "virtual
screen") on your screen with a call to setviewport. You define the viewport's position in
terms of absolute screen coordinates and specify whether dipping is on (active) or off.
You clear the viewport with clearviewport. To find out the current viewport's absolute
screen coordinates and clipping status, call getviewsettings. .

You can capture a portion of the onscreen image withgetimage, call imagesize to calculate
the number of bytes required to store that captured image in memory, then put the
stored image back on the screen (anywhere you want) with putimage.

The coordinates for all output functions (drawing, filling, text, and so on) are viewport­
relative.

You can also manipulate the color of individual pixels with the functions getpixel (which
returns the color of a given pixel) and putpixel (which plots a specified pixel in a given
color).

Text output in graphics mode
Here's a quick summary of the graphics-mode text output functions:

gettextsettings
outtext

Returns the current text font, direction, size, and justification.

Sends a string to the screen at the current position (CP).

C hap t e r 1 4, V ide 0 fun c t ion s 307

outtextxy

registerbgifont
settextjustify

settextstyle

setusercharsize

textheight

textwidth

Sends a string to the screen at the specified position.

Registers a linked·;in or user-loaded font.

Sets text justification values used by outtext and outtextxy.
Sets the current text font, style, and character magnification factor.

Sets width and height ratios for stroked fonts.

Returns the height of a string in pixels.

Returns the width of a string in pixels.

The graphics library includes an 8x8 bit-mapped font and several stroked fonts for text
output while in graphics mode.

• In a bit-mapped font, each character is defined by a matrix of pixels.

• In a stroked font, each character is defined by a series of vectors that tell the graphics
system how to draw that character.

The advantage of using a stroked font is apparent when you start to draw large
characters. Since a stroked font is defined by vectors, it retains good resolution and
quality when the font is enlarged. On the other hand, when you enlarge a bit-mapped
font, the matrix is multiplied by a scaling factor; as the scaling factor becomes larger, the
characters' resolution becomes coarser. For small characters, the bit-mapped font should
be sufficient, but for larger text you should select a stroked font.

You output graphics text by calling either outtext or outtextxy, and you control the
justification of the output text (with respect to the CP) with settextjustify. You choose the
character font, direction (horizontal or vertical), and size (scale) with settextstyle. You can
find out the current text settings by callinggettextsettings, which returns the current text
font, justification, magnification, and direction in a textsettings structure. setusercharsize
lets you modify the character width and height of stroked fonts.·

If clipping is on, all text strings output by outtext and outtextxy are clipped at the
viewport borders. If clipping is off, these functions throwaway bit-mapped font output
if any part of the text string would go off the screen edge; stroked font output is
truncated at the screen edges.

To determine the onscreen size of a given text string, call textheight (which measures the
string's height in pixels) and textwidth (which measures its width in pixels).

The default 8x8 bit-mapped font is built into the graphics package, so it's always
available at run time. The stroked fonts are each kept in a separate .CHR file; they can be
loaded at run time or converted to .OBJ files (with the BGIOBJ utility) and linked into
your .EXE file.

Normally, the settextstyle routine loads a font file by allocating memory for the font,then
loading the appropriate .CHR file from disk. As an alternative to this dynamic loading
scheme, you can link a character font file (or several of them) directly into your
executable program file., You do this by first converting the .CHR file to an .OBJ file
(using the BGIOBJ utility), then placing calls to registerbgifont in your source code (before
the call to settextstyle) to register the character font(s). When you build your program,
you need to link in the .OBJ files for the stroked fonts you register.

308 C++ Pro 9 ram mer's G u ide

Note Using registerbgifont is an advanced programming technique, not recommended for
novice programmers.

Color control
Here's a quick summary of the color control functions:

Get color infonnation
getbkcolor Returns the current background color.

Returns the current drawing color.

Returns the palette definition structure.

getcolor

getdefaultpalette
getmaxcolor

getpalette

getpalettesize

Returns the maximum color value available in the current graphics mode.

Returns the current palette and its size.

Returns the size of the palette look-up table.

Set one or more colors
setallpalette Changes all palette colors as specified.

Sets the current background color.

Sets the current drawing color.

setbkcolor

setcolor
setpalette Changes one palette color as specified by its arguments.

Before summarizing how these color control functions work, we first present a basic
description of how colors are actually produced on your graphics screen.

Pixels and palettes
The graphics screen consists of an array of pixels; each pixel produces a single (colored)
dot onscreen. The pixel's value does not specify the precise color directly; it is an index
into a color table called a palette. The palette entry corresponding to a given pixel value
contains the exact color information for that pixel.

This indirection scheme has a number of implications. Though the hardware might be
capable of displaying many colors, only a subset of those colors can be displayed at any
given time. The number of colors in this subset is equal to the number of entries in the
palette (the palette's size). For example, on an EGA, the hardware can display 64
different colors, but only 16 of them at a time; the EGA palette's size is 16.

The size of the palette determines the range of values a pixel can assume, from 0 to
(size -1). getmaxcolor returns the highest valid pixel value (size -1) for the current
graphics driver and mode.

When we discuss the Borland C++' s graphics functions, we often use the term color,
such as the curr~nt drawing color, fill color and pixel color. In fact, this color is a pixel's
value: it's an index into the palette. Only the palette determines the true color on the
screen. By manipulating the palette, you can change the actual color displayed on the
screen even though the pixel values (drawing color, fill color, and so on) haven't
changed.

Chapter 14, Video functions 309

Background and drawing color
The background color always corresponds to pixel value O. When an area is cleared to the
background color, that area's pixels are set to O.

The drawing color is the value to which pixels are set when lines are drawn. You choose a
drawing color with setcolor (nl, where n is a valid pixel value for the current palette.

Color control on a CGA
Due to graphics hardware differences, how you actually control color differs quite a bit
between CGA and EGA, so they're presented separately. Color control on the AT&T
driver, and the lower resolutions of the MCGA driver is similar to CGA.

On the CGA, you can choose to display your graphics in low resolution (320x200),
which allows you to use four colors, or in high resolution (640x200), in which you can
use two colors.

eGA low resolution
In the low-resolution modes, you can choose from four predefined four-color palettes.
In any of these palettes, you can set only the first palette entry; entries 1, 2, and 3 are
fixed. The first palette entry (color 0) is the background color; it can be anyone of the 16
available colors (see the following table of CGA background colors).

You choose which palette you want by selecting the appropriate mode (CGACO,
CGACl, CGAC2, CGAC3); these modes use color palette 0 through color palette 3, as
detailed in the following table. The CGA drawing colors and the equivalent constants
are defined in graphics.h.

o
1

2

3

CGA_LIGffiGREEN

CGA_LIGffiCYAN

CGA_GREEN

CGA_CYAN

CGA_LIGmRED

CGA_LIGHTMAGENTA

CGA_RED

CGA_MAGENTA

CGA_YELLOW

CGA_WHITE

CGA_BROWN

CGA_LIGHTGRAY

To assign one of these colors as' the CGA drawing color, call setcolor with either the
color number or the corresponding constant name as an argument; for example, if
you're using palette 3 and you want to use cyan as the drawing color:

setcolor(l);

or

310 c++ Programmer's Guide

The available CGA background and foreground colors, defined in graphics.h, are listed
in the following table:

0 BLACK 8 DARKGRAY

1 BLUE 9 LIGHTBLUE

2 GREEN 10 LIGHTGREEN

3 CYAN 11 LIGHTCYAN

4 RED 12 LIGHTRED

5 MAGENTA 13 LIGHTMAGENTA

6 BROWN 14 YELLOW

7 LIGHTGRAY 15 WHITE

To assign one of these colors to the CGA background color, use setbkcolor(color), where
color is one of the entries in the preceding table. For CGA, this color is not a pixel value
(palette index); it directly specifies the actual-color to be put in the first palette entry.

CGA high resolution
In high-resolution mode (640x200), the CGA displays two colors: a black background
and a colored foreground. Pixels can take on values of either 0 or 1. Because of a quirk in
the CGA itself, the foreground color is actually what the hardware thinks of as its '
background color; you set it with the setbkcolor routine. (Strange, but true.)

The colors available for the c<?lored foreground are those listed in the preceding table.
The CGA uses this color to display all pixels whose value equals 1.

The modes that behave in this way are CGAHI, MCGAMED, MCGAHI, ATT400MED,
and ATT400HI.

CGA palette routines
Because the CGA palette is predetermined, you shouldn't use the setallpalette routine on
a CGA. Also, you shouldn't use setpalette(index, actuaLcolor), except for index = o. (This is
ail alternate way to set the CGA background color to actuaLcolor.)

Color control on the EGA and VGA
On the EGA, the palette contains 16 entries from a total of 64 possible colors; each entry
is user-settable. You can retrieve the current palette with getpalette, which fills in a
structure with the palette's size (16) and an array of the actual palette entries (the
"hardware color numbers" stored in the palette). You can change the palette entries
individually with setpalette, or all at once with setallpalette.

The default EGA palette corresponds to the 16 CGA colors, as given in the previous
color table: black is in entry 0, blue in entry I, ... , white in entry 15. There are constants
defined in graphics.h that contain the corresponding hardware color values: these are
EGA_BLACK, EGA_WHITE, and so on. You can also get these values with getpalette.

The setbkcolor(color) routine behaves differently on an EGA than on a CGA. On an EGA,'
setbkcolor copies the actual color value that's stored in entry #color into entry #0.

Chapter 14, Video functions 311

As far as colors are concerned, the VGA driver behaves like the EGA driver; it just has
higher resolution (and smaller pixels).

Error handling ~n graphics mode
Here's a quick summary of the graphics-mode error-handling functions:

grapherrormsg

graphresult

Returns an error message string for the
specified error code.

Returns an error code for the last graphics
operation that encountered a problem.

If an error occurs when a graphics library function is called (such as a font requested
with settextstyle not being found), an internal error code is set. You retrieve the error
code for the last graphics operation that reported an error by calling graphresult. A call to
grapherrormsg(graphresultO) re~rns the error strings listed in the following table.

The error return-code accumulates, changing only when a graphics function reports an
error. The error return code is reset to a only when initgraph executes successfully or
when you call graphresult. Therefore, if you want to know which graphics function
returned which error, you should store the value of graphresult into a temporary variable
and then test it.

0 grOk No error

-1 grNoInitGraph (BGI) graphics not installed (use initgraph)
-2 grNotDetected Graphics hardwaren't detected

-3 grFileNotFound. Device driver file not found

-4 grInvalidDriver Invalid device driver file

-5 grNoLoadMem Not enough memory to load driver

-6 grNoScanMem Out of memory in scan fill

-7 grNoFloodMem Out of memory in flood fill

-8 grFontNotFound Font file not found

-9 grNoFontMem Not enough memory to load font

-10 grInvalidMode Invalid graphics mode for selected driver

-11 grError Graphics error

-12 grIOerror Graphics IjOerror

-13 grInvalidFont Invalid font file

-14 grInvalidFontNum Invalid font number

-15 grInvalidDeviceNum Invalid device number

-18 grInvalidVersion Invalid version of file

312 C++ Pro 9 ram mer's G u ide

State query
The following table summarizes the graphics mode state query functions:

Table 14.1 Graphics mode state query functions

getarccoords

getaspectratio

getbkcolor

getcolor

getdrivername

getfillpattern

getfillsettings

getgraphmode

getlinesettings
getmaxcolor

getmaxmode

getmaxx

getmaxy
getmodename

getmoderange

getpalette

getpixel

gettextsettings
getviewsettings

getx

gety

Information about the coordinates of the last call to arc or ellipse.

Aspect ratio of the graphics screen.

Current background color.

Current drawing color.

Name of current graphics driver.

User-defined fill pattern.

Information about the current fill pattern and color.

Current graphics mode.

Current line style, line pattern, and line thickness.

Current highest valid pixel value.

Maximum mode number for current driver.

Current x resolution.

Current y resolution.

Name of a given driver mode.

Mode range for a given driver.

Current palette and its size.

Color of the pixel at x,y.
Current text font, direction, size, and justification.

Information about the current viewport.

x coordinate of the current position (CP).

y coordinate of the current position (CP).

Each of Borland C++' s graphics function categories has at least one state query function.
These functions are mentioned under their respective categories and also covered here.
Each of the Borland C++ graphics state query functions is named get something (except
in the error-handling category). Some of them take no argument and return a single
value representing the requested information; others take a pointer to a structure
defined in graphics.h, fill that structure with the appropriate information, and return no
value.

The state query functions for the graphics system control category are getgraphmode,
getmaxmode, and getmoderange: the first returns an integer representing the current
graphics driver and mode, the second returns the maximum mode number for a given
driver, and the third returns the range of modes supported by a given graphics driver.
getmaxx and getmaxy return the maximum x and y screen coordinates for the current
graphics mode.

The drawing and filling state query functions are getarccoords, getaspectratio, getfillpattern,
getfillsettings, and getlinesettings. getarccoordsfills a structure with coordinates from the
last call to arc or ellipse; getaspectratio tells the current mode's aspect ratio, which the
graphics system uses to make circles come out round. getfillpattern returns the current
user-defined fill pattern. getfillsettings fills a structure with the current fill pattern and fill

Chapter 14, Video functions 313

color. getlinesettings fills a structure with the current line style (solid, dashed, and so on),
line width (normal or thick), and line pattern.

In the screen- and viewport-manipulation category, the state query functions are
getviewsettings, getx, gety, and getpixel. When you have defined a viewport, you can find
out its absolute screen coordinates and whether clipping is active by calling .
getviewsettings, which fills a structure with the information. getx and gety return the
(viewport-relative) x- and y-coordinates of the CPo getpixel returns the color of a
specified pixel.

The graphics mode text-output function category contains one all-inclusive state query
function: gettextsettings. This function fills a structure with information about the current
character font, the direction in which text will be displayed (horizontal or bottom-to-top
vertical), the character magnification factor, and the text-string justification (both
horizontal and vertical).

Borland C++'s color-control function category includes four state query functions.
getbkcolor returns the current background color, and getcolor returns the current drawing
color. getpalette fills a structure with the size of the current drawing palette and the
palette's contents. getmaxcolor returns the highest valid pixel value for the current
graphics driver and mode (palette size -1).

Finally, getmodename and getdrivername return the name of a given driver mode and the
name of the current graphics driver, respectively.

314 c++ Programmer's Guide

Borland C++ class libraries guide
Part ill is a programmer's guide to using the container classes, iostreams classes,
persistent streams classes, and mathematical classes. It is divided into the following
chapters:

• Chapter 15, "Using Borland C++ container classes," explains how to use the
container class library, also known as Borland International Data Structures (BIDS),
which is a large collection of classes that encapsulate commonly used data structures.
Each container class encapsulates a specific type of data structure (for example, a
stack), and the operations that characterize that type of data structure (for example,
push and pop operations).

• Chapter 16, JlUsing iostreams classes," explains how to use the c++ input and
output classes, commonly known as iostreams. With the arrival of c++ and object­
oriented design, input and output operations became encapsulated in a series of
classes. Each iostreams class encapsulates some form of input, output, or input and
output from low-level character transfer to higher-level, file-oriented input/ output
operations.

• Chapter 17, "Using persistent streams classes," explains how to use classes that
support persistence. In computer programs, an example of persistence is retaining
information between application invocations-your application comes up in the
same state you left it in the day before.

• Chapter 18, JlUsing the mathematical classes," explains how to use the mathematical
classes, which encapsulate binary-coded decimal numbers (bed class) and complex
numbers (complex class).

Part 111,Borland c++ class libraries guide 315

316 C++ Pro 9 ram mer's G u ide

Using Borland container classes
This chapter describes the Borland C++ container class library. It contains sections
describing container library organization, class naming conventions; and the
programming interface. See Chapter 10 of the C++ Language Reference for information
describing specific classes in this library.

A container is an object that can hold any number of other objects of a single specified
type. The specified type can be a built-in type like an int or a float, or it can be a user­
defined type, like a record containing fields of different types, or an object instantiated
from a C++ class you have defined.

Borland C++ containers place stored objects into one of thirteen predefined data
structures. Container classes support standard operations on data structures through a
coding interface that is easy to use and strongly standardized. You will not need to
create code defining a data structure or its operations. To use a data structure to store
data, instantiate a container object and then use existing container members to add,
search, find, change or remove data.

Borland C++ containers also manage some operations without your intervention.
Borland C++ containers manage pointers to data stored in a list, tree or other data
structure, can resize the container, can sort stored data, can support your custom
memory manager class, and can throw exceptions for you.

Note A data structure is a collection of data items, where items are placed in a predefined
relationship to each other. This predefined relationship implies that a collection of
operations exists to manage that data. For example, a stack is a data structure designed
to store data in the order received, and to provide the last data item stored. Data placed
in a stack structure is accessed by using push and pop operations.

Chapter 15, Usirig Borland container classes 317

Container 'library implementation
The Borland C++ container class library includes 187 templates. They are organized into
a flat hierarchy. This minimizes your design and coding effort and makes these classes
easier to use.

The container class library is templatized, to make it easy for you to store objects of any
type. Because the library is templatized, you do not need to subclass a container class to
store data of your selected type. Simply pass your data type to the container class
template when you instantiate the container object.

The container class library also minimizes the use of virtual functions, which would
require you to write specialized code defining those members before they are used, and
could require you to subclass a class. In most cases, virtual functions are present in class
declarations to implement private mechanisms which have already been coded for you.

To make it easier to select a class, Borland C++ has divided the library into thirteen
families of class templates. Each family includes a set of similar class templates which
support the same data structure. To create a Borland container, you will select the best
family to use for your purposes; identify the specialized class template within that
family to use; and then use that class template to instantiate a container object that stores
objects of your selected data type.

All container objects are specialized to perform a variety of data management tasks.
Specialized containers can manage pointers instead of objects; sort objects as they are
inserted into the container; maintain a running count of objects inserted into the
container; or accept your own memory manager class as an input parameter.

AOT and FOS classes
The container class library is composed of two interdependent collections of families:
The Abstract Data Types (ADT) class families, and the Fundamental Data Structures
(FDS) class families.

ADTclasses
ADT families focus on conceptual operations performed on data structures. ADT
families exist for stacks, queues, deques, bags, sets, arrays, and dictionaries. All ADT
classes rely on an FDS (Fundamental Data Structures) class to implement the data
structure they manage. For most coding purposes, you should select a class belonging to
an ADT family. The following table lists and describes ADT class families.

See "Class naming conventions" later in this chapter for ADS class naming conventions.

Table1S.1 ADT class families

Association assoc.h

318 C++ Pr 0 9 ram mer's G u i de

Stores data into a resizable, contiguous block Data
at any array position can be added, removed, or at
any time. Supports index operators.

Designed to support the dictionary family. This class contains
two data members: a key and a value. Given a key, an
association class returns a value. Key and value data may b~ of
different user types.

Table 15.1 ADT class families (continued)

Bag

Deque

Dictionary

Queue

Set

Stack

FOS classes

bags.h

deques.h

dict.h

queues.h

sets.h

stacks.h

Stores objects as an unordered, undefined group. A bag is the
simplest structure that the container families support. A bag
can accept duplicate values.

Stores data in a chain. Objects are placed into this structure in
the order received, into either head or tail positions (FIFO).
Data can be pushed and popped from either end of the queue.

Stores Association objects. When given a key, dictionary
containers return the value associated with that key.

Stores data in a chain. Objects are placed into this structure in
the order received. Objects are pushed onto the head of the
queue and popped from the tail (FIFO).

Stores data in an unsequenced group. A set is a bag structure
that does not accept objects with duplicated values.

Stores data in a chain. Objects are placed into this structure in
the order received, into the top position. Objects are pushed
and popped from the top of the stack (LIFO).

FDS families emphasize the way classes are stored in memory .. These classes do not
have specialized members contained in ADT classes. FDS families support vectors, lists,
hash tables, and binary trees. The following table lists and describes FDS class families.

Table 15.2 FDS class families

Double List dlistimp.h

Hash Table hashimp.h

List listimp.h

Vector vectimp.h

Class naming conventions

Stores data in a linked chain of nodes, where each node contains
pointers to the previous and to the next node in the list.

Stores objects in a hash table data structure. The hash table
family implements the ADT Dictionary family.

Stores objects in a linked chain of nodes, where each node
contains a pointer to the next node in the list.

Stores objects in a collection of blocks of contiguous memory.
The vector family implements most ADT class families.

A Borland C++ ADT class name is formatted to express the functions it performs for you
automatically, together with the FDS class family it uses to perform those functions. An
FDS class name is similarly formatted.

The following figures use typical class names to define and illustrate this naming
format:

Chapter 15, Using Borland container classes 319

Figure 15.1 Format of a typical ADT name

The letter "T" precedes all
container class names.
"T" stands for Template.

The ADT class family name
corresponds to a data
structure name, like array,
stack, set, queue or bag.
This class stores data in a

The word" As" separates
the ADT name from the
FDS name.

The word "Iterator"
is appended to the ADT
name to identify the
Iterator class designed
to act on the container
class.

~ArraYASVectorIterator

Use your memory manager object or use default
memory manager. Class function codes specify
whether this class is designed to contain objects
or pointers, or can automatically sort or count
objects as they are inserted. Some classes
have no function codes.

The codes in this example indicate that this class
takes your Memory Manager as an input
parameter, stores pointers (manages objects
indirectly), and places pointers in Sorted
order by object.

320 C++ Pro 9 ram mer's G u ide

The name of the FDS class used to implement
this ADT class. This class uses the FDS Vector
family to implement its array.

Most ADT classes use the FDS vector family,
but some families also use FDS list or double
list families. The ADT Dictionary family uses
the FDS hash table family.

Figure 15.2 Format of a typical FDS class name

The letter "T" precedes all
container class names.
"T" stands for Template.

The FDS class family name
corresponds to a data
structure name, like binary,
tree, hash table, list or
vector. This class stores
data in a double-linked list.

lListlffiP

Use your memory manager object or use default memory
manager. Class function codes specify whether this class is
designed to contain objects or pointers, or can automatically
sort or count objects as they are inserted. Some classes
have no function codes.

The codes in this example indicate that this class takes your
Memory Manager as an input parameter, stores pointers
(manages objects indirectly), and places pointers in Sorted
order by object.

Class function codes

The word "Imp" is appended
to FDS class names, and
stands for implemenation.

The word "Iterator"
is inserted into the container
name to identify the iterator
designed to support that
container.

Every class template name is encoded with the mechanisms it uses to manage stored
objects. The following table lists and defines these mechanisms.

Table 15.3 Class function codes

T Borland class library prefix. All container classes start with 'T'.

M Supports a user-supplied memory manager.

I Stores pointers to objects rather than the objects themselves (Indirect container).

S Places objects in sorted order as they are placed into the container. Indirect
containers hold pointers in sorted order by object.

C Keeps a count of objects stored in the container.

D Stores objects themselves (Direct container). Used in Association classes.

Chapter 15, Using Borland container classes 321

Simplified class template names
To simplify coding, the container class library includes a brief set of simplified class
names, that stand for the most commonly used container classes. The following table
lists these names together with the classes they stand for.

Table 15.4 Simplified class template names

TArray
T Arraylterator
TBag
TBagIterator

TBinaryTree
TBinaryTreeIterator

TDictionary
TDictionaryIterator

TDeque
TDequeIterator

TDoubleList
TDoubleListListIterator

TList
TListIterator

TQueue
TQueueIterator
TSet
TSetIterator

TStack
TStacklterator

Using containers

T ArrayAs Vector
T ArrayAs VectorIterator

TBagAs Vector
TBagAs Vectorlterator

TBinaryTreelmp
TBinaryTreelteratorlmp

TDictionaryAsHashTable
TDictionaryAsHashTableIterator
TDequeAs Vector
TDequeAs VectorIterator

TDoubleListImp
TDoubleListIteratorlmp
TListImp
TListIteratorlmp
TQueueAs Vector
TQueueAs Vectorlterator

TSetAs Vector
TSetAs VectorIterator

TStackAs Vector
TStackAs VectorIterator

This section reviews major tasks involving containers, describes operations on data
stored in containers, and lists a general procedure you can follow to use container
classes in your program.

Using class templates
Borland C++ container classes are implemented using C++ templates. A template is a
class declaration that accepts a number of data types as input parameters, and produces
an instance of that class that supports those data types.You may specify a predefined
data type like a float, or you can specify the name of a class you have designed, declared
and named yourself. All Borland C++ templates take the data type of the object to be
stored in the container object, as a template parameter. Some Borland C++ containers
also take the data type of your memory-manager class as well.

322 c++ Programmer's Guide

A class template instantiates a class that stores objects of the type you have specified as
the template parameter. It instantiates a class, not an object. You may create an object at
the same time you instantiate the class using the syntax in the following example:

TArrayAsVector<float> FloatArray(lO);

This example instantiates an instance of the T ArrayAs Vector class that stores floats. It
then instantiates an object of that class called FloatArray, that stores 10 floats. The
FloatArray object contains all the members you need to call, to add, search, change and
remove floats from the array-you don't need to write them.

Using direct and indirect classes
Containers can store copies of objects (direct containers) or pointers to objects (indirect
containers). Indirect containers contain the letter I in their template names. Class
template names without the letter I in their name instantiate direct containers. See the
following examples:

• This example instantiates a T ArrayAs Vector object that stores ten floats. This is a
direct container.

TArrayAsVector<float> FloatArray(lO);'

• This example instantiates a TIArrayAs Vector object that stores ten pointers to floats.
The container manages pointers for you. This is an indirect container that works
almost exactly like the direct containe in the previous example.

TIArrayAsVector<float> FloatArray(lO)

The type of object you need to store helps determine whether you need to use a direct or
indirect container. You would probably select a direct container to store an array of
floats because a float does not use much memory. You would probably use an indirect
container to store a group of structs, to reduce copying time.

The choice between direct and indirect containers is often not easy. Performance tuning
requires you to compare performance of different container implementations, and this
can involve lots of recoding. You can reduce this recoding effort by using Borland C++
containers, because direct and indirect containers in the same family use the same
members to perform the same data operations.

If your program includes a stored object that is accessed by more than one container,
then you will need use indirect containers ~o store pointers to that object. You must take

, care not to delete that stored object from memory until all containers have finished
using that object. Refer to "Deleting container objects" later in this chapter for details.

If you plan to store objects of your own defined type in either a direct or indirect
container, then you must supply a valid == operator, a default constructor, a less-than
«) operator, and an assignment (=) operator within the class definition for your object.
Refer to the reference selection defining the container class you have selected to use, for
details concerning operators and methods you must provide before usmg.

C hap t e r 1 5, U sin 9 B 0 r I and con t a i n er c I ass e s 323

Handling pointers in direct and indirect c.ontainers .
In most cases, you should use an indirect container to store pointers-but it is still
possible to use a direct container to store pointers. Direct and indirect containers handle
pointers differently.

When using the == and < operators to determine whether two objects are equal:

• Direct containers containing pointers to objects compare pointer values. The ==
operator returns true only if two pointer objects contain the same address.

• Indirect containers compare dereferenced object values. The == operator returns true
only if the target objects contain the same value.

A direct container does not automatically dereference objects. It sorts pointers by
memory location, rather than by object value. When a direct object goes out of scope, it
automatically 4estroys the pointers to objects it held-you must provide code to
maintain access to those objects.

Using memory-managed classes
All containers can use the default memory manager class TStandardAllocator to manage
memory. You do not need to pass this default class to an unmanaged container-the
compiler handles this for you.

Some containers can support your own memory manager. If you use your own memory
manager class, you must use a managed container class template, and then pass the
class name of this memory manager to your managed class template when you
instantiate an object of that class.

Your custom memory manager must include static operator members. Because they are
static, you never instantiate your memory manager class. You must call memory
manager methods directly.

Because it will support stored objects of your own data type, your .custom memory
manager class must define a class-specific new operator, a placement new operator that
takes a void* argument as its second parameter, anda delete operator. Use the
TStandardAllocator prototypes in alloctr.h as an example for building your own
overloaded operators.

The following example uses a class template in the queue family that accepts your
memory manager of type MyMemManager as a template parameter. It instantiates a
queue object that can hold 100 objects of type MyClass.

TMQueueAsVector <MyClass, MyMemManager> MyQueue(lOO);

Using sorted classes
Some containers can automatically store objects in sorted order. Indirect sorted
containers store pointers sorted by object.

If you plan to store objects of your own defined type in either a direct or indirect
container, then you must supply a valid < operator within the class definition for your
object. The Add member needs this < operator to resolve element ordering when it adds
an object to its container.

324 C++ Pro 9 ram mer's G u ide

Using iterator classes
Many operations require you to iterate through all objects stored in a container object.
To simplify iteration, every class family includes a set of iterator class templates that
correspond to individual container class templates in the family. To iterate, pass a
reference to your container object to its iterator object.

Container iterators implement the following members:

• Current is a member function which returns the current object.

• Restart is a member function which resets the iterator to the first object in the
container;

• ++ pre- and postincrement operators move the object pointed to by Current, to the
next object in the container.

• The deque family iterator classes also contain pre- and postdecrement operators.

Note You may also iterate without using iterators, by calling the For Each, FirstThat, or LastThat
members built into your instantiated contamer object.

This example illustrates the iteration process using an iterator object:

Define your container and iterator objects. To minimize typing errors and make your
code more readable, you should typedef your container and iterator class templates:
Also note that the iterator contains a nested template parameter list, ending in two
greater-than symbols. The compiler will misiriterpret this symbol set as a streams
operator unless you place a space between these two symbols.

typedef TArrayAsVector<float> arrayType;
typedef TArrayAsVectorIterator <TArrayAsVector<float> > iteratorType;

J ... place a space here.

2 Instantiate your container and iterator objects. Instantiate the container before you
instantiate an iterator.

To begin iteration, instantiate an iterator object, and then pass your container to your
iterator. This code slice instantiates a container object named FloatArray and in
iterator object called iter. It then passes FloatArray to iter to begin iterating through the
objects that FloatArray contains.

arrayType FloatArray(lO);

iteratorType Iter (FloatArray) ;

3 Iterate through the container using Current and ++ iterator members.

For clarity, the example below places iteration activity in a self-contained function,
Uselterator.

Uselterator instantiates an iterator object named iter and passes a reference to the
FloatArray container to it. First, it uses the iter.Current member to return data stored at
the object the iterator is currently pointing to. Then it prints that float value to your
screen and increments the Current pointer to the next object, until all floats stored in

C hap t e r 1 5, U sin 9 B 0 r I and con t a i n e r c I ass e s 325

FloatArray have been printed to your screen. If you have stored. objects of a type you
have defined, then you must overload the «operator to support that data type.

Note An iterator does not interate through a container automatically. You must increment the
iterator object in your code. This is not true for the ForEach container member function,
which iterate automatically. Refer to the ForEach member description for the container
class template you have selected to use, for details.

void UseIterator (const arrayType & FloatArray)
{

iteratorType Iter(FloatArray);

II loop through all objects in the
II FloatArray container

while (Iter != 0);

II print data stored in the current object
II to the screen.

cout « Iter.Current () « endl;

II increment the Current pointer to the next object.
II Current returns zero when it reaches the end.
II operator int returns zero in an empty container
II before Current is called.

Iter++;

Using iterator members
Most container classes contain the members FirstThat, ForEach, and LastThat.

• ForEach provides a general mechanism you can use to access all data stored in your
container.

ForEach iterates through all objects your container currently holds. For each object, it
calls a callback function, which acts on data stored in that object. Then it procedes to
the next object and calls your function again, until it has visited all objects stored in
your container.

• FirstThat and LastThat call a callback function which tests data stored within the
current object. These members return either the first object or the last object passing
your test condition.

You must write the callback functions called by these methods.· They should accept a
reference to the type of object stored in your container, and a void pointer. FirstThat and
LastThat require that this function should receive a const reference to your type; should

326 C++ Pro 9 ram mer's G u ide

be a const function; and should return zero if data does not pass your test, and return a
nonzero value if data does pass your test.

Note You must take care never to call Detach or Flush from within your callback function.
Detach and Flush acton objects, not data, and will resize your container under some
conditions. Resizing a container while iterating through the objects it contains will
produce undefined results. . .

Callback functions
Your callback functions must conform precisely to the signature expected by ForEach,
FirstThat, andLastThat. For coding convenience, all container classes typede£ these
signatures as follows:

• The IterFunc typede£ defines a function taking a reference to your object type, and a
void pointer. It defines this function as an *IterFunc, and uses this typede£ as the first
argument passed to a call to ForEach member.

Your custom iter function accesses data via the object reference, and returns nothing.

• The CondFunc typede£ defines a function taking a const reference to your object type,
and a void pointer. It defines this function as a *CondFunc, and uses this typede£ as
the first argument passed to a call to FirstThat and LastThat members.

Your custom cond function must access data via the const object reference and test
data. It must return zero if data fails your conditional test; nonzero if data passes your
conditional test.

Youmust use IterFunc and CondFunc typede£s when calling ForEach, FirstThat, and
LastThat.

Deleting container objects
All containers store copies of objects, whether those objects are data, or are pointers to
data. Direct containers destroy objects automatically when they are removed, or when
the container goes out of scope. Indirect containers destroy the pointers they store, but
do not automatically destroy objects referenced by their pointers. You must decide
whether these objects should also be destroyed.

This is not a simple design decision. You may design a program that creates several
containers, each holding its own pointer to the same object. You may mistakenly delete
an object still in use by another indirect container.

In general, you can remove a pointer from an indirect container at any time, but you
should delete the object referenced by that pointer from memory only only after the last
container is through with that object. You are responsible for writing code that manages
the deletion of objects accessed by more than one container.

The container class library provides a mechanism to simplify this object management
process, called object ownership. It is described in the following section.

To delete objects from memory, follow these general guidelines:

C hap t e r 1 5, U sin 9 B 0 r I and con t a i n ere I ass e s 327

• For an ADT container, call the Destroy member. For containers which do not provide
a Destroy member, call Detach or Flush and pass TShouldDelete::Delete as an input
parameter.

• For an FDS container, call Detach or Flush, which takes a del value as an input
parameter. Set del equal to some nonzero valq.e.

To remove objects from a container but leave it in memory, follow these guidelines:

• For an ADT container, call Detach or Flush and pass TShouldDelete::NoDelet'e as a
parameter. You should have determined that you can still access this object though a
pointer or other container before calling Detach or Flush.

• For an FDS container, call Detach or Flush and set the del input parameter to zero. You
should have determined that you can still access this object though a pointer or other
container before calling Detach or Flush.

Object ownership
Indirect containers in ADT class families use the concept of object ownership to
determine if an object should be deleted when it is removed. A container object owns its
objects when it has the right to delete them from memory.

Ownership for a container object is determined by an object of the TShouldDelete class,
which is a base class. Every indirect ADT container object derives from an object of the
TShouldDelete class. TShouldDelete performs two similar tasks, accessed through the
members listed below. .

TShouldDelete::OwnsElements determines the default behavior for your container's
Detach and Flush functions. If OwnsElements specifies ownership, then Detach and Flush
will perform the actions set in the DeleteType enum defined in TShouldDelete. The
DeleteType value is passed as an input parameter by Detach and Flush. If OwnsElements
specifies no ownership, then Detach and Flush will not delete removed objects from
memory.

Set TShouldDelete::OwnsElemerits parameters as follows:

• Pass a zero to the TShouldDelete::OwnsElements input parameter for Detach and Flush,
if you do not want its container to own the objects it holds. Stored objects removed
from a container will be retained in memory.

• Pass any nonzero value to the TShouldDelete::OwnsElements input parameter for
Detach and Flush, if you do want its container to own the objects it holds. When set to
a nonzero value, Detach and Flush perform the task specified by the DeleteType enum.

The DeleteType enum overrides behavior set by OwnsElements for your container.

• NoDelete never deletes objects from memory when they are removed from the
container.

• DefDelete performs the default behavior for your container. This behavior is listed in
the Flush and Delete member definitions for the class family which defines your
container object.

• Delete always deletes objects fr,om memory upon being removed from the container.

328 C++ Pro 9 ram mer's G u ide

The user programming interface
This section defines major container class library operations and lists important
members used to perform those operations. It does not list all members and does not
review all possible operations.

Creating a container object
Create a container object by instantiating it. To create a container, select a container
template that supports functions that meet your program requirements and pass the
type of the object your container will store, to your class template when you instantiate
your container object.

The following example instantiates an empty array container that can store 10 floats,
and places this object on the stack. This object calls its destructor when it goes out of
scope.

TArrayAsVector <float> arrayObject(lO);

The following example instantiates a T ArrayAs Vector <float> pointer and an empty array
container that can store ten floats. It places the container on the heap and sets the
pointer to point to the container. This object persists in your program until you explicitly
call the delete operator to delete the container from memory.

TArrayAsVector <float> *aPointer = new TArrayAsVector<float>(lO);

Adding objects to a container
All containers are empty when they are created. Use the container Add member to add
objects to the container. Stack containers use their Push member to add objects to the
stack. Deques use PutLeft and PutRight. Queues use Put.

Searching for an existing object in a container
Most containers provide a Find member, which returns a pointer or a reference to the
first occurance of the value you pass to it. Array containers can also return an array
index value. The Dictionary Find member takes a value of type Key, and returns a
pointer or a reference to data of type Value.

Removing an object from a container
All containers provide a Detach member, which searches through stored objects and
removes the first object matching the value given as an input parameter. For indirect
containers, the stored pointer is always removed from the container, and an object
ownership input parameter determines whether its referenced object is also removed
from memory. See "Deleting container objects" and "Object ownership" earlier in this
chapter for details ..

Most containers provide a Flush member, which removes all objects from a container.
For indirect containers, stored pointers are always removed from the container, and an
object ownership input parameter determines whether their referenced objects are also
removed from memory. See "Deleting container objects" and "Object ownership" for
details ..

C hap t e r 1 5, U sin 9 B 0 r I and con t a i n ere I ass e s 329

Retrieving objects from a container
Most containers can use an iterator technique to retrieve a stored value. See the
following section.

Some containers provide a Find member, which can return a value stored at an array or
vector index, or can search for the value passed to it.

Stack objects use Pop.

Queue objects use Get.

Deque objects use GetLeft and GetRight.

Iterating through objects stored in a container
The container class library provides two iteration techniques:

• Most container classes provide the member functions ForEach, FirstThat, and LastThat.
For each object, the member function calls a user-written function which accesses the
value it stores. To use ForEach, FirstThat, and LastThat, you must write a function
which acts on data stored in the current object. ForEach always visits each object
stored in a container.

• Each container class has a corresponding iterator class. To iterate, pass the container
object to the iterator object. To act upon data stored at a current location within a
container, call the iterator Current function to return a stored value, write code which
acts upon that value, and then use the ++ operator to index the iterator to the next
object in the container. An iterator does not automatically visit every object stored in
a container.

Displaying data stored in containers
In general, you can use iostreams operators for built-in data types, but must supply
overridden insertion and extraction operators for your own data types. See the example
at the end of this chapter for a container storing user-typed objects that prints values to
your terminal screen.

To print data of your own type to your terminal screen, follow these general steps:

1 In a class of your own type, provide an« operator. This function takes a reference to
an ostream object and a const reference to your class type, and returns the ostream.
The body of the function formats your data.

2 You can now use cout and «to insert objects of your class type into the stream that
displays data on your screen.

Container coding guidelines
This section lists some general guidelines you can follow to use containers in your code.

330 c++ Programmer's Guide

Selecting and defining your container class
Determine the type of elements you will store in your container. Decide whether to
store objects themselves, or to store pointers to those objects. Decide whether to use
the default memory manager or to manage memory yourself.

2 Select the container family that fits your program design. Containers can store data in
arrays, vectors, lists, double lists, stacks, queues, double queues, bags, sets,
dictionaries, hash tables, and binary trees. You can implement some choices as
vectors or as linked lists. You can use an FDS class to implement a data structure of
your own design.

3 From within a container template family, select the template that fits your program
design. Container classes can store data or pointers to data, can accept either default
or user-supplied memory managers, and can automatically sort elements as they are
added to the container. Selecting the appropriate family saves you time because you
won't have to write the code to accomplish what the container does for you
automatically.

For example, if you have chosen to store pointers to longs and want to build an array
that holds your pointers in sorted order, instantiate an object of the
TISArrayAs Vectar<lang> class. An object of this class stores pointers to longs, and
automatically places the pointer for your current object in sorted order in the array.
Objects in this class are always sorted.

Modifying your container class
1 Objects that you store in a container must provide functions listed in the reference

section of this guide. In general, containers storing predefined types already have
access to the functions they need, Containers supporting your user-defined objects
usually require you to supply specializations of the logical and streams operators
your program uses.

If you intend to use FirstThat, FarEach, and LastThat members to iterate through
objects stored in your container, you must write callback functions to act on that data.
Callback function signatures must conform to cand and iter typedefs listed in the
reference section.

Dictionary and hash table containers require access to a Hash Value function. You
must supply this function to hash table containers. You may use the default
HashTable function supplied in a Dictionary container.

For user-defined classes, you must provide a copy constructor, overloaded
equivalence and assignment operators, and overridden streams operators for that
class. Classes that will be put into sorted containers require an overloaded less-than
operator.

2 If you have decided to use your own memory manager, then you must overload the
new and delete operator member declarations in your memory manager class.

In all cases, you can declare these members by copying prototypes declared in
TStandardAllacatar into your own class definition and implement them appropriately.
Refer to the TStandardAllacatar class declaration in the alloctr.h file. Also refer to the

C hap t e r 1 5, Us i n 9 B 0 r I and con t a in ere I ass e s 331

example at the end of this chapter, which overloads these members to support a class
which manages ints in an array container.

Coding your program
To promote code :maintainability, you should typede£ the container and iterator class
templates you have selected to use. This makes it easy to change a class template
while minimizing changes you may need to make to your working code. If you
change from a direct to an indirect container, you will also need to review your code
to change reference calls to pointer calls in appropriate places.

2 Instantiate a container class from the class template you have decided to use. Pass the
data type of the data you will store as a parameter to the class template upon
instantiation. Also pass the data type of your memory manager class to your class
template, if you have decided to use a managed container class template.

3 Instantiate a container object. Pass appropriate constructor parameters to your object
upon instantiation.

4 Instantiate an iterator object, if you have decided to use an iterator to access data
stored in your container. Pass your container to your iterator object upon
instantiation.

Code example
This example uses an array to store objects of your own user-type, Contained. Contained
objects store ints.

Note Passing an int directly to a template will create two Detach functions with the same int
parameter. This will generate a compiler error. The solution is to pass a class of your
own user-type to a template upon instantiation, and to store ints within' objects of that
new class. This example illustrates proper int storage, and also illustrates how to
declare, instantiate and store a class of your own user-type in a container of any family.

Thlsexample is similar to the array example found in the Array family reference section.
That example stored a built-in type (long), and did not require overloaded operators, a
custom class declaration, or other special handling.

#include <iostream.h>
#include <classlib/arrays.h>
/* Declare a custom class that your array container stores.

*/

This example is named Contained. It contains
examples of all the members which you are usually
required to provide any user-written class, including
three constructors, two logical operators, and an ostream
operator. Contained also contains the intValue data member which
makes it possible for you to store ints in an array container.

class Contained

public:
Contained (int i = 0) intValue (i). {}

332 C++ Pro 9 ram mer's G u ide

Contained (const Contained & c)
{intValue = c.intValue;}

II copy constructor

int operator == (const Contained& c) Ilcomparison operator
{ return intValue == c.intValue; }

int operator < (const Contained& c) Iliess-than operator
{ return intValue < c.intValue;

private:
int intValue;
friend ostream& operator« (ostream&, const Contained&);

} ;

ostream& operator « (ostream& os, const Contained& c)
{ return os « c.intValue; }

1* This is ~he code for the iteration function required by ForEach member.

*1

This function, called Show, takes a reference to the current contained
object c, and prints it to the screen.

void Show(Contained& c, void *)

cout « C « endl;

1* This code illustrates the use of ForEach. It takes a
Contained-type object and calls the ForEach iteration
function named Show. Show executes, passes control
back to ForEach; ForEach iterates to the next object
in the array automatically, and calls Show again.
This process repeats until FbrEach has visited
every element in the array.

*1
void UseForEach (TArrayAsVector<Contained>& vect)

{

vect.ForEach(Show, 0);
}

1* This code illustrates the use of an iterator object. It
instantiates an array iterator object named iter and
prints the array contents. to your terminal screen.

*1

The steam operator works because you have
overloaded it in your Contained class definition.
Note that you must increment iter in your code to
advance to the next object.

void UseIterator(const TArrayAsVector<Contained>& vect)

TArrayAsVectorIterator<Contained> iter(vect);
while (iter != 0)

cout « iter.Current() « endl;
iter++;

1* The main function instantiates an array container
named vect, which holds ten objects of type Contained.
It creates several Contained objects and places

Chapter 15, Using Borland container classes 333

*1

those objects into the array container. Then, it detaches the
contained object which holds the number seven.
It uses the ForEach vect member to print array
contents to your screen. Then it uses an Iterator
object to print out the same array contents to your
screen.

int main ()

TArrayAsVector<Contained> vect(10);
1* A Contained-type object is created and int i is added to it.

*1

The Contained object is in turn added to the array
container named vect, using the vect Add member.

for (int i = 0; i < 10; i++)
vect.Add(Contained (i));

II remove one Contained object from the vect container.
vect.Detach(Contained(7));
II vect calls its own ForEach member to iterate through the array.
cout « "Using ForEach: \n";
UseForEach(vect);

1* vect uses an iterator object to iterate through the array.
This is a repeat of the UseForEach process.

*1
cout « "\nUsing Iterator: \n";
UseIterator(vect);
return 0;

Output
Using ForEach member function to iterate:
o
1
2

3

4

5
6

8

9

Using an iterator object to iterate:
o
1

2

3

4

5

6
8

9

334 c++ Programmer's Guide

Using iostreams classes
This chapter provides a brief, practical overview of how to use C++ stream I/O. For
specific details on the C++ stream classes and their member functions, see the C++
Language Reference, Part III.

Stream input/ output in C++ (commonly referred to as iostreams, or just streams)
provides all the functionality of the stdio library in ANSI C and much more. Iostreams
are used to convert typed objects into readable text, and vice versa. Streams can also
read and write binary data. The C++ language lets you define or overload I/O functions
and operators that are then called automatically for corresponding user-defined types.

What is a stream?
A stream is an abstraction referring to any flow of data from a source (or producer) to a
sink (or consumer). We also use the synonyms extracting, getting, and fetching when
speaking of inputting characters from a source; and inserting, putting, or storing when
speaking of outputting characters to a sink Classes are provided that support console
output (constrea.h), memory buffers (iostream.h), files (fstream.h), and strings
(strstrea.h) as sources or sinks (or both).

The·iostream library
The iostream library has two parallel families of classes: those derived from streambuf,
and those derived from ios. Both are low-level classes, each doing a differe:l1t set of jobs.
All stream classes have at least one of these two classes as a base class. Access from ios­
based classes to streambuf-based classes is through a pointer.

Chapter 16, Using iostreams classes 335

The streambuf class
The streambuf class provides an interface to memory and physical devices. streambuf
provides underlying methods for buffering and handling streams when little or no
formatting is required. The member functions of the streambuf family of classes are used
by the ios-based classes. You can also derive classes from streambuf for your own
functions and libraries. The buffering classes conbuf, filebuf, and strstreambuf are derived
from streambuf. .

Figure 16.1 Class streambuf and its derived classes

The ios class
The class ios (and hence any of its derived classes) contains a pointer to a streambuf. It
performs formatted IIO with error-checking using a streambuf.

An inheritance diagram for all the ios family of classes is found in Figure 16.2. For
example, the ifstream class is derived from the istream and fstreambase classes, and
istrstream is derived from istream and strstreambase. This diagram is not a simple
hierarchy because of the generous use of multiple inheritance. With multiple inheritance,
a single class can inherit from more than one base class. (The C++ language provides for
virtual inheritance to avoid multiple declarations.) This means, for example, that all the
members (data and functions) of iostream, istream, ostream, fstreambase, and ios are part of
objects of the fstream class. All classes in the ios-based tree use a streambuf (or a filebuf or
strstreambuf, which are special cases of a streambuf) as its source and I or sink.

C++ programs start with four predefined open streams, declared as objects of withassign
classes as follows:

extern istream_withassign cin;
extern ostream_withassign cout;
extern ostream_withassign cerr;
extern ostream_withassign clog;

336 c++ Programmer's Guide

II Corresponds to stdin; file descriptor O.
II Corresponds to stdout; file descriptor 1.
II Corresponds to stderri file descriptor 2.
II A buffered cerr; file descriptor 2.

Figure 16.2 Class ios and its derived classes

istream _ with assign ostream_ with assign

By accepted practice, the arrows point from the derived class to the base class.

Stream output
Stream output is accomplished with the insertion (or put to) operator, «. The standard
left shift operator, «, is overloaded for output operations. Its left operand is an object of
type ostream. Its right operand is any type for which stream output has been defined
(that is, fundamental types or any types you have overloaded it for). For example,

cout « "Hello!\n";

writes the string "Hello!" to cout (the standard output stream, normally your screen)
followed by a new line.

The« operator associates from left to right and returns a reference to the ostream object
it is invoked for. This allows several insertions to be cascaded as follows:

int i = 8;

double d = 2.34;
cout « "i = " « i « ", d = " « d « "\n";

This will write the following to standard output:

i = 8, d = 2.34

Fundamental types
The fundamental data types directly supported are char, short, int, long, char* (treated
as a string), float, double, long double, and void*. Integral types are formatted

C hap t e r 1 6, Us i n 9 i 0 s t rea m sci ass e s 337

according to the default rules for printf (unless you've changed these rules by setting
various ios flags). For example, the following two output statements give the same
result:

int i;
long 1;
cout « i « " " « 1;
printf ("%d %ld", i, 1);

The pointer (void *) inserter is used to display pointer addresses:

int i;
cout « &i; II display pointer address in hex

Read the description of ostream in the C++ Language Reference, Chapter 11, for other
output functions.

1/0 formatting
Formatting for both input and output is determined by various format state flags
contained in the class ios. The flags are read and set with the flags, setf, and unsetf
member functions.

Output formatting can also be affected by the use of the fill, width, and precision member
functions of class ios.

The format flags are detailed in the description of class ios in the C++ Language Reference,
Chapter 11.

Manipulators
A simple way to change some of the format variables is to use a special function-like
operator called a manipulator. Manipulators take a stream reference as an argument and
return a reference to the same stream. You can embed manipulators :in a chain of
insertions (or extractions) to alter stream states as a side effect without actually
performing any insertions (or extractions). Parameterized manipulators must be called
for each stream operation. For example,

#include <iostream.h>
#include <iomanip.h> II Required for parameterized manipulators.

int main (void) {
int i = 6789, j = 1234, k = 10;

cout « setw(6) « i « j « i « k « j;
cout « "\n";
cout « setw(6) « i « setw(6) « j « setw(6) « k;
return(O);
}

produces this output:

678912346789101234
6789 1234 10

338 C+.+ Programmer's Guide

setw is a parameterized manipulator declared in iomanip.h. Other parameterized
manipulators, setbase, set fill, setprecision, setiosflags, and resetiosflags, work in the same
way. To make use of these, your program must include iomanip.h. You can write your
own manipulators without parameters:

#include <iostream.h>

II Tab and prefix the output with a dollar sign.
ostream& money(ostream& output) {

return output « "\t$";

int main (void)
float owed = 1.35, earned = 23.1;
cout « money « owed « money « earned;
return(O);
}

produces the following output:

$1.35 $23.1

The non-parameterized manipulators dec, hex, and oct (declared in iostream.h) take no
arguments and simply change the conversion base (and leave it changed):

int i = 36;
cout « dec « i « " " « hex « i « " " « oct « i « endl;
cout «dec; II Must reset to use decimal base.
II displays 36 24 44

Table 16.1 Stream manipulators

dec Set decimal conversion base format flag.

hex Set hexadecimal conversion base format flag.

oct Set octal conversion base format flag.

ws Extract whitespace characters.

endl

ends
flush

setbase(int n)

resetiosflags(long f)
setiosflags(long f)
setfill(int c)

setprecision(int n)
setw(int n)

Insert newline and flush stream.

Insert terminal null in string.

Flush an ostream.

Set conversion base format to base n (0,8, 10, or 16). °
means the default: decimal on output, ANSI C rules for
literal integers on input.

Clear the format bits specified by f.
Set the format bits specified by f.
Set the fill character to c.

Set the floating-point prE!cision to n.
Set field width to n.

The manipulator endl inserts a newline character and flushes the stream. You can also
flush an ostream at any time with

ostream « flush;

C hap t e r 1 6, U 5 i n 9 i 0 5 t rea m 5 c I ass e 5 339

Filling and padding
The fill character and the direction of the padding depend on the setting of the fill
character and the left, right, and internal flags.

The default fill character is a space. You can vary this by using the function fill:
iilt i = 123;
cout. fill (I * I) ;

cout.width(6);
cout «. i; II display ***123

The default direction of padding gives right-alignment (pad on the left). You can vary
these defaults (and other format flags) with the functions setf and unsetf:

int i = 56;

cout.width(6);
cout. fill (I # ') ;
cout. setf (ios: : left, ios: : adjustfield) ;
cout « i; II display 56####

The second argument, ios::adjustfield, tells setf which bits to set. The first argument,
ios::lefi, tells setf what to set those bits to. Alternatively, you can use the manipulators

'setfill, setiosflags, and resetiosflags to modify the fill character and padding mode. See ios
data members in the C++ Language Reference, Chapter 11, for a list of masks used by setf.

Stream input
Stream input is similar to output but uses the overloaded right shift operator, »,
known as the extraction (get from) operator or extractor. The left operand of » is an
object of type class istream. As with output, the right operand can be of any type for
which stream input has been defined. .

By default, » skips whitespace (as defined by the isspace function in ctype.h), then
reads in characters appropriate to the type of the input object. Whitespace skipping is
controlled by the ios::skipws flag in the format state's enumeration. The skipws flag is
normally set to give whitespace skipping. Clearing this flag (with setf, for example)
turns off whitespace skipping. There is also a special "sink" manipulator, ws, that lets
you discard whitespace.

Consider the following example:

int i;
double d;
cin» i »d;

When the last line is executed, the program skips any leading whitespace. The integer
value (i) is then read. Any whitespace following the integer is ignored. Finally, the
floating-point value (d) is read.

For type char (signed or unsigned), the effect of the » operator is to skip whitespace
and store the next (non-whitespace) character. If you need to read the next character,

340 c++ Programmer's Guide

whether it is whitespace or not, you can use one of the get member functions. See the
discussion of istream in the C++ Language Reference, Chapter 11.

For type char* (treated as a string), the effect of the » operator is to skip whitespace and
store the next (non-whitespace) characters until another whitespace character is found.
A final null character is then appended. Care is needed to avoid "overflowing" a string.
You can alter the default width of zero (meaning no limit) using width as follows:

char array[SIZE];
cin.width(sizeof(array));
cin » array; I I Avoids overflow ..

For all input of fundamental types, if only whitespace is encountered, nothing is stored
in the target, and the istream state is set to fail. The target will retain its previous value; if
it was uninitialized, it remains uninitialized.

1/0 of user-defined types
To input or output your own defined types, you must overload the extraction and
insertion operators. Here is an example:

#include <iostream.h>

struct info {
char *name;
double val;
char *units;
} ;

II You can overload « for output as follows:
ostrearn& operator « (ostream& s, info& m) {

s « m.name « " " « m.val « " " « m.units;
return s;
} ;

II You can overload » for input as follows:
istrearn& operator » (istrearn& s, info& m) {

s » m.name » m.val » m.units;
return s;
} ;

int main (void)
info x;
x.name = new char [15] ;
x.units = new char[10];,

cout « "\nlnput name, value and units:";
cin » x;
cout « "\nMy input:" « x;
return(O);
}

C hap t e r 1 6, U sin 9 i 0 s t rea m sci ass e s 341

Simple file 1/0
The class afstream inherits the insertion operations from astream, while ifstream inherits
the extraction operations from istream. The file-stream classes also provide constructors
and member functions for creating files and handling file I/ O. You must include
fstream.h in all programs using these classes. '

Consider the following example that copies the file FILE.IN to the file FILE.OUT:

#include <fstream.h>

int main (void) {
char ch;
ifstream fl ("FILE. IN") ;

of stream f2 ("FILE.OUT");

if (! fl) cerr « "Cannot open FILE. IN for input";

if (!f2) cerr « "Cannot open FILE.OUT for output";
while (f2 && fl.get(ch))

f2 . put (ch) ;
return (0) ;
}

Note that if the ifstream or afstream constructors are unable to open the specified files, the
appropriate stream error state is set.

The constructors let you declare a file stream without specifying a named file. Later, you
, can associate the file stream with a particular file:

of stream ofile; II creates output file stream

ofile. open ("payroll"); I I ofile connects to file "payroll"

II do some payrolling ...

ofile. close () ; II close the ofile stream
ofile.open("employee"); I I ofile can be reused ...

By default, files are opened in text mode. This meanS that on input, carriage-retum/
linefeed sequences are converted to the '\n' character. On output, the '\n' character is
converted to a carriage-retum/linefeed sequence. These translations are not done in
binary mode. The file-opening mode is set with an optional second parameter to the
apen function or in some file-stream constructors. The file opening-mode constrants can
be used alone or they can be logically ORed together. See the description of class ias data
members in the C++ Language Reference, Chapter 11.

String stream processing
The functions defined in strstrea.h support in-memory formatting, similar to sscanf and
sprintf, but much more flexible. All of the istream member functions are available for
class istrstream (input string stream). This is the same for output: astrstream inherits from
astream.

342 c++ Programmer's Guide

Given a text file with the following format:

101 191 Cedar Chest
102 1999.99 Livingroom Set

Each line can be parsed into three components: an integer ID, a floating-point price, and
a description. The output produced is

1: 101 191.00 Cedar Chest
2: 102 1999.99 Livingroom Set

Here is the program:

#include <fstream.h>
#include <strstrea.h>
#include <iomanip.h>

.#include <string.h>

int.main(int argc, char **argv) {
int id;
float amount;
char description[41];

if (argc == 1) {-
cout « "\nlnput file name required.";
return (-1);
}

ifstream inf(argv[l]);

if (inf) {
char inbuf [81] ;
int lineno = 0;

II Want floats to print as fixed point
cout.setf(ios::fixed, ios::floatfield);

II Want floats to always have decimal point
cout.setf(ios::showpoint)i

while (inf.getline(inbuf,81» {
II 'ins' is the string stream:
istrstream ins(inbuf,strlen(inbuf»i
ins » id » amount » ws;
ins.getline(description,41)i II Linefeed not copied.
cout « ++lineno « ": "

« id« '\t'
« setprecision(2) « amount « '\t'
« description « "\n";

return (0) ;

Note the use of format flags and manipulators in this example. The calls to setf coupled
with setprecision allow floating-point numbers to be printed in a money format. The
manipulator ws skips whitespace before the description string is read.

Chapter 16, Using iostreams classes 343

Screen output streams
The class constream, derived from ostream and defined in constrea.h, provides the
functionality of conio.h for use with C++ streams. This lets you create output streams
that write to specified areas of the screen, in specified colors, and at specific locations.

As with conio.h functions, constreams are not available for GUI applications. The screen
area created by constream is not bordered or otherwise distinguished from the
surrounding screen.

Console stream manipulators are provided to facilitate formatting of console streams.
These manipulators work in the same way as the corresponding function provided by
conio.h. For a detailed description of the manipulators' behavior and valid arguments,
see the c++ Language Reference, Chapter 11.

Table 16.2 Console stream manipulators

dreol dreol
delline delline

highvideo highvideo
insline insline
lowvideo lowvideo
nonnvideo nonnvideo

setattr(int) textattr
setbk(int) textcolor
setclr(int) textcolor

setcrsrtype(int) _setcursortype

setxy(int, int) gotoxy

Clears to end of line in text window.

Deletes line in the text window.

Selects high-intensity characters.

Inserts a blank line in the text window.

Selects low-intensity characters.

Selects normal-intensity characters.

Sets screen attributes.

Sets new character color.

Sets the color.

Selects cursor appearance.

Positions the cursor at the specified position.

Typical use of parameterized manipulators. See the C++ Language Reference, Chapter 11
for a description of class constream.

#include <constrea.h>

int main (void) {
constream win1;

win1.window(l, 1, 40, 20); II Initialize the desired space.
win1.clrscr(); II Clear this rectangle.

/! Use th~ parameterized manipulator to set screen attributes.
win1 «setattr((BLUE«4) I WHITE)

« "This text is white on blue.";

II Use this parameterized manipulator to specify output area.
win1 « setxy(10, 10)

« "This text is in the middle of the window.";
return (0) i

}

You can create multiple constreams, each writing to its own portion of the screen. Then,
you can output to any of them without having to reset the window each time.

344 C++ Pro 9 ram mer's G ui d e

#include <constrea.h>

int main (void) {
constream demo1, demo2;

demo1.window(1,2, 40, 10);
demo2.window(1, 12, 40, 20);

demo1.clrscr();
demo2.clrscr();

demo 1 « "Text
demo2 « "Text
demo 1 « "Back

in
in
to

demo2 « "And back
return (0) ;
}

first window" « endl;
second window" « endl;
the first window" « endl;
to the second window" «endl;

Chapter 16, Using iostreams classes 345

346 c++ Programmer's Guide

Using persistent streams classes
This section describes Borland's object streaming support, then explains how to make
your objects streamable.

Objects that you create when an application runs-windows, dialog boxes, collections,
and so on-are temporary. They are constructed, used, and destroyed as the application
proceeds. Objects can appear and disappear as they enter and leave their scope, or when
the program terminates. By making your objects streamable you save these objects,
either in memory or file streams, so that they persist beyond their normal lifespan.

See Chapter 12 of the C++ Library Reference for reference details of persistent streams.

There are many applications for persistent objects. When saved in shared memory they
can provide interprocess communication. They can be transmitted via modems to other
systems. And, most significantly, objects can be saved permanently on disk using file
streams. They can then be read back and restored by the same application, by other
instances of the same application, or by other applications. Efficient, consistent, and safe
streamability is available to all objects.

Building your own streamable classes is straightforward and incurs little overhead. To
make your class streamable you need to add specific data members, member functions,
and operators. You also must derive your class, either directly or indirectly, from the
TStreamableBase class. Any derived class is also streamable.

To simplify creating streamable objects, the persistent streams library contains macros
that add all the routines necessary to make your classes streamable.The two most
important are:

• DECLARE_STRE~BLE
• IMPLEMENT_STRE~BLE

These macros add the boilerplate code necessary to make your objects streamable. In
most cases you can make your objects streamable by adding these two macros at
appropriate places in your code, as explained later.

Chapter 17, Using persistent streams classes 347

What's new with streaming
Object streaming has been significantly changed from Borland's earlier implementation
to make it easier to use and more powerful. These changes are compatible with existing
code developed with Borland's ObjectWindows and Turbo Vision products.

The new streaming code is easier to use because it provides macros that relieve the
programmer of the burden of remembering most of the details needed to create a
streamable class. Its other new features include support for multiple inheritance, class
versioning, and better system isolation. In addition, the streaming code has been
reorganized to make it easier to write libraries that won't force streaming code to be
linked in if it isn't used.

There have been several additions to the streaming capabilities. These changes are
intended to be backward compatible, so if you compile a working application with the
new streaming code, your application should be able to read streams that were written
with the old code. There is no provision for writing the old stream format, however. We
assume that you'll like the new features so much that you ,,\,on't want to be without
them.

The following sections describe the changes and new capabilities of streaming. Each of
these changes is made for you when you use the DECLARE_STREAMABLE and
IMPLEMENT _STREAMABLE macros.

Object versioning
Objects in streams now have a version number associated with them. An object version
number is a 32-bit value that should not be O. Whenever an object is written to a stream,
its version number will also be written. With versioning you can recognize if there's an
older version of the object you're reading in, so you can interpret the stream
appropriately.

Reading and writing base classes
In your current code, you might be reading and writing base classes directly, as shown
here: ,0,

void Derived::write(opstream& out
{

Base: :write(out);
/ / ...
}

void *Derived::read(ipstream& in)

Base: : read (in);
II

348 c++ Programmer's Guide

This method will continue to work, but it won't write out any version numbers for the
base class. To take full advantage of versioning, you should change these calls to use the
new template functions that understand about versions:

void Derived::Write(opstrearn& out)

WriteBaseObject((Base *)this, out);
/ / ...
}

void *Derived::Read(ipstrearn& in, uint32 ver

ReadBaseObject((Base *)this, in);
/ / ... "
}

Note The cast to a pointer to the base class is essential. If you leave it out, your program may
crash.

Reading and writing integers
Old streams wrote int and unsigned data types as 2-byte values. To move easily to 32-
bit platforms, the new streams write int and unsigned values as 4-byte values. The new
streams can read old streams, and will handle the 2-byte values correctly.

The old streams provide two member functions for reading and writing integer values:

void writeWord(unsigned);

unsigned readWord();

These have been changed in the new streams:

void writeWord(uint32).;

uint32 readWord();

Existing code that uses these functions will continue to work correctly if it is recompiled
and relinked, although calls to readWord will generate warnings about a loss of precision
when the return value is assigned to an int or unsigned in a 16-bit application. But in
new code, all of these functions should be avoided. In general, you probably know the
true size of the data being written, so the streaming library now provides separate
functions for each data size:

void writeWord16(uint16);

void writeWord32(uint32);

uint16 readWord16(unit16);

uint32 readWord32(unit32);

Use of these four functions is preferred.

Multiple inheritance and virtual base support
The streaming code now provides four function templates that support virtual base
classes and multiple inheritance. The following sections describe these functions.

C hap t e r 1 7, U sin 9 per sis ten t s t rea m sci ass e s 349

The ReadVirtualBase and WriteVirtualBase function templates
Any class that has a direCt virtual base should use the new ReadVirtualBase and
WriteVirtualBase function templates: .

void Derived::Write{ opstream& out)
{

WriteVirtualBase{ (VirtualBase *)this, out);
I I ...
}

void *Derived::Read{ ipstrearn& in, uint32 ver)

ReadVirtualBase{ (VirtualBase *)this, in);
I I ...
}

A class derived from a class with virtual bases does not need to do anything special to
deal with those virtual bases. Each class is responsible only for its direct bases.

The ReadBaseObject and WriteBaseObject function templates
Object streams now support multiple inheritance. To read and write multiple bases, use
the new WriteBaseObject and ReadBaseObject function templates for each base:

void Derived::Write{ opstrearn& out)
{

WriteBaseObject{ (Basel *)this, out);
WriteBaseObject{ (Base2 *)this, out):

I I ...
}

void *Derived::Read{ ipstream& in, uint32 ver

II
}

ReadBaseObject{ (Basel *)this, in);
ReadBaseObject{ (Base2 *)this, in);

Creating streamable objects
The easiest way to make a class streamable is by using the macros supplied in the
persistent streams library. The following steps will work for most classes:

Make TStreamableBase a virtual base of your class, either directly or indirectly.

2 Add the DECLARE_STREAMABLE macro to your class definition.

3 Add the IMPLEMENT_STREAMABLE macro to one of your source files. Adding the
IMPLEMENT_CASTABLE macro is also recommended.

4 Write the Read and Write member function definitions in one of your source files.

The following sections provide details about defining and implementing streamable
classes.

350 c++ Programmer's Guide

Defining streamable classes
To define a streamable class you need to:

• Include objstrm.h
• Base your class on the TStreamableBase class
• Include macro DECLARE_STREAMABLE into your class definition. For example,

#include <objstrm.h>
class Sample : public TStreamableBase
{

public:
II member functions, etc.

private:
int ii

DECLARE_STREAMABLE(IMPEXPMACRO, Sample, 1) i
} i

Header file objstrm.h provides the classes, templates,and macros that are needed to
define a streamable class.

Every streamable class must inherit, directly or indirectly, from the class
TStreamableBase. In this example, the class Sample inherits directly from TStreamableBase.
A class derived from Sample would not need to explicitly inherit from TStreamableBase
because Sample already does. If you are using multiple inheritance, you should make
TStreamableBase a virtual base instead of a nonvirtual base as shown here. This will
make your classes slightly larger, but won't have any other adverse effect on them.

In most cases the DECLARE_STREAMABLE macro is all you need to use when you're
defining a streamable class. This macro takes three parameters. The first parameter is
used when compiling DLLs. This parameter takes a macro that is meant to expand to
either __ export, __ import, or nothing, depending on how the class is to be used in the
DLL. See Chapter 12 and Chapter· 15 of the C++ Language Reference for further
explanation. The second parameter is the name of the class that you're defining, and the
third is the version number of that class. The streaming code doesn't pay any attention
to the version number, so it can be anything that has some significance to you. See the
discussion of the nested class Streamer for details.

DECLARE_STREAMABLE adds a constructor to your class that takes a parameter of
type StreamableInit. This is for use by the streaming code; you won't need to use it
directly. DECLARE_STREAMABLE also creates two inserters and two extractors for
your class so that you can write objects to andread them from persistent streams. For
the class Sample (shown earlier in this section), these functions have the following
prototypes:

opstream& operator « opstream&, const Sample&)i

opstream& operator « opstream&, const Sample*) i

ipstream& operator » ipstream&, Sample&) i

ipstream& operator » ipstream&, Sample*&) i

The first inserter writes out objects of type Sample. The second inserter writes out objects
pointed to by a pointer to Sample. This inserter gives you the full power of object
streaming, because it understands about polymorphism. That is, it will correctly write
objects of types derived from Sample, and when those objects are read back in using the

C hap t e r 1 7, U sin 9 per sis ten t s t rea m sci ass e s 351

pointer extractor (the last extractor) they will be read in as their actual types. The
extractors are the inverse of the inserters.

Finally, DECLARE_STREAMABLE creates a nested class named Streamer, based on the
TStreamer class, which defines the core of the streaming code.

Implementing streamable classes
Most of the members added to your class by the DECLARE_STREAMABLE macro are
inline functions. There are a few, however, that aren't inline; these must be implemented
outside of the class. Once again, there are macros to handle these definitions.

The IMPLEMENT_CASTABLE macro provides a rudimentary typesafe downcast
mechanism. If you are building with Borland C++ 5.0, you don't need to use this
because Borland C++ supports RTTI. However, if you need to build your code with a
compiler that does not support RTTI, you will need to use the
IMPLEMENT_ CAST ABLE macro to provide the support that object streaming requires.
Although it isn't necessary to use IMPLEMENT_CASTABLE when using Borland C++ ,
you ought to do so anyway if you're concerned about being able to compile your code
with another compiler. See Chapter 3 of the c++ Language Reference for a discussion of
RTTI.

IMPLEMENT _ CAST ABLE has several variants:

IMPLEMENT_CASTABLE(cIs)
IMPLEMENT_CASTABLEl(cIs, basel)
IMPLEMENT_CASTABLE2(cIs, basel, base2
IMPLEMENT_CASTABLE3 (c1s, basel, base2, base3
IMPLEMENT_CASTABLE4(cIs, basel, base2, base3, base4
IMPLEMENT_CASTABLES(cIs, basel, base2, base3, base4, baseS)

At some point in your source code you should invoke this macro with the name of your
streamable class as its first parameter and the name of all its streamable base classes
other than TStreamableBase as the succeeding parameters. For example:

class Basel : public virtual TStreamableBase

I I ...
DECLARE_STREAMABLE(IMPEXPMACRO,' Basel, 1);
} ;

IMPLEMENT_CASTABLE (Basel); II no streamable bases

class Base2 : public virtual TStreamableBase

I I ...
DECLARE_STREAMABLE(IMPEXPMACRO, Base2, 1);
} ;

IMPLEMENT_CASTABLE (Basel); II no streamable bases

class Derived : public Basel, public virtual Base2

I I ...
DECLARE_STREAMABLE(IMPEXPMACRO, Derived, 1);
} ;

IMPLEMENT_CASTABLE2(Derived, Basel, Base2); Iitwo streamable bases

352 C++ Pr 0 9 ram ~ e r' s G u ide

class MostDerived : public Derived

DECLARE_STREAMABLE(IMPEXPMACRO, MostDerived, 1);
} ;

IMPLEMENT_CASTABLE1(MostDerived, Derived); Iione streamable base

The class Derived uses IMPLEMENT_CASTABLE2 because it has two streamable base
classes.

In addition to the IMPLEMENT _ CAST ABLE macros, you should invoke the
appropriate, IMPLEMENT_STREAMABLE macro somewhere in your code. The
IMPLEMENT_STREAMABLE macro looks like the IMPLEMENT_CASTABLE macros:

IMPLEMENT_STREAMABLE(cIs)
IMPLEMENT_STREAMABLE1(cIs, basel)

IMPLEMENT_STREAMABLE2(cIs, basel, base2
IMPLEMENT_STREAMABLE3(cIs, basel, base2, base3
IMPLEMENT_STREAMABLE4(cIs, basel, base2, base3, base4
IMPLEMENT_STREAMABLE5(cIs, basel, base2, base3, base4, base5

The IMPLEMENT _STREAMABLE macros have one important difference from the
IMPLEMENT_CASTABLE macros: when using the IMPLEMENT_STREAMABLE
macros you must list all the streamable base classes of your class in the parameter list,
and you must list all virtual base classes that are streamable. This is because the
IMPLEMENT_STREAMABLE macros define the special constructor that the object
streaming code uses; that constructor must call the corresponding constructor for all of
its direct base classes and all of its virtual bases. For example:

class Basel : public virtual TStreamableBase

I I ...
DECLARE_STREAMABLE(IMPEXPMACRO, Basel, 1);
} ;

IMPLEMENT_CASTABLE (Basel); II no streamable bases
IMPLEMENT_STREAMABLE(Basel); II no streamable bases

class Base2 : public virtual TStreamableBase

I I ...
DECLARE_STREAMABLE(IMPEXPMACRO, Base2, 1);
} ;

IMPLEMENT_CASTABLE (Basel); II no streamable bases
IMPLEMENT_STREAMABLE(Basel); II no streamable bases

class Derived : public Basel, public virtual Base2

I I ..
DECLARE_STREAMABLE(IMPEXPMACRO, Derived, 1);
} ;

IMPLEMENT_CASTABLE2(Derived, Basel, Base2);
IMPLEMENT_STREAMABLE2(Derived, Basel, Base2);

class MostDerived : public Derived

I I ...
DECLARE_STREAMABLE(IMPEXPMACRO, MostDerived, 1);
} ;

Chapter 17, Using persistent streams classes 353

IMPLEMENT_CASTABLE1(MostDerived, Derived)i

IMPLEMENT_STREAMABLE2(MostDerived, Derived, Base2);

The nested class Streamer
The nested class Streamer is the core of the streaming code for your objects. The
DECLARE_5TREAMABLE macro creates Streamer inside your class. It is a protected
member, so classes derived from your class can access it. Streamer inherits from
TNewStreamer, which is internal to the object streaming system. It inherits the following
two pure virtual functions:

virtual void Write(opstream&) const = 0;
virtual void * Read (ipstream&, uint32) const = 0;

Streamer overrides these two functions, but does not provide definitions for them. You
must write these two functions: Write should write any data that needs to be read back
in to reconstruct the object, and Read should read that data. Streamer::GetObject returns a
pointer to the object being streamed. For example:

class Demo : pUblic TStreamableBase

int i;
int j;

public:
Demo (int ii, int jj) : i (ii), j (jj) {}

DECLARE_STREAMABLE (IMPEXPMACRO, Demo, 1);
} ;

IMPLEMENT_CASTABLE (Demo);
IMPLEMENT_STREAMABLE (Demo);

void *Demo::Streamer::Read(ipstream& in, uint32) const

in » GetObject()->i » GetObject()->j;
return GetObject();

void Demo::Streamer::Write(opstream& out) const

out « GetObject()->i « GetObject()->j;

Writing the Read and Write functions
It is usually easiest to implement the Read function before implementing the Write
function. To implement Read you need to:

• Know what data you need in order to reconstruct the new streamable object.
• Devise a sensible way of reading that data into the new streamable object.

Then implement Write to work in parallel with Read so that it sets up the data that Read
will later read. The streaming classes provide several operators to make this easier. For
example, opstream provides inserters for all the built-in types, just as ostream does. 50 all
you need to do to write out any of the built-in types is to insert them into the stream.

354 C++ Pro 9 ram mer's ,G u ide

You also need to write out base classes. In the old ObjectWindows and Turbo Vision
streaming, this was done by calling the base's Read and Write functions directly. This
doesn't work with code that uses the new streams, because of the way class versioning
is handled.

The streaming library provides template functions to use when reading and writing
base classes. ReadVirtualBase and WriteVirtualBase are used for virtual base classes, and
ReadBaseObject and WriteBaseObject are used for nonvirtual bases. Just like
IMPLEMENT_CASTABLE, you only need to deal with direct bases. Virtual bases of
your base classes will be handled by the base class, as shown in this example:

class Basel : public virtual TStreamableBase

int i;
DECLARE_STREAMABLE(IMPEXPMACRO, Basel, 1);
} ;

IMPLEMENT_CASTABLE(Basel); II no streamablebases
IMPLEMENT_STREAMABLE(Basel); II no streamable bases
void Basel::Streamer::Write(opstream& out) const

out « GetObject()->i;

class Base2 public virtual TStreamableBase

int j;
DECLARE_STREAMABLE(IMPEXPMACRO, Base2, 1);
} ;

IMPLEMENT_CAS!ABLE(Basel); II no streamable bases
IMPLEMENT_STREAMABLE(Basel); II no streamable bases
void Base2::Streamer::Write(opstream& out) const

out « GetObject()->j;

class Derived : public Basel, public virtual Base2

int k;
DECLARE_STREAMABLE(IMPEXPMACRO, Derived, 1);
} ;

IMPLEMENT_CASTABLE2(Derived, Basel, Base2);
IMPLEMENT_STREAMABLE2 (Derived, Basel, Base2);
void Derived::Streamer::Write(opstream& out) const
{

WriteBaseObject((Basel *)this, out);
WriteVirtualBase((Base2 *)this, out);
out « GetObject()->k;

class MostDerived : public Derived

int m;
DECLARE_STREAMABLE (IMPEXPMACRO, MostDeri ved, 1);
} ;

Chapter 17, Using persistent streams classes 355

IMPLEMENT_CASTABLE1(MostDerived, Derived);
IMPLEMENT_STREAMABLE2 (MostDerived, Derived, Base2);
void MostDerived::Streamer::Write(opstream& out const
{

WriteBaseObject((Derived *)this, out);
out « GetObject()->m;

When you're writing out a base class, don't forget to cast the this pointer. Without the
cast, the template function will think it's wri1:ing out your class and not the base class.
The result will be that it calls your Write or Read function rather than the base's. This
results in a lengthy series of recursive calls, which will eventually crash.

Object·versioning
You can assign version numbers to different implementation~ of the same class as you
change them in the course of maintenance. This doesn't mean that you can use different
versions of the same class in the same program, but it lets you write your streaming
code in such a way that a program using the newer version of a class can n;ad a stream
that contains the data for an older version of a class. For example:

class Sample : public TStreamableBase

int i;
DECLARE_STREAMABLE (IMPEXPMACRO, Sample, 1);
} ;

IMPLEMENT_CASTABLE(Sample) i

IMPLEMENT_STREAMABLE (Sample);
void Sample::Streamer::Write(opstream& out) const
{

out « GetObject()->i;

void *Sample::Streamer::Read(ipstream& in, uint32) const
{

in » GetObject()->i;
return GetObject();

Suppose you've written out several objects of this type into a file and you discover that
you need to change the class definition. You'd do it something like this:

class Sample : public TStreamableBase
{

int i;
int j; II new data member
DECLARE_STREAMABLE(IMPEXPMACRO, Sample, 2); I I new version number
} ;

IMPLEMENT_CASTABLE (Sample);
IMPLEMENT_STREAMABLE (Sample);
void Sample::Streamer::Write(opstream& out) const
{

out « GetObject()->i;
out« GetObject()->j;

356 c++ Programmer's Guide

void *Sample::Streamer::Read(ipstream& in, uint32 ver) canst
{

in » GetObject()->i;
if(ver>l)

in » GetObject()->j;
else

GetObject()->j = 0;
return GetObject();

Streams written with the old version of Sample will have a version number of 1 for all
objects of type Sample. Streams written with the new version will have a version number
of 2 for all objects of type Sample. The code in Read checks that version number to
determine what data is present in the stream.

The streaming library used in the previous versions of ObjectWindows and Turbo
Vision doesn't support object versioning. If you use the new library to read files created
with that library, your Read function will be passed a version number of O. Other than
that, the version number has no significance to the streaming library, and you can use it
however you want.

C hap t e r 1 7, U sin 9 p e rs i s ten t s t rea m sci ass e s 357

358 c++ Programmer's Guide

Using the mathematical classes
This chapter explains how to use complex and bcd numerical types.

Using complex types
Complex numbers are numbers of the form x + yi, where x and yare real numbers, and i
is the square root of -1. Borland C++ has always had a type

struct complex

double x, Yi

} i

defined in math.h. This type is convenient for holding complex numbers, because they
can be considered a pair of real numbers. However, the limitations of C make arithmetic
with complex numbers rather cumbersome. With the addition of C++, complex math is
much simpler.

A significant advantage to using the Borland C+.+ complex numerical type is that all of
the ANSI C Standard mathematical routines are defined to operate with it. These
mathematical routines are not defined for use with the C struct complex.

Note See Part III, "Borland C++ class libraries guide," for more information.

To use complex numbers in C++, all you have to do is to include complex.h. In
complex.h, all the following have been overloaded to handle complex numbers:

• All of the binary arithmetic operators.
• The input and output operators, » and «.
• The ANSI C math functions.

The complex library is invoked only if the argument is of type complex. Thus, to get the
complex square root of -I, use

sqrt(complex(-l))

C hap t e r t 8, U sin 9 the mat hem at i c a I c I ass e s 359

and not

sqrt(-l)

The following functions are defined by class complex:
double arg(complex&)i
complex conj(complex&);
double imag(complex&);
double norm(complex&);
double real(complex&);

II angle in the plane
II complex conjugate
II imaginary part
II square of the magnitude
II real part

II Use polar coordinates to create a complex.
complex polar(double mag, double angle = 0);

Using bed types
Borland C++, along with almost every other computer and compiler, does arithmetic on
binary numbers (that is, base 2). This can sometimes be confusing to people who are
used to decimal (base 10) representations. Many numbers that are exactly representable
in base 10, such as 0.01, can only be approximated in base 2.

Note See Part III, uBorland C++ class libraries guide," for more information.

Binary numbers are preferable for most applications, but in some situations the round­
off error involved in converting between base 2 and 10 is undesirable. The most
common example of this is a financial or accounting application, where the pennies are
supposed to add up. Consider the following program to add up 100 pennies and
subtract a dollar:

#include <stdio.h>
int i;
float x = 0.0;
for (i = 0; i< 100; ++i)

x += 0.01;
x -= 1.0;
printf("100*.01 - 1 = %g\n",x);

The correct answer is 0.0, but the computed answer is a small number close to 0.0. The
computation magnifies the tiny round-off error that occurs when converting 0.01 to base
2. Changing the type of x to double or long double reduces the error, but does not
eliminate it.

To solve this problem, Borland C++ offers the C++ type bcd, which is declared in bcd.h.
With bcd, the number 0.01 is represented exactly, and the bed variable x provides an
exact penny count.

#include <bcd.h>
int i;
bcd x = 0.0;
for (i = 0; i < 100; ++i)

x += 0.01;
x -= 1. 0;

cout « "100*.01 - 1 = " « x « "\n";

360 c++ Programmer's Guide

Here are some facts to keep in mind about bed:

• bed does not eliminate all round-off error: A computation like 1.0/3.0 will still have
round-off error.

• bed types can be used with ANSI C math functions.

• bed numbers have about 17 decimal digits precision, and a range of about 1 x 10-125 to
1 x 10125. '

Converting bcd numbers
bed is a defined type distinct from float, double, or long double; decimal arithmetic is
performed only when at least one operand is of the type bed.

Note· The bed member function real is available for converting a bed number back to one of the
usual formats (float, double, or long double), though the conversion is not done
automatically. real does the necessary conversion to long double, which can then
be converted to other types using the usual C conversions. For example, a bed can be
printed using any of the following four output statements with caut and printf.

1* PRINTING bcd NUMBERS *1
1* This must be compiled as a c++ progr~. */
#include <bcd.h>
#include <iostream.h>
#include <stdio.h>

void main (void) {
bcd a = 12.1;
double x = real(a); II This conversion required for printf().

printf (" \na = %g", x);
printf(" \na = %Lg", real (a)) ;
printf("\na = %g", (double)real(a));
cout « "\na = " « a; I I The preferred method.
}

Note that since printf doesn't do argument checking, the format specifier must have the
L if the long double value real(a) is passed.

Number of decimal digits
You can specify how many decimal digits after the decimal point are to be carried in a
conversion from a binary type to a bed. The number of places is an optional second
argument to the constructor bed. For example, to convert $1000.00/7 to a bed variable
rounded to the nearest penny, use

bcd a ~ bcd(1000.00/7, 2)

C hap t e r 1 8, U sin 9 the mat hem at i c a I c I ass e s 361

'where 2 indicates two digits following the decimal point. Thus,

1000.00/7 = 142.85714 ...
bcd(1000. 00/7, 2) = 142.860
bed (1000.00/7, 1) 142.900
bcd(1000. 00/7, 0) 143.000
bed(1000. 00/7, -1) 140.000
bcd(1000. 00/7, -2) 100.000

The number is rounded using banker's rounding (as specified by IEEE), which rounds
to the nearest whole number, with ties being rounded to an even digit. For example,

bed(12.335, 2)

bed(12.345, 2)

bed(12.355, 2)

362 C++ Pro 9 ram mer J 5 G u ide

12.34

12.34

12.36

Standard class libraries guide
Part IV documents the Rogue Wave Software, Inc., implementation of the Standard c++
Library. It assumes that you are already familiar with the basics features of the C++
programming language. If you are new to C++ you may wish to examine an
introductory text, such as the book The C++ Programming Language, by Bjarne Stroustrup
(Addison-Wesley, 1991).

Part IV, "Standard Class Libraries Guide" documents Rogue Wave's
implementation of the Standard C++ Library.

Based on ANSI's Working Paper for Draft Proposed International Standard for
Information Systems-Programming Language C++. April 28, 1995.

Copyright@ 1995 Rogue Wave Software, Inc. All rights reserved.

Reading this part
There is a classic" chicken-and-egg" problem associated with the container class portion
of the standard library. The heart of the container class library is the definition of the
containers themselves, but you can't really appreciate the utility of these structures
without an understanding of the algorithms that so greatly extend their functionality.
On the other hand, you can't really understand the algorithms without some
appreciation of the containers.

Part IV, Standard class libraries guide 363

Therefore, after reading Chapters 19,20, and 21 carefully, Chapters 22 through 28
should be read concurrently with Chapters 29 and 30. Alternatively, simply skim over
Chapters 22 through 28 and Chapters 29 and 30 to gain a superficial understanding of
the overall structure, then go back and read these sections again in more detail.

Typeface conventions used in this part
We have presented both class_names and function_names () in a distinctive font the
first time they are introduced. In addition, when we wish to refer to a function name or
algorithm name but not draw attention to the arguments, we will follow the function
name with an empty pair of parenthesis. We do this even when the actual function
invocation requires additional arguments. We have used the term algorithm to refer to
the functions in the generic algorithms portion of the standard library, so as to avoid
confusion with member functions, argument functions, and functions defined by the
programmer. Note that both class names and function names in the standard library
follow the convention of using an underline character as a separator. Throughout the
text, examples and file names are printed in the same Courier font used for function
names.

In the text, it is common to omit printing the class name in the distinctive font after it has
been introduced. This is intended to make the appearance of the text less visually
disruptive. However, we return to the distinctive font to make a distinction between
several different possibilities, as for example between the classes vector and list used as
containers in constructing a stack.

What is the Standard C++ Library?·
The International Standards Organization (ISO) and the American National Standards
Institute (ANSI) are completing the process of standardizing the c++ programming
language. A major result of this standardization process is the Standard c++ Library, a
large and comprehensive collection of classes and functions. This product is Rogue
Wave's implementation of the ANSI/ISO Standard Library.

The ANSI/ISO Standard c++ Library includes the following parts:

• A large set of data structures and algorithms formerly known as the Standard
Template Library (STL).

• An IOStream facility.

• A locale facility.

• A templatized string class.

• A templatized class for representing complex numbers.

• A uniform framework for describing the execution environment, through the use of a
template class named numeric_limits and specializations for each fundamental data
type.

• Memory management features.

364 c++ Programmer's Guide

• Language support features.

• Exception handling features.

This version of the Rogue Wave Standard c++ Library includes the data structures and
algorithms libraries (STL)f and the stringf complex, and numeric_limits classes.

Does the Standard C++ Library differ from other libraries?
A major portion of the Standard C++ Library is comprised of a collection of class
definitions for standard data structures and a collection of algorithms commonly used
to manipulate such structures. This part of the library was formerly known as the
Standard Template Library or STL. The organization and design of the STL differs in
almost all respects from the design of most other C++ librariesf because it avoids
encapsulation and uses almost no inheritance.

An emphasis on encapsulation is a key hallmark of object-oriented programming. The
emphasis on combining data and functionality into an object is a powerful organization
principle ill software development; indeed it is the primary organizational technique.
Through the proper use of encapsulationf even exceedingly complex software systems
can be divided into manageable units and assigned to various members of a team of
programmers for development.

Inheritance is a powerful technique for permitting code sharing and software reusef but
it is most applicable when two or more classes share a common set of basic features. For
examplef in a graphical user interfacef two types of windows may inherit from a
common base window classf and the individual subclasses will provIde any required
unique features. In another use of inheritance, object-oriented container classes may
ensure common behavior and support code reuse by inheriting from a more general
classf and factoring but common member functions.

The designers of the STL decided against using an entirely object-oriented approach,
and separated the tasks to be performed using common data structures from the
representation of the structures themselves. This is why the STL is properly viewed as a
collection of algorithms andf separate from thesef a collection of data structures that can
be manipulated using the algorithms.

What are the effects of non-abject-oriented design?
The STL portion of the Standard C++ Library was purposely designed with an
architecture that is not object-oriented. This design has some side effectsf some
advantageousf and some notf that developers must be aware of as they investigate how
to most effectively use the library. Wefll discuss a few of them here.

Smaller source code
There are approximately fifty different algorithms in the STLf and about a dozen major
data structures. This separation of has the effect of reducing the size of source codef and
decreasing some of the risk that similar activities will have dissimilar interfaces. Were it

Part IV, Standard class libraries guide 365

not for this separation, for example, each of the algorithms would have to be re­
implemented in each of the different data structures, requiring several hundred more
member functions than are found in the present scheme.

Flexibility
One advantage of the separation of algorithms from data structures is that such
algorithms can be used with conventional C++ pointers and arrays. Because C++ arrays
are not objects, algorithms encapsulated within ,a class hierarchy seldom have this
ability.

Efficiency
The STL in particular, and the Standard C++ Library in general, provide a low-level,
"nuts and bolts" approach to developing C++ applications. This low-level approach can
be useful when specific programs require an emphasis on efficient coding and speed of
execution.

Iterators: mismatches and invalidations
The Standard C++ Library data structures use pointer-like objects called iterators to
describe the contents of a container. (These are described in detail in Chapter 19,
"Iterators".) Given the library's architecture, it is not possible to verify that these iterator
elements are matched; i.e., that they are derived from the same container. Using (either
intentionally or by accident) a beginning iterator from one container with an ending
iterator from another is a recipe for certain disaster. '

It is very important to know that iterators can become invalidated as a result of a
subsequent insertion or deletion from the underlying container class. This invalidation
is not checked, and use of an invalid iterator can produce unexpected results.

Familiarity with the Standard C++ Library will help reduce the number of errors related
to iterators.

Templates: errors and "code bloat"
The flexibility and power of templatized algorithms is, with most compilers, purchased
at a loss of precision in diagnostics. Errors in the parameter lists to generic algorithms
will sometimes be manifest only as obscure compiler errors for internal functions that
are defined many levels deep in template expansions. Again, familiarity with the
algorithms and their requirements is a key to successful use of the standard library.

Because of its heavy reliance on templates, the STL can cause programs to 'grow larger
than expected. You can minimize this problem by learning to recognize the cost of
instantiating a particular template class, and by making appropriate design decisions.
Be' aware that as compilers become more and more fluent in templates, this will become
less of a problem.

366 c++ Programmer's Guide

Multithreading problems
The Standard C++ Library must be used carefully in a 'multithreaded environment.
Iterators, because they exist independently of the containers they operate on, cannot be
safely passed between threads. Since iterators can be used to modify a non canst
container, there is no way to protect such a container if it spawns iterators in multiple
threads. Use "thread-safe" wrappers, such as those provided by Tools.h++, if you need to
access a container from multiple threads. '

How should I use the Standard C++ Library?
Within a few years the Standard C++ Library will be the standard set of classes and
libraries delivered with all ANSI-conforming C++ compilers. We have noted that the
design of a large portion of the Standard C++ Library is in many ways not object­
oriented. On the other hand, C++, excels as a language for manipulating objects. How
do we integrate the Standard Library'S non-object-oriented architecture with C++'s
strengths as a language for manipulating objects?

The key is to use the right tool for each task. Object-oriented design methods and
. programming techniques are almost without peer as guideposts in the development of
large complex software. For the large majority of programming tasks, object-oriented
techniques will remain the preferred approach. And, products such as Rogue Wave's
Tools.h+;t- 7.0, which will encapsulate the Standard C++ Library with a familiar object­
oriented interface, will provide you with the power of the Library and the advantages of
object-orientation.

Use Standard C++ Library components directly when you need flexibility and/ or
highly efficient code. Use the more traditional approaches to object-:oriented design,
such as encapsulation and inheritance, when you need to model larger problem
domains, and knit all the pieces into a full solution. When you need to devise an
architecture for your application, always consider the use of encapsulation and
inheritance to compartmentalize the problem. But if you discover that you need an
efficient data structure or algorithm for a compact problem, such as data stream
manipulation in drivers (the kind of problem that often resolves to a single class), look to
the Standard C++ Library. The Standard C++ Library excels in the creation of reusable
classes, where low-level constructs are needed, while traditional OOP techniques really
shine when those classes are combined to solve a larger problem.

In the future, most libraries will use the Standard C++ Library as their foundation. By
using the Standard C++ Library, either directly or through an encapsulation such as
Tools.h++ 7.0, you help insure interoperability. This is especially important in large
projects that may rely on communication between several libraries. A good rule of
thumb is to use the highest encapsulation level available to you, but make sure that the
Standard C++ Library is available as the base for interlibrary communication and
operation. -

The C++ language supports a wide range of programming approaches because the
problems we need to solve require that range. The language, and now the Standard C++
library that supports it, are designed to give you the power to approach each unique
problem from the best possible angle. The Standard C++ Library, when combined with

Par t I V, S tan d ar del ass lib r a r i e s 9 u ide 367

more traditional OOP techniques, puts a very flexible tool into the hands 'of anyone
building a collection of C++ classes, whether those classes are intended to stand alone as
a library or are tailored to a specific task.

Using the Standard library
Because the Standard C++ Library consists largely of template declarations, on most
platforms it is only necessary to include ill your programs the appropriate header files.
These header files will be noted in the text that describes how to use each algorithm or
class.

Using the Standard Template library with Borland C++
This document describes an implementation of the Standard Template Library (STL)
that is consistent with the ANSI/ISO C++ working paper. In order to provide a
completely flexible library, the working paper specifies the use of two template features
that are not yet supported in the current version of Borland C++. The template features
which are not yet supported are member function templates and the use of template
parameters to define default types.

Although the documentation includes some information about STL features which are
not yet supported, you don't need to take any special actions to start using the library.
The header file for each container defines alternate forms which Borland C++
automatically inserts in your code. You must include the necessary header files in the
manner described by this document.

Member function templates
Member function templates are used in all containers provided by the Standard
Template Library. An example of this is the constructor for deque<'T> that takes two
templated iterators:

template <class Inputlterator>
deque (Inputlterator, Inputlterator);

deque also has an insert function of this type. Borland C++ does not support the use of
functions that would allow you to use any type of input iterator as arguments. The
header file for each container provides substitute functions that let you use an iterator
obtained from the same type of container as the one you are constructing (or calling a
member function on), or you can use a pointer to the type of element that's in the
container.

For example, to avoid member function templates, you can construct a deque in the
following two ways:

int intarray[10];
deque<int> first_deque (intarray,intarray + 10);

deque<int>
second_deque(first_deque.begin(),first_deque.end());

368 C++ Pro 9 ram mer J s G u ide

But you cannot construct a deque this way:

deque<long>
long_deque(first_dequef.begin(),first_deque.end());

because the long_deque and first_deque are not the same type.

A container can have other member function templates besides the constructor. In
general, the header file for each container provides an alternate non-template function
prototype. '

Template parameters
A template function can use template parameters that are initialized with a default
value. The following topics describe the extent of Borland C++ support and how you
should use the STL.

Default template arguments
Borland C++ supports the following form of default template arguments:

template < class T = int > class Array;

. This syntax supports the construction of Array objects which, by default, are containers
for int types. It's possible to use any type in place of int including other user-defined
types.

Using template parameters to define default types
Borland C++ does not support functions with template parameters which are used to
specify default types. Therefore, you must always supply all template arguments that
would otherwise use one of their parameters to generate a default type.

For example, there is a version of the stack container that uses a template parameter to
define a default type for another parameter. In the following declaration, the generic
type T is used to instantiate a deque object. But deque is a generic type that depends on a
generic type T.

The declaration is as follows.

template <class T, class Container = deque<T> >
class stack; II This form is not supported

The stack.h header file provides an alternate form which is supported by Borland C++.
This class declaration does not extend the scope of template parameters to define other
parameters. The declaration is as follows.

template <class T, class Container> class stack;

To construct a stack type, you must always supply all arguments. You must instantiate
your stack type by writing something like this:

stack<double, deque<double> > MyStack;

Par t I V, S tan dar del ass lib r a r i e s 9 u ide 369

Using the STL header files
For the STL implementation to work correctly, you must always include files as
specified in this document. For exa:inple, to use the STL string implementation, you
must have the following in your code:

#include <string>

Similarly, to use the STL generic algorithms, you must have the following in your code:

#include <algorithm >

Running the tutorial programs
All the tutorial programs described in this text have been gathered together and are
available as part of the distribution package. You can compile and run these programs,
and use· them as models for your own programming problems. Many of these example
programs have been extended with additional output commands that are not
reproduced here in the text. The expected output from each program is also included as
part of the distribution.

Terminology used in this part
bidirectional iterator An iterator that can be used for reading and writing, and which
can move in either a forward or backward direction.

binary function A function that requires two arguments.

binder A function adaptor that is used to convert a two-argument binary function
object into a one-argument unary function object, by binding one of the argument
values to a specific constant.

constant iterator An iterator that can be used only for reading values, which cannot be
used to modify the values in a sequence.

container class A class used to hold a collection of similarly typed values. The
container classes provided by the standard library include vector, list, deque, set, map,
stack, queue, and priority_queue.

deque An indexable container class. Elements can be accessed by their position in the
container. Provides fast random access to elements. Additions to either the front or the
back of a deque are efficient. Insertions into the middle are not efficient.

forward iterator An iterator that can be used either for reading or writing, but which
moves only forward through a collection.

function object An instance of a class that defines the parenthesis operator as one of
its member functions. When a function object is used in place of a function, the
parenthesis member function will be executed when the function would normally be
invoked.

370 C++ Pro 9 ram mer's G u ide

generic algorithm A templated algorithm that is not specialized to any specific
container type. Because of this, generic algorithms can be used with a wide variety of
different forms of container. .

heap A way of organizing a collection so as to permit rapid insertion of new values,
and rapid access to and removal of the largest value of the collection.

heterogeneous collection A collection of values that are not all of the same type. In the
standard library a heterogeneous collection can only be maintained by sto~ing pointers
to objects, rather than objects themselves.

insert iteratorAn adaptor used to convert iterator write operations into insertions into
a container.

iterator A generalization of the idea of a pointer. An iterator denotes a specific element
in a container, and can be used to cycle through the elements being held by a container.

generator A function that can potentially return a different value each time it is
invoked. A random number generator is one example.

input iterator An iterator that can be used to read values in sequence, but cannot be
used for writing.

list A linear container class. Elements are maintained in sequence. Provides fast access
only to the first and last elements. Insertions into the middle of a list are efficient.

map An indexed and ordered container class. Unlike a vector or deque, the index
values for a map can be any ordered data type (such as a string or character). Values are
maintained in sequence, and can be efficiently inserted, accessed or removed in any
order.

multimap A form of map that permits multiple eleinents to be indexed using the same
~~ .

multi set A form of set that permits multiple instances of the same value to be
maintained in the collection.

negator An adaptor that converts a predicate function object, producing a new
function object that when invoked yields .the opposite value.

ordered collection A collection in which all values are ordered according to some
binary comparison operator. The set data type automatically maintains an ordered
collection. Other collections (vector, deque, list) can be converted into an ordered
collection.

output iterator An iterator that can be used only to write elements into a container, it
cannot be used to read values.

past the end iterator An iterator that marks the end of a range of values, such as the
end of the set of values maintained by a container.

predicate A function or function object that when invoked returns a Boolean (true/
false) value or an integer value.

predicate function A predicate.

Part IV, Standard class libraries guide 371

priority_queue An adaptor container class, usually built on top ofa vector or deque.
The priority queue is designed for rapidly accessing and removing the largest element
in the collection.

queue An adaptor container class, usually built on top of a list or deque. The queue
provides rapid access to the topmost element. Elements are removed from· a queue in
the same order they are inserted into the queue.

random access iterator An iterator that can be subscripted, so as to access the values in
a container in any order.

range A subset of the elements held by a container. A range is typically specified by
two iterators.

reverse iterator An iterator that moves over a sequence of values in reverse order,
such as back to front.

sequence A portion or all of the elements held by a container. A sequence is usually
described by a range.

set An ordered container class. The set container is optimized for insertions, removals,
and tests for inclusion.

stack An adaptor container class, built usually on top of a vector or deque. The stack
provides rapid access to the topmost element. Elements are removed from a stack in the
reverse of the order they are inserted into the stack.

stream iterator An adaptor that converts iterator operations into stream operations.
Can be use to either read from or write to an iostream.

unary function A function that requires only one argument. Applying a binder to a
binary function results in a unary function.

vector An indexable container class. Elements are accessed using a key that represents
their position in the container. Provides fast random access to elements. Addition to the
end of a vector is efficient. Insertion into the middle is not efficient.

wide string Astring with 16-bit characters. Wide strings are necessary for many non­
roman alphabets, i.e., Japanese.

372 C++ Pro 9 ram mer's G u ide

Iterators
Note Iterators: Iterators are pointer-like objects, used to cycle through the elements stored in a

container.

Fundamental to the use of the container classes and the associated algorithms provided
by the standard library is the concept of an iterator. Abstractly, an iterator is simply a
pointer-like object used to cycle through all the elements stored in a container. Because
different algorithms need to traverse containers in variety of fashions, there are different
forms of iterator. Each container class in the standard library can generate an iterator
with functionality appropriate to the storage technique used in implementing the
container. It is the category of iterators required as arguments that chiefly distinguishes
which algorithms in the standard library can be used with which container classes.

Note Range: A range is a sequence of values held in a container. The range is described by a
pair of iterators, which define the beginning and end of the sequence.

Just as pointers can be used in a variety of ways in traditional programming, iterators
are also used for a number of different purposes. An iterator can be used to denote a
.specific value, just as a pointer can be used to reference a specific memory location. On
the other hand, a pair of iterators can be used to describe a range of values, in a manner
analogous to the way in which two pointers can be used to describe a contiguous region
of memory. In the case of iterators, however, the values being described are not
necessarily physically in sequence, but are rather logically in sequence, because they are
derived from the same container, and the second follows the first in the order in which
the elements are maintained by the container.

Conventional pointers can sometimes be null, that is, they point at nothing. Iterators, as
well, can fail to denote any specific value. Just as it is a logical error to dereference a null
pointer, it is an error to dereference an iterator that is not denoting a value.

When two pointers that describe a region in memory are used in a C++ program, it is
conventional that the ending pointer is not considered to be part of the region. For
example, an array named x of length ten is sometimes described as extending from x to

C hap t e r 1 9, It era tor s 373

x+l0, even though the element atx+l0 is not part of the array. Instead, the pointer value
x+ lOis the past-the-end value-the element that is the next value after the end of the
range being described. Iterators are used to describe a range in the same manner. The
second value is not considered to be partof the range being denoted. Instead, the second
value is a past-the-end element, describing the next value in sequence after the final value
. of the range. Sometimes, as with pointers to memory, this will be an actual value in the
container. Other times it may be a special value, specifically constructed for the purpose.
In either case, it is not proper to dereference an iterator that is being used"to specify the
end of a range.

Just as with conventional pointers, the fundamental operation used to modify an
iterator is the increment operator (operator ++). When the increment operator is applied
to an iterator that denotes the final value in a sequence, it will be changed to the "past­
the-end" value. An iterator j is said to be reachable from an iterator i if, after a finite
sequence of applications of the expression ++i, the iterator i becomes equal to j.

Note Herator ranges: When iterators are used to describe a range of values in a container, it is
assumed (but not verified) that the second iterator is reachable from the first. Errors will
occur if this is not true.

Ranges can be used to describe the entire contents of a container, by constructing an
iterator to the initial element and a special "ending" iterator. Ranges can also be used to
describe subsequences within a single container, by employing two iterators to specific
values. Whenever two iterators are used to describe a range it is assumed, but not
verified, that the second iterator is reachable from the first. Errors can occur if thi$
expectation is not satisfied.

In "the remainder of this section we will describe the different forms of iterators used by
the standard library, as well as various other iterator-related functions.

Varieties of iterators
There are five basic forms of iterators used in the standard library:

input iterator

output iterator

forward iterator

bidirectional iterator

random access iterator

read only, forward moving

write only, forward moving

both read and write, forward moving

read and write, forward and backward moving

read and write, random access

Herator categories are hierarchical. Forward iterators can be used wherever input or
output iterators are required, bidirectional iterators can be used in place of forward
iterators, and random access iterators can be used in situations requiring
bidirectionality.

A second characteristic ofiter:ators is whether or not they can be used to modify the "
values held by their associated container. A constant iterator is one that can be used for
access only, and cannot be used for modification. Output iterators are never constant,
and input iterator,s always are. Other iterators mayor may not be constant, depending

374 c++ Programmer's Guide

upon how they are created. There are both constant and non-constant bidirectional
iterators, both constant and non-constant random access iterators, and so on. -

The following table sUnlmarizes specific ways that various categories of iterators are
generated by the containers in the standard library.

input iterator

output iterator

bidirectional iterator

random access iterator

istream_iterator

ostream_iterator
inserter
front_inserter

back_inserter

list
set and multiset
map and multimap

ordinary pointers
vector
deque

In the following sections we will describe the capabilities and construction of each form
of iterator.

Input iterators
Input iterators are the simplest form 9f iterator. To understand their capabilities,
consider an example program. The find () generic algorithm (to be described in more
detail in "Searching operations"), performs a simple linear search, looking for a specific
value being held within a container. The contents of the container are described using
two iterators, here called first and last. While first is not equal to last the element denoted
by first is compared to the test value. If equal, the iterator, which now denotes.the
located element, is returned. If not equal, the first iterator is incremented, and the loop
cycles once more. If the entire region of memory is examined without finding the
desired value, then the algorithm returns the end-of-range iterator.

template <class Inputlterator, class T>

Inputlterator
find (Inputlterator first, Inputlterator last, const T& value)

{

while (first != last && *first != value)
++first;

return first;

This algorithm illustrates three requirements for an input iterator:

• An iterator can be compared for equality to another iterator. They are equal when
they point to the same position, and are otherwise not equal.

• An iterator can be dereferenced using the * operator, to obtain the value being
denoted by the iterator.

C hap t e r 1 9, It era tor s 375

• An iterator can be incremented, so that it refers to the next element in sequence, using
the operator ++.

Notice that these characteristics can all be provided with new meanings in a C++
program, since the behavior of the given functions can all be modified by overloading
the appropriate operators. It is because of this overloading that iterators are possible.
There are three main varieties of input iterators:

Ordinary pointers. Ordinary pointers can be used as input iterators. In fact, since we
can subscript and add to ordinary pointers, they are random access values, and thus can
be used either as input or output iterators. The end-of-range pointer describes the end of
a contiguous region of memory, and the deference and increment operators have their
conventional meanings. For example, the following searches for the value 7 in an array
of integers:

intdata [100] ;

int * where = find (data, data+l00, 7);

Note Ordinary pointers as iterators: Because ordinary pointers have the same functionality
as random access iterators, most of the generic algorithms in the standard library can be
used with conventional C++ arrays, as well as with the containers provided by the
standard library.

Note that constant pointers, pointers which dO,not permit the underlying array to be
modified, can be created by simply placing the keyword const in a declaration.

const int * first = data;

const int * last = data + 100;
II can I t modify locat,ion returned by the following

const int * where = find(first, last, 7);

Container iterators. All of the iterators constructed for the various containers provided
by the standard library are at least as general as input iterators. The iterator for the first
element in a collection is always constructed by the member function begin () , while
the iterator that denotes the "past-the-end" location is generated by the member
function end (). For example, the following searches for the value 7 in a list of integers:

list<int>: :iterator where = find(aList.begin(), aList.end(), 7);

Each container that supports iterators provides a type within the class declaration with
the name i terator. Using this, iterators can uniformly be declared in the fashion
shown. If the container being accessed is constant, or ifthe description cons t_i tera tor
is used, then the iterator is a constant iterator.

Input stream iterators. The standard library provides a mechanism to operate on an
input stream using an input iterator. This ability is provided by the class
istrearn_i terator, and will be described in more detail in "Input stream iterators."

Output iterators
An output iterator has the opposite functionality from an input iterator. Output iterators
can be used to assign values in a sequence, but cannot be used to access values. For

376 c++ Programmer's Guide

example, we can use an output iterator in a generic algorithm that copies values from
one sequence into another:

template <class InputIterator, classOutputIterator>
OUtputIterator copy

(InputIterator first, InputIteratorlast, OutputIterator result)
{

. while (first !.= last)
*r.esult++ = *first++;
return result;

Note Parallel sequences: A number of the generic algorithms manipulate two parallel
sequences. Frequently the second sequence is described using only a beginning iterator,
rather than an iterator pair. It is assumed, but not checked, that the second sequence has
at least as many elements as the first.

Two ranges are being manipulated here; the range of source values specified by a pair of
input iterators, and the destination range. The latter, however, is specified by only a
single argument. It is assumed that the destination is large enough to include all values,
and errors will ensue if this is not the case.

As illustrated by this algorithm, an output iterator can modify the element to which it
points, by being used as the target for an assignment. Indeed, output iterators can use
the dereference operator only in this fashion, and carinot be used to return or access the
elements they denote.'

As we noted earlier, ordinary pointers, as well as all the iterators constructed by
containers in the standard library, can be used as examples of output iterators.
(Ordinary pointers are random access iterators, which are a superset of output iterators.)
So, for example, the following code fragment copies elements from an ordinary C-style
array into an standard library vector:

int data[lOO];
vector<int> newdata(lOO);

copy (data, data+l00, newdata.begin());

Just as the istream_i terator provided a way to operate on an input stream using the
inputiteratormechanism, the standard library provides a data type ostream_iterator,
that permits values to be written to an output stream in an iterator-like fashion. These
will be described in "Output stream iterators."

Yet another form of output iterator is an insert iterator. An insert iterator changes the
output iterator operations of dereferencing/ assignment and increment into insertions
into a container. This permits operations such as copy () to be used with variable length
containers, such as lists and sets.

Forward iterators
A forward iterator combines the features of an input iterator and an output iterator. It
permits values to both be accessed and modified. One function that uses forward

Chapter 19, Iterators 377

iterators is the replace () generic algorithm, which replaces occurrences of specific
values with other values. This algorithm is written as follows:

template <class Forwardlterator, class T>
void
replace (ForwardIterator first, Forwardlterator last,

const T& old_value, const T& new_value)

while (first != last) {
if (*first == old_value)
*first = new_value;

++first;

Ordinary pointers, as well as any of the iterators produced by containers in the standard
library, can be used as forward iterators. The following, for example, replaces instances
of the value 7 with the value 11 in a vector of integers.

replace (aVec.begin(), aVec.end(), 7, 11);

Bidirectional iterators
A bidirectional iterator is similar to a forward iterator, except that bidirectional iterators
support the decrement operator (operator --), permitting movement in either a forward
or a backward direction through the elements of a container. For example, we can use
bidirectional iterators in a function that reverses the values of a container, placing the
results into a new container.

template <class Bidirectionallterator, class Outputlterator>
Outputlterator

reverse_copy (Bidirectionallterator first,
Bidirectionallterator last,
OUtputlterator result)

while (first != last)
*result++ = *--last;

return result;

As always, the value initially denoted by the last argument is not considered to be pq.rt
of the collection.

The reverse_copy () function could be used, for example, to reverse the values of a
linked list, and place the result into a vector:

list<int> aList;

vector<int> aVec (aList.size());
reverse_copy (aList.begin(), aList.end(), aVec.begin());

378 c++ Programmer's Guide

Random-access iterators
Some algorithms require more functionality than the ability to access values in either a
forward or backward direction. Random access iterators permit values to be accessed by
subscript/subtracted one from another (to yield the number of elements between their
respective values) or modified by arithmetic operations, all in a manner similar to
conventional pointers.

When using conventional pointers, arithmetic operations can be related to the
underlying memory; that is, x+ 10 is the memory ten elements after the beginning of x.
With iterators the logical meaning is preserved (x+ 10 is the tenth element after x),
however the physical addresses being described may be different.

Algorithms that use random-access iterators include generic operations such as sorting
and binary search. For example, the following algorithm randomly shuffles the
elements of a container. This is similar to, although simpler than, the function
random_shuffle () provided by the standard library.

template <class RandornAccessIterator>
void

mixup (RandornAccessIterator first, RandornAccessIterator last)

while (first < last) {
iter_swap (first, first + randomInteger(last - first))i
++firsti

Note randomlntegerO: The function randomlnteger described here is used in a number of
the example programs presented in later sections.

The program will cycle as long as first is denoting a position that occurs earlier in the
sequence than the one denoted by last. Only random-access iterators can be compared
using relational operators, all other iterators can be compared only for equality or
inequality. On each cycle through the loop, the expression last - first yields the
number of elements between the two limits. The function randomlnteger () is assumed
to generate a random number between 0 and the argument. Using the standard random
number generator, this function could be written as follows:

unsigned int randomInteger (unsigned int n)
II return random integer greater than
II or equal to 0 and less than n

{

return rand() % ni

This random value is added to the iterator firs t, resulting in an iterator to a randomly
selected value in the container. This value is then swapped with the element denoted by
the iterator first.

C hap t e r 1 9, I t era tor s 379

Reverse iterators
An iterator naturally imposes an order on an underlying container of values. For a
vector or a map the order is given by increasing index values. Fora set it is the
increasing order of the elements held in the container. For a list the order is explicitly
derived from the fashion in which values are inserted.

A reverse iterator will yield values in exactly the reverse order of those given by the
standard iterators. That is, for a vector or a list, a reverse iterator will generate the last
element first, and the first element last. For a set it will generate the largest element first,
and the smallest element last. Strictly speaking, reverse iterators are not themselves a
new category of iterator. Rather, there are reverse bidirectional iterators, reverse
random access iterators, and so on.

The list, set, and map data types provide a pair of member functions that produce
reverse bidirectional iterators. The functions rbegin () and rend () generate iterators
that cycle through the underlying container in reverse order. Increments to such
iterators move backward, and decrements move forward through the sequence.

Similarly, the vector and deque data types provide functions (also named rbegin () and
rend ()) that produce reverse random access iterators. Subscript and addition operators,
as well as increments to such iterators move backward within the sequence.

Stream iterators
Stream iterators are used to access an existing input or output stream using iterator
operations.

Input stream iterators
Note Stream iterators: An input stream iterator permits an input stream to be read using

iterator operations. An output stream iterator similarly writes to an output stream when
iterator operations are executed.

As we noted in the discussion of input iterators, the standard library provides a
mechanism to tum an input stream into an input iterator. This ability is provided by the
class istream_iterator. When declared, the two template arguments are the element
type, and a type that measures the distance between elements. Almost always the latter
is the standard type ptrdiff_t. The single argument provided to the constructor for an
istream_i terator is the stream to be accessed. Each time the ++ operator is invoked on
an input stream iterator a new value from the stream is read (using the » operator) and
stored. This value is then available through the use of the dereference operator (operator
*). The value constructed by istream_iterator when no arguments are provided to
the constructor can be used as an ending iterator value. The following, for example,
finds the first value 7 in a file of integer values:

istream_iteratar<int, ptrdiff_t> intstream(cin), eaf;
istream_iteratar<int, ptrdiff_t>::iteratar where =

find (intstream, eaf, 7);

380 C++ Pro 9 ram mer's G u ide

The element denoted by an iterator for an input stream is valid only until the next
element in the stream is requested. Also, since an input stream iterator is an input
iterator, elements can only be accessed, they cannot be modified by assignment. Finally,
elements can be accessed only once, and only in a forward moving direction. If you
want to read the contents of a stream more than one time, you must create a separate
iterator for each pass.

Output stream iterators
The output stream iterator mechanism is analogous to the input stream iterator. Each
time a value is assigned to the iterator, it will be written on the associated output stream,
using the» operator. To create an output stream iterator you must specify, as an
argument with the constructor, the associated output stream. Values written to the
output stream must recognize the stream » operation. An optional second argument to
the constructor is a string that will be used as a separator between each pair of values.
The following, for example, copies all the values from a vector into the standard output,
and separates each value by a space:

copy (newdata.begin(), newdata.end(),
ostream_iterator<int> (cout, II "))i

Simple file transformation algorithms can be created by combining input and output
stream iterators and the various algorithms provided by the standard library. The
following short program reads a file of integers from the standard input, removes all
occurrences of the value 7, and copies the remainder to the standard output, separating
each value by a new line:

void main()
{

istream_iterator<int, ptrdiff_t> input (cin), eofi
ostream_iterator<int> output (cout, "\n")i

remove_copy (input, eof, output, 7)i

Insert iterators
Assignment to the dereferenced value of an output iterator is normally used to overwrite
the contents of an existing location. For example, the following invocation of the
function copy () transfers values from one vector to another, although the space for the
second vector was already set aside (and even initialized) by the declaration statement:

vector<int> a(lO)i
vector<int> b(lO)i

copy (a.begin(), a.end(), b.begin())i

Even structures such as lists can be overwritten in this fashion. The following assumes
that the list named c has at least ten elements. The initial ten locations in the list will be
replaced by the contents of the vector a.

C hap t e r 1 9, It era tor s 381

list<int> c;

copy (a.begin(), a.end(), c.begin());

With structures such as lists and sets, which are dynamically enlarged as new elements
are added, it is frequently more appropriate to insert new values into the structure,
rather than to overwrite existing locations. A type of adaptor called an insert iterator
allows us to use algorithms such as copy () to insert into the associated container, rather
than overwrite elements in the container. The output operations of the iterator are
changed into insertions into the associated container. The following, for example, inserts
the values of the vector a into an initially empty list:

list<int> d;

copy (a.begin(), a.end(), front_inserter(d));

There are three forms of insert iterators, all of which can be used to change a copy
operation into an insert operation. The iterator generated using front_inserter, shown
above, inserts values into the front of the container. The iterator generated by
back_inserter places elements into the back of the container. Both forms can be used
with lists, deques, and even vectors, but not with sets or maps.

The third, and most general, form is inserter, which takes two arguments; a container
and an iterator within the container. This form copies elements into the specified
location in the container. (For a list, this means elements are copied immediately before
the specified location). This form can be used with all the structures for which the
previous two forms work, as well as with sets and maps.

The following simple program illustrates the use of all three forms of insert iterators.
First, the values 3, 2, and 1 are inserted into the front of an initially empty list. Note that,
as they are inserted each value becomes the new front, so that the resultant list is
ordered 1, 2, 3. Next, the values 7, 8, and 9 are inserted into the end of the list. Finally,
the find () operation is used to locate an iterator that denotes the 7 value, and the
numbers 4, 5, and 6 are inserted immediately prior. The result is the list of numbers
from 1 to 9 in order.

void main () {
int threeToOne [1 = {3, 2, 1};
int fourToSix [1 = {4, 5, 6};
int sevenToNine [1 = {7, 8, 9};

list<int> aList;

II first insert into the front
Iinote that each value becomes new front

copy (threeToOne, threeToOne+3, front_inserter(aList));

II then insert into the back
copy(sevenToNine, sevenToNine+3, back_inserter(aList));

II find the seven, and insert into middle
list<int>::iterator seven = find(aList.begin(), aList.end(), 7);
copy (fourToSix, fourToSix+3, inserter (aList, seven));

II copy result to output
copy (aList.begin(), aList.end(),

382 C++ P r og ram mer's G u ide

ostream_iterator<int> (cout, " "));
cout « endl;

Observe that there is an important and subtle difference between the iterators created by
inserter (aList, aList .begin ()) and front_inserter (aList). The call on
inserter (aList, aList .begin()) copies values in sequence, adding each one to the
front of a list, whereas front_inserter (aList) copies values making each value the
new front. The result is that front_inserter (aList) reverses the order of the original
sequence, while inserter (aList, aList. begin ()) retains the original order.

Iterator operations
The standard library provides two functions that can be used to manipulate iterators ..
The function advance () takes an iterator and a numeric value as argument, and
modifies the iterator by moving the given amount.

void advance (Inputlterator & iter, Distance & n);

For random access iterators this is the same as iter + n, however the function is useful
because it is designed to operate with all forms of iterator. For forward iterators the
numeric distance must be positive, whereas for bidirectional or random access iterators
the value can be either positive or negative. The operation is efficient (constant time)
only for random access iterators. In all other cases it is implemented as a loop that
invokes either the operators ++ ·or -- on the iterator, and therefore takes time
proportional to the distance traveled. The advance () function does not check to ensure
the validity of the operations on the underlying iterator.

The second function, distance () , returns the number of iterator operations necessary
to move from one element in a sequence to another. The description of this function is as
follows:

void distance (Inputlterator first, Inputlterator last,
Distance &n);

The result is returned in the third argument, which is passed by reference. Distance
will increment this value by the number of times the operator ++ must be executed to
move from first to last. Always be sure that the variable passed through this
argument is properly initialized before invoking the function.

Chapter 19, I~erators 383

384 c++ Programmer's Guide

Functions and predicates
This chapter describes functions, including a special function called a predicate.

Functions
A number of algorithms provided in the standard library require functions as
arguments. A simple example is the algorithm for_each () , which invokes a function,
passed as argument, on each value held in a container. The following, for example,
applies the printElement () function to produce output describing each element in a
list of integer values:

void printElement (int value)
{

cout « "The list contains " « value « endl;

main () {
list<int> aList;

for_each (aList.begin(), aList.end(), printElement);

Binary functions take two arguments, and are often applied to values from two different
sequences. For example, suppose we have a list of strings, and a list of integers; For
each element in the first list we wish to replicate the string the number of times given by
the corresponding value in the second list. We could perform this easily using the
function transform () from the standard library. First, we define a binary function with
the desired characteristics:

string stringRepeat (const string & base, int number)
II replicate base the given number of times

string result; II initially the result is empty
while (number--) result += base;
return result;

Chap t e r 2 0, Fun c t ion san d pre die a t es 385

The following call on transform () then produces the desired effect:

list<string> words;
list<int> counts;

transform (words.begin(), words.end(),
counts.begin(), words.begin(), stringRepeat);

Transforming the words one, two, three with the values 3, 2, 3 would yield the result
oneoneone,twotwo,threethreethree.

Predicates'
A predicate is simply a function that returns either a Boolean (true/false) value or an
integer value. Following the normal C convention, an integer value is assumed to be
true if nonzero, and false otherwise. An example function might be the following, which
takes as argument an integer and returns true if the number represents a leap year, and
false otherwise:

bool isLeapYear (int year)
II return true if year is leap year

II millenniums are leap years
if (0 == year % 1000) return true;

II centuries are not
if (0 == year % 100) return false;

II every fourth year is
if (0 == year % 4) return true;

II otherwise not
return false;

A predicate is used as an argument, for example, in the generic algorithm named
find_if (). This algorithm returns the first value that satisfies the predicate, returning
the end-of-range value if no such element is found. Using this algorithm, the following
locates the first leap year in a list of years:

list<int>::iterator firstLeap =

find_if (aList.begin(), aList.end(), isLeapYear)i

Function objects
A function object is an instance of a class that defines the parenthesis operator as a
member function. There are a number of situations where it is convenient to substitute
function objects in place of functions. When a function object is used as a function, the
parenthesis operator is invoked whenever the function is called.

To illustrate, consider the following class definition:

class biggerThanThree {
public:

bool operator () (int val)

386 c++ Programmer's Guide

{ return val> 3; }
} ;

. If we create an instance of class biggerThanThree, every time we reference this object
using the function call syntax, the parenthesis operator member function will be
invoked. The next step is to generalize this class, by adding a constructor and a constant
data field, which is set by the constructor.

class biggerThan {
public:

biggerThan (int x) : testValue(x) { }
const int testValue;

bool operator () (int val)
{ return val > testValue;

} ;

The result is a general "bigger than X" function, where the value of X is determined
when we create an instance of the class. We can do so, for example, as an argument to
one of the generic functions that require a prediCate. In this manner the following will
find the first value in a list that is larger than 12:

list<int>::iterator firstBig =
find_if (aList.begin(), aList.end(), biggerThan(12));

Three of the most common reasons to use function objects in place of ordinary functions
are when an existing function object provided by the standard library can be employed
instead of a new function, to improve execution by inlining function calls, or when the
function object must either access or set state information being held by an object. We
will give examples of each.

The following table illustrates the function objects provided by the standard library.

arifluneticfunctions

plus
minus
times
divides
modulus
negate

comparison functions
equal_to
not_equal_to
greater
less
greater_equal
less_equal

logical functions

addition x + y
subtraction x - y
multiplication x * y

division x / y

remainder x % y

negation-x

equality test x == y
inequality test x != y

greater comparison x > y
"less-than comparison x < y

greater than or equal comparison x >= y
less than or equal comparison x <= y

logical conjunction x && y

C hap t e r 2 0, Fun c t ion san d pre die ate s 387

logical_or

logical_not

logical disjunction x II y

logical negation! x

Let's look at a couple of examples that show how these might be used. The first example
uses plus () to compute the by-element addition of two lists of integer values, placing
the result back into the first list. This can be performed by the following:

transform (listOne.begin(), listOne.end(), ~istTwo.begin(),

listOne.begin(), plus<int>());

The second example negates every element in a vector of boolean values:

transform (aVec.begin(), aVec.end(), aVec.begin(), .
logical_not<bool>());

Note Location of the class definitions: The class definitions for unary_function and
binary_function can be incorporated by #including functional.

The base classes used by the standard library in the definition of the functions shown in
preceding table are available for the creation of new unary and binary function objects.
These base classes are defined as follows:

template <class ArgType, class ResultType>
class unary_function {

typedef ArgType argument_type;
typedef ResultType result_type;

} ;

template <class ArgTypel, class ArgType2, class ResultType>
struct binary_function {

} ;

typedef ArgTypel first_argument_type;
typedef ArgType2 second_argument_type;
typedef ResultType result_type;

An example of the use of these functions is found in Example programs. Here we want
to take a binary function of type "Widget" and an argument of type integer, and
compare the widget identification number against the integer value. A function to do
this is written in the following manner:

structWidgetTester : binary_function<Widget, int, bool> {
public:

} ;

bool operator () (const Widget & wid, int testid) const
{ return wid.id == testid; }

A second reason to consider using function objects instead of functions is faster code. In
many cases an invocation ofa function object, such as the examples given in the calls on
transform () presented earlier, can be expanded in-line, thereby eliminating the
overhead of a function call.

Note Using function objects to store references: A more complex illustration of the use of a
function object occurs in the radix sorting example program given as an illustration of
the use of the list data type in Example program: r~dix sort. In this program references

388 C++ Pro 9 ram mer's G u ide

are initialized in the function object, so that during the sequence of invocations the
function object can access and modify local values in the calling program.

The third major reason to use a function object in place of a function is when each
invocation of the function must remember some state set by earlier invocations. An
example of this occurs in the creation of a generator, to be used with the generic
algorithm genera te () . A generator is simply a function that returns a different value
each time it is invoked; The most commonly used form of generator is a random
number generator, but there are other uses for the concept. A sequence generator simply
returns the values of an increasing sequence of natural numbers (1,2,3,4, and so on).
We can call this object iotaGen after the similar operation in the programming language
APL, and define it as follows:

class iotaGen {
public:

iotaGen (int start = 0) : current (start) { }
int operator () () { return current++; }

private:
int current;

} ;

An iota object maintains a current value, which can be set by the constructor, or defaults
to zero. Each time the function-call operator is invoked, the current value is returned,
and also incremented. Using this object, the following call on the standard library
function generate () will initialize a vector of 20 elements with the values 1 through 20:

vector<int> aVec(20);
generate (aVec.begin(), aVec.end(), iotaGen(l));

Negators and binders
Negators and binders are function adaptors that are used to build new function objects
out of existing function objects. Almost always, these are applied to functions as part of
the process of building an argument list prior to invoking yet another function or
generic algorithm.

The negators notl () and not2 () take a unary and a binary predicate function object,
respectively, and create a new function object that will yield the complement of the
original. For example, using the widget tester function object defined in the previous
section, the function object:

not2(WidgetTester())

yields a binary predicate which takes exactly the same arguments as the widget tester,
and which is true when the corresponding widget tester would be false, and false
otherwise. Negators work only with function objects defined as subclasses of the classes
unary_function and binary_function, given earlier.

Note A hot idea: The idea here described by the term binder is in other contexts often
described by the term curry. This is not, as some people think, because it is a hot idea.
Instead, it is named after the computer scientist Haskell P. Curry, who used the concept
extensively in an influential book on the theory of computation in the 1930s. Curry

C hap t e r 2 0, Fun c t ion san d pre die ate s 389

himself attributed the idea to Moses Schonfinkel, leaving one to wonder why we don't
instead refer to binders as "Schonfinkels."

A binder takes a two-argument function, and binds either the first or second argument
to a specific value, thereby yielding a one argument function. The underlying function
m-q.st be a subclass of class binary_function. The binder bindlst () binds the first
argument, while the binder bind2nd () binds the second.

For example, the binder bind2nd (greater<int> (), 5) creates a function object that
tests for b~ing larger than 5. This could be used in the following, which yields an iterator
representing the first value in a list larger than 5: .

list<int>::iterator where = find_if (aList.begin(), aList.end(),
bind2nd(greater<int>(), 5));

Combining a binder and a negator, we can create a function that is true if the argument
is divisible by 3, and false otherwise. This can be used to remove all the multiples of 3
from a list.

list<int>: :iterator where = remove_if (aList.begin(), aList.end(),
notl(bind2nd(modulus<int>(), 3)));

A binder is used tie the widget number 6f a calIon the binary function WidgetTes ter () ,
yielding a one-argument function that takes only a widget as argument. This is used to
find the first widget that matches the given widget type:

list<Widget>::iterator wehave =
find_if (on_hand.begin(), on_hand.end(),

bind2nd(WidgetTester(), wid));

390 C++ Pro 9 ram mer's G u ide

Container classes
The standard library provides nofewer than ten alternative forms of container. In this
chapter we will briefly describe the varieties, considering the characteristics of each, and
discuss how you might go about selecting which container to use in solving a particular
problem. Subsequent chapters will then go over each of the different containers in more
detail.

The following chart shows the ten container types provided by the standard library, and
gives a short description of the most significant characteristic for each.

vector

list

deque

set

multiset

map

multimap

stack

queue

priority queue

random access to elements, efficient insertions at.end

efficient insertion and removal throughout

random access, efficient insertion at front or back

elements maintained in order, efficient test for inclusion, insertion and removal

set with repeated copies

access to values via keys, efficient insertion and removal

map permitting duplicate keys

insertions and removals only from top

insertion at back, removal from front

efficient access and removal of largest value

Selecting a container
The following series of questions can help you determine which type of container is best
suited for solving a particular problem.

C hap t e r 2 1, Con t a i n ere I ass e s 391

How are values gOingto be accessed?
If random access is important, than a vector or a deque should be used. If sequential
access is sufficient, then one of the other structures may be suitable.

Is the order in which values are maintained in the collection
important?
There are a number of different ways in wl:rich values can be sequenced. If a strict
ordering is important throughout the life of the container, then the set data structure is
an obvious choice, as insertions into a set are automatically placed in order. On the other
hand, if this ordering is important onlyat one point (for example, at the end of a long
series of insertions), then it might be easier to place the values into a list or vector, then
sort the resulting structure at the appropriate time. If the order that values are held in
the structure is related to the order of insertion, then a stack, queue, or list may be the
best choice.

Will the size of the structure vary widely over the course of
execution?
If true, then a list or set might be the best choice. A vector or deque will continue to
maintain a large buffer even after elements have been removed from the collection.
Conversely, if the size of the collection remains relatively fixed, than a vector or deque
will use less memory than will a list or set holding the same number of elements.

Is it possible to estimate the size of the collection?
The vector data structure provides a way to preallocate a block of memory of a given
size (using the reserve () member function). This ability is not provided by the other
containers.

Is testing to see whether a value is contained in the collection a
frequent operation? .
If so, then the set or map containers would be a good choice. Testing to see whether a
value is contained in a set or map can be performed in a very small number of steps
(logarithmic in the size of the container), whereas testing to see if a value is contained in
one of the other types of collections might require comparing the value against every
element being stored by the container.

Is the collection indexed? That is, can the collection be viewed as a
series of key/value pairs?
If the keys are integers between 0 and some upper limit, then a vector or deque should
be employed. If, on the other hand, the key values are some other ordered data type
(such as characters, strings, or a user-defined type), then the map container can be used.

392 C++ Pro 9 ram mer's G u ide

Can values be related to each other?
All values stored in any contamer provided by the standard library must be able to test
for equality against another similar value, but not all need to recognize the relational
less-than operator. However, if values cannot be ordered using the relational less-than
operator, then they cannot be stored in a set or a map.

Is finding and removing the largest value from the collection a
frequent operation?
If this is true, then the priority queue is the best data structure to use.

At what positions are values inserted into or removed from the
structure?
If values are inserted into or removed from the middle, then a list is the best choice. If
values are inserted only at the beginning, then a deque or a list is the preferred choice. If
values are inserted or removed only at the end, then a stack or queue may be a logical
choice.

Is a frequent operation the merging of two or more sequences into
one?
If true then a set or a list would seem to be the best choice, depending upon whether or
not the collection is maintained in order. Merging two sets is a very efficient operation. If
the collections are not ordered, but the efficient splice () member function from class
list can be used, then the list data type is to be preferred, since this operation is not
provided in the other containers.

In many situations any number of different containers may be applicable to a given
problem. In such cases one possibility is to compare actual execution timings to
determine which alternative is best.

Memory management issues
Containers in the standard library can maintain a variety of different types of elements.
These include the fundamental data types (integer, char, and so on), pointers, or user
'defined types. Containers cannot hold references. In general, memory management is
handled automatically by the standard container classes, with little interaction by the
programmer.

Values are placed into a container using the copy constructor. For most container
classes, the element type held by the container must also define a default constructor.
Generic algorithms that copy into a container (such as copy ()) use the assignment
operator.

C hap t e r 2 1, Con t a i n ere I ass e s 393

When an entire container is duplicated (for example, through invoking a copy
constructor or as the result of an assignment), every value is copied into the new
structure using (depending on the structure) either the assignment operator or a copy
constructor. Whether such a result is a "deep copy" or a "shallow copy" is controlled by
the programmer, who can provide the assignment operator with whatever meaning is
desired. Memory for structures used internally by the various container classes is
allocated and released automatically and efficiently.

If a destructor is defined for the element type, this destructor will be invoked when
values are removed from a container. When an entire collection is destroyed, the
destructor will be invoked for each remaining value being held by the container.

A few words should be said about containers that hold pointer values. Such collections
are not uncommon. For example, a collection of pointers is the only way to store values
that can potentially represent either mstances of a class or instances of a subclass. Such a
collection is encountered in an example problem discussed in "Application: event­
driven simulation."

In these cases the container is responsible only for maintaining the pointer values
themselves. It is the responsibility of the programmer to manage the memory for the
values being referenced by the pointers. This includes making certain the memory
values are properly allocated (usually by invoking the new operator), that they are not
released while the container holds references to them, and that they are properly
released once they have been removed from the container.-

Container types not found in the standard library
There are a number of "classic" container types that are not found ill the standard
library. In most cases, the reason is that the containers that have been provided can
easily be adapted to a wide variety of uses, including those traditionally solved by these
alternative collections.

There is no tree collection that is described as such. However, the set data type is
internally implemented using a form of binary search tree. For most problems that
would be solved using trees, the set data type is an adequate substitute.

The set data type is specifically ordered, and there is no provision for performing set
operations (union, intersection, and so on) on a collection of values that cannot be
ordered (for example, a set of complex numbers). In such cases a list can be used as a
substitute, although it is still necessary to write special set operation functions, as the
generic algorithms cannotbeused in this case ..

There are no multidimensional arrays. However, vectors can hold other vectors as
elements, so such structures can be easily constructed.

There are no graphs. However, one representation for graphs can be easily constructed
as a map that holds other maps. This type of structure is described in the sample
problem discussed in "Example program: graphs."

There are no sparse arrays. A novel solution to this problem is to use the graph
representation discussed in "Example program: graphs."

394 C++ Pro 9 ram mer's G u ide

There are no hash tables. A hash table provides amortized constant time access, insertion
and removal of elements, by converting access and removal operations into indexing
operations. However, hash tables can be easily constructed as a vector (or deque) that
holds lists (or even sets) as elements. A similar structure is described in the radix sort
sample problem discussed in' "Example program: radix sort," although this example
does not include invoking the hash function to convert a value into an index.

In short, while not providing every conceivable container type, the containers in the
standard library represent those used in the solution of most problems, and a solid
foundation from which further structures can be constructed.

Con t a i n ere I ass e s 395

396 C++ Pro 9 ram mer's G u ide

vector and vector<bool>
This chapter describes the vector container class, including the special case of Boolean
vectors.

The vector data abstraction
The vector container class generalizes the concept of an ordinary C array. Like an array,
a vector is an indexed data structure, with index values that range from 0 to one less
than the number of elements contained in the structure. Also like an array, values are
most commonly assigned to and extracted from the vector using the subscript operator.
However, the vector differs from an array in the following important respects:

• A vector has more "self-knowledge" than an ordinary array. In particular, a vector
can be queried about its size, about the number of elements it can potentially hold
(which may be different from its current size), and so on.

• The size of the vector can change dynamically. New elements can be inserted on to
the end of a vector, or into the middle. Storage management is handled efficiently
and automatically. It is important to note, however, that while these abilities are
provided, insertion into the middle of a vector is not as efficient as insertion into the
middle of a list (The list data abstraction). If many insertion operations are to be
performed, the list container should be used instead of the vector data type.

The vector container class in the standard library should be compared and contrasted to
the deque container class we will describe in more detail in deque data abstraction. Like a
vector, a deque (pronounced" deck") is an indexed data structure. The major difference
between the two is that a deque provides efficient insertion at either the beginning or the
end of the container,while a vector provides efficient insertion only at the end. In many
situations, either structure can be used. Use of a vector generally results in a smaller
executable file, while, depending upon the particular set of operations being performed,
use of a deque may result in a slightly faster program.

C hap t e r 2 2, vee tor and vee tor < boo I > 397

Vector include files
Whenever you use a vector, you must include the vector header file.

include <vector>

Vector operations
The following chart summarizes the member functions provided by the vector data
type. Each will shortly be described in more detail. Note that while member functions
provide basic operations, the utility of the data structure is greatly extended through the
use of the generic algorithms described in Chapter 29.

reference
value_type
RandoIDAccesslterator
size_type
bool
RandomAccesslterator
void
void
value_type
void
iterator
void

size_type
void
void
RandomAccesslterator
RandomAccesslterator
void
void
size_type
void
reference
vector

398 C++ Pro 9 ram mer's G u ide

vector
vector
vector
vector

vector
vector

vector

at
back
begin
capacity
empty
end

erase
erase
front
insert
insert
insert

max_size
pop-,-back
push_back
rbegin
rend
reserve
resize
size
swap
operator[]
operator =

()

(size)
(size, value_type)
template<class Iterator>
(Iterator, Iterator)
(const vector)
template<class Iterator>assign
(Iterator, Iterator)
template<class Size, class T>
assign (Size, T)
(size_type)
()

()

()

()

()

(iterator)
(iterator, iterator)
()

(iterator, size_type, value_type)
(iterator, value_type)
template
<class Iterator>
(iterator,Iterator, Iterator)
()

()

(value_type)
()

()

(size_type)
(size_type, value_type)
()

(vector)
(size_type)
(vector)

In subsequent chapters we will illustrate the basic operations that can be performed
with vectors.

Declaration and initialization of vectors
Note Requirements of an element type: Elements that are held by a vector must define a

default constructor (constructor with no argument?), as well as a copy constructor.
Although not used by functions in the vector class, some of the generic algorithms also
require vector elements to recognize either the equivalence operator (operator ==) or the
relational less-than operator (operator <).

Because it is a template class, the declaration of a vector must include a designation of
the component type. This can be a primitive language type (such as integer or double), a
pointer type, or a user-defined type. In the latter case, the user-defined type must
implement a default constructor, as this constructor is used to initialize newly created
elements. A copy constructor, either explicitly or implicitly defined, must also exist for
the container element type. Like an array, a vector is most commonly declared with an
integer argument that describes the number of elements the vector will hold:

vector<int> vec_one(lO);

The constructor used to create the vector in this situation is declared as expl i cit, which
prevents it being used as a conversion operator. (This is generally 'a good idea, since
otherwise an integer might unintentionally be converted into a vector in certain
situations.) ,

There are a variety of other forms of constructor that can also be used to create vectors.
In addition to a size, the constructor can provide a constant value that will be used to
initialize each new vector location. If no size is provided, the vector initially contains no
elements, and increases in size automatically as elements are added. The copy
constructor creates a clone of a vector from another vector.

vector<int> vec_two(5, 3); II copy constructor
vector<int> vec_three;
vector<int> vec_four(vec_two); II initialization by assignment

A vector can also be initialized using elements from another collection, by means of a
beginning and ending iterator pair. The arguments can be any form of iterator, thus
collections can be initialized with values drawn from any of the container classes in the
standard library that support iterators.

vector <int> vec_five (aList.begin(), aList.end());

Note Constructors and iterators: Because it requires the ability to define a method with a
template argument different from the class template, some compilers may not yet
support the initialization of containers using iterators. In the mean time, while compiler
technology catches up with the standard library definition, the Rogue Wave version of
the standard library will support conventional pointers and vector iterators in this
manner.

A vector can be assigned the values of another vector, in which case the target receives a
copy of the argument vector.

C hap t e r 2 2, vee tor and vee tor < boo I > 399

The assign (). member function is similar to an assignment, but is more versatile and, in
some cases, requires more arguments. Like an assignment, the existing values in the
container are deleted, and replaced with the values specified by the arguments. There
are two forms of assign O. The first takes two iterator arguments that specify a
subsequence of an existing container. The values from this subsequence then become
the new elements in the receiver. The second version of assign () takes a count and an
optional value of the container element type. After the call the container will hold only
the number of elements specified by the count, which are equal to either the default
value for the container type or the initial value specified.

vec_six.assign(list~ten.begin(), list_ten.end());
vec_four. assign (3 , 7); II three copies of the value 7
vec_five.assign(12); II twelve copies of value zero

If a destructor is defined for the container element type, the destructor will be called for
each value removed from the collection.

Finally, two vectors can exchange their entire contents by means of the swap ()
operation. The argument container will take on the values of the receiver, while the
receiver will assume those of the argument. A swap is very efficient, and should be
used, where appropriate, in preference to an explicit element-by-element transfer.

Type definitions
The class vector includes a number of type definitions. These are most commonly used
in declaration statements. For example, an iterator for a vector of integers can be
declared in the following fashion: .

vector<int>::iterator location;

In addition to iterator, the following types are defined:

value_type

const_iterator

reverse_iterator

const_reverse_iterator

reference

const_reference

size_type

difference_type

The type associated with the elements the vector maintains.

An iterator that does not allow modification of the underlying sequence.

An iterator that moves in a backward direction.

A combination constant and reverse iterator.

A reference to an underlying element.

A reference to an underlying element that will not permit the element to
be modified.

An unsigned integer type, used to refer to the size of containers.

A signed integer type, used to describe to distances between iterators.

Subscripting a vector
The value being maintained by a vector at a specific index can be accessed or modified
using the subscript operator, just like an ordinary array. And, like arrays, there currently
are no attempts to verify the validity of the index values (although this may change in
future releases). Indexing a constant vector yields a constant reference. Attempts to

400 c++ Programmer's Guide

index a vector outside the range of legal values will generate unpredictable and
spurious results:

cout « vec_five[ll « endl;

vec_five[ll = 17;

The member function at () can be used in place of the subscript operator. It takes
exactly the same arguments as the subscript operator, and returns exactly the same
values. '

The member function front () returns the first element in the vector, while the member
function back () yields the last. Both also return constant references when applied to
constant vectors. "

cout« vec_five.front() «" ... "« vec_five.back() «endl;

Extent and size-changing operations
There are, in general, three different"sizes" associated with any vector. The first is the
number of elements currently being held by the vector. The second is the maximum size
to which the vector can be expanded without requiring that new storage be allocated.
The third is the upper limit on the size of any vector. These three values are yielded by
the member functions size () , capaci ty () ,and max_size () , respectively.

cout « "size~ " « vec_five.size() « endl;

cout « "capacity: " « vec_five.capacity() « endl;

cout « "max_size: " « vec_five.max_s,ize() « endl;

The maximum size is usually limited onlyby the amount of available memory, or the
largest value that can be described by the data type size_type. The current size and
capacity are more difficult to characterize. As we will note in the next section, elements
can be added to or removed from a vector in a variety of ways. When elements are
removed from a vector, the memory for the vector is generally not reallocated, and thus
the size is decreased but the capacity remains the same. A subsequent insertion does not
force a reallocation of new memory if the original capacity is not exceeded.

Note Memory management: A vector stores values in a single large block of memory. A
deque, on the other hand, employs a number of smaller blocks. This difference may be
important on machines that limit the size of any single block of memory, because in
such cases a deque will be able to hold much larger collections thC!n are possible with a
vector.

An insertion that causes the size to exceed the capacity generally results in a new block
of memory being allocated to hold the vector elements. Values are then copied into this
new memory using the assignment operator appropriate to the element type, and the
old memory is deleted. Because this can be a potentially costly operation, the vector data
type provides a means for the programmer to specify a value for the capacity of a vector.
The member function reserve () is a directive to the vector, indicating that the vector is
expected to grow to at least the given size. If the argument used with reserve () is
larger than the current capacity, then a reallocation occurs and the argument value
becomes the new capacity. (It may subsequently grow even larger; the value given as
argument need not be a bound, just a guess.) If the capacity is already in excess of the
argument, then no reallocation takes place. Invoking reserve () does not change the size

Chapter 22, vector and vector<bool> 401

of the vector, nor the element values themselves (with the exception that they may
potentially be moved should reallocation take place).

vec_five.reserve(20};

A reallocation invalidates all references, pointers, and iterators referring to elements
being held by a vector.

The member function empty () returns true if the vector currently has a size of zero
(regardless of the capacity of the vector). Using this function is generally more efficient
than comparing the result returned by size () to zero;

cout « "empty is " « vec_five.empty() « endl;

The member function resize () changes the size of the vector to the value specified by
the argument. Values are either added to or erased from the end of the collection as
necessary. An optional second argument can be used to provide the initial value for any
new elements added to the collection. If a destructor is defined for the element type, the
destructor will be called for any values that are removed from the collection.

II become size 12, adding values of 17 if necessary
vec_five.resize (12, 17);

Inserting and removing elements
As we noted earlier, the class vector differs from an ordinary array in that a vector can,
in certain circumstances, increase or decrease in size. When an insertion causes the
number of elements being held in a vector to exceed the capacity of the current block of
memory being used to hold the values, then a new block is allocated and the elements
are copied to the new storage.

Note Costly insertions: Even adding a single element to a vector can, in the worst case,
require time proportional to the number of elements in the vector, as each element is
moved to a new location. If insertions are a prominent feature of your current problem,
then you should explore the possibility of using containers, such as lists or sets, which
are optimized for insert operations.

A new element can be added to the back of a vector using the function push_back () . If
there is space in the current allocation, this operation is very efficient (constant time).

vec_five.push_back(21}; II add element 21 to end of collection

The corresponding removal operation is pop_back () , which decreases the size of the
vector, but does not change its capacity. If the container type defines a destructor, the
destructor will be called on the value being eliminated. Again, this operation is very
efficient. (The class deque permits values to be added and removed from both the back
and the front of the collection. These functions are described in deque data abstraction,
which discusses deques in more detaiL)

More general insertion operations can be performed using the insert () member
function. The location of the insertion is described by an iterator; insertion takes place
immediately preceding the location denoted. A fixed number of constant elements can
be inserted by a single function call. It is much more efficient to insert a block of
elements in a single call, than to perform a sequence of individual insertions, because
with a single call at most one allocation will be performed.

402 C+ + Pro 9 ram mer's G u ide

II find the location of the 7
vector<int>::iterator where =

find(vec_five.begin(), vec_five.end(), 7);
II then insert the 12 before the 7

vec_five.insert(where, 12);
vec_five. insert (where, 6, 14); II insert six copies of 14

The most general form of the insert () member function takes a position and a pair of
iterators that denote a subsequence from another container. The range of values
described by the sequence is inserted into the vector. Again, because at most a single
allocation is performed, using this function is preferable to using a sequence of
individual insertions.

vec_five.insert (where, vec_three.begin(), vec_three.end());

Note Herator invalidation: Once more, it is important to remember that should reallocation
occur as a result of an insertion, all references, pointers, and iterators that denoted a
location in the now-deleted memory block that held the values before reallocation
become invalid.

In addition to the pop_back () member function, which removes elements from the end
of a vector, a function exists that removes elements from the middle of a vector, using an
iterator to denote the location. The member function that performs this task is erase ().
There are two forms; the first takes a single iterator and removes an individual value,
while the second takes a pair of iterators and removes all values in the given range. The
size of the vector is reduced, but the capacity is unchanged. If the container type defines
a destructor, the destructor will be invoked on the eliminated values.

vec_five.erase(where);
II erase from the 12 to the end

where = find(vec_five.begin(), vec_five.end(), 12);
vec_five.erase(where, vec_five.end());

Iteration
The member functions begin () and end () yield random access iterators for the
container. Again, we note that the iterators yielded by these operations can become
invalidated after insertions or removals of elements. The member functions rbegin ()
and rend () return similar iterators, however these access the underlying elements in
reverse order. Constant iterators are returned if the original container is declared as
constant, or if the target of the assignment or parameter is constant.

Vector test for inclusion
A vector does not directly provide any method that can be used to determine if a
specific value is contained in the collection. However, the generic algorithms find () or
count () ("Find an element satisfying a condition" and "Count the number of elements
that satisfy a condition") can be used for~ this purpose. The following statement, for
example, tests to see whether an integer vector contains the element 17.

Note Note that count () returns its result through an argument that is passed by reference. It
is important that this value be properly initialized before invoking this function.

Chapter 22, vector and vector<bool> 403

int num = 0;

C01.lllt (vec_five.begin(), vec_five.endO, 17, num);
. I .

if (num)
cout« "contains a 17" « endl;

else
cout « "does not contain a 17" « endl;

Sorting and sorted vector operations
A vector does not automatically maintain its values in sequence. However, a vector can
be placed in order using the generic algorithm sort () ("Sorting algorithms"). The
simplest form of sort uses for its comparisons the less-than operator for the element
type. An alternative version of the generic algorithm permits the programmer to specify
the comparison operator explicitly. This can be used, for example, to place the elements
in descending rather than ascending order:

II sort ascending
sort (aVec.begin(), aVec.end());

II sort descending, specifying the ordering f1.lllction explicitly
sort (aVec. begin (), aVec. end (), greater<int> ());

/1 alternate way to sort descending
sort (aVec.rbegin(), aVec.rend());

A number of the operations described in Chapter 30 can be applied to a vector holding
an ordered collection. For example, two vectors Can be merged using the generic
algorithm merge .() ("Merge ordered sequences").

II merge two vectors, printing .output
merge (vecOne.begin(), vecOne.end(), vecTwo.begin(), vecTwo.end(),

ostream_iterator<int> (cout, " "));

Sorting a vector also lets us use the more efficient binary search algorithms ("Binary
search"), instead of a linear traversal algorithm such as find ().

Useful generic algorithms
Most of the algorithms described in Chapter 29 can be used with vectors. The following
table summarizes a few of the more useful of these. For example, the maximum value in
a vector can be determined as follows:

vector<int>::iterator where =

max_element (vec_five.begin(), vec_five.end());
cout « "maximum is " « *where « endl;

Fill a vector with a given initial value

Copy one sequence into another

Copy values from a generator into a vector

Find an element that matches a condition

Find consecutive duplicate elements

404 c++ Programmer's Guide

fill

copy

generate

find

adjacent_find

Find a subsequence within a vector

Locate maximum or minimum element

Reverse order of elements

Replace elements with new values

Rotate elements around a midpoint

Partition elements into two groups

Generate permutations

Inplace merge within a vector

Randomly shuffle elements in vector

Count number of elements that satisfy condition

Reduce vector to a single value

Inner product of two vectors

Test two vectors for pairwise equality

Lexical comparison

Apply transformation to a vector

Partial surn.S of values

Adjacent differences of value

Execute function on each element

Boolean vectors

search

max_element, min_element

reverse

replace

rotate

partition

next-permutation

Inplace_merge

random_shuffle

count

accumulate

inner-product

equal

lexicographical_compare

transform

partial_sum

adjacent_difference

for_each

Vectors of bit values (Boolean 1/0 values) are handled as a special case by the standard
library, so that they can be efficiently packed several elements to a word. The operations
for a Boolean vector, vector<bool>, are a superset of those for an ordinary vector, only
the implementation is more efficient.

One new member function added to the Boolean vector data type is flip () . When
invoked, this function inverts all the bits of the vector. Boolean vectors also return as
reference an internal value that also supports the flip () member function.

vector<bool> bvec(27);
bvec. flip () ; I I flip all values
bvec[17] .flip(); II flip bit 17

vector<bool> also supports an additional swap () member function.

Example program: sieve of Eratosthenes
Note Obtaining the source: Source for this program is found in the file sieve.cpp.

An example program that illustrates the use of vectors is the classic algorithm, called the
sieve of Eratosthenes, used to discover prime numbers. A list of all the numbers up to
some bound is represented by an integer vector. The basic idea is to strike out (set to
zero) all those values that cannot be primes; thus all the remaining values will be the

Chapter 22, vector and vector<booi> 405

prime numbers. To do this, a loop ex~mines each value in turn, and for those that are set
to one (and thus have not yetbeen excluded from the set of candidate primes) strikes
out all multiples of the number. When the outermost loop is finished, all remaining
prime values have been discovered. The program is as follows:

void main() {
II create a sieve of integers, initially set

const int sievesize = 100;
vector<int> sieve(sievesize, 1);

II now search for 1 bit positions
for (int i = 2; i * i < sievesize; itt)
if (sieve [i])

for (int j =i + i; j < sievesize; j += i)
sieve[j] =0;

II finally, output the values that are set
for (int j = 2; j < sievesize; j++)
if (sieve [j 1)

cout « j « " ";
cout «endl;

406 ett Programmer's Guide

list

The list data abstraction
The vector data structure is a container of relatively fixed size. While the standard
library provides facilities for dynamically changing the size of a vector, such operations
are costly and should be used only rarely. Yet in many problems, the size of a collection
may be difficult to predict in advance, or may vary widely during the course of
execution. In such cases an alternative data structure should be employed. In this
section we will examine an alternative data structure that can be used in these
circumstances, the list data type.

A list corresponds to the intuitive idea of holding elements in a linear (although not
necessarily ordered) sequence. New values can be added or removed either to or from
the front of the list, or to or from the back. By using an iterator to denote a position,
elements can also be added or removed to or from the middle of a list. In all cases the
insertion or removal operations are efficient; they are performed in a constant amount of
time that is independent of the number of elements being maintained in the collection.
Finally, a list is a linear structure. The contents of the list cannot be accessed by
subscript, and, in general, elements can only be accessed by a linear traversal of all
values.

List include files
Whenever you use a list, you must include the list header file.

include <list>

List operations
The following chart summarizes the member functions provided by the list data type.
Each will shortly be described in more detail. Note that while member functions

Chapter 23, list 407

provide basic operations, the utility of the data structure is greatly extended through the
use of the generic algorithms described in Chapters 29 and 30, respectively.

value_type
Bidirectionallterator
bool
Bidirectionallterator
void
void
value_type
iterator
iterator
void

size_type
void
void
void
void
void
Bidirectionallterator
void
void
Bidirectionallterator
void
size_type
void
void
void
void
void
void
void
list

408 c++ Programmer's Guide

list
list
list

list
list

list

back
begin
empty
end

erase
erase
front
insert
insert
insert

max_size
merge
pop_back
pop_front
push_back
push_front
rbegin
remove
remove_if
rend
reverse
size
sort
splice
splice
splice
swap
unique
unique
operator

(size)
(size, value_type)
template <class Iterator>
(Iterator, Iterator)
(const list)
template<class Iterator>
assign (Iterator, Iterator)
template<class Size,class T>
assign (Size, T)
()

()

()

()

(iterator)
(iterator, iterator)
()

(iterator, size_type, value_type)
(iterator, value_type)
template <class Iterator>
(iterator, Iterator, Iterator)
()

(list)
()

()

(value_type)
(value_type)
()

(value_type)
(p:r:edicate)
()

()

()

()

(iterator, list)
(iterator, list, iterator)
(iterator, list, iterator iterator)
(list)
()

(predicate)
(list)

In subsequent sections, we will illustrate the bask operations that can be performed
with lists.

Declaration and initialization of lists.
Note Memory management: Note that if you declare a container as holding pointers, you are

responsible for managing the memory for the objects pointed to. The container classes
will not, for example, automatically free memory for these objects when an item is
erased from the container.

There are a variety of ways to declare a list. In the simplest form, a list is declared by
simply stating the type of element the collection will maintain. This can be a primitive
language type (such as integer or double), a pointer type, or a user-defined type. In the
latter case, the user-defined type must implement a default constructor (a constructor
with no arguments), as this constructor is in some cases used to initialize newly created
elements. A collection declared in this fashion will initially not contain any elements.

list <int~ list_one;
list <Widget *> list_two;
list <Widget> list_three;

An alternative form of declaration creates a collection that initially contains some
number of equal elements. The constructor for this form is declared as explici t,
meaning it cannot be used as a conversion operator. This prevents integers from
inadvertently being converted into lists. The constructor for this form takes two
arguments, a size and an initial value. The second argument is optional. If omy the
number of initial elements to be created is given, these values will be initialized with the
default constructor; otherwise the elements will be initialized with the value of the
second argument:

list <int> list_four (5); II five elements, initialized to zero
list <double> list_five (4, 3.14); I I 4 values, initially 3./14
list <Widget> wlist_six (4); II default constructor, 4 elements
list <Widget> list_six (3, Widget(7)); II 3 copies of Widget (7)

Lists can also be initialized using elements from another collection, using a beginning'
and ending iterator pair. The arguments can be any form of iterator, thus collections can
be initialized with values drawn from any of the container classes in the standard library
that support iterators. Because this requires the ability to specialize a member function
using a template, some compilers may not yet support this feature. In these cases an
alternative technique using the copy () generic algorithm can be employed. When a list
is initialized using copy () , an insert iterator must be constructed to convert the output
operations performed by the copy operation into list insertions (see "Insert iterators" in
Chapter 19). The inserter requires two arguments; the list into which the value is to be
inserted, and an iterator indicating the location at which values will be placed. Insert
iterators can also be used to copy elements into an arbitrary location in an existing list.

list <double> list_seven (aVector.begin(), aVector.end());
II the following is equivalent to the above

list <double> list_eight;
copy (aVector.begin(), aVector.end(),

inserter (list_eight, list_eight.begin()));

Chapter 23, list 409

The insert () operation, to be described in "Placing elements into a list" in this chapter,
can also be used to place values denoted by an iterator into a list. Insertiterators can be
used to initialize a list with a sequence of values produced by a generator (see "Initialize
a sequence with generated values" in Chapter 29). This is illustrated by the following:

list <int> list_nine; II initialize list 1 2 3 ... 7
generate_n (inserter (list_nine, list_nine.begin()),

7, iotaGen(l));

A copy constructor can be used to initialize a list with values drawn from another list. The
assignment operator performs the same actions. In both cases the assignment operator
for the element type is used to copy each new value.

list <int> list_ten (list_nine); II copy constructor
list <Widget> list_eleven;
list_eleven = list_six; II values copied by assignment

The assign () member function is similar to the a.ssignment operator, but is more
versatile and, in some cases, requires more arguments. Like an assignment, the existing
values in the container are deleted, and replaced with the values specified by the
arguments. If a destructor is provided for the container element type, it will be invoked
for the elements being removed. There are two forms of assign (). The first takes two
iterator argument~ that specify a subsequence of an existing container. The values from
this subsequence then become the new elements in the receiver. The second version of
assign takes a count and an optional value of the container element type. After the call
the container will hold the number of elements specified by the count, which will be
equal to either the default value for the container type or the initial value specified.

list_six.assign(list_ten.begin(), list_ten.end());
list_four. assign (3 , 7); II three copies of value seven
list_five.assign(12); II twelve copies of value zero

Finally, two lists can exchange their entire contents by means of the operation swap () .
The argument container will take on the values of the receiver, while the receiver will
assume those of the argument. A swap is very efficient, and should be used, where
appropriate, in preference to an explicit element-by-element transfer.

II exchange lists nine and ten

Type definitions
The class list includes a number of type definitions. The most common use for these is in
declaration statements. For example, an iterator for a list of integers can be declared in
the following fashion:

list<int>::iterator location;

In addition to iterator, the following types are defined:

const~iterator

reverse_iterator

410 C++ Pro 9 ram mer's G u ide

The type associated with the elements the list
maintains.

An iterator that does not allow modification of the
underlying sequence.

An iterator that moves in a backward direction.

const_reverse_iterator

reference

const_reference

A combination constant and reverse iterator.

A reference to an underlymg element.

A reference to an underlymg element that will not
permit the element to be modified

An unsigned integer type, .used to refer to the size of
containers.

difference_type A signed integer type, used to describe to distances
between iterators.

Placing elements into a list
Values can be inserted into a list in a variety of ways. Elements are most commonly
added to the front or back of a list. These tasks are provided by the push_front () and
push_back () operations, respectively. These operations are efficient (constant time) for
both types of containers. .

list_seven.push_front(1.2)i
list_eleven.push_back (Widget(6))i

In a previous discussion (Insert iterators) we noted how, with the aid of an insert iterator
and the copy () or generate () generic algorithm, values can be placed into a list at a
location denoted by an iterator. There is also a member function, named insert () , that
avoids the need to construct the inserter. As we will describe shortly, the values
returned by the iterator generating functions begin () .and end () denote the beginning
and end of a list, respectively. An insert using one of these is equivalent to push_front ()
or push_back () , respectively. If we specify only one iterator, the default element value is
inserted.

II insert default widget at beginning of list

list_eleven.insert(list_eleven.begin())i
II insert widget 8 at end of list

list_eleven.insert(list_eleven.end(),' Widget(8))i

Note Iterator invalidation: Unlike a .vector or deque, insertions or removals from the middle
of a list will not invalidate references or pointers to other elements in the container. This
'property can be important if two or more iterators are being used to refer to the same
container.

An iterator can denote a location in the middle of a list. There are several ways to
produce this iterator. For example, we can use the result of any of the searching
operations described in "Searching operations" later in this chapter, such as an
invocation of the find () generic algorithm. The new value is inserted immediately prior
to the location denoted by the iterator. The insert () operation itself returns an iterator
denoting the location of the inserted value. This result value was ignored in the
invocations shown above.

II find the location of the first 5 value in list
list<int>::iterator location =

find(list_nine.begin(), list_nine.end(), 5)i

II and insert an 11 immediate before it
location = list_nine. insert (location, 11)i

C hap t e r 2 3, lis t 411

It is also possible to insert a fixed number of copies of an argument value. This form of
insert () does not yield the location of the values.

line_nine.insert (location, 5, 12); II insert five twelve's

Finally, an entire sequence denoted by an iterator pair can be inserted into a list. Again,
no useful value isretumed as a result of the insert (). .

II insert entire contents of list_ten into list_nine
list_nine.insert (location, list_ten.begin(), list_ten.end());

There are a variety of ways to splice one list into another list. A splice differs from an
insertion in that the item is simultaneously added to the receiver list and removed from
the argument list. For this reason, a splice can be performed very efficiently, and should
be used whenever appropriate. As with an insertion, the member function splice ()
uses an iterator to indicate the location in the receiver list where the splice should be
made. The argument is either an entire list, a single element in a list (denoted by an
iterator), or a subsequence of a list (denoted by a pair of iterators).

II splice the last element of list ten
list_nine. splice (location, list_ten, list_ten.end());

II splice all of list ten
list_nine.splice (location, list_ten);

II splice list 9 back into list 10
list_ten.splice (list_ten.begin(), list_nine,

list_nine.begin(), location);

Two ordered lists can be combined into one using the merge () operation. Values from
the argument list are merged into the ordered list, leaving the argument list empty. The
merge is stable; that is, elements retain their relative ordering from the original lists. As
with the generic algorithm of the same name ("Merge ordered sequences" in Chapter
30), two forms are supported. The second form uses the binary function supplied as
argument to order values. Not all compilers support the second form. If the second form
is desired and not supported, the more general generic algorithm can be used, although
this is slightly less efficient.

II merge with explicit compare function
list_eleven.merge(list_six, widgetCompare);

I/the following is similar to the above

list<Widget> list_twelve;
merge (list_eleven.begin(), list_eleven.end(),

list_six.begin(), list_six.end(),
inserter (list_twelve, list_twelve.begin()), widgetCompare);

list_eleven.swap(list_twelve);

Removing elements.
Just as there are a number of different ways to insert an element into a list, there are a
v,,!-riety of ways to remove values from a list. The most common operations used to
remove a value are pop_front () or pop_back () , which delete the single element from
the front or the back of the list, respectively. These member functions simply remove the
given element, and do not themselves yield any useful result. If a destructor is defined

412 C++ Pro 9 ram mer's G u ide

for the element type it will be invoked as the element is removed. To look at the values
before deletion, use the member functions front () or back () .

The erase () operation can be used to remove a value denoted by an iterator. For a list,
the argument iterator, and any other iterators that denote the same location, become
invalid after the removal, but iteratorsdenoting other locations are unaffected. We can
also use erase () to remove an entire subsequence, denoted by a pair of iterators. The
values beginning at the initial iterator and up to, but not including, the final iterator are
removed from the list. Erasing elements from the middle of a list is an efficient
operation, unlike erasing elements from the middle of a vector or a deque.

list_nine.erase (location);
II erase values between the first 5 and the following 7

location = find(list_nine.begin(), list_nine.end(), 5);
list<int>::iterator location2 =

find (location, list_nine.end(), 7);
list_nine.erase (location, location2);

The remove () member function removes all occurrences of a given value from a list. A
variation, remove_if (), removes all values that satisfy a given predicate. An alternative
to the use of either of these is to use the remove () or remove_if () generic algorithms
(Remove unwanted elements). The generic algorithms do not reduce the size of the list,
instead they move the elements to be retained to the front of the list, leave the remainder
of the list Unchanged, and return an iterator denoting the location of the first
unmodified element. This value can be used in conjunction with the erase () member
function to remove the remaining values.

list_nine.remove(4); II remove all fours
list_nine.remove_if(divisibleByThree); I I remove any div by 3

II the following is equivalent to the above
list<int>::iterator location3 =

remove_if (list_nine.begin(), list_nine.end(),
divisibleByThree);

list_nine. erase (location3, list_nine.end());

The operation unique () will erase all but the first element from every consecutive group
of equal elements in a list. The list need not be ordered. An alternative version takes a
binary function, and compares adjacent elements using the function, removing the
second value in those situations were the function yields a true value. As with
remove_if () , not all compilers support the second form of unique () . In this case the
more general unique () generic algorithm can be used (see "Remove runs of similar
values" in Chapter 29). In the following example the binary function is the greater-than
operator, which will have the effect of removing all elements smaller than a preceding
element.

II remove first from consecutive equal elements
list_nine.unique();

II explicitly give comparison function
list_nine.unique(greater<int>());

II the following is equivalent to the above
location3 =

unique (list_nine.begin(), list_nine.end(), greater<int>());
list_nine. erase (location3, list_nine.end());

C hap t e r 23, lis t 413

Extent operations
The member function size () will return the number of elements being held by a
container. The ~ction empty () will return true if the container is empty, and is more
efficient than comparing the size against the value zero.

cout « "Number of elements: " « list_nine. size () « endl;
if (list_nine. empty ())

cout « "list is empty" « endl;
else

cout « "list is not empty" « endl;

The member function resize () changes the size of the list to the value specified by the
argument. Values are either added or erased from the end of the collection as necessary.
An optional second argument can be used to provide the initial value for any new
elements added to the collection.

II become size 12, adding values of 17 if necessary
list_nine.resize (12, 17);

Access and iteration
The member functions front () and back () return, but do not remove, the first and last
items in the container, respectively. For a list, access to other elements is possible only by
removing elements (until the desired element becomes the front or back) or through the
use of iterators.

There are two types of iterators that can be constructed for lists. The functions begin ()
and end () construct iterators that traverse the list in forward order. For the list data type
begin () and end () create bidirectional iterators. The alternative functions rbegin () and
rend () construct iterators that traverse in reverse order, moving from the end of the list
to the front.

List test for inclusion
The list data types do not directly provide any method that can be used to determine if a
specific value is contained in the collection. However, either the generic algorithms
find () or count () (see "Find an element satisfying a condition" and "Count the number
of elements that satisfy a condition" in Chapter 29) can be used for this purpose. The
following statements, for example, test to see whether an integer list contains the
element 17. '

int num = 0;
count (list_five.begin() , list_five.end(), 17, num);
if (num > 0)

cout « "contains a 17" « endl;
else

cout « "does not contain a 17" « endl;

if (find(list_five.begin(), list_five.endO, 17) != list_five.end())
cout « "contains a 17" « endl;

else
cout « "does not contain a 17" « endl;

414 C++ Pro 9 ram mer's G u ide

Sorting and sorted list operations
The member function sort () places elements into ascending order. If a comparison
operator other than < is desired, it can be supplied as an argument.

list_ten.sort (); II place elements into sequence
list_twelve.sort (widgetCompare); II sort with widget compare function

Once a list has been sorted, a number of the generic algorithms for ordered collections
can be used with lists. These are described in detail in Ordered collection algorithms
overview.

Searching operations
The various forms of searching functions, namely find(), find_if (), adjacent'
find (), mismatch (), max_element (), min_element () or search () can be applied to
list. In all cases the result is an iterator, which can be dereferenced to discover the
denoted element, or used as an argument in a subsequent operation.

Note Verify search results: The searching algorithms in the standard library will always
return the end of range iterator if no element matching the search condition is found.
Unless the result is guaranteed to be valid, it is a good idea to check for the end of range
condition.

In-place transformations
A number of operations can be applied to lists in order to transform them in place. Some
of these are provided as member functions. Others make use of some of the generic
functions described inChapter 29.

For a list, the member function reverseO reverses the order of elements in the list.

list_ten.reverse(); II elements are now reversed

The generic algorithm transform () (see "Transform one or two sequences" in Chapter
29) can be used to modify every value in a container, by simply using the same
container as both input and as result for the operation. The following, for example,
increments each element of ,a list by one. To construct the necessary unary function, the
first argument of the binary integer addition function is bound to the value one. The
version of transform () that manipulates two parallel sequences can be used in a similar
fashion.

transform(list~ten.begin(), list_ten.end(),
list_ten.begin(), bind1st(plus<int>(), 1));

In an analogous manner, the functions replace () and replace_if () (see "Replace
certain elements with fixed value" in Chapter 29) canbeused to replace elements of a
list with specific values. Rotations (see "Rotate elements around a midpoint" in Chapter
29) and partitions (see "Partition a sequence into two groups" in Chapter 29), can also be
performed with lists.

II find the location of, the 5 value, and rotate around it
location = find(list_ten.begin(), list_ten.end(), 5);

Chapter 23, list 415

rotate (list_ten.begin() , location, list_ten. end ());
II now partition using values greater than 7

partition(list_ten.begin(), list_ten.end(),
bind2nd(greater<int>(), 7));

The functions next-permutation () and prev-permutation () (see IiGenerate
permutations in sequence" in Chapter 29) can be used to generate the next permutation
(or previous permutation) of a collection of values.

next-permutation (list_ten.begin(), list_ten.end());

Other operations
The algorithm for_each 0 (see Ii Apply a function to all elements in a collection" in
Chapter 29) will apply a function to every element of a collection. An illustration of this
use will be given in the radix sort example program in the section on the deque data
structure.

The accumulate () generic algorithm reduces a collection to a scalar value (see IiReduce
sequence to a single value" in Chapter 29). This can be used, for example, to compute
the sum of a list of numbers. A more unusual use of accumulate () will be illustrated in
the radix sort example.

cout « "Sum of list is: " «
accumulate (list_ten.begin(), list_ten.end(), 0) « endl;

Two lists can be compared against each other. They are equal if they are the same size
-and all corresponding elements are equal. A list is less than another list if it is
lexicographically smaller (see "Lexical comparison" in Chapter 29).

Example program: an inventory system
Note Obtaining the sample program: The executable version of the widget works program is

contained in file widwork.cpp on the distribution disk.

We will use a simple inventory management system to illustrate the use of several list
operations. Assume a business, named World Wide Widget Works, requires a software
system to manage their supply of widgets. Widgets are simple devices, distinguished by
different identification numbers:

class Widget {
public:

} ;

Widget(int a = 0) : id(a) { }
void operator = (const Widget& rhs) { id = rhs.id; }
int id;
friend ostream & operator « (ostream & out,const Widget & w)

{ return out « "Widget" «w.id; }
friend bool operator == (const Widget&lhs,const Widget& rhs)

{ return lhs.id == rhs.id; }
friend bool operator< (const Widget&llhs, const Widget&rhs)

{ return lhs.id < rhs.id; }

416 C++ Pro 9 ram mer's G u ide

The state af the inventary is represented by twa lists. One list represents the stack af
widgets an hand, while the sec and represents the type af widgets that custamers have
backardered. The first is a list af widgets, while the sec and is a list af widget
identificatian types. To. handle aur inventary we have twa cammands; the first, order ()
pracesses arders, while the secand, receive () , pracesses the shipment af a new widget.

class inventory {
public:

void order (intwid); II process order for widget type wid
void receive (int wid); II receive widget of type wid in shipment

private:

} ;

list<Widget> on_hand;
list<int> on_order;

When a new widget arrives in shipment, we campare the widget identificatian number
with the list af widget types on backorder. We use find () to search the backarder list,
immediately shipping the widget if necessary. Otherwise it is added to the stack on
hand.

void inventory::receive (int wid)

cout « "Received shipment of widget type " « wid « endl;
list<int>::iterator weneed =

find (on_order.begin(), on_order.end(), wid);
if (weneed 1= on_order.end()) {

cout « "Ship" « Widget(wid)
« " to fill back order" « endl;

on_order.erase(weneed);

else
on_hand.push_front(Widget(wid));

When a customer orders a new widget, we scan the list of widgets in stock to determine
if the arder can be processed immediately. We can use the functian find_if () to search
the list. To do so we need a binary function that takes as its argument a widget and
determines whether the widget matches the type requested. We can do this by taking a
general binary widget testing function, and binding the secand argument to the specific
widget type. To use the function bind2nd () , however, requires that the binary functian

. be an instance of the class binary _functian. The general widget testing function is
written as follows:

class WidgetTester : public binary_function<Widget, int, bool>
public:

} ;

bool operator () (const Widget & wid, int testid) const
{ return wid.id == testid; }

The widget order function is then written as follows:

void inventory::order (int wid)

cout « "Received order for widget type " « wid « endl;
list<Widget>::iterator wehave =

Chapter 23, list 417

find_if (on_hand.begin(), on_hand.end(),

bind2nd(WidgetTester(), wid));

if (wehave != on_h~d.end()) {
cout « "Ship " « *wehave « endl;

on_hand.erase(wehave);

else {
cout « "Back order widget of type" «wid «endl;
on_order.push~front(wid);

}

418 C++ Pro 9 ram mer's G u ide

deque
Deque data abstraction

The name" deque" is short for" double-ended queue," and is pronounced like "deck."
Traditionally, the term is used to describe any data structure that permits both
insertions and removals from either the front or the back of a collection. The deque
container class permits this, as well as much more. In fact, the capabilities of the deque
data structure are almost a union of those provided by the vector and list classes.

• Like a vector, the deque is an indexed collection. Values can be accessed by subscript,
using the position within the collection as a key (a capability not provided by the list
class). .

• Like a list, values can be efficiently added either to the front or to the back of a deque
(a capability provided only in part by the vector class).

• As with both the list and vector classes, insertions can be made into the middle of the
sequence held by a deque. Such insertion operations are not as efficient as with a list,
but slightly more efficient that they are in a vector.

In short, a deque can often be used both in situations that require a vector and in those
that call for a list. Often, the use of a deque in place of either a vector or a list will result
in faster programs. To determine which data structure should be used, you can refer to
the set of questions described in "Selecting a container" in Chapter 21.

Oeque include files
The deque header file must appear in all programs that use the deque data type.

include <deque>

Chapter 24, deque 419

Oeque operations
The following table summarizes the member functions provided by the deque data type.
You will note the close similarity between this chart and the ones provided earlier for
the vector and list data types. No further discussion will be provided for those
operC).tions which match either the vector or list member functions discussed earlier;

reference
reference
RandomAccesslterator
boo 1
RandomAccesslterator
void
void
reference
iterator
void
void

size_type
void
void
void
void
RandomAccesslterator
RandomAccesslterator
void
size_type
void
reference
deque

. deque
deque
deque
deque

deque

deque

deque
at
back
begin
empty
end
erase
erase
front
insert
insert
insert

ma2csize
pop_back
pop_front
push_back
push_front
rbegin
rend
resize
size
swap
operator []

operator

()

(size_type)
(size_type, value_type)
template ~class Iterator>
(Iterator, Iterator)
template <class Iterator>
assign (Iterator, Iterator)
template <class Size,class T>
assign (Size, T)
(const deque)
(size_type)
()

()

()

()

(iterator)
(iterator,iterator)
()

(iterator, value_type)
(iterator, size_type, value_type)
template <class Iterator>
(iterator, Iterator, Iterator)
()

()

()

(value_type)
(value_type)
()

()

(size_type, value_type)
()

(deque)
size_type
deque

A deque is declared in the .same fashion as a vector, and includes within the class the
same type definitions as vector.

420 C++ Pro 9 ram mer's G u ide

Notice that the begin () and end () member functions return random access iterator,
rather than bidirectional iterators, as they do for lists.

An insertion (either insert () ,push_front (), or push_back () can potentially invalidate
all outstanding iterators and references to elements in the deque. As with the vector data
type, this is a much more restrictive condition than insertions into a list.

If the underlying element type provides a destructor, then the destructor will be
invoked when a value is erased from a deque.

Since the deque data type provides random access iterators, all the generic algorithms
that operate with vectors can also be used with deques.

A vector holds elements in a single large block of memory. A deque, on the other hand,'
uses a number of smaller blocks. This may be important on systems that restrict the size
of memory blocks, as it will permit a deque to hold many more elements than a vector.

As values are inserted, the index associated with any particular element in the collection
will change. For example, if a value is inserted into position 3, then the value formerly
indexed by 3 will now be found at index location 4, the value formerly at4 will be found
at index location 5, and so on. .

Example program: radix sort
The radix sort algorithm is a good illustration of how lists and deques can be combined
with other containers. In the case of radix sort, a vector of deques is manipulated, much
like a hash table.

Note Obtaining the sample program: The complete radix sort program is found in the file
RADIX. CPP in the tutorial distribution disk.

Radix sorting is a technique for ordering a list of positive integer values. The values are
successively ordered on digit positions, from right to left. This is accomplished by
copying the values into ''buckets,'' where the index for the bucket is given by the
position of the digit being sorted. Once all digit positions have been examined, the list
must be sorted.

The following table shows the sequences of values found in each bucket during the four
steps involved in sorting the list 624 852 426 987 269146415301 73078593. During pass
1 the one's place digits are ordered. During pass 2 the ten's place digits are ordered,
retaining the relative positions of values set by the earlier pass. On pass 3 the hundred's
place digits are ordered, again retaining the previous relative ordering. After three
passes the result is an ordered list.

0 730 301 78
1 301 415 146
2 852 624,426 269
3 593 730 301
4 624 146 415,426
5 415 852 593

C hap t e r 24, de que 421

6

7

8

9

426,146
987

78
269

269
78

987
593

624
730

852

987

The radix sorting algorithm is simple. A while loop is used to cycle through the various
passes. The value of the variable divisor indicates which digit is currently being
examined. A Boolean flag is used to determine when execution should halt. Each time
the while loop is executed a vector of deques is declared. By placing the declaration of
this structure inside the while loop, it is reinitialized to empty each step. Each time the
loop is executed, the values in the list are copied into the appropriate bucket by
executing the function copyIntoBuckets () on each value. Once distributed into the
buckets, the values are gathered back into the list by means of an accumulation.

void radixSort(list<unsigned int> & values)

bool flag = true;
int divisor = 1;

while (flag) {
vector< deque<unsigned int> > buckets(10);
flag =.false;
for_each(values.begin(), values.end(),

copylntoBuckets(...));
accumulate(buckets.begin(), buckets.end(),

. values .. begin (), li s tCopy) ;
divisor *= 10;

The use of the function accumulate () here is slightly unusual. The "scalar" value being
constructed is the list itself~ The initial value for the accumulation is the iterator denoting
the beginning of the list. Each bucket is processed by the following binary function:

list<unsigned int>::iterator
listCopy(list<unsigned int>::iterator c,

deque<unsigned int> & 1st)

II copy list back into original list, returning end
return copy(lst.begin(), lst.end(), c);

The only difficulty remaining is defining the function copyIntoBuckets () . The problem
here is that the function must take as its argument only the element being inserted, but it
must also have access to the three values buckets, divisor, and flag. In languages that
permit functions to be defined within other functions the solution would be to define
copyIntoBuckets () as a local function within the while loop. But C++ has no such
facilities. Instead, we must create a class definition, which can be initialized with
references to the appropriate values. The parenthesis operator for this class is then used
as the function for the for_each () invocation in the radix sort program.

422 C++ Programmer's Guide

class copylntoBuckets
public:

copylntoBuckets

} ;

(int d, vector< deque<unsigned int> > & b, bool & f)
: divisor(d), buckets(b), flag(f) {}

int divisor;
vector<deque<unsigned int> > & buckets;
bool & flag;

void operator () (unsigned int v)
int index = (v I divisor) % 10;

II flag is set to true if any bucket
II other than zeroth is used
if (index) flag = true;
buckets [indexl .push_back(v);

Chapter 24, deque 423

424 C++ Pro 9 ram mer's G u ide

set, multiset, and bit_set
The set data abstraction

Note Sets, ordered and not: Although the abstract concept of a set does not necessarily imply
an ordered collection, the set data type is always ordered. If necessary, a collection of
values that cannot be ordered can be maintained in, for example, a list. .

A set is a collection of values. Because the container used to implement the set data
structure maintains values in an ordered representation, sets are optimized for insertion
and removal of elements, and for testing to see whether a particular value is contained
in the collection. Each of these operations can be performed in a logarithmic number of
steps, whereas for a list, vector, or deque, each operation requires in the worst case an
examination of every element held by the container. For this reason, sets should be the
data structure of choice in any problem that emphasizes insertion, removal, and test for
inclusion of values. Like a list, a set is not limited in size, but rather expands and
contracts as elements are added to or removed from the collection.

There are two varieties of sets provided by the standard library. In the set container,
every element is unique. Insertions of values that are already contained in the set are
ignored. In the multiset container, on the other hand, multiple occurrences of the same
value are permitted.

Set include files
Whenever you use a set or a multiset, you must include the set header file.

include <set>

Set and multiset operations
Note Sets and bags: In other programming languages, a multiset is sometimes referred to as

a bag.

Chapter 25, set, multiset, and bit_set 425

The following chart summarizes the member functions provided by the set and multiset
data types. Each will shortly be described in more detail. Note that while member
functions provide basic operations, the utility of these data structures is greatly
extended through the use of the generic algorithms described in Chapters 29 and 30.

Bidirectionallterator
size_type
bool
Bidirectionallterator
pair<iterator, iterator>
void
size_type
void
iterator
pair<iterator, bool>
iterator
void

iterator
size_type
Bidirectional Iterator
Bidirectionallterator
size_type
void
iterator
Function
set

set
multiset
set
multiset
set

multiset

set
multiset
begin
count
empty
end
equal_range
erase
erase
erase
find
insert
insert
insert

lower_bound
max_size
rbegin
rend
size
swap
upper_bound
value_comp
operator

Creation and initialization

()

()

(Compare)
(Compare)
template <class Iterator>
(Iterator, Iterator)
template <class Iterator>
(Iterator, Iterator)
(const set)
(const multiset)
()

(value_type)
()

()

(value_type)
(iterator)
(value_type)
(iterator, iterator)
(value_type)
(value_type)
(iterator, value_type)
template <class Iterator>
(Iterator, Iterator)
(value_type)
()

()

()

()

(set)
(key_type)
()

(set)

A set is a template data structure, specialized by the type of the elements it contains, and
the operator used to compare keys. The latter argument is optional, and, if it is not
provided, the less than operator for the key type will be assumed. The element type can
be a primitive language type (such as integer or double), a pointer type, or a user­
defined type. The element type must recognize both the equality testing operator
(operator ==) and the less than comparison operator (operator <);

426 C++ Pro 9 ram mer's G u r d e

Note Initializing sets with iterators: As we noted in the earlier discussion on vectors and
lists, the initialization of containers using a pair of iterators requires a mechanism that is
still not widely supported by compilers. -If not provided, the equivalent effect can be
produced by declaring an empty set and then using the copy () generic algorithm to
copy values into the set.

Sets can be declared with no initial elements, or they can be initialized from another
container by providing a pair of iterators. An optional argument in both cases is an
alternative comparison function; this value overrides the value provided by the
template parameter. This mechanism is useful if a program contains two or more sets
with the same values but different orderings, as it prevents more than one copy of the
set member function from being instantiated. The copy constructor can be used to form
a new set that is a clone, or copy, of an existing set.

set <int> set_one;
set <int, greater<int> > set_two;
set <int> set_three(greater<int>());

set <gadget, less<gadget>() > gset;
set <gadget> gset(less<gadget>())

set <int> set_four (aList.begin(), aList.end());
set <int> set_five

(aList.begin(), aList.end(),9reater<int>());
set <int> set_six (set_four); II copy constructor

A set can be assigned to another set, and two sets can exchange their values using the
swap () operation (in a manner analogous to other standard library containers).

set_one = set_five;
set_six.swap(set_two);

Type definitions
The classes set and multiset include a number of type definitions. The most common
use for these is in a declaration statement. For example, an iterator for a set of integers
can be declared in the following fashion:

set<int>::iterator location;

In addition to iterator, the following types are defined:

const_iterator

reverse_iterator

reference

const_reference

The type associated with the elements the set maintains.

An iterator that does not allow modification of the imderlying
sequence.

An iterator that moves in a backward direction.

A combination constant and reverse iterator.

A reference to an underlying element.

A reference to an underlying element that will not permit
modification.

An unsigned integer type, used to refer to the size of containers.

C hap t e r 2 5, set, m u I tis e t, and bit _ set 427

value_compare

Insertion

A function that can be used to compare two elements.

A signed integer type, used to describe the distance between
iterators.

Note Pairs: See the discussion of maps in the section liThe map data abstraction" in Chapter
26 for a description of the pair data type.

Unlike a list or vector, there is only one way to add a new element to a set. A value can
be inserted into a set ora multiset using the insert () member function. With a .
multiset, the function returns an iterator that denotes the value just inserted. Insert
operations into a set return a pair of values, in which the first field contains an iterator,
and the second field contains a Boolean value that is true if the element was inserted,
and false otherwise. Recall that in a set, an element will not be inserted if it matches an
element already contained in the collection.

set_one.insert (18);

if (set_one.insert(18).s~cond)
cout « "element was inserted" « endl;

else
cout « "element was not inserted" « endl;

Insertions of several elements from another container can also be performed using an
iterator pair:

set_one.insert (set_three.begin(), set_three.end());

Removal of elements from a set
Values are removed from a set using the member function erase (). The argument can
be either a specific value, an iterator that denotes a single value, or a pair of iterators that
denote a range of values. When the first form is used on a multiset, all arguments
matching the argument value are removed, and the return value indicates the number
of elements that have been erased.

II erase element equal to 4
set_three.erase(4);

II erase element five
stesttype::iterator five = set_three.find(5);
set_three.erase(five);

II erase all values between seven and eleven
stesttype::iterator seven = set_three.find(7);
stesttype::iterator eleven = set_three.find(ll);
set_three.erase (seven, eleven);

If the underlying element type provides a destructor, then the destructor will be
invoked priorto removing the element from the collection.

428 c++ Programmer's Guide

Searching and counting
The member function size () will yield the number of elements held by a container. The
member function empty () will return a Boolean true value if the container is empty, and
is generally faster than testing the size against zero.

The member function find () takes an element value, and returns an iterator denoting
the location of the value in the set if it is present, or a value matching the end-of-set (the
value yielded by the function end ()) if it is not. If a multiset contains more than one
matching element, the value returned can be any appropriate value.

list<int>::iterator five = set_three.find(5);
if (five != set_three.end())

cout « "set contains a five" « endl;

The member functions lower_bound () and upper_bound () are most useful with
multisets, as with sets they simply mimic the function find () . The member function
lower_bound () yields the first entry that matches the argument key, while the member
function upper~bound () returns the first value past the last entry matching the
argument. Finally, the member function equal_range () returns a pair of iterators,
holding the lower and upper bounds.

The member function count () returns the number of elements that match the argument.
For a set this value is either zero or one, whereas for a multiset it can be any nonnegative
value. Since a non-zero integer value is treated as true, the count () function can be used
to test for inclusion of an element, if all that is desired is to determine whether or not the
element is present in the set. The alternative, using find (), requires testing the result
returned by find () against the end-of-collection iterator.

if (set_three.count(5))
cout « "set contains a five" « endl;

Iterators
Note No iterator invalidation: Unlike a vector or deque, the insertion or removal of values

from a set does not invalidate iterators or references to other elements in the collection.

The member functions begin () and end () produce iterators for both sets and multisets.
The iterators produced by these functions are constant to irisure that the ordering
relation for the set is not inadvertently or intentionally destroyed by assigning a new
value to a set element. Elements are generated by the iterators in sequence, ordered by
the comparison operator provided when the set was declared. The member functions
rbegin () and rend () produce iterators that yield the elements in reverse order.

Set operations
The traditional set operations of subset test, set union, set intersection, and set
difference are not provided as member functions, but are instead implemented as
generic algorithms that will work with any ordered structure. These functions are
described in more detail in set operations. The following summary describes how these
functions can be used with the set 'and multiset container classes.

C hap t e r 2 5, set, m u I tis e t, and b i t_ set 429

Subset test
The function includes () can be used to determine if one set is a subset of another; that
is, if all elements from the first are contained in the second. In the case of multisets the
number of matching elements in the second set must exceed the number of elements in
the first. The four arguments are apair of iterators representing the (presumably)
smaller set, and a pair of iterators representing the (potentially) larger set.

if (includes (set_one.begin(), set_one.end(),
set_two.begin(), set_two.end()))

cout « "set is a subset" « endl;

The less than operator (operator <) will be used for the comparison of elements,
regardless of the operator used in the declaration of the set. Wherethis is inappropriate,
an alternative versio~ of the includes () function is provided. This form takes a fifth
argument, which is the comparison function used to order the elements in the two sets.

Set union or intersection
The function set_union () can be used to construct a union of two sets. The two sets are
specified by iterator pairs, and the union is copied into an output iterator that is
supplied as a fifth argument. To form the result as a set, an insert iterator must be used to
form the output iterator. (See "Insert iterators" in Chapter 19 for a discussion of insert
iterators.) If the desired outcome is a union of one set with another, then a temporary set
can be constructed, and the results swapped with the argument set prior to deletion of
the temporary set. .

II union two sets, copying result into a vector
vector<int> v_one (set_one.size() + set_two.size());

set_union(set_one.begin(), set_one.end(),
set_two.begin(), set_two.end(), v_one.begin());

II form union in place

set<int> temp_set;
set_union(set_one.begin(), set_one.end(),

set_two.begin(), set_two.end(),
inserter (temp_set, temp_set.begin()));

set_one.swap(temp_set); II temp_set will be deleted
}

The function set_intersection () is similar, and forms the intersection of the two sets.

As with the includes () function, the less than operator (operator <) is used to compare
elements in the two argument sets, regardless of the operator provided in the
declaration of the sets. Should this be inappropriate, alternative versions of both the
set_union () or set_intersection () functions permit the comparison operator used to
form the set to be given as a sixth argument.

The operation of taking the union of two multisets should be distinguish~d from the
operation of merging two sets. Imagine that one argument set contains three instances

430 c++ Programmer's Guide

of the element 7, and the second set contains two instances of the same value. The union
will contain only three such values, while the merge will contain five. To form the
merge, the function merge () can be used (see "Merge ordered sequences" in Chapter
30). The arguments to this function exactly match those of the set_union () function.

Set difference
There are two forms of set difference. A simple set difference represents the elements in
the first set that are not contained in the second. A symmetric set difference is the union
of the elements in the first set that are not contained in the second, with the elements in
the second that are not contained in the first. These two values are constructed by the
functions set_difference () and set_syrnmetric_difference (), respectively. The use of
these functions is similar to the :use of the set_union () function described earlier.

Other generic algorithms
Because sets are ordered and have constant iterators, a number of the generic functions
described in Chapter 29 either are not applicable to sets or are not particularly useful.
However, the following table gives a few of the functions that can be usefully used in
conjunction with the set data type.

Copy one sequence into another

Find an element that matches a condition

Find a subsequence within a set

Count number of elements that satisfy condition

Reduce set to a single value

Execute function on each element

copy

find_if

search

cOilllt_if

accumulate

for_each

Example program: a spelling checker
Note Obtaining the sample program: This program can be found in the file spell.cpp in the

tutorial distribution ..

A simple example program that uses a set is a spelling checker. The checker takes as
arguments two input streams; the first representing a stream of correctly spelled words
(that is, a dictionary), and the second a text file. First, the dictionary is read into a set.
This is performed using a copy () and an input stream iterator, copying the values into
an inserter for the dictionary. Next, words from the text are examined one by one, to see
if they are in the dictionary. If they are not, then they are added to a set of misspelled
words. After the entire text has been examined, the program outputs the list of
misspelled words.

void spellCheck (istream & dictionary, istream & text)

typedef set <string, less<string> > stringset;
'stringset words, misspellings;
string word;

Chapter 25, set, multiset, and bit_set 431

istream_iterator<string, ptrdiff_t> dstream(dictionary) , eof;

II first read the dictionary
copy (dstream, eof, inserter (words, words.begin()));

II next read the text
while (text » word)

if (! words. count (word))
misspellings. insert (word);

II finally, output all misspellings
cout « "Misspelled words.:" « endl; .
copy (misspellings.begin(), misspellings.end(),

ostream_iterator<string> (cout, "\n"));

An improvement would be to suggest alternative words for each misspelling. There are
various heuristics that can be used to discover alternatives. The technique we will use
here is to simply exchange adjacent letters. To find these, a call on the following function
is inserted into the loop that displays the misspellings.

void findMisspell(stringset & words, string & word)
{

for (int i = 1; i < word.length(); i++) {
swap (word [i-1] , word[i]);
if (words.count(word))

cout « "Suggestion: " « word « endl;
II put word back as before

swap (word[i-1], word[i]);
}

The class bit set
A bit_set is really a cross between a set and a vector. Like the vector abstraction
vector<bool>, the abstraction represents a set of binary (0/1 bit) values. However, set.
operations can be performed on bitsets using the logical bit-wise operators. The class
bit_set does not provide any iterators for accessing elements.

Initialization and creation
A bit_set is a template class abstraction. The template argument is not, however, a type,
but an integer value. The value represents the number of bits the set will contains.

bit_set<126> bset_one; II create a set of 126 bits

An alternative technique permits the size of the set to be specified as an argument to the
constructor. The actual size will be the smaller of the value used as template argument
and the constructor argument. This technique is useful when a program contains two or
more bit vectors of differing sizes. Consistently using the larger size for the template
argument means that only one set of methods for the class will be generated. The actual
size, however, will be determined by the constructor.

bit_set<126> bset_two(100); II this set has only 100 elements

432 C++ Pro 9 ram mer's G u ide

A third form of constructor takes as argument a string of 0 and 1 characters. A bit_set is
created that has as many elements as are characters in the string, and is initialized with
the values from the string. '

bit_set<126> small_set("10101010"); II this set has 8 elements

Accessing and testing elements
An individual bit in the bit_set can be accessing using the subscript operation. Whether
the bit is one or not can be determined using the member function test (). Whether any
bit in the bit_set is on is tested using the member function any () , which yields a boolean
value. The inverse of any () is returned by the member function none () .

bset_one[3l = 1;
if (bset_one.test(4))

cout « "bit position 4 is set" « endl;
if (bset_one.any())

cout « "some bit position is set" « endl;

The function set () can be used to set a specific bit. bset_one. set (i) is equivalent to
bset_one [i] = true. Invoking the function without any arguments sets all bit positions
to true. The function reset () is similar, and sets the indicated positions to false (sets all
positions to false if invoked with no argument). The function flip () flips either the
indicated position, or all positions if no argument is provided. The function flip () is
also provided as a member function for the individual bit references.

bset_one.flip(); II flip the entire set
bset_one.flip(12); II flip only bit 12
bset_one[12l.flip(); II reflip bit 12

The member function size () returns the size of the bit_set, while the member function
count () yields the number of bits that are set.

Set operations
Set operations on bit_sets are implemented using the bit-wise operators, in a manner
analogous to the way in which the same operators act on integer arguments. .

The negation operator (operator -) applied to a bit_set returns a new bit_set containing
the inverse of elements in the argument set.

The intersection of two bit_sets is formed using the and operator (operator &). The
assignment form of the operator can be used. In the assignment form the target becomes
the disjunction of the two sets.

bset_three = bset_two & bset_four;
bset_five &= bset_three;

The union of two sets is formed in a similar manner using the or operator (operator I).
The exclusive-or is formed using the bit-wise exclusive or operator (operator ").

The left and right shift operators (operator« and ») can be used to shift a biCset left or
right, in a manner analogous to the use of these operators on integer arguments. If a bit

Chapter 25, set, multiset, and bit_s~t 433

is shifted left by an integer value n, then the new bit position i is the value of the former
i-no Zeros are shifted into the new positions.

Conversions
The member function to_ulong () converts a bit_set into an unsigned long. It is an error
to perform this operation on a bit_set containing more elements than will fit into this
representation.

The member function to_string () converts a bit_set into an object of type string. The
string will have as many characters as the bit_set. Each zero bit will correspond to the
character 0, while each one bit will be represented by the character 1.

434 c++ Programmer's Guide

map and multimap
The m,ap data abstraction

Note Other names for maps: In other prograrrunmg languages, a map-like data structure is
sometimes referred to as a dictionary, a table, or an associative array.

A map is an indexed data structure, similar to a vector or a deque. However, maps differ
from vectors or deques in two important respects; First, in a map, unlike a vector or
deque, the index values (called the key values) need not be integer, but can be any
ordered data type. For example, maps can be indexed by real numbers, or by strings.
Any data type for which a comparison operator can be defined can be used as a key. As
with a vector or deque, elements can be accessed through the use of the subscript
operator (although there are other techniques). The second important difference is that a
map is an ordered data structure. This means that elements are maintained in sequence,
the ordering being determined by key values. Because they maintain values in order,
maps can very rapidly find the element specified by any given key (searching is
performed in logarithmic time). Like a list, maps are not limited in size, but expand or
contract as necessary as new elements are added or removed.

There are two varieties of maps provided by the standard library. The map data
structure demands unique keys. That is, there is a one-to-one association between key
elements and their corresponding value. In a map, the insertion of a new value that uses
an existing key is ignored. A multimap, on the other hand, permits multiple different
entries to be indexed by the same key. Both data structures provide relatively fast
(logarithmic time) insertion, deletion, and access operations.

Note The pair data type: If you want to use the pair data type without using maps, you
should include the header file named utility.

In large part, a map can simply be considered to be a set that maintains a collection of
pairs. The pair data structure is a tuple of values. The first value is accessed through the
field name first, while the second is, naturally, named second. A function named
make-pair () simplifies the task of producing an instance of class pair.

Chapter 26, map and multimap 435

template <class Tl, class T2>
. struct pair {

Tlfirst;
T2 second;
pair (const Tl & x, const T2 & y)

} ;

template <class Tl, class T2>

first (x) , second(y) { }

inline pair<Tl, T2> make-pair(const Tl& x, constT2& y)
{ return pair<Tl, T2>(x, y); }

In determinffig the equivalence of keys; for example, to determine if the key portion of a
new element matches any existing key, the comparison function for keys is used, and
not the equivalence (==) operator. Two keys are deemed equivalent if the comparison
function used to order key values yields false in both directions. That is, if
Compare (keyl, key2) is false, and if Compare (key2, keyl) is false, then keyl and kE.=y2
are considered equivalent.

Map include files
Whenever you use a map or a multimap, you must include the map or multimap header
file.

include <map>

Map and multimap operations
The following chart summarizes the member functions provided by the map and
multimap data types. Each will shortly be described in more detail. Note that while
member functions provide basic operations, the utility of the data structure is greatly
extended through the use of the generic algorithms described in Chapter 30.

Bidirectionallterator

size_type

bool

Bidirectionallterator

pair<iterator, iterator>

436 c++ Programmer's Guide

map

multimap

map

, multimap

map

multimap

map

multimap

begin

count

empty

end

equal_range

()

()

(Compare)

(Compare)

template <class Iterator>
(Iterator, Iterator)

template <class Iterator>
(Iterator, Iterator)

(const map)

(const multimap)

()

(key_type)

()

()

(key_type)

void

size_type

void

iterator

Function

pair<iterator, bool>

iterator

void

iterator

size~type

Bidirectionallterator

Bidirectionallterator

size_type

void

iterator

Function

reference

map

Creation and initialization

erase

erase

erase

find

key_comp

insert

insert

insert

lower_bound

mrocsize

rbegin

rend

size

swap

upper_bound

value_comp

operator []

operator =

(iterator)

(key_type)

(iterator, iterator)

(key_type)

()

(value_type)

(iterator, value_type)

template <class Iterator>
(Iterator, Iterator)

(key_type)

()

().

()

()

(map)

(key_type)

()

(key_type) (map only)

(map)

The declaration of a map follows the pattern we have seen repeatedly in the standard
library. A map is a template data structure, specialized by the type of the key elements,
the type of the associated values, and the operator to be used in comparing keys. If your
compiler supports default template types (a relatively new feature in C++ not yet
supported by all vendors), then the last of these is optional, and if not provided, the less
than operator for key type will be assumed. Maps can be declared with no initial
elements, or initialized from another container by providing a pair of iterators. In the
latter case the iterators must denote values of type pair; the first field in each pair is
taken to be a key, while the second field is a value. A copy constructor also permits
maps to be created as copies of other maps.

II map indexed by doubles containing strings
map<double, string, less<double> > map_one;

II map indexed by integers, containing integers
map<int, int> map_two (aContainer;begin(), aContainer.end());

II create a new map, initializing it from map two
map<int, int> map~three (map_two);11 copy constructor

A map can be assigned to another map, and two maps can exchange their values using
the swap () operation (in a manner analogous to other standard library containers).

C h a pt e r 2 6, map and m u I tim a p 437

Type definitions
The classes map and multimap include a number of type definitions. These are most
commonly used in declaration statements. For example, an iterator for a map of strings
to integers can be declared in the following fashion:

map<string, int>::iterator location;

In addition to iterator,the following types are defined:

key_type

value_type

const_iterator

reverse_iterator

const_reverse_iterator

reference

const_reference

size_type

key_compare

value_compare

difference_type

Insertion and access

The type associated with the keys used to index the map.

The type held by the container, a key/value pair.

An iterator that does not allow modification of the underlying
sequence.

An iterator that moves in a backward direction.

A combination constant and reverse iterator.

A reference to an underlying value.

A reference to an underlying value that will not permit the element
to be modified.

An unsigned integer type, used to refer to the size of containers.

A function object that can be used to compare two keys.

A function object that can be used to compare two elements.

A signed integer type, used to describe to the distances between
iterators.

Values can be inserted into a map or a muttimap using the insert () operation. Note
that the argument must be a key-value pair. This pair is often constructed using the data
type value_type associated with the map.

map_three.insert (map<int>::value_type(5, 7));

Insertions can also be performed using an iterator pair, for example as generated by
another map.

map_two.insert (map_three.begin(), map_three.end());

With a map (but not a multimap), values can be accessed and inserted using the
subscript operator. Simply using a key as a subscript creates an entry-the default
element is used as the associated value. Assigning to the result of the subscript changes.
the associated binding.

cout « "Index value 7 is " « map_three[7] « endl;
II now change the associated value

map_three [7] = 5;
cout « "Index value 7 is " «map_three[7] « endl;

438 c++ Programmer's Guide

Removal of values
Values can be removed from a map or a multimap by naming the key value. In a
multimap, the erasure removes all elements with the associated key. An element to be
removed can also be denoted by an iterator; as, for example, the iterator yielded by a
find () operation. A pair of iterators can be used to erase an entire range of elements.

II erase element 4
map_three.erase(4)i

II erase element five
mtesttype::iterator five = map_three.find(5)i
map_three.erase(five)i

II erase all values between seven and eleven
mtesttype::iterator seven = map_three.find(7)i
mtesttype::iterator eleven = map_three.find(ll)i

map_three.erase (seven, eleven)i

If the underlying element type provides a destructor, then the destructor will be
invoked prior to removing the key and value pair from the collection.

Iterators
Note No iterator invalidation: Unlike a vector or deque, the insertion or removal of elements

from a map does not invalidateiterators which may be referencing other portions of the
container.

The member functions begin () and end () produce bidirectional iterators for both maps
and multimaps. Dereferencing a iterator for either a map or a multimap will yield a pair
of key /value elements. The field names first and second can be applied to these values
to access the individual fields. The first field is constant, and cannot be modified. The
second field, however, can be used to change the value being held in association with a
given key. Elements will be generated in sequence, based on the ordering of the key
fields.

The member functions rbegin () and rend () produce iterators that yield the elements in
reverse order.

Searching and counting
The member function size () will yield the number of elements held by a container. The
member function empty () will return a Boolean true value if the container is empty, and
is generally faster than testing the size against zero.

The member function find () takes a key argument, and returns an iterator denoting the
associated key/value pair. In the case of multimaps, the first such value is returned. In
both cases the past-the-endJteratoris returned if no such value is found.

if (map_one.find(4) != map_end.end())
cout « "contains a four" « endli

The member function lower_bound () yields the first entry that matches the argument
key, while the member function upper_bound () returns the first value past the last entry

C hap t e r 2 6, map and m u I tim a p 439

matching the argument. Finally, the member function equal_range () . returns a pair of
iterators, holding the lower and upper bounds. An example showing the use of these
procedures will be presented later in this chapter.

The member function count () returns the number of elements that match the key value
supplied as the argument. For a map, this value is always either zero or one, whereas for
a multimap it can be any nonnegative value. If you simply want to determine whether
or not a collection contains an element indexed by a given key, using count () is often
easier than using the find () function and testing the result against the end-of-sequence
iterator.

if (map_one.count(4))
cout « "contains a four" « endl;

Element comparisons
The member functions key_camp () and valUe_COIJlp (), which take no arguments, return
a function that can be used to compare elements of the k~y or value types. Values used
in these comparisons need not be contained in the collection, and neither function will
have any effect on the container.

if (map_two.key_comp() (if j))
cout « "element i is less than j" « endl;

Other map operations
Because maps and multimaps are ordered collections, and because the iterators for
maps return pairs, many of the functions described in Chapter 30 are meaningless or
difficult to use. However, there are a few notable exceptions. The functions for_each ()
(" Apply a function to all elements in a collection"), adj acent_find () ("Find consecutive
duplicate elements"), and accumulate () ("Reduce sequence to a single value") each
have their own uses. In all cases it is important to remember that the functions supplied
as arguments should take a key /value pair as arguments.

Example programs
We present three example programs that illustrate the use of maps and multimaps.
_These are a telephone database, graphs, and a concordance.

Example program: a telephone database
Note Obtaining the sample program: The complete example program is included in file

TELE . cpp in the distribution disk.

A maintenance program for a simple telephone database is a good application for a
map. The database is simply an indexed structure, where the name of the person or
business (a string) is the key value, and the telephone number (a long) is the associated
entry. We might write such a Class as follows:

440 c++ Programmer's Guide

typedef map<string, long, less<string> > friendMapi
typedef friendMap::value_type entry_typei

class telephoneDirectory {
public:

void addEntry (string name, long number)// add new entry to database
{ database [name] = numberi }

void remove (string name)// remove entry from database
{ database.erase(name}i }

void update (string name, long number)// update entry
{ remove (name) i addEntry(name, number} i }

void displayDatabase(}// display entire database
{ for_each(database.begin(}, database.end(}, printEntry}i

void displayPrefix(int}i//display entries that match prefix

void displayByPrefix(}i// display database sorted by prefix

private:
friendMap databasei

} i

Simple operations on our database are directly implemented by map commands.
Adding an element to the database is simply an insert, removing an element is an
erase, and updating is a combination of the two. To print all the entries in the database
we can use the for_each () algorithm, and apply the following simple utility routine to
each entry:

void printEntry(const entry_type & entry}
{ cout « entry.first « ":" .« entry.second« endli }

We will use a pair of slightly more complex operations to illustrate how a few of the
algorithms described in Chapter 30 can be used with maps. Suppose one wanted to
display all the phone numbers with a certain three digit initial prefix. We will use the
find_if () function (which is different from the find () member function in class map)
to locate the first entry. Starting from this location, subsequent calls on find_if () will
uncover each successive entry.

void telephoneDirectory::displayPrefix(int prefix}
{

cout « "Listing for prefix" « prefix « endli
friendMap::iterator wherei
where =

find_if (database.begin(), database.end(},
checkPrefix(prefix}}i

while (where != database.end()} {
printEntry(*where}i
where = find_if (++where, database.end(),

checkPrefix(prefix}}i

cout « "end of prefix listing" « endli

C hap t e r 26, map and m u I ti map 441

For the predicate to this operation, we require a Boolean function that takes only a single
argument (the pair representing a database entry), and tells us whether or not it is in the
given prefix. There is no obvious candidate function, and in arty case the test prefix is
not being passed as an argument to the comparison function. The solution to this
pfoblem is to employ a technique that is commonly used with the standard library,
defining the predicate function as an instance of a class, and storing the test predicate as
an instance variable in the class, initialized when the class is constructed. The desired
function is then defined as the function call operator for the class:

int prefix(const pair<string, long> entry)
{ return entry.second / 10000; }

class checkPrefix {
public:

} ;

checkPrefix (intp) : testPrefix(p) { }
const int testPrefix;
bool operator () const (const entry_type & entry)

{ return prefix(entry) == testPrefix; }

Our final example will be to display the directory sorted by prefix. It is not possible to
alter the way in which maps are themselves ordered. So instead, we create a new map
with the element types reversed, then copy the values into the new map, which will
have the effect of ordering the values by prefix. Once the new map is created, it is then
printed.

typedef map<long, string, less<long> > sortedMap;
typedef sortedMap::value_type sorted_entry_type;

void telephoneDirectory::displayByPrefix()

cout « "Display by prefix" « endl;
sortedMap sortedData;
friendMap::iterator itr;
for (itr = database.begin(); itr != database.end(); itr++)

sortedData.insert(sortedMap::value_type((*itr) . second,
(*itr) .first));

for_each (sortedData.begin 0 , sortedData.end(), printSortedEntry);

The function used to print the sorted entries is the following:

void printSortedEntry (const sorted_entry_type & entry)
{ cout « entry.first « ":" « entry.second « endl;

Example program: graphs
Note Obtaining the sample program: The executable version of this program is found in the

file GRAPH. CPP on the distribution disk.

A map whose elements are themselves maps is a natural representation for a directed
graph. For example, suppose we use strings to encode the names of cities, and we wish
to construct a map where the value associated with an edge is the distance between two
connected cities. We could create such a graph in the following fashion:

442 c++ Programmer's Guide

typedef map<string, int> stringVector;
typedef map<string, stringVector> graph;

string pendleton("Pendleton");// define strings for city names
string pensacola ("Pensacola") ;
string peoria ("Peoria") ;
string phoenix ("Phoenix") ;
string pierre ("Pierre") ;
string pittsburgh ("Pittsburgh") ;
string princeton ("Princeton") ;
string pueblo ("Pueblo") ;

graph cityMap;// declare the graph that holds the map

cityMap[pendleton] [phoenix] = 4;// add edges to the graph
cityMap[pendleton] [pueblo] = 8;
cityMap[pensacola] [phoenix] = 5;
cityMap[peoria] [pittsburgh] = 5;
cityMap[peoria] [pueblo] = 3;
cityMap[phoenix] [peoria] = 4;
cityMap[phoenix] [pittsburgh] = 10;
cityMap[phoenix] [pueblo] = 3;
cityMap[pierre] [pendleton] = 2;
cityMap[pittsburgh] [pensacola] 4;
cityMap[princeton] [pittsburgh] = 2;
cityMap[pueblo] [pierre] = 3;

The type stringVector is a map of integers indexed by strings. The type graph is, in
effect, a two-dimensional sparse array, indexed by strings and holding integer values. A
sequence of assignment statements initializes the graph.

A number of classic algorithms can be used to manipulate graphs represented in this
form. One example is Dijkstra's shortest-path algorithm. Dijkstra's algorithm begins
from a specific city given as an initial location. A priority_queue of distance/ city pairs is
then constructed, and initialized with the distance from the starting city to itself
(namely, zero). The definition for the distance pair data type is as follows:

struct DistancePair {
unsigned int first;
string second;
DistancePair() : first(O) { }
DistancePair(unsigned int f, const string & s)

: first(f) , second(s) {
} ;

bool operator < (const DistancePair & lhs, const DistancePair & rhs)
{ return lhs.first < rhs.first; }

In the algorithrri that follows, note how the conditional test is reversed on the priority
queue, because at each step we wish to pull the smallest, and not the largest, value from
the collection. On each iteration around the loop we pull a city from the queue. If we
have not yet found a shorter path to the city, the current distance is recorded, and by
examining the graph we can compute the distance from this city to each of its adjacent
cities. This process continues until the priority queue becomes exhausted.

void shortestDistance(graph & cityMap,

Chapter 26, map and multimap 443

const string & start, stringVector & distances)

II process a priority queue of distances to cities
priority_queue<DistancePair, vector<DistancePair>,

greater<DinstancePair> > que;
que.push(DistancePair(O, start));

while (! que.emptY()) {
II pull nearest city from queue

int distance = qt).e.top() .first;
string city = que.top() . second;
que.pop() ;

II if .we haven't seen it already, process it
if (0 == distances.count(city)) {

II then add it to shortest distance map
distances [city) = distance;

II and put values into queue
const stringVector & cities = cityMap[city);
stringVector::const_iterator start = cities.begin();
stringVector::const_iterator stop cities.end();
for (; start != stop; ++start)

que.push(DinstancePair(distance + (*start) . second, (*start) .first));

Notice that this relatively simple algorithm makes use of vectors, maps, strings, and
priority queues.

Example program: a concordance
Note Obtaining the sample program: An executable version of the concordance program is

found on the distribution disk under the name CONCORD. CPP.

A concordance is an alphabetical listing of words in a text, that shows the line numbers
on which each word occurs. We develop a concordance to illustrate the use of the map
and multimap container classes. The data values will be maintained in the concordance
by a multimap, indexed by strings (the words) and will hold integers (the line numbers).
A multimap is employed because the same word will often appear on several different
lines; indeed, discovering such connections is one of the primary purposes of a
concordance. An alternative possibility would have been to use a map and use a set of
integer elements as the associated values.

class concordance {
typedef multimap<string, int> wordDictType;

public:
void addWord (string, int);
void readText (istream &);
void printConcordance (ostream &);

private:
wordDictType wordMap;

} ;

444 c++ Programmer's Guide

The creation of the concordance is divided into two steps: first the program generates
. the concordance (by reading lines from an input stream), and then the program prints

the result on the output stream. This is reflected in the two member functions
readText () and printConcordance () . The first of these, readText () , is written as
follows:

void concordance::readText (istream & in)

string line;
for (int i = 1; getline(in, line, O\n'); i++) {

allLower (line) ;
list<string> words;
split (line, II ,.;:", words);
list<string>::iterator wptr;
for (wptr = words.begin(); wptr != words.end(); ++wptr)

addWord(*wptr, i);

Lines are read from the input stream one by one. The text of the line is first converted
into lower case, then the line is split into words, using the function split () described in
"Example function: split a line into words" in Chapter 34. Each word is then entered
into the concordance. The method used to enter a value into the concordance is as
follows:

void concordance::addWord (string word, int line)

II see if word occurs in list
II first get range of entries with same key

wordDictType::iterator low = wordMap.lower_bound(word);
wordDictType::iterator high = wordMap.upper_boun~(word);

II loop over entries, see if any match current line
for (; low != high; ++low)

if ((*low) . second == line)
return;

II didn't occur, add now
wordMap.insert(wordDictType::value_type(word, line));

The major portion of addWord () is concerned with ensuring values are not duplicated in
the word map should the same word occur twice on the same line. To assure this, the
range of values matching the key is examined; each value is tested, and if any match the
line number then no insertion is performed. It is only if the loop terminates without
discovering the line number that the new word/line-number pair is inserted.

The final step is to print the concordance. This is performed in the following fashion:

void concordance::printConcordance (ostream & out)

string lastword("");
wordDictType::iterator pairPtr;
wordDictType::iterator stop = wordMap,end();
for (pairPtr = wordMap.begin(); pairPtr != stop; ++pairPtr)

II if word is same as previous, just print line number

C hap t e r 26, map and m u It i map 445

if (lastword== (*pairPtr). first)
out «" " « (*pairPtr) . second;

else {II first entry of word
lastword = (*pairPtr) .first;
cout « endl « lastword « ": " « (*pairPtr) . second;

cout « endl; II terminate last line

An iterator loop is used to cycle over the elements being maintained by the word list.
Each new word generates a new line of output-thereafter line numbers appear
separated by spaces. If, for example, the input was the text:

It was the best of times,

it was the worst of times.

The output, from best to worst, would be:

best:l

it:l 2

of:l 2

the:l 2

times:l 2

was:l 2

worst: 1

446 c++ Programmer's .Guide

stack and queue
Most people have a good intuitive understanding of the stack and queue data
abstractions, based on experience with everyday objects. An excellent example of a stack
is a pile of papers -on a desk, or a stack of dishes in a cupboard. In both cases the
important characteristic is that it is the item on the top that is most easily accessed. The
easiest way to add a new item to the collection is to place it above all the current items in
the stack. In this manner, an item removed from a stack is the item that has been most
recently inserted into the stack; for example, the top piece of paper in the pile, or the top
dish in the stack.

Note LIFO and FIFO: A stack is sometimes referred to as a LIFO structure, and a queue is
called a FIFO structure. The abbreviation LIFO stands for Last In, First Out. This means
the first entry removed from a stack is the last entry that was inserted. The term FIFO,
on the other hand, is short for First In, First Out. This means the first element removed
from a queue is the first element that was inserted into the queue.

An everyday example of a queue, on the other hand, is a bank teller line, or a line of
people waiting to enter a theater. Here new additions are made to the back of the queue,
as new people enter the line, while items are removed from the front of the structure, as
patrons enter the theater. The removal order for a queue is the opposite of that for a
stack. In a queue, the item that is removed is the element that has been present in the
queue for the longest period of time.

In the standard library, both stacks and queues are adaptors, built on top of other
containers which are used to actually hold the values. A stack can be built out of either a
ve'ctoror a deque, while a queue can be built on top of either a list or adeque. Elements
held by either a stack or queue must recognize both the operators < and ==.
Because neither stacks nor queues define iterators, it is not possible to examine the
elements of the collection except by removing the values one by one. The fact that these
structures do not implement iterators also implies that most of the generic algorithms
described in Generic algorithms overview and Ordered collection algorithms overview
cannot be used with either data structure.

C hap t e r 2 7, s t a c k and que u e 447

The stack data abstraction
As a data abstraction, a stack is traditionally defined as any object that implements the
following operations:

empty ()

size ()

top()

push (newElement)

pop()

return true if the collection is empty

return number of elements in collection

return (but do not remove) the topmost element in the
stack

push a new element onto the stack

remove (but do not return) the topmost element from
the stack

Note that accessing the front element and removing the front element are separate
operations. Programs that utilize the stack data abstraction should'include the file
stack, as well as the include file for the container type (e.g., vector).

include <stack>
include <vector>

Note Right angle brackets: Note that on most compilers it is important to leave a space
between the two right angle brackets in the declaration of a stack; otherwise they are
interpreted by the compiler as aright shift operator.

A declaration for a stack must specify two arguments; the underlying element type, and
the container that will hold the elements. For a stack, the most common container is a
vector or a deque, however a list can also be used. The vector version is generally
smaller, while the deque version may be slightly faster. The following are sample
declarations for a stack.

stack< int, vector<int> > stackOne;
stack< double, deque<double> > stackTwo;
stack< Part *, list<Part * > > stackThree;
stack< Customer, list<Customer> > stackFour;

The last example creates a stack of a programmer-defined type named Customer.

Example program: an RPN calculator
A classic application of a stack is in the implementation of calculator. Input to the
calculator consists of a text string that represents an expression written in reverse Polish
notation (RPN). Operands/that is, integer constants, are pushed on a stack of values. As
operators are encountered, the appropriate number of operands are popped off the
stack, the operation is performed, and the result is pushed back on the stack.

Note Obtaining the sample program: This program is found in the file CALC.CPP in the
distribution package.

We can divide the development of our stack simulation into two parts. A calculator
engine is concerned with the actual work involved in the simulation, but does not

448 c++ Programmer's Guide

perform any input or output operations. The name is intended to suggest an analogy to
a car engine, or a computer processor-the mechanism performs the actual work, but
the user of the mechanism does not normally directly interact with it. Wrapped around
this is the calculator program, which interacts with the user, and passes appropriate
instructions to the calculator engine.

We can use the following class definition for our calculator engine. Inside the class
declaration we define an enumerated list of values to represent each of the possible
operators that the calculator is prepared to accept. We have made two simplifying
assumptions: all operands will be integer values, and we will handle only binary
operators.

class ca,lculatorEngine {
public:

enum binaryOperator {plus, minus, times, divide};

int currentMemory () II return current top of stack
{ return data.top(); }

void pushOperand (int value) II push operand value on to stack
{ data.push (value); }

void doOperator (binaryOperator); II pop stack and perform operator

protected:
stack< int, vector<int> > data·;

};

Note Defensive programming: A more robust program would check to see if the stack was
empty before attempting to perform the pop () operation.

The member function doOperator () performs the actual work. It pops values from the
stack, performs the operation, then pushes the result back onto the stack.

void calculatorEngine::doOperator (binaryOperator theOp)

int right = data.top(); II read top element
data.pop(); II pop it from stack
int left = data.top(); II read next top element
data.pop(); II pop it from stack
switch (theOp) {

case plus: data.push(left + right); break;
case minus: data.push(left - right); break;
case times: data.push(left * right); break;
case divide: data.push(left I right); break;

The main program reads values in reverse Polish notation, invoking the calculator
engine to do the actual work:

void main () {
int intval;
calculatorEngine calc;

C hap t e r 2 7, s t a c k and que u e 449

char c;

while (cin » c)
switch (c) {

case '0': case '1': case '2': case ~3': case '4':
case '5': case '6': case '7': case '8': case '9':

cin.putback(c) ;
cin » intval;
calc.pushOperand(intval);
break;

case '+': calc.doOperator(calculatorEngine::plus);
break;

case '-': calc.doOperator(calculatorEngine::rninus);
break;

case '*': calc;doOperator(8alculatorEngine::tirnes);
break;

case 'I': calc.doOperator(calculatorEngine::divide);
break;

case 'p': cout« calc.currentMernory() « endl;
break;

case 'q': return; II quit program

The queue data abstraction
As a data abstraction, a queue is traditionally defined as any object that implements the
following operations:

empty ()

size ()

front ()

back()

push (newElement)

pop()

return true if the collection is empty

return number of elements in collection

return (but do not remove) the element at the front
of the queue

return the element at the end of the queue

push a new element on to the end of the queue

remove (but do not return) the element at the front
of the queue

Note that the operations of accessing and of removing the front elements are performed
separately. Programs that utilize the queue data abstraction should include the file
queue, as well as the include file for the container type (e.g., list).

include <queue>

450 c++ Programmer's Guide

include <list>

A declaration for a queue must specify both the element type as well as the container
that will hold the values. For a queue the most common containers are a list or a deque.
The list version is generally smaller, while the deque version may be slightly faster. The
following are sample declarations for a queue.

queue< int, list<int> > queueOnei
queue< double, deque<double> > queueTwoi
queue< Part *, list<Part * > > queueThreei
queue< Customer, list<Customer> > queueFouri

The last example creates a queue of a programmer-defined type named Customer. As
with the stack container, all objects stored in a queue must understand the operators <
and==.

Because the queue does not implement an iterator, none of the generic algorithms
described in Generic algorithms overview or Ordered collection algorithms overview
apply to queues.

Example program: bank teller simulation
Note Obtaining the sample program: The complete version of the bank teller simulation

program is found in file TELLER.CPP on the distribution disk.

Queues are often found in businesses, such as supermarkets or banks. Suppose you are
the manager of a bank, and you need to determine how many tellers to have working
during certain hours. You decide to create a computer simulation, basing your
simulation on certain observed behavior. For example, you note that during peak hours
there is a ninety percent chance that a customer will arrive every minute.

We create a simulation by first defining objects to represent both customers and tellers.
For customers, the information we wish to know is the average amount of time they
spend waiting in line. Thus, customer objects simply maintain two integer data fields:
the time they arrive in line, and the time they will spend at the counter. The latter is a
value randomly selected between 2 and 8. (See Chapter 19, "Interators/' for a discussion
of the randomlnteger () function.)

class Customer {
public:

} i

Customer (int at = 0) : arrival_Time (at) ,
processTime(2 + randomlnteger(6)) {}

int arrival_Timei
int processTimei

bool done() II are we done with our transaction?
{ return --processTime < Oi }

operator < (const Customer & c) II order by arrival time
{ return arrival_Time < c.arrival_Timei }

operator == (const Customer & c) II no two customers are alike
{ return falsei }

C hap t e r 27, s t a c k and que u e 451

Because objects can only be stored in standard library containers if they can be
compared for equality and ordering, it is necessary to define the < and == operators for
customers. Customers can also tell us when they are done with their transactions.

Tellers are either busy servicing customers, or they are free. Thus, each teller value holds
two data fields; a customer, and a Boolean flag. Tellers define a member function to
answer whether they are free or not, as well as a member function that is invoked when
they start servicing a,customer.

class Teller {
public:

Teller() { free = true; }

bool isFree() II are we free to service new customer?
{ if (free) return true;

if (customer.done())
free = true;

return free;

void addCustomer(Customer c) II start serving new customer
customer = c;

free = false;

private:

} ;

bool free;
Customer customer;

The main program is then a large loop, cycling once each simulated minute. Each
minute a new customer is, with probability 0.9, entered into the queue of waiting
customers. Each teller is polled, and if any are free they take the next customer from the
queue. Counts are maintained of the number of customers serviced and the total time
they spent in queue. From these two values we can determine, following the simulation,
the average time a customer spent waiting in the line.

void main () {
int numberOfTellers = 5;
int numberOfMinutes = 60;
d9uble totalWait = 0;
int numberOfCustomers = 0;
vector<Teller> teller (numberOf Tellers);
queue< Customer, deque<customer> > line;

for (int time = 0; time < numberOfMinutes; time++) {
if (randomlnteger(lO) < 9)

line.push(Customer(time));
for (int i = 0; i < numberOfTellers; i++) {

if (teller[i] . isFree() & ! line.empty()) {
Customer & frontCustomer = line.front();
numberOfCustomers++;
totalWait += (time - frontCustomer.arrival_Time);
teller[i] .addCustomer(frontCustomer);
line. pop () ;
}

452 C++ P r,o 9 ram mer's G u ide

cout « "average wait:" «
(totalWait I nUffiberOfCustomers) « endl;

By executing the program several times, using various values for the number of tellers,
the manager can determine the smallest number of tellers that can service the customers
while maintaining the average waiting time at an acceptable amount.

Chapter 27, stack and queue 453

454 c++ Programmer's Guide

priority_queue
The priority queue data abstraction

A priority queue is a data structure useful in problems where it is important to be able to
rapidly and repeatedly find and remove the largest element from a collection of values.
An everyday example of a priority queue is the "to do" list of tasks waiting to be
performed that most of us maintain to keep ourselves organized. Some jobs, such as
"clean desktop," are not imperative and can be postponed arbitrarily. Other tasks, such
as "finish report by Monday" or "buy flowers for anniversary," are time-crucial and
must be addressed more rapidly. Thus~ we sort the tasks waiting to be accomplished in
order of their importance (or perhaps based on a combination of their critical
importance, their long-term benefit, and the fun we will have doing them) and choose
the most pressing.

Note A queue that is not a queue: The term priority queue is a misnomer, in that the data
structure is not a queue, in the sense that we used the term in Chapter 27, since it does
not return elements in a strict first-in, first-out sequence. Nevertheless, the name is now
firmly associated with this particular data type.

A more computer-related example of a priority queue is that used by an operating
system to maintain a list of pending processes, where the value associated with each
element is the priority of the job. For example, it may be necessary to respond rapidly to
a key pressed at a terminal, before the data is lost when the next key is pressed. On the
other hand, the process of copying a listing to a queue of output yvaiting to be handled
by a printer is something that can be postponed for a short period, as long as it is
handled eventually. By maintaining processes in a priority queue, those jobs with
urgent priority will be executed prior to any jobs with less urgent requirements.

Simulation programs use a priority queue of "future events." The simulation maintains
a virtual" clock," and each event has an associated time when the event will take place.
In such a collection, the element with the smallest time value is the next event that
shoUld be simulated. These are only a few instances of the types of problems for which a
priority queue is a useful tool. You probably have, or will, encounter others.

Chapter 28, priority_queue 455

The priority queue operations
A priority queue is a data structure that can hold elements of type T and that
implements the following five operations:

push(T)

top()

pop()

size()

empty()

Add a new value to the collection being maintained

Return·a reference to the smallest element in the collection

Delete the smallest element from the collection

Return the number of elements in the collection

Return true if the collection is empty

Elements of type T must be comparable to each other, either through the use of the
default less-than operator (the .(operator), or through a comparison function passed
either as a template argument or as an optional argument on the constructor. The latter
form will be illustrated in the example program provided later in this section. As with
all the containers in the Standard Library, there are two constructors. The default ,
constructor requires either no arguments or the optional comparison function. An
alternative constructor takes an iterator pair, and initializes the values in the container
from the argument sequence. Once more, an optional third argument can be used to
define the comparison function.

Note Initializing queues from other containers: As we noted in earlier sections, support for
initializing containers using a pair of iterators requires a feature that is not yet widely
supported by compilers. While we document this form of constructor, it may not yet be
available on your system.

The priority queue data type is built on top of a container class, which is the structure
actually used to maintain the values in the collection. There are two containers inthe
standard library that can be used to construct priority queues: vectors or deques. The
following illustrates the declaration of several priority queues:

priority_queue< int, vector<int> > queue_one;
priority_queue< int, vector<int>, greater<int> > queue_two;
priority_queue< double, deque<double> >

queue_three (aList,begin(), aList.end(»;
priority_queue< eventStruct, vector<eventStruct> >

queue_four(eventComparison);
priority_queue< eventStruct, deque<eventStruct> >

queue_five(aVector.begin(), aVector.end(), eventComparison);

Queues constructed out of vectors tend to be somewhat smaller, while queues
constructed out of deques can be somewhat faster, particularly if the number of
elements in the queue varies widely over the course of execution. However, these
differences are slight, and either form will generally work in most circumstances.

Programs that utilize the priority queue data abstraction should include the file queue, as
well as the include file for the container type (e.g., vector).

include <queue>
include <vector>

456 c++ Programmer's Guide

Because the priority queue data structure does not itself know how to construct
iterators, very few of the algorithms noted in Chapter 29 can be used with priority
queues. Instead of iterating over values, a typical algorithm that uses a priority queue
constructs a loop, which repeatedly pulls values from the structure (using the top () and
pop () operations) until the collection becomes empty (tested using the empty ()
operation). The example program described in the next section will illustrate this use.

Note Information on heaps: Details of the algorithms used in manipulating heaps will not be
discussed here, however such information is readily available in almost any textbook on
data structures.

Priority queues are implemented by internally building a data structure called a heap.
Abstractly, a heap is a binary tree in which every node possesses the property that the
value associated with the node is smaller than or equal to the value associated with
either child node.

Application: event-driven simulation
An extended example will illustrate the use of priority queues. The example illustrates
one of the more common uses for priority queues, which is to support the construction
of a simulation model.

A discrete event-driven simulation is a popular simulation technique. Objects in the
simulation model objects in the real world, and are programmed to react as much as
possible as the real objects would react. A priority queue is used to store a
representation of "events" that are waiting to happen. This queue is stored in order,
based on the time the event should occur, so the smallest element will always be the
next event to be modeled. As an event occurs, it can spawn other events. These
subsequent events are placed into the queue as well. Execution continues until all events
have been processed.

Note Finding smallest elements: We describe the priority queue as a structure for quickly
discovering the largest element in a sequence. If, instead, your problem requires the
discovery of the smallest element, there are various possibilities. One is to supply the
inverse operator as either a template argument or the optional comparison function
argument to the constructor. If you are defining the comparison argument as a function,
as in the example problem, another solution is to simply invert the comparison test.

Events can be represented as subclasses of a base class, which we will call event. The
base class simply records the time at which the event will take place. A pure virtual
function named processEvent will be invoked to execute the event.

class event {
public:

} ;

event (unsigned int t) : time(t) { }
canst unsigned int time;
virtual void processEvent() = 0;

The simulation queue will need to maintain a collection of different types of events.
Each different form of event will be represented by a different subclass of class event.
Not all events will have the same exact type, although they will all be subclasses of class

C hap t e r 2 8, P rio r i t Y _ q ue u e 457

event. (This is sometimes called a heterogeneous collection.) For this reason the collection
must store pointers to events,instead of the events themselves. (In theory one could store
references, instead of pointers, however the standard library containers cannot hold
references).

Since comparison of pointers cannot be specialized on the basis of the pointer types, we
must instead define a new comparison function for pointers to events. In the standard
library,this is accomplished by defining a new structure, the sole purpose of which is to
define the function invocation operator (the () operator) in the appropriate fashion.
Since in this particular example we wish to use the priority queue to return the smallest
element each time, rather than the largest, the order of the comparison is reversed, as
follows:

struct eventCornparison {

} ;

bool operator () (event * left, event * right) const
{ return left->time > right->time; }

We are now ready to define the class simulation,which provides the structure for the
simulation activities. The class simulation provides two functions. The first is used to
insert a new event into the queue, while the second runs the simulation. A data field is
also provided to hold the current simulation "time."

Note Storing pointers versus storing values: Other example programs in this tutorial have
all used containers to store values. In this example the container will maintain pointers
to values, not the values themselves. Note that a consequence of this is that the
programmer is then responsible for managing the memory for the objects being
manipulated.

class simulation {
public:

simulation () : eventQueue(), time(O) { }

void scheduleEvent (event * newEvent)
{ eventQueue.push (newEvent); }

void run();

unsigned int time;
protected:

priority_queue<event *, vector<event *>, eventComparison> eventQueue;
} ;

Notice the declaration of the priority queue used to hold the pending events. In this case
we are using a vector as the underlying container. We could just as easily have used a
deque.

The heart of the simulation is the member function run (), which defines the event loop.
This procedure makes use of three of the five priority queue operations, namely top (),
pop () , and empty () . It is implemented as follows:

void simulation::run()

while (! eventQueue. empty ())
event * nextEvent = eventQueue.top();
eventQueue.pop();

458 e+t Programmer's Guide

time = nextEvent->time;
nextEvent->processEvent();
delete nextEvent; II free memory used by event

An ice cream store simulation
Note Obtaining the sample program: The complete event simulation is found in the file

icecream. cpp on the distribution disk.

To illustrate the use of our simulation framework, this example program gives a simple
simulation of an ice cream store. Such a simulation might be used, for example, to
determine the optimal number of chairs that should be provided, based on assumptions
such as the frequency.that customers will arrive, the length of time they will stay, and so
on.

Our store simulation will be based around a subclass of class simulation, defined as
follows:

class storeSimulation : .public simulation {
public:

storeSimulation()
: freeChairs(35) , profit(O.O), simulation() { }

bool canSeat (unsigned int numberOfPeople);
void order(unsigned int numberOfScoops);
void leave(unsigned int numberOfPeople);

private:
unsigned int freeChairs;
double profit;
theSimulation;

There are three basic activities associated with the store. These ar~ arrival, ordering and
eating, and leaving. This is reflected not only in the three member functions defined in
the simulation class, but in three separate subclasses of event.

The member functions associated with the store simply record the activities taking
place, producing a log that can later be studied to evaluate the simulation.

bool storeSimulation::canSeat (unsigned int numberOfPeople)
II if sufficient room, then seat customers

cout « "Time: " « time;
cout « " group of " « numberOfPeople « " customers arrives";
if (numberOfPeople < freeChairs)

cout « " is seated" « endl;
freeChairs -= numberOfFeople;
return true;

else {
cout « " no room, they leave" « endl;
return false;

C hap t e r 2 8, prj 0 r i t Y _ que u e 459

void storeSimulation::order (unsigned int numberOfScoops)
II serve icecream, compute profits

cout « "Time: " « time;
cout « " serviced order for " « numberOfScoops « endl;
profit += 0.35 * numberOfScoops;

void storeSimulation::leave (unsigned int numberOfPeople)
II pecple leave, free up chairs

cout « "Time: " « time;
cout « " group of size " « numberOfPeople «

" leaves" « endl;
freeChairs += numberOfPeople;

As we noted already, each activity is matched by a subclass of event. Each subclass of
event includes an integer data field, which represents the size of a group of customers.
The arrival event occurs when a group enters. When executed, the arrival event creates
and installs a new mstance of order event. The function randomlnteger () (see "Random
access iterators" in Chapter 19) is used to compute a random integer between 1 and the
argument value.

class arriveEvent : public event {
public:

arriveEvent (~signed int time, unsigned int groupSize)
: event(time), size (groupSize) { }

virtual void processEvent ();
private:

unsigned int size;
} ;

void arriveEvent::processEvent()

} .

I I see if everybody can be seated
if (theSimulation.canSeat(size))

theSimulation.scheduleEvent
(new orderEvent(time + 1 + randomlnteger(4), size));

An order event similarly spawns a leave event.

class orderEvent : public event {
public:

orderEvent (unsigned int time, unsigned int groupSize)
: event(time), size (groupSize) { }

virtual void processEvent ();
private:

unsigned irit size;
} ;

void orderEvent::processEvent()
II each person orders some number of scoops

for (int i = 0; i < size; i++)
theSimulation.order(l + rand(3));

theSimulation.scheduleEvent

460 c++ Programmer's Guide

(new leaveEvent(time + 1 + randomInteger(lO) , size));
} ;

Finally, leave events free up chairs, but do not spawn anynew events.

class leaveEvent : public event {
public:

leaveEvent (unsigned int time, unsigned int groupSize)
: event (time) , size (groupSize) { }

virtual void processEvent ();
private:

unsigned int size;
} ;

void leaveEvent::processEvent ()
II leave and free up chairs

theSimulation.leave(size);

To run the simulation we simply create some number of initial events (say, 30 minutes
worth), then invoke the run () member function.

void main() {
II load queue with some number of initial events
unsigned int t = 0;
while (t < 30) {

t += rand(6);
theSimulation.scheduleEvent(

newarriveEvent(t, 1 + randomInteger(4)));

II then run simulation and print profits
theSimulation.run();
cout « "Total profits " « theSimulation.profit « endl;

C hap t e r 28, prj 0 r i t Y _ que u e 461

462 C++ Pro 9 ram mer's G u ide

Generic algorithms
In this chapter and in Chapter 30, we will examine and illustrate each of the generic
algorithms ptovided by the standard library. The names and a short description of each
of the algorithms in this section are given in the following table. We have divided the
algorithms into several categories, based on how they are typically used. This division
differs from the categories used in the C++ standard definition, which is based upon
which algorithms modify their arguments and which do not.

Table 29.1 Algorithms used to initialize a sequence

fill Fill a sequence with an initial value

f i ll_n Fill n positions with an initial value

copy Copy sequence into another sequence

copy_backward

generate

generate_n

swap_ranges

Copy sequence into another sequence

Initialize a sequence uSing a generator

Initialize n positions using generator

Swap values from two parallel sequences

Table 29.2 Searching algorithms

find Find an element matching the argument

f ind_i f Find an element satisfying a condition

adjacent_find

search

max_element

min_element

mismatch

Find consecutive duplicate elements

Match a subsequence within a sequence

Find the maximum value in a sequence

Find the minimum value in a sequence

Find first mismatch in parallel sequences

Chapter 29, Generic algorithms 463

Table 29.3 In~place transformations

reverse Reverse the elements in a sequence

replace Replace specific values with new value

replace_i f Replace elements matching predicate

rotate

partition

stable-partition

next-permutation

prev-permutation

inplace_merge

random_shuffle

Table 29.4 Removal algorithms

Rotate elements in a sequence around a point

Partition elements into two groups

Partition preserving original ordering

Generate permutations in sequence

Generate permutations in reverse sequence

Merge two adjacent streams into one

Randomly rearrange elements in a sequence

remove Remove elements that match condition

unique Remove all but first of duplicate values in sequences

Table 29.5 Scalar generating algorithms

coun t Count number of elements matching value

c oun t_i f Count elements matching predicate

accumulate

inner-product

equal

lexicographical_compare

Reduce sequence to a scalar value

Inner product of two parallel sequences

Check two sequences for equality

Compare two sequences

Table 29.6 Sequence generating algorithms

transform Transform each element

partial_sum

adjacent_difference

Table 29.7 Miscellaneous operations

Generate sequence of partial sums

Generate sequence of adjacent differences

for_each Apply a function to each element of collection

To use any of the generic algorithms you must first include the appropriate header file.
The majority of the functions are defined in the header file algorithm. The functions
accumulate (), inner-product () , partial_sum () , and adj acent_difference () are
defined in the header file numeric.

include <algorithm>
include <numeric>

464 c++ Programmer's Guide

In this chapter we will illustrate the use of each algorithm with a series of short
examples. Many of the algorithms are also used in the sample programs provided in the
chapters on the various container classes. These cross references have been noted where
appropriate. '

All of the short example programs described in this chapter have been collected in a
number of files, named algi. cpp through alg6 . cpp. In the files, the example programs
have been augmented with output statements describing the test programs and
illustrating the results of executing the algorithms. In order to not confuse the reader
with unnecessary detail, we have generally omitted these output statements from the
descriptions here. If you wish to see the text programs complete with output statements,
you can compile and execute these test files. The expected output from these programs
is also included in the distribution. .

Initialization algorithms
Note Obtaining the source: The sample programs described in this section can be found in

the file algi. 9;PP.

The first set of algorithms we will cover are those that are chiefly, although not
exclusively, used to initialize a newly created sequence with certain values. The
standard library provides several initialization algorithms. In our discussion we'll
provide examples of how to apply these algorithms, and suggest how to choose one
algorithm over another.

Fill a sequence with an initial value
The fill () and fill_n () algorithms are used to initialize or reinitialize a sequence
with a fixed value. Their definitions are as follows:

void fill (Forwardlterator first, Forwardlterator last, canst T&);
void fill_n (Outputlterator, Size, canst T&);

Note Different initialization algorithms: The initialization algorithms all overwrite every
element in a container. The difference between the algorithms is the source for the
values used in initialization. The fill () algorithm repeats a single value, the copy ()
algorithm reads values from a second container, and the generate () algorithm invokes
a function for each new value.

The example program illustrates several uses of the algorithm:

void fill_example ()
II illustrate the use of the fill algorithm

II example 1, fill an array with initial values
char buffer[100], * bufferp = buffer;
fill (bufferp, bufferp + 100, '\0');
fill_n (bufferp, 10, 'x');

II example 2, use fill to initialize a list
list<string> aList(5, "nothing");

Chapter 29, Generic algorithms 465

fill_n (inserter (aList, aList.begin()), 10, "empty");

II example 3, use fill to overwrite values in list
fill (aList.begin(), aList.end(), "full");

II example 4, fill in a portion of a ~ollection
vector<int> iVec(10);
generate (iVec.begin(), iVec.end(), iotaGen(l));
vector<int>::iterator & seven =

find(iVec.begin(), iVec.end(), 7);
fill (iVec.begin(), seven, 0);

In example I, an array of character values is declared. The fill () algorithm is invoked
to initialize each location in this array with a null character value. The first 10 positions
are then replaced with the character 'x' by using the algorithm fill_n (). Note that the
fill () algorithm requires both starting and past-end iterators as arguments, whereas
the fill-,-n () algorithm uses a starting iterator and a count.

Example 2 illustrates how, by using an insert iterator (see "Ins~rt iterators" in Chapter
19), the fill_n () algorithm can be used to initialize a variable length container, such as
a list. In this case the list initially contains five elements, all holding the text" nothing" .
The call on fill_n () then inserts ten instances of the string" empty". 'The resulting list
contains fifteen elements.

The third and fourth examples illustrate how fill () can be used to change the values
in an existing container. In the third example each of the fifteen elements in the list
created in example 2 is replaced by the string" full".

Example 4 overwrites only a portion of a list. Using the algorithm generate () and the
function object iotaGen, which we will describe in the next section, a vector is initialized
to the values 1 23 ... 10. The find () algorithm ("Find an element satisfying a condition")
is then used to locate the position of the element 7, saving the location in an iterator
appropriate for the vector data type. The fill () call then replaces all values l,lp to, but
not including, the 7 entry with the value o. The resulting vector has six zero fields,
followed by the values 7, 8,9, and 10.

The fill () and f i ll_n () algorithm can be used with all the container classes
contained in the standard library, although insert iterators must be used with ordered
containers, such as a set.

Copy one sequence onto another sequence
The algorithms copy () and copy_backward () are versatile functions that can be used
for a number of different purposes, and are probably the most commonly executed
algorithms in the standard library. The definitions for these algorithms are as follows:

Outputlterator copy (Inputlterator first, Inputlterator last,
Outputlterator result);

Bidirectionallterator copy_backward (Bidirectionallterator first,
Bidirectionallterator last, Bidirectionallterator result);

466 C ++ Pro 9 ram mer's G u ide

Note Appending several copies: The result returned by the copy () function is a pointer to
the end of the copied sequence. To make a catenation of values, the result of one copy ()
operation can be used as a starting iterator in a subsequent copy ().

Uses of the copy () algorithm include:

• Duplicating an entire sequence by copying into a new sequence

• Creating subsequences of an existing sequence

• Adding elements into a sequence

• Copying a sequence from input or to output

• Converting a sequence from one form intO another

These are illustrated in the following sample program.

void copy_example ()
II illustrate the use of the copy algorithm

char * source = "reprise";
char * surpass = "surpass";
char buffer [120] , * bufferp = buffer;

I I example 1, a simple copy
copy (source, source + strlen(source) + 1, bufferp);

II example 2, self copies
copy (bufferp + 2, bufferp + strlen(buffer) + 1, bufferp);
int buflen = strlen(buffer) + 1;
copy_backward (bufferp, bufferp + buflen, bufferp + buflen + 3);
copy (surpass, surpass + 3, bufferp);

II example 3, copy to output
copy (bufferp, bufferp + strlen(buffer) ,

ostream_iterator<char>(cout)) ;
cout « endl;

II example 4,' use copy to convert type
list<char> char_list;
copy (bufferp, bufferp + strlen(buffer) ,

inserter (char_list, char_list.end()));
char * big = "big";
copy (big, big + 4, inserter (char_list, char_list.begin()));

char buffer2 [120], * buffer2p = buffer2;
* copy (char_list.begin(), char_list.end(), buffer2p) '\0';
cout « buffer2 « endl;

The first call on copy () , in example 1, simply copies the string pointed to by the variable
source into a buffer, resulting in the buffer containing the text" reprise". Note that the
ending position for the copy is one past the terminating null character, thus ensuring the
null character is included in the copy operation.

C hap t e r 2 9, G e n e ric a I 9 0 r i t h m s 467

The copy () operation is specifically designed to permit self-copies, i.e., copies of a
sequence onto itself, as long as the destination iterator does not fall within the range
formed by the source iterators. This is illustrated by example 2. Here the copy begins at
position 2 of the buffer and extends tothe end, copying characters into the beginning of
the buffer. This results in the buffer holding the value "prise". '

The second half of example 2 illustrates the use of the copy_backward () algorithm. This
function performs the same task as the copy () algorithm, but moves elements from the
end of the sequence first, progressing to the front of the sequence. (If you think of the
argument as a string, characters are moved starting from the right and progressing to
the left.) In this case the result will be that buffer will be assigned the value "priprise".
The first three characters are then modified by another copy () operation to the values
"sur" , resulting in buffer holding the value" surprise" .

Note copy_backwards: In the copy_backwards algorithm, note that it is the order of transfer,
and not the elements themselves that is ''backwards;'' the relative placement of moved
values in the target is the same as in the source.'

Example 3 illustrates copy () being used to move values to\an output stream (see
"Output stream iterators" in Chapter 19). The target in this case is an
ostrearn_iterator generated for the output stream couto A similar mechanism can be
used for input values. For example, a simple mechanism to copy every word in the
input stream into a list is the following call on copy () :

list<string> words;'

istream_iterator<string, ptrdiff_t> in_stream (cin), eof;

copy (in_stream, eof, inserter (words, words. begin ())) ;

This technique is used in the spell checking program described in "Example program: a
spelling checker."

Copy can also be used to convert from one type of stream to another. For example, the
call in example 4 of the sample program copies the characters held in the buffer one by
one into a list of characters. The call on inserter () creates an insert iterator, used to
insert values into the list. The first call on ~opy () places the string. surprise, created in
example 2, into the list. The second call on copy () inserts the values from the string
"big" onto the front of the list, resulting in the list containing the characters big
surprise. The final call on copy () illustrates the reverse process, copying characters
from a list back into a character buffer.

Initialize a sequence wi~h generated values
A gener,ator is a function that will return a series of values on successive invocations.
Probably the generator you are most familiar with is a random number generator.
However, generators can be constructed for a variety of different purposes, including
initializing sequences.

Like fill () and fill_n (), the algorithms generate () and generate_n () are used to
initialize orreinitialize a sequence. However, instead of a fixed argument, these
algorithms draw their values from a generator. The definition of these algorithms is as
follows:

468 c++ Programmer's Guide

void generate (Fo~ardIterator, ForwardIterator, Generator);
voidgenerate_n (OutputIterator, Size, Generato~);

Our example program shows several uses of the generate algorithm to initialize a
sequence.

string generateLabel () {
I I generate a unique label string of the form L_ddd
static int lastLabel = 0;
char labelBuffer[80];
ostrstream ost(labelBuffer, 80);
ost« "L_" « lastLabel++ « '\0';
return string(labelBuffer);

void generate_example ()
II illustrate the use of the generate and generate_n algorithms

II example 1, generate a list of label values
list<string> labelList;
generate-,-n (inserter (labelList, labelList.begin()),

4, generateLabel);

II example 2, generate an arithmetic progression
vector<int> iVec(10);
generate (iVec.begin(), iVec.end(), iotaGen(2)) i

generate_n (iVec.begin(), 5, iotaGen(7));

A generator can be constructed as a simple function that "remembers" information
about its previous history in one or more static variables. An example is shown in the
beginning of the example program, where the function generateLabel () is described.
This function creates a sequence of unique string labels, such as might be needed by a
compiler. Each invocation on the function generateLabel () results in a new string of
the form L_ddd, each with a unique digit value. Because the variable named lastLabel
is declared as static, its value is remembered from one invocation to the next. The first
example of the sample program illustrates how this function might be used in
combination with the generate_n () algorithm to initialize a list of four label values.

As we described in "Functions," in the Standard Library a function is any object that
will respond to the function call operator. Using this fact, classes can easily be
constructed as functions. The class iotaGen, which we described in "Function objects,"
is an example. The iotaGen function object creates a generator for an integer arithmetic
sequence. In the second example in the sample program, this sequence is used to
initialize a vector with the integer values 2 through 11. A call on generate_n () is then
used to overwrite the first 5 positions of the vector with the values 7 through 11,
resulting in the vector 7 8 910117891011.

Swap values from two parallel ranges
The template function swap () can be used to exchange the values of two objects of the
same type. It has the following definition:

C hap t e r 2 9, G e n e ric a I 9 0 r i t h m s 469

template <class T> void swap (T& a, T& b)

T temp (a) ;

a = b;
b = temp;

The function is generalized to iterators in the function named iter_swap () . The
algorithm swap_ranges () then extends this to entire sequences. The values denoted by
the first sequence are exchanged with the values denoted by a second, parallel sequence.
The description of the swap_ranges () algorithm is as follows:

ForwardIterator swap_ranges
(ForwardIterator first, ForwardIterator last, ForwardIterator first2);

Note Parallel sequences: A number of algorithms operate on two parallel sequences. In most
cases the second sequence is identified using only a starting iterator, not a starting and
ending iterator pair. It is assumed, but never verified, that the second sequence is at least
as large as the first. Errors will occur if this. condition is not satisfied.

The second range is described only by a starting iterator. It is assumed (but not verified)
that the second range has at least as many elements as the first range. We use both
functions alone and in combination in the example program.

void swap_example ()
II illustrate the use of the algorithm swap_ranges

II first make two parallel sequences
int data[] = {12, 27, 14, 64}, *datap = data;
vector<int> aVec(4);
generate (aVec.begin(), aVec.end(), iotaGen(l»;

II illustrate swap and iter_swap
swap (data [0] , data[2]);
vector<int>::iterator last = aVec.end(); last--;
iter_swap(aVec.begin(), last);

II now swap the entire sequence
swap_ranges (aVec.begin(), aVec.end(), datap);

Searching operations
The next category of algorithms we will describe are those that are used to locate
elements within a sequence that satisfy certain properties. Most commonly the result of
a search is then used as an argument to a further operation, such as a copy ("Partition a
sequence into two groups"), a partition ("Copy one sequence onto another
sequence"), or an in-place merge ("Merge two adjacent sequences into one").

Note Obtaining the source: The example functions described in this section can be found in
the file alg2 . cpp.

470 C++ Pro 9 ram mer's G u ide

The searching routines described in this section return an iterator that identifies the first
element that satisfies the search condition. It is common to store thls value in an iterator
variable, as follows:

list<int>::iterator where;
where = find(aList.begin(}, aList.end(}, 7};

If you want to locate all the elements that satisfy the search conditions you must write a
loop. In that loop, the value yielded by a previous search is first advanced (since other­
wise the value yielded by the previous search would once again be returned), and the
resulting value is used as a starting point for the new search. For example, the following
loop from the adj acent_find () example program ("Find consecutive duplicate
elements") will print the value of all repeated characters in a string argument.

Note Check search results: The searching algorithms in the standard library all return the
end-of-sequence iterator if no value is found that matches the search condition. As it is
generally illegal to dereference the end-of-sequence value, it is important to check for
this condition before proceeding to use the result of a search.

while ((where = adjacent_find (where, stop)} != stop} {
cout « "double " « *where « " in position "

« where - start « endl;
++where;

Many of the searching algorithms have an optional argument that can specify a function
to be used to compare elements, in place of the equality operator for the container
element type (operator ==). In the descriptions of the algorithms we write these
optional arguments inside a square bracket, to indicate they need not be specified if the
standard equality operator is acceptable.

Find an element satisfying a condition
There are two algorithms, find () and f ind_i f () , that are used to find the first element
that satisfies a condition. The definitions of these two algorithms are as follows:

Inputlterator find_if (Inputlterator first, Inputlterator last, Predicate);
Inputlterator find (Inputlterator first, Inputlterator last, const T&);

The algorithm find_if () takes as argument a predicate function, which can be any
function that returns a boolean value (see "Predicates" in Chapter 20). The find_if ()
algorithm returns a new iterator that designates the first element in the sequence that
satisfies the predicate. The second argument, the past-the-end iterator, is returned if no
element is found that matches the requirement. Because the resulting value is an
iterator, the dereference operator (the * operator) must be used to obtain the matching
value. This is illustrated in the example program.

The second form of the algorithm, find () , replaces the predicate function with a
specific value, and returns the first element in the sequence that tests equal to this value,
using the appropriate equality operator (the == operator) for the given datatype.

Note Searching sets and maps: These algorithms perform a linear sequential search through
the associated structures. The set and map data structures,.which are ordered, provide

C hap t e r 2 9, G e n e ric a I 9 0 r i t h m s 471

their own find () member functions, which are more efficient. Because of this, the
generic find () algorithm should not be used with set and map.

The following example program illustrates the use of these algorithms:

void find_test ()
II illustrate the use of the find algorithm

int vintageYears[] = {1967, 1972, 1974, 1980, 1995};
int * start = vintageYears;
int * stop = start + 5;
int * where = find_if (start, stop, isLeapYear);

if (where != stop)
cout « "first vintage leap year is " « *where « endl;

else
cout « "no vintage leap years" « endl;

where = find (start, stop, 1995);

if (where != stop)
cout « "1995 is position " « where - start

« I' in sequence" « endl;
else

cout "1995 does not occur in sequence" « endl;

Find consecutive duplicate elements
The adj acen t_f ind () algorithm is used to discover the first element in a sequence
equal to the next immediately following element. For example, if a sequence contained
the values 14256675, the algorithm would return an iterator corresponding to the
first 6 values. If no value satisfying the condition is found, then the end-of-sequence
iterator is returned. The definition of the algorithm is as follows:

Forwardlterator adjacent_find (Forwardlterator first,
Forwardlterator last [, BinaryPredicate]);

The first two arguments specify the sequence to be examined. The optional third
argument must be a binary predicate (a binary function returning a Boolean value). If
present, the binary function is used to test adjacent elements, otherwise the equality
operator (operator ==) is used.

The example program searches a text string for adjacent letters. In the example text these
are found in positions 5,7,9,21, and 37. The increment is necessary inside the loop in
order to avoid the same position being discovered repeatedly.

void adjacent_find_example ()
II illustrate the use of the adjacent_find instruction

char * text = "The bookkeeper carefully opened the door.";

char * start = text;

472 C++ Programmer's Guide

char * stop = text + strlen(text);
char * where = start;

cout « "In the text: " « text « endl;
while ((where = adjacent_find (where, stop)) != stop)

cout « "double " « *where
« n in position " « where - start « endl;

++where;

Find a.subsequence within a sequence
The algorithm search () is used to locate the beginning of a particular subsequence
within a larger sequence. The easiest example to understand is the problem of looldng
for a particular substring within a larger string, although the algorithm can be
generalized to other uses. The arguments are assumed to have at least the capabilities of
forward iterators.

ForwardIterator search
(ForwardIterator firstl, ForwardIterator lastl,
ForwardIterator first2, ForwardIterator last2
[, BinaryPredicate]);

Note Speed of sea:rch: In the worst case, the number of comparisons performed by the
algorithm search () is the product of the number of elements in the two sequences.
Except in rare cases, however, this worst case behavior is highly unlikely ..

Suppose, for example, that we wish to discover the location of the string" ra tion" in the .
string" dreams and aspirations". The solution to this problem is shown in the
example program. If no appropriate match is found, the value returned is the past-the­
end iterator for the first sequence.

void search_example ()
II illustrate the use of the search algorithm

char * base "dreams and aspirations";
char * text "ration";

char * where = search (base, base + strlen(base) ,
text, text + strlen(text));

if (*where != '\0')
cout « "substring position: " « where = base « endl;

else
cout « "substring does not occur in text" « endl;

Note that this algorithm, unlike many that manipulate two sequences, uses a starting
and ending iterator pair for both sequences, not just the first sequence.

Like the algorithms equal () and mismatch () , an alternative version of search () takes
an optional binary predicate that is used to compare elements from the two sequences.

C hap t e r 2 9, G en e ric a I 9 0 r i t h m s 473

Locate maximum or minimum element
The functions max () and min () can be used to find the maximum and minimum of a
pair of values. These can optionally take a third argument that defines the comparison
function to use in place of the less-than operator (operator <). The arguments are values,
not iterators:

template <class T>
const T& max(const T& a, const T& b [, Compare);

template <class T>
const T& min(const T& a, const T& b [, Compare);

The maximum and minimum functions are generalized to entire sequences by the
generic algorithms max_element () and min_element () . For these functions the
arguments are input iterators.

Forwardlterator max_element (Forwardlterator first,
Forwardlterator last [, Compare 1);

Forwardlterator min_element (Forwardlterator first,
Forwardlterator last [, Compare 1);

Note Largest and smallest elements of a set: The maximum and minimum algorithms can be
used with all the data types provided by the standard library. However, for the ordered
data types, set and map, the maximum or minimum values are more easily accessed as
the first or last elements in the structure.

These algorithms return an iterator that denotes the largest or smallest of the values in a
sequence, respectively. Should more than one value satisfy the requirement, the result
yielded is the first satisfactory value. Both algorithms can optionally take a third
argument, which is the function to be used as the comparison operator in place of the
default operator.

The example program illustrates several uses of these algorithms. The function named
spl it () used to divide a string into words in the string example is described in
"Example function: split a line into words." The function randomlnteger () is described
in "Random access iterators."

void max_min_example ()
II illustrate use of max_element and min_element algorithms

II make a vector of random numbers between 0 and 99
vector<int> numbers(25);
for (int i = 0; i < 25; i++)

numbers[il = randomlnteger(lOO);

II print the maximum
vector<int>::iterator max =

max_element (numbers.begin(), numbers.end());
cout « "largest value was " « * max « endl;

II example using strings
string text =

,"It was the best of times, it was the worst of times.";
list<string> words;

474 C++ Pro 9 ram mer's G u ide

split (text, " .,!:;", words);
tout « "The smallest word is "

« * min_element (words.begin(), words.end())
« " and the largest word is "
« * max_element (words.begin(), words.end())
« endl;

Locate the first mismatched elements in parallel sequences
The name mismatch () might lead you to think that this algorithm was the inverse of the
equal () algorithm, which determines if two sequences are equal (see "Test two
sequences for pairwise equality"). Instead, the mi sma tch () algorithm returns a pair of
iterators that together indicate the first positions where two parallel sequences have
differing elements. (The structure pair is described in "The map data abstraction"). The
second sequence is denoted only by a starting position, without an ending position. It is
assumed (but not checked) that the second sequence contains at least as many elements
as the first. The arguments and return type for mismatch () can be described as follows:

pair<Inputlterator, Inputlterator> mismatch
(Inputlterator firstl, Inputlterator lastl,
Inputlterator first2 [, BinaryPredicate]);

The elements of the two sequences are examined in parallel, element by element. When
a mismatch is found, that is, a point where the two sequences differ, then a pair
containing iterators denoting the locations of the two differing elements is constructed
and returned. If the first sequence becomes exhausted before discovering any
mismatched elements, then the resulting pair contains the ending value for the first
sequence, and the last value examined in the second sequence. (The second sequence
need not yet be exhausted).

The example program illustrates the use of this procedure. The function
mismatch_test (). takes as arguments two string values. These are lexicographically
compared and a message printed indicating their relative ordering. (This is similar to
the analysis performed by the lexicographic_compare·() algorithm, although that
function simply returns a Boolean value.) Because the mismatch () algorithm assumep
the second sequence is at least as long as the first, a comparison of the two string lengths
is performed first, and the arguments are reversed if the second string is shorter than the
first. After the call on mi sma tch () the elements of the resulting pair are separated into
their component parts. These parts are then tested to determine the appropriate
ordering.

void mismatch_test (char * a, char * b)
II illustrate the use of the mismatch algorithm

pair<char *, char *> differPositions(O, 0);
char * aDiffPosition;
char * bDiffPosition;

if (strlen(a) < strlen(b))
II make sure longer string is second
differPositions = mismatch(a, a + strlen(a) , b);

C hap t e r 2 9, G e n e ric a I 9 0 r i t h m s 475

aDiffPosition = differPositions.firsti
bDiffPosition = differPositions.secondi

else {
differPositions = mismatch(b, b + strlen(b) , a)i

II note following reverse ordering
aDiffPosition = differPositions.secondi
bDiffPosition = differPositions.firsti

II compare resulting values
cout « "string " « ai

if (*aDiffPosition == *bDiffPosition)
cout « " is equal to "i

else if (*aDiffPosition < *bDiffPosition)
cout « " is less than "i

else
cout « " is greater than ".

cout « b « endli

A second form of the mismatch (). algorithm is similar to the one illustrated, except it
accepts a binary predicate as a fourth argument. This binary function is used to compare
elements, in place of the == operator.

In-place transformations
Note Obtaining the source: The example functions described in this section can be found in

the file alg3 . cpp.

The next category of algorithms in the standard library that we examine are those used
to modify and transform sequences without moving them from their original storage
locations. A few of these routines, such as replace () , include a copy version as well as
the original in-place transformation algorithms. For the others, should it be necessary to
preserve the original, a copy of the sequence should be created before the
transformations are applied. For example, the following illustrates how one can place
the reversal of one vector into another newly allocated vector.

vector<int> newVec(aVec.size())i
copy (aVec.begin(), aVec.end(), newVec.begin())i
reverse (newVec.begin(), newVec.end())i

II first copy
II then re~erse

Many of the algorithms described as sequence generating operations, such as
transform () ("Transform one or two sequences"), or partial_sum ("Partial sums"),
can also be used to modify a value in place by simply using the saJlle iterator as both
input and output specification.

Reverse elements in a sequence
The algorithm reverse () . reverses the elements in a sequence, so that the last element
becomes the new first, and the first element the new last. The arguments are assumed to
be bidirectional iterators, and no value is returned.

476 c++ Programmer's Guide

void reverse (Bidirectionallterator first, Bidirectionallterator last)i

'The example program illustrates two uses of this algorithm. In the first, an array of
character values is reversed. 'The algorithm reverse () can also be used with list values,
as shown in the second example. In this example, a list is initialized with the values 2 to
11 in increasing order. (This is accomplished using the iotaGen function object
introduced in "Function objects"). 'The list is then reversed, which results in the list
holding the values 11 to 2 in decreasing order. Note, however, that the list data structure
also provides its own reverse () member function.

void reverse_example ()
II illustrate the use of the reverse algorithm

II example 1, reversing a string
char * text = "Rats live on no evil star"i
reverse {text, text + strlen{text»i
cout' « text « endli

II example 2, reversing a list
list<int> iListi
generate_n (insertertiList, iList.begin{», 10, iotaGen(2»i
reverse (iList.begin{), iList.end{»i

Replace certain elements with fixed value
'The algorithms replace () and replace_if () are used to replace occurrences of certain
elements with a new value. In both cases the new value is the same, no matter how
many replacements are performed. Using the algorithm replace () , all occurrences of a
particular test value are replaced with the new value. In the case of replace_i f () , all
elements that satisfy a predicate function are replaced by a new value. 'The iterator
arguments must be forward iterators.

'The algorithms replace_copy () and replace_copy _i f() are similar to replace ()
and replace_if (), however they leave the original sequence intact and place the
revised values into a new sequence, which may be a different type.

, void replace {Forwardlterator first, Forwardlterator last,
const T&, const T&)i

void replace_if {Forwardlterator first, Forwardlterator last,
Predicate, const T&)i

Outputlterator replace_copy {Inputlterator, Inputlterator,
OUtputlterator, constT&, const T&)i

Outputlterator replace_copy (Inputlterator, Inputlterator,
OUtputlterator, Predicate, const T&)i

In the example program, a vector is initially assigned the values 0 1 2 3 4 5 4 3 2 1 O. A
call on replace () replaces the value 3 with the value 7, resulting in the vector 0 1 2 7 4 5
47210. 'The invocation of replace_if () replaces all even numbers with the value 9,
resulting in the vector 91979597919.

void replace_example ()
II illustrate the use of the replace algorithm

C hap t e r 2 9, G e n e ric a I 9 0 r i t h m s 477

II make vector 0 1 2 3 4 543 2 1 0
vector<int> numbers(ll);
for lint i = 0; i < 11; i++)

numbers[i] = i < 5 ? i : 10 - i;
II replace 3 by 7

replace (numbers.begin(), numbers.end(), 3, 7);

II replace even numbers by 9
replace_if (numbers.begin(), numbers.end(), isEven, 9);

II illustrate copy versions of replace
int aList[] = {2, 1, 4, 3, 2, 5};

int bList [6] , cList [6], j;

replace_copy (aList, aList+6, &bList[O] , 2, 7);
replace_copy_if (bList, bList+6, &cList[O] ,

bind2nd(greater<int>(), 3), 8);

The example program also illustrates the use of the replace_copy algorithms. First, an
array containing the values 2 1 4 3 2 5 is created. This is modified by replacing the 2
values with 7, resulting in the array 71 43 75. Next, all values larger than 3 are replaced
with the value 8, resulting in the array values 8 1 8388. In the latter case the bind2nd ()
adaptor is used, to modify the binary greater-than function by binding the 2nd
argument to the constant value 3, thereby creating the unary function x > . 3.

Rotate elements around a midpoint
A rotation of a sequence divides the sequence into two sections, then swaps the order of
the sections, maintaining the relative ordering of the elements within the two sections.
Suppose, for example, that we have the values 1 to 10 in sequence:

1 2 3 4 5 6 78 9 10

If we were to rotate around the element 7, the values 7 to 10 would be moved to the
beginning, while the elements 1 to 6 would be moved to the end. This would result in
the following sequence: .

789 10 1 2345 6

When you invoke the algorithm rotate (), the starting point, midpoint, and past-the­
end location are all denoted by forward iterators:

void rotate (Forwardlterator first, Forwardlterator middle,
Forwardlterator last);

The prefix portion, the set of elements following the start and not including the
midpoint, is swapped with the suffix, the set of elements between the midpoint and the
past-,the-end location. Note, as in the illustration presented earlier, that these two
segments need not be the same length.

void rotate_example()
II illustrate the use of the rotate algorithm

II create the list 1 2 3 ... 10
list<int> iList;
generate_n(inserter(iList, iList.begin()), 10, iotaGen(l));

478 C++ Pro 9 ram mer's G u ide

II find the location of the seven
list<int>::iterator & middle =

find(iList.begin(), iList.end(), 7);

II now rotate around that location
rotate (iList.begin(), middle, iList.end());

II rotate again around the same location
list<int> cList;
rotate_copy (iList.begin(), middle, iList.end(),

inserter (cList, cList.begin()));

The example program first creates a list of the integers in order from 1 to 10. Next, the
find () algorithm ("Find an element satisfying a condition") is used to find ,the location
of the element 7. This is used as the midpoint for the rotation.

A second form of rotate () copies the elements into a new sequence, rather than
rotating the values in place. This is also shown in the example program, which once
again rotates around the middle position (now containing a 3). The resulting list is 3 4 5
67891012. The values held in iList remain unchanged.

Partition a sequence into two groups
'A partition is formed by moving all the elements that satisfy a predicate to one end of a
sequence, and all the elements that fail to satisfy the predicate to the other end.
Partitioning elements is a fundamental step in certain sorting algorithms, such as
" quicksort. II

Bidirectionallterator partition
(Bidirectionallterator, Bidirectionallterator, Predicate);

Bidirectionallterator stable-partition
(Bidirectionallterator, Bidirectionallterator, Predicate);

There are two forms of partition supported in the standard library. The first, provided
by the algorithm parti tion () , guarantees only that the elements will be divided into
two groups. The result value is an iterator that describes the final midpoint between the
two groups; it is one past the end of the first group.

Note Partitions: While there is a unique stable partition for any sequence, the
parti tion () algorithm can return any number of values. The following, for example,
are all legal partitions of the example problem:

2 4 6 8 10 1 3 5 7 9
10 8 6 4 2 5 7 9 3 1
2 6 4 8 10 3 5 7 9 1
6 4 2 10 8 5 3 7 9 1

In the example program the initial vector contains the values 1 to 10 in order, The
partition moves the even elements to the front, and the odd elements to the end. This
results in the vector holding the values 10 2 8 4 65 73 9 1, and the midpoint iterator
pointing to the element 5.

C hap t e r 2 9, G e n e ric a I 9 0 r i t h m s 479

void partition_examPle ()
II illustrate the use of the partition algorithm

II first make the vector 1 2 3 ... 10
vector<int> numbers(10);

. generate (numbers.begin(), numbers.end(), iotaGen(l));

1/ now put the even values low, odd high
vector<int>::iterator result =

parti tion (numbers. begin (), numbers. end (), isEven);
cout « "middle location" « result - numbers.begin() « endl;

II now do a stable partition
generate (numbers.begin(), numbers.end(), iotaGen(l));
stable-partition (numbers.begin(), numbers.end(), isEven);

The relative order of the elements within a partition in the resulting vector may not be
the same as the values in the original vector. For example the value 4 preceded the
element 8 in the original, yet in the result it may follow the element 8. A second version
of partition, named stable-parti tion (), guarantees the ordering of the resulting
values. For the sample input shown in the example, the stable partition would result in
the sequence 2 4 6 81013579. The stable-partition () algorithm is slightly slower
and uses more memory than the parti tion () algorithm, so when the order of elements
is not important you should use part i t i on () .

Generate permutations in sequence
A permutation is a rearrangement of values. If values can be compared against each
other (such as integers, characters, or words) then it is possible to systematically
construct all permutations of a sequence. There are 2 permutations of two values, for
example, and six permutations of three values, and 24 permutations of four values.

Note Ordering permutations: Permutations can be ordered, with the smallest permutation
being the one in which values are listed smallest to largest, and the largest being the
sequence that lists values largest to smallest. Consider, for example, the permutations of
the integers 1 2 3. The six permutations of these values are, in order:

123
132
2 1 3

231
3 1 2
321

Notice that in the first permutation the values are aU ascending, while in the last
permutation they are all descending.

The permutation generating algorithms have the following definition:

bool next-permutation (Bidirectionallterator first,
Bidirectionallterator last, [Compare 1);

480 c++ Programmer's Guide

bool prev-permutation (BidirectionalIterator first,
BidirectionalIterator last, [Compare]);

The second example in the sample program illustrates the same idea, only using
pointers to character arrays instead of integers. In this case a different comparison
function must be supplied, since the default operator would simply compare pointer
addresses.

bool nameCompare (char * a, char * b) { return strcmp(a, b) <= 0; }

void permutation_example ()
II illustrate the use of the next-permutation algorithm

II example I, permute the values 1 2 3
int start L] {I, 2, 3};

do
copy (start, start + 3,

ostream_iterator<int> (.cout, " ")), cout « endl;
while (next-permutation(start, start + 3));

II example 2, permute words
char * words = {"Alpha", "Beta", "Garmna"};

do
copy (words, words + 3,

-ostream_iterator<char *> (cout, " ")), cout « endl;
while (next-permutation (words , words + 3, nameCompare));

II example 3, permute characters backwards
char * word = "bela";
do

cout« word« ' ';
while (prev-permutation (word, &word[4]));
cout « endl;

Example 3 in the sample program illustrates the use of the reverse permutation
algorithm, which generates values in reverse sequence. This example also begins in the
middle of a sequence, rather than at the beginning. The remaining permutations of the
word "bela", are beal, bale, bael, aleb, albe, aelb, aebl, able, and finally, abel.

Merge two adjacent sequences into one
A merge takes two ordered sequences and combines them into a single ordered
sequence, interleaving elements from each collection as necessary to generate the new
list. The inplace_merge () algorithm assumes a sequence is divided into two adjacent
sections, each of which is ordered. The merge combines the two sections into one,
moving elements as necessary. (The alternative merge () algorithm, described
elsewhere, can be used to merge two separate sequences into one.) The arguments to
inplace_merge () must be bidirectional iterators.

C hap t e r 29, G e n e ric a I 9 0 r i t h m s 481

void inplace_merge (Bidirectionallterator first,
Bidirectionallterator middle,
Bidirectionallterator last [, ~inaryFunction]);

The example program illustrates the use of the inplace_merge () algorithm with a
v.ector and with a list. The sequence 0 2 4 6 8 1 3 5 7 9 is placed into a vector. A find ()
call ("Find an element satisfying a condition") is used to locate the beginning of the odd
number sequence. The two calls on inplace_merge () then combine the two sequences
into one.

void. inplace_merge_example ()
II illustrate the use of the inplace_merge algorithm

II first generate the sequence 0 2 4 6 8 1 3 5 7 9
vector<int>. numbers(10);
for (int i = 0; i < 10; i++)

numbers[i] = i < 5 ? 2 * i : 2 * (i - 5) + 1;

II then find the middle location
vector<int>::iterator midvec =

find(numbers.begin(), numbers.end(), 1);

II copy them into a list
list<int> numList;
copy (numbers.begin(), numbers.end(),

inserter (numList, numList.begin()));
list<int>::iterator midList =

find(numList.begin(), numList.end, 1);

II now merge the lists into one
inplace_merge (mmibers. begin (), midvec, numbers. end ()) ;
inplace_merge (numList.begin(), midList, numList.end());

. Randomly rearrange elements in a sequence
The algorithm random_shuffle () I randomly rearranges the elements in a sequence.
Exactly n swaps are performed, where n represents the number of elements in the
sequence. The " results are, of course, unpredictable. Because the arguments must be
random access iterators, this algorithm can only be used with vectors, deques, or
ordinary pointers. It cannot be used with lists, sets, or maps.

void random_shuffle (RandornAccesslterator first,
RandornAccesslterator last [, Generator]);

An alternative version of the algorithm uses the optional third argument. This value'
must be a random number generator. This generator must take as an argument a
positive value m and return a value between 0 and m-l. As with the generate ()
algorithm, this random number function can be any type of object that will respond to
the function invocation operator.

void random_shuffle_example ()
II illustrate the use of the random_shuffle algorithm

482 C++ Pro 9 ram mer's G u ide

II first make the vector containing 1 2 3 ... 10
vector<int> numbers;
generate(numbers.begin(), numbers.end(), iotaGen(l»;

II then randomly shuffle the elements
random_shuffle (numbers.begin(), numbers.end(»;

II do it again, with explicit random number generator
struct Randomlnteger
{

operator() (int m) return rand() % m; }
random;

random_shuffle (numbers.begin(), numbers.end(), random);

Removal algorithms
Note Removal algorithms: The algorithms in this section set up a sequence so that the

desired elements are moved to the front. The remaining values are not actually
removed, but the starting location for these values is returned, making it possible·to
remove these values by means of a subsequent call on erase () . Remember, the remove
algorithms do not actually remove the unwanted elements.

The following two algorithms can be somewhat confusing the first time they are
encountered. Both claim to remove certain values from a sequence. But, :in. fact, neither
one reduces the size of the sequence. Both operate by moving the values that are to be
retained to the front of the sequence, and returning an iterator that describes where this
sequence ends. Elements after this iterator are simply the original sequence values, left
unchanged. This is necessary because the generic algorithm has no knowledge of the
container it is working on. It only has a generic iterator. This is part of the price we pay
for generic algorithms. In most cases the user will want to use this iterator result as an
argument to the erase () member function for the container, removing the values from
the iterator to the end of the sequence.

Let us illustrate this with a simple example. Suppose we want to remove the even
numbers from the sequence 1 2 3456 789 la, something we could do with the
remove_i f () algorithm. The algorithm remove_i f () would leave us with the
following sequence:

1 3 5 7 9 I 6 7 8 9 10

The vertical bar here represents the position of the iterator returned by the remove_i f ()
algorithm. Notice that the five elements before the bar represent the result we want,
while the five values after the bar are simply the original contents of those locations.
Using this iterator value along with the end-of-sequence iterator as arguments to
erase () , we can eliminate the unwanted values, and obtained the desired result.

Both the algorithms described here have an alternative copy version. The copy version of
the algorithms leaves the original unchanged, and places the preserved elements into an
output sequence.

Chapter 29, Generic algorithms 483

Note Obtaining the source: The example functions described in this section can be found in
the file alg4 . cpp.

Remove unwanted elements
The algorithm remove () eliminates unwanted values from a sequence. As with the
find () algorithm, these can either be values that match a specific constant, or values
that satisfy a given predicate. The definition of the argument types is as follows:

Forwardlterator remove
(Forwardlterator first, Forwardlterator last, const T &);

Forwardlterator remove_if
(Forwardlterator first, Forwardlterator last, Predicate);

The algorithm remove () copies values to the front of the sequence, overwriting the
location of the removed elements. All elements not removed remain in their relative
order. Once all values have been examined, the remainder of the sequence is left
unchanged. The iterator returned as the result of the operation provides the end of the
new sequence. For example, eliminating the element 2 from the sequence 1 2 4 3 2 results
in the sequence 1 4 3 3 2, with the iterator returned as the result pointing at the second 3.
This value can be used as argument to erase () in order to eliminate the remaining
elements (the 3 and the 2), as illustrated in the example program.

A copy version of the algorithms copies values to an output sequence, rather than
making transformations in place.

Outputlterator remove_copy
(Inputlterator first, Inputlterator last,
Outputlterator result, const T &);

Outputlterator remove_copy_if
(Inputlterator first, Inputlterator last,
Outputlterator result, Predicate);

The use of remove () . is shown in the following program.

void remove_example ()
II illustrate the use of the remove algorithm

II create a list of numbers
int data[] = {i, 2, 4, 3, 1, 4, 2};
list<int> aList;
copy (data, data+7, inserter (aList, aList.begin()));

II remove 2's, copy into new list
list<int> newList;
remove_copy (aList.begin(), aList.end(),

back_inserter(newList), 2);

II remove 2's in place
list<int>::iterator where;
where = remove (aList.begin(), aList.end(), 2);
aList.erase(where, aList.end());

484 c++ P.rogrammer's Guide

II remove all even values
where = remove_if (aList.begin(), aList.end(), isEven);
aList.erase(where, aList.end());

Remove runs of similar values
The algorithm unique () moves through a linear sequence, eliminating all but the first
element from every consecutive group of equal elements. The argument sequence is
described by forward iterators.

Forwardlterator unique (Forwardlteratorfirst,
Forwardlterator last [, BinaryPredicate]);

As the algorithm moves through the collection, elements are moved to the front of the
sequence, overwriting the existing elements. Once all unique values have been
identified, the remainder of the sequence is left unchanged. For example, a sequence
such as 1 3 3 2 2 2 4 will be changed into 1 3 2 4 I 2 2 4. I have used a vertical bar to
indicate the location returned by the iterator result value. This location marks the end of
the unique sequence, and "the beginning of the left-over elements. With most containers
the value returned by the algorithm can be used as an argument in a subsequent call on
erase () to remove the undesired elements from the collection. This is illustrated in the
example program.

A copy version of the algorithm moves the unique values to an output iterator, rather
than making modifications in place. In transforming a list or multiset, an insert iterator
can be used to change the copy operations of the output iterator into insertions.

Outputlterator unique_copy
(Inputlterator first, Inputlterator last,
Outputlterator result [, BinaryPredicate]);

These are illustrated in the sample program:
void unique_example ()

II illustrate use of the unique algorithm

II first make a list of values
int datal] = {l, 3, 3, 2, 2, 4};

" list<int> aList;
set<int> aSet;
copy (data, , inserter (aList, aList.begin()));

II copy unique elements into a set
unique_copy (aList.begin(), aList.end(),

inserter (aSet, aSet.begin()));

II copy unique elements in place
list<int>::iterator where;
where = unique (aList.begin(), aList.end());

II remove trailing values
aList.erase(where, aList.en~());

Chapter 29, Generic algorithms 485

Algorithms that produce a scalar result
Note Obtaining the source: The example functions described in this section can be found in

the file alg5 . cpp.

The next category of algorithms are those that reduce an entire sequence to a single
scalar value.

Remember that two of these algorithms, accumulate () and inner-product () , are
defined in the numeric header file, not the algori thIn header file as are the other
generic algorithms.

Count the number of elements that satisfy a condition
The algorithms count () and count_if () are used to discover the number of elements
that .match a given value or that satisfy a given predicate, respectively. Both take as
argument a reference to a counting value (typically an integer), and increment this
value. Note that the count is passed as a by-reference argument, and is not returned as
the value of the function. The count () function itself yields no value.

void count (Inputlterator first, Inputlterator last,
const T&, Size &);

void count_if (Inputlterator first, Inputlterator last,
Predicate, Size &);

Note The resulting count: Note that the count () algorithms do not return the sum as a
function result, but instead simply add to the last argument in their parameter list,
which is passed by reference. This means successive calls on these functions can be used
to produce a cumulative sum. This also means that you must initialize the variable
passed to this last argument location prior to calling one of these algorithms.

The example code fragment illustrates the use of these algorithms. The call on count ()
will count the number of occurrences of the letter e in a sample string, while the
invocation of count_if () will count the number of vowels.

void count_example ()
II illustrate the use of the count algorithm

int eCount = 0;
int vowelCount = 0;

char * text = "Now is the time to begin";

count (text, text + strlen(text) , 'e', eCount);
count_if (text, text + strlen(text) , isVowel, vowelCount);

cout « "There are" « eCount « " letter e's " « endl
« "and" « vowelCount « " vowels in the text:"
« text « endl;

486 c++ Programmer's Guide

Reduce sequence to a single value
The result generated by the accumulate () algorithm is the value produced by placing a
binary operator between each element of a sequence, and evaluating the result. By
default the operator is the addition operator, +, however this can be replaced by any
binary function. An initial value (an identity) must be provided. This value is returned
for empty sequences, and is otherwise used as the left argument for the first calculation.

ContainerType accumulate (InputIterator first, InputIterator last,
ContainerType initial [, BinaryFunction] .);

The example program illustrates the use of accumulate () to produce the sum an9-
product of a vector of integer values. In the first case the identity is zero, and the default
operator + is used. In the second invocation the identity is 1, and the multiplication
operator (named times) is explicitly passed as the fourth argument.

void accumulate_example ()
II illustrate the use of the accumulate algorithm

int numbers[] = {I, 2, 3, 4, 5};

II first example, simple accumulation
int sum = accumulate (numbers, numbers + 5, 0);
int product =

accumulate (numbers, numbers + 5, I, times<int>());

cout «"The sum of the first five integers is " « sum « endl;
cout « "The product is " « product « endl;

II second example, with different types for initial value
list<int> nums;
nums = accumulate (numbers, numbers+5, nums, intReplicate);

list<int>& intReplicate (list<int>& nums, int n)
II add sequence n to 1 to end of list

while (n) nums.push_back(n--);
return nums;.

Neither the identity value nor the result of the binary function are required to match the
container type. This is illustrated in the example program by the invocation of
accumula te () shown in the second example. Here the identity is an empty list. The
function (shown after the example program) takes as argument a list and an integer
value, and repeatedly inserts values into the list. The values-inserted represent a
decreasing sequence from the argument down to 1. For the example input (the same
vector as in the first example), the resulting list contains the 15 values 12132143215
4321.

C hap t e r 2 9, G e n e ric a I 9 0 r i t h m s 487

Generalized inner product
Assume we have two sequences of n elements each; al, a2, ... an and bl, b2, ... bn. The
inner product of the sequences is the sum of the parallel products, that is the value al * bl
+ a2 * b2 + ... + an * bn. Inner products occur in a number of scientific calculations. For
example, the inner product of a row times a column is the heart of the traditional matrix
multiplication algorithm. A generalized inner product uses the same structure, but
permits the addition and multiplication operators to be replaced by arbitrary binary
functions. The standard library includes the following algorithm for computing an inner
product:

ContainerTyp~ inner-product
(InputIterator first1, InputIterator last1,
InputIterator first2, ContainerType initialValue
[, BinaryFunction add, BinaryFunction times]);

The first three arguments to the innerJ)roduct () algorithm define the two input
sequences. The second sequence is specified only by the beginning iterator, and is
assumed to contain at least as many elements as the first'sequence. The next argument is
an initial value, or identity, used for the summation operator. This is similar to the
identity used in the accumulate () algorithm. In the generalized inner product function
the last two arguments are the binary functions that are used in place of the addition
operator, and in place of the multiplication operator, respectively.

In the example program the second invocation illustrates the use of alternative functions
as arguments. The multiplication is replaced by an equality test, while the addition is
replaced by a logical or. The result is true if any of the pairs are equal, and false
otherwise. Using an and in place of the or would have resulted in a test which was true
only if all pairs were equal; in effect the same as the equal () algorithm described in the
next section.

void inner-product_example ()
II illustrate the use of the inner-product algorithm

int a[]
int bE]

{4, 3, -2};

{7, 3, 2};

II example 1, a simple inner product
int in1 = inner-product(a, a+3, b, 0);
cout « "Inner product is " « in1 « endl;

II example 2, user defined operations
bool anyequal = inner-product(a, a+3, b, true,

logical_or<bool>(), equal_to<int>());
cout « "any equal? " « anyequal « endl;

Test two sequences for pairwise equality
The equal () algorithm tests two sequences for pairwise equality. By using an
alternative binary predicate, it can also be used for a wide variety of other pair-wise tests
of parallel sequences. The arguments are simple input iterators: .

488 et+ Programmer's Guide

bool equal (Inputlterator first, Inputlterator last,
,Inputlterator first2 [, BinaryPredicatel);

Note Equal and mismatch: By substituting another function for the binary predicate, the
equal and mismatch algorithms can be put to a variety of different uses. Use the
equal () algorithm if you want a pairwise test that returns a Boolean result. Use the
mismatch () algorithm if you want to discover the location of elements that fail the test.

The equal () algorithm assumes, but does not verify, that the second sequence contains
at least as many elements as the first. A true result is generated if all values test equal to
their corresponding element. The alternative version of the algorithm substitutes an
arbitrary Boolean function for the equality test, and returns true if all pair-wise
elements satisfy the predicate. In the sample program this is illustrated by replacing the
predicate with the greater_equal () function, and in this fashion true will be returned
only if all value~ in the first sequence are greater than or equal to their corresponding
value in the second sequence.

void equal_example ()

-{

II illustrate the use of the equal algorithm

int all
int b[l
int c[l

{4, 5, 3};

{4, 3, 3}i

{4, 5, 3}i

cout « "a = b is: II « equal(a, a+3, b) « endli
cout « "a = c is: II « equal (a, a+3, c) « endl;
cout « "a pair-wise greater-equal b is: II

« equal(a, a+3, b, greater_equal<int>()) « endl;

Lexical comparison
A lexical comparison of two sequences can be described by noting the features of the
most common example, namely the comparison of two words for the purposes of
placing them in "dictionaryorder./1 When comparing two words, the elements (that is,
the characters) of the two sequences are compared in a pair-wise fashion. As long as
they match, the algorithm advances to the next character. If two corresponding
characters fail to match, the earlier character determines the smaller word. So, for
example, everybody is smaller than everything, since the b in the former word
alphabetically precedes the t in the latter word. Should one or the other sequence
terminate before the other, than the terminated sequence is considered to be smaller
than the other. So, for example, every precedes both everybody and everything, but
comes after eve. Finally, if both sequences terminate at the same time and, in all cases,
pair-wise characters match, then the two words are considered to be equal.

The lexicographical_compare () algorithm implements this idea, returning true if
the first sequence is smaller than the second, and false otherwise. The algorithm has
been generalized to any sequence. Thus the lexicographical_compare () algorithm
can be used with arrays, strings, vectors, lists, or any of the other data structures used in
the standard library.

bool lexicographical_compare

C hap t e r 2 9, G e n e ric a I 9 0 r i t h m s 489

(Inputlterator firstl, Inputlterator lastl,
Inputlterator first2, Inputlterator last2 [, BinaryFunction]);

Unlike most of the other algorithms that take two sequences as argument, the
lexicographical_compare () algorithm uses a first and a past-end iterator for both
sequences. A variation on the algorithm also takes a fifth argument; which is the binary
function used to compare corresponding elements from the two sequences.

The example program illustrates the use of this algorithm with character sequences, and
with arrays of integer values.

void lexicographical_compare_example()
II illustrate the use of the lexicographical_compare algorithm

char * wordOne = "everything";
char * wordTwo = "everybody";

cout « "compare everybody to everything II. «

lexicographical_compare (wordTwo, wordTwo + strlen(wordTwo),
wordOne, wordOne + strlen(wordOne)) « endl;

int a[] = {3, 4, 5, 2};
int b[] = '{3, 4, 5};

int c[] = {3, 5};

cout « "compare a to b:" «
lexicographical_compare (a, a+4, b, b+3) « endl;

cout « "compare a to c:" «
lexicographical_compare (a, a+4, c, c+2) « endl;

Sequence generating algorithms
Note Obtaining the source: The example functions described in this section can be found in

the file alg6 . cpp.

The algorithms described in this section are all used to generate a new sequence from an
existing sequence by performing some type of transformation. In most cases, the output
sequence is described by an output iterator. This means these algOrithms can be used to
overwrite an existing structure (such as a vector). Alternatively, by using an insert
iterator (see "Insert iterators"), the algorithms can insert the new elements into a
variable length structure, such as a set or list. Finally, in some cases which we will note,
the output iterator can be the same as one of the sequences specified by an input iterator,
thereby proViding the ability to make an in-place transformation.

The functions partial_sum () and adj acent_difference () are described in the
. header file numeric, while the other functions are described in the header file
algorithm.

490 C++ Pro 9 ram mer's G u ide

Transform one or two sequences
The algorithm transform () is used either to make a general transformation of a single
sequence, or to produce a new sequence by applying a binary function in a pair-wise
fashion to corresponding elements from two different sequences. The general definition
of the argument and result types are as follows:

Outputlterator transform (Inputlterator first, Inputlterator last,
Outputlterator result, UnaryFunction);

Outputlterator transform
(Inputlterator firstl, Inputlterator lastl,
Inputlterator first2, Outputlterator result, BinaryFunction);

The first form applies a unary function to each element of a sequence. In the example
program given below, this is used to produce a vector of integer values that hold the
arithmetic negation of the values in a linked list. The input and output iterators can be
the same, in which case the transformation is applied in-place, as shown in the example
program.

The second form takes two sequences and applies the binary function in a pair-wise
fashion to corresponding elements. The transaction assumes, but does not verify, that
the second sequence has at least as many elements as the first sequence. Once more, the
result can either be a third sequence, or either of the tvVo input sequences.

int square(int n) { return n * n; }

void transform_example ()
II illustrate the use of the transform algorithm

{ .

II generate a list of value 1 to 6
list<int> aList;
generate_~ (inserter (aList, aList.begin()), 6, iotaGen(l));

II transform elements by squaring, copy into vector
vector<int> aVec(6);
transform (aList.begin(), aList.end(), aVec.begin(), square);

II transform vector again, in place, yielding 4th powers
transform (aVec.begin(), aVec.end(), aVec.begin(), square);

II transform in parallel, yielding cubes
vector<int> cubes(6);
transform (aVec.begin(), aVec.end(), aList.begin(),

cubes.begin(), divides<int>());

Partial sums
A partial sum of a sequence is a new sequence in which every element is formed by
adding the values of all prior elements. For example, the partial sum of the vector 1 3 2 4
5 is the new vector 146 10 15. The element 4 is formed from the sum 1 + 3, the element 6

C hap t e r 2 9, G e n e ric a I 9 0 r i t h m s 491

from the sum 1 + 3 + 2, and so on. Although the term "sum" is used in describing the
. operation, the binary function can, in fact, be any arbitrary function. The example

program illustrates this by computing partial products. The arguments to the partial
sum function are described as follows:

OUtputlterator partial_sum
(Inputlterator first, Inputlterator last,
OUtputltera~or result [, BinaryFunctionl);

By using the same value for both the input iterator and the result the partial sum can be
changed into an in-place transformation.

void partial_sum_exarnple ()
II illustrate the use of the partial sum algorithm

II generate values 1 to 5
vector<int> aVec(5);
generate (aVec.begin(), aVec.end(), iotaGen(l));

II output partial sums
partial_sum (aVec.begin(), aVec.end(),

ostrearn_iterator<int> ·(cout, " ")), cout « endl;
II output partial products

partial_sum (aVec.begin(), aVec.end(),
ostrearn_iterator<int> (cout, " "),
times<int>());

Adjacent differences
An adjacent difference of a sequence is a new sequence formed by replacing every
element with the difference between the element and the immediately preceding
element. The first value in the new sequence remains unchanged. For example, a
sequence such as (1,3,2,4,5) is transformed into (1,3-1,2-3,4-2,5-4), and in this manner
becomes the sequence (I, 2, -I, 2, 1).

As with the algorithm partial_swn () , the term" difference" is not necessarily accurate,
as an arbitrary binary function can be employed. The adjacent sums for this sequence
are (1,4,5, 6, 9), for example. The arguments to the adjacent difference algorithm have
the following definitions:

Outputlterator adjacent_difference (Inputlterator first,
Inputlterator last, OUtputlterator result [, BinaryFunction l);

By using the same iterator as both input and output iterator, the adjacent difference
operation can be performed in-place.

void adjacent_difference_exarnple ()
II illustrate the use of the adjacent difference algorithm

II generate values 1 to 5
vector<int> aVec(5);
generate (aVec. begin (), aVec. end (), iotaGen(1)) ;

II output adjacent differences

492 C++ Pro 9 r a mm e r 's G u ide

adjacent_difference (aVec.begin(), aVec.end(),
ostream_iterator<int>, (cout, II ")), cout« endl;

II output adjacent sums
adjacent_difference (aVec.begin(), aVec.end(),

ostream_iterator<int> (cout, II "),

plus<int>());

Miscellaneous algorithms
In the final section we describe the remaining algorithms found in the standard library.

Apply a function to all elements in a collection
The algorithm fay_each () takes three arguments. The first two provide the iterators
that describe the sequence to be evaluated. The third is a one-argument function. The
faY_each () algorithm applies the function to each value of the sequence, passing the
value as argument.

Function for_each
(Inputlterator first, Inputlterator last, Function);

For example, the following code fragment, which uses the pYint_i f_leap () function,
will print a list of the leap years that occur between 1900 and 1997:

cout « "leap years between 1990 and 1997 are: II.

for.....:each (1990, 1997, print_if_leap);
cout « endl;

Note Results produced by side effect: The function passed as the third argument is not
permitted to make any modifications to the sequence, so it can only achieve any result
by means of a side effect, such as printing, assigning a value to a global or static variable,
or invoking another function that produces a side effect. If the argument function

. returns any result, it is ignored.

The argument function is guaranteed to be invoked only once for each element in the
sequence. The fay_each () algorithm itself returns the value of the third argument,
although this, too, is usually ignored.

The following example searches an array of integer values representing dates, to
determine which vintage wine years were also leap years:

int vintageYears[] = {1947, 1955, 1960, 1967, 1994};

cout « "vintage years which were also leap years are: ";
for_each (vintageYears, vintageYears + 5, print_if_leap);
cout « endl;

Side effects need not be restricted to printing. Assume we have a function countCaps ()
that counts the occurrence of capital letters:

int capCount = 0;
void countCaps(char c) {if (isupper(c)) capCount++; }

C hap t e r 2 9, G e n e ric a I 9 0 r i t h m s 493

The following example counts the number of capital letters in a string value:

string advice = "Never Trust Anybody Over 30!";
for_each(advice.begin(), advice.end(),countCaps);
cout « "upper-case letter count is " « capCount « endl;

494 C++ Pro 9 ram mer ~ 5 G u ide

Ordered collection algorithms
In this chapter we will describe the generic algorithms in the standard library that are
specific to ordered collections. These are summarized by the following table:

Sorting ,algorithms:

sort

stable_sort

partial_sort

partial_sort_copy

Find nth largest element:

nth_element

Binary search:

binary_search

lower_bound

upper_bound

equal_range

Merge ordered sequences:

merge

Set operations:

set_union

set_intersection

set_difference

set_symmetric_difference

includes

Heap operations:

make_heap

push_heap

rearrange sequence, place in order

sort, retaining original order of equal elements

sort only part of sequence

partial sort into copy ,

locate nth largest element

search, returning boolean

search, returning first position

search, returning last position

search, returning both positions

combine two ordered sequences

form union of two sets

form intersection of two sets

form difference of two sets

form symmetric difference of two sets

see if one set is a subset of another •

turn a sequence into a heap

add a new value to the heap

C hap t e r 3 0, 0 r d ere d coil e c t ion a I 9 0 r i t h m s 495

pop_heap

sort_heap

remove largest value from the heap

turn heap into sorted collection

Ordered collections can be created using the standard library in a variety of ways. For
example:

• The containers set, multiset, map, and multimap are ordered collections by
definition.

• A list can be ordered by invoking the sort () member function.

• A vector, deque, or ordinary C++ array can be ordered by using one of the sorting
algorithms described later in this section.

Like the generic algorithms described in the previous section, the algorithms described
here are not specific to any particular container class. This means they can be used with
a wide variety of types. Many of them do, however, require the use of random-access
iterators. For this reason they are most easily used with vectors, deques, or ordinary
arrays.

Note Obtaining the sample programs: The example programs described in this section have
been combined and are included in the file ALG7 . cpp in the tutorial distribution. As we
did in Chapter 29, we will generally omit output statements from the descriptions of the
programs provided here, although they are included in the executable versions.

Almost all the algorithms described in this section have two versions. The first version
uses for comparisons the less-than operator (operator <) appropriate to the container
element type. The second, and more general, version uses an explicit comparison
function object, which we will write as Compare. This function object must be a binary
predicate (see "Predicates" in Chapter 20). Since this argument is optional, we will write
it within square brackets in the description of the argument types.

A sequence is considered to be ordered if for every valid (that is, denotable) iterator i
with a denotable successor j, it is the case that the comparison Compare (* j I * i) is false.
Note that this does not necessarily imply that Compare (* i I * j) is true. It is assumed that
the relation imposed by Compare is transitive, and induces a total ordering on the valves.

In the descriptions that follow, two values x and yare said to be equivalent if both
Compare (X, y) and Compare (y I X) are false. Note that this need not imply that X == y.

Algorithm include files
As with the algorithms described in Chapter 29, before you can use any of the
algorithms described in this section in a program you must include the algori thIn
header file:

include <algorithm>

496 C++ Pro 9 ram mer's G u ide

Sorting algorithms
There are two fundamental sorting algorithms provided by the standard library,
described as follows:

void sort (RandomAccesslterator first,
RandomAccesslterator last [, Compare]);

void stable_sort (RandomAccesslterator first,
RandomAccesslterator last [, Compare]);

The sort () algorithm is slightly faster, but it does not guarantee that equal elements in
the original sequence will retain their relative orderings in the final result. If order is
important, then use the stable_sort () version.

Because these algorithms require random-access iterators, they can be used only with
vectors, deques, and ordinary C pointers. Note, however, that the list container provides
its own sort () member function.

The comparison operator can be explicitly provided when the default operator < is not
appropriate. This is used in the example program to sort a list into descending, rather
than ascending order. An alternative technique for sorting an entire collection in the
inverse direction is to describe the sequence using reverse iterators.

Note More sorts: Yet another sorting algorithm is provided by the heap operations, to be
described in "Heap operations" later in this chapter. .

The following example program illustrates the sort () algorithm being applied to a
vector, and the sort () algorithm with an explicit comparison operator being used with
a deque.

void sort_example ()
II illustrate the use of the sort algorithm

I I fill both a vector and a deque
II with random integers

vector<int> aVec(15);
deque<int> aDec(15);
generate (aVec.begin(), aVec.end(), randomValue);
generate (aDec .begin(), aDec . end () , randomValue);

II sort the vector ascending
sort (aVec.begin(), aVec.end());

II sort the deque descending
sort (aDec.begin(), aDec.end(), greater<int>());

II alternative way to sort descending
sort (aVec.rbegin(), aVec.rend());

C hap t e r 3 0, 0 r d ere d coil e C t ion a I 9 0 r i t h m s 497

Partial sort
The generic algorithm partial_sort () sorts only a portion of a sequence. In the first

'- version of the algorithm, three iterators are used to describe the beginning, middle, and
end of a sequence. If n represents the number of elements between the start and middle,
then the smallest n elements will be moved into this range in order. The rem(iining
elements are moved into the second region. The order of the elements in this second
region is undefined.

void partial_sort (RandomAccesslterator first,
RandomAccesslterat,or middle,
RandomAccesslterator last [, Compare]);

A second version of the algorithm leaves the input unchanged. The output area is
described by a pair of random-access iterators. If n represents the size of this area, then
the smallest n elements in the input are moved into the output in order. If il is larger than
the input, then the entire input is sorted and placed in the first n locations in the output.
In either case the end of the output sequence is returned as the result of the operation.

RandomAccesslterator partial_sort_copy
(Inputlterator first, Inputlterator last,
RandomAccesslterator result_first,
RandomAccesslterator result_last [, Compare]);

Because the input to this version of the algorithm is specified only as a pair of input
iterators, the partial_sort_copy () algorithm can be used with any of the containers in
the standard library. In the example program it is used with a list.

void partial_sort_exarnple ()
II illustrate the use of the partial sort algorithm

II make a vector of 15 random integers
vector<int> aVec(15);
generate (aVec.begin(), aVec.end(), randomValue);

II partial sort the first seven positions
partial_sort (aVec.begin(), aVec.begin() + 7, aVec.end());

II make a list of random integers
list<int> aList(15, 0);
generate (aList.begin(), aList.end(), randomValue);

II sort~only the first seven elements
vector<int> start(7);
partial_sort_copy (aList.begin(), aList.end(),

start.begin(), start.end(), greater<int>());

Nth element
Imagine we have the sequence 2 5 3 4 7, and we want to discover the median, or middle
element. We could do this with the function nth_element (). One result might be the
, following sequence:

498 C++ Pro 9 ram mer's G u ide

3214175

The vertical bars are used to describe the separation of the result into three parts; the
elements before the requested value, the requested value, and the values after the
requested value. Note that the values in the first and third sequences are unordered; in
fact, they can appear in the result in any order. The only requirement is that the values
in the first part are no larger than the value we are seeking, and the elements in the third
part are no smaller than this value.

The three iterators provided as arguments to the algorithm nth_element () divide the
argument sequence into the three sections we just described. These·are the section prior
to the middle iterator, the single value denoted by the middle iterator, and the region
between the middle iterator and the end. Either the first or third of these may be empty.

The arguments to the algorithm can be described as follows:

void nth_element (RandomAccessIterator first,
RandomAccessIterator nth,
RandomAccessIterator last [, Compare 1);

Following the call on nth-,-element () , the nth largest value will be copied into the
position denoted by the middle iterator. The region between the first iterator and the
middle iterator will have values no larger than the nth element, while the region
between the middle iterator and the end will hold values·no smaller than the nth
element.

The example program illustrates finding the fifth largest value in a vector of random
numbers.

void nth_element_example ()
I I illustrate the use of the nth_element algorithm

II make a vector of random integers
vector<int> aVec(lO);
generate (aVec.begin(), aVec.end(), randomValue);

II now find the 5th largest
vector<int>::iterator nth = aVec.begin() + 4;
nth_element (aVec.begin(), nth, aVec.end());

cout « "fifth largest is " « *nth « endl;

Binary search
The standard library provides a number of different variations on binary search
algorithms. All will perform only approximately log n comparisons, where n is the
number of elements in the range described,by the arguments. The algorithms work best
with random access iterators, such as those generated by vectors or deques, when they
will also perform approximately log n operations in total. However, they will also work
with non-random access iterators, such as those generated by lists, in which case they
will perform a linear number of steps. Although legal, it is not necessary to perform a
binary search on a set or multiset data structure, since those container classes provide
their own search methods, which are more efficient.

C hap t e r 3 0, 0 r d ere d coil e c t ion a I 9 0 r i t h m s 499

The generic algorithm binary_search () returns true if the sequence contains a value
that is equivalent to the argum~nt. Recall that to be equivalent means that both
Compare (value, arg) and Compare (arg, value) are false. The algorithm is defined as
follows:

bool binary_search (Forwardlterator first, Forwardlterator last,
const T & value [, Compare]);

In other situations it is important to know the position of the matclliilg value. This
information is returned by a collection of algorithms, defined as follows:

Forwardlterator lower_bound (Forwardlterator first,
Forwardlterator last, const T& value [, Compare]);

Forwardlterator upper_bound (Forwardlterator first,
Forwardlterator last, const T& value [, Compare]);

pair<Forwardlterator, Forwardlterator> equal_range
(Forwardlterator first, Forwardlterator last,

const T& value [, Compare]);

The algorithm lower_bound () returns, as an iterator, the first position into which the
argument could be inserted without violating the ordering, whereas the algorithm
upper_bound () finds the last such position. These will match only when the element is
not currently found in the sequence. Both can be executed together in the algorithm
equal_range () , which returns a pair of iterators.

Our example program shows these functions being used with a vector of random
integers.

void binary_search_example ()
II illustrate the use of the binary search algorithm

II make an ordered vector of 15 random integers
vector<int> aVec (15) ;
generate (aVec.begin(), aVec.end(), randomValue);
sort (aVec.begin(), aVec.end());

II see if it contains an eleven
if (binary_search (aVec.begin(), aVec.end(), 11))

cout « "contains an 11" « endl;
else

cout « "does not contain an 11" « endl;

II insert an 11 and a 14
vector<int>::iteratorwhere;
where = lower_bound (aVec.begin(), aVec.end(), 11);
aVec.insert (where, 11);

where = upper_bound (aVec.begin(), aVec.end(), 14);
aVec.insert (where, 14);

500 C++ Pro 9 ram mer's Gu ide

Merge ordered sequences
The algorithm merge () combines two ordered sequences to form a new ordered
sequence. The size of the result is the sum of the sizes of the two argument sequences.
This should be contrasted with the set_union () operation, which eliminates elements
that are duplicated in both sets. The set_union () function will be described later in this
section.

The merge operation is stable. This means, for equal elements ~ the two ranges, not
only is the relative ordering of values from each range preserved, but the values from
the first range always precede the elements from the second. The two ranges are
described by a pair of iterators, whereas the result is defined by a single output iterator.
The arguments are defined as follows:

Outputlterator merge (Inputlterator first1, Inputlterator last1,
Inputlterator first2, Inputlterator last2,
Outputlterator result [, Compare]);

The example program illustrates a simple merge, the use of a merge with an inserter,
and the use of a merge with an output stream iterator.

void merge_example. ()
II illustrate the use of the merge algorithm

II make a list and vector of 10 random integers
vector<int> aVec(10);
list<int> aList(10, 0);
generate (aVec.begin(), aVec.end(), randomValue);
sort (aVec.begin(), aVec.end(»;
generate_n (aList.begin(), 10, randomValue);
aList. sort () ;

II merge into a vector
vector<int> vResult (aVec.size() + aList.size(»;
merge (aVec.begin(), aVec.end(), aList.begin(), aList.end(),

vResult.begin(»;

II merge into a list
list<int> lResult;

,merge (aVec.begin(), aVec.end(), aList.begin(), aList.end(),
inserter (lResult, lResult.begin(»);

II merge into the output
merge (aVec.begin(), aVec.end(), aList.begin(), aList.end(),

ostream_iterator<int> (cout, II "»;
cout « endl;

The algorithm inplace_merge () (Merge two adjacent sequences into one) can be used to
merge two sections of a single sequence into one sequence.

Chapter 30, Ordered collection algorithms 501

Set operations
The operations of set union, set intersection, and set difference were all described when
we discussed the set container class. However, the algorithms that implement these
operations are generic, and applicable to any ordered data structure. The algorithms
assume the input ranges are ordered collections that represent multisets; that is,
elements can be repeated. However, if the inputs represent sets, then the result will
always be a set. That is, unlike the merge () algorithm, none of the set algorithms will
produce repeated elements in the output that were not present in the input sets.

The set operations all have the same format. The two input sets are specified by pairs of
input iterators. The output set is specified by an input iterator, and the end of this range
is returned as the result value. An optional comparison operator is the final argument.
In all cases it is required that the output sequence not overlap in any manner with either
of the input sequences.

OutputIterator set_union (InputIterator firstl, InputIterator lastl,
InputIterator first2, InputIterator last2,
OutputIterator result [, Compare]);

The example program illustrates the use of the four set algorithms as well as a call on
merge () in order to contrast the merge and the set union operations. The algorithm
includes () is slightly different. Again the two input sets are specified by pairs of input
iterators, and the comparison operator is an optional fifth argument. The return value
for the algorithm is true if the first set is entirely included in the second, and false
otherwise.

void set_example ()
II illustrate the use of the generic set algorithms

ostream_iterator<int> intOut (cout, " ");

II make a couple of ordered lists
list<int> listOne, listTwo;
generate_n (inserter (listOne, listOne.begin()), 5, iotaGen(l));
generate_n (inserter (listTwo, listTwo.begin()), 5, iotaGen(3));

II now do the set operations
II union - 1 2 3 4 5 6 7

set_union (listOne.begin(), listOne.end(),
listTwo.begin(), listTwo.end(), intOut), cout « endl;
II merge - 1 2 3 3 4 4 5 5 6 7

merge (listOne.begin(), listOne.end(),
listTwo.begin(), list Two.end(), intOut), cout « endl;
II intersection - 3 4 5

set_intersection (listOne.begin(), listOne.end(),
listTwo.begin(), list Two.end(), intOut), cout « endl;
II difference - 1 2

set_difference (listOne.begin(), listOne.end(),
listTwo.begin(), list Two.end(), intOut), cout« endl;
II symmetric difference - 1 2 6 7

set_symmetric_difference (listOne.begin(), listOne.end(),
listTwo.begin(), list Two.end(), intOut), cout « endl;

502 c++ Programmer's Guide

if (includes (listOne.begin(), listOne.end(),
listTwo.begin(), listTwo.end()))

cout « "set is subset" « endl;
else

cout « "set is not subset" « endl;

Heap operations
A heap is a binary tree in which every node is larger than the values associated with
either child. A heap (and, for that matter; a binary tree) can be very efficiently stored in a
vector, by placing the children of node i in positions 2 * i + 1 and 2 * i + 2.

Using this encoding, the largest value in the heap will always be located in the initial
position, and can therefore be very efficiently retrieved. In addition, efficient
(logarithmic) algorithms exist that both permit a new element to be added to a heap and
the largest element removed from a heap. For these reasons, a heap is a natural
representation for the priority queue data type, described in liThe priority queue data
abstraction" in Chapter 28. The default operator is the less-than operator (operator <)
appropriate to the element type. If desired, an alternative operator can be specified. For
example, by using the greater-than operator (operator », one can construct a heap that
will locate the smallest element in the first location, instead of the largest.

Note Heaps and ordered collections: Note that an ordered collection is a heap, but a heap
need not necessarily be an ordered collection. In fact, a heap can be constructed in a
sequence much more quickly than the sequence can be sorted.

The algorithm make~heap () takes a range, specified by random access iterators, and
converts it into a heap. The number of steps required is a linear function of the number
of elements in the range.

void make_heap (RandomAccesslterator first,
RandomAccesslterator last [, Compare]);

A new element is added to a heap by inserting it at the end of a range (using the
push_back () member function of a vector or deque, for example), followed by an
invocation of the algorithm push_heap (). The push_heap () algorithm restores the heap
property, performing at most a logarithmic number of operations.

void push_heap (RandomAccesslterator first,
RandomAccesslterator last [, Compare]);

The algorithm pop_heap () swaps the first and final elements in a range, then restores to
a heap the collection without the final element. The largest value of the original
collection is therefore still available as the last element in the range (accessible, for
example, using the back () member function in a vector, and removable using the
pop_back () member function), while the remainder of the collection continues to have
the heap property. The pop_heap () algorithm performs at most a logarithmic number of
operations.

void pop_heap (RandomAccesslterator first,
RandomAccesslterator last [, Compare]);

C hap t e r 3 0, 0 r d ere d coli e c t ion a I 9 0 r i t h m s 503

Finally, the algorithm sort_heap () converts a heap into a ordered (sorted) collection.
Note that a sorted collection is still a heap, although the reverse is not the case. The sort
is performed using approximately n log n operations, where n represents the number
of elements in the range. The sort_heap () algorithm is not stable.

void sort_heap (RandomAccesslterator first,
RandornAccesslterator last [, Compare 1);

Here is an example program that illustrates the use of these functions.

void heap_example ()
II illustrate the use of the heap algorithms

II make a heap of 15 random iritegers
vector<int> aVec(15);
generate (aVec.begin(), aVec.end(), randomValue);
make_heap (aVec.begin(), aVec.end());
cout « "Largest value " « aVec. front () « endl;

II remove largest and reheap
pop_heap (aVec.begin(), aVec.end());
aVec. pop_back () ;

II add a 97 to the heap
aVec.push_back (97);
push_heap (aVec.begin(), aVec.end());

II finally, make into a sorted collection
sort_heap (aVec.begin(), aVec.end());

504 e++ Programmer's Guide

Exception handling
The Standard C++ Library provides a set of classes for reporting errors. These classes
use the exception handling facility of the language. The library implements a particular
error model, which divides errors in two broad categories: logic errors and runtime
errors.

Logic errors are errors that are due to problems in the intemallogic of the program.
They are generally preventable.

Runtime errors, on the other hand, are generally not preventable, or at least not
predictable. These are errors that are generated by circumstances outside the control of
the program, such as peripheral hardware faults.

The standard exception hierarchy
The library implements the two-category error model described above with a set of
classes. These classes are defined in the stdexcept header file. They can be used to catch
exceptions thrown by the library and to throw exceptions from your own code:

The classes are related through inheritance. The inheritance hierarchy looks like this:

exception

logic_error

domain_error

invalid_argument

length_error

out_oJ_range

runtime_error

range_error

overflow_error

Chapter 31, Exception handling 505

Classes logic_error and runtime_error inherit from class exception. All other exception
classes inherit from either logic_error or runtime_error.

Using exceptions
All exceptions that are thrown explicitly by any element of the library are guaranteed to
be part of the standard exception hierarchy. Review the reference for these classes to
determine which functions throw which exceptions. You can then choose to catch
particular exceptions, or catch any that might be thrown (by specifying the base class
exception).

For instance, if you are going to call the insert function on string with a position value
that could at some point be invalid, then you should use code like this:

string s;
int n;

try
{

s. insert (n, "Howdy") ;

catch (const exception& e)

II deal with the exception

To throw your own exceptions, simply construct an exception of an appropriate type,
assign it an appropriate message, and throw it. For example:

if (n > max)

throw out_of_range ('~Your past the end, bud");

Theclass exception serves as the base class for all other exception classes. As such it
defines a standard interface. This interface includes the'what () member function, which
returns a null-terminated string that represents the message that was thrown with the
exception. This function is likely to be most useful in a catch clause, as demonstrated in
the example program at the end of this section. '

The class exception does not contain a constructor that takes a message string, although
it can be thrown without a message. Calling what () on an exception object will return a
default message. All classes derived from exception do provide a constructor that allows
you to specify a particular message.

To throw a base exception you would -use the following code:

throw exception;

This is generally not very useful, since whatever catches this exception will have no idea
what kind of error has occurred. Instead of a base exception, you will usually throw a
derived class such as logic_error or one of its derivations (such as out_oj_range as
shown in the example above). Better still, you can extend the hierarchy by deriving your

506 c++ Programmer's Guide

own classes. This allows you to provide error reporting specific to your particular
problem. For instance:

class bad-packet_error : public runtime_error
{

public:
bad-packet_error(const string& what);

} ;

if (bad-packet(»
throw bad-packet_error(IIPacket size incorrect");

This demonstrates how the Standard c++ exception classes provide you with a basic
error model. From this foundation you can build the right error detection and reporting
methods required for your particular application.

Example program: exception handling
Note Obtaining the sample program: This program can be found in the file EXCEPTN.CPP

in your code distribution.

, This following example program demonstrates the use of exceptions.

#include <stdexcept>
#include <string>

static void f ()

int main ()

throw runtime_error(lI a runtime error"); }

{

string s;

II First we'll try to incite then catch an exception from
II the standard library string class.
II We'll try to replac~ at a position that is non-existent.
II
I I By wrapping the body of main in a try-catch block we can be
II assured that we'll catch all exceptions in the exception
II hierarchy. You can simply' catch exception as is done below,
II or you can catch each of the exceptions in which you have an
II interest.
try
{

s.replace(lOO,l,l, 'c');
}

catch (const exception& e)
{

cout « "Got an exception: II « e.what() « endl;

II Now we'll throw our own exception using the function
II defined above.

, try
{

Chapter 31, Exception handling 507

f();
}

catch (canst exception& e)

cout « "Got an exception: " « e.what() « endl;

return 0;

508 c++ Programmer's Guide

auto-ptr
The auto -ptr class wraps any pointer obtained through new and provides automatic
deletion of that pointer. The pointer wrapped by an auto -ptr object is deleted when the
auto -ptr itself is destroyed.

Creating and using auto pointers
Include the utility header file to access the auto -ptr class.

You attach an auto -ptr object to a pointer either by using one of the constructors for
auto-ptr, by assigning one auto-ptr object to another, or by using the reset member
function. Only one auto -ptr II owns" a particular pointer at anyone time, except for the
NULL pointer (which all auto-ptrs own by default). Any use of auto-ptr's copy
constructor or assignment operator transfers ownership from one auto -ptr object to
another. For instance, suppose we create auto-ptr a like this:

auto-ptr<string> a(new string);

The auto -ptr object a now II owns" the newly created pointer. When a is destroyed (such
as when it goes out of scope) the pointer will be deleted. But, if we assign a to b, using
the assignment operator:

auto-ptr<string> b = a;

b now owns the pointer. Use of the assignment operator causes a to release ownership of
the pointer. Now if a goes out of scope the pointer will not be affected. However, the
pointer will be deleted when b goes out of scope.

The use of new within the constructor for a may seem a little odd. Normally we avoid
constructs like this since it puts the responsibility for deletion on a different entity than
the one responsible for allocation. But in this case, the auto-ptr'ssole responsibility is to
manage the deletion. This syntax is actually preferable since it prevents us from
accidentally deleting the pointer ourselves.

Chapter 32, auto_ptr 509

Use operator*, operator->, or the member function get () to access the pointer held by
an auto -ptr. For instance, we can use any of the three following statements to assign
"What's up Doc" to the string now pointed to by the auto -ptr b.

*b = "What's up DOc";
* (b.get ()) = "What's up Doc";
b->assign ("What's up Doc") ;

auto-ptr also provides a release member function that releases ownership of a pointer.
Any auto-ptr that does not own a specific pointer is assumed to point to the NULL
pointer, so calling release on an auto-ptr will set it to the NULL pointer. In the example
above, when a is assigned to b, the pointer held by a is released and a is set to the NULL
pointer.

Example program: auto-ptr
This program illustrates the use of auto -ptr to ensure that pointers held in a vector are
deleted when they are removed. Often, we might want to hold pointers to strings, since
the strings themselves may be quite large and we'll be copying them when we put them
into the vector. Particularly in contrast to a string, an auto -ptr is quite small: hardly
bigger than a pointer.

Note Obtaining the sample program: You can find this program in the file AUTOPTR.CPP in
the tutorial distribution.

#include <vector>
#include <utility>
#include <string>

int main()

II First the wrong way
vector<string*> v;
v. insert (v . begin (), new string ("Florence")) ;
v. insert (v.begin() , new string("Milan"));
v. insert (v. begin (), new string ("Venice")) ;

II Now remove the first element

v.erase(v.begin());

I I Whoops, memory leak

}

I I string ("Venice") was removed, but not deleted
II We were supposed to handle that ourselves

II Now the right way
vector<auto-ptr<string> > v;
v.insert (v.begin(),

auto-ptr<string>(new string("Florence")));
v. insert (v. begin (), auto-ptr<string> (new string ("Milan"))) ;

510 C++ Pro 9 ram mer's G u ide

}

v. insert (v. begin () I auto-ptr<string> (new string ("Venice"))) ;

II Everything is fine since auto-ptrs transfer ownership of
II their pointers when copied

II Now remove the first element
v.erase(v.begin())i
II Success
II lNhen auto-ptr(string("Venice")) is erased (and destroyed)
I I string ("Venice") is deleted

return Oi

C hap t e r 3 2, aut 0 _ p tr 511

512 C++ Pro 9 ram mer's G u ide

Complex
The class complex is a template class, used to create objects for representing and
manipulating complex numbers. The operations defined on complex numbers allow
them to be freely intermixed with the other numeric types available in the C++
language, thereby permitting numeric software to be easily and naturally expressed.

Creating and using complex numbers
In the following sections we will describe the operations used to create and manipulate
complex numbers.

Header files
Programs that use complex numbers must include the complex header file.

include <complex>

Declaring complex numbers
The template argument is used to define the types asso<:iated with the real and
imaginary fields. This argument must be one of the floating point number data types
available in the C++ language, either float, double, or long double.

There are several constructors associated with the class. A constructor with no
arguments initializes both the real and imaginary fields to zero. A constructor with a
single argument initializes the real field to the given value, and the imaginary value to
zero. A constructor with two arguments initializes both real and imaginary fields.
Finally, a copy constructor can be used to initialize a complex number with values
derived from another complex number.

C hap t e r 33, Com pie x 513

complex<double> com_one; II value 0 + Oi
complex<double> com_two(3.14); II value 3.14 + Oi
complex<double> com_three(1.5, 3.14) II value 1.5 '+ 3.14i
complex<double> com_four(com_two); II value is also 3.14 + Oi

A complex number can be assigned the value of another complex numbevSince the
one-argument constructor is also used for a conversion operator, a complex number can
also be assigned the value of a real number. The real field is changed to the right hand
side, while the imaginary field is set to zero.

com_one = com_three; 1/ becomes 1.5 + 3.14i
com_three = 2.17; II becomes 2.17 + Oi

The function polar () can be used to construct a complex number with the given
magnitude and phase angle.

com_four = polar'(5 .6, 1.8);

The conjugate of a complex number is formed using the function conj () . If a complex
number represents x + yi, then the conjugate is the value y + xi.

complex<double> com_five = conj(com_four);

Accessing complex number values
The member functions real () 'and imag () return the real and imaginary fields of a
complex number, respectively. These functions can also be invoked as ordinary
functions with complex number arguments.

Note Functions and member functions: With the exception of the member functions real ()
and imag () , most operations on complex numbers are performed using ordinary
functions, not member functions.

II the following should be the same
cout « com_one.real() « "+" « com_one.imag() « "in « endl;
cout « real(com_one) « n+" « imag(com_one) « "i" « endl;

Arithmetic operations
The arithmetic operators +, -, *, and / can be used to perform addition, subtraction,
multiplication, and division of complex numbers. All four work either with two
complex numbers, or with a complex number and a real value. Assignment operators
are also defined for all four.

cout « com_one + com_two « endl;
cout « com_one - 3.14 « endl;
cout « 2,.75 * com_two « endl;
com_one += com_three I 2.0;

The unary operators + and - can also be applied to complex numbers.

514 c++ Programmer's'Guide

Comparing complex values
Two complex numbers can be compared for equality or inequality, using the operators
== and ! =. Two values are equal if their corresponding fields are equal. Complex
numbers are not well-ordered, and thus cannot be compared using any other relational
operator.

Stream input and output
Complex numbers can be written to an output stream, or read from an input stream,
using the normal stream I/O conventions. A value is written in parenthesis, either as (u)
or (u,v), depending upon whether or not the imaginary value is zero. A value is read as
a parenthesis surrounding two numeric values.

Norm and absolute value
The function norm () returns the norm of the complex number. This is the sum of the
squares of the real and imaginary parts. The function abs () returns the absolute value,
which is the square root of the norm. Note that both are ordinary functions that take the
complex value as an argument, not member functions.

cout « norm (com_two) «endl;

cout « abs(com_two) « endl;

The directed phase angle of a complex number is yielded by the function arg () .

cout « com_Jour « II in polar coordinates is II

« arg(com_four) « ". and II « norm (com_four) « endl;

Trigonometric functions
The trigonometric functions defined for floating point values (namely, sin () , cos () ,
tan () , asin () , acos () , atan () , sinh (), cosh () , and tanh ()), have all been extended to
complex number arguments. Each takes a single complex number as argument and
returns a complex number as result. The function atan2 () takes two complex number
arguments, or a complex number and a real value (in either order), and returns a
complex number result.

Transcendental functions
The transcendental functions exp () , log () , loglO () , and sqrt () have been extended to
complex arguments. Each takes a single complex number as argument, and returns a
complex number as result.

The standard library defines several variations of the exponential function pow () .
Versions exist to raise a complex number to an integer power, to raise a complex
number to a complex power or to a real power, or to raise a real value to a complex
power.

Chapter 33, C·omplex 515

Example program: roots of a polynomial
Note Obtaining the sample program: This program is found in the file COMPLX. CPP in the

distribution.

The roots of a polynomial a x2 -+ b x + c o are given by the formula:

x = (-b ± sqrt(b2 - 4ac))/2a

The following program takes as input three double precision numbers, and returns the
complex roots as a pair of values.

typedef complex<double> dcomplex;

pair<dcomplex, dcomplex> quadratic
(dcomplex a, dcomplex b, dcomplex c)

II return the ~oots of a quadratic equation

dcomplex root = sqrt(b * b - 4.0 * a * c);
a *= 2.0;
return make-pair(

(-b + root) la,
(-b - root) la) ;

516 C++ P r O"g ram mer's G u ide

string
The string abstraction

A string is basically an indexable sequence of characters. In fact, although a string is not
declared as a subclass of vector, almost all of the vector operators discussed in vector
operations can be applied to string values. However, a string is also a much more
abstract quantity, and, in addition to simple vector operators, the string datatype
provides a number of useful and powerful high level operations.

In the standard library, a string is actually a template class, named basic_string. The
template argument represents the type of character that will be held by the string
container. By defining strings in this fashion, the standard library not only provides
facilities for manipulating sequences of normal8-bit ASCII characters, but also for
manipulating other types of character-like sequences, such as 16-bit wide characters.
The data types string and wstring (for wide string) are simply typedefs of
basic_string, defined as follows:

typedef basic_string<char,strint_char_traits<char> > string;
typedef basic_string<wchar_t> wstring;

Note Strings and wide strings: In the remainder of this section we will refer to the string data
type, however all the operations we will introduce are equally applicable to-wide
strings.

As we have already noted, a string is similar in many ways to a vector of characters.
Like the vector data type, there are two sizes associated with a string. The first
represents the number of characters currently being stored in the string. The second is
the capacity, the maximum number of characters that can potentially be stored into a
string without reallocation of a new internal buffer. As it is in the vector data type, the
capacity of a string is a dynamic quantity. When string operations cause the number of
characters being stored in a string value to exceed the capacity of the string, a new
internal buffer is allocated and initialized with the string values, and the capacity of the
string is increased. All this occurs behind the scenes, requiring no interaction with the
programmer.

C hap t e r 34, s t r i n 9 517

String include files
Programs that use strings must include the string header file:

include <string>

String operations
In the following sections, we'll examine the standard library operations used to create
and manipulate strings.

Declaring string variables
The simplest form of declaration for a string simply names a new variable, or names a
variable along with the initial value for the string. This form was used extensively in the
example graph program in Example program: graphs. A copy constructor also permits
a string to be declared that takes its value from a previously defined string.

string sl;
string s2 ("a string");
string s3 = "initial value";
string s4 (s3);

In these simple cases the capacityis initially exactly the same as the number of
characters being stored. Alternative constructors let you explicitly set the initial
capacity. Yet another form allows you to set the capacity and initialize the string with
repeated copies of a single character value.

string s6 ("small value", 100); II holds 11 values, can hold 100
string s7 (10, '\n'); II holds ten newline characters

Note Initializing from iterators: Remember, the ability to initialize a container using a pair of
iterators requires the ability to declare a template member function using template
arguments independent of those used to declare the container. At present not all
compilers support this feature.

Finally, like all the container classes in the standard library, a string can be initialized
using a pair of iterators. The sequence being denoted by the iterators must have the
appropriate type of elements.

string s8 (aList.begin(), aList.end());

Resetting size and capacity
As with the vector data type, the current size of a string is yielded by the size ()
member function, while the current capacity is returned by capaci ty () . The latter can
be changed by a call on the reserve () member function, which (if necessary) adjusts
the capacity so that the string can hold at least as many elements as specified by the
argument. The member function max_size () returns the maximum string size that can
be allocated. Usually this value is limited only by the amount of available memory.

cout « s6.size() « endl;

518 c++ Programmer's Guide

cout « s6.capacity() « endl;
s6.reserve(200); II change capacity to 200
cout « s6.capacity() « endl;
cout « s6.max_size() « endl;

The member function length () is simply a synonym for size () . The member function
resize () changes the size of a string, either truncating characters from the end or
inserting new characters. The optional second argument for resize () can be used to
specify the character inserted into the newly created character positions.

s7.resize(15, '\t'); II add tab characters at end
cout « s7.length() «endl; II size should now be 15

The member function empty () returns true if the string contains no characters, and is
generally faster than testing the length against a iero constant.

if (s7 . empty ())
cout « "string is empty" « endl;

Assignment, append, and swap
A string variable can be assigned the value of either another string, a literal C-style
character array, or an individual character.

sl = s2;
s2 = "a new value";
s3 :;= 'x';

The operator += can also be used with any of these three forms of argument, and
specifies that the value on the right hand side should be appended to the end of the
current string value.

s3 += "yz"; II s3 is now xyz

The more general assign () and append () member functions let you specify a subset of
the right hand side to be assigned to or appended to the receiver. A single integer
argument n indicates that only the first n characters should be assigned/appended,
while two arguments, pas and n, indicate that the n values following position pas
should be used.

s4.assign (s2, 3); II assign first three characters
s4.append (s5, 2, 3); II append characters 2, 3 and 4

The addition operator + is used to form the catenation of two strings. The + operator
creates a copy of the left argument, then appends the right argument to this value.

cout « (s2 + s3) «endl; II output catenation of s2 and s3

As with all the containers in the standard library, the contents of two strings can be
exchanged using the swap () member function.

s5.swap (s4); II exchange s4 and s5

C hap t e r 34, s t r in 9 519

Character access
An individual character from a string can be accessed or assigned using the subscript
operator. The member function at () is a synonym for this operation.

cout « s4[2] «endl; II output position 2 of s4
s4[2] = 'x'; II change position 2
cout « s4.at(2) «endl; II output updated value

The member function c_s tr () returns a pointer to a null terminated character array,
whose elements are the same as those contained in the string. This lets you use strings
with functions that require a pointer to a conventional C-style character array. The
resulting pointer is declared as constant, which means that you cannot use c_str () to
modify the string. In addition, the value returned by c_str () might not be valid after
any operation that may cause reallocation (such as append () or insert ()). The member
function data () returns a pointer to the underlying character buffer.

char d[256] i

strcpy(d, s4.c_str()); II copy s4 into array d

Iterators
The member functions begin () and end () return beginning and ending random-access
iterators for the string. The values denoted by the iterators will be individual string
elements. The functions rbegin () and rend () return backwards iterators.

Note Invalidating iterators: Note that the contents of an iterator are not guaranteed to be
valid after any operation that might force a reallocation of the internal string buffer,
such as an append or an insertion.

Insertion, removal, and replacement
The string member functions insert () and remove () are similar to the vector functions
insert () and erase () . Like the vector versions, they can take iterators as arguments,
and specify the insertion or removal of the ranges specified by the arguments. The
function replace () is a combination of remove and insert, in effect replacing the
specified range with new values.

s2.insert(s2.begin()+2, aList.begin(), aList.end());
s2.remove(s2.begin() +3, s2.begin()+5);
s2.replace(s2.begin()+3, s2.begin()+6, s3.begin(), s3.end());

In addition, the functions also have non-iterator implementations. The insert ()
member function takes as argument a position and a string, and inserts the string into
the given position. The remove function takes two integer arguments, a position and a
length, and removes the characters specified. And the replace function takes two
similar integer arguments as well as a string and an optional length, and replaces the
indicated range with the string (or an initial portion of a string, if the length has been
explicitly specified).

s3.insert (3, "abc"); Ilinsert abc after position 3
s3.remove (4, 2); II remove positions 4 and 5
s3.replace (4, 2, "pqr"); Ilreplace positions 4 and 5 with pqr

520 C++ Pro 9 ram mer's G u ide

Copy and sub$tring
The member function cOPY() generates a substring of the receiver, then assigns this
substring to the target given as the first argument. The range of values for the substring
is specified either by an initial position, or a position and a length.

s3.copy (s4, 2); II assign to s4 positions 2 to end of s3
s5.copy (s4, 2, 3); II assign to s4 positions 2 to 4 of s5

The member function substr () returns a string that represents a portion of the current
string. The range is specified by either an initial position, or a position and a length.

cout « s4.substr(3) «endl; II output 3 to end
. cout « s4.substr(3, 2) «endl; II output positions 3 and 4

String comparisons
Note Comparing strings: Although the function is accessible, users will seldom invoke the

member function compare (1 directly. Instead, comparisons of strings are usually
performed using the conVentional comparison operators, which in tum make use of the
function compare ().

The member function compare () is used to perform a lexical comparison between the
receiver and an argument string. Optional arguments permit the specification of a
different starting position or a starting position and length of the argument string. See
Lexical comparison for a description of lexical ordering. The function returns a negative
value if the receiver is lexicographically smaller than the argument, a zero value if they
are equal and a positive value if the receiver is larger than the argument.

The relational and equality operators «, < =, ==, ! =, >=, and » are all defined using the
comparison member function. Comparisons can be made either between two strings, or
between strings and ordinary C-style character literals.

Searching operations
The member function find () determines the first occurrence of the argument string in
the current string. An optional integer argument lets you specify the starting position for
the search. (Remember that string index positions begin at zero.) If the function can
locate such a match, it returns the starting index of the match in the current string.
Otherwise, it returns a value out of the range of the set of legal subscripts for the string.
The function rfind () is similar, but scans the string from thEf end, movin? backwards.

sl = "mississippi";
cout « s1.find("ss") «endl; I I returns 2
cout « sl.firid("ss", 3) «endl; II returns 5
cout « s1.rfind("ss") «endl; I I returns 5
cout « sl.rfind(i,ss", 4) « endl; II returns 2

Thefunctionsfind_first_of(),find_last_of(),find_first_not_of(),and
find_last_not_of () treat the argument string as a set of characters. As with many of
the other functions, one or two optional integer arguments can be used to specify a
subset of the current string. These funetions find the first (or last) charact~r that is either

Chapter 34,s t r in 9 521

present (or absent) from the argument set. The position of the given character, if located,
is returned. If no such character exists then a value out of the range of any legal
subscript is returned.

i = s2.find_first_of ("aeiou"); II find first vowel
j = s2. find_first_not_of ("aeiou", i); I I next non-vowel

Example function: split a line into words
Note Obtaining the sample program: The split function can be found in the concordance

program in fileCONCORD.CPP.

In this section we will illustrate the use of some of the string functions by defining a
function to split a line of text into individual words. We have already made use of this
function in the concordance example program in Example program: a concordance.

There are three arguments to the function. The first two are strings, describing the line of
text and the separators to be used to differentiate words, respectively. The third
argument is a list of strings, used to return the individual words in the line.

void split
(string & text, string & separators, list<string> & words)

int n = text.length();
int start, stop;

start = text.find_first_not_of(separators);
while ((start >= 0) && (start < n)) {

stop = text. find_first_of (separators, start);
if ((stop < 0) II (stop> n)) stop = n;
words.push_back(text.substr(start, stop - start));
start = text.find_first_not_of(separators, stop+l);
}

The program begins by finding the first character that is not a separator. The loop then
looks for the next following character that is a separator, or uses the end of the string if
nO such value is found. The difference between these two is then a word, and is copied
out of the text using a substring operation and inserted into the list of words. A search is
then made to discover the start of the next word, and the loop continues. When the
index value exceeds the limits of the string, execution stops.

522 C++ Pro 9 ram mer's G u ide

Numeric limits
Numeric limits overview

A new feature of the C++ Standard Library is an organized mechanism for describing
the characteristics of the fundamental types provided in the execution environment. In
older C and C++ libraries, these characteristics were often described 1?y large collections
of symbolic constants. For example, the smallest representable value that could be
maintained in a character would be found in the constant named CHAR_MIN, while the
similar constant for a short would be known as SHRT_MIN, for a float FLT_MIN, and so
on.

Note Two mechanisms, one purpose: For reasons of compatibility, the numeric_limits
mechanism is used as an addition to the symbolic constants used in older c++ libraries,
rather than a strict replacement. Thus both mechanisms will, for the present, exist in
parallel. However, as the numeric_limi ts technique is more uniform and extensible, it
should be expected that over time the older symbolic constants will become outmoded.

The template class numeric_limits provides a new and uniform way of representing
this information for all numeric types. Instead of using a different symbolic name for
each new data type, the class defines a single static function, named min () , which
returns the appropriate values. Specializations of this class then provide the exact value
for each supported type. The smallest character value is in this fashion yielded as the
result of invoking the function numeric_limi ts<char>: : min () , while the smallest
floating point value is found by invoking numeric_limi ts<float>: : min (), and so on.

Solving this problem by using a template class not only greatly reduces the number of
symbolic names that need to be defined to describe the operating environment, but it
also ensures consistency between the descriptions of the various types.

Fundamental data types
The standard library describes a specific type by providing a specialized
implementation of the numeric_limi ts class for the type. Static functions and static

C hap t e r 3 5 I N u mer i eli mit s 523

constant data members then provide information specific to the type. The standard
library includes descriptions of the following fundamental data types.

bool char

signed char

unsigned char

wchar_t

int

short

long

unsigned short

unsigned int

unsigned long

float

double

long double

Certain implementations may also provide information on other data types. Whether or
not an implementation is described can be discovered using the static data member field
is_specialized. For example, the following is legal, and will indicate that the string
data type is not described by this mechailism.

cout « "are strings described " «
numeric_limits<string>::is_specialized« endl;

For data types that do not have a specialization, the values yielded by the functions and
data fields in numeric_limi ts are generally zero or false.

Numeric limit members
Since a number of the fields in the numeric_limits structure are meaningful only for
floating point values, it is useful to separate the description of the members into
common fields and floating-point specific fields.

Members common to' all types
The following table summarizes the information available through the numeric_limi ts
static member data fields and functions.

bool is_specialized True if a specialization exists, false otherwise

T min () Smallest finite value

T max () Largest finite value

int radix The base of the representation

int digi ts Number of radix digits that can be represented without change

int digi tslO Number ofbase-lO digits that can be represented without change

bool is_signed True if the type is signed

bool is_integer True if the type is integer

bool is_exact True if the representation is exact

bool is_bounded True if representation is finite

bool is_modulo True if type is modulo

bool traps True if trapping is i.rnplemented for the type

524 C++ Programmer's Guide

Radix represents the internal base for the representation. For example, most machines
use a base 2 radix for integer data values, however some may also support a
representation, such as BCD, that uses a different base. The digi ts field then represents
the number of such radix values that can be held in a value. For an integer type, this
would be the number of non-sign bits in the representation.

All fundamental types are bounded. However, an implementation might choose to
include, for example, an infinite precision integer package that would not be bounded.

A type is modulo if the value resulting from the addition of two values can wrap around,
that is, be smaller than either argument. The fundamental unsigned integer types are all
modulo.

Members specific to floating pOint values
The following members are either specific to floating point values, or have a meaning
slightly different for floating point values than the one described earlier for non-floating
data types.

T

int

int

T

T

int

int

int

int

bool

T

bool

T

bool

T

bool

T

bool

bool

mine)

digits

radix

epsilon()

round_error ()

min_exponent

min_exponent 1 0

max_exponent

max_exponentlO

has_infinity

infinity ()

has_quiet_NaN

quiet_NaN ()

has_signaling_NaN

signaling_NaN ()

has_denorm

denorm_min ()

is_iec559

, tinyness_before

round_style

The minimum positive normalized value

The number of digits in the mantissa

The base (or radix) of the exponent representation

The difference between 1 and the least representable value
greater than 1

A measurement of the rounding error

Minimum negative exponent

Minimum value such that 10 raised to that power is in range

Maximum positive exponent

Maximum value such that 10 raised to that power is in range

True if the type has a representation of positive infinity

Representation of infinity, if available

True if there is a representation of a quiet "Not a Number"

Representation of quiet NaN, if available

True if there is a representation for a signaling NaN

Representation of signaling NaN, if available

True if the representation allows denormalized values

Minimum positive denormalized value

True if representation adheres to IEe 559 standard

True if tinyness is detected before rounding

Rounding style for type

For the float data type, the value in field radix, which represents the base of the
exponential representation, is equivalent to the symbolic constant FLT_RADIX.

For the types float, double, and long double the value of epsilon is also available as
FLT_EPSILON, DBL_EPSILON, and LDBL_EPSILON.

C hap t e r 3 5, N u mer i eli mit s~ 525

A NaN is a "Not a Number." It is a representable value that nevertheless does not
correspond to any numeric quantity. Many numeric algorithms manipulate such values.

The IEC 559 standard is a standard approved by the International Electrotechnical
Commission. It is the same as the IEEE standard 754.

Value returned by the function round_s ty 1 e () is one of the following:
round_indeterminate,round_toward_zero,round_to_nearest,
round_toward_infinity,orround_toward_neg_infinity.

526 C++ Pro 9 ram mer's G u ide

ObjectComponents programmer's
guide

This part describes how to create different kinds of programs using ObjectComponents,
a set of classes for creating OLE 2 applications in C++.

• Chapter 36, "Overview of ObjectComponents," explains what ObjectComponents
is.

• Chapter 37, "Turning an application into an OCX or OLE container," describes how
to make a container application whose compound documents can hold linked and
embedded OLE objects.

• Chapter 38, "Turning an application into an OLE server," describes how to make a
server application that creates data objects for containers to link or embed.

• Chapter 39, "Turning an application into an ,OLE automation server," describes
what a program must do in order to let other programs control it through
automation.

• Chapter 40, "Turning an application into an OLE automation controller," describes
the steps a program must take in order to manipulate automation objects.

Par tV, 0 b j e etC 0 m p 0 n e n t s pro 9 ram mer's 9 u ide 527

528 C++ Pro 9 ram mer's G u ide

Overview of ObjectComponents
Microsoft's OLE 2 operating system extensions require the programmer to implement a
variety of interfaces depending on the tasks an application undertakes. Borland has
developed an OLE engine, already used in several of its commercial applications, that
simplifies the programmer's job by implementing a smaller set of high-level interfaces
on top of OLE. The engine resides in a library called BOCOLE.DLL. The BOCOLE
support library provides default implementations for many standard OLE interfaces.

C++ programmers can make use of the OLE support in BOCOLE.DLL through a set of
new classes collectively called the ObjectComponents Framework (OCF). Instead of
implementing OLE-style interfaces, you create objects from the ObjectComponents
classes and call their methods. Your own classes can gain OLE capabilities simply by
inheriting from the ObjectComponents classes. ObjectComponents translates between
C++ and OLE.

Figure 36.1 shows how the layers of Borland's OLE support fit together.

The ObjectComponents classes implement OLE-style interfaces for talking to the
BOCOLE support library. Your programs reach OLE by calling methods from
ObjectComponents classes. When OLE sends information to you, ObjectComponents
sends messages to your application using the standard Windows message mechanisms.
The ObjectComponents classes also contain default implementations for all the OLE
messages. You can override the default event handlers selectively to modify your
application's responses.

ObjectComponents is not part of the ObjectWindows Library. That means C++
programs that don't use ObjectWindows can still take full advantage of
ObjectComponents for linking, embedding, and automation. But ObjectWindows can
simplify your work even more. ObjectWindows 2.5 introduces new classes such as
Tale Window and TOleDocument that inherit from ObjectComponents classes to bring
OLE support into Borland's C++ application framework. An ObjectWindows
application that uses the Doc/View model doesn't need to use ObjectComponents
directly at all. A few simple changes to your Doc/View program will have you linking
and embedding almost instantly. Programs that don't use the Doc/View model can do
the same thing with just a little more work.

C hap t e r 3 6, 0 v e r vie W 0 fOb j e etC 0 m p 0 n e n t s 529

The chapters that follow explain step by step' how to modify your code to create
containers, servers, automation objects, and controllers.

Figure 36.1 Howapplications interact with OLE through ObjectComponents

ObjectComponents

OLE 2 ,features supported by ObjectComponents
The following list summarizes the OLE 2 capabilities that ObjectComponents gives your
applications. The descriptions assume you are using ObjectWindows, as well. All the
same features are available through ObjectComponents without ObjectWindows, but
then you have to code explicitly some things that ObjectWindows does by default

• Linking and embedding: To embed data from one application in the document of
another, ObjectComponents gives you classes to represent the data inthe object and
an image of the data for drawing on the screen. The data must be separable from its
graphical representation because in OLE transactions they are sometimes handled by
different programs. When the container asks the server for an object to embed, the
server must provide data and a view of the data. -The ~erver can also be asked to edit
,the object even after it is embedded and to read or write ~o and from the
container's document file. The ObjectComponents classes handle both sides of these
negotiations for you.

• Clipboard operations: The default event handlers for the ObjectComponents
messages handle cutting and pasting for you. If you add to your menus standard
commands such as Insert Object and Paste Link, ObjectComponents will implement
them for you.

• Drag and drop operations: The default event handlers for ObjectComponents
messages help you here, too. If the user drops an OLE object on your container's
'window, ObjectComponents inserts it in your document. If the user double-clicks the

530 c++ Programmer's Guide

embedded object, ObjectComponents activates it. If the user drags the object,
ObjectComponents moves it.

• Standard OLE 2 user interface: OLE defines standard user interface features and
asks OLE programmers to comply with them. Built into ObjectComponents are
dialog boxes for commands like Insert Object, Paste Special, and Paste Link; a pop-up
menu that appears whenever the user right-clicks an embedded object; and an item
on the container's Edit menu that always shows the verbs (server commands)
available for the active object. ObjectComponents even arranges to modify the
container's window if the server takes over the container's tool bar, status bar, and
menus for in-place editing.

• Compound files: A new ObjectComponents class (TOcStorage) encapsulates file
input and output to compound files. If you convert an ObjectWindows Doc/View
application into an ObjectComponents container, the document writes itself to
compound files automatically, creating storages and substorages within the file as
needed. (Instructions for the conversion appear in Chapter 37.)

• EXE and DLL servers: ObjectComponents lets you construct your OLE server as
either a standalone executable program or as an in-process DLL server. DLL servers
respond to clients more quickly because a DLL is not a separate process. OLE doesn't
have to serialize calls or marshall parameters to communicate between a DLL server
and its client. See "Creating a DLL server" in Chapter 38 for more information.

• Automation: ObjectComponents permits C++ classes to be automated without
structural changes to the classes themselves. It accomplishes this with nested classes
that have direct access to the existing class members. These nested classes instantiate
small command objects that reach the members through standard C++ mechanisms,
avoiding the use of restrictive, non-portable stack manipulations. The command
objects support hooks for undoing, recording, and filtering automation commands. A
program can even send itself automation commands using standard C++ code.
Chapters 39 and 40 describe automation programming.

• Type libraries: A type library describes for OLE all the classes, methods, properties,
and data members available for controlling an automated application. Once you
create an automation server (following the steps in Chapter 39), you can ask
ObjectComponents to build and register the type library for you.

• Registration: OLE requires applications to register themselves with the system by
providing a unique identifier string. For servers, this string and much other
information besides must be recorded in the system's registration database as part of
the program's installation process. With ObjectComponents, all you have to do is list
all the information in one place using macros. Every time your server starts up,
ObjectComponents confirms that the database accurately reflects the server's status.
When necessary, ObjectComponents records or updates registration entries
automatically. For more about registration, see Chapter 37.

• Localization: OLE servers need to speak the language of their client programs. If an
automation server is marketed in several countries, H needs to recognize commands
sent in each different language. A linking and embedding server registers strings that
describe its objects to the user, and those too should be available in multiple
languages in order to accommodate whatever language the user might request. If

Chapter 36, Overview of ObjectComponents 531

you provide translations for your strings, ObjectComponents uses the right strings at
the right time. Add your translations to the program's resources and mark the
original strings as localized when you register them. At run time, ObjectComponents
quickly and efficiently retrieves translations to match whatever language OLE
requests. For more about localization, see Chapter 38.

How ObjectComponents works
The information in this section is not essential for using ObjectComponents, only for
understanding what goes on behind the scenes when you create ObjectComponents
connector objects. .

The essential function of ObjectComponents is to connect you with OLE.
ObjectComponents is an intermediate layer standing between OLE on one side and
your C++ code on the other.

How ObjectComponents talks to OLE
Fundamentally, all OLE interaction of any sort requires the implementation of standard
OLE interfaces, such as IUnknown and IDispatch, as defined by the Component Object
Model (COM).

An interface is just a set of related function prototypes forming a pure base class. Every
OLE object that implements the same interface can choose to implement the prescribed
functions in its own way. All that matters is that the interface functions always accept
the same parameters and always produce the same results. This makes it possible for
any OLE object to call any standard function in any other OLE object that supports the
interface. .

Every OLE object must implement the IUnknown interface. One of the three functions in
the IUnknown interface is Querylnterface. This common function implemented on all
OLE objects lets you ask whether the object supports other interfaces that you want to
use, such as automation interfaces or data transfer interfaces. This makes it possible for
any OLE object to determine at run time what any other OLE object can do. .

OLE defines a large number of standard interfaces that are notoriously tedious to
implement. Borland's BOCOLE support library defines an alternate set of custom COM
interfaces that collectively provide an alternative interface to OLE programming, one
conceived at a higher level of abstraction. Client objects of the support library must still
implement IUnknown, as all COM objects must, but instead of other standard OLE .
interfaces such as IDataObject and IMoniker, they implement interfaces defined by
BOCOLE. The support library acts as an agent translating commands received through
its custom interfaces into standard OLE. All the custom interfaces commands are carried
out for you using standard OLE interfaces.

The custom interfaces in the BOCOLE support library have names like IBContainer and
IBDocument. You'll see them used if you look in the ObjectComponents source code.
Because the support library i~ an internal tool and subject to change, its interfaces are not
documented. The complete library source code,however, comes with Borland C++, so
you can refer to it if you need to track the OLE interactions minutely. You can also

532 C++ Pro 9 ram mer's G u ide

modify and rebuild the support library, just as you can the ObjectWindows Library, if
that suits your purposes.

How ObjectComponents talks to you
Some of the ObjectComponents classes define COM objects. These objects derive from
TUnknown, an ObjectComponents base class that implements the IUnknown interface
and handles details of aggregation (a way of combining several objects into a single
functional unit). They also mix in other base classes that implement interfaces from the
BOCOLE support library.

The ObjectComponents objects that implement COM interfaces are called connector
objects, because they connect your application to OLE. TOcPart, for example, is the
connector object that implements the interfaces a container must support for each OLE
object (part) that is placed in its document. To embed an object in your document, you
take information ObjectComponents gets from the Clipboard, a drop message, or the
Insert Object dialog box, and you pass the information to the TOcPart constructor.
Among other things, the constructor (indirectly) calls a BOCOLE function to create an
embedded OLE object. TOcPart holds the pointer to that object, queries it for interfaces,
and stores the coordinates of the site where the part should be drawn. When you want
the part to do something, you call TOcPart methods such as Activate and Save.

Linking and embedding connections
A linking and embedding application always creates a TOcApp object (usually it is
created for you). TOcApp is a connector object that implements interfaces every linking
and embedding application needs. Another connector object that all linking and
embedding applications create is the view object, either TOc View for a container or
TOcRem View for a server. You create one view object for each document you open. A
view object is associated with the window where the document is drawn. The only
other connector object used for linking and embedding is TOcPart, which containers
create for each object deposited in their documents.

Of course communication through a connector object is not just one way. When you call
methods on a connector object, the object calls through to OLE, but sometimes OLE
needs to call you. For example, if when user chooses Insert Object and asks for an object
from a server, OLE must invoke the server and ask it to create an object. The connector
objects cannot, of course, call your functions the same way you can call theirs because
they don't know anything about your code. When a connector object needs to
communicate a request or a notification from OLE to you, it sends WM_OCEVENT
message to one of your windows. TOcApp sends its messages to your frame window.
The view and part objects send messages to the client window where you draw °your
document.

Communication from you to OLE happens through function calls to connector objects.
Communication from OLE to you happens through messages from connector objects to
your windows. Figure 36.2 diagrams these interactions.

Chapter 36, Overview of ObjectComponents 533

Figure 36.2 How objects in your application interact with ObjectComponents

User Objects ObjectComponent Objects

Per
application

Per
document

TApplication
1--____ --f!i:Calis through

~TOcApp*
TOcModule

TMyApp

TDecoratedFrame R..,---'

TOleFrame

Messages
ito HWND

TWindow \

It

TOleWindow
&

~Calls through

TOleView 1TOcView* r
TMyView ~ .. K

TUnknown

TOcApp

9
TUnknown

TOcView K)
TOcRemView

~ (server only)

-0 BOCOLE interface 91unknown interface
c=J Object created
c=J through inheritance

~ Interactions

The objects on the left side are instances of the ObjectWindows classes you normally
create: an application, a frame window, a document, and a view. In applications that do
not use the Doc/View model or do not use ObjectWindows, different classes fulfill the
same functions. You always have a frame window and a document window, for
example. The flow of interaction is the same in every ObjectComponents application.

The objects on the right side are.the helpers from ObjectComponents that connect
corresponding parts of your application to OLE. .

The initial wiring between you and ObjectComponents is established the first time the
registrar object calls your factory callback function. The TOcApp object is bound to a
window in TOleFrame::Setup Window, or in the WM_CREATE handler of your main
window.

Automation connections
Applications that support automation but not linking and embedding use a different set
of objects. The central function of the automation layer in OLE is to pass arguments from
thecontroller to the server, an operation with no user interface. The COM interfaces for

534 c++ Programmer's Guide

automation are buried deeper in the implementation of ObjectComponents than the
linking and embedding interfaces.

To support automation, ObjectComponents must identify exposed commands and
arguments, attach type information to them, transfer values to and from the stack of
VARIANT unions that OLE uses to pass values, and invoke your C++ functions when a
controller sends a command. Once you set up the tables that describe what you want to
expose, there is little in the automation process to customize or override. You never
directly create or manipulate the connector objects for automation; ObjectComponents
does it for you.

Advanced users who enjoy reading source code might like to know that TServedObject is
the class that implements IDispatch and LTypeInfo, that TTypeLibrary implements
ITypeLib, and that T AutoIterator implements IEnum V ARIANT. Of these, only
T AutoIterator is exposed as a public part of ObjectComponents. The others are
considered internal implementation.

To automate a class, ObjectComponents asks you to build two descriptive tables from
macros. A declaration table goes with the class declaration and declares which members
are accessible to OLE. A definition table goes with the class implementation and assigns
public names for controllers to use when invoking your functions. The automation
macros also create nested classes within the automated parent, one for each exposed
function or data member. The nested classes have an Invoke method that calls your
function. Because the nested classes are friends of the surrounding class, they have
direct access to it through normal C++ mechanisms.

TServedObject is the connector that receives IDispatch commands from OLE and
translates them into the appropriate Invoke calls. TServedObject finds the information it
needs to do this in an object of type T AutoClass, which holds the symbol information
from the automation tables. TServedObject receives dispatch IDs, looks them up in
T AutoClass, uses the information it finds to extract arguments from the stack of
VARIANT unions passed by OLE. Finally it calls Invoke on the appropriate nested
command object. Figure 36.3 diagrams the interaction of TServedObject with T Aut6Class
and your automated class.

Figure 36.3 How TServedObject connects an autom'ated class to OLE

TUnknown

TOcApp

Delegates to
TServedObject

Calls through pointer
to automated object

TAutoClass

Holds automation
table information

TUnknown

TServedObject
Implements

automation interface

Chapter 36, Overview of ObjectComponents 535

Building an ObjectComponents application
All ObjectComponents applications require exception handling and RTTI. Do not set
any compiler options that disable these features.

Linking and embedding applications must use the large memory model. Automation
applications can use the medium model as well (and they run faster in medium model).

The integrated development environment (IDE) sets the appropriate compiler and
linker options for you automatically when you select OCF in the TargetExpert.

To build any ObjectComponents program from the command line~ create a short
makefile that includes the OWLOCFMK.GEN found in the EXAMPLES subdirectory. If
your application does not use ObjectWindows~ include the OCFMAKE.GEN instead.
Here~ for example~ is the makefile that builds the AutoCalc sample program:

EXERES = MYPROGRAM

OBJEXE = winmain.obj autocalc.obj
HLP = MYPROGRAM

!include $(BCEXAMPLEDIR)\ocfmake.gen

EXERES and OBJRES hold the name of the file to build and the names of the object files
to build it from. HLP is optional. Use it if your project includes an online Help file.
Finally~ your makefile should include OWLOCFMK.GEN or OCFMAKE.GEN.

Name your file MAKE FILE and type this at the command line prompt:

make MODEL=l

MAKE~ using instructions in the included file~ will build a new makefile tailored to your
project. The new makefile is called WIN16Lxx.MAK. The final two digits of the name
tell whether the makefile uses diagnostic or debugging versions of the libraries.· 01
indicates a debugging version~ 10 a diagnostic version~ and 11 means both kinds of
information are included. The same command also then runs the new makefile and
builds the program. If you change the command to define MODEL as d~ the new
makefile is WIN16Dxx.MAK and it builds the program as a DLL.

For more information about how to use OCFMAKE.GEN and OWLOCFMK.GEN~ read
the instructions at the beginning of MAKEFILE.GEN~ found in the same directory.

Table 18.1 shows the libraries an ObjectComponents program links with.

Table 36.1 Libraries for building ObjectComponents programs

OCFWM.LIB OCFWL.LIB OCFWI.LIB

OWLWM.LIB OWLWL.LIB OWLWI.LIB

BIDSM.LIB BIDSL.LIB BIDSLLIB

OLE2W16.LIB OLE2W16.LIB OLE2W16.LIB

IMPORT.LIB IMPORT.LIB IMPORT.LIB

MATHWM.LIB MATHWL.LIB

CWM.LIB CWL.LIB CRTLDLL.LIB

ObjectComponents

ObjectWindows

Class libraries

OLE system DLLs

Windows system DLLs

Math support

C run-time libraries

The ObjectComponents library must be linked first~ before the ObjectWindows library.

536 c++ Programmer's Guide

ObjectComponents Programming Tools
The most powerful tool in Borland c++ to help you with ObjectComponents
programming is AppExpert. AppExpert generates a complete basic application
according to your specification. It fully supports both linking and embedding and
automation. Use it to create containers, servers, and automation servers. ClassExpert
helps you modify the generated code to make it do what you need.

The TargetExpert in the integrated development environment (IDE) also supports
ObjectComponents. Click the option for OCF and it automatically sets the right build
options.

Utility programs
Borland C++ comes with some new utility programs that simplify common OLE
programming chores. Some of them solve problems that other chapters explain in more
detail.

AutoGen: Generates proxy classes for an automation controller. Scans the type library
of an automated application and writes the source code for classes a controller uses to
send commands automation commands.

DllRun: Launches a DLL server in executable mode. Any DLL server written with
ObjectComponents can also run as a standalone application if you invoke it with
DllRun. Running in executable mode sometimes makes it easier to debug the DLL. It
also makes it possible to distribute a single program that your users can run either as an
in-process server or as an independent application.

GuidGen: Generates globally unique identifiers for use in registering applications.
Every server must have an absolutely unique ID. Containers need them in order to be
link sources.

MacroGen: Generates automation macros for exposing functions with any number of
arguments. The ObjectComponents headers declare' versions of the macros for functions
with up to four arguments. MacroGen saves you from having to revise the macros by
hand to accommodate more arguments.

Register: Registers or unregisters any ObjectComponents EXE or DLL. Usually the
applications register themselves if necessary when they run, or in response to
command-line switches. Developers, however, sometimes need to register and
unregister different versions of an application over and over. Register is especially
useful for DLLs because you can't pass command-line switches to a DLL.

WinRun: A background program that makes it possible to launch Windows programs
from the command line prompt in a DOS box. WinRun makes it possible to run GUI
programs (such as Register) from a make file.

The source code for all the utilities but WINRUN is in the OCTOOLS directory.

You might find it helpful to install these tools in the integrated development
environment (IDE). For more information, open the EXAMPLES\IDE\IDEHOOK\
IDEHOOK.IDE file and read the instructions in OLETOOLS.CPP.

C hap t e r 36, 0 v e r vie w 0 fOb j e etC 0 m p 0 n e n t s 537

538 Ct+ Programmer's Guide

Turning an application into an
OCX or OLE container using

ObjectComponents
Follow these steps to tum an application into an OCX container or an OLE container
using ObjectComponents:

1 Include ObjectComponents header files.

2 Create an OLE memory allocator object.

3 Create OLE registration tables.

4 Connect an ObjectComponents application object to the main window.

S Connect an ObjectComponents view object to the view window.

6 Handle OLE messages.

7 Handle OLE menu commands.

8 Create an ObjectComponents registrar object.

9 Compile and link the application.

Note If you're creating a new application, consider using AppExpert to save some work.

This chapter uses code from the examples in the EXAMPLES/OCF/CPPOCF directory:

. CPPOCFO

CPPOCFl

CPPOCF2

A basic windows application .

The CPPOCFO example turned into a basic OLE container that registers itself in the
system's registration database, creates objects to initialize a new document, and
allows standard OLE objects to be embedded.

The CPPOCFl example turned into a basic OLE server.

C hap t e r 37, T urn i n 9 a nap p lie a t ion in t 0 an 0 C X 0 r 0 LEe 0 nt a i n e r 539

Step 1 : Including ObjectComponents header files
An ocx container must include the following ObjectComponents header files:

#include <ocf/ocapp.h>
#include <ocf/ocdoc.h>
#include <ocf/occtrl.h>
#include <ocf/ocfevx.h>

II TOcRegistrar, TOcModule, TOcApp
II TOcDocument
II TOcxview and TOcControl
II WM_OCEVENT message crackers

An OLE container must include the following ObjectComponents header files:

#include <ocf/ocapp.h>
#include <ocf/ocdoc.h>
#include <ocf/ocview.h>
#include <ocf/ocpart.h>
#include <ocf/ocfevx.h>

II TOcRegistrar, TOcModule, TOcApp
II TOcDocument
I I TOcView
II TOcPart
II WM_OCEVENT message crackers

Step 2: Creating an OLE memory allocator object
An OLE application should create an OLE memory allocator (TOleAllocator) object to
initialize the OLE libraries. To create a TOleAllocator object, add this line to the
application's WinMain function.

TOleAllocator OleAlloc(O)i

Step 3: Creating OLE registration tables
Like any other OLE application, a qmtainer must register information about itself in the
system's registration database. Registration is performed automatically by
ObjectComponents if you create a registration table for the application and each of its
document types, and then pass the resulting structures to a registrar object. (You will
learn more about the registrar object later.)

. To create a registration table, use the registration macros.

This is the application registration table used in the CPPOCF1.CPP example:

BEGIN_REGISTRATION (AppReg)
REGDATA(clsid, "{8646DB80-94E5-101B-BOIF-00608CC04F66}")
REGDATA (appname,

END_REGISTRATION
"Container")

Note For a container, you must specify the class id and appname keys in the application
registration table; and you must specify the progid, description, and formatn keys in the
document registration tables.

540 C++ Programmer's Guide

Step 4: Connecting an ObjectComponents application object to the
main window

In order for the application's main window to receive OLE messages, it must be
connected to an ObjectComponents application (TOcApp) object.

To connect a TOcApp object to the main window,

1 Declare the TOcApp object.

For example, the following line declares a TOcApp object called OcApp:
TOCApp* OcApp = Oi

2 When the main window is created, call the Setup Window method of the TOcApp
object.

In the CPPOCFl.CPP example, the Setup Window method is called from the
Main Wnd_ On Create function:

bool
MainWnd_OnCreate(HWND hwnd, CREATESTRUCT FAR* /*lpCreateStruct*/)
{

HwndMain = hwndi
if (OcApp)

OcApp->SetupWindow(hwnd)i
return true i

Note The actual TOcApp object is created by the registrar object in the WinMain function.
(You'llieam more about the registrar object later.)

In an SDI application like CPPOCF1, the main window controls the view window.
(Every ObjectComponents application needs an application window and a view
window, as detailed in the next step.) When the main window receives a WM_SIZE
message, it moves the view to keep it aligned with the client area of the main window.
When the main window receives a WM_CLOSE message, it destroys both itself and the
view window.

void
MainWnd_OnSize(HWND hwnd, UINT /*state*/, int /*cx*/, int /*~*/)
{

if (IsWindow(HwndView))
TRect recti
GetClientRect(hwnd, &rect)i
MoveWindow(HwndView, rect.left, rect.top, rect.right, rect.bottom, true)i

void
MainWnd_OnClose (HWND hwnd)

C hap t e r 37, T urn i n 9 a nap p lie a t ion in t 0 an 0 ex 0 r 0 LEe 0 n t a in e r 541

if (IsWindow(HwndView))
DestroyWindow(HwndView);

DestroyWindow(hwnd);

In an MDI application, each child window creates its own view window. The child
window does what the main window does in an SDI application: it creates and manages
a view for the information it displays.

When the main window is destroyed, it should release the TOeApp object.

You shouldn't ca~l delete for a TOeApp object because the OLE system might still need
more information before it allows the view to shut down. ReleaseObjeet tells the TOeView
object that you don't need it any longer. The view subsequently destroys itself as soon as
all other OLE clients fihish with it. The TOeApp destructor is protected to prevent you
from calling it directly.

Step 5: Connecting an ObjectComponents view object to the view
window

A container must have a view window that is separate from its main window. Usually
the view window has an invisible border and it exactly fills the client area of the main
window. From the user's point of view, there is only one window in the application. But
ObjectComponents expects to send some event messages to the main window and some
to the view window.

In order for a view window to receive OLE messages, it must be connected to an
ObjectComponents view object. (TOe View for an OLE container or TOexView for an
OCX container.)

And in order for a view object to keep track of the objects it contains, it must be
connected to an ObjectComponents document (TOeDoeument) object.

To connect a TOeView object to the view window,

1 Declare a TOe View object and a TOeDoeument object:

TOcView* OcView = 0;
TOcDocument* OcDoc = 0;

2 Create the TOeDoeument and TOe View objects, and then call the Setup Window method
of the TOe View object:

You should call the Setup Window method when the view window is created, as
shown in the CPPOCFl.CPP example.

bool
ViewWnd_OnCreate(HWND hwnd, CREATESTRUCT FAR* /*lpCreateStruct*/)
{

OcDoc = new TOcDoc(*OcApp)
OcView = new TocView(*OcDoc)
if (OcView)

542 c++ Programmer's Guide

OcView->SetupWindow(hwnd)i
return true i

When the view window is destroyed, it should delete the TOeDoeument object and
release the TOe View object.

You shouldn't call delete for a TOeView object because the OLE system might still need
more information before it allows the view to shut down. ReleaseObjeet tells the TOe View
object that you don't need it any longer. The view subsequently destroys itself as soon as
all other OLE clients finish with it. The TOeView destructor is protected to prevent you
from calling it directly.

void
ViewWnd_OnDestroy(HWND l*hwnd*/)
{

if (OcView)
OcView->ReleaseObject()i II release the COM object.

Step 6: Handling OLE messages
To handle OLE messages, you must:

1 Handle the WM_ OCEVENTmessage message ill the main window and view
window procedures. (Whenever an OLE event occurs, a WM_OCEVENT message is
sent to the main window procedure and the view window procedure by the TOeApp
and TOeView objects respectively.)

2 Create a function to handle specific OLE messages.

3 Create a function that corresponds to each OLE message that you handle in Step 2.

This is how OLE messages are handled in the CPPOCF.CPP example:

First, the WM_ OCEVENT message is handled in the main window procedure and the
view window procedure.

long CALLBACK _export

MainWndProc(HWND hwnd, uint message, WPARAM wParam, LPARAM lParam)

switch (message) {
II General message handlers:
HANDLE_MSG(hwnd, WM_CREATE, MainWnd_OnCreate) i

HANDLE_MSG(hwnd, WM_CLOSE, MainWnd_OnClose)i
HANDLE_MSG(hwnd, WM_DESTROY, MainWnd_OnDestroY)i
HANDLE_MSG (hwnd, WM_COMMAND, MainWnd_OnCormnand) i

MainWnd_OnSize)i
II The OLE message handler:
HANDLE_MSG(hwnd, WM_OCEVENT, MainWnd_OnOcEvent) i

return DefWindowProc(hwnd, message, wParam, lParam)i

Chapter 37, Turning an application into an OCX or OLE container 543

long CALLBACK _export
ViewWndProc(HWND hwnd, uint message, WPARAM wParam, LPARAM IParam)
{

switch (message) {
II General message handlers:
HANDLE_MSG (hwnd, WM_CREATE, ViewWnd_OnCreate) i

HANDLE_MSG(hwnd, WM_CLOSE, ViewWnd_OnClose)i
HANDLE_MSG(hwnd, WM_DESTROY, ViewWnd_OnDestroY)i
HANDLE_MSG(hwnd, WM_COMMAND, ViewWnd_OnPaint)i
II The OLE message handler:
HANDLE_MSG (hwnd, WM_OCEVENT, MainWnd_OnOcEvent) i

return DefWindowProc(hwnd, message, wParam, IParam)i

Note The HANDLE_MSG macro is defined in the oef/oefevx.h file.

Second, specific OLE messages are handled in the Main Wnd_OnOcEvent and
View Wnd_ OnOcEvent functions.

long
MainWnd_OnOcEvent (HWND hwnd, WPARAM wParam, LPARAM 1*IParam* I)

{

switch (wParam) {
HANDLE_OCF (hwnd, OC_VIEWTITLE, MainWnd_OnOcViewTitle) i

return true i

long
MainWnd_OnOcEvent(HWND hwnd, WPARAM wParam, LPARAM 1*IParam*/)
{

}

switch (wParam) {
HANDLE_OCF (hwnd, OC_ VIEWCLOSE, MainWnd_OnOcViewClose) i

HANDLE_OCF(hwnd, OC_VIEWTITLE, MainWnd_OnOcViewTitle)i

return true i

Note The HANDLE_OCF macro is defined in the oef/oefevx.h file.

Third, the Main Wnd_OnOcViewTitle, View Wnd_On View Title, and
View Wnd_ OnOc ViewClose functions correspond to the OLE messages that are handled
in the code shown above.

const char*
MainWnd_OnOcViewTitle(HWND l*hwnd*/)
{

return APPSTRINGi

const char*
ViewWnd_OnOcViewTitle(HWND l*hwnd*/)
{

return APPSTRINGi

544 c++ Programmer's Guide

const char*
MainWnd_OnOcViewClose(HWND l*hwnd*/}
{

if (OcDoc)
OcDoc->Close

return true i

Therefore, the CPPOCF application returns the string defined in APPSTRING whenever
the main window or the view window receives the OC_ VIEWTITLE message.

And the view window closes itself when it receives the OC_ VIEWCLOSE message .

. Note Most containers handle the OC_ VIEWTITLE message in the view window only.

For a list of OLE messages that can be sent to the main window and view windows, see
the OC_APPxxxx Messages and OC_ VIEWxxxx Messages topics.

Using the new message-handling classes
You can also handle OLE messages by implementing the virtual functions of one of the
new ObjectComponents event-handling classes: TOcCtrlContainerHost (OCX container)
or TOcContainerHost (OLE container).

Step 7: Handling OLE menu commands
To specify how an application responds to OLE menu commands, you must:

1 Handle the WM_COMMAND message in the main window procedure.·

2 Create a function to handle specific menu commands.

This is how OLE messages are handled in the CPPOCFl.CPP example:

First, the WM_COMMAND message is handled in the main window procedure:

long CALLBACK _export
MainWndProc(HWND hwnd, uint message, WPARAM wParam, LPARAM IParam}
{

switch (message) {
HANDLE_MSG(hwnd, WM_CREATE, MainWnd_OnCreate} i

HANDLE_MSG(hwnd, WM_CLOSE, MainWnd_OnClose}i
HANDLE_MSG(hwnd, WM_DESTROY, MainWnd_OnDestrOY}i
II The WM_COMMAND message handler:
HANDLE_MSG (hwnd, WM_COMMAND, MainWnd_OnCormnand) i

HANDLE_MSG(hwnd, WM_SIZE, MainWnd_OnSize}i
HANDLE_MSG (hwnd, WM_OCEVENT, MainWnd_OnOcEvent) i

return DefWindowProc(hwnd, message, wParam, IParam}i

Note The HANDLE_MSG macro is defined in the od/odevx.h file.

Chapter 37, Turning an application into an OCX or .OLE container 545

Second, specific menu commands are handled in the Main Wnd _ On Command function.
(In this case, CM_INSERTOBJECT OLE is the only OLE command that is handled.)

void
MainWnd_OnCommand (HWND hwnd, int id, HWND I *hwndCtl * I, uint I *codeNotify* I)
{

swi tch (id) {
case CM_INSERTOBJECT:

try {

TOcInitInfo initInfo(OcView); II Initializing info structure
if (OcApp->Browse(initInfo)) { II Show Insert Object dialog.

TRect rect(30, 30, lOa, 100);
new TOcPart(*OcDoc, initInfo, rect); II add object to doc.

catch (TXBase& xbase) {
MessageBox (GetFocus (), xbase. why () . c_str (), liException caught", MB_OK);

break;

case CM_EXIT:
Pos tMes sage (hwnd, WM_CLOSE, a, 0);
break;

Handling the InsertObject command
The code for inserting, dropping, or pasting an object into a document always begins
with a TOcInitInfo structure. TOcInitInfo holds information describing the object about to
be created: what container will receive it, whether to link or embed it, whether it already
exists or will be newly created, and if it exists, where the data resides and in what
format.

The constructor for TOcInitInfo receives a pointer to the view where you want the new
object to appear. The next command, OcApp->Browse, invokes the standard Insert Object
dialog box offering the user a choice of all the objects any server registered in the system
can create. When the user chooses one, the Browse command places more information in
initInfo.

The final step to insert a new OLE object is to create a TOcPart connector. TOcPart
implements all the OLE services that a linked or embedded object is required to provide.
It plugs into OLE, gets the data for the new object, adds itself to the list of parts in OcDoc,
and draws itself on the screen in the position given by TRect.

Handling other OLE commands
For examples showing how to implement other OLE Edit menu commands, look at the
source code for event handlers in OWL/OLEWINDO.CPP.

546 c++ Programmer's Guide

Step 8: Creating a registrar object
The registrar (TOcRegistrar) object records information about the application in the
system registration database, processes any OLE switches on the application's
command line, and notifies OLE that the application is running.

Before you create a TOcRegistrar object, you must declare it.

The following line declares a TOcRegistrar object called OcRegister:
TOcRegistrar* OcRegistrar = 0;

After you declare the TOcRegistrar object, create the object in WinMain. Then, instead of
entering a message loop, call the Run method of the object.

When the Run method returns, the application is ready to shut down. Delete the
registrar object before exiting the application.

The WinMain function of the CPPOCFl example shows all the steps:

int PASCAL
WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

char far* lpCmdLine, int nCmdShow)

try {
TOLEAllocator allocator(O);
MSG msg;

II Initialize OCF objects
OcRegistrar = new TOcRegistrar(::AppReg, 0, string (lpCmdLine), 0);
OcRegistrar->CreateOcApp(OcRegistrar->GetOptions(), OcApp);

II per-instance and per-task initialization cbde goes here

II Standard Windows message loop
while (GetMessage (&msg , 0, 0, 0)) {.

TranslateMessage(&msg);
DispatchMessage(&msg);

catch (TXBase& xbase) {
MessageBox (GetFocus (), xbase. why () . c_str (), "Exception caught", ME_OK);

II free the registrar object
delete OcRegistrar;
return 0;

Chapter 37, Turning an application into an OCX or OLE container 547

Step 9: Compiling and linking the application
Compile the container with the medium or large memory model.

Link the container to the OLE and ObjectComponents libraries.

For more information, see the section "Building an ObjectComponents application" in
Chapter 36.

548 c++ Programmer's Guide

Turning an application into an OLE
server using ObjectComponents

Follow these steps to turn an application into an OLE server using ObjectComponents:

1 Include ObjectComponents header files.

2 Create an OLE memory allocator object.

3 Create OLE registration tables and a document list object.

4 Connect an ObjectComponents application object to the main window.

5 Connect an ObjectComponents view object to the view window.

6 Handle OLE messages.

7 Create a factory callback function.

8 Create an ObjectComponents registrar object.

9 Compile and link the application.

Note If you're creating a new application, consider using AppExpert to save some work.

The topics that follow use code from the examples in the EXAMPLES / OCF / CPPOCF
directory:

CPPOCFO

CPPOCFl

CPPOCF2

A basic windows application.

The CPPOCFO example turned into a basic OLE container that registers itself in the
system's registration database, creates objects to initialize a new document, and
allows standard OLE objects to be embedded.

The CPPOCFl example turned into a basic OLE server.

C hap t e r 3 8, T urn i n 9 a nap p lie a t ion i n t 0 a n 0 L Ese r v e r 549

Step 1 : Including ObjectComponents header files
An OLE server must include the following ObjectComponents header files:

#include <ocf/ocapp.h>
#include <ocf/ocreg.h>
#include <ocf/ocdoc.h>
#include <ocf/ocview.h>
#include <ocf/ocpart.h>

II TOcRegistrar, TOcModule, TOcApp
II registration constants & app mode flags
II TOcDocument
II TOcView
II TOcPart

#include <ocf/ocremvie.h> II TOcRernview
#include <ocf/ocfevx.h> II WM_OCEVENT message crackers

Step 2: Creating an OLE memory allocator object
An OLE application should create an OLE memory allocator (TOleAllocator) object to
initialize the OLE libraries. To create a TOleAllocator object, add this line to the

,application's WinMain function.

TOleAllocator OleAlloc(O)i

Step 3: Creating registration tables and a document list object
Like any other OLE applicatton, an OLE server must register information about itself in
the system's registration database. Registration is performed automatically by
ObjectComponents if you create a registration table for the application and each of its
document types, and then pass the resulting structures to a registrar object. (You will
learn more about the registrar object later.)

To create a registration table, use the registration macros.

This is the application registration table used in the CPPOCF2.CPP example:
BEGIN_REGISTRATION (AppReg)

REGDATA(clsid, "{BD5E4A81-A4EF-101B-B31B-0694B5E75735}")
REGDATA(progid, APSTRING" . Application "

END_REGISTRATION

Note For an OLE server, you must specify the class id and progid keys in the application
registration table. For more information, see the Object Windows Reference.

This is the document registration table used in the CPPOCF2.CPP example.

BEGIN_REGISTRATION (DocReg)
REGDATA(description,
REGDATA(progid,
REGDATA(menuname,
REGDATA(insertable,
REGDATA (verbO,
REGDATA (verbl,
REGDATA(extension,
REGDATA(docfilter,

550 c++ Programmer's Guide

"Sample C Server Document")
APPSTRING" . Document. 1")
"CServer")
"")

"&Edit")
"&Open")
"scd")
"* .scd")

REGDOCFLAGS(dtAutoDelete I dtUpdateDir I dtCreatePrornpt I dtRegisterExt)
REGFORMAT(O, ocrErnbedSource, ocrContent, ocrIStorage, ocrGet)
REGFORMAT(l, ocrMetafilePict, ocrContent, ocrMfPict, ocrGet)

END~GISTRATION

Note For an OLE server, you must specify the progid, description, menu name, insertable,
extension, and formatn keys in the document registration tables. For more information,
see the Object Windows Reference.

To accommodate servers with many document types, the registrar accepts a pointer to a
linked list of all the application's. document registration structures. Each node in the list
is a TRegLink object. Each node contains a pointer to one document registration structure
and another pointer to the next node.

TRegLink *RegLinkHead = 0;
TRegLink regDoc(DocReg, RegLinkHead);

RegLinkHead points to the first node of the linked list. RegDoc is a node in the linked list.
The TRegLink constructor follows RegLinkHead to the end of the list and appends the
new node. Each node contains a pointer to a document registration structure. In
CPPOCF2, the list contains only one node because the server creates only one type of
document. The node points to DocReg.

Step 4: Connecting an ObjectComponents application object to the
main window

In order for the application's main window to receive OLE messages, it must be bound
to an ObjectComponents application (TOcApp) object.

To bind a TOcApp object to the main window,

1 Declare the TOcApp object.

For example, the following line declares a TOcApp object called OcApp:

TOCApp* OcApp

2 Bind the TOcApp object to the main window using the Setup Window method.

You should call the Setup Window method when the main window is created. For
example, in the CPPOCFl.CPP file, the Main Wnd_OnCreate function, which is called
when the main window receives a WM_CREATE message, calls the Setup Window
method.

bool
MainWnd_OnCreate(HWND hwnd, CREATESTRUCT FAR* l*lpCreateStruct*/)

HwndMain = hwnd;
if (OcApp)

OcApp->SetupWindow(hwnd);
return true;

C hap t e r 38, T urn i n 9 a nap p lie at ion in to an 0 L Ese r v e r 551

Note The actual TOcApp object is created by the registrar object in the WinMain function.
(You'lileam more about the registrar object later.)

In an SDI application like the CPPOCF2 sample program, the main window controls the
view window. (Every ObjectComponents application needs an application window and
a view window, as detailed in the next step.) When the main window receives a
WM_SIZE message, it moves the view to keep it aligned with the client area of the main
window. When the main window receives a WM_CLOSE message, it destroys both
itself and the view window.

void
MainWnd_OnSize(HWND hwnd, UINT /*state*/, int /*cx*/, int /*cy*/)
{

if (IsWindow(HwndView))
TRect rect;
GetClientRect(hwnd, &rect);
MoveWindow(HwndView, rect.left, rect.top, rect.right, rect.bottom, true);

, void

MainWnd_OnClose(HWND hwnd)
{

if (IsWindow(HwndView))
DestroyWindow(HwndView);

DestroyWindow(hwnd);

In an MDI application, each child window creates its own view window. The child
window does what the main window does in an SDI application: it creates and manages
a view for the information it displays.

When the main window is destroyed, it should release the TOcApp object.

You shouldn't call delete for a TOcApp object because the OLE system might still need
more information before it allows the view to shut down. ReleaseObject tells the TOcView
object that you don't need it any longer. Theview subsequently destroys itself as soon as
all other OLE clients finish with it. The TOcApp destructor is protected to prevent you
from calling it directly.

Step 5: Connecting an ObjectComponents view object to the
view window

A server musthave a view window that is separate from its main window. Usually the
view window has an invisible border and it exactly fills the client area of the main
window. From the user's point of view, there is only one window in the application. But
ObjectComponents expects to send some event messages to the main window and some
to the view window.

In order for a view window to receive OLE messages, it must be connected to an
ObjectComponents view (TOcRem View) object.

552 ett Programmer's Guide

And in order for a view object to keep track of the objects it contains, it must be
connected to an ObjectComponents document (TOcDocument) object.

To connect a TOcRem View object to the view window,

1 Declare a TOcRem View object and a TOcDocument object:

TOcRemView* OcRemView = 0;
TOcDocument* OcDoc = 0;

2 Create the TOcDocument and TOcRemView objects, and then call the Setup Window
method of the TOcRem View object:

You should call the Setup Window method in the factory callback function, as shown
in the CPPOCF2.CPP example. (The factory callback function is described later.)

HWndView = CreateViewWindow(HwndMain);
OcDoc = new TOcDoc(*OcApp);
OcRemView = new TocRemView(*OcDoc, &DocReg);
if (IsWindow(HWndView))

OcRemView->SetupWindow(HwndView);

When the view window is destroyed, it should delete the TOcDocument object and
release the TOcRem View object.

You shouldn't call delete for a TOcRem View object because the OLE system might still
need more information before it allows the view to shut down. ReleaseObject tells the
TOcRem View object that you don't need it any longer. The view subsequently destroys
itself as soon as all other OLE clients finish with it. The TOcRemView destructor is
protected to prevent you from calling it directly.

void
ViewWnd_OnDestroy(HWND l*hwnd*/)
{

if (OcRemView)
OcRemView->ReleaseObject(); II release the COM object.

OcDoc->Close(); II release the server for each embedded object
delete OcDoc; II delete the document object

Step 6: Handling OLE messages
Because the TOcRemView::SetupWindow method connected the OcRemView object to the
view window, the object sends its event notification messages to the window. All
ObjectComponents events are sent in the WM_ OCEVENT message, so the view window
procedure must respond to WM_ OCEVENT.

long CALLBACK _export
ViewWndProc(HWND hwnd; uint message, WPARAM wParam, LPARAM lParam)
{

switch (message) {
?

II other message crackers go here

Chapter 38, Turning an application into an OLE server 553

return DefWindowProc(hwnd, message, wParam, lParam);
}

The HANDLE_MSG message cracker macro for WM_OCEVENT is defined in the
ocf / ocfevx.h header. The same header also defines another cracker for use in the
WM_OCEVENT message handler.

II Subdispatch OC_VIEWxxxx messages
long
ViewWnd_OnOcEvent (HWND hwnd, WPARAM wParam, LPARAM 1* lParam* I)
{

switch (wParam) {
II insert an event cracker for each OC_VIEWxxxx message you want to handle
HANDLE_OCF (hwnd, OC_ VIEWCLOSE, ViewWnd_OnOcViewClose);

retu;rn true;

Handling selected application events
The only ObjectComponents event that CPPOCF2 can handle in its main window is
OC_APPSHUTDOWN. A server receives this message when the last linked or
embedded object closes down. If the server was launched by OLE, it can terminate. If
user launched the server directly, the server doesn't need to do anything.

const char*
MainWnd_OnOcAppShutDown(HWND hwnd)
{

if (OcRegistrar->IsOptionSet(amEmbedding))
DestroyWindow(hwnd);

The registrar sets the am Embedding flag at startup if it finds the /Embedding switch on
the application's command line. OLE pass the /Embedding switch when it launches a
server to support a linked or embedded object.

Handling selected view events
Each HANDLE_OCF macro calls a different handler function. In the example, the
handler function is called ViewWnd_On,OcViewClose.

bool
ViewWnd_OnOcViewClose(HWND hwnd)
{

DestroyWindow(hwnd);
return true;.

554 c++ Programmer's Guide

A server receives this message when a container closes the document that contains the
server's object. CPPOCF2 responds by closing the view window. The WM_DESTROY
handler also deletes or releases the helper objects associated with the server document.

Painting the document
No special code is required in the server's paint procedure. It always paints its
document the same way, whether or not it is painting an embedded object.

void
ViewWnd_OnPaint(HWND hwnd)
{

PAINTSTRUCT ps;
HOC dc = BeginPaint(hwnd, &ps);
wsprintf (Buffer, "%U", Counter);
TextOut(dc, 0, 0, Buffer, lstrlen(Buffer));
EndPaint(hwnd, &ps);

When the view window is created, it starts off a timer. Every time the view receives a
WM_TIMER message, it increments the value in the global variable Counter and calls
InvalidateRect to make the view repaint itself. On each call, the paint procedure prints the
value of Counter.

Using the new message-handling class
You can also handle OLE messages by implementing the virtual functions of
TOcServerHost, a new ObjectComponents event-handling class.

Step 7: Creating a factory callback function
The factory callback is a function you implement and pass .to the constructor of a
registrar object. When it is time for the application to run, or when a container tries to
insert one of the server's objects, ObjectComponents invokes the callback function.

The factory callback decides what to do by reading the parameters it receives and
examining the running mode flags the registrar has set. The callback is called a factory
because it creates OLE component objects on request.

The requirement that every ObjectComponents application must supply a factory
callback function unifies the process of creating objects. Normally the process varies
depending on whether the application is a container or a server, whether it is
automated, whether it is running as a DLL or an executable program, and whether the
application was invoked by the user directly or by OLE. The factory callback makes it
possible to revise and run the application in a variety of ways without rewriting any
code. For more information about factory callbacks, see the Object Windows Reference.

A set of factory templates such as TOleFactory and TOleAutoFactory make it easy to
implement factories for ObjectWindows programs, but in a straight C++ program you
have to write the factory yourself.

Chapter 38, Turning an application into an OLE server 555

Factory callback procedures can have any name you like, but they must follow this
prototype:

IUnknown* ComponentFactory(IUnknown* outer, uint32 options, uint32 id);

outer is used when aggregating OLE objects to make them function as a single unit. The
factory's return value is also used for aggregation. Because containers don't aggregate,
CPPOCFl ignores outer and returns O.

options contains the bit flags that indicate the application's running mode. The registrar
object sets the flags when it processes the command line switches, before it calls the
factory callback. The factory tests the flags to find out what it should do. The possible
flags are defined by the TOcAppMode enumerated type, and they have names like
amRun and amShutdown.

id is an identifier that tells the factory what kind of object to create.

The factory's parameters can direct the factory to perform one of three actions:

• Initialize the application. The first time itruns, the factory creates a TOcModule object.
TOcModule connects the application to the OLE system by creating a TOcApp·
connector object. The factory also handles aggregation in this phase.

• Run the application. If the amRun flag is set, the factory enters the message loop. If the
server is built as a DLL, then when OLE loads the server the registrar does not set the
amRun flag and the server should not run its own message loop.

• Create an object. The id parameter tells the factory what kind of object to create.
Because CPPOCF2 creates only one kind of object, it checks only whether id is greater
than o. In applications that register multiple document templates, id points to the
template for the requested obje<::t.

The factory callback in CPPOCF2 refers to four global variables. One is OcRegistrar.
Another is OcApp.

TOcRegistrar* OcRegistrar = 0;
TOcApp* OcApp = 0;

TOcApp is the connector object that implements OLE interfaces on behalf of the
application. One of the factory's jobs is to create the connector object when the
application starts and to destroy it when the application shuts down.

Here is the factory callback from CPPOCF2:

IUnknown*
ComponentFactory(IUnknown* outer, uint32 options, uint32 id)

IUnknown* ifc = 0;

II start the application or shut it down
if (!OcApp) {

if (options & amShutdown) II no app to shutdown!
return 0;

OcRegistrar->CreateOcApp(options,OcApp);
else if (options & amShutdown) {
DestroyWindow(HwndMain);
return 0;

556 C++ Pro 9 ram mer's G u ide

II aggregate if an outer pointer was passed
if (id == 0)

OcApp->SetOuter(outer);

II enter message loop if the run flag is set
if (options & amRun) {

if ((options & amEmbedding) == 0) {
HwndView = CreateViewWindow(HwndMain);

MSG msg;

II Standard Windows message loop
while (GetMessage(&msg, 0, 0, 0))

TranslateMessage(&msg);
DispatchMessage(&msg);

II create a document if the id parameter is non-zero
if (id) {

OcDoc = new TOcDocument(*OcApp);
HwndView = CreateViewWindow(HwndMain);
OcRemView = new TOcRemView(*OcDoc, &DocReg);
if (IsWindow(HwndView))

OcRemView->SetupWindow(HwndView);
ifc = OcRemView->SetOuter(outer);

return ifc;

The factory's outer parameter isO unless some other object is aggregating with the newly
created object. Aggregated objects are components that act together as a single unit.
Objects can form aggregations at run time; you do not need access to an object's source
code to aggregate with it. ObjectComponents supports aggregation by passing outer to
the application factory. If outer is non-zero, it points to the IUnknown interface of anther
object that wants the newly created object to subordinate itself. To allow aggregation,
the factory calls the SetOuter method on the object it is creating, either TOcApp or
TOcRemView. SetOuter returns a pointer to the object's own IUnknown interface. The
factory should return the same pointer, too.

Note TOcApp::SetOuter is only called when an application automates itself. CPPOCF2
includes the call anyway in case the application later becomes an automation server.

Step 8: Creating an ObjectComponents registrar object
The registrar (TOcRegistrar) object records informatipn about the application in the
system registration database, processes any OLE switches on the application's
command line, and notifies OLE that the application is running.

Before you create a TOcRegistrar object, you must declare it.

The following line declares a TOcRegistrar object called OcRegister:
TOcRegistrar* OcRegistrar= 0;

C hap t e r 3 8, T urn i n 9 a nap p lie at ion i n to a n 0 L Ese r v e r 557

After you declare the TOcRegistrar object, create the object in WinMain. Instead of
entering a message loop, call the Run method of the object.

When the Run method returns, the application is ready to shut down. Delete the
registrar object before exiting the application.

This excerpt from the CPPOCFl WinMain function shows all the steps:

int PASCAL
WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

char far* lpCmdLine, int nCmdShow)

try {
TOLEAllocator allocator(O);
MSG msg;

II Initialize ObjectComponents objects
OcRegistrar = new TOcRegistrar(::AppReg, ComponentFactory,

string (lpCmdLine), ::RegLinkHead,
hInstance) ;

if (OcRegistrar->IsOptionSet(amEmbedding))
nCmdShow = SW_HIDEi

II per-instance and per-task initialization code goes here

OcRegistrar->Run();

II free the registrar object
delete OcRegistrar;

catch (xmsg& x) {
MessageBox(GetFocus(), x.why() .c_str(), "Exception caught", ME_OK);

return 0;

Step 9: Compiling and linking the application
Compile the server with the medium or large memory model.

Link the server to the OLE and ObjectComponents libraries.

For more information, see the section "Building an ObjectComponents application" in
Chapter 36.

Creating a Dll OLE server
Typically, linking and embedding servers are stand-alone executables that can be
launched directly by the user or invoked indirectly by an OLE container. You can also
implement an OLE server in a DLL. A server built as a DLL is sometimes called an in­
process server because DLL code runs in the same process as its client. The terms EXE
server and server application refer specifically to a server implemented in an EXE.

558 c++ Programmer's Guide

ObjectComponents allows you to create both EXE and DLL servers. If you are using
ObjectWindows, converting from one to the other requires only two simple changes.

Note The discussion and instructions that follow apply to automation servers as well as
linking and embedding servers.

Pros and cons of Dll servers

Advantages
The major advantage of DLL servers is performance. Because a DLL server lives in the
address space of the container, it loads and responds very fast. AnEXE server, on the
other hand, is a separate process and requires some form of intertask communication to
interact with a container. OLE serializes intertask calls and marshals the function calls
with their parameters, packaging them into the proper format for the interprocess
protocoL (The protocol it uses is called LRPC, for Lightweight Remote Procedure Call.) The
process of serializing the drawing commands in a metafile is particularly slow, so DLL
servers substantially increase the speed of creating presentation data for linked and
embedded objects.

Disadvantages
There are a few disadvantages to using a DLL server, however. While OLE supports
interaction between 16-bit and 32-bit executable applications, a 16-bit Windows
application cannot use a 32-bit DLL server and a Win32 application cannot use a 16-bit
DLL server. Also, DLLs do not have message queues. As a result, a DLL server cannot
easily perform a task in the background. ObjectWindows overcomes this limitation by
running a timer so that it can still call the IdleAction methods of objects derived from
T Application or TOleFrame. (ObjectWindows also uses the timer for internal processes
such as command-enabling for tool bars, deleting condemned windows, and resuming
thrown exceptions.)

Because a DLL server becomes part of the container's process, bugs in one can interfere
with the other, making DLL servers sometimes harder to debug.

DLL servers also present user interface dilemmas. For example, when a container
initiates an open edit session with a server, it doesn't matter to the user whether the
server is an EXE or a DLL; the user interface for open editing is the same either way. But
the lifetime of a DLL server is tied to the container that loads it. When the container
quits, the server DLL is unloaded. That can cause problems if the server's user interface
normally allows the user to edit serveral documents at once. If the user were to create a
new document while editing an embedded object, the user might want to continue
editing the new document even after the container quits, but then the server is no longer
in memory. This is a particular problem for MDI servers because the MDI interface
allows users to open multiple documents in a single session. Typically DLL servers do
not allow multidocument editing.

Finally, DLL servers have one other disadvantage. While OLE 2 provides a
compatibility layer to let OLE 2 servers interact with OLE 1 clients, the compatibility
layer works only for EXE servers. A DLL server cannot support an OLE 1 client.

C hap t e r 3 8, T urn i n 9 a nap p lie a t ion i n t 0 a n 0 L Ese r v e r 559

Debugging a DLL OLE server
The same general techniques used to debug DLLs apply to DLL servers. The steps that
follow describe one approach, using Turbo Debugger for Windows to set breakpoints in
a DLL server.

Build and register the DLL server.

Build your server with debugging information.

2 Register the server using the REGISTER.EXE utility.

3 Verify that the registration was successful by running RegEdit and looking for
your servers file types. (RegEdit is a registration editor included with Windows.)

2 Launch Turbo Debugger for Windows and load a container.

Select the File I Open menu option and enter the container's name in the Program
Name field and click the OK button.

The debugger loads the container. If the container was built without debugging
information, you may receive a warning. You can safely ignore it.

3 Load the server's debugging information.

Select View I Module from the debugger's main menu. This activates the dialog
titled "Load module source or DLL symbols." (You can also activate the module
dialog by pressing F3.)

2 Enter the full name of DLL server file in the DLL Name field.

3 Select the Yes option in the Debug Startup field and click the Add DLL button. The
name of your DLL server (followed by !!) appears as the selected entry in the DLLs
& Programs list.

4 Click the Symbol Load button.

If you receive an error message indicating that the DLL is not loaded, press the
Escape key to return to the debugger's main menu and proceed to Step 4. Otherwise,
proceed to Step 5.

Note If you did not receive the error message that the DLL is not loaded, then your DLL
server was already in memory before the container activated it. This happens if
another container is currently running with one of your server's objects. More often,
however, it indicates that your server crashed or was improperly terminated in an
earlier session.

4 Run the container and insert one of your server's objects.

1 Select the Run I Run menu option (or press F9) to start the container.

2 Choose Insert Object from the container's Edit menu and insert your server's
object.

The debugger pops up as soon as OLE loads your DLL server.

560 c++ Programmer's Guide

5 Display the DLL source modules and set breakpo:ints.

1 Choose View I Module from the conta:iner's ma:in menu to see the names of the
source files used to build your server. The file names appear in Source Modules
list.

2 Select source files by double-click:ing the file names.

:3 Set breakpo:ints:in your server.

4 Choose the Run I Run menu option (o~ press F9) to return control to the conta:iner
application.

6 If you skipped Step 4, :insert one of your server's objects :into the conta:iner now.

The debugger stops at the breakpo:ints set ~ your source files and allows you to step
through your server, :inspect variables, and verify the logic of your code.

Tools·for DLL OLE servers
Before running your DLL server, you must record its registration :information :in the .
system registration database. The Register tool does that for you. Another tool, DllRun,
gives you the option of runn:ing your DLL server at any time as a standalone
application, which is sometimes convenient for testing.

REGISTER.EXE
The REGISTEREXE utility registers an ObjectComponents DLL server. On the
command l:ine, pass Register the name of your server followed by the -RegServer switch.
Here is the command to register Tic Tac Toe:

. register ttt.dll -RegServer

Even though the Register utility is a W:indows application, not a DOS application, you
can :invoke it from a W:indows DOS box. This ability is useful :in makefiles. (To :invoke
other W:indowsprograms from a DOS box command l:ine, use the WinRun utility
described:in UTILS.TXT.)

Register can also unregister your server. Umegister:ing removes all entries related to
your server from the registration database. It's good practice to umegister one version
before you register the next. To unregister, use the -UnregServer switch. This command
unregisters Tic Tac Toe:

register ttt.dll -UnregServer

DLLRUN.EXE
The DLLRDN.EXE utility lets you load and run an ObjectComponents DLL server as
though it were a standalone executable program. The ability to run in executable mode
is useful for debugg:ing. It also lets you give customers the choice of running your server
either way without hav:ing to distribute two versions of the same application.

C hap t e r 38, T urn i n 9 a nap p lie a t ion in t 0 an 0 L Ese r v e r 561

On the cOmIl).and line, pass DllRun theprogid of the server. This is the value assigned to
the progid key in the server's registration table. This command runs the Tic Tac Toe
server:

dllrun TicTacToeDll

DllRun launches the DLL server in the executable running mode. The running mode of
an ObjectComponents application is represented by a set of bit flags that you can test by
calling TOcModule::IsOptionSet. (Remember that the application object of a linking and
embedding program derives frorp. both TApplication and TOcModule.)

The running mode bit flags are defined in the TOcAppMode enum. AmEmbedded is set
when the server is invoked by OLE, not by the user. AmExeModule is set in an
application that was built as an EXE. AmExeMode is set in an application that is running
as a standalone executable, even if it Was built as a DLL.

This code tests the flags to determine the server's running mode.

void
TMyApp: : TestMode ()
{

if (IsOptionSet(amExeMode»
if (!IsOptionsSet(amExeModule»

I I is server running as an EXE?
II if so, was it built as an EXE?

II the server is a DLL running in EXE mode
} else {

II the server was built as an EXE
else {
II the server is a DLL running in a client's process

562 C++ Pro 9 ram mer's G u ide

Turning an application into
an OLE automation server

Follow these steps to tum an application into an OLE automation server using
ObjectComponents :

1 Include ObjectComponents header files.

2 Create a registration table.

3 Create a registrar object.

4 Declare automatable methods and properties.

5 Define automatable methods and properties ..

6 Compile and link the automation server.

Later, you can enhance your automation server by localizing symbol names, combining
C++ objects, exposing collections, invalidating deleted objects, or creating a type library.

Note The AutoCalc example in the EXAMPLES/OCF/ AUTOCALC directory illustrates
many of the above steps. AutoCalc draws a calculator on the screen and lets the user
click buttons to perform calculations. AutoCalc automates its classes so that an
automation controller can send commands to do the same things a user does.

Step 1 : Including ObjectComponents header files
An automation server must include the following header files:

#include <ocf/automacr.h> II definition and declaration macros
#include <ocf/ocreg.h> II TRegistrar class

The file list is short because an automation server does not need many of the
ObjectComponents classes used for linking and embedding.

Chapter 39, Turning an application into an OLE automation server 563

Step 2: Creating a registration table
An automation server must set five pieces of information in the application's
registration table: its class ill, program ID, name, description, and command-line
arguments for invoking the automation server.

To create,a registration table, use the registration macros. The following code shows the
registration table for AutoCalc (\OCF\EXAMPLES directory):

BEGIN_REGISTRATION (AppReg)
REGDATA(clsid, "{877B6200-7627-101B-B87C-0000C057CE4E} ")
REGDATA(progid,
REGDATA (appname,

"Calculator.Application")
"AutoCalc"

REGDATA(description,"Automated Calculator 1.2 Application")
REGDATA(cmdline, "/Automation")

END_REGISTRATION

Step 3: Creating a registrar object
An automation server needs a registrar object. Applications that support only
automation without linking and embedding should create a TRegistrar object; objects the

. support auto~ation with linking and embedding should create a TOcRegistrar object.

To create a registrar object, declare a static pointer to hold the TRegistrar*. (Use the
TPointer<> template to ensure that the registrar object is properly deleted when the
program ends.)

TPointer<TRegistrar> Registrar; II initialized at WinMain or LibMain

Then in the main procedure, you should create the registrar object and call its Run
method. The following code shows the creation of the registrar object in'the AutoCalc
example (\OCF\EXAMPLES directory):

try {
::Registrar=new TRegistrar(AppReg,TOcAutoFactory<TCals>(),

string (cmdLine), hlnst);
TAutoCommand::SetErrorMsgHook(ErrorLookup);
if (!: : Registrar->IsOptionSet (amAnyRegOption))

::Registrar->Run();
::Registrar = 0; II deletes registrar by replacing pointer
return 0;

catch (TXBase& x) {
::MessageBox(O, x.why() .c_str(), "OLE Exception", ME_OK);

The first parameter of the TRegistrar c'onstructor is the application registration structure,
conventionally named AppReg. The second parameter is a factory callback function. The
example uses a factory template to create the callback. For an automation server that
doesn't use ObjectWindows, the appropriate template is TOcAutoFactory.

The call to IsOptionSet determines whether the application was passed a command-line
switch asking the application to register itself in the system registration database and
then quit. If not, the application calls Run. The registrar then calls the factory callback,
where the message loop resides. When Run returns, the application has ended.

564 c++ Programmer's Guide

Step 4: Declaring automatable_methods and properties
Automating a class requires building two tables, one in the class declaration and one in
the class implementation. The first table is called the automation declaration, and it
declares which members of the class a controller can reach. The second table is called the
automation definition, and it defines public ~ames that a controller uses to reach each
exposed class member. This section tells how to build an automation declaration.

The automation declaration belongs inside the declaration of an automated class. It
begins with the macro DECLARE_AUTOCLASS and includes one entry for each class
member that you choose to expose. The macros add nested classes that
ObjectComponents instantiates to process commands received from OLE. They do not
alter the structure or size of the original class.

This sample automation declaration exposes functions and data members of a C++ class
that mimics a calculator:

DECLARE_AUTOCLASS(TCalc)

AUTODATA (ACCUffi,

AUTODATA (Opnd,

AUTODATA (Op,

AUTOFUNCO (Eval,

ACCUffi, long,

Opnd, long,

Op, short, AUTOVALIDATE(Val>=OP_NONE && Val<~OP_CLEAR)
Eval, TBool,)

AUTOFUNCOV(Clear, Clear,

AUTOFUNCOV(Display, Display,

AUTOFUNCOV(Quit, Quit,

AUTOFUNCl (Button, Button, TBool, TAutoString,)

AUTOFUNCO (Window, GetWindow, TAutoObject<TCalcWindow>,

AUTOFUNCl (LookAt, LookAtWindow, long, TAutoObject<const TCalcWindow>,)
AUTODATARO(MyArray, Elem, TAutoObjectByVal<TMyArray>,)

The automated class is called TCale. Each AUTOFUNC or AUTODATA macro exposes
one member of TCale. Some of the TCaie member functions are Eval, Clear, Display, and
Quit. Its data members include Aeeum, Opnd, Op, and Elem. TCaie also has other
members that are not automated and are therefore excluded from the declaration table.

No termination macro is needed for an automation declaration. The
END _AUTOCLASS macro that doses an automation definition is not used here. Also,
each line of the declaration ends with a closing parenthesis, not with punctuation.

Note The automation declaration should appear at the end of a class declaration because the
macros can modify the access specifier. If you put the declaration anywhere else, be sure
to follow it immediately with an access specifier (public, protected, or private).

Writing declaration macros
Each of the macros within an automation declaration describes a single method or
property that other programs can manipulate. The different macros expose different
kinds of class members. AUTOFUNCl, for example, exposes a member function that
takes one parameter. AUTOFUNC2V exposes a function that takes two parameters and
returns nothing (void). AUTOPROP exposes a property through Set and Get functions
that insert or retrieve a single value. AUTODATA exposes a data-member that the
controller can read and modify directly.

Chapter 39, Turning an application into an OLE automation server 565

The general form of the automation macros is this:

MACRONAME (InternalName, FunctionName, ReturnType, ArgumentType, Options)

Some of the macros don't use all five parameters. AUTOFUNCI V, for example, doesn't
have a ReturnType because the function has a void return. AUTOFUNCO doesn't have
any arguments, while AUTOFUNC2 has two different arguments. But whatever
parameters are relevant appear in the order shown.

InternalName is an identifier you assign to each automatable property or function. It is
used internally by ObjectComponents for keeping track of the members. The only other·
place you ever use the internal name is in the corresponding entry of the class's
automation definition table. The internal name is a unique identifier for the member.
(the names used in source code are not necessarily unique. They can be overloaded, for
example.)

FunetionName is the name you use in your source code to refer to the same property or
function. FunctionName can be any expression that evaluates to a function call. The
expression must, however, be defined within the scope of the automated object.
ObjectComponents attempts to reach the function through the this pointer.

The internal and function names should be the same unless the function name is
overloaded or uses indirection. For example, suppose a class contains a data member
that points to another object:

TObject* MyObjecti

To expose a function call like MyObjeet->MyFunetion, you should supply an internal
name that does not use indirection. In this case, a good choice would be MyFunetion.

AUTOFUNCOV(MyFunction, MyObject->MyFunction,)

If a function is overloaded, use the same function. name for all versions but give each a
different internal name. ObjectComponents can distinguish the overloaded functions by
the return types and argument types in the parameters that follow.

The ReturnType and ArgumentType parameters can be any fundamental C type, such as
int or char, or a pointer to any fundamental type. Some pointers, however, require
special handling. If the data type is a string (type char*), declare it to be a T AutoString
instead. If the data type is a pointer or a reference to a C++ object, then declare it using
the T AutoObjeet<> wrapper. The type substitutions help ObjectComponents convert
between C++ data types and the VARIANT union type that OLE uses. Pointers and
object references are hardest to convert because they refer to data that is not in the
variable itself. The T AutoString and T AutoObjeet classes provide type information for the
conversion so that ObjectComponents can pass the right information between server
and controller applications.

The Teale example shows how to use T AutoObjeet. One of the functions Teale exposes is
GetFunction, which returns a reference to a Teale Window object.

AUTOFUNCO (Window, GetWindow, TAutoObject<TCalcWindow>,)

When it declares Teale Window as the return type, it makes use of the T AutoObject
template to create a smart, self-describing pointer to a Teale Window object.

566 e+t Programmer's Guide

Providing optional hooks for validation and filtering
The final parameter of every automation macro names a hook function to be called
whenever OLE calls the exposed class member. A hook is code that executes every time
anyone uses a particular class member. ObjectComponents supports hooks to record
commands, undo commands, validate command arguments, and override a
command's implementation. Hooks are always optional.

To install a hook, use one of these macros as the last parameter to any automation
declaration:

• AUTOINVOKE

• AUTORECORD

• AUTOUNDO

• AUTONOHOOK

• AUTOREPORT

• AUTOV ALIDATE

Each macro receives a single parameter containing code to execute. The form of the
required macro varies with its function.

To validate arguments, for example, the code should be a Boolean expression. The Op
data member of Teale holds an integer that identifies an operation to perform, such as
addition or subtraction. The automation declaration installs a hook to be sure that Op is
not assigned a value outside the legal range of operator identifiers.

AUTODATA(Op, Op, short, AUTOVALIDATE(Val>=OP_NONE && Val<=OP_CLEAR))

AUTOVALIDATE introduces the expression to execute for validation. Within the
validation expression, use the name Val to represent the value received from the
controller. When used to validate function arguments, AUTOV ALIDATE uses the
names Argl, Arg2, Arg3, and so on.

Whenever any automation controller attempts to set a value in the Op data member,
ObjectComponents verifies that the new value falls within the range OP _NONE to
OP _CLEAR. If passed an illegal value, ObjectComponents cancels the command and
sends OLE an error result.

The expression passed to AUTOVALIDATE can include function calls.

AUTODATA(Op, Op, short, AUTOVALIDATE(Val>=OP_NONE && NotTooBig(Val))

Now ObjectComponents calls NotTooBig whenever a controller attempts to modify Op.
bool NotTooBig(int Val) {

return (Val <= OP _CLEAR)

C hap t e r 3 9, T urn i n 9 a nap p lie a t ion i n t 0 a n 0 LEa u tom at ion s e r v e r 567

Step 5: Defining external methods and properties
In addition to declaring which of its members are automatable, an automated class must
also create a second table of macros to assign public symbols for referring to the exposed
methods and properties. The public symbols are what other applications see. They
become the controller's interface to an automated OLE object.

Behind the scenes, ObjectComponents links the public names to the C++ object or
objects that you create to implement the OLE object. The automation declaration table
identifies which class members to expose, and the automation definition table assigns
them names.

The automation definition belongs with the class implementation. It begins with the
DEFINE_AUTOCLASS macro and ends with END _AUTOCLASS. Here's the
automation definition for TO:(lc:

DEFINE_AUTOCLASS(TCalc)

EXPOSE_PROPRW(Opnd, TAutoLong, "Operand", "@Operand_",

HC_TCALC_OPERAND)

EXPOSE_PROPRW_ID (0, Accum, TAutoLong , " ! Accumulator", "@Accumulator_",

HC_TCALC_ACCUMULATOR)

CalcOps, "Op",

EXPOSE_METHOD (Eval, TAutoBool," !Evaluate",

HC_TCALC_EVALU ATE)

EXPOSE_METHOD (Clear, TAutoVoid, " !Clear",

EXPOSE_METHOD (Display, TAutoVoid, " !Display",

HC_TCALC_DISPLA Y)

EXPOSE_METHOD (Quit, TAutoVoid, "!Quit",

EXPOSE_METHOD (Button, TAutoBool," !Button",

HC_TCALC_BUTTON)

TAutoString," !Key")

EXPOSE_PROPRO (Window, TCalcWindow, " ! Window" ,

HC_TCALC_WINDOW)

"@Op_", HC_TCALC_OPERATOR)

"@Evaluate_" ,

"@Clear_", HC_TCALC_CLEAR)

"@Display_" ,

"@Quit_", HC_TCALC_QUIT)

"@Button_" ,

"@Window_" ,

EXPOSE_METHOD (LookAt, TAutoLong," ! LookAtWindow" , "@LookAtWindow_" ,

HC_TCALC_LOOKATWINDOW)

REQUIRED_ARG (TCalcWindow, " ! Window")

EXPOSE_PROPRO(MyArray, TMyArray, "!Array", "@Array_" ,

HC_TCALC_ARRAY)

EXPOSE_APPLICATION (TCalc, " !Application", "@Application_",

HC_TCALC_APPLICATION)

END_AUTOCLASS(TCalc, tfNormal, "TCalc" , "@TCalc", HC_TCALC)

The EXPOSE_xxxx macros assign names to methods and properties.
EXPOSE_PROPRW defines a property that controllers can both read and write.
EXPOSE_PROPRO limits a controller's access so it can only read the property value.
REQUIRED _ARG assigns a name to a function argument.

For example, a controller invokes the server's LookAt function by calling LookAt Window
and passing a Window parameter. The DEFINE-'...AUTOCLASS and END _AUTOCLASS
macros assign "TCale" as the public name for objects of type Teale.

Most of the strings in this automation definition begin with a symbol, either! or @.
These symbols indicate that the AutoCale application has in its resources translations for
each public symbol. Each command from an automation controller comes with a locale
ID indicating the language the controller is using. If the controller was written in

568 C++ Pro 9 ram mer' sG u ide

German, for example, it can pass the string" Auswerten" instead of "Evaluate," and
ObjectComponents correctly invokes the Eval function.

Everyitem listed in the automation definition must already appear in the automation
declaration. For example, every ~ction name you define with EXPOSE_METHOD
must have a corresponding AUTOFUNC declaration. Every EXPOSE_PROP must have
a corresponding AUTOPROP, AUTOFUNC, AUTOFLAG, or AUTODATA, depending
on how you implement the property.

The parts of a definition macro
The macros for exposmg methods and properties have five parameters: the internal
name, the type of value returned, the external name, and a documentation string. The
optional fifth parameter allows you to associate a Help context ID with each member.

MACRONAME(InternalName, ReturriType, EXternalName, DocString, HelpContext)

• InternalName is the identifier string you assigned to the member in the automation
declaration.

• ReturnType tells what automation data type the method returns or the property
holds.

• ExternalName is what automation controllers see. A user sending commands from a
controller refers to all properties and methods by their external names.

• DocString should explain to q user what the exposed property or method does. OLE
displays this string if the user asks for help with a particular automation command. If
you omit the document string, set the parameter to o.

• HelpContext, the fifth parameter, is optional. It is a number tr-at identifies a particular
section of a Windows Help file (;HLP). You can create a Help file that describes the
syntax and usage of all the members you expose. If you supply the context IDs for
each member in the class's automation definition, then an automation controller can
ask OLE to display the help screens for the user. A user writing an automation script,
for example, can browse at run time for the list of members your application exposes,
ask to see their document strings, and even ask to see a Help screen about each one.

If you provide a J:Ielp file for automation, you should be sure to register its name
with the typehelp key.

When exposing a method that takes arguments, you also need to add a macro
describing each argument to the definition. Here is the prototype for a function that
takes three arguments, along with the macros needed to define the method for
automation:

II member function declaration
long TCalculator::AddNumbers(short Numl, short Num2 = 0, short Num3 = 0);

II later, this appears after DEFlNE_AUTOCLASS(TCalculator)
EXPOSE_METHOD (AddNurobers, TAutoLong, "AddNumbers", "Sum up to 3 numbers",

HC_ADDNUMBERS)

C hap t e r 3 9, T urn i n 9 a nap p lie a t ion i n t 0 a n 0 LEa u tom a t ion s e r v e r 569

REQUIRED_ARG(TAutoShort, "Numl")
OPTIONAL_ARG(TAutoShort, "Num2", "0")
OPTIONAL_ARG(TAutoShort, "Nurn3", "0")

The first argument, Numl, is required. The others are optional. All three are short
integers. When describing optional arguments, you need to supply a default value. In
the example, 0 is the default value for the two optional arguments ...

OLE conventions suggest that each automation object should have a property
representing the application it belongs to. You can add this property to any automation
definition with the EXPOSE_APPLICATION macro.

EXPOSE_APPLICATION (TMyClass , "Application", "My Application",)

The class passed to EXPOSE_APPLICATION must be the same class passed to the
factory template.

Data type specifiers in an automation definition
Most of the macros in an automation definition ask for a data type of a function's return
value, of each function argument, or of a data member. The possible values for data
types within an automation definition are not fundamental C types. They can be any of
the following:

• An enumeration value previously defined for automation.

• The name of an automated class (such as Teale).

• Any of the predefined classes that ObjectComponents provides to represent intrinsic
C types.

The reason for exposing predefined classes rather than intrinsic C types is to make type
information available when browsing from the controller. For exposed classes,
ObjectComponents can extract type information using RTTI.

The automation data types are defined as structures that contam no data; they simply
retrieve a static value indicating a data type. The identifier values are the same
identifiers that OLE uses to distinguish the data types it supports. All the automation
data types derive from a base called T Auto Val, so they are polymorphic. In effect,
ObjectComponents can ask any value passed through automation to describe its own
data type.

Step 6: Compiling and linking an automation server
Automation servers and controllers can be compiled with any memory model except
Small. (They run fastest in medium model.) And automation servers must be linked
with the OLE and ObjectComponents libraries.

The IDE chooses the right build options for you when you ask for OLE support. To
build any ObjectComponents program from the command line, create a short makefile
that includes the OCFMAKE.GEN file found in the EXAMPLES subdirectory.

EXERES = MYPROGRAM
OBJEXE = winmain.obj myprogram.obj
!include $(BCEXAMPLEDIR)\ocfmake.gen

570 C++ Pro 9 ram mer's G u ide

EXERES and OBJEXE hold the name of the file to build and the names of the object files
to build it from. The last line includes the OCFMAKE.GEN file. Name your file
MAKEFILE and type this at the command line prompt:

make MODEL=F, SYSTEM=WIN32

MAKE, using instructions in OCFMAKE.GEN, will build a new makefile tailored to
your project. The new makefile is calledWIN32Fxx.MAK.

Note The first time the server runs, the registrar object records its information in the
registration database. Be sure to run the server once before trying to use it with a
controller.

For more information, see "Building an ObjectComponents application" in Chapter 36.

Exposing collections of objects
ObjectComponents lets an automated object expose collections of various types as object
properties. The items in a collection can belong to an array, a linked list, or any other
structure that organizes sets of similar items.

To expose a collection, you need to expose methods for manipulating it. These methods
typically include a counter to show the size of the collection, an iterator to walk through
the collection, and a random-access function to retrieve specific items in the collection.

A collection object is an object that returns on request individual items from a set of
related items. It implements the methods that manipulate the items. In the AutoCalc
sample program, the buttons on the face of the calculator are a set of related, similar
objects. AutoCalc defines a new class, TCalcButtons, whose methods let a controller ask
for individual button objects. The buttons themselves are automated objects, so once a
controller receives a button it can send a push command or change the text the button
displays.

Constructing and exposing a collection class
If you are automating an existing application, you may find that it does not already have
a C++ class to act as a collection object. The items might be simple values, structures, or
even system objects represented by handles. You have to create a new C++ class, and
you have to expose the class in the parent's automation tables as a property of the parent
class. .

How you expose the collection in the parent's automation declaration table depends on
what information the parent passes the collection object to construct it. This section
considers several different possible constructors and shows the macros for adding the
collection as a property of its parent.

Instances of the collection class are constructed only when a controller requests it. The
collection object appears to the controller as a property of the parent class. In AutoCalc,
for example, when a controller asks for what is in the Buttons property,
ObjectComponents creates a TCalcButtons object on the fly. The constructor of a
collection object must accept a single argument passed from the parent to initialize itself.

C hap t e r 39, T urn i n 9 a nap p lie at ion i n t 0 an 0 LEa u tom at ion s e r v e r 571

Because TCalcButtons manages a collection of child windows, its parent passes the
handle of the parent window. The constructor looks like this:

TCalcButtons (HWND window) : HWnd (window) { }

For the handle to be passed to the constructor, the parent must add a line to its
automation declaration:

II from the automation declaration of the parent class
DECLARE_AUTOCLASS(TCa~cWindow)

AUTODATARO(Buttons, hWnd, TAutoObjectByVal<TCalcButtons>,)

Buttons is assigned as the internal name of a read-only property whose value is
TCalcWindow::hWnd. For the data type of this property, the table specifies a new class
based on the collection class. TAutoObjectByVal<T> causes an instance of T to be
constructed that persists until all external references to that instance are released (when
the exposed object goes out of scope in the automation controller) ..

TCalc Window must also expos~ the collection property in its automation definition:

II from the automation definition of the parent class
DEFlNE_AUTOCLASS(TCalcWindow)

EXPOSE_PROPRO(Buttons, TCalcButtclns, "!Buttons", "@Buttons_",
HC_TCALCWINDOW_BUTTONS)

When a controller asks for what is stored in the read-only property called Buttons,
ObjectComponents creates a TCalcButtons object and passes h Wnd to its constructor.

Other ways to expose a collection object
Here are three examples showing other ways a parent class might expose a collection
object as one of its properties:

• Case 1: TParent::DocList points to the head of a linked list of TDocument objects. A
new class, TDocumentList, is created as the collection object. The constructor of
TDocumentList receives from its parent the head of the linked list:

TDocumentList(TDocument*)i

The automation declaration of TParent exposes DocList as a read-only property, using
the collection class to assign it a type.

DECLARE_AUTOCLASS(TParent)
AUTODATARO(Documents, DocList, TAutoObjectByVal<TDocumentList>,)

The automation definition of TParent calls the collection Documents and says its type
is TDocumentList.

DEFlNE_AUTOCLASS(TParent)
EXPOSE_PROPRO(Documents, TDocumentList, "Documents", "Doc Collection", 270).

• Case 2: TParent contains a list. It passes this to the collection object, TList, which
extracts list items by indirection through the parent's pointer. The constructor
receives the pointer.

TList(TParent* owner)

The automation declaration of TParent exposes this as a read-only-property, using the
collection class to assign it a type.

572 C ++ Pro 9 ram mer's G u ide

DECLARE_AUTOCLASS(TParent)
AUTOTHIS(List, TAutoObjectByVal<TList>,)

The automation definition of TParent calls the collection List and says its type is TList.
DEFlNE_AUTOCLASS(TParent)

EXPOSE_PROPRO (List, TList, "List", "List of items", 240)

• Case 3: Elem is an array of integers, defined as short Elem[COUNTj. The collection
. object is TMyArray, and the constructor receives from the parent a pointer to Elem.

TMyArray(short* array)

The automation declaration of TParent exposes Elem as a read-only property, using
the collection class to assign it a type.

DECLARE_AUTOCLASS(TParent)
AUTODATARO(MyArray, Elem, TAutoObjectByVal<TMyArray>,)

The automation definition of TParent calls the collection Array and says its type is
TMyArray.

DEFINE_AUTOCLASS(TParent)
EXPOSE_PROPRO(MyArray, TMyArray, "Array", "Array as collection", 110)

Implementing an iterator for the collection
The collection class performs whatever actions you want a controller to be able to
perform with the collection. Common collection methods include Count and GetObject,
which return the number of items in the collection or individual items specified by
number. The only methods you need to implement, however, are the constructor and an
iterator. You have already seen the constructor. An iterator function walks through the
collection and returns successive items on each new call.

The easy way to define an iterator is with the AUTOITERATOR macro, which you add
to the declaration table of the collection object.

DECLARE_AUTOCLASS(TCalcButtons)
AUTOITERATOR(int Id, Id = IDC_FIRSTID+l, Id <= IDC_LASTID, Id++,

TAutoObjectByVal<TCalcButton>(::GetDlgItem(This->HWnd,Id)))

The parameters to AUTOITERA TOR define the algorithm for enumerating objects in
the collection. Each of the five macro arguments represents a code fragment, ordered as
in a for loop.

Declare state variables for keeping track of loop iterations. For example,

int Index;

2 Assign initial values to the state variables. For example,

Index = 0;

3 Test a Boolean expression to decide whether to enter the loop. For example,

Index < This->Total

4 Modify state variables to prepare for the next iteration. For example,

Index++;

C hap t e r 3 9, T urn i n 9 a nap p lie a t ion i n t 0 a n 0 LEa u tom a t ion s e r v e r 573

5 Retrieve one item from the collection. For example,

(This->Array) [Index] ;

Note that the server can return any data type for items-values or objects.

In the AUTOITERATOR parameters, only use commas inside parentheses. Semicolons
can separate multiple statements, but cannot be used to end a macro argument. As in
automated methods, This is defined to be the this pointer of the enclosing C++ class
(here, the collection itself).

AUTOITERATOR puts an iterator in the automation declaration table, but the iterator
member must still be exposed in the definition table. Use the EXPOSE_ITERATOR
macro.

EXPOSE_ITERATOR(TAutoShort, "Array Iterator", HC_ARRAY_ITERATOR)

EXPOSE_ITERA TOR takes fewer parameters than other EXPOSE_xxxx macros do. No
internal or external names are supplied. A class can have only one iterator, and the
external name is always _NewEnum. The first parameter describes the type of the items
returned from the iterator.

The automation type describes the type of the items returned from the iterator, in the
same manner as a function return. The previous example iterates an array of short int
values, so its automation data type is T AutoShort. The second parameter is the
documentation string describing the iterator property, and the third parameter, which is
optional, identifies a context in an .HLP file for more information about the iterator.

From the external side, a script controller sees the enumerator as a property with the
reserved name _NewEnum that returns an object supporting the standard OLE interface
IEnum V ARIANT. This interface contains methods to perform iteration. A controller
makes use of an iterator in a loop like this one, which is written in Visual Basic for
Applications:

For Each Thing in Owner . Bunch ("Thing" is an arbitrary iterator name)
Thing.Member.. (can access methods and properties)
Next Thing (loops through all items in collection)

The AUTOITERA TOR macro generates a nested class definition within the collection
class. For complex iterators, you can choose to code the iterator explicitly in C++. Here is
an example:

class TIterator : public TAutoIterator
public:

ThisClass* This;
/* declare state variables here as members */
void Init() {/* loop initialization function body */}
bool Test() {/* loop entry test function body */}
void Step() {/* loop' iteration function body;}
void Return(TAutoVal& v) {/* current element return: v = expr */}
TIterator* Copy() {return new TIterator(*this);}
TIterator(ThisClass* obj, TServedObject& owner)

: This (obj), TAutoIterator(owner) {}
static TAutoIterator* Build(ObjectPtr obj, TServedObject& owner)
{ return new TIterator((ThisClass*)obj, owner); }

574 C++ Pro 9 ram mer's G u ide

} ;

friend class TIterator; II make iterator a friend of the surrounding
II collection class

Adding other members to the collection class
In addition to exposing an iterator, a collection class by convention exposes a Count
method to return the number of items in the collection, an Index method for random
access to members of the collection, and optionally, methods such as Add and Delete to
manage the collection externally. Here, for example, is the complete code for the
TCalcButtons collection class in AutoCalc:

class TCalcButtons {
public:

II class used only temporarily to expose collection

} ;

TCalcButtons(HWND window) : HWnd(window) {}
short GetCount() { return IDC_LASTID - IDC_FIRSTID;
HWND GetButton(short i) {return ::GetDlgItem(HWnd, i + IDC_FIRSTID+l);}
HWND HWnd;

DECLARE_AUTOCLASS(TCalcButtons)
AUTOFUNCO (Count, GetCount, short,)
AUTOFUNCl (Item, GetButton, TAutoObjectByVal<TCalcButton>, short,

AUTOVALIDATE(Argl >= 0 && Argl < This->GetCount()))
AUTOITERATOR(int Id, Id = IDC_FIRSTID+l, Id <= IDC_LASTID, Id++,

TAutoObjectByVal<TCalcButton>(::GetDlgItem(This->HWnd,Id)))

DEFINE_AUTOCLASS(TCalcButtons)
EXPOSE_PROPRO(Count, TAutoLong, "!Count", "@CountBu_", HC_TCALCBUTTONS~COUNT)
EXPOSE_ITERATOR(TCalcButton, "Button Iterator", HC_TCALCBUTTONS_ITERATOR)
EXPOSE_METHOD_ID(O, Item, TCalcButton," !Item", "@ItemBu_", 0)

REQUIRED_ARG(TAutoShort, "! Index")
END_AUTOCLASS(TCalcButtons, tfNormal, "TButtonList", "@TCalcButtons",

HC_TCALCBUTTONS)

Exposing data for enumeration
An automation server might also need to expose enumerated values. Use OLE
enumerations when you want to expose a set of internal data values and refer to them
with localizable strings. For example, AutoCalc defines the enumerated type operators
to represent different actions the calculator can perform with numbers.

enum operators {
OP_NONE = 0,
OP_PLUS,
OP_MINUS,
OP_MULT,
OP_DIV,
OP_EQUALS,
OP_CLEAR,

} ;

C hap t e r 3 9, T urn i n 9 a nap p lie at ion i n t 0 a n 0 LEa u tom at ion s e r v e r 575

As the calculator receives input, it stores the pending mathematical operation in a
private data member called Op.

short Op;

Operations are identified by different OP JXXX constants. The Eval method performs the
pending operation using the number just entered and the total in the calculator's
accumulator. AutoCalc exposes the Op data member to automation so that a controller
can enter operators directly. Here's the automation declaration:

AUTODATA(Op, Op, short, AUTOVALIDATE(Val>=OP_NONE && Val<=OP_CLEAR))

The automation declaration shows that the Op data member holds a short value, but the
symbols OP _PLUS and OP _MINUS are defined only within the server program. The
controller can't use them when it passes commands. Ideally the controller should be able
to use more readable strings such as "Add" and "Subtract" in scripts.

The place for declaring public symbols is the automation definition. Use the
DEFINE_AUTOENUM macro to begin a table defining symbols for the enumerated
values.

DEFINE_AUTOENUM(CalcOps, TAutoShort)

AUTOENUM ("Add" , OP _PLUS)

AUTOENUM ("Subtract", OP _MINUS)

AUTOENUM("Multiply", OP_MULT)

AUTOENUM("Divide", OP_DIV)

AUTOENUM("Equals", OP_EQUALS)

AUTOENUM("Clear" , OP_CLEAR)

END_AUTOENUM(CalcOps, TAutoShort)

The AUTOENUM macro takes two parameters: an enumeration string and a constant
value. The enumeration string (which can be localized) is the external name exposed
through OLE for use by controllers.

The macros that begin and end the enumeration table assign the name CalcOps to this
enumerated type. They also associate the automated data type T AutoShort with this
enumeration because the enumerated values are all short ints.

The following table lists the C++ types that can be enumerated and the corresponding
automation types for exposing them.

bool TAutoBool
double TAutoDoubl
float TAutoFloat
int TAutolnt
long TAutoLong
short TAutoShort
const char* T AutoString

Creating a table of enumerated values results in a new data type that you can use to
describe arguments and return values in an automation definition. Now that
ObjectComponents understands the CalcOps enumerated type, you can use the type to
define the Op property.

576 C++ Pro 9 ram mer's G u ide

EXPOSE_PROPRW(Op, CalcOps, "Op", "@Op_", HC_TCALC_OPERATOR)

This line says that Op is aread-write property holding a value of type CalcOps. When the
controller tries to place "Multiply" or "Divide" in the Ops property, ObjectComponents
correctly translates the string into t~e value defined as OP _MULT or OP _DIV.

Combining multiple C++ objects into a single
OLE automation object

The complete set of member functions and properties that belong to a single automated
OLE object can in fact be implemented by a combination of c++ objects. An automated
calendar, for example, might begin with a TCalendar class. But the automated OLE
calendar object might need to expose some methods and properties that don't happen to
belong to the C++ TCalendar object.

For example, the background color might be inherited from TCalendar's base class, and
some of the input functions might belong to separate control windows in the calendar's
client area. In that case, the automation declaration for TCalendar should delegate some
tasks to other C++ classes.

To combine several C++ objects together into a single OLE object, add macros to the
automation definition table.

II these lines belong in the definition block that begins
DEFINE-AUTOCLASS(TCalendar)

EXPOSE_INHERIT (TCalendarWindow, "CalendarWindow")
EXPOSE_DELEGATE (TWeekForwardButton, "WeekForward",

GetWeekForwardButton(this))

Any exposed classes must also be automated. In other words, TCalendar Window and
TWeekForwardButton must also have their own AUTOCLASS tables. By exposing both of
these classes in the TCalendar automation definition, you combine all the exposed
members from all three classes into a single symbol table. When OLE sends an
automation command to the calendar, ObjectComponents searches for the matching
class member in TCalendar, then in TCalendar Window, and finally in
TWeekForwardButton.

The EXPOSE_DELEGATE macro takes as its third parameter a conversion function. To
reach members in. the delegation class, ObjectComponents needs a pointer to an object
of that class. The conversion function has one parameter for receiving a this pointer to
the object where the definition table appears. The function must return a pointer to the
delegation object. Also, it must be a global function. For example, if TCalendar has a data
member that points to the Week Forward button, this might be the conversion function.

TWeekForwardButton *GetWeekForwardButton (TCalendar* this) {
return (this->m_ForwardButton)i

You don't need to provide a conversion function when exposing an inherited function
or property because in that case ObjectComponents can create its own templatized
conversion function to reach the base class.

Chapter 39, Turning an application into an OLE automation server 577

Another way to coordinate the actions of several automated objects within a single
application is to give one object access functions that return the other objects.

For example, the sample program AutoCalc automates five different classes, but no
class delegates to any other. When a controller asks for an object from the AutoCalc
server, it receives only the automated TCaie object. TCale, however, has a property called
Window that holds a TCaleWindow object. TCaleWindow, in tum,has a property that
holds the collection of buttons. The collection object returns individual button objects.
Without properties or functions that return the other objects, the controller would never
be able to reach them. Be sure to add access functions if necessary.

Telling OLE when the object goes away
If there is a chance that your program might delete its automated object while still
connected to a controller, then you need to tell OLE when the object is destroyed. This
precaution only matters if the logic of your program might cause the object to be
destroyed through nonautomated means while an OLE session is still in progress. If
OLE attempts to use an automation object whose underlying C++ object has been
destroyed, it attempts to use an invalid pointer. A single function call prevents the error
by sending OLE an obituary to announce that the object no longer exists.

II place this line in the destructor of your automated class
::GetAppDescriptor()->InvalidateObject(this);

GetAppDeseriptor is a global function returning a pointer the application's
T AppDeseriptor object. InvalidateObjeet is a T AppDeseriptor method. It tells OLE the object
that was passed to the descriptor's InvalidateObject function is now invalid.

Although the object's destructor is a good place to call InvalidateObjeet, you can call it
anywhere. If you do not own the class you are automating, it might not be possible to
modify the destructor. This works, too:

TMyAutoClass* MyAutomatedObject = new TMyAutoClass;
?

::GetAppDescriptor()->InvalidateObject(MyAutomatedObject)i
delete MyAutomatedObjecti

The object pointer you pass to InvalidateObjeet must always represent the most derived
form of the object. In other words, if the pointer is polymorphic, it must point to the class
as it was created and not to any of its base classes. Calling InvalidateObject from the
object's own destructor is safe because in that case this always points to the most
derived class. If you call InvalidateObject from somewhere else, you might need the
global function MostDerived to ensure that you are invalidating the correct object.

appDesc->InvalidateObject(::MostDerived(MyPolymorphObject,
typeid(MyPolymorphObject)));

In the example, MyPolymorphObject is a pointer to a polymorphic object, so it might
point to a base class or to an object of any type derived from the base. MostDerived
converts the pointer, making it point to an object of the type farthest down the
hierarchy, the one furthest descended from the base.

578 C++ Pro 9 ram mer's G u ide

Besides calling InvalidateObject, there are two other ways let OLE know when the object
is destroyed . .one way is to derive the object's class from TAutoBase. The only code in
T AutoBase is a virtual destructor that calls InvalidateObject for you. This example declares
a class called TMyAutoClass. OLE always knows when any object of type TMyAutoClass
is destroyed.

class TMyAutoClass: public TAutoBase { /* declarations */ };

The other way is to put the AUTODETACH macro in the class's automation declaration
table. This works without having to change the class derivation, but it does add one byte
to the size of the class. -----

Localizing symbol names
The symbols that appear in an automation definition become visible to other OLE
programs. Users writing scripts can see and use the symbols. The symbols become part
of the program's user interface. Programs intended for international audiences need to
translate the strings for different markets. For example, a property named "Color" in
English should be called "Couleur" in a French script, "Farbe" in a German script, and
"Colour" in a British one.

The external names in macros like EXPOSE_METHOD and EXPOSEYROPRW are
wrapped in objects of type TLocaleString, a localizable substitute for char* strings. A
TLocaleString object contains code that searches a program's executable file for XLAT
resources. All access to the XLATresources is performed by TLocaleString. .

The TLocaleString class is defined in winsys/lclstrng.h. You don't need to refer to
TLocaleString directly. The macros and headers bring it in for you.

TLocaleString is very efficient. If the controller is working in the server's native language,
then TLocaleString realizes the strings in the source code already match the locale and it
doesn't waste any time reading resources.

Usually ObjectComponents determines the application's default language by reading
the system's locale ID at compile time and storing it in the compiled program. You can
override the default by including a line like this in your source code.

#include "winnls .h~1 / / include olenls.h for 16-bit applications
TLangld TLocaleString::NativeLangld=MAKELANGID(LANG_ENGLISH,SUBLANG_ENGLISH_US);

~The olenls.h header holds national language support constants, including the
MAKELANGID macro and the language and dialect symbols.

When it must resort to resources, TLocaleString does everything it can to minimize the
time spent searching for translations. When it finds a string to match the current locale,
it caches the string in memory and never has to load it again. That means only the first
attempt to use each translated strmg incurs a performance hit. Subsequent requests are
satisfied quickly. Once in memory, the strings are stored in a hash table so no space is
wasted on duplicates. If TLocaleString fails to find a requested string, it remembers the
failure as well and won't try to find the same string a second time.

Chapter 39, Turning an application into an OLE automation server 579

The same localization mechanism works with strings your application registers. Some
strings, such as the progid, should not be localized, but you can localize the following
registration keys:

• appname

• debugdesc

• description

• formatn

• menuname

• perm name

• typehelp

• verbn

The following excerpt from the AutoCalc registration tables shows where to put the
localization prefixes. The appname, description, and typehelp keys are localized.

BEGIN_REGISTRATION (AppReg)

REGDATA(clsid, "{877B6200-7627-101B-B87C-OOOOC057CE4E}")
REGDATA(progid, APP_NAME ".Application")

REGDATA (appname, "@AppName")
REGDATA(description,"@Desc")

REGDATA(typehelp, "@typehelp")
REGDATA(version, "1.2")

END_REGISTRATION

AutoCalc supplies translations for the appname, description, and typehelp strings in its
resource script. Here are two of them.

Desc XLAT "Automated Calculator 1.2 Application"

Typehelp

GERMAN "Automatisierte Taschenrechner-Anwendung 1.2"
XEND

XLAT "autocalc.hlp"
GERMAN "acalcger.hlp"

XEND

ObjectComponents determines the proper language for registration by examining the
system settings at run time, but it is possible to override the system setting with the
Language command-line switch.

OLE does its best to help you out by passing a number that indicates the user's language
setting. This number is called a locale ID, or LCID. LCIDs are defined by OLE and the
Win32 API. They consist of two numbers, one identifying a language and one
identifying a subdialect within the language. When OLE passes an automation call into
an automated application, it also passes an LCID. The automation controller might

. determine the LCIDfrom the system settings at run time, or the person using the
controller might choose a locale.

An automated program is expected to examine the LCID and respond with
appropriately translated strings. ObjectComponents eases the burden by letting you
build a resource table to supply localized versions of any strings you use. When

580 C++ Pro 9 ram mer's G u ide

handling automation calls, ObjectComponents automatically searches the table to find
strings that match whatever language the controller requests.

ObjectComponents searches first for a string with the correct language and dialect IDs.
Failing that, ObjectComponents searches for a match on primary language only,
ignoring dialect. If still no match is found, ObjectComponents simply uses the original,
untranslated string.

Putting translations in the resource script
To build a table of translations in your resource (~RC) file, use the XLATresource type.

#include "owl/locale.rh"

Left XLAT FRENCH "Gauche" GERMAN "Links" SPANISH "Izquierda" XEND

Right XLAT FRENCH "Droit" GERMAN DUTCH "Rechts" XEND

Center XLAT ENGLISH_UK FRENCH GERMAN "Centre" SPANISH "Centro" XEND

Help XLAT FRENCH "Aide" GERMAN "Hilfe" SPANISH "Ayuda" XEND

The locale.rh header file defines XLAT as a type of resource. XLAT and XEND are
delimiters for all the translations of a single string. The same header also defines macros
to represent various locale IDs. FRENCH, DUTCH, and ENGLISH_UK, for example,
each represent a different LCID. UK is a subdialect of ENGLISH.

Each line in the localization table begins with a resource identifier. These examples use
the original string itself to identify the resource that holds its translations.

A localization table is not obliged to provide the same set of translations for each string.
For example, it is legal to provide FRENCH_FRANCE, FRENCH_BELGIUM, and
SWEDISH for one string, but only FRENCH and ITALIAN for the next string. Also, if
several languages use the same string, it is legal to write the string only once, as in this
example:

Center XLAT ENGLISH_UK FRENCH GERMAN "Centre" SPANISH "Centro" XEND

In British English, French, and German, "Center" is translated as "Centre." in Spanish, it
becomes "Centro." Writing "Centre" only once keeps the .EXE file smaller.

Marking translatable strings in the source code
Composing a resource table is the first step, but ObjectComponents still needs to be told
when to use the table you have provided. In the automation definition, mark each
translatable string by prefixing it with an exclamation point.

EXPOSE_METHOD (Clear, TAutoVoid, "!Clear", "Clear accumulator", HC_TCALC_CLEAR)

This line from AutoCalc exposes a class method named Clear. Clear returns void. The
third parameter, !Clear, gives the external name that controllers see. The initial
exclamation point tells ObjectComponents to look in the program's executable file for a
localization resource whose identifier is the string Clear.

Clear XLAT GERMAN "AllesL6schen" XEND

The exclamation point prefix also marks Clear as the language-neutral form of the string.
If an automation controller decides to use the locale ID GERMAN, then

C hap t e r 39, T urn i n 9 a nap p lie a t ion i n t 0 an 0 LEa u tom at ion 5 e r v e r 581

ObjectComponents tells it that the exposed property is called AllesLoschen. If the
controller sets any other locale ID, it receives the neutral form, Clear.

Argument names as well as properties and methods can be localized.

EXPOSE_METHOD (Button, TAutoBool, "!Button", "Button push sequence",
HC_TCALC_BUTTON)

REQUlRED_ARG (TAutoString, "! Key")

In determining what to call both the Button method and its one argument,
ObjectComponents will search the program's localization resources for Button and Key.

Button
Key

XLAT GERMAN "Schaltflache" XEND
XLAT GERMAN "Taste" XEND

The algorithm that searches for resources is not sensitive to case. Under 16-bit
Windows, the algorithm does not allow the use of extended characters (such as
characters with diacritical marks) in resource names. However, the strings stored in a
resource can use any characters and do preserve their case.

A problem arises in naming your resource if the string contains spaces. Resource
identifier strings cannot have spaces. Consider what happens if you try to localize the
description string for this property:

II illegal: no spaces allowed in resource identifiers
EXPOSE_PROPRW(Caption, TAutoString, "!Caption", "!Window Title",

HC_TCALCWINDOW_TITLE)

It's a good idea to localize descriptions as well as property names, but "Window title" is
not a legal resource identifier. In cases like this, use @ instead of! as the localization
prefix, and follow it with any legal identifier.

EXPOSE_PROPRW(Caption, TAutoString, "!Caption", "@Caption_",HC_TCALCWINDOW_TITLE)

The @ prefix tells ObjectComponents that the string is only a resource identifier and
should never be displayed po matter what locale the controller requests. To make the
distinction even clearer for programmers reading the code, strings used only as
identifiers conventionally end with an underscore, as in Caption.

To make "Window Title" the language-neutral string, do not assign it a locale ID in the
localization resource.

Caption_ XLAT "Window Title" GERMAN "Fenster-Aufschrift" XEND

Now a controller that requests any locale setting other than GERMAN is given the
string Window Title.

Besides! and @, there is a third localization prefix: #. The # prefix must be followed by
digits that identify a localization resource by number.

EXPOSE_PROPRW(Caption, TAutoString, "!Caption", "#10047",HC_TCALCWINDOW_TITLE)

This example tells ObjectComponents to look for a resource numbered 10047. This is
how the resource should appear in the .RC file:

10047 XLAT "Window Title" GERMAN "Fenster-Aufschrift" XEND

582 C++ Pro 9 ram mer's G u ide

Creating a type library
A type library is a b:inary file conta:in:ing information about an automation server. The
information describes the objects, properties, and methods the server supports. It is used
by programm:ing tools, such as automation controllers, that call the server. Controllers
can query the type library for documentation and help with specific objects. The location
of its type library is one of the pieces of information an automation server records :in the
system's registration database.

ObjectComponents can create a type library for you from information :in the server's
automation definitions. To make a type library, call the server and set the -TypeLib
switch on the command l:ine.

myapp -TypeLib

This command causes ObjectComponents to create a new file, MYAPP.OLB,:in the same
directory as MY APP.EXE. ObjectComponents also records the library's location :in the
registration database.

The -Type Lib flag also accepts an optional path and file name.

myapp -TypeLib = data\mytyplib

ObjectComponents places MYTYPLIB.OLB:in a subdirectory called DATA under the
directory w~ere MYAPP.EXE resides.

You can also make ObjectComponents generate multiple type libraries :in different
languages with the -Language switch. This command produces two type libraries, one
:in German and one :in Italian.

myapp -Language=10 -TypeLib=italiano -Language=7 -TypeLib=deutsch

The number passed to -Language must be hexadecimal digits. The W:in32 API defines
SOC as the locale ID for the Belgian dialect of the French language. For this command
l:ine to have the effect you want, myapp must supply Belgian French str:ings :in its XLAT
resources.

If you have a Help file, be sure to register it us:ing the typehelp and helpdir registration
keys. Use the f:inal parameter of the EXPOSE_xxxx macros :in the automation definition
table to associate Help context IDs with each command. If the automation controller
asks for help on a command, OLE launches the Help file automatically.

Chapter 39, Turning an application into an OLE automation server 583

584 c++ Programmer's Guide

Turning an application into an
OLE automation controller

Follow these steps to tum an application into an OLE automation controller using
ObjectComponents:

1 Include ObjectComponents header files.

2 Create a memory allocator object.

3 Declare proxy classes.

4 Implement proxy classes.

5 Create and use proxy objects.

6 Compile and link the application.

Note In order to send commands to an OLE object, the automation controller must know the
names of methods and properties the object's server exposes to OLE. Generally these
names come from the server's type library. The controller uses the names in creating
C++ proxy classes whose methods send commands to the server. It's possible to browse
through available automation objects at run time and discover what commands they
support, but to make use of commands discovered at run time usually requires a
scripting language.

Step.1: Including ObjectComponents header files
. An automation controller must include the following header files:

#include <ocf/autodefs.h>
#include <ocf/automacr.h>

The autodefs.h file defines automation classes such as T AutoProxy; the automacr.h file
defines the macros a controller uses to implement proxy class methods.

Chapter 40, Turning an application into an OLE automation controller 585

Step 2: Creating a memory allocator object
Automation controllers must create a memory allocator (TOleAllocator) object to
initialize the OLE libraries. To create a TOleAllocator object, add this line to your
program.

TOleAllocator OleAlloc(O);

Note To initialize the OLE libraries under Win32, you must pass a zero argument to the
TOleAllocator constructor. Under 16-bit Windows, you can also pass a pointer to a
custom memory allocation function.

The constructor for TOleAllocator initializes the OLE libraries and its destructor releases
them. Create an object of type TOleAllocator before you begin OLE operations and be
sure the object is not destroyed until all OLE operations have ended. A good place to
create the TOleAllocator is at the beginning of WinMain or OwlMain.

Step 3: Declaring proxy classes
A proxy class is a C++ stand-in for an automated OLE object. You create a proxy class
whose interface corresponds to that of the OLE object. By deriving the proxy class from
T AutoProxy, you connect it to ObjectComponents. When a T AutoProxy object is
constructed, it calls an OLE API to request the IDispatch interface of the automated
object that the proxy represents. When you call a function of the proxy class, the proxy
sends the corresponding command to the automation server.

An automation controller declares one proxy class for every type of object it wants to
control. In simple cases, a single proxy class might be enough. Controlling a complex
application that creates several different kinds of automatable objects requires more
proxies. To control a spreadsheet, for example, you might need a proxy application
class, a proxy spreadsheet class, and a proxy cell class.

The easiest way to declare and implement proxy classes is with the AutoGen utility.
AutoGen reads the server's type library and generates C++ source code for the proxy
classes a controller needs to send any commands to the server. Simply compile the
generated code into your application, construct proxy objects when you need them, and
call their member functions to send commands.

As an example of a proxy class, here is the code that AutoGen generates for the
automated class Tealc in the AutoCalc sample program. The opening comment shows
descriptive information from AutoCalc's entries in the registration database including
the value of AutoCalc's version, clsid, and description registration keys. The comments for
individual members show the documentation strings that AutoCalc assigns to each
member in its automation definition table, the dispatch ID that ObjectComponents
assigned to identify each command, and whether the member is a function or a
property.

II TKIND_DISPATCH: TCale 1.2 {877B6207-7627-101B-B87C-OOOOC057CE4E}\409
II Automated Calculator Class
class .TCalc : public TAutoProxy {

public:

586 ett Programmer's Guide

} ;

TCalc() : TAutoProxy(Ox409) {}
II Pending operand
long GetOperand () i I I [id (1), prop r /w]
void SetOperand(long)i II [id(l), prop r/w]
II Calculator accumulator
long GetAccumulator () i I I [id (0), prop r Iw]
void SetAccumulator(long)i II [id(O), prop r/w]
II Pending operation
TAutoString GetOp{); II [id(3), prop r/w]

void SetOp(TAutoString); II [id(3), prop r/w]
II Evaluate operand, op
TBool Evaluate (); I I . [id (4), method]
II Clear accumulator
void Clear(); II [id(5), method]
II Update display
void Display(); II [id(6), method]
II Terminate calculator
void Quit(); II [id(7), method]
II Button push sequence
TBool Button(TAutoString Key); II [id(8), method]
II Calculator window
void GetWindow(TCalcWindow&)i II [id(9), propget]
II Test of object as arg
long LookAtWindow(TCalcWindow& Window); II [id(10), method]
II Array as collection
void GetArray(TCalcArray&); II [id(ll), propget]
II Application object
void GetApplication(Tcalc&); II [id(12), propget]

The constructor of an automation proxy class must pass to its base class, T AutoProxy, a
number representing a locale setting. The locale tells what language the automation
controller uses when it sends commands to objects. In the example, the number is Ox409,
which is the locale ID for American English. AutoGen chooses this locale by reading the
system settings when it runs, but you are free to change it to whatever locale you prefer.

The function members of class TCale each send a different command to the calculator
object. Read-write properties get two commands, one for getting the value and one for
setting it. GetOp and SetOp, for example, write and read the value representing the next
operation the calculator will perform. Other commands, such as Display and Quit, make
the calculator perform some action.

Step 4: Implementing proxy classes
After declaring methods, you implement them. Each method must send a command
through ObjectComponents to the automated object. Here is part of the implementation
code that AutoGen generates for the TCaie proxy object. Every method simply calls the
same three macros.

II TKIND_DISPATCH: TCalc 1.2 {877B6~07-7627-101B-B87C-OOOOC057CE4E}/409
II Automated Calculator Class

C hap t e r 4 0, T urn i n 9 a nap p lie at ion i n t 0 a n 0 LEa u tom at ion con t roll e r 587

TAutoString TCale::GetOp()
{

AUTONAMESO ("Op")
AUTOARGSO ()
AUTOCALL_PROP_GET

void TCale::SetOp(TAutoString val)·
{

AUTONAMESO ("Op")
AUTOARGSO ()
AUTOCALL_PROP_SET(val)

TBool TCale:: Evaluate ()
{

AUTONAMESO ("Evaluate")
AUTOARGSO ()
AUTOCALL_METHOD_RET

void TCale::Clear()
{

AUTONAMESO ("Clear")
AUTOARGSO ()
AUTOCALL~THOD_VOID

void TCale: : Display ()
{

AUTONAMESO ("Display")
AUTOARGSO ()
AUTOCALL_METHOD_VOID

void TCale::Quit()
{

AUTONAMESO ("Quit")
AUTOARGSO ()
AUTOCALL~METHOD_VOID

void TCale::GetWindow(TCaleWindow& obj)

AUTONAMESO ("Window")
AUTOARGSO ()
AUTOCALL_PROP_REF(obj)

The three macros supply all the code needed for each function. The first two macros,
AUTONAMES and AUTOARGS, specify what arguments you want to pass. They are
explained in the following table. None of the methods in the example takes any
arguments. The AUTOCALL_xxxx macros tell whether the command is a function or a
property and what kind of value it returns.

588 c++ Programmer's Guide

AUTOCALL_METHODn(id, arg ...)

AUTOCALL_METHODnV(id, arg ...)

AUTOCALL_METHODn_REF(id, prx, arg ...)

AUTOCALL_PROPGET(id)

AUTOCALL_PROPSET(id, arg)

AUTOCALL_PROPREF(id,obj)

Calls a method with n arguments that returns a value.

Calls a method with n arguments that returns void.

Calls a method with n arguments that returns a proxy
object.

Retrieves the value of a property.

Assigns a value to a property.

Retrieves the value of a property that contains an object.
(Objects must be passed by reference.)

Specifying arguments in a proxy method
The first two macros in the implementation of a proxy method indicate what arguments
you intend to pass. The server can decide that some arguments to a method are
optional. You must pass all required arguments, and you can choose to pass any of the
optional arguments.

For example, a server might expose a method that takes ten arguments, of which five are
optional. Optional arguments have default values. Your controller might only need one
of the optional arguments, always using the default values for the other four. In that
case, you can set up your proxy implementation so that you have to pass only six
arguments instead of ten.

The AUTONAMES macro lists the optional arguments that you want to use. It lists
them by the names the server assigns to them. (AutoGen reads the names from the
server's type library for you.)

The first argument passed to an AUTONAMES macro always identifies the automation
method that this proxy command invokes. The names of arguments come after. If the
automation server uses ObjectComponents, then the names used in AUTONAMES
come from the server's automation definition table. The function name is the external
name in an EXPOSE_METHOD macro, and the argument names come from subsequent
OPTIONAL_ARG macros.

The second parameter in a proxy method implementation, AUTOARGS, lists all the
arguments that the controller chooses to pass for this command. It tells what will be
pushed onto the command stack. AUTOARGS must always list all the required
arguments in order first. At the end of the list are any optional arguments from the
AUTONAMES macro. If five arguments are required and the controller wants to pass
only one of five optional arguments, then the list in AUTOARGS includes six
arguments, the optional one last.

The names used for required arguments are just dummy names. Their position in the
list indicates which argument they represent. The names for optional arguments must
be the same as the names used in AUTONAMES. For optional arguments, the name
itself is what identifies a particular parameter.

C hap t e r 40, T urn i n 9 a nap p lie a t ion i n t 0 an 0 LEa u tom at ion con t r 0'" e r 589

Note When an automation command passes an object as a parameter or a return value, be
sure to pass by reference, not by value. For example, access functions Jor a property
implemented as an object should follow this form:

GetObjectX(X& obj);
SetObjectX(X& obj);

Passing objects by assignment makes it impossible to provide C++ type safety.

Step 5: Creating and using proxy objects
Through a proxy class you can talk to an OLE object, but first the object has to exist. The
T AutoProxy class defines a member function called Bind that asks OLE to create an
object. The parameter passed to Bind determines the type of object to create. The most
convenient identifier is usually a name the automation object has recorded in the
registration database. (The object's unique clsid number also works but is harder to
remember and write.) This is what an automation controller does to make OLE create a
calculator object:

TCalc calc; II create proxy object
calculator.Bind("Calc.Application"); II make OLE create real object

The string passed to Bind is what the automation server registered as its progid:
REGDATA(progid, "Calc.Application") II from server's registration table

The destructor for T AutoProxy calls the Unbind method, so when calculator goes out of
scope, the calculator object is destroyed.

While calc remains in scope, the controller program issues commands by calling
methods on the proxy object. The commands in the following example add 1234 + 4321
and display the result in the calculator's window.

calc.SetOperand(1234);
calc.SetOp("Add");
ca,lc. Evaluate () ;
calc.SetOperand(4321);
calc.Button("+") ;
calc.Evaluate();
calc. Display () ;

Step 6: Compiling and linking an automation controller
Automation servers and can be compiled with any memory model except Small. (They
run faster in medium model.) And they must be linked with the OLE and
ObjectComponents libraries.

The integrated development environment (IDE) chooses the right build options for you
when you ask for OLE support. To build any ObjectComponents program from the
command line, create a short makefile that includes the OCFMAKE.GEN file found in
the EXAMPLES subdirectory.

590 C++ Pro 9 ram mer's G u ide

EXERES = MYPROGRAM
OBJEXE = winmain.obj rnyprogram.obj
!include $ (BCEXAMPLEDIR)\ocfmake.gen

EXERES and OBEXE hold the name of the file to build and the names of the object files
to build it from. The last line includes the OCFMAKE.GEN file. Name your file
MAKEFILE and type this at the command line prompt:

make MODEL=F, SYSTEM=WIN32

MAKE, using instructions in OCFMAKE.GEN, will build a new makefile tailored to
your project. The new makefile is called WIN32Fxx.MAK.

For more information, see "Building an ObjectComponents application" in Chapter 36.

Enumerating automated collections
Many automated objects have properties that represent a set of related items-for
example, integers in an array, structures in a linked list, or a group of objects such as the
buttons on the face of the calculator. To expose a collection, the automation server must
implement a collection object with access functions. As OLE sees it, a collection object
implements the standard IEnum V ARIANT interface.

Here is what a controller must do to use a collection object and enumerate items in the
server:

Declare a proxy collection class

2 Implement the proxy collection class

3 Declare a collection property

4 Send commands to the collection

Declaring a proxy collection class
A proxy collection class usually supplies member functions to find out how many items
are in the collection, to retrieve individual items randomly by their position in the list,
and to enumerate the items in the list sequentially. (On the server's side,
ObjectComponents calls this iterating. The controller uses the server's iterator to
enumerate the items.)

Here is the proxy class that AutoGen creates to enumerate the collection of calculator
buttons in AutoCalc.

II TKIND_DISPATCH: TButtonList 1.2 {877B6204-7627-101B-B87C-OOOOC057CE4E}\409
II Button Collection
class TButtonList public TAutoProxy {

public:
TButtonList() TAutoProxy(Ox409) {}
II Button Count
long GetCount (); II [id(l), propget]
II Button Iterator

C hap t e r 4 0, T urn i n 9 a nap p lie a t ion i n t 0 a n 0 LEa u tom at ion con t roll e r 591

} ;

void Enumerate(TAutoEnumerator<TCalcButton>&); II [id(-4), propget]
II Button Collection Item
void Item (TCalcButton&, short Index); II [id(O), method]

The only thing here that wasn't in the previous proxy classes is the use of the
TAutoEnumerator template. T AutoEnumerator encapsulates the code for manipulating
the IEnum V ARlANT interface of a collection object. The type you pass to the template is
the type of value the collection contains. In the example, TCalcButton is another proxy
class representing an automated button object in the server.

Implementing the proxy collection class
This is the code that AutoGen writes to implement the proxy collection class. Count and
Item are straightforward. The Enumerate method does several new things, however.

II TKIND_DISPATCH: TButtonList 1.2 {877B6204-7627-101B-B87C-OOOOC057CE4E}\409
II Button Collection
long TButtonList: :GetCount()
{

AUTONAMESO ("Count")
AUTOARGSO ()
AUTOCALL_PROP_GET

void TButtonList::Enumerate(TAutoEnumerator<TCalcButton>& obj)
{

AUTONAMESO(DISPID_NEWENUM)
AUTOARGSO ()
AUTOCALL_PROP_REF(obj)

void TButtonList::Item(TCalcButton& obj, short Index)
{

'}

AUTONAMESO ("Item")
AUTOARGS1 (Index)
AUTOCALL_METHOD_REF(obj)

First, the parameter to the Enumerate method is a reference to an object of the type that
the collection contains. On successive calls, Enumerate returns collection items through
this parameter. The data type for the parameter must use the T AutoEnumerator template.

Second, the method is identified to AUTONAMESO as DISPID_NEWENVM. This is a
predefined constant from oleauto.h representing the standard dispatch ID (which
happens to be --4) for an enumerating command. The AUTONAMESO macro accepts a
dispatch ID instead of a function name. (The other AUTONAMES macros, those that
expect argument names as well, require a name string for the function.)

Finally, an enumerator is a property of its object and it passes an object by value; so the
enumerator implementation ends with the AUTOCALL_PROP _REF macro.

592 C++ Pro 9 ram mer's G u ide

Declaring a collection property
TButtonsList is now fully defined as a proxy class for the server's collection object.
What's needed now is a way to ask the controller for the collection. In AutoCalc, the
collection of buttons is a property of the calculator's automated window object.

class TCalcWindow public TAu to Proxy {
public:

TCalcWindow () TAutoProxy (Ox409) {}
II Button Collection
void GetButtons(TButtonList&); II [id(5), propget]

The window class exposes the collection through a GetButtons command that returns
the value of the collection property. GetButtons needs the TButtonList class to declare its
parameter type.

Sending comm~nds to the collection
This code from the sample program CallCalc sends the calculator commands that press
its buttons. In the code, window is the automated window object. TCalcButton is the
proxy class for individual buttons. TButtonList is the proxy object for the collection.

TButtonList buttons;
window.GetButtons(buttons);

II declare a collection object
II bind buttons to automated collection object

TAutoEnumerator<TCalcButton> list; II create an enumerator of TCalcButton objects
buttons.Enumerate(list); II bind list to the server's iterator
TCalcButton button;

for (i = IDC_FIRSTBUTTON;; i++)
list.Object(button);

II declare a button object

II bind button to an automated button object
button.SetActivate(true); II press the calculator button
list.Step()11 list.Step advances to the next item in list

The buttons, list, and button variables are each created in one step and then bound to a
server object in another. Each of them is a proxy object for something the server created;
buttons, for example, is the proxy object for a collection of automated button objects.
Simply declaring a proxy object, however, does not attach it to any particular automated
object in the server.

To be able to send commands, a proxy object must be bound to something with an
automation interface (IDispatch or IEnum V ARIANT). Because the server defines the
collection of buttons as a property of the calculator's window, this command retrieves
the collection and connects ~it to the buttons proxy object:

window. GetButtons (buttons) ; II bind buttons to automated collection object

The two other lines where the comments indicate binding takes place similarly connect
list to the collection's iterator object and button to individual button objects in the
collection.

C hap t e r 4 0, T urn i n 9 a nap p lie a t ion i n t 0 a n 0 LEa u tom a t ion con t roll e r 593

A simple assignment statement might seem more intuitive than the binding step, but
the only value that could be assigned in these cases is simply a pointer to an automation
interface. A pointer carries no type information; a pointer to a collection's IDispatch
looks just like the pointer to a button's IDispatch. Binding to an existing C++ object
preserves information about what kind of automation object it represents.

594 e++ Programmer's Guide

Visual Database Tools
developer's guide

Visual Database Tools enables you,the C++ programmer, to create robust 16-bit or 32-
bit database applications quickly and easily using database components. Your database
applications can work directly with data created by desktop databases such as Paradox,
dBASE, the Local InterBase Server, and ODBC data sources. You can also build database
applications for remote database servers such as InterBase, Oracle, Sybase, Microsoft
SQL Server, Informix, and ODBC data sources. Client applications can be scaled easily
between mission-critical network-based client/ server databases, and local databases on
a single machine.

You use the Visual Database Tools components to design your database forms within
the C++ Integrated Development Environment (IDE). You then write event handlers
that respond to events that occur as your application runs.

'This introduction to Part VI presents the various database tools that are available to you
and the underlying architecture of Visual Database Tools. It also presents an overview
of how to develop applications for either desktop or remote servers, and the
methodology for developing database applications in general.

You should have a working knowledge of the Database Management System (DBMS)
that your database applications will access, whether it is a desktop database such as
dBASE or Paradox, or an SQL server.

'This part assumes you have a basic understanding of relational databases, database
design, and data management. There are many third-party books covering these topics
if you need to learn more about them.

Par t V I , Vis u a IDa tab a seT 0 0 I s d eve lop e r 's 9 u ide 595

How this part is organized
After introducing you to Visual Database Tools, the following chapters provide the
details:

Chapter 41, "Creating applications with Visual Database Tools," introduces you to the
concept of components and gets you started creating your own database applications
with Visual Database Tools.

Chapter 42, "Using data-access components and tools," provides an overview and
general description of data-access components in the context of application
development.

Chapter 43, "Using data-aware controls," describes basic features common to all data­
aware controls, then describes how and when to use individual components.

Chapter 44, "Using SQL in applications," describes how to use SQL syntax directly by
using the TQuery component.

Chapter 45, "Building a client/serVer application," describes how to develop
applications that can access remote SQL servers such as Oracle, Sybase, Informix, and
InterBase servers, as well as local Paradox and dBASE databases.

Chapter 46, "Programming with third-party VBX controls," discusses how to use
third-part VBX controls in your applications.

Chapter 47, "Using local SQL," describes naming conventions, syntax enhancements,
and syntax limitations for local SQL.

Visual Database Tool architecture
You build a Visual Database Tools application using data-access components, which let
the applications you write access databases on either desktop or remote servers, and
data-aware components, which lets users view and edit the data in the databases. A
database application uses Visual Database Tools to communicate with the Borland
Database Engine (BDE), which in tum communicates with the databases. The following
figure illustrates the relationship of the Visual Database Tools and database applications
to the BDE and data sources:

596 C++ Pro 9 ram mer's G u ide

Figure VI.1 Visual Database Tools database architecture

Visual
Database

Tools

BDE
Configuration

Utility

The following table summarizes the database features of the Visual Database Tools.

Table VI.1 Database features summary

Data-access components

Data-aware components

Borland Database Desktop

Borland Database Engine (BDE)

Borland Database Engine Configuration Utility

Borland Database Engine SDK online reference

Access databases, tables, and stored procedures; run
queries; and move data.

Provide user interface to data in databases.

Create, index, and query Paradox and dBASE tables,
and SQL databases. Access and edit data from all
sources.

Access data from file-based Paradox and dBASE
tables, and from local InterBase server databases.

Create and manage database connection aliases used
by the BDE.

Provide the online documentation for the Borland
Database Engine Software Development Kit.

These features enable you to build database applications with live connections to
Paradox and dBASE tables through the Borland Database Engine. In many cases, you
can create simple database applications with these components without writing a line of
code.

The Borland Database Engine is built into Visual Database Tools components so you can
create database applications without needing to know anything about the Borland

Par t V I, Vis u a I D a tab a seT 0 0 I s d eve lop e r 's 9 u ide 597

Database Engine. Borland's Delphi, Visual dBASE, and Paradox use the Borland
Database Engine also, as does Novell's Quattro Pro.

The Borland C++ installation program installs drivers and sets up configuration for
Paradox and dBASE so you can begin working with tables native to these systems
immediately. The BDE Configuration Utility lets you tailor database connections and
manage database aliases.

Advanced BDE features are available to programmers who need more functionality.
These features include local SQL, which is a subset of the industry-standard SQL that
enables you to issue SQL statements against Paradox and dBASE tables; low-level API
function calls for direct engine access; and ODBC support for communication with other
ODBC-compliant databases, such as Microsoft Access and Btrieve. .

The Borland Database Engine uses aliases as convenient shorthand names for often-used
data sources, whether local or remote. The BDE Configuration Utility enables you to
define and modify aliases that your database applications can use immediately. For
more information about defining aliases, see the online Help for the BDE Configuration
Utility.

Data sources
Visual Database Tools applications obtain their data through the Borland Database
Engine. The different data sources that the Borland Database Engine can use are shown
in Table VI.2.

Table VI.2 Database application data sources

Paradox Tables created with Paradox, dBASE, or Database .DB
Desktop (DBD). Each table is in a separate file.

dBASE Tables created with Paradox, dBASE, or Database .DBF
Desktop (DBD). Each table is in a separate file.

ASCII files Tables created withParadox,dBASE, or Database .TXT
Desktop (DBD). Each table is in a separate file.

Local InterBase Server Database created with InterBase Windows ISQL. .GDB
Multiple tables in a single database file.

SQL Database Server: Database created with server-specific tools, or the Depends on server
Orade, Sybase, Microsoft DBD, accessed across a network with SQL Links.
SQL Server, Informix,
InterBase

ODBC data sources Databases such as Microsoft Access, Btrieve, Depends on data source
FoxPro, etc.

Visual Database Tools components
The Visual Database Tools components are divided into two categories: data-access
components and data-aware controls. You will use both to create your database
applications.

598 C++ Pro 9 ram mer's G u ide

Data-access components
The data-access components are a set of components that encapsulate the Borland
Database Engine and simplify database access. The architecture used to build these
components is the Component Object Model (COM), the underlying architecture of
OLE. Because all these components support the IDispatch interface, they can be used
from an OLE Automation Controller such as Microsoft Excel. If you want to program
using the COM interface, use the ... INCLUDE \ VDBT\bdtc.h header file.

You don't have to learn how to program with OLE or COM, however. If your
application uses ObjectWindows or some other class library, you can program using
ObjectWindows style classes in ... INCLUDE \ VDBT\bdto.h. If you use this interface to
the data-access components, you can use a syntax that simplifies programming with
components and their properties, methods, and events. This book and the online Help
system explain how to program using the ObjectWindows style classes with the
simplified syntax.

Although the data-access components are not visible while an application is running,
you can see them in the C++ IDE. When Visual Database Tools is installed, the
components appear as VBX components on the Data Access page of the Controls palette
of the Dialog editor within the IDE. By placing a combfuation of data-access
components and data-aware controls on a form you build in the Dialog editor, and
setting property values with the Property Inspector, you can access "live" data in your
database even as you continue to design your database form.

These are the data-access components:

Table V!.3 Data-access components

TDatabase

TDataSource

TQuery

TStoredProc

TTable

Copies a table structure or its data. Can be used to move entire tables from
one database format to another.

Sets up a persistent connection to a database, especially a remote database
requiring a user login and password.

Acts as a conduit between a dataset component (TTable, TQuery, or
TStoredProc) and a data-aware component such as TDBGrid.

Uses SQL statements to retrieve data from one or more database tables via
the BDE and supplies it to one or more data-aware components through a
TDataSource component, or uses SQL statements to send data from a
component to a database via the BDE. To query dBASE or Paradox tables,
usefocalSQL. .

Enables an application to access server stored procedures. Sends data
received from a component to a database through a TDataSource
component and the BDE.

Retrieves data from a database table via the BDE and supplies it to one or
more data-aware components through a TDataSource component. Sends
data received from a component to a database via the BDE.

Par t V I, Vis u a IDa tab a seT 0 0 I s d eve lop e r ' s 9 u ide 599

For more information about programming with data-access components, see Chapter
42, "Using data-access components and tools."

Data-aware controls
The data-aware controls are user-interface components that you can use to create forms­
based database applications. Like data-access components, data-aware controls are VBX
controls that are visible while you are designing forms. Unlike data-access components,
they are also visible when your application runs.

Like the data-access components, you have programmatic access to them if your
application uses the ObjectWindows libraries. At run time, you can set properties, call
methods, and respond to events of the data-aware controls. VBX events become as easy
to respond to as regular Windows events. Each data-aware control has its own header
file, which is an extension to the ObjectWindows class libraries.

You can also use these VBX controls with any C or C++ application as standard VBX
controls.

You use data-aware controls together with data-access components. While the data­
access components give you access to your data, the data-aware controls provide a way
to view and modify that data. They provide a user interface for database applications,
whether the application accesses a local database file, or a remote database server.

The following table lists the data-aware controls.

Table V/'4 Data-aware components

TDBComboBox

TDBEdit

TDBGrid

TDBImage

TDBListBox

600 c++ Programmer's Guide

Combo box that displays or edits values in a column of a table.

Edit control that displays and edits a value from a column of the
current record.

Grid that enables the viewing and editing of data in a table.

Image control that displays, cuts, or pastes graphical BLOB images to
and from a table.

List box that presents a list of choices to the user. When the user
selects one of them, that item becomes the value in a column of the
current record.

Table VI.4 Data-aware components (continued)

TDBLookupList

TDBMemo

TD BNavigator

TDBRadioGroup

TDBText

List box that displays values mapped through another table at run
time.

Memo control that displays or edits text BLOB data from a column in
a table.

Navigation control with buttons that move a table's current record
pointer forward or backward; start Insert or Edit mode; post new or
modified records; cancel Edit mode; and refresh display to retrieve
updated data.

Radio group populated with radio buttons that display or set column
values.

Text control that displays a value from a column of the current
record.

To see how data-aware controls are used in an application, read Chapter 43, "Using
data-aware controls."For a complete description of each Visual Database Tools
component, see Part V of the C++ Language Reference:

Database Desktop
Database Desktop is a database 'maintenance and data definition tool. It enables
programmers to query, create, restructure, index, modify, and copy database tables,
including Paradox and dBASE files, and SQL tables. You do not have to own Paradox or
dBASE to use Database Desktop with desktop files in these formats.

Database Desktop can copy data and data dictionary information from one format to
another. For example, you can copy a Paradox table to an existing database on a remote
SQL server. For a complete description of Database Desktop, see the online Help for
Database Desktop.

Developing applications for desktop and remote servers
, Visual Database Tools allows you to develop and deploy database client applications

for both desktop and remote servers. You can adapt an application developed for the
desktop to access data on a remote SQL server. The user interface can stay the same
even if the source of the data changes. To an end user, the database application looks the
same whether it accesses a local database file or a remote SQL database.

Part VI, Visual Database Tools developer's guide 601

For simple applications that use TQuery components to access desktop data, the
transition to a remote server might be as simple as changing the data source. For other
applications, more·significant changes may be needed. Some of these changes are the
result of differing conventions and concurrency issues between desktop and SQL
databases.

For example, desktop databases like Paradox and dBASE are record-oriented. They lock
and access a single record at a time. Each time a user changes a record, the changes are
written to the database immediately. Desktop database users can see a range of records,
and can efficiently navigate forward and backward through that range.

In contrast, data in SQL databases is set-oriented, and designed for simultaneous
multiuser access. Record ordering must be specified as part of an SQL query. To
accommodate multiuser access to data, SQL relies on transactions to govern access. You
can find more information about working with transactions in Chapter 45, "Building a
client! server application."

Database application development methodology
Developing database applications with Visual Database Tools is similar to developing
other types of software, but there are important distinctions and challenges that must be
addressed. The methodology presented in this section should be used as a guideline
that you can adapt to meet your specific business needs.

Development scenarios
Because an application's design usually depends on the structure of the database it will
access, the database must be defined before the application can be developed.

Note Database development (also called data definition) is a part of the overall development
process, but is beyond the scope of this manual. For more information, refer to the
numerous books about relational database design.

There are four possible scenarios for database application development:

• The database does not yet exist or must be redefined.

&! Use the Database Desktop utility to define Paradox and dBASE tables. For more
information, see the online Database Desktop help.

@ For SQL servers, use the tools provided with the server or the Database Desktop.
For example, for an InterBase Workgroup Server, use Windows ISQL. For more
information, see the InterBase Data Definition Guide.

• The database exists on a desktop or LAN data source (Paradox or dBASE) and the
application accesses it there. If the Borland Database Engine and the data source are
on the same machine as the application, then the application is a standalone (not
client/ server) application.

• The database exists on a desktop data source, and is being up sized to an SQL server.
This scenario is discussed in Chapter 47, "Using local SQL."

602 C++ Pro 9 ram mer' sG u ide

• The database exists on an SQL server and the application will access it there. This is a
standard client/ server application. For information specific to developing a ciient/
server application, see Chapter 45.

Database application development cycle
The goal of database application development is to build a product that meets end
users' long-term needs. While this goal may seem obvious, it is important not to lose
sight of it throughout the complexities and often conflicting demands of the
development process. To create a successful'application, it is critical to define the end
users' needs in detail early in the development process.

The three primary stages of database application development are:

• Design and prototyping
• Implementation
• Deployment and maintenance

There are database and application tasks in each of these phases. Depending on the size
and scope of the development project, the database and application tasks may be
performed by different individuals or by the same individuaL Often, one team or
individual is responsible for the database tasks of the project, and another team or
individual is responsible for the application tasks.

Figure VI.2 Development cycle

Development
cycle

For client/ server applications, the database and application tasks become more distinct,
as they run on different platforms, often with different operating systems (for example, .
a Unix server and Windows 95 client).

When development responsibilities are divided this way, it is important to clearly
delineate in the design phase which functions will be performed by the database server
and which will be performed by the client application. Usually, the functional lines are
clear cut. But database processes such as stored procedures can sometimes perform
functions that can also be performed by the client application. Depending on the
expected deployment configuration, application requirements, and other
considerations, the design can allocate such functions to either client or server.

It is also important to realize that database application development is by its nature an
iterative process. Users may hot fully understand their own needs, or may define
additional needs as development proceeds. User interface elements are always refined

Par t V I, Vis u a I D a tab a 5 e Too I s d eve lop e r '5 9 u ide 603

as they are used. Also, changing business needs will change requirements over time.
Generally, a number of iterations through the development cycle will be required before
an application can meet a significant portion of its requirements.

Design phase
The design phase begins with defining requirements. In consultation with
knowledgeable end users, define the functional specifications for the database and
applications. Det~rmine which aspects of the functional requirements will be
implemented in the database design, and which aspects will be implemented in the
applications.

Forclient/server applications, often certain functions can be performed either by the
server or by the application; for example, a complex mathematical transform function
could be performed either by the cp.ent application or by a stored procedure on the
server. The hardware deployment configuration will generally determine whether such
functions are best performed on the server or client. For example, if the client platforms
are expected to be low-end desktop pes, and the server platform is expected to be a
high-end workstation, it will probably be best to run computation-intensive functions
on the server. If the hardware configuration changes, then it is possible to move the
function between client and server in a later iteration.

Implementation phase
In the implementation phase, you use Visual Database Tools to build and test the
application conceived in the design phase. During the implementation phase, you
should use a duplicate data source, that is, a data source that has the same essential
structure as the production database, but with a small subset of representative data. You
should probably not develop an application against a production database, because the
untested application might corrupt the data or otherwise interfere with normal database
activities.

Note It's possible you might have other applications running that use the Borland Database
Engine. If so, you should close those applications before you begin testing or debugging
your application to preserve the stability of your system.

If your application will ultimately use a desktop data source, make copies of the ,
required tables with Database Desktop and populate them with representative
"dummy" data;

If the application will ultimately use a remote data source (an SQL server), you can take
two approaches during the implementation phase:

• Develop and test the application against a non-production database on the Local
InterBase Server.

• Develop and test the application against a non-production database on the server.

The first approach has the advantage that it is isolated on the development platform(s),
and so it will not interfere with other server activities. It will not consume server
resources or increase network traffic. Its primary disadvantage is that only standard
SQL server features can be used and tested during this phase, if you are using a server
other than InterBase for the deployed application.

604 c++ Programmer's Guide

The second approach enables you to surface all server-specific features, but will
consume network and server resources during testing. This approach can be dangerous,
as it is conceivable that a programmer error could cause a server to crash during testing.

Deployment phase
In the deployment phase, the client/ server application is put to the acid test: it is handed
over to end users. To ensure that the application's basic functionality is error-free,
deploy a prototype application before attempting to deploy a production application.

Because the ultimate judges of an application's usefulness are its users, developers must
be prepared to incorporate changes to applications arising from their suggestions,
changing business needs, and for general enhancement (for example, for usability).
Sometimes application changes may require changes to the database, and conversely,
changes to the database may require application changes. For this reason, application
developers and database developers should work closely together during this phase. As
features and enhancements are incorporated into the application, the application moves
iteratively closer to completion.

Deploying a client/ server application requires addressing a number of 'special issues
including connectivity and multiuser access. These issues are discussed in Chapter 45.

Deploying an application
Deploying an application means giving it to the end users and providing the software
they need to use the application in a production enviionment. Typically, when
deploying a database application, you will create a package that includes all the files
that end users need to run the application and access data sources.

Important Before distributing any files, enSure that you have the proper redistribution rights. As
described in the Borland C++ license agreement, you have distribution rights for the
Borland Da~abase Engine (including Paradox and dBASE support).

For information on deploying support for remote server access, see Chapter 45. For
client/ server applications, you also must ensure that the necessary communications
software (for example, TCP /IP interface) is installed on the client platforms. This
software is provided with databases servers. For more information, see your server
documentation.

Deploying 16·bit applications
~ To deploy a 16-bit application that uses COM classes only, you must provide:

• Your application .EXE file and .DLL files
• Required ancillary files (for example, a README file ot .HLP files for online Help)
• Redistribution disks for Borland Database Engine (16-bit) support
• BDT50C.DLL, which contains the data-access COM classes

~ If your application uses VBX controls (including Visual Database Tools components),
your users need all files listed above and:

Par t V I, Vis u a I D a tab a seT 0 0 I s d eve lop e r 's 9 u ide 605

• BIVBX30.DLL, which is required for all applications that use VBX controls
• BDTSOACC.VBX, which contains all the data-access components
• BDTSOCTL.VBX, which contains all the data-aware components
• BDTSOEX.DLL, which converts the Visual Basic protocol to 16-bit Borland Database

Engine
• Plus any third-party VBX controls your application uses

If your application uses VBX controls, but not Visual Database Tools components,
you need not distribute BDTSOC.DLL, BDTSOACC.VBX, BDTSOCTL.VBX, or
BDTSOEX.DLL.

» If your application uses OLE, you must provide the following:

• BDTSOCF.DLL, which contains the 16-bit data-access COM classes
• BDTSO.REG
• BDTSO.TLB

Deploying 32·bit applications
» To deploy a 32-bit application that uses COM classes only, you must provide:

• Your application .EXE file and .DLL files.
• Required ancillary files (for example, a README file or .HLP files for online Help)
• Redistribution disks for Borland Database Engine (32-bit) support
• BDTSOCF.DLL, which contains the 32-bit data-access COM classes

» If your application uses VBX controls (including Visual Database Tools components),
your users need all files listed above and:

• BIVBX30.DLL, which is required for all applications that use VBX controls
• BDTSOACC.VBX, which contains all the data-access components
• BDTSOCTL.VBX, which contains all the data-aware components
• BDTSOEXF.DLL, which converts the Visual Basic protocol to 32-bit Borland Database

Engine
• Plus any third-party VBX controls your application uses

If your application uses VBX controls, but not Visual Database Tools components or
OLE, you need not distribute BDTSOCF.DLL, BDTSOACC.VBX, BDTSOCTL.VBX, or
BDTSOEXF.DLL.

» If your application uses OLE, you distribute the following:

• BDTSOCF.DLL, which contains the 32-bit data-access COM classes
• BDTSO.REG
• BDTS032.TLB

» For applications running under Windows 9S and using Visual Database Tools
components, you need to include these two files:

• BIVBX30.32C
• BIVBX30C.DLL

606 c++ Programmer's Guide

> For applications running under Windows NT and using Visual Database Tools
components, you need to include these two files:

• BNBX30.32N
• BNBX30N.EXE

Deploying BDE support
When you deploy a database application, you must ensure that the client platform has
the correct version of the Borland Database Engine installed. Borland c++ includes the
Redistributable Borland Database Engine, with its own installation utility, that you can
redistribute with your applications. When you deploy an application, simply include a
copy of the correct (16- or 32-bit) Redistributable Borland Database Engine disk.

Note The Borland license agreement requires you to make all the files in Redistributable
Borland Database Engine available to your application users. This requirement enables
users to install the new version of the BDE for Borland C++ without interfering with
existing Paradox and dBASE applications. Therefore, to comply with the terms of the
Borland license agreement, you must use either the Redistributable BDE disks to
distribute BDE, or a third-party deployment tool that has been certified by Borland.

Language drivers
The Borland Database Engine provides the ability to localize applications with language
drivers. The language driver DLL loads the drivers specified by Paradox or dBASE
tables or in IDAPI.CFG for server databases. The language drivers are files with
extension .LD installed in the LANGDRV subdirectory of the BDE directory.

Important For language drivers to load correctly, the WIN.IN! file must have the following entry,
assuming the default installation directory:

[Borland Languag Drivers]
LDPath = C:\IDAPI\LANGDRV

ODBCSocket
The Borland Database Engine comes with an ODBC Socket. It has been certified with
Microsoft's 2.0 ODBC Driver Manager. If you have a different version of the ODBC
Driver Manager:

• Back up your existing ODBC.DLL and ODBCINST.DLL.

• Copy the version 2.0 files, ODBC.NEW and ODBCINST.NEW, from your BDE
directory to your WINDOWS\SYSTEM directory.

• Rename these files to ODBC.DLL and ODBCINST.DLL.

Note The ODBC 2.0 Driver Manager does work with ODBC l.x ODBC drivers.

Using third-party VBX controls
Many excellent third-party VBX controls are available for your applications. If you have
invested in these VBX controls, or are thlnking of doing so, Borland C++ includes a

Part VI, Visual Database Tools developer's guide 607

Visual Basic emulator that can accommodate levell, level 2, and level 3 VBX controls in
both l6-bit and 32-bit applications.

For more information about programming with third-party VBX controls, see Chapter
46, "Programming with third-party VBX controls."

608 c++ Programmer's Guide

Creating applications with Visual
Database Tools

When you are creating applications with Visual Database Tools, you are programming
with components. This chapter introduces you to the notion of components and gets
you started creating your own database applications with Visual Database Tools.

Programming with components
What is a component? How does a component differ from a C++ class?

A component is a functional entity that can be completely characterized by its inputs and
outputs. A component can be used and tested as a unit, independent of the context in
which the component is eventually used. The internal implementation of a component
is completely hidden from the user.

Properties
A property is a value, or state, associated with the component. You might think of a
property as a variable whose value can be directly read or written to, as you would in a
C++ class.

Properties are more, however. Usually your application needs to have an action
associated with the change in value of the property. For example, if your application
changes the color of a visible object, the color should change visually onscreen.
Properties, like methods, usually impart behavior to an object.

Visual Database Tools components haye properties. Using a specific component, you
can set the value of many properties before your application begins running so the
characteristics of the component appear as you want them to. This is called setting the
properties of a component at design time.

Chapter 41, Creating applications with Visual Database Tools 609

Through the code that you write, you can also change the value of properties while your
application is running, and you'll see results of the change in value immediately
onscreen. This is called setting the properties of a component at run time.

By changing property values, you are giving input to the component and changing its
characteristics.

Methods
The methods of a component function just as they do for any C++ class. Methods impart
behavior to a component in that they cause the component to perform some operation
or action.

When your application calls a method, passing data to it through parameters, you are
again giving input to the component.

Events
Components can output information to the users of the component. This output takes
the form of event notification. The component informs other components that use the
component that a particular type of event has occurred. An event might occur when a
method of the component is called or a property value changed, or an event could occur
when the user uses the component, such as selecting an element in a list box.

It is up to you, the programmer, to write an event handler, code that responds to the
event when it occurs. It's not necessary to respond to every event in a component. You
choose those events that are important to your application and write the code that
handles those events, so that your application responds to the event in a manner that
meets the needs of your application.

So far, this chapter has discussed the properties, methods, and events of components on
a theoretitallevel. The next sections explain how to work with the properties, methods,
and events of the Visual Database Tools components. The code examples are written
using the ObjectWindows library.

Setting properties
You can set or change the values of the properties of Visual Database Tools components
at design time or at run time.

Setting properties at design time
You can set the values of properties of a Visual Database Tools component when you
~re designing your dialog box, or form, in the Dialog editor of the C++ IDE.

Once the Visual Database Tools have been installed in the Dialog editor and you open it,
you'll see the Visual Database Tools on the Data Access and Dat~ Aware page of the
Controls palette.

You must display the Property Inspector to set the value of properties.

610 c++ Programmer's Guide

> To display the Property Inspector in the Dialog editor, choose Dialog I Show I Property
Inspector.

The Property Inspector appears. You are ready to set property values for components.

> To set the properties of a Visual Database Tools component:

Select the Visual Database Tools component from either the Data Access or Data
Aware page of the Controls palette and place it on your form.

If the component you placed on the form is selected, the properties for the
component appear in the Property Inspector.

2 In the Property Inspector, select a property and change its value.

If you must type a value, replace the existing value (to the right of the property
name).

If an ellipsis button appears to the right of the property value, you can click it to
display a special editor for the property, or simply double-click the current value for
the property, and the editor appears. For example, double-clicking the value for the
BackColor property of a component displays the Color dialog box.

If a down arrow appears to the right of the property value, you can use it to open a
list of choices, or you can double-click the current value for the property and cycle
through the choices.

When your application uses the dialog resource (or form) you designed, the property
values you set with the Property Inspector will be set when the form first appears.

Setting properties at run time
You can write code to access property values at run time. When the code executesj the
property value changes and the results are bften reflected onscreen.

Assigning values to properties uses a very simple syntax. The left side of the assignment
operator is the property name, fully qualified with the name of the component. On the
right side of the assignment operator is the new value you are assigning to the property.
For example, this code checks the database check box named MyDBCheckBox: '

MyDBCheckBox.Checked = true;

Note You should rename components at design time by specifying a new value for the Name
property, not by using code at run time.

Calling methods
You call a method of a Visual Database Tools component just as you would a method
for any C++ class. Type the name of the method in your code, fully qualifying the
method name with the name of the component. Pass any parameters within the
parentheses following the method name.

C hap t e r 4 1, ere at i n gap p lie a t ion s wit h Vis u a I D a tab a seT 0 0 I s 611

For example, this code calls the Append method for a TTable component named MyTable:

MyTable.Append();

This code calls the MoveBy method for the same table, passing a parameter value of 5,
indicating that the cursor should advance in the table by five records:

MyTable.MoveBy(5);

For a method that returns- a value, assign the method to a variable or property. For
example, this code returns a bookmark (the current location of the cursor in the dataset),
storing it in the MyBookmark variable:

TBookmark MyBookmark;
MyBookmark = MyTable.GetBookmark();

Responding to events
Each component has a list of events that can occur. You can find the list of events for
each component in the online Visual Database Tools reference.

Visual Database Tools components have default behavior, so for many database
applications, you won't r.ave to write any code at all. By simply linking database
components together, you can create very useful database applications. To read more
about linking database components together, see "Making the connections: linking
database components" on page 619.

If you do need to write an event handler, the steps are relatively simple. Visual Database
Tools uses event sources and event sinks (or handlers) to encapsulate everything
necessary for responding to events. Here are the general steps:

1 Define the event source. By using Visual Database Tools components, you have
already done this. I

2 Define the event sink to handle the event. As you will see in the sections that follow,
this is only a couple of lines of code.

3 Connect the event sink to the event handler method. This method is the actual code
that you write.

4 Connect the event soulce to the event sink.

When the event occurs, the source calls the event sink. The sink calls the method
identified as that event's handler, and your application performs the appropriate tasks.

It will be easier to understand this model by looking at an example event handler.

Defining the event source
Suppose you want your application to respond to events for a TDBListBox controL
Looking up the list of events for a database list box, you see that it has these possible
events:

612 C++ Pro 9 ram mer's G u ide

Table 41.1 Events for a TDBListBox component

OnClick OnKeyUp OnMouseMove

OnDragOver OnKeyPress OnMouseUp

OnDragDrop OnEnter OnMeasureltem

OnEndDrag OnExit OnDrawItem

OnKeyDown OnMouseDown

This means that event sources are already defined for these events.

You decide that your application responds in some special way to the OnEnter event. .
You want something specific to happen when the database list box becomes the active
control.

Defining the event sink
The event sink object responds to the event with the desired behavior. Because you
included dblist.h, the tjrpedefs and macros for the event sink are already in your code.
Both the event sink statement and the actual event handler method go in your class
definition for the event sink object:

class MyDialog : public TDialog, public 'I'VbxEventHandler {
public:

!

TDBListBoxEnterSink OnEnterSink; \\here is the event sink declaration
MyDialog(TWindow* parent, int ID);

II Declare the event handlers
void EnterHandler(TDBListBoxNotifySink&, TDBListBox&);

} ;

Connecting the event sink to the handler method
One way to connect the event sink to the method that handles the event is to make the
connection within the constructor. To help you do that, use the appropriate event sink
macro that creates the event sink object for you.

To connect an event sink to the event handler:

1 Type the event sink followed by an open parenthesis. For example,

OnEnterSink(

2 Type the type of the event sink after the open parenthesis and add to it _MFUNCTOR.

This Gills the macro that connects the event sink to the event handler. Your code
would look like this, so far:

OnEnterSink(TDBListBoxNotifySink_MFUNCTOR

3 Each MFUNCTOR macro takes at least two parameters: *this, and the event handler:

OnEnterSink(TDBListBoxNotifySink_MYFUNCTOR (*this, &MyDialog::EnterHandler)

Some events, such as mouse or key events, require more parameters.

C hap t e r 4 1, ere at i n gap p lie at ion s wit h Vis u a I D a tab a seT 0 0 I s 613

4 Add the closing parenthesis:

OnEnterSink(TDBListBoxNotifySink_MYFUNCTOR (*this, &MyDialog::EnterHandler))

When this code executes as the dialog box is created, an event sink object is created
and connected to the event handler that responds when the event occurs. Here is the
constructor in which the event sink connection is made.

MyDialog: : MyDialog()

OnEnterSink(TDBListBoxNotifySinK_MFUNCTOR(*this, &MyDialog::EnterHandler))

lithe rest of the constructor

Connecting the event source to the event sink
Finally, connect the event source to the event sink, so that the correct method is called
when the event occurs.

void OWLMain ()
{

TDBListBox Box(this, IDC_TDBLISTBOXl);
MyDialog DLG(this, IDD_MYDIALOG);
Box.OnEnterSource += DLG.OnEnterSink;
lithe rest of the program

Event handling summary
This discussion has gone "under the hood" a little, to show you how Visual Database
Tools handles events and to provide the information you might need to develop your
own custom event handlers. Generally, you will be working only with the sink side of
the equation. It will help to keep the following points in mind:

• Components that originate events must include sources for each event. These are in
the class declaration. (Visual Database Tools does this part for you.)

• Components that respond to events must include sinks and handler methods for
each event. Declare these in the class declaration for that component.

• For each event, connect the sink to the handler method in the constructor of the
component.

• Connect the soUrce object to the sink object in the main portion of your program.

An event-handling example
The example that follows uses a radio group control on a form. The radio group
contains three buttons labeled Red, Green, and Blue. When the user selects one of these
buttons, the background color of the form changes to match the color selected. The
event that occurs when the value of the Value property of the radio group changes is the
On Change event.

614 c++ Programmer's Guide

Creating the container class
The class that contains the form with the radio group on it is derived from TDialog, but it
also includes the event behavior from the TVbxEventHandler class. The declaration for
the class is using multiple inheritance, inheriting and mixing behavior from both
TDialog and TVbxEventHandler:

class EventDemoDlg : public TDialog, public TVbxEventHandler {
private:

} ;

TDBRadioGroup *DBRadio;
TDBRadioGroupNotifySink OnChangeSink;

public:
EventDemoDlg();
void OnRadioChangeHandler(TDBRadioGroupNotifySink&, TDBRadioGroup&);

DECLARE_RESPONSE_TABLE (EventDemoDlg);

Note that the class includes a data member that holds a pointer to the radio group
control on the form:

TDBRadioGroup *DBRadio;

The event sink for the On Change event is declared within the class declaration:

TDBRadioGroupNotifySink OnChangeSink;

Also within the class declaration following the constructor, the event sink is connected
to the On Change event handler, which is named OnRadioChangeHandler in this example:

void OnRadioChangeHandler(TDBRadioGroupNotifySink&, TDBRadioGroup&);

The EventDemoDlg class includes a response table declaration for EventDemoDlg:
DECLARE_RESPONSE_TABLE (EventDemoDlg);

Therefore, outside of the class declaration a standard ObjectWindows response table is
defined. Because EventDemoDlg is derived from two base classes, TDialog and
TVbxEventHandler, the definition of the response table must include both classes:

DEFlNE_RESPONSE_TABLE2 (EventDemoDlg, TDialog, TVbxEventHandler)
END_RESPONSE_TABLE;

Connecting the event source to the event sink
The constructor for the EventDemoDlg class connects the form's On ChangeS ink event
sink object to the radio group's OnChange source object:

EventDemoDlg::EventDemoDlg()
TDialog(0, AppName)

, DBRadio(new TDBRadioGroup(this, IDC_TDBRADIOGROUPl)
, OnChangeSink(TDBRadioGroupNotify_MFUNCTOR(*this,

&EventDemoDlg::OnRadioChangeHandler))

DBRadio->OnChangeSource += OnChangeSink;

Chapter 41, Creating applications with Visual Database Tools 615

Changing the form's color
The code within the OnRadioChangeHandler, which responds to the On Change event,
changes the background color of the form when it executes. This is the event handler:

void EventDemoDlg::OnRadioChangeHandler(TDBRadioGroupNotifySink&,
TDBRadioGroup& rg)

if(rg.Value == "Red")
SetBkgndColor(RGB(255, 0, 0);

else if(rg.Value == "Green")
SetBkgndColor(RGB(0, 255, 0);

else if(rg.Value == "Blue")
SetBkgndColor(RGB(0, 0, 255);

Invalidate();

Here is the sample application in its entirety:

11--
II ObjectWindows - (C) Copyright 1996 by Borland International

II All rights reserved.
II Demo application - FuncDemo.cpp
II----~---
#include <owl/owlpch.h>
#include <owl/applicat.h>
#include <owl/framewin.h>
#include <owl/dialog.h>
#include <owl/signatur.h>
#include <owl/eventhan.h>
#include <vdbt/bdto.h>
#include <vdbt/dbradio.h>
#include "evntdemo.h"

const char AppName[] "EventDemo" ;

class EventDemoDlg : public TDialog, public TVbxEventHandler {
private:

} ;

TDBRadioGroup *DBRadio;
TDBRadioGroupNotifySink OnChangeSink;

public:
EventDemoDlg();
void OnRadioChangeHandler(TDBRadioGroupNotifySink&, TDBRadioGroup&);

DECLARE_RESPONSE_TABLE (EventDemoDlg);

DEFINE_RESPONSE_TABLE2 (EventDemoDlg, TDialog, TVbxEventHandler)
END_RESPONSE_TABLE;

EventDemoDlg::EventDemoDlg()
TDialog(0, AppName)

, DBRadio(new TDBRadioGroup(this, IDC_TDBRADIOGROUP1)
, OnChangeSink(TDBRadioGroupNotify_MFUNCTOR(*this,

&EventDemoDlg: : OnRadioChangeHandler))

DBRadio->OnChangeSource += OnChangeSink;

616 C++ Pro 9 ram mer's G u ide

void EventDemoDlg::OnRadioChangeHandler(TDBRadioGroupNotifySink&
, TDBRadioGroup& rg)

if(rg.Value == "Red")
SetBkgndColor(RGB(255, a, a);

else if(rg.Value == "Green")
SetBkgndColor(RGB(a, 255, a);

else if(rg.Value == "Blue")
SetBkgndColor(RGB(a, a, 255);

Invalidate();

class EventDemoApp public TApplication
public:

} ;

EventDemoApp () TApplication () { }
void InitMainWindow()

SetMainWindow(new TFrameWindow(O, "DataAware Demo"
, new EventDemoDlg, true));

int OWIMain(int I *argc* I , char* l*argv*1 [])

TBIVbxLibrary vbxLlb; II Loads & initializes the library
return EventDemoApp() .Run();

Note In the OwlMain function, the Visual Basic emulator is loaded and initialized. All Visual
Database Tools applications must include this code.

You can find a similar, but more detailed version of this example in the online Help.

Component Object Model (COM) classes
So far this chapter has discussed programming database applications using the
ObjectWindows style classes. For most C++ programmers, this is the simplest method.

Visual Database Tools also encapsulates the data-access components. using the
Component Object Model (COM), the underlying architecture of OLE. Because these
components support the IDispatch interface, they can be used from an OLE Automation
Controller, such as Microsoft Excel.

If you wish to use OLE or COM, you'll find the Borland Visual Database Tools COM
interfaces in the ... \ INCLUDE \ VDBT\bdtc.h file. For OLE Automation, use the type
library files BDTSO.TLB and BDTS032.TLR

C hap t e r 41, ere a tin gap p lie a t ion s· wit h Vis u a IDa tab a seT 00 I s 617

Building database forms
Most Visual Database Tools applications require that you place at least three database
components on the form you are building. This is the minimum number of components
you need:

• One dataset component

Dataset components, such as TTable and TQuery, communicate with the Borhmd
Database Engine. Data received from a component is sent to the database through the
BDE. .

• One data-aware control

Data-aware controls provide the user interface to the data in the dataset. Users can
use data-aware controls to browse, edit, or enter data.

• One TDataSource component

A TDataSource component acts as a conduit between a dataset component and a data­
aware control. It links the data-aware control with the dataset component, and
therefore, the data in the database. Without a TDataSource component, data-aware
controls cannot access the data in a database.

The following figure illustrates how data-access and data-aware components relate to
the data in a database, to one another, and to the user interface in a Visual Database
Tools database application:

Figure 41.1 Database components architecture

Data-access components Data-aware components

TDBGrid

TDBEdit

TDBCheck

BDE

The figure shows two dataset components, TTable and TQuery. Each of these has at least
one corresponding TDataSource component, although they can have more than one.
Each TDataSource component identifies the source of the data for the data-aware
controls; It also shows six data-aware controls; your application can include as many as
it requires. Each data-aware control names the appropriate TDataSource component as
the value of its DataSource property.

618 C++ P (0 9 ram mer's G u ide

Making the connections: linking database components
This section describes how to connect database components. This allows you to create a
single-table database application without writing a line of code. Follow the steps below
to link a TTable component, a TDataSource component, and a data-aware component
together:

Place a TTable component, a TDataSource component, and any data-aware control
except the database navigator on a form.

Only the data-aware control will be visible when you run your application; therefore,
it doesn't matter where you place the TTable and TDataSource components.

2 Set the DatabaseNam~ property of TTable to the name of database you want to access.

While you are learning the technique of linking database components, try selecting
the DBDEMOS alias that appears in list of database names available to TTable.
DBDEMOS identifies a set of database tables that were installed as part of Visual
Database Tools.

3 Set the TableName property of TTable to the name of the table in the database you
want to access.

You will see a list of tables available from which you can choose.

4 Set the Dataset property of the TDataSource component to the name of the TTable
component by choosing from the list of available dataset components.

If you have only one dataset component on the form, you will have only one choice.

S Set the DataSource property of the data-aware control to the name of the TDataSource
component by choosing from the list of available data source components.

If you have only one data source component on the form, you will have only one
choice.

6 If the data-aware control has a DataField property, select the field you want the
control to access by selecting it from the list of available fields.

All data-aware controls exceptthe data grid (TDBGrid) and the database navigator
(TDBNavigator) have a DataField property.

7 To display the data in the data-aware control, return to the TTable component and set
its Active property to true.

Setting Active to true opens the table and the data displays in the data-aware control.

You might want to place one more data-aware control on your form. The database
navigator (TDBNavigator) provides an easy way to move through the data in the dataset.

>- To use a database navigator control:

Add the database navigator to the form.

2 Set its DataSource property to the name of the TDataSource component that links to
the dataset you want to access.

Chapter 41, Creating applicati9ns with Visual Database Tools 619

To test the database navigator, select choose Dialog I Test Dialog. Your designed form is
in test mode, and you can use the database navigator to move through the records in the
dataset.

Creating a master-detail form
Many database applications require master-detail forms. In relational database terms,
this can be a one to many relationship. This section describes building a simple master­
detail form in which the user can scroll through customer records, and q.isplay all orders
for the current customer. By working through the example, you willieam how to create
your own master..,detail forms.

> Follow these steps to create the master-detail form:

Place two TTable, two TDataSource, and two TDBGrid components on a form.

2 Set the properties of the first TTable component as f?llows:

• DatabaseName: DBDEMOS
• TableName: CUSTOMER.DB (the table containing customer records)
• CtlName: CustTable (for ease-of-use)

3 Name the first TDataSource component "CustDataSource," and set its Dataset
property to "CustTable."

4 Set the DataSource property of a data grid to "CustDataSource."

When you open CustTable (by setting its Active property to true), the grid displays
the data in the CUSTOMER table.

S Set the properties of the second TTable component as follows:

.. DatabaseName: DBDEMOS
• TableName: ORDERS.DB (the table containing order records)
• CtlName: OrdTable (for ease-of-use)

6 Name the second TDataSource component "0rdDataSource," and set its Dataset
property to "0rdTable."

7 Set the DataSource property of the second data grid to "OrdDataSource."

When you open OrdTable (by setting its Active property to true), the grid displays the
data in the ORDERS table. .

If you choose Dialog I Test Dialog at this time to test your form, you'll see that you
have two tables that are not connected to one another.

S Next link the CUSTOMER table (the master table) to the ORDERS table (the detail
table) so that the form displays only the orders placed by the current customer. To do
this, set the MasterSource property of OrdTable to CustDataSource.

9 In the Property Inspector, select the MasterFields property of OrdTable and click the
ellipsis button to the right of the property value. The Field Link Designer dialog box
opens.

620 C++ Pro 9 r i3. m mer's G u ide

., In the Available Indexes field, select "CustNo" to define the record order.

• Select "CustNo" in both the Detail Fields and Master Fields field lists .

.. Click the Add button to add this join condition. In the Joined Fields list,
"CustNo -> CustNo" appears.

.. Choose OK to exit the Field Link Designer.

Choose Test Dialog on the Dialog menu. You will see that the tables are linked together,
and that when you move to a new record in the CUSTOMER table, you see only those
records in the ORDERS table that belong to the current customer.

The MasterSource property specifies the TDataSource from which OrdTable takes its
master column values. This limits the records it retrieves, based on the current record in
CustTable. To do this, you must specify for OrdTable:

• The name of the column that links the two tables.

• The index of the column in the ORDERS table that links to the CUSTOMER table.

You must also ensure that the ORDERS table has an index on the CustNo field. If it is a
primary index, there is no need to specifically name it, and you can safely leave the
IndexName field blank in both tables. If the table is linked through a secondary index,
however, you must explicitly designate that index in the IndexName property.

In this example, the CUSTOMER table has a primary index on the CustNo column, so
there is no need to specify the index name. The ORDERS table does 110t have a primary
index on CustNo, however, so you must explicitly declare it in the IndexName property,
in this case CusNo.

Note You can also set the IndexFieldNames property to CustNo, and the correct index is
supplied for you.

Sample database applications
Borland C++ is shipped with several demo applications. There are several applications
that show you many practical uses for Visual Database Tools in the ... \ EXAMPLES \
VDBT directory. You are encouraged to run the sample applications and examine the
forms and code to see how they were put together.

C hap t e r 4 1, ere a tin gap p lie a t ion s wit h Vis u a I D a tab a seT 0 0 I s 621

622 C++ Pro 9 ram mer's G u ide

Using data-access components
and tools

This chapter describes how to use key Visual Database Tools when building database
applications, including:

• The TSession component
• Dataset components (TTable and TQuery), their properties, methods, and events
• TDataSource components, their properties, methods, and events
• TField components, their properties, methods, and events
• The Fields editor to control TField components
• TBatchMove components, for batch move operations

This chapter provides an overview and general description of data-access components
in the context of application development. For information about data-aware controls,
see Chapter 43, "Using data-aware controls." For in-depth reference information on the
database components, see the online Visual Database Tools reference.

Data-access components hierarchy
The data-access component hierarchy helps you understand that key components
inherit the properties, methods, and events of their ancestors. These are the key data­
access components:

• TSession, a global component created automatically at run time. It is not visible on
dialogs or forms either when you are designing them in the IDE's Dialog editor (at
design time) or when the application runs (at runtime).

• TDatabase, a component that provides an additional level of control over server
logins, transaction control, and other database features. It appears on the Data Access
page of the Controls palette of the IDE's Dialog editor.

C hap t e r 4 2, U sin 9 d a t a - ace e sse 0 m p 0 n e n t san d too I s 623

• TTable, TQuery, and TStoredProc, known as dataset components because they descend
from TDataSet and TDBDataSet. They appear on the Data Access page of the' Controls
palette of the IDE's Dialog editor.

• TDataSource, a conduit between dataset components and data-aware components. It
appears on the Data Access page of the Controls palette of the IDE's Dialog editor.

• TField components, which correspond to columns within a database. They are
created either dynamically at run time or at design time with the Fields editor. Data­
aware controls use TField components internally to access data from a database. In
addition, you can define calculated fields whose values are calculate~ based on the
values of one or more database columns.

Figure 42.1 Visual Database Tools data-access components hierarchy

TB~DT~E:::
TDataSource

TDataSet ----TDBDataSet

TField tTTable
~ TStringField TQuery

t-- TlntegerField TStoredProc

f

This chapter describes most of these components and the tools provided to work with
them. The TQuery component is described in "Using the TQuery component" on
page 85. The TDatabase and TStoredProc components are described in Chapter 45.

Using datasets
TTable and TQuery components descend from the TDataSet component through the
TDBDataSet component. These components share a number of inherited properties,
methods, and events. For this reason, it is convenient to refer to them together as
datasets, when the discussion applies to both TTable and TQuery.

This section describes the features of datasets that are common to TTable and TQuery. A
subsequent section discusses features unique to TTable. "Using the TQuery component"
on page 85 describes features unique to TQuery.

Note TStoredProc is also a dataset component as it descends from TDBDataset too. Therefore,
much of this section also applies to TStoredProc if the stored procedure returns a result
set rather than a singleton result. For more information on TStoredProc, see "Using
stored procedures" on page 104.

624 C++ Pro 9 ram mer's G u ide

Dataset states
A dataset can be in the following states, also referred to as modes:

Table 42.1

Inactive

Browse

Edit

Insert

SetKey

CalcFields

Dataset states

The dataset is closed.

The default state when a dataset is opened. Records can be viewed but not changed
or inserted.

Enables the current row to be edited.

Enables a new row to be inserted. A call to Post inserts a new row.

Enables FindKey, GotoKey, and GotoNearest to search for values in database tables.
These methods only pertain to TTable components. For TQuery, searching is done
with SQL syntax.

Mode when the OnCalcFields event is executed; prevents any changes to fields other
than calculated fields. Rarely used explicitly.

An application can put a dataset into most states by calling the method corresponding
to the state. For example, an application can put a TTable component named MyTable in
Insert stG\te by calling MyTable.Insert or Edit state by calling MyTable.Edit. A number of
methods return a dataset to Browse state, depending on the result of the method call. A
call to Cancel will always return a dataset to Browse state.

CalcFields mode is a special case. An application cannot explicitly put a dataset into
CalcFields mode. A dataset automatically goes into CalcFields mode when its
OnCalcFields event occurs. In OnCalcFields, an exception occurs if an application
attempts to assign values to non-calculated fields. After the completion of the
OnCalcFields event, the dataset returns to its previous mode.

Figure 42.2 illustrates the primary dataset states arid the methods that cause a dataset to
change from one mode to another.

The State property specifies the current state of a dataset. The possible values
correspond to the states listed in Table 42.1 and are dslnactive, dsBrowse, dsEdit, dslnsert,
dsSetKey, and dsCalcFields.

The OnStateChange event of TDataSource occurs whenever the state of a data source's·
dataset changes. For more information, see "Using TDataSource events" on page 645.

C hap t e r 4 2, U sin 9 d a t a -ace e sse 0 m p 0 n e n t san d too Is 625

Figure 42.2 Dataset state diagram

Post
(Unsuccessful)

*TTable only

Insert
Append

Post
(Successful)
Delete

Opening and closing datasets

Close Open

SetKey*
EditKey*

'"""","_O!!'J!!EJfr' Cancel

GotoKey*, FindKey*
Post

Cancel
Edit Delete

Post (Successful)

Post (Unsuccessful)

Before an application can access data through a dataset, the dataset must be open. You
can open a dataset in two ways:

• Set the dataset's Active property to true, either at design time through the Property
Inspector of the Dialog editor, or programmatically at run time. For example,

MyTable.Active = true;

• Call the dataset's Open method at run time. For example,

Queryl.Open();

Both of these statements open the dataset and put it into Browse state.

Similarly, you can close a dataset in two ways:

• Set the dataset's Active property to false, either at design time through the Property
Inspector of the Dialog editor, or programmatically at run time. For example,

Queryl.Active = false;

626 C++ Pro 9 ram mer's G u ide

• Call the dataset's Close method. For example,

MyTable.Close()i

Both of these statements return a dataset to Inactive state.

Navigating datasets
There are two important concepts essential for understanding how datasets are
handled: cursors and local buffers. Each active dataset has a cursor, which is essentially a
pointer to the current row in the dataset. A number of rows of data before and after the
cursor are fetched into the local buffer. The number of rows fetched into the local buffer
will always be sufficient to display the current row, plus additional rows to reduce the
refresh time as the user scrolls up or down in the dataset:

Table 42.2 Navigational methods and properties

First method

Last method

Next method

Prior method

AtBOF property

AtEOF property

MoveBy(n) method

Moves the cursor to the first row of a dataset~

Moves the cursor to the last row of the dataset.

Moves the cursor to the next row in the dataset.

Moves the cursor to the prior row in the dataset.

True when cursor is known to be at the beginning of the dataset, otherwise
false.

True when cursor is known to be at the end of the dataset, otherwise false.

Moves the cursor n rows in the dataset, where n is a positive or negative
integer.

You can navigate within a dataset by calling these methods in the code you write, or you
can let the user use a database navigator (TDBNavigator) to move to the desired record
in the dataset. For more information on using navigator, see "Navigating and
manipulating records with TDBNavigator" on page 75.

The Next and Prior methods
The Next method moves the cursor down (forward) by one row in the table. For
example, to move to the next row in the table named MyTable, write this code:

MyTable. Next () i

Similarly, the Prior method moves the cursor up (backward) by one row in the dataset.
For example, to move to the previous row in the table, write this code:

MyTable.Prior()i

The First and Last methods
As their names imply, the First and Last methods move to a dataset's first and last rows,
respectively. For example, this code moves the cursor to the first row in the table named
MyTable:

MyTable.First()i

C ha pte r 4 2, U sin 9 d a t a -ace e sse 0 m p 0 n e n t san d too I s 627

Similarly, the Last method moves to the last row in the dataset. To move to the last row
in the table, the code would look like this:

MyTable.Last();

The AtBOF and AtEOF properties
AtBOF is' a read-only Boolean property that indicates whether a'dataset is known to be
on its first row. The AtBOF property returns a value of true only after:

• An application first opens a table
• A call to the First method of a dataset
• A call to the Prior method of a dataset fails

Databases are dynamic; while one application is viewing data, another may be inserting
rows before or after the first application's notion of the current row. For this reason, it's
not safe to assume AtBOF is true for a table that isn't empty.

For example, consider the following code:

MyTable.Open(); II AtBOF == true
MyTable.Next(); II AtBOF == false
MyTable.Prior(); II AtBOF == false

After this code executes, AtBOF is false, even if there are no records before the current
row. Once the table is open, the application can determine AtBOF only when an
application explicitly calls First or a call to Prior fails. Similarly, an application can
determine AtEOF only when an application explicitly calls Last or a call to Next fails.

The following code sample demonstrates a common technique for using the AtBOF
property: .

while { ! MyTable.AtBOF) {
DoSomething();
MyTable.Prior();

In this code sample, the hypothetical method DoSomething is called on the current record
and then on all the records between the current record and the beginning of the dataset. .
The loop continues until a call to Prior fails to move the current record back. At that
point, AtBOF returns a value of true and the program breaks out of the loop.

To improve performance during the iteration through the table, call the DisableControls
method before beginning the loop. This prevents data controls from displaying the
iteration through the table, and speeds up the loop. After the loop completes, call the
EnableControls method. The same principles apply to the AtEOF property, which returns
a value of true after:

• An application opens an empty dataset
• A call to the Last method of a dataset
• A call to the Next method of a dataset fails

The following code sample provides a simple means of iterating over all the records in a
dataset:

MyTable.DisableControls();
MyTable.First();

628 C++ Pro 9 ram mer' 5 G u ide

while (! MyTable.AtEOF)
{

DoSomething()i
MyTable.Next()i

MyTable.EnableControls()i

hi. this case, the Next method and the AtEOF property are used together to reach the end
of the dataset.

Caution A common error in using such properties in navigating a dataset is to use a loop while
forgetting to call MyTable.Next, as in the following example:

MyTable.First()i
while (! MyTable.AtEOF)
{

MyTable.DoSomething()i
MyTable.DoSomethingElse()i

If this code were executed, the application would appear to "freeze," because the same
action would be endlessly performed on the first record of the dataset, and the AtEOF
property would never return a value of true.

If you are navigating an empty table, both AtBOF and AtEOF return true.

The MoveBy method
The MoveBy method enables an application to move through a dataset backward or
forward by a specified number of records. This method takes only one parameter, the
number of records by which to move. Positive integers indicate a forward move, while
negative integers indicate a backward move.

For example, to move two records forward in MyTable, use the following:

MyTable . MoveBy (2) i

When using this method, keep in mind that datasets are fluid entities, and the record
that was five records back a moment ago could now be only four records back, or six
records, or it could have moved an unknown number of records, because multiple users
may be simultaneously accessing the database and modifying its data.

Note There is no functional difference between calling MyTable.NextO and calling
MyTable.MoveBy(1), just as there is no functional difference between calling
MyTable.PriorO or calling MyTable.MoveBy(-1).

C hap t e r 4 2, U sin 9 d a t a -ace e sse 0 m p 0 n e n t san d too I s 629

Modifying data in datasets
The following methods enable an application to insert, update, and delete data in
datasets:

Table 42.3 Methods to insert, update, and delete data in datasets

Edit Puts the dataset into Edit state. If a dataset is already in Edit or Insert state, a call to Edit has
no effect.

Append Posts any pending data, moves current record to the end of the dataset, and puts the
dataset in Insert state.

Insert Posts any pending data, and puts the dataset in Insert state.

Post Attempts to post the new or altered record to the database. If successful, the dataset is put
in Browse state; if unsuccessful, the dataset remains in its current state.

Cancel Cancels the current operation and puts the dataset into Browse.state.

Delete Deletes the current record and puts the dataset in Browse state.

The CanModify property
CanModify is a read-only property that specifies whether an application can modify the
data in a dataset. When CanModify is false, the dataset is read-only, and it can't be put
into Edit or Insert state. When CanModify is true, the dataset can enter Edit or Insert
state. Even if CanModify is true, there is no guarantee a user can insert or update records
in a table. Other factors may come in to play, such as SQL access privileges.

TTable has a ReadOnly property that requests write privileges when set to false. When
ReadOnly is true, CanModify is automatically set to false. When ReadOnly is false,
CanModify is true if the database allows read and write privileges for the dataset and the
underlying table. For more information, see "Using TTable" on page 636.

Posting data to the database
The Post method is central to an application's interaction with a database table. Post
behaves differently depending on a dataset's state.

• In Edit state, Post modifies the current record.
• In Insert state, Post inserts or appends a new record.
• In SetKey state, Post returns the dataset to Browse state.

Posting can be done explicitly, or implicitly as part of another procedure. When an
application moves off the current record, the Post method is called implicitly. Calls to
the First, Next, Prior, and Last methods automatically call the Post method if the table is
in Edit or Insert state. The Append and Insert methods also post any pending data
automatically.

Note Post is not called automatically by the Close method. To post any pending edits at that
time, write code within a BeforeClose event handler that explicitly posts the edits (calls
the Post method).

630 c++ Programmer's Guide

Editing records
A dataset must be in Edit state before an application can modify records in the
underlying table. The Edit method puts a dataset in Edit state. When in Edit state, the
Post method changes the current record. If a dataset is already in Edit state, a call to Edit
has no effect.

The Edit and Post methods are often used together. For example,

MyTable.Edit();
l!IyTable.FieldByName("CustNo")->AsString = "1234";
MyTable. Post () ;

The first line of code in this example places the dataset in Edit mode. The next line of
code assigns the string 1/1234" to the CustNo field. Finally, the last line posts, or writes to
the database, the data just modified.

Adding new records
To add a new record to a dataset, an application can call either the Insert method or the
Append method. Both methods put a dataset into Insert state. Insert opens a new, empty
record after the current record. Append moves the cursor to the end of the dataset and
opens a new, empty record.

When an application calls Post, the new record is inserted in the dataset in a position
based on its index, if defined. Therefore, for indexed tables, Append and Insert perform
similarly. If no index is defined on the underlying table, then the record maintains its
position-so Append adds the record to the end of the table, and Insert inserts it at the
cursor position when the method was called. In either case, posting a new record in a
data grid can cause all the rows before and after the new record to change as the data­
set follows the new row to its indexed position and then fetches data to fill the grid
around it.

Deleting records
The Delete method deletes the current record from a dataset and leaves the dataset in
Browse mode. The cursor moves to the following record.

Canceling changes
An application can undo changes made to the current record at any time, if it has not yet
directly or indirectly called Post. For example, if a table is in Edit state, and a user has
changed the data in one or more fields, the application can return the record back to its
original values by calling the table's Cancel method. A call to Cancel always returns a
dataset to Browse state.

Working with entire records
The methods in Table 42.4 enable an application to work with an entire record in one
statement.

Chapter 42, Using data-access components and tools 631

Table 42.4. Methods used to work with entire records

AppendRecord(TVarRecs& values) Appends a record with the column values specified as the values
parameter of the method at the end of a table; analogous to Append.

InsertRecord(TVarRecs& values)

SetFields(TVarRecs& values)

Calls the Post method automatically.

Inserts the values specified as the values parameter of the method as a
record after the current cursor position of a table; analogous to Insert.
Calls the Post method automatically. .

Sets the values of the corresponding fields; analogous to assigning
values to TField components. The application must then call the Post
method.

Each of these methods takes a pointer to a TVar Recs structure as a parameter. This
TVarRecs structure holds data of any type. You build the structure by adding to it the
data you want to assign to column, or field, values. The first value you add to the
structure will become the value for the first column of the current record. The second
value you add will become the value for the second column of the current record, and so
on. The values can be literals or variables.

For example, this code builds a TVarRecs structure:

TVarRecs values;
values.Add("Japan");
values.Add("Tokyo");
values.Add("Asia");

Once you have constructed the values variable, you can use it as the parameter for the
AppendRecord, InsertRecord, or SetFields methods. Each value in the values parameter
corresponds to a column in the underlying table. If the number of values in an argument
is less than the number of columns in a dataset, then the remaining values are assumed
to be blank.

For unindexed tables, AppendRecord adds a record to the end of the table and
InsertRecord inserts a record after the current cursor position. For indexed tables, both
methods place the record in the correct position in the table, based on the index. In both
cases, the methods move the cursor to the record's position.

SetFields assigns the values specified in the Values parameter to fields in the dataset. The
application must first call the Edit method to put the dataset in Edit state. To modify the
current record, it must then call the Post method.

Because these methods depend explicitly on the structure of the underlying tables, an
application should use them only if the table structure will not change.

For example, the COUNTRY table has columns for Name, Capital, Continent, Area, and
Population. If MyTable were linked to the COUNTRY table, the following statements
would insert a record into the COUNTRY table:

TVarRecs values;

values.Add("Japan");
values.Add("Tokyo");
values.Add("Asia");
MyTable.lnsertRecord(values);

632 C++ Pro 9 ram mer's G u ide

The statement doesn't specify values for Area and Population, so it inserts blank values
for these columns. The table is indexed on Name, so the statement would insert the
record based on the alphabetic collation of "Japan."

To update the record, an application could use the following code:

TVarRecs valuesi
MyTable.Edit()i
values.Add()i

values.Add() i
values.Add()i

values.Add(344567)i

values.Add(164700000)i

MyTable.SetFields(values)i

MyTable.Post()i

//don't change the value "Japan"
//don't change the value "Tokyo"
//don't change the value "Asia"
//change the Area value
//change the Population value

This code assumes that the cursor is positioned on the record just entered for Japan. It
assigns values to the Area and Population fields and then posts them to the database.
Notice the use of Add(), with no arguments, to maintain the current value.

Setting the update mode
The UpdateMode property of a dataset determines how an application finds records
being updated in a SQL database. This property is important in a multi-user environ­
ment when users may retrieve the same records and make conflicting changes to them.

When a user posts ail update, the original values in the record are used to find the
record in the database.,This approach is similar to an optimistic locking scheme.
UpdateMode specifies which columns an application uses to find the record. In SQL
terms, UpdateMode specifies which columns are included in the WHERE clause,of an
UPDATE statement. If a record cannot be found with the original values in the columns
specified (if another user has changed the values in the database), no update occurs and
an exception is raised. '

The UpdateMode property may have the following values:

• WhereAll (the default): Every column is used to find the record being updated. TJ:p.s is
the most restrictive mode.

• WhereKeyOnly: Only the key columns are used to find the record being updated. This
is the least restrictive mode and should be used only if other users will not be
changing the records being updated.

• WhereChanged: Key columns and columns that have changed are used to find the
record being updated.

For example, consider a COUNTRY table with columns for NAME (the key), CAPITAL,
and CONTINENT. Suppose you and another user simultaneously retrieve a record with
the following values:

• NAME = "Philippines"
• CAPITAL = "Nairobi"
• CONTINENT = "Africa"

Both you and the other user notice that the information in this record is incorrect and
should be changed. Now, suppose the other user changes CONTINENT to "Asia,"

Chapter 42, Using data-access components and tools 633

CAPITAL to "Manila," and posts the change to the database. A few seconds later, you
change NAME to "Kenya" and post your change to the database.

If your application has UpdateMode set to WhereKeyOnly on the dataset, the original
value of the key column (NAME = "Philippines") is compared to the current value in
the database. Because the other user did not change NAME, your update occurs. You
think the record is now ["Kenya," "Nairobi,"" Africa"] and the other user thinks it is
["Philippines," "Asia," "Manila"]. Unfortunately, it is actually ["Kenya," "Asia,"
"Manila"], which is still incorrect, even though both you and the other user think you
have corrected the mistake. This problem occurred because you had UpdateMode set to
its least restrictive level, which doesn't protect against such occurrences.

If your application had UpdateMode set to WhereAll, all columns would be checked when
you attempt to make your update. Because the other user changed CAPITAL and
CONTINENT, you would not be allowed to make the update. When you retrieved the
record again, you would see the new values entered by the other user and realize that
the mistake had already been corrected.

Bookmarking data
It is often usefulto mark a particular location in a table so that you can quickly return to
it when desired. Bookmark methods provide this functionality. These methods enable
you to put a bookmark in the dataset, and quickly return to it later.

These are the three bookmarking methods:

• GetBookmark
• GotoBookmark
• FreeBookmark

These methods are used together. The GetBookmark method returns a variable of type
TBookmark. A TBookmark contains a pointer to a particular location in a dataset. When
given a bookmark, the GotoBookmark method moves an application's cursor to that
location in the dataset.

FreeBookmark frees memory allocated for the specified bookmark. A call to GetBookmark
allocates memory for the bookmark, so an application should call FreeBookmark before
exiting.

The following code illustrates a typical use of bookmarking:

void myFunction()
{

TBookmark Bookmark;
Bookmark = MyTable.GetBookmark(); II allocate bookmark
MyTable.DisableControls(); II disable data-aware controls
MyTable.First();
while (! MyTable.AtEOF) {

II Do Something
MyTable . Next () ;

MyTable.GotoBookmark(Bookmark); II move cursor to bookmark location

634 c++ Programmer's Guide

MyTable.EnableControls();
MyTable. FreeBookmark (Bookmark);

II enable data-aware controls
II deallocate memory for bookmark

Disabling, enabling, and r~freshing data-aware controls
The DisableControls method disables all data-aware controls linked to a dataset. This
method should be used to prevent "flickering" of the display as the cursor moves (for
example, when iterating or searching through a dataset). As soon as the cursor is
repositioned, an application should call the EnableControls method to re-enable data­
aware controls. It is important to re-enable controls with EnableControls as soon as the
application completes its iteration or searching, to keep the form synchronized with the
underlying dataset.

The Refresh method flushes all local buffers and retrieves data from the specified dataset
again. The dataset must be open. You can use this method to update a table if you think
the table or the data it contains might have changed. Refreshing a table can sometimes
lead to unexpected results. For example, if a user is viewing a record that has been
deleted, then it will seem to disappear the moment the application calls Refresh.
Similarly, data can appear to change while a user is viewing it if another user changes or
deletes a record after the data was originally fetched and before a call to Refresh.

Using dataset events
Datasets have a number of events that enable an application to perform validation,
compute totals, and perform other tasks, depending on the code written within the
event handler. The events are listed in the following table.

Table 42.5 Dataset events

BeforeOpm, AfterOpm

BeforeClose, AfterClose

Beforelnsert, Afterlnsert

BeforeEdit, AfterEdit
BeforePost, AfterPost

BeforeCancel, AfterCancel

BeforeDelete, AfterDelete

OnNewRecord

OnCalcFields

Called before! after a dataset is opened.

Called before! after a dataset is closed.

Called before/ after a dataset enters Insert state.

Called before/ after a dataset enters Edit state.

Called before/ after changes to a table are posted.

Called before! after the previous state is canceled.

Called before/ after a record is deleted.

Called when a new record is created; used to set default values.

Called when calculated fields are calculated.

For more information on the properties, methods, and events of the dataset
components, refer to the online Visual Database Tools reference.

Using OnCalcFields
The OnCalcFields event is used to set the values of calculated fields. The AutoCalcFields
property determines when OnCalcFields is called. If AutoCalcFields is true, then
OnCalcFields is called when:

Chapter 42, Using data-access components and tools 635

• The dataset is opened.
• A record is retrieved from the database.

OnCalcFields occurs whenever a non-calculated field's value changes, regardless of the
setting of AutoCalcFields.

Typically, the OnCalcFields event occurs often, so it should be kept short. Also, if
AutoCalcFields is true, the OnCalcFields event handler should not perform any actions
that modify the dataset (or the linked dataset if it is part of a master-detail relationship),
because this can lead to recursion. For example, if an OnCalcFields event handler calls
the Post method, and AutoCalcFields is true, then the OnCalcFields event handler executes
again, calling Post again, and so on.

If AutoCalcFields is false, then the OnCalcFields event occurs when the dataset's Post
method is called (or any method that automatically calls Post, such as Append or Insert).

While the OnCalcFields event handler is executing, a dataset enters CalcFields mode.
When a dataset is in CalcFields mode, the values of any fields other than calculated
fields can't be set. After the OnCalcFields event handler finishes executing, the dataset
returns to its previous mode.

Using TTable
TTable is one of the most important database component classes. It enables an
application to access a database table.

Specifying the database table
TableName specifies the name of the database table to which the TTable component is
linked. You can set this property at design time through the Property Inspector of the
IDE's Dialog editor. -,

The DatabaseName property specifies where an application looks for the specified
database table. It can be a Borland Database Engine alias, an explicit specification, or the
DatabaseName defined by any TDatabase component in the application. For Paradox and
dBASE tables, an explicit specification is a directory path; for SQL tables, it is a directory
path and database name.

Instead of an actual directory path or database name, DatabaseName can also be a
Borland Database Engine alias. The advantage of this is that you can change the data
source for an entire application by simply changing the alias definition in the BDE
Configuration Utility. For more information on using the BDE Configuration Utility, see
'the oruine help for the BDE Configuration Utility. For more information on the
DatabaseName property,. see the online Visual Database Tools reference.

Note Neither of these properties can be changed when a table is open-that is, when the
table's Active property is set to a value of true. .

636 c++ Programmer's Guide

The TableType property
The TableType property specifies the type of the underlying database table. This
property is not used for SQL tables.

If TableType is set to Default, the table's file-name extension determines the table type:

• Extension of .DB or no file-name extension: Paradox table
• Extension of .DBF : dBASE table
• Extension of .TXT : ASCII table

If the value of TableType is not Default, then the table is always of the specified TableType,
regardless of file-name extension.

Searching a table
TTable has a number of methods that will search for values in a database table:

• Goto methods
• Find methods

The easiest way to search for values is with the Find methods, FindKey and FindNearest.
These two methods combine the functionality of the basic Goto methods: SetKey
combined with GotoKey or GotoNearest, which are described first.

In dBASE and Paradox tables, Gota and Find methods can search only on index fields. In
SQL tables, they can search on any field, if the field name is specified in the
IndexFieldNames property of the TTable. For more information, see uIndexes" on
page 642.

To search a dBASE or Paradox table for a value in a non-index field, use SQL SELECT
syntax with a TQuery component. For more information on using SQL and TQuery
components, see "Using the TQuery component" on page 85.

Using Goto methods
The GotoKey and GotoNearest methods enable an application to search a database table
using a key. SetKey puts a table in "search mode," more accurately referred to as SetKey
state. In SetKey state, assignments indicate values for which to search in indexed fields.
GotoKey then moves the cursor to the first row in the table that matches those field
values.

Here is an example that searches for the key the user enters in a standard edit control;
Editl is an existing ObjectWindows TEdit control:

char str [50] i

MyTable.SetKeY()i
Editl.GetText(str, 50)i

MyTable.Fields[O]->AsString = stri
MyTable.GotoKeY()i

II First field is the key

The second line of code puts MyTable in SetKey state. This indicates that the following
assignment to the table's Fields property specifies a search value. The first column in the
table, corresponding to Fields[Ol, is the index. In this example, the value the application

C hap t e r 42, Us in 9 d a t a -ace e sse 0 m p 0 n e n t san d too I s 637

searches for is determined by the text the user types into the edit control, Editl. Finally,
GotoKey performs the search, moving the cursor to the record if it exists ..

GotoKey is a Boolean function that moves the cursor and returns true if the search is
successful. If the search is unsuccessful, it returns false and doesn't change the position
of the cursor. For example,

MyTable.SetKey();
MyTable.Fields[O]->AsString = str;
if (! MyTable.GotoKey()) {

MessageBox(hwnd, "Record not found", "Search message box", ME_OK);

If a table has more than one key column, and you want to search for values in a subset of
the keys, set KeyFieldCount to the number of columns on which you are searching. For
example, if a table has three columns in its primary key, and you want to search for
values in just the first, set KeyFieldCount to 1. For tables with multiple-column keys, you
can search only for values in contiguous columns, beginning with the first. That is, you
can search for values in the first column, or the first and second, or the first, second, and
third, but not just the first and third.

GotoNearest is similar, except it finds the nearest match to a partial field value. It can be
used only for columns of string data type. For example,

MyTable.SetKey();
MyTable.Fields[O]->AsString = "Sm";
MyTable.GotoNearest();

If a record exists with "Sm" as the first two characters, the cursor is positioned on that
record. Otherwise, the position of the cursor doesn't change and GotoNearest returns
false.

If it is not searching on the primary index of a local table, then an application must
specify the column names to use in the IndexFieldNames property or the name of the
index to use in the IndexName property of the table. For example, if the CUSTOMER
table had a secondary index named "CityIndex" on which you wanted to search for a
value, you would need to set the value of the table's IndexName property to "CityIndex."
You could then use the following code when searching on this field:

char str [50] ;

MyTable.lndexName = "Citylndex";
MyTable. Open () ;
MyTable.SetKey();
Editl.GetText(str, 50);
MyTable.FieldByName("City")->AsString = str;
MyTable.GotoNearest();

Because indexes often have nonintuitive names, you can use the IndexFieldNames
property instead to specify the names of indexed fields.

Each time an application calls SetKey, it must set all the field values for which it will
search. That is, SetKey clears any existing values from previous searches. To keep
previous values, use EditKey.

For example, to extend the above search to find a record with the specified city name in
a specified country, an application could use the following code:

638 c++ Progr~mmer's Guide

MyTable.EditKey();
Edit2.GetText(str, 50);
MyTable.FieldByName("Country")->AsString = str;
MyTable.GotoNearest();

Using Find methods
The Find methods, FindKey and FindNearest, provide another way to search a table. They
combine the functionality of SetKey, field assignment, and Goto methods into a single
statement.

. Each of these methods takes a pointer to a TVarRecs structure as a parameter. This
TVarRecs structure holds data of any type. You build the structure by adding to it the
data yo~ want to assign to column, or field, values. For more information about
building a TVarRecs structure, see "Working with entire records" on page 63l.

FindKey is similar to GotoKey:

• It puts a table in search mode (SetKey state).

• It finds the record in the table that matches the specified values. If a matching record
is found, it moves the cursor there, and returns true.

• If a matching record is not found, it doesn't move the cursor and returns false.

For example, if MyTable is indexed on its first column, then this code:

TVarRecs values;
char str[50];

Editl.GetText(str, 50);
values.Add(str);
MyTable.FindKey(values);

performs the same function as this code:

char str[50];

MyTable.SetKey();
Editl.GetText(str, 50);
MyTable.Fields[O]->AsString = str; II First field is the key
MyTablel.GotoKey();

FindNearest is similar to GotoNearest, as it moves the cursor to the row with the nearest
matching value. This can be used for columns of string data type only.

By default, both of these methods work on the primary index column. To search the
table for values in other indexes, you must specify the field name in the table's
IndexFieldNames property or the name of the index in the IndexName property.

Note For Paradox or dBASE tables, these methods work only with indexed fields. For SQL
databases, they can work with any columns specified in the IndexFieldNames property.

Using the KeyExclusive property in searches
The Key Exclusive property indicates whether a search positions the cursor on or after the
specified record being searched for. If KeyExclusive is false (the default), then GotoNearest
and FindNearest move the cursor to the record that.matches the specified values. If true,

C hap t e r 4 2, U sin 9 d a t a -ace e sse 0 m p 0 n e n t s . and too I s 639

then the search methods go to the record immediately following the specified key, if the
key value is found.

Limiting records retrieved by an application
In the real world, tables can be huge, so applications often need to limit the number of
rows they work with. The follOWing methods of TTable enable an application to work
with a subset of the data in a database table:

• SetRangeStart and EditRangeStart
• SetRangeEnd and EditRangeEnd
• SetRange
• ApplyRange
• CancelRange

The SetRangeStart method prepares the table to have the next assignments to key fields
become the start value of a range.

To establish a range on a table, call the SetRangeStart method, and assign the values you
want to begin the range to the key index fields. Next call the SetRangeEnd method and
assign the values you want to end the range to the same key index fields. Finally, call the
ApplyRange method to apply the range and filter the data visible to the application.

The corresponding EditRangeStart method keeps existing range values and updates
with succeeding assignments. SetRangeStart differs from EditRangeStart in that it clears
all the elements of the range filter to the default values (or blank). EditRangeEnd leaves
the elements of the range filter with their current values.

ApplyRange applies the specified range. If SetRangeStart has not been called when
ApplyRange is called, then the range begins with the beginning of the table; likewise, if
SetRangeEnd has not been called, the range ends with the end of the table. CancelRange
cancels the range filter, therefore making all the rows in the table accessible to the
application.

The SetRange function combines SetRangeStart, SetRangeEnd, and field assignments into
a single statement that takes an array of values as its argument.

Note For Paradox or dBASE tables, these methods work only with indexed fields. For SQL
databases, they can work with any columns specified in the IndexFieldNames property.

For example, suppose there is a form with a TTable component named Cust, linked to
the CUSTOMER table. CUSTOMER is indexed on its first column (CustNo). The form
has two edit controls named StartVal and EndVal, and you have used the Fields editor to
create a TField component for the CustNo field. This code sets the start and end ranges
using the values in the edit controls, and applies the new range to the table.

char str [50] ;

Cust.SetRangeStart();
StartVal.GetText(str, 50);
CustNo.AsString = str;
Cust.SetRangeEnd();
EndVal.GetText(str, 50);
if (str[O] !=' \0')

640 C++ Programmer's Guide

CuStNo.AsString = stri
CUst.ApplyRange()i

Notice that this code first checks that the text entered in EndVal is not blank before
assigning any value to a field. If the text entered for StartVal is blank, then all records
from the beginning of the table are included, because all values are greater than blank.
However, if the text entered for EndVal is blarli<, then no records are included, because
none are less than blank.

This code could be rewritten using the SetRange function as follows:

char startStr[50]i
char endStr[50] i

TVarRecs startValuesi
TVarRecs endValues;

StartVal.GetText(startStr, 50);
startValues.Add(startStr);
Endval. GetText (endStr ,50);
if (endStr[O] != '\0')

endValues.Add(endStr);
else

endValues.Add();
Cust.SetRange(startValues, ertdValues);

Using partial keys
If a key is composed of one or more string fields, these methods support partial keys.
For example, if an index is based on the LastName and FirstName columns, the
following range specifications are valid:

MyTable.SetRangeStart();
MyTable.FieldByName("LastName")->AsString = "Smith";
MyTable.SetRangeEnd();
MyTable.ApplyRange();

This example uses the FieldByName method, which lets you access the value of a field by
passing the name of the field or column as a parameter to the method. For more
information about using FieldByName, see "Using the FieldByName method" on
page 657.

The example includes all records where LastName is greater than or equal to "Smith."
The value specification could also be:

MyTable.FieldByName("LastName")->AsString = "Sm";

This would include records that have LastName greater than or equal to"Sm." The
following would include records with a LastName greater than or equal to "Smith" and
a FirstName greater than or equal to "I":

MyTable.FieldByName ("LastName") ->AsString = "SmIth";
MyTable.FieldByName("FirstName")->AsString = "J";

The KeyExclusive property
The KeyExclusive property determines whether the filtered range excludes the range
boundaries. The default is false, which means rows are in the filtered range if they are

Chapter 42 , Using data-access components an dt 0 0 I s 641

greater than or equal to the start range specified and less than or equal to the end range
specified. If KeyExclusive is true, the methods filter out greater than and less than the
specified values.

Indexes
An index determines how records are sorted when an application displays data. By
default, data is displayed in ascending order, based on the values of the primary index
column(s) of a table.

Visual Database Tools supports SQL indexes, maintained indexes for Paradox tables,
and maintained .MDX (production) indexes for dBASE tables. Visual Database Tools
doesn't support:

• Non-maintained indexes on Paradox tables .
•. Non-maintained or .NDX indexes of dBASE tables.
• The IndexFieldCount property for a dBASE table opened on an expression index.

The GetIndexNames method returns a list of the names of available indexes on the
underlying database table. For Paradox tables, the primary index is unnamed and
therefore not returned by GetIndexNames.

IndexFields is an array of field names used in the index. IndexFieldCount is the number of
fields in the index. IndexFieldCount and IndexFields are read-only properties that are
available only during run time.

Use the IndexName property to sort or search a table on an index other than the primary
index. In other words, to use the primary index of a table, you need do nothing with the
IndexName property. To use a secondary index, however, you must specify it in
IndexName. To change back to the primary index, set the corresponding TTable's
IndexName to a null string.

For tables in a SQL database, the IndexFieldNames property specifies the columns to use
in the ORDER BY clause when retrieving data. The entry for this property is a
semicolon-delimited list of field names. Records are sorted by the values in the specified
fields. Sorting can be only in ascending order. Case-sensitivity depends on the server
being used.

For example, to sort customer records in an SQL table by zip code and then by customer
number, enter the following for the IndexFieldNames property:

ZipCodeiCustNo

For Paradox and dBASE tables, an index is· selected based on the columns specified in
IndexFieldNames. An error occurs if you specify a column or columns that cannot be
mapped to an existing index.

The IndexName and IndexFieldNames properties are mutually exclusive. Setting one
property clears the value of the other.

642 c++ Programmer's Guide

The Exclusive property
The Exclusive property indicates whether to open the table with an exclusive lock. If
true, no other user can access it at the same time. You can't open a table in Exclusive
mode if another user is currently accessing the table.

If the underlying table is in a SQL database, an exclusive table-level lock may allow
others to read data from the table but not modify it. Some servers may not support
exclusive table-level1ocks, depending on the server. Refer to your server documentation
for more information.

Other properties and methods
In addition to dataset properties shared with TQuery, TTable has a number of unique
methods and properties. For example, the unique methods include

• EmptyTable, which deletes all records (rows) in the table.

• DeleteTable, which deletes the table.

• BatchMove, which copies data and table structures from one table to another, similar
to the operation of TBatchMove.

A few of the more important properties and methods are discussed in this section. For a
complete list and descriptions, see the online Visual Database Tools reference.

The ReadOnly and CanModify properties
If you want the user to be able to modify the data in the dataset, set the ReadOnly
property for the table to false. This is the default value. If you want to prevent users
from modifying data, but only allow them to view the data, set ReadOnly to true.
Depending on the characteristics of the underlying table, the request for read and write
privileges mayor may not be granted by the database.

CanModify is a read-only property of datasets that reflects the actual rights granted for
the dataset. When ReadOnly is true, CanModify is automatically sef to false. When
ReadOnly is false, CanModify is true if the database allows read and write privileges for
the dataset and the underlying table.

When CanModify is false, the table is read-only, and the dataset can't be put into Edit or
Insert state. When CanModify is true, the dataset can enter Edit or Insert state. Even if
CanModify is true, it is not a guarantee that a user can msert or update records in a table.
Other factors may come in to play. For example, the user might not have SQL access
privileges.

The GotoCurrent method
GotoCurrent is a method that synchronizes two TTable components linked to the same
database table and using the same index. This method takes a TTable component as its

Chapter 42, Using data-access components and tools 643

argument, and sets the cursor position of the TTable to the current cursor position of the
argument. For example,

MyTable. GotoCUrrent (AnotherTable);

Once this code executes, the cursor for MyTable points to the same record as the cursor
for AnptherTable.

Creating master-detail forms
The MasterSource and MasterFields properties are used to define one-to-many
relationships between two tables. The MasterSource property is used to specify a data
source from which the table obtains data for the master table. For instance, if you link
two tables in a master-detail relationship, then the detail table can track the events
occurring in the master table by specifying the master table's TDataSource in this
property.

To link tables based on values in multiple column names, use a semicolon-delimited list:

MyTable.MasterFields = IOr derNo;ItemNo";

The Field Link Designer
At design time, you click the button with the ellipses (...) for the MasterFields property in
the Property Inspector of the Dialog editor to open the Field Link Designer dialog box.

Figure 42.3 Field Link designer

Flehlllllk Desl!Jller 1E31

D~tail Relds

D
,Joined Fields

Master Fields
CustNo
Company
Addrl
Addr2
City
State

II

The Field Link Designer provides a visual way to link master and detail tables. The
Available Indexes combo box shows the currently selected index by which to join the
two tables. For Paradox tables, this is uPrimary" by default, indicating that the primary
index of the table will be used. Any other named indices defined in the table will be in
the drop-down list.

Select the field you want to use to link the detail table in the Detail Fields list, the field to
link the master table in the Master Fields list, and then choose Add. The selected fields
are displayed in the Joined Fields list box. For example,

OrderNo -> OrderNo

644 c++ Programmer's Guide

For tables on a database server, the Available Indexes combo box doesn't appear, and
you must select the detail and master fields tojoin them manually in the Detail Fields
and Master Fields list boxes.

Using TDataSource
The TDataSource component acts as a conduit between datasets and data-aware
controls. Often the only thing you must do with a TDataSource component is to set its
DataSet property to an appropriate dataset component. Then you can set the DataSource
property of data-aware controls to the specific TDataSource component. You also use
TDataSource components to link datasets to reflect master-detail relationships.

Using TDataSource properties
TDataSource has only a few published properties in addition to the standard Name
property.

The DataSet property
The DataSet property specifies the name of the dataset from which the TDataSource
obtains its data. You can also set the DataSet property to a dataset on another form to
synchronize the data-aware controls on the two forms. For example,

DataSourcel.Dataset = For.ml.MyTablei

The Enabled property
The Enabled property can temporarily disconnect a TDataSource from its dataset. When
set to false, all data-aware controls attached to the data source go blank and become
inactive until Enabled is set to true.

In general, it's recommended to use the datasets' DisableControls and EnableControls
methods to perform this function, because they affect all attached data sources.

USing TDataSource events
TDataSource has three events associated with it:

• OnDataChange
• OnStateChange
• OnUpdateData

The OnDataChange event
The OnDataChange event occurs whenever the cursor moves to a new record. In other
words, if an application calls Next, Prior, Insert, or any method that leads to a change in
the cursor position, then an OnDataChange is triggered.

This event is useful if an application is keeping components synchronized manually.

Chapter 42, Using data-access components and tools 645

The OnStateChange event
The OnStateChange event occurs whenever the mode (state) of a data source's dataset
changes. A dataset's State property records its current state. This event is useful for
performing actions as a TDataSource's state changes, as the following examples
illustrate.

During the course of a normal database session, a dataset's state will change frequently.
To track these changes, you can use code in an OnStateChange event handler such as the
following example that displays the ,current state in a TStatic control:

void MyTable::StateChangeHandler();
{

string str;

switch (MyTable.State)
case dsInactive:

str = "Inactive";
break;

case dsBrowse:
str = "Browse";
break;

case dSEdit:
str = "Edit";
break;

case dsInsert:
str = "Insert";
break;

case dsSetKey:

} ;

str = "SetKey";
break;

Staticl.SetText(str.c_str());

The OnUpdateData event
The OnUpdateData event occurs whenever the data in the current record is about to be
updated. For instance, an OnUpdateData event occurs after Post is called but before the
data is actually posted to the database.

This event is useful if an application uses a standard (non-data aware) control and needs
to keep the text it displays synchronized with the value of a field in a dataset.

Using TField components and the Fields editor
TField components correspond to database columns. They are created

• At run time automatically whenever a dataset component is active. This creates a
dynamic set of TFields that mirrors the columns in the table at that time.

• At design time through the Fields editor. This creates a persistent set of TFields that
doesn't change, even if the structure of the underlying table changes.

646 e+t Programmer's Guide

There are TField components corresponding to all possible data types, including
TStringField, TSmallintField, TlntegerField, TWordField, TBooleanField, TFloatField,
TCurrencyField, TBCDField, TDateField, TTimeField, and TDateTimeField. This section
discusses TField components in general, and the discussion applies to all the different
subtypes. For information on the properties of a specific type, see the online Visual
Database Tools reference.

What are TField components?
All data-aware components rely on an underlying component class, TField. Although
not visible on forms, TField components are important because they provide an
application a direct link to a database column. TFields contain properties specifying a
column's data type, current value, display format, edit format, and other characteristics.
TField components also provide events, such as OnValidate, that can be used to
implement field-based validation rules.

Each column retrieved from a table has a corresponding TField component. By default,
TField components are dynamically generated at design time when the Active property
of a TTable or TQuery component is set to true. At run time, these components are also
dynamically generated. Dynamic generation means TField components are built based
on the underlying physical structure of a database table each time the connection to the
table is activated. Thus, dynamically generated TFields always correspond to the
columns in the underlying database tables.

To generate a persistenHist of TField components for an application, use the Fields
editor. Using the Fields editor to specify a persistent list of TField components is smart
programming. It guarantees that each time your application runs, it uses and displays
the same columns, in the same order, even if the physical structure of the underlying
database has changed. Creating TField components at design time guarantees that data­
aware components and program code that rely on specific fields always work as
expected. If a column on which a persistent TField component is based is deleted or
changed, an exception is generated rather than running the application against a non­
existent column or mismatched data.

Using the Fields editor
When TTable and TQuery components are connected to a database and their Active
properties are set to true, they dynamically generate a TField component for each
column in a table or query. Each TField component stores display-related information
about a field. The display information is used by data control components, such as
TDBEdit and TDBGrid, to format data for display in a form. You can make TField
components persistent and edit their display characteristics by starting the Fields editor.

The Fields editor enables you to:

• Create a static model of a table's columns, column order, and column type that
doesn't change even if changes are made to the underlying physical table in the
database.

• Specify the order in which fields are displayed and which fields to include.

C hap t e r 4 2, U sin 9 d a t a - ace e sse 0 m p 0 n e n t san d too I s 647

• Specify all display characteristics of fields.

• Define calculated TField components that behave just like physical data columns,
except that their values are calculated by the code you write in the OnCalcFields event
handler.

Starting the Fields editor
~ To start the Fields editor for a TTable or TQuery component, double-click the value

column of the Edit property of TTable or TQuery in the Property Inspector. The Fields
editor opens.

Figure 42.4 Fields editor

FlehJs E5
Fields----------,

The Fields list box displays the names of persistent TField components associated with
the data-access component. The first time you invoke the Fields editor on a particular
TTable or TQuery component, the Fields list is empty because all TFields are dynamically
created. If any TField components are listed in Fields, then data-aware components can
only display data from those fields. You can drag and drop individual TField compo­
nents within the Fields list box to change the order in which fields are displayed in
controls, like TDBGrid, that display multiple columns.

The Add button enables you to see a list of column names in the physical dataset but not
already included in the Fields list, and to create new TField components for them.

The Define button enables you to create calculated fields. Fields created this way are
only for display purposes. The underlying physical structure of the table or data is not
changed.

The Remove button deletes the selected TFields. The Clear All button deletes all the
TFields shown in the Fields list.

Adding a TField component
:The Add button of the Fields editor enables you to specify which TField components are
included in a dataset.

To see a list of fields currently available to a TTable or TQuery component, click the Add
button. The Add Fields dialog box appears.

648 c++ Programmer's Guide

Figure 42.5 Fields editor Add Fields dialog box

Add Fields E$:

The Available Fields list box shows all database fields that do not have persistent TFields
instantiated. Initially, all available fields are selected. Use the mouse to select specific
fields and then choose OK. The selected fields move to the Fields list box in the main
Fields editor window.

Fields moved from the Available Fields list become persistent. Each time the dataset is
opened, the existence of each non-calculated field is verified or can be created from data
in the database. If it cannot be verified to exist or can't be created, an exception is
thrown, warning you that the field is not valid, and the dataset is not opened.

Deleting a TField component
Use the Remove button of the Fields editor to delete the selected TField components
from the Fields list box. Fields removed from the Fields list box are no longer in the
dataset and cannot be displayed by data-aware components. Removing a TField
component is useful to display a subset of available fields within a table, or when you
want to define your own field to replace an existing field.

Defining a calculated field
A calculated field is used to display values calculated at run time in the dataset's
OnCalcFields event handler. For example, you might create a string field that displays
concatenated values from two other fields. A calculated field is for display purposes
only; the underlying physical structure of the table doesn't change. You can see a
calculated field in a data grid, for example, butthe number of fields in the actual
database table doesn't change.

~ To create a new calculated field:

1 Choose the Define button in the Fields editor.

2 Enter the name of the new field in the Field Name edit box, or select a field name
from the drop-down list. A corresponding TField component name appears

C hap t e r 4 2, U sin 9 d a t a -ace e sse 0 m p 0 n e n t san d too I s 649

automatically in the Component edit box as you type. This name is the iden!ifier you
use to access the field programmatically.

3 Select the data type for the field from the Field Type list box.

4 ,Check the Calculated check box if it isn't already checked.

5 Choose OK.

The newly defined calculated field is automatically added to the Fields list box.

~ To edit the properties of the new TField component, select the component name in the
Available Fields list box, and use the Property Inspect9r to set new values.

Programming a calculated field
Once you define one or more calculated fields, you write an OnCakFields event handler
that contains the code that actually calculates the value of these new fields.

> You begin by starting 'with the usual steps to respond to anevent:

1 Declare the event sink for the table's OnCalcFields event within the form's class
declaration.

2 Declare the OnCalcFields event handler in the form's class declaration.

3 Connect the event sink to the OnCalcFields event handler in the constructor for the
form. Within the constructor, you must instantiate a new TTable component that
attaches to the existing table component on the form.

4 Connect the table's OnCalcFields source object to the form's OnCalcFieldsSink object.

Now you are ready to write the OnCalcFields event handler code.

Writing an OnCalcFields event handler
~ These are the steps to follow when you write an OnCalcFields event handler:

1 Instantiate existing field components whose values are used in the calculation.

Calculating the value of one or more new fields l1sually involves using the values of
existing fields. For example, to calculate the total cost of an item, you would need to
use the price of an item and add any applicable tax to it. Therefore, you need to
instantiate a "Price" field, and maybe a "Tax Rate" field, depending on how you
perform your calculation.

2 Instantiate the new field component(s) you defined as calculated in the Fields editor.

For example, if you defined a "Total Cost" field as a calculated field in the Fields
editor, you must instantiate it in your code.

3 Write the code that calculates the value of the new field(s).

For example, you might write the code that calculates the value of the "Total Cost"
, field by multiplying the "Price" field by the "Tax Rate" field and adding the result to

the "Price" field.

650 c++ Programmer's Guide

A calculated field example
This section describes a small application that uses calculated fields. After the steps are
examined in detail, you will find the entire example listed with embedded comments.

This demo application assumes that the calculated fields "Calculated Profit" and
"Calculated Profit Percent" were added to a TTable component using the Fields editor.
The "Cost" and "Sale Price" fields already exist in the dataset the TTable component
accesses. The name of the dialog, or form, is CalcForm.

Following the steps listed above, our first task is to declare the event sink for the table's
OnCalcFields event within the form's class declaration. So our declaration would look
like this:

TDataSetNotifySink OnCalcFieldsSink;

Now that the event sihk exists, you can declare the OnCalcFields event handler within
the form's class declaration:

void OnCalcFields(TDataSetNotifySink&, TDataSet& DataSet);

Within the form's constructor, connect the event sink to the form. This CalcFieldDemo
constructor takes a HWND to the dialog that contains the TTable component:

CalcFieldDemo: : CalcFieldDemo (HWND hDlg) :
OnCalcFieldsSink(TDataSetNotify_MFUNCTOR(*this, &CalcFieldDemo::OnCalcFields))

The constructor must instantiate a new TTable component that maps directly to the
existing TTable component on the form. Once the instance exists, connect the form to it.
So the entire constructor for CalcFieldDemo looks like this:

CalcFieldDemo: : CalcFieldDemo (HWND hDlg) :
OnCalcFieldsSink(TDataSetNotify_MFUNCTOR(*this, &CalcFieldDemo::OnCalcFields))

{

table = new TTable (hDlg, IDC_TTABLE1);
if (table)

table->OnCalcFieldsSource +=OnCalcFieldsSink;

Note that the constructor for the table instance takes the HWND to the form and the
same ID of the existing TTable component. Any changes to either the TTable in the source
code o~ to the table on the form are reflected in each other, as they share the same
underlying pointers.

The actual OnCalcFields event handler begins by instatiating the field components for
the two fields "Cost" and "Sale Price". These fields already exist in the data set:

void CalcFieldDemo::OnCalcFields(TDataSetNotifySink&, TDataSet& DataSet)

TCurrencyField cost = DataSet.FieldByNarne(string(ICost"));
TCurrencyField salePrice = DataSet.FieldByNarne(string(IISale Price"));

The two fields that are defined as calculated fields using the Fields editor are also
instantiated:

TCUrrencyField profit
TFloatField profitPercent

= DataSet.FieldByNarne(string(IICalculated Profit"));
= DataSet.FieldByNarne(string(IICalculated Profit

Percent"));

C hap t e r 42, U sin 9 d a t a -ace e sse 0 m po n e n t s' and too I s 651

The values for profit and profitPercent are calculated using the values of salePrice and cost:

profit.Value = salePrice.Value - cost.Valuei
profitPercent.Value = 100 * profit.Value I salePrice.Valuei

This is the OnCalcFields event handler in its entirety:

void CalcFieldDemo::OnCalcFields(TDataSetNotifySink&, TDataSet& DataSet

TCurrencyField cost
TCurrencyField salePrice
TCurrencyField profit
TFloatField profitPercent

DataSet.FieldByName(string(ICost"))i

DataSet.FieldByName(string("Sa l e Price"))i

= DataSet.FieldByName(string(IICalculated Profit"))i

DataSet.FieldByName(string(IICalculated Profit
Percent"))i

profit.Value = salePrice.Value - cost.Valuei
profitPercent.Value = 100 * profit. Value I salePrice.Valuei
}

The following is the example code with comments embedded:

#define IDC_TABLEl 42

class CalcFieldDemo

private:
PTTable table i

public:
CalcFieldDemo(HWND hDlg)i
-CalcFieldDemo(void) {if (table) delete tablei}
II Declare an event sink for the calculation event
TDataSetNotifySink onCalcFieldsSinki

protected:

} i

II This method handles the calculation of the values for the new fields.
void OnCalcFields(TDataSetNotifySink&, TDataSet& DataSet)i

II CalcFieldDemo constructor takes a HWND to the form containing the
I I TTable component and the ID of the TTable component
CalcFieldDemo: : CalcFieldDemo (HWND hDlg) :

II Connect the event sink to the OnCalcFields event handler
OnCalcFieldsSink(TDataSetNotify_MFUNCTOR(*this, &CalcFieldDemo::On~alcFields))

II Map a TTable object onto the existing TTable component
lion the form. Changes made in either the source code or the table
II component on the form are reflected in the other because they share
II the same TTable underlying pointers.
II The TTable constructor takes the HWND to the form containing
I I the existing TTable component and the ID of that TTable component .

. table = new TTable (hDlg , IDC_TABLE1) i

if (table)
{

II Connect the form with the table so that onCalcFields event handler
II whenever the field values need to be calculated.
table->OnCalcFieldsSource += onCalcFieldsSinki

652 C++ Pro 9 ram me r '5 G U ide

void CalcFieldDemo::OnCalcFields(TDataSetNotifySink&, TDataSet& DataSet
{

II Here's where the field values are actually calculated.
II First field objects to access the existing fields "Cost" and
II "Sale Price" are instantiated.
TCurrencyField cost = DataSet.FieldByName(string("Cost"))i

TCurrencyField salePrice = DataSet.FieldByName(string("Sale Price"))i

II Next the new field components added with the Fields editor are
II instantiated.
TCurrencyField profit = DataSet.FieldByName(string("Calculated Profit"))i

TFloatField profitPercent = DataSet.FieldByName(string("Calculated Profit Percent"
) i

II The two existing fields "Cost" and "Sale Price" are used
II to calculate and assign the value to the "Profit" field
profit. Value = salePrice.Value - cost.Valuei .
II The existing field "Sale Price" and the ~alculated
II field "Profit" are used to calculate and assign the value to the
II "Profit Percent" field.
profitPercent.Value = 100 * profit.Value I salePrice.Valuei

II Assume CalcForm is a class derived from TDialog and it
II contains Visual Database Tools components.
CalcForm::EvlnitDialog(HWND hFocusWnd)
{

II Assuming CalcEm is a CalcFieldDemo property of CalcForm
II then hook up the fields calculator
CalcEm = CalcFieldDemo(*this, IDD_TABLE1)i

Modifying a TField component
TField components have several properties that determine how the field is displayed by
a data-awa re control. For example, such properties can determine whether the field can
be modified at run time or whether the user is limited to entering a range of acceptable
values in the field. You can modify the value of these properties at run time only.

The following table summarizes TField properties display:

Table 42.6 TField properties

Calculated True: Field value can be calculated by a CalcFields method at run time.
False: Field value is determined from the current record.

Currency True: Numeric field displays monetary values.

DisplayFormat
EditFormat
EditMask

False: Numeric field does not display monetary values.

Specifies the format of data displayed in a data-aware component.

Specifies the edit format of data in a data-aware control.

Limits data-entry in an editable field to specified type and ranges of characters, and
specifies any special, non-editable characters that appear within the field (hyphens,
parantheses, and so on).

Chapter 42, Using data-access components and tools 653

Table 42.6 TField properties (continued)

FieldName Specifies the actual name of column in the physical table from which the TField
component derives its value and data type.

Index Specifies the order of the field in a dataset.

Max Value Specifies the maximum numeric value that can be entered in an editable numeric
field.

Min Value Specifies the minimum numeric value that can be entered in an editable numeric field.

Name Specifies the component name of the TField component.

ReadOnly True: Field can be displayed in a component, but cannot be edited by a user.
False: Field can be displayed and edited.

Size Specifies the maximum number of characters that can be displayed or entered in a
string-based field, or the size of byte fields.

Visible True: Field is displayed by a TDBGrid component. User-defined components can also
make display decisions based on this property.
False: Field is not displayed by a TDBGrid component.

Not all properties are available to all TField components. For example, a component of
type TStringField doesn't have Currency, MaxValue, or DisplayFormat properties. A
component of type TFloatField doesn't have a Size property.

WillIe the purpose of most properties is apparent, some properties, such as Calculated,
require additional programming steps to be useful. Others, such as DisplayFormat,
EditFormat, and EditMask, are interrelated; their settings must be coordinated. For more
information about using the Calculated property, see "Programming a calculated field"
on page 650. For more information about using DisplayFormat, see "Formatting Fields."

Formatting fields
Visual Database Tools provides built-in display and edit format routines and intelligent
default formatting for TField components. These routines and formats require no action
on the programmer's part. Default formatting conventions are based on settings in the
Windows Control Panel. Only format properties appropriate to the data type of a TField
component are available for a given component.

You can change the value of the DisplayFormat and EditFormat properties of a TField
component to override the default display settings for a TField, or you can handle the
OnGetText and OnSetText events for a TField to do custom programmatic formatting.

Handling TField events
The following table summarizes TField events:

Table 42.7 Published TField events

On Change Called when the value for a TField component changes.

OnGetText Called when the value for a TField component is retrieved for display or editing.

OnSetText Called when the value for a TField component is set.

On Validate Called to validate the value for a TField component whenever the value is changed because
of an edit or insert operation.

654 e++ Programmer's Guide

OnGetText and OnSetText events are primarily useful to programmers who want to do
custom formatting that goes beyond built-in formatting functions.

Using TField conversion functions
TFields have built-in functions for conversion among data types. Depending on the
TField type, different conversion functions are available and do different things. The
following table summarizes these functions.

Table 42.8 TField conversion functions

TStringField String type by Convert to Integer Convert to Float if Convert to Date if Convert to
definition if possible possible possible Boolean if

possible

TIntegerField Convert to String Integer type by Convert to Float Not Allowed Not Allowed
TSmallIntField definition

TWordField

TFloatField Convert to String Round to nearest Float type by Not Allowed Not Allowed
TCurrencyField integer value definition

TBCDField

TDateTirneField Convert to String. Not Allowed Convert Date to DateTirne type Not Allowed
TDateField Content depends number of days by definition

TTirneField on DisplayForrnat since 01 /01 /0001 Zero date or time
ofField Convert Time to if not specified

fraction of 24
hours

TBooleanField Convert to String Not Allowed Not Allowed Not Allowed Boolean type by
"True" or "False" definition

\
TBytesField Convert to String Not Allowed Not Allowed Not Allowed Not Allowed
TV arBytesField (Generally only
TBlobField makes sense for
TMemoField TMemoField)

TGraphicField

The conversion functions can be used in any expression involving a TField component,
on either side of an assignment statement. For example, the following statements
convert the value of the TField named MyTableMyField to a string and assigns it to the
text of an edit control named Editl:

or

string S;
S = MyTableMyField.AsString;
Editl.SetText(s.c_str());

Editl.SetText(MyTableField.AsString -> c_str());

Conversely, this statement assigns the text of the Editl control to the TField as a string:

char str[50];
Editl.GetText(str, 50);
MyTableMyField.AsString = str;

An exception occurs if an unsupported conversion is attempted at run time.

Chapter 42, Using data-access components and tools 655

Changing a field's value
An application can access the value of a database column through a TField component's
Value property. For example, the following statement assigns the value of the
CustTableCountry TField to the text in the edit control named Edit3:

string str;
str = CUstTableCountry.Value;
Edit3.SetText(str.c_str());

Any properties of TField components that are available from the Property Inspector can
also be accessed and adjusted programmatically as well. For example, this statement
changes field ordering by setting the Index property of CustTableCountry to 3:

CustTableCountry. Index = 3;

Displaying data with standard controls
You can display database values at run time with standard components as well as data
aware components. Besides accessing TField components created with the Fields editor,
there are two ways to access column values at run time: the Fields property and the
FieldsByName method. Each accesses the value of the current row of the specified
column in the underlying database table at run time. Each requires a dataset component
in the form, but not a TDataSource component.

In general, you should use the data-aware controls built in to Visual Database Tools in
database applications. These components have properties and methods built in to them
that enable them to be connected to database columns, display the current values in the
columns, and make updates to the columns. If you use standard components, you must
provide analogous code by hand.

USing the Fields property
You can access the value of a field with the Fields property of a dataset component, using
as a parameter the ordinal number of the column in the table (starting at 0). To access or
change the field's value, convert the result with the appropriate conversion function,
such as AsString or AsInteger.

This method requires you to know the order and data types of the columns in the table.
Use this method if you want to iterate over a number of columns or if your application
works with tables that are not available at design time.

For example, the following statement assigns the current value of the seventh column
(Country) in the CustTable table to the text of a standard edit control named Edit1:

Editl.SetText(CUstTable.Fields[6]->AsString->c_str());

Conversely, you can assign a value the user enters in a standard control to a field. For
example,

char str [50] ;

Editl.GetText (str I 50);
CUstTable.Fields[6]->AsString = str;

656 ett Programmer's Guide

Using the FieldByName method
You can access the value of a field with the FieldByName method by specifying the
dataset component name, ap.d then passing FieldByName the name of the field you want
to access. To access or change the field's value, convert the result with the appropriate
conversion function, such as AsString or Aslnteger.

This method requires you to know the name of the field you want to access.

For example, the following statement assigns the value of the Country field in the
CustTable table to the standard edit control named Edit2:

Edit2.SetText(CustTable.FieldByName("Country")->AsString->c_str()i

Conversely, you can assign a value the user enters in a standard control to a field:

char str[50] i

Edit2.GetTe~t(str, 50)i

CustTable.FieldByName("Country")->AsString = stri

Using the TBatchMove component
The TBatchMove component enables you to perform operations on groups of records or
entire tables. These are the primary uses for TBatchMove:

• Downloading data from a serVer to a local data source for analysis or other
operations.

• Up sizing a database from' a desktop data soUrce to a server. For more information on
up sizing, see Chapter 45, ilBuilding a client/server application."

The TBatchMove component is powerful because it can create destination tables that
correspond to the source tables, automatically mapping the column names and data
types as appropriate.

Two TBatchMove properties specify the source and a destination for the batch move
operation: Source specifies a dataset (a TQuery or TTable component) corresponding to
an existing source table. Destination specifies a TTable component corresponding to a
database table. The destination table mayor may not already exist.

Batch move modes .
The Mode property specifies what the batch move operation will do:

Table 42.9

batAppend

batUpdate

Batch move modes

Append records to the destination table. The destination table must already exist.
This is the default mode.

Update records in the destination table with matching records from the source table.
The destination table must exist and must have an index defined to match records.

C hap t e r 4 2, U sin 9 d a t a -a c c e sse om p 0 n e n t san d too I s 657

, Table 42.9 Batch move modes

batAppendUpdate

batCopy

batDelete

If a matching record exists in the destination table, update it. Otherwise, append
records to the destination table. The destination table must exist and must have an
index defined to match records.

Create the destination table based on the structure of the source table. The
destination table must not already exist-if it does, the operation will delete it.

Delete records in the destination table that match records in the source table. The
destination table must already exist and must have an index defined.

The Transliterate property controls whether character-by-character translations to
another character set are made as the data is transferred from the source table to the
destination datasets. If the source and destination datasets use different character sets,
Tran~literate should be true, so that the transliteration to the destination character set
occurs during the batch move operation.

Data type mappings
In Copy mode, the batch move operation creates the destination table based on the
column data types of the source table. In moving data between different table types, the
batch move operation translates the data types as appropriate. The mappings from
dBASE, Paradox, and InterBase data types are shown in the following tables.

Note To batch move data to an SQL server database, you must have that database server with
the appropriate SQL Link installed. For more information, see the SQL Links for Windows
User's Guide: .

Table 42.10 Physical data type translations from Paradox tables to tables of other driver types

Alpha Character Character VarChar Varying Character

Number Float {20A} Number Float Double Float

Money Float {20A} Number Money Double Money {l6.2}

Date Date Date DateTime Date Date

Short Number {6.0} Number SmallInt Short SmallInt

Memo Memo Long Text Blob/l Text

Binary Memo LongRaw Image. Blob Byte

Formatted memo Memo LongRaw Image Blob Byte

OLE OLE LongRaw Image Blob Byte

Graphic Binary LongRaw Image Blob Byte

Long Number {ll.O} Number Int Long Integer

Time Character {>8} Character {>8} Character {>8} Character {>8} Character {>8}

DateTime Character {>8} Date DateTime Date DateTime

Bool Bool Character {I} Bit Character {l} Character

AutoInc Number{11.0} Number Int Long Integer

Bytes Memo LongRaw Image Blob Byte

BCD N/A N/A N/A N/A N/A

658 c++ Programmer's Guide

Table 42.11. Physical data type translations from dBASE tables to tables of other driver types

Character

Number

others

Float

Date

Memo

Bool

Lock

OLE

Binary

Bytes

Table 42.12

Short

Long

Float

Double

Char

Varying

Date

Blob

Blob I 1

Alpha Character VarChar Varying Character

Short Number Smallfut Short Smallfut

Number Number Float Double Float

Number Number Float Double - Float

Date Date DateTime Date Date

. Memo Long Text Blob I 1 Text

Bool Character {I} Bit Character {I} Character

Alpha {24} Character {24} Character {24} Character {24} Character

OLE LongRaw Image Blob Byte

Binary LongRaw Image Blob Byte

Bytes LongRaw Image Blob Byte (only for
temp tables)

Physical data type translations from InterBase tables to tables of other driver types

Short N~ber{6.0} Number SmallInt Smallfut

Number Number {ll.O} Number Int Integer

Number Float {20.4} Number Float Float

Number Float {20.4} Number Float Float

Alpha Character Character VarChar Character

Alpha Character Character VarChar Character

DateTime Date Date DateTime DateTime

Binary Memo LongRaw Image Byte

Memo Memo Long Text Text

By default the batch move operation matches columns based on their position in the
source and destination tables. That is, the first column in the source is matched with the
first column in the destination, and so on.

To override the default column mappings, use the Mappings property. This is a list of
column mappings (one per line) in one of two forms. To map the column, ColName, in
the source table to the column of the same name in the destination table, enter this as the
value of Mappings:

ColName

Or, to map the column named SourceColName in the source table to the column named
DestColName in the d~stination table, enter this as the value of Mappings:

DestColName = SourceColName

If source and destination column data types are not the same, the batch move operations
performs a ''best fit." It trims character data types, if necessary, and attempts to perform
a limited amount of conversion if possible. For example, mapping a CHAR(lO) column

C hap t e r 4 2, U sin 9 d a t a -ace e sse 0 m p 0 n e n t san d too I s 659

to a CHAR(5) column results in trimming the last five characters from the source
column.

As an example of conversion, if a source column of character data type is mapped toa
destination of integer type, the batch move converts a character value of '5' to the
corresponding integer value. Values that can't be converted generate errors. See
"Handling batch move errors" on page 660.

Executing a batch move
Use the Execute method to execute the batch operation at run time. For example, if
BatchMoveAdd is the name of a TBatchMove component, the following statement
executes it:

BatchMoveAdd.Execute();

Handling batch move errors
Basically, two types of errors can occur in a batch move operation: data type conversion
errors and integrity violations. TBatchMove has a number of properties that specify how
it handles errors. The AbortOnProblem property specifies whether to abort the operation
when a data type conversion error occurs. The AbortOnKeyViol property indicates
whether to abort the operation when an integrity (key) violation occurs.

The following properties enable a TBatchMove to create additional tables that document
the batch move operation: .

• ChangedTableName creates a local (Paradox) table containing all records in the
destination table that changed as a result of the batch operation.

• KeyViolTableName creates a local (Paradox) table containing all records from the
source table that caused an integrity violation (such as a key violation) as a result of
the batch operation.

• ProblemTableName creates a local (Paradox) table containing all records that could not
be posted in the destination table due to data type conversion errors. For example,
the table could contain records from the source table whose data had to be trimmed
to fit in the destination table.

Using TSession
The TSession component is rarely used, but can be useful for some specialized purposes.
Each time a Visual Database Tools application runs, a TSession component named
Session is created automatically. You can neither see nor explicitly create a TSession
component, but you can use its methods and properties to globally affect an application.

ContrOlling database connections
TSession provides global control over database connections for an application. The value
of the Databases property of TSession is all the active databases in the session. The

660 c++ Programmer's Guide

DatabaseCount property reports the number of active databases (TDatabase components)
in the session. For more information on the TDatabase component, see "Using the
TDatabase component" on page 99.

KeepConnections is a Boolean property that specifies whether to keep inactive database
connections. A database connection becomes inactive when a TDatabase component has
no active datasets. By default, KeepConnections is true, and an application maintains its
connection to a database even if the connection is inactive. This is generally preferable if
an application is repeatedly opening and closing tables in the database. If
KeepConnections is false, a database connection is closed as soon as the connection is
inactive. The DropConnections method drops all inactive database connections.

The NetFileDir property specifies the directory path of the Borland Database Engine
network control directory. The PrivateDir property specifies the path of the directory in
which to store temporary files (for example, files used to process local SQL statements).
You should set this property if there will be more than one instance of the application
running at a time. Otherwise, the temporary files from multiple application instances
will interfere with each other.

Getting database information
TSession has a number of methods that enable an application to get database-related
information. Each method has a parameter of type TStrings in which it returns multiple
strings:

Table 42.13 TSession methods

GetAliasParams

GetDatabaseNames
GetDriverNames

GetDriverParams

GetTableNames

Parameters for the specified BDE alias.

Database names and BDE aliases defined;

Names of BDE drivers installed.

Parameters for the specified BDE driver.

All table names in the specified database.

For more information on these methods, see the online Visual Database Tools reference.

Accessing the Borland Database Engine directly
Visual Database Tools provides a wide range of built-in methods and properties that
provide an interface to the Borland Database Engine, but applications are not limited to
them. Some advanced applications might require direct access to BDE function calls,
cursors, and so on. While direct BDE calls can provide additional functionality, they
should be used with caution, as they bypass the built-in functionality that keeps data­
aware components synchronized with datasets.

Chapter 42, Using data-access components and tools 661

If your application requires direct access to the BDE, you should refer to the Borland
Database Engine User's Guide. This documentation provides a complete reference and
user's guide to the BDE.

Ihe application must include the header file idapi.h. Then the code can make direct calls
to the BDE application programming interface.

BDE function calls often require handles as parameters to specify the action to be
performed. Your applications have access to these through the following properties of
dataset components:

• DBHandle is the handle for the database to which they are connected.

• Handle is the handle for the underlying cursor on the database.

• DBLocale and Locale are used for ANSI/OEM conversion for localization of
applications.

After performing a BDE call directly, it is a good idea to call Refresh or UpdateCursorPos
to ensure that all data-aware components are synchronized with their datasets.

662 C++ Pro 9 ram mer's G u ide

Using data-aware controls
Data-aware controls are used to display and edit data from a database. They include
components such as TDBGrid for displaying and editing all specified records and fields
in a table, and TDBNavigator for navigating among records, deleting records, and
posting records when they change.

The following table summarizes the data-aware controls:

Table 43.1 Data-aware components

TDBComboBox

TDBEdit

TDBGrid

TDBImage

TDBListBox

Check box that displays a value from a column, or modifies a field
value for the current record.

Combo box that displays or edits values in a column of a table.

Edit control that displays and edits a value from a column of the
current record.

Grid that enables the viewing and editing of data in a table.

Image control that displays, cuts, or pastes graphical BLOB images to
and from a table.

Listbox that presents a list of choices to the user. When the user
selects one of them, that item becomes the value in a column of the
current record.

Chapter 43, Using data-aware controls 663

Table 43.1 Data-aware components (continued)

TDBLookupList

TDBMemo.

TDBNavigator

TDBRadioGroup

TDBText

Combo box that displays values mapped through another table at run
time.

List box that displays values mapped through another table at run
time.

Memo control that displays or edits text BLOB data from a column in
a table.

Navigation control with buttons that move a table's current record
pointer forward or backward; start msert or Edit mode; post new or
modified records; cancel Edit mode; and refresh display to retrieve
updated data.

Radio group populated with radio buttons that display or set column
values.

Text control that displays a value from a column of the current
record.

A data-aware control derives display data from a database source outside the
application, and can also optionally post (or return) data changes to a data source. Data­
aware controls are aware of data at design time, meaning that when you connect a
component to an active data source while building an application, you can immediately
see live data in the controls by switching the Dialog editor into test mode.

This chapter describes basic features common to all data-aware controls, then describes
how and when to use individual components.

Data-aware component basics
Data-aware controls are linked to database tables through the DataSource property. The
DataSource property specifies the name of the TDataSource component from which a
control gets its data. The TDataSource component is linked to a dataset (for example,
TTable or TQuery) that is, in turn, connected to a database table. For more information
about TDataSource, TTable, TQuery, and the Fields editor, see Chapter 42, "Using data­
access components and tools." For information about connecting data-access controls
with other components, see "Making the connections: linking database components" on
page 24.

Data-aware controls can only access columns in tables for which there are
corresponding TField components. If the Fields editor is used to limit a dataset to a
subset of columns in a table, then TField components exist only for those columns. Most

664 C++ Programmer's Guide

data-aware controls provide a DataField property where you can specify the TField
component with which it should be associated.

Placing data-aware controls on forms
When designing a form that accesses data, you must place at least one dataset
component (for example, TTable or TQuery), at least one TDataSource component, and
one or more data-aware controls on the form.

>- To place a data-aware control on a form and link it to a dataset, follow these steps:

1 Select the control from the Data Aware page of the Controls palette in the Dialog
editor and drop it on the form.

2 Set the DataSource property to the name of a TDa~aSource component already on the
form. You can type the name or choose it from the drop-down list.

3 Set the DataField property to the name of a TField component in the dataset
component named in the DataSource property. You can type the field name or choose
it from the drop-down list.

Note Two data-aware controls, the data grid and the database navigator, access all available
TField components within a dataset, and therefore do not have DataField properties. For
these controls, omit step 3.

When a data-aware control is associated with a dataset, its Enabled property determines
if its attached TDataSource component receives data from mouse or keyboard events.
Controls are also disabled if the Enabled property of TDataSource is false, or if.the Active
property of the dfltaset is false.

Updating fields
Most data-aware controls can update fields by default. Update privileges depend on the
status of the control's ReadOnly property and underlying TField's and dataset's
CanModify property. ReadOnly is set to false by default, meaning that data modifications
can be made. In addition, the data source must bein Edit state if you want the user to be
able to modify the data.

In all data-aware controls except TDBGrid, when you modify a field, the modification is
copied to the underlying TField component when the user moves to another control. If
the user presses the Cancel button on a database navigator before moving to another
control, then any modifications are abandoned, and the value of the field reverts to the
value it held before any modifications were made.

When a record is posted, all data-aware <;:ontrols associated with the dataset are checked
for a change in status. If there is a problem updating any fields that contain modified
data, an exception is raised, and no modifications are made to the record.

Chapter 43, Using data-aware controls 665

Displaying data with TDBText
The database text control is a read-only data-aware control. TDBText gets the text it
displays from a specified field in the current record of a dataset. Because TDBText gets
its text from a dataset, the text it displays is dynamic-the text changes as the user
navigates the database table. When TDBText is linked to a data field at design. time, you
can $ee the current value for that field when the Dialog editor is in test mode. A TDBText
control is useful when you want to provide display-only data on a form that allows user
input in other controls.

For example, suppose a form is created around the fields in a customer list table, and
that once the user enters a street address, city, and state or province information in the
form, you use a dynamic lookup to automatically determine the zip code field from a
separate table. A TDBText component tied to the zip code table could be used to display
the zip code field that matches the address entered by the user.

Note When you create a TDBText component on a form, make sure its AutoSize property is
true (the default) to ensure that the control resizes itself as necessary to display data of
varying widths. If AutoSize is set to false, and the control is too small, data display is
truncated.

Displaying and editing fields with TDBEdit
A database edit control displays the current value of a data field to which it is linked.
You can also modify values in this component.

For example, suppose DataSourcel is a TDataSource component that is active and linked
to an open TTable called Customer. You can then add a TDBEdit control to a form, and
set its properties as follows:

• DataSource: DataSourcel
• DataField: CUSTNO

The database edit control immediately displays the value of the current row in the
CUSTNO column of the CUSTOMER table, both in. test mode at design time and at run
time.

Editing a field
A user can modify a database field in a TDBEdit component if:

• The dataset is in Edit state.
• The CanModify property of the dataset is true.
• The ReadOnly property of the TDBEdit control is false.

Note Edits made to a field must be posted to the database by moving to a different record by
using a navigation button on a database navigator control. Using the Post button posts
edits without moving to a different record.

666 c++ Programmer's Guide

Viewing and modifying data with a data grid
The data grid (TDBGrid) enables you to view and edit all records associated with a
dataset in a spreadsheet-like format:

Figure 43.1 TDBGrid component

Current field Column titles

Which fields appear in the dataset displayed in the data grid depends on whether the
TField components of the dataset are dynamically created at run time, or if you use the
Fields editor to create a persistent set of TField components whose properties you can
specify in the Property Inspector at design time.

If a dynamic dataset is generated at run time, all records are displayed using default
record and field ordering, and default display and edit formats. In most cases, however,
you will want to control field order and appearance. To do so, use the Fields editor to
instantiate TField components and set their properties at design time.

When you use the Fields editor to instantiate TField components, you gain a great deal
of flexibility over the appearance of records in a data grid. For example, the order in
which fields appear from left to right in the data grid is determined by the way you
order TField components in the Fields list box of the Fields editor. For more information
about using the Fields editor to control TField properties, see "Using TField components
and the Fields editor" on page53.

To put a data grid on a form and link it to a dataset:

1 Select the TDBGrid control from the Data Aware page of the Controls palette of the
Dialog editor, and place it on a form.

2 Resize the grid to the size you want.

3 Set the DataSource property to the name of a TDataSource component that specifies a
TTable or TQuery component in its Dataset property.

Setting grid options
You can set properties at design time to control grid behavior and appearance at run
time. The following table lists these properties:

C hap t e r 4 3, U sin 9 d a t a - a war e con t r 0 I s 667

Table 43.? Important design-time properties for the data grid

AllowResize

ShowGridLines

AllowTabs

DataSetColumnNames

True: Columns and rows can be resized by dragging the lines that separate the
columns and rows in the title area.
False: Columns and rows cannot be resized in the grid.

True: Displays grid lines between columns and rows.
False: Does not display grid lines between columns and rows.

True: Permits the Tab and Shift+ Tab keys to move the cursor between cells in
the selected range.
False: Tabbing exits the data grid.

True: Displays field names as the headings of the columns in the data grid.
False: Field-name display ~s turned off.

For more information about these options, see the online Visual Database Tools
reference.

The data grid is a VBX control provided by a third party. It has many more properties
available that make it very useful as a spreadsheet control. You can find more
information about using the data grid as a spreadsheet control in the Formula One
Spreadsheet VBX Control online help.

Editing in the data grid
At run time, users can use a data grid to modify existing data and enter new records, if
the ReadOnly property of the TTable or TQuery dataset displayed in the grid is false.
When the dataset's ReadOnly property is false, its CanModify property is true.

In data-aware controls, edits and insertions within a field are posted only when the user
moves to a different record in the data grid or explicitly performs a Post. Evenif the
mouse is used to change focus to another control on a form, the data grid doesn't post
changes until the cursor on the dataset moves to another row. When a record is posted,
all data-aware components associated with the dataset are checked for a change in
status. If there is a problem updating any fields that contain modified data, an exception
is thrown, and the record is not modified.

The user can cancel all edits for a record by pressing the Cancel button on a database
navigator in any field before moving to another record.

Navigating and manipulating records with TDBNavigator
The database navigator (TDBNavigator) uses a simple control for navigating through
records in a dataset, and for manipulating records. The navigator consists of a series of
buttons that enable a user to scroll forward or backward through records one at a time,
go to the first record, go to the last record, insert a new record, update an existing
record, post data changes, cancel data changes, delete a record, and refresh record
display.

668 c++ Programmer's Guide

Figure 43.2 TDBNavigator component

Insert record --------, r-------- Delete current record

Next record ----------, r---------- Post record edits

First record ---- ----- Refresh records

Prior record -----------' '--------- Cancel record edits
Last record ____ --l L-____ Edit current record

The following table describes the buttons on the navigator:

Table 43.3

BtnFirst

BtnPrevious

BtnNext

BtnLast

BtnInsert

BtnDelete

BtnEdit

BtnPost

BtnCancel

BtnRefresh

TDBNavigator buttons

Calls the dataset's First method to set the current record to the first record.

Calls the dataset's Prior method to set the current record to the previous record.

Calls the dataset's Next method to set the current record to the next record.

Calls the dataset's Lilst method to set the current record to the last record.

Calls the dataset's Insert method to insert a new record before the current record, and set
the da,taset in Insert state.

Deletes the current record. If the ConfinnDelete property is true, it prompts for confirmation
before deleting.

Puts the dataset in Edit state so that the current record can be modified.

Writes changes in the current record to the database.

C'ancels edits to the current record, and returns the dataset to Browse state.

Clears data-aware control display buffers, then refreshes its buffers from the physical table
or query. Useful if the underlying data may have been changed by another application.

The database navigator has a property for each button. For example, the BtnCancel
property gives you access to the button that cancels an edit on the navigator.

Hiding and disabling navigator buttons
When you first put a database navigator on a form, all its buttons are visible. You can
choose to hide buttons you do not want to use on a form. For example, on a form that is
intended for browsing rather than editing, you might want to hide the Edit, Insert,
Delete, Post, and Cancel buttons.

Each button has three possible states as shown in this table:

Table 43.4 Navigator button states

btnOff The button is not visible.

btnOn The button is visible and enabled.

btnDisabled The button is visible but disabled and appears grayed.

For example, to hide the BtnDelete button, set the property value for BtnDelete to btnOff.

C hap t e r 4 3, U sin 9 d a t a -a war e can t r 0 I s 669

Displaying and editing BLOB text with TDBMemo
The database memo control is a data-aware control that can display binary large object
(BLOB) data. The TDBMemo control displays multi-line text, and permits a user to enter
multi-line text as well. For example, you can use TDBMemo controls to display memo
fields from dBASE and Paradox tables and text data contained in BLOB fields.

Figure 43.3 TDBMemo component
Alto known as the big spotted
triggerfish; Inhabits outer reef
areas and feeds upon
crustaceans and mollusks by
crushing them with powerful
teeth. They are voraciows eaters.

By default, TDBMemo permits a user to edit memo text. To limit the number of
characters users can enter into the database memo, use the MaxLength property. To
make a TDBMemo component read-only, set its ReadOnly property to true.

Several properties affect how the database memo appears and how text is entered. You
can supply scroll bars in the memo with the ScrollBars property. To prevent word wrap,
set the Word Wrap property to false. To permit tabs in a memo, set the WantTabs property
to true. The Alignment property determines how the text is aligned within the control.
Possible choices are taLeftJustify (the default), taCenter, and taRightJustify.

At run time, users can cut, copy, and paste text to and from a database memo control.
You can accomplish the same task programmatically by using the CutToClipboard,
CopyToClipboard, and PasteFromClipboard methods.

Because the TDBMemo control can display large amounts of data, it can take time to
populate the display at run time. To reduce the time it takes to scroll through data
records, TDBMemo has an AutoDisplay property that controls whether the accessed data
should be automatically displayed. If you set AutoDisplay to false, TDBMemo displays
the field name rather than actual data. The user must double-click inside the control to
view the actual data.

Displaying BLOB graphics with TDBlmage
The database image control is a data-aware component that displays bitmapped
graphics contained in BLOB data fields. It captures BLOB graphics images from a
dataset, and stores them internally in the Windows .DIB format.

Figure 43.4 TDBlmage component

670 C++ Pro 9 ram mer's G u ide

By default, TDBlmage permits a user to update the graphics image by cutting and
pasting to and from the Clipboard. You can accomplish the same task programmatically
by using the CutToClipboard, CopyToClipboard, and PasteFromClipboard methods. To
make a TDBlmage component read-only, set its ReadOnly property to true.

Because the TDBlmage can display large amounts of data, it can take time to populate
the display at run time. To reduce the time it takes to scroll through data records,
TDBlmage has an AutoDisplay property that controls whether the accessed data is
automatically displayed. If AutoDisplay is set to false, TDBlmage displays the field name
rather than actual data. The user must double-click inside the control to view the actual
data.

Using list and combo boxes
Four data-aware controls provide data-aware versions of standard list box and combo
box controls. These useful controls provide the user with a set of default data values to
choose from at run time.

The following table describes these controls:

Table 43.5 Data-aware list box and combo box controls

TDBListBox

TDBComboBox

TD BLookupList

TDBLookupCombo

TDBListBox

Displays a list of items from which a user can update a specific column in the
current data record.

Combines a TDBEdit control with an attached list. The application user can update
a specific column in the current data record by typing a value or by choosing a
value from the drop-down list.

Displays a list of items from which a user can update a column in the current data
record. The list of items is looked up in a specific column in another dataset.

Combines a TDBEdit control with a drop-down version of TDBLookupList. The
application user can update a field in the current database by typmg a value or by
choosing a value from the drop-down list that is looked up in a specific column in
another dataset.

A database list box is very similar to a database combo box, but instead of a drop-down
list, it displays a scrollable list of available choices. When the user selects a value at run
time, it becomes the new value for the field the database list box is linked to. Unlike
TDBComboBox, the user can't type an entry that is not in the list.

Here is an example of how a TDBListBox control appears at run time.

Figure 43.5 TDBListBox component

Cash
Check

COD
Visa
MC

C hap t e r 43, Us i n 9 d a t a -a war e con t r 0 I 5 671

While navigating through a dataset, a TDBListBox control displays values in the column
by highlighting the corresponding entry in its list. If the current row's value is not
defined in the Items property, no value is highlighted in the TDBListBox. Changing the
selection changes the underlying value in the database column and is equivalent to
typing a value in a TDBEdit component.

. The IntegralHeight property controls the way the list box is displayed. If IntegralHeight is
true (the default), the bottom of the list box .moves up to the bottom of the last
completely displayed item in the list. If IntegralHeight is false, the bottom of the list box is
determined by the ItemHeight property, and the bottom item might not be completely
displayed.

TDBCo.mboBox
A database combo box is similar to a database edit control, except that at run time it has
a drop-down list that enables a user to pick from a predefined set of values. Here is an
example of what a TDBComboBox component looks like at run time:

Figure 43.6 TDBComboBox component

The Items property of the component specifies the items contained in the drop-down list.
Use the String List editor to specify the values for the drop-down list. To display the
String List editor, double-click the value column of the Items property. Each line you
type in the String List editor becomes an item in the combo box.

At run time, the user can choose an item from the list or (depending on the value of the
Style property) type a different entry. When the component is linked to a column
through its DataField property, it displays the value in the current row, regardless of
whether it appears in the Items list.

The following properties determine how the Items list is displayed at run time:

• Style determines the display style of the component:

• csDropDown (default): Displays a drop-down list with an edit box in which the
user can enter text. All items are strings and have the same height.

• csSimple: Displays the Items list at all times instead of in a drop-down list. All items
are strings and have the same height.

• csDropDownList: Displays a drop-down list and edit box, but the user cannot enter
or change values that are not in the drop-down list at run time.

• csOwnerDrawFixed and csOwnerDrawVariable: Allows the Items list to display
values other than strings (for example, bitmaps). For more information about
owner-draw list and combo boxes, see the online Visual Database Tools reference.

672 C++ Pro 9 ram mer's G u ide

• DropDownCount: the maximum number of items displayed in the list. If the number
of Items is greater than DropDownCount, the user Can scroll the list. If the number of
Items is less than DropDownCount, the list will be just large enough to display all the
items.

• ItemHeight: The height of each item when style is csOwnerDrawFixed.

• Sorted: If true, then the Items list is sorted and displayed in alphabetical order.

TDBLookupCombo
The TDBLookupCombo component is similar to TDBComboBox, except that it derives its
list of values dynamically from a second dataset at run time, and it ~an display multiple
columns in its drop.,.down list. With this control, you can ensure that users enter valid
values into a dataset by providing an interface from which they can choose values. Here
is an example of how a TDBLookupCombo control might appear at run time:

Figure 43.7 TDBLookupCombo component

i hI Diver :1 Ne tune Lane
Divers World Unlimited

Sawyer Divin!J Centre
e Jack Aqua Center
Divers Club

ipo Box 541
1632-1 Third Ftydenhoj
123-138 Paddin!lton Lane
132 Main St.

The lookup list for TDBLookupCombo must be derived from a second dataset. To display
values from a column in the same table as the first dataset:

1 Drop a second data source and dataset component on the form.

2 Point them at the same data as the first data source and dataset.

Three properties establish the lookup list for TDBLookupCombo and determine how it is
displayed:

• LookupSource specifies a second data source from where the control populates its list.

• LookupField specifies a field in the LookupSource dataset which links that dataset to the
primary dataset. This must be a column in the dataset pointed to by LookupSource,
and it must contain the same values as the column pointed to by the DataField
property (although the column names do not have to match).

• LookupDisplay, if set, defines the columns that TDBLookupCombo displays. If you do
not specify values in LookupDisplay, TDBLookupCombo displays the values found in
the column specified by LookupField. Use this property to display a column other than
that specified by LookupField, or to display multiple columns in the drop-down list.
To specify multiple columns, separate the different column names with a semicolon.

You can also specify lines between columns or rows by setting the ShowGridLines
property to true. Setting the ShowColHeadings property to true displays the field names
as titles above the columns.

C hap t e r 4 3, U sin 9 d a t a - a war e con t r 0 I s 673

A TDBLookupCombo example
As a simple example, an order-entry form could have a TDBLDokupCombo component to
specify the customer number of the customer placing the order. The user placing the
order can simply click on the drop down "pick list" instead of having to remember the
customer number. The value displayed could be the customer name.

~ To build this example,

1 Add a TDataSource component to the form, and set its Name property to OrdSource.

2 Add a TTable component to the form, and set the Name property to OrdTable, the
DatabaseName property to DBDEMOS, the TableName property to ORDERS. DB, and
the Active property to true.

3 Add a second TDataSource component on the form, and set its Name property to
CustSource.

4 Add a second TTable component on the form, and set the Name property to
CustTable, the DatabaseName property to DBDEMOS, the TableName property to
CUSTOMER. DB, and the Active property to true.

5 Add a TDBGrid component and link it to OrdSource through its DataSource property
so it displays the contents of the ORDERS table.

6 Add a TDBLookupCombo component, and set its DataSource property to CustNo. The
database lookup combo box is now linked to the CustNo column of the ORDERS
table.

7 Specify the lookup values of the TDBLookupCombo component:

• Set LookupSource to CustSource (so it looks up values in the CUSTOMER table).

• Set LookupField to CustNo (so it looks up and gets values from the CustNo
column).

,. In LookupDisplay, type Company; Addrl.

This displays the corresponding company name and address in the drop-down
list.

At run time, the TDBLookupCombo component displays a drop-down list of company
names and addresses. If the user selects a new company from the li,st, the control is
assigned the value of the corresponding customer number (CustNo). When the user
moves to another order record in the data grid, the new customer number and
information is posted to the row.

TDBLookupList
The database lookup list box is much the same as the database lookup combo box, but
instead of a drop-down list, it displays a scrollable list of the available choices. These
choices come from a second dataset, and are the values of the LookupDisplay column.
When the user selects one at run time, the field in the first dataset is assigned the value
of the LookupField of the current record in the second dataset. Like TDBLookupCombo, the

674 c++ Programmer's Guide

user can't type :in an entry that is not :in the list. Here is an example of how a
TDBLookupList component appears at run time:

Figure 43.8 TDBLookupList component

Kauai Dive Shoppe
Unisco

I I -

Cayman Divers World Unlim
Tom Sawyer Diving Centre

While you navigate through a dataset, a TDBLookupList component highlights the item
in the list that corresponds 'to the value :in the currently selected row. If the current row's
value is not def:ined in the Items property, no value is highlighted in the TD8LookupList
component. Chang:ing the selection changes the underly:ing value :in the database
column and is equivalent to typ:ing a value :in a TDBEdit component.

TDBCheckBox
A database check box can be used to set the values of fields in a dataset. For example, a
customer :invoice form might have a database check box control that when checked,
specifies that the customer is entitled to a special discount.

Figure 43.9 TDBCheckBox component

Like the other data-aware controls, TDBChetkBox is attached to a specific field:in a
dataset through its DataSource and DataFieldproperties. Use the Caption property to

. display a label for the check box on your form.

Set the ValueChecked property to a value the control should post to the database if the
control is checked when the user moves to another record. By default, this value is set to
true, but you can make it any alphanumeric value appropriate to your needs. You can
also enter a semicolon-delimited list of items as the value of ValueChecked. If any of the
items matches the contents of that field :in the current record, the check box is checked.
Far example, you can specify a ValueChecked str:ing such as this:

MyDBCheckBox.ValueChecked = "TrueiYesiOn"i

If&the field for the current record contains values of True, Yes, or On, then the check box
is checked. Comparison of the field to ValueChecked strings is case-insensitive. If a user
checks a box for which there ate multiple ValueChecked strings, the first string is the
value that is posted to the database.

Set the Value Unchecked property to a value the control should post to the database if the
control is not checked when the user moves to another record. By default, this value is
set to false, but you can make it any alphanumeric value appropriate to your needs. You
can also enter a semicolon-delimited list of items as the value of ValueUnch?cked. If any
of the items matches the contents of that field in the current record, the check box is
unchecked.

C hap t e r 4 3, U sin 9 d a t a - a war e con t r 0 I s 675

A TDBCheckBox component is grayed out and disabled whenever the field for the
current record does not contain one of the values listed in the ValueChecked or
Value Unchecked properties.

TDBRadioGroup
The database radio group lets you set the value of a data field with a radio button
control where there is a limited number of possible values for the field. The radio group
consists of one button for each value a field can accept.

TDBRadioGroupis attached to a specific field in a dataset through its DataSource and
DataField properties. A radio button for each string value entered in the Items property is
displayed on the form, and the string itself is displayed as a label to the right of the
button ..

Figure 43.10 A TDBRadioGroup component

For the current record, if the field associated with a radio group matches one of the
strings in the Items property, that radio button is selected. For example, if three strings,
"Red," "Yellow," and "Blue," are listed for Items, and the field for the current record
contains the value Blue, then the third button in the group is selected.

Note If the field does not match any strings in Items, a radio button may still be selected if the
field matches a string in the Values property. If the field for the current record does not
match any strings in Items or Values, no radio button is selected.

The Values property can contain an optional list of strings that CaJ;l beretumed to the
dataset when a user selects a radio button and posts a record. Strings are associated with
buttons in numeric sequence. The first string is associated with the first button, the
second string with the second button, and so on. For the three buttons labeled Red,
Yellow, and Blue, if three strings, "Magenta," "Yellow," and "Cyan," are listed for
Values and the user selects the first button (labeled Red), then "Magenta" is posted to the
database.

If strings for Values are not provided, the label from a selected radio button (from Items)
is returned to the database when a record is posted. Users can modify the value of a data
field by clicking the appropriate radio button. When the user moves to another row, the
value indicated by the radio button string is posted to the database.

676 c++ Programmer's Guide

Using SQl in applications
SQL (Structured Query Language) is an industry-standard language for database
operations. Visual Database Tools enables your application to use SQL syntax directly
through the TQuery component. Visual Database Tools applications can use SQL to
access data from:

• Paradox or dBASE tables, using local SQL. The allowable syntax is a sub-set of ANSI­
standard SQL and includes basic SELECT, INSERT, UPDATE, and DELETE
statements. For more information on local SQL syntax, see Chapter 47, "Using local
SQL."

• Databases on remote database servers. You must have installed the appropriate SQ,L
Link. (SQL Links is available separately from Borland International.) Any standard
statement in the server's SQL is allowed. For information on SQL syntax and
limitations, see your server documentation.

Visual Database Tools also supports heterogeneous queries against more than one
server or table type (for example, data from an Oracle table and a Paradox table). For
more information, see "Creating heterogenous queries" on page 685.

Using the TQuery component
TQuery is a dataset component which shares many characteristics with TTable, as
described in "Using'datasets" on page 30. In addition, TQuery)enables applications to
issue SQL statements to a database engine (either the Borland Database Engine or a
server SQL engine).

The SQL statements can be either static or dynamic; that is, they can be set at design time
or include parameters whose values change at run time.

C hap t e r 4 4, U 5 i n 9 S Q Lin a p p lie a t ion 5 677

When to use TQuery
For simple database operations, TTable is often sufficient and provides portable
database access through the BDE. However, TQuery provides additional capabilities
that TTable does not. Use TQuery for:

• Multi-table queries (joins)
• Complex queries that require sub-SELECTs
• Operations that require explicit SQL syntax

TTable does not use SQL syntax; TQuery does use SQL, which provides powerful
relational capabilities but may increase an application's overall complexity. Also, use of
non-standard (server-specific) SQL syntax might decrease an application's portability
among servers; for more information, see "Server portability" on page 96.

How to use TQuery
To access a database, set the DatabaseName property of a TQuery component toa defined
BDE alias, a directory path for desktop database files, or a file name for a server
database. If the application has a TDatabase component, DatabaseName can also be set to
a local alias that it defines. For more information, see "Using the TDatabase component"
on page 99.

To issue SQL statements with a TQuery component:

• Assign to the TQuery component's SQL property the text of the SQL statement. You
can do this:

• At design time, by editing the TQuery's SQL property in the Property Inspector of
the Dialog editor. Double-click the value column of the SQL property, and enter
the SQL statements in the String List editor dialog box that appears.

.. At run time, by closing any current query with the Close method, clearing the SQL
property with the Clear method, and then specifying the SQL text with the Add
method.

• Execute the statement with the TQuery component's Open or ExecSQL method. Use
Open for SELECT statements. Use ExecSQL for all other SQL statements. The
differences between Open and ExecSQL are discussed in the section "Executing a
query" on page 680.

• To use a dynamic SQL statement, call the Prepare method, provide the parameters,
and then call Open or ExecSQL. It's not really necessary to call Prepare, but doing so
improves the performance for dynamic queries executed multiple times.

678 C++ Pro 9 ram mer's G u ide

The following diagram illustrates the lifetime of a TQuery component and the methods
used to work with it:

Figure 44.1 TQuery methods and flow

I~~_z
Unprepare Close

Open
ExecSQL

~
Fetch Data

Note Prepare applies only to dynamic queries. It is not required, but is recommended in most
cases. For more information, see "Dynamic SQL statements" on page 682.

The SQl property
The SQL property contains the text of the SQL statement to be executed by a TQuery
component. This property is of type TStrings, which can hold a series of strings in a list.
The list acts very much as if it were an array, but it is actually a special component with
unique capabilities. For more information about TStrings, see the online Visual Database
Tools reference.

A TQuery component can execute two kinds of SQL statements:

• Static SQL statements
• Dynamic SQL statements

A static SQL statement is fixed at design time and does not contain any parameters or
variables. For example, this statement is a static SQL statement:

SELECT * FROM CUSTOMER WHERE CUST_NO = 1234

A dynamic SQL statement, also called a parameterized statement, includes parameters for
column or table names. For example, this is a dynamic SQL statement:

SELECT * FROM CUSTOMER WHERE CUST_NO = :Number

The variable Number, indicated by the leading colon, is a parameter which must be
provided at run time and may vary each time the statement is executed.

Creating the query text
You can enter the SQL text for a TQuery at design time by clicking the button with
the ellipsis (...) for the SQL property in the Property Inspector. The SQL editor opens, so
you can enter an SQL statement.

C hap t e r 4 4, ~U sin 9 S Q Lin a p p lie a t ion s 679

Figure 44.2 Editing Sal statements in the Sal editor

2 Jines
SELECT 11' FROM EMPLOYEE
WHERE LAST NAME UKE "Me"

Choose OK to assign the text you enter to the SQL property of the query. Choose Load
to include text from a file or Save to save the text to a file.

To specify SQL text at run time, an application should first close the query by calling the
Close method and then clear the SQL property by calling the Clear method. For example,

Queryl.Close(); II This closes the query

Queryl.SQL->Clear(); II This clears the contents of the SQL property

It is always safe to call Close-if the query is already closed, the call has no effect. Use the
SQL property's Add method to add the SQL statements to it. For example,

Query1.SQL->Add("SELECT * FROM COUNTRY") ;

Query1.SQL->Add("WHERE NAME = \ "ARGENTINA\"");

Note An application should always call Clear pefore specifying a new SQL statement.
Otherwise, Add simply appends the statements to the existing one.

You can also use the LoadFromFile method to assign the text in an SQL script file to the
SQL property. For example,

Queryl. SQL->LoadFromFile ("c: \ \ SCRIPTS \ \MYQUERY. TXT") ;

Note The SQL property can contain only one complete SQL statement at a time. In general,
multiple statements are not allowed. Some servers support multiple statement "batch"
syntax; if the server supports this, then such statements are allowed.

Executing a query
At design time, you can execute a query by changing its 4ctive property in the Property
Inspector to true. The results of the query are displayed in any data-aware controls
connected to the TQuery component (through a TDataSource component).

At run time, an application can execute a query with either the Open or the ExecSQL
methods. Call Open for SQL statements that return a result set (SELECT statements).

680 C++ Pro 9 ram mer' 5 G u i'CI e

Call ExecSQL for all other SQL statements (INSERT, UPDATE, DELETE, and so on). For
example,

Queryl.Open(); II Returns a result set

If the SQL statement doesn't return a cursor and a result set from the database, call
ExecSQL instead of Open. For example,

Queryl.ExecSQL(); II Does not return a result set

The UniDirectional property
Use the UniDirectional property to optimize access to a database table through a TQuery
component. If you set UniDirectional to true, you can iterate through a table more
quickly, but you can only move in a forward direction. UniDirectional is false by default.

Getting a live result set
A TTable component always returns a live result set to an application. That is, the user
sees the data "live" from the database, and can make changes to it directly through data­
aware controls. A TQuery can return two kinds of result sets:

• "Live" result sets: As with TTable components, users can edit data in the result set
with data controls. The changes are sent to the database when a Post occurs, or when
the user tabs off a control, as described in "Using data-aware controls" on page 69.

• "Read-only" result sets: Users cannot edit data in the result set with data controls.

By default, a query always returns a read-only result set. To get a live result set, an
application must request it by setting the RequestLive property of TQuery to true. For the
BDE to be able to return a live result set, however, the SELECT syntax of the query must
conform to the guidelines given below. If an application requests a live result set, but the
syntax doesn't conform to the requirements, the BDE returns a read-only result set (for
local SQL) or an error returri code (for passthrough SQL). If a query returns a live result
set, the CanModify property is set to true.

Table 44.1 Types of query result sets

False False

True-SELECT syntax meets requirements True

True-SELECT syntax does not meet requirements False

Read-only

Live

Read-only

If an application needs to update the data in a read-only result set, it must use a separate
TQuery to construct an UPDATE statement. By setting the parameters of the update
query based on the data retrieved in the first query, the application can perform the
desired update operation.

Syntax requirements for live result sets
To return a live result set, a query must have RequestLive set to true. The SQL syntax
must conform to that of Local SQL, as described in Chapter 47. Additionally, the syntax
must meet these requirements:

C hap t e r 44, U sin 9 S Q Lin a p p lie at ion s 681

A query of a Paradox or dBASE table can return a live result set if:

• It involves a single table.

• It doesn't have an ORDER BY clause.

• It doesn't use aggregates such as SUM or A VG.

• It doesn't use calculated fields in the SELECT list.

• The WHERE clause consists only of comparisons of column names to scalar
constants. The comparison operators maybe LIKEi >, <, >=, and <=. The clause m.ClY
contain any number of such comparisons linked by AND or OR operators.

A query of a server table using passthrough SQL can return a live result set if:

• It involves a single table.

• It doesn't have an ORDER BY clause.

• It doesn't use aggregates such as SUM or A VG.

In addition, if the table is on a Sybase server, it must have a unique index.

Dynamic SQl statements
A dynamic SQL statement (also called a parameterized query) contains parameters that
can vary at run time.

Supplying values to paramf}ters
At design time, you can supply values to parameters with the Query Parameters editor.

Display the Query Parameters editor by clicking the button with the ellipsis (.. '.) for
the Params property of the TQuery in the Property Inspector. The Query Parameters
editor opens.

Figure 44.3 Query Parameters editor

Ii leo ;:::;=::an:::~s--------------------------

;.: •. '. I D Qatatype: I . II
Ii I ~alue: I I
II!
'i I

III II Nul! Value

!I '-----------------------'
1;
Ii
1i
!i
!~
II

2 Select the desired data type for the parameter in the Data Type combo box.

3 Enter a value in the Value text field or select Null Value to set the parameter's value
to NULL.

682 C++ Pro 9 ram mer's G u ide

When you choose OK, the query is prepared and values are bound to the parameters.
Then, when you set the query's Active property to true, the results of the SQL query with
the specified parameter values show up in any data-aware controls connected to the
query.

At run time, an application can supply values to parameters with the following TQuery
properties:

• The Params property, using the order that the parameters appear in the SQL
statement.

• The ParamByName method, using the parameter names specified in the SQL
statement.

• The DataSource property to set values from another dataset for columns that match
the names of parameters with no values.

Preparing a query
The Prepare method sends a parameterized query to the Borland Database Engine for
parsing and optimization. A call to Prepare is not required to use a parameterized query.
It is strongly recommended, however, because it will improve performance for dynamic
queries that are executed more than once. If a query is not explicitly prepared, each time
it is executed, it is automatically prepared.

Prepare is a Boolean property of TQuery that indicates if a query has been prepared. The
Parameters editor automatically prepares a query when you use it to set parameter
values at design time.

If a query has been executed, an applicatibn must call the Close method before calling
Prepare again. Generally, an application should call Prepare once, then set parameters
using the Paramsproperty, and finally call Open or ExecSQL to execute the query. Each
time the query is to be executed with different parameter values, an application must
call Close, set the parameter values, and then execute the query with Open or ExecSQL.

Preparing a query consumes some database resources, so it is good practice for an
application to unprepare a query once it is done using it. The UnPrepare method
unprepares a query. When you change the text of a query at run time, the query is
automatically closed and unprepared.

Using the Params property
When you enter a query, a Params array is created for the parameters of a dynamic SQL
statement. Params is a zero-based array of TParam components with an element for each,
parameter in the query; that is, the first parameter is Params[O], the second Params[ll,
and so on.

For example, suppose a TQuery component named Query2 has' the following statement
for its SQL property:

INSERT
INTO COUNTRY (NAME, CAPITAL, POPULATION)
VALUES (:Name, : Capital , : Population)

Chapter 44, Using Sal in applications 683

An application could use Params to specify the values of the parameters as follows:

Query2.Pararns->Items[0]->AsString = "Lichtenstein";
.Query2.Pararns->Items[1]->AsString = "Vaduz";
Query2.Params->Items[2]->AsInteger = 420000;

These statements would bind the value "Lichtenstein" to the :Name parameter, "Vaduz"
to the :Capital parameter, and 420000 to the :Population parameter.

Using the ParamByName method
ParamByName is a me~od that enables an application to assign values to parameters
based on their names. Instead of providing the ordinal location of the parameter, you
must supply its name.

For example, an application could use ParamByName to specify values for the
parameters in the preceding example as follows:

Query2 .ParamByName("Name") .AsString = "Lichtenstein";
Query2.ParamByName("Capital") .AsString = "Vaduz";
Query2.ParamByName("Population") .Aslnteger = 420000;

These statements would have the same effect as the three previous statements that used
the Params property directly.

Using the DataSource property
For parameters of a query not bound to values at design time, the value of the query's
DataSource property is checked. This property specifies the name of a TDataSource
component. If DataSource is set, and the unbound parameter names match any column
names in the specified DataSource, Visual Database Tools binds the current values of
those fields to the corresponding parameters. This capability enables applications to
have linked queries.

The LINKQRY sample application illustrates the use of the Data Source property to link a
query in a master-detail form. The form contains a TQuery component (named Orders)
with the following in its SQL property: .

SELECT Orders.CustNo, Orders.OrderNo, Orders.SaleDate
FROM Orders
WHERE Orders.CustNo = :CustNo

As illustrated below, the form also contains:

• A TDataSource named OrdersSource, linked to Orders by its DataSet property
• A TTable component (named Cust)
• A TDataSource named CustSource linked to Cust
• Two data grids; one linked to CustSource and the other to OrdersSource

684 C++ Pro gr a m mer's G u ide

Figure 44.4 Form with linked queries

Orders' DataSource property is set to CustSource. Because the parameter :CustNo
doesn't have any value assigned to it, at run time an attempt is made to match it with a
column name in CustSource, which receives its data from the Customer table through
Cust. Because there is a CustNo column in Cust, the current value of CustNo in the Cust
table is assigned to the parameter, and the two data grids are linked in a master-detail
relationship. Each time the Cust table moves to a different row, the Orders query
automatically re-executes to retrieve all the orders for the current customer.

Creating heterogenous queries
Some applications may require queries of tables in more than one database. Such
queries are called heterogenous queries, ap.d are not supported by standard SQL. (SQL
Links, available separately from Borland International, supports heterogenous queries.)
A heterogenous query can join tables on different servers, and even different types of
servers. For example, a heterogeneous query might involve ,a table in a Oracle database,
a table in a Sybase database, and a local dBASE table.

Visual Database Tools supports heterogeneous queries, as long as the query syntax
conforms to the requirements of local SQL, as described in Chapter 47.

To perform a heterogeneous query, you must define a BDE standard alias that refers to a
local directory, and use the alias for the DatabaseName of the query component. You
must also define BDE aliases for each of the databases being queried. In the query text,
precede e~ch table name with the alias for its database.

You can define BDE aliases with the BDE Configuration Utility, described in
the online BDE Configuration Help. For example, suppose you define an alias called
Oraclel for an Oracle database that has a CUSTOMER table, and Sybasel for a Sybase
database that has an ORDERS table. A simple query against these two tables would be

SELECT CUSTOMER.CUSTNO, ORDERS.ORDERNO
FROM :Oraclel:CUSTOMER, :Sybasel:0RDERS

Chapter 44, Using SOL in applications 685

686 c++ Programmer's Guide

Building a clientlserver application
Visual Database Tools enables you to develop applications that can access remote SQL
servers such as Oracle, Sybase, Informix, and InterBase servers, as well as local Paradox
and dBASE databases. To use remote SQL servers, you also must have installed SQL
Links (available separately from Borland International).

A remote server is one that is physically removed from the client machine on which the
application runs. The server and client must be connected by a network.

A number of issues are particularly important when developing client/ server
applications:

Portability versus optimization: Will the application use any server-specific SQL
syntax? To what degree will the database be optimized for a particular server?

Transactions: What kind of transaction control will the application require?

Server features: Will the application require the use of server features such as stored
procedures? How will these be surfaced?

Connectivity: What communication protocol will the application use? Does the
application need to be deployed to support multiple communication protocols?

Deployment: What executables,libraries, and other files does the application require
and how are these delivered to the end user?

Portability versus optimization
In a client/ server system, the database running on the server and the application
running on the client define the overall system, referred to as the database/application.
While these two elements are often designed separately and considered distinct, they
must be integrated to build a succe$sful client/ server application. One of the important
considerations is portability versus optimization.

C hap t e r 4 5, B u i I din 9 a eli e ntis e r v era p p lie a t ion 687

Portability refers to the ease with which a database or an application can run on different
servers. Optimization refers to the extent to which an application takes advantage of the
special features of a particular system.

Client portability is not an issue, because Visual Database Tools applications will run on
any 16-bit or 32-bit Windows platform. Server portability and communications
portability can be considerations, however.

Because Visual Database Tools applications use the Bofland Database Engine, they can
be easily integrated with dBASE and Paradox applications (for desktop data sources)
and other clients for server data sources.

Server portability
It may be desirable to design an application so that it can be easily ported to different
types of servers, either because the end-users require multiple heterogeneous server
support, or because the application will be used by different groups of end-users with
different types of servers. In designing a client-server application, there is an inherent
trade-off between portability and optimization, because making use of server-specific
features results in increased application performance but decreased portability.

An application that uses only TTable components for data access will be fully portable
among different server types. An application may benefit from improved performance
by using TQuery components and passthrough SQL, and as long as the SQL syntax is
ANSI standard, there will be little loss of portability.

As soon as SQL syntax departs from the ANSI standard, the application will no longer
be fully portable. If server portability is a consideration, you must carefully weigh
whether the gain in using server-specific syntax is worth the cost in portability.
Maintainability of an application may be reduced by optimization for a specific server
type; because each server-specific implementation may require separate maintenance.

An application can be further optimized by using server-specific features such as stored
procedures. However, this usually requires server-specific implementation in the
database, and perhaps the application, depending on how the features are surfaced.

It is also important to consider that servers' transaction processing can differ in subtle
yet important ways. This and other distinctions among SQL servers may complicate
portability. Before attempting to create a portable database/ application, you should
build an application that runs reliably against One type of server database. In some
cases, it may be necessary to build the application separately against each of the target
server types.

Client/server communication portability
Depending on the application requirements, it may be necessary to support multiple
communication protocols, such as TCP /IP and Novell SPX. Providing for multiple
communication protocols is simply a matter of ensuring that the client platforms have
the proper communication software installed. This portability issue does not typically
surface until the deployment phase, but it should be addressed in the implementation

688 ett Programmer's Guide

phase to ensure that the initial test deployment packages include the proper client
communication software.

Connecting to a database server
Borland SQL Links for Windows enables a Visual Database Tools application to connect
through the BDE to a remote database server. SQL Links drivers provide connections to
Oracle, Sybase, Informix, Microsoft SQL Server, and InterBase databases.

Through the BDE Configuration Utility, you can set up an alias for each data source to
which your application needs to connect. These aliases then become available to choose
as the value of the DatabaseName property of TTable and TQuery components. For more
information on the BDE Configuration Utility, see the online help for the BDE
Configuration Utility.

Connectivity
Client applications can use any network protocol (such as TCP lIP or Novell SPX/IPX)
supported by the server, as long as both the server and the client machines have the
proper communication software installed. You must configure the SQL Link driver for
the desired protocol. For more information, see the SQL Links for Windows User's Guide.

Establishing an initial connection between client and server can often be a problem,
especially when using TCP lIP, because there are a number of critical factors that must
all be in place before a connection can be established.

Using TCP/IP
TCP lIP is a widely used communication protocol that enables applications to connect to
many different database servers. When using TCP lIP, you must ensure:

• The TCP lIP communication software and the proper WINSOCK driver are installed
on the client:

• The server's IP address is registered in the client's HOSTS file or that Directory
Network Services (DNS) is properly configured.

• The server's port number is entered in the client's SERVICES file.

• The application is searching the proper directory paths for the DLLs it needs. Check
the PATH statement in AUTOEXEC.BAT.

For more information, see the SQL Links for Windows User's Guide and your server.
documentation.

Connection parameters
The Params property of a connected TDatabase object contains a TStrings list of all the
SQL Link parameters required to connect to a server of the specified type. You can edit
these parameters at design time by clicking the button with ellipsis (...) for the Params
property in the Property Inspector. The Database Parameters editor opens with the

Chapter 45, Building a eli e n t! s e r vera p p lie at ion 689

parameters displayed. For example, here are the parameters for connection to an
InterBase server:

Figure 45.1 InterBase parameters in the Database Parameters editor
Database Parameters E%;

10 lines
SERVER NAME=c:\iblocal\examples\employee.gdb
USER NAME=SYSDBA
OPEN MODE=READ/WRITE
SCHEMA CACHE SIZE=8
LANGDRlVER=
SOLORYMODE=
SOLPASSTHRU MODE=NOT SHARED
SCHEMA CACHE TIME=-l
PASSWORD
I

You can modify these parameters and add others as needed to customize the connection
performed by the application. For more information, see the SQL Links for Windows
User's Guide. '

Using OOBC
A Visual Database Tools application can access ODBC data sources such as DB2,
Btrieve, or Microsoft Access through the Borland Database Engine. To do this, you must
set up an ODBC driver connection using the BDE Configuration Utility. An ODBC
driver connection requires:

• A vendor-supplied ODBC driver
• The Microsoft ODBC Driver Manager
• A BDE alias, established with the BDE Configuration Utility

The BDE configuration setting AUTO ODBC (on the System page) enables an alias to
automatically configure itself for use of ODBC. When AUTO ODBC IS True, datasource
and driver information are automatically imported from the ODBC.INI file.

For more information, see the online help for the BDE Configuration Utility.

Handling server security
Most database servers include security features to limit database access. Generally, the
server requires a user name and password login before a user can access a database. If a
server requires a login, then you are prompted at design time when you attempt to
connect to a database on the server (for example, when you specify a TableName for a
TTable component).

690 C++ Pro 9 ram mer's G u ide

By default, a Visual Database Tools application opens the standard Login dialog box,
whenever an application opens a connection to a database server. If a connection has
already been established, the Login dialog box does not appear .

. An application can handle server login several different ways:

• If the LoginPrompt property of a TDatabase component is true (the default), the
standard Login dialog box opens when the application attempts to establish a
database connection.

• By setting LoginPrompt to false, and including the USERNAME and PASSWORD
parameters in the Params property of the TDatabase component. For example,

USERNAME = SYSDBA

PASSWORD = master key

This is generally not recommended as it compromises server security.

• Use the OnLogin event of TDatabase to set login parameters. The OnLogin event
receives a copy of the TDatabase's login parameters array. Use the Values property to
change these parameters: .

LoginParams.Values["SERVER NAME"] = IMYSERVERNAME"i

LoginParams. Values ["USER NAME"] = "MYUSERNAME" i

LoginParams. Values ["PASSWORD"] = "MYPASSWORD";

When control returns from your DatabaseLogin event handler, these parameters are
used to establish a connection.

Using the TDatabasecomponent
The TDatabase component is not required for database access, but it provides additional
control over factors that are important for client/ server applications, including the
ability to:

• . Create a persistent database connection
• Customize database server logins
• Create BDE aliases local to an application
• Control transactions and specify transaction isolation level

The DataSets property of TDatabase is an array of pointers to the active datasets in the
TDatabase. The DatasetsCount property is an integer that specifies the number of active
datasets.

Connecting to a database server
. The Connected property indicates whether the TDatabase component has established a
connection to a database. Connected is automatically set to true when an application
opens a table in a database (logging in to a server, if required). Set Connected to true to
establish a connection to a database without opening a table.

The KeepConnection property of a TDatabase component specifies whether an application
remains connected to a database server even when no tables are open. If an application
needs to open and close several tables in a single database, it is more efficient to set

C hap t e r 4 5, B u i I din 9 a eli e n t! s e r v era p p lie at ion 691

KeepConnection to true. That way, the application remains connected to the database
even when it does not have any tables open. It can then open and close tables repeatedly
without incurring the overhead of connecting to the database each time.

The TSession component has an application-wide KeepConnections property. If
Session.KeepConnections is false, a TDatabase component's KeepConnection property
determines if database connections are maintained when no tables are open. If
Session.KeepConnections is true (the default), database connections are always
maintained. Specifically,

• Database connections ate maintained until the application exits or until the Session's
DropConnections method is called.

• Setting a TDatabase object's Connected property to false has no effect.

Creating application-specific aliases
The TDatabase component enables you to create BDE aliases specific to an application.
To name the alias, enter a name in the DatabaseName property. Any dataset components
can then use the local alias by using the specified DatabaseName.

To customize the parameters for a local alias, clickthe button with ellipses for the (Edit)
property in the Property Inspector for the TDatabase component. The Database
Properties editor opens:

Figure 45.2 Database Properties editor
Database Ei!

Name: Alias name: Qriver name:

II ,---I ___ 11
Earameter overrides:

SERVER NAME=vdt\iblocal\examples\employee.gdf
USER NAME=SYSDBA
OPEN MODE=READI'NRITE
SCHEMA CACHE SIZE=8
LANGDRIVER
SOLORYMODE=I

I? bo9in prompt

I?Keep inactive connection

This tool enables you to customize application-specific aliases that are based locally on
existing aliases.

The three text fields at the top of the dialog box correspond to the DatabaseName,
Alia~Name, and DriverName properties.

• DatabaseName is the name of the database connection that can be used by dataset
components instead of a BDE alias, directory path, or database name. In other words,
this is the name of the local alias defined by the component that shows up in the
DatabaseName list of dataset components.

692 C++ Pro 9 ram mer's G u ide

• AliasName is the name of an existing BDE alias configured with the BDE
Configuration Utility. The component obtains its default parameter settings from
AliasName. This property clears if DriverName is set.

• DriverName is the name of a BDE driver, such as STANDARD (for dBASE and
Paradox), ORACLE, SYBASE, INFORMIX or INTERBASE. This property clears if
AliasName is set, because an AliasName specifies a driver type.

Choose the Defaults button to retrieve the default parameters for the selected alias. The
values are in the Parameters list box. Any changes you make to the defaults are used
instead of the default values for any database connection in the application that uses
that DatabaseName.

The check boxes labeled "Login prompt" and "Keep inactive connection" correspond to
the LoginPrompt and KeepConnection properties of the TDatabase component.

Understanding transaction control
SQL database servers handle requests in logical units of work called transactions. A
transaction is a group of SQL statements that must all be performed successfully before
the server finalizes (or commit) changes to the database. Either all the statements
succeed, or all fail.

Transaction processing ensures database consistency even if there are hardware failures,
and maintains the integrity of data while allowing concurrent multiuser access. For
example, an application might update the ORDERS table to indicate that an order for a
certain item was taken, and then update the INVENTORY table to reflect the reduction
in inventory available. If there were a hardware failure after the first update but before
the second, the database would be in an inconsistent state, because the inventory would
not reflect the order entered. Under transaction control, both statements would be
committed at the same time. Transaction control becomes even more important in a
multiuser application.

In SQL, transactions end by a command to either accept or discard the actions
performed. The COMMIT statement permanently commits the transaction, making
changes visible to all users. The ROLLBACK statement reverses all changes made to the
database in the transaction. Different database servers implement transaction
processing differently. For the specifics of how your server handles transaction
processing, refer to your server documentation.

Handling transactions in applications
Visual Database Tools applications can control transactions:

• Implicitly: Transactions are automatically started and committed as needed when an
application calls the Post method (explicitly or implicitly in another method).

• Explicitly: Depending on the level of control the application requires, either with

• The StartTransaction, Commit, and Rollback methods of TDatabase. This is the
recommended approach.

C hap t e r 4 5, B u i I din 9 a eli e n t! s e r v era p p lie at ion 693

.. Passthrough SQLin a TQuery component. The application must use server­
specific SQL transaction control statements. You must understand how your
server performs transaction handling.

Transaction control statements are only meaningful when the database is on an SQL
server. The StartTrans, Commit, and Rollback methods raise an exception if the
underlying database is Paradox or dBASE.

ImpliCit transaction control
Visual Database Tools applications that use only the built-in methods can rely on
implicit transaction control. Any operations on a server database that are not under
explicit transaction control are under implicit control. Each individual write operation
(Post, AppendRecord, and so on) is committed as a separate transaction, so database
changes are committed on a row-by-row basis. This minimizes update conflicts, but can
lead to heavy network traffic.

When using implicit transaction control, keep the SQLP ASSTHRUMODE setting at
SHARED AUTOCOMMIT, the default. For more information, see "Setting the SQL
passthrough mode" on this page.

Implicit transaction control happens automatically, but doesn't provide much flexibility.
If an application needs multi-row transactions or passthrough SQL,.it should use
explicit transaction control.

Explicit transaction control
The recommended approach for transaction control is to use the methods of TDatabase,
because this results in clearer code and a more portable application. The methods for
transaction control are

• StartTransaction: Begins a transaction at the isolation level specified by the
TransIsolation property of TDatabase. If a transaction is currently active, an exception
is raised.

• Commit: Commits the currently active transaction on the database. If no transaction is
active, an exception is raised.

• Rollback: Rolls back the currently active transaction. All changes to the database since
the last Commit are undone.

Some applications require additional server-specific transaction control features. In this
case, use a TQuery component with passthrough SQL statements for transaction control.
Ensure that SQLP ASSTHRUMODE is set to NOT SHARED so that the passthrough
SQL doesn't affect other transactions.

Setting the SQL passthrough mode
SQLP ASSTHRUMODE in the BDE Configuration utility determines if passthrough SQL
and standard BDE calls share the same database connection. For transactions, this
translates to whether passthrough transactions and other transactions "know" about
each other. Only applications that use passthrough SQL need be concerned with
SQLP ASSTHRUMODE.

694 C++ Pro 9 ram mer's G u ide

SQLP ASSTHRUMODE can have the following settings:

• SHARED AUTOCOMMIT (the default)
• SHARED NOAUTOCOMMIT
• NOTSHARED

With SHARED AUTOCOMMIT, each operation on a single row is committed. This
mode most closely approximates desktop database behavior, but is inefficient on SQL
servers because it starts and commits a new transaction for each row, resulting in a
heavy load of network traffic.

With SHARED NOAUTOCOMMIT, the application must explicitly start and commit
transactions. This setting can result in conflicts in busy, multiuser environments where
many users are updating the same rows.

NOT SHARED means that passthrough SQL and the methods of the Visual Database
Tools components use separate database connections.

Note To control transactions with passthrough SQL, you must set SQLP ASSTHRU MODE to
NOT SHARED. Otherwise, passthrough SQL and the methods of the Visual Database
Tools components might interfere with each other, leading to unpredictable results.

Transaction isolation levels
A transaction's isolation level determines how it interacts with other simultaneous
transactions accessing the same tables. In particular, the isolation level affects what a
transaction reads from the tables being accessed by other transactions.

Some servers enable you to set the transaction isolation level explicitly in passthrough
SQL. If not specified, passthrough SQL operations will use a server's default isolation
level. For more information, see your server documentation.

Transactions (both explicit and implicit) using the built-in methods of the components
use the TransIsolation property of TDatabase to specify transaction isolation level.
TransIsolation can have the following values:

• tiDirtyRead: The transaction can read uncommitted changes to the database by other
transactions. This is the lowest isolation level.

• tiReadCommitted: The transaction can read only committed changes to the database by
other transactions. This is the default isolation level.

• tiRepeatableRead: The transaction cannot read other transactions' changes to
previously read data. This guarantees that once a transaction reads a record, it will
not change if it reads it again. This the highest isolation level.

C hap t e r 4 5, B u i I din 9 a eli e ntis e r \I era p p lie at ion 695

Database servers may support these isolation levels differently or not at all. If the
requested isolation level is not supported by the server, then the next highest isolation
level is used. The actual isolation level used by each type of server is shown in Table
45.1, "Server transaction isolation levels." For a detailed description of how each
isolation level is implemented, see your server documentation.

Table 45.1 Server transaction isolation levels

Dirty read Read committed Read committed Dirty Read Read committed

Read committed Read committed Read conimitted Read conimitted Read conimitted
(Default)

Repeatable read Repeatable read Read conimitted Repeatable Read Repeatable Read
(READ ONLY)

If an application is using ODBC to interface with a server, the ODBC driver must also
support the isolation level. For more information, see your ODBC driver
documentation.

Using stored procedures
A stored procedure is a server-based program that can take input parameters and return
output parameters to an application. Stored procedures are associated with a database,
and are actually part of metadata, like tables or domains. The TStoredProc component
enables applications to execute server stored procedures.

The DatabaseName property of TStoredProc specifies the database in which the stored
procedure is defined. This property is the same as for TTable and TQuery-it can be a
BDE alias or an explicit directory path and database name. The StoredProcName specifies
the name of the stored procedure. A drop-down list will display a list of all procedures
defined in the specified database.

A TStoredProc can return either a singleton result or a result set with a cursor, if the
server supports it.

Note InterBase "select" procedures are called with the SELECT statement as if querying a
table. To get output from such'procedures, use a TQuery component with the
appropriate SELECT syntax.

Input and output parameters
A stored procedure has a Params array for its input and output parameters similar to a
TQuery component. The order of the parameters in the Params array is determined by
the stored procedure definition. An application can set the values of input parameters
and get the values of output parameters in the array similar to TQuery parameters. You
can also use ParamByName to access the parameters by name. If you are not sure of the
ordering of the input and output parameters for a stored procedure, use the Parameters
editor.

696 C++ Pro 9 ram mer's G u ide .

To display the Parameters editor, click the button with the ellipses (...) for the Params
property of the TStoredProc component in the Property Inspector. The following dialog
box opens:

Figure 45.3 StoredProc Parameters editor

Store!lProc P .. ndrnelers ~ I

Define Param ete rs ·---·------------·---·-------c--------·--,

£arameter name:

D
Parameter .\Ype

1 .--------,1""'11
Data 1¥Pe: II
yalue:

The Parameters editor displays the input and output parameters for the stored
procedure. To prepare the procedure with the default parameter types and field types,
simply choose OK. You can set values of input parameters at design time by choosing
the parameter in the Parameters list and entering a value in the Value edit box. To
specify NULL input parameter values, select the Null value check box. The P~rameters
editor is explained in more detail in Chapter 44, "Using SQL in applications."

Note Visual Database Tools attempts to get information on input and output parameters from
the server. For some servers (such as Sybase), this information might not be accessible.,
In such cases, you must enter the names and data types of the input and output
parameters in the Parameters editor at design time.

Executing a stored procedure
Before an application can execute a stored procedure, you must prepare the stored
procedure. You can do this

• At design time with the Parameters editor.
• At run time with the Prepare method of TStoredProc.

To prepare a stored procedure at run time, use the Prepare method before executing it.
For example,

StoredProcl.Prepare();

To execute a prepared stored procedure, use the ExecProc method. Values can be
assigned to and from a TStoredProc component just as for TQuery components, by using
the Params array. For example,

char str[50];

Editl.GetText(str, 50);
StoredProcl.Params->Items[O]->AsS~ring = str;
StoredProcl.ExecProc();

C hap t e r 4 5, B u i I din 9 a eli e ntis e r v era p p lie a t ion 697

string s;
s = StoredProcl.Params->Items[l]->AsString;
Edit2.SetText(s.c_str());

The first parameter, Params[01, is an input parameter. It is assigned the text entered by
the user in Editl. Then, assuming StoredProc1 has been prepared at design time with the
Parameters editor, calling the ExecProc method executes the procedure. Finally, the
output parameter, Params[11, is displayed by Edit2.

On some servers, stored procedures can return a result set similar to a query.
Applications can use data-aware controls to display the output of such stored
procedures. You do this in the same way as you display output from TQuery
components: use a TDataSource component and assign its name to a data grid's
DataSource property.

Oracle overloaded stored procedures
Oracle servers allow overloading of stored procedures; that is, different procedures with
the same name. The Overload property enables an application to specify the procedure to
execute. If Overload is zero (the default), there is assumed to be no overloading. If
Overload is one (I), then the first stored procedure with the overloaded name executes; if
it is two (2), the second executes, and so on.

Upsizing
Migrating a desktop application to a client/ server application is called upsizing.
Vpsizing is a complex topic and a full treatment of it is beyond the scope of this book.
This section addresses some of the most important aspects of up sizing a Visual
Database Tools application, however. .

Vpsizing has two major facets:

• Vpsizing the database from the desktop to the server
• Vpsizing the application to address client/ server considerations

Vpsizing requires a shift in perspective from the desktop world to the client/ server
world. Desktop databases and SQL server databases are different in many respects.
Desktop databases are designed for one user at a time, while servers are designed for
multiuser access. Desktop databases are conceptually record-oriented, while server
databases are conceptually set-oriented. Desktop databases typically store each table in
a separate file, while servers store all the tables in a database together.

Client/ server applications must also address some entirely new issues, the most
complex of which are connectivity, network usage, and transaction. handling.

Upsizing the database
Vpsizing a database includes the following steps:

• Defining metadata on the server, based on the existing desktop database structure.

• Migrating the data from the desktop to the server.

698 C++ Pro 9 ram mer's G u ide

• Addressing issues such as:

• Data type differeI}ces
• Data Security and Integrity
• Transaction control
• Data Access Rights
• Data Validation '
• 'Locking

There are two ways to up size a database:

• Use the Database Desktop utility and choose Tools I Utilities I Copy to copy a table
from desktop table to SQL format. For more information, see the online help for
Database Desktop.

• Build an application that uses a TBatchMove component. For more information on
TBatchMove, see Chapter 42.

Both of these options copy table structures and migrate data from the desktop source to
the server destination. Depending on the database, it might be necessary to make
changes to the tables created by these methods.' For example, the datatype mappings
might not be exactly as desired.

Additionally, you must add to the database any of the following features if required:

• Integrity constraints (primary and foreign keys)
• Indexes
• Check constraints
• Stored procedures and triggers
• Other server-specific features

Depending on the database, it might be most efficient to define the metadata first by
using an SQL script and the server's data definition tools and then migrate the d,ata
using one of the two methods previously mentioned. If you define the table structure
manually, then Database Desktop and TBatchMove copy only the data.

Upsizing the application
In principle, a Visual Database Tools application designed to access local data can access
data on a remote server with few changes to the application itself. If a congruent data
source has been defined on an SQL server, you can re-direct the application to access it
rather than the local data source, simply by changing the DatabaseName property of
TTable or TQuery components in the application. .

In practice, however, there are a number of important differences between accessing
local and remote data sources. Client/server applications must also address a number
of issues that are not relevant to desktop applications.

Any Visual Database Tools application can use either TTable or TQuery for data access.
Desktop applications generally use the TTable component. When up sizing to a SQL
server, it might be more effident to use TQuery objects instead in some instances.
Depending on the specific application; TQuery might be preferable if the application will
be retrieving a large number of records from database tables.

C hap t e r 4 5, B u i I din 9 a eli e ntis e r v era p p lie a t ion 699

If the application uses mathematical or aggregate functions, it might be more efficient to
perform these functions on the server with stored procedures. The use of stored
procedures may be faster because servers are typically more powerful. This also reduces
the amount of network traffic required, particularly for functions that process a large
number of rows.

For example, an application might need to compute the standard deviation of values of
a large number of records. If this function were performed on the client, all the values
would have to be retrieved from the server to the client, resulting in a lot of network
traffic. If the function were performed by a stored procedure, all the computation would
be performed on the server, so the application would only retrieve the answer from the
server.

Deploying support for remote server access
Deployment ofa general database application is discussed in Chapter 1. In addition to
the files required to deploy a desktop database application, deployment of a client/
server application requires installation of the appropriate Borland SQL Links. These are
not part of the Borland Database Engine, and must be installed separately. They are
redistributable, according to the terms of the, license agreement.

Each server type has a set of files for the SQL link. In addition, a file used by all the SQL
Links is BLROM800.LD, the Roman8language driver using binary collation sequence.

Oracle servers
This section provides information on connecting 16-bit applications to Oracle servers.
For information on 32-bit applications, refer to the SQL Links online help.

The following files provide the SQL Links interface with Oracle servers. In addition,
applications require Oracle client files for interface to low-level communication
protocols such as TCP /IP. Refer to your server documentation.

Table 45.2 Oracle Sal Link files

SQLD_ORA.DLL

SQLD_ORA.HLP

SQL_ORA.CNF

ORA6WIN.DLL

ORA7WIN.DLL

SQL13WIN.DLL

SQLWIN.DLL

COREWIN.DLL

ORAWE850.LD

700 C++ Pro 9 ram mer's G u ide

Borland SQL Link Oracle Driver

Online help file

BDE Configuration File for Oracle Driver

Oracle Version 6.x client-side DLL

Oracle Version 7.x client-side DLL

Oracle client-side DLL

Oracle client-side DLL

Oracle client-side DLL

Language driver based on DOS code page 850

Sybase and Microsoft SQl servers
This section provides information on connecting 16-bit applications to Sybase and
Microsoft SQL servers. For information on 32-bit applications, refer to the SQL Links
online help.

The following files provide the SQL Links interface with Sybase servers. In addition,
applications require Sybase client files for interface to low-level communication
protocols such as TCP lIP. Refer to your server documentation.

Table 45.3 Sybase Sal Link tiles

SQLD_SS.DLL

SQLD_SS.HLP

SQL_SS.CNF

W3DBLffiDLL

DBNMP3.DLL

SYDC437.LD

SYDC850.LD

Borland SQL Link Sybase Driver

Borland SQL Link Sybase Driver Help

BDE Configuration File for Sybase Driver

Sybase/Microsoft SQL Server client-side DLL

Sybase/Microsoft SQL Server client-side DLL for Named Pipes

Language driver based on DOS code page 850

Language driver based on OOS code page 437

Informix servers
This section provides information on connecting 16-bit applications to Informix servers.
For information on 32-bit applications, refer to the SQL Links online help.

The following files provide the SQL Links interface with Informix servers. In addition,
applications require Informix client files for interface to low-level communication
protocols such as TCP lIP. Refer to your server documentation.

Table 45.4 Intermix Sal Link tiles

SQLD_INFDLL

SQLD_INF.HLP

SQL_INF.CNF

LDLLSQLWDLL

ISAM.IEM

OS.IEM

RDS.IEM

SECURITY.IEM
SQL.IEM

Borland SQL Link Inforrnix Driver

Online help file

BDE Configuration File for Informix Driver

Informix client-side DLL

Informix error message file

Inforrnix error message file

Informix error message file

Informix error message file

Informix error message file

C hap t e r 4 5, B u i I din 9 a eli e nt / s e r v era p p lie at ion 701

16-bit InterBase clients
The following files provide the SQL Links interface to remote InterBase servers.

Table 45.5 16-bit InterBase Sal Link files

SQLD_ffi.DLL

SQLD_ffi.HLP

SQL_IB.CNF

CONNECT.EXE or
WSDIAG.EXE

CONNECT.HLP or
COMDIAG.HLP

GDS.DLL

REMOTE.DLL

INTERBAS.MSG

TCP/IP Interface

Borland SQL Link InterBase Driver

Borland SQL Link InterBase Driver Help

BDE Configuration File for InterBase Driver

InterBase connection diagnostic tool

InterBase Windows connection diagnostic help file

InterBase API DLL

InterBase Networking interface DLL

InterBase error message file

The following files provide InterBase client applications their interface to Winsock 1.1
compliant TCP lIP products.

Table 45.6 16-bit Winsock 1.1 client files

MVW ASYNC.EXE

VSL.INI

WINSOCKDLL

MSOCKLIB.DLL

A~ynchronous communication module

TCP /IP transport initialization file

Windows Socket DLL

Maps Windows socket calls to VSL driver

For TCP lIP products that are not Winsock 1.1 compliant, InterBase client applications
will require one of the following files. During installation, you are prompted to select
the TCP lIP stack for which to install support. If the deployed application needs to
support a different TCP lIP stack, you must copy the corresponding file from the
installation disks.

Table 45.7 16-bit Non-Winsock compliant TCP support files

M30PEN.EXE

M30PEN.DLL

MBW.EXE

MFTP.EXE

MHP ARP A.DLL

MNETONE.EXE

MNOVLWP.DLL

MPATHWAY.DLL

702 C++ Pro 9 ram mer's G u ide

3Com 3+Open TCP
Microsoft LAN Manager
Digital Pathworks for DOS

3Com 3+Open TCP Version 2.0

Beame & Whiteside TCP /IP
FTPPC/TCP

HP ARPA Service for DOS

Ungermann-Bass Net/One

Novell LAN WorkPlace for DOS

Wollongong Pathway Access for DOS

Table 45.7 16-bit Non-Winsock compliant Tep support files (continued)

MPCNFS.EXE

MPCNFS2.EXE

MPCNFS4.DLL

MWINTCP.EXE

SunPCNFS

Sun PC NFS v3.5

Sun PC NFS v4.0

Wollongong WIN TCP lIP for DOS

Other communication protocols
The InterBase workgroup server for NetWare supports Novell SPX/IPX protocol. Two
client files are required: NWIPXSPX.DLL and NWCALLS.DLL.

The InterBase PC Client for Windows supports Microsoft Named Pipes protocol. No
additional client files are required to support Named Pipes, but the client machine must
have Microsoft LAN Manager, Windows for Workgroups 3.11, Windows NT, or
Windows 95 installed.

32·bit InterBase clients
The following files provide the SQL Links interface to remote InterBase servers.

Table 45.8 32-bit InterBase Sal Link files

SQLINT32.DLL

SQL_INF.CNF

WSDIAG.EXE

SQLLNK32.HLP

COMDIAG.HLP

GDS32.DLL

INTERBAS.MSG

IB_LICEN.DAT

TCP/IP Interface

Borland SQL Link InterBase Driver

BDE Configuration File for InterBase Driver

InterBase connection diagnostic tool

SQL Links online help file

InterBase Windows connection diagnostic help file

InterBase API DLL

InterBase error message file

InterBase license file

TCP lIP connections for 32-bit InterBase client applications is provided by the standard
WSOCK32.DLL installed with Windows NT or Windows 95.

Other communication protocols
The InterBase PC Client for Windows supports Microsoft Named Pipes protocol. No
additional client files are required to support Named Pipes, but the client machine must
have Microsoft:LAN Manager, Windows for Workgroups 3.11, Windows NT, or
Windows 95 installed.

C hap t e r 4 5, B u i I din 9 a eli e ntis e r v era p p lie a t ion 703

704 C++ Pro 9 ram mer' 5 G u ide

Programming with third-party
vex controls

Visual Database Tools includes support for levell, level 2, and level 3 VBX controls. If
you have invested in third-party VBX controls, including those with multi-media and
data-aware capabilities, you can include them in your C++ applications.

This chapter discusses how to use third-party VBX controls in your applications. These
are. the topics covered:

• Installing a VBX control in the Borland C++ IDE.
• The TVbxControl class
• Using the VbxGen utility
• Loading and initializing the VB emulator (BIVBX30.DLL)
• Using the BIVBX library functions

Installing a VBX control in the Borland C++ IDE
You can install a VBX control in the Dialog editor of the Borland C++·IDE and visually
use the control to build a dialog box, form, or window that uses that control.

~ To install a VBX control library,

1 In the Borland C++ IDE, choose Options I Environment I Control Libraries.

2 In the dialog box that appea,rs, choose the Add button.

3 In the File Open dialog box that appears, navigate to your WINDOWS/SYSTEM
directory and select the library you want to install, and choose OK.

The control(s) in your library are installed on the Custom page of th~ Controls palette
of the Dialog editor.

C hap t e r 4 6, Pro 9 ram min 9 wit h t h i r d -par t y V B X con t r a, I s 705

Now you can select the control from the Custom page of the Controls palette and add it
to the dialog, form, or window you are building. You can also use the Property
Inspector to change the values of properties.

The TVbxControl' class
The easiest way to program with VBX controls is to use ObjectWindows. It contains the
TVbxControl class that is specifically designed to allow easy integration of VBX custom
controls into Borland C++ applications.

Through TVbxControl, you can load a VBX control and read and set its properties. It also
provides support for events and methods. In your application, each VBX control
becomes a derived object from TVbxControl. '

Using the VbxGen utility
The VbxGen utility provides an easy method of deriving a class from ,the Object
Windows TVbxControl class, and defining member functions for getting and setting
properties of the control. VbxGen also sets up stubs of response functions and places
them in a response table.

The TVbxControl class is found in the VBXCTL.H file. Include this file with your
application.

~ To generate a VBX header file for your VBX control(s),

1 Start VBXGEN.EXE.

2 Select the name of the VBX library for your control(s).

3 Select the name of the header file to be generated and choose OK.

VbxGen generates the header file for you and displays a message box when it is '
finished.

The generated header file contains a section for each control in the VBX control library.
Each section contains a set of symbolic property and event names, default property
data, and a custom C++ class for use with Object Windows programs. .

Include the generated header file in your application. Once the header file is included,
create an instance of the class declared in the header file. You can then use the symbolic
property and event names as you write the code for your application.

For more information about using the TVbxControlclass, the symbolic property and
event names, and default property data, look up VbxGen in the online Help.

Loading and initializing the Visual Basic emulator
Visual Database Tools includes a Visual Basic emulator in the BIVBX30.DLL. It enables
you to use VBX controls that are compatible with version~ 1.0,2.0, and 3.0 of Visual
Basic.

706 C++ Pro 9 ram mer's G u ide

> To make the library available to your application,

1 Include VBXCTL.H in your application.

2 Instantiate an instance of the TBIVbxLibrary module in the OwlMain function before
you call the Run function. Here is an example:

#include <OWL/VBXCTL.H>
int
OwlMain(int, char**)

TBIVbxLiprary vbxLibi
return TTeStApp() .Run()i

Now Borland's Visual Basic emulator is loaded and initialized, ready to support your
VBX controls. '

Using the BIVBX library functions
There are a number of BIVBX library functions defined in the header file, BIVBX.H,
located in your include directory. The functions initialize VBX support, return a VBX

, control handle, initialize a dialog window, handle events, and so on.

You can find complete information about using the BIVBX library functions in the'
online Help.

You can also find more information about programming with VBX controls in the
online Help.

C hap t e r 4 6, Pro 9 ram min 9 wit h t h i r d -par t y V B X con t r 0 Is 707

708 C++ Pro 9 ram mer's G u ide

Using local SQl .
The BDE enables limited access to database tables through1ocal SQL (also called "client­
based SQL"). Local SQL is a subset of ANSI-standard SQL enhanced to support Paradox
and dBASE naming conventions for tables and fields (called "columns" in SQL). Two
categories of SQL statements are supported:

• Data Manipulation Language (DML) for selecting, inserting, updating, and deleting
table data.

• Data Definition Language (DDL) for creating, altering, and dropping tables, and for
creating and dropping indexes.

This chapter describes naming conventions, syntax enhancements, and syntax
limitations for local SQL. For a complete introduction to ANSI-standard SQL, see one of
the many third-party books available at your local computer book store.

Naming conventions for tables
ANSI-standard SQL confines each table name to a single word comprised of
alphanumeric characters and the underscore symbol C). Local SQL is enhanced to
support full file and path specifications for table names. Table names with path or .file­
name extensions must be enclosed in single or double quotes. For example,

SELECT * FROM 'PARTS.DBF'
SELECT * FROM "C:\SAMPLE\PARTS.DBF"

Local SQL also supports BDE aliases for table names. For example,

SELECT * FROM :PDOX:TABLEl

Finally, local SQL permits table names to duplicate SQL keywords as long as those table
names are enclosed in single or double quotes. For example,

SELECT PASSID FROM "PASSWORD"

C hap t e r 4 7, U sin 9 I 0 C a I S Q L 709

Naming conventions for columns
ANSI-standard SQL confines each column name to a single word of alphanumeric
characters and the underscore symbol (J. Local SQL is enhanced to support Paradox
and dBASE multi-word column names and column names that duplicate SQL
keywords as long as those column name are

• Enclosed in single or double quotes.
• Prefaced with an SQL table name or table correlation name.

For example, the following column name is two words:

SELECT E." Emp Id" FROM EMPLOYEE E

In the next example, the column name duplicates the SQL DATE keyword:

SELECT DATELOG."DATE" FROM DATELOG

Data manipulation
With some restrictions, local SQL supports the following statements for data
manipulation:

• SELECT, for retrieving existing data
• INSERT, for adding new data to a table
• UPDATE, for modifying existing data
• DELETE, for removing existing data from a table

The following sections describe parameter substitution, aggregate, string, and date
functions, and operators available to DML statements in local SQL.

Parameter substitutions in DML statements
Variables or parameter markers (?) can be used in DML statements in place of values.
Variables must always be preceded by a colon (:). For example,

SELECT LAST_NAME, FIRST_NAME
FROM "CUSTOMER. DB"
WHERE LAST_NAME > :varl AND FIRST_NAME < :var2

Supported set (aggregate) functions
The following ANSI-standard SQL set (or "aggregate") functions are available to local
SQL for use with data retrieval:

• SUMO, for totaling all numeric values in a column

• AVGO, for averaging all non-NULL numeric values in a column

• MINO, for determining the minimum value in a column

710 C++ Pro 9 ram mer' 5 G u ide

• MAXO, for determining the maximum value in a column .

• COUNTO, for counting the number of values in a column that match specified criteria

Note Expressions are not allowed in set functions.

Supported string functions
Local SQL supports the following ANSI-standard SQL string manipulation functions
for retrieval, insertion, and updating:

• UPPERO, to force a string to uppercase

• LOWERO, to force a string to lowercase

• SUBSTRINGO, to return a specified portion of a string

• TRIMO, to remove repetitions of a specified character from the left, right, or both
sides of a string

Supported date function
Local SQL supports the EXTRACTO function for isolating a single numeric field from a
date/time field on retrieval using the following syntax:

EXTRACT (extract_field FROM field_name)

For example, the following statement extracts the year value from a DATE field:
SELECT EXTRACT(YEAR FROM HIRE_DATE)
FROM EMPLOYEE

You can also extract MONTH, DAY, HOUR, MINUTE, and SECOND using this
function.

Note EXTRACT does not support the TIMEZONE_HOUR or TIMEZONE_MINUTE clauses.

Supported operators
Local SQL supports the following arithmetic operators:

Local SQL supports the following comparison operators:

Local SQL supports the following logical operators:

AND, OR, NOT

Local SQL supports the following string concatenation operator:

II

Chapter 47, Using local SOL 711

Using SELECT
The SELECT statement is used to retrieve data from one or more tables. A SELECT that
retrieves data from multiple tables is called a "join." Local SQL supports the following
form of the SELECT statement:

SELECT [DISTINCT] column_list
FROM table_reference
[WHERE search_condition]
[ORDER BY order_list]
[GROUP BY group_list]
[HAVING having_condition]

Except as noted below, all clauses are handled as in ANSI-standard SQL. Clauses in
square brackets are optional.

The column_list indicates the columns from which to retrieve data. For example, the
following statement retrieves data from two columns:

SELECT PART_NO, PART_NAME
FROM PARTS

Using the FROM clause
The FROM clause specifies the table or tables from which to retrieve data. table_reference
can be a single table, a comma-delimited list of tables, or can be an inner or outer join as
specified in the SQL-92 standard. For example, the following statement specifies a single
table:

SELECT PART_NO
FROM "PARTS. DBF"

The next statement specifies a left outer join for table_reference:
SELECT * FROM PARTS LEFT OUTER JOIN INVENTORY
ON PARTS. PART_NO = INVENTORY. PART_NO

Using the WHERE clause
The optional WHERE clause reduces the number of rows returned by a query to those
that match the criteria specified in search_condition. For example, the following statement
retrieves only those rows with PART_NO greater than 543:

SELECT * FROM PARTS
WHERE PART_NO > 543

The WHERE clause can include the IN predicate, followed by a parenthesized list of
values. For example, the next statement retrieves only those rows where a part number
matches an item in the IN predicate list:

SELECT * FROM PARTS
WHERE PART_NO IN (543, 544, 546, 547)

Important A search_condition cannot include subqueries.

Using the ORDER BY clause
The ORDER BY clause specifies the order of retrieved rows. For example, the following
query retrieves a list of all parts listed in alphabetical order by part name:

712 C++ Pro 9 ram mer's G u ide

SELECT * FROM PARTS
ORDER BY PART_NAME ASC

The next query retrieves all part information ordered in descending numeric order by
part number:

SELECT * FROM PARTS
ORDER BY PART_NO DESC

Calculated fields can be ordered by correlation name or ordinal position. For example,
the following query orders rows by FULL_NAME, a calculated field:

SELECT LAST_NAME I I I, I I I FIRST_NAME AS FULL_NAME, PHONE
FROM CUSTOMERS
ORDER BY FULL_NAME

Using the GROUP BY clause
The GROUP BY clause specifies how retrieved rows are grouped for aggregate
functions. In local SQL, any column names that appear in the GROUP BY clause must
also appear in the SELECT clause.

Heterogeneous jOins
Local SQL supports joins of tables in different database formats; such a join is called a
Uheterogeneous join." For example, it is possible to retrieve data from a Paradox table
and a dBASE table as follows:

SELECT DISTINCT C.CUST_NO, C.STATE, O.ORDER_NO
FROM "CUSTOMER. DB" C, "ORDER.DBF" 0
WHERE C.CUST_NO = O.CUST_NO

You can also use BDE aliases in place of table names.

Using INSERT
In local SQL, INSERT is restricted to a list of values:

INSERT INTO CUSTOMER (FIRST_NAME, LAST_NAME, PHONE)
VALUES(:fname, :lname, : phone_no)

Insertion from one table to another through a sub query is not allowed.

Using UPDATE
There are no restrictions on or extensions to the ANSI-standard UPDATE statement.

Using DELETE
There are no restrictions on or extensions to the ANSI-standard DELETE statement.

C hap t e r 4 7 ,Us i n 9 I 0 c a I S Q L 713

Data definition
LocalSQL supports data definition language (DDL) for creating, altering, and dropping
tables, and for creating and dropping indexes. All other ANSI-standard SQL DDL
statements are not supported. In particular, views are not supported.

Local SQL does not permit the substitution of variables for values in DDL statements.

Using CREATE TABLE
CRRA TR TART .R is sunnorted with the followin2" limitations:

~~ ~

• Column definitions based on domains are not supported.

• Constraints are limited to PRIMARY KEY for Paradox. Constraints are unsupported
indBASE.

For example, the following statement creates a Paradox table with a PRIMARY KEY
constraint on the LAST_NAME and FIRST_NAME columns:

CREATE TABLE "employee. db"

LAST_NAME CHAR(20),
FIRST_NAME CHAR(15),
SALARY NUMERIC (10, 2)
DEPT_NO SMALLINT,
PRIMARY KEY(LAST_NAME, FIRST_NAME)
)

The same statement for a dBASE table should omit the PRIMARY KEY definition:

CREATE TABLE "employee. db"
(

LAST_NAME CHAR(20),
FIRST_NAME CHAR(15),
SALARY NUMERIC (10,2)
DEPT_NO SMALLINT
)

The following table lists SQL syntax for data types used with CREATE TABLE, and
describes how those types are mapped to Paradox and dBASE types by the BDE:

Table 47.1 Data type mappings

SMALLINT fld1NT16 fldPDXSHORT fldDBNUM

INTEGER fldINT32 fldPDXLONG fldDBNUM

DECIMAL(x,y) fldBCD fldPDXBCD N/A

NUMERIC(x,y) fldFLOAT fldPDXNUM . fldDBNUM(x,y)

FLOAT(x,y) fldFLOAT fldPDXNUM fldDBFLOAT(x,y)

CHARACTER(n) fldZSTRING fldPDXALPHA fldDBCHAR

714 C+t Programmer's Guide

Table 47.1 Data type mappings (continued)

VARCHAR(n) fldZSTRING fldPDXALPHA . fldDBCHAR

DATE fldDATE fldPDXDATE fldDBDATE

BOOLEAN fldBOOL fldPDXBOOL fldDBBOOL

BLOB(n,s) See Subtypes below See Subtypes below See subtypes below

TIME fldTIME fldPDXTIME N/A

TIMESTAMP fldTIMESTAMP fldPDXTIMESTAMP N/A

MONEY fldFLOAT, fldPDXMONEY fldDBFLOAT(20,4)
fldstMONEY

AUTOINC fldINT32, fldPDXAUTOINC N/A
fldstAUTOINC

BYTES(n) flqBYTES(n) fldPDXBYTES fldDBBYTES

(in-memory tables only)

The following table specifies how BLOB subtypes translate from SQL to Paradox and
dBASE through the BDE:

Table 47.2 BLOB subtype mappings

1 fldstMEMO fldPDXMEMO fldDBMEMO

2 fldstBINARY fldPDXBINARY fldDBBINARY

3 fldstFMTMEMO fldPDXFMTMEMO N/A

4 fldstOLEOBJ fldPDXOLEBLOB fldDBOLEBLOB

5 fldstGRAPIDC fldPDXGRAPIDC N/A

Using ALTER TABLE
Local SQL supports the following subset of the ANSI-standard ALTER TABLE
statement. You can add new columns to an existing table using this ALTER TABLE
syntax:

For example, the ,following statement adds a column to a dBASE table:

ALTER TABLE "employee. dbf" ADD BUILDING_NO SMALLINT

You Can delete existing columns from ~ table using the following ALTER TABLE syntax:

ALTER TABLE table DROP column_name [, DROP column_name . . .]

For example, the next statement drops two columns from a Paradox table:

ALTER TABLE "employee.db" DROP LAST_NAME, DROP FIRST_NAME

ADD and DROP operations can be combined in a single statement. For example, the
following statement drops two columns and adds one:

, C hap t e r 4 7; U sin 9 10 C a I S Q L 715

· ALTER TABLE "employee. dbf 11 DROP LAST_NAME, DROP FIRST_NAME, ADD FULL_NAME CHAR[30]

Using DROP TABLE
DROP TABLE deletes a Paradox or dBASE table. For example, the following statement
drops a Paradox table:

DROP TABLE "employee.db"

Using CREATE INDEX
CREATE INDEX enables users to create indexes on tables using the following syntax:

CREATE INDEX index_name ON table_name (column [, column . . .])

Using CREATE INDEX is the only way to create indexes for dBASE tables. For example,
the following statement creates an index on a dBASE table:

CREATE INDEX NAMEX ON "employee.dbf" (LAST_NAME)

Paradox users can only create secondary indexes with CREATE INDEX. Primary
Paradox indexes can only be created by specifying a PRIMARY KEY constraint when
creating a new table with CREATE TABLE.

Using DROP INDEX
Local SQL provides the following variation of the ANSI-standard DROP INDEX
statement for deleting an index. It is modified to support dBASE and Paradox fi~e
names.

DROP INDEX table_name. index_name I PRIMARY

The PRIMARY keyword is used to delete a primary Paradox index. For example, the
following statement drops the primary index on EMPLOYEE.DB:

DROP INDEX "employee. db" . PRIMARY

To drop any dBASE index, or to drop secondary Paradox indexes, provide the index
name. For example, the next statement drops a secondary index on a Paradox table:

DROP INDEX "employee. db" .NAMEX

716 C++ Pro 9 ram mer's G u ide

Borland Windows Custom
Controls guide

This part discusses Borland Windows custom controls and is divided into the following
chapters:

• Chapter 48, "Using Borland Windows Custom Controls," explains how to use the
custom dialog class and how to use the custom control drawing routines directly to
optimize the drawing·of dialog boxes.

• Chapter 49, "Designing Borland Windows Custom Control dialog boxes," presents
style considerations you can follow when designing Borland Windows Custom
Control (BWCC) dialog boxes for your Windows-based software.

Par t V II, B 0 r I and Win dow 5 C U 5 tom Con t r 0 I 5 9 U ide 717

718 C++ Pro 9 ram mer's G u ide

Using Borland Windows
Custom Controls

The custom dialog class, BORDLG, works on both a visual and functional level:

• It changes the appearance of your dialog window by painting the background with a
brush that varies according to the target display device. For screens of VGA and
higher resolution, the background is a fine grid of perpendicular white lines, giving
the effect of "chiseled steel." For EGA and monochrome screens, the background is
white. '

• It optimizes the drawing of dialog boxes by calling the custom control drawing
routines directly instead of waiting for Windows to paint the controls. This eliminates·
the typical sluggish drawing of dialog boxes.

Using the Borland custom dialog class
To use the Borland custom dialog class:

1 Open the dialog resource you want to convert.

2 Double-click in an empty area of the dialog box to display the Dialog Property
Inspector.

3 Select the Window Tab.

4 Enter bordlg as the Class and click OK.

Customizing existing applications for Borland Windows
custom controls

Note This procedure applies to 16-bit Windows applications only.

Chapter 48, Using Borland Windows Custom Controls 719

Resource Workshop allows you to customize existing Windows applications with
Borland-style custom controls. There are two steps to this process:

1 Modify your WIN.IN! file to load the Borland Windows Custom Control (BWCC)
library each time you start Windows.

2 Edit the application in Resource Workshop to change user interface features such as
dialog boxes, menus, icons, and so on.

Loading BWCC to enable Borland custom controls
Thp Rwrr lihr~nT lAThirh nl'nlrir1p~ ~l1nnnl't fnl' Rnl'l~nr1_~hTlp rll~tnTYI rnnt-rnl~ TYlll~t ho ---- - •• -- ~----J' •• ---- r-~· ----~ ~-rr~-~ -~- _~ ____ L __ ~~J -- __ ~~~ __ L _~_L~_~_~' __ L_~~ ~-
loaded before an application can use BWCC's features.

Edit the WIN.IN! file (located in the Windows main directory) so that Windows loads
the file LOADBWCC.EXE into memory at start up. (The installation program should
have put LOADBWCC.EXE in the language compiler directory and added this
directory to your PATH.)

Add LOADBWCC.EXE to the beginning of the list of files that appear after the
"LOAD=" statement. LOADBWCC.EXE must appear first in the statement to ensure that
BWCC is loaded into memory before any modified applications are executed.

Borland custom controls
These Borland custom control styles available are:

3-State Checkbox

Auto 3-State Checkbox

Auto Checkbox

Auto Radiobutton

Bitmap

Checkbox

Default Pushbutton

720 C++ Pro 9 ram mer's G u ide

A Borland-style check box that has three states - on, off, and
"indeterminate," which is displayed as a checkerboard pattern. The
application determines what is meant by "indeterminate." The
application must call the CheckDlgButton function to send a
BM_SETCHECK message to check the selected box.

A check box that's identical to a Borland-style 3-state check box, except
that BWCC and Windows combine to handle checking the selection
box.

A check box that's identical to a Borland-style check box, except that
BWCC and Windows combine to handle checking the selection box.

A radio button that's identical to a Borland-style radio button, except
that BWCC and Windows combine to handle highlighting the selected
button and deselect the other buttons.

A bitmap.

A Borland-style check box. The application must call the
CheckDlgButton function to send a BM_SETCHECK message to
check the selected box.

A push button that's identical to a Borland-style push button, but
includes a bold border indicating that it's the default response if the
user presses Enter.

Horizontal Bump

Horizontal Dip

Pushbutton

Radiobutton

Raised Gray Group

Recessed Gray Group

Static Text

Vertical Bump

Vertical Dip

A convex horizontal line.

A concave horizontal line.

A Borland-style push button. Whenthe user clicks the button, a
BN_CLICKED message is sent to the parent window.

A Borland-style radio button. The application must call the
CheckRadioButton function to send a BM_SETCHECK message to
highlight the selected button and deselect other buttons

A gray box that appears raised above the surface of the dialog box.

A gray box that appears recessed below the surface of the dialog box.

A fixed text string used for labeling parts of the dialog box.

A convex vertical line.

A concave vertical line.

Borland button and check box enhancements
Borland push buttons, radio buttons, and check boxes have the following functional
enhancements over standard Windows controls:

• An additional level of parent window notification and control over keyboard focus
and tab movement. If you choose the Parent Notify option in the control's style dialog
box, the control sends the appropriate message at run time:

@ BBN_SETFOCUS indicates to the parent window that the push button, radio
button, or check box has gained keyboard focus through an action other than a
mouse click.

@ BBN_SETFOCUSMOUSE indicates to the parent window that the push button,
radio button, or check box has gained keyboard focus through a mouse click.

@ BBN_GOTATAB indicates to the parent window that the user has pressed the Tab
key while the push button, radio button, or check box has keyboard focus. The
parent can intervene in the processing of the keystroke by returning a nonzero
value.

@ BBN_GOTABTAB indicates to the parent window that the user has pressed Shift­
Tab (back-tab) while the push button, radio button, or check box has keyboard
focus. The parent can intervene in the processing of the keystroke by returning a
nonzero value.

• An owner-draw option that allows the parent window to draw the push button,
radio button, or check box. Because your application handles drawing the control, it
won't necessarily look like a Borland control, but it will have the standard behavior
of that class of control.

C hap t e r 48, Us i n 9 B 0 r I and Win dow s C u s tom Con t r 0 I s 721

722 c++ Programmer's Guide

Panels

Designing Borland Windows Custom
Control dialog boxes

These topics present style considerations you can follow when designing Borland
Windows Custom Control (BWCC) dialog boxes for your Windows-based software.

• Panels
• Fonts
• Group Boxes
• Push Buttons
• Examining Your Dialog Box

Each dialog box has two panels: a Main panel and an Action panel. The Main panel
should contain all the required controls. The Action panel should contain the push
buttons.

Your finished dialog box should be relatively square. If the Main panel is wider than it is
tall, put the Action panel along the bottom of your dialog box. If the Main panel is taller
than it is wide, put the Action panel on the right side.

Main panel
You can arrange the group boxes on the Main panel in either a single column or row, or
in an array. Here are some guidelines for arranging group boxes on the Main panel. You
should treat group titles as part of the group boxes.

• Space group boxes 8 dialog units apart, both vertically and horizontally.

• Leave a margin of 8 dialog units from all edges of the dialog to the nearest group box.

Chapter 49, Designing Borland Windows Custom Control dialog boxes 723

Fonts

• In a column of group boxes, make all group boxes the same width. The width should
accommodate the widest item or title. Widen the other group boxes to match.

• In a row of group boxes, vary the group box heights. Align the tops of the group
boxes and let the bottoms of the group boxes vary.

• If some of the group boxes in a row have titles and some do not, align the top of the
recessed group boxes with each other, not with the title rectangles. For these "mixed"
groups of boxes, the margin above group boxes without titles should include the
space for a title.

• If some of the group boxes you want to align in a row are taller than others, compute
.f.ha hA.f.-t-t-,.-rY\ -rY\"' n-l-n "Cl-nn- fha .f.",l1ac.f. n-....A11 hAV
L..LL"'" L/'-'L."''-'.L.LL .L.LL\...t..Lb.IJ.L """'1J'.L.I..Lb ~L'- "'\...t...L.L"-'IJ'L. b.L""' y L.I''-'J'\".

Action panel
An Action panel can appear at the bottom or the right side of a dialog box. Here are the
guidelines for Action panels:

• Make the Action panel tall or wide enough to contain the push buttons while leaving
a margin of 8 dialog units above and below or to the sides of the push buttons.

• Distribute the push buttons evenly along the Action panel, leaving a minimum of 8
dialog units between the buttons and between the buttons and the edges of the dialog
box. Try to use the same number of dialog units between each button and between
the buttons and the edges of the dialog box. You can put more space between the
buttons than between the buttons and the edges of the dialog box, if necessary, but
the two margin spaces should be equal and the spaces between the buttons should be
equaL

Borland dialog boxes use 8-point Helvetica Bold. The Borland Windows custom dialog
controls look best when you use this font. An 8-point font is small; using it prevents
your dialog boxes from growing too big. Of course, you can use other fonts for other
custom controls.

Group boxes
Collect all options that appear in the Main panel into Borland Windows custom group
boxes. For example, place a group of related check boxes in a group box. You should
place each single control, such as a file name text box or combo box, in a group box also.
You will not have to do this with a Borland list box because a list box draws its own
group box.

724 C++ Pro 9 ram mer J s G u ide

Group box title
A group box title identifies what a group box contains. By default, a group box title in a
Borland dialog box has a gray background. Here are guidelines for using group box
titles:

• If a group box contains multiple controls, place the group box title above and
touching the top edge of the group box.

• If a group box contains a single check box, place the group box title above and
touching the top edge of the group box.

• If a group box contains a single text box or combo box control, you can either put the
title to the left of the control and 4 dialog units from the edge of the group box or you
can put it above the control.

• If a group box contains two or more editable text fields or combo boxes or both,
precede each with a short label.

• Align group box titles above the recessed group boxes.

• Make all group box titles 9 dialog units high.

• Make the titles the same width as the group boxes, iI\cluding the beveled sides.

Group box elements
These suggestions help you arrange elements within a group box:

• Distribute controls within a group box vertically every 13 units from the bottom of
one line of text to the bottom of the next.

• Left-justify the controls.

• The.left and right margins between the edges of the group box and the widest control
within it should be 4 dialog units wide.

• Make the margin between the top of the group box and the first control in the group 4
dialog units.

• Make the margin between the bottom of the group box and the last control in the
group 4 dialog units.

• If a group box contains two or more editable text fields or combo boxes or both, make
them the same width. Space them so that the bottom of one is 13 units from the
bottom of the next one. Right-justify these controls in the group box 4 units from the
right edge. Left-justify the titles, leaving a 4-unit margin. Make the group box wide
enough to leave 4 units between the longest title and its control.

Push buttons
The following are style considerations for push buttons:

Chapter 49, Designing Borland Windows Custom Control dialog boxes 725

• The Borland custom push buttons use glyphs (small bitmapped images). For
example, a question-mark glyph is used on the Help push button. Place the glyph
inside the button on the left side.

• Use Helvetica (normal, not bold) for the text of a button text and right-justify it.

Action panel push buttons
The Action panel push buttons usually indicate the end of the user's work with a dialog
box, but can also serve as a major departure from the function of the dialog box, such as
bringing up Help with the Help button. The guidelines for these buttons are:

• Put the buttons on the Main panel rather than the Action panel.

• Do not put these push buttons in a group box. Place them directly on the surface of
the Main panel.

• Make all push buttons in a group the same width. They should be just wide enough
to accommodate the widest text string.

• Make the buttons 14 dialog units in height.

• Try to restrict text to 20 characters or less.

• Place the buttons in either a row or a column, depending on what looks best in your
dialog box.

• Leave 8 dialog units to the left and right of a column of push buttons. The vertical
space between the buttons and any other controls or borders above or below the
buttons should be equal.

• Leave 8 dialog units above and below a row of push buttons. The horizontal space
between the buttons and any other controls or borders to the left or right of them
should be equal. .

Examining your dialog box
When Windows calculates dialog units, it rounds the computation. Rounding errors can
affect the appearance of your dialog box. Examine your dialog box carefully and look
for these problems:

• A crack between the title text and the top of a gray group box

• Obvious uneven spacing in a v~rtical group of radio buttons or check boxes

• An inconsistent border width in exposed panel areas

Usually, making an adjustment of 1 dialog unit will fix these problems. Occasionally in
a large group of repeating controls, two or more rounding errors can occur. You cannot
tell how text in controls will appear when you are designing your dialog box. Editable
text, large static text fields, and combo boxes fall into this category. You may have to
modify your original design to be sure text appears correctly without being clipped at
run time.

726 C++ Pro 9 ram mer's G u ide

What is OLE?
OLE, which stands for Object Linking and Embedding, is an operating system extension
that lets applications achieve a high degree of integration. OLE defines a set of standard
interfaces so that any OLE program can interact with any other OLE program. No
program needs to have any built-in knowledge of its possible partners.

Programmers implement OLE applications by creating objects that conform to the
Component Object Model (COM). COM is the specification that defines what an OLE
object is. COM objects support interfaces, composed of functions for other objects to call.
OLE defines a number of standard interfaces. COM objects intended for public access
expose their interfaces in a registration database. Interfaces have unique identifiers to
distiguish them. '

ObjectComponents encapsulates the COM specification for creating objects and
provides default implementations of the interfaces used for two common OLE tasks:
linking and embedding, and automation. Linking and embedding lets one application
incorporate live data from other OLE applications in its documents. Automation lets
one application issue commands to control another application.

Common uses for OLE
The following topics discuss common uses for OLE.

Linking and embedding
Linking and embedding refer to the transfer of data from one program to another. The first
program, the server, sends its data to the second program, the container. For example,
cells from a spreadsheet can be dropped into a word processing document. Of course
you don't need OLE to pass data from one Windows program to another. You can do
that much with just the Clipboard. The difference between OLE and the Clipboard is
that in OLE the receiving program doesn't have to know anything at all about the
format of the data in the object. Any OLE server application can give its data to any OLE

A P pen d i x A, W hat i sOL E ? 727

container application. Thanks to OLE, the container doesn't care whether the object it
receives is a metafile, a bitmap, or ASCII text. The server passes whatever data it uses
internally and the container accepts it. Furthermore, the object remains dynamic even
after being transplanted. When the container wants to display, modify, or save the
object, it calls OLE to do it. OLE, working behind the scenes, calls the server to execute
the user's command. The object belongs to the container's document, but OLE maintains
a live connection back to the server. The user can continue to edit the object using all of
the server's tools. As a result, the user can combine objects from different servers into a
single document without losing the ability to update and modify any object as the
document evolves.

Automation
Automation happens when one program issues commands to another. If you write a
calculator program, for example, you might allow other programs to issue commands
like these:

• Press the nine button.

• Press the plus button.

• Press the six button.

• Press the equals button.

• Tell me what's in the Total window.

These are commands a person might normally issue through the calculator's user
interface. With automation, the calculator exposes its internal functions to other
programs. The calculator becomes an automation object, and programs that send
commands to it are automation controllers. OLE defines standard interfaces that let a
controller ask any installed server to create one of its objects. OLE also makes it possible
for the controller to browse through a list of automated commands the server supports
and execute them.

What does OLE look like?
The linking and embedding features of OLE include a standard user interface for
performing common operations such as placing OLE objects in container documents
and activating them once they are linked or embedded. The OLE standards cover menu
commands, dialog boxes, tool bars, drag and drop support, and painting conventions,
so that the user interface for OLE operations is consistent across applications. Together,
ObjectComponents and ObjectWffidows execute most of the interface tasks for you.

Understanding OLE programming can be difficult without a clear grasp of the interface
you are trying to create. The following sections present pictures of a container showing
what happens onscreen at each step in a common sequence of OLE oper'ations. The user
runs a container, inserts objects from several OLE servers into the document, edits an
object, and saves the document.

728 C++ Pro 9 ram mer's G u ide

Inserting an object
The example program called SdiOle is an OLE container using the single-document
interface (SDI) and written with ObjectWindows and ObjectComponents. The source
code for SdiOle is in EXAMPLES/OWL/OCF /SDIOLE.

The SdiOle Edit menu contains five standard OLE commands that most containers
possess: Paste Special, Paste Link, Insert Object, Links, and Object.

ObjectWindows implements all five of the standard commands for you if you like, but a
container does not have to use them all.

Figure A.1 The Edit menu in the sample program SdiOle

Like the common dialog boxes in Windows for opening files and choosing.ionts, the
Insert Object dialog box is a standard resource implemented by the system. For
consistency, it is best to use the standard dialog boxes unless your application has some
unusual requirement that the standard dialog box does not meet.

The box under Object Type lists all the kinds of objects available in the system.
Whenever a s~rver installs itself, it tells the system what objects it can create. The system
keeps this informaJion in its registration database. The Insert Object dialog box queries
the database and shows all the types that OLE can create for you using the available
server applications.

In the illustration, the user has chosen to insert a Quattro Pro spreadsheet. The Result
box at the bottom of the dialog box explains what will happen if the user clicks OK now.
Becal,lse the Create New button is selected, clicking OK will embed a new, empty
spreadsheet object into the user's open document.

Appendix A, What is OLE? 729

Figure A.2 The Insert Object dialog box
- Insert Object

@ Create !lew:

o Create from File:

Object!l'pe:

Ole 2.0 In·Place Server Outline
Ole 2.0 Server Sample Outline
OIeTest Srtest 2.0 Shape
Package
Paintbrush Picture
Paradox Table

I!1~Umu~'milr~li~fliJr~ [fI~.~!JJ.Glm~ap~lhm •• __ d 0 Qisplav A. Icon

Result---------------,
Imerts ~ new Q,uattro Pro 6.0 Notebook object iota your
documel1l

Editing an object in place
The example program called SdiOle is an OLE container using the single-document
interface (SDI) and written with ObjectWindows and ObjectComponents. The source
code for SdiOle is in EXAMPLES/OWL/OCF /SDIOLE.

The SdiOle Edit menu contains five standard OLE commands that most containers
possess: Paste Special, Paste Link, Insert Object, Links, and Object.

If Quattro Pro is the server. application that creates the active object, Quattro Pro will
take over the SdiOle window and display its own menus and tool bars. All the Quattro
Pro menu and tool bar commands can be executed right there in SdiOle. The feature of
OLE that lets a server take over a container's main window is called in-place editing. It
lets the user edit the object in its place, without switching back and forth between
different windows. The programming task that makes this possible is called menu
merging, combining menus from two programs in one menu bar.

Figure A.3 A newly inserted object being edited in place

730 c++ Programmer's Guide'

Although many programs let you paste data from other programs into your documents,
, without OLE you cannot continue to edit the objects after they are transferred.

SdiOle is a very simple application and knows nothing about columns and rows or fonts
and shading. But, even though the Quattro Pro server created and formatted the object,
that data in the object belongs to the container. When the user chooses File I Save from
the SdiOle menu bar, what gets written is an SdiOle document, npt a Quattro Pro
document. With the help of ObjectComponents and the OLE system, SdiOle marks an
area in its own file to store the data for the embedded object. Wh¢n the user chooses
File I Load to reload the same document, the spreadsheet cells will still be there. If the
user tries to edit the object again, OLE invokes Quattro Pro to take over the SdiOle
window once more. The object remains associated with the application that created it
even though the object is stored in a foreign file.

When OLE places the data for an object directly into the container's document as it has
the data for this spreadsheet, the object is said to be embedded. Besides embedding,
OLE also links objects to container documents.

Activating, deactivating, and selecting an object
The example program called SdiOle is an OLE container using the single-document
interface (SDI) and written with ObjectWindows and ObjectComponents.The source
code for SdiOle is in EXAMPLESjOWLjOCF jSDIOLE.

The SdiOle Edit menu contains five standard OLE commands that most containers
possess: Paste Special, Paste Link, Insert Object, Links, and Object.

An embedded object is outlined by a thick gray rectangle. The presence of this rectangle
indicates that the object is active. The activation rectangle appears when you double­
click the object. Usually activating an object initiates an editing session, but the server
decides whether to follow that convention. For example, embedded sound objects might
play when activated. In most cases, only one object can be active at a time.

When an activation rectangle has small black boxes spaced around it, they are called
grapples. The user can resize the object by clicking a grapple and dragging the mouse.
Also, the user can move the object by clicking anywhere else on the activation rectangle
and dragging. ObjectWindows uses the TUIHandle class to draw rectangles and
grapples around objects.

When the user clicks the mouse button outside the activated object, the activation
rectangle goes away. The object is now inactive. Figure A.4 shows an inactive object.
Deactivating an object tells OLE that you are through editing. The server relinquishes its
place, and the container's window returns to normal. The only commands on the menu
bar are the ones SdiOle put there. The tool bar and window caption are back to normal,
as well.

A P pen d i x A, W hat is 0 L E? 731

FigureA.4 The container's restored user interface after the object becomes inactive

You can select an inactive object without activating it. When you press the mouse button
over an inactive object, the container draws a thin black rectangle to show that you have
selected it. Like the activation rectangle, it has grapples. The user can move and resize a
selected object just like an active object. .

Finding an object's,verbs
The example program called SdiOle is an OLE container using the single-document
interface (SDI) and written with ObjectWindows and ObjectComponents. The source
code for SdiOle is in EXAMPLES/OWL/OCF /SDIOLE.

The SdiOle Edit menu contains five standard OLE commands that most containers
possess: Paste Special, Paste Link, Insert Object, Links, and Object.

When an object is selected, the container modifies its menus to offer a choke of
whatever actions the object's server can do with the object. OLE calls these actions verbs.
Conventionally, the container displays available verbs in two places: on its Edit menu
and on a SpeedMenu. For example, if a SpeedMenu pops up when the 'user right clicks,
the first three commands on the SpeedMenu are always Cut, Copy, and Delete, as
shown in Figure A.5. The fourth item, Notebook Object, changes depending on the
object selected. When an object from Paradox is inserted, for example, the fourth item
becomes Paradox 7 Object.

732 C++ Pro 9 ram mer's G u ide

Figure A.S The speed menu for a selected object

The smaller cascading menu lists the particular verbs that the server supports. Quattro
Pro has only two verbs. It can edit an object or open an object. The Edit verb initiates an
in-place editing session. The Open verb inititates an open editing session.

The final item, Convert, is the same for all objects. It invokes another standard OLE
dialog box that lets the user convert an object from one server's data format to another.
The Convert command is useful when, for example, you have Paradox installed on your
machine, but someone gives you a compound document with an embedded object from
some other database application. If Paradox knows how to convert data from the other
database, then the Convert command binds the foreign database object to Paradox.

The speed menu for a selected object shows where verbs appear on the Edit menu.
When no object is selected, the last command on the Edit menu is disabled and says
simply Object. When an object is selected, the Object command changes to describe the
selected object. In the example, Object changes to Notebook Object.

Linking an object
The example program called SdiOle is an OLE container using the single-document
interface (SDI) and written with ObjectWindows and ObjectComponents. The source
code for SdiOle is in'EXAMPLES/OWL/OCF /SDIOLE.

The SdiOle Edit menu contains five standard OLE commands that most containers
possess: Paste Special, Paste Link, Insert Object, Links, and Object.

By default, the Insert Object command creates a brand new empty object, and embeds it.
Instead of embedding an object, you can choose to link it using the Insert Object dialog
box as shown in Figure A.6.

A P pen d i x A, W hat i sOL E ? 733

Figure A.6 The Insert Object dialog box just before inserting a linked object
!i,---------In-se-rt-Ob-je-c\------

o Create !lew;

@ Create hom Eile:

File: Pa!adOllro!WindoW.S.O

Ic:\pdoxwin\elIamples\checks.db

t!lJJ!j:ni)

I !!!!!,I ;;;;;1
o !!isplay As Icon

Result------------.
Infert; a picttue .01 the file conlent$ into your document.
The piclUre will be linked to the file ;0 that change$ to the
fae wUl be reHected in your document

When OLE links an object, it does not store the object!s data in the container's document.
It stores only the name of the server file where the data is stored along with the location
of the data within the file and a snapshot of the object as it appears onscreen. The
snapshot is usually a metafile. The container doesn't receive a copy of the object; it
receives a pointer to the object. OLE still draws the object in the container's document,
just as though it was embedded, but the container doesn't own the data.

If the server document that holds the data for the linked object is deleted, then the user
can no longer activate and edit the linked object. On the other hand, if the data in the
server document is updated, then the updates appear automatically in all the container
documents that have been linked to the same object. If several documents embed the
same object, then they are creating copies, and changes made in one document have no
effect on the copies in other documents.

What if you select the Create from File button in the Insert Object dialog box? Instead of
creating a new empty object, you choose a'file with existing data and OLE invokes the
server that created the file. You can embed data from the file, but if the user has checked
the Link box, when the user clicks OK, OLE does not copy data from CHECKS.DB into
the server's document. It creates a link that refers back to the data stored in the original
file.

The text in the Result box at the bottom of the dialog box explains what will happen
when the user clicks OK. The EXAMPLE.DFL document now contains two OLE
objects-the embedded Quattro Pro spreadsheet and the linked Paradox table.

Neither of the two objects is active. The spreadsheet is inactive and the database table is
selected. Because the database table is linked, ObjectWindows draws the selection
rectangle with a dashed line.

Opening an object to edit it
The example program called SdiOle is an, OLE container using the single-document
interface (SDI) and written with ObjectWindows and ObjectComponents. The source
code for SdiOle is in EXAMPLES/OWL/OCF /SDIOLE.

The SdiOle Edit menu contains five standard OLE commands that most containers
possess: Paste Special, Paste Link, Insert Object, Links, and Object.

734 e+t Programmer's Guide

The Edit and Open are the two most common verbs, and Quattro Pro and Paradox, for
example, both use them. Choosing the Open verb makes the same table visible in two
windows-the container window where it is linked and the server window where it is
being edited. When finished editing in the server window, the user chooses File I Close
and returns to the container. Any changes made during the editing session
automatically appear in the container window afterward.

Figure A.7 An object opened for editing

Contrast this editing session with another. In this session, the container window
remains unchanged. The SdiOle window has only its own commands and its own tool
bar. The editing takes place in a separate window that OLE opened just for this session.
Returning to the server to edit is called open editing. Some servers support only open
editing, not in-place editing.

These are common linking and embedding operations: the user links or embeds an
object, selects it, activates it, edits it in place or open, and saves the compound document
complete with its OLE object. The standard way is to link and embed objects with the
Insert Object dialog box, but there are other ways as well. The Paste, Paste Special, and
Paste Link commands can all create OLE objects from data on the Clipboard. You can
also link or embed objects by dragging them from one applicaton and dropping them on
another.

Appendix A, What is OLE? 735

Glossary of OLE terms
The definitions in this section explain common terms in OLE programming. Read it for
an introduction to important programming topics, or refer to it for clarification as you
read other ObjectComponents chapters.

The definitions of advanced concepts assume you already know something about OLE
and its standard interfaces. For more information about OLE, refer to the three OLE
online Help files.

Activate
The user activates a linked or embedded object by double-clicking it. Activating an object
causes the server to execute the object's primary verb. For document-style objects, the
primary verb is generally initiates an editing session, either in-place or open. For other
objects, such as movies and sounds, the primary verb is usually Play. Activating is not

. the same as selecting; see the entry for Select.

Aggregation
A way of combining several OLE objects to make them function as a single bigger object.
Objects are aggregated at run time. You can aggregate with objects that you did not
design. An object aggregates to delegate commands or to inherit and override the
functionality of other objects.

Aggregation is an advanced programming technique~ In order for aggregated objects to
act as a unit, all the aggregated objects must delegate any Querylnterface call they receive
to the primary object, usually called the outer object. The outer object begins an
aggregation by passing its own IUnknown pointer. The second object remembers the
outer IUnknown pointer and routes all requests for an interface to the outer object. If the
outer object does not support a requested interface, it forwards the request to the first in
what might be a chain of aggregated objects. A client can reach all the interfaces
supported by any of the auxiliary objects through the IUnknown of the outer object.

Automated object
An OLE object that publishes commands other applications can send it. An automation
server creates automated objects. The automated object can be the application itself or
something that the application creates.

Automated application
An OLE object that publishes commands other applications can send it. An automation
server creates automated objects. The automated object can be the application itself or
something that the application creates.

Automation
The ability of an application to define a set of commands for other applications to
invoke.

736 c++ Programmer's Guide

Automation controller
An application that invokes commands to control automated objects or applications. A
controller is sometimes called an automation client.

Automation server
An application that exposes some of its own internal function calls as a set of commands
that other programs can invoke. An automation object is what the server creates for other
programs to control.

BoeOlE support library
A DLL of OLE implementation utility interfaces that ObjectComponents calls internally.
The support library implements a number of custom OLE interfaces designed by
Borland. The BOCOLE.DLL file should be distributed with any ObjectComponents
program. Its custom interfaces are considered internal and so are not documented. The
source code for the BOCOLE support library, however, is included with Borland C++.

COM object
An object whose architecture conforms to the Component Object Model, a Microsoft
specification that forms the basis of the OLE system. Briefly stated, the characteristics of
COM objects are

• They communicate through predefined interfaces.

• They all support the IUnknown interface, and IUnknown includes the Querylnterface
method for getting other optional interfaces.

• They keep a reference count of their clients and delete themselves if the count reaches
zero.

Only COM objects can communicate with OLE. Some of the classes in
ObjectComponents are COM objects (see Connector object). ObjectComponents shields
you from the details of interface methods, interface pointers, and reference counters. It
connects you to OLE using familiar C++ and Windows programming models such as
inheritance and messages.

Compound document
A document that contains OLE objects brought in from other applications. A compound
document might contain pieces of information from a spreadsheet, a database, and a
word processor, all in one document that the user loads or saves with a single
command. The objects from other applications are either linked or embedded in the
container's document.

Compound file
A single disk file that the operating system divides into independent compartments
called storages. In effect, each storage has its own file I/O pointer so you can read, write,
rewrite, and erase data in anyone storage without needing to maintain offsets to other
storages in the same file. Compound files are useful for storing compound documents
because you can create a new storage for each linked or embedded object. OLE extends
the file system by implementing interfaces to support compound files.

A P pen d i x A, W hat i sOL E ? 737

Connector object
An ObjectComponents class that communicates with OLE for you. Connector objects
connect parts of your application to OLE. TOcApp, for example, performs OLE functions
for the application. TOcView performs OLE functions for one view of a document.
TOcPart performs OLE functions for a linked or embedded object. The connector objects
are partners that work together with corresponding parts of your application. You call
their methods and they send you messages. Connectors are Component Object Model
objects and implement COM interfaces. (Not all ObjectComponents classes are
connectors.)

Container
An application that permits OLE to embed or link objects from other applications into
its own documents. Containers are also called clients of the servers that give them
objects.

DLL server
A server whose code is in a dynamic-link library rather than an executable file. The
advantage of a DLL server is speed. When OLE invokes an .EXE server to support an
embedded object, it has to create a a separate process and marshall data to pass it
between the two applications. A DLL, on the other hand, is part of the same system task
as its client, so OLE calls from a container to a DLL server run much more quickly.

Document
This word has two different meanings for programmers. First, a document is a set of
data that an application loads in response to File I Open. A document can be a
spreadsheet, or a bitmap, or a letter, or any other set of data that an application treats as
a whole.

'Sometimes it is useful to distinguish between the data in a document and the
appearance of the data onscreen. A spreadsheet, for example, might be able to display a
single set of data as either a table of numbers or a chart. One document can be displayed
different ways. In such cases, document refers only to the data, and each possible
representation of the document is called a view.

ObjectWindows programmers are familiar with an application architecture called the
Doc/View model that separates the code for managing document data from the code for
displaying the data. ObjectComponents also has a document class and view classes, but
they are not part of the ObjectWindows Doc/View model. The document class keeps
track of the objects embedded in a document and the view classes draw the objects
onscreen.

Embedded object
Data from a server application deposited by OLE in a container's document. OLE lets
the user paste, drag, or insert objects into a container. If during these actions the user
chooses to create an embedded object, then all the data in the object is copied to the
container's document. When the user loads or saves the document, the data for the
embedded object is written to the file along with the container's own native data.

738 c++ Programmer's Guide

Contrast embedded objects with linked objects, where the the data for the OLE object is
stored in another application and the container receives only a reference to the object's
file.

EXE serVer
A server application compiled and linked into an executable file. A server can also be
built as a library; see DLL server.

GUID
Globally unique identifier, a 16-byte value. OLE uses GUIDs to identify applications, the
objects they produce, and the interfaces that objects implement. For linking and
embedding, OLE needs GUIDs to match embedded objects to their servers even after
the user transfers a compound document from system to system. If two servers had the
same ID, OLE might accidentally invoke the wrong one. Each server and object type
must have an absolutely unique ID. Tools such as GUIDGEN create the ID for you. For
more information, see the clsid entry in the Object Windows Reference.

IDispatch interface
The OLE interface that all automated objects implement. With the four methods of the
IDispatch interface, you can ask any automated object for information about its
automated commands, look up the identifiers for particular commands, or invoke any
command. For more information, see the OLEAUTO.HLP Help file.

In-place editing
Editing an OLE object in the container's window. During in-place editing, the container
lets the server display its own menus and tool bars in the container's window. The
purpose of in-place editing is to let the user edit any object in a document without
leaving the document's window. Contrast Open editing.

In-process server
A server whose code is in a dynamic-link library rather than an executable file. The
advantage of a DLL server is speed. When OLE invokes an .EXE server to support an
embedded object, it has to create a a separate process and marshall data to pass it
between the two applications. A DLL, on the other hand, is part of the same system task
as its client, so OLE calls from a container to a DLL server run much more quickly.

Interface
A set of function prototypes, usually declared as an abstract base class. OLE objects are
able to communicate with each other because they implement standard interfaces, sets
of functions that the system defines. The system defines only what functions art interface
contains; it does not implement the functions. Each object implements the functions for
itself. The interfaces are defined in the OLE system headers such as compobj.h and
0Ie2.h. The OLE system communicates with applications and objects by calling the
functions it assumes each one has implemented. For more about the OLE interface
model, see the online help entry for Component Object Model (COM). For examples of
standard OLE interfaces, see IDispatch and IUnknown.

A P pen d i x A, W hat i sOL E ? 739

Besides the standard interfaces, an object can define and implement its own custom
interfaces. Of course the system can't call functions from custom interfaces because it
doesn't know they exist, but other applications that know about the custom interface can
use it. Internally, ObjectComponents works through a set of Borland custom interfaces.
See the online Help entry for BOCOLE support library.

ObjectComponents shields you from having to understand or implement particular
interfaces. Advanced users who want to manipulate interfaces directly or mix in their
own custom interfaces are free to do so.

IUnknown interface
Tho rv"f -info f"''"'£> f"h"'f ,,11 fiT P ","h;", ___ ... " ":! ; "': ... ___ "''' ~ .. " ... ~~~1,.,.~,.,.~.I- lAT~.l-1- .1-1-,.,. L1- __ _
..a. L'"-" ..1..,-,,-,,," u.'-".L.L&..u ... "-" lL..J..uu.. '-".LJ.l....I vLlJ\...\... .. a (,UL\.A. llLl •. C.L.LU.\...C'=' J..LLU.::>lll.lLt'.LC.1..lLC.lLL. Y v .ll.lL ULt::' uuet:

methods of the IUnknown interface, you can ask any object for a pointer to another
interface it might also support, and you can adjust the object's reference count. For more
information, see the Help file, OLE.HLP.

Linked object
An object that appears in a container document but whose data really resides in another
file. When dragging or pasting an object into a container, the user can choose to create a
link to the object instead of embedding it. The container does not receive or store the
linked object's data in its own document. Instead, it receives only a string identifying the
location of the actual data, which can be in a file.

Several containers can link to the same object. In that case, all the containers receive the
same string pointing to the same object. If the data in the original object changes, then
the changes are reflected automatically in all the documents that link to it. If the user
embeds one object in several containers, then each container has its own copy of the
object's data and changes in one copy do not affect the other copies.

Link source
The document that a link refers to, the source for the data in a linked object. Usually the
link source is a server document, but it is not uncommon for containers to export link
source data so that other applications can link to objects embedded or linked in the
container's document. For information on becoming a link source.

Localization
Adapting an application to display strings in the user's language, whatever that might
be. OLE servers need to speak the language of their client programs. If an automation
server is marketed in several countries, it needs to recognize commands sent in each
different language. A linkirlg and embedding server registers strings that describe its
objects to the user, and those too should be available in multiple languages in order to
accommodate whatever language the user might request. Obje,ctComponents lets you
place translations for all your strings in your resource file as XLAT resources.
ObjectComponents chooses the right string at the right time.

ObjectComponents framework
A set of c++ classes from Borland International that encapsulate linking and embedding
functions as well as automation functions. Internally the ObjectComponents classes
implement standard and custom OLE interfaces. With ObjectComponents you write for

740 e+t Programmer's Guide

OLE using familiar programming models such as inheritance and window messages
instead of implementing COM interfaces.

ObjectWindows library
A set of C++ classes from Borland International that encapsulate standard Windows
programming functions such as managing windows and dialog boxes. The current
version of ObjectWindows introduces some new classes, such as TOle Window and
TOleView, that use ObjectComponents classes to acquire OLE capabilities. The new
classes make it very easy to add OLE support to existing ObjectWindows applications.

OLE
Object linking and embedding, an extension to the Windows system. (In newer versions
of Windows, OLE is an integral part of the system, not an extension.) the new
commands that OLE implements and the interfaces it defines add many new features to
the system, including linking and embedding, automation, and compound file I/O.

OLE interface
A set of function prototypes, usually declared as an abstract base class. OLE objects are
·able to communicate with each other because they implement standard interfaces, sets
of functionS that the system defines. The system defines only what functions an interface
contains; it does not implement the functions. Each object implements the functions for'
itself. The interfaces are defined in the OLE system headers such as compobj.h and
0Ie2.h. The OLE system communicates with applications and objects by calling the
functions it assumes each one has implemented. For more about the OLE interface
model, see the entry for Component Object Model (COM). For examples of standard OLE
interfaces, see IDispatch and IUnknown.

Besides the standard interfaces, an object can define and implement its own custom
interfaces. Of course the system can't call functions from custom interfaces because it
doesn't know they exist, but other applications that know about the custom interface can
use it. Internally, ObjectComponents works through a set of Borland custom interfaces.
See the online help entry for BOCOLE support library.

ObjectComponents shields you from having to understand or implement particular
interfaces. Advanced users who want to manipulate interfaces directly or mix in their
own custom interfaces are free to do so.

Open editing
Editing an OLE object in the server's own window. Open editing happens when the user
executes the Open verb. During open editing, the server's window opens up in front of
the container's window. When the user finishes editing the object, the server window
disappears and the modifications become visible back in the container window.
Contrast In-place editing.

Part
An object linked or embedded in a compound document. An ObjectComponents
container creates an object of classTOcPart to represent each object linked or embedded
in its document.

A P pen d i x A, W hat is 0 L E ? 741

Part is the container's word for an object created by a server. In the server's code, the
same object is created as a normal server document. ObjectComponents presents the
document to OLE as an OLE object. The container, when it receives the OLE object,
creates a TOcPart. When the part needs to be painted, the part object communicates
through OLE with the server's view object.

Reference counting
Away of remembering how many clients an object has. Every section of code that
requires the object to exist calls the object's AddRef method to increment the reference
count. When the client code is done, it calls the object's Release method to decrement the
reference count. If a Release call causes the count to reach O. then the obiect is allowed to
destroy itself. ' J

Every OLE object has AddRef and Release methods because they are part of the IUnknown
interface. Knowing who is a client and when to call AddRef or Release is sometimes
complicated. ObjectComponents manages reference counting for you. Only advanced
users will find any need to call AddRef or Release directly.

Registrar object
An object of type TRegistrar orTOcRegistrar. Every ObjectComponents application needs
a registrar object. The registrar processes the application's command line, sets running
mode flags, verifies the application's entries in the system registration database, and
calls the application's factory function to launch the application.

Registration: giving information about the application to the system. OLE programs
perform two different kinds of registration. When an application is first installed,
ObjectComponents writes information from the application's registration tables into the
system registration database. This information is static and needs to be recorded only
once. The registrar object performs t1;lis task.

Subsequently whenever the user launches the application, ObjectComponents tells OLE
that the application is running and it registers a factory for each type of document the
application can produce. When the application ends, ObjectComponents unregisters the
factories. The TOcApp or TRegistrar object performs this task.

Registration database
A structured repository of information about applications installed on a particular
computer. In 16-bit Windows, the database is kept in the REG.DAT file. In 32-bit
Windows, the database is called the system registry and resides in private system files.
Applications record their information during installation. The information includes
identifiers for the application and its documents, descriptions of the application and its
documents, the, path to the application file, the default extension of the application's
document files, and other details that help the OLE system associate servers with their
objects.

Registration table
A table built with registration macros and containing information about an application
or about the types of documents an application creates. The macros create a structure of
type TRegList. The registrar object reads the registration structure and copies any
necessary information to the system registration database.

742 c++ Programmer's Guide

Remote view
The view of its own object a server draws in a container's window. When an
ObjectComponents server is launched to manage an object linked or embedded in a
container's document, the server creates a TOcRem View object and a TOcDocument
object. The view object draws in the container's window. The document object loads and
saves the object's data.

Select
The user selects an object by clicking it once. The selected object does not become active
and cannot be edited. Conventionally a container indicates that an object is selected by
drawing a rectangle with grapples around the object. (Grapples are small handles for
moving the rectangle.) the container might permit the user to select several objects at
once to move or delete as a group, but usually only one object per child window can be
active at a time.

Server
An application that creates objects for other applications to use. In this documentation,
server usually refers to either a linking and embedding server or an automation server. A
linking and embedding server creates data objects that containers can paste, drop, or
insert into their own compound documents. An automation server creates objects that
other applications can manipulate by sending commands for the object to execute. (A
single application can choose to create both kinds of objects. It is even possible to link
and embed automated objects.)

System registration database
A structured repository of information about applications installed on a particular
computer. In 16-bit Windows, the database is kept in the REG.DAT file. In 32-bit
Windows, the database is called the system registry and resides in private system files.
Applications record their information during installation. The information includes
identifiers for the application and its documents, descriptions of the application and its
documents, the path to the application file, the default extension of the application's
document files, and other details that help the OLE system associate servers with their
objects.

Type library
A file describing the commands an automation controller supports. Creating a type
library is the standard way for an automation server to publish the programming
interface it implements. The type library tells what objects the server creates and
describes the objects' properties and methods. Type information is read by compilers
and interpreters that process automation commands. Some applications also allow the
user to browse the type information.

Any ObjectComponents automation server generates a type library if you invoke it with
the -TypeLib command line switch. Type libraries conventionally use the .TLB or.OLB
extension. An automation server registers the location of its type library during
installation.

Appendix A, What is OLE? 743

Verb
A command that a linking and embedding server can execute with its objects. The
server tells the container what verbs it supports and the container displays the verb
strings on its own Edit menu. To execute a verb, the user selects an object and then
chooses ~ verb from the menu. The container updates the verb menu each time the user
selects a new object.

The server can support any verbs it chooses. Most servers support the Edit and Open
verbs for in-place or open editing. Depending on the kind of data it owns, a server might
choose to offer other verbs such as Play and Rewind.

, .~----view
The graphical representation of data. The term is used to distinguish between the way
the data is painted and the data itself, usually called the document. A single word
processor document, for example, might have three different views: a page layout view,
a draft view without fancy fonts, and a print preview view.

In ObjectComponents, containers create views to draw their compound documents.
Servers also create views to draw the objects they create. Both create a TOcDocument
object to manage the data and a view object, either TOcView or TOcRemView, to draw
the document.

In ObjectWindows, Doc/View refers to a particular application architecture supported by
the framework that also treats data and its representation in separate classes.

744 C++ Programmer's Guide

Symbols
!= operator (huge pointer

comparison) 269
" (quotation mark; naming

conventions) 709-710
#pragma exit functions

(destructors) 148
* (asterisks; operator) 711
+ (plus sign; operator) 711
/ (slash; operator) 711
: (colon; SQL statements) 679,710
; (semi-colon) 210
< (less than sign; operator) 711
«operator 337

complex numbers 259, 359
<> (not equal to sign;

operator) 711
= (equal to sign; operator) 711
== operator (huge pointer

comparison) 269
> (greater than sign;

operator) 711
»operator 340

complex numbers 259,359
? (question mark; SQL

statements) 710
__ rtti declaration 118
_export keyword

(compilers) 189
_defs.h247
_nfile.h 247
_null.h248
I I (vertical lines; operator) 711

- (minus sign; operator) 711
, (apostrophe; naming

conventions) 709-710

Numerics
-1 compiler option 215
16-bit memory models

(DLLs) 204
32-bit Windows programming

191,200
3-State Checkbox custom

control 720

Index
80x86 processors

address segment
(offset notation) 267

instruction opcodes 2~4-215
registers 211, 264-266

80x87 coprocessors 256-257
87 environment variable 257

A
abandoning changes 631, 665,

669
AbortOnKeyViol property 660
AbortOnProblem property 660
abstract classes 157
access

streams 335
persistent 351

specifiers (classes) 128
accessing

complex numbers 514
data 647, 657, 665, 677-678

optimizing access 681
remote servers 687, 699
run time 656

lists 1:14
maps 438
property values 656

accounting applications 259, 360
Action panels (dialog ,

boxes) 723-724
push buttons 726

activating (OLE objects) 731, 736
active page

defined 307
setting 306

Active property
datasets 626,665
queries 680

adaptors 447
Add Fields window 648
Add method 680
ADD operations 715
addition operators,

overloading 88, 151
addresses (pointers to

iostreams) 338
ADT classes 318

deleting objects 328
narrring conventions 319
object ownership 328

AfterCancel event 635
AfterClose event 635
AfterDelete event 635
AfterEdit event 635
AfterInsert event 635
AfterOpen event 635
AfterPost event 635
aggregate functions 700,

710-711,713
aggregation 533

OLE objects 736
algorithms 474,482,485,488,

490,493
binary searches 499
consecutive duplicate

elements 472
elements

removing 484
rotating around midpoint 478

generic 463-464
heap operations 503
include files 496
initialization algorithms

465-466, 468
in-place transforma-

tions 476, 477
merge ordered sequences 501
merging adjacent sequences 481
mismatched elements 475
nth_element() function 498
partitions 479
permutations, generating 480
removal algorithms 483
reverse elements 476
scalar results 486
searching operators 470
sequence generating

algorithms 490
set data type 431
set operations 502
sieve of Eratosthenes

algorithm 405
sorting 497

partial sorting 498
subsequences, finding 473
vectors 404

Index 745

aliases 606
heterogenous queries 685
local SQL 709
namespaces 107
retrieving

defaults 693
information 661

specifying 692
AliasName property 693
alignment

iostrearns 340
text 670

Alignment property 67U
alloc.h223
ALTER TABLE keyword 715
AND operator 711
angle brackets (templates) 165
anonymous namespaces 108
anonymous unions 68
ANSI (American National

Standards Institute) 364
ANSIC

conforming extensions 4
keywords as identifiers 4
SQL naming conventions

709-710
standards 4,279-289
studio library 335

ANSI/OEM conversion 662
apostrophe ('; naming

conventions) 709-710
Append method 631
appending strings 519
AppendRecord method 632
AppExpert 537
applications 655

client/server 611-612
customizing existing Resource

Workshop 720
deploying 613-615

remote servers 700
developing 609-613

client/servers 687-689
fundamentals 611

multiuser 693
updating data 633

OLE automation servers (Object
Components) 563

optimizing 688
sample (LINKQRY) 684
up sizing 698-700
Visual Database Tools 609

ApplyRange method 640
arguments

main() function 100
references 119
specifying proxy methods 589
template arguments 165

arithmetic
operators 514, 711
pointers 55

arrays 56, 632, 640
indexes 642
memory allocation 123
operator delete 126
operator new 125
queries 683

arrays.h 318
ASCII files 606, 637
asm keyword 209-210

nesting 210
aspect ratio

determining current 313
setting 306

assembly language
calling conventions 211
comments 210
compiling 214

options 213, 215
directives 216
floating-point emulation

and 214
inline (floating point) 257
instructions 209, 213

jump 212
table of 215

mnemonics 215
opcodes 214-215

defined 209
repeat prefixes 215

size overrides 211
strings 215

loops and 212
new lines 210
operands 210,214

parsing 211
references 211
registers 211

loading 212
routines (overlays) 298
statements 210

C symbols and 211-212
nesting 210

structures 211
restrictions 212

746 Borland C++ Programmers Guide

syntax 209
variable offsets 211

assert.h 224
assigning

strings 519
values

buttons 676
calculated fields 635-636
combo boxes 672
default 671
names as 684
run time 656-657

d~~i~IUIleIlt uperdtur~, 94
overloading 151, 154
statements 655

assoc.h318
asterisks 23
asynchronous communication

module 702
atexit() functions

(destructors) 148
attaching to servers 607, 660

remote databases 689-691
Connected property 691
connection parameters

689-690
login parameters 691

attributes
screen cells 301
screen, setting 344

Auto 3-State Checkbox custom
control 720

Auto Checkboxes 720
AUTO ODBC setting 690
Auto Radiobuttons 720
auto_ptr 509

creating 509
example program 510

AutoCalc example program 536
AutoCalcFields property

(OnCalcFields event) 635
AutoDisplay property 670-671
AutoGen utility 537
AUTOINVOKE macro 567
automated applications 736
automated objects

enumerating 591
OLE 736

automatically translating
data 609

automations
command objects 535

controllers baU\ppendconstll1t657 bitwise logical operators 89
compiling 590 batAppendUpdate constant 658 . BIVBX library functions 707
linking 590 batch move operations 607, 643, BLOB data 670
OLE 737 657-660 type compatibility 715

ObjectComponents error handling 660 BLOBs 670
connections 534 BatchMove method 643 block scope 27

OLE 728,736
batCopy constant 658 blocks 98 servers
batDelete constant 658 BLROM800.LD 700 compiling 570

declaration macros, batUpdate constant 657 BOCOLE support library 529,

writing 565 BBN_GOTABTAB 721 532,737
enumeration, exposing BBN_GOTATAB 721 custom interfaces 532

data 583 BBN_SETFOCUS 721 source code for 532
linking 570 BBN_SETFOCUSMOUSE 721 BOCOLE.DLL 529
methods, declaring bcd class 259, 360 body parsing (templates) 161

automatable 565 converting 260,361 BOF property 628
OLE 737 number of decimal bookmarks 634
properties, declaring digits 260, 361 Boolean types 655

automatable 565 output 260, 361 boolean vectors 405 registrar objects, creating 572 range 260, 361 BORDLG719 registration tables, rounding errors and 260, 361 Borland Resource Compiler creating 564
type libraries, creating 583 BDE (Borland Database (BRC32) 184
see also OLE automation En~e)604,615,661 Borland SQL Links 700

servers retrieving information 661 BP register 265
automation proxy classes See BDE Configuration Utility 606 overlays 298

proxy classes BeforeCancel event 635 braces 22
automation tables 543 BeforeClose event 635 braces ({ }) 210
AUTONOHOOK macro 567 BeforeDelete event 635 brackets as punctuators 21
AUTORECORD macros 567 BeforeEdit event 635 Browse mode (datasets) 625
AUTOREPORT macro 567 Beforelnsert event 635 Btrieve databases 690
AutoSize property 666 BeforeOpen event 635 buffered streams 336
AUTOUNDO macro 567 BeforePost event 635 buffers 627
AUTOVALIDATE macro 567 BGIOBJ (graphics converter; clearing 669
averages 710 initgraph function) 305 flushing 635
A VG function 710 bidirectional iterators 378 memory 335
AX register 264 binary overlays, default size 297

collation sequence 700 building databases 609-613

B data 335 buttons
operators 87-96 assigning values to 676

-B compiler option 213 overloading 154 associating strings with 676
bags.h319 searches (algorithms) 499 navigator 668
bank teller example program 453 binders 389 enabling/ disabling 669
bank teller simulation example functions 389 BWCC (Borland Windows

program 451 bios.h224 Custom Control)
banker's rounding 261, 362 bit fields (structures) 66 dialog boxes 723
base address register 265 bit images (functions) 306 library, loading enabled
base classes 128 bit_set class 432 custom controls 720

declaring 336 conversion 434 bwcc.h247
inheritance 336, 350 elements BX register 264
virtual classes 138 accessing 433

base-list (classes) 128 testing 433

BASM (inline assembler) 213-214 initializing 432

restrictions 213 bitmaps 670, 672
custom controls 720

I nd ex 747

c
C comments 6
C language 210-211
C++

comments 7
defined 105
scope 158

CalcFields mode (datasets)
625,636

calculated fields 625
assigning values 635-636
defining 653
ordering 713

Calculated property 653
CALLBACK 196
callback functions 326-327
calling

constructors 144
destructors 148
methods (Visual Database

Tools) 611
Cancel method 631
canceling current operation 631,

665,669
CancelRange method 640
CanModify property 630,

643,681
Caption property (check

boxes) 675
carriage returns, opening

files 342
case

conversions 711
sensitivity 642

C -based structured excep­
tions 180

ChangedTableName
property 660

changing
data 630-634, 665

abandoning changes 631,
665,669

committing changes 693-695
rolling back changes 694

datasets 646
events 653-654
property values 653-654
tables 715

char (constant type) 15
character acccess strings 520
character constants 14

character sets 658
characters

fills, setting 339-340
null, inserting in strings 339
padding 340
screen cells 301

check boxes 675, 720
enhancements 721

checking for ,null values 641
circles 306
Class (C++) scope 27
classes 128

abstract classes 157
access specifiers 128
base classes 128

virtual classes 138
base-lists 128
complex 513
container classes 391
DLLs

importing and exporting 205
friends 139
hiding 159
inheritance hierarchy 505
initializing

constructors 145
member access operators,

overloading 155
member lists 130
member-lists 128
nested classes 135
objects 129-130
polymorphic classes 155
proxy collection classes,

declaring 591
simulations 458
templates 164

_clear87 function, floating point
exceptions 258

Clear method 680
clearing

data buffers 669
screens 306

client platforms 615
client/ server applications

611-612
deploying 700
developing 687-{)89
handling security 690-691
transaction controls 693-696

. client-based SQL 709
Clipboard 670-671

EasyWin support 253

748 Borland C++ Programmers Guide

clipping 308
Close method

datasets 627
queries 680, 683

clreol manipulator 344
code 656

hooks 567
optimizing 628
segment 266

collation sequence 700
collection class

adding members 575
iterato~s, implementing 573

collection property,
declaring 593

Object Components,
exposing 571

colon (:; SQL statements) 22,
679,710

Color/Graphics Adapter (CGA)
color palettes 310-311
resolution 310

high 311
columns

combo boxes and multiple 673
outlining 668

COM (Component Object
Model) 727 classes (Visual
Database Tools) 617

.COM files (memory models) 269
combo boxes 672-674

assigning values 672
multiple columns 673
sorting items 673

comma operators (,) 22, 95
command-line compiler options

code segment 275
data segment 275
far objects 275
floating point

code generation 256
fast 256

overlays 297
commands

Options menu (Environ-
ment) 705

Run menu (Run) 560
sending collection class 593
View menu (Module) 561

comments 6
nested comments 7

Commit method 702
COMMIT statements 693

commiting changes 693-695
communication protocols

688-689
comparison operators 711
compilers

_export keyword 189
errors (common) 198
options 189
template switches 167

compiling
automation controller 590
automation servers 570
epilogs 186
prologs 186
Windows programs 183

complex 513
complex header files 513
complex numbers 258, 359,513

accessing 514
comparing 515
declaring 513
header file 258, 359
norm function 515
overloading operators and

258,359
sample program 516
stream input 515
stream output 515
trigonometric functions 515

complex.h 258, 359
Component Object Model

(COM) 745
OLE interfaces 532

components
data-aware 656, 664

disabling/ enabling 635
database 607-608, 623-624,

663,691
events 610
methods 610
programming 609
properties 609

compound documents 737
compound files 737
concatenation operator 711
concordance example

program444
CondFunc typedef 327
Condition (C++) scope 27
configuring drivers 689
conforming extensions 4
conio.h224
CONNECT.EXE 702
CONNECT. HLP 702

Connected property 691-692
connections (servers) 660

automations
(ObjectComponents) 534

inactive 661
linking and embedding

ObjectComponents533
remote databases 607, 689-691

Connected property 691
connection parameters

689-690
login parameters 691

connector objects 533
automations 535
communication 533
interaction with user classes 534
OLE 738

console stream manipulators 344
consCcast operator (type-

casts) 112
constants 11

character constants 14
character types 15
decimal constants 12
enumeration constants 18
escape sequences 16
expressions 20
floating-point constants 13
hexidecimal constants 12
integer constants 12
internal representation 19
multi-character constants 17
octal constants 12
pointer constants 54
string constants 17
suffixes 12
wide-character constants 17

constrea.h 335
constructors 140-150

calling 144
classes, initializing 145
copy constructors 143
defaults 142
exception handling 179
overloading 143
streams 351

ifstream 342
of stream 342

vectors 399
virtual base classes 139

consumer (streams) 335
. container classes 391

changing 331
defining 331
iterating 325-327

library 317
implementing 318

namingconventions319,321
object ownership 328
programming interface 329-330
user-defined 331
virtual functions 318

containers 322-328
adding objects 329
allocating memory 324
creating 329
data structures 317

accessing data 326
displaying data items 330
printing data items 330

defined 317
deleting objects 327, 329
direct vs. indirect 323-324
displaying data 330
implementing 330-334
instantiating 318, 323, 329
iterators, 376
memory management 393
ObjectComponents libraries,

linking 548
OCX containers, creating 539
OLE 738

containers, creating 539
linking 548

parts 741
queues, initializing 456
ranges 373
retrieving stored values 330
searching for values 329
selecting 391-393
sorting objects 324
specialized 318
standard library

(non-existant) 394
templates, 318, 321-322
vector data structure 407

_control87 function, floating­
point exceptions 258

controls (read-only) 666, 670
graphics 671

conversions
batch move operations 659
bcd260,361
case 711
data types

iostreams 335, 339
setting base for 339

pointers 55
converting DOS applications to

Windows 249

In d ex 749

coordinates (origin) 302
copy constructor 151
copy constructors 143

lists, initializing 410
copying

data 643
strings 521
table structures 607, 643
text 670

CopyToClipboard
method 670-671

COREWIN.DLL 700
COUNT function 711
counts (set data types) 429
CREATE INDEX keyword 716
CREATE TABLE keyword 714
_cs keyword 273
CS register 266-267
tsDropDown constant 672
csDropDownList constant 672
csOwnerDrawFixed

constant 672
csOwnerDrawVariable

constant 672
csSimple constant 672
ctype.h225
Currency property 653
current operation, canceling

665,669
current record 627

setting 669
current values 666
cursors 627

moving 627-629, 639, 645
flickering screens 635

custom controls 720
BWCC library, enabling 720

custom dialog class 719
cutting text 670
CutToClipboard method 670-671
CX register 264

D
data

abstractions
deques397
queues 450
stacks 448
vectors 397

accessing 647, 657, 665, 677-678

optiinizing access 681
remote servers 687, 699
run time 656

adding 664-665
grids 671
predefined values 671

automatically translating 609
buffers 627

clearing 669
flushing 635

changing 630-634, 665
abandoning changes 631,

665,669
committing changes 693-695
rolling back changes 694

collections 317, 326
controls

inactive 645
linking to datasets 635, 665

copying 643
displaying

grids 667
current values 666
run time 656

display-only 654, 666
truncated 666

editing 631, 653, 666
canceling current operation

631,665,669
grids 668

formatting 653-654
grids 667

adding 667
editing data 668
inserting records 668
linking to datasets 667
options 667-668

porting 687-689
printing 330
retrieving 607, 641-642

multiple tables 712-713
specific values 713
specifying conditions 712

searching for 637-640
nearest match 638-639

segments 266
naming and renaming 275

sorting 642
sources 604, 645

adding 664
changing datasets 646
handling events 645
lists 673

structures 317

750 B 0 r I and C++ Pro 9 ram mer s G u ide

accessing data 326
displaying data items 330
printing data items 330

templates 654
types

containers 322
iostreams337, 340-341
numeric limits 523

set 425
streamable classes 349
user-defined 341
updating 630, 633-634, 673, 677

batch llLVVTe operatiorls 657
handing events 646
multiuser applications 633
read-only results 681
Refresh method 635

Data Access page (Component
palette) 607

Data Definition Language
714-716

Data Manipulation Language
(DML) 710-713

data-aware
components 656, 664

disabling/ enabling 635
controls 671

database text controls 666
design time 664
fields, updating 665
forms 665
properties 664

Database Desktop 609
Database Management System

(DBMS) 603
database navigator 668-669

buttons 669.:...669
enabling/ disabling 669

Database Properties Editor 792
DatabaseLogin event 691
DatabaseName property 644,

678,792
heterogenous queries 685
stored procedures 696

databases 605-606, 665
accessing data 665
architecture 608-609
building 609-613
components 607-608, 623-624,

663,691
engines 604,615, 677
forms (Visual Database

Tools) 638

overview 604
retrieving information 661
servers 606, 687

connecting to 607, 660
developing applications

609,612
text controls (data-aware

controls) 666
Databases property 660
DataField property 665

combo boxes 672
DataSet property 645
datasets 624-636, 683

changing 646
closing 626
current state 625
data sources 645
handling events 635-636
linking to data controls 635,665
linking to data grids 667
modes 625
moving 627-629
opening 626

DataSource property 664, 684
date functions 711
dates

conversion functions 655
returning 711

DAY constant 711
.DB files 606, 637
DB2 databases 690
dBASE tables 606, 637, 709

batch move operations 659
deleting 716
indexes 642, 716
memo fields 670
naming 709
searching for data 637
specifying directories 636
type compatibility 714-715

.DBF files 606, 637
DBHandie function 662
DBLocale function 662
DBMS 603
DBNMP3.DLL 701
deactivating OLE objects 731
debugging

DLL servers 560
overlays 298

dec manipulator 339
decimal

constants 12
conversions 339

declarations

external 34
functions 58
iostreams 339

maniptliators338
lists 409
mtlitiple, avoiding 336
namespace access 110
objects 25
pointer declarations 53
storage classes and types 26
streamable classes 352-353, 355
structure member declara-

tions 63
syntax 30, 31
unions 68

DECLARE_STREAMABLE
macro 351, 354

declaring
collection properties 593
complex numbers 513
namespaces 107
proxy classes 586
proxy collection class 591
string variables 518
vectors 399

deconstructors 149-150
virtual deconstructors 149

default constructor 151
Default Pushbuttons 721
defaults

constructors 142
settings 654
values 671

defining namespaces 106
definition (.DEF) files 183
definition macros 569
DELETE keyword 713
Delete method 631
delete operator 121, 123, 324
DeleteTable method 643
DeleteType enum 328
deleting

characters from strings 711
fields 648-649,715
indexes 716 .
objects in containers 327, 329
records 631, 643

batch move operations 658
tables 651, 716
text 670

delimiters (whitespaces) 7
delline manipulator 344
deploying applications 613-615

remote servers 700

deque420
radix sort algorithm 421

deque (double-ended queue) 419
data abstraction 397

deques.h 319
derived classes

streamable 336
1/0342
libraries 335

virtual bases 350
design time

data-aware controls 664
properties (Visual Database

Tools) 610
designing forms 665
desktop databases 610

up sizing 698-700
destination tables 657-660
destroying

objects 327
pointers 327

destructors 140
atexit() functions 148
calling 148
exception handling 179

detail tables 620-621, 644-645
developing applications 609-613

client/servers 687-689
fundamentals 611

devices 336
DI register 265
dialog boxes

BWCC (Borland Windows
Custom Control) 723

examining 726
fonts 724
group boxes 724
panels 723
push buttons 725

.DIB files 670
dict.h319
dir.h226
direct containers 323-324

deleting objects 327
direct.h 227
directives

assembly language 216
namespace access 110

directories, specifying
paths 636, 661

DisableControls method 628, 635
disabling

data-aware components 635
navigator buttons 669

Index 751

discrete event-driven simu-
lation457

dispatch IDs 537
display attributes 65~54
DisplayFormat property 653
displaying data

current values 666
grids 667
run time 656

displaying large images 679
display-only data 654, 666

truncated 666
distributing applications 61~15
distribution rights 613
dlistimp.h 319
DllEntryPoint function

(DLLs) 202
DllRun utility 537
DLLRVN.EXE utility (DLL

servers) 561
DLL (Dynamic Link Libraries)

185,201-202,206
16-bit memory models 204
classes, importing and

exporting 205"
creating 201
DllEntryPoint function 202
dynamic linking 202
functions

exporting 204
importing 204

LibMain function 202
servers 738

advantages 559
creating 558
debugging 560
disadvantages 559
DLLRVN.EXE utility 561
REGISTER.EXE utility 561
registering 537
tools 561

static data (16 bit) 206
static-li.itk libraries 201
WEP (Windows Exit

Procedure) 203
DocString macros 569
document lists, creating 550
documents 738

painting 555
domains 696
DOS environment (87

variable) 257
dos.h227

double quote ("; naming
conventions) 709-710

drawing functions 305
DriverName property 693
drivers

configuring 689
language 700-701
ODBC 690, 696
retrieving information 661

DROP INDEX keyword 716
DROP operations 715
DROP TABLE keyword 716
DropConnectionS method 661
DropDownCount constant 673
_ds keyword 273
DS register 266-267

. dsBrowse constant 625
dsCa1cFields constant 625
dsEdit constant 625
dsLnactiveconstant625
dsLnsert constant 625
dsSetKey constant 625
duration 28
DX register 264
dynamic

duration objects 29
memory allocations (heaps) 190
SQL statements 682, 690

dynamic_cast operator
(typecasts) 112

E
EasyWin249

Clipboard support 253
DOS applications, converting to

Windows 249
features 251
Print command 251
scrolling buffers 252
text, saving in output files 252
Windows program 250

edit boxes 666
Edit method 631
Edit mode 669

datasets 625, 631
CanModify property 630

editing
data 631, 653, 666

canceling current opera­
tions 631,665,669

grids 668

752 B 0 r I and C++ Pro 9 ram mer s G u ide

objects
OLE 730
opening 734

text 670
editors

Database Properties 692
Parameters 682-683, 697
String List 672, 679

ellipsis (...) 23
embedding 727

ObjectComponents 533
objects 738

Emptyl'able method 643
emulation (floating-point) 214
EnableControls method 628, 635
Enabled property 645, 665
endl manipulator 339
ends manipulator 339
Enhanced Graphics Adapter

(EGA) 311
entering SQL statements 679-680

run time 680, 683
enumerating 69

automated objects 591
automation servers, exposing

data 575
constants 18
operators, overloading 70

environment (DOS; 87
variable) 257

Environmentcorrunand
(Options menu) 705

EOF property 628
epilogs

compiling 186
exporting functions 189

equal sign (=) 23
equality operators 92
ermo.h230
errors 660

compilers 198
floating point, disabling 258
graphics, functions for

handling 312
logic errors 505
math, masking 258
out of memory 263
runtime errors 505

_es keyword 273
ES register 266
Esc key 665
escape sequences (constants) 16

event sink objects (Visual
Database Tools)

connecting to handler
method 613

defining 613
events 610, 653, 665

changing 653-654
classes (ObjectComponents) 555
data sources 645
datasets 635-636
handling 554
simulations 457
Visual Database Tools

defining sources 612
handling 613
responding 612

Events tab (Object Inspector
window) 654

exceptions 506, 665
C -based structured excep-

tions 180
constructors 179
declarations 174
destructors 179
example program 507
exception declarations 174
handling 173, 175, 182, 296
throwing exceptions 174
unhandled exceptions 180

exclusive locks 643
Exclusive property 643
excpt.h247
EXE Servers 739
ExecProc method 697
ExecSQL method 680
Execute method 660
executing SQL state-

ments 678-679
run time 680

explicit access qualification
(namespace access) 109,111

explicit template functions 163
exporting

classes (DLLs) 205
DLL functions 204
epilogs 189
prologs 189
templates 169

expressions 72-77
aggregate functions 711
constants 20
evaluation Qrders 76
statements 98

extended and expanded
memory (overlays) 299

extensions
keywords 9
language, conforming 4
namespaces 107

extern storage class 29
external declarations 34
ExternalName macros 569
extra segment 266
EXTRACT function 711
extractors 340

F
-f compiler option 256
-f87 compiler option 256
factory callback functions

(ObjectComponents,
creating) 555

factory callbacks 534
far calls

:t;nemory model 297
requirements 297

far keyword 267, 273, 278
fcntl.h231
FDS classes 319

deleting objects 328
namingconventions~19

-ff compiler option 256
Field Link Designer 644-645
Field Link Designer dialog

box 644
field names

ANSI-standards 710
assigningcas values 684

FieldByName method 657
FieldName property 654
fields

adding 646, 715
Fields Editor 648

calculated 625
assigning values 635-636
defining 653
ordering 713

data-aware controls,
updating 665

default settings 654
deleting 648-649, 715
display-only 654
handling events 654
key 654

partial keys 641

numeric 654, 710
displaying values 653

reordering 667
Fields Editor 648

selecting Tab key 665
setting display attri­

butes 653-654
Fields Editor 647-649, 664

adding fields 648
deleting fields 648-649
reordering fields 648
starting 648

Fields Editor window 648
Fields property 656
FIFO structure (queues) 447
files 335

creating 342
definition (.DEF) files 183
distributing 613
graphics driver

, linking 304
handling input and output 342
module definition (.DEF)

files 184
opening

default mode 342
portable executable (PE) file

format 191
project

graphics library listed in 303
resource (.RC) files 184
scope identifiers 27
scripts 680
servers 687

connecting to 607, 660
developing applications

609,612
temporary 660-661
text 606, 637

fill characters 339-340
filling functions 305
financial applications 259, 360
finding field values 637-640

nearest match 638-639
FindKey method 639
FindNearest method 639
First method 627
flags

format state 338-339
ios class 338, 340

setting 339
register 264-265

flickering screens 635
float.h 231

In d ex 753

floating point 255
emulating 256
exceptions, disabling 258
fast 256
formats 255
1/0255
libraries 255
registers 257

floating-points
constants 13
emulation (inline assembly) 214
notations (precision) 339
_______ 1 _ ____ /"~~

.LLLLl.LLUt:lt> OJJ.

flush manipulators 339
flushing data buffers 635
fonts

bit-mapped 308
clipping 308
dialog boxes 724
files,loading and register-

ing308 '
height 308
information on current

settings 314
registering 308
setting size 308
stroked 308
width 308

formal parameter declarations 61
format state flags 338-339
formatting 342

data 653-654
1/0.338

classes 336
console streams 344
field widths, setting 339
fill character 339-340
padding 340
variables, changing 338

streams, clearing 339
forms

data entry 666
data-aware controls 665
database forms (Visual

Database Tools) 618
designing 665
multi-table 643

creating 621
order entry 674

forward iterators 377
FP_OFF277
FP_SEG277
free function 121

FreeBookmark method 634
freeing memory 634
friends (classes) 139
fstream.h 335, 342
functions 58-62, 385

aggregate 700, 710-711, 713
binders 389
call and argument conver-

sions 61
call operators, oversloading 154
callback 326-327
color control 310
date 711
declarations 58
declaring as near or far 275
DLLs, importing and

exporting 204
drawing 305
error-handling, graphics 312
exporting

epilogs 189
prologs 189

far
declaring 276
memory model size 275

filling 305
formal parameter declaration 61
graphics 303-314

drawing operations 305
fill operations 305

graphics system control 303
image manipulation 306
importing 185
mathematical 700
member function templates 368
modifiers 49
near

declaring 276
memory models 275

negators 389
objects 386, 388
pixel manipulation 307
pointers 53

calling overlaid routines 298
predicates 386
prototypes 27, 58
recursive (memory models) 275
scopes 27
screen manipulation 306
search 637
state queries 313
string manipulations 711
structures 63

754 B 0 r I and C++ Pro 9 ram mer s G u ide

G

templates 162
text

output, graphics mode 307
viewport manipulation 306

transcedental functions 515
trigonometric functions 515

.GDB files 606
GDS.DLL 702-703
generic algorithms 463-464
n-...............:"''J.,. ")-:2")
5"'" L\""'L"',",.~ L "'-v ...

get from operator (»;
stream input) 340

GetAliasNames method 661
GetAliasParams method 661
GetBookmark method 634
GetDatabaseNames method 661
GetDriverNames method 661
GetDriverParams method 661
GetIndexNames method 642
GetTableNames method 661
global heaps 190
global variables (overlay buffer,

changing) 294,298
goto keyword (inline

assembly) 212
GoToBookmark method 634
GoToCurrent method 643
GoTpKey method 637
GoToNearest method 637-639
graph example program 442
graphics 670

buffers 307
circles (aspect ratio) 306
colors

background 311
defined 310

CGA310,311
drawing 310
EGAjVGA311
foreground 311
functions 309
information on current,

settings 314
default settings, restoring 304
displaying 310
drawing functions 305
errors

functions to handle 312
fill operations 305
fill patterns 306, 313

functions 302
header file 302
library 302
line style 306
memory 305
pages 307

setting 306
palettes

defined 309
functions 309
information on current 314

pixels
colors (current) 314
functions for 307
setting color of 309

settings, clearing screen 307
state queries 313
systems

conrrolbxnctions303
shutting down 304
state queries 313

text 307
viewports

defined 302
functions 306
information on current 314

graphics drivers
adding 304
current 304,313

returning information on 314
l.inkillg 304
loading 304
loading and selecting 304
registering 305
returning information

on 313-314
selecting 304
supported 304

graphics.h 302
grapples 731
group boxes (dialog boxes) 724
GUID (globally unique

indentifier), generating 537, 739
GuidGen utility 537

H
Handle function 662
handles 662
handling

events 554
OLE 545,553
view events 554

hashimp.h 319

header files 217
_defs.h247
_nfile.h 247
_nu1Lh248
alloc.h223
assert.h 224
bios.h224
bwcc.h247
complex numbers 258, 359
conio.h224
ctype.h225
dir.h226
direct.h 227
dirent.h 227
dos.h227
ermo.h230
excpt.h247
fcntLh231
float.h231
generic.h 232
graphics 302
io.h232
iomanip.h 233
iosrreams 335, 342

manipulators 339
limits.h 233
locale.h 234
malloc.h 234
math.h235
mem.h236
memory.h 237
new.h237
ObjectComponents 540, 550

automation servers 563
precompiled header

files 220-221
limitations 221
optimizing 222
rules 221

process.h 237
search.h 238
se~mp.h238
share.h239
signaLh239
stdarg.h 239
stddef.h 240
stdio.h240
stdiosrr.h 241
stdlib.h 241
STL370
srring.h 243
sysat.h244
sysimeb.h 244
sysypes.h 244

syslocking.h 243
time.h245
utime.h245
values.h 246
varargs.h 246

heap manager 190
HeapBlock variable 191
HeapLimit variable 191
heaps 457, 503

dynamic memory allo­
cations 190

HelpContext macros 569
heterogeneous

collections 458
joins 713
queries 685

hex manipulator 339
hexadecimal constants 12
hexadecimal conversions 339
hiding classes 159
hierarchies

container classes 318
srreamable classes 336-337

highvideo manipulator 344
hooks 567
Horizontal Bumps 721
Horizontal Dips 721
horizontal dividing lines,

enabling/ disabling 668
HOUR constant 711
huge keyword 267, 273

I/O floating-points (Input/
Output)

formats, l.inkillg 255
numbers 255

IBContainer (BOCOLE
interface) 532

IBDocument (BOCOLE
interface) 532

ice cream store simulation
example program 459

identifiers 10
case sensitivity 10
keywords as 4
mixed languages 211
naming conventions 10

IDispatch interface 535
OLE 739

IEEE, rounding 261, 362

Index 755

IEnum V ARIANT interface 535
ifstream class 342

constructors 342
images 670

-scrolling through 671
IMPLEMENT_CASTABLE

macro 352
IMPLEMENT_STREAMABLE

macro 353
implementation-specific

standards (ANSI) 4
implementing proxy classes 587
implicit template functions 163
importing

classes (DLLs) 205
DLL functions 204
functions 185
templates 169

inactive
data controls 645
database connections 661

Inactive mode (datasets) 625
inclusion

lists 414
vectors, testing 403

Index property 654
indexes 642, 714

creating 716
deleting 716
primary 642
secondary 638, 642, 716

IndexFieldCount property 642
IndexFieldNames property 638
IndexFields property 642
IndexName property 638, 642
indirect containers 323-324

deleting objects 327
Informix servers 701
Informix tables 606, 658-659

transactions 696
inheritances

base classes 336
hierarchy 505
multiple 336, 350
overloading 153
streamable classes 336, 342, 351

virtual bases 350
virtual 336

initializations 409
algorithm 466, 468
memory allocation 122
vectors 399

initializing
classes (constructors) 145
queues (containers) 456
set data types 426

inline #pragma directive 213
inline assembly 209
inlinefunctions132
inline statements 213
inner joins 712
in-place

editing (OLE) 739
transformation algorithms

476-477
lists 415

in-process servers (OLE) 739
inputs 335, 340

formatting 336,338
iterators 375
streams (data types) 340, 380

redefining 341
insert iterators 381
INSERT keyword 713
Insert method 631
Insert mode (datasets) 625,

631,669
CanModify property 630

inserting
set data type 428
streams 337, 338
strings 520

InsertObject command,
handling 546

InsertRecord method 632
installing (VBX controls) 705
instantiating TFieid 667
instantiation containers 318,

323,329
integer constants 12
integers 655

streams 337, 349
IntegralHeight property 672
integrity violations 660
INTERBAS.MSG 702-703
InterBase tables 606

accessing 702-703
batch move operations 659
transactions 696

InterBase Workgroup Server for
Windows NT 703

interfaces 741
COM (automations) 532,534
OLE 749

756 B 0 r I and C++ Pro 9 ram mer s G u ide

internal representation
(constants) 19

InternalName identifier strings
macros 569

interprocess communica­
tions347

interrupts (handlers;
modules) 298

invoices 675
Invoke command object

method 535
io.h 232
iomanip.h 233
ios class 335-336

derived classes 337
flags 338, 340

setting 339
iostream library 335
iostream.h 335, 339
iostreams

classes 335-336,342
memory buffers 336

clearing 339
data types 337,340
declarations 338-339
default alignment 340
error-checking 336, 342
flushing 339
format state flags 339
input 340
output 337
predefined file descriptors 336
referencing and

dereferencing 338
IP (instruction pointer)

register 264
IS NULL operator 711
ISAM.IEM 701
ISO (International Standards

Organization) 364 .
isolation levels (transactions)

695-696
istream class 342

derived classes 342
ItemHeight property

combo boxes 673
list boxes 672

Items property
combo boxes 672
list boxes 672, 675
radio buttons 676

iterators 373, 628, 656

bidirectional iterators 378
collection class,

implementing 573
container iterators 325-327,376
forward iterators 377
input iterators 375
input stream iterators 380
insert iterators 381
invalidation lists 411
libraries 366
lists 414
maps 439
operators 383
output iterators 376
output stream iterators 381
random access iterators 379
ranges 374
reverse iterators 380
set data types 429

initializing 427
statements 99
stream iterators 380
strings 520
templates 325-327
types 374
vectors 399, 403

IterFunc typedef 327
ITypeInfo interface 535
ITypeLib interface 535
IUnknown interface 532

OLE 740

J·K·L
joins 712

heterogeneous 713
jump statements 99

KeepConnections property 692
key fields 654

partial keys 641
key violations 660
keyboard events 665
KeyExclusive property 639

ranges 641
KeyFieldCount method 638
KeyViolTableName

property 660
keywords 9

extensions 9
identifiers 4
naming conventions 709-710
tokens 8

labeled statements 98
labels 666
language drivers 700-701
language structures

arrays 56
binary operators 87, 96
declarations 25-52

syntax 31
enumerations 69
expressions 72-77
extensions, conforming 4
functions 58-62
main() function 99
mixed-language calling

conventions 46
multithread programs 103
operators 77
Pascal calling conventions 102
pointers 52, 56
postfix expressions 79, 83
primary expressions 78
statements 96
structures 62, 67
unary operators 83, 87
unions 67
wildcards 101

Last method 627
LDLLSQLW.DLL 701
LibMain function (DLLs) 202
libraries

BOCOLE.DLL 529
container classes 317-318
differences 365
floating point 255
graphics 302
iostreams 335
Standard C++ library 367
STL 365, 368

code bloat 366
efficiency 366
errors 366
iterators 366
multithreading 367
source code 365

STL (Standard Template
Library) 365

streamable classes
predefined macros 347, 350
restrictions 357

streams 335
LIFO structure (stacks) 447
limits.h 233
line splicing () function

(whitespace) 6

linefeed characters, opening
files 342

llnkage rules 30
linker

mixed modules 277
using directly 277

linking 727
connections

(ObjectComponents) 533
controllers 590
data controls to datasets 635,

665
grids to datasets 667
objects 733, 740
queries 684
servers 570
tables 620
Windows programs 183

LINKQRY sample applica-
tion684

list boxes 671
listimp.h 319
lists 673

accessing 414
data abstraction 407
declaration 409
elements

placing 411
removing 412

inclusion 414
initialization 409
in-place transformations 415
interator invalidation 411
inventory system example

program 416
iterators 414
operations 407
scrolling through 671, 673-674
searching operations 415
sorting 415, 673
testing 414
type definitions 410

LoadFromFile method 680
local buffers 627

clearing 669
flushing 635

local duration objects 29
local heaps 190
Locale function 662
locale.h 234
localization (OLE) 740
localizing (automation

definition symbols) 579

Index 757

locating field values 637-640
nearest match 638-639

locking tables 643
logic errors 505
logical operators 93,"711
Login dialog box 691
login parameters 691
LoginPrompt property 691
lookup lists 681
LookupDisplay property 673
LookupField property 673
LookupSource property 673
loops 628 - - -
LOWER function 711
lowercase conversions 711
lowvideo manipulator 344

M
M30PEN.DLL 702
M30PEN.EXE 702
MacroGen utility 537
macros

automation definitions (data
type specifiers) 570

container class libraries 347, 350
declaration macros, writing 565
definition macros 569
far pointers 277
generating new 537
hooks 567
methods, declaring external 568
properties, declaring

external 568
Main panels (dialog boxes) 723
main window

(ObjectComponents,
connecting) 541

main() function 99
arguments 100

maintaining database
connections 692

makefiles (ObjectComponents)
536

malioc function 121
malioc.h 234
manipulators 338

embedding 338
example 344
1/0338-339

console streams 344
table of 339

parameters 339
text windows 344

Mappings property 659
maps

accessing 438
creating 437
data abstractions 435
example programs 440, 444
graph example program 442
initializing 437
insertions 438
iterators 439
multimaps 436
pair data types 435
type definitions 438
values, removing 439

master tables 620-621, 644-645
master-detail forms (Visual

Database Tools)620
MasterFields property 644
MasterSource property 621, 644
math errors, masking 258
math.h235
mathematical functions 700
_matherr function 258
MAX function 711
maximum values 654, 711
MaxLength property 670
MaxValue property 654
MBW.EXE702
mem.h236
member function templates 368
member functions 131, 134
member-lists (classes) 128,130
memo fields 670
memory 263, 319,336

addresses
calculating 265,267
far pointers 267
near pointers 267
pointing 277
segment, offset notation 267
standard notations 267

allocating 121
containers 324
example 123, 127
graphics 305
initializing 122
objects, creating 586

buffers 335
containers (manaagements) 393
deallocating 121

example 123, 127

. 758 B 0 r I and C++ Pro 9 ram mer s G u ide

deleting objects 327
freeing 634
models 263-278

changing 276
compact 269
comparisons 273
defined 269
graphics library 303
huge 269
large 269
medium 269
memory apportionment 270
mixing 277
overlays 295, 297
pointers 267, 274
small 269
supported 269
tiny 269
overlays 294
paragraphs 267
segments 266

memory.h 237
memos, scrolling 670
merging sequences (algorithms)

481,501
messages

crackers 196
ObjectComponents events 533
OLE messages, handling 543

metadata 696, 699
methods 610

automation servers, declaring
automatable 565

calling Visual Database
Tools 611

macros, declaring external 568
MFTP.EXE 702
MHP ARP A.DLL 702
Microsoft Access databases 690
Microsoft Named Pipes

protocol 703
Microsoft SQL servers 606, 701

transactions 696
MIN function 710
minimum values 654, 710
MINUTE constant 711
Min Value property 654
mixed modules, linking 277
mixed-language calling

conventions 46
MI_FP macro 277
MNETONE.EXE 702
MNOVLWP.DLL 702

Mode property 657
modifiers (pointers) 274
Module command (View

menu) 561
module definition (.DEF)

files 184
modules

linking mixed 277
size limit 273

monetary values 653
MONTH constant 711
mouse events 665
MoveBy method 629
moving

cursors 627-629,639, 645
fields 665
images 671
lists 671, 673-674
memos 670
tables 627-629
text 670

MP A1HW A YDLL 702
MPCNFS.EXE 702
MPCNFS2.EXE 703
MPCNFS4.DLL 703
MSOCKLIB.DLL 702
multi-character constants 17
multidimensional arrays 394
multi-line text 670
multimaps 436
multiple inheritance 336, 350
multiple query statements 680
multiplication operators,

overloading 89, 151
multiset operations 425
multi-table forms 643

creating 620-621
multi-table queries 685, 712

heterogeneous joins 713
multiuser applications 693

updating data 633
MVW ASYNC.EXE 702
MWlNTCP.EXE 703

N
Name property 654
namespaces 105

aliases 107
anonymous namespaces 108
declaring 107, 110
defining 106

directives 110
elements, accessing 109
explicit access qualifications 111
extending 107
scopes 27
structures 65

naming
fields 710
identifiers 10
tables 709

near keyword 267, 273
negative offsets 265
negators 389

functions 389
nested classes 135
nested comments 7
NetFileDir property 661
networks 687, 703
new operator 121, 324

size of operator vs. 122
new.h237
Next method 627
nil values 633
norm functions (complex

numbers) 515
normvideo manipulator 344
NOT operator 711
NOT SHARED setting 695
Novell SPXjIPX interface 689,

703
nth_element() function

(algorithms) 498
null characters, inserting in

strings 339
null values 682

checking 641
stored procedures 697

numbers
base, converting 339
conversion functions 655

numeric
coprocessors

autodetecting 257
built in 256
floating-point emulations 256
registers 257

fields 654,710
displaying values 653

limits 523, 526
data types 523
members 524

NWCALLS.DLL 703
NWIPXSPX.DLL 703

o
.OBJ files, converting .BGI

files 305
object ownership 328
ObjectComponents 529

applications, compiling and
linking 558

collections, exposing 571
connections

automations 534
linking and embedding 533

containers, linking 548
event-handling classes 555
factory callback functions,

creating 555
header files 540, 550,585

automation servers 563
main window, connecting

to 541,551
OCX containers, creating 539
OLE 740

automation servers,
creating 563

communicating 532
containers, creating 539
servers, creating 549
utilities 537

OLE2 (compatibility) 530
registrar objects, creating 557
strings, creating translatable 581

. view object, connecting to view
window 542, 552

ObjectComponents Framework
(OCF) 529

applications, interacting
with 530 .

automation implementa-
tions534

BOCOLE support library 529
defined 530
internal operations 532
messages 533
tools for programming 537

object-oriented programming
languages 105

objects
activating 736

OLE 731
aggregations 736
Component Object Model 738
connector objects 738
containers 317,323-324, 329
deactivating OLE 731

I nd ex 759

declarations 25
deleted, telling OLE 578
destroying 327
durations 122
editing 730
embedding 738
far

class names 275
combining into one

segment 275
declaring 275
option pragma 275

functions :186-388
linking 733, 740
opening 734
pointers 52, 323-324
registrar objects 742
restoring 347
saving 347
selecting OLE 731, 743
verbs 744

finding 732
ObjectWindows Library

(ObjectComponents
Franrrework) 529,741

objstrm.h 351
oct manipulator 339
octal constants 12
octal conversions 339
OCX containers, creating 539
ODBC (Open Database

Connectivity)
data sources 606
drivers 690,696

OEM conversions 662
offsets 268

components of a pointer 277
ofstreanrr classes 342

constructors 342
OLE (Object Linking and

Embedding) 727,741
automations 728,736

applications 744
controllers 585,737
objects, combining multiple

objects 577
automation servers 572, 575, 737

compiling 570
creating

ObjectComponents 563
declaration macros,

writing 565
header files (Object

Components) 563

linking 570
methods, declaring

automatable 565
properties, declaring

automatable 565
registration tables,

creating 564
type libraries, creating 583

BOCOLE support library 737
COM (Component Object

Model) 727
compound documents 738
connector objects 738
containers 738

creating 539
linking 548

DLL servers 738
documents 738
embedding 727
EXE servers 739
GUIDs (globally unique

identifiers) 739
!Dispatch interface 739
in-place editing 739
in-process servers 739
interfaces 532,728,741
IUnknown interfaces 740
linking 727, 740
localizations 740
memory allocator

(TOleAllocator) 540,550
menu commands 545
messages, handling 543, 553
ObjectComponents 740

communicating 532
objects

activating 731, 736
aggregations 736
automated objects 736
Component Object

Model 737
deactivating 731
editing 730
linking 733
opening 734
selecting 731, 743
verbs 732, 744

ObjectWindows library 741
open editing 741
reference counting 742
registrar objects 742
registration tables, creating 540
remote view 743
SDI (single-document

interface) 729

760 B 0 r I and C++ Pro 9 ram mer s G u ide

servers 743
document lists, creating 550
header files 550
ObjectComponents,

creating 549
registration tables,

creating 550
support library See BOCOLE

support library
system registration data-

bases 743
terms 736
tuna 1;h .. ,,";ac 7Ll? OJ r- ~~A_AA_V I .A~

utilities 533
views 744

OLE 2 (ObjectComponents
compatibility) 530

OLETOOLS (for IDE) 537
OnCalcFields event 625, 635-636
OnDataChange event 645
OnGetText event 654-655
OnLogin event 691
OnNewRecord event 635
OnSetText event 654-655
OnStateChange event 625,646
OnUpdateData event 646
open editing (OLE) 741
Open method

datasets 626
queries 680

open mode (defaults) 342
opening

datasets 626
objects, editing 734

operators 77
delete

arrays 126
overloading 127

functions, overloading 153
insertions 338
iterators 383
local SQL statements 711
new

arrays 125
overloading 126
placement syntax 124

overloading 150-151
optimizing

applications 688
code 628
queries 683

option pragma (far objects) 275
Options menu commands

(Environment) 705

OR operator 711
ORA6WIN.DLL 700
ORA7WIN.DLL 700
Oracle servers 700
Oracle tables 606, 658-659

stored procedures 698
transactions 696

ORA WE850.LD 700
order entry forms 674
ordinary pointers (input

iterators) 376
OS.IEM701
ostream class 342

derived classes 342
flusWng339

ostrstream class 342
out of memory error 263
outer joins 712
outlining records and fields 668
outputs 335, 337

consoles 344
formatting 336, 338
insertion operators 338
iterators 381
padding 340
stream iterators 381

data types 337
redefining 341

overlays 293-299
assembly language routines 298
BP register 298
buffers (default sizes) 297
cautions 298
command-line option 297
debugging 298
designing programs 297
expanded and extended

memory 299
linking 296

errors 296
memory maps 294
memory models 295, 297
routines, calling via function

pointers 298
Overload property 698
overloaded operators
overloading

assignment operators 154
binary operators 154
class member access

operators 155
constructors 143
enumeration operators 70
function call operators 154, 335
inheritance 153

operators 150-151
complex numbers 258, 359
delete 127
functions 153
get from (> >) streams 340
new 126
put to «<) streams 337
subscript operator 155
unary operators 153

overriding template
functions 162

_ovrbuffer global variable 294,
298

OwnsElements member function
(TShouldDelete) 328

p
padding (characters; default

direction) 340
pages

active
defined 307
setting 306

buffers 307
visual 307

setting 306
painting documents 555
pair data types (maps) 435
panels (dialog boxes) 723
Paradox tables 606, 637, 717

batch move operations 658
deleting 716
indexes 642, 716
memo fields 670
narning709
searching for data 637
specifying directories 636
type compatibility 714-715

ParamByName method 684, 796
parameterized statements 679
parameters

connection 689-690
logins691
retrieving information 661
SQL statements 679, 682, 710

arrays 683
assigning names 684
null values 682 '
setting at run time 683

stored procedures 796-797
stream manipulators 338-339
templates 369

Parameters Editor 682-683, 697
Params property 683, 689

parent clases (collection objects,
exposing) 572

parentheses (punctuators) 21
parsing

source code files 5
query statements 683

partial keys 641
partial sorting (algorithms) 498
partitions (algorithms) 479
parts 533

containers 741
Pascal calling conventions 102
passthrough SQL 682, 694

transactions 694-695
isolation levels 695

PasteFromClipboard method
670-671

pasting text 670
permutations, generating 480
persistent streams

accessing 351
class library

macros 347, 350
restrictions 357

objects 347
picture strings 654
placement syntax (operator

new) 124
placing

bookmarks 634-635
locks 643

platforms 688
pointer modifiers 49
pointers 52-56, 627

address, displaying 338
arithmetic 55, 268
changing memory models 276
comparing 268
conversions 55
default data 273
destroying 327
far

adding values 268
comparing 268
declaring 267-277
function prototypes 277
memory model size 276
registers 267

far memory model 267
functions 53
huge 268

comparing
operators 269

declaring 267-277
overhead 269

Index 761

huge memory model 267
manipulating 267
memory addresses 277
memory models 267, 274
modifiers 273
near

declaring 267-277
function prototypes 277
memory model size 276
registers 267

near memory model 267
normalized 268
objects 323-324
overlays 298
pointer constants 54
pointer declarations 53
segment 273-274
stack 265
storing 458
streams 336, 338
templates, eliminating 166

polymorphic classes 155
virtual functions 155

porting data 687-689
positive offsets 265
Post method 630-631

Edit method 631
OnCalcFields event 636

postfix expressions 79-83
posting records 630-631, 666

automatically 669
data grids 668

pound sign (#) 23
#pragma directives 213, 275
precedence (overloaded

operators) 337
precompiled header files 220-221

limitations 221
optimizing 222
rules 221

predefined values 671
predicates 386
prefix expressions (opcodes;

inline assembly) 215
Prepare method 678, 683, 697
primary expressions 78
primary indexes 642, 716
Print command (EasyWin) 251
printing data 330
Prior method 627
priority queues 455-456, 461

containers, initializing 456
event-driven simulations 457

ice cream store example
program 459

private access specifiers 136
PrivateDir property 661
ProblemTableName

property 660
procedures (stored) 607, 624,

696-698
executing 697
overloading 698

process.h 237
producer (streams) 335
profilers 298
programming components 609
programs

large, overlaying 293
Windows, 183

project files 613
graphics library listed 303

prologs
compiling 186
exporting functions 189

properties 653
accessing 656
automation servers, declaring

automatable 565
changing 65~54
components 609
data-aware controls 664
macros, declaring extemal568
run time (Visual Database

Tools) 611
Visual Database Tools

design time 610
run time 611
setting 610

protected access specifiers 136
protocol (communications)

688-689
prototypes

far and near pointers 277
functions 58
mixing modules 277

proxy
classes

declaring 586
generating 537
implementing 587

collection classes
declaring 591
implementing 592

methods (argwrients,
specifying) 589

objects, creating 590

762 B 0 r I and C++ Pro 9 ram mer s G u ide

public access specifiers 136
punctuators 21

asterisks (*) 23
braces ({ }) 22

_ brackets ([D 21
colons (:) 22
commas (,) 22
ellipsis (...) 23
equal sign (=) 23
parentheses 21
pound signs (#) 23
semicolons (;) 22

push buttons 721
dialog boxes 725
enhancements 721

put to operator « <; stream
outputs) 337

Q
queries (multi-table) 685, 712

heterogeneous joins 713
Query component 677, 679
QueryInterface, !Unknown 532
question mark (?) SQL

statements 710
queues

adaptors 447
containers, initializing 456
data abstraction 450
FIFO structure 447

queues.h 319
quotation mark (If; naming

conventions) 709-710

R
radio buttons 676, 721

enhancements 721
radix sort algorithm 421
Raised Gray Groups 721
RAM (Random Access

Memory) 263
random access iterators 379
ranges

containers 373
iterators 374

RDS.lEM701
Read function (streams;

compatibility) 354
ReadBaseObject member

function 350
read-only controls 666, 670

graphics 671

ReadOnly property 654
CanModify property 630

read-only results 681
ReadVirtualBase function

350,355
readWord function 349
Recessed Gray Groups 721
records

adding 631-632, 669
batch move operations 657
data grids 668

current 627
setting 669

data grids 667-668
deleting 631, 643

batch move operations 658
moving 627-629
ordering 712
outlining 668
posting 630-631,666,668

automatically 677
selecting 677

recursive functions (memory
models) 275

Redistributable BDE 615
redrawing screens 678-679
reference counting (OLE) 742
references / dereferencing 119

arguments 119
containers 324
declarators 119
iostreams 338
simple references 119
templates 167

Refresh method 635
Register utility 537
REGISTEREXE utility (DLL

servers) 561
registering (DLL servers) 537
registers

8086 264-266
AX 264
base point 265
BP265

overlays 298
BX264
CS266-267
ex 264
DI265
DS266-267
DX264
ES266
flags 264-265
index 264-65

IP (instruction pointer) 264
LOOP and string instruc-

tions 264
math operations 264
numeric coprocessors 257
scratch 211
segment 265-266
SI265
SP265
SS266

registrar objects
automation server, creating 564
creating 547

ObjectComponents 557
registration databases (OLE) 742
registration tables 542

automation servers,
creating 564

OLE 750
reinterpreCcast operator

(typecasts) 114
relational operators 91
releasing memory 634
remote servers 687

connecting to 607, 689-691
deploying applications 700
developing applications

609,612
remote view (OLE) 743
REMOTE.DLL 702
removal algorithms 483
removing

list elements 412
strings 520

reordering fields 667
Fields Editor 648

repeat prefix opcodes (inline
assembly) 215

replacing strings 520
RequestLive property 681
reserved words (naming

conventions) 709-710
resetiosflags manipulator

339-340
resource (.RC) files 184,581
Resource Workshop

(applications, customizing) 720
resources 184
restoring previous values 631,

665,669
retrieving data 607, 642

conditions 712
multiple tables 712-713
values 713

ReturnType macros 569
reverse iterators 380
right angle brackets (stack data

abstractions) 448
ROLLBACK statements 693-694
rounding 655

banker's 261, 362
errors 259, 360

RPN (Reverse Polish
Notation) 448

RITI (Run-Time Type
Indentification) 115

-RT command-line option 117
dynamiccast operator 113
typeid operators 116

Run menu commands (Run) 560
running

DLL servers 537
tutorial programs 370

running SQL statem~nts 678-679
run time 680

runtime errors 505

s
sample applications

(LINKQRY) 684
sample database applica-

tions 621
saving SQL statements 680
scalar results (algorithms) 486
scaling factor (graphics) 306
scopes 27

access operators 121
C++ 158
visibility 28

scratch registers 211
screens

aspect ratios 306
attributes, setting 344
celis, characters 301
clearing 306
colors 309
coordinates 302

starting positions 302
flickering 635
modes

defining 301
graphics 301-302, 304
selecting 304
text 301, 304

redrawing 670-671
resolutions 301

script files 680

Index 763

scroll bars 670
ScrollBars property 670
scrolling .

buffers (EasyWin) 252
images 671
lists 671, 673-674
text 670

SDI (single-document
. interface) 729
search.h 238
searching

binary searches (algorithms)
499

containers 329
conditions (SQL queries) 712
data 637-640

nearest match 638-639
functions 637
modes 637
operators (algorithms) 470
set data types 429
strings 521

SECOND constant 711
secondary indexes

deleting 716
searching on 638, 642

security 690-691
SECURITY. IBM 701
_seg keyword 273-274
segmented memory

architecture 266
segments 267, 269

components of a pointer 277
memory 266
offset address notation 267

making far pointers 277
pointers 273-274
registers 265-266

SELECT keyword 712
SELECT statements 681, 712-713
selecting

fields (Tab key) 665
objects (OLE) 731, 743
records 669

selection statements 98
semicolons (;) 22, 210
sequence generating

algorithms 490
servers 606, 687

connecting to 607, 660
remote databases 689-691

developing applications
609;612

OLE 743
Session component 660
set data types 425

bit_set class 432
counting 429
creating 426
elements, removing 428
generic algorithms 431
initialations 426
insertions 428, 430
iterators 429
searching'429
set operations 429
set unions 430
subset tests 430
type definitions 427

set functions 710-711, 713
setattr manipulator 344
setbase manipulator 339
setbk manipulator 344
setbkcolor function 311
setclr manipulator 344
setcrsrtype manipulator 344
SetFields method 632
setfill manipulator 339-340
setiosflags manipulator 339-340
seljmp.h 238
SetKey method 637-638
SetKey mode (datasets) 625, 637
setprecision manipulator 339
SetRange method 640
sets.h319
setting locks 643
settings, graphics

clearing screen 307
defaults, restoring 304

SetupWindow member function
(TOleFrame) 534

setw manipulator 339
setxy manipulator 344
share.h239
SHARED AUTOCOMMIT

setting 695
SHARED NOAUTOCOMMIT,

setting 695
SI register 265
sieve of Eratosthenes

algorithm 405
signal.h 239

764 B 0 r I and C++ Pro 9 ram mer s G u ide

signed char (constant type) 15
single quote ('; naming

conventions) 709-710
sink (streams) 335
Size property 654
sizing vectors 401
Sorted constant 673
sorting

algorithms 497
partial sorting 498

data 642
lists 415, 673
vectors 404

source (streams) 335
source tables 657--660
SP register 265
specialized containers 318
special-purpose registers

(8086) 265
specifying aliases 692
spelling checker example

program 431
split function strings 522
SQL (Structured Query

Language) 677
database servers 606
keywords

ALTER TABLE 715
COMMIT 693
CREATE INDEX 716
CREATE TABLE 714
DELETE 713
DROP INDEX 716
DROP TABLE 716
INSERT 713
naming conventions 709-710
ROLLBACK 693
SELECT 712
UPDATE 713

links 708
property 678-680
queries 677-685

adding new fields 715
creating indexes 716
deleting fields 715
entering statements 680-681
heterogenous 685
linking 684
live vs. read-only results 681
multi-table 685, 712-713
optimizing 683
preparing 683
retrieving specific values 713

•

run time 680, 683
running statements 678-680
saving statements 680
specifying search

conditions 712
type compatibility 714-715

script files 680
tables

indexes 642
naming 709
retrieving data 640
searching for data 637
specifying directories 636
updating data 633

SQL.IEM701
SQL_IB.CNF 702-703
SQL_INF.CNF 701
SQL_ORA.CNF 700
SQL_SS.CNF 701
SQL13WIN.DLL 700
SQLD_IB.DLL 702-703
SQLD _IB.HLP 702
SQLD_INF.DLL 701
SQLD _INF.HLP 701
SQLD_ORA.DLL 700
SQLD_ORA.HLP 700
SQLD _SS.DLL 701
SQLD _SS.HLP 701
SQLP ASSTHRUMODE setting

694-695
SQLWIN.DLL 700
_ss keyword 273
SS register 266
stack

pointers 265
segment 266

stacks
adaptors 447
data abstraction 448
LIFO structure 447
right angle brackets 448

stacks.h 319
Standard C++ Library 367-368
starting

Fields Editor 648
Parameters Editor 697

StartTransaction method 694
State property 625
state queries 313-314
statements 96

expression statements 98
labeled statements 98

static members 131
static SQL statement

(defined) 679
static storage class 29
Static Text 721
static_cast operator

typecasts 114
static-link libraries 201
_status87 function, floating-point

exceptions 258
stdarg.h 239
stddef.h 240
stdio library 335
stdio.h240
stdiostr.h 241
stdlib.h 241
STL 365, 368

code bloat 366
efficiency 366
errors 366
header files 370
iterators 366
multithreading 367
source code 365

STL (Standard Template
Library) 365

storage
allocation 121
deallocation 121

storage classes
specifiers 42
types 26

stored procedures 607, 624,
696-698

executing 697
overloading 698
parameters. 696-697

StoredProcName property 696
storing

pointers 458
values 458

streamable classes
base class 348

declaring 355
reading/writing 355

building 347
constructors 351
creating 347, 350, 354
data types 349
declaring 352-353, 355
defining 351
hierarchies 336-337

I/O, formatted 336-337, 342
inheritance 336, 342, 351

virtual bases 350
libraries 335
member functions 349, 354

adding 352
new features 348
Streamer 354
templates 349, 355
version numbers 348, 356
virtual functions 354-355

streambuf class 335-336
derived classes 336

Streamer class 354
streams 335-336

buffering 336
error states 342
field width, setting 339
fill character 339-340
flushing 339
inputs (complex numbers) 515
insertion operators,

overloading 151
iterators 380
outputs (complex numbers) 515
persistent 351

class library
macros 347, 350
restrictions 357

objects 347
pointers 336
states, altering 338

STRICT 192, 194
string constants 17
string instructions

(inline assembly) 215, 264
String List Editor 672

entering SQL statements 679
string.h243
strings 335, 517-518, 641

appending 519
assignment 519
capacity 517

resetting 518
character access 520
clipping 308
concatenating 711
conversion functions 6655
converting cases 711
copying 521
declaring variables 518
1/ a streams 342

default width, changing 341
overflowing 341

I nd ex 765

inserting terminal null 339
insertions 520
iterators 520
lists 679

associating with buttons 676
sorting items 673

manipulation functions 719
picture 654
removing 520
removing repeating

characters 711
replacing 520
returning parts of 711
searches 521
sizes, resetting 518
split functions 522
string comparisons 521
substrings 521
swapping 519
wide strings 517

strstrea.h 335, 342
structures 62-67

aligning words 65
bit fields 66
complex 258, 359
exceptions 173
functions 63
incomplete declarations 65
member access 64
member declarations 63
name spaces 65
untagged structures 62

Style property (combo
boxes) 672

sub queries 712-713
subscript operators, overloading

151-155
subscripting vectors 40d
subset tests (set data types) 430
SUBSTRING function 711
substrings

returning 711
strings 521

suffixes (constants) 12
SUM function 710
sums 710
support library See BOCOLE

support library
swapping strings 519
Sybase servers 682, 701
Sybase tables 606, 658-659

transactions 696

SYDC437.LD 701
SYDC850.LD 701
symbols (automation definitions,

localizing) 579
sysat.h244
sysimeb.h 244
sysypes.h 244
syslocking.h 243
systems (graphics)

T

controlling 303
registration databases

(OLE) 743
shutting down 304
state queries 313

Tab key 665
tabbing through fields 665
TableName property 636
tables 714

changing 715
creating new 657
deleting 643,716
destination 657-660
detail 621, 645
linking 620
locking 643
master 621, 645
moving through 627-629
multiple views 714
naming ANSI standard 709
placing bookmarks 634
retrieving information 661
source 657-660
structures, copying 607, 643
types 637

TableType property 637
TAutoClass class 535
TAutoIterator class 535
TBatchMove component 607,

657-660
TBCDField type 655
TBlobField type 655
TBookmark type 634
TBooleanField type 655
TBytesField type 655
TCP /IP interface 613, 689, 702
TCurrencyField type 655
TDatabase component 607,

691-693

766 B 0 r I and C++ Pro 9 ram mer s G u ide

TDataSource component.607,
645, 664-6656

TDateField type 655
TDateTimeField type 655
TDBCheckBox component

663,675
TDBComboBox 663, 672
TDBComboBox component 673
TDBEdit component 663, 666
TDBGrid component 667, 671

adding 667
data, viewing and

modifying 667
TDBImage component 663, 670

BLOB graphics 670
TDBListBox component 663, 671
TDBLookupCombo component

664,671,673-674
TDBLookupList component 664,

671,674
TDBMemo component 664, 670

BLOB text, displaying and
editing 670

TDBNavigator component
664,668

enabling/ disabling buttons 669
records, manipulating 668

TDBRadioGroup component
664,676

TDBText component 664, 666
telephone database example

program 440
templates 160

angle brackets 165
arguments 165
body parsing 161
class templates 164
compilers (template

switches) 167
container 318,321-322
data entry 654
defined 322
exporting 169
external references 167
function templates 162
importing 169

• instances, generating 167
iterator 325-327
parameters 369
pointers, eliminating 166
streamable classes 349, 355
syntax 160
type-safe generic lists 165

temporary files 660-661
testing

lists 414
vector inclusion 403

.TXT files 606
text 678

adding 670
alignjng 670
editing 670
files 606, 637
graphics mode 307
information on current

settings 314
justifying 308
scrolling 670
strings

clipping 308
size 308

window manipulators 344
wordwrapping 670

TField component 646-656
instantiating 667

TFloatField type 654-655
TGraphicField type 655
throwing exceptions 174
tiDirtyRead constant 695
time

conversion functions 655
returning 711

time.h245
timer events 665
TIMEZONE_HOUR clause 711
TIME ZONE_MINUTE

clause 711
TIntegerField type 655
tiReadCommitted constant 695
tiRepeatableRead constant 695
titles (group boxes) 724
llLTI\GC (illiker) 277
TMemoField type 655
TOcApp class

binding to window 534
connector object 533

TOcPart class 533
tokens 5, 8

constants 11-21
identifiers 10
keywords 8
punctuators 21, 24

TOleFrame class (members;
SetupWindow) 534

tools (DLL servers) 561

totaling numeric values 710
TQuery component 607,624,665,

677-679
TTable vs. 678, 681

transactions 664, 688, 693-696
isolation levels 695-696

transcendental functions 515
Translsolation property 695
translations

data 609
resource scripts 581
units 29

Transliterate property 658
trigonometric functions

(complex numbers) 515
TRIM function 711
truncated data 666
TServedObject class

(automation connector
object) 535

TSession component 660-661,
692

TShouldDelete class 328
member functions

(OwnsElements) 328
TSmallIntField type 655
TStandardAllocator class 324
TStoredProc component 607,

624,696
TStreamable class 347
TStreamableBase class 351
TStringField type 654-655
TTable component 624,

636-645,665
TQuery vs. 678,681

TTimeField type 655
TTypeLibrary interface 543
TUnknown class 533
tutorial programs, running 370
TV arBytesField type 655
TVbxControl class (VBX

controls) 706
TW ordField type 655
.TXT files 637
typecasting (new operator) 122
typecasts

consCcast operator 112
creating 112
dynarmc_cast operator 112
reinterpreCcast operator 114
static_cast operator 114

typedefs 62
typeid operator (RTTI) 116
types

batch move operations 658-660
converting 655
definitions

lists 410
maps 438
set data types 427
vectors 400

libraries (automation servers,
creating) 583

stars (OLE) 743
SQL-compatible 722-723

type-safe generic lists
(templates) 165

u
UINT 195
unary operators 83-87

overloading 153
unhandled exceptions 180
UniDirectional property 681
unions 67

anonyrnousunions68
declarations 68

UnPrepare method 683
unsigned char (constant type) 15
untagged structures 62
UPDATE keyword 721
UPDATE statements 681
UpdateMode property 633-634
updating data 630, 633-634,

665,669
batch move operations 657
handling events 646
multiuser applications 633
read-only results 681
Refresh method 635

UPPER function 719
uppercase conversions 719
up sizing desktop databases

698-700
user-defined types

(iostreams) 341
using declaration (namespace

access) 109
DTIL.DOC 309
utilities

ObjectComponents, for '537
utime.h245

In d ex 767

v
Value property 656
ValueChecked property 675
values

assigning
buttons 676
calculated fields 635-636
combo boxes 672
default 671
names as 684
run time 656-657

averaging 710
counting 711
currency 653
displaying current 666
finding 637-640

nearest match 638-639
minimum/maximum 654

aggregate functions 710-711
nil 633
null 682

checking 641
stored procedures 697

predefined 671
property

accessing 656
changing 653-654

restoring previous 631,665,669
retrieving specific 713
rounding 655
storing 458
totaling 710
updating (read-only results) 681

Values property 676
values.h 246
ValueUnchecked property 675
varargs.h 246
variable modifiers 44
variables

I/O, formatting 338
local SQL statements no, 714
string variables, declaring 518

VARIANT unions 535
VBX controls

installing 705
programming (TVbxControl

class) 706
VbxGen utility 706
vectimp.h 319
vectors 398

algorithms 404
boolean vectors 405

constructors 399
data abstraction 397
data structures 407
declaring 399
elements

inserting 402
removing 402

extent 401
inclusions, testing 403
initialization 399
iterators 399,403
memory management 401
sizing 401
sorting 404
subscripting 400
type definitions 400

version numbers (streamable)
classes 356
objects 348

Vertical Bumps 721
Vertical Dips 721
vertical dividing lines,

enabling/ disabling 668
video adapters 301-314

graphics, compatible 304
modes 301

Video Graphics Array Adapter
(VGA) 311

view events, handling 554
View menu commands

(Module) 561
view objects

(ObjectComponents,
connecting to view
window) 542

virtual base classes
(constructors) 139

virtual classes 138
inheritances 350

virtual deconstructors 149
virtual functions 318

polymorphic classes lQ5
returning types 156
streamable classes 354-355
Streamer 354

virtual inheritance 336
visibility (scopes) 28
Visible property 654
Visual Basic emulator 706
Visual Database Tools

applications, creating 609

768 B 0 r I and C++ Pro 9 ram mer s G u ide

COM (Component Object
Model) classes 617

components 609
database forms 618
events

defining source 612
handling 614
responding to 613
objects 621

master-detail forms 620
methods, calling 611
properties

run time 611
setting 610

sample database applications
621

VBX controls (third-party) 705
Visual Basic emulator 706

visual page
defined 307
setting 306

VROOMM293
VSL.INI702

w
W3DBLIB.DLL 701
WEP (Windows Exit Procedure;

DLLs) 203
WhereAll constant 633
WhereChanged constant 633
WhereKeyOnly constant 633
whitespace 5

delimeters 7
discarding 340
extracting 339
skipping 340

wide strings 517
wide-character constants 17
wildcards 101
Win32 API 191
Win32 operating system 191"
WINAPI195
window function 302

default window 302
windows

default type 302
defined 302
programs

compiling 183
linking 183

Windows for Workgroups 703

WinMain 186
WinRun utility 537
Winsock 1.1 compliant TCP lIP

products 702
WINSOCK.DLL 702
withassign class 336
WM_OCEVENT messages, 533

handling 543
WORD 195
WordWrap property 670
wordwrapping text 670
Write function 354
write privileges 643
WriteBaseObject member

function 350
WriteVirtualBase function

350,355
writeWord function 349
writing

declaration macros 565
portable Windows code 192

ws manipulator 339-340

X-Y-Z
-xd compiler option 127

-Y compiler option 297
-Yo compiler option 297

-zX compiler option 275

Index 769

Borland®
Corporate Headquarters: 100 Borland Way, Scotts Valley, CA 95066~3249, (408) 431-1000. Offices in: Australia,
Belgium, Brazil, Canada, Chile, Denmark, France, Germany, Hong Kong, Italy, Japan, Korea, Latin America,
Malaysia, Netherlands, Singapore, Spain, Sweden, Taiwan, and United Kingdom • Part # WBC1350WW21771

ISBN: 0-672-30923-8

