Borland G++

for Windows 95 & Windows NT

ObjectScripting -
[Programmer’s Guide

Borland® C++
for Windows 95 and Wmdows NT

Borland International, Inc., 100 Borland Way
P.O. Box 660001, Scotts Valley, CA 95067-0001

For a'list of redistributable files, see the online documentation.

Borland may have patents and/or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents.

CopyYRIGHT © 1997 Borland International. All rights reserved. All Borland product names are trademarks or
registered trademarks of Borland International, inc. Other brand and product names are trademarks or registered
trademarks of their respective holders.

Printed in the U.S.A.
BCP1350WW21773 1EQR0397

9798990001-98765 - -
D2

Contents |

Chapter 1 .
Introduction 1-1
What'sinthisbook 1-1
Manual conventions. 1-2
Software registration and technical support . . 1-2
Part I
User’s guide
Chapter 2
ObjectScripting overview 2-1
About running ascript 2-1
About scriptloading. 2-2
About script initialization. 2-3
About script function referencing 2-4
About script debugging. 2-5
Built-in diagnostics. 2-5
The breakpoint statement 2-5
The print statement 2-6
The ScriptiRun command 2-6
About examplescripts. 2-6
Script Directory window 2:9
Setting scripting options 2-10
Executing a script statement 2-11
Displaying output in a messagebox. 2-11
Writing ascript. 2-12
Runningascript 2-13
Debugging ascript. 2-13
Script BreakpointTool 2-14
Unloading ascript. e 2-15
Chapter 3
ObjectScripting tutorial 31
About this tutorial 31
ObjectScripting Tutorial: Part1. 3-2
Sample code for Tutorial Part1. 32
. Starting the scriptfile 32
Creating a local instance of an object. 33
Creatingaclass. 3-3
Loading MENUHOOK.SPP. 33
Declaring a method that adds a menu
item. e e 34
Executing themethod 3-5
Running the scriptfile. 3-5
ObjectScripting Tutorial: Part2. 3-5

Sample code for Tutorial Part2 3-6
Importing the IDE object 3-6
Importing a symbol of the system-wide
instance of anobject. 3-7
Declaring a method that adds a menu \
item.......... e 3-7
Executing themethod. 3-8
ObjectScripting Tutorial: Part3 3-8
Sample code for Tutorial Part3 3-8
Finding the Help directory. 3-10
Declaring methods that add menu items . . 3-11
Assigningamenuitem. 3-11
Adding a backslash to the path name. . . . 3-12
Executing Help menu methods 3-13
ObjectScripting Tutorial: Part4 3-14
Sample code for Tutorial Part4 3-14
Declaringamethod 3-16
Executing the Help menu method. 3-17
Part II
Language reference
Chapter 4
About cScript 4-1
About late-bound languages. 4-1
The benefits of late-binding 4-2
Differences between cScriptand C++. 4-2
cScriptobjects 4-4
cScriptandtypes L. 4-4
Type conversions. 44
“Comments. e e 4-5
Identifiers, 4-5
Declaring variables 4-6
Statements. 4-7
Strings 4-7
String formatting characters 4-7
Prototyping 4-7
Flow control statements 4-8
Passbyreference 4-8
Built-in functions L. 49
Reserved identifiers. 4-10
cScriptand DLLs 4-10
cScriptand OLE2 e 4-11
cScript to OLE2 interaction. 4-11
OLE2 to cScript interaction 4-11

AITayS. v v oo e
Boundedarrays.
Associative arrays ‘

Classes

Defining methods.
Modifying the behavior of methods
and properties.
Declaring a class
Creating instances of cScript classes
Discovering class and array members . .
Closures.o
Eventhandling.
" Onhandlers. R
Attach and detach

Accessing cScript properties
Using getters :
Using setters

Adding menu items and buttons to the IDE . .
MENUHOOK functions.
assign_to_view_menu.
remove_view_menu_item.
define_ button.

Chapter 5
Keywords and functions

AITAY . v v v i e

..................

call. e

from........ e

import. FS
initialized,
iterate
load

MEW . ¢t v vttt et e 5-17
of ... 5-18
O, . ottt it e i e e 5-18
Pass. . v v o 5-19
print 5-20

reload. oL Lo 5-20 -
return.o 5-20
TUN . b v e e e e e e e 5-21
select. L 5-21

selection 5-22
SUPET . . . v v i e 5-23
switch 5-24
this 5-25
typeid. 5-26
unload oo o 5-27
while. 5-27
with. L o 5-28
yield oo 5-29

~Chapter 6 :

Operators 6-1
Operatorprecedence 6-2
Binary operators 6-2
Arithmeticoperators 6-3
Assignment operators 6-4
Bitwise operators L. 6-5
Comma (,) punctuator and operator 6-6
Conditional (?:) operator. 6-6
Logicaloperators 6-7
Referenceoperator 6-7
Relational operators e 6-8
Enclosing operators. 6-9
Array subscript ([]) operator 6-9
OLE index ([[]]) operator. 6-9
Parentheses () operator. 6-10
Object-oriented operators 6-10
Closure (:>)operator 6-11
Member (.) selector operator. 6-12
In(??)operator., 6-12
Unaryoperators. 6-13

Increment and decrement operators 6-13 .
Plus and minus operators 6-14
Multiplicative operators 6-14
Punctuators 615
Braces ({ }) punctuator 6-15
Semicolon (;) punctuator 6-16
Colon (:) punctuator. 6-16
Equal sign (=) punctuator 6-16
6-17

Pound sign (#) operator.

Ivaluesandrvalues 6-17
lvalues. 6-17
rvalues. e 6-17

Chapter 7

Preprocessor dlrectlves 7-1
#define oL, 7-1
#ifdef, #ifndef, #else, and #endif 7-2
#include. oL 7-3
#undef. oL 7-4
#warn. 7-5
Macros with parameters » 7-6
Part I1I

Class reference

Chapter 8

BufferOptions class 8-1
Properties,, 8-1
Methods. 8-2
Events 8-2

BufferOptions class description 8-2
CreateBackup property 8-2
CursorThroughTabs property 8-2
HorizontalScrollBar property. 8-3
InsertMode property 8-3
LeftGutterWidth property 83
Marginproperty 8-4
OverwriteBlocks property 8-4
PersistentBlocks property. 8-5
PreserveLineEnds property. 8-5
SyntaxHighlight property. 85
TabRack property 8-6
TokenFileName property 8-6
UseTabCharacter property 8-6
VerticalScrollBar property. 8-7
Copymethod. 8-7
Chapter 9

Debugger class 9-1
Properties 9-1
Methods. 9-1
Events, 9-2

Debugger class description. 9-2
HasProcess property. 9-3
AddBreakpointmethod 9-3
AddBreakpointFileLine method 9-3
AddWatchmethod. 9-3

iii

Animatemethod 9-4
Attachmethod 9-4
BreakpointOptions method 9-4
Evaluatemethod 9-5
.EvaluateWindow method 9-5
FindExecutionPoint method. 9-5
Inspectmethod 9-5
InstructionStepIntomethod 9-6
InstructionStepOver method 9-6
IsRunnable method. 9-6
Loadmethod 9-7
PauseProgrammethod 9-7
Resetmethod 9-7
Runmethod. 9-7
RunToAddressmethod. 9-8
RunToFileLine method 9-8
StatementStepInto method. 9-8
StatementStepOver method 9-9
TerminateProgram method 9-9
ToggleBreakpoint method 9-9
ViewBreakpointmethod 9-9
ViewCallStack method 9-10
ViewCpumethod, 9-10
ViewCpuFileLine method 9-10
ViewProcessmethod 9-11
ViewWatchmethod. 9-11
DebugeeAboutToRunevent. 9-11
DebugeeCreatedevent. 9-11
DebugeeStopped event. 9-12
DebugeeTerminatedevent. 9-12
Chapter 10
EditBlock class 10-1
Properties. 10-1
Methods 10-1
Events. 10-2
EditBlock class description. 10-2
IsValid property. 10-3
EndingColumn property. 10-3
EndingRow property. 10-3
Hideproperty 10-3
Sizeproperty 10-3
StartingColumn property 10-4
StartingRow property 10-4
Styleproperty 10-4
Textproperty 10-5
Beginmethod, 10-5
Copymethod 10-5
Cutmethod 10-5

Deletemethod 10-6
Endmethod. 10-6
Extendmethod. 10-6
ExtendPageDownmethod 10-6
.ExtendPageUpmethod 10-7
" ExtendRealmethod 10-7
ExtendRelativemethod 10-7
Indentmethod 10-8
LowerCasemethod 10-8
Printmethod 10-8
Resetmethod. 10-8
Restoremethod. 10-9
Savemethod 10-9
SaveToFilemethod. 10-9
ToggleCasemethod 10-9
UpperCasemethod 10-10
Chapter 11
EditBuffer class 11-1
Properties 11-1
Methods. 11-2
Events 11-2
EditBuffer class description. 11-2
Block property 11-3
CurrentDate property 11-3
Directory property. 11-4
Driveproperty 11-4
Extensionproperty. 11-4
FileName property. 11-4
FullName property 11-4
InitialDate property 11-5
IsModified property 11-5
IsPrivate property 11-5
IsReadOnly property 11-5
IsValid property 11-6
Position property. L. 11-6
TopView property 11-6
ApplyStylemethod 11-6
BlockCreatemethod 11-6
Describemethod 11-7
Destroymethod 11-7
NextBuffermethod 11-7
NextViewmethod 11-7
PositionCreatemethod 11-8
Printmethod 11-8
PriorBuffermethod 11-8
Renamemethod 11-9
Savemethod 11-9
AttemptToModifyReadOnlyBuffer event11-9

iv

AttemptToWriteReadOnlyFileevent 11-9
HasBeenModifiedevent 11-10
Chapter 12
Editgptions class 121
Properties. e e e e 12-1
Methods 12-1
Events. w1241
EditOptions class description 12-2
BackupPath property. 12-2
BlockIndent property. 12-2
BufferOptions property 12-2
MirrorPath property 12-3
OriginalPath property 12-3
SyntaxHighlightTypes property. 12-3
UseBRIEFCursorShapes property. 12-4
UseBRIEFRegularExpression property 12-4
Chapter 13
EditPosition class 13-1
Properties. 13-1
Methods 13-1
Events. 13-2
EditPosition class description 13-2
Character property 13-3
Columnproperty 13-3
IsSpecialCharacter property 13-3
IsWhiteSpace property 13-3
IsWordCharacter property. 13-4
LastRow property. 13-4
Rowproperty 13-4
SearchOptions property 13-4
Alignmethod 13-4
BackspaceDelete method. 13-5
Deletemethod. 13-6
DistanceToTab method 13-6
GotoLinemethod 13-6
InsertBlockmethod. 13-7
InsertCharacter method 13-7
InsertFilemethod 13-7
InsertScrapmethod. 13-7
InsertTextmethod. 13-7
Movemethod 13-8
MoveBOL method 13-8
MoveCursormethod 13-9
MoveEOFmethod 13-9
MoveEOL method 13-10
MoveRealmethod 13-10
MoveRelative method 13-11

Readmethod 13-11
Replace method 13-11
ReplaceAgainmethod. 13-12
Restore method. I 13-12 -
RipTextmethod 13-13
Savemethod e 13-13
Searchmethod 13-14
SearchAgainmethod - 13-14
Tabmethod. 13-15
Chapter 14
Edit&yle class 141
Properties, L1441
Methods. 14-1
Events 14-1
EditStyle class description 14-1
EditMode property 14-2
Identifier property. 14-2
Name property. 14-2
Chapter 15
EditView class 15-1
Properties O 15-1
Methods. 15-2
Events 15-2
EditView class description 15-2
Block property 15-3
BottomRow property15-3
Buffer property. o L. 15-3
Identifier property 15-3
IsValidproperty 15-3
IsZoomed property e 15-4
LastEditColumn property. 15-4
LastEditRow property. 15-4
LeftColumn property R 15-4
Nextproperty 15-5
Positionproperty. 15-5.
Prior property 15-5
RightColumn property :15-5
TopRow property 15-5
Window property - J 15-6
Attachmethod e 15-6
BookmarkGotomethod 15-6
BookmarkRecord method. 15-6-
Centermethod 15-7
MoveCursorToView method 15-7
MoveViewToCursor method 15-8
PageDownmethod 15-8

PageUp method e 15-8

Paintmethod 15-8

Scrollmethod 15-8
SetTopLeftmethod 15-9
Chapter 16
EditWindow class 16-1
Properties. 16-1
Methods 16-1
Events. 16-2
EditWindow class description. 16-2
Identifier property 16-2
IsHidden property 16-2
IsValid property. L 16-3
Nextproperty 16-3
Priorproperty. 16-3
Titleproperty, .. 16-3
Viewproperty. 16-3
Activatemethod 16-4
Closemethod 16-4
Paint method e e 16-4
ViewActivate method e 16-4
ViewCreate method. 16-5
ViewDeletemethod. 16-5
“ViewExistsmethod 16-5
ViewSlidemethod 16-6
Chapter 17
Editor class 17-1
Properties. e e 17-1
Methods 17-1
Events. 17-2
Editor class description. 17-2
Manipulating the Editor 17-3
FirstStyleproperty 17-3
Optionsproperty 17-3
SearchOptions property 17-4
TopBuffer property 17-4
TopView property. oo v .. 17-4
ApplyStylemethod. 17-4
BufferListmethod. 17-5
BufferOptionsCreate method e 17-5
BufferRedomethod. 17-5 -
BufferUndomethod 17-5
EditBufferCreate method. 17-6
EditOptionsCreate method 17-6
EditStyleCreate method 17-6
EditWindowCreate method 17-7
GetClipboard method 177
GetClipboardToken method. 17-7

GetWindowmethod.
IsFileLoaded method
StyleGetNext method P
"ViewRedomethod
ViewUndomethod.
BufferCreatedevent L
MouseBlockCreated event
~ MouseLeftDownevent e
MouseLeftUp event PO
MouseTipRequested event
OptionsChangedevent
OptionsChanging event.
ViewActivatedevent
ViewCreatedevent.
ViewDestroyedevent

Chapter 18
IDEApplication class

Properties
Methods.
v Events
IDEApplication class description
IDEApplication function groups
Application property
Caption property.
CurrentDirectory property
CurrentProjectNode property
DefaultFilePath property
Editor property.
FullName property
Heightproperty
IdleTime property
IdleTimeout property
LoadTime property
KeyboardAssignmentFile property
KeyboardManager property
Leftproperty
ModuleName property
Name property.
Parent property P
RaiseDialogCreatedEvent property
StatusBar property.

Topproperty
UseCurrentWindowForSourceTracking

property. L
Version property
Visible property
Width property.
AddToCreditsmethod.

CloseWindow method 18-13
DebugAddBreakpoint method 18-13
DebugAddWatch method 18-13
DebugAnimate method 18-13
DebugAttachmethod. 18-14
DebugBreakpointOptions method 1814
DebugEvaluate method 18-14
Debuglnspectmethod 18-15
DebuglnstructionStepInto method 18-15
DebuglnstructionStepOver method 18-15
Debugload method 18-15
DebugPauseProcess method. 18-16
DebugResetThisProcess method 18-16
DebugRunmethod 18-16
DebugRunTo method. e 18-16
‘DebugSourceAtExecutionPoint method . . . 18-17
DebugStatementStepInto method. 18-17
DebugStatementStepOver method 18-18
DebugTerminateProcess method 18-18
DirectionDialog method 18-18
DirectoryDialog method 18-18
DisplayCredits method. 18-19
DoFileOpenmethod 18-19
EditBufferList method 18-19
EditCopy method 18-20
EditCutmethod. 18-20
EditPaste method A 18-21
EditRedomethod 18-21
EditSelectAll method 18-21
EditUndo method. W e e 18-22
EndWaitCursor method 18-22
EnterContextHelpMode method 18-22
ExpandWindow method 18-23
FileClosemethod 18-23
FileDialog method 18-23
FileExitmethod 18-23
FileNewmethod 18-24
FileOpenmethod 18-24
FilePrint method 18-25
FilePrinterSetup method 18-25
FileSave method. 18-26
FileSaveAll method. 18-26
FileSaveAsmethod 18-26
FileSend method 18-27
GetRegionBottom method 18-27
GetRegionLeft method 1828
GetRegionRight method . ~. -18-28
GetRegionTop method e 18-29

GetWindowStatemethod 18-29

vi

StopBackgroundTask method
Toolmethod
Undomethod
ViewActivatemethod
ViewBreakpoint method e
ViewCallStackmethod
ViewClassesmethod
ViewClassExpert method
ViewCpumethod
ViewGlobalsmethod
ViewMessagemethod
ViewProcessmethod
ViewSlidemethod
ViewProject method
ViewWatchmethod.
WindowArrangelcons method
WindowCascademethod
WindowCloseAllmethod
WindowMinimizeAll method
WindowRestoreAllmethod
WindowTileHorizontal method
WindowTileVertical method.
YesNoDialog method. e
BuildCompleteevent.
BuildStartedevent
DialogCreatedevent
Exitingevent.
HelpRequested event.
Idleevent
Keyboard AssignmentsChanging event . . .
KeyboardAssignmentsChanged event
MakeCompleteevent.
MakeStarted event
ProjectClosed event.

- ProjectOpenedevent

SecondElapsedevent.

“Startedevent.

Helpmethod 18-29
HelpAbout method 18-30
HelpContents method. 18-30
HelpKeyboard method 18-30
HelpKeywordSearch method. 18-31
HelpOWLAPImethod 18-31
* HelpUsingHelp method. S 18-31
HelpWindowsAPI method 18-31
KeyPressDialog method. 18-32
ListDialog method 18-32
Menumethod 18-32
Messagemethod 18-32
MessageCreate method 18-33
NextWindow method 18-34
OptionsEnvironment method 18-34
OptionsProject method 18-34
OptionsSavemethod 18-35
OptionsStyleSheets method. 18-35
OptionsTools method FEP 18-35
ProjectAppExpert method 18-35
ProjectBuildAll method 18-36
ProjectCloseProject method. 18-36
ProjectCompile method 18-36
ProjectGenerateMakefile method 18-37
ProjectMakeAll method 18-37
ProjectManagerInitialize method . . ., . . .18-38
ProjectNewProject method 18-38
ProjectNewTarget method 18-38
ProjectOpenProject method. 18-40
Quitmethod 18-40
SaveMessages method. 18-40
ScriptCommands method. 1841
ScriptCompileFile method 18-41
ScriptModules method 18-41
ScriptRunmethod, 18-42
ScriptRunFile method 18-42
SearchBrowseSymbol method 18-42
SearchFind method 18-43
SearchLocateSymbol method. 18-43 -
SearchNextMessage method 18-43
SearchPreviousMessage method 18-44
SearchReplace method 18-44
SearchSearchAgain method. 1844
SetRegionmethod 18-45
SetWindowState method 18-46
SimpleDialog method 18-46
SpeedMenumethod, 18-46
StartWaitCursor method 18-46
StatusBarDialog method 18-47

SubsytemActivatedevent
TransferOutputExistsevent
TranslateCompleteevent.

Chapter 19
Keyboard class

Properties.
Methods
Events. SN
Keyboard class description
Assignments property I
DefaultAssignment property

Assign method

................... 19-2
AssignTypeablesmethod 19-4
Copymethod. 19-4
CountAssignments method. 19-5
GetCommand method. 19-5
GetKeySequencemethod 19-5
HasUniqueMapping method. 19-5
Unassignmethod 19-6
Chapter 20
KeyboardManager class 201

Properties 20-1
Methods. 20-1
Events 20-2
KeyboardManager class description. 20-2
AreKeysWaiting property. 20-3
CurrentPlayback property 20-3
CurrentRecord property.20-3
KeyboardFlags property 20-3
KeysProcessed property. 20-4
LastKeyProcessed property. 20-4
Recording property 20-4
ScriptAbortKey property 20-4
CodeToKeymethod 20-5
Flushmethod. 20-5
GetKeyboard method 20-5
KeyToCodemethod 20-6
PausePlayback method 20-6
Playbackmethod. 20-6
Popmethod. 20-7
ProcessKeyboardA531gnments method 20-7
ProcessPendingKeystrokes method 20-8
Pushmethod 20-8
ReadCharmethod 20-8
ResumePlayback method 20-9
ResumeRecord method 20-9
SendKeysmethod 20-9
StartRecordmethod 20-12
StopRecordmethod 20-12
Chapter 21
ListWindow class 211
Properties, 211
Methods. 21-2
Events 21-2
ListWindow class description 21-2
Captionproperty. 21-3
Countproperty. 21-3
CurrentIndex property 21-3

Data property

................... 21-3
Heightproperty. 21-3
Hiddenproperty 21-4
MultiSelect property 21-4
Sorted property 21-4
Widthproperty 21-4
Addmethod. 21-4
Clearmethod 21-5
Closemethod 21-5
Executemethod. 21-5
FindString method . . & 21-5
GetStringmethod 21-6
Insertmethod 21-6
Removemethod. 0. 21-6
Acceptevent. 21-6
Cancelevent. 21-7
Closedevent. 21-7
Deleteevent. 21-7
KeyPressedevent. 21-7
LeftClickevent 21-7
Moveevent 21-8
RightClickevent 21-8
Chapter 22

PopupMenu class 221
Properties. 22-1
Methods 22-1
Events. 22-1

PopupMenu class description. 22-2
Dataproperty 22-2
Appendmethod. 22-2
FindStringmethod 22-2
GetStringmethod 222
Removemethod. 22-3
Trackmethod 22-3
Chapter 23
ProjectNode class 231
Properties. 23-1
Methods 23-2
Events. 23-2
ProjectNode class description 23-2
ChildNodes property. 23-2
IncludePath property. 23-3
InputName property 23-3
IsValid property. S 23-3
LibraryPath property. 23-3
Namevproperty 23-3
OutOfDate property 23-4

OutputName property 23-4

SourcePath property. 23-4

Typeproperty 23-4

Addmethod 23-5

Buildmethod. 23-5

Makemethod. 23-5

MakePreview method 23-5

Removemethod, 23-6

Translate method. 23-6

Builtevent, 23-6

Madeevent. 23-7

Translatedevent 23-7

Chapter 24

Record class 24-1

Properties 24-1
Methods. 24-1
Events 24-1

Record class description. 24-2

IsPaused property 24-2

IsRecording property 24-2

KeyCountproperty 24-2

Name property. 24-2

Appendmethod 24-3

GetCommand method. 24-3

GetKeyCodemethod 24-3

Nextmethod 24-4

Chapter 25 .

ScriptEngine class 251
Properties 25-1
Methods. 25-1
Events 25-2

ScriptEngine class description 25-2

AppendToLog property. 25-2

DiagnosticMessageMask property. 25-3

DiagnosticMessages property 25-3

LogFileName property 25-3

Logging property 25-3

ScriptPath property 25-4

StartupDirectory property 25-4

Executemethod 25-4

IsAClassmethod. 25-5

IsAFunctionmethod. 25-5

IsAMethod method 25-5

IsAProperty method. 25-5

IsLoadedmethod 25-6

Loadmethod 25-6

Modulesmethod. 25-6

' RegularExpression property

ix

Reset method
SymbolLoad method
Unload method
Loaded event
Unloaded event

Chapter 26
SearchOptions class

Properties.
Methods '
Events. e e
SearchOptions class description.
CaseSensitive property
FromCursor property.
GoForward property
PromptOnReplace property

ReplaceAll property

ReplaceText property
SearchReplaceText property
SearchText property
WholeFile property
WordBoundary property
Copy method

Chapter 27
StackFrame class

Properties.
Methods
"Events. [
StackFrame class description
ArgActual property
ArgPadding property.
Caller property
IsValid property
IngType method
GetParm method
SetParm method

Chapter 28

String class
Properties. e
Methods
Events.

String class description

Character property

Integer property

IsAlphaNumeric property

Length property

Text property 28-3

Compressmethod 28-3
Contains method. B 28-4
Indexmethod. 28-4
Lowermethod e 28-5
SubStringmethod 28-5
Trimmethod 28-5
Uppermethod 28-5
Chapter 29
TimeStamp class 29-1
Properties P 29-1
Methods. 29-1
Events. 29-2
Day property.. . . . i e 29-2
Hour propertyovvv e .. 29-2
Hundredth property. S 29-2
"Millisecond property 29-2

Minute property 29-2

Monthproperty, 29-3
Second Property. 29-3
Yearproperty 29-3
Compare method B 29-3
DayName method 294
MonthName method e 29-4
Chapter 30
TransferOutput class 30-1
Properties. 30-1
Methods 30-1
Events. e e e 30-1
TransferOutput class description 30-1
Messageld property 30-2
Provider property. PN 30-2
ReadLinemethod 30-2
Index , -1

1.1
2.1
2.2
23
24
25
26
27
2.8
29
2.10
211
212
2.13

- Tables

Typefaces and symbols in this manual . . 1-2
Scripting commands. 2-2
Script management examples 2-7
Editingexamples 2-7
Coding examples 2-7
Debugging examples 2-8
Project management examples. 2-8
Miscellaneous examples 2-8
Support classes and routines 2-9
Demonstration examples 2-9
Script Directory window 2-10
Script Directory SpeedMenu 2-10
Scriptingoptions. 2-10
Script Breakpoint Tool options 2-15

xi

4.1 Built-infunctions 4-9
6.1 Operator precedence. 6-2
6.2 Binaryoperators 6-2
6.3 Arithmeticoperators. 6-4
6.4 Bitwiseoperators. 6-5
6.5 Logicaloperators. 6-7
6.6 Relational operators 6-8
6.7 Enclosing operators. 6-9
6.8 Object-oriented operators 6-10 .
6.9 Unaryoperators. 6-13
6.10 Multiplicative operators 6-14
6.11 Punctuators 6-15
18.1 IDEApplication function groups 18-7

Chapter

Introduction

ObjectScripting allows you to programmatically customize the Borland C++
‘integrated development environment (IDE) using built-in classes and a scripting
language called cScript, a language much like C++. This manual explains the cScript
language and describes how to write scripts, load them, and run them.

What’s in this book

The ObjectScripting Programmer’s Guide is organized into three parts:

Part I, “User’s guide,” introduces ObjectScripting and includes task-oriented
information on writing, running, loading, and debugging script files. It includes a
quick tutorial to help you become familiar with writing and running scripts.

Part II, “Language reference,” explains the basics of the cScript language and
includes information on keywords and functions, operators, and preprocessor
directives.

Part ITI, “Class reference,” provides reference material on the built-in cScript classes
you use in a script file to customize the IDE.

Introduction 1-1

Manual conventions

Manual conventions

This manual uses the typefaces and symbols described in Table 1.1 to indicate special

text.

Table1.1 Typefaces and symbols in this manual

Monospace type

[1

Boldface
Italics

Meamng

Monospaced text represents text as 1t appears on screen or in code. It also
represents anything you must type.

Square brackets in text or syntax listings enclose optional items. If using
the optional item, do not type the brackets.

Boldfaced words in text represent reserved words.

Italicized words in text represent identifiers, such as variables,
components, properties, methods, and events.

Software registration and technical support

The Borland Assist program offers a range of technical support plans to fit the
diverse needs of individuals, consultants, large corporations, and developers. To
receive help with this product, return the registration card and select the Borland
Assist plan that best suits your needs. North American customers can register by
phone 24 hours a day at 1-800-845-0147. For additional details on these and other
Borland services, see the Borland Assist Support and Services Guide included with this

product.

1—'2 ObjectScripting Programmer’s Guide

ser’s guide

User’s guide

ObjectScripting overview

With ObjectScripting, you can customize the Borland C++ IDE
programatically using built-in classes and a scripting language called cScript,
a language much like C++. cScript supports classes, late binding, object-
specific method overriding, and dynamic variable typing. Using cScript
requires C++ or other object-oriented language experience.

Through an object called IDEApplication, which is instantiated when Borland
C++ first starts up, you can access most parts of the IDE, including the
Editor, the debugger, the keyboard, and the Project Manager. You can
customize them to suit you, as well as add your own new features. -

About running a script

By convention, the source files for scripts have the extension .SPP. When you
load a script for the first time, it is compiled into an interpreted tokenized
format called pcode. By default, the tokenized file is created with the same
name using the extension .SPX in the same directory as the script. The header
in the .SPX file contains the original name of the file from which it was
generated (the .SPP file) and the date/time stamp of the .SPP file when it was
generated. Before executing a .SPP file, the dates are compared to ensure the
source file has not changed. If it has, the. SPX file is regenerated.

If the script affects the display (for example, it contains print statements),
you see something onscreen immediately. If you define new behavior for the
IDE, you will see that behavior when you use that part of the IDE. The script
remains loaded until you unload it. ‘

ObjectScripting overview 2-1

About script loading

You can use the following commands to run scripts:

Table2.1 Scripting commands

Y’S:crlp

P
which you enter a single script command. Executing a single script
statement is useful when you are developing and testing a script.

Script | Compile - Compiles the file in the active Edit window. If the compile is
.successful, the script is loaded into the IDE and runs.

Script [IRun File ~ Compiles, loads, and runs the file in the active Edit window. Use
Script | Run File if your script contains a breakpoint statement,

Use Script | Commands to open the Script Commands dialog box which
displays a list of the available script commands and variables, including
classes, functions, and global objects. If an object is an instance of a Class, its
properties and methods are also displayed.

To run a script command,

1 Double-click a command from the list.
2 Enter the argument, if any, next to the selected command.
3 Click Run.

About script loading

You can load a script in any of the following ways:

* Choose the Script | Modules command. In the Script Modules dialog box,
choose the module, or script, you want to load. Click Load. All loaded
modules and all modules on your script path are listed in the Script

- Modules dialog box.

* Enter the name of the script in the Startup Scripts field in the Scripting
. Options dialog box. For example, enter test. To specify multiple scripts,
separate script names with spaces.

* Specify a script on the BCW command line with the -s switch. The script is
loaded after the complete processing of scripts specified in Scripting
Options dialog box.

¢ Script names require no quotat1on marks.

¢ If you include script parameters, put the script name and parameters in
quotation marks, or put the parameters in parentheses.

¢ To pass string parameters, enclose the strings in backslash-quotation
combinations.

¢ To start multiple scripts, use the -s parameter for each script.

2-2 ObjectScripting Program‘mer’s Guide

About script initialization

* Modify the source code of STARTUP.SPP (or any of the files that it loads).
Note that when you update to a new version of Borland Ci+, you need to
redo the changes to STARTUP.SPP.

¢ Create a script called PERSONAL.SPP in the Script directory. This script
is automatically loaded after STARTUP.SPP finishes processing.
PERSONAL.SPP can load other scripts, allowing multiple scripts to be
loaded whenever the IDE starts. Using PERSONAL.SPP protects your
script from being overwritten by new releases of Borland C++.

Note To run aloaded script that has either an _init() function or a function with
the same name as the script, choose the function name from the Script
Commands dialog box.

Example //Starts three scripts from the BCW command line using the
//-s switch.
//Script3 shows how to start a script from the command line
//with optional parameters. Note that the script name and
//parameters are in quotation marks.
bew -sScriptl -sScript2 -s"Script3 Paraml Param2"

//MyScript shows how to pass string parameters using
//backslash-quotation combinations.
bew -sMyScript (\"string\", \"string\")

The advantage to starting the script from the command line is that the script
will not be affected whenever you update to a new version of Borland C++.

Example //Starts three scripts - "test", "MyScript" and "bar" -
//from the Startup Scripts field of the Scripting
//Options dialog box. .
test MyScript bar

The advantage of loading a script from the Startup Scripts field of the
Scripting Options dialog box is that script names can be shared by multiple
Borland C++ users. Since a script’s path is stored as part of the .SPX file, the
script directory must be mapped to the same path for all users using the
script. :

However, every time you install a new version of Borland C++ you have to
reenter script names.

About script initialization

When you load a module into the IDE, script initialization takes place as
follows: global commands are processed first, followed by the _init()
function, if one exists. If an autocall function exists, it is processed last.

ObjectScripting overview 2-3

About script function referencing

Example

Initialization is the order in which script commands and functions are
processed.

G P nds not in a function block.

_init() function . If a module contains an _init() function, it runs automatically,

' immediately after the global commands. If a series of scripts are
loaded at the same time, first all the _init() functions are

processed (left to right).

Autocall function If a module contains a function with the same name as the file in
which it resides (an autocall function), it will execute
automatically, immediately after the global commands and the
_init() function (if any).

The script initialization process lets you implement functionality without
changing the STARTUP script, the IDE command line, or the Borland C++
configuration files.

Assume you have written a script called HELLO.SPP that contains a function
called hello declared as follows:

hello()

{
print "Hello World";
}

When you load the script HELLO.SPP for the first time, the message Hello
world displays in the Script page of the Message window and the hello()
function stays in memory. If you subsequently choose Script| Run and type
hello() in the Script Run window and press Enter, the script processor calls
the function hello() which displays Hello World in the Message window.

About script function referencing

When a function is referenced in a script, it is processed as follows:

1 Allloaded modules (scripts) are searched for a matching function name.
Searches are case sensitive (Test is not the same as test). The search starts
with the module most recently loaded. If unsuccessful, the search
continues to the next most recently loaded module.

2 If found, the function executes. If the function exists in more than one
loaded module, the function located in the most recently loaded module is
executed and other instances are ignored.

3 If the function is not found, the IDE checks an internal table constructed

by calls to ScriptEngine.SymbolLoad. This table contains a list of scripts and
the predefined symbols they contain. If the function is found in the table,
the associated module is loaded into the IDE and the script runs.

2-4 ObjectScripting Prografn_mer’s Guide

About scrip"t debugging

4 If no matching function is found, the IDE searches the script path defined
in the Scripting Options dialog box for a script file name that matches the
function name.

¢ If a matching script file name is found, it is loaded into the IDE and the
_script runs.

¢ If no matching script file name is found, the IDE displays a message in
the Script page of the Message window indicating that the function was
not found.

Note After the module is loaded, a second search for a function may be successful
when the first search was not. For example, assume that a script file is found
in the symbol table and gets loaded as a result of a function reference. The
first search does not find the function, so the function does not execute. After
the module is loaded, however, a second search finds the function in
memory and it executes.

About script debugging

You can debug scripts using one of the following techniques:

Built-in diagnostics

The breakpoint statement
The print statement

The Script | Run command

Built-in diagnosticé

To force the cScripting environment to provide diagnostic messages and stop
at breakpoints, you need to set the Scripting options Stop at Breakpoint and
Diagnostic Messages. Stop at Breakpoint halts execution of a script at a
breakpoint statement. Diagnostic Messages displays messages in the Script
page of the Message window. For information on setting Scripting options,
see “Setting scripting options” on page 2-10.

The breakpoint statement

When you enter a breakpoint statement into your script and the Scripting
option Stop at Breakpoint is on, script execution halts and the Script
Breakpoint Tool is displayed. The Script Breakpoint Tool allows:

* Stepping over or into function calls
* Evaluation of the values of expressions or script variables

ObjectScripting overview 2-5

About example scripts

The print statement

Use the print statement to display a value. Output from a print statement is
displayed in the Script page of the Message window. Printed messages are

- placed into a queue which, when time allows, is moved into the view.

The ScriptlRun command

The Script | Run command opens the Script Run window at the bottom of the
IDE desktop, into which you can enter a single script command. The results
of the command are immediately displayed in the IDE, making results
immediately available.

About example scripts

Example scripts

Choose Script | Install/ Uninstall Examples to load all examples in the BC5\
SCRIPT\EXAMPLES directory. This command loads:

¢ All example scripts and makes them available in the Script Commands
dialog box '

e The Script Manager, a script that helps you work with the example scripts

To unload example scripts or the Script Manager, choose Script | Install /
Uninstall Examples again and restart BCW.

Once the example scripts are loaded, choose the menu item Example Scripts
to see a list of all example scripts. Choose the Example Scripts | Script
Directory command to display the Script Directory window, where you can
load, edit, and unload an example script, as well as edit the Script Manager
data file.

The script examples directory contains the following types of scripts and
script applets:

Script management Editing
Coding S Debugging
Project management Miscellaneous
Support classes and routines Demonstration

2-6 ObjectScripting Programmer’s Guide

Table 2.2 Script management examples

Script
LOADLAST SPP

SPPMAN.SPP

TEST.SPP

About example scripts

Descrlptlon

Load Last Scrlpt Loads the last-loaded scrlpt Useful for -
frequently reloading a script under development (before it is
assigned to a hot key, menu, or some other quick trigger).

Script Manager. Allows you to specify scripts for autoloading.
Adds scripts to IDE menus. Displays the Script Directory window.

Test Harness. A template for inserting test code.

Table 2.3 Editing examples

lptlon &

ALIGNEQ.SPP

APIEXP.SPP

COMMENT.SPP

EDITSIZE.SPP
EDONLY.SPP

SHIFTBLK.SPP
SRCHALL.SPP
TEMPLATE.SPP

' ‘:Ahgn at Equals Ahgns a block of ass1gnments by p051t10n1ng the

equals operators one space after the longest lvalue in the current
block.

API Expander. Expands current word in editor to the matching
Windows API or C RTL signiture. Provides selection list if seed
string has multiple matches. If the match is an RTL member, API
Expander indicates if the corresponding header file needs to be
added to the source file.

Commenter. Comments the selected block, or removes the
comment if the lines are already commented.

Editor Size. Allows easy customization of Edit window size and
position without changing default values in STARTUP.SPP.
CONEFIG.SPP provides a different but more comprehensive
approach to positioning IDE windows.

Edit Only. Temporarily shows only those lines in the current buffer
that contain a specified string. Useful for seeing how an identifier is
being used, making changes without searching and replacing,
isolating strings for spell-checking, etc.

Shift Block. Shifts the current block right or left a column at a time.
Search AlL Searches and replaces across files in the current project.

BRIEF Template Support. Causes the IDE to use BRIEF template
support. This support is used in all editor emulation.

Table 24 Coding examples

CODELIB.SPP

FILEINSR.SPP
FINDTABS.SPP

Code Library. Displays libraries of code snippets you can insert in
the current buffer. You can also edit code library data files, and
create library entries from selected text. You can create as many
code libraries as you want.

File Insert. Inserts a file into the current buffer.

Find Tabs. Searches all .C, .H, .CPP, .HPP, and .SPP files in the
specified directory and reports all lines that have at least one tab
character to the message database. Double-click a message to edit
the referenced file. Useful for coding styles that don’t use tab
characters.

ObjectScripting overview 2-7

About example scripts

Table24 Coding examples (continued)

LONGLINE.SPP Long Line Finder. Searches all .C, .H, .CPP, .HPP, and .SPP files in
the specified directory and reports all lines that are longer than a
given threshold value to the message database. Double-click a

- message to edit the referenced file.

OPENHDR.SPP Open Header. Opens the .H or .HPP file corresponding to the
current source file. Optionally creates a header file if one does not
exist.

REVISIT.SPP Code Revisit Tool. Quickly lists occurrences of a configurable
“revisit this code” marker in all files in the specified directory.

\

Table 2. 5 Debugging examples
Scnpt e

EVALTIPSSPP Evaluation Tips. When the debugger has a process loaded, evaluates "
the item under the cursor and displays the result in a mouse tip.

VIEWLOCS.SPP View Locals. Inspects local variables if the debugger has a process.

Table 2.6 Pro;ect management examples

Seript ,»Descnptton i e B
LOADPROJ.SPP Load Project. Opens the last pro;ect on startup

PRJNOTES.SPP Project Notes. For new projects, creates a notes text file in the
project directory and adds it to the project.

Table2.7 Miscellaneous examples

Script va Description

AUTOSAVE. SPP ~ Autosave. Saves ﬁles, env1r0nment desktop, pro]ect and/ or
messages at the specified interval.

- CONFIG.SPP Configure Windows. Resizes and pGSitions IDE windows as they
are created. Also maps keys in the default and classic keyboards
for buffer manipulation.

DIRTOOL.SPP Directory Tool. Creates a new tool called Directory Listing, which
takes a file specification and generates a directory listing in the
Message window.

DIRVIEW.SPP File Maintenance. Displays a directory listing and loads the
following commands:

Command Description

Backspace Backs up one directory

Delete Deletes selected file or directory

Enter Changes to selected directory or opens selected file
Insert Creates a new file in the current directory

Escape Exits the directory listing.

To make these commands the default, add the following to
STARTUP.SPP:

scriptEngine.Load("dirview”);

2-8 ObjectScripting Programmer’s Guide

Note

About example scripts

Table 27 Miscellaneous examples (continued)
Fast Open. Opens files and projects based on a search path, 50 you
don’t have to navigate directories.

KEYASSGN.SPP Key Assignments. Shows what commands are assigned to a given
key sequence. ‘ ‘

NETHELP.SPP Internet Help. Opens an URL with Netscape Navigator by
selecting from a list of programming pages, FTP sites, and

Script
FASTOPEN.SPP

Newsgroups.
SOUND.SPP Sound Enabler. Plays WAYV files on specified IDE events, such as -
Build Failure. '
Table 2.8 Support classes and routines
SepE

FILESPP File Classes. Includes configuration file management.

FOREACH.SPP For Each. Calls a function for all the nodes of the given type in a
project. v

MSG.SPP Message Class. Provides methods to simplify and standardize user
messages. Message captions automatically indicate the calling
module.

MISC.SPP . Miscellaneous. Miscellaneous script.

SORT.SPP Sort. Quick sorting routines.

Table 2.9 Demonstration examples

’AUTO.SPP Automation. Demonstrates the IDE as an OLE automation controller

and server. .
CRTL.SPP CRTL. Demonstrates script access to the CRTL by writing to a file.

INTNATL.SPP International. Demonstrates the use of FormatString for localization
of strings in scripts.

MODLIST.SPP ~ Module List. Demonstrates how to handle events from other objects
to maintain the contents of a list. Implements some of the
functionality provided by the Script Modules dialog box.

MLIST.SPP Multi-select list window. Demonstrates a simple multiple-selection

_ list window. Also shows how to position a popup window in the list.
LIST.SPP List Window. Demonstrates a simple sorted list window.
POPUP.SPP SpeedMenu. Demonstrates a simple SpeedMenu.

Script Directory window

To display the Script Directory window, choose Example Scripts | Script
Directory.

To display the Example Scripts menu bar item, choose Script | Install /
Uninstall Examples.

ObjectScripting overview 29

Setting scripting options

- The Script Directory window consists of four columns of information:

Table 2.10 = Script Directory window

\ ifectoryi .
‘Description A brief description of what the script does.
Autoload Status Indicates whether the scrlpt is automatically loaded when BCW is
o started up.
-Load Status Indicates whether the script is currently loaded.

Click a script to display the Script Directory SpeedMenu. Commands on the
SpeedMenu let you load, edit, and unload script files; edit the Script
Manager script file; cancel the SpeedMenu; and close the directory.

Table 2.11 Script Directory SpeedMenu

‘Load ' Loads the selected script file.
Edit Loads the selected script file into an Edit window.
Unload k "Unloads the selected script file.
Edit Script Manager Data File Loads the Script Manager data file, SPPMAN.DAT, into
an Edit window.
Cancel . Cancels the SpeedMenu.
~ Close Directory Closes the Script Directory window.

Setting scripting options

To set options for the scripting environment,

1 Choose Options | Environment | Scripting. The Scripting Options dlalog
box is displayed.

2 Set the following options:

Table2.12 Scripting options

'L‘Stop at Breakpoint Stops the script when the keyword breakpoint appears.
Loads the script debugger’s Breakpoint Tool.

Diagnostic Messages v Specifies whether or not to display all script processor -
' messages in the Script page of the Message window. By
default, this option is off.

2-10 ObjectScripting Programmer’s Guide

‘ Executing a script statement
Table 2.12 Scripting options (continued)

Startup Scripts Specifies the script to load and execute as part of the IDE
startup procedure. (Borland C++ always tries to load
STARTUP.SPP from the SCRIPT subdirectory or any path
you specify for scripts.) Use spaces to separate multiple
script names. You can specify script parameters by enclosing
the script name and its arguments in quotation marks. For
example,

MyStartup DisplayCurProj "Ascript Paraml®

Script Path Specifies the path to search when loading a script. During a
load, every entry on the path is searched for a file with the
.SPX extension. If that fails, the same directories is searched
a second time for files with the .SPP extension. Starting the
path with .; causes the current directory to be searched first.

Executing a script statement

To execute a script print statement and view it in the Script page of the
Message window,

1 Choose View | Message. Click the SCI'lpt tab to open the Message window
Script page, where the output of all script print statements is directed.

To start with a blank page, delete the existing messages by right clicking
in the Script page and choosing Delete All.

2 Choose Options | Environment | Scripting and click Diagnostic Messages
to send all scripting messages to the Script page.

3 Choose Script | Run. The Script Run window opens at the bottom of the
IDE desktop.

4 Enter the following statement:
print "Hello World";
5 Press Enter.
Hello torld is displayed at the end of the Message window. .

If you made an error entering the statement, error messages appear in the
Script page of the Message window.

Displaying output in a message box

To display output in a message box, instead of in the Script page of the
Message window,

1 Choose Options | Environment | Scripting and click Diagnostic Messages
to send all scripting messages to the Script page.

ObjectScripting ov'erview 2-11

Writing a script

2 Choose Script | Run. The Script Run window opens at the bottom of the

5

IDE desktop.

Enter the following statement:

.

TDE.Message ("Hello World");

The method IDE Application.Message displays output in-a message box
instead of in the Message window.

‘ Press Enter.

Hello Worldis displayed in an information dialog box.

If you made an error entering the statement, error messages appear in the
Script page of the Message window.

Click OK to close the message box.

Writing a script

Scripts are simply ASCII text files. You can use any text editor to write a
script, then save it to a file with an .SPP extension. Header files for scripts
typically have the extension .H. (Header files are used to define constants
and provide for conditional compilation.)

Follow these steps to write a simple script:

1
2

Choose Options | Environment | Scripting.

Add your script directory to the Script Path so the IDE can fmd your
scripts. For example, if your path already contains . ;C:\BC5\SCRIPT, it
would look like this after you add a directory called C:\MYSCRPTS:

.;C:\BCS\SCRIPT;C: \MYSCRPTS

Do not insert any spaces before your path name. Doing so will stop the
search at the previous path.

While you're in the Scripting options dialog box, click Diagnostic
Messages to send scripting error messages and print statement output to
the Script page of the Message window.

Press Enter to exit the Scripting Options dialog box.

Choose View | Message and click the Script tab to open the Message
window Script page.

To start with a blank page, delete the existing méssages by nght clicking
in the Script page and choosing Delete AllL

Choose File | New | Text Edit to open anew file in the IDE editor. Enter the
following script:

2-12 ObjectScripting Programmer’s Guide

Running a script

import IDE;//Use the IDE object and any of its methods
hello() .

{

IDE.Message ("Hello World");

}

7 Choose .File I Save and save the file with an .SPP extension in a directory of

your choice (for example, C:\MYSCRPTS\HELLO.SPP).

Running a script

To run the script you just created,

1

Choose Script | Run File.
Script | Run File complles the script, runs it, and loads it into the IDE.
Hello Worldis displayed in a message box.

If you made an error entering the statement, error messages appear in the
Script page of the Message window. ;

Click OK to close the message box.

Debugging a script

'

To add a debug statement to a file and use the script debugger,

1

Choose View | Message. Click the Script tab to open the Message window
Script page, where the output of all script print statements is directed.

To start with a blank page, delete the existing messages by right clicking

_in the Script page and choosing Delete All.

Choose Options | Environment | Scripting and click Stop at Breakpoint to
stop the script at the breakpoint statement and open the Script Breakpoint
Tool.

Click Diagnostic Messages to send all scripting messages to the Script
page.

Choose File | Open and open the Hello World file.

The file should look like this:

import IDE;//Use the IDE object and any of its methods
hello()

(-

IDE.Message ("Hello World");

} .

ObjectScripting overview 2-13

Debugging a script

5 Embed the keyword breakpoint in your source code before line that starts
with IDE.Message. The file should now look like this:

import IDE;//Use the IDE object and any of its methods
hellof)

{

breakpoint;

IDE.Message ("Hello World");

)

6 Choose File | Save.
7 Choose Script | Run File.
8 The Script Breakpoint Tool is displayed.

¢ Click Step Over to execute the call to IDE -Message without stepping into
and executing it. Note that nothing happens since you are stepping
over the line that displays output. Press Run to run the script to the
end.

s Click Step Into to step into and execute IDE.Message. Hello Word is
displayed in a message box. Press OK to close the message box.

» Click Run to continue full-speed execution of the script until the next
breakpoint statement is encountered, or the script ends.

¢ Click Abort to cancel script execution and close the Script Breakpoint
Tool.

» To immediately execute a line of code, enter the code into the
Statement(s) edit box and click Execute. This lets you test code before
you add it to your script.

Script Bréakpoint Tool

The Script Breakpoint Tool is a script debugging tool that lets you step
through cScript statements and evaluate the values of expressions or script
variables. The Tool is displayed when a breakpoint statement is encountered
in an executing script.

Note To display the Script Breakpoint Tool, the Stop at Breakpoint option in the
Scripting Options dialog must be on.

Script function calls can either be stepped over or into, and the value of any
variable visible within the context of the actively executing script can be "
evaluated. The name of the running script is displayed as well as the next
statement to be executed and its line number.

When the Script Breakpoint Tool is active, output from print statements in
the script itself continue to be sent to the Script page of the Message window.

2-14 ObjectScripting Programmer’s Guide

Unloading a script

However, you can enter a print statement in the Immediate Mode
Statement(s) edit box whose output is displayed in the Output box.

Table 2.13 Script Breakpoint Tool options

ediate Mode ript statement to execute.
Statement(s) Immediate Mode statements are executed in the context of the
active script, as if the statement entered were actually in the
script before the next line of the script about to be executed.
Variables must be within scope in that context to be available for
evaluation. In-scope variables can be both read and their values
changed, although caution must be taken in changing them.

Any function available to script at the time of execution can also
be called, whether a local cScript function, an IDE object method,
or an external library function from an active dynamic library.
Care must be taken to ensure that the method is appropriate in a
given context.

If the statement is a print statement, its output is displayed in the
- Output box. In this way, an Immediate Mode Statement can be
used to inspect the current value of script variables.

Execute Executes the cScript statement in the Immediate Mode
Statement(s) edit box.

Output Displays the results of the statement executed in the Immediate
Mode Statement(s) edit box. Output is displayed only if the
statement is valid or if you have pressed the Execute button.

Run Continues full-speed execution of the script until the next

) breakpoint statement is encountered or the script ends.
Abort Stops script execution and closes the Script Breakpoint Tool.
Step Over When the next executable statement is a call to a cScript function,

executes the function call without stepping into and executing
the function’s statements. ’

Step Into When the next executable statement is a call to a cScript function,
steps into and executes the function’s statements.

Help Displays Help.

Unloading a script

B

Scripts are not unloaded automaitically. To unload a script,
1 Choose Script | Modules.

2 In the Script Modules dialog box, choose the name of the script you want
to unload. '

3 Click Unload.

Scripts can also be unloaded by using unload.

ObjectScripting overview 2-15

Unloading a script
When a script unloads, it looks for a function in the script called ~() (the name of the

function is simply a tilde). If this function is found, it is executed as part of the script
unloading process and acts as a destructor for the script. :

2-16 . ObjectScripting Programmer’s Guide

ObjectScripting tutorial

This tutorial teaches you how to use the cScript language to add menu items to the
Help menu. The tutorial consists of four parts:

Part1 Adds anitem to the Help menu that prints text in the Script page of
the Message window. This part takes approx1rnately 10 minutes to
complete.

Part2 Adds the menu item OWL Help to the Help menu and launches the
OWL Help file when the menu item is selected. This part takes
approximately 10 minutes to complete.

Part3 Adds two new items, ObjectScripting Help and Standard Template
Library Help, to the Help menu using two different methods.
Launches the appropriate Help file when a menu item is selected.
This part takes approximately 15 minutes to complete.

Part4 Adds all of the Borland C++ Help files to the Help menu. Launches
the appropriate Help file when a menu item is selected. This part
takes approximately 20 minutes to complete.

About this tutorial

Each part of this tutorial teaches how to accomplish a unique task, building on
knowledge learned in the previous part(s). It is recommended that you follow the
tutorial from beginning to end. You are not required to complete the tutorial in one
sitting, however. You can choose to complete only one part and return at another
time to complete another part or parts.

Note When entering sample code, type it exactly as shown, noting indentations and curly
braces. Press Enter at the end of each line you add.

ObjectScripting tutorial 3-1

ObjectScriptiﬁg Tutorial: Part 1

ObjectScripting Tutorial: Part 1

This part of the tutorial teaches you how to:

Start the script file (step 1)

Create a local instance of an object (step 2) -
Create a class (step 3)

Load MENUHOOK.SPP (step 4)

Declare a method that adds a menu item (step 5)
Execute the method (step 6)

Run the script file (step 7)

Sample code for Tutorial Part 1

// ObjectScripting example

// Copyright (c) 1996 by Borland International, All Rights Reserved
// STEP1.SPP: Add an item to the Help menu that prints text

// in the Script page of the Message window.

declare ScriptEngine scriptEngine;

class HelpMenu()
{
// Load "MENUHOOK.SPP", necessary for adding menu items.
if(!scriptEngine.IsLoaded ("menuhook.spp"))
{
scriptEngine.Load ("menuhook.spp") ;
}
// Declare a method to add a menu item and execute the associated script.
AddMenu (menu_text, script_text) -
{
assign_to_view_menu("IDE", menu_text, script_text, menu_text);
))
i

// At load time, create a Print Text menu item on the Help menu.
// When Print Text is selected, print "A message from the Help menu!" -
// in the Script page of the Message window.

declare x = new HelpMenu();
x.AddMenu ("&Help|Print Text", "print(\"A message from the Help menu!\")");

Starting the script file Part1, step 10f7

To start a script file in Borland C++,

1 Choose File | New | Text Edit.

2 To name the file, choose File | Save As.

3 In the Save File As dialog box, choose the following directory:
C:\BC5\SCRIPT\EXAMPLES '

3-2 ObjectScripting Programmer’'s Guide

ObjectScripting Tutorial: Part 1

4 In the File Name box, enter the name STEP1. SPP.
5 Click OK.
You have just started a script file called STEP1.SPP.

In the next step, you will start adding code to your script file.

Creating « local instance of an object Part 1, step 2 of 7

- A ScriptEngine object loads, unloads, executes, maintains modules and keeps error
information on scripts. In this step, you will create a local instance of the object.

To create a local instance of a ScriptEngine object,
1 Enter the following text in STEP1.SPP:

declare ScriptEngine scriptEngine;

You have just created a local instance of a ScriptEngine object. Creating the script
engine locally provides slightly better performance than importing the symbol of the
system-wide instance.

In the next step, you will create a class called HelpMenu.

Creating a class __ Part1,step3of7

Use the class keyword to define a cScript class. A class is a collection of properties,
methods, and events that affect the behavior of the IDE.

To create a cScript class,
1 Add the following line to your script file:
c¢lass HelpMenu ()

You have just created a class called HelpMenu. You will use this class in your script
~ file when you add a menu item to the Help menu.

In the next step, you will load the file MENUHOOK.SPP.

Loading MENUHOOK.SPP ~ Part1,step4of7

MENUHOOK.DLL, in the BC5\BIN directory, contains the functionality you need to
add menu items to menus, menu items to SpeedMenus, and buttons to the SpeedBar.
To use this functionality, you need to load the associated script file,
MENUHOOK.SPP.

ObjectScripting tutorial 3-3

ObjectScripting Tutorial: Part 1

When you load MENUHOOK.SPP, the following functions become available:

assign_to_view_menu() Adds a menu item to a menu

remove_view_menu_item() Removes a menu item that was added with
assign_to_view_menu()

define_button() Defines a button that can be added to the SpeedBar

To load MENUHOOK.SPP,
1 Add the following lines to your script file:

{
1f{!scriptEngine.IsLoaded ("menuhook.spp"))
{ !

scriptEngine.Load ("menuhook.spp");

}

The first line uses the if keyword with the ! logical operator and the
ScriptEngine. IsLoaded method to determine if MENUHOOK.SPP has already been
loaded. If it has not been loaded, the ScriptEngine.Load method loads it.

Note Case is important when loading and running script files. For more information,
see “About script initialization” on page 2-3 and “About script function
referencing” on page 2-4. ' ‘

You have just loaded MENUHOOK.SPP.

In the next step, you will declare a method that adds a menu item.

Declaring a method that adds a menu item Part1, step50f7
This step declares a method, AddMenu(), that adds a new menu item to the Help
menu.

To declare AddMenu(),

1 Add the following lines to your script file:

AddMenu (menu_text, script_text)

{
assign_to_view_menu("IDE", menu_text, script_text, menu_text);
) ; :

}i
The first line declares a method called AddMenu() with the parameters menu_text
and script_text. AddMenu() uses assign_to_view_menu, a function defined in
MENUHOOK.SPP, to assign a menu item to a menu.

You have just declared the AddMenu() method.

In the next step, you will execute the method when the menu item is selected.

3-4 ObjectScripting Programmer’s Guide

ObjectScripting Tutorial: Part 2

Executing the method ' ‘ Part1, step 6 of 7

To execute AddMenu() when the menu item is selected,
1 Add these lines to your script file:

declare x = new HelpMenu();)
x.AddMenu ("&Help|Print Text", "print (\"A message from the Help menu!\")");

The declare keyword declares the variable x. This line also assigns the variable x to
a new instance of the HelpMenu class.

x.AddMenu displays the string Print Text on the Help menu. A nessage from the
Help menu! is displayed on the Script page of the Message window when Help |
Print Text is selected.

You have just executed a method that prints a message on the Script page of the
"~ Message window.

In the next step, you will run the script file.

Running the script file Part1, step 7 of 7

To run the script file you've been working on,
1 Choose File | Save to save the script file.
2 To run the script, right click in the Edit window and choose Run File.

3 To see the results, go to the Help menu. Note that the menu item Print Text has
been appended to the bottom of the Help menu. Click Print Text. :

4 Display the Message window by choosing View | Message. Choose the Script tab.
Scroll to the bottom of the message display, where the following text is displayed:

A message from the Help menu!

5 To remove the Print Text command from the Help menu, exit Borland C++. When
you load Borland C++ again, Print Text will no longer display.

You have now finished Part 1 of the tutorial.

In Part 2, you will add the menu item OWL Help to the Help menu and launch the
OWL Help file when the menu item is selected.

ObjectScripting Tutorial: Part 2

This part of the tutorial teaches you how to:

e Import the IDE object (step 1)

¢ Import a symbol of a system-wide instance of a ScriptEngine ob]ect (step 2)
¢ Declare a method that adds a menu item to the Help menu (step 3)

¢ Execute the method (step 4)

ObjectScripting tutorial 3-5

ObjectScripting Tutorial: Part 2

Sample code for Tutorial Part 2 -

// ObjectScripting example :
// Copyright (c) 1996 by Borland International, All Rights Reserved

" // STEP2.SPP: Add the menu item OWL Help to the Help menu. Launch the
/! i OWL Help file when OWL Help is selected.

import IDE;
import scriptEngine;

class HelpMenu()
{
// Load "MENUHOOK.SPP", necessary for adding menu items.
if (!scriptEngine.IsLoaded("menuhook.spp"))
{ . .
scriptEngine.Load ("menuhook.spp") ;
) }
// Declare a method to add a menu item and execute the associated script.
AddMenu (menu_text, script_text)
S ' . ,
assign_to_view_menu("IDE", "&Help!|" + menu_text, script_text, menu_text);
}
b

// At load time, create an OWL Help menu item on the Help menu.
// When OWL Help is selected, launch the help file OWL.HLP.

declare helpMenu = new HelpMenu();
helpMenu.AddMenu ("OWL Help", "IDE.HelpOWLAPI()");

importing the IDE object “Part 2, step 1 of 4

When you start the Borland C++ IDE, the object IDE, in IDEApplication, is
automatically created as a global object. IDE gives you control over the system. All

items contained in the Borland C++ IDE menu structure can be accessed through the
IDE object. oo

First, start a scfipt file and call it STEP2.SPP. If you don’t know how to do this, see
Part 1, step 1.

To import the IDE object,
1 Enter the following text in the script file.
import IDE;
You have just started a script file and imported the IDE object.

In the next step, you will import a symbol of a system-wide instance of the
ScriptEngine object.

3-6 ObjectScripting Programmer’s Guide

Note

ObjectScripting Tutorial: Part 2

Importing a symbol of the system-W|de
instance of an object Part 2, step 2 of 4

A ScriptEngine object loads, unloads, executes, maintains modules and keeps error
information on scripts. You can import a symbol of a system-wide instance of the
ScriptEngine object (note that a local instance can also be created).

To import a symbol of a system-wide instance of a ScriptEngine object,
1 Enter the following text in your script:
import scriptEngine; ‘

You have just imported a symbol of a system-wide instance of a ScriptEngine object.
Importing the symbol as system-wide makes the script engine’s functionality
available to all scripts. In Part 1, step 2, you created the script engine as a local
instance, which slightly increases performance.

In the next step, you will create a class called HelpMenu, load MENUHOOK.SPP, and
declare a method that adds a menu item.

Declaring a method that adds a menu item Part 2, step 3 of 4

This step declares a method, AddMenu(), that adds a menu item to the Help menu.

As you learned in Part 1, create a class called HelpMenu, then load .
MENUHOOK.SPP. If you need more information, go to Part 1, step 3 and step 4.

To declare AddMenu(),
1 Add the following lines to your script:

AddMenu (menu_text, script_text)
{

assign_to_view_menu("IDE", "&Help|" + menu_text, script_text, menu_text);
}
}i
The first line declares a method called AddMenu() with the arguments menu_text
and script_text. AddMenu() uses assign_to_view_menu, a function that is defined
in MENUHOOK.SPP, to add a menu item to a menu. In this case, the new menu
item is being added to the Help menu of the IDE view.

In Part 1, step 5, you performed a similar task, but specified the Help menu when
the method was loaded. These two examples represent two different ways to use
the assign_to_view_menu function.

You have just created HelpMenu class, loaded MENUHOOK.SPP, and declared the
AddMenu() method.

In the next step, you will execute the method and run the script.

ObjectScripfing tutorial 3-7

ObjectScripting Tutorial: Part 3

Executing the method Part 2, step 4 of 4

To execute AddMenu() when the associated menu item is selected,
1 Add these lines to your script:

declare helpMenu = new HelpMenu(); i
helpMenu.AddMenu ("OWL Help", "IDE.HelpOWLAPI()");

The declare keyword declares the variable helpMenu. This line also assigns the
variable helpMenu to a new instance of the HelpMenu class. (Note the difference in

. case; cScript is a case-sensitive language.) helpMenu.AddMenu displays OWL Help
on the Help menu and launches the associated Help file when Help |OWL Help is
selected.

2 Save the script file and run it. For more information, see Part 1, step 7.

To see the results, go to the Help menu. Note that the menu item OWL Help is.
now on the Help menu.

3 Click OWL Help.
The Contents topic of the OWL Help file is displayed.

4 To remove the OWL Help command from the Help menu, exit Borland C++.
When you load Borland C++ again, OWL Help will no longer display.

You have just learned how to execute a method that launches the OWL Help file
when the menu item OWL Help is selected.

You have now finished Part 2 of the tutorial. In Part 3, you will use two different
methods to add two new items, ObjectScripting and Standard Template Library, to
the Help menu.

ObijectScripting Tutorial: Part 3

This part of the tutorial teaches you how to:
e Locate the Borland C++ Help directory and store it (step DN

Declare two methods that add menu items to the Help menu (step 2)

* Assign a menu item to the Help menu (step 3)

Declare a function that adds a backslash to the Help directory path name (step 4)

Launch a Help file when the associated Help menu item is selected (step 5)

Sample code for Tutorial Part 3

/] Ob]ectScrlptlng example

// Copyright (c) 1996 by Borland International, All Rights Reserved
// STEP3.SPP: Add two menu items to the Help menu. Launch Help files
// when menu item is selected.

3-8 ObjectScripting Programmer’s Guide

ObjectScripting Tutorial: Part 3

import IDE;
import scriptEngine;

class HelpMenu()

{
// Find the help directory and store it in the static sHelpDir
declare sProgram = new String();
sProgiam,Text = IDE.ModuleName;
declare breakIndex = sProgram.Index("\\BIN\\", SEARCH_BACKWARD);
declare sHelpDir = sProgram.SubString(0, breakIndex - 1).Text + "\\HELP\\";

// Load "MENUHOOK.SPP", necessary for adding menu items.
1f (!scriptEngine. IsLoaded ("menuhook.spp"))
{ .
scriptEngine.Load ("menuhook.spp");

}

// Add a menu item under "Help" menu, launch the Help file
// associlated with it. The helpFile parameter is the file name
// without the path.
AddHelpFile (menuText, helpFile)
{
AddHelpFileFullPath (menuText, sHelpDir + helpFile);
} .
AddHelpFileFullPath (menuText, helpFile)
{
declare menuCmd =
"IDE.Help(\"" + AddBackSlash(helpFile) + "\", "
+ Il3' " + |I\IV\IIII + Yl);ll;
assign_to_view_menu("IDE", "&Help|" + menuText,
menuCmd, menuText);

}

// Important note! v ,

// The command text passed to assign_to_view_menu

// should be IDE:Help("C:\\BC5\\HELP\\...", ...).

// When cScript compiles, it compiles the double backslash
// as a single backslash. This routine adds a backslash to
// the directory path name.

AddBackSlash (fileName)
{
declare origFileName = new String();
origFileName.Text = fileName;
declare targetFileName = "";)
declare breakIndex = origFileName.Index("\\");
while (breakIndex > 0)
{
targetFileName += origFileName.SubString(0, breakIndex - 1).Text
+ "V
origFileName = origFileName.SubString(breakIndex);
breakIndex = origFileName.Index("\\");
}
targetFileName += origFileName.Text;
return targetFileName;

}

ObjectScripting tutorial

3-9

.ObjectScripting Tutorial: Part 3

}I

// At load time, create two new menu items on the Help menu:

// ObjectScripting for SCRIPT.HLP, and Standard Template

// Library for STL.HLP.

// These two menu items show two different ways to add a help item.

declare helpMenu = new HelpMenu();

helpMenu.AddHelpFile ("ObjectScripting”, "SCRIPT.HLP");

helpMenu.AddHelpFileFullPath("Standard Template Library",
"C:\\BC5\\HELP\\STL.HLP") ;

Finding the Help directory | Part 3, step 10f5

This step shows you how to find the name of the Borland C++ Help directory and
store it. You use the stored name when you add the Help file name to the Help menu.

 First, start a script file and call it STEP3.SPP. Then, as previously learned:

¢ Import the IDE object (Part 2, step 1)
e Import a symbol of a system-wide instance of ScriptEngine (Part 2, step 2)
¢ Create a class called HelpMenu (Part 1, step 3)

To find the name of the Help directory,
1 Add the following lines to your script:
{

declare sProgram = new String();
sProgram.Text = IDE.ModuleName;
declare breakIndex = sProgram. Index("\\BIN\\“, SEARCH_BACKWARD) ;

The declare keyword declares the variable sProgram. This line also assigns the
variable sProgram to a new instance of the String class. sProgram.Text is assigned
the value returned by IDE.ModuleName (the name of the currently executing
module).

The next line declares the variable breakIndex. This line also assigns breakIndex to
the string returned by the Index method (the occurrence of the specified substring).

2 Enter the following code to store the path name in sHelpDir.
declare sHelpDir = sProgram.SubString(0, breakIndex - 1).Text + "\\HELP\\";

This line declares the variable sHelpDir. It also assigns sHelpDir to the value
returned by SubString (breakIndex using the specified starting and ending
positions) plus the value in sProgram.Text plus the value *\\HELP\\".

You have just imported the IDE object, imported a symbol of a system-wide instance
of ScriptEngine, created a class called HelpMenu, and added code that will find the
name of the Help directory and store it in sHelpDir.

~ In the next step, you will load MENUHOOK.SPP and declare two methods that add
menu items to the Help menu.

3-10 ObjectScripting Programmer’s Guide

Note

ObjectScripting Tutorial: Part 3

Declaring methods that add menu items Part 3, step 2 of 5

This step declares two methods:

¢ AddHelpFile() adds the Help file name to the Help menu and launches the Help
file.

. AddHelpFlleFullPath() uses sHelpDzr to locate the full path name of the Help
directory, then adds the Help file name to the Help menu and launches the Help
file.

First, as you learned in Part 1, add code to load MENUHOOK.SPP. (For more
information, see Part 1, step 4; however, in your code, do not include the first curly
brace shown in that step.)

To define AddHelpFile() and AddHelpFileFullPath(),
1 Add the following lines to your script:

AddHelpFile (menuText, helpFile)

{
AddHelpFileFullPath (menuText, sHelpDir + helpFile);
}

The first line declares AddHelpFile(), passing the arguments menuText and
helpFile. The third line declares AddHelpFileFullPath(), passing the arguments
menuText and sHelpDir plus helpFile. In both cases, helpFile is the Help file name
without the path

2 Add:
AddHelpFileFullPath(menuText, helpFile)
Here, the parameter helpFile now includes the path.
You have just declared methods that will add menu items to the Help menu.

In the next step, you assign a menu item to the Help menu.

Assigninga menuitem | Part 3, step 3 of 5

This step shows how to use the assign_to_view_menu function to assign a new
menu item to the Help menu.

When you load MENUHOOK.SPP, the assign_to_view_menu function
automatically becomes available.
To assign a menu item to the Help menu,
1 Add the following lines to your script:
{

declare menuCmd = '

"IDE.Help(\"" + AddBackSlash(helpFile) + "\", "
+ “3/ " + |I\Il\"ll + Il);"’,

assign_to_view_menu("IDE", "&Help|" + menuText,

ObjectScripting tutorial 3-11

ObjectScripting Tutorial: Part 3

menuCmd, menuText);

}

The first statement invokes a Help file using the IDE.Help method. The name of the
invoked Help file is assigned to menuCmd. The second statement uses the
assign_to_view_menu function to assign the new menu item to the Help menu.

You have just assigned a menu item to the Help menu.

In the next step, you will declare the AddBackSlash() function.

Adding a backslash to the path name | Part 3, step 4 of 5

Because cScript compiles a double backslash as a single backslash when it sends a file
path to WinHelp, you need to add code that will add a double backslash to your
script. This step declares the AddBackSlash() function, used in menuCmd (defined in
the previous step).

To declare AddBackSlash(),

1 Add the following lines to your script:

AddBackSlash (fileName)
{
declare origFileName = new String();
origFileName.Text = fileName;
declare targetFileName = "";
declare breakIndex = orlgFlleName Index("\\“)'
while (breakIndex > 0)

{ .
targetFileName += origFileName.SubString(0, breakIndex - 1).Text
+ "\
origFileName = origFileName.SubString (breakIndex);
breakIndex = origFileName.Index("\\");

}
targetFileName += origFileName.Text;
B return targetFileName;
' }
b
The first declare statement declares the variable origFileName. This line also -
assigns ornglleName to a new instance of a String ob]ect In the next line,
origFileName.Text is assigned to fileName.

The next declare statement declares the variable targetFileName. This line also
assigns targetFileName an empty value. The last declare statement declares the
variable breakIndex. This line also assigns breakIndex to the string returned by the
Index method (the occurrence of the specified substring).

The while loop says that while breakIndex is greater than zero, give targetFileName
 the current value of targetFileName plus the value returned in SubString (the value
of breakIndex specified by the starting and ending positions) plus "\\\\". Then,
assign origFileName the value returned by the SubString method (the value of the
substring specified by breakIndex). The last line of the while loop assigns breakIndex

3-12 ObjectScripting Programmer’s Guide

ObjectScripting Tutorial: Part 3

the value returned by the Index method. If this value is greater than 0, the while
loop executes again.

When breakIndex is equal to 0, targetFileName equals targetFileName plus the value
returned by the Text property. The return statement exits the AddBackSlash()
function, returning the value of targethleName

You have just declared the AddBackSlash() function used in the AddHelpFilePath()
method.

In the next step, you will add the Help file names to the Help menu arid run the
script.

Executing Help menu methods ~ Part 3, step 5 of 5

This step shows how to execute AddHelpFile() and AddHelpFileFullPath().
To execute these methods,
1 Add the following lines to your script file,

declare helpMenu = new HelpMenu();

helpMenu. AddHelpFile("ObjectScripting”, "SCRIPT.HLP");

helpMenu.AddHelpFileFullPath("Standard Template Library",
"C:\\BC5\\HELP\\STL.HLP") ;

The declare keyword declares the variable helpMenu. This line also assigns
“helpMenu to a new instance of the HelpMenu class. (Note the difference in case;
cScript is a case-sensitive language.)

helpMenu.AddHelpFile assigns the value “ObjectScripting” to the parameter
menuText. SCRIPT.HLP is assigned to the helpFile parameter. SCRIPT.HLP is
launched when the Help | ObjectScripting menu item is selected.

helpMenu.AddHelpFileFullPath assigns the value “Standard Template Library” to
the parameter menuText. STL.HLP (and the full path name) is assigned to the
helpFile parameter. STL.HLP is launched when the Help | Standard Template
Library menu item is selected.

2 Save the script file and run it. For more information, see Part 1, step 7.

To see the results, go to the Help menu. Note that the menu items ObjectScripting
and Standard Template Library have been appended to the bottom of the Help
menu. Click Standard Template Library.

The Contents topic of the Standard Template Library Help file is displayed.

3 To remove the Help files from the Help menu, exit Borland C++. When you load
Borland C++ again, these help files will no longer display on the Help menu.

You have just assigned new menu items to the Help menu, executed the associated
Help files, and run the script file.

You have now finished Part 3 of the tutorial.
In Part 4, you will add all the Borland C++ Help files to the Help menu.

ObjectScripting tutorial 3-13

ObjectScripting Tutorial: Part 4

‘ObjectScripting Tutorial: Part 4

This part of the tutorial teaches you how to:
¢ Declare a function that adds all Borland C-++ Help files to the Help menu (step 1)

¢ Execute the function (step 2)

Sample code for Tutorial Part 4

// ObjectScripting example

// Copyright (c) 1996 by Borland International, All Rights Reserved
// STEP4.SPP: Add all menu items to the Help menu. Launch Help file
/] when menu item is selected.

import IDE;
import scriptEngine;

class HelpMenu()

{
// Find the help directory and store it in the static sHelpDir.
declare sProgram = new String();
sProgram.Text = IDE.ModuleName;
declare breakIndex = sProgram.Index{"\\BIN\\", SEARCH_BACKWARD);
declare sHelpDir = sProgram.SubString(0, breakIndex - 1).Text + "\\HELP\\";

// Load "MENUHOOK.SPP", necessary. for adding menu items.
if (!scriptEngine.IsLoaded("menuhook.spp"))
{
scriptEngine.Load ("menuhook.spp") ;

}

// Add a menu item on the Help menu, launch the Help file
// associated with it. The helpFile parameter is the file name
// without the path.
AddHelpFile (menuText, helpFile)
{
AddHelpFileFullPath (menuText, sHelpDir + helpFile);
}
AddHelpFileFullPath (menuText,- helpFile)
{
declare menuCnd =
"IDE.Help(\"" + AddBackSlash(helpFile) + "\, "
+ ||3' n + VI\II\II“ + Vl);"; }
assign_to_view_menu("IDE", "&Helpl" + menuText,
menuCmd, menuText);

}

// Important note!

// The command text passed to assign_to_view_menu

// should be IDE:Help("C:\\BCS\\HELP\\...", ...).

// When cScript compiles, it compiles the double backslash
// as a single backslash. This routine adds a backslash to
// the directory path name. '

3-14 ObmthchHng Programmer’s Guide

ObjectScripting Tutorial: Part 4

AddBackSlash(fileName)
{
declare origFileName = new String();
origFileName.Text = fileName;
declare targetFileName = "";
declare breakIndex = origFileName.Index("\\");
while (breakIndex > 0)
{ .
targetFileName += origFileName.SubString(0, breakIndex - 1).Text
+ "\ :)
origFileName = origFileName.SubString(breakIndex);
breakIndex = origFileName.Index("\\");
}
targetFileName += origFileName.Text;
return targetFileName;
}
// This is a list of all the Help files in BC5.
// Comment out the ones you don't need.
AddStandardHelpFiles ()
{ . P
AddHelpFile("Borland C++ Tools", "BCTOOLS.HLP");
‘AddHelpFile("Borland C++ User's Guide", "BCW.HLP");
AddHelpFile("Borland Custom Controls", "BWCC.HLP");
AddHelpFile("C++ Programmer's Guide", "BCPP.HLP");
AddHelpFile("Class Library Reference", "CLASSLIB.HLP");
AddHelpFile("Control 3D", "CTL3D.HLP");
AddHelpFile("DOS Reference", "BCDOS.HLP");
AddHelpFile("Error Messages", "BCERRMSG.HLP");
// AddHelpFile{"Formula One Visual Tools", "VTSS.HLP");
// AddHelpFile("Help Author's Guide", "HCW.HLP");
// AddHelpFile("Hot Spot Editor", "SHED.HLP");
// AddHelpFile("HeapWatch32", "HW32.HLP");
// AddHelpFile("MAPI Programmer's Reference", "MAPI.HLP");
// AddHelpFile('Message Compiler for NT", "MC.HLP");
// AddHelpFile("MicroHelp Customer Controls", "VBT300.HLP");
// AddHelpFile("OCF Reference", "OCF.HLP");
AddHelpFile("ObjectScripting", "SCRIPT.HLP");
// AddHelpFile("OLE 2 Reference", "OLE.HLP");
// AddHelpFile("OLE 2.0 Object Viéwer", "OLE2VIEW.HLP");
// AddHelpFile("OLE Knowledge Base", "KBASE.HLP");
// AddHelpFile({"Open GL", "OPENGL.HLP");
AddHelpFile ("OpenHelp", "OPENHELP.HLP");
AddHelpFile ("OWL 5.0 Examples", "OWLEX.HLP");
AddHelpFile ("OWL 5.0 Reference", "OWL50.HLP");
// AddHelpFile("Remote Procedure Call Reference", "RPC.HLP");
// AddHelpFile("Resource Compiler for NT", "RC.HLP");
// - AddHelpFile("Resource Localization Manager", "RLMAN.HLP");
// AddHelpFile("Resource Reference", "RC32.HLP"}; '
AddHelpFile ("Resource Workshop", "WORKSHOP.HLP");
AddHelpFile ("TDWINI.EXE Infofmation", "TDWINI.HLP");
AddHelpFile("Standard Template Library", "STL.HLP");
AddHelpFile("Visual Database Tools", "BCVDTREF.HLP');
AddHelpFile("Windows 16 API“, "WIN31WH.HLP");

ObjectScripting tutorial

3-15

ObjectScripting Tutorial: Part 4

"Windows 32 API", "WIN32.HLP");

"Windows 32s Reference", "WIN32S.HLP");
AddHelpFile ("Windows Developer's Guide", "95GUIDE.HLP");
AddHelpFile("Windows Interface Guidelines", "UIGUIDE.HLP");
AddHelpFile("Windows System Class",' "WINSYS.HLP");

// AddHelpFile("WinSight", "WINSIGHT.HLP");

// AddHelpFile("WinSpector", "WINSPCTR.HLP");

}
bi

// At load time, load a list of help files.

// Customize the list by modifying AddStandardHelpFiles() function.
declare helpMenu = new HelpMenu();

helpMenu.AddStandardHelpFiles () ;

AddHelpFile
AddHelpFile

Declaring a method | Part 4, step 1 of 2

This step declares the AddStandardHelpFiles() method that adds all Borland C++
Help files to the Help menu. Because there are many Help files, you may want to
comment out any Help files you don’t think you'll use frequently.

First, start a script file and call it STEP4.SPP. Then, as previously learned:

¢ Import the IDE object (Part 2, step 1)

* Import a symbol of a system-wide instance of ScriptEngine (Part 2, step 2)

¢ Create a class called HelpMenu. (Part 1, step 3)

* Find the location of the Borland C++ Help directory and store it (Part 3, step 1)

¢ Load MENUHOOK.SPP. (Part 1, step 4). In your code, do not include the first
curly brace shown in this step.

* Declare two functions that add menu items to the Help menu (Part 3, step 2)
* Assign a menu item to the Help menu (Part 3, step 3)

* Add a backslash to the Help directory path name (Part 3, step 4). In your code, do
not include the final curly brace and semi-colon shown in this step.

To declare the AddStandardHelpFiles() method,

1 Add the following lines to your script file:

AddStandardHelpFiles()

{
AddHelpFile("Borland C++ Tools", "BCTOOLS.HLP");
AddHelpFile("Borland C++ User's Guide", "BCW.HLP");
~AddHelpFile("Borland Custom Controls", "BWCC.HLP');
AddHelpFile("C++ Programmer's Guide", "BCPP.HLP");
AddHelpFile("Class Library Reference", "CLASSLIB.HLP");
AddHelpFile("Control 3D", "CTL3D.HLP");
AddHelpFile("DOS Reference", "BCDOS.HLP");
AddHelpFile("Error Messages", "BCERRMSG.HLP");
AddHelpFile("Formula One Visual Tools", "VTSS.HLP");
AddHelpFile("Help Author's Guide", "HCW.HLP");

3-16 ObjectScripting Programmer’s Guide

ObjectScripting Tutorial: Part 4

AddHelpFile("Hot Spot Editor", "SHED.HLP");
AddHelpFile("HeapWatch32", "HW32.HLP");
AddHelpFile("MAPI Programmer's Reference", "MAPI.HLP");
AddHelpFile("Message Compiler for NT", "MC.HLP");
AddHelpFile("MicroHelp Customer Controls", "VBT300.HLP');
AddHelpFile("OCF Reference", "OCF.HLP");
AddHelpFile("ObjectScripting", "SCRIPT.HLP");
AddHelpFile("OLE 2 Reference", "OLE.HLP");
AddHelpFile("OLE 2.0 Object Viewer", "OLE2VIEW.HLP");
AddHelpFile("OLE Knowledge Base", "KBASE.HLP");
AddHelpFile("Open GL", "OPENGL.HLP");
AddHelpFile("OpenHelp”, "OPENHELP.HLP');

* AddHelpFile("OWL 5.0 Examples", "OWLEX.HLP");
AddHelpFile("OWL 5.0 Reference", "OWL50.HLP");
AddHelpFile("Remote Procedure Call Reference", "RPC.HLP");
AddHelpFile("Resource Compiler for NT", "RC.HLP");
AddHelpFile("Resource Localization Manager", "RLMAN.HLP");
AddHelpFile("Resource Reference", "RC32.HLP");
AddHelpFile("Resource Workshop", "WORKSHOP.HLP");
AdddelpFile ("TDWINI.EXE Information", "TDWINI.HLP");
AddHelpFile("Standard Template Library", "STL.HLP");
AddHelpFile("Visual Database Tools", "BCVDTREF.HLP");
AddHelpFile("Windows 16 API", "WIN31WH.HLP");
AddHelpFile("Windows 32 API", "WIN32.HLP");
AddHelpFile("Windows 32s Reference", "WIN32S.HLP");
AddHelpFile("Windows Developer's Guide", "95GUIDE.HLP");
AddHelpFile("Windows Interface Guidelines", "UIGUIDE.HLP");
AddHelpFile("Windows System Class"', "WINSYS.HLP");
AddHelpFile("WinSight", "WINSIGHT.HLP');
AddHelpFile("WinSpector", "WINSPCTR.HLP");

}
b

The AddStandardHelpFiles() method uses the AddHelpFlle() method. Each
AddHelpFile() method identifies:

¢ The Help file to display on the Help menu (the menuText parameter)

o The filename of the file to launch when the Help menu item is selected (the
helpFile parameter)

You have just declared a method that adds all Borland C++ Help files to the Help
menu.

In the next step, you will execute the method and run the script file.

Executing the Help menu method | Part 4, step 2 of 2

This step executes AddStandardHelpFiles(). ;

To execute the Help menu method,

ObjectScripting tutorial 3-17

ObjectScripting Tutorial: Part 4

1 Add the following lines to your script file:

declare helpMenu = new HelpMenu();
helpMenu.AddStandardHelpFiles();

The declare keyword declares the variable helpMenu. This line also

assigns the variable helpMenu to a new instance of the HelpMenu class. (Note the
difference in case; cScript is a case-sensitive language.)
helpMenu.AddStandardHelpFiles adds all Borland C++ Help files to the Help menu.
A Help file is launched when a menu item is selected.

2 Save the script file and run it.

To see the results, go to the Help menu. Note that many menu items have been .
appended to the bottom of the Help menu. Choose one.

The Contents topic of the selected Help file is displayed.

3 To remove the help files from the Help menu, exit Borland C++. When you load
‘Borland C++ again, these help files will no longer display.

You have now finished Part 4 of the tutorial.

For more information on ObjectScripting, click the Contents tab of the Help system
(SCRIPT.HLP) and browse through the Help topics. You can also look at the example
programs in BC5\SCRIPT\EXAMPLES.

3-18 ObjectScripting Programmer’s Guide

Languagereference

@
;*‘f:fa;

About cScript

The cScript language is a late-bound, object-oriented language that supports
syntax and constructs familiar to the C++ developer; you declare classes and
provide them with properties and member functions.

cScript offers C++ programmers a familiar environment for customizing the
IDE. It has many of the same constructs as C++ and on the surface looks and
feels like C++. ’

But under the hood the two languages are very different: They address two
separate problem domains, the early-bound environment versus late-bound,
and as a result there are some major semantic differences.

About late-bound languages

cScript is a late-bound, object-oriented language, which is roughly analogous
to being an interpreted language. This gives cScript programs more
flexibility than early-bound programs, such as those written in C++. In C++,
everything about a program is known at compile time. The types of the
variables, the return types and number of parameters to functions, the
classes that will be used as well as all their properties and behaviors are all
known when the program is compiled.

cScript is very different. While the syntax looks very 51m1lar to C++, you
cannot declare a variable’s type at compile time. Variables are generic and
can hold any type of data needed at runtime. In fact, the same variable can
hold different types of data as the program executes.

Just as in C++, you create classes with properties and methods and create
objects which are instances of those classes. But in cScript, you are free to
override the methods for a given object (not the class, just the object itself) at
runtime with a new implementation of the method or a method “borrowed”
from another object.

About cScript 4-1

Differences between cScript and C++

This means that an object of one class can use the methods of an object of

* another class without having to know anything about the second object at
compile time. Existing objects can have their functionality extended without
the need for the source code to the object’s class, and without recompiling.

The benefits of late-binding

Late-binding provide important practical benefits. Let’s say that you want to
create a program to extend the functionality of the Borland C++ IDE. For
example, you want to create a script that automatically saves changed source
files to a central repository on the network as well as in your project
directory. You want to add this functionality to the IDE and have it behave
like a built-in feature. ‘

The Borland C++ IDE is represented by a cScript object called IDE of the
cScript class IDE Application. If the object IDE was instead created from a C++
class, you would-have to alter that C++ class and add your repository
methods to it directly, through multiple inheritance, function pointers, or
through some other mechanism. Then you would need to recompile the
source for the class to create the extended object IDE. In cScript, you do not
need to touch the definition of IDEApplication (the class) at all. You can use
cScript to attach your repository methods to the IDE object at runtime. There
are no changes to the IDEApplication class and no recompilation is necessary.

So late-binding means that you can alter and extend the behavior of objects
without having to know the details of how they are implemented, without
having access to the source code, and without having to recompile.

Differences between ¢Script and C++

cScript differs from C++ in the following ways:

* All class members are public. There is no way to make members private or
protected as part of their declaration. You can use on statements to make
members inaccessible.

* cScript programs have no main() or WinMain() function.

¢ Globally Scoped statements are allowed and will be executed when the
script is run.

» Executable statements are allowed within a class definition, and in
conjunction with optional initialization arguments passed when the class
is instantiated, constitute the class’s constructor. There is no constructor
function per se in cScript.The implementation of a class’s methods are
defined within the class. That is, the definition (not just the declaration) of
a member function must always occur in the class declaration.

* Arrays are objects in cScript. When deallocating an array with the delete
command, the square brackets are not needed.

4-2 ObjectScripting Programmer’s Guide

Differences between cScript and C++

 Functions may have varying numbers of parameters cScript truncates or
‘pads argument lists as necessary.

¢ Compound logical expressions do not short circuit. For example, in the
expression if (TRUE || Foo()).., the function Foo () will always be called even
though the constant TRUE insures that the expression will always
evaluate to true.

. cScrlpt does not have the followmg C++ features (this is not a complete
list):

Type checking (but there are type conversions with some operations).
See “cScript and types” on page 4-4 for more information.

Type casting

Multiple inheritance

C-i_-+—sty1e exceptions

Class constructor functions

Function oVerloading

Character arrays (cScript directly supports strings)
Default arguments to functions

Templates

Default parameters in method declarations

Pointers

Direct memory access

Function declarations that support default parameters
Enums :
Unions

Structs or typedefs

Bitfields

Operator overloading

The const keyword (except in DLL imports)

The static keyword

Global scope resolution. You can access globally scoped variables,
using the module function «

The #if preprocessor directive (#ifdef is supported)

The following operators: -> * ->* _*

About cScript 4-3

cScript objects

cScript objects

All objects in the IDE are exposed through the global object called IDE, in the
class IDE Application. This object is created in STARTUP.SPP, a script that is
automatically executed when Borland C++ is started. You use IDE Application
to access many parts of the IDE. Additional classes provide access to the
debugger, the search engine, the Editor, and the Keyboard Manager. Classes
are also provided to create and manage list windows and pop-up menus.

In the Borland C++ IDE, all user commands are directly mapped to
corresponding scripts. Every IDE window that uses the keyboard API has
each keystroke mapped to a script. All main menu commands have a
mapping to a script. These scripts, supplied by Borland, provide standard
behavior that you can use to customize your environment. If you want to
modify the behavior of the IDE, you can write scripts that interact with the
exposed IDE components.

cScript and types

cScript is not an explicitly typed language and does not allow you to declare
variables with C++ base types. When the parser encounters an unknown
identifier, it makes it a new variable (unless the identifier is immediately
followed by an open parenthesis, which might indicate it’s a function). New
variables created this way are local to the current scope.

The only declarators you can use are declare, import, and export, which are
not types but declarators that indicate a new variable. Declaring variables
discusses declare, import, and export.

Identifiers do have types, but the type of an identifier is determined by its
value. For example, x in the following code is an integer because it is
assigned an integer:

declare x = 25;

x can become any other cScript native type, depending on what is assigned to
it. In the following example, x is of type IDEApplication because an object of
that class is assigned to it:

declare MyIDE = new IDEApplication;
X = MyIDE;

Use the intrinsic function typeid to determine the type of an identifier.

Type conversions

When you use operators with variables of different types, the simple
conversion rule with binary operators (such as + and /) is that the operand
on the left determines the type of the expression. For example,

4-4 ObjectScripting Programmer’s Guide

Comments

declare x = 4;

declare y = 4.0;

print x/3; // output is 1

print y/3; // output is 1.333333

inon

The rule becomes more complicated with conversions between strings and
numbers because cScript does some interpretation.

¢ When converting from a number to a string, cScript represents digits as
numeric strings (3 becomes “3”).

* When converting from a string to a number, the string is converted to a
number if the string can be interpreted as a number. If the string evaluates
to anything but a number, it is converted to zero (“33” becomes 33,
“33abc” also becomes 33, but “abc33” becomes 0). For example,

declare x = 10;
print "String" + x; // prints "Stringl0"
print x + "String"; // prints the result of 10 + 0 which is "10"

* If an object is converted to a string, it becomes the string “[OBJECT]". For
example,

declare a = new IDEApplication; // create a new

// IDEApplication object
declare b = "Hello"; // create a new string variable

// add the object to the string

// converting the object to a string
declare ¢ = b + a;

‘print c; // prints "Hello[OBJECT]"
Comments
cScript supports C++ comment syntax, including;:
e // This is a comment to the end of the physical line
® /* This is a comment to the closing */
Nested comments are permitted in cScript.
Identifiers

Identifier names are made up of letters, digits and underscores (). The first
character of an identifier name cannot be a digit. Identifier names can be up
to 64 characters in length.

cScript is case-sensitive. Therefore foo, Foo, and FOO . are three different
identifiers. Keywords, operators, and intrinsic function names are also case-
sensitive.

About cScript 4-5

Declaring variables

Declaring variables

A cScript source file (an .SPP file) is a module. A variable declared or used
for the first time at the module level is global to that module, and a variable
declared or used for the first time inside a block is local to that block.

Because you don’t have to declare variables as you do in C++, it’s easy to
mistakenly use a global variable in a function or class when you intend it to
be local. It's safest to use declare with variables that you intend to be local.

Variables created at the module level (not in a function, method, class,
control structure, or block) are global variables of the module. They are not
normally accessible to other modules. To access a variable defined in module
A from module B, three things must occur:

* Both module A and module B must be loaded.

¢ The variable must be declared export in Module A, at module scope.

¢ Module B must contain an import statement for the variable, at module
scope.

Example // This is an example of declaring a local variable

declare X = 2; // Module scope X

declare Y = 4; // Module scope Y

Funcl (X){ // Parameter (local variable) X
Y = "hello"; // modifies global Y.

}

Func? (X) { . /] Parameter (local variable) X

declare Y = "hello"; // New local variable Y created
// and set to "hello".
}

Example //This example shows how to declare a variable export in Module A
//and import in Module B.

Module A
declare varOne; //A global variable accessible only in Module A.
export varTwo; //A variable accessible outside Module A.
Module B
import varOne; //Trying to link with exported varOne. Will fail
//unless some other module exports varOne.
import varTwo; //Trying to link with varTwo in Module A.
varOne = 33; //Causes the runtime warning "Cannot locate
//external variable varOne".
varTwo = 33; //Changes the value of varTwo in Module A to 33.

4-6 ObjectScripting Programmer’s Guide

Statements

Statements

Strings

As in C++, statements must terminate with a semicolon. You can group
multiple statements by surrounding them with braces. Variables declared
within braces are local to those braces and go out of scope when the closing
brace is reached. :

You can chain expressions with the comma operator.

cScript strings (note the lowercase “s”) work much the same as C++ strings.
A string is a series of characters delimited by quotation marks. In cScript, a
string’s length is limited to 4096. cScript automatically keeps track of the
ends of strings; appending \0 (NULL) is unnecessary.

Unlike C or C++, you cannot access each character of the array
independently using an offset of [] operators, as a string is not a pointer to
memory. Internally, the variable assigned to the string represents the entire
group of characters as a string. To access characters independently of each
other, use a String object.

Because strings are stored as an entire group of characters you can:
* Add text together
e Check for equality, inequality, greater than, and less than

String formatting characters

cScript recognizes many C++ formatting characters within strings such as
new line (\n) and horizontal tab (\t)..

Besides the alphanumeric and other printable characters, you can designate
hexadecimal and octal escape sequences much as you can in C++. These
escape sequences are interpreted as ASCII characters, allowing you to use
characters outside the printable range (ASCII decimal 20-126).

The format of a hexadecimal escape sequence is \x<hexnum>, where
<hexnum> is up to 2 hexadecimal digits (0-F). For example, the string “R3”
can be written as “\x523” or “\x52\x33”.

Octals are a backslash followed by up to three octal digits (\000). For
example, “R3” in octal could be written “\1223” or “\122\063”.

Prototyping

Forward referencing for functions and methods is not supported. Because
scripts are interpreted in a single pass at runtime, classes and the methods in
them, must be defined before they can be used.

About cScript 4-7

Flow control statements

cScript does not provide a function prototype mechanism. This is because
when the parser sees a function call, it needs to know the implementation at
that time. At compile time, however, a C++ compiler only needs to be able to .
match the name, number of parameters, the types of the parameters, and the
return values, but does not really need to know anything internally about the
function.

Parameter counting and type conversions are performed at runtime. cScript
will pad (with NULLS) or truncate the argument list as necessary at runtime
to ensure that the correct number of arguments is available on the stack.

Flow control statements
The following flow control statements work in cScript as they do in C++:
break continue
do else
if for
return while

The behavior of switch is slightly different. Because cScript is not a compiled
language, the expression is checked against each case exactly as if evaluating
an if-else-if construct. This means that the cases need not be constants; they
may be any expression (including function calls). It also means that if a
.default case is desired, it must be the last case.

Example // Switch example
switch(someNumber) { ,
case 3: //Execution continues to case bar()
case MyFunc{():
DoSomeStuff();
/| No break. Even if this case executes,
// the next case is still evaluated.
case W.Y.Z:
DoSomethingElse() ;
break; . // If this case executes, switch ends here.
case 42:
DoItAll();
default:
// Anything not matching previous cases comes through here

Pass by reference

Parameters passed to methods and functions are passed by value unless
explicitly made to be passed by reference. (Passing by value does not allow

4-8 ObjectScripting Programmer’s Guide

Built-in functions

changes to the value of the caller’s Varlable, while passing by reference does.)
For example,

PassByValueFunction(aValueParameter)
aValueParameter = 100; // Value of aValueParameter changed to
// 100, Caller's value unmodified.

}

PassByReferenceFunction (&aReferenceParameter) {

aReferenceParameter = 100; // Value of aReferenceParameter

} . // changed to 100. Caller's value
// also updated

If you want to pass a variable by value in a pass-by-reference parameter, put
it in parentheses. For example, ‘

x = 10;
PassByReferenceFunction((x));
print x; // Prints 10
PassByReferenceFunction(x);
print x; // Prints 100

Built-in functions

The cScript language provides the following built-in functions:

Table 4.1 Built-in functions

attach Links a method of an instance of one class to a method of an instance
of another class.

call Directly invokes a closure.

detach Detaches a method instance of one class from a method instance of

the same or another class when the two were previously linked
using attach.

FormatString Formats strings at runtime,

initialized Indicates if a variable has ever been injtialized.

load ‘ Opens and parses-the specified script.

module() Gets access to any loaded module.

pass Used in an on handler to invoke the original function that is being
overridden.

print Prints the specified expression in the Script page of the Message
window.

reload Does an unload followed by a load.

run Loads and runs the module indicated.

select Creates a special global variable, selection,that refers to the selected
variable.

typeid Gets runtime identification of variables or the resulhng value of
expressions.

About-cScript 4-9

Reserved identifiers

Table 4.1 Built-in functions (continued)

unload ~ Unloads the specified module.

yield Forces cScript to check if the abort (Esc) key has been pressed.

Reserved identifiers

cScript reserves identifier names starting with two underscores as internal to
the language. The following identifiers cannot be used in your scripts:

__break ! __const __cdecl
__error - __pascal __refc
__rundebug __runimmediate __stack
__stdcall __warn event

_Factory ' false FALSE
library : method NULL
object : property ’ system
true " TRUE '

cScript and DLLs

Because all needed functionality is not directly available through the
language or exposed by an object in the system, cScript allows you to access a
function in a DLL directly through cScript by using code similar to the
following;:

/] expose DLL entry points
import "foo.dll" {

int- __pascal FooFunc(short, char, unsigned, long);
void DoIt();

}
// directly access the DLL calls
if (FooFunc(l, "hello there",2,3))

print "FooFunc() succeeded";
else
DoIt();

This DLL call uses the data type keywords short, char, unsigned, and long.
Other data type keywords available for use in DLL calls are void, int, bool,
and const.

This form of the import command allows you to declare a prototype for the
external DLL functions, including their return types and arguments.

4-10 ObjectScripting Programmer’s Guide

Note

cScript and OLE2

Unlike normal cScript functions, variable numbers of arguments are not
supported when using functions from DLLs. You can pass dummy integer
arguments for enums and pointers, since cScript does not support these
types. There is no support for passing structs.

When possible, declaring arguments of DLL calls with the const modifier
will improve performance.

cScript supports the calling conventions __cdecl, __pascal, and __stdcall.

cScript and OLE2 |

Arrays.

cScript to OLE2 interaction

If an automatable object has been exposed in the OLE2 registry, its
functionality may be accessed from cScript by using the special OleObject
class. For example,

// Creates an object with all the methods of
// Microsoft Word BASIC
wordBasic = new OleObject ("word.basic");

©// Call the Word BASIC function AppInfo() to find out
// what version of Word is installed -
print wordBasic.AppInfo(2); // Returns "7.0" for Word version 7.0

OLE2 to cScript interaction

The IDE registers the automation name BorlandIDE. Application with the
OLE2 registry during initialization. From any automation controller, the
IDE’s functionality may be accessed by creating a BorlandIDE.Application
object and using it. For example, from a Visual dBASE program you could do
the following:

* Visual dBASE syntax:
BorCppIDE = NEW OleAutoClient ("BorlandIDE.Application")
BorCppIDE.ProjectOpenProject ("foo.ide"

IF (BorCppIDE. ProjectBuildall())
BorCppIDE.FileSend ("success notification")

ELSE
BoGCpIDE.FileSehd(“failure notification")
ENDIF

cScript supports two typbes of arrays:

¢ Bounded arrays
* Associative arrays

About cScript 4-11

Arrays

Note

Note

Bounded arrays

cScript bounded arrays are similar to C++ arrays and are declared with a size-
specifier. Runtime warnings occur if you attempt to access a bounded array
out of bounds. Bounded arrays use a zero-based index; that is, the first
element of an array is element 0 and the last element is element size — 1.

You can declare a bounded array by using either of the following syntax
variations:

X = new array [10];
array x[10];

Access is then as you would expect:

x[0] = 5;

x[1] = "a string";
x[2] = Foo;

x[3] = x[2];

You can also declare and initialize a bounded array using the following: :

z{] = {"one", "two", x}; //Note the use of braces, {},
//rather than brackets, [].

In this case, one, two, and the value of x are the values in the array, and the
array indexes start at 0 and go to 2. For example,

print z[0]; //Prints one
print z[1]; //Prints two
print z[2]; //Prints the value of x

You cannot initialize variables in an array initialization list: You must
initialize them elsewhere. For example, you cannot define an array as
follows:

= {x=1, y=3, slogan="No more woe"} //Illegal syntax

In this array definition, assignments to x, y, and slogan must be elsewhere in
your code.

Be careful not to unintentionally overwrite an existing array with a new one
during initialization. The following example declares an array “a”, but then
overwrites it with the elements 1, red and 2.

declare array a[l10]; // declares an array with 10 elements
// The next line destroys the array "a" and declares

// a new array with three initialized elements

a = {1, "red", 2};

You can assign values beyond array bounds. Such an assignment does not
increase the size of the bounded array to match the new index, but rather
declares an associative array that is attached to the original bounded array.
You can use any value as the new index.

You cannot use a negative number to index into an array. Domg 50 causes a
runtime warmng

4-12 ObjectScripting Programmer’s Guide

Arrays

Example // This script generates no errors or warnings. It declares
// and initializes a bounded array with 4 elements (0 - 3)
declare a = new array[4];
al0] = "Able";

a[l] = "Baker";

a[2] = "Charlie";

a[3] = "Delta";

print a[0]; // prints Able
print a[l]; // prints Baker
print a[2]; // prints Charlie
print a[3]; // prints Delta

// The following lines seem to add an element to the bounded array
// on the fly, but are actually declaring an associative array and
// appending it to the bounded array. Since the index is contiguous
// with the indices of the bounded array, the new element can be
// used as if it were part of the bounded array.

al4] = "Edward";

print af0]; // prints Able

print a[l]l; // prints Baker

print af2]; // prints Charlie

print a[3]; // prints Delta

print a[4]; // prints Edward

// The following lines add an element to the associative array.

// The new element's index is not contiguous with the existing

// elements. Note: adding element a[6] does NOT declare element a[5].
- al6] = "Frank";

print a[0]; // prints Able

print a[l]; // prints Baker

[
print a[2]; // prints Charlie
print a[3}; // prints Delta
print a[4]; // prints Edward
print a[5]; // prints [UNINITIALIZED]
print a[6]; // prints Frank

. // The following lines add an element to the associative array using
// a string as an index. Adding this element has no effect on the rest
// of the array.

a["Bob"] = "Robert";

print a[0]; - // prints Able

print a[l]; " // prints Baker

print a(2]; // prints Charlie

print a[3]; // prints Delta”

print al4]; // prints Edward

print a[5]; // prints [UNINITIALIZED]
print a[6]; // prints Frank

print a["Bob"]; // prints Robert

return;

AboutcScht 4-13

Classes

Classes

Note

Associative arrays

You declare associative arrays without a size specifier and access them on
demand. They grow as required. Associative arrays are typically sparse and
do not perform as well as bounded arrays.

To declare a new associative array, use one of the following syntax
variations:

7 = new arrayl[];
array z[]; ’

Associative arrays can take string as their indexes as well as numbers.
Typically, the index of an associative array element is something which is
related to the data the element holds. For example,

History = new array([];)
History["President"] = "Bill Clinton"
History["Vice President"] = "Al Gore"
History[1776] = "U.S. Independence"
History[1789] = "U.S. Constitution”

You also declare an associative array when you make assignments beyond
the bounds of a bounded array. For more information, see “Bounded arrays”
on page 4-12. ‘

You cannot use a negative number to index into an array. Doing so causes a
runtime warning. :

cScript supports single inheritance. There is no support for overloaded
methods (member functions). In addition, there is no hiding of members: all
properties (member data) and methods are public and virtual. You can
override an instance of a class (an object) with on and pass, and you can bind
objects’ events (function calls) together in an event handling chain using
attach. For more information, see “Event handling” on page 4-18.

Defining methods

All methods must be defined entirely in the class definition. A class
definition may be nested in another class definition. The name of that nested
class exists in the scope of the outer class, and is thus protected from
accidental collision with identifier names in the module and global scopes.
You can instantiate a nested class with the following syntax:

// Class Inner is nested in class Outer
class Outer {
class Inner {}
}
declare Outer outerInstance;
declare innerInstance = new Inner from outerInstance;

4-14 ObjectScripting Programmer’s Guide

Example

Classes

Modifying the behavior of methods and properties
You can modify the behavior of methods in script classes:

* Derive a new class from the script class, overriding the methods whose
behavior you want to change. Use this technique when you want to
provide new behavior for a collection of objects.

¢ Override an instance of a class by using an on handler or attach to hook
one of the object’s methods. Use this technique when you want to tweak
the behavior of a particular instance of a class.

You can also modify the behavior of properties in script classes:

e Derive a new class from the script class, overriding the properties whose
values you want to change. Use this technique when you want to provide
new behavior data values for a collection of objects.

* Override an instance of a property by using getters and setters. Use this
technique when you want to tweak the behavior of a particular instance of
a class.

Declaring a class

There are no constructors in cScript as there are in C++. (Defining a method
with the same name as the class, as you do in C++, does not make it a
constructor.) Instead, code embedded in the class declaration that is not part
of a method declaration is executed for each object instantiated from the

_class, and is therefore treated as constructor code. For this reason,

constructor arguments must be defined in the class declaration.

Member functions must be defined entirely in the class declaration. You
cannot declare a member function in a class and then define it later in the
program.

There are destructors in cScript, and they work as they do in C++. (Defining
a method that starts with a tilde (~) and has the same name as the class
makes it a destructor.) Destructors are called when the object is being
destroyed.

// The following class is declared without parameters
class noParams{

declare aMember;

declare anotherMember;

// Constructor code is any code outside of class methods
Funcl(); // call to a module-level method
for (declare y=1; y<10; y++) // more constructor code

print "hello";

// Here is the destructor:
~noParams () {
print "A hoParams has been destroyed.";

About cScript 4-15

Classes

Example

Example

Note

// More constructor code.
print "noParams construction completed";

b

X
X

new noParams; // declare instance, run constructor code
0; // calls destructor

// The following class is declared with parameters
class Base(parmOne, parmTwo)
print "parmOne=", parmOne;
print "parmTwo=", parmTwo;
declare X = parmOne;
declare Y = parmTwo;

MethodOne() {
=X+Y;
}
AnotherMethod() {
}
}

// aParm and cParm are passed through to

// Base as ParmOne and parmTwo.

class Derived(aParm, bParm, cParm): Base(aParm, cParm) {
declare Z = bParm;

}i

declare d;

d = new Derived (1,2,3);
print "d.X = ", 4.%;
print "d.Y = ", 4.Y;
print "d.z = ", d.Z;

//The following class is inherited from the class Base
// aParm and cParm are passed through to Base
class Derived(aParm, bParm, cParm): Base(aParm, cParm) { -

" declare Z = bParm;

}i

Initialization arguments must be explicitly passed to the base class. They
must also be stated in the derived class parameter list because that is the list
referenced when a derived class object is instantiated.

Creating instances of ¢Script classes

Objects in script are created in one of two ways (assummg an already defined
class Foo):

X = new Foo();
or

Foo x();

4-16 ObjectScripting Programmer’s Guide

Note

Closures

Closures

As with any declaration, you.can use the declare and export keywords when
you create objects. For example,

declare x = new Foo();
export Foo y();

cScript has automatic garbage collection. When an object goes out of scope, it
is deallocated. Objects can be explicitly deallocated using the delete
command. For example,

declare x = new Foo{(); // allocate new object
delete x; // explicitly delete object

Because cScript is untyped, you can destroy an object by assigning it another
value. For example, cScript does not complain when you assign 0 to the
object x as follows::

declare x = new MyClass(); // create an object of class MyClass
X =0; // object overwritten and replaced with 0

‘The object is only actually destroyed if the reassigned variable is the only
~ reference to that object. If there are additional references to the object, the

object will continue to exist when one of its reference variables is reassigned.

Discovering class and array members

You can use ?? and iterate to discover the contents of classes and assoc1at1ve
arrays.

* With ?? you can test if a particular property exists in an object or if a
particular index exists in an array.

e With iterate, you can see all members of a class or array.

Closures let you obtain a reference to a method or property without invoking
it. They are analogous to function pointers in C++.

Closures are powerful features of cScript. You can pass a closure as a
function argument, for example. Since it represents a member of a class
instance (an object), it carries a this pointer for that object with it and has all
of the object’s context information.

Use the closure operator (:>) in the following situations:

e Tobind a class instance (an object) with one of its methods in a single
reference.

* To assign a closure to a variable and use that variable anywhere you
would use the closure.

e To dynamically expand or change the interface or behavior of a particular
object, in ways not specified in the class of which the object is an instance.

About cScript 4-17

Event handling

* To declare arrays of closures to use like arrays of function pointers. The
functions need not do anything unless they happen to be defined. Calling
an undefined closure is not an error - nothing happens because there’s
nothing to call.

¢ In on handlers and attach and detach statements to haridle a method call.

In both cases, you can use pass to call the original method (if any) from
within the attached method, and control the parameters passed to the
original method. Overriding or adding an object method using an on
handler or an attach statement affects only the one object instance. It does
not affect the class, or any existing or new objects instantiated from that
class. Only when on handlers are defined within a class definition itself
using the this reference do all objects of that type inherit that event
handling behavior. ’

- Event handling

cScript uses an event handling model to override class behavior. Given an
instance of a class, you can modify its behavior by hooking a specified
method and supplying an alternative implementation. You can use either an
on handler or attach and detach to accomplish this. For more information,
see the next section “On handlers,” and “Attach and detach” on page 4-19.

On handlers

You can use an on handler to hook method call events for an instance of a
class and override, or enhance, its functionality. You need not call the
hooked method inside the on handler: Any code in the on handler will be
executed instead of the hooked method. If you want to invoke the original
method, use pass. If the hooked method returns a value, that or any other
value can be returned by assigning the return value of pass to a local
variable, including a return statement in the event handler.

In the on handler header, you use the closure operator (:>) to bind a class
instance (an object) with a method of the object as a closure reference. For
example, ’

declare AClass MyObject; // or MyObject = new Aclass;

// Given this instance of class AClass, you

// can intercept one of its methods.
on MyObject:>Methodl (parml) {

// Programmer may provide some preprocessing here.

// Programmer may delegate to original implementation

// or get original return value with pass().

declare rv = pass(parml}; // call MyObject.Methodl (parml)
// Programmer may provide some postprocessing here.
return rv;

4-18 ObjectScripting Programmer’s Guide

Note

Example

Event handling

To be bound to an existing object method, the number of parameters in the
on handler definition must match the hooked method. Once invoked,
however, pass will call the hooked event regardless of how many arguments
it passes. As with all function calls, cScript will ensure that the proper
number of arguments are passed, truncating or padding as needed.

While inside an on handler, keep the following in mind:

* Youaren't actually in a method of the object. Simple function calls resolve
to their global counterparts, not to the object’s methods. If you want to call
the method bar from the Methodl on handler, you must exp11c1tly denote
the object. For example, :

on MyObject:>Methodl () {
MyObject.bar();
| ;

* Another way to explicitly denote a method of this object is to use the
shorthand dot notation, which relies on the fact that, in an on handler, the
‘dot is a shortcut for the controlling object. For example (given an object
MyObject that has methods Method1 and bar):

on MyObject:>Methodl () {
Jbar();
}

Attach and detach

If you want to make dynamic changes to class instances, you can set up
dynamic on handlers using the closure operator with attach and detach. An
on handler is not dynamic, but stays in effect once established as long as the
module in which it is defined remains loaded and as long as the object exists.

Attached closures are used to set up a linkage between any member (method
or property) of an instance of one class with any member from an instance of
another class.’

// attach and detach example

% = new Foo(); // Create an instance of Foo called x
// and assume Color() is a method.

x.Color();) // Call x.Color().

y = new Bar();) // Create an instance of Bar called y
// and assume Notify() is a method.

y.Notify(); ' // Call y.Notify().

attach y:>Notify to x:>Color; // When x.Color() is called,

) // instead call y.Notify().
x.Color(); // Call y.Notify().

// NOTE: In y.Notify() a pass() will

// now delegate back to x.Color(). .

detach y:>Notify from x:>Color; // unlink the two objects
x.Color(); ~// Call x.Color{).

About cScript 4-19

Accessing cScript properties

‘Accessing cScript properties

Example

You can use on handlers to control what happens when users get (read) or
set (write) the values of properties. These two types of on handlers are called
getters and setters. This feature allows you to execute some code when a
prolierty is accessed instead of having to implement the property as a
method.

Using getters

You can use a getter:

¢ To restrict access to a property ‘
¢ To execute related methods or modifying related properties
¢ To perform computations on a value before returning it

The syntax for a getter is:

on object:>property{
[optional pre-processing statement(s)]
return [pass() |SomeValue];

}

Since no value is passed to the on handler, no parameter is needed. You need
a return statement because a getter is always invoked when the object’s
property is used in a statement that needs to obtain its current value. When
you access the property (for example, on the right side of an assignment
operator or as an argument in a print statement), the on-read property event
handler is called and its statements are executed.

// The following getter hides the property Hiddenl:

import IDE; //Import IDE;, an IDEApplication object
class MyClass () {

declare Hiddenl = "Hidden: can't see this one";

declare Publicl = "Public: can see this one";

// Getter
on this:>Hiddenl {
return NULL;
}
} // End MyClass declaration

getter() {
declare MyClass myobi;
IDE.Message (myobj.Hiddenl);
//Prints nothing
IDE.Message (myobj.Publicl);
//Prints "Public: can see this one" -

}

4-20 ObjectScripting Programmer’s Guide

'Example

Accessing cScript properties

‘Using setters

You can use a setter:

To restrict values of a property to a certain range

To limit access to a property (or even make it read-only)
To execute related methods or modify related properties
To perform computations on a value before setting it
To convert user-supplied data to an internal format

The syntax for a setter is:

on ClassInstance:>property (parameter) {
[optional pre-processing statement(s)]
[pass (parameter | SomeValue);]

[optional post-processing statement(s)]

}

Unlike the getter syntax, parentheses and a parameter are required for the

setter to obtain the value intended to be assigned to the hooked object

property. If you want the handler to be able to set the property (rather than

simply block write access to it), you need a pass statement that sets the

property’s value. When you try to set the property (for example, when the
property is used on the left side of the assignment operator object.property =

1), the on handler code executes.

// In the following example, the setter uses the value set
// in radius to calculate and set the values of circumference
/ and area. It then passes the user's value on to radius.

import IDE; //Import IDE, an IDEApplication object
declare PI = 3.141592654;

class Circle(rad) {
declare radius = rad;
declare circumference;
declare area;

/] Setter

on this:>radius(x) {

if (x> 0) {

circumference = PI * 2 * x;

area = PI * x * x;

pass (x) ;

}

else :

IDE.Message ("Error: Radius must be greater than zero.");

}

/] Methods

}

About cScript

4-21

Adding menu items and buttons to the IDE

ShowProperties() {

IDE.Message("radius = " + radius +
", circumference = "
+ circumference +
", area = " + area);
}
} // End of Circle class declaration
declare Circle obj(1); //Initialize radius to 1.

obj.ShowProperties () ;

//Call the IDEApplication method SimpleDialog to prompt
//the user for input and get a value for radius.
declare radius = IDE.SimpleDialog("Enter a radius", "10");

obj.radius = 0 + radius; //Convert string to 1nteger
obj. ShowPropertles() :

Adding menu items and buttons to the IDE

Through cScript, you can add menu items to a view’s SpeedMenu or to
menus on the main IDE menu, and define buttons that can be added to the
IDE SpeedBar. This functionality is contained in the file MENUHOOK.DLL,
located in the Borland C++ BIN directory. A script called MENUHOOK.SPP
is provided in the Borland C++ SCRIPT directory to enable these capabilities
through cScript.

To use its functions, MENUHOOK. SPP must be loaded using the load
command or through the Script Modules dialog box. To automatically load
MENUHOOK.SPP each time you start the IDE, add the following line to
STARTUP.SPP:

scriptBngine.Load ("menuhook"); // load the MenuHook functions

MENUHOOK fu‘nctions

The following table lists the MENUHOOK functions:

assign_to_view_menu() Adds a menu item to a menu

remove_view_menu_item() Removes a menu item from a menu
define_button() Defines a button that can be added to the SpeedBar

assign_to_view_menu

Creates a new menu item on a SpeedMenu or on a main IDE menu.

4-22 ObjectScripting Programmer’s Guide

Syntax

Return value

Description

Example

Adding menu items and buttons to the IDE
int assign_to_view_menu(string view_type, string menu_text, string script_text, string hint_text);

view_type Defines the type of view to attach this menu item to. Supported
values are: IDE, Editor, and Project. Passing IDE creates a new
menu bar item on the main IDE menu. The other values attach
the menu item to the SpeedMenus of views of the given type.

menu_text — The words that will appear on the menu item. If you include an
ampersand (&) in the string, the character following the
ampersand will be underlined and will be the selection
character for the menu item. Menu items can be nested by
putting a pipe (|) between the words of the menu items.

script_text cScript statement(s) to be executed when the menu item is
selected.

hint_text The text to display in the status bar when the menu item is
highlighted.

1 if the menu item is successfully added, 0 otherwise.

menu_text should be unique for the menu. Built-in menu items cannot be
replaced using this function. Defining a menu item with view_text identical to
that of a menu item previously defined with assign_to_view_menu() will
replace the original menu item with the new one.

A one-level submenu can be created by specifying a menu_text with a pipe
(1) character between the menu text and the menu item text. By using the
same menu text to the left of the pipe with different menu item text to the
right of the pipe in several calls to assign_to_view_menu(), you can create a
submenu with several menu items.

Editor or project views that are visible when assign_to_view_menu() is
executed will not have their menus updated. By adding calls to
assign_to_view_menu() in STARTUP.SPP, you can customize the IDE’s
menu system from the time it starts up, and assure that all views will have
the customized menus.

. Menu items can be removed from SpeedMenus using

remove_view_menu_item(). Menus created on the IDE menu bar cannot be
removed without exiting the IDE.

// Loads the MENUHOOK functions if not loaded in STARTUP.SPP
load ("menuhook") ;

// This function call adds a single menu item

// to the editor view’s SpeedMenu.

as51gn to_view_menu("Editor", "&Click Me", o
"IDE.Message(\"I'm clicked!\");"
"Click this menu item to see a message");

// These function calls add a submenu to the project
// view's SpeedMenu with three menu items.

About cScript 4-23

Adding menu items and buttons to the IDE

assign_to_view_menu("Project", "Ne&w Menu | &First Ttem",
"IDE.Message(\"Clicked the first item\");",
"Thig is the first submenu item");

assign_to_view_menu("Project", "Ne&w Menu | &Second Item",
"IDE.Message(\"Clicked the second item\");",
"This is the first submenu item");

assign_to_view_menu("Project", "Ne&w Menu | &Third Item",
"IDE.Message (\"Clicked the third item\");",
"This is the first submenu item");

// These function calls add a menu pad to the

// main IDE menu bar with three menu items.

assign_to_view_menu("IDE", "E&xample | &First Item’,
"IDE.Message(\"Clicked the first item\");",
"This is the first submenu item");

assign_to_view_menu("IDE", "E&xample | &Second Item",)
"IDE.Message (\"Clicked the second item\");",
"This is the first submenu item"); -

assign_to_view_menu("IDE", "E&xample | &Third Item",
"IDE.Message (\"Clicked the third item\");",
"This is the first submenu item");

remove_view_menu_item

Removes a menu item from the specified view’s SpeedMenu.
Syntax int remove_view_menu_item(string view_type, string menu_text);

view_type Defines the type of view the menu item is attached to.
Supported values are: Editor and Project.

menu_text The words that appear on the menu item to be removed. This
includes the ampersand (&) denoting the selection character, if
any. If a menu and menu item were defined using a pipe (1)in
menu_text in the call to assign_to_view_menu() that created the
menu/menu item, then the exact same text, including the pipe,
are required in this function as well. '

Return value 1 if the menu item is successfully removed, 0 otherwise.
Description menu_text must exactly match the string used in the menu_text argument in

assign_to_view_menu().

Menus and menu items created with assign_to_view_menu() can be
removed. Menus and menu items on the IDE menu bar can also be removed.

When removing menus with multiple menu items,
remove_view_menu_item() must be called for each item in the menu.

Examp|e // These function calls remove the SpeedMenu menus and menu
// items created with the assign_to_view_menu() example.

424 ObjectScripting Programmer’s Guide

Syntax

Return value

Description

Example

Adding menu items and buttons to the IDE

// Removes menu item from the editor view's SpeedMenu
remove_view_menu_item("Editor", "&Click Me");

// Removes the submenu from the project view’s SpeedMenu
remove_view_menu_item("Project", "Ne&w Menu | &First Item");
remove_view_menu_item("Project”, "Ne&w Menu | &Second Item');
remove_view_menu_item("Project”, "Ne&w Menu | &Third Item");

define_button

. Defines a new SpeedBar button.

int define_button(string button_name, string script_text, string hint_text, string tooltip_text,
int button_index);

button_name Defines a name for this button. The name should not
conflict with any of the built-in button names. Multiple
buttons with the same name can be defined.

script_text cScript statement(s) to be executed when the button is
_ - selected.
hint_text ~ The text to display in the status bar when the mouse pointer
rests on the button. '
tooltip_text The tip text to display when the mouse pointer rests on the
button. o

button_index The index of the glyph to show for the button.
' MENUHOOK.DLL contains a built-in set of 38 glyphs
(numbered 0 through 37) that can be used for buttons.

1 if the button successfully added, 0 otherwise.

Defining a button with define_button() adds the button to the Available
Buttons list in the Options | Environment | SpeedBar | Customize dialog box.
Use this dialog to add the button to the button bar.

User-created button definitions are automatically saved to the IDE
configuration file when the IDE shuts down, and reloaded when the IDE
starts. ’ '

// Creates a new button definition and adds it to the
// Available Buttons list so it can be added to the
// SpeedBar.
define_button("Example Button",
"IDE.Message (\"You pressed the example button\");",
"This is the example button",
"Example Button", 4);

About cScript 4-25

4-26 ObjectScripting Programmer’s Guide

Chapter

Keywords and functions

Keywords and functions are reserved for use in the cScript language and
cannot be used as names of variables, methods, or classes or as any other
identifier names.

array
Declares an array.
Syntax 1 declare array_var = new array[[size]];
declare array array_var{ [size] J;
size The number of elements in the bounded array. If size is omitted,
the array is associative.
Syntax 2 array_var[[size]] = {elementi], element2[, ..]] };
size An array created with this syntax always takes the number of
elements in the declaration list. size is ignored.
elementl... Creates a bounded array with contents elementl, element2, and
' so on. Element numbering starts at 0 and continues to size — 1.
The number of elements determines the size of the array and
overrides size if it is specified.
Description In cScript, you can create two types of arrays, bounded and associative:

* Bounded arrays are similar to C++ arrays. As in C++, they use a zero-
based index. (The first element is 0 and the last is size — 1.) If you create an
array with a list of elements, as in Syntax 2, it isa bounded array and its
size is the number of elements.

Keywords and functions 5-1

Keywords and functions, attach

Example

attach

* Associative arrays are grown as needed. If you assign more members to a
bounded array than its size, the rest of the array becomes an associative
array. '

‘Arrays can contain data of any cScript type, including objects and other

arrays. An array with other arrays as elements is multidimensional. Elements
of the contained arrays are accessed using additional sets of square brackets
as shown in the example.

// Creates a bounded array of 10 elements

declare myArray;

myArray = new array[l10];

myArray[l] = "Hello";

myArray[2] = "World";

print myArray[0], myArray[1]; ~// prints "Hello World"

// Creates an associative array

declare myAssocArray;

myAssocArray = new arrayl] // no size declared
myAssocArray["Elementl"] = "One";
myAssocArray["Element2"] = "Two";

print myAssocArray["Element2"] = // prints "Two"

// Creates a multidimensional array

declare array multiArray[] = {{1,2,3}, myArray, myAssocArray};

print multiArray[0](2]), multiArray(1][0], multiArray{2]["Element2"];
// Prints: 3 Hello Two

Syntax

Description

Example

Links a method of an instance of one class to a method of an instance of
another class.

attach ClassInst1:>method1 to Classinst2:>method2

To make dynamic changes to class instances, you can set up dynamic
function call event handlers (also called on handlers) using the closure
operator with attach. This technique allows you to supply an alternative
implementation for an instance method.

In other words, you can override an object’s method and provide an
alternate implementation of that method at runtime, without affecting the
class from which the object was instantiated. The override remains in effect

- for the lifetime of the object or until the link is broken using detach.

This binding is on a per-instance basis unless you use the attach statement in
the class definition with the this reference in place of a specific instance
name.

// Attaches a method belonging to a String object (myStrl)
// to an EditStyle object (myStyle);
declare myStrl, myStr2, myStyle;

5-2 ObjectScripting Programmer’s Guide

break |

Keywords and functions, break

myStrl = new String("HELLO WORLD");
myStyle = new EditStyle("Example");

// Attaches myStrl’s Lower() method to myStyle
attach myStrl:>Lower to myStyle:>Lower;

// Calls Lower() from myStyle
myStr2 = myStyle.Lower();
print myStr2.Text; // prints "hello world"

// Detaches Lower() from myStyle

detach myStrl:>Lower from myStyle:>Lower;

myStr2 = myStyle.Lower();

print myStr2.Text; // prints [UNINITIALIZED]

Syntax

Description

breakpoint

Passes control to the first statement following the innermost enclosing brace.

break;

Use break within a:

do loop

while loop

for loop

iterate loop
switch construct

The implementation of break in cScript is identical to the implementation in
C++.

call

Syntax

Description

Stops the program and passes control to the script debugger Breakpoint
Tool.

breakpoint;

If the Breakpoint Tool is not active, breakpoint is ignored.

Directly invokes a closure.

Keywords and functions 5-3

Keywords and functions, case

Syntax

Description

Examplé

case

call ClosureName(argumentList);

ClosureName The name of the closure.

argumentList The arguments for the method or property being invoked.

The closure is invoked using the same arguments as the method normally
uses. There is no method for obtaining a return value when calling through
closures. If the method returns a value, it will be ignored.

// Shows creating a closure and assigning it to a
// variable, then calling the closure directly.

Class MyClass {
methodl (pl, p2)
{
print pl, p2;
}
1

declare MyClass instance;
declare closure = instance:>methodl; // declare the closure
call closure("Hello", "world"); // output is Hello world

Syntax

Determines which statements to execute in a switch_ statement. -

switch (switch_expression){
case expression :
[statement1;]
[statement2;]

[break;]
[default :
[statement1;]
' [statement2;]
.|
}

switch_expression Any valid cScript expression, including a function call.
Unlike C++, the switch_expression is evaluated for each
case in a top-down fashion until a match is found or no

more case statements remain.
expression Any valid cScript expression, including a function call.

statement One or more statements to execute:

5-4 ObjectScripting Programmer’s Guide

Description

Note

class

Keywords and functions, class

A case statement is the branch condition of a switch statement. If the value of
the expression following case matches the value of switch_expression, the
statements up to the next break or the end of the switch execute.

Because cScript is a late-bound language, expression does not have to be a
literal as in C++, nor does the expression have to be of integral type.
Otherwise, case behaves exactly as it does in C++.

Syntax

Description

Defines a cScript class.

class className [(initializationList)]
[:baseClassName[(initExpressionList)]]
{memberList}[;]

className The name of the class. className can be any name
unique within its scope
initializationList The initial constructor values for the class, if any.

baseClassName The class that this class derives from (optional). of is a
synonym for the : separator preceding this identifier.

initExpressionList ~ The initialization for the class instance.

memberList Declarations of the class’s properties, methods, and
events. .

. A class declaration in CSCI'lpt is similar to a class declaration in C++, with a

few key differences.

For example, defining a method with the same name as the class, as you do
in C++, does not make it a constructor. Instead, executable statements
embedded in the class declaration that are not part of a method declaration is
considered constructor code. For this reason, initialization parameters must

“be defined in the class declaration. The base class is always initialized first,

before the child class.

Only one base class can be initialized in a derived class declaration because
cScript does not support multiple inheritance. Where a class is defined as
being derived from a base class and the base class requires initialization
values, they must be passed to the base class through the derived class’s
declaration. The base class initializer is essentially an implicit constructor
call, and as such, expressions are allowed for its arguments.

When instantiated, the number and type of initializers is not checked
(function overloading is not supported in cScript). Arguments are padded
and/or truncated the same as they are with functions.

Methods must be defined entirely in the class declaration. You can’t just
declare a member function in a class and then define it later in the program
All properties and methods of the class are public.

Keywords and functions 5-5

Keywordé and functions, continue

Destructors in cScript work as they do in C++. Defining a method that starts
with a tilde (~) and has the same name as the class makes it a destructor.
Destructors are called when the object is being destroyed. Destructors may
not have parameters.

Where inheritance is used, the access method for base class members is the
same as for those of the derived class. However, if a derived class member
has the same name as one of the base class, you must use super to clearly
specify the reference.

Note You cannot instantiate a class as part of its declaration as in traditional C
structs, so a semicolon is optional at the end of the declaration.

Example 1 //The following class is declared without parameters:
class noParams { K
declare aMember;
declare anotherMember;
Funcl () ; // constructor code
for (y = 1; v < 10; y++) // more constructor code
print "hello";

~noParams () {
print "A noParams has been destroyed.";

}
}
// The following class is declared with parameters:
class Base(parmOne, parmTwo) {
declare X = parmOne; // a member variable
declare Y = parmTwo; // a member variable
MethodOne () {
X=X+Y;
}
AnotherMethod () {
}
}

Example2 // The following class is inherited from the class Base:
) // aParm and cParm are passed through to

// Base as parmOne and parmTwo.

class Derived(aParm, bParm, cParm) : Base(aParm, cParm) f{

declare Z = bParm;

}

// example using the Derived class:

declare obj = new Derived(l, 2, 3)// 1&3 passed to Base
// Base constructed before
// Derived

continue

Passes control to the end of the innermost enclosing brace, allowing the loop
to skip intervening statements and re-evaluate the lIoop condition
immedjiately.

5-6 ObjectScripting Programmer’s Guide

Keywords and functions, declare

Syntax continue;
Description Use continue within a:
B s doloop
¢ while loop
‘s for loop
* iterate loop
The implementation of continue in cScript is 1dent1ca1 to the 1mplementat10n
in C++.
declare
Declares a variable and ensures that it is local to the current scope and does
not override a variable from an enclosing scope.
Syntax declare identifier [optional identifier_syntax][, identifier...];

identifier The variable being declared.
identifier_syntax ~ The variable’s default values. zdentzﬁer syntax is optional.

Description The scope of a variable is the block in which it is first used and any blocks
nested in that block. While in a nested block, it is possible that a variable you
think you are using for the first time has already been used in the enclosing
block. What happens in that case is that you override the enclosing block’s
variable value (and possibly its type as well) with what you mistakenly think
is a local variable.
To ensure that this doesn’t happen, use declare with any variables that are
local to a block. Although not needed, declare can also be used in
conjunction with the export and import declarators. Note that you can
declare multiple basic variables, objects, and arrays in a single statement, but
you cannot mix them in the same statement.
See “array” on page 5-1 and “new” on page 5-17 for specifics on declaring
arrays and class objects.

Example // Exanmples of declare

default

declare x;

declare x = 1;

declare %, y, z;
declare x = 1, v, 2 = 2;

Provides statements to process in a switch statement when none of the case
conditions apply.

Keywords and functions 5-7

Keywords and functions, delete

Syntax

Description

delete

switch (switch_expression){
case expression :’
[statement_list;}

[break;]

[default :
[statement_list;)]
]

}

‘switch_expression . Any valid cScript expression, including a function call.

Unlike C++, the switch_expression is evaluated for each
case in a top-down fashion until a match is found or no
more case statements remain.

expression Any valid cScript expression, including a function call.

statement_list A list of statements to execute.

default is optional. If you include a default statement, it must be the last
condition in the switch. If you do not include a default statement and none
of the case conditions apply, none of the statements in the switch are
executed. The behavior of default in cScript is the same as C++.

Syntax 1

Syntax 2

Description

detach

Deallocates an object and causes the object destructor, if any, to be called.

delete object_name;
object_name . " The name of the object to delete.

delete array_name;

array_name The name of the array to delete. Deleting an array does not
require square brackets in the delete command, as it does in
C++. '

Unlike C++, cScript has automatic garbage collection. Therefore, objects are
automatically deleted when there are no longer any references to them, or
when they go out of scope. Use delete only when you need to explicitly
deallocate an object before the references to that object have been destroyed.

Detaches a method instance of one class from a method instance of the same
or another class when the two were previously linked using attach.

5-8 ObjectScripting Programmer’s Guide

Keywords and functions, do

Syntax detach Classinsti:>method1 from Classinst2:>method2

Description To make dynamic changes to class instances, you can set up dynamic
function call event handlers (also called on handlers) using the closure
operator with attach. This technique allows you to supply an alternative
implementation for an instance method.

In other words, you can override an object’s method and provide an
alternate implementation of that method at runtime without affecting the
class from which the object was instantiated. The override remains in effect
for the lifetime of the object or until the link is broken using detach.
Example // Attaches a method belonging to a String object (myStrl)
// to an EditStyle object (myStyle);
declare myStrl, myStr2, myStyle;
nyStrl = new String("HELLO WORLD");
myStyle = new EditStyle("Example");
// Attaches myStrl’'s Lower () method to myStyle
attach myStrl:>Lower to myStyle:>Lower;
// Calls Lower() from myStyle
myStr2 = myStyle.Lower(); ,
print myStr2.Text; // prints "hello world"
// Detaches Lower() from myStyle
detach myStrl:>Lower from myStyle:>Lower;
myStr2 = myStyle.Lower(); -
print myStr2.Text; // prints [UNINITIALIZED]
do
Executes the specified statement until the value of the specified condition
becomes FALSE.
Syntax do statement while (condition);
statement ~ The statement to be executed. statement executes repeatedly as
‘ long as the value of condition remains TRUE.
condition Either TRUE or FALSE. When FALSE, statement stops
executing.

Description The behavior of do in cScript is the same as C++. break terminates loop
execution, while continue evaluates condition immediately without executing
any intervening statements.

Note Because condition is tested after statement is executed, the loop executes at

least once.

’

Keywords and functions 5-9

Keywords and functions, export

export

for

Syntax

Description

Example

" myLocal

Provides access to a variable across modules.
export variable_name;
variable_name The name of the variable to export.

Declare the variable as export in the module that declares it and import in
another module that needs access to it.

Variables created at the module level (not in a function, method, class, or
control structure) are global variables of the module, but are not accessible to
any other modules. To access module scope variables defined in module A
from module B, three things must occur:

* Both module A and module B must be loaded.
* The module scope (global) variable must be declared export in Module A.
* Module B must contain an import statement for the variable.

// Example of export and import

// FILEL.SPP

export myExVar;// export variable for use in other modules
10;

nyExVar = 10;

// FILE2.SPP

import myExVar;// import variable exported by another module
print myLocal;// prints [UNINITIALIZED]

print myExVar;// prints 10

noot

Syntax

Executes the specified statement as long as the condition is TRUE.
for (‘[initialization] ; [condition] ; [expression]) statement

initiglization ~ Initializes variables for the loop. initialization can be an
expression or a declaration. Variables are initialized before
the first iteration of the loop.

condition Must evaulate to either TRUE or FALSE. When FALSE,
statement stops executing.

expression The expression to evaluate after each iteration of the loop.
expression usually increments or decrements the initialization
variable in some way.

statement The statement to be executed. statement executes repeatedly
as long as the value of condition remains TRUE.

5-10 ObjectScripting Programmer’'s Guide

Description

Note

Keywords and functions, FormatString-

The behavior of for in cScript is the same as C++. statement executes
repeatedly as long as condition is TRUE. The scope of any identifier declared
within the for loop extends to the end of the script module.

Because condition is tested before statement is executed the loop may never
execute.

The cScript for statement works the same as a C++ for statement.

All the parameters are optional. If condition is left out, it is assumed to be
always TRUE. break will cause loop execution to be terminated, while
continue will cause the condition to be evaluated immediately without
executing any intervening statements.

FormatString

Syntax

Return value

Description

from

Formats strings at run time.

FormatString(“formatString” [, expression1 [, expression2...]]);

formatString Literal text, placeholders for values, or a combination of the
two. A placeholder is in the format of “%n”, where 7 is the
number representing the place of the expression in the list
following the format string.

expression Any valid cScript expression (literals, variables, function
calls, and so on). Note that numeric values are automatically
converted to strings.

The string created by combining the formatString and the variable list.

Use FormatString to build strings at runtime using a formatting string and a
list of cScript expressions.

For example,

declare str = "Hello";

. declare value = 10;
print FormatString("str = %1, value = %2", str, value);
// the string "str = Hello, value = 10" is printed

In the above example, the value of str, the first variable in the list, was
substituted for %1 in the output string. Likewise, the value of value, the
second variable in the list, was substituted for %2 in the output string.

The number of variables in the variable list must match the number of
placeholders in formatString.

Used in-a detach statement or when instantiating nested classes.

Keywords and functions 5-11

Keywords and functions, if

Syntax 1

Syntax 2

Example

innerObject = new Inner from Classinstance;

CInner The nested class. -

ClassInstance Instance of the enclosing class.

detach ClassInst1:>method1 from Classinst2:>method2;

// Attaches a method belonging to a String object (myStrl)
// to an EditStyle object (myStyle);

declare myStrl myStr2, myStyle;

myStrl = new String("HELLO WORLD");

myStyle = new EditStyle("Example");

// Attaches myStrl's waer() method to myStyle
attach myStrl:>Lower to myStyle:>Lower;

// Calls Lower() from myStyle
myStr2 = myStyle.Lower();)
print myStr2.Text; // prints "hello world"

// Detaches Lower () from myStyle

detach myStrl:>Lower from myStyle:>Lower;

myStr2 = myStyle.Lower();

print myStr2.Text; // prints [UNINITTALIZED]

Syntax 1

Syntax 2

Implements a conditional statement. if works exactly as it does in C++.

if (condition) statement;
condition Must evaulate to either TRUE or FALSE. When FALSE,
statement stops executing.

statement ~ The statement to be executed. statement executes repeatedly as
long as the value of condition remains TRUE.

if (condition) statement;
else statement?;

condition Must evaulate to either TRUE or FALSE. When TRUE, statement
executes. When FALSE, statement2 executes. ‘

statement The statement to execute. statement executes repeatedly as long as
the value of condition remains TRUE.

5-12 ObjectScripting Programmer’s Guide

Keywords and functions, import

else - An optional keyword. If you use nested if statements, any else
statement is associated with the closest precedmg if unless you
force association with braces.

statement? The second statement to execute. statement2 executes when the
value of condition is FALSE. statement2 can be another if
statement.
Description Use if to implement a conditional statement.
You can declare variables in the condition expression. For example,
if (int val = func(arg))

is valid syntax. The variable val is in scope for the if statement and extends to
an else block when it exists.

The condition statement must convert to a bool type. Othermse the
condition is ill-formed.

When <condition> evaluates to TRUE, <statementl> executes.
If <condition> is FALSE, <statement2> executes.

The else keyword is optional, but no statements can come between an if
statement and an else.

import

Allows access to a variable across modules.
Syntax1 import variableName;
variableName The name of the variable to import.

Description1 Declare the variable as export in the module that declares it and import in
another module that needs access to it.

Variables created at the module Ievel (not in a function, method, class, or

‘ control structure) have module scope. They are not accessible to any other
modules. To access a variable defined in module A from module B, three
things must occur:

e Both module A and module B must be loaded.
e The variable must be declared export in Module A.
* Module B must contain an import statement for the variable.

import is also used to make functionality contained within a Windows DLL
file available from within cScript.

Examp|e1 // Example of export and import
. // FILEl.SPP
export myExVar;// export variable for use in other modules

Keywords and functions 5-13

Keywords and functfons, initialized

myLocal = 10;
myExVar = 10;

// FILE2.SPP

import myExVar;// import variable exported by another module
print myLocal // prints [UNINITIALIZED]

print myExVar;// prints 10

Syntaxz import “DLL_ Name” {functionPrototypes}

DLL_Name - The name of the DLL you wish to use. The path can be
: included if necessary.

functionPrototypes Each external function must be prototyped according
to general C++ prototype conventions. DLL calls use
the data type keywords char, short, int, unsigned,
long, bool, void and const.

Description2 Makes functions contained in external DLLs available to cScript.

Unlike normal cScript functions, variable numbers of arguments are not
supported when using functions from DLLs. You can pass int arguments for
enums, and long for pointers, since cScript does not support these types.
There is no support for passing structs.

cScript supports the calling conventions __cdecl, __pascal, and __stdcall.

Example2 // This example exposes DLL entrypoints using import
import "foo.dll" {
int __pascal FooFunc(short, char, unsigned, long);
void DoIt();
1.
// directly access the DLL calls
if (FooFunc(l, "hello there", 2, 3))
print "FooFunc() succeeded";
else
DoIt{);

initialized

Indicates if a variable has ever been initialized.
Syntax initialized(x);
x The name of the variable to check.
Return values TRUE if the value has ever been initialized, FALSE otherwise
Description initialized is an intrinsic function that provides a means for determining the

state of a variable before using it. Using an uninitialized variable is almost
never as dangerous as in C++, but is also usually not what was intended.

5-14 ObjectScripting Programmer’s Guide

Example

iterate

Keywords and functions, iterate

initialized is particularly useful in determining the state of arguments
passed to functions on call, and in class instantiation, and can also be used to
prevent unintended divide by zero errors because of an uninitialized divisor.

// Example of initialized
declare x, y; // declares variables,
// but does not initialize them!
x = 10; // initialized!
print initialized(x);// returns TRUE
print initialized(y); // returns FALSE

Syntax

Description

Example

Use an iterate loop to cycle through the members of a class object or an
associative array in first to last order.

iterate(outputvar; object;keyvar]) [statement];

outputvar A variable to hold a copy of the contents of the array or class
data member.

object The array or class object to iterate.

keyvar Variable to hold the index or key into the array, or class object
data member name.

statement The statement to be executed.

iterate is a loop structure that allows some action, such as printing, to be
performed on each member of the array or property of a class object.

You can use continue and break to control execution inside the loop. Like a
for loop, curly braces ({}) must be used to enclose multiple loop statements.

iterate can also be used to determine the number of properties in an object or
the number of elements in an array.

//Prints all the members of associative array z
//using the variable x

iterate(x; z) {

print x;

}

//Prints all the members and the key values of
//associative array z using the variable x
iterate(x; z; k) {

print "Key =" + k + "Value = " + x;

i

Keywords and functions 5-15

Keywords and functions, load

load

Syntax

Return value

Description

Example

Opens and parses the specified script file.
moduleHandle = load(fileName);
ﬁleName The name of the script file to open and parse.

A module handle (module objec{ reference) if successful, or NULL if not.

'Once the script file is opened and parsed, load executes the file using run.

Although classes and functions defined in a module come into existence
when the module is loaded, variables declared in the module are not
defined, nor are any other statements executed, until the script is run.

If there is an _init function, the module executes that code first. If there is a
function with the same name as the module, that function is then executed.

//Loads and runs a script file

declare myModule; .

myModule = load("demo.spp"); // loads module and gets a handle
if (myModule) {// if loaded

run (myModule);// run the module

- unload({myModule);// unloads the module

}

module command

Syntax

Description

Provides an alternative internal name, or alias, for a module.

module [‘newName”];

newName The module’s alternative name.

After being parsed, every script file loaded into the IDE is assigned a module
name. The name defaults to the file name without its path or file extension.
This name may be used by other modules to explicitly access functionality in
the module.

You can alter a module’s name by embedding the following anywhere in the
file: '

module "newname";

modaule function

Gets access to any loaded module.

5-16 ObjectScripting Programmer’s Guide'

Syntax

Return value

Description

new

Keywords and functions, new

module ('moduleName”]);

moduleName The name of the module to get.

If moduleName is not specified, returns one of the following:

¢ A reference to an object
¢ The module handle associated with the named module
¢ The module handle associated with the current module

If moduleName is specified and no matching module is available or no
parameter is entered, it returns NULL.

Use module to get access to any loaded module. If you use it with the current
module, moduleName has the same value as this used at the module level.

One use for this function is to access a globally scoped variable from a local
scope. For example,

// Modtest.spp

declare x = 1;

declare ModRef = thlS

local x = 2;

print (module()).x; // prints 1
print ModRef.x; // prints 1

Syntax 1

Syntax 2

Description

Creates a new object or array.

objectname = new className[([initializerList])] [from outerClassName[([initializerList])]]

initializerList ~ The list of objects used for initializing this class.

arrayname = new array [[arraySize]l;
arraySize The size of the array.

Use new as an alternate syntax for creating new class objects or arrays. For
more information, see “class” on page 5-5, “array” on page 5-1, and
“declare” on page 5-7:

Unlike C++, cScript does not distinguish between static and dynamic
memory allocation. The difference between the standard declaration syntax
and that using new is syntactic only.

cScript has automatic garbage collection. Therefore, objects created with
new, or otherwise, are automatlcally deleted when there are no longer
references to them (that is, when these objects and any variables that
reference them go out of scope). Use delete only when you need to explicitly
deallocate an object before the references to that object have been destroyed.

Keywords and functions 5-17

Keywords and functions, of

of -

A synonym for the colon (:) separator used when defining a class that
derives from a base class.

Syntax class classname [(initialization_list)] [of baseClass] (initialization_list)] { member_list }

initializationList The initial constructor values for the class, if any.

membér_list Declarations of the class’s properties, methods, and
events.

on

Sets up one of the following:

¢ A dynamic object method call event handler, also called an on handler
(syntax 1)
_* An object read-property getter (syntax 2)
¢ A write-property setter (syntax 3)

Syntax1 on ClassInstance:>{xe “>"}Method([argumentList]){
[pre-processing statement(s)]
[pass([argumentList]);]

[post-processing statement(s)]
[return [value];]

}

This syntax is used for an object method call event handler. This form of
dynamic event handling allows processing to occur both before and after the
optional call, through pass to the hooked method. It also allows alternate

~ values to be both passed to the hooked method and returned by the event
handler.

Note In order to be bound to an existing object method, the number of parameters
in an on handler definition must match the hooked method. Once invoked,
pass will call the hooked method regardless of how many arguments it
passes. As with all function calls, cScript will ensure that the proper number
of arguments are passed, truncating or padding as needed.

Syntax2 on ClassInstance:>property{
[pre-processing statement(s)]
return [pass() | value];

}

This syntax is used for a property getter and would be trlggered by any
subsequent statement that references that object’s property for read access,
such as on the right hand side of an assignment statement.

5-18 ObjectScripting Programmer’s Guide

Keywords and functions, pass

This form of the syntax allows pass to return the actual value, or,
alternatively, any specified value.

Syntax 3 on Classinstance:>property(parameter){
[pre-processing statement(s)]
[pass(parameter | value);]
[post-processing statement(s)]
} :
This syntax is used for a property setter. The setter is triggered when the
object’s property is used as an lvalue, such as on the left hand side of an
assignment statement. The value to be assigned to the property is what is
passed to the setter as its parameter. The value passed in pass sets the value
of the property.
Description Use on handlers (also referred to as object method call event handlers) to
‘ create new methods, or redefine existing methods, on an object of a given
class.
Unlike attach, methods overriden with on cannot be detached. To call the
original method from within the overriden version with the same name,
invoke the pass function. on handlers can be defined to control both read
and write access to an object’s properties.
Note If the global reference variable selection has been set using select, its
reference will not be affected, but is superseded with the with block.
Example import editor;
// Create a new Debugger object called debug
declare debug = new Debugger();
// Create a new method called RunToCurrent()
/1 on the object debug (not the class!)
on debug:>RunToCurrent ()
{
declare fileName = editor.TopBuffer.FullName;
declare row = editor.TopBuffer.TopView.Position.Row;
.RunToFileLine(fileName, row);
}
pass
Used in an on handler to invoke the original function that is being
overridden.
Syntax vamame = pass([param1[,param2],...]});

Keywords and fuhbtions 5-19

Keywords and functions, print

print

Syntax

Description

reload

Prints the specified expression in the Script page of the Message window.
print [expression_list];
expression_list The list of expressions to print.

print takes any string, expression, or variable as a parameter. To concatenate
expressions, separate them with commas. For example:

print "hello world";
print "the number is", x;
print "My name is", name, "and I'm", years, "years old';

A space is printed for each comma in the expression hst If no expressions are
passed, print does nothing.

* An uninitialized value outputs [UNINITIALIZED].
e A variable initialized to NULL outputs [NULL].
* An object outputs [OBJECT]. :

Syntax

Return value

Description

Note

return

Does an unload followed by a load.
reload (moduleName);
moduleName ‘The name of the module to unload and load.

A module handle if successful or NULL if not

reload searches the module list for a matching module. If found, reload
removes it and then loads it again. If it does not find a module to unload, it
simply loads the module for the first time.

If when reloaded, the module references global objects, these references
continue to refer to the older objects. (The module is not destroyed, but is
stored to maintain these references.) Global module values that are not part
of an object are destroyed and then reloaded.

Syntax

Exits from the current function, on handler, or module, optionally returning
a value. :

return [expression];

5-20 ObjectScripting Programmer’s Guide

_ Description

Example

run

Keywords and functions, run

A module, by default, returns TRUE if successfully run. However, an explicit
return statement can be provided to return a customized return value, or
simply to terminate execution prior to the end of the script.

//Example of return
sqr (x)

{

return (x*x);

}

Syntax

Return value

Description

Example

select

Loads and runs the module indicated.

run (moduleName)

moduleName The name of the module to load and run.

By default, run returns TRUE if successful or FALSE if not. If the module has
a global return statement, run returns that value if the module successfully
runs and then displays a warning that the standard return value for run has
been overridden.

run runs the module if it is already loaded. The module remains loaded until
explicitly unloaded using unload.

//Loads and runs a script file
declare myModule;)
myModule = load("demo.spp"); // loads module and gets a handle
if (myModule) {// if loaded :
run (myModule);// run the module
unload (myModule) ;// unloads the module
I

Syntax

Description

Creates a special global variable, selection,that refers to the selected variable.

select objectName;

objectName The name of the object to select.

You can call select on any variable that is loaded in any script. Doing so sets
selection to reference that variable for all scripts in the session. You then
have access to that variable from any script by using the alias selection as the
name of the variable. Variables so selected can also be referenced using the
shorthand dot (“.”) notation.

Keywords and functions 5-21

Keywords and functions selection

Because the variable is global to all loaded scripts, only one selection can be
active in an IDE session at a time. If you call select and there is already a
selection, you override the current selection with your new one.

Example // Example of select and selection
// SELECTL.SPP
class CO (pl, p2, p3) {
declare vl = pl;
declare v2 = p2;
declare v3 = p3;
) ;
class C1 (pl; p2, p3) {
declare vl = pl;
declare v2 = p2;
declare v3 = p3;
}
declare CO objl("One", "Two", "Three");
declare C1 obj2(1, 2, 3); ’
/1 Select the first object
select objl;
// Iterate across the selected object
// using selection, then dot notation.
iterate(iterator; selection; key)
print typeid(selection), "property", key, "=", iterator;
iterate(iterator; . ; key)
print typeid(.), "property", key, "=", iterator;
// Note that the dot within the with
// block refers to its own local selection.
with(obj2) _
iterate(iterator; . ; key)
‘print typeid(:), "property", key, "=", iterator;
// But the global selection has not changed.
print .vl;
print selection.v2;
print ". and selection still refer to", typeid(.);
selection
Defines a special global reference variable created by calling select on a
variable.
Syntax selection.Member
Member The class member for which the global variable is created.
Description Once the selection has been made, you can use selection in any way that you |

normally use the variable it refers to. You can access members of the
referenced object with selection.member. The dot (“.”) shorthand syntax can

5-22 ObjectScripting Programmer’s Guide

Example

super

"Keywords and functions, super

also be used instead of selection outside a with or iterate block or an on
handler. In those situations, the dot has local context and refers to the
controlling variable for that block (usually an object).

Because the selection variable is global to all loaded scripts, only one
selection can be active in an IDE session at a time.

// Example of select and selectlon
// SELECTL1.SPP
class CO (pl, p2, p3) {

declare vl = pl;

declare v2 = p2;

declare v3 = p3;

H

} : .
class C1 (pl, p2, p3) {

declare vl = pl;

declare v2 = p2;

declare v3 = p3;
}
declare CO objl("One", "Two", "Three");
declare C1 obj2(l, 2, 3);

// Select the first object
select objl;

// Iterate across the selected object
// using selection, then dot notation.
iterate(iterator; selection; key)
print typeid(selection), "property", key, "=", iterator;

iterate(iterator; . ; key)
print typeid(.), "property", key, "=", iterator;

// Note that the dot within the with
// block refers to its own local selection.
with(obj2)
iterate(iterator; . ; key) .
print typeid(.), "property", key, "=", iterator;

// But the global selectlon has not changed
print .vl;

print selection.v2;

print ". and selection still refer to", typeid(.

Syntax

Provides access to a member of the base class with the same name as a
member of a derived class.

objectName.supet[.super...].member

objectName The name of the object to access.

Keywords and functions

5-23

Keywords and functions, switch

Description

switch

Base class members can be directly accessed without using super where the
member name is unique within the class definition.

cScript does not support function overloading or the :: operator. However,
you can use super to get access to overridden class members as follows:

class C1 {
declare x = "C1";
Methodl() {
print x;
}
}
class C2:C1 {
Methodl () {
print "C2 derived from ", x;-
}
}
MyObj = new C2;
MyObj .Methodl (); //Prints C2 derived from C1

MyObj .super.Methodl(); //Prints CI

If a base class is itself a derived class and you want to access one of its
overridden members, use super.super (and so on for further access up the
inheritance hierarchy). For example: .

class C3:C2 {

Methodl () {

print "C3 derived from C2";

} .
}
MyObj3 = new C3;
MyOb33.Methodl () ; //Prints €3 derived from C2
MyObj3.super.Methodl () ; //Prints €2 derived from CI
dMyObj3.super.super.Methodl(); //Prints (I
class C3:C2 {

Methodl () { .

print "C3 derived from C2";

}
}
MyObj3 = new C3;
MyObj3.Methodl () ; //Prints C3 derived from C2
MyObj3.super.Methodl () ; //Prints C2 derived from CI
MyObj3.super.super.Methodl(); //Prints ClI

Chooses one of several alternatives.

switch (swifch_expression){
case expression :

[statement1,]
[statement2]]

5-24 ObjectScripting 'Programmer’s Guide

this

Description

Note

Keywords and functions, this

[break;]
[default :
[statementT;]
[statement2;]
|
}
switch_expression Any valid cScript expression, including a function call.
. Unlike C++, the switch_expression is evaluated for each
case in a top-down fashion until a match is found or no
~ more case statements remain.
expression Any valid cScript expression, including a function call.
statement The statement to execute. '

The value of the switch_expression is checked against the value of each case
expression until a match is found or until either default or the end of the
switch statement is reached.

As in C++, all statements but case or default following the matching case are
executed until break or the end of the switch statement is reached. If no case
expression matches switch_expression, the statements following default, if any,
are executed.

If you insert a default case, it must be the last case.

If you don’t use break as the last statement in the case that executes, all
remaining statements (except case or default) in the switch execute until
either a break is encountered or the end of the switch is reached. If you do.
use a break that executes, the sw1tch statement ends-there.

Syntax

Description

Provides an object reference within a class definition.

this:>method1() {}

The cScript this keyword is analogous to the C++ this pointer. It is used to
provide an object reference within a class definition. this is primarily needed
to define closures used in event handlers that will apply to all instances of
that class.

For example, given the class definition:

class MyClass {
methodl () {}

on this:>methodl () {}
}

Keywords and functions 5-25

Keywords and functions; typeid

Note

Example

typeid

all objects of that class will have a default method call event on handler

. defined (rather than on a per-instance basis as when the on handler is

defined outside of the class).

Whén this is used outside of a class definition, it refers to the current module
object since a script module can actually be treated as an object. You can use
it to create an event handler for a global function.

For example,

DoNothing () {} //Globally scoped function
on this:>DoNothing() { i // method of current object
print "Did something else first";

pass(); '

}

Calls to module scope functions for which an event handler has been defined
will only trigger the handler when they are called in the same way as defined
in the on handler. For example,

this.DoNothing(); // Triggers the event handler
DoNothing () ; // Does not trigger an event

The following example shows how to use this in a class definition in
conjunction with on handlers or attach to bind a method across all instances
of that class.

Event handlers normally provide a binding to a specific object or instance,
and not to all instances of a class.You can bind an event handler to a class
when you want to do either of the following;:

* Ensure that some default processing occurs as the very first action
regardless of how many other event handlers are subsequently chained to
-a method of a specific class

* Use more complex pre-processing and post-processing of method calls

class CO {
declare propertyl = 0;
GetPropertyl() {
return propertyl;
} .
on this:>GetPropertyl() { // Increments propertyl before call
propertyl++; .
return pass();
) ‘
}

declare CO myObij;
print myObj.propertyl; // Prints 0
print myObj.GetPropertyl(); // Prints 1

Gets runtime identification of variables or the resulting value of expressions.

5-26 ObjectScripting Programmer’s Guide

Syntax

Return value

Description

unload

Keywords and functions, unload
typeid(name_expn);
name_expn Any legal variable name or expression.

A string representing the type. Possible return values are:

[ARRAY]
classname
[CLOSURE]
[INTEGER]
[NULL]

[REAL]

[STRING]
[UNINITIALIZED]

e &6 o o o o o o

If the variable or expression value is a built-in type, typeid returns the type
in brackets []. If it is an object, typeid returns the class name. If the
expression is a function or method, typeid() indicates the type of the return
value of the function.

Syntax

Return value

Desbription ‘

Example

while

Unloads the specified module.

unload (moduleName);

moduleNameThe name of the module to unload.
TRUE if successful, otherwise FALSE

unload searches the module list for a matching module. If found, unload
removes it, causing all functions, classes, and local variables that were
defined in the module to become invalid. However, if an object within the
script is referenced from another active script (for example, where a function
in the unloaded script returned a reference to an object), that object will not

-be destroyed.

//Loads and runs a script file

declare myModule;

myModule = load(“demo.spp"); // loads module and gets a handle
if (myModule) {// if loaded

run(myModule);// run the module

unload(myModule);// unloads the module

}

Repeats one or more statements until condition is FALSE.

erywords and functions 5-27

Keywords and functions, with

Syntax while [(condition)] [{statement_list)]

condition Either TRUE or FALSE. When FALSE, statement_list stops
executing.

statement_list The list of statements to execute.

‘Description If no condition is specified, the while clause is equivalent to while(TRUE).
‘ Because the test takes place before any statements execute, if condition
evaluates to FALSE on the first pass, the loop does not execute.

break will cause loop execution to be terminated, while continue will cause
the condition to be evaluated immediately without executing any intervening
statements.

Example // Example of while loop
i=0
while (p[i] < 50) {
pli] += 10;
i+4=1;

}

with

Creates a shorthand reference to a variable.
Syntax with (variable){member_list}

variable The variable being referenced.

member_list Declarations of properties, methods, and events.

Description with is particularly useful when the variable is a deeply nested object.

For example, assume an object z, which is contained within an object y,
which is contained within an object x. Access to z’s members can be
cumbersomie. For example,

x.y.z.DoSomething () ;
© X.y.z.DoSomethingElse();
X.y.z.NowDoThis ();

You can decrease syntactical complexity by assigning x.y.z to another
variable. For example,

P = X.V.Z; // Assignment lookup
p.DoSomething () ; // 1 lookup
p.DoSomethingElse() ; // 1 lookup
p.NowDoThis () ; // 1 lookup

5-28 ObjectScripting Programmer’s Guide

Keywords and functions, yield

If you use with, referencing can be made even simpler:

with (x.v.z){ // 1 lookup
.DoSomething () ; // No lookup
.DoSomethingElge(); // No lookup
.NowDoThis () ; // No lookup

}

Scoping of with statements in functions is handled as you would expect: the
scope is local to the current function and the correct member gets called. For
example:

WEuncl () {
with (x.y.z){
.DoSomething () ;
}
}

WFunc2 () {

with (MyClass){

Wiuncl(); // WFuncl calls x.y.z.DoSomething()
Func2 () ; // This call is to MyClass.Func2 ()
} .
}

Using the dot operator in a with block refers to the current with assignment.

e If the global reference variable selection has been set using select, its
reference will not be affected, but is superseded with the with block.
yield
Forces cScript to check if the abort (Esc) key has been pressed.
Syntax yield;
Return value None
Déscription Imbedding yield in a {ime consuming process, such as a loop that executes

many times, provides a way to break out of the process, if desired.

Keywords and functions 5-29

5-30 ObjectScripting Programmer’s Guide

Note

Operators

Operators are tokens that trigger some computation when applied to
variables and other objects in an expression. cScript uses many of the C++
operators. For the most part, these operators have the same precedence,
associativity, and functionality as in C++.

Because cScfipt has no structs, unions, or references to memory locations, the
following C++ operators do not exist in cScript:

N IS VK

For the same reason, the & operator can be used only to declare function
parameters as pass-by-reference parameters (not to dereference variables).

Additionally, cScript does not provide the following C++ operators:
sizeof const_cast reinterpret_cast '

cScript does provide two new operators:

> The closure operator, typically used in on statements to override
functions.
22 The in operator, used to test members of arrays and classes.

Depending on context, the same operator can have more than one meaning.
For example, the minus (-) can be interpreted as:

e subtraction (x —y)
* aunary negative (-y)

No spaces are allowed in compound operators (such as :>). Spaces change
the meaning of the operator and will generate an error.

Operators 6-1

Binary operators

- Operator precedence

Operators on the same line in the table below have equal precedence.

Table 6.1 Operator precedence

0 0 ’ left to right
o left to right
N 23 . i left to right
! ~ + _ —H — & ‘ right to left
* / % left toright
+ _ , left to right
<< >> ‘ ; left to right
< <= > >= k left to right
= 1= left to right
& ’ left to right
A’ - ' , left to right
| \ left to right
&& left to right
I left to right
2. ' left to right
= = = Y%= 4= = &= A= = <<= >>= righttoleft
, left to right
Binary operators

The binary cScript operators are as follows:

Table 6.2 Binary operators

Type Operator Description
Arithmetic + o Binary plus (add)
- Binary minus (subtract)
* Multiply
/ Divide
% Remainder (modulus)
Bitwise << Shift left
>> Shift right
& - Bitwise AND
A Bitwise XOR (exclusive OR)
| Bitwise inclusive OR
Logical && : Logical AND
' [Logical OR

6-2 ObjectScripting Programmer’s Guide

Table 6.2

Arithmetic operators

Binary operators (continued)

Assignment Assignment
*= Assign product
/= Assign quotient
%= Assign remainder (modulus)
+= Assign sum
— Assign difference
<<= Assign left shift
>>= Assign right shift
&= Assign bitwise AND
N= Assign bitwise XOR
I= Assign bitwise OR
Relational < Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
== Equal to
I= Not equal to
Conditional ~ ?: Actually a ternary operator
a?x:y “if a then x else y”
Comma , Evaluate
Arithmetic operators
The arithmetic operators are:
L A T
Syntax + expression
~ expression
expression? + expression2
expressioni — expression2
expression1 * expression2
expression / expression2
expressioni % expression2
postfix-expression ++ {postincrement)
++ Unary-expression (preincrement)
postfix-expression -- (postdecrement)
-- unary-expression (predecrement)

Operators 6-3

Assignment operators

Description Use the arithmetic operators to perform mathematical computations.
expressionl determines the type of the result when variables of dlfferent types
are used.

Table 6.3 Arithmetic operators

+ (unary expression) Assigns a positive value to expression.

— (unary expression) Assigns a negative value to expression.

+ (addition) Adds all data typs.

- (subtractjon) Subtracts data types.
* (multiplication) Multiplies data types.
/ (division) Divides data types.

% (modulus operator) Returns the remainder of integer division.

+ + (increment) Adds one to the value of the expression. Postincrement adds
‘ one to the value of the expression after it evaluates; whlle
preincrement adds one before it evaluates.

—— (decrement) Subtracts one from the value of the expression. Postdecrement
subtracts one from the value of the expression after it evaluates;
while predecrement subtracts one before it evaluates.

Assignment operators
The assignment operators are:
= *= /= %= += ~=
<<= >>= &= A

[=
Syntax unary-expr assignment-op assignment-expr
Description The = operator is the only simple assignment operator, the others are

compound assignment operators.

In the expression E1 = E2, E1 must be a modifiable lvalue. The assignment
expression itself is not an lvalue.

The expression
El op = E2

has the same effect as
El = El op E2

except the lvalue E1 is evaluated only once. The expression’s value is E1 after
the expression evaluates.

For example, the following two expressions are equivalent:

X += Y}
X=X+Y;

6-4 ObjectScripting Programmer’s Guide

Note

Bitwise operators

Any assignment can change the cScript native type of the value on the left of
the assignment, depending on the type of the value assigned.

Do not separate compound operators with spaces. For example, do not enter:
+<space>=

This generates errors.

Bitwise operators

Syntax

Use bitwise operators to modify individual bits of a number rather than the
whole number. o

AND-expression & equality-expression

exclusive-OR-expr » AND-expression
inclusive-OR-expr exclusive-OR-expression
~expression

shift-expression << additive-expréssion
‘shift-expression >> additive-expression

~Table6.4 Bitwise operators

& Bitwise AND: compares two bits and generates a 1 result if both bits are 1;
otherwise, it returns 0.

| Bitwise inclusive OR: compares two bits and generates a 1 result if either or
both bits are 1; otherwise, it returns 0.

n Bitwise exclusive OR: compares two bits and generates a 1 result if the bits
) are complementary; otherwise, it returns 0.

~ Bitwise complement: inverts each bit. (~ is also used to create destructors.)

>> ‘Bitwise shift right: moves the bits to the right, discards the far right bit and
“assigns the leftmost bit to 0.
<< Bitwise shift left: moves the bits to the left, it discards the far left bit and

assigns the rightmost bit to 0.

Both operands in a bitwise expression must be of an integral type.

E1 E2 E1&E2 E1AE2 FE11E2
0 0 0 0 0
1 0 0 1 1
0 1 0 1 1
1 1 1 0 1

Operators 6-5

Comma (,) punctuator and operator

Comma (,) punctuator and operator

Syntax

Description

A comma acts as a punctuator and operator. It is used as follows:

* Separates eleinents in a function argument list
* Acts as an operator in comma expressions

Mixing the two uses of comma is legal, but you must use parentheses to
distinguish them.

expression , assignment-expression

If the left operand E1 is evaluated as a void expression, then the right
operand E2 is evaluated to give the result and type of the comma expression.
By recursion, the expression

El, E2, ..., En

results in the left-to-right evaluation of each Ex, with the value and type of
En giving the result of the whole expression.

To avoid ambiguity with the commas in function argument and initializer

lists, use parentheses. The following example calls func with three

arguments: i, 5, and k.
func(i, (=1, 3 + 4], k);

Conditional (?:) operator

Syntax

Description.

The conditional operator (?:) is a ternary operator used as a shorthand for if-
else statements.

logical-OR-expr ? expr : conditional-expr

This operator allows you to use a shorthand for

if (expression)
statementl;

else
statement2;

In the expression’
El ? E2 : E3

E1 evaluates first. If its value is nonzero (TRUE), then E2 evaluates and E3 is
ignored. If E1 evaluates to zero (FALSE), then E3 evaluates and E2 is
ignored. The result of the statement is the value of either E2 or E3, depending
upon which evaluates. "

ObjectScripting Programmer’s Guide

Example

Logical operators

//if-else statement:
if (x <vy)
7 = X;
else
=y

//Equivalent:
z={(x<y) ?X:Vy;

Logical operators

Syntax

Use logical operators to evaluate an expression to TRUE or FALSE.

fogical-AND-expr && inclusive-OR-expression
logical-OR-expr i logical-AND-expression
I expression

Table 6.5 Logical operators

y exp!
nonzero value; otherwise it returns FALSE (0). Unlike C++ if the first
expression evaluates to FALSE, the second expression is still evaluated.
[Logical OR returns TRUE (1) if either of the expressions evaluates to a
nonzero value; otherwise it returns FALSE (0). Unlike C++, if the first
expression evaluates to TRUE, the second expression is still evaluated.

! . Logical negation returns TRUE (1) if the entire expression evaluates to a
nonzero value; otherwise it returns FALSE (0). The expression /E is
equivalent to (0 == E).

Reference operator

- Syntax

Description

Passes arguments in a function definition header by reference.

methodName(¶meter],...]){statementList}

In cScript as in C++, the default function calling convention is to pass by
value. The reference operator can be applied to parameters in a function
definition header to pass the argument by reference instead.

cScript reference types created with the & operator, create aliases for objects
and let you pass arguments to functions by reference.

When a variable x is passed by reference to a function, the matching formal
argument in the function receives an alias for x, (similar to an address pointer
in C++). Any changes to this alias in the function body are reflected in the
value of x.

When a variable x is passed by value to a function, the matehing formal
argument in the function receives a copy of x. Any changes to this copy

Operators 67

Relational operators .

within the function body are not reflected in the value of x itself. Of course,
the function can return a value that could be used later to change x, but the
function cannot directly alter a parameter passed by value.

Note The reference operator is only valid when used in function definitions as
applied to one or more of its parameters. The address of operator is not
“supported in cScript as it is in C++, where it can be used to obtain the
- address of (create a pointer to) a variable.

Example // Example of reference operator
funcl (i){i=5;}
func2 (&Ir){i=5;}
// It is a reference variable

sum = 3;

funcl (sum) ; // sum passed by value
print sum; // Prints 3

func2 (sum) ; // sum passed by reference
print sum; /{ Prints 5

sum, passed by reference to func2, has its value changed when the function
exits. funcl, on the other hand, gets a copy of the sum argument (passed by
value), so sum itself cannot be altered by funcl.

Relational operators

Relational operators test equality or inequality of expressions.

Syntax equality-expression == relational-expression
equality-expression != relational-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

Description If the statement evaluates to TRUE it returns a nonzero value; otherwise, it
- returns FALSE (0). :

Table 6.6 Relational operators

equal

I= not equal

greater than

less than
>= . greater than or equal
<= less than or equal

6-8 ObjectScripting Programmer’s Guide

Enclosing operators

Enclosing operators

The enclosing operators are:

[1 (brackets)

[[1] (double-brackets)
() (parentheses)

{ } (braces)

Syntax (expression-list)
function (arg-expression-list)
array-name [expression]
{statement-list}
compound-statement {statement-list}
OLEObject.indexedProperty[[expression]]

Table 6.7 Enclosing operators

ensional array

" subscripts.
(I OLE index operator. Indicates the index of an indexed OLE property.
O Parentheses operator. Groups expressions, isolates conditional

expressions, or indicates function calls and function parameters.
{} Braces. Starts and ends compound statements and indicates a code block.

Array subscript ([]) operator

The array subscript operator ([]) indicates single and multidimensional
array subscripts.

Syntax [expression-list]

Description Use the array subscript operator to declare an array or to access individual
array components.

For example,

declare myArray = new array [10];
myArray (0] = 5;

- myArray[1l] = "Cheers";
declare array multiArray[] = {myArray};
print multiArray(0])[1];// prints "Cheers"

OLE index ([[]]) operator

The OLE index operator ([[]]) indicates an OLE object’s indexed property
index. :

Operators 6-9

Object-oriented opera‘toré

Syntax

Description

Note

Syntax 1
Description

Syhtax 2

Description |

[[expression]]

Use double-brackets to access individual indexed entries of an OLE object’s
indexed property:

/| create an OLEObject of class OLEGeneric
// which contains an indexed property called foo
declare myObj = new OleObject ("OLEGeneric");

print myObj.foo[[3]}; // print the third element of foo

This operator is only to be used for accessing elements of an OLE indexed

property. :

Parentheses () operator

Use the parentheses operator () to:

¢ Group expressions
¢ Isolate conditional expressions

~* Indicate function calls and function parameters

(expression-list)
Syntax 1 groups expressions or isolates conditional expressions.
postfix-expression (arg-expression-list) C

arg-expression-list A comma-delimited list of expressions of any type
representing the actual (real) function arguments.

Syntax 2 describes a call to the function given by the postfix expression. The
value of the function call expression, if it has a value, is determined by the
return statement in the function definition.

0bject¥oriented operators

The cScript object-oriented operators are:

Table 6.8 Object-orientéd operators

Closure operator. Binds a class instance and a method as a single closure
reference.

7? In operator. Tests for the existence of a class object property or array index.
Member selector. Access a class object member.

In addition, there is a colon (:) punctuator:

Refers to a base class in a derived class declaration.

6-10 ObjectScripting Programmer’s Guide

Syntax 1
Syntax 2
Syntax 3

Syntax 4

Syntax 5

Syntax 6

Note

Description

Example

Closure (=>) operator

Object-oriented operators

Binds a class instance with a class member.

on handler:
on ClassInstance:>Method{[code_to_replace_method_code]}

attach:
attach Classinsti:>method1 to Classln812:>method2;

detach:
detach Classlnst1:>method1 from Classlnst2:>method2;

getter:

on Classlnstance:>property{
/I your code here
return [pass()|SomeValue;

}

setter:

on Classinstance:>property(parm)
/I your code here
[pass(SomeValue);]

}

closure variable:

“ declare closureVar = classinstance:>methodName;

A closure variable as declared above can subsequently be used wherever &
closure is needed. For example, an alternative to the attach statement (Syntax

2) using closure variables would be:

declare closureVarl = classInstl:>methodl;
declare closureVar2 = classInst2:>method2;
attach closurevarl to closureVar2;

Use the closure operator (:>) in an on handler, an attach statement, or a
detach statement to bind a class instance with a class member as a single

" closure reference.

// Example of closure
import scriptEngine;
import IDE;

modList = new.ListWindow(50, 5, 100, 300, "Module List",

TRUE, FALSE, loadedModules)

Operators 6-11

Object-oriented operators .

Syntax

Description:

Note

Example

Syntax 1

Syntax 2

Description

// Hook the Accept event in order to do nothing. -
// Default behavior is to put the list away.
on modList:>Accept () {}

Member (.) selector operator

Use the member selector operator (.) to access class members.

class-instance.class-member

Suppose that the object a is of class A and b is a property declared in A. The
expression:

a.b
represents the property b in a.

Although the precedence of the . operator is the same as C++1i in most
respects, one place where it is not is in cScript native function calls that do
not use parentheses For example, print module "MyModule".Datal does not
print the Datal member of MyModule. To print this reference, you must use
parentheses with the module function, as follows:

print module ("MyModule").Datal

// Example of member selector (.) operator
class myClass {
i=0;
}
s = new myClass();
s.i=3; // assign 3 to the 1 property of myClass s

In (??) operator

Use the in operator (??) to test for the existence of an object property or for an
array index.

string-expression | “string” 22 objectname larrayname
integer-expression | integer ?? arrayname

Use a quoted string, or an expression that evaluates to a string, to test for the
existence of an object property or an associative array index.

Use an integer, or an integer expression, to test for the existence of an index
value in an indexed array. For example,

6-12 ObjectScripting Programmer’s Guide

Unary operators

class MyClass {
declare propertyl = 0;
declare property?2 = 1;
}

declare MyClass instance;
if ("propertyl" ?? instance)
print "propertyl is a property of instance.";

declare array alll;

al[0] = "a";

al["Hello"] = 1;

if (0 ?? al)

print "Array al has an index 0.";

if ("Hello" ?? al)

print "Array al has an index \"Hello\".";

Unary operators

Syntax

Description

Syntax 1

Description

unary-operator unary-expression

cScript provides the followihg unary operators:

Table6.9 Unary operators

++ Increment

— Decrement

+ Plus

- Minus

! i Logical negation

~ Bitwise complement

Increment and decrement operators

The increment and decrement operators are ++ and ——. They can be used
either to change the value of the operand expression before it is evaluated
(pre) or change the value of the whole expression after it is evaluated (post).
The increment or decrement value is appropriate to the type of the operand.

pre:
postfix-expression ++ (postincrement)
postfix-expression —— (postdecrement)

The value of the whole expression is the value of the postfix expression

before the increment or decrement is applied. After the postfix expression is
evaluated, the operand is incremented or decremented by 1.

Operatofs 6-13

Unary operators

Syntax2 post:

++ unary-expression (preincrement)
—— unary-expression (predecrement)

‘unary-expression The operand, which must be a modifiable lvalue.
Description The operand is incremented or decremented by 1 before the expression is

evaluated. The value of the whole expression is the incremented or
decremented value of the operand.

Plus and minus operators

The plus (+) and minus () operators can operate in either a unary or bmary
fashion on any type of variable.
Syntax1 Unary: .
+ unary-expression
- unary-expression
+ unary-expression Value of the operand after any required integral
promotions.
— unary-expression ~ Negative of the value of the operand after any required
integral promotions.
Syntax2 Binary:
expressioni + expression2
expressioni — expression2
expression] ~Determines the type of the result.

expression2 Is converted if necessary to a type matching expressionl, and
then the operation is carried out.

Multiplicative operators

There are three multiplicative opérators:

Table 6.10 Multiplicative operators

* Multiplication -
/ Division
% Modulus or remainder

6-14 ObjectScripting Programmer’s Guide

Syntax

Description

Note

Punctuators

Punctuators:

multiplicative-expr * unary-expression

multiplicative-expr / unary-expression

multiplicative-expr % unary-expression

The usual type conversions are made on the operands.
(opl * op2) Product of the two operands
(opl / op2) Quotient of the two operands (op1 divided by op2)
(opl % op2) Remainder of the two operands (opl divided by op2)

For / and %, op2 must be a nonzero value. If 0p2 is zero, the operation results
in an error. Note that division of a number by a string can result in this
divide by zero error.

When op1 is an integer, the quotient must be an integer. If the actual quotient
would not be an integer, the following rules are used to determine its value:

1 If op1 and op2 have the same sign, op1 / op2 is the largest integer less than
the true quotient, and op1 % op2 has the sign of op1.

2 If op1 and op2 have opposite signs, opl / op2 is the smallest integer greater
than the true quotient, and op1 % op2 has the sign of op1.

Rounding is always toward zero.

The cScript punctuators (also known as separators) are:

Table 6.11 Punctuators

() Parentheses (see “Parentheses () operator” on page 6-10)

{1} Braces)

, Comma (see “Comma (,) punctuator and operator” on page 6-6)
; Semicolon

: Colon

= Equal sign

Pound sign

Most of these punctuators also function as operators.

Braces ({ }) punctuator

Braces ({ }) indicate the start and end of a compound statement.

Operators 6-15

Punctuators

Semicolon (;) punctuator

The semicolon () is a statement terminator.

Any legal cScript expression (including the empty expression) followed by ;
is interpreted as a statement. The expression is evaluated and its value is
discarded. If the statement has no side effects, cScript can ignore it.
Semicolons are often used to create an empty statement.

Colon (:) punétuator

Use the colon when declaring a child class or a class with a label.

Syntax1 class childClass:parentClass

Use this version to indicate the parent class when declaring a child class. For
an example of this syntax, see “class” on page 5-5.

Syntax2 case expression:

Use this version to indicate the end of a case expression. For example:

switch {a) {

case 1:
print "One";
break;

case 2:
print "Two";
break;

default: print "None of the above!";

o}

Equal sign (=) punctuator

The equal sign (=) separates variable declarations from initialization lists and
determines the type of the variable.

- Syntax array x(]={1,2,3,4,5};
x=5

- Description In cScript, declarations of any type can appear (with some restrictions) at any
' ' point within the code. In a cScript function argument list, the equal sign
indicates the default value for a parameter:

MyFunc (i = 0){...} //Parameter i has default value of zero

The equal sign is also used as the éssignment operator.

6-16 ObjectScripting Programmer’s Guide

Ivalues and rvalues

Pound sign (#) operator

The pound sign (#) indicates a preprocessor directive when it occurs as the
first non-whitespace character on a line. It signifies a compiler action not
necessarily associated with code generation.

lvalues and rvalues

Ivalues

An lvalue is an identifier or expression that can be accessed as an object and
legally changed in memory. A constant, for example, is not an Ivalue. A
variable, array member, or property is an lvalue.

Historically, the 1 stood for left, meaning that an lvalue could legally stand on
the left (the receiving end) of an assignment statement. Only modifiable
Ivalues can legally stand on the left of an assignment statement.

For example, if 2 and b are variables, they are both modifiable values and
assignments. The following are legal:

a=1
b=a+bh
rvalues

An rvalue (short for “right value”) is an expression that can be assigned to an
Ivalue. It is the “right side” of an assignment expression. While an Ivalue can
also be an rvalue, the opposite is not the case. For example, the following
expression cannot be an Ivalue:

a+hb

a + b = aisillegal because the expression on the left is not related to an object
that can be accessed and legally changed in memory.

However, a = a + bislegal, because a is a variable (an lvalue) and a4 + b is an
expression that can be evaluated and assigned to a variable (an rvalue).

Operators 6-17

6-18 ObjectScripting Programmer’s Guide

™
a
gt
bt
£ia
A
Fo Y
D
.
$

P

Preprocessor directives

Preprocessor directives are usually placed at the beginning of your source
code, but they can legally appear at any point in a program.

The cScript preprocessor, unlike a C++ preprocessor, supports preprocessor
directives in the expansion side of a macro definition. It detects the following
preprocessor directives and parses the tokens embedded in them:

#define #ifndef
#else #include
#endif ~ #undef
#ifdef #warn

Any line with a leading # is considered as a preprocessor directive unless the
is part of a string literal, is in a character constant, or is embedded in a
comment. The initial # can be preceded or followed by one or more spaces
(excluding new lines).

#define

Defines a macro.

Preprocessor directives 7-1

#ifdef, #itndef,

Syntax

- Description

Examples

#else, and #endif
#define macro_identifier <token_sequence>

macro_identifier The identifier for the macro. Each occurrence of
macro_identifier in your source code following the
#define is replaced with token_sequence (with some
exceptlons) Such replacements are known as macro
expansions.

token_sequence The sequence to replace macro_identifier with. The token
sequence is sometimes called the body of the macro. If
token_sequence is empty, the macro identifier is removed
wherever it occurs in the source code.

The #define directive defines a macro. Macros provide a mechanism for
token replacement with or without a set of formal, function-like parameters.
Unlike C++ preprocessors, cScript allows you to continue a line with a
backslash (\). You cannot use cScript keywords as macros.

After each individual macro expansion, the preprocessor scans the newly
expanded text to see if there are further macro identifiers that are subject to
replacement (nested macros).

cScript imposes these restrictions on macro expansion:

* Any occurrences of the macro identifier found within literal strings,
character constants, or comments in the source code are not expanded.

* A macro is not expanded during its own expansion (so #define A A won't
expand indefinitely).

// Examples of #define

#define HI "Have a nice day!"
#define empty

#define NIL ""

#define GETSTD #include <stdio.h>

#ifdet, #ifndef, #else, and #endif

Syntax

Description

Tests whether an identifier is currently defined or not.

#ifdef/#ifndef identifier [logical-operator identifier {...]]
<section-1>

[#else

<final-section>]

#endif

<next-section>

Assume that #ifdef tests TRUE for the defined condition; so the line
#ifdef identifier

7-2 ObjectScripting Programmer’s Guide

#include

#include

means that if identifier is defined, include the code up to the next #else or
#endif. If identifier is not defined, ignore that code and skip to the next #else

- or #endif.

The line

#else . .
means that if identifier is not defined, include the code up to the next #endif.
The line

#ifndef
tests TRUE for the not-defined condition; so

difndef identifier

means that if identifier is not defined, include the code up to the next #else or
#tendif. If identifier is defined, ignore that code.

In this case, #else means that if identifier is defmed include the code up to the
next #endif.

In the true case, after section — 1 has been preprocessed, control passes to the
matching #endif (which ends this conditional sequence) and continues with
next-section. In the FALSE case, control passes to the next #else line (if any),
which is used as an alternative condition for which the previous test proved
false. The #endif ends the conditional sequence. :

The processed section can contain further conditional clauses, nested to any
depth; each #ifdef or #ifndef must be matched with a closing #endif.

The net result of the preceding scenario is that only one section (possibly

_empty) is passed on for further processing. The bypassed sections are

relevant only for keeping track of any nested conditionals, so that each #lfdef
or #ifndef can be matched with its correct #endif.

The #ifdef and #ifndef conditional directives let you test whether an
identifier is currently defined or not; that is, whether a previous #define
command has been processed for that identifier and is still in force. You can
combine identifiers with logical operators.

An identifier defined as NULL is considered to be defihed

cScrlpt supports conditional compilation by replacing the lines that are not to
be compiled as a result of the directives with blank lines. All conditional
compilation directives must be completed in the source or include file in
which they begin.

Syntax 1

Pulls other cScript files into the source code.

#nclude <file_name>

Preprocessor directives 7-3

#undef
Syntax 2
Syntax 3

Description

Example

#undef

#include “file_name”
#include macro_identifier

The #include syntax has three formats:

¢ The first and second formats imply that no macro expansion will be
attempted; in other words, file_name is never scanned for macro
identifiers. file_name must be a valid file name with an optional path name
and path delimiters. ‘

e The third format does not allow < or “ to appear as the first non-
whitespace character following #include. A macro definition that expands
the macro identifier into a valid delimited file name with either of the
<file_name> or “file_name” formats must follow the #include.

The preprocessor removes the #include line and replaces it with the entire
text of the cScript source file at that point in the source code. The source code
itself is not changed, but the compiler processes the enlarged text. The
placement of the #include can therefore influence the scope and duration of
any identifiers in the included file.

If you place an explicit path in the file_name, only that directory will be
searched.

Unlike the C++ #include, there is no difference between the <file_name> and
“file_name” formats. With both versions, the file is sought first in the current
directory (usually the directory holding the source file being compiled). If
the file is not found there, the search continues in the script directories in the
order in which they are defined in the Options | Environment | Scripting |
Script Path dialog box. If the file is not located in any of the default
directories, an error message is issued.

This #include statement causes the preprocessor to look for MYINCLUD.H
in the current directory, then in default directories.

#include "myinclud.h"
or
#include <myinclud.h>

After expansion, this #include statement causes the preprocessor to look in
C:\BC5\SCRIPT\INCLUDE\MYSTUFEF.H. Note that you must use double
backslashes in the #define statement.

#define myirclud "C:\\BC5\\SCRIPT\\INCLUDE\\MYSTUFF.H"
#include myinclud

/* macro expansion */

Undefines a macro.

7-4 ObjectScripting Programmer’s Guide

#warn

Syntax #undef macro_identifier

Descrlptlon #undef detaches any previous token sequence from the macro identifier; the

Example

#warn

macro definition is forgotten, and the macro identifier is undefined. No
macro expansion occurs within #undef lines.

The state of being defined or undefined is an important property of an
identifier, regardless of the actual definition. The #ifdef and #ifndef
conditional directives, used to test whether any identifier is currently
defined or not, offer a flexible mechanism for controlling many aspects of a -

-compilation.

~ After a macro identifier is undefined, it can be redefmed with #define, using

the same or a different token sequence.

Attempting to redefine an already defined macro identifier will result in a
warning unless the new definition is exactly the same token-by-token
definition as the existing one. The preferred strategy where definitions might
exist in other header files is as follows:

#ifndef BLOCK_SIZE
#define BLOCK_SIZE 512
#endif

The middle line is bypassed if BLOCK_SIZE is currently defined; if
BLOCK _SIZE is not currently defined, the middle line is invoked to define it.

No semicolon (;) is needed to terminate a preprocessor directive. Any
character found in the token sequence, including semicolons, will appear in
the macro expansion. The token sequence terminates at the first non-
backslashed new line encountered. Any sequence of whitespace, including

-comments in the token sequence, is replaced with a single-space character.

// Example of #undef
#define BLOCK_SIZE 512

#undef BLOCK_SIZE
/* use of BLOCK_SIZE now would be an 1llega1 "unknown" identifier */

#define BLOCK_SIZE 128 /* redefinition */

Syntax

Sets the warning level.
#warn warning_level

warning_level Ranges from 0 (suppress all warmngs) to 3 (show all
warnings).

Preprocessor directives 7-5

Macros with . parameters

Description

For example, the following statement causes all warnings to be shown when
the script is compiled:

#warn 3

Macros with parameters

Note

The following syntax is used to define a macro with parameters:
#define macro_identifier(<arg_list>) token_sequence ‘

Any comma within parentheses in an argument list is treated as part of the

argument, not as an argument delimiter.

There can be no whitespace between the macro identifier and the (. The
optional arg_list is a sequence of identifiers separated by commas, not urnlike
the argument list of a C function. Each comma-delimited identifier plays the
role of a formal argument or placeholder.

Such macros are called by writing
macro 1dent1f1er<wh1tespace> (<actual _arg_ list>)

in the subsequent source code. The syntax is 1dent1ca1 to that of a function
call. However, there are some 1rnportant semantic differences, side effects,
and potential pitfalls.

The optional actual_arg_list must contain the same number of comma-
delimited token sequences, known as actual arguments, as found in the
formal arg_list of the #define line. There must be an actual argument for each
formal argument. An error will be reported if the number of arguments in
the two lists is different.

A macro call results in two sets of replacements. First, the macro identifier
and the parenthesis-enclosed arguments are replaced by the token sequence.
Next, any formal arguments occurring in the token sequence are replaced by
the corresponding real arguments appearing in the actual_arg_list.

As with simple macro definitions, rescanning occurs to detect any embedded
macro identifiers eligible for expansion.

The similarities between function and macro calls can obscure their
differences. A macro call can give rise to unwanted side effects, especially
when an actual argument is evaluated more than once.

Nesting parentheses and commas

The actual_arg_list can contain nested parentheses provided that they are
balanced; also, commas appearing within quotes or parentheses are not
treated like argument delimiters.

Using the backslash (\) for line continuation

Along token sequence can straddle a line by using a backslash (\). The
backslash and the following newline are both stripped to provide the actual
token sequence used in expansions.

7-6 ObjectScripting Programmer’s Guide

ass reference

Classreference

4]
poat

BufferOptions class

This class is one of the editor classes. BufferOptions objects hold data
controlling the characteristics of edit buffers.

Syntax BufferOptions()

Properties

bool CreateBackup Read-write
bool CursorThroughTabs ~ Read-write
bool HorizontalScrollBar Read-write
bool InsertMode , Read-write
int LeftGutterWidth Read-write
int Margin _ ‘ Read-write
bool OverwriteBlocks ~ Read-write
bool PersistentBlocks Read-write
bool PreservelineEnds Read-write
bool SyntaxHighlight Read-write
string TabRack Read-write
string TokenFileName Read-write
bool UseTabCharacter Read-write

bool VerticalScrollBar Read-write

BufferOptions class 8-1

BufferOptiobns class, BufferOptions class description

Methods

void Copy(BufferOptions source)

Events

None

BufferOptions class description

This class holds buffer options settings, such as scroll bars, right margin -
setting, tab rack, syntax highlighting, cursor shape, gutter width, block style
and tabbing modes.

An instance of this class exists as a member of the global editor options
accessible via Ediitor.Options. This class controls the settings of all edit
buffers. Any change to this object changes the settings of all edit buffers. The
properties are initialized during construction to match the global defaults.

You can instantiate a member of this class to store buffer options. They are
not applied to any edit buffers until you copy them into Editor.Options, at
which point the settings affect all edit buffers.

For example, in a BufferOptions object, you can store a set of options that you
want to apply to a buffer when it is activated (such as tab stops, syntax
highlighting and color). Applying these values to Editor.Options sets the
buffer options for the new buffer and all other edit buffers as well.

CreateBackup property

Access
Type expected

Description

Automatically creates a backup of the source file loaded in the active Edit
window when you choose File | Save. The backup file has the extension
.BAK. ‘

Read-write
boolCreateBackup
In the IDE, CreateBackup is set w1th the Create Backup option of the

Environment Options dialog. To display this dialog box, choose Options |
Environment | Editor | File.

CursorThroughTabs property

Causes the cursor to move uniformly through the line as you press arrow
keys for horizontal movement.

8-2 ObjectScripting Programmer’s Guide

Access

Type expected

Description

BufferOptions class, HorizontalScrollBar property
Read-write
bool CursorThroughTabs

When CursorThroughTabs is FALSE, the cursor jumps several columns when
moved over a tab.This setting has no effect unless tabs are set with the
TabRack property.

In the IDE, CursorThroughTabs is set with the Cursor Through Tabs option of
the Environment Options dialog. To display this dialog box, choose
Optlons [Env1ronment | Editor | Options.

HorizontalScrollBar property

Access

Type expected

Description

Set to TRUE to display a horizontal scroll bar in the active Edit window. Set
to FALSE to hide the horizontal scroll bar.

Read-write
bool HorizontalScrollBar
In the IDE, HorizontalScrollBar is set with the Horizontal Scroll Bar option of

the Environment Options dialog. To display this dialog box, choose
Options | Environment | Editor | Display.

InsertMode proper'ty

Access
Type expected

Description

Sets or clears text insert mode.
Read-write
bool InsertMode

Set to TRUE to put the buffer in Insert mode. This pushes the existing text to
the right as you type.

Set to FALSE to put the buffer in Overwrite mode. This writes over the
existing text.

- In the IDE, InsertMode is set with the Insert Mode option of the Environment

Options dialog. To display this dialog box, choose Options | Environment |
Editor | Options.

LeﬂGutterWidth property

The width of the Edit window’s left gutter.

BufferOptions class 8-3

BufferOptions class, Margin property

Access
Type expected

Description

Read-write
int LeftGutterWidth

The gutter width represents pixels. It is a positive decimal measurement (for
example 16). The default setting is 32. -

In the IDE, GutterWidth is set with the Gutter Width option of the
Environment Options dialog. To display this dialog box, choose Options |
Environment | Editor | Display.

Margin property

Access
Type expected

Description

The column number to use for the Edit window’s right margm
Read-write
int Margin

Valid entries are from 1 to 1024.

In the IDE, Margin is set with the Right Margin option of the Environment

~ Options dialog. To display this dialog box, choose Options | Environment |

Editor | Display.

OverwriteBlocks property

Access
Type expected

Description

Note

Deletes selected text as you type.

Read-write

bool OverwriteBlocks

Works in conjunction with PersistentBlocks to delete selected text as you type.

If you mark a block of text and type a letter, the letter you type replaces the
entire marked block.

DEL or Backspace Clear the entire block of selected text

Any key or choose Edit | Paste Replace the entire block of selected text

When this property is FALSE and PersistentBlocks is TRUE, text entered in a
marked block is added at the insertion point.

In the IDE, OverwriteBlocks is set with the OverwriteBlocks option of the
Environment Options dialog. To display this dialog box, choose Options |

Environment | Editor | Options.

84 ObjectScripting Programmer’s Guide

BufferOptions class, PersistentBlocks property

PersistentBlocks property

Allows marked blocks to remain selected until they are deleted or unmarked,
or until another block is selected.

Access Read-write
Type expected bool PersistentBlocks

Description When PersistentBlocks is FALSE and you move the cursor after ablock is
selected, the text does not stay selected.

In the IDE, PersistentBlocks is set with the Persistent Blocks option of the
Environment Options dialog. To display this dialog box, choose Options |
- Environment | Editor | Options.

PreserveLineEnds property

Saves files with their original line ends. When PerserveLineEnds is FALSE,
files are saved with the Borland C++ default value for line ends.

Access Read-write
Type expected bool PreserveLineEnds

Description Use this option to specify how the line ends are written when a file is saved:
you can use the Borland C++ default value, or you can write the original line
end of the file.

Line ends usually consist one of the following combinatioh of characters:
e LF '

* CR

e LFCR

¢ CR LF (Borland C++ default)

where LF = Line Feed (ASCII value 10) and CR = Carnage Return (ASCII
value 13).

In the IDE, PerseveLineEnds is set with the Perserve Line Ends option of the
Environment Options dialog. To display this dialog box, choose Optlons I
Environment ! Editor | File.

SyntaxHighlight property

Indicates if the editor displays code with syntax highlighting.

BufferOptions class 8-5

BufferOptions class, TabRack property
Access Read-write
Type expected bool SyntaxHighlight

Description You can specify your own keywords, functions, or other language elements
that you want highlighted. These elements are stored in token (.TOK) files.
Use TokenFileName to open the .TOK file.

In the IDE, SyntaxHighlighting is set with the Use Syntax Highlighting option
of the Environment Options dialog. To display this dialog box, choose
Options | Environment | Syntax Highlighting.

TabRack property

The buffer’s tab settings.
Access Read-write

Type expected string TabRack

Description The tab settings are indicated as a space-delimited sequence of tab stops in
ascending order. For example, “3 7 12” sets tab stops at 3”7, 7” and 12”.

In the IDE, TabRack is set with the Tab Stops option of the Environment
Options dialog. To display this dialog box, choose Options | Environment |
Editor | Options.

TokenFileName property

The name of the token file (.TOK) to use for syntax highlighting.
Access Read-write
Type expected string TokenFileName
Description In the IDE, TokenFileName is set with the Syntax Extensions option of the

Environment Options dialog. To display this dialog box, choose Options |
Environment | Syntax Highlighting.

| UseTabCharacter property

If TRUE, inserts a true tab charactér (ASCIL9) when you press Tab. If FALSE,
replaces tabs with spaces.

Access Read-write

8-6. ObjectScripting Programmer’'s Guide

Type expected

Description

BufferOptions class, VerticalScrollBar property
bool UseTabCharacter

TabRack determines the number of spaces used to replace a tab.

In the IDE, UseTabCharacter is set with the Use Tab Character option of the
Environment Options dialog. To display this dialog box, choose Options|
Environment | Editor | Options.

VerticalScrollBar property

Access
Type expected

Description

Set this property to TRUE to display a vertical scroll bar in the active Edit
window. Set to FALSE to hide the vertical scroll bar.

Read-write
bool VerticaiScrollBar
In the IDE, VerticalScrollBar is set with the Vertical Scroll Bar option of the

Environment Options dialog. To display this dialog box, choose Options |
Env1r0nment | Editor | Display.

Copy method

- Types expected

Return value

Copies the values from the source BufferOptions object into this BuﬁerOptzons
object.

void Copy(BufferOptions source)

source The name of the buffer to copy from.

None

BufferOptions class 8-7

8-8 ObjectScripting Programmer’s Guide

Syntax

Chapter

Debugger class

Debugger class members let you debug a cScript program. You can set
breakpoints, single step through code, and inspect variables.

Debugger()

| Properties

bool HasProcess “Read-only

Methods |

bool AddBreakpoint()

bool AddBreakpointFileLine(string fileName, int lineNum)
bool AddWatch(string symbolName)

bool Animate()

bool Attach(string processID)

bool BreakpointOptibns()

string Evaluate(string symbol)

bool EvaluateWindow(string symbol)

bool FindExecutionPoint()

bool Inspect(string symbol)

bool InstructionSteplnto()

bool |nstructionStebOver()

‘Debugger class 9-1

Debugger class, Debugger class description

bool IsRunnable(int processID)
bool Load(string exeName)
bool PauseProgram()
bool Reset()
bool Run()
" bool RunToAddress(string addr)
bool RunToFileLine(string fileName, int lineNum)
bool StatementSteplinto()
bool StatementStepOver()
bool TerminateProgram()
ool ToggleBreakpoint(string fileName, int lineNum)
bool ViewBreakpoint()
bool ViewCallStack()
bool ViewCpu([address])
bool ViewCpuFileLine(string fileName, int lineNum)
bool ViewProcess()
bool ViewWatch()

Events

void DebugeeAboutToRun()
void DebugeeCreated()
void DebugeeStopped()

void DebugeeTerminated()

'Debugger class description

No matter how careful you are when you code, your script is likely to have
errors (bugs) that prevent it from running the way you intended. Debugging
is the process of locating and fixing errors that prevent your script from
operating correctly.

The Debugger class lets you:
. Add'breakpoints to your script file
¢ Add a watch on a symbol name

e Watch your script’s execution in slow motion

9-2 ObjectS'cripiinfg Programmer’s Guide

Debugger class, HasProcess property

Evaluate expressions

Inspect symbols

Step over and step into function calls
Pause, reset and run the current prdcess
View the call stack

View the CPU register

HasProcess property'

TRUE when the debugger has a pfocess loaded, FALSE, otherwise.

Access Read-only

Type expected bool HasProcess

AddBreakpoint method

Opens the Add Breakpoint dialog.

Types expected bool AddBreakpoint()

Returnvalue TRUE if successful, FALSE, otherwise

AddBreakpointFileLine method

Adds a breakpoint on the specified line of the specified file.

Types expected bool AddBreakpointFileLine(string fileName, int lineNum)

fileName The name of the file to add the breakpoint to.
lineNum The number of the line on which to add the breakpoint.

Return value TRUE if successful, FALSE, otherwise

~ Description If the argufnents are NULL, AddBreakpointFileLine opens the Add Breakpoint
dialog.

AddWatch method

Adds a watch on the specified symbolName.

Debugger class 9-3

Debugger class,

Animate method

Types expected - bool AddWatch(string symbolName)
symbolName The name of the symbol on which to place the watch.
Return value TRUE if successful, FALSE, otherwise | /
Description If symbolName is NULL, AddWatch opens the Add Watch diaiog.
Animate method
Lefs you watch your script execute in “slow motion.”
Types expected bool Animate()
Return value TRUE if successful, FALSE, otherwise
- Description Animate performs a continuous series of StatementStepIntb commands.

To interrupt animation, invoke one of the following Debugger methods either
by menu selections or by keystrokes tied to the script:

Run

RunToAddress
RunToFileLine
PauseProgram
Reset
TerminateProgram
FindExecutionPoint

Attach method

Types expected

Return value

Invokes the debugger for the currently executing process.
bool Attach(string processiD)
processID The process to debug.

TRUE if successful, FALSE, otherwise

BreakpointOptions method

Types expected

Return value

9-4 ObjectScriptin

Opens the Breakpoint Condition/ Action Options dialog.

bool BreakpointOptions()

TRUE if successful, FALSE, otherwise

g Programmer’s Guide

Debugger class, Evaluate method

Evaluate method

- Types expected

Return value

Evaluates the given expression, such as a global or local variable or an
arithmetic expression.

string Evaluate(string expression)
expression The expression to evaulate.

The result of the evaluation

EvaluateWindow method

Types expected

Return value

Description

Opens the Evaluator window.
bool EvaluateWindow(string expression)
expression The expression to evaluate.

TRUE if successful, FALSE, otherwise

When EvaluateWindow opens the Evaluator window, expression is pasted into
the Expression field of the window.

FindExecutionPoint method

Types expected
Return value

Description

Displays the current execution point.
bool FindExecutionPoint()

TRUE if successful, FALSE, otherwise

The current execution point is indicated by the EIP register. If the current
execution point is in source, the execution point is shown in an Edit window.
(The appropriate source file is opened if necessary.)

If the current execution point is at an address which has no source associated
with it, the execution point is shown in a CPU view. (One is opened if
necessary.) :

Inspect method

Opens an inspector for the specified symbol.

Debugger class 9-5

Debugger class, InstructionStepinto method

Types expected bool Inspect(string symbol, EditView view, int row, int column)

symbol ~ The symbol to inspect.

view The view on which to place the Inspector window.
row The number of the row at which to place the top of the Inspector
window.

column The number of the column at which to place the left side of the
Inspector window.

Return value TRUE if successful, FALSE, otherwise

InstructionStepInto method

Executes the next instruction, stepping into any function calls.
Types expected bool InstructionSteplnto()
Return value TRUE if successful, FALSE, otherwise

Description If a process is not loaded, InstructionStepInto first loads the executable for the
current project.

InstructionStepOver method

Executes the next instruction, running any functions called at full speed.

Types expected bool InstructionStepOver()
Return value TRUE if successful, FALSE, otherwise

Description If a process is not loaded, InstructionStepQOuer first loads the executable for the
current project.

IsRunnabIé method

Indicates if the speciﬁed process can be run or single stepped.
Types expected bool IsRunnable(int processID)

processID The process you wish to query. If that process is not runnable or
does not exist, the current process is used.

Return value TRUE if the EXE is runnable or can be single stepped; FALSE, otherwise

9-6 ObjectScripting Programmer’s Guide

Debugger class, Load method

Load method

Loads the specified executable into the debugger.

Types expected bool Load(string exeName)

exeName The name of the executable to load. If exeName is NULL, Load
opens the Load Program dialog.

Return value TRUE if successful, FALSE, otherwise

Description Upon loading, the process runs to the starting point specified in the Options |
Environment | Debugger | Debugger Behavior dialog.

PauseProgram method

Pauses the current process.
Types expected bool PauseProgram()
Return value TRUE if successful} FALSE, otherwise

Description PauseProgram has an effect only if the current process is running or is
animated.

Reset method

Reset the current process to its starting point.
Types expected bool Reset()
Return value TRUE if successful, FALSE, otherwise

Description The starting pomt is specified in the Options | Environment | Debugger |
Debugger Behavior dialog.

RUn method

Causes the debugger to run the current process.
Types expected bool Run‘()

Return value TRUE if successful, FALSE, otherwise

Debugger class 9-7

Débugger class, RunToAddress method

Description

If no process is loaded, Run first loads the executable associated with the

* current project.

RunToAddress method

Types expected

Return value

Description

Runs the current process until the instruction at the given address is
encountered.

bool RunToAddress(string kaddress)

address The address at which to stop execution. address must be given as
a hexidecimal value (i.e. it must begin with “0x”).

TRUE if successful, FALSE, otherwise

If no process is loaded, Run first loads the executable associated with the
current project.

RunToFileLine method

Types expectéd

Return value

Description

Runs the current process until the source at the specified line in the specified
file is encountered. :

bool RunToFileLine(string fileName, int lineNum)

fileName The name of the file to execute.

lineNum The number of the line at which to halt execution.
TRUE if successful, FALSE, otherwise

If no process is loaded, RunToFileLine will first load the executable associated
with the current project.

StatementStepinto method

Types expected
Return value

Description

Executes the next source statement and steps through the source of any
function calls.

bool StatementSteplnto()
TRUE if succéssful, FALSE, otherwise

If a process is not loaded, StatementSetplnto first loads the executable for the
current project.

9-8 ObjectScripting Programmﬁer’s Guide

Debugger class, StatementStepOver method

StatementStepOver method

Types expected
Return value

Description

Executes the next source statement and does not step into any functlons
called, but rather runs them at full speed.

bool StatementStepOver()
"TRUE if successful, FALSE, otherwise

If a process is not loaded, StatementStepOuer first loads the executable for the
current project..

TerminateProgram method

Types éxpected

Return value

Description

Terminates the current process.
bool TerminateProgram()
TRUE if successful, FALSE, otherwise

If no process is loaded, TerminateProgram has ho effect.

ToggIeBreakpomt method

Types expected

Return value

Description

If no breakpoint ex1sts ToggleBreakpoint adds a breakpomt on the specified
line of the specified file. If a breakoint exists, ToggleBreakpoint deletes it.

bool ToggleBreakpoint(string fileName, int lineNum)

fileName The name of the file to add the breakpoint to.
lineNum The number of the line on which to add the breakpoint.

TRUE if successful, FALSE, otherwise

If the arguments are NULL, ToggleBreakpoint opens the Add Breakpoint
dialog.

ViewBreakpoint method

Types expécted

. Opens the Breakpoints window.

bool ViewBreakpoint()

Debugger class 9-9

Debugger class,

Return value

ViewCallStack method

TRUE if successful, FALSE, otherwise

ViewCallStack method

Types expected
Return value

Description

Opens the Call Stack window.
bool ViewCallStack()
TRUE if successful, FALSE, otherwise

ViewCallStack works only if a process is loaded.

ViewCpu method

Types expected

Return value

Description

Opens or selects the CPU window.

bool ViewCpu([address])

address The address at which to open the CPU window. address is
optional. If it is not specified, the view opens for the current
address.

TRUE if successful, FALSE, otherwise

If the Allow Multiple CPU Views option is checked in the Debugger
Behavior dialog, ViewCpu always opens a new CPU window. If the option is
not checked, ViewCpu only opens a new CPU window if one is not already
open.

ViewCpu works only if a process is loaded.

ViewCpuFileLine method

Types expected

Return value |

Description

Opens or selects the CPU window.

bool ViewCpu(string fileName, int lineNum)

fileName The name of the file to view in the CPU window.

lineNum The number of the line to view in the CPU window.
TRUE if successful, FALSE, otherwise

If the Allow Multiple CPU Views option is checked in the Debugger
Behavior dialog, ViewCpuFileLine always opens a new CPU window. If the

9-10 ObjectScripting Programmer’s Guide

Debugger class, ViewProcess method

option is not checked, ViewCpuFileLine opens a new CPU window only if one
is not already open.

After opening or selecting a CPU window, the Disassembly pane is scrolled
so that the disassembled code for the specified line of the specified file is
visible..

If the parameters are NULL or if the line doesn’t generate code, the window
displays an error message. ViewCpuFileLine works only if a process is loaded.

ViewProcess method

Opens the Process window.

Types expected bool ViewProcess()

Return value TRUE if successful, FALSE, otherwise

ViewWatch method

Opens the Watches window.
Types expected bool ViewWatch()

Return value TRUE if successful, FALSE, otherwise

DebugeeAboutToRun event

Raised just before a process is run.
Types expected void DebugeeAboutToRun()

Return value None

DebugeeCreated event

Raised when a new process is loaded into the debugger.
Types expected void DebugeeCreated()

Return value None

Débugger class

9-11

Debugger class, DebugeeStopped event

DebugeeStopped event

Raised when a process stops.
Types expected void DebugeeStopped()
Return value None

Description A process can stop for any number of reasons:

Upon normal termination

After a step

When a breakpoint is hit

When an exception occurs

When the user pauses, resets, or terminates a running application

DebugeeTerminated event

- Raised when a process is terminated.
Types expected void DebugeeTerminated()

Return value None

9-12 ObjectScripting Programmer’s Guide

Syntax

Chapter

EditBlock class

This class is one of the editor classes. EditBlock class members provide area-
marking features for an edit buffer or view.

EditBlock(EditBuffer);

EditBlock(EditView);

Properties

bool IsValid Read-only
int EndingColumn Read-only
int EndingRow Read-only
bool Hide Read-only
int Size Read-only
int StartingColumn Read-only
int StartingRow Read-only
int Style Read-write
string Text Read-only
Methods

void Begin()

void Copy([bool useClipboard, bool append])

void Cut([bool useClipboard, bool append])

bool Delete()

EditBlock class 10-1

EditBlock class, EditBlock class description

void End ()

bool Extend(int newRow, int newCol)
bool ExtendPageDown()

bool ExtendPageUp()

- bool ExtendReal(int newRow, int newColumn)
bool ExtendRelative(int deltaRow, int deltaColumn)
void Indent(int magnitude)
void LowerCase()
bool Print()
void Reset()
void Restore()
void Save()
bool SaveToFile([string fileName])
void ToggleCase() ‘
void UpperCase()

Events

None

EditBlock class description

EditBlock objects let you mark areas of text. Because EditBlock members exist
in both the EditView and the EditBuffer, EditView and EditBuffer support
different marked areas in different views on the same EditBuffer.

Although multiple EditBlocks can exist in script for an individual EditBuffer or
EditView, they are mapped to the same internal representation of the
EditBlock. Therefore, manipulations on one will affect the others.

Use of the following EditBlock members will cause the EditPosition for the
owner to be updated appropriately:

Extend -
ExtendPageDown
ExtendPagellp
ExtendReal
ExtendRelative

102 ObjectScripting Programmer’s Guide

EditBlock class, IsValid property

IsValid property

Is TRUE if the block is valid. Becomes FALSE in any of the following cases:

e The owning EditBuffer or EditView is destroyed.
e A destructive operatlon, such as delete or cut, occurrs on the block
® The ending point is not greater than the starting point.

Access Read-only

Type expected bool IsValid

EndingColumn property

Initialized to the current position in the EditView or EditBuffer upon
construction. May be changed by a call to an external method.

Access Read-only

Type expected it EndingColumn

EndlngRow property

Initialized to the current position in the EditView or EditBuffer upon
construction. May be changed by a call to an external method.

Access Read-only

Type expected int EndingRow

Hide property

Visually disables the block without modifying its coordinates.
Access Read-write

| Type expected bool Hide

Size property

If the areais not valid, the value is zero; otherwise, the value is the number of
characters contained in the marked area. A newline (CR/LF) counts as one
character.

EditBlock class 10-3

EditBIock class, StartingColumn property
Access Read-write

Type expected int Size

StartingColumn property

Initialized to the current posmon in the EditView or EditBuffer upon
construction. May be changed by a call to an external method.

Access Read-only

Type expected int StartingCqumn

Starti'ngRow property

Initialized to the current position in the EditView or EditBuffer upon
construction: May be changed by a call to an external method.

‘Access Read-only

Type expected int StartingRow

Style property

Sets the style of the EditBlock.
Access Read-write
Type expected it Style

Description Style can be set to one of the following values:

o INCLUSIVE_BLOCK
¢ EXCLUSIVE_BLOCK
¢ COLUMN_BLOCK

e LINE_BLOCK

~ INVALID_BLOCK

An EditBlock is 1rut1ally set to the Style EXCLUSIVE_BLOCK. It is also set to
this style after a Reset is called.

If an EditBlock has a Style of INVALID_BLOCK, it was retained after the
EditBuffer or EditView to which it was attached was destroyed.

10-4 ObjectScripting Programmer’s Guide

EditBIock élass, Tex't property

Text property

Access

Type expected

If the marked block is valid, Text returns the marked text. If 1t is invalid, Text
returns the empty string.

Read-only

string Text

Begin method

Type expected

Resets the StartingRow and StartingColumn values to the current location in
the owning EditBuffer or EditView.

void Begin()
Return value None
Copy method
Copies the contents of the marked block to the Windows Clipboard.
Types expected void Copy([bool append])
append Defauits to FALSE. If TRUE, the contents of the marked block
are appended to the Clipboard.
Return value. None
Cut method
Cuts the contents of the marked block to the Windows Chpboard and
invalidates the marked block.
Types expected void Cut(fbool append]) , ,
append Defaults to FALSE. If TRUE, the contents of the marked block
are appended to the Clipboard.
Return value None

EditBlock class 10-5

EditBIoc‘k‘class, Delete method

Delete method

Deletes the current block if it is valid. The cursor position is restored to the
. position it occupied prior to the delete.

Types expected bool Delete()

Return value TRUE if characters were deleted; FALSE, otherwise

End method

Resets the EndingRow and EndingColumn values to the current location in the
owning EditBuffer or EditView.

Types expected void End()

Return value None

Extend method

Extends an existing EditBlock to encompass the text delimited by newRow and
newCol.

Types expected bool Extend(int newRow, int newCol)

newRow The row to extend the block to. Text delimited by this row is
’ included in the block.
newCol The column to extend the block to. Text delimited by this
column is included in the block.

Return value TRUE if the Extend successfully completes; FALSE, otherwise

ExtendPageDown method

Updates the starting or ending points of the existing mark to extend the mark
to the specified location.

Types expected bool ExtendPageDown()
Return value = TRUE if the cursor move is successful; FALSE, otherwise

Description ExtendPageDown causes the position in the owning EditBuffer or EditView to
be updated to the new location. ExtendPageDown only works if the block is

10-6 ObjectScripting Programmer’s Guide

EditBlock class, ExtendPageUp method

associated with an EditView. It is ignored if the block is associated with an
EditBuffer.

ExtendPageUp method

Types expected
Return value

Description

Updates the starting or ending points of the existing mark to extend the mark
to the specified location.

bool ExtendPageUp()
TRUE if the cursor move is successful

ExtendPagellp causes the position in the owning EditBuffer or EditView to be
updated to the new location. ExtendPagellp only works if the block is
associated with an Edthzew It is ignored if the block is associated with an
EditBuffer.

ExtendReal method

Types expected

Return value

Description

Updates the starting or ending points of the existing mark to extend the mark
to the specified location.

bool ExtendReal(int newRow, int newColumn)

newRow The row to extend the block to. Text dehm1ted by this row is
included in the block.
newCol The column to extend the block to. Text delimited by this

column is included in the block.
TRUE if the cursor move is successful

ExtendReal causes the position in the owning EditBuffer or EditView to be
updated to the new location.

ExtendRelative method

Updates the starting or ending points of the existing mark to extend the mark
to the specified relative location.

EditBlock class 10-7

EditBlock class, Indent method
Types expected bool ExtendRelative(int deltaRow, int deltaColumn)

deltaRow The row to extend the block from. Text delimited by this row is
included in the block.

newCol The column to extend the block from. Text delimited by this
column is included in the block.

Return value TRUE if the cursor move is successful

Description ExtendRelative causes the position in the owning EditBuffer or EditView B be
updated to the new location.

Indent method

Moves the contents of the block.

Types expected void Indent(int magnitude)

- magnitude The number of columns to move the block. Negative values
move the block to the left, positive values move it to the right.

Return value None

LowerCase method

Converts all alphabetic characters enclosed within the EditBlock to lowercase.
Types expected void LowsrCase()

Retur_n value None

Print method

Prints the currerit block.
Types expected bool Print()

Returnvalue TRUE if the print was successful, FALSE if there is no marked block or if the
print failed.

Reset method

Unmarks the block. Implicitly invoked by the constructor.

10-8 ObjectScripting Programmer’s Guide

EditBlock class, Restore method
Types expected void Reset()
Return value None

- Description Reset also resets the Style to EXCLUSIVE_BLOCK and the starting and
' ending points to the current position in the owning EditBuffer or EditView.

Restore method

Restores a block from an internal stack. The block must have been saved with
Save.

Types expected void Restore()

Return value None

Save method

Preserves the block attributes on an internal stack for future restoration using
Restore.

Types expected void Save()

Return value None

SaveToFile method

Causes the contents of the marked block to be saved.

Types expected bool SaveToFile([string fileName])

fileName The name of the file to save the block to. If leeName is ot
‘ supplied, the user will be prompted for one.

Return value TRUE if the save was successful or FALSE if it wasn’t.

ToggleCase method

Converts all the uppercase alphabetic characters in the EditBlock to
lowercase, and the lowercase characters to uppercase.

Types expected void ToggleCase()

EditBlock class 10-9

EditBlock class, UpperCase method

Return value None

UpperCase method

Converts all the lowercase alphabetic characters in the EditBlock to
uppercase. .

Types expected void UpperCase).

Return value None

10-10 ObjectScripting Programmer’s Guide

Syntax

EditBuffer class

This class is one of the editor classes. An edit buffer is assocnated with one file
and any number of edit views.

EditBuffer(string fileName [, bool private, bool readOnIy])

fileName The name of the file associated with the edit buffer.

private Implies that the buffer is a hidden system buffer. Undo
information is not retained, and the EditBuffer is never
attachable to an EditView. The file attached to the buffer cannot
be viewed in the IDE until the private buffer is destroyed.
When a private EditBuffer is no longer needed, you should
always explicitly destroy it with EditBuffer.Destroy.
The default value of private is FALSE.

readOnly ~ Marks the buffer as read- -only. The default value is FALSE
Associating a read-only file with the EditBuffer does not make
the EditBuffer read-only.

Properties

EditBlock Block Read-only

TimeStamp CurrentDate Read-only

string Directory Read-only

string Drive Read-only

string Extension Read-only

- string FileName - Read-only
string FullName Read-only

EditBuffer class 11-1

EditBuffer class, EditBuffer class description

TimeStamp InitiaiDate ‘ Read-only

bool IsModified Read-only

bool IsPrivate Read-only

bool IsReadOnly Read-only

bool IsValid Read-only
. EditPosition Position Read-only

EditView TopView) Read-only

Methods

void ApplySter(EditStQIe styleToApply)

EditBlock BlockCreate() ‘

string Describe()

bool Destroy()

EditBuffer NextBuffer(bool privateToo)
EditView NextView(EditView)
EditPosition PositionCreate()

bool Print()

EditBuffer PriorBuffer(bool privateToo)
bool Rename(string newName)

int Save([string newName])

Events

void AttemptToModifyReadOnlyBuffer()
void AttemptToWriteReadOnlyFile()
void HasBeenModified()

EditBuffer class description

An EditBuffer is a representation of the contents of a file. An EditView is used
to provide a visual representation of the EditBuffer. The same EditBuffer can
be displayed simultaneously in different EditViews (for example, two edit
windows can be open on the same file). EditBuffer objects provide
functionality for a file being edited that is independent of the number of
views associated with the buffer.

11-2 ObjectScripting Programmer’s Guide

EditBuffer class, Block property

Edit buffers:

* Use the NextView method to to traverse the list of views containing the
same EditBuffer.

¢ Maintain access to a list of bookmarks (position markers which track text
edits).

* Can be queried for their time and date stamps.

* Have a Position member through which manipulation of the underlying
EditBuffer is performed. Typically this member will be used when
manipulating an EditBuffer through script.

* Can be specified as read-only.

¢ Can be created as private or system buffers. System buffers are not visible
in the IDE or listed in the buffer list.

A single EditBuffer object exists internally for each file loaded into the buffer.
If you create additional representations for an edit buffer, they are attached
to the existing EditBuffer object. Any changes to one of these representations
changes the others, since they refer to the same object. All representations
inherit the IsReadOnly and IsPrivate attributes of the original, because these
properties are set only when the object is first created.

You can make buffers private to provide raw data storage for script usage.
No undo information is maintained for private buffers, nor are they
attachable to an EditView. Private EditBuffer objects should be explicitly
destroyed when no longer needed using the Destroy method. Otherwise; they

- remain in memory for the duration of the IDE session..

Block property

Access

Type expected

Contains a reference to the hidden EditBlock.
Read-only

EditBlock Block

CurrentDate property

Access

Type expected

Originally set to the same value as InitialDate but is updated when the
buffer’s contents are altered.

Read-only

TimeStamp CurrentDate

EditBuffer class 11-3

EditBuffer class, Directory property

Directory property

NULL if the EditBuffer is invalid; otherwise, indicates the directory path in
uppercase letters.

Access Read-only

Type expected string Directory

Drive property

NULL if the EditBuffer is invalid; otherwise, indicates the drive in uppercase
with the associated colon (:).

Access Read-only

Type expected string Drive

Extension property |

NULL if the EditBuffer is invalid; otherwise, indicates the file extension in
uppercase including the period (.), if any.

Access Read-only

Type expected string Extension

FileName property

NULL if the EditBuffer is invalid; otherwise, indicates the file name in
uppercase.

Access Read-only

Type expected string FileName

FuliName property

The name of the EditBuffer or NULL if the EditBuffer is invalid.

Access Read-only

11-4 ObjectScripting Programmer’s Guide

EditBuffer class, InitialDate property

Type expécted string FullName

InitialDate property

The date on which the file was first created.
Access Read-only
Type expected TimeStamp InitialDate

Description If the buffer was initialized from a disk file, InitialDate reflects the file’s age. If
the file does not reside on disk, InitialDate holds the time at which the buffer
was created. It is a read-only property.

IsModified property

Indicates if the buffer was changed since it was last opened or saved,
whichever occurred most recently.

Access Read-only

Type expected. bool IsModified

IsPrivate property

TRUE if the buffer was created w1th the private parameter set to TRUE;
FALSE, otherwise.

Access Read-only

Type expected bool IsPrivate

lsReadOnIy property

TRUE if the buffer was created with the readOnly parameter set to TRUE;
FALSE otherwise.

Access Read-only

Type expected bool IsReadOnly

EditBuffer class 11-5

EditBuffer class, IsValid property

IsValid property | .
FALSE if the EditBuffer is destroyed, otherwise, TRUE. |
Access Read-only

Type expected bool IsValid -

Position property

Provides access to the EditPosition instance for thls EditBuffer.
Access Read-only

Type expected EditPosition Position

TopView property

The topmost EditView that contains this EditBuffer. NULL if no view is
associated with the buffer.

Access Read-only

Type expected Editview TopView

ApplyStyle method

Updates the EditOptions.BufferOptions property with the contents of
styleToApply.

Types expected void ApplyStyle(EditStyle styleToApply)
styleToApply The EditStyle object to apply.

Return value None

BlockCreate method

Creates an edit block for the EditBuffer.
Types expected EditBlock BlockCreate() -

Return value The edit block.

11-6 ObjectScripting Programmer’s Guide

EditBuffer class, Describe method

Describe method

Types expected

Invoked during buffer list creation by an Editor object. Returns a text
description of the buffer, as in: '

¢ FOO.CPP(modified)
¢ BAR.CPP

string Describe()

Returnvalue None

- Destroy method |

Removes the buffer from the IDE’s buffer list and does not save any changes.

Types expected bool Destroy()
Return value TRUE if the buffer was actually destroyed, or FALSE if views relying on it
still exist.
Description When private EditBuffer objects are longer needed, you should always
explicitly destroy them.
NextBuffer method
Finds the next edit buffer in the buffer list.
Types expected EditBuffer NextBuffer(bool privateToo)
privateToo TRUE if private buffers are to be included in the buffer list,
FALSE otherwise.
Return value The edit buffer found or NULL if none is found.
Description = The buffer list is circular, so if a buffer exists, it will be found. However, if all
- buffers are private and if privateToo is set to FALSE, no buffer will be found.
NextView method

Returns the next EditView containing this EditBuffer.

EditBuffer class 11-7

EditBuffer class, PositionCreate method

Types expected Editview NextView(EditView next)

next The view to use in getting the next associated view for this edit
buffer. Start traversing the view list by passing the value of
TopView to this method.

Return value None

Description An EditBuffer is a representation of the contents of a file. An EditView is used
to provide a visual representation of the EditBuffer. The same EditBuffer can
be displayed simultaneously to the user in different EditViews (for example,
two edit windows can be open on the same file). This method enables you to
cycle through all the EditViews representing this EditBuffer.

PositionCreate method |

Creates an EditPosition object.

Types expected EditPosition PositionCreate()

Return value None

Print method

Prints this buffer.
Types expected bool Print()

Return value TRUE if the print was successful or FALSE if the print failed.

PriorBuffer method

Finds the preVious edit buffer in the buffer list.

Types expected EditBuffer PriorBuffer(bool privateToo)

privateToo TRUE if private buffers are to be included in the buffer list,
FALSE otherwise. :

Return value The edit buffer found or NULL if none is found

Description 'The buffer list is circular, so if a buffer exists, it will be found. However, if all
buffers are private and if privateToo is set to FALSE, no buffer will be found.

11-8 ObjectScriptihg Programmer’s Guide

EditBuffer class, Rename method

- Rename method

Changes the EditBuffer name.

Types expected bool Rename(string newName)

newName The new name of the buffer.
| Returnvalue TRUE if the operation succeeded or FALSE if it failed
Deséription Rename fails when an EditBuffer with the new name is already in the buffer
‘ list. If a file with the new name already exists on disk, it is overwritten when
this buffer is saved.
Save method

Writes the file associated with the buffer to disk.

Types expected int Save((string newName))

Return value

Description

newName The new name of the file.
The number of bytes written or 0 if the save was unsuccessful.

Saves the file whether it was modified or not. Save uses the current name of
the file or newName if it is specified.

AttemptToModifyReadOnIyBuffer event

Note

Types expected

Return value

Triggered when an attempt is made to modify a read-only buffer.

For the EditBuffer to be read-only, it must be created with the readOnly
parameter set to TRUE. Creating an EditBuffer from a read-only file does not
create a read-only buffer.

void AttemptToModifyReadOnlyBuffer()

- None

AttemptToWriteReadOnlyFile event

Types expected

Triggered when an attempt is made to write the contents of an EditBuffer to a
read-only file. The buffer may or may not have been created as read-only.

void AttemptToWriteReadOnlyBuffer()

EditBuffer class 11-9

EditBuffer class, HasBeenModified event

Returnvalue None

HasBeenModified;event

Triggered when a buffer has been modified for the first time.
Types expected void HasBeenModified() -

Return value None

11-10 ObjectScripting Programmer’s Guide

Chapter

‘ EditOptions class

This class is one of the editor classes. EditOptions class members hold editor
characteristics of a global nature.

Syntax EditOptions()

Properties

string BackupPath : Read-write
int BlockIndent ; Read-write
BufferOptions BufferOptions Read-only
.string MirrorPath Read-write
string OriginalPath Read-write
string SyntaxHighlightTypes Read-write
bool UseBRIEFCursorShapes Read-write
bool UseBRIEFRegularExpression Read-write
Methods

None

Events

None

EditOptions class " 12-1

EditOptions class, EditOptions class description

EditOptions class description

The EditOptions objeét holds editor characteristics of a global nature, such as:

Whether to create backups

The destination paths for backups

The insert/ overtype setting

The optimal fill setting

Handling of blocks cut or copied from the buffer (scrap manipulation)
The default regular expression language

Property values are initialized from global defaults during construction.

BackupPath property
Contains the path where the editor stores back ups.
Access Read-write

Type expected string BackupPath

Description In the IDE, BackupPath is set with the BackupPath option of the Environment

Options dialog. To dlsplay this dialog box, choose Options | Environment |
Editor [File.

Blockindent property

Indents or outdents a block of characters.
Access - Read-write

Type expected int Blockindent

Description BlockIndent indicates the number of characters to indent or outdent a block of
: characters. The value must be between 1 and 16.

In the IDE, BlockIndent is set with the Block Indent option of the Environment
Options dialog. To display this dialog box, choose Options | Environment |
Editor | Options.

BufferOptions property

Holds the buffer options settings for all edit buffers.

Access Read-only

12-2 ObjectScripting Programmer’s Guide

Type expected

EditOptions class, MirrorPath property

BufferOptions BufferOptions

MirrorPath property

Access
Type expected

Description

Holds the path where the editor stores mirrdrvc-opies of files.

Read-write

string MirrorPath

In the IDE, MirrorPath is set with the Mirror Path option of the Environment

Options dialog. To display this dialog box, choose Options | Environment |
Editor | File.

OriginalPath property

Access
Type expected

Description

Holds the path where the editor stores the original files.
Read-write

string OriginalPath

In‘the IDE, OriginalPath is set with the Original Path option of the

Environment Options dialog. To display this d1alog box, choose Options |
Environment | Editor | File.

SyntaxHighlightTypes property

Access
Type expected

Description

Holds the file extensions, or file names, of the file types for which syntax
highlighting is to be enabled in the editor.

Read-write
string SyntaxHighlightTypes

Wild cards are permitted. Separate multlple names/ extensions with a
semicolon.

In the IDE, SyntaxHighlightTypes is set with the Syntax Extensions option of
the Environment Options dialog. To display this dialog box, choose
Optlons | Environment | Syntax nghhghtmg

’ EditOptions class 12-3

EditOptions class, UseBRIEFCursorShapes property

Example //Example of SyntaxHighlightTypes
JavaSyntaxHighlight (yes)} {
if (yes) {

IDE.Editor.Options.BufferOptions.TokenFileName = "java.tok";
// enable syntax highlighting for .java files
-IDE.Editor.Options.SyntaxHighlightTypes = "*.java";
} .
else {
IDE.Editor.Options.BufferOptions.TokenFileName = ""; // C++
// enable syntax highlighting for standard C++ flles
IDE.Editor.Options.SyntaxHighlightTypes =
" cpp;*.c;*.h; % hpp; *.rh; *Lre”;
} .
//-- redraw with new option settings --
declare EditStyle es;
IDE.Editor.ApplyStyle(es);

UseBRIEFCursorShapes property

When TRUE the editor uses the default cursor shapes that Brief provides for
insert mode and overtype mode.

Access Read-write
~ Type expected bool UseBRIEFCursorShapes
Description In the IDE, UseBRIEFCursorShapes is set with the BRIEF Cursor Shapes

option of the Environment Options dialog. To display this dialog box, choose
Options | Environment | Editor | Display.

UseBRIEFRegularExpression property

When TRUE, complex search and search/replace operations can be
performed using the Brief regular expression syntax.

Access Read-write
Type expected bool UseBRIEFRegularExpression
Description In the IDE, UseBRIEFRegularExpressions is set with the BRIEF Regular

Expressions option of the Environment Options dialog. To display this
_dialog box, choose Options | Environment | Editor | Options.

12-4 ObjectScripting Programmer’s Guide

Chapter

EditPosition class

This is one of the editor classes. EditPosition class members provide
positioning functionality related to the active location in an EditView o

EditBuffer. ‘
Syntax EditPosition(EditBuffer)

EditPosition(EditView)

Properties

int Character | Read-only

int Column : Read-only

bool IsSpecialCharacter Read-only

bool IsWhiteSpace Read-only

bool IsWordCharacter Read-only

int LastRow ' Read-only

int Row Read-only

SearchOptions SearchOptions ' Read-only

Methods

void Align(int magnitude)
bool BackspaceDelete(fint howMany})
bool Delete([int howMany])

int DistanceToTab(int direction)

EditPosition class 13-1

EditPosition class, EditPosition class description

bool GotoLine(int lineNumber)
void InsertBlock(EditBlock block)
void InsertCharacter(int characterTolnser)
void InsertFile(string fileName)
void InsertScrap()
void InsertText(string text)
bool Move(fint row, int col])
bool MoveBOL(}
bool MoveCursor(moveMask)
bool MoveEOF()
" bool MoveEOL()
bool MoveReal([int row, int-col])
bool MoveRelative(fint deltaRow, int deltaCol])
string Read([int numberQOfChars]) .
bool Replace([string pat, string rep, bool case, bool useRE, bool dir, int reFlavor, bool global, EditBlock block])
bool ReplaceAgain(}
void Restore()
string RipText(string legalChars [,int ripFlags})
void Save() ‘
int Search([string pat, bool case, boo! useRE, bool dir, int reFlavor, EditBlock block])
int SearchAgain()
void Tab(int magnitude)

Events

None

EditPosition class description

An EditPosition object is the point at which operations occur within the EditBuffer.
One EditPosition object exists for each EditBuffer and each EditView. In the EditView,
the cursor location visually represents the EditPosition’s current location.

Since each EditView can have its own EditPosition object, you can have multiple
EditViews at multiple locations. Additionally, the EditBuffer’s EditPosition object
maintains its own location information.

13-2 ObjectScripting Programmer’s Guide_

EdiiPosition class, Character property

Character property

Integer value of the character at this position or one of the following values:
VIRTUAL_TAB
VIRTUAL_PAST_EOF
VIRTUAL_PAST_EOL

Access Read-only

Type expected int Character

Column property

The current column position in the buffer. To change, use one of the
following EditPosition methods:

Move MoveBOL MoveCursor ~ MoveEOF
MoveEOL MoveReal MoveRelative

Access Read-only

Type expected int Column

IsSpeciaICharacter property

TRUE if the character at the current edit position is not an alphanumeric or
whitespace character; FALSE otherwise.

Access Read-only -

Type expected bool IsSpecialCharacter

IsWhiteSpace property

TRUE if the character at the current edit position is a Tab or Space; FALSE,
otherwise.

Access Read-only

Type expected bool IsWhiteSpace

EditPosition class 13-3

EditPosition class, IsWordCharacter property

IsWordCharacter property

TRUE if the character at the current edit position is an alphabetic character,
numeric character or underscore. Otherwise, FALSE.

- Access - Read-only

Type expected bool IsWordCharacter

LastRow property
‘ The line number of the last line in the edit buffer.
Access Read-only

Type expected int LastRow

Row property

The current row position in the buffer. To change, use one of the following

EditPosition methods:
Move MoveBOL MoveCursor MoveEOF
MoveEOL MoveReal MoveRelative

Access Read-only

Type exbected int Row

SearchOptions property

Contains an instance of the SearchOptions class, the options currently in place
for searching.

Access Read-only.

Type expected SearchOptions SearchOptions

Align method

Positions the insertion point on the current line, aligning it with columns
calculated from prior lines in the file.

13-4 ObjectScripting Programmer’s Guide

Types expected

EditPosition class, BackspaceDelete method

void Align(int magnitude)

magnitude If positive, enough characters are inserted to align the character

position as follows:

e Starting with the column defined by the current character
position on the current line, the character is aligned with the
first character after the first white space on the previous line

after the column position.

e If the previous line is too short to calculate a position on the
current line, previous lines are scanned until finding one that

is long enough to calculate a column position.

If negative, the column position is moved to the left.

Return value None

Example Assume that two lines of code contain the text “Leaning over the console, she

stuck out her hand and said,” and ““Hello there, buddy.” The cursor () is

in column 2 on the current line.

Leaning over the console, she stuck out her hand and said,
"How are you, buddy"
A

Calling Align(1) results in:

Leaning over the console, she stuck out her hand and said,
"How are you, buddy."
A N

Calling Align(1) again results in:

Leaning over the console, she stuck out her hand and said,
"How are you, buddy."

A

Calling Align (1) again results in:

Leaning over the console, she stuck out her hand and said,
"How are you buddy."
A

Calling 21ign(-1) results in:

Leaning over the console, she stuck out her hand and said,
"Hello there, buddy."

A

BackspaceDeIete method

Deletes characters to the left of the current position.

EditPosition class

13-5

EditPosition class, Delete method
Types expected bool BackspaceDelete([int howMany))
howMany The number of characters to delete. The default is 1.

~ Returnvalue TRUE if any characters are deleted; FALSE if there are no characters to the
left.

Delete method

Deletes characters to the right of the current position.
Types expected bool Delete([int howMany])
howMany - The number of characters to delete. The default is 1.

Return value TRUE if ény characters are deléted; FALSE if there are no characters to the
right.

DistanceToTab method

Retrieves the number of character positions between the current cursor
position and the next/ previous tab stop.

Types expected int DistanceToTab(int direction)

direction Either SEARCH_FORWARD or SEARCH_BACKWARD.
SEARCH_FORWARD is the default.

Return value Number of character positions between the current cursor position and the
next/previous tab stop.

GotoLine method

Moves the cursor to the specified line, without changing column position.
Types expected bool GotoLine(int lineNumber)

lineNumber The number of the line to change to. If lineNumber is not
specified, the user is prompted for a line number.

Return value TRUE if the move was successful, FALSE, otherwise.

13-6 ObjectScripting Programmer’s Guide

EditPosition class, InsertBlock method

InsertBlock method

Inserts the last marked block at the current cursor position.

Types expected void InsertBlock(EditBlock block)
block Restricts the search to the indicated block.
Return value None
InsertCharacter method
Inserts a character at the current cursor positioh.
Types expected void InsertCharacter(int characterTolnsert)
characterTolnsert The iﬁteger value of the character to insert.
Return value None
InsertFile method
Inserts the contents of the specified file at the current cursor position.
Types expected void InsertFile(string fileName)
‘ fileName The name of the file to insert.
Return value None
InsertScrap method
Insert text in the Windows Clipboard at fhe current cursor position.
Types-expected void InsertScrap() |
Return value None
InsertText method

Inserts the specified string at the current cursor position.

EditPosition class 13-7°

EditPosition class, Move method

Types expected void InseriText(string text)
text The string to insert.
Return value None
Move method
Moves the cursor to the speciﬁed row and column.
Types expected‘ bool Move(fint row, int col])

Return value

Description

row . The number of the row to move to.

col The number of the column to move to.

The return value, TRUE or FALSE, indicates whether the position actually
changed.

Move attempts to position:

¢ The column at 0 or less
o The column at 1025 or more °
@ The row at 0 or less

MaxLineNumber + 1 or more are invalid. MaxLineNumber depends on the
computer’s capacity.

MoveBOL method

Types expected

Return value

Description

Moves the cursor to the first character on the current line.

bool MoveBOL()

The return value, TRUE or FALSE, indicates whether the position actually
changed.

MoveBOL attempts to position:

e The column at 0 or less
¢ The column at 1025 or more
e The row at 0 or less

MaxLineNumber + 1 or more are invalid. MaxLineNumber depends on the
computer’s capacity.

13-8 ObjectScripting Programmer’s Guide

EditPosition class, MoveCursor method

MoveCursor method

Types expected

Return value

Description

Moves the current position forward or backward in the buffer.
bool MoveCursor(moveMask)
moveMask The position to move the cursor to. The value of moveMask can
be built from the one of the following:
SKIP_WORD (default)
SKIP_NONWORD
SKIP_WHITE
SKIP_NONWHITE
SKIP_SPECIAL
SKIP_NONSPECIAL.

These masks can be combined with SKIP_LEFT (default) or
SKIP_RIGHT. SKIP_STREAM can also be used with any of
these combinations if line ends are ignored.

The return value, TRUE or FALSE, indicates whether the position actually
changed. :

MoveCursor attempts to position:

® The column at 0 or less
¢ The column at 1025 or more
e The row at 0 or less

MaxLineNumber + 1 or more are invalid. MaxLineNumber depends on the
computer’s capacity.

MoveEOF method

Types expected

Return value

Description

Moves the current position to the last character in the file.
bool MoveEOF()

The return value, TRUE or FALSE, indicates whether the position actually
changed.
MoveEOF attempts to position:

¢ The column at 0 or less
¢ The column at 1025 or more
* The row at 0 or less

EditPosition class 13-9

EditPosition class, MoveEOL method

MaxLineNumber + 1 or more are invalid. MaxLineNumber depends on the
computer’s capacity.

MoveEOL method

Types expected

Return value

Description

Moves the current position to the last character on the line.

bool MoveEOL()

The return value, TRUE or FALSE, indicates whether the position actually
changed.

MoveEOL attempts to position:

¢ The column at O or less
* The column at 1025 or more
e Therow atOor less

MaxLineNumber + 1 or more are 1nva11d MaxLineNumber depends on the
computer’s CapaCIty

MoveReal method

Types expected

Return value

Description

The position assumes that the file is unedited. If edits have been made to the
file, the move is relative to the original, unedited file.

bool MoveReaI([iht row, int col])

row The number of the row to move the cursor to. row is relative to the
line numbers in the original, unedited file.

col The number of the column to move the cursor to. column is relative
to the column numbers in the original, unedited file.

The return value, TRUE or FALSE, indicates whether the position actually
changed.
MoveReal attempts to position:

¢ The column at 0 or less
¢ The column at 1025 or more

"o The row at 0 or less

MaxLineNumber + 1 or more are invalid. MaxLineNumber depends on the

' computer’s capacity.

For example, assume that the original, unedited file is a two-line file with the
word ONE on the first line and the word TWO on the second line. The user

13-10 ObjectScripting Programmer’s Guide

EditPosition class, MoveRelative method

subsequently inserts 100 lines of text after line 1. MoveReal (2,1)moves the
cursor to the “T” in “TWO”.

MoveRelative method

Types expected

Return value

Description

" Moves the cursor the specified number of rows and columns from the

current row and column position.

bool MoveRelative([int detaRow, int deltaCol])
deltaRow The number of rows to move the cursor. deltaRow is relative to
the current row number.

deltaCol The number of columns to move the cursor. deltuCol is relative
to the current column number.

The return value, TRUE or FALSE, indicates whether the posmon actually
changed.

MoveRelative attempts to position:

e The column at O or less
¢ The column at 1025 or more
o The row at 0 or less

MaxLineNumber + 1 or more are invalid. MaxLineNumber depends on the
computer’s capacity.

Read method

Reads the specified number of characters.

Types expected string Read([int numberOfChars])
numberOfChars The number of characters to read from the current cursor
position. If omitted, it reads to the end of the line.
‘Return value A string containing the characters read
Replace method

Searches EditBuffer in the indicated direction for the search expression. The

expression is replaced with the specified expression.

EditPosition class 13-11

EditPosition class, ReplaceAgain method

uTypes expected boo! Replace([string pat, string rep, bool case, bool useRE, bool dir, int reFlavor, bool

global, EditBlock block])

pat

rep
case
useRE

dir

reFlavor

block

The string to search for. -
The string to replace with. -
Indicates if the case of pat is significant in the search.

Indicates whether or not to interpret pat as a regular expression
string.

One of the following:
SEARCH_FORWARD (default) ;
- SEARCH_BACKWARD

The type of regular expression being used; it may be one of the
following:

IDE_RE (default)
BRIEF_RE
BRIEF_RE_FORWARD_MIN
BRIEF_RE_SAME_MIN
BRIEF_RE_BACK_MIN
BRIEF_RE_FORWARD_MAX
BRIEF_RE_SAME_MAX
BRIEF_RE_BACK_MAX

If given, restricts the search to the indicated block.

Return value TRUE if the replace operation was successful, FALSE, otherwise.

ReplaceAgain method

Repeats the most recently performed Replace operation.

Types expected bool ReplaceAgain() -

Return value TRUE if the replace operation was successful, FALSE, othgrwise.

Restore method

Restores the cursor position to the position saved by the last call to the Save

method.

Types expected void Restore()

13-12 ObjectScripting Programmer’s Guide

EditPosition class, RipText method

Return value None

RipText method:

Performs an edit rip operation. This routine can rip an entire line.

Types expected string RipText(string legalChars [,int ripFlags])
legalChars ~ Determines the legal characters to include in the edit rip. If
legalChars is omitted,
INCLUDE_ALPHA_CHARS
INCLUDE_NUMERIC_CHARS
INCLUDE_SPECIAL_CHARS

are all automatically added to the ripFlags argument, making
any character beween ASCII decimal 32 and 128 a legal
character. A rip can be halted by specifying a character in

© legalChars then using INVERT_LEGAL_CHARS as the ripFlags
parameter.

ripFlags A mask built by combining any or all of the following values:

BACKWARD_RIP Rip from left to right.

INVERT_LEGAL_CHARS Interpret the legalChars string as the inverse of the string you
wish to use for legalChars. In other words, specify t to mean
any ASCII value between 1 and 255 except t.

INCLUDE_LOWERCASE_ALPHA_CHARS Append the characters abcdefghijklmnopgrstuvwxyz to the
legalChars string.

INCLUDE_UPPERCASE_ALPHA_CHARS Append the characters ABCDEFGHTJKLMNOPQRSTUVWXYZ to the

legalChars string.
INCLUDE_ALPHA_CHARS Append both uppercase and lowercase alpha characters to the
legalChars string.
INCLUDE_NUMERIC_CHARS . Append the characters 1234567890 to the legalChars string.
INCLUDE_SPECIAL_CHARS Append the characters *-=[]\; ', ./~1@#§%"&* () _+{}]:"<>?
' to the legalChars string.

Retun value The string copied from the edit buffer.

Save method

Save the current cursor position. Use Restore to later restore the cursor to this
position.

Types expected void Save()

EditPosifion class 13-13

EditPoéition class, Search method

Return value None

Search method

Searches the edit buffer for the search expression.

Types expected inf Search(string pat [, bool case, bool useRE, bool dir, int reFlavor, EditBlock block])

pat
case
useRE
dir

reFlavor

block

The string to search for.
Indicates if the case of pat is significant in the search.
Indicates whether or not to interpret pat as a regular expression.
One of the following:
SEARCH_FORWARD (default)
SEARCH_BACKWARD

The type of regular expression in use; it may be one of the
following: g

IDE_RE (default)

BRIEF_RE

BRIEF_RE_FORWARD_MIN/ / same as BRIEF_RE
BRIEF_RE_SAME_MIN

BRIEF_RE_BACK_MIN
BRIEF_RE_FORWARD_MAX
BRIEF_RE_SAME_MAX

BRIEF_RE_BACK_MAX

If given, restricts the search to the indicated block.

Note If case, useRE, or reFlavor is not supplied, the value is determined by querying
the Editor object.

Return value The size (in characters matched) of the match.

SearchAgain method

Repeats the most recently performed Search operation.

Types expected it SearchAgain()

Return value The number of matches found.

13-14 ObjectScripting Programmer’s Guide

EditPosition class, Tab method

Tab method

Moves the current cursor location to the next or previous tab stop.

Types expected void Tab(int magnitude)

magnitude If positive, moves the cursor to the next tab stop. If negative,
moves to the previous tab stop.

Return value None

EditPosition class 13-15

13-16 ObjectScripting Programmer’s Guide

Chapter

EditStyle class

This class is one of the editor classes. EditStyle applies styles that overrride
settings for a buffer or for the entire editor.

- Syntax EditStyle(string styleName[,EditStyle styleTolnitializeFrom])

styleName The name of the style to create.
styleTolnitializeFrom The name of the style to initialize from.
Properties

EditOptions EditMode =~ Read-write

int Identifier Read-only

string Name Read-write

Methods

None

Events

None

EditSter class description

EditStyle objects provide a mechanism to collect EditOptions, name them, and
\ apply them across buffers, across the entire Editor, or both. You can store all

EditStyle class 14-1

EditStyle class, EditModel prbperty
your preferred settings for the editor in an EditStyle object and apply them to
an editor all at once. ’
EditStyle objects contain:
* An EditOptions member
¢ Aname ')
¢ Aninternal filter that indicates the characteristics that the style controls

* EditStyles are implicitly persistent. The list of available styles may be
traversed from the Editor object.

'EditMode property

Contains an EditOptions object that defines the options for the style.

Access Read-write

Type expected EditOptions EditMode

Identifier property

Identifies styles with a unique integer.
Access Read-only

Type expected int Identifier -

Name property

A unique name for this EditStyle, taken from the styleName parameter.

Access Read-write

Type expected string Name

14-2 ObjectScripting Programmer’s Guide

Chapter

EditView class

This class is one of the editor classes. EditView class members provide the
visual representation of the EditBuffer.

¢ Each edit view has only one edit buffer.
¢ Each edit view is in an edit window.

Syntax EditView (EditWindow parent], EditBuffer buffer])

parent The edit window.

buffer The currently active buffer. If buffer is omitted, the parent’s
currently active EditBuffer is used.

Properties

EditBlock Block Read-write
int BottomRow Read-only

EditButfer Buffer : Read-only

int Identifier Read-only

bool IsValid Read-only

bool IsZoomed - Read-write
int LastEditColumn Read-only

int LastEditRow Read-only

int LeftColumn Read-only

EditView Next Read-only

EditPosition Position Read-only

EditView class 15-1

EditView class, EditView class description

EditView Prior Read-only
int RightColumn ” Read-only
int TopRow Read-only -
EditWindow Window Read-only
Methods

EditBuffer Attach(EditBuffer buffer)

bool BookmarkGoto(int bookmarkiDorPrevRef)
int BookmarkRecord(int bookmarklDorPrevRef)
void Center([int row, int col])

void MoveCursorToView()

void MoveViewToCursor()

void PageDown(}

void PageUp()

void Paint()

int Scroll(int deftaRow], int deltaCol})

void SetTopLeft(int topRow, int leftCol)

Events

None

EditView class description

EditView objects provide an editing window for the current buffer. The frame
of an EditView is an EditWindow. Each view has a direct relationship to an
EditBuffer. During creation, the EditView's Position member is 1n1t1ahzed from
the EditBuffer’s Position member.

Edit views:
e Have methods that traverse their sibling views.
* Can be queried to find the associated EditWindow or EditBuffer.

e Have a Position member that manipulates the underlying EditBuffer.
Typically this member is used by scripts and primitives tied to the user
interface.

The underlying EditBuffer object owns the list of bookmarks (position
.markers that track text edits). Use EditView.BookmarkRecord and

152 ObjectScripting Programmer’s Guide

EditView class, Block p'roperty
EditView.BookmarkGoto to provide access to those bookmarks. A common list

of bookmarks is maintained for the same buffer regardless of the view being
used.

Block property

Provides access to the instance of the EditBlock class attached to this EditView.
Access - Read-write

Type expected - EditBlock Block

Bottbm Row property

Row number displayed at the last line in the view.
Access Read-only

Type expected int BottomRow

Buffer property

Returns the EditBuffer to which the view is attached.

Access Read-only

Type expected EditBuffer Buffer

Identifier property

A unique identifier for each view.
Access Read-only

Type expected int identifier

IsValid property

TRUE if the view is valid, FALSE if it is not.

Access Read-only

EditView class 15-3

EditView class, I'sZoomed property
Type expected bool IsValid

Description The view will be invalidated if it is destroyed by the user.

IsZoomed property

Zooms the view.
Access Read-write
Type expected bool IsZoomed
Description A zoomed EditView expands to occupy the entire EditWindow client space. If

an EditView is zoomed in an EditWindow, you cannot manipulate sibling
views by creating, resizing or deleting them.

LastEdltCqumn property

Identifies the position of the most recent edit.
Access Read-only
Type expected int LastEditColumn
Description LastEditColumn works in conjunction with LastEditRow to identify the

character position of the most recent edit. An edit modifies the contents of
the buffer and occurs as a character or block insertion or deletion.

LastEditRow property

Identifies the position of the most recent edit.
Access Read-only

Type expected int LastEditRow

Description LastEditRow works in conjunction with LastEditColumn to identify the
character position of the most recent edit. An edit modifies the contents of
the buffer and occurs as a character or block insertion or deletion.

LeftColumn property

Column number displayed at the left edge of the view.

15-4 ObjectScripting Programmer’s Guide

EditView class, Next property

Access Read-only

Type expected int LeftColumn

Next property

The next EditView embeddea in the same window.
Access Read-only

Type expected EditView Next

Position property

Provides access to the instance of the EditPosition class attached to this
EditView.

Access Read-only

Type expected EditPosition Position

Prior property

The previous EditView embedded in the same window.
Access Read-only

Type expected Editview Prior

RightColumn property
' Column number displayed at the right edge of the view.
Access Read-only

Type expected int RightColumn

TopRow property |

Row number displayed at the first line in the view.

Access Read-only

EditView class

15-5

EditView class, Window property

Type expected

int TopRow

Window property

Access

Type expected

Returns the window in which this view is embedded.
Read-only

EditWindow Window

Attach method

Attaches the view to a new EditBuffer.

Types expected EditBuffer Attach(EditBuffer‘ buffer)
buffer The name of the buffer to attach to.
Return value The previous edit buffer
Description Attach replaces the currently attached edit buffer. When a view is created, it
is associated with an EditBuffer. The purpose of the view is to provide a
visual representation of the edit buffer to which it is attached.
For example, to display a current view in a different edit buffer, use Attach to
switch its associated buffer to another edit buffer.
BookmarkGoto method
Updates the EditBuffer position with the value from the specified marker.
Types expected bool BookmarkGoto(int bookmarklDorPrevRef)
bookmarkIDorPrevRef Either an index (range 0-19) to the list of bookmarks
in the buffer or a reference to a bookmark that was
returned from a previous call to BookmarkRecord.
Return value TRUE if the marker is valid, FALSE otherwise.
BookmarkRecord method

Returns a value suitable for paésing to BookmarkGoto. Returns zero if there

was an error.

15-6 ObjectScripting Programmer’s Guide

Types expected

Return value

Description

EditView class, Center method

int BookmarkRecord(int bookmarkIDorPrevRef)

bookmarkIDorPrevRef Either an index (range 0-19) to the list of bookmarks
_in the buffer or a reference to a bookmark that was
returned from a previous call to BookmarkRecord.

None
Use BookmarkRecord to store a known location in a buffer. The bookmark

moves with edit inserts and deletes.

For example, if you insert a bookmark using BookMarkRecord (1) at the a in are
in the following line, you could move around and then return to that locatlon
with BookmarkGoto(1):

hello how are you?

If the word how were deleted, you would still return to the a in are.

Center method

Types expected

Return value

Description

Scrolls the EditView as necessary to center the character in the view window.

void Center([int row, int col])

row The number of the row to center the character to. A 0 does not
change the row number. ,

col The number of the column to center the character to. A 0 does not
- change the column number. :

None

Center centers the character at the specified position vertically or horizontally
or both. If the character is already centered, nothing happens.

MoveCursorToView method

Types expected

Return value

Ensures that the cursor is visible in the view by altering the cursor’s position,
if necessary.

void MoveCursorToView()

None

EditView class 15-7

EditView class, MoveViewToCursor method

MoveViewToCursor method

Ensures that the cursor is visible in the view by altering the view’s
coordinates, if necessary.

Types expected void MoveViewToCursor()

Returnvalue None

PageDown method

~ Advances the row position by the number of visible rows in the EditView.

Types expected - void PageDown()

Returnvalue None

- PageUp method

Moves the cursor toward the top of the buffer by the number of lines in the
visible rows in the EditView.

Types expected void PageUp()

Return value None

Paint method

Forces a screen refresh. During normal script execution, screen updates are
suppressed. "

Types expected void Paint() “

Return value None

Scroll method

Scrolls in the direction indicated and returns the number of lines actually
scrolled.

15-8 ObjectScripting Programmer’s Guide

EditView class, SetTopLeft method
Types expected ' int Scroll(int deltaRow], int deltaCol))

deltaR(;w The direction in which to scroll.

* A value less than 0 means scroll up by the spec1f1ed number
of lines.

* A value greater than 0 means scroll down by the specified
number of lines. :
deltaCol The magnitude of the scroll.

* A value less than 0 means scroll left by the specified number
“of columns.

* A value greater than 0 means scroll down by the specified
number of columns.

Return value Number of lines and columns scrolled.

SetTopLeft method

Attempts to position the character at the specified position in the upper left
corner of the EditView. Might fail if the position is outside the window’s
bounds.

Types expected void SetTopLeft(int topRow, int leftCol) '

topRow The row number of the upper left corner of the EditView. A 0

ignores the position request and sets only the column number.
leftColr The column number of the upper left corner of the EditView. A 0

ignores the position request and sets only the row number.

Note A zero in both parameters causes the method to be ignored altogether.

Return value None

EditView class 159

15-10 ObjectScripting Programmer’s Guide

Chapter

EditWindow class

This class is one of the editor classes. EditWindow class members provide
control of editor views.

‘Syntax EditWindow(EditBuffer buffer)

buffer The name of the EditBuffer to create.
Properties
int Identifier Read-only
bool IsHidden Read-write
bool IsValid : Read-only
EditWindow Next ~ Read-only

" EditWindow Prior Read-only
string Title Read-write
EditView View Read-only
Methods

~ void Activate()

void Close()
void Paint()

EditView ViewActivate(int direction{, EditView srcView])

EditView ViewCreate(int direction[, EditView srcView])

EditWindow class 16-1

EditWindow class, EdilW{indow class description

bool ViewDelete(int direction, EditView srcViéw])
EditView ViewExists(int direction[, EditView srcView])

void ViewSlide(int direction], int magnitude, EditView srcView])

Events

None

- EditWindow class description

EditWindow objects manage window panes (aléo known as views). An
EditWindow can contain one or more views in which each EditView represents
different buffers. "

Creation of an EditWindow does not cause a window to appear; it provides an
object to which a view may be attached. As soon as the first view is attached
to an EditWindow, it can be displayed.

Views can be zoomed, in which case they expand to fill the client area of their
EditWindow. A zoomed view hides all sibling views. Sibling views are those
embedded in the same EditWindow. As long as an EditWindow contains a
zoomed view, views can’t be created, destroyed or resized.

EditWindows can be hidden and unhidden to allow the user to free screen
space and preserve the view layout.

Identifier property

Identifies views with a unique value.
Access Read-write

Type expected int Identifier

IsHidden property

Indicates if the current EditWindow is hidden.
- Access Read-write

Type expected bool IsHidden -

16-2 ObjectScripting Programmer’s Guide

EditWindow class, IsValid property

IsValid property

TRUE if the current EditWindow is ready for edit operations, FALSE 1f the
window is not available (for example, it is closed).

Access Read-only

Type expected bool Isvalid

Next property‘

Indicates the next EditWindow, if any.
Access Read-only

Type expected Editwindow Next

Prior property

Indicates the previous EditWindow, if any.

Access Read-only

Type expected Editwindow Prior

Title property

Indicates the title of the current EditWindow.
Access Read-write

Type expected string Title

View property

Indicates the current EditView.
Access Read-only

Type expected EditView View

EditWindow class 16-3

EditWindow class, Activate method

Activate method

Brings this window to the top and gives it focus.

Types expected void Activate()

Returnvalue None

Close method

Closes the current window.
Types expected void Close()

Return value None

Paint method

Forces a screen refresh During normal script execution screen updates are
suppressed.

Types expected void Paint()

Return value None

ViewActivate method

Makes an existing view the current, active view.

Types expected EditView ViewActivate(int direction[, EditView srcView])

direction Relative to the current EditView in an EditWindow. If direction is
0, and a srcView is specified, the specified srcView is activated.
direction can be one of the following values:

UP
DOWN
LEFT
RIGHT

srcView The view to activate. If omitted, the EditWindow'’s current -
EditView is activated.

Return value The newly activated view or NULL if no view exists

16-4 ObjectScripting Programmér’s Guide

EditWindow class, ViewCreate method

ViewCreate method

Creates an EditView.
Types expected Editview ViewCreate(int direction], EditView srcView))

direction Relative to the existing EditView(s) in an EditWindow. Ignored
for the first view. direction can be one of the following values:

UP
DOWN
LEFT -
RIGHT _
srcView The view to create. If omitted, the EditWindow’s current

EditView is used. By default, the newly created EditView is not
activated.

Return value The new EditView or NULL if creation failed

ViewDelete method

Deletes the view in the direction relative to the srcView, if any.
Types expected bool ViewDelete(int direction], EditView srcView))

direction Relative to the existing EditView(s) in an EditWindow and
' ignored for the first view. Can be one of the following values:

UP
DOWN
LEFT
RIGHT

srcView The view to delete. If omitted, the EditWindow’s current
EditView is deleted. The target view (if any) is then removed
from the EditWindow. srcView is then resized to occupy the
space previously held by the target view.

Return value . TRUE if the view was deleted, FALSE otherwise

ViewExists method

Gets a reference to an adjoining EditView, if the adjoining EditView exists.

EditWindow class 16-5

EditWindow class, ViewSlide method
Types expected EditView ViewExists(int direction], EditView srcView])

direction Relative to the current EditView in an EditWindow. Can be one of
the following values:

upP
DOWN
LEFT
RIGHT

srcView . If omitted, the EditWindow’s current EditView is used.

Return value The EditView or NULL if the EditView does not exist

ViewSlide method

Moves the view in the direction indicated.

Types expected void ViewSlide(int direction], int magnitude,
, EditView srcView])

direction Relative to the existing EditView in an EditWindow. Can be
one of the following values:

ur
DOWN
LEFT
RIGHT

magnitude The direction (+ or ~) and amount to move

srcView If omitted, the EditWindow’s current EditView is used.

" Returnvalue None

16-6 ObjectScripting Programmer’s Guide

Editor class

This class provides access to the IDE’s internal editor. Editor is associated
with other classes which provide the editor with its functionality.

Syntax Editor()

Properties

EditStyle FirstStyle : Read-only
EditOptions Options Read-only
SearchOptions SearchOptions ' Read-only
EditBuffer TopBuffer Read-only
EditView TopView Read-only
Methods

void ApplyStyle(EditStyle newOptions)

void BufferList()

BufferOptions BufferOptionsCreate()

bool BufferRedo(EditBuffer buffer)

bool BufferUndo(EditBuffer buffer)

EditBuffer EditBufferCreate(string fileName [, bool private, bool readOnly})
EditOptions EditOptionsCreate()

Editor class 17-1 .

Editor class, Editor class description

EditStyle EditStyleCreate(string sterName[,EditStervtolnh‘eritFrom])
EditWindow EditWindowCreate(EditBuffer buffer)

string GetClipboard()

int GetClipboardToken()

EditWindow GetWindow({bool getLast])

bool IsFileLoaded(string filename) .

EditStyle StyleGetNext(EditStyle)

bool ViewRedo(EditView view)

“bool ViewUndo(EditView view)

Events

void BufferCreated(EditBuffer buffer)

void MouseBlockCreated()

void MouseLeftDown()

void MouseLeftUp()

string MouseTipRequested(EditView theView, int line, int column)
void OptionsChanged(EditorOptions newOptions)

void OptionsChanging(EditorOptions newOptions)

void ViewActivated(EditView view)

void ViewCreated(EditView newView)

void ViewDestroyed(EditView deadView)

Editor class description

The IDE instantiates an Editor object, which maintains undo and redo data
and has methods allowing access to the list of all buffers and edit windows.
Editors have a member of type EditOptions that controls global editor
characteristics.

'Although multiple instances of Editor objects may be created in script, they
all refer to the same instance of a single C++ object internal to the IDE.
Modification of one Editor object’s options will be reflected in all Editor
objects.

17-2 ObjectScripting Programmer’s Guide

Editor class, Manipulating the Editor

Manipulating the Editor

The Editor’s functionality is accessible at a low enough level that you can
mimic in script the behavior of popular editors (such as BRIEF, Epsilon, vi,
and WordStar). The Editor itself is accessed through an object instantiated
from the Editor class. Because the IDE instantiates an Editor object itself, any
Editor objects you instantiate point to this internal IDE object; therefore,
modifications in one Editor object’s options are reflected in all Editor objects.

Further editor access is provided through the following classes:

BufferOptions ~ Controls characteristics of the EditBuffer, such as margin, tab
' rack, syntax highlighting, and bookmarks.

EditBlock Cut, copy, delete, dimensions, and style.

EditBuffer Access status, save, describe, time/date stamp. * -

EditOptions ~ Holds characteristics of a global nature, such as the insert/
overtype setting, optimal fill, and scrap settings (how to
handle blocks cut or copied from Editor buffers). :

EditPosition ~ Location-dependent operations in a view or buffer: cursor
movement, text rip, search, insert.

EditStyle Provide named styles that overrride settings in a buffer or the
entire editor.

EditView Access to buffer, visual cursor manipulations, zoom.

EditWindow Pane control, access to views.

F|rstSter property

Contains the first style in the list of editor styles.

Access Read-only
Type expected EditStyle FirstStyle

Description FirstStyle is usually used with the S tyleGetNext method. At least one EdztStyle
must exist for this property to contain a valid value. ,

Options property

Holds the buffer options settings.
. Access Read-only

Type expected EditOptions Options

Editor class 17-3

Editor class, SearchOptions prop'ert‘y

Description Options holds the options settings for all edit buffers. Changing an option in
this property affects all edit buffers. '

SearchOptions property

Provides access to the instance of SearchOptions associated with this editor.
Access Read-only

Type expected SearchOptions SearchOptions

TopBuffer property

The current edit buffer.
Access Read-only

Type expected EditBuffer TopBuffer

TopView property
"~ The current view.
Access Read-only
Type expected EditView TopView

Description TopView provides a quick way to get at the top view associated with the
current edit buffer. When you create a script which operates on the current
view, obtain TopView from the editor as outline below:

//Import the instance of the IDE's editor
import editor;
PrintCurrentLineAneRow ()
{
//Get the current view's EditPosition object
declare ep=editor.TopView.Position;
print "Row=",ep.Row, "Column=",ep.Column

}

ApplyStyle method

Updates the edit options.

17-4 ObjectScripting Programmer’s Guide

Types expected

Editor class, BufferList method
void ApplyStyle(EditStyle newOptions)

newOptions The options for the EditStyle object.

Return value None
BufferList method
A text description of the buffer list. |
Types expected void BufferList()
Return value None /
Description The deséripﬁon returned in Bu_ﬂ‘eriist comes from the EditBuffer.Describe

method.

BufferOptionsCreate method

Creates a new instance of the BufferOptions class.

Types expected BufferOptions BufferOptionsCreate()
Return value A BufferOptions object
BufferRedo method

Types expected

Return value

"Reapplies the last operation on the buffer or view regardless of whether the

operation was performed on the EditBuffer, the EditView, an EditBlock, or an
EditPosition. .

bool BufferRedo(EditBuffer buffer)
buffer ~ The name of the buffer or view to reapply the operation to.

TRUE if there are more operations to redo, or FALSE if there are not

BufferUndo method

Undoes the last operation on the buffer or view regardiess of whether the
operation was performed on the EditBuffer, the EditView, an EditBlock, or an
EditPosition.

Editor class 17-5

Editor class, EditBufferCreate method
Types expected bool BufferUndo(EditBuffer buffer)
buffer - The name of the'buffer or view from which to undo the operation.

Return value TRUE if there are more operations to undo or FALSE if there are not

EditBufferCreate method

Creates an edit buffer.

Types expected EditBuffer EditBufferCreate(string fileName [, bool private, bool readOnly])

fileName The name of the file associated with the edit buffer.

private Implies that the buffer is a hidden system buffer. Undo
information is not retained, and the EditBuffer is never
attachable to an EditView. The default value is FALSE.

readOnly ~ Marks the buffer as read-only. The default value is FALSE.
~ Associating a read-only file with the EditBuffer does not make
the EditBuffer read-only.

Return value The edit buffer created, or NULL if none could be created

EditOptionsCreate method

Creates a new instance of the EditOptions class.

Types expected EditOptions EditOptionsCreate()

Returnvalue An EditOptions object

EditStyleCreate method

Creates an edit style.

Types expected EditStyle EditStyleCreate(string styleNamel,EditStyle tolnheritFrom])

~ styleName The name of the style to create. ,
" tolnheritFrom The name of the EditStyle object to inherit from.

Return value . The edit style created, or NULL if none could be created

17-6 ObjectScripting Programmer’s Guide

Editor class, EditWindowCreate method
EditWindowCreate method

Creates an edit window.

Types expected EditWindow EditWindowCreate(EditBuffer buffer)
buffer " The name of the buffer to associate with this edit window.

Return value The edit window created, or NULL if none could be created

GetClipboard method

Returns the contents of the Windows Clipboard in a string.

Types expected string GetClipboard()

GetCIipboardToken method

- Returns the memory address of the Windows Clipboard contents.

Types expected int GetClipboardToken()

GetWindow method

Returns an EditWindow.

Types expected EditWindow GetWindow([bool getLast])

getLast The name of the window to get.
o If getLast is FALSE, GetWindow returns the top level window.

o If it is TRUE, GetWindow returns the last EditWindow in the Z-
order.

getLast defaults to FALSE.

Return value None

IsFileLoaded method

- Verifies if the specified file is loaded.

Editor class 17-7

Editor class, StyleGetNext method

Types expected

Return value

bool IsFileLoaded(string file‘Name)

fileName The name of the file to check for.

TRUE if a buffer by that name exists, or FALSE if one doesn’t.

StyleGetNext method

Gets the next style in the list of editor styles.

Types expected EditStyle StyleGetNext(EditStyle)
Return value The editor style that was found, or NULL if no editor style is found.
Description Use with FirstStyle to access the circularly linked list representing all the
editor styles. At least one EditStyle must exist for this property to contain a
valid value.
ViewRedo method
Reapplies the last operation that was undone on the buffer or view
regardless of whether the operation was performed on the EditBuffer, the
EditView, an EditBlock, or an EditPosition.
Types expected bool ViewRedo(EditView view)
view = The name of the buffer or view to reapply the operation to.
Return value TRUE if there are more operationsv to redo, or FALSE if there are not
ViewUndo method
Undoes the last operation on the buffer or view regardless of whether the
operation was performed on the EditBuffer, the EditView, an EditBlock, or an
EditPosition.
Types expected bool ViewUndo(EditView view)
view The name of the buffer or view from which to undo the operation.
Returnvalue TRUE if there are more operations to undo, or FALSE if there are not

17-8 ObjectScripting Programmer’s Guide

Editor class, BufferCreated event

BufferCreated event

Triggered when a new EditBuffer is created. The default action is to do
nothing.

Types expected void BufferCreated(EditBuffer buffer)

buffer The name of the buffer to create.

Return value None

MouseBIockCreated event

Triggered when the user selects a block with the mouse in the top view.
Types expected void MouseBlockCreated()

Return value None

MouseLeftDown event

Triggered when the mouse left button is pressed in an Edit window.
Types expected void MouseLeftDown()

Return value None

MouseLeftUp event

Triggered when the mouse left button is released in an Edit window.
Types expected void MouseLeftUp()

Return value None

MouseTipRequested event

Raised when the mouse has remained idle over an editor window for a
period of time.

Editor class 17-9

Editor class, OptionsChanged event

Types expected

Return value

string MouseTipRequested(EditView theView, int line, int column)

theView The EditView object describing the edit window that contains
the idle mouse.
line, column The position in the edit buffer of the character the cursor is on.

If this routine returns a string, it displays the string to the user as a help hint.
The default implementation returns a NULL.

| OptionsChanged event

Types expected

Return value

Description

Raised when the OptionsChanging event handler has completed and the
global values have been changed.

void OptionsChanged(EditorOptions newOptions)
newOptions The new global editor options to apply.
None

OptionsChanged notifies a script that needs to update the global options that
those options have changed.

OptionsChanging event

Raised when leaving one of the editor MPD pages with accept.

Types expected void OptionsChanging(EditorOptions newOptions)

newOptions The new global editor options.
Return value None
Description OptionsChanging contains a copy of the new values for the global editor
options. An event handler may examine these values and determine if any of
the values need to be overridden with any values from newOptions.
ViewActivated event

Triggered when the EditView represented by view is activated. There is no
default action for this event.

Types expected void ViewActivated(EditView view)

view The name of the view to activate.

17-10 ObjectScripting Programmer’s Guide

Editor class; Vie<wCreated event

Return value - None

ViewCreated event

- Triggered when the EditView represented by newView is created. There is no
default action for this event.

Types expected void ViewCreated(EditView newView)
newView The name of the view to activate.

Return value None

ViewDestroyed event

Triggered when the EditView represented by deadView is destroyed There is
no default action for this event. :

Types expected void ViewDestroyed(EditView deadView)
deadView The name of the view to destroy.

Return value None

Editor class 17-11

17-12° ObjectScripting Programmer’s Guide

Syntax

Chapter

'IDEApplication class

This class represents the Borland C++ Integrated Development Environment
(IDE). An IDEApplication object called IDE is instantiated when Borland C++
starts up. You typically use this class to determine how to use or extend this

IDE object.

IDEApplication()

Properties

~ string Application

string Caption

string CurrentDirectory
string CurrentProjectNode
string DefaultFilePath
Editor Editor

string FullName

int Height

int IdleTime

int IdleTimeout

int LoadTime

string KeyboardAssignmentFile

-KeyboardManager KeyboardManager

int Left
string ModuleName

Read-only
Read-write
Read-only
Read-only

Read-write

Read-only
Read-only
Read-write
Read-only
Read-write
Read-only

Read-write

Read-only

Read-write

Read-only

IDEApplication class 18-1

IDEApplication class

string Name - Read-only
string Parent - Read-only
bool RaiseDialogCreatedEvent ~ Read-write
string StatusBar Read-write -
int-Top : Read-write

bool UseCurrentWindowForSourceTracking Read-write

int Version Read-only
bool Visible : Read-write
int Width) Read-write
Methods

void AddToCredits()

boot CloseWindow()

bool DebugAddBreakpoint()

bool DebugAddWatch()

bool DebugAnimate()

bool DebugAttach()

bool DebugBreakpointOptions()
string DebugEvaluate()

bool Debuglnspect()

bool DebuginstructionSteplinto()
bool DebuglnstructionStepOver ()
bool DebuglLoad()

bool DebugPauseProcess()

bool DebugResetThisProcess()
bool DebugRun() \
bool DebugRunTo()

bool DebugSourceAtExecutionPoint()
bool DebugStatementStepinto()
bool DebugStatementStepOver()
bool DebugTerminateProcess()
int DirectionDialog(string prompt)

string DirectoryDialog(string prompt, string initialValue)

18-2 ObjectScripting Programmer’s Guide

IDEApplicationclass

void DisplayCredits()

bool DoFileOpen(string filename, string toolName [, ProjectNode node])
bool EditBufferList()

bool EditCopy()

bool EditCut()

bool EditPaste()

bool EditRedo()

bool EditSelectAll()

bool EditUndo()

void EndWaitCursor()

void EnterContextHelpMode()

void ExpandWindow()

" bool FileClose()

string FileDialog(string prompt, string initialValue)
bool FileExit([int IDEReturn])

bool FiIeNew([étring toolName, string fileName])
bool FileOpen([string name, st(ing toolName])
bool FilePrint(bool suppressDialog)

bool FilePrinterSetup()

bool FileSave()

bool FileSaveAll()

bool FileSaveAs([string newName])

bool FileSend()

int GetRegionBottom(string RegionName)

‘int GetRegionLeft(string RegionName)

int GetRegionRight(string RegionName)

int GetRegionTop(string RegionName)

bool GetWindowState()

void Help(string helpFile, int command, string helpTopic)
" bool HelpAbout()

“bool-HelpContents()

bool HelpKeyboard()

bool HelpKeywordSearch([string keyword])

IDEApplication class

18-3

IDEApplication class

bool HelpOWLAPI()

bool HelpUsingHelp()

bool HelpWindowsAPI()

string KeyPressDialog(string prompt, string default) B

stringf] ListDialog(string prompt, bool multiSelect, bool sorted, string [] initialValues)
void Menu()

bool Message(string text, int severity)

int MessageCreate(string destinationTab, string toolName, int messageType, int parentMessage,
string filename, int lineNumber, int columnNumber, string text, string helpFileName, int
helpContextld)

bool NextWindow(bool priorWindow) .

bool OptionsEnvironment()

bool OptionsProject()

bool OptionsSave()

bool OptionsStyleSheets()

boo! OptionsTools()

bool ProjectAppExpert()

bool ProjectBuildAll([bool suppressOkay, string nodeName])

bool ProjectCloseProject()

bool ProjectCompile([string nodeName])

bool ProjectGenerateMakefile([string nodeName])

bool ProjectMakeAll([bool suppressOkay, string nodeName])
~ bool ProjectManagerinitialize()

bool ProjectNewProject([stfing pName])

bool ProjectNewTarget([string nTarget, int targetType, int platform, int libraryMask,
int modelOrMode])

‘bool ProjectOpenProject([string pName])

void Quit()

bool SaveMessages(string tabName, string fileName)
bool ScriptCommands() »

bool ScriptCompileFile(string fileName)

bool ScriptModuIes()

bool ScriptRun([string. command]),

boo! ScriptRunFile([string filename])

18-4 ObjectScripting Programmer’s Guide

IDEApplicationclass

bool SearchBrowseSymboI([string sName])

bool SearchFind([string pat])

bool SearchLocateSymbol([string sName])

bool SearchNextMessage()

bool SearchPreviousMessage()

bool SearchReplace([string pat, string rep])

bool SearchSearchAgvain() : »
bool SetRegion(string RegionName, int left, int top, int right, int bottom)
bool SetWindowState(int desiredState) /
string SimpleDialog(string prompt, string initialValue [, int maxNumChars])
void SpeedMenu() ‘

void StartWaitCursor()

string StatusBarDialog(string prompt, string initialValue [, int maxNumChars])
bool StopBackgroundTask()

bool Tool([string toolName, string commandstring])

void Undo()

bool ViewActivate(int direction)

bool ViewBreakpoint()

bool ViewCallStack()

bool ViewCIaéses()

bool ViewClassExpert()

bool ViewCpu()

bool ViewGlobals()

bool ViewMessage([string tabName])

bool ViewProcess()

 bool ViewProject()

bool ViewSlide(int direction [, int amount])

~ bool ViewWatch()

bool WindowArrangelcons()

bool WinddwCascade()

bool WindowCloseAll([string typeName])
bool WindowMinimizeAll([string typeName])
bool WindowRestoreAll([string typeName])

IDEApplication class 18-5

IDEApplication class, IDEAppI'ication class description

bool WindowTileHorizontal()
bool WindowTileVertical()
string YesNoDialog(string prompt, string default)

Events

void BuildComplete(bool status, string inputPath, string OutputPath)
void BuildStarted()

void DialogCreated(string‘ dialogName, int dialogHandle)

void Exiting() ‘

void HelpRequested(string filename, int command, int data)

void Idle()

void KeyboardAssignmentsChanged(string newFilename)

void KeyboardAssignmentsChanging(string newFilename)

void MakeComplete(bool status, string inputPath, string outputPath)
void MakeStarted() / ‘
void ProjectClosed(string projectFileName)

void ProjectOpened(string projectFileName)

void SecondEIapsed()

void Started(bool VeryFirstTime)

void SubsytemActivated(string systemName)

bool TransferOutputExists(TransferOutput output)

void TranslateComplete(bool status, string inputPath, string outputPath)

IDEApplication class description

When you start the Borland C++ IDE, the object IDE, in IDEApplication, is
automatically created as a global object. IDE gives you control over the

system. All items contained in menu commands can be accessed through the
IDE object.

The IDE object is registered as a Windows automation server, so any
automation controller can programmatically run the full IDE.

18-6 ObjectScripting Programmer’s Guide

IDEApplication class, . Application property

IDEApplication function groups

This table shows the main function groups, according to the menu they
correspond to:

Table 18.1 IDEApplication function groups

Debug Corresponds to the Debug menu. Use these functions to load the debugger,
run it, set breakpoints, add watches, and inspect variables.

Edit Corresponds to the Edit menu. Use these functions to undo, redo, cut,
copy, paste and select text in an edit window.

File Corresponds to the File menu. Use these functions to create, open, close,

- save and print files.

Help Corresponds to the Help menu. Use these functions to display the Help
contents, perform keyword searches, get help about the keyboard and get
help about using help. ’

Options Corresponds to the Options menu. Use these functions to set options for

the project and the working environment, to customize the Tools menu
and to create and edit style sheets.

Project ~ Corresponds to the Project menu. Use these functions to open and close a
project, compile a file, build the project or rebuild the entire project.
Search Corresponds to the Search command. Uses these functions to search for
, text, replace text and search for symbols.
Script Corresponds to the Script command. Use these functions to load, run and

compile script files.

View - Corresponds to the View menu. Use these commands to display the Project
window, Message window, the Classes window, the Globals window, the
CPU window, the Processes window, the Watches window, the Breakpoint
window and the Stack window.

Window Corresponds to the Window menu. Use these commands to arrange editor
windows, close windows, minimize and maximize windows and restore
them.

Application property

Access
Type expected

Description

Contains the IDEApplicatién object’s internal name.

Read-only

string Application

The internal name is used by Windows. Its presence is required by Microsoft

guidelines for automation servers. It serves as a starting place for an
automation controller, like Word or Excel.

IDEApplication class 18-7

IDEApplication class, Caption property

Caption property

Gets and sets the caption of the Borland C++ IDE main window.
Access Read-write

Type expected string Caption

CurrentDirectory property

The application’s current directory.
Access Read-only

Type expected string CurrentDirectory

Description Whenever a project file is opened, the value of CurrentDirectory changes to
the directory containing the project file.

CurrentProjectNode property

The name of the node currently selected in the Project window.
Access Read-only
Type expected string CurrentProjectNode

Description If the Project window is closed, or if multiple nodes are selected in the Project
window, CurrentProjectNode contains an empty string (“ “).

DefaultFilePath property

The default file path for the Borland C++ IDE.
Access Read-only

 Type expected string DefaultFilePath

Editor property

An instance of the Borland C++ IDE editor.

18-8 ObjectScripting Programmer’s Guide

IDEApplication class, FullName property
Access Read-only

Type expected Editor Editor

FullName property

Contains the string, “Borland C++ for Windows, vers. 5.02”.
Access Read-only

Type expected string FullName

Height property

The height of the Borland C++ IDE main window.

Access Read-only

- Type expected int Height

IdleTime property

The number of seconds since the last user-generated event.
Access Read-only

Type expected int IdleTime

IdleTimeout property

The number of seconds the IDE must remain idle before an idle event will be
generated. -

Access Read-write
Type expected int IdieTimeout

Description IdleTimeOut defaults to 180 (3 minutes).

LoadTimeprop‘erty

The number of milliseconds it takes for the IDE to load.

IDEApplication class 189

IDEApplication class, KeyboardAssignmentFile property
Access Read-only

Type expected it LoadTime

Description LoadTime reflects time through the processing of the startup script. Thereafter
it remains fixed.

KeyboardAssignmentFile property

The name of the keyboard file (KBD) most recently selected from the
Options | Environment | Editor dialog.

Access Read-write

Type expected string KeyboardAssignmentFile

KeyboardManager property

An instance of the Borland C++ IDE keyboard manager.
Access Read-only

Type expected KeyboardManager KeyboardManager

Left property

The left coordinate of the IDE main window.
Access Read-write

Type expected int Left

ModuleName property

The module name of the running application, including its path. For
example: - '

¢:\bc5\bin\bew. exe
Access Read-only

Type expected string ModuleName

18-10 ObjecvtScripting Programmer’s Guide

iDEApplication class, Name property
Name property

The name of the Borland C++ IDE, BCW.

Access Read-only

Type expected string Name

Parent property

A value required by Windows.
Access Read-only
Type expected string Parent

Description Parent is required by Microsoft conventions.

RaiseDialogCreatedEvent property

Initialized to FALSE. Setting it to TRUE causes the DialogCreated event to be
raised whenever a new dialog is created.

Access Read-write

Type expected - bool RaiseDialogCreatedEvent

StatusBar property

Gets or sets the text displayed in the IDE'’s status bar.
Access Read-write

Type expected bool StatusBar

Top property

‘ The top coordinate of the IDE main window.

Access Read-write

Type expected int Top

IDEApplication class 1811

IDEApplication class, UseCurrentWindowForSourceTracking property

UseCurrentWindowForSourceTracki‘ng property

If TRUE, the IDE replaces the contents of the active Edit window whenever a
new file is loaded. If FALSE, the IDE opens a new Edit window. ’

Access Read-write

Type expected bool UseCurrentWindowForSourceTracking

Version property

The value 502 for Borland C++ version 5.02.
Access Read-only

Type expected int Version

Visible property

If TRUE, makes the IDE visible th the user. If FALSE, the IDE is not visible
on the screen.

Access Read-write

Type expected bool Visible

Width property

The width of the IDE main window.
Access Read-write

Type expected int Width

AddToCredits method

Adds a name to the list of developér credits in the About dialog box.

Types expected void AddToCredits()

Return value None

18-12 ObjectScripting Programmer’s Guide

IDEApplication class, CloseWindow method

Description AddToCredits adds the new name to the end of the existing list.
Note To display developer credits, choose Help | About and press Alf-1.

CloseWindow method

Closes the currently selected IDE child window.

Types expected bool CloseWindow()

Returnvalue TRUE if the windc)w closed, FALSE if unable to close the window

DebugAddBreakpoint method

‘Opens the Add Breakpoint dialog.

Types expected bool DebugAddBreakpoint()
Return value TRUE if successful, FALSE, otherwise

Description DebugAddBreakpoint corresponds to the Debug | Add Breakpoin{ command.

. DebugAddWatch method

Adds a watch on the current symbol.

Types expected bool DebugAddWatch()
Return value TRUE if successful, FALSE, otherwise

Description When you call DebugAddWatch from an active Edit window, the Add Watch
dialog box contains selected text, or if no text is selected, it contains the word
at the cursor. \

‘After you add the watch, the Watches window is displayed.
DebugAddWatch corresponds to the Debug | Add Watch command.

DebugAnimate method

Lets you watch your program’s execution in “slow motion.”

Types expected bool DebugAnimate()

Return value - TRUE if successful, FALSE, otherwise

IDEApplication class 18-13

IDEApplication class, DebugAttach me}th‘od

Description

DebugAnimate performs a continuous series of StatementSteplnto commands.

To interrupt animation, invoke one of. the following Debugger methods elther
by menu selections or by keystrokes tied to the script:

Run

RunToAddress
RunToFileLine
PauseProgram
Reset
TerminateProgram
FindExecutionPoint

DebugAttach method

Types expected
Return value

Description

Invokes the debugger for the currently executing process.

bool DebugAttach()
TRUE if successful, FALSE, otherwise

Use DebugAttach to begin a debugging session on a process that is already
running. This is useful when you know approximately when the problem
occurs durmg program execution, but you are not sure of the corresponding
location in the program source code.

DebugAttach opens the Attach to Program dialog box. -

DebugBreakpointOptions method

Opens the Breakpoint Condition/ Action Options dialog.

Types expected bool DebugBreakpointOptions()
Return value TRUE if successful, FALSE, otherwise
Description DebugBreakpointOptions corresponds to the Debug | Breakpoint Optlons
command.
DebugEvaIuate method

Evaluates the current expression, such as a global or local variable or an
arithmetic expression. :

Types expected string DebugEvaluate()

18-14 ObjectScripting Programmer’s Guide

Return value

IDEApplication class, Debuglinspect method

The result of the evaluation.

Debuginspect method |

Types expected
Return value

Description

Opens the Inspect Expression dialog box for the current symbol.
booi Debuglnspect()
TRUE if successful, FALSE, otherwise

DebuglInspect has effect only when the integrated debugger is ;paused ina
program you are debugging. :

Debuglnspect corresponds to the Debug | Inspect command.

DebugInStructionSteplnto method

Types expected
Return value

Description

Executes the next instruction, stepping into any function calls.
bool DebuglnstructionSteplnto()
TRUE if successful, FALSE, otherwise

If a process is not loaded, DebuglnstructionSteplnto first loads the executable
for the current project.

DebuginstructionStepOver method

Types expected
Return value

Description

Executes the next instruction, running any functions called at full speed.

bool DebuglnstructionStepOver()

TRUE if successful, FALSE, otherwise

If a process is not loaded, DebuglnstructionStepOver first loads the executable
for the current project. :

| DebugLoad method

Types expected

Return value

Loads the current executable into the debugger.

bool DebugLoad()

TRUE if ’successflﬂ, FALSE, otherwise

IDEApplication class 1815

IDEApplication class, DebugPauseProcess method

Description

- Upon loading, the process is run to the starting point as specified in the

Options | Environment | Debugger | Debugger Behavior dialog.
If the parameter is NULL, this method opens the Load Program dialog.

DebugPauseProcess method

Types expected
Return value

Description

Causes the debugger to pause the current process.
bool DebugPauseProcess()
TRUE if successful, FALSE, otherwise

DebugPauseProcess has an effect only if the current process is running or is
animated. It corresponds to the Debug | Pause Process command.

DebugResetThisProcess method

Types expected
Return value

Description

Resets the current process to its starting point as specified in the Options |
Environment | Debugger | Debugger Behavior dialog.

bool DebugResetThisProcess()
TRUE if successful, FALSE, otherwise

DebugResetThisProcess corresponds to the Debug | Reset This Process
command. .

DebugRun method

Types expected
Return value

Description

Causes the debugger to run the current process.
bool DebugRun()
TRUE if successful, FALSE, otherwise

If no process is loaded, DebugRun first loads the executable associated with
the current project.

DebugRun corresponds to the Debug | Run command.

DebugRunTo method

Causes the debugger to run the current process.

18-16 ObjectScripting Programmer’s Guide

Types expected
Return value

Description

IDEApplication class, DebugSourceAtExecutionPoint method
bool DebugRunTo()
TRUE if successful, FALSE, otherwise
If DebugRunTo is called while working with an EditView, the current process

runs until the source at the current line in the current file is encountered.

If the current object is not an EditView, DebugRunTo runs the current process
until the instruction at the current address is encountered.

If no process is loaded, DebugRunTo first loads the executable associated with
the current project.

DebugSourceAtExecutionPoint method

Types expected
Return value

Description

Displays the source code at the current execution point.
bool DebugSourceAtExecutionPoint()
TRUE if successful, FALSE, otherwise

The current execution point is indicated by the EIP register. If the current
execution point is in source code, the execution point is shown in an Edit
window. (The appropriate source file is opened if necessary.)

If the current execution point is at an address that has no source associated -
with it, the execution point is shown in a CPU view. (One is opened if
necessary.)

DebugSourceAtExecutionPoint corresponds to the Debug | Source At Execution
Point command.

DebugStatementStepinto method

Types expected
Return value

Description

Executes the next source statement and steps through the source of any
function calls.

bool DebugStatementSteplnto()
TRUE if successful, FALSE, otherwise

If a process is not loaded, DebugStatementSetplnto first loads the executable
for the current project. ‘

IDEAppIicatioAn class 18-17

IDEApplication class, DebugStatementStepOver method

DebugStatementStepOver method

Executes the next source statement and does not step into any functions
called, but runs them at full speed.

Types expected bool DebugStatementStepOver()
Return value TRUE if successful, FALSE, otherwise

Description If a process is not loaded, DebugStatementStepOver first loads the executable
for the current project.

DebugTerminateProcess method

Terminates the current process.
Types expected . bool DebugTerminateProcess|()
Return value TRUE if successful, FALSE, otherwise

Description DebugTerminateProcess:
¢ Stops the current debugging session

' o Releases memory your program has allocated and some of the memory
used by the debugger

* Closes any open files that your program was using ‘
If no process is loaded, DebugTerminateProcess has no effect.

DebugTerminateProcess corresponds to the Debug | Terminate Process
command.

DirectionDialog method

~ Invokes a dialog that allows the user to specify a direction.

Types expected int DirectionDialog(string prompt)

prompt The value to place in the caption of the dialog.

Return value One of the following values: CANCEL, RIGHT, LEFT, UP, DOWN

D|rectoryD|alog method

Invokes a dlrectory-browsmg dialog box that lets the user choose a directory.

18-18 ObjectScripting Programmer’s Guide

IDEApplication class, DisplayCredits method
Types expected string DirectoryDialog(string prompt, string initialValue)

prompt The value to place in the caption of the dialog.

initialValue The directory in which to start browsing.

Return value If successful, this method returns a fully qualified directory name. If the user
cancels, it returns the empty strmg).

DlsplayCredlts method

Displays the list of developer credits in the About dialog box.

Types expected void DisplayCredits()
Return value None

Description To display developer credits, choose Help | About and press Alt-/.

DoFileOpen method

Opens the specified file.
Types expected bool DoFileOpen(string fileName, string toolName [,ProjectNode node])
fileName The name of the file to open. If the specified file does not exist, it

is created.

toolName The name of the tool to be associated with the file to open. Tools
can be stand-alone programs (like GREP, Turbo Debugger, or
an alternate editor), or they can be translators that are used for
each file (or node) in a project. You can run a DOS program
with the Windows IDE transfer. If foolName is not provided, a
default is used.

node The node argument is passed if the file is to be associated with a
specific node in the project.

Return value TRUE is successful, FALSE, otherwise

Description DoFileOpen is used internally by the FileOpen method to open files.

EditBufferList method

Displays the Buffer List dialog.

Types expected ‘bool EditBufferList()

IDEApplication class 18-19

IDEApplication class, EditCopy method

Return value

Description

TRUE if the buffer list was successfully edited, FALSE if no edit buffers exist

The Buffer List displays a list of buffers. If a file has been changed since it
was last saved, the label (modified) appears after the file name.

Use EditBufferList to replace the contents of an Edit window without closing
the original file. If the file you replace is not loaded in another Edit-window,
itis hidden. You can then later use the buffer list to load the hidden buffer
into an Edit window.

EditBufferList corresponds to the Edit | Buffer List command.

EditCopy method

Types éxpected

Return value

Description

Copies selected text from the current edit buffer to the Windows Clipboard.
bool EditCopy()

TRUE if the topmost window is an EditView with a valid marked block,
FALSE, otherwise

EditCopy leaves the selected text intact. To paste the copiéd text into any
other document or somewhere else in the same document, use EditPaste.

EditCopy is only available if an Edit window is currently active and text has
been marked for selection.

EditCopy corresponds to the Edit | Copy command.

EditCut method

Types expected

Return value

Description

Coples selected text from the current edit buffer to the Clipboard and deletes
the selected text.

boot EditCut()

TRUE if the topmost window is an Edthzew with a valid marked block,
FALSE, otherwise

EditCut removes the selected text from the Edit window. To paste the cut text
into any other document or somewhere else in the same document, use
EditPaste.

EditCut is only available if an Edit window is currently active and text has

- been marked for selection.

You can paste the cut text as many times as you want until you choose
EditCut again or EditCopy.

EditCut corresponds to the Edit | Cut command.

18-20 ObjectScribting Programmer"s Guide

IDEApplication class, EditPaste method

EditPaste method

Types expected

Return value

Description

Copies selected text from the C11pboard to the current edlt position in the
current edit buffer.

bool EditPaste()

TRUE if the topmost window is an EditView w1th a valid marked block,
FALSE, otherwise

EditPaste inserts the contents of the Chpboard into the current window at the
cursor position.

EditPaste is available only if an Edit or Resource Editor window is currently
active and there is something to paste.

EditPaste corresponds to the Edit | Paste command.

EditRedo method

Types expected
Return value

Description

Reapplies the operation that was undone with the last EditUndo.
bool EditRedo()
TRUE if the operation was successful, FALSE, otherwise

EditRedo only has an effect immediately after an EditUndo or another

" EditRedo.

A series of EditRedo calls reverses the effects of a series of EditUndo calls.

EditRedo is available only if an Edit wmdow is currently active and there is
something to redo.

EditRedo corresponds to the Edit| Redo command.

EditSeIet:tAIIsmethod

Types expected
Return value

Description

Selects all the text in the cufrent edit buffer.
bool EditSelectAll()
TRUE if the select was successful, FALSE, otherwise

EditSelectAll selects the entire contents of the active Edit window.

You can then use EditCopy or EditCut to copy it to the Clipboard, or perform

- any other editing action.

IDEApplication class 18-21

IDEApplication class, EditUndo method

EditSelectAll is available only if an Edit or Resource Editor window is
currently active. ‘

EditSelectAll corresponds to the Edit | Select All command.

EditUndo method

Types expected
Return value

Description

Undoes the lést edit operation.

bool EditUndo()

TRUE if the operation was successful, FALSE, otherwise

EditUndo restores the file in the current window to the way it was before

your most recent edit or cursor movement.

EditUndo inserts any characters you deleted, deletes any characters you
inserted, replaces any characters you overwrote, and moves your cursor back
to a prior position.

If you undo a block operation, your file will appear as it was before you
executed the block operation.

EditUndo will not change an option setting that affects more than one
window or reverse any toggle setting that has a global effect; for example,
Ins/Ovr.

EditUndo is available only if an Edit window is currently active and there is
something to undo.

EditUndo corresponds to the Edit | Undo command.

EndWaitCursOr method

Types expected

Return value

Stops the display of the Windows wait cursor (by default, an hourglass).
void EndWaitCursor()

None

EnterContextHelpMode method

Types expected

Return value

Puts the IDE in help context mode.
void EnterContextHelpMode()

None

18-22 ObjectScripting Programmer’s Guide

Description

IDEApplication class, ExpandWindow method

After EnterContextHelpMode is called, the next click of the mouse generates a
help event for whatever the mouse pointer is on.

ExpandWindow method

Increases the size of the currently selected window to its maximum view
managed size, defined by calls to SetRegion.

Types expected void ExpandWindow()
| Return value None
Description After the window has been expanded with ExpandWindow, there is no way to
~ decrease its size. '
FileClose method
Closes the file that is currently open and selected.
Types expected bool FileClose()
Return value TRUE if the file was successfully closed, FALSE, otherwise
Description’ If the project window is active, this command unloads the current project

and closes the project tree including all project nodes.

FileClose corresponds to the File | Close command.

FileDialog method

Types expected

Return value

Invokes an Opén a File dialog box and lets the user choose a file.
string FileDialog(string prompt, string initialValue)

prompt The value to place in the caption of the dialog.

initialValue The value to initialize the edit field with.

Returns a fully qualified file name if successful. If the user cancels, the
method returns the empty string (“ ”).

FileExit method

Closes the application after first ensuring that all files are saved.

IDEApplication class 18-23

IDEApplication class, FileNew method
Types expected bool FileExit([int IDEReturn])

IDEReturn The return value of the IDE application when it exits. By
default, this value is 0.

Return value TRUE if the application was closed, FALSE, otherwise

Description FileExit corresponds to the File | Exit command.

FileNew method

Creates a new file with the extension .CPP.

Types expected bool FileNew([string toolName, string fileName])

toolName - The name of the tool to associate with the file to open. Tools can
be stand-alone programs (like GREP, Turbo Debugger, or an
alternate editor), or they can be translators that are used for
each file (or node) in a project. You can run a DOS program
with the Windows IDE transfer. If foolName is not provided, a
default is used. :

fileName The name of the new file. -
Return value TRUE if the file was created, FALSE, otherwise

Description FileNew opens a blank Edit window and loads a file with the default name
NONAMExx.CPP (where xx stands for a number). It automatically makes
the new Edit window active. NONAME files are used as a temporary edit
buffer and the Borland C++ IDE prompts you to supply a new name when
saved. If you load a file into an active Edit window that contains an empty
‘NONAME file, the contents of the Edit window is replaced.

FileNew corresponds to the File | New | Text Edit command.

FileOpen method

Opens a file. Internally, this method uses DoFileOpen.

18-24 "ObjectScripting Programmer’s Guid‘e

Types expected

Return value

Description

IDEApplication class, FilePrint method

bool FiIéOpen([string name, string toolName])

name The name of the file to open. If the specified file doesn’t exist,
the user is prompted for a file name.

toolName = The name of the tool to associate with the file being opened.
Tools can be standalone programs (like GREP, Turbo
Debugger, or an alternate editor), or they can be translators that
are used for each file (or node) in a project. You can run a DOS
program with the Windows IDE transfer. If toolName is not
provided, a default is used.

TRUE if the file was opened, FALSE, otherwise

FileOpen displays the Open a File dialog box that lets you select a file to load
into the Borland C++ IDE. Use this command to open a project (.PR]J or IDE),
source file (.C or CPP), resource (.RC), script (.SPP or SPX), or any other type
of file. The IDE automatically loads the file into the default viewer.

FileOpen corresponds to the File | Open command.

FilePrint method

Types expected

Return value

Description

Prints the contents of the active edit window.

bool FilePrint(bool suppressDialog)‘

suppressDialog 1f set to TRUE, FilePrint does not display the Printer Options

dialog prior to performing the print operation but reuses the
last print options specified.

TRUE if the print operation was successful, FALSE, otherwise

FilePrint corresponds to the File | Print command.

FilePrinterSetup method

Types expected
Return value

Déscription

Displays the Printer Setup dialog box.

bool FilePrinterSetup()

TRUE if the dialog sets the options or FALSE if the user exits with Cancel
FilePrinterSetup displays the system Printer Setup dialog box where you

select which printer you want to use for printing with the Borland C++ IDE.
FilePrinterSetup does not have an effect if no printer is detected.

FilePrinterSetup corresponds to the File | Printer Setup command.

IDEApplication class 18-25

IDEApplication class, FileSave method

FileSave method

Saves the file in the active Edit window.
Types expected bool FileSave()
Return value TRUE if the file was saved, FALSE, otherwise

Description If the file in the active Edit window has as a default name (such as
NONAMEQO0.CPP), FileSave opens the Save File As dialog box so you can
rename the file as well as save it in a different directory or on a different
drive.

If you use an existing file name to name the file, the IDE asks if you want to
overwrite the existing file.

FileSave corresponds to the File | Save command.

FileSaveAll method

Saves all open editor files.
Types expected bool FileSaveAll() |
Return value TRUE if all files were saved, FALSE if a file could not be saved
Description leeSuveAll works just like FileSave except that it saves the contents of all

modified files loaded into an Edit window, not]ust the file in the active Edit
window.

FileSaveAll corresponds to the File | Save All command.

FileSaveAs method

Displays the standard File Save As dialog box so the user can save the
currently active editor file.

Types expected bool FileSaveAs([string newName])-

newName The new name of the file. If supplied, FileSaveAs attempts to
~ save the file under that name in the current directory.

Return value TRUE if the file was saved, FALSE, otherwise '
Description FileSaveAs displays the Save File As dialog box, where you can save the file in

the active Edit window under a different name, in a different directory, or on
a d1fferent drive.

18-26 ObjectScripting Programmer’'s Guide .

IDEApplication class, FileSend method

You can enter the new file name, including the drive and directory.
All windows containing this file are updated with the new name.

If you choose an existing file name, the Borland C++ IDE asks if you want to
overwrite the existing file. '

FileSaveAs cdrresponds to the File | Save As command.

FileSend method

Instructs the Windows MAPI to send files to another MAPI clieﬁt.

Types expectéd bool FileSend()
Return value TRUE if the file was sent, FALSE, otherwise

Description FileSend has an effect only if you have a mail message service (MAPI)
‘ installed on your system.

FileSend corresponds to the File | Send command.

GetRegionBottom method

Gets the boftom value of the specified region.
Types expected int GetRegionBottom(string RegionName)

RegionName The name of the region to examine. Valid region names are:
e Breakpoint = e CPU

~ * Debugger Editor
¢ Evaluator e EventLog .
¢ Inspector ¢ Message
* Processes e Project
e Stack * Thread Count
* Watches

Returnvalue The bottom value of the specified region in display units (0 - 10000) or -1 if
no such region exists.

Description GetRegionBottom can be used with SetRegion to position a window.

IDEApplication class 18-27

IDEApplication class, GetRegionLeft method

GetRegionLeft method

Gets the left value of the specified region.
Types expected int GetRegionLeft(string RegionName)

RegionName The name of the region to examine. Valid region names are:

J Breakpbint * CPU

¢ Debugger * Editor

¢ Evaluator - ¢ Event Log

¢ Inspector * Message

* Processes ¢ Project

e Stack e Thread Count
‘e Watches »

Return value The left value of the specified region in display units (0 — 10000) or -1 if no
such region exists ,

Description ~ GetRegionLeft can be used with SetRegion to position a window.

GetRegionRight method

Gets the right value of the specified region.
Types expected int GetRegionRight(string RegionName)

RegionName The name of the region to examine. Valid region names are:

¢ Breakpoint s CPU

¢ Debugger e Editor

¢ Evaluator e Event Log

¢ Inspector ¢ Message

¢ Processes ¢ Project

* Stack : ¢ Thread Count
e Watches

Returnvalue The right value of the specified region in display units (0 — 10000) or -1 if no
such region exists

Description GetRegionRight can be used with SetRegion to position a window.

18-28 ObjectScripting Programmer’s Guide

ID'EApplication class, GetRegionTop method

GetRegionTop met'hod

Gets the top value of the specified region.

Types expected int GetRegionTop(string RegionName)

RegionName The name of the region to examine. Valid region names are:
* Breakpoint s CPU
* Debugger . Editorv
¢ Evaluator ¢ Event Log
. Inépector * Message
* Processes * Project
* Stack ¢ Thread Count
e Watches

Return value The top value of the specified region in display units (0 — 10000) or ~1 if no
such region exists ,

Description GetRegionTop can be used with SetRegion to position a window.

GetWindowState method

Retrieves the state of the currently focused window.

Types expected bool GetWindowState()

Return value One of the following:
SW_NORMAL
SW_MINIMIZE
SW_MAXIMIZE

Help method

Invokes the Windows Help system with the specified Help file and context
ID.

IDEApplication ciass 18-29

IDEApplication class, HelpAbout method
Types expected void Help (string helpFile, int helpCommand, string helpTopic)-
helpFile The name (with optional path) of the Windows Help file to
open.

helpCommand A constant representing a command passed to the Windows
Help engine. The helpCommand constants begin with HELP_
and are defined in the C++ header file WINUSER.H. See the
Windows API Reference for details on these constants.

helpTopic The name of the Help topic to display.

Return value None

HelpAbout method

Displays the Help About dialog box.
Types expected bool HelpAbout()
Returnvalue TRUE if the dialog box displays, FALSE, otherwise

Description Help About corresponds to the Help | About command.

HelpContents method

Displays the default Help contents screen. For Windows 95 Help systems,
this window is the Help Topics Contents page.

Types expected bool HelpContents()
Return value TRUE if the Help window can be displayed, FALSE, otherwise

Description HelpContents corresponds to the Help | Contents command.

HeIpKeyboard method

‘Displays a Help window descrlblng how to map | the keyboard in the IDE.

Types expected bool HelpKeyboard()
Return value TRUE if the Help window can be displayed, FALSE, otherwise

Description HelpKeyboard corresponds to the Help | Keyboard command.

18-30 ObjectScripting Programmer’s Guide

IDEApplication class, HelpKeywordSearch method

HelpKeywordSearch method

Types expected

Return value

Description

Displays the Help Topics Index page with the specified keyword selected.

bool HelpKeywordSearch([string keyword])

keyword The entry selected in the Help Topics Index page.
TRUE if the Help window can be displayed, FALSE, otherwise

HelpKeyboardSearch corresponds to the Help | Keyboard Search command.

HelpOWLAPI method

Types expected
Return value

Description

Displays the Help Contents page for the ObjectWindows Library Help.
bool HelpOWLAPI() '
TRUE if the Help window can be displayed, FALSE, otherwise

HelpOWLAPI corresponds to the Help | OWL API command.

HelpUsingHelp method

Types expected
Return value

- Description

Displays a Help window describing how to use Help.
bool HelpUsingHelp()
TRUE if the Help Window can be displayed, FALSE, otherwise

HelpUsingHelp corresponds to the Help | Using Help command.

HelpWindowsAPI method

Types expected
Return value

Description

Displays the Help Contents page for the Microsoft Windows API Help.
bool HelpWindowsAPI()
TRUE if the Help window can be displayed, FALSE, otherwise

HelpWindowsAPI corresponds to the Help | Windows API command.

IDEApplication class 18-31

IDEApplication class, KeyPressDialog method

KeyPressDialog method

Displays a dialog and records the keys pressed.

Types expected string KeyPressDialog(string prompt, string default)

prompt The string to display in the caption of the dialog.
default The value to display as a default. If default is empty, no value is
displayed.

Return value The key pressed by the user or the empty string (“) if the user presses Esc or
Cancel.

Description KeyPressDialog records the keys pressed in a mnemonic format suitable for
: using with key a551gnments

ListDialog method

Displays a modal list dialog.

- Types expected string[] ListDialog(string prompt, bool multiSelect, bool sorted, string [] initiaIVaIues)

prompt The value to place in the caption of the diaiog;
multiSelect Indicates if multiple selection of items in the list is allowed.
sorted Indicates how the list is to be sorted.

initialValues The strings to display in the dialog.

Returnvalue An array containing the strings that were selected.

Menu method

Activates the main ‘menu.
Types expected void Menu()

Return value None

Message method

Displays messages to the user in a message box.

18-32 ObjectScripting Programmer’s Guide

IDEApplication class, MessageCreate method

Types expected bool Message(string text, int severity)
text The message to display\.
severity One of the following values: INFORMATION, WARNING,
ERROR. The value specified also determines the text for the
caption. \
Return value TRUE if the message box successfully opened, FALSE, otherwise
Description The message box contains the following buttons: CANCEL, ABORT, RETRY,
and OK.
MessageCreate method
Adds messages to the Message window.
Types expected int MessageCreate(string destinationTab, string toolName,

int messageType, int parentMessage, string filename,
int lineNumber, int columnNumber, string text,
string helpFileName, int helpContextid)

destinationTab

- toolName

messageType

parentMessage

fileName

The name of the tab on the page of the Message window on
which this message should appear. The default supported
values for this parameter are Buildtime, Runtime, and Script.
If a non-existent tab name is given, a new tab will be created.

The name of the tool to be associated with the file to open.
Tools can be standalone programs (like GREP, Turbo
Debugger, or an alternate editor), or they can be translators
that are used for each file (or node) in a project. You can also
use the tool name: AddOn. You can run a DOS program with
the Windows IDE transfer. If toolName is not provided, a
default is used.

The severity to be associated with the message. The values
supported are:

INFORMATION (default)
WARNING

ERROR

FATAL

The message that this message should be stored under. A
value of 0 creates a new top-level message.

Provides navigation for the message. When the message is
selected, the user will be taken to this file.

IDEAppIication class 18-33

IDEApplication class, NextWindow method

lineNumber Provides navigation for the message. When the message is
selected, the user will be taken to this line in the specified file.

columnNumber Provides navigation for the message. When the message is
selected, the user will be taken to this column in the specified
line of the specified file.

helpFile Specifies where the user can find Windows Help for the
message. When set to a valid value, the specified helpContext
in this file will display.

helpContext ~ Specifies where the user can find Windows Help for the
message. When set to a valid value, this help topic in the
specified help file will display.

Return value The message ID of the generated meséage '

NextWindow method

Advances focus and activation to the next MDI child window from the
currently selected window.

Types expected bool NextWindow(bool priorWindow)

priorWindow If TRUE, focus and activation go to the previous window.
przoerdow defaults to FALSE.

Return value TRUE if focus changes to another window, FALSE, otherwise

OptionsEnvironment method

Displays the Environment Options dialog box where you set IDE options.
Types expected bool OptionsEnvironment() v
Return value TRUE if the dialog box can be displayed, FALSE, otherwise

‘Description OptionsEnvironment corresponds to the Options | Environment command.

OptionsProject method

Displays the Project Options dialog box where you set project options.

Types expected bool OptionsProject()

Return value TRUE if the dlalog box can be displayed, FALSE, otherwise

18-34 ObjectScripting Programmer’s Guide

Description

IDEApplication class, OptionsSave method

OptionsProject corresponds to the Options | Project command.

OptionsSave method

Types expected
Return value

Description

Opens the Options Save dialog box, where you save the contents of the
project and the desktop, the messages in the Message window, and the
Environment settings.

bool OptionsSave()

TRUE if the dialog can be opened, FALSE if it cannot

OptionsSave corresponds to the Options | Save command.

OptionsStyleSheets method

Displays the Style Sheets dialog box where you specify default compile and
run-time option settings associated with a project.

Types expected bool OptionsStyleSheets()
Return value TRUE if the dialog box can be opened, FALSE, otherwise
Description . Style sheets are predefined sets of options that can be associated with a node.
OptionsStyleSheets corresponds to the Options | Style Sheets command.
OptionsTools method
Displays the Tools dialog box where you install, delete or modify the tools
listed on the Tool menu.
Types expected bool OptionsTools()
Returnvalue TRUE if the dialog box can be opened, FALSE, otherwise
Description The Tool menu lets you run programming tools of your choice without

leaving the Borland C++ IDE.

Opti’onsTools cbrresponds to the Options | Tools corhmand'.

ProjectAppExpert method

Starts the AppExpert.

IDEApplication class 18-35

IDEApplication class, ProjectBuildAll method

Types expected

Return value

bool PfojectAppExpen()

TRUE if AppExpert was successfully started, FALSE, otherwise

ProjectBuildAll method

Types expected

Return value

‘Description

Builds all the files in the current project, regardless of whether they are out of
date.

bool ProjectBuildAll({bool suppressOkay, string nodeName])

suppressOkay ~ Builds the project without requiring the user to respond with
OK to continue.

nodeName The node to build.
TRUE if the build was successful, FALSE, othérwise

ProjectBuild All:

1 Deletes the appropriate precompiled header (.CSM) file, if it exists.
2 Deletes any cached autodependency information in the project.
3 Does a rebuild of the node.

If you abort a ProjectBuild All by pressing Esc or choosing Cancel, or if you get
errors that stop the build, you must explicitly select the nodes to be rebuilt.

ProjectBuildAll corresponds to the Project | Build All command.

ProjectCloseProject method

Types expected

Return value

Description

Closes the current project.
bool ProjectCloseProject()
TRUE if the project was successfully closed, FALSE, otherwise

ProjectCloseProject unloads your current project including all project files
(nodes) and closes the project tree window, if it is open.

ProjectCloseProject corresponds to the Project | Close Project command.

ProjectCompile method

Compiles the current project.

18-36 ObjectScripting Programmer’s Guide

Types expected

IDEApplication class, ProjectGenerateMakefile. method
bool ProjectCompile(fstring nodeName])

nodeName The name of the node to compile. Compilation depends on the
type of node:

¢ A .CPP node causes the C++ compiler to be called.

A RC node causes resource compiler to be called.
An .EXE node causes the linker to be called.

A LIB node causes the librarian to be called.

An .SPP node causes the cScript compiler to be called.

Return value TRUE if the project was successfully closed, FALSE, otherwise

Description

ProjectCompile corresponds to the Project | Compile command.

ProjectGenerateMakefile method

Types expected

Return value

Description

Generates a make file for the current project.

bool ProjectGenerateMakefile([string nodeName})

nodeName If specified, the generated makefile contains only the
commands necessary to build that node. Otherwise, commands
are generated to build the entire project.

TRUE if the makefile was successfully generated, FALSE, otherwise

ProjectGenerateMakefile generates a makefile for the current project. It gathers
information from the currently loaded project and produces a makefile
named <projectfilename>MAK. You cannot convert makefiles to project
files.

The IDE displays the new makefile in an Edit window.

ProjectGenerateMakefile corresponds to the Project | Generate Makefile
command.

ProjectMakeAll method

Makes all targets for the current project, rebuilding only those files that are -
out of date.

IDEApplication class 18-37

IDEApplication class, ProjectManagerlinitialize method

Types expected

Return value

Description

bool ProjectMakeAll([bool suppressOkay, string nodeNamel])
suppressOkay Makes the project without requiring the user to respond with
OK to continue.

nodeName Makes only the specified node.
TRUE if the targets were successfully made, FALSE, otherwise

ProjectMakeAll MAKES all targets. It checks file dates and times to see if they
have been updated. If so, ProjectMakeAll rebuilds those files, then moves up
the project tree and checks the next nodes’ file dates and times.
ProjectMakeAll checks all the nodes in a project and builds all of the out-of-
date files.

The .EXE file name is fully spelled out in the project tree for target names. If
no project is loaded, the .EXE name is derived from the name of the file in the
Edit window. ' :

ProjectMakeAll corresponds to the Project | Make All command.

ProjectManagerinitialize method

Types expected

Return value

ProjectManagerInitialize is called once during IDE initialization to ensure that
the IDE Project Manager is in a stable state prior to the occurrence of any
major events, such as the opening of files or creation of new targets.

bool ProjectManagerinitialize()

TRUE if the Prbject Manager has successfully initialized, FALSE, otherwise

- ProjectNewProject method

Types expected

Return value

Creates a new project.
bool ProjectNewProject([string pName])

.pName If specified, the project is created with pName as its name.
Otherwise, the user is prompted for a project name.

TRUE if the project was successfully created, FALSE, otherwise

- ProjectNewTarget method

Creates a new target for the specified node.

18-38 ObjectScripting Programmer’s Guide

Types expected

Return value

libraryMask

modelOrMode

IDEApplication class, ProjectNewTarget method

bool ProjectNewTarget ([string nTarget, int targetType, int platform, int libraryMask,
int modelOrMode])

The name of the node.

One of the following target values:

TE_APPLICATION TE_EASYWIN
(default) TE_IMPORTLIB
TE_DLL TE_STATICLIB
TE_DOSCOM TE_WINHELP
One of the following platform values:
TE_WIN32 (default) TE_DOSOVERLAY
TE_DOS16 TE_WIN16

Indicates which libraries to link. One or more of the
following values:

TE_STDLIBS (default: same as TE_STDLIB_BIDS |
TE_STDLIB_RTL | TE_STDLIB_EMU)

TE_STDLIB_BGI TE_STDLIB_BIDS
TE_STDLIB_BWCC TE_STDLIB_CODEGUARD
TE_STDLIB_COF TE_STDLIB_CTL3D ‘
TE_STDLIB_EMU TE_STDLIB_MATH
TE_STDLIB_NOEH TE_STDLIB_OCF
TE_STDLIB_OLE2 - TE_STDLIB_OWL
TE_STDLIB_RTL TE_STDLIB_TVISION

TE_STDLIB_VBX

One of the following values:

TE_NT_GUI (default if platform is TE_WIN32)
TE_MM_LARGE (default if platform is not TE_WIN32)

TE_MM_TINY TE_MM_SMALL
TE_MM_MEDIUM TE_MM_COMPACT
TE_MM_HUGE TE_NT_WINCONSOLE

TE_NT_FSCONSOLE

TRUE if the target was successfully created, FALSE, otherwise

IDEApplication ciass 18-39

IDEApplication class, ProjectOpenProject method

Description

The new node is added to the current project and placed at the bottom of the
project tree. This is created as a stand alone target. You can move it or make it
a child of another node in the project tree by using the Al#UpArrow/
AltsDownAtrrow, or Alt+LeftArrow / Alt+RightArrow keys.

ProjectNewTarget éorresponds to the Project | New Target command.

ProjectOpenProject method

Types expected

Return value

Description

Quit meth.od

Displays the Open a Project dialog box, where you select and load an existing
project file.

bool ProjectOpenProject([string pName])

pName If specified, ProjectOpenProject opens the project. If not, it
displays the Open a Project dialog box and prompts the user for
a project name.

TRUE if the project opened, FALSE, otherwise

You can load and use projects from previous versions of Borland C++ (.PR]J
files for example). If you load an old Borland C++ project, it is converted to
the new project format.

ProjectOpenProject corresponds to the Project | Open Project command.

Shuts down the IDE and exits, without saving files or prompting the user.

Types expected void Quit()
Return value None
Description To exit and prompt the user to save changes, use FileExit.
SaveMessages method

Saves the contents of the specified Message window tab page to the specified
file. :

18-40 ObjectScripting Programmer’s Guide

Types expected

IDEApplication class, ScriptCommands method
bool SaveMessages(string tabName, string fileName)

tabName One of the following values:

& Buildtime
¢ Runtime
* Script

Return value TRUE if the messages are saved, FALSE, otherwise

ScriptCommands method

Types expected
Return value

Description

Displays the Script Commands dialog.

bool ScriptCommands()

TRUE if the users chooses a command and clicks Run, FALSE, otherwise
The Script Commands dialog lists the currently available script commands

and variables, including classes, functions, and global objects. If an object is
an instance of a class, its properties and methods are also displayed.

~ ScriptCommands corresponds to the Script | Commands command.

ScriptCompileFile method

Types expected

Return vaiue

Description

Compiles the specified script file.

bool ScriptCompileFile(string fileName)

fileName The name of the script file to compile.
TRUE’if the compile was successful,vFA‘LSE, otherwise

ScriptCompileFile corresponds to the Script | Compile File command.

ScriptModules method

Types expected
Return value

Description

Displays the Script Modules dialog box. The dialog box lists the modules
loaded (.SPP or .SPX files) and modules in the Script Path.

bool ScriptModules()
TRUE if a module is selected, FALSE, otherwise

ScriptModules corresponds to the Script | Modules command.

IDEApplication class 18-41

‘IDEAppIication class, ScriptRuh method

ScriptRun method

Executes the specified script command.
Types expected bool ScriptRun(string command)

command ~ The script command to execute. If no command is given, the
Script Run window is displayed.

Return value TRUE if the command is executed, FALSE, otherwise

‘Description ScriptRun corresponds to the Script | Run command.

ScriptRunFile method

‘Executes the specified script file.
Types expected bool ScriptRunFile([string fileName])

fileName The name of the script file to execute. If no fileName is given,
ScriptRunFile attempts to execute the commands in the current
EditView.

Return value TRUE if a file is executed or an EditView is found, FALSE, otherwise

Description ScriptRunFile corresponds to the Script | Run File command.

SearchBrowseSymbol method

Searches for the specified symbol.
Types expected bool SearchBrowseSymbol([string sName])
sName The name of the symbol to search for. If sName is not provided,
the Browse Symbol dialog box is displayed. If sName is not
provided and an edit window is active, the Browse Symbol
dialog box contains the word-at the cursor.

Return value TRUE if the symbol is found, FALSE, otherwise

Description SearchBrowsesymbol corresponds to the Search | Browse Symbol command.

18-42 ObjectScripting Programmer’s Guide

IDEApplication class, SearchFind method

SearchFind method

Searches the EditBuffer for the specified pattern.

Types expected bool SearchFind([string pat)
pat The string to search for. If pat is found, the cursor is moved to

the occurrence of pat. The pattern can be a simple string or a
search expression.

Returnvalue TRUE if the expression is found, FALSE, otherwise

Description If the Edit window is active, SearchFind searches the Edit window for pat. If
the Message window is active, Search Find searches the Message window.

SearchFind corresponds to the Search | Find command.

SearchLocateSymbol method

Searches through the current target of the current project for the specified
symbol.

Types expected bool SearchLocateSymbol([string sName])

sName The name of the symbol to search for. If sNume is not provided,
the user will be prompted for it. ‘

Return value TRUE if the expression is found, FALSE, otherwise

Description SearchLocateSymbol uses the Browser’s symbol information to locate a
symbol’s definition.

On success, SearchLocateSymbol opens the source file and line where the
symbol name sName is defined. If sName is NULL, SearchLocateSymbol rips
the current word out of the editor and searches for that symbol.

. SearchLocateSymbol works only with globally defined symbols

For a function symbol, SearchLocateSymbol locates the line where the function
beglns For a class or typedef symbol, it locates the line where the typedef or
class is defined. For a variable, it locates the line where the variable is
defined.

SearchLocateSymbol corresponds to the Search | Locate Symbol command,

SearchNextMessage method

Displays an active Edit window and places the cursor on the line in your
source code that generated the next error or warning.

IDEApplication class 18-43

IDEApplication class, SearchPreviousMessage method-

Types expected

Return value

Description

bool SearchNextMessage()

TRUE if the next message is displayed, or FALSE if there is no message to
display :

SearchNextMessage works only if a Message window is displayed and
another message exists.

SearchNextMessage corresponds to the Search | Next Message command.

SearchPreviousMessage method

Types expected
Return value

Description

Displays an active Edit window and places the cursor on the line in your -
source code that generated the previous error or warning.

bool SearchPreviousMessage()
TRUE if the source line is found, FALSE, otherwise

SearchPreviousMessage works only if a Message window is displayed and a
previous message exists.

SearchPreviousMessage corresponds to the Search | Previous Message

. command.

SearchReplace method

Types expected

- Return value

Description

Searches the EditBuffer for the specified pattern and replaces it with the
specified string.

bool SearchReplace([string pat, string rep])

pat The string to search for. The pattern can be a simple string or a

search expression.

rep The string to replace the found string with.
TRUE if the text is found, FALSE, otherwise

If pat or rep is not specified, SearchReplace opens the Replace Text dialog box

-and prompts the user for input.

SearchReplace corresponds to the Search| Replace command.

SearchSearchAgain method

Repeats the last SearchFind or SearchReplace.

18-44 ObjectScripting Programmer’s Guide

IDEApplication class, SetRegion method

Typés expected bool SearchSearchAgain()

Return value TRUE if the text is found, FALSE, otherwise

Description SearchSearchAgain corresponds to the Search | Search Again command. .

SetRegion method

Types expected

Return value

Description

Determines how windows tile and cascade on the IDE desktop and their
initial position when they are created.

bool SetRegion(string RegionName; int left, int top, int right, int bottom)

RegionName The name of the region to examine. Valid region

names are: _

* Breakpoint * Message

s CPU ¢ Processes

¢ Debugger * Project

¢ Editor e Stack

e Evaluator e Thread Count

¢ Event Log * Watches

* Inspector

left, top, right, bottom The dimensions of the window in display units of
1-9999.

TRUE if the region was successfully set, FALSE otherwise

SetRegion is used with the following IDE Application class methods:
GetRegionBottom
GetRegionTop
GetRegionLeft
GetRegionRight

These methods change the area where windows are placed when tiled and
cascaded.

For example, the default configuration of the IDE is to have all Editor
windows in the upper two-thirds of the screen when you tile, and the
Message window and the Project window in the lower one-third. You could
change this default with the script statement

TDE. SetRegion ("Editor", 1, 1, 5000, 5000);

IDEApplication class 18-45

IDEApplication class, SetWindowState method

After executing this statement, the editors are in the upper left quarter of the
IDE desktop after tiling. Look at STARTUP.SPP for other examples.

SetWindowState method

Changes the style of the currently focused window.

- Types expected bool SetWindowState(int desiredState)

desiredState The style to change the window to. One of the following values:

e SW_MINIMIZE
.« SW_MAXIMIZE
¢ SW_RESTORE

Return value TRUE if the state was successfully set, FALSE, otherwise

SimpleDialog method

Invokes a simple dialog containing a single text field, an OK button, and a
Cancel button. ' ‘

Types expected string SimpleDialog(string prompt, string initialValue [int maxNumChars])

prompt The caption of the dialog.
initialValue ~ The value that initializes the edit field.

maxNumChars The maximum number of characters allowed in the edit field.

Return value The value in the edit field if the user clicks OK or presses Enter, or the empty
string (“ “) if the user clicks Cancel.

SpeedMenu method

Activates the SpeedMenu for the current subsystem.
Types expected void SpeedMenu()

Return value None

StartWaitCursor method |

Displays the Windows wait cursor (by default, the hourglass).

18-46 ObjectScripting Programmer’s Guide

Types expected

Return value

IDEApplication class, StatusBarDialog method
void StartWaitCursor()

None

StatusBarDialog méthod

Types expected

Return value

Displays a dialog on top of the status bar.

string StatusBarDialog(string prompt, string initialValue [,int maxNumChars])

prompt The caption of the dialog.
initialValue ~ The value that initializes the edit field. ,
maxNumChars The maximum number of characters allowed in the edit field.

The value in the edit field if the user clicks OK or presses Enter, or the empty
string (“ “) if the user clicks Cancel. ,

StopBackgroundTask method

Types expected

Return value

Terminates the background task of a compile, link, make or build when the
task is in asynchronous compile mode.

void StopBackgroundTask()

None

Tool method

Types expeéted

Return value

Runs the specified tool specified using the specified command string.
bobl Tool([string tooiName, string commandString])

toolName The name of the tool to be associated with the file to open.
Tools can be standalone programs (like GREP, Turbo
Debugger, or an alternate editor), or they can be translators
that are used for each file (or node) in a project. You can run
a DOS program with the Windows IDE transfer. If foolName
is not provided, a default is used.

commandString The name of the command to run.

TRUE if the tool successfully ran, FALSE, otherwise

IDEApplication class 18-47"

IDEApplication class, Undo method

Description

Ifno parameters are specified, Tool displays a dialog box prompting the user
for a tool. ‘

Undo method

Undoes the last edit operation.

Types expected void Undo()
Return value None
Description Undo does the same thing as EditUndo. Undo is included for cofnpiiance with
Microsoft conventions.
ViewActivate method
Activates the IDE pane that is adjacent to the currently selected pane.
Types expected bool ViewActivate(int direction) | o

Return value

direction The direction of the adjacent pane to activate, relative to the
current pane. The supported values are:

upr
DOWN
LEFT
RIGHT

TRUE if there was a valid current pane and the method was able to activate
an adjacent pane in the direction indicated by direction, FALSE, otherwise

ViewBreakpoint method

- Types expected
Return value

Description

Opens the Breakpoints window.
bool ViewBreakpoint()
TRUE if breakpoints can be found, FALSE, otherwise

ViewBreakpoint corresponds to the View | Breakpoint command.

ViewCallStack method

Opens the Call Stack window.

18-48 ObjectScripting Progr‘ammer’s Guide

IDEApplication class, ViewClasses method

Types expected bool ViewCalStack()
Return value TRUE if the Call Stack window can be displayed, FALSE, otherwise
Description ViewCallStack correSpbnds to the View | Call Stack command.
ViewClasses method
| Opens the Browsing Objects window, which displays all the classes in your
application.
, Types expected bool ViewClasses()
Return value TRUE if the Browsing Objects window can be displayed, FALSE, otherwise -
~ Description ViewClésses corresponds to the View | Classes command.

'ViewClassExpert method

Displays the ClassExpert window, where you can add and manage classes in
an AppExpert application.

Types expected bool ViewClassExpert()
Return value TRUE if the Class Expert can be run or FALSE if it cannot be run (for
example, because the current target was not generated with the AppExpert).
Description ViewClassEpxert does not work unless the current target is an AppExpert
target. ;
ViewClassEpxert corresponds to the View | Class Expert command.
ViewCpu method
| Opens or selects the CPU window.
Types expected bool ViewCpu()
Return value TRUE if the CPU Window can be displayed, FALSE, otherwise
Description ViewCpu corresponds to the View | CPU command.

IDEApplication class 18-49

IDEApplication class, ViewGlobals method

ViewGlobals method

- Opens the Browsing Globals window, which lists every variable in the

program in the current Edit window or the first file in the current project.

Types expected bool ViewGlobals()
Return value TRUE if the Browse Globals window can be displayed, FALSE, otherwise
Description If the program has not been compiled, the IDE must first compile it before
- invoking the Browser.
ViewGlobals corresponds to the View | Globals command.
ViewMessage method
Displays the specified page of the Message window.
Types expected bool ViewMessage([string tabName])

Return value

Description

tabName The name of the Message window page to select. If tabName is
not found, the currently selected tab remains unchanged.
tabName can be set to one of the following values:

e Buildtime
¢ Runtime
® Script

tabName can also be the name of a user-defined tab.

TRUE if the Message window can be displayed or FALSE if it cannot. If
tabName is not found, the method returns FALSE even if the Message
window is successfully displayed.

ViewMessage corresponds to the View | Message command.

ViewProcess method

Types expected
Return value

Description

Opens the Process window.
bool ViewProcess()
TRUE if the Process window can be displayed, FALSE, otherwise

ViewProcess corresponds to the View | Process command.

18-50 ObjectScripting Programmer’s Guide

IDEApplication class, ViewSlide method

ViewSlide method

Moves the border of the currently selected IDE pane the number of specified
characters in the specified direction.

/ Types expected bool ViewSlide(int direction [, int amount])

direction The direction in which to move the border of the currently
selected IDE pane. direction can be one of:

ur
DOWN
LEFT
RIGHT

amount The number of characters to move the currently selected IDE
pane. The size of a character is determined by the number of
pixels high and wide a character is in the font used by the pane.
If amount is not given, the border moves until the user presses
the Enter or Esc keys.

Return value 'TRUE if there is a valid current IDE pane, and it was successfully moved,
- FALSE, otherwise

ViewProject method

Displays the Project window for the currently open project.
Types expected bool ViewProject()
Return value TRUE if the Project window can be displayed, FALSE, otherwise

Description ViewProject corresponds to the View | Project command.

ViewWatch method

Displays the Watches window for the current program.

Types expected bool ViewWatch()
Return value TRUE if the Watches window can be displayed, FALSE, otherwise

Description ViewWatch corresponds to the View | Watch command.

IDEApplication class 18-51

IDEApplication class, WindowArrangelcons method

WindowArrangelcons method

Rearranges any minimized window’s icons on the desktop. The rearranged
icons are evenly spaced, beginning at the lower left corner of the desktop.

Types expected "~ bool WindowArrangelcons()
Return value TRUE if there are icons to rearrange, FALSE, otherwise

Description WindowArrange corresponds to the Window | Arrange Icons command.

WindowCascade method

Stacks all open windows and overlaps them, making all windows the same
size and showing only part of each underlying window.

Types expected bool WindowCascade()
Returnvalue TRUE if there are windows to cascade, FALSE, otherwise

Description WindowCascade corresponds to the Window | Cascade command.

WindowCloseAll method

Closes all windows of the specified type.
Types expected bool WindowCloseAll([string typeNarhe]) \

typeName The type of window to close. typeName can be one of the
following values:

¢ Browser
¢ Debugger
e Editor

If typeName is not specified, WindowCloseAll closes all open windows.
Return value TRUE if all windows successfully close, FALSE, otherwise

Description WindowCloseAll corresponds to the Window | Close All command.

WindowMinimizeAll method

‘Minimizes all windows of the specified type.

18-52 ObjectScripting Programmer’s Guide

Types expected

Types expected

Return value

Description

IDEApplication class, WindowRestoreAll method
bool WindowMinimizeAll([string typeName])
typeName ~ The type of window to minimize. fypeName can be one of the

following values:

¢ Browser
¢ Debugger
e Editor

- If typeName is not specified, WindowMinimizeAll minimizes all open window.

bool WindowMinimizeAll([string typeName])
TRUE if all windows successfully minimize, FALSE, otherwise

WindowMinimizeAll corresponds to the Window | Minimize All command.

WindowRestoreAll method

Types expected

Return value

Description

Restores all minimized windows of the specified type.
bool WindowRestoreAll([string typeName])
typeName The type of minimized window to restore. fypeName can be one

of the following values:

‘o Browser
¢ Debugger
¢ Editor

If typeName is not specified, WindowRestoreAll restores all minimized
window.

TRUE if all windows successfully restore or FALSE if at least one does not

WindowRestoreAll corresponds to the Window | Restore All command.

WindowTileHorizontal method

Types expected
Return value

Description

Stacks all open windows horizontally.

bool WindowTileHorizontal()

. TRUE if all windows successfully tile, FALSE, otherwise

WindowTileHorizontal corresponds to the Window | Tile Horizontal
command. \

IDEApplication class 18-53

IDEApplication class, WindowTiIeVerticéI method

WindowTileVertical method

Stacks all open windows. vértically.
Types expected bool WindowTileVertical()
Returnvalue TRUE if all windows successfully tile, FALSE, otherwise

Description WindowTileVertical corresponds to the Window | Tile Vertical command.

YesNoDialog method

Displays a dialog box that prompts the user for a yes or no response.
Types expected string YesNoDialog(string prompt, string default)

prompt The prompt that displays in the dialog box

default The button that is to be selected by default. Valid values are Yes
and No.

Return value Yes or No

BuildComplete event

Raised at the end of a build.
Types expected void BuildComplete(bool status, string inputPath, string outputPath)

status Indicates if the build was successful. status is TRUE if
successful, FALSE if there were errors.

inputPath ~ The source directory. ’

outputPath The directory where files created as a result of the build are
created.

Return value None

BuildStarted event

Raised at the beginning of a build.
Types expected void BuildComplete()

Return value None

18-54 ObjectScripting Programmer’s Guide

IDEApplication class, DialogCreated event

DialogCreated event

Raised as new dialogs are presented to the user.

Types expected void DialogCreated(string dialogName, int dialogHandle)

dialogName ~ The name of the dialog’s caption.

dialogHandle ~ An environment-specific identifier used by the system when
referring to the dialog. For Microsoft Windows the
dialogHandle is the HWND of the dialog. This value is
supplied in case you need your script to interact directly with
the system.

Return value None

Description Use DialogCreated in conjunction with the KeyboardManager.SendKeys method
to simulate user entries to dialogs and drive the dialog.

DialogCreated is only raised if the property RaiseDialogCreatedEvent is set to
TRUE.

Exiting event |

Raised as the IDE is closing. Default action is to do nothing.
Types expected void Exiting()

Return value None

HelpRequested event

Raised when one of the IDEApplication class Heip methods is invoked:

Types expected void HelpRequested(string fileName, int command, int data)
fileName . The name (with optional path) of the Windows Help file to
open.

Command A constant representing a command passed to the Windows
Help engine. The command constants begin with HELP_ and are
defined in the C++ header file WINUSER.H. See the Windows
API Reference for details on these constants.

data The data to display.

Return value None

" IDEApplication class 18-55

IDEApplication class, ldle event

-Description

Idle event

HelpRequested is raised when one of the following fDEApplication class
methods are invoked:

EnterContextHelpMode
Help

HelpAbout
HelpContents
HelpKeyboard
HelpKeywordSearch
HelpOWLAPI
HelpUsingHelp
HelpWindowsAPI

HelpRequested passes the appropriate parameters to the Windows Help
engine. Default action is to do nothing.

~ Types expected

Return value

Raised when the number of seconds specified by IdleTimeout has elapsed

without a significant event occurring (like a user event). Default action is to
do nothing.

void Idle()

None

KeyboardAssignmentsChanging event

Types expected

Return value

Raised when the user exits the Options | Environment | Editor dialog after
having modified the keyboard file (.KBD) option.

void KeyboardAssignmentsChanging(string newFileName)
newFileName The name of the new keyboard (.KBD) file.

None

KeyboardAssignmentsChanged event

Types expected

Raised after the keyboard file name (KBD) is changed in the Options |

'Environment | Editor dialog.

void KeyboardAssignmentsChanged(string newFileName)

newFileName The name of the new keyboard (.KDB) file.

18-56 ObjectScripting Programmer’s Guide

Return value

IDEApplication class, MakeComplete event

None

MakeComplete event

TYpes expected

Return value

Raised at the end of a make.

void MakeComplete(bool status, string inputPath, string outputPéth)

status Indicates if the make was successful. status is TRUE 1f the make
was successful, FALSE if there were errors.

inputPath The source directory.

outputPath The directory where files created as a result of the make are
created.

None

MakeStarted event

Types expected

Return value

Raised at the beginning of a make.
void MakeComplete()

None

ProjectClosed event

Types expected

Return value

Description

Raised when a project file has been successfully closed.

void ProjectClosed(string projectFileName)

projectFileName The absolute name of the project file.

None

Since the IDE always has a project open (even if it is the default project:

BCWDEEFE.IDE), ProjectClosed will always precede the ProjectOpened that it
corresponds to.

ProjectOpened event

Raised when a project file has been successfully opened.

IDEApplication class 1857

IDEApplication class, SecondElapsed event

Types expected void ProjectOpened(string projectFileName)
projectFileName The absolute name of the project file.

Return value None -

SecondElapsed event

Raised once every second. Default action is to do nothing.
Types expected void SecondElapsed()

Return value None

Started event

Raised after the IDE has been loaded and initialized and all startup scripts
have been processed.

Types expected void Started(bool‘ VeryFirstTime)

VeryFirstTime Indicates whether this is the first time the IDE has been
loaded on a particular machine. Its value is determined by
the presence or absence of the default configuration file
(BCCONFIG.BCW). This file is created the first time you run
the IDE and should be present only if the IDE has been run
previously.

Return value None

SubsytemActivated event

Raised when the active subsystem is changed (usually in response to the user
clicking on another window type).

Types expected void SubsytemActivated(string systemName)

systemName The name of the subsystem acquiring focus. Default action is
to do nothing.

Return value None

18-58 ObjectScripting Programmer’s Guide

IDEApplication class, TransferOutputExists event

TransferOutputExists event

Raised when a transfer tool has created output that needs processing
- (usually in a Make sequence). Default action is to do nothing.

Types expected bool TransferOutputExists(TransferOutput output)
output The data that needs to be processed by the transfer tool.

Return value FALSE if no error occurred, TRUE if there was an error parsing the data
supplied by output.

TranslateComplete event

Raised at the end of a translation.

Types expected void TranslateComplete(bool status, string inputPath, string outputPath)

status Indicates if the translation was successful. status is TRUE if the
translation was successful, FALSE if there were errors.

inputPath ~ The source directory. '

outputPath The directory where files created as a result of the translation
are created.

Return value None

IDEApplication class 18-59

18-60 ObjectScripting Programmer’s Guide

Syntax

Keyboard class

This class works with the KeyboardManager class to manage keyboards
assigned to various IDE components, such as the Editor and the Project
View. '

Keyboard([bool transparent])

transparent Allows keystrokes with no assignment in this keyboard to be

passed to the next keyboard on the current keyboard stack.
This value defaults to FALSE if not supplied.

Properties -

int Assignments Read-only
string DefaultAssignment - Read-write
Methods

void Assign(string KeySequence, string CommandName, int ImplicitAssignments)
void AssignTypeables(string CommandName)

void Copy(Keyboard SourceKeyboard)

int CountAssignments(string CommandName)

string GetCommand(string KeySequence)

string GetKeySequence(string CommandName [,int whichOne])

bool HasUniqueMapping(string KeySequence)

Keyboard class 19-1

Keyboard class, Keyboard class description

void Unassign(string KeySequence)

Events

None

Keyboard class deécription

Keyboard objects administer key assignments and can be:

* Assigned to IDE components :

¢ Pushed and popped from the keyboard manager's keyboard stack’
* Queried on individual key assignments

KeyboardManager manipulates Keyboard objects.

Assignments property

Indicates the number of key assignments contained in this keyboard.
Access Read-only

Type expected int Assignments

DefaultAssignment property

Establishes the command to execute if no other commands are assigned to a
keystroke. It returns an empty string (“”) if no assignment exists.

Access Read-write

Type expected string DefaultAssignment

Assign method

Assigns a script to a keystroke.

19-2 ObjectScripting Programmer’s Guide.

Types expected

Return value

Description

Example

Keyboard class, Assign method

void Assign (string KeySequence, string CommandName, int ImplicitAssignments)

KeySequence A mnemonic key name made up of a key description,
such as <a>. Key descriptions can be augmented with
any (or all) of the following: Shift, Ctr, Alt, and Keypad.

CommandName The script to be executed when the key is pressed, for
example, editor.MarkWord (TRUE) ;

implicitAssignments One or more of the following values:

ﬂ ASSIGN_EXPLICIT (default) No implicit assignments should be created.

ASSIGN_IMPLICIT_KEYPAD When an assignment is made to a sequence that
has a numeric keypad (Keypad) equivalent, such as
Page Up, a second assignment is implicitly made for
the equivalent. Assignments are made to both the
shifted and non-shifted versions at the same time,
but only if the implicit assignment doesn’t
. overwrite an existing explicit assignment.

ASSIGN_IMPLICIT_SHIFT <a> == <A>
ASSIGN_IMPLICIT _MODIFIER <Ctrl-k><Ctlr-b> == <Ctrl-k>

None

Keys that do not map to a single character have names associated with them.
Keys in this category are: Enter, Backspace, Tab, Home, End, Page Up, Page Down,
Left, Right, Up, Down, Insert, Delete, Escape, Space, Print Screen, Center, Pause, CapsLock,
Scrolf Lock, and Number Lock. ‘

Modifiers and names are separated by a hyphen (-). For example <Ctrl-Enter>
is valid.

To assign the dash character in a key sequence, use the keyname <Minus>. Use
the keyname <Plus> for the + character. ‘

The Assign method has no effect on the default keyboérd, which is returned
from a call to KeyboardManager.GetKeyboard.

// This example creates an explicit assignment to <Home>.
// It creates an implicit assignment to <Keypad-Home>.

Assign("<Home>", "ToStart();", -ASSIGN_IMPLICIT KEYPAD);

// Explicit assignment to <Keypad-End>.
Assign("<Keypad-End>", "ToEnd();");

// Explicit assignment to <End>
Assign("<End>", "ToEnd(TRUE); ", ASSIGN_IMPLICIT_KEYPAD);

// Implicit assignment. to <Keypad-End> thwarted due to
// existence of explicit assignment to <Keypad-End>.

Keyboard class 19-3

Keyboard class, AssignTypeables method

AssignTypeables method

Assigns a script to the predefined typeable characters.

Types expected void AssignTypeables(string CommandName)

CommandName The command to assign and any parameters to the
command.

Return value None

Description The AssignTypeables method has no effect on the default keyboard, which is
returned from a call to KeyboardManager.GetKeyboard.

F

() " + 1 2 3 4 5
6 7 8 9 0 - = Q w E
R T Y U I 0 P { 1} |
q w e r t y u i o P
(] \\ A S D F G H]
K L : “ ‘ a s d f g
h j k 1 ; \ z X C v
B M < > ?. z X c v
b n m /

Other keys include: Enter, Delete and Backspace.

Copy method

Copies all assignments made from SourceKeyboard into this keyboard,
replacing any that already exist.

Types expected void Copy(Keyhoard SourceKeyboard)

Keyboard The name of the keyboard to copy assignments into.

SourceKeyboard ~ The name of the keyboard from which assignments are to
be copied.

Return value None

Description The Copy method has no effect on the default keybdard, which is returned
" from a call to KeyboardManager.GetKeyboard.

19-4 ObjectScripting Programmer’s Guide

CountAssignments method

Keyboard class, CountAssignments method

Returns the number of key assignmients tied to the specified command.

Tykpes expected int CountAssignments(string CommandName)
CommandName The name of the command in which to count key
assignments.
Return value . None
GetCommand method

Types expected

Return value

Returns the command assigned to the specified key code. GetCommand
returns the empty string (“”) if no script has been assigned.

string GetCommand (string KeySequence) -

KeySequence ~ The name of the key sequence to check for an assigned
command.

None

GetKeySequence method

Types expected

Return value

Returns the key sequence tied to the specified command.
string GetKeySequence(string CommandName [,int whichOne])

CommandName The name of the command to check for a key sequence.

whichOne Finds nth occurrence of that assignment. If less than 1 or
omitted, whichOne is assumed to be 1.

None

HasUniqueMapping method

Determines if a key:
¢ Has no mapping
* Maps directly to a command

* [s the non-terminating key of a multikey assignment

Keyboard class. 19-5

Keyboard class, Unassign method

Types expected bool HasUriiqueMappinQ(string KeySequence)
KeySequence ~ The name of the key sequence to check for mapping
’ assignments. :
Returnvalue TRUE if a key either has no mapping or maps directly to a command. FALSE
if the key is a non-terminating key of a multikey assignment.
For example, WordStar <Ctrl-k> would be FALSE since <Ctrl-K> signifies the
beginning of a multikey assignment, such as <Ctrl-K><Ctrl-B> or <Ctrl-
K><Ctrl-K>.
Unassign method
Restores a key assignment.
Types expected void Unassign(string KeySequence)
| KeySequence The name of the key sequence to restore.
Return value None
Description The Unassign method has no effect on the default keyboard, which is

returned from a call to KeyboardManager.GetKeyboard.

19-6 ObjectScripting Programmer’s Guide

)

"hapter

KeyboardManager class

This class works with the Keyboard class to manage keyboards assigned to
various IDE components, such as the Editor and the Project view.

Syntax KeyBoardManager()

Properties

bool AreKeysWaiting Read-only
Record CurrentPlayback Read-only
Record CurrentRecord Read-write
int KeyboardFlags Read-only
int KeysProcessed Read-only
int LastKeyProcessed ‘ Read-only
Record Recording Read-only
string ScriptAbortKey Read-write
Methods

string CodeToKey(int KeyCode)

void Flush()

Keyboard GetKeyboard([string ComponentName])
int KeyToCode(st'ring KeyName)

void PausePlayback()

KeyboardManager class 20-1

KeyboardManager class, KeyboardManager class deécription

int Playback([Record RecordObject])

Keyboard Pop(string ComponentName)

bool ProcessKeyboardAssignments(string fileName, bool unassign)
void ProcessPendingKeystrokes()

void. Push(Keyboard keybeard, string ComponentName, bool transparent)
int ReadChar(void)

void ResumePlayback()

bool ResumeRecord(Record RecordObject)

bool SendKeys(string keyStream)

bool StartRecord(Record RécordObject)

void StopRecord()

Events

None

KeyboardManager class description

You access keyboard features through a keyboard manager, implemented by
the global KeyboardManager object. The keyboard manager manipulates
Keyboard objects (instantiations of the class Keyboard).

KeyboardManager manages individual component keyboards, such as that of
the Editor and the Project view. This implementation allows support of
BRIEF functionality through script simulation without predefined classes for -
each of the individual IDE components. Each component has a defineable
keyboard. The desktop has a keyboard assignment that acts as a global
assignment. If a key is not found in the local keyboard, the desktop keyboard
is searched. If the key assignment is not in the desktop's keyboard, the
default internal mapping is used.

The keyboard manager operates on the assumption of a set context. A
derived class is used in a call to SetContext() to specify the current object to be
used as a local scope. Since different macros may mean different things to
different components, this mechanism provides a simple, straightforward
approach to localizing functionality. For example, classes A and B both have
a member function called Search(). If class A is the current context, class-A’s
Search() member is called. The same goes with class B. If no context is set,
then a global Search() function is accessed.

‘The IDE object contains a ReadOnly member that holds the value of the
KeyboardManager. New script instances may be created; however, they will
all reference the same internal data and changes to one will be reflected in all.

20-2 ObjectScripting Programmer’s Guide

KeyboardManager class, AreKeysWaiting property

AreKeysWaiting property

Access

Type expected

TRUE if any keys are waiting to be processed, FALSE otherwise.
Read-only

boo! AreKeysWaiting

CurrentPlayback property

Access

Type expected

Plays back the current keystroke assignment. CurrentPlayback is only valid
while the Playback method is active.

Read-only

Record CurrentPlayback

CurrentRecord property

Access

- Type expected

Contains a reference to the Record object associated with this
KeyboardManager. ‘

Read-write

Record CurrentRecord

KeyboardFlags property

" Access |
Type expected

Description

Returns a value whose bits indicate the state of Num Lock, Caps, Ctrl, Alt and so
on.

Read-only
int KeyboardFlags

The mask values returned are:

0x03 Shift pressed
0x04 Ctrl pressed
0x08 Alt pressed

0x10 Scroll Lock on

KeyboardManager class 20-3

KeyboardManager class, KeysProcessed property

0x20 Num Lock on

0x40 " Caps Lock on
KeysProcessed property

The total number of keys processed by any keyboard since the IDE was
loaded. |

Access Read-only

Type expected int KeysProcessed

LastKeyProcessed prdperty ,

The keyéode of the last key that was processed by any keyboard.
Access Read-only

Type expected it LastKeyProcessed

Recording property

TRUE if a keys are currently being recorded, FALSE otherwise.
Access Read-only

Type expected Record Recording

Description Only valid while in a StartRecord. Becomes invalid when StopRecord is called.
Note The return value matches Brief’s ing_kbd_flags().

ScrlptAbortKey property

Contains the key sequence of the key which, when pressed, causes the
currently running script to abort.

Access Read-write
Type expected string ScriptAbortKey

| Description The default value for ScriptAbortKey is <Escape>, except when Epsilon
emulation is enabled in which case the default is <Ctr-G>.

20-4 ObjectScripting Programmer’s Guide

KeyboardManager class, CodeToKey method

Key sequence

The key sequence is a mnemonic key name made up of a key description,
such as <a>. Key descriptions can be augmented with any (or all) of the
following: Shift, Ctrl, Alt, and Keypad.

To assign the dash character in a key sequence, use the keyname <Minus>.
Use the keyname <Plus> for the + character.

Key mapping

Keys that do not map to a single character have names associated with them.
Keys in this category are: Enter, Backspace, Tab, Home, End, Page Up, Page Down,
Left, Right, Up, Down, Insert, Delete, Escape, Space Print Screen, Center, Pause, Caps
Lock, Scroll Lock, and Num Lock.

- Modifiers and names are separated by a dash (-). For example,

<Ctrl-Enter>

CodeToKey method

Types expécted

Return value

Accepts the integer key code representation.
string CodeToKey(int KeyCode)
KeyCode An integer representation of a keystroke.

The textual description of the key. It matches the Brief key nammg
conventions for inq_assignment and assign_to_key.

Flush method

Types expected

Return value

Removes all waiting keystrokes from the IDE message queue.

void Flush()

None

GetKeyboard method

This method finds the keyboard currently assigned to the IDE subsystem.

KeyboardManager class 20-5

KeyboardMan\ager Class, KeyToCode method
Types expected Keyboard GetKeyboard ([string ComponentName])

ComponentName The name of the IDE subsystem. To return the internal
mapping, specify Default. Note that the default mapping

* cannot be remapped. If ComponentName is omitted, the
method gets the current keyboard. Valid subsystems are:

e Browser ¢ Editor
¢ ClassManager * Message
s Default * Project
* Desktop l

Return value The keyboard currently assigned to an IDE subsystem, or NULL if the
subsystem is invalid.

KeyToCode method

Converts the name of a key into its integer key code equivalent.
Types expected int KeyToCode (string KeyName)
keyName The textual name of a key.

Return value The integer keycode of the key.

Description KeyToCode accepts single keystroke entries such as <F> and <Ctr-B>, but not
multikey sequences such as Ctrl+K Ciri+B.

PausePlayback method

Pauses the playback of a Record object.

Types expected void PausePlayback()
Return value None

Description For PausePlayback to work, the play back must have been initiated with the
Playback member. To resume playback, call ResumePlayback.

Playback method

Replays the series of keystrokes assigned to a Record object. If no Record
object is specified, the last recording is replayed.

20-6 ObjectScripting Programmer’s Guide

KeybbardManager class, Pop method

Types expected int Playback ([Record RecordObject])

RecordObject The name of the Record object from which keys are to be
replayed. :

Return value One of the following values:

No sequence to play back
1 Playback successful
-1 Sequence is paused or being remembered
-2 Error loading disk file (macros will handle this)
-3 Canceled by user with Script AbortKey

Pop method

Restores the previously assigned keyboard mapping after a call to Push.

Types expected Keyboard Pop(string ComponentName)
ComponentName. The name of the IDE subsystem whose keyboard you
want to restore. Valid IDE subsystem names are:
* Browser ¢ Editor
* ClassManager ® Message
¢ Default » Project
_® Desktop
Return value The keyboard that was restored or NULL, which indicates that no additional

keyboard mappings were applied and the default keyboard desktop
mapping is active

ProcessKeyboardAssignments method

Converts a .KBD file into a .KBP file.

Types expected bool ProcessKeyboardAssignments (string .fiIeName, bool unassign)

fileName The name of the KBD formatted file. Includes the path to the
file. ’

unassign Specifies if the file contents should be used to unassign keys
defined in the .KBD file. If TRUE, defined keys will be
unassigned. If FALSE, defined keys will be assigned.

Return value TRUE if a .KBP file is loaded, FALSE otherwise.

KeyboardManager class 20-7

‘KeyboardManager class, P}rocessPendingKeysfrokes method

Description ProcessKeyboard Assignments converts a .KBD file into a .KBP file, which is a
preprocessed version of the .KBD file. If the KBP file exists and is newer than
the .KBD file, the .KBP file will be used without creating another .KBP file.

'ProcessPendi'ngKeystrokes method |

Fine-tunes the behavior of SendKeys.'

Types expected void ProcessPendingKeystrokes()

Return value None

Description If one or more calls to SendKeys indicated that key processing was to be
delayed, these keystrokes are not processed until ProcessPendingKeystrokes is
called or until the script completes execution.

Push method

Pushes a keyboard on the keyboard stack, making the new keyboard
mapping current. A subsequent Pop operation restores the previously
assigned keyboard mapping.

Types expected void Push (Keyboard keyboard, string ComponentName, bool tfansparent)

keyboard

ComponentName

transparent

Return value None

The name of the keybard to push onto the stack.

The name of the IDE subsystem whose keyboard is to be
pushed onto the stack. Valid IDE subsystem names are:

* Browser ¢ Editor
* ClassManager = ® Message
¢ Default * Project
* Desktop '

Determines the run-time behavior of keystrokes not found
in the keyboard. If transparent is set, the next keyboard on
the stack is searched. Otherwise, the key is ignored.

ReadChar method

Reads the key that was pressed.

Types expected int ReadChar (void) -

20-8 ObjectScripting Programmer’s Guide

Return value

Description

KeyboardManager class, ResumePlayback method

This method returns either -1 (no key is waiting) or the scan value for the key
that was pressed. The high-order byte is the scan code, and the low-order
byte is the ASCII value.

ReadChar manages two queues, a local queue for Push and the queue for the
standard Windows messaging system. It first checks the local queue for any
waiting keys. If no keys are available in the local queue, it checks the
Windows message queue.

ResumePlayback method

Resumes the playback of a Record object.

Types exbected void ReéumePIayback()
" Retunvalue None
Description For ResumePluyback to work, the playback must be initiated with the Playback
member after suspending the recording with a call to PausePlayback.
ResumeRecord method
Initiates record mode on a Record object.
Types expected bool ResumeRecord (Record RecordObject)
RecordObject ~ The name of the Record object to continue recording.
Return value TRUE if is able to resume recording, FALSE otherwise.
Description New keystrokes are appended to thé end of the record buffer. The Recording

member is updated.

SendKeys method

Simulates the pressing of the keys indicated in the keyStream parameter.

KeyboardManager class 20-9

KeyboardManager class, SendKeys method

Types expected

Return value .

Description

Note »

bool SendKeys(string keyStream, bool suppresélmmediateProcessing])

keystream A series of key presses. The limit on the
number of characters in Windows 95 is 715.
There is no limit in Windows NT.

suppressImmediateProcessing ~ The default behavior is to process the keys
immediately, before the next line of script is
processed. If you include this parameter and
set it to TRUE, SendKeys delays processing of
the keys until ProcessPendingKeystrokes is
called or until the script completes execution.

TRUE if keyStream has valid syntax and can be interpreted or FALSE if
keyStream could not be turned into a series of key presses.

SendKeys takes a key or series of keys as its parameter.

Simple displayable keys are just a string of characters that are the same as the
keycaps. For example, the following is valid:

SendKeys ("hello world");

There are two separate keyboard parsers: one for processing key
assignments and the other for processing SendKeys. These processors accept
different formats for the same keys. For example, <Alf-a> is the same as %a.

It is possible, though not probable, to accidentally send a key sequence to
another application besides Borland C++ with SendKeys. This can occur if
SendKeys is executed while BCW.EXE is not active. For.example, if SendKeys
is called by a timer event or while a user is in the process of task sw1tch1ng,
the key sequence could be sent to another application.

Alt, Shift and Ctrl keys

Keys that do not have simple displayable counterparts, like A+, have a

‘special syntax.

The following table shows how to indicate Alt+keyname, Shifttkeyname and
Clrltkeyname:

reface the ey name with the percent
- character (%).
Shift key modifier Either preface the key name with the plus Shifts is either +s or §
character (+) or capitalize it.

€y modirier

Ctrlkey modifier Preface the key name with the carat Clrl+sis Ns.
character (M). ,

The SendKeys parameter is case-sensitive. /s is Ctrl+S, but AS is Ctr+Shift+S.

20-10 ObjectScripting Programmer’s Guide

KeyboardManager class, SendKeys method

%, + and A keys
To indicate the %, + and ey, precede the key name with a backslash (\)as
below. To indicate:

%, use +\ \ %
A use +\\ A

+,use +\ \+

Non-displaying keys
To simulate non-displaying keys, use a key mnemonic and enclose it in
braces ({ }).

For example, to simulate the key sequence Alt+s1 + 2 [Enter], use the following
syntax:

SendKeys ("%s1\+2{VK_ RETURN}“),

Example //Example of SendKeys
' x = new KeyboardManager () ;

/* Sends Ctrl+S and processes it immediately
x.SendKeys (""S") ;

/* Sends Ctrl+S and processes it immediately
z.SendKeys ("S", FALSE);

/* Sends Ctrl+S and delays processing
x.SendKeys("...", TRUE);

/* Processes the delayed keystrokes
X.ProcessPendingKeystrokes () ;

Key mnemonics

VK_ADD VK_F12 VK_NUMPAD2
' VK_BACK VK_F13 VK_NUMPAD3
VK_CAPITAL VK_F14 ») VK_NUMPAD4
VK_CANCEL) VK_F15 VK_NUMPADS5
VK_CLEAR VK_F16 VK_NUMPAD6
VK_CONTROL VK_F17 . VK_NUMPAD7
VK_DECIMAL VK_F18 ¢ VK_NUMPADS
VK_DELETE VK_F19 VK_NUMPAD9
VK_DIVIDE VK_F20 VK_PAUSE
VK_DOWN ' VK_F21 VK_PRINT
VK_END ‘ VK_F22) . VK_PRIOR
VK_ESCAPE VK_F23 VK_RBUTTON

KeyboardManager class 20-11

KeyboardManager ctass, StartRecord method

VK_EXECUTE VK_F24 VK_RETURN
VK_F1 VK_HELP VK_RIGHT
VK2 VK_HOME VK_SCROLL
VK_F3 ~ VK_INSERT VK_SELECT
VK_F4 VK_LBUTTON VK_SEPARATOR
VK_F5 VK_LEFT VK_SHIFT
VK_F6 VK_MBUTTON VK_SNAPSHOT
VK_F7 VK_MENU VK_SPACE
VK_F8 VK_MULTIPLY VK_SUBTRACT
 VK_F9 VK_NUMLOCK VK_TAB
© VK_FI10 VK_NUMPADO VK_NEXT
VK_F11 VK_NUMPADI VK_UP
StartRecord method
BegirLs storing keystroke sequences in a Record object. Updates the Recording
member.

Types expected bool StartRecord (Record RecordObject)
RecordObject The name of the Record object in which keys are to be recorded.
Return value TRUE if the key sequence is stored, FALSE otherwise.

Description StartRecord replaces any key sequences already stored in the Record object.

You can record to only one Record object at a time. If you attempt a
StartRecord before calling a matching StopRecord for a previous recording, the
StartRecord fails.

StopRecord method

Halts recording keystrokes previously started with StartRecord.
TypeS expected void StopRecord () N '
Return value None

Description StopRecord updates the CurrentRecord member and updates the Recording
member to FALSE.

© 20-12 ObjectScripting Programmer’s Guide

Syntax

ListWindow class

The ListWindow class implements and manages list windows.

ListWindow(iﬁt Top; int Left, int Height, int Width, string Caption, bool MultipleSelect, bool Sorted,
string[] InitialValues)

Top, Left, Height, Width Initial coordinates of the list.

Caption Text to be displayed in the list title.
MultipleSelect Determines whether the list will support multiple
selections.
Sorted Determines whether new additions to the list are put
' in their sorted order.
InitialValues An array of strings specifying the initial contents of
‘ the list. '
Properties
string Caption Read-write
int Count Read-only
int Currentindex Read-only
[|Data Réad-only
k int Height Read-write
bool Hidden Read-write
bool MultiSelect Read-only

ListWindow class 21-1

ListWindow class, ListWindow class description

bool Sorted Read-only-
int Width Read-write

Methods

void Add(string newEl, int offset)
void Clear()

void Close()

void Execute()

int FindString(string toFind)
string GetString(int offset)

void Insert()

bool Remove(int offset)

Events

void Accept()

void Cancel()

void Closed()

void Delete()

bool KeyPressed(string keyName)
void LeftClick(int xPos, int yPos)
void 'Move()

void RightClick(int xPos, int yPos)

ListWindow class description

ListWindow objects create a list window. A list window is a list view that
displays a list of selectable items. ListWindow objects control:

The size and position of the list

The contents of the list

The number of items in the list
Finding and getting strings in the list
Opening and closing the list

21-2 ObjectScripting Programmer’s Guide

ListWindow class, Caption property

Caption property

The title of the list window.
Access Read-write

Type expected string Caption

Count property

The number of elements in the list.
Access Read-only

Type expected int Count

Currentindex property

Contains the zero-based index of the currently highlighted list element, or -1
if nothing is selected.

Access Read-only

Type expected int Currentindex

Data property

Contains an array of strings that represent the contents of the list.
Access Read-only

Type expected [|Data

Height property

Contains the height of the list window in pixels.

Access Read-write

Type expected int Height

ListWindow class 21-3

ListWindow class, Hidden property

Hidden property

Determines whether the list window can be removed from the display;
Access Read-write
Type expected bool Hidden

Description Hidden only has meaning after the Execute method has been called and before
the list window is closed. ,

MultiSelect property

If TRUE, allows multiple selections from the list. If FALSE, only a smgle
selection can be made.

Access Read-only

Type expected bool MultiSelect

Sorted property

If TRUE, the elements in the list are sorted as new elements are added. If
FALSE, elements appear at the offset given in the call to the Add method.

Access Read-only

Type expected bool Sorted

Width property

Contains the width of the list window in pixels.
Access Read-write

Type expected int Width

Add method

Adds the string newEl to the list at the position designated by offset.

21-4 ObjectScripting Programmer’s Guide

ListWindow class, Clear method

Types expected void Add(string newEl, int offset)

newEl The string to add to the list.
offset The position to add the string to. offset is zero-based. offset should
- not be higher than Count, or else the new element will not appear
in the list. offset is ignored if the list is sorted.
Returnvalue None

Description Add only has an effect after the ListWindow has been opened using the
: Execute method.

Clear method

Removes all elements from the list.
Types expected void Clear()

Return value None

Close method

Removes the ListWindow from the screen.
‘Types expected void Close()

Return value None

Execute method

Creates and displays the ListWindow.
Types expected void Execute()

Return value None

FindString method

Finds the specified string.
Types expected int FindString(string toFind)

stringToFind The string to find.

ListWindow class 21-5

ListWindow class, GetString method
Return value ' The one-based offset of the string or zero if not found.

Description FindString only has an effect after the ListWindow has been opened using the
Execute method.

GetString method

Returns a string.
Types expected ~ string GetString(int offset)
offset The location of the string to get.

Return value The string at the specified offset or “ “ if the offset is illegal.

Insert method

Invoked when the user presses Insert. The default action is to do nothing.
Types expected void Insert()

Return value None

Remove method

Removes the element from the specified offset.

Types expected bool Remove(int offset)

offset The‘position to remove the string from. offset is zero-based.
Return value TRUE if the element was removed, FALSE otherwise.

Description Remove only has an effect after the ListWindow has been opened using the
Execute method.

Accept event

Raised when the user presses Enter or double-clicks on a list element. Default
action is to close the list.

Types expected void Accept()

21-6 ObjectScripiing Programmer’s Guide

ListWindow class, Cancel event

Return value None

Cancel event

Raised when the user presses Escape. Default action is to close the list.
Types expected void Cancel()

Return value None

Closed event

Raised when the ListWindow is destroyed.
Types expected void Closed()

Return value None

Delete event

Raised when the user presses Delete. Default action is to do nothing.

Types expected void Delete()

Return value None

KeyPressed event

Raised When the user presses a key other than Delete, Insert, Accept, or Cancel.
Types expected bool KeyPressed(string keyName) 4
keyName Indicates a key in the standard key format (<a> or <Ctrl-a>).
Returnvalue TRUE indicates that the script has processed the key and that no further

processing is desired; FALSE indicates that normal processing should take
place. ‘

LeftClick event

Raised when» the user left-clicks the ListWindow.

ListWindow class - 21-7

ListWindow class, Move évent‘

Types expected void LeftClick(int xPos, int yPos)
‘ ~ xPos The x-position of the mouse at the time of the left-click.
yPos The y-position of the mouse at the time of the left-click.
Return value None |
Move event
- Raised when the selection in the list is changed. Default action is to do
nothing.
Types expected void Move()
Return value None

| RightClick event

Types expected

Return value

Raised when the user right-clicks the ListWindow.
void RightClick(int xPos, int yPos)

xPos The x-position of the mouse at the time of the right-click.
yPos The y-position of the mouse at the time of the right-click. -

None

21-8 ObjectScripting Programmer’s Guide

F
o
g

PopupMenu class

The PopupMenu class manages pop-up menus. In the Borland C++ IDE, pop-
up menus are known as SpeedMenus.

Syntax PopupMenu(int Top, int Left, string [] InitialValues)

Top, Left - Initial coordinates of the pop-up menu.

InitialValues An array of strings specifying the initial contents of the pop-up
menu.

Properties

[] Data Read-only

Methods

void Append(string newChoice)
int FindString(string toFind)
string GetString(int offset)

bool Remove(int offset)

string Track()

Events

None

PopupMenu class 22-1

PopupMenu class, PopupMenu class description

PopupMenu class description

PopujaMenu objects create create a pop-up menu. A pop-up menu pops up-
and displays a list of menu choices. PopupMenu objects control:

e The size and position of the pop-up menu

The contents of the pop-up menu

The number of items in the pop-up menu
Finding and getting strings in the pop-up menu
Opening and closing the pop-up menu

Data property

Contains an array of strings that specifies the choices that will be offered on
the pop-up menu.

Access Read-only

Type expected | Déta

Append method

Appends a new choice to the pop-up menu.
Types expected void Append(string newChoice)
newChoice The name of the new menu choice.

Return value None

FindString method

Looks for the specified menu choice.
Types expected it FindString(string toFind)
l toFind The name of the string to find.

Return value The one-based offset of the string found or zero if not found.

GetString method

Returns a menu choice.

22-2 ObjectScripting Programmer’s Guide

PopupMenu class, Remove method

Types expected string GetString(int offset)
offset The location of the string to get. offset is zero-based.

Return value The string at the specified offset or “” if the offset is illegal.

Remove method

Removes the specified menu choice.

Types expected bool Remove(int offset)

offset ' The location of the menu choice to remove. offset is zero-based.

Return value TRUE if the element is removed, FALSE, otherwise.

Track method

' Displays the pop-up menu to the user and tracks responses.
Types expected string Track()

Return value The string selected or the empty string (“ ”) if the user cancels the menu.

PopupMenu class 22-3

22-4 ObjectScripting Programmer’s Guide

Syntax

Chapter

| ProjectNode class

Manages the nodes of a project.

ProjectNode(nodeName, EditView associatedView)

A string indicating the full name of the node (as in

nodeName
MyProg.exe). If no name is specified, ProjectNode uses the
top level IDE node.

associated View associated View is optional. If given and if the specified
view is associated with a particular project node, the node
that represents the EditView is used and nodeName is
ignored. To associate an EditView with a ProjectNode,
create the EditView. (To create an EditView, double-click -
the node or press Enterin the Project window.)

Properties

[I ChildNodes Read-only

string IncludePath Read-only

string InputName Read-only

bool IsValid Read-only

string LibraryPath Read-only

string Name Read-only

bool OutOfDate Read-write

string OutputName

Read-only

ProjectNode class 23-1

ProjectNode claxss, ProjectNode class description

string SourcePath Read-only
string Type Read—only
~ Methods

bool Add(string nodeName |, string type])
bool Build(bool suppressUl)

bodl Make(bool suppressUl)

void MakePreview()

bool Remove([string nodeName])

bool Trané|ate(bool suppressUl)

Events

void Built(bool status)
void Made(bool status)

void Translated(bool status)

ProjectNode class description

Each node has its own ProjectNode class instance. ProjectNode class members:

Display child nodes

Indicate the node’s source, input,.output, and library source paths
Indicate if a specified node is valid

Indicate the type of node

Add nodes to and removes nodes from a project

Build or make a node

Translate a node

ChildNodes property

o © & o o o o

Indicates all the child nodes of the current node.
Access Read-only
Type expected [] ChildNodes

Description ChildNodes consists of an array of strings containing the InputNames of the .
child nodes.

23-2 ObjectScripting Programmer’s Guide

ProjectNode class, IncludePath property

IncludePath property

Indicates the path to use for include files for the currently loaded project.
Access Read-only

Type expected string IncludePath

InputName property

The node s relative path name of the input file including extension, as in
Myfile.cpp or SOURCE\MYFILE.CPP.

Access Read-only

Type expected string InputName

IsValid property

Ind1cates whether a node is valid.

Note A node becomes invalid if the project file it is associated with is closed or if
the node is deleted.

Access Read-only

Type expected . bool IsValid

LibraryPath property
Indicates the path to use for libraries for the currently loaded project.
Access Read-only

Type expected string LibraryPath

Name property

Indicates the node’s relative path name with an extension, as in Myfile.cpp or
SOURCE\MYFILE.CPP.

Access Read-only

ProjectNode class 23-3

ProjectNode class, OutOfDate property

Type expected stﬁng Name

OutOfDate property

Can be checked, or set, to determine the date of a node.
Access Read-write

Typeexpeéted bool OutOfDate

Description OutOfDate is used by the Make engine to determine if a node needs to be
rebuilt.

OutputName property

Indicates the relative path name of the output file including extension, as in
MYFILE.CPP or Source\ Myfile.cpp.

Access Read-only
Type expected string OutputName

Description You can always generate the absolute file name by prepending the result of
IDEApplication.CurrentDirectory to InputName, as in:

absName = IDE.CurrentDirectory + node.InputName,

SourcePath property

Indicates the path where the source files for the curréntly loaded project
reside. '

Access Read-only

Type expected string SourcePath

Type property

Indicates the type of node (.CPP, H, SourcePool .LIB, and SO on).
Access Read-only

Type expected string Type

23-4 ObjectScripting Programmer"s Guide

ProjectNode class, Add method

| Description When the node is invalid, Type contains the empty string (“”).

Add method

Adds a node to this project node.

Types expected bool Add(string nodeName [, string type])

nodeName The name of the node to add.

type _The type of the node, such as .CPP, .DEF or .RC. If type is
omitted, it is derived from the nodeName.

Return value TRUE if the node is added, FALSE, otherwise

Build method

- Causes the node to be built, made, or translated by the IDE’s Make engine
according to the rules of the node.

Types expected bool Build(bool suppressul)

suppressUl If TRUE, the build status dialog will not be dlsplayed during
- the build process.

Return value TRUE if the node is built successfully, FALSE, otherwise.

Make method

Causes the node to be built, made, or translated by the IDE’s Make engine
according to the rules of the node if the node’s OutOfDate property is TRUE.

Types expected bool Make(bool suppressUl)

suppressUl If TRUE, the build status dialog will not be chsplayed during
: the build process.

Return Value TRUE if the node is made successfully, FALSE, otherwise:

MakePreview method

Provides information about what files will be processed if you Make or Build
this node.

Types expected void MakePreview()

ProjectNode class 23-5

ProjectNode class, Remove method

Returnvalue None
Description MakePreview performs the same dependency checks as a make and generates
a report to the Message window listing the nodes that need to be rebuilt to
keep the proyect up to date.
Remove method
Removes the node from the project, if the name of the node is specified.
Types expected bool Remove([string nodeName]) |
| nodeName The name of the node to remove from the project. If nodeName is
not specified, Remove removes this node from the project.
Return value TRUE if the node is removed, FALSE, otherwise
Translate method
Causes the node to be built, made, or translated by the IDE’s Make engine
according to the rules of the node.
Types expected bool Translate(bool suppressul)

Return value

suppressUl If TRUE, the build status dialog will not be displayed during
the build process.

TRUE if the node is translated successfully, FALSE, otherwise

Built event
Raised after a build has been performed on the node. The event’s default
behavior is to do nothing. :
Types expected void Built(bool status)

Return value

status Describes the result of the build. status is set to TRUE if the
build completed successfully or with wammgs, and FALSE if
there were errors.

None

23-6 ObjectScripting Progr'ammer’s Guide

Made event

ProjectNode class, Made event

Types expected

Return value

Raised after a make has been performed on the node. The event’s default
behavior is to do nothing.

void Made(bool status)

status Describes the result of the build. status is set to TRUE if the
build completed successfully or with warnings, and FALSE if
there were errors.

None

Translated event

Types expected

Return value

Description

Raised after a translate has been performed on the node. The event’s default
behavior is to do nothing.

void Translated(bool status)

status Describes the result of the build. status is set to TRUE if the
build completed successfully or with warnings, and FALSE if
there were errors.

None

When the user performs a make or a build, the ProjectNode object receives a
Translated event before it receives the Built or Made event.

ProjectNode class 23-7

23-8 ObjectScripting Programmer’s Guide

Syntax

Chapter

Record class

Creates an empty Record object into which keystrokes are saved.

Record([string RecordName])

RecordNume The name of the Record object. If RecordName is not specified, a
default name is automatically a531gned (“Record1”, “Record2”,

and so on).
Properties
bool IsPaused Read-only
bool IsRecording Read-only
int KeyCount - Read-only
string Name Read-write

Methods

void Append(int KeyCode)
string GetCommand(int offset)
int GetKeyCode(int offset)
Record Next(void)

Events

None

Record class 24-1

Record class, Record claés description

Record class description

Because Record objects can be built programatically (outside the context of
the keyboard manager), recordings can be saved to disk and restored, and
keyboard sequences can be simulated through script.

KeyboardManager can also be used for key recording.
KeyboardManager.StartRecord and KeyboardManager.StopRecord members
populate a Record object with key sequences. An unlimited number of Record
objects can be named and iterated.

IsPaused property

TRUE when KeyboardManager.PauseRecording is called in order to allow users
to enter keystrokes that will not become part of the recordmg FALSE
otherwise.

Access Read-only

Type expected bool IsPaused

IsRecording property

TRUE when the KeyboardManager begins storing keystrokes to the Record
object in response to a call to KeyboardManager.StartRecord. FALSE otherwise.

Access Read-only

Type expected bool IsRecording

KeyCount property

The number of keystrokes stored in this Record object.
Access Read-only

Type expected int KeyCount

Name property

The name of the Record object. This is a read-write property.

Type expected string Name

24-2 ObjectScripting Programmer’s Guide

Record class, Append method

Append method

Types expected

Return value

Description

Appends a keycode to the record buffer.
void Append(int KeyCode)

keyCode The keycode to append.
None

Append allows empty Record objects to be built programatically or added to
through a script.

GetCommand méthod

Types expected

Return value

Description
Note

Returns information describing a key stored in the Record object.

string GetCommand(int offSet)

offSet The offset to examine.

Because the meanings of the stored keystrokes can be alteted by the
execution of the recording, the information returned is transitory. For
example, if the recording switches to another subsystem with a different key
map, the stored keystrokes would be different than expected. The return
values reflect the values as of the last run.

GetCommand is intended to be used after a Record object has been executed.

Keys are stored in the order which they are recorded. The first key in the
recording is at offset 0.

GetKeyCode method

Note

Types expected

Return value

This method returns information describing a key stored in the Record object.

Keys are stored in the order which they are recorded. The first key in the
recording is at offset 0.

int GetKeyCode(int offset)
offSet The offset to examine.

The keystroke of the key at the specified offset, or zero if the offset is illegal.

Record class 24-3

Record class, Next method

Next method

As Record objects are created, they are. automatlcally linked together. ThlS
method provides a mechamsm for iterating the recordings.

Types expected Record Next(void)

Return value . The next Record object or NULL‘indicating the end of the list.

24-4° ObjectScripting Programmer’s Guide

.

ScriptEngine class

A ScriptEngine object is responsible for carrying out the action in script files.

Syntax ScriptEngine()

Properties

bool AppendToLog Read-write
int DiagnosticMessageMask Read-write
bool DiagnosticMessages Read-write
string LogFileName ~ Read-write
bool Logging Read-write
string ScriptPath Read-write
string StartupDirectory Read-only
Methods

int Execute(string commandLine, bool temporary)

string Execute(string commandLine, bool temporary)
bool IsAClass(string className)

bool IsAFunction(string functionName)

bool IsAMethod(string className, string methodName)
bool IsAProberty(string className, string propertyName)

bool IsLoaded(string scriptFileName)

ScriptEngine class 25-1

ScriptEngine class, ScriptEngine class description

bool Load(string scriptFiIeName)

0 Modules(bool libraryOnly)

bool Reset(int resetWhat)

void SymbolLoad(string fileName, string symbols)
booi Unload(string scriptFileName)

Events

void Loaded(string scriptFileName)

void Unloaded(string scriptFileName)

ScriptEngine class description

Note

A ScriptEngine object loads, unloads, executes, maintains modules and keeps
error information on scripts. A ScriptEngine object can be created in any
script; however, a system wide instance exists.

To create a local instance of a ScriptEngine object, use the following syntax:
declare ScriptEngine scriptEngine;

Once this statement is in yoﬁr script file, you can use the ScriptEngine object
as in the following example:

Function()
{
scriptEngine.Load("ascript");

}
To reuse the system wide instance, include the following statement in your

- script file:

import scriptEngine;

Declaring the script engine locally provides slightly better performance than
importing it.

AppendToLog property

Access

Type expected

Determines whether the next message logged to the log file name should
replace an existing log file (if one exists) before performing the write.

Read-write

bool AppendToLog

25-2 ObjectScripting ’Programmer"s Guide

ScriptEngine class, DiagnosticMessageMask property

Description AppendToLog is used when Logging is on. Once the write is completed,
AppendToLog is set to TRUE, causing subsequent messages to be appended to
the log.

DiagnosticMessageMask property
| - Controls which types of diagnostic messages to record.
Access Read-write |
Type expected int DiagnosticMessageMask

Description DidgnosticMessageMusk can be any combination of:

OBJECT_DIAGNOSTICS
METHOD_DIAGNOSTICS
MEMBER_DIAGNOSTICS
ARGUMENT_DIAGNOSTICS
LANGUAGE_DIAGNOSTICS
MODULE_DIAGNOSTICS
FULL_DIAGNOSTICS
NO_DIAGNOSTICS

DiagnosticMessages property

Controls whether diagnostic messages should be recorded in the Message
window. ' '

Access Read-write

Type expected bool DiagnosticMessages

LogFiIeName property

The name of the log file. Defaults to \SCRIPT.LOG.

Access Read-write

Type expected string LogFileName

Logging property

- If TRUE, séript messages will be stored in the log file.

ScriptEngine class 25-3

ScriptEngine class, ScrlptPath property
Access Read-write

Type expected bool Logging

ScriptPath property

Holds a string containing the names of the one or more directories to search -
for script files. Each directory path is separated from the others by a
semicolon (;).

Access Read-write

Type expebted string ScriptPath

StartupDirectory property

The name of the directory in which the file STARTUP.SPX was found during
initialization. :

Access Read-only

Type expected string StartupDirectory

Execute method

Executes the specified command.

Types expected int Execute(string commandLine, bool temporary)
~ string Execute(string commandLine, bool temporary)

- commandLine The command to execute. commandLine must be a
valid cScript command.

temporary If temporary is TRUE, the command is run within
a new context and must use import to access
global variables declared in another module. Any
global variables it creates will be used for the
purposes of the command and then discarded.

If temporary is FALSE (the default), the command
is executed with the scope of Inmediate mode
and has automatic access to globals from other
modules. In this case, any variables created by the
command continue to exist after the command
has run and can be accessed from Immediate
mode.

25-4 ObjectScripting Programmer’s Guide

ScriptEngine class, IsAClass method

Return value The value appropriate to whatever commandLine evaluates to. If that value is
an object, it is converted to a string

IsAClass method

Determines if cScript has seen the class declaration for the specified class.

Types expected bool IsAClass(string className)

className The name of the class. IsAClass searches for declaration of this
class

Return value TRUE if instances of the class can be constructed, FALSE, otherwise

IsAFuhction method

Determines if cScrlpt has seen the function declaration for the specified
function.

Types expected bool IsAFunction(string functionName)

functionName The name of the function. IsAClass searches for declaration
of this function.

Return value TRUE if the function can be called, FALSE, otherwise

IsAMethod method

Determines if the specified class has as a method with the specified name.

Types expected bool IsAMethod(string className, string methodName)

className The name of the class. IsAClass searches in this class for
the method specified in methodName.

methodName The name of the method to search for.

Return value TRUE if the method is a member of the class, FALSE, otherwise

IsAProperty method

Determines if the specified class has as a property with the specified name.

ScriptEngine class 25-5

ScriptEngine ctass, IsLoaded method

Types expected

Return value

bool IsAProperty(string className, string propertyName)

className The name of the class. IsAClass searches in this class for the
property specified in propertyName.

propertyName ~ The name of the property to search for.

TRUE if the property is a membef of the class, FALSE, otherwise

IsLoaded method

Types expected

Return value

Determines whether the specified script file has been loaded, or if the file
(either the source or the binary) can be found in the ScriptPath.

bool IsLoaded(string scriptFileName)
scriptFileName The name of the script file to load.

TRUE if the file is loaded or can be loaded, FALSE, otherwise

Load method

Types expected

Return value

Description

Loads the specified script file. If not already loaded, the file (either the source
or the binary) is searched for using the ScriptPath.

bool Load(string scriptFileName)
scriptFileName The name of the script file to load.

TRUE if the script was located and loaded, FALSE if the script file was not
found

If the script file to be loaded has already been loaded into memory, Load
performs an in-place Reset. (The module’s position in the module chain is not
affected, but all its variables are restored to their original state.)

The on handlers are disconnected or reconnected. All variables local to the
module are released and reset. Any code at the module level scope is
executed again. ’ :

Modules method

Finds all the loaded modules.

25—6V ObjectScripting Programmer’s Guide

ScriptEngine class, Reset method
Types expected [] Modules(bool ModuleName)

ModuleName One of the following:

e SCRIPT_MODULES For all modules
e LIBRARY_MODULES For only library modules

Return value An array of strings containing the names of the loaded modules

Reset method

Resets the script session by discarding all modules that match the specified
value. If no value is supplied, the method does nothing.

Types expected bool Reset(int resetWhat)

resetWhat The module to reset. Can be either LIBRARY MODULE or
SCRIPT_MODULE

Return value TRUE if the session is reset, FALSE, otherwise

SymbolLoad method

Provides hints about where the definition of a given symbol might be. For
example:

SymbolLoad ("ScriptFile", "Foo,' Bar, jump")
Types expected void SymbolLoad(string fileName, string symbols)

ileName A script file that should be loaded if the lookup for any of the
P , P y
listed symbols fails.

symbols A comma delimited string of the symbols which may be
resolved by loading fileName. .
Return value None

Description At run time when the Script Engine tries to find a class, function, method, or
\ global variable that it doesn’t know about, it consults an internal table
constructed by calls to this method.

Unload method |

Tries to unload the specified script file. Future references from other scripts
to variables, functions or classes defined in the unloaded script file are no
longer valid.

ScriptEngine class 25-7.

ScriptEngine class, Loaded event
Types expected bool Unload(string scriptFileName)
scriptFileName - The name of the script file to unload.

Return value FALSE when the script file is not found to have been loaded, TRUE,
otherwise

Loaded event

Raised whenever a new script module is successfully loaded.
Types expected void Loaded(string scriptFileName)
scriptFileName The name of the script file that was loaded.

Return value None

Uhloaded event

Raised when when a module has been unloaded.
Types expected void Unloaded(string scriptFileName)
sbriptFileName The name of the script file that was unloaded.

Return value None

25-8 ObjectScripting Programmer’s Guide

Syntaxk

SearchOptions class

The SearchOptions class members search for text and error locations in your

 script file.

SearchOptions()

Properties

bool CaseSensitive
bool FromCursor

bool GoForward

bool PromptOnReplace
bool RegularExpression
bool ReplaceAll

string ReplaceText
string SearchReplaceText
string SearchText

bool WholeFile

bool WordBoundary

Methods

Read-write

Read-write
Read-write
Read-write
Read-write
Read-write
Read-write
Read-write
Read-write
Read-write

Read-write

void Copy(SearchOptions optionsToCopyFrom)

SearchOptions class

26-1

SearchOptions class, SearchOptions class description -

Events

None -

SearchOptions class description

SearchOptions class members search and replace occurrences of text strings.
SearchOptions class members allow:

Case sensitive searching

Searching from the current cursor position
Searching forward or backward in the file
Confirmation before text replacements

Use of regular expressions in the search
Replacement of all matching text :
Searching and replacing in the same operation

| CaseSensitive property

If TRUE, a case-sensitive search is performed.
Access Read-write

Type expected bool CaseSensitive

FromCursor property

If TRUE, the search is made from the current cursor position.
Access Read-write

Type expected bool FromCursor

GoForward property

If TRUE, the search is “forward” towards the end of the file.
Access Read-write

Type expected bool GoForward

26-2 ObjectScripting Programmer’s Guide

SearchOptions class, PromptOnReplace property

PromptOnReplace property

If TRUE, you are prompted (beforé a replacement is made) to confirm each
instance where the SearchReplaceText will be replaced by the ReplaceText.

Access Read-write

Type expected bool PromptOnReplace

RegularExpression property

If TRUE, regular expressions are used in matching the SearchText or
SearchReplaceText with the text to be searched.

Access Read-write

Type expected bool RegularExpression

ReplaceAll property

If TRUE, all text which matches the SearchReplaceText is replaced with the
ReplaceText without any prompting for confirmation.

Access Read-write

Type expected bool ReplaceAll

ReplaceText property

Contains text which replaces instances of the SearchReplaceText strmg(s)
found in the text being searched.

Access Read-write

Type expected string ReplaceText

SearchReplaceText property

Contains the text to search for in a search and replace operation (not a search-
only operation).

Access Read-write

SearchOptions class 26-3

SearchOptions class, SearchText property

Type expected

string SearchReplaceText

SearchText property

Access

Type expected

Contains the text to search for in a search operation (not a search and replace
operation).

Read-write

string SearchText

WholeFile property

Access

Type expected

If TRUE, the whole file is searched for SearchText or SearchReplaceText,
regardless of the cursor position.

Read-write

bool WholeFile

WordBoundary property

Access

Type expected

If TRUE, a match between SearchText or SearchReplaceText and the text being
searched only occurs if the characters in SearchText make up an entire word
(that is, they are surrounded by whitespace) and are not embedded in a
larger word.

Read-write

bool WordBoundary -

Copy method

Types expected

Return value

Creates a copy of the current SearchOptions.

void Copy(SearchOptions optionsToCopyFrom)
optionsToCopyFrom The options to copy.

None

26-4 Objethcriptin,g Programmer’'s Guide

StackFrame class
StackFrame class members display information about the call stack.

Syntax StackFrame(int howFarBack)

howFarBack The number of stack frames to go back through.
If howFarBack is 0, the stack frame for this call is retrieved.

If howFarBack is 1, the stack passed to this function’s caller is
retrieved, and so on.

When howFarBack is less than the depth of the stack, the object is

not valid. - . '
Properties
int ArgActual Read-only
int ArgPadding Read-only
string Caller - Read-write
bool IsValid ~ Read-only

Methods

StéckEIement GetParm(int parmNumber)

string IngType(int arg)

bool SetParm{int parmNumber, newValue)

B

StackFrame class 27-1

- StackFrame class, StackFrame class description

Events

None

StackFrame class description

StackFrame class members display information about the call stack, the
sequence of function calls that brought your script program to its current
state. It deciphers all active functions and their argument values and displays
them in a readable format.

The most recently called function displays at the top of the list, followed by
its caller and the previous caller to that. The list continues to the first function
in the calling sequence, which displays at the bottom of the list.

StackFrame class members:
¢ Return the number of arguments that were actually passed to a method.

¢ Indicate the number of objects cScript had to pad or truncate from the
original call stack.

« Indicate the name of the method owning the stack frame.
¢ Indicate if the stack frame is valid.

* Return the object at a specified stack frame offset.

ArgActual property

Indicates the number of objects on the cScript stack belonging to this call
frame.

Access Read-only

Type expected int ArgActual

Description ArgActual is the number of arguments that were actually passed to a method.
cScript either pads or truncates arguments as necessary, so it must keep track
of the number actually passed.

For example, if you have a call in your code to
MyMethod ("hi");
its declaration shows the following;:

MyMethod(first, second, third, fourth){
print first, second, third, fourth;
}

27-2 ObjectScripting Program‘mer's Guide

StackFrame class, ArgPadding property

If you were to insert x = new StackFrame(0); into the call to MyMethod, the
value of x.ArgActual would be 1 since only one argument is passed.

ArgPadding property

Indicates the number of objects cScript had to pad or truncate from the

original call stack to resolve any discrepancy between the number of

arguments in the declaration and the number of arguments in the call.
Access Read-only

Type expected int ArgPadding

Caller property

Indicates the name of the method owning the stack frame.
- Access Read-only

Type expected string Caller

Description Caller contains the empty string (“”) if the call is a top level one. When the
value is set, it is reflected in subsequent StackFrame calls until the current
stack frame is popped off, at which point the value of Caller is reset to its
original value.

IsValid property

FALSE if the object was constructed with an invalid stack frame depth or if
the stack frame has gone out of scope. It is TRUE otherwise. '

Access Read-only

Type expected - bool Isvalid

IngType method

Returns the type of argument.
Types expected string IngType(int arg)

arg The specified argument.

StackFrame class 27-3

_StackFrame class, GetParm method

Return value A descriptor for the argument specified. If arg is greater than or equal to
- ArgActual, “Out of range is returned.

GetParm method

Returns the object at the specified stack frame offset.

Types expected StackElement GetParm(int parmNumber)

parmNumber — The number of the parameter to return.

Return value The object at the specified stack frame offset.

| SetParm method

Sets the value of the object at the specified stack frame offset.

Types expected bool SetParm (int parmNumber, newVaIue)

parmNumber The value of the object to change.
newValue The object’s new value.
" Returnvalue TRUE when the value was successfully changed. FALSE if the StackFrame is

currently invalid or if parmNumber is not within the range of arguments
specified for the StackFrame.

27-4 ObjectScripting Programmer’s Guide

Syntax

String class

The String object manipulates text.

String(string theText)

theText The text to declare as a text object.
Properties

" int Character Read-write
int Integer " Read-write

bool IsAlphaNumeric Read-only

int Length Read-only
string Text Read-write
Methods

- String Compress()

bool Contains(string charactersToLookFor, int mask)
int Index(string substr, int direction])

String Lower()

String SubString(int startPos], int length])

String Trim([bool fromLeft])

String Upper()

String class 28-1

String class, String class description

Events

None

String class description

The String class manipulates text characters independently of each other. To
store and manipulate text characters as a group, delcare the text as a string
(note the lower case “s”).

Class members can be used to:
o Get the first character of the text.

¢ Get the numeric equivalent of the beginning of the text. (Useful for
converting text to numeric values.)

e Test if the first character is alphanumeric.

* Return the length of the text.

e Return the text object as a string versus a String.

¢ Convert multiple whitespace characters to one whitespace character.
¢ Find any number of characters within the text.

¢ Return the offset of a particular character.

* Lower case the text.

¢ Return a portion of the text as a String.

¢ Remove whitespace from either the right or left of the text.

¢ Upper case the text.

Character property

Indicates the integer value of character 0 of the string.
Access Read-write

Type expected it Character

Description = When the value of Character is set, it changes the whole string to the new
value. '

- For example, if you start with a string Str containing the text “FOO”, the
value of Str.Text is “FOO” and the value of Str.Character is “F’. If you then set
the value of Str with Str.Character = 'X', the value of Str.Text is now “X” and
not “XOO”. :

28-2 Ob"jectScripting Programmer’s Guide

String class, Integer property

Integer property

Access

Type expected

Indicates the numerical equivalent of the character string that this object
represents, or zero if the string does not contain numerals.

Read-write

int Integer

IsAlphaNumeric property

Access

Type expected

TRUE if the text of the String is made up entirely of alphanumeric characters
(determined by checking the system’s current locale). FALSE, otherwise.

Read-only

bool IsAlphaNumeric

Length property

Access

Type expected

Calculates length of the string (equivaleﬁt to strlen). Does not include the
NULL.

Read-only

int Length

Text property

Access

Type expected

The character string that this object represents.
Read-write

string Text

Compress method

Types expected

Return value

Compresses a string.

String Compress()

A new string consisting of String with whitespace removed.

String class 28-3

String class, Contains method

" Contains method

Searches String for the specified characters.

Types expected bool Contains(string charactersToLookFor, [int mask])

charactersToLookFor The characters to search for in String.
mask : Any of the following constants:

'BACKWARD_RIP Rip from left to right.

INVERT_LEGAL_CHARS Interpret the string as the inverse of the
' string you wish to use. In other words,

specify “t” to mean any ASCII value
between 1 and 255 except ‘t'.

INCLUDE_LOWERCASE_ALPHA_CHARS Append the characters

' abcdefghi jkimopqrstuvwzyz to the string.

INCLUDE_UPPERCASE_ALPHA_CHARS Append the characters

ABCDEFGHIJKLMNOPQRSTUVWXYZ to the string.

INCLUDE_ALPHA_CHARS Append both uppercase and lowercase
alpha characters to the string.

INCLUDE_NUMERIC_CHARS Append the characters 1234567890 to the
string.) .

INCLUDE_SPECIAL_CHARS Append the characters® - = []\ ;
T T A 2 O R O B L

> ? to the string.

Return value TRUE if the string contains one of the characters specified, FALSE, otherwise

“Index method

Scans the string for an embedded occurrence of the specified substring.

Index does not accept regular expressions.
Types expected int index(string substr], int direction])

substr The string to search for.
direction The direction to search in. One of:

¢ SEARCH_FORWARD (default)
-« SEARCH_BACKWARD

Return value 0 if substr is not found or, if found, the one based offset + 1 of the substring |

28-4 ObjectScripting Programmer’'s Guide

String class, Lower method

Lower method

Translates String to lowercase.
Types expected String Lower()

Return value A new string consisting of String in lowercase text.

‘SubString method

This method returns a new string consisting of the specified substring.

Types expected String SubString(int startPos], int length])

startPos The starting point of the substring in the string.

length The number of characters in the substring. Defaults to
MAX_EDITOR_LINE_LEN (1024). If length is not specified,
SubString continues to the end of the string.

Return value A new string consisting of the specified substring.

Trim method

Trims whitespace from String.

Types expected String Trim([bool fromLeft])

fromLeft If TRUE, trims leading whitespace. If FALSE, trims trailing
whitespace.

Return value A new string consisting of String without trailing or leading whitespaces
(depending on fromLeft selection).

Upper method

Translates String to uppercase.
Types expected String Upper()

Return value A new string consisting of String in upper case text.

String class 28-5

28-6 ObjectScripting Programmer’s Guide

TimeStamp class

TimeStamp indicates the current time. It initializes to the system time at the
time of construction. '

Syntax TimeStamp()

Properties

int Day Read-write
int Hour Read-write
int Hundredth Read-write
int Millisecond Read-write
int Minute Read-write
int Month ’ Read-write
int Second Read-write
int Year Read-write
Methods

int Compare(TimeStamp tstamp)
string DayName()
string MonthName()

TimeStamp class 29-1

TimeStamp class, Day property

Events

None

Day property

Indicates the current day in the range of 0 (Sunday) to 6 (Saturday).
Access Read-write

Type expected int Day

Hour property
) Indicates the current hour in the range of 0 (Midnight) to 23 (11:00 PM).
Access Read-write

Type expected it Hour

Hundredth property

Indicates the current hundredth of an hour in the range of 0 to 99.
Access Read-write

Type expected int Hundredth

Millisecond property

Indicates the number of milliseconds after the current second in the range of-
0 to 999. ‘

Access Read-write

Type expected int Millisecond

Minute property
 Indicates the number of minutes after the current hour in the range of 0 to 59.

Access Read-write

29-2 ObjectScripting Programmer’s Guide

TimeStam‘p class, Month property

Type expected int Minute

Month property

Indicates the current month of the year in the range of 0 (January) to 11
(December). , ‘

Access Read-write

Type expected int Month

Second property

Indicates the number of seconds after the current minute in the range of 0 to
59.

Access Read-write

Type expected int Second

Year property

Indicates the current year.
Access Read-write

Type expected int Year

Compare method

Compares the time properties of the calling TimeStamp object with those of
the tstamp argument.

Types expected int Compare(TimeStamp tstamp)
tstamp The properties to compare TimeStamp to.

Return value -1 if the calling TimeStamp is newer than tstamp, 0 if the calling TimeStamp is
the same age as tstamp, and 1 if the calling TimeStamp is older than tstamp.

TimeStamp class 29-3

TimeStamp claés, DayName method

DayName method

Returns the name of the current day of the week.
Types expected string DayName()

Return value Monday, Tuesday, and so on

MonthName method

Returns the name of the current month.
Types expected string MonthName()

Return value January, February, and so on

29-4 ObjeyctScripting Programmer’s Guide

TransferOutput class

Internally created by the IDE after processing a transfer tool, TransferOutput
is passed to the IDE event TransferOutputExists.

Syntax TransferOutput()

Properties

int Messageld Read-only
string Provider Read-only

Methods

string ReadLine()

Events

None

TransferOutput class description

An object of type TransferOutput is internally created by the IDE whenever a
transfer operation is performed.

When the IDE starts a transfer, it outputs a message to the Message window
saying “Transferring to ToolName...”

TransferOutput class 30-1

TransferOutput class, Messageld property

When a transfer happens, the IDE captures all its output and stores it in an
internal buffer. The contents of this buffer may be accessed by using
TransferOutput.ReadLine. This method returns the next line of text until the
stream is exhausted, at which point it returns NULL.

The IDE contains built-in processing for tools it commonly transfers to.
~ These tools include TASM and Grep. The script sample files FILTSTUB.SPP
and FILTERS.SPP show uses of this class in action.

- Messageld property

The owning message stored to the message system.
Access Read-only)
Type expected int Messageld |
Description MessagelD is intended to be used és the parentMessage pafameter of

IDE.MessageCreate. The messages produced by the transfer can be grouped
with the transfer message rather than at the same level.

Provider property

Indicates the name of the tool that was spawned by the transfer; for example,
COMMAND.COM.

Access Read-only

. Type expected string Provider

ReadLine method

Reads the next line of text that was produced by the transfer.

Types expected string ReadLine()

Return value The next line of text that was produced by the transfer. If the line is empty,

returns the empty string (“). If there is no more input to read, it returns
NULL.

Description When a transfer happens, the IDE captures all its output and stores it in an
~ internal buffer. The contents of this buffer may be accessed by repeatedly
calling ReadLine, which returns the next line of text until the stream has been
exhausted, at which point it returns NULL.

30-2 ObjectScripting Programmer’'s Guide

Symbols

! operator 6-7, 6-13

!= operator 6-8

(pound sign) 7-1

operator 6-17

punctuator 6-15
#define 7-1

#else 7-1,7-2

#endif 7-1,7-2

#ifdef 7-1,7-2

#ifndef 7-1,7-2 -
#include 7-1, 7-3
#undef 7-1,7-4

#warn 7-1,7-5

% operator 6-2, 6-3, 6-14
%= operator 6-2, 6-4

& operator 6-2, 6-5, 6-7
&& operator 6-2, 6-7
&= operator 6-4

() operator’ 6-9, 6-10

() punctuator 6-15

* operator 6-2, 6-3, 6-14
*= operator 6-2, 6-4
+ operator 6-2, 6-3, 6-13, 6-14
++ operator 6-3, 6-13
+= operator 6-2, 6-4'

, (comma) operator 6-6
, (comma) punctuator 6-6
. operator 6-10, 6-12

/ operator 6-2, 6-3, 6-14
/= operator 6-2, 6-4

: operator 6-2, 6-10

: punctuator 6-15, 6-16
> operator 6-10, 6-11

; punctuator 6-15, 6-16
< operator 6-2,6-8 -
<< operator 6-2, 6-5
<<= operator 6-2, 6-4
<= operator 6-2, 6-8

-= operator 6-2, 6-4

= operator 6-2, 6-4

= punctuator 6-15, 6-16
== operator 6-2, 6-8

> operator 6-2, 6-8

>= operator 6-2, 6-8

>> operator 6-2, 6-5
>>= operator 6-2, 6-4
?: operator 6-2, 6-6

?? operator 6-10, 6-12

[] operator 6-9

Index

[[1] operator 6-9

~ operator 6-2,6-5

A= operator 6-2, 6-4

{} operator 6-9

{ } punctuator 6-15

| operator 6-2, 6-5

| = operator 6-2, 6-4

I'l operator 6-2, 6-7

~ operator 6-5, 6-13

~() function 2-15

- - operator 6-3, 6-13 .
- operator 6-2, 6-3, 6-13, 6-14

A

Accept 21-6
Activate 16-4
activating Edit windows 16-2,
16-3, 16-4
active window 16-3
current state 18-29, 18-46
setting 18-34, 18-58
actual arguments 7-6 -
Add 21-4, 23-5
Add Breakpoint dlalog box 9-3,
9-9, 18-13
Add Watch dialog box 9-3
AddBreakpoint 9-3
AddBreakpointFileLine 9-3
adding buttons 4-22, 4-25
adding menu items 4-22
adding to developer .
credits 18-12
addition 6-2, 6-3, 6-14
AddToCredits 18-12
AddWatch 9-3
aliases 6-7
Align 13-4
alignment 13-4
alphabetic characters
testing for 13-4
Alt, testing 20-3
AND operator 6-2, 6-5, 6-7
Animate 9-4
Append 22-2,24-3
AppendToLog 25-2
AppExpert 18-35
Application 18-7
applications
closing 18-23
current directory - 18-8

running 18-13
ApplyStyle 11-6, 17-4
AreKeysWaiting 20-3
ArgActual 27-2
ArgPadding 27-3
ARGUMENT_DIAGNOSTICS
25-3
arguments 7-6
passing by reference 4-8, 6-7
passing by value 4-8
arithmetic operators 6-3, 6-14
binary values 6-2
arranging icons 18-52
arranging windows 18-27,
18-28, 18-29, 18-45, 18-52,
18-53, 18-54
array 5-1
arrays 4-11, 5-17, 6-9, 6-12
associative 4-14
bounded 4-12°
declaring 5-1
deleting 5-8
finding members 5 15
A531gn 19-2
assign_to_view_menu 4- 22
assignable identifiers 6-17
assignment 6-17
strings 28-2, 28-3
assignment operators 6-2, 6-4
Assignments 19-2
AssignTypeables 19-4
associative arrays 4-14, 5-1, 6-12
Attach 9-4,15-6
attach 4-9,4-19, 5-2, 6-11
AttemptToModifyReadOnly-
Buffer 11-9
AttemptToWriteReadOnlyFile
119 '
autocall function 2-3

back up files 8-2
background task 18-47
BackspaceDelete 13-5-
BackupPath 12-2 -
BACKWARD_RIP 28-4
base classes 5-23

BCW command line 2-2
Begin 10-5 .

binary operators 6-2

Index , I-1

bitwise complement 6-5, 6-13
" bitwise operators 6-5
binary values 6-2
Block 11-3,15-3
BlockCreate 11-6
BlockIndent 12-2
BookmarkGoto 15-6
BookmarkRecord 15-6
Borland Assist program 1-2
BottomRow 15-3
bounded arrays 4-12, 5-1
branching statements 5-7
_ break 4-10
break 5-3
breakpoint 2-5, 2-13, 5-3
BreakPoint Conditions/ Action
Groups dialog 9-4, 18-14
Breakpoint Tool 2-14
BreakpointOptions 9-4 .
breakpoints 9-3, 9-4, 9-9, 18-13,
18-14, 18-48
Breakpoints window 18-48
opening 9-9
Brief editor options 12-4
Browsing Globals
window 18-50
Browsing Objects
window 18-49
Buffer 15-3
BufferCreated 17-9
BufferList 17-5
BufferOptions 12-2, 17-5
Copy 8-7
CreateBackup 8-2
CursorThroughTabs 8-2
HorizontalScrollBar 8-3
InsertMode 8-3
LeftGutterWidth 8-3
Margin 8-4
overview 8-2
OverwriteBlocks 8-4
PersistentBlocks 8-5
PreserveLineEnds 8-5
SyntaxHighlight 8-5
TabRack 8-6]
TokenFileName 8-6
UseTabCharacter 8-6
VerticalScrollBar 8-7
BufferOptionsCreate 17-5
BufferRedo 17-5 '
buffers 11-2, 20-5, 30-2
getting information 18-19
BufferUndo 17-5
Build 23-5
Build All command 18-36

BuildComplete 18-54
builds 18-36, 18-54
BuildStarted 18-54

Built 23-6

built-in functions 4-9
buttons, adding 4-22, 4-25

C

C++ compared to cScript 4-2
call 4-9,5-3
Call Stack window 9-10, 18-48
Caller 27-3 :
calling conventions 4-10, 5-25
Cancel 18-18,21-7
Caps Lock, testing 20-3
Caption 18-8,21-3
captions 18-9, 21-3
_ IDE main window 18-8
cascading windows 18-45, 18-52
case conversions 10-8, 10-9,
10-10, 28-5
case statements 5-7
branching 5-4
CaseSensitive 26-2
case-sensitive searches 26-2
_ cdecl 4-10
Center 15-7
changes, undoing 17-5, 17-8,
18-21, 18-22, 18-48
Character 13-3, 28-2
character conversions 10-8,
10-9,10-10
character strings 28-5
assigning values 28-2, 28-3
changing case 28-5
compressing 28-3, 28-5

converting to numbers 28-3 °

size 28-3
testing 28-3, 28-4
characters 20-8
deleting 13-5, 13-6
integer values 13-3
line continuation 7-6
testing for 13-3, 13-4
child nodes 23-2
child windows 18-34, 18-58
closing 18-13
ChildNodes 23-2
class 5-5
classes 4-14
accessing members 5-23,
6-12 . '
declaring 4-15, 5-5
instantiating 4-16, 5-2, 5-8
nesting 5-11

I-2 ObjectScripting Programmer’'s Guide"

_ testing declarations 25-5
testing members 6-12
viewing 18-49

ClassExpert window 18-49

Clear 21-5

Clipboard 13-7, 17-7

reading 13-7, 18-21
writing to 10-5, 10-6, 18-20
Close 16-4, 21-5
Close command 18-23
Closed 21-7
CloseWindow 18-13
closing 5-3, 18-23, 18-36
applications 18-23
files 18-23, 18-57
menus 22-3
projects 18-36
windows 16-4, 18-13, 18-52
closure operator 4-17, 6-11
closures 4-17, 4-19
CodeToKey 20-5
Column 13-3
COLUMN_BLOCK 10-4
Commands command 2-1, 2-2
comments 4-5
common dialog boxes 18-23
Compare 29-3
comparisons 29-3
Compile command 2-1
compiling 18-35, 18-36
scripts 18-41
compound operators 6-4
Compress 28-3
conditional expressions 6-10
conditional operators 6-2, 6-6
conditional statements 5-9,
5-10, 5-12, 5-27
__const 4-10
Contains 28-4
continue 5-6

" control structures 4-8, 5-24

branching 5-4, 5-7
loops 5-3, 5-6, 5-9, 5-10, 5-12,
5-27

conversions 10-8, 10-9, 10-10
coordinates, setting 18-10, 18-11
Copy command 18-20
Copy method 8-7, 10-5, 19-4
copying text 10-5
Count 21-3
CountAssignments 19-5
counting 21-3
CPU window 9-10, 18-49
CreateBackup 8-2 -
creating new files 18-24, 18-38

creating new objects 5-17
cScript 4-1, 5-1, 6-1, 6-15, 7-1
arrays 4-11,4-12, 4-14
attached closures 4-19
built-in functions 4-9
classes- 4-14, 4-15, 4-16

closures 4-17
comments 4-5
defining classes 5-5
differences from C++ 4-2
DLLs 4-10
events 4-18
flow control statements 4-8
identifiers 4-5
late-bound language 4-1
objects 4-4
OLE2 4-11
on handlers 4-18
pass by reference 4-8
properties 4-20, 4-21
prototyping 4-7
reserved identifiers 4-10
‘statements 4-7
strings 4-7
tutorial 3-1
types 4-4
Citrl, testing 20-3
current date 29-2, 29-3, 29-4
current time 29-2, 29-3
current window 16-3
setting 18-34, 18-58
state 18-29, 18-46
" CurrentDate 11-3
CurrentDirectory 18-8
CurrentIndex 21-3
CurrentPlayback 20-3
CurrentProjectNode 18-8
CurrentRecord 20-3 .
cursors 15-7, 15-8, 18-46
changing 18-22
CursorThroughTabs 8-2
customer assistance 1-2
Cut 10-5
" Cut command 18-20

D

Data 21-3, 22-2

date stamps 29-2, 29-3, 29-4
edit buffers 11-3, 11-5

dates 29-2, 29-3, 29-4

Day 29-2

DayName 29-4

deallocating memory 5-8

DebugAddBreakpoint 18-13

DebugAddWatch 18-13

DebugAnimate 18-13
DebugAttach 18-14
DebugBreakpointOptions 18-14
DebugeeAboutToRun 9-11
DebugeeCreated 9-11
DebugeeStopped 9-12
DebugeeTerminated 9-12
DebugEvaluate 18-14
debugger 9-1, 9-5
activating 9-4, 18-14
adding breakpoints 9-3, 9-4,
9-9, 18-13, 18-14, 18-48
evaluating expressions 9-5,
18-14
events 9-11,9-12
finding execution point 9-5
getting executables -18-15
inspecting code 9-5, 18-15
loading executables 9-7
pausing programs 9-7, 18-16
resetting 9-7
running programs 9-7, 9-8,
9-11,18-16
checking status 9-6
to specific addresses 9-8
setting watches 9-3,9-4,9-11,
18-13, 18-51
stepping and tracing 9-6, 9-8,
9-9, 18-15, 18-17, 18-18
single lines 9-6
terminating 9-9, 18-18
testing processes 9-3
viewing current state 9—10
9-11, 18-48
viewing source code 18-17

. Debugger class 9-1, 9-2

AddBreakpoint 9-3
AddBreakpointFileLine 9-3
AddWatch 9-3

Animate 9-4

Attach 94
BreakpointOptions 9-4
DebugeeAboutToRun 9-11
DebugeeCreated 9-11
DebugeeStopped 9-12
DebugeeTerminated 9-12
Evaluate 9-5
EvaluateWindow 9-5
FindExecutionPoint 9-5
HasProcess 9-3

Inspect 9-5
InstructionStepInto 9-6
InstructionStepOver 9-6
IsRunnable 9-6

Load 9-7

PauseProgram 9-7
Reset 9-7
Run 9-7
RunToAddress 9-8
RunToFileLine 9-8
StatementStepInto 9-8
StatementStepOver 9-9
TerminateProgram 9-9
ToggleBreakpoint 9-9
ViewBreakpoint 9-9
ViewCallStack 9-10
ViewCpu 9-10
ViewCpuFileLIne 9- 10
ViewProcess 9-11
ViewWatch 9-11
debugging 2-5, 2-13, 2-14, 5-3
DebuglInspect 18-15

‘DebuglnstructionStep-

Into 18-15
DebuglnstructionStep-

Over 18-15
Debugload 18-15
DebugPauseProcess 18-16
DebugResetThisProcess 18-16
DebugRun 18-16
DebugRunTo 18-16
DebugSourceAtExecution-

Point 18-17 ‘
DebugStatementStepInto 18-17
DebugStatementStep-

Over 18-18 ,
DebugTerminateProcess 18-18
declarations 4-4, 6-7, 25-5

arrays 5-1
classes 4-15, 5-5
testing for 25-5
variables 5-7
declare 5-7
decrement operator 6-3, 6-13
default file paths 18-8
default keyword 5-7
DefaultAssignment 19-2
DefaultFilePath 18-8
define_button 4-25
defines 7-1,7-2,7-3, 7-4, 7-6
Delete 10-6, 13-6, 21-7
delete 5-8
deleting text 10-6, 13-5, 13-6
derived classes 5-18
Describe 11-7
desktop 18-35
arranging icons 18-52
saving 18-35
Destroy 11-7
destructors 2-15

Index I3

detach 4-9, 4-19, 5-8, 5-11, 6-11
developer credits
adding to 18-12
displaying 18-19
DiagnosticMessageMask 25-3
DiagnosticMessages 25-3
diagnostics 25-3
dialog boxes 18-47
common 18-23
constructing 18-11
displaying 18-55
predefined 18-18, 18-32,
18-46, 18-54 ’
DialogCreated 18-55
direction boxes 18-18
DirectionDialog 18-18
directives 7-1,7-2, 7-3, 7-4, 7-5
directories 25-4
default paths 18-8
getting paths 11-4
Directory 11-4
Directory window 2-9
DirectoryDialog 18-18
disk drives, returning 11-4
DisplayCredits 18-19
displaying developer
credits 18-19
displaying output 2-11
DistanceToTab 13-6
division 6-2, 6-3, 6-14
DLLs 4-10
do 5-9
documentation
printing conventions 1-2
DoFileOpen 18-19
dot operator 6-12
Down 18-18
Drive 11-4.)
drives, returning 11-4
dynamic-link libraries 4-10

E

edit boxes 18-32, 18-46, 18-47
edit buffers 11-2, 18-19
accessing lines 13-4, 15-3
changing contents 11-3,
11-5, 11-9, 11-10, 17-10
character positions 15-9
creating 11-5, 11-6, 11-7,
11-8,17-6,17-9
current position 10-3, 10-4,
10-5, 10-6, 13-3, 13-4, 15-6
destroying 11-6, 11-7
getting 11-4, 11-7, 11-8, 15-3,
17-4,17-5,17-7

naming 11-9
options 8-7,12-2, 17-3, 17-4,
©17-10
printing contents 11-8
referencing 11-3
saving 11-9
scrolling 15-7
selecting contents 17-9
selecting text 18-20, 18-21
undoing changes 17-5, 17-8
viewing contents 15-4, 15-5,
" 15-7,15-8
writing to 13-7, 18-21
zooming contents 15-4
Edit menu 18-20, 18-21, 18-22
edit rip 13-13
edit views 11-2
activating 15-3, 15-4, 15-6,
16-4,17-10
arranging 16-6, 17-4
creating 16-5, 17-7, 17-11
current position 10-3, 10-4,
10-5, 10-6
destroying 15-3,16-5, 17-11
getting 11-6, 16-5, 17-7
getting next 15-5
" moving through 11-7, 13-8,
13-9, 13-10, 13-11, 15-5, 15-8
moving to specific lines 13-6
repainting 15-7, 15-8, 16-4,
17-8
Edit windows 15-6, 17-2
See also edit views
activating 16-2, 16-3, 16-4
closing 16-4 ’
getting current 16-3
moving through 16-3
naming 16-3
opening 18-44
EditBlock
Begin 10-5
-~ Copy 10-5
Cut 10-5
Delete 10-6
End 10-6
EndingColumn 10-3
" EndingRow 10-3
Extend 10-6
ExtendPageDown 10-6
ExtendPageUp 10-7
ExtendReal 10-7 !
ExtendRelative 10-7
Hide 10-3
Indent 10-8
IsValid 10-3

I-4 ObjectScripting Programmer’s Guide

LowerCase 10-8
overview 10-2
Print 10-8
Reset 10-8
Restore 10-9
Save 10-9
SaveToFile 10-9
Size 10-3
StartingColumn 10-4
StartingRow 10-4
Style 10-4
Text 10-5
ToggleCase 10-9
UpperCase 10-10
EditBuffer
ApplyStyle 11-6
AttemptToModifyRead-
OnlyBuffer 11-9
AttemptToWriteReadOnly-
File 11-9
Block 11-3
BlockCreate 11-6
CurrentDate 11-3
Describe 11-7
Destroy 11-7°
Directory 11-4
Drive 114
Extension 11-4
FileName 11-4
FullName 11-4
HasBeenModified 11-10
InitialDate 11-5 :
IsModified 11-5
IsPrivate 11-5
IsReadOnly 11-5
IsValid 11-6
NextBuffer 11-7
NextView 11-7
overview 11-2
Position 11-6
-PositionCreate 11-8
Print 11-8
PriorBuffer 11-8
Rename 11-9
Save 11-9
TopView 11-6
EditBufferCreate 17-6
EditBufferList 18-19
EditCopy 18-20
EditCut 18-20
editing 13-13, 154, 16-3
EditMode 14-2
EditOptions 17-6
BackupPath 12-2
BlockIndent. 12-2

BufferOptions 12-2

MirrorPath 12-3

OriginalPath 12-3

overview 12-2

SyntaxHighlightTypes 12-3

UseBRIEFCursorShapes 12-4

UseBRIEFRegularExpression
124

EditOptionsCreate 17-6

Editor 17-2,17-3, 18-8
ApplyStyle 17-4
BufferCreated 17-9
BufferList 17-5
BufferOptionsCreate 17-5
BufferRedo 17-5
BufferUndo 17-5
EditBufferCreate 17-6
EditOptionsCreate 17-6
EditStyleCreate 17-6

. EditWindowCreate 17-7
FirstStyle 17-3
GetClipboard 17-7
GetClipboardToken 17-7
GetWindow 17-7
IsFileLoaded 17-7
MouseBlockCreated 17-9
MouseLeftDown 17-9
MouseLeftUp 17-9
MouseTipRequested 17-9
Options 17-3
OptionsChanged 17-10
OptionsChanging 17-10
overview 17-2
SearchOptions 17-4
StyleGetNext 17-8
TopBuffer 17-4
TopView 17-4
ViewActivated 17-10
ViewCreated 17-11
ViewDestroyed 17-11
ViewRedo 17-8
ViewUndo 17-8

editor 18-8

editor classes 17-2

buffer options 8-2

edit buffers 11-2

editing windows 15-2, 16-2

overview 12-2,13-2

settings 14-1

text blocks 10-2

Editor objects 17-2, 17-3, 17-4,

17-6,17-8

Editor options

blocks 12-2

display 12-4

files 12-3
redefining 14-1, 14-2
EditPaste 18-21
EditPosition 15-5
Align 13-4
BackspaceDelete 13-5
Character 13-3
Column 13-3
Delete 13-6
DistanceToTab 13-6
GotoLine 13-6
InsertBlock 13-7
InsertCharacter 13-7
InsertFile 13-7
InsertScrap 13-7
InsertText 13-7
IsSpecialCharacter 13-3
IsWhiteSpace 13-3
IsWordCharacter 13-4
LastRow 13-4
Move 13-8
MoveBOL 13-8
MoveCursor 13-9
MoveEOF 13-9
MoveEOL 13-10
MoveReal 13-10
MoveRelative 13-11
overview 13-2
Read 13-11
Replace 13-11
ReplaceAgain 13-12
Restore 13-12
RipText 13-13
Row 13-4
Save 13-13
Search 13-14
SearchAgain 13-14
SearchOptions 13-4
Tab 13-15
EditRedo 18-21
EditSelectAll 18-21
EditStyle
EditMode 14-2
Identifier 14-2
Name 14-2
overview 14-1
EditStyleCreate 17-6
EditUndo 18-22
EditView
Attach 15-6
Block 15-3
BookmarkGoto 15-6
BookmarkRecord 15-6
BottomRow 15-3
Buffer 15-3

Center 15-7
Identifier 15-3
IsValid 15-3
IsZoomed 15-4
LastEditColumn 15-4
LastEditRow "15-4
LeftColumn 15-4
MoveCursorToView 15-7
MoveViewToCursor 15-8
Next 15-5
overview 15-2
PageDown 15-8
PageUp 15-8
Paint 15-8
Position 15-5
Prior 15-5
RightColumn 15-5
Scroll 15-8
SetTopLeft 15-9
TopRow 15-5
Window 15-6.
EditWindow
Activate 16-4
- Close 16-4
-Identifier 16-2
IsHidden 16-2
IsValid 16-3
Next 16-3
overview 16-2
Paint 16-4
Prior 16-3
Title 16-3
View 16-3
ViewActivate 16-4
ViewCreate 16-5
ViewDelete 16-5
ViewExists 16-5
ViewSlide 16-6
EditWindowCreate 17-7
else 5-12, 6-6, 7-2
End 10-6
end of lines 8-5
endif 7-2 :
EndingColumn 10-3
EndingRow 10-3
EndWaitCursor 18-22°
EnterContextHelpMode 18-22
Environment options
saving 18-35
Environment Options dialog
box 18-34
equality 6-8
__error 4-10
error messages
displaying 18-32, 18-33

index I5

errors 5-20
fixing 18-44
escape sequences 4-7
Evaluate 9-5
EvaluateWindow 9-5
event 4-10
events 4-18, 9-11, 9-12, 18-38
edit buffers 11-9, 11-10, 17-9,
17-10 .
edit views 17-10, 17-11
idle processing 18-9, 18-56,
18-58
list windows 21-6, 21-7, 21-8
nodes 23-6, 23-7
example scripts 2-6
exclusive OR operator 6-2, 6-5
EXCLUSIVE_BLOCK 10-4
Execute 21-5, 25-4
executing a script
statement 2-11
executing applications 18-13
executing scripts 18-41, 18-42,
© 20-4, 25-4, 25-7
Exit command 18-23
Exiting 18-55
exiting IDE 18-40, 18-55
ExpandWindow 18-23
expansion 7-1,7-3
export 4-10, 5-10
exporting 5-10
expressions 5-20, 5-26, 6-1, 6-9,
6-17 .
evaluating 6-13, 9-5, 18-14
search 12-4,26-3
Extend 10-6 :
ExtendPageDown 10-6
ExtendPageUp 10-7
ExtendReal 10-7
ExtendRelative 10-7
Extension 11-4

F

Factory 4-10
FALSE 4-10
false 4-10
File menu 18-23, 18-24, 18-25,
18-26
file names 7-3, 11-4
getting extensions 11-4
returning 11-4
file open common dialog
boxes 18-23
FileClose 18-23
FileDialog 18-23
FileExit 18-23

FileName 11-4
FileNew 18-24
FileOpen 18-24
FilePrint 18-25
FilePrinterSetup 18-25
files 11-2
backing up 8-2
closing 18-23
opening 18-19, 18-23, 18-24
reading 13-7
saving 12-3, 18-26
writing to 10-9
FileSave 18-26
FileSaveAll 18-26
FileSaveAs 18-26
FileSend 18-27
FindExecutionPoint 9-5
finding text 12-4, 13-4, 13-14,
17-4,18-43, 18-44, 26-1
FindString 21-5, 22-2
FirstStyle 17-3
flow control statements 4-8 .
Flush 20-5
for 5-10
FormatString 4-9, 5-11

_forward referencing 4-7

from 5-11

FromCursor 26-2

FULL_DIAGNOSTICS 25-3

FullName 11-4, 18-9

functions 5-1, 5-20, 25-5
exporting 4-10, 5-10
importing 5-13
overriding 5-19

G

garbage collection 5-8
GetClipboard 17-7
GetClipboardToken 17-7
GetCommand 19-5, 24-3
GetKeyboard 20-5
GetKeyCode 24-3
GetKeySequence 19-5
GetParm 27-4
GetRegionBottom 18-27
GetRegionLeft 18-28

- GetRegionRight 18-28

GetRegionTop 18-29
GetString 21-6, 22-2
getters 4-4, 4-20, 5-18, 6-11
GetWindow 17-7
GetWindowState 18-29
global commands 2-3
global symbols 18-50
GoForward 26-2

I-6 ObjectScripting Programmer’s Guide

GotoLine 13-6

H

HasBeenModified 11-10
HasProcess 9-3 ~
HasUniqueMapping 19-5
Height 18-9, 21-3
Help 18-29
Help About dialog box 18-30
Help contents screen 18-30
Help systems

activating 18-22, 18-29,

18-30, 18-31, 18-55

Help Topics dialog box 18-31
Help Topics Index page 18-31
HelpAbout. 18-30
HelpContents 18-30
HelpKeyboard 18-30
HelpKeywordSearch 18-31
HelpOWLAPI 18-31
HelpRequested 18-55
HelpUsingHelp 18-31

" HelpWindowsAPI 18-31

hexadecimal escape
sequences 4-7

Hidden 21-4

Hide 10-3

hiding windows 16-2, 21-4

hooks 4-18, 4-19, 4-20, 4-21

horizontal scroll bars 8-3

HorizontalScrollBar 8-3

Hour 29-2

hourglass 18-22, 18-46

Hundredth 29-2

icons, arranging 18-52
IDE 18-7,18-11, 18-32
" activating 18-8, 18-9, 18-10,
18-11, 18-12, 18-58
arranging windows 18-27,
18-28, 18-29, 18-45, 18-52,
18-53, 18-54 ,
closing windows 18-13,
18-52
enabling help 18-22, 18-29,
18-30, 18-31, 18-55
exiting 18-40, 18-55
keyboard mapping 18-10,
18-30, 18-56
naming 18-8, 18-9, 18-11
opening windows 18-15,
18-48, 18-49, 18-50, 18-51

resizing windows 18-9,
18-12, 18-23, 18-52, 18-53 .
saving desktop 18-35
setting active
window 18-34, 18-46, 18-58

IDEApplication

AddToCredits 18-12
Application 18-7
BuildComplete 18-54
BuildStarted 18-54
Caption 18-8
CloseWindow 18-13
. CurrentDirectory 18-8
CurrentProjectNode 18-8
DebugAddBreakpoint 18-13
DebugAddWatch 18-13
DebugAnimate 18-13
DebugAttach 18-14
DebugBreakpoint-
Options 18-14
DebugEvaluate 18-14
Debuglnspect 18-15
DebuglnstructionStep-
Into 18-15
DebuglnstructionStep-
Over 18-15
DebugLoad 18-15
DebugPauseProcess 18-16
DebugResetThis-
Process 18-16
DebugRun 18-16
DebugRunTo 18-16
DebugSourceAtExecution-
Point 18-17
DebugStatementStep-
Into 18-17
DebugStatementStep-
Over 18-18
DebugTerminate-
Process 18-18-
DefaultFilePath 18-8
DialogCreated 18-55
DirectionDialog 18-18
DirectoryDialog 18-18
DisplayCredits 18-19
DoFileOpen 18-19
EditBufferList 18-19
EditCopy 18-20
EditCut 18-20
EditPaste 18-21
EditRedo 18-21
EditSelectAll 18-21
EditUndo 18-22
EndWaitCursor 18-22

EnterContextHelpMode

method 18-22
Exiting 18-55
ExpandWindow 18-23
FileClose 18-23
FileDialog 18-23
FileExit 18-23
FileNew 18-24
FileOpen 18-24
FilePrint 18-25
FilePrinterSetup 18-25
FileSave 18-26
FileSaveAll 18-26
FileSaveAs 18-26
FileSend 18-27
FullName 18-9
GetRegionBottom 18-27
GetRegionLeft 18-28
GetRegionRight 18-28
GetRegionTop 18-29
GetWindowState 18-29
Height 18-9
Help 18-29
HelpAbout 18-30
HelpContents 18-30
HelpKeyboard 18-30
HelpKeywordSearch 18-31
HelpOWLAPI 18-31
HelpRequested 18-55
HelpUsingHelp 18-31
HelpWindowsAPI 18-31
Idle 18-56
IdleTime 189
IdleTimeout 18-9
Keyboard Assignment-

File 18-10 :
Keyboard Assignments-

-Changed 18-56
Keyboard Assignments-

Changing 18-56
KeyboardManager 18-10
KeyPressDialog 18-32
Left 18-10
ListDialog 18-32
LoadTime 18-9
MakeComplete 18-57
MakeStarted 18-57
Menu 18-32
Message 18-32
MessageCreate 18-33
ModuleName 18-10
Name 18-11
NextWindow 18-34
OptionsEnvironment 18-34
OptionsProject 18-34

OptionsSave 18-35
OptionsStyleSheets 18-35
OptionsTools 18-35
overview 18-6

Parent 18-11
ProjectAppExpert 18-35
ProjectBuildAll 18-36
ProjectClosed 18-57 -
ProjectCloseProject 18-36
ProjectCompile 18-36
ProjectGenerate-

Makefile 18-37
ProjectMakeAll 18-37
ProjectManager-

Initialize 18-38
ProjectNewProject 18-38
ProjectNewTarget 18-38
ProjectOpened 18-57 .
ProjectOpenProject 18-40
Quit 18-40
RaiseDialogCreated-

Event 18-11
SaveMessages 18-40
ScriptCommands 18-41
ScriptCompileFile 18-41
ScriptModules 18-41
ScriptRun 18-42
ScriptRunFile 18-42
SearchBrowseSymbol 18-42
SearchFind 18-43
SearchLocateSymbol 18-43

~ SearchNextMessage 18-43

SearchPrevious-

Message 18-44
SearchReplace 18-44
SearchSearchAgain 18-44
SecondElapsed 18-58
SetRegion 18-45
SetWindowState 18-46
SimpleDialog 18-46
SpeedMenu 18-46
Started 18-58
StartWaitCursor 18-46
StatusBar 18-11
StatusBarDialog 18-47
StopBackgroundTask 18-47 -
SubsytemActivated 18-58
Tool 18-47
Top 18-11 .
TransferOutputExists 18-59
TranslateComplete 18-59
Undo 18-48
UseCurrentWindowFor-

SourceTracking 18-12
Version 18-12

Index I-7

* ViewActivate 18-48
ViewBreakpoint 18-48
ViewCallStack 18-48
ViewClasses 18-49
ViewClassExpert 18-49
ViewCpu 18-49
ViewGlobals 18-50
ViewMessage 18-50
ViewProcess 18-50
ViewProject 18-51
ViewSlide 18-51
ViewWatch 18-51 -
Visible 18-12
Width 18-12
WindowArrangelcons 18-52
WindowCascade 18-52
WindowCloseAll 18-52
WindowMinimizeAll 18-52
WindowRestoreAll 18-53
WindowTile-

Horizontal 18-53
WindowTileVertical 18-54
YesNoDialog 18-54

Identifier 14-2, 15-3, 16-2

identifiers 4-5, 4-10, 5-1, 6-17,
7-2,7-4

Idle 18-56

idle processing 18-9, 18-56,
18-58

IdleTime 18-9

IdleTimeout 18-9

if 5-12, 6-6

ifdef 7-2

ifndef 7-2

import 5-13

importing 5-13

include 7-3

include files 23-3

INCLUDE_ALPHA _-
CHARS 28-4

INCLUDE_LOWERCASE_-
ALPHA_CHARS 28-4

INCLUDE_NUMERIC_-

- CHARS 28-4 '

INCLUDE_SPECIAL _-
CHARS 28-4.

INCLUDE_UPPERCASE_-
ALPHA_CHARS 28-4

IncludePath 23-3

inclusive OR operator 6-2, 6-5

increment operator 6-3, 6-13

Indent 10-8

indenting text 10-8, 12-2

Index 28-4

inequality 6-8

information messages 18-32,
18-33

inheritance 4-14

_init function 2-3

InitialDate 11-5

initialized 4-9

initializing scripts 2-3

input operator 6-5

InputName 23-3

IngType 27-3

Insert 21-6

Insert mode 21-6 .
setting 8-3

 InsertBlock 13-7

InsertCharacter 13-7
InsertFile 13-7
InsertMode 8-3
InsertScrap 13-7
InsertText 13-7
Inspect 9-5
inspecting 9-5
Inspector windows 9-5, 18-15
instances 5-2, 5-8, 5-11
InstructionStepInto 9-6
InstructionStepOver 9-6
Integer 28-3
integrated debugger 9-1, 9-5
activating 9-4, 18-14
adding breakpoints 9-3, 9-4,
9-9, 18-13, 18-14, 18-48
evaluating expressions 9-5,
18-14
events 9-11, 9-12
finding execution point 9-5
" getting executables 18-15
inspecting code 9-5, 18-15
loading executables 9-7
pausing programs 9-7, 18-16
resetting 9-7
running programs 9-7, 9-8,
- 9-11,18-16
‘checking status 9-6
to specific addresses 9-8
setting watches 9-3,9-4,9-11,
18-13, 18-51
stepping and tracing 9-6, 9-8,
9-9, 18-15, 18-17, 18-18
single lines 9-6
terminating 9-9, 18-18
testing processes 9-3
viewing current state 9-10,
9-11, 18-48
viewing source code 18-17
invalid stack 27-3
INVALID_BLOCK 10-4

I-8 ObjectScripting Programmer’s Guide

INVERT_LEGAL_CHARS 28-4
IsAClass 25-5
IsAFunction 25-5
IsAlphaNumeric 28-3
IsAMethod 25-5
IsAProperty 25-5
IsFileLoaded 17-7
IsLoaded 25-6
IsModified 11-5
IsPaused 24-2
IsPrivate 11-5
IsReadOnly 11-5
IsRecording 24-2
IsRunnable 9-6
IsSpecialCharacter 13-3
IsValid
EditBlock 10-3
EditBuffer 11-6
EditView 15-3
EditWindow 16-3
ProjectNode 23-3
StackFrame 27-3
IsWhiteSpace. 13-3
IsWordCharacter 13-4
IsZoomed 15-4
iterate 5-15

justification 13-4

K

KBD files 20-7
KBP files 20-7
key codes 19-5, 24-3
getting 20-5, 20-6, 20-8
Keyboard
Assign 19-2
Assignments 19-2
AssignTypeables 19-4
Copy 19-4
CountAssignments 19-5
 DefaultAssignment 19-2
GetCommand 19-5
 GetKeySequence 19-5
HasUniqueMapping 19-5
overview 19-2
Unassign 19-6 :
keyboard 19-2, 19-4, 19-5, 19-6,
20-5 '
keyboard mapping 18-10,18-30,
18-56, 19-5, 20-5, 20-7, 20-8 .
Keyboard AssignmentFile 18-10
Keyboard Assignments-
Changed 18-56

Keyboard Assignments-
Changing 18-56
KeyboardFlags 20-3
KeyboardManager 18-10
AreKeysWaiting 20-3
CodeToKey 20-5
CurrentPlayback 20-3
CurrentRecord 20-3
Flush 20-5
GetKeyboard 20-5
KeyboardFlags 20-3
KeysProcessed 20-4
KeyToCode 20-6
LastKeyProcessed 20-4
overview 20-2
PausePlayback 20-6
Playback 20-6 -
Pop 20-7
ProcessKeyboard-
Assignments 20-7
ProcessPending-
Keystrokes 20-8
Push 20-8
ReadChar 20-8
Recording 20-4
ResumePlayback 20-9
ResumeRecord 20-9
ScriptAbortKey 20-4
SendKeys 20-9
StartRecord 20-12
StopRecord 20-12
KeyCount 24-2
KeyPressDialog 18-32
KeyPressed 21-7
keypresses 19-2,19-4,19-5,19-6,
20-3
playing back 20-3, 20-6, 20-9
processing 20-3, 20-4, 20-5,
20-8,20-9
recording 18-32, 20-4, 20-9,
20-12,24-2
predefined dialog 18-32
saving 24-2, 24-3
KeysProcessed 20-4
KeyToCode 20-6
keyword search lists 18-31
keywords 5-1

L

LANGUAGE_DIAGNOSTICS
25-3

LastEditColumn 15-4

LastEditRow 15-4

LastKeyProcessed 20-4

LastRow 13-4

late-bound languages 4-1
leading whitespace
trimming 28-5
Left 18-10, 18-18
LeftClick 21-7
LeftColumn 15-4
LeftGutterWidth 8-3
Length 28-3
libraries 23-3
library 4-10
LIBRARY_MODULE 25-7
LibraryPath 23-3
line continuation character 7-6
LINE_BLOCK 10-4
list boxes 18-32
list window controls 21-3, 21-4
closing 21-5
closingv 21-7
events 21-6,21-7,21-8
ListDialog 18-32
lists 21-5, 21-6
adding items 21-4
counting items 21-3
getting contents 21-3, 21-5,
21-6
removing items 21-5, 21-6,
21-7
selecting items 21-4, 21-8
sorting items 21-4
ListWindow
Accept 21-6
Add 21-4
Cancel 21-7
Caption 21-3
Clear 21-5
Close 21-5
Closed 21-7
Count 21-3
CurrentIndex 21-3
Data 21-3
Delete 21-7
Execute 21-5
FindString 21-5
GetString 21-6
Height 21-3
Hidden 21-4
Insert 21-6
KeyPressed 21-7
LeftClick 21-7
Move 21-8
MultiSelect 21-4
overview 21-2
Remove 21-6
RightClick 21-8
Sorted 21-4

Width 21-4
Load 9-7, 25-6
load 4-9,5-16
Loaded 25-8
loading a script 2-2
LoadTime 18-9
log files 25-2,25-3
LogFileName 25-3
Logging 25-3
logical operators 6-2, 6-7
loops 5-3, 5-6, 5-9, 5-10, 5-12,
5-27 i
Lower 28-5
LowerCase 10-8
lowercase characters 10-8, 10-9,
28-5
Ivalues 6-17

M

macros 7-1,7-3,7-6
defining 7-1, 7-2,7-3, 7-4, 7-6
Made 23-7 :
main menu 18-32
main window 18-9
naming 18-8,18-11 .
resizing 18-9, 18-12, 18-23
Make 23-5
MakeComplete 18-57
MakePreview 23-5
makes 18-37, 18-57, 18-59
MakeStarted 18-57
MAPI 18-27
Margin 8-4
margins 8-3, 8-4
matching patterns 18-43, 18-44
mathematical expressions 6-3,
6-14 ‘
member selector operator 6-12
MEMBER_DIAGNOSTICS 25-3
members 4-14, 5-23, 6-12, 25-5
getting 5-15
testing 6-12
memory
deallocating 5-8
Menu 18-32
menu items
adding 4-22
removing 4-24
menus 18-32, 18-46
adding commands 22-2
closing 22-3
" displaying 22-3
getting commands 22-2
removing commands 22-3
Message 18-32

Index 19

message boxes 2-11, 18-18,
18-32, 18-54
Message window 18-33, 18- 43
18-44, 18-50
saving messages 18-35, 18-40
MessageCreate- 18-33
Messageld 30-2
messages 5-29, 18-50, 30-2 .
diagnostic 25-3 ‘
displaying 18-32, 18-33
getting 18-43, 18-44
saving 18-35, 25-2, 25-3
method 4-10
METHOD_DIAGNOSTICS 25-3
methods 5-2, 5-8, 5-11, 5-18,
25-5
Millisecond 29-2
minimizing windows 18-52,
18-53
Minute 29-2
MirrorPath 12-3
modal dialog boxes 18-32
modifiable identifiers 6-17
module 4-9, 5-16
MODULE_DIAGNOSTICS 25-3
ModuleName 18-10
Modules 25-6
modules 5-16, 5-20, 18-10
closing 5-27, 25-8
loading 5-20, 5-21, 25-6
renaming 5-16
Modules command 2-2
modulus 6-2, 6-3, 6-14
Month 29-3
MonthName 29-4
mouse events 17-9, 21-7, 21-8
MouseBlockCreated 17-9
MouseLeftDown 17-9
MouseLeftUp 17-9
MouseTipRequested 17-9
Move 13-8, 21-8
MoveBOL 13-8
MoveCursor 13-9
MoveCursorToView 15-7
.MoveEOF 13-9
MoveEOL 13-10
MoveReal 13-10
MoveRelative 13-11
MoveViewToCursor 15-8
moving through
windows 18-34, 18-58
multidimensional arrays 6-9
- multiplication 6-2, 6-3, 6-14
MultiSelect 21-4

N

Name 14-2, 18-11, 23-3, 24-2
naming 18-10
windows 16-3, 18-8, 18-11,

21-3 .
negation operator 6-7, 6-13
nested classes 5-11.
new 5-17
New command 18-24
new files 18-24, 18-38
Next 15-5, 16-3, 24-4
NextBuffer 11-7
NextView 11-7
NextWindow 18-34
NO_DIAGNOSTICS 25-3
nodes

adding to projects 23-5,23-6,

23-7
building 18-37
getting child 23-2
removing 23-6
selecting '18-8 ,
setting paths 23-3, 23-4
specifying 23-4
testing 23-3, 23-4, 23-5
NULL 4-10
number sign (#) 7-1
numeric characters
testing for 13-4
NumLock, testing 20-3

o)

object 4-10
OBJECT_DIAGNOSTICS. 25-3
objects 4-4, 5-17, 5-21, 5-22, 6-10
allocating memory 5-8
finding members 5-15
ObjectScripting
debugging a script 2-5, 2-13
-+ displaying output 2-11
example scripts 2-6
executing a script
statement 2-11
loading a script 2-2
referencing a script
function 2-4
running a script 2-1, 2-13
script initialization 2-3
setting options 2-10
tutorial 3-1
unloading a script 2-15
writing a script 2-12
ObjectWindows Library 18-31
octal escape sequences 4-7

I-10 ObjectScripting Progra'mmer’s Guide

of 5-18
OLE automation 4-11 -
OLE index operator 6-9
OLE indexed properties 6-9
OLE2 registry 4-11
OleObject (cScript) 4-11
on 5-18
onhandler 4-18,4-19,4-20,4-21,
5-18, 5-19, 6-11
Open command 18-24
opening files 18-8, 18-19, 18-23,
18-24, 18-40, 18-57
operators 6-1, 6-12, 6-17
arithmetic 6-2, 6-3, 6-14
assignment 6-2, 6-4
binary 6-2 -
bitwise 6-2, 6-5
comma expressions 6-6
conditional 6-2, 6-6
enclosing expressions 6-9 .
logical 6-2, 6-7
object-oriented 6-10
precedence of 6-2
reference 6-7
relational 6-2, 6-8
unary 6-13, 6-14
Options 17-3
Options Save dialog box 18-35
Options | Environment |
Scripting command 2-10
OptionsChanged 17-10
OptionsChanging 17-10
OptionsEnvironment 18-34
OptionsProject 18-34
OptionsSave 18-35
OptionsStyleSheets 18-35
OptionsTools 18-35
OR operator 6-2, 6-5, 6-7
OriginalPath 12-3
OutOfDate 23-4
output 18-59, 30-2
output operator 6-5
OutputName 23-4
overriding class members 5-23
overriding functions 5-19
Overwrite mode 8-4
OverwriteBlocks 8-4

P

page layouts 8-3, 8-4

PageDown' 15-8
PageUp 15-8 .
Paint 15-8, 16-4
panes 18-48, 18-51
parameters 7-6

passing by reference 4-8, 6-7
passing by value 4-8
Parent 18-11
parsing strings 28-4, 28-5
parsing tokens 7-1, 7-4
__pascal 4-10
pass 4-9,5-19
passing by reference 4-8, 6-7
passing by value 4-8
Paste command 18-21 .
paths 18-8
pattern matching 18-43, 18-44
PausePlayback 20-6
PauseProgram 9-7
pcode 2-1 R
period operator 6-12
PersistentBlocks 8-5
PERSONAL.SPP 2-2
Playback 20-6
playing back keypresses 20-3,
20-6,209
Pop 20-7
pop-up menus
adding commands 22-2
closing 22-3
displaying 22-3
getting commands 22-2
removing commands 22-3
PopupMenu
Append 22-2
Data 22-2
FindString 22-2
GetString 22-2
overview 22-2
Remove 22-3
Track 22-3 _
Position 11-6, 15-5
PositionCreate 11-8
postdecrement operator 6-3,
6-13 ,
postfix expressions 6-3, 6-13
postincrement operator 6-3,
6-13
pound sign (#) 7-1
precedence of operators 6-2
preprocessing directives 7-1,
7-2,7-3,7-4,7-5
preprocessor operator 6-17
PreserveLineEnds 8-5
Print 10-8, 11-8
print 4-9; 5-11, 5-20
Print command 18-25
Printer Setup command 18-25
Printer Setup dialog box 18-25
printers 18-25

printing 18-25
edit buffers 11-8
- expressions 5-20
page layouts 8-3, 8-4
setting options 18-25
text 10-8
printing conventions
(documentation) -1-2
Prior 15-5,16-3
PriorBuffer 11-8 -
private buffers 11-2, 11-5
Process window 9-11, 18-50
ProcessKeyboard Assignments
20-7

ProcessPendingKeystrokes 20-8

project files 18-38
closing 18-57
opening 18-8, 18-40, 18-57
saving 18-35
Project Manager 18-38
Project Options dialog
box 18-34

Project window 18-51

selecting nodes 18-8
ProjectAppExpert 18-35
ProjectBuildAll 18-36
ProjectClosed 18-57
ProjectCloseProject .18-36
ProjectCompile 18-36
ProjectGenerateMakefile 18-37
ProjectMakeAll 18-37
ProjectManagerInitialize 18-38
ProjectNewProject 18-38
ProjectNewTarget 18-38
ProjectNode

Add 23-5

Build 23-5

Built 23-6

ChildNodes 23-2

IncludePath 23-3

InputName 23-3

IsValid 23-3

LibraryPath 23-3

Made 23-7

Make 23-5

MakePreview 23-5

Name 23-3

OutOfDate 23-4

OutputName 23-4

overview 23-2

Remove 23-6

SourcePath 23-4

Translate 23-6

Translated 23-7

Type 23-4

ProjectOpened 18-57
ProjectOpenProject 18-40
projects 7-1, 18-36, 18-38
adding nodes 23-5, 23-6, 23-7
building 18-36, 18-54
rebuilding 18-37
removing nodes 23-6
PromptOnReplace 26-3

' properties 4-20, 4-21, 6-11, 25-5

property 4-10
prototypes 4-7
Provider 30-2
punctuators 6-15, 6-16
Push 20-8 '

Q

Quit 18-40

 quitting IDE 18-40, 18-55

quotients 6-14

R

RaiseDialogCreatedEvent 18-11
raw data, storing 11-2
Read 13-11
ReadChar 20-8
ReadLine 30-2
Record
Append 24-3
GetCommand 24-3
GetKeyCode 24-3
IsPaused 24-2
IsRecording 24-2
KeyCount 24-2
Name 24-2
Next 24-4
overview 24-2
Recording 20-4
recording keypresses 20-4,
20-9, 20-12, 24-2
predefined dialog 18-32
records 20-3, 24-2
Redo command 18-21
__refc 4-10 ‘
reference operator 6-5, 6-7
references 5-28
‘edit buffers 11-3
referencing a script function 2-4
regions 18-28

" RegularExpression 26-3

relational operators 6-2, 6-8

“reload 4-9, 5-20

remainders 6-2, 6-3, 6-14
Remove 21-6, 22-3, 23-6
remove_view_menu_item 4-24

Index I-11

removing menu items 4-24
Rename 119
Replace 13-11
Replace Text dialog box 18-44
ReplaceAgain 13-12
ReplaceText 26-3
replacing text 12-4, 13-11,
13-12, 18-44
ssearch options 26-3
reserved identifiers 4-10
reserved words 5-1
Reset 9-7,10-8, 25-7
resizing windows 18-9,18-12,
18-23, 18-52, 18-53
Restore 10-9, 13-12
ResumePlayback 20-9
ResumeRecord 20-9
return 5-20
Right 18-18
RightClick 21-8
RightColumn. 15-5
RipText 13-13
rounding 6-14
Row 13-4
RTTI 5-26
Run 9-7
run 4-9,5-21
Run command 2-1, 2-11
Run File command 2-1, 2-13
__runimmediate 4-10
running applications 18-13
running scripts 18-41, 18-42,
20-4, 25-4, 25-7
overview 2-1, 2-13
run-time options 18-35
run-time type information 5-26
RunToAddress 9-8
RunToFileLine 9-8
rvalues 6-17

S

Save 10-9,11-9, 13-13
Save All command 18-26
Save As command 18-26
Save command 18-26
SaveMessages 18-40
SaveToFile 10-9
saving
files 12-3, 18-26, 18-35
text blocks 10-9, 13-13

Script Breakpoint Tool 2-5,2-13,

2-14

Script Commands dialog
box 18-41

Script Debugger 5-3

Script Directory window 2-9
script files 25-4, 25-6
closing 25-8 :
loading 5-16, 25-6, 25-7, 25-8
Script Modules dialog
box 18-41
SCRIPT_MODULE 25-7
ScriptAbortKey 20-4
ScriptCommands 18-41
ScriptCompileFile 18-41
ScriptEngine
AppendToLog 25-2
DiagnosticMessage-
Mask 25-3
DiagnosticMessages 25-3
Execute 25-4
IsAClass 25-5
IsAFunction 25-5
IsAMethod 25-5
IsAProperty 25-5
IsLoaded 25-6
Load 25-6
Loaded 25-8
LogFileName 25-3
Logging 25-3
Modules 25-6
overview 25-2
Reset 25-7
ScriptPath’ 25-4
StartupDirectory 25-4
SymbolLoad 25-7
Unload 25-7
Unloaded 25-8
Scripting Options dialog 2-2,
2-10
ScriptModules 18-41
ScriptPath 25-4
ScriptRun 18-42
ScriptRunFile 18-42
scripts 2-14, 18-41, 19-4
debugging 2-5,2-13
displaying output 2-11
example 2-6
executing statements 2-11
finding 25-4, 25-6
injtializing 2-3
loading 2-2
referencing functions 2-4
running 2-1, 2-13, 18-41,
18-42, 20-4, 25-4, 25-7
setting options 2-10
unloading 2-15
writing 2-12
Scroll 15-8
scroll bars 8-3, 8-7

J-12 ObjectScripting Programmer's Guide

Scroll Lock, testing 20-3
Search 13-14
search lists 18-31
SearchAgain 13-14
SearchBrowseSymbol 18-42
searches 26-1, 26-4
case sensitivity 26-2
editor 13-4, 13-11, 13-12,
13-14, 17-4, 18-43, 18-44
expressions in 12-4, 26-3
implementing 26-2, 26-4
messages 18-43, 18-44
replacing text 26-3
SearchFind 18-43
SearchLocateSymbol 18-43
SearchNextMessage 18-43
SearchOptions 13-4, 17-4, 26-1
CaseSensitive 26-2
FromCursor 26-2
. GoForward 26-2
overview 26-2
PromptOnReplace 26-3
RegularExpression 26-3
ReplaceText 26-3
. SearchReplaceText 26-3
SearchText 26-4
WholeFile 26-4
WordBoundary 26-4
SearchPreviousMessage 18-44,
SearchReplace 18-44
SearchReplaceText 26-3
SearchSearchAgain 18-44
SearchText 26-4
Second 29-3
SecondElapsed 18-58
select 4-9, 5-21
Select All command 18-21
selecting text 10-3, 10-6, 10-7

selection 5-22

selection objects 5-21, 5-22

SendKeys 20-9

separators 6-15, 6-16

SetParm 27-4

SetRegion 18-45

setters 4-4, 4-21, 5-18, 6-11

setting properties 4-20, 4-21,
6-11

- setting scripting optlons 2-10

SetTopLeft 15-9

SetWindowState 18-46

sHidden 16-2

Shift, testing 20-3
shift-left operator 6-2, 6-5
shift-right operator 6-2, 6-5
SimpleDialog 18-46

Size 10-3
Sorted 21-4
sorting 21-4
SourcePath 23-4

Space key, testing for 13-3

sparse arrays 4-14
special characters
testing for 13-3
SpeedBar 4-22
SpeedMenu 18-46
SpeedMenus 4-22, 18-46
__stack 4-10
stack
invalid 27-3
ownership 27-3
padding 27-3
reading 27-2, 27-3, 27—4
setting 27-4
StackFrame
ArgActual 27-2
ArgPadding 27-3
Caller 27-3
GetParm 27-4
InqType 27-3
IsValid 27-3
overview 27-2
SetParm 27-4
Started 18-58
StartingColumn 10-4
StartingRow 10-4
StartRecord 20-12
startup directories 25-4
STARTUP.SPP 2-2
StartupDirectory 25-4
StartWaitCursor 18-46
statements 4-7
StatementStepInto 9-8
StatementStepOver 9-9
status bars 18-11
getting text 18-11
setting text' 18-11
StatusBar 18-11
StatusBarDialog 18-47
__stdcall 4-10
stepping 9-6, 9-8, 9-9, 18- 15
18-17,18-18
single lines 9-6
StopBackgroundTask 18-47
StopRecord 20-12
storing raw data 11-2
String
Character 28-2
Compress 28-3
Contains 28-4
Index 28-4

Integer 28-3
IsAlphaNumeric 28-3
Length 28-3
Lower 28-5
overview 28-2
SubString 28-5
Text 28-3
Trim 28-5
Upper 28-5
strings 4-7, 5-11, 18-32, 28-5
assigning values 28-2, 28-3
changing case 28-5
compressing 28-3, 28-5
converting to numbers 28-3
searching 18-43, 18-44
size 28-3
testing 28-3, 28-4
Style 10-4
Style Sheets dialog box 18-35
StyleGetNext 17-8
subscript operator 6-9
SubString 28-5
substrings 28-4, 28-5
getting 18-43,18-44
SubsytemActivated 18-58
subtraction 6-2, 6-3, 6-14
super 5-23
SW_MAXIMIZE 18-46
SW_MINIMIZE 18-46
SW_RESTORE 18-46
switch 5-24
switch statements 5-3, 5-4, 5-7,
5-24
SymbolLoad 25-7
symbols 5-1, 7-2
getting 18-42, 18-43, 18-50,
25-7
inspecting 18-15
syntax 4-5,4-7,5-18
Syntax Highlighting
options 8-5, 8-6
SyntaxHighlight 8-5
SyntaxHighlightTypes 12-3
system 4-10

T

Tab 13-15
Tab key, testing for 13-3
tab stops 8-2, 8-6, 13-6, 13-15
TabRack 8-6
targets 18-37

creating 18-38
technical support 1-2
TerminateProgram 9-9
ternary operators 6-2, 6-6

Text 10-5,28-3
text blocks 8-5, 10-2
changing contents 13-13
converting case 10-8, 10-9,
10-10
copying 10-5
deleting 10-6
deselecting. 10-3
indenting 10-8, 12-2
printing 10-8
reading 8-5, 10-5, 13-11
replacing contents 13-11,
13-12,18-44
restoring 10-9
saving 10-9, 13-13
selecting 10-3, 10-6, 10-7
size 10-3
styles 10-4, 10-8
writing 8-5, 13-7
text boxes 18-32, 18-46, 18-47
text buffers 30-2
text strings 28-5
assigning values 28-2, 28-3
changing case 28-5 -
compressing 28-3, 28-5
converting to numbers 28-3
size 28-3
testing 28-3, 28-4
this pointer 5-25
tiling windows 18-45, 18-53,
18-54
time stamps 29- 2, 29-3
comparisons 29-3 -
edit buffers - 11-3, 11-5
fractional values 29-2
timeout interval 18-9, 18-58
TimeStamp
Compare 29-3
Day 29-2
DayName 29-4
Hour 29-2
Hundredth 29-2
Millisecond 29-2
Minute 29-2
Month 29-3
MonthName 29-4
Second 29-3
Year 29-3
Title 16-3
ToggleBreakpoint 9-9
ToggleCase 10-9
TokenFileName 8-6
tokens 7-1, 7-4
Tool 18-47

_tools 18-47, 18-59

Index I-13

Tools dialog box 18-35

Top 18-11

TopBuffer 17-4

TopRow 15-5

TopView 11-6, 17-4

Track 22-3

trailing whitespace
trimming 28-5

transfer tools 30-2

TransferOutput
Messageld 30-2
overview 30-1
Provider 30-2
ReadLine 30-2

TransferOutputExists 18-59

Translate 23-6 '

TranslateComplete 18-59

Translated 23-7

translations 18-59

Trim 28-5

TRUE 4-10

true 4-10

tutorial 3-1

Type 23-4

typeid 4-9, 5-26

types 4-4

typography 1-2

U

unary expressions 6-3

unary operators 6-13, 6-14

Unassign 19-6

unbounded arrays 4-14

undef 7-4

underscore, testing for 13-4

Undo 18-48

Undo command 18-22

undoing changes 17-5, 17-8,
18-21,18-22, 18-48 -

Unload 25-7

unload 4-9, 5-27

Unloaded 25-8

unloading a script 2-15

Up 18-18

Upper 28-5

UpperCase 10-10

uppercase characters 10-9,
10-10, 28-5

- UseBRIEFCursorShapes 12-4

UseBRIEFRegular-
Expression 12-4
UseCurrentWindowForSource-
Tracking 18-12
UseTabCharacter 8-6

'

variables 5-10, 5-13, 5-26, 6-7
declaring 5-7
referencing 5-28

Version 18-12

version numbers 18-12

vertical scroll bars 8-7

VerticalScrollBar 8-7

View 16-3 i

ViewActivate 16-4, 18-48

ViewActivated 17-10

ViewBreakpoint 9-9, 18-48

ViewCallStack 9-10, 18-48

ViewClasses 18-49

ViewClassExpert 18-49

ViewCpu 9-10, 18-49

ViewCpuFileLIne 9-10

ViewCreate 16-5

ViewCreated 17-11

ViewDelete 16-5

ViewDestroyed 17-11

ViewExists 16-5

ViewGlobals 18-50

ViewMessage 18-50

ViewProcess 9-11, 18-50

ViewProject 18-51

ViewRedo 17-8

ViewSlide 16-6, 18-51

ViewUndo 17-8

ViewWatch 9-11, 18-51

Visible 18-12

I-14 ObjectScripting Programmer’s Guide

w

wait cursors 18-22, 18-46
__warn 4-10
warnings 7-5, 18-44
displaying 18-32, 18-33
Watches window 9-11, 18-51
watching 9-3, 9-4, 9-11, 18-13,
18-51 ‘
while 5-27
whitespace
testing for 13-3
trimming 28-5
WholeFile 26-4
Width 18-12, 21-4
Window 15-6
window panes 18-48, 18-51
WindowArrangelcons 18-52
WindowCascade 18-52
WindowCloseAll 18-52
WindowMinimizeAll 18-52
WindowRestoreAll 18-53
windows 16-4, 18-52
activating 18-34, 18-58
arranging 18-27, 18-28,
18-29, 18-45, 18-52, 18-53,
18-54
closing 18-13, 18-52
current state 18-29, 18-46
Windows messages 5-29
WindowTileHorizontal 18-53
WindowTileVertical 18-54
with 5-28
WordBoundary 26-4
writing a script 2-12

Y

Year 29-3
YesNoDialog 18-54
yield 4-9, 5-29

Borland
www.borland.com

Copyright © 1997 Borland International, Inc. All rights reserved. All Borland product names are trademarks of Borland International, s
Inc. Corporate Headquarters: 100 Borland Way, Scotts Valley, CA 95066-3249, (408) 431-1000. Internet: http://www .borland.com X
CompuServe: GO BORLAND. Offices in: Australia, Canada, France, Germany, Hong Kong, Japan, Latin America, Mexico,),
The Netherlands, Taiwan, and United Kingdom ¢ Part # BCP1350WW21773 « BOR 9981 Loty

LY * 5
@“S“ 09,

