
3.1

TOOLS AND UTILITIES GUIDE

• ERROR MESSAGES

• WINSIGHT'"

• MAKE

• HELP/RESOURCE COMPILERS

• TLiNK

BORLAND

Borlanct c++

Version 3.1

Tools and Utilities Guide

BORLAND INTERNATIONAL INC. 1800 GREEN HILLS ROAD
P.O. BOX 660001, scons VALLEY, CA 95067-0001

Rl

Copyright © 1991, 1992 by Borland International. All rights reserved.
All Borland products are trademarks or registered trademarks of
Borland International, Inc. Other brand and product names are
trademarks or registered trademarks of their respective holders.
Windows, as used in this manual, refers to Microsoft's
implementation of a windows system.

PRINTED IN THE USA.
10 9 8 7 6 5 4

c o N T

Introduction 1

Chapter 1 Import library tools 3
IMPDEF: The module definitions
manager 3

Classes in a DLL 4
Functions in a DLL 5

IMPLIB: The import librarian 6
Re-creating IMPORT. LIB 7

IMPLIBW: The import librarian for
Windows 7

Select an import library 7
From a DLL 7
From a module definition file 7

Creating the import library 8

Chapter 2 Make: The program
manager 9

How MAKE works 10
Starting MAKE 10

Command-line options 11
The BUlL TINS.MAK file 13

A simple use of MAKE 13
Crea ting makefiles 16
Components of a makefile 16

Comments 17
Command lists for implicit and explicit
rules 17

Prefixes
Command body and operators

Compatibility option
Batching programs
Executing commands

Explicit rules
Special considerations
Multiple explicit rules for a single

18
18
19
20
21
22
23

target 24

E N T s

Examples 24
Automatic dependency checking ... 25

Implicit rules .. 25
Macros' 28

Defining macros 29
U sing macros. 29
Using environment variables as
macros 29
Substitution within macros 30
Special considerations 30
Predefined macros 30

Defined Test Macro ($d) 31
File name macros 32

Base file name macro ($*) 32
Full file name macro ($<) 32
File name path macro ($:) 33
File name and extension macro
($.) .. 33
File name only macro ($&) 33
Full target name with path macro
($@) 33
All dependents macro ($**) 34
All out of date dependents macro
($?) 34

Macro modifiers 34
Directives .. 35
Dot directives 36

.precious 36

.path.ext 36

.suffixes 37
File-inclusion directive 38
Conditional execution directives 38

Expressions allowed in conditional
directives 40

Error directive .. 41
Macro undefinition directive 42

The compatibility option -N 42

Chapter 3 TLlB: The Turbo librarian 45
Why use object module libraries? 46
The TLIB command line 46

The operation list 47
, File and module names 48
TLIB operations. 48

U sing response files 49
Creating an extended dictionary: The IE
option 49
Setting the page size: The IP option 50
Advanced operation: The IC option. , ... 50
Examples 51

Chapter 4 TLlNK: The T~Jrbo linker 53
Invoking TLINK 53

An example of linking for DOS 54
An example of linking for Windows .. 55
File names on the TLINK command
line 55
Using response files 56
The TLINK configuration file 57
Using TLINK with Borland C++
modules

Startup code
Libraries

BGI graphics library : .
Ma th libraries
Run-time libraries

Using TLINK with BCC
TLINK options

The TLINK configuration file
13 (32-bit code)
I A (align segments)
Ic (case sensitivity) ~ .. .

./C (case sensitive exports)
I d (duplicate symbols)
I e (no extended dictionary)
Ii (uninitialized trailing segments) .. .
II (line numbers)
IL (library search paths)
1m, Is, and Ix (map options)
In (ignore default libraries)

58
59
59
60
60
61
62
62
62
63
63
63
64
64
65
65
65
65
66
68

/0 (overlays)
IP (pack code segments)
It (tiny model.COM file)
lTd and ITw (target options)
I v (debugging information)
lye (expanded memory)
I yx (extended memory)

The module definition file
Module definition file defaults
A quick example

Module definition reference
CODE
DATA
DESCRIPTION ,
EXETYPE
EXPORTS
HEAPSIZE
IMPORTS
LIBRARy
NAME
SEGMENTS
STACKSIZE
STUB

Chapter 5 USing WinSight
Getting started

Getting out
Choosing a view

Picking a pane
Arranging the panes
Getting more detail

Class detail
Window detail

Using the window tree
Pruning the tree

Showing child windows
Hiding child windows

Finding a window
Leaving Find Window mode

Spying on windows
Working with classes

U sing the Class List pane
Spying on classes

Taking time out

68
69
69
70
70
71
71
72
72
73
74
74
75
76
76
76
77
78
78
79
79
80
80

83
83
84
84
84
85
85
85
85
85
86
86
86
86
86
87
87
87
87
88

Turning off tracing 88
Suspending screen updates 88

Choosing messages to trace 88
Filtering out messages 89
Message tracing options 89

Formatting message parameters ... 89
Logging traced messages 89

WinSight windows 93
Class List pane "....... 93

Display format 93
Window Tree pane 94

Display format 94
Message Trace pane 94

Format 95

Chapter 6 RC: The Windows resource
compiler 97

Creating resources 97
Adding resources fo an executable 98

Resource compiling from the IDE 98
Resource compiling from the command
line .. " 99
Resource compiling from a makefile .. 99

Resource Compiler syntax. 99

Chapter 7 HC: The Windows Help
compiler 101

Creating a Help system: The development
cycle 101

How Help appears to the user 102
How Help appears to the help writer. 103
How Help appears to the help
programmer 104

Planning the Help system 104
Developing a plan 104

Defining the audience 104
Planning the contents 105
Planning the structure 106
Displaying context-sensitive Help
topics 107

Determining the topic file structure .. 108
Choosing a file structure for your
application .. 108

Designing Help topics 110

iii

Layout of the Help text 110
Type fonts and sizes 111

Graphic images 112
Creating the Help topic files 113

Choosing an authoring tool 113
Structuring Help topic files 113
Coding Help topic files 114

Assigning build tags 115
Assigning context strings 116
Assigning titles 117
Assigning keywords 118

Creating multiple keyword
tables 119

Assigning browse sequence
numbers .. 120

Organizing browse sequences .. 120
Coding browse sequences 122

Creating cross-references between
topics 122
Defining terms 123

Creating definition topics 123
Coding definitions 124

Inserting graphic images 124
Creating and capturing bitmaps .. 124
Placing bitmaps using a graphical
word processor 125
Placing bitmaps by reference 125

Managing topic files 126
Keeping track of files and topics .. 127
Creating a help tracker 127

Building the Help file 129
Creating the Help project file 129
Specifying topic files 130
Specifying build tags 131
Specifying options 131

Specifying error reporting 132
Specifying build topics 132
Specifying the root directory 133
Specifying the index 134
Assigning a title to the Help
system 134
Converting fonts 134
Changing font sizes 135
Multiple keyword tables 136

Compressing the file 136
Specifying alternate context strings .. 137
Mapping context-sensitive topics 138
Including bitmaps by reference 140
Compiling Help files 140

Using the Help Compiler 141
Programming the application to access
Help 141

Calling WinHelp from an
application. 142
Getting context-sensitive Help 143

Shift+F1 support. 144
F1 support 145

Getting help on items on the Help
menu 147
Accessing additional keyword
tables : 147

iv

Canceling Help 148
Help examples 149

The Helpex project file 151

Appendix A Error messages 153
Finding a message in this
appendix 153

Types of messages 154
Compile-time messages 154
DPMI server messages 155
Help compiler messages 155
MAKE messages 157
Run-time error messages 157
TLIB messages. 157
TLINK messages 158

Message explanations 158

Index 241

T A B

1.1: IMPLIB options 6
2.1: MAKE options 12
2.2: MAKE prefixes 18
2.3: MAKE predefined macros 31
2.4: MAKE filename macros 31
2.5: MAKE macro modifiers 35
2.6: MAKE directives 35
2.7: MAKE operators 41
3.1: TLIB options 47
3.2: TLIB action symbols48
4.1: TLINK options 53
4.2: DOS application .OBJ and .LIB files .. 61
4.3: Windows application .OBJ and .LIB

files 61
4.4: DLL object and library files 61
4.5: TLINK overlay options 68
5.1: Mouse and keyboard actions 84
5.2: Mouse messages 89
5.3: Window messages 90
5.4: Input messages 90
5.5: System messages 90
5.6: Initialization messages 90
5.7: Clipboard messages 91
5.8: DDE messages 91

L E s

5.9: Non-client messages 91
5.10: Control messages 91
5.11: Other messages 92
6.1: Resource Compiler options 100
7.1: Your application audience 105
7.2: Help design issues 110
7.3: Windows fonts 112
7.4: Help control codes 114
7.5: Restrictions of Help titles 118
7.6: Help keyword restrictions 119
7.7: Help project file sections 129
7.8: The Help [Options] options 131
7.9: WARNING levels 132
7.10: Build tag order of precedence 133
7.11: Build expression examples 133
7.12: wCommand values 142
7.13: dwData formats 143
7.14: MULTIKEYHELP structure

formats ; 148
A.1: Compile-time message variables ... 155
A.2: Help message variables 156
A.3: MAKE error message variables 157
A.4: TLIB message variables 157
A.5: TLINK error message variables 158

v

F G u R E s

4.1: Detailed map of segments 67 7.6: Help topic display showing bitmaps by
7.1: Helpex help window 103 reference 126
7.2: Topic file 103 7.7: Help tracker text file example 128
7.3: Example of a help hierarchy 106 7.8: Help tracker worksheet example ... 128
7.4: Basic help file structure 108 7.9: Word for Windows topic 149
7.5: Help file structure showing hypertext 7.10: Help topic display 150

jumps 109 7.11: Bitmap by reference in topic 150
7.12: Help topic display 151

vi

N T R

Introduction

o D u c T o N

Borland C++ comes with a host of powerful standalone utilities
that you can use with your Borland C++ files or other modules to
ease your DOS and Windows programming.

This book describes IMPDEF, IMP LIB, IMPLIBW, MAKE, TLIB,
TLINK, and WinSight, and illustrates, with code and command­
line examples, how to use them. The rest of the Borland C++
utilities are documented in a text file called UTIL.DOC that the
INSTALL utility placed in the DOC subdirectory.

Name Description

Documented in this book

IMPDEF Creates a module definition file
IMPLIB Generates an import library
IMPLIBW Windows application that generates an import library
MAKE Standalone program manager
TLIB Turbo Librarian
TLINK Turbo Linker
WinSight Windows message monitor

Documented in the online document UTIL.DOC

BGIOBJ
CPP
GREP
OBJXREF
PRJCFG

PRJCNVT
PRJ2MAK
THELP
TOUCH
TRANCOPY
TRIGRAPH

Conversion utility for graphics drivers and fonts
Preprocessor
File-search utility
Object module cross-referencer
Updates options in a project file from a configuration file,
or converts a project file to a configuration file
Converts Turbo C project files to the Borland C++ format
Converts Borland C++ project files to MAKE files
Turbo Help utility
Updates file date and time
Copies transfer items from one project to another
Character-conversion utility

2 Tools and Utilities Guide

c H A p T E R

1

Import library tools

Dynamic link libraries (DLLs) are an important part of Windows
programming. You can create DLLs of your commonly used code,
and can use DLLs in your applications, both of your own code
and from third parties.

TLINK uses import libraries as it builds a Windows application to
know when a function is defined in and imported from a DLL.
Import libraries generally replace module definition (.DEF) files.

IMPDEF creates a module definition file containing an EXPORT
statement for each of the exported functions in the DLL. IMPLIB
creates an import library for a DLL. IMPLIBW also creates an
import library for a DLL, but is a Windows application.

IMPDEF: The module definitions manager

An import library provides
access to the functions in a

Windows DLL. See page 6 for
more details.

IMPDEF works with IMPLIB to let you customize an import
library to suit the needs of a specific application. The syntax is

IMPDEF DestName.DEF SourceName.DLL

This creates a module definition file named DestName.DEF from
the file SourceName.DLL. The module definition file would look
something like this:

LIBRARY FileName

DESCRIPTION 'Description'

Chapter 7, Import library tools 3

Classes in a DLL

4

EXPORTS
ExportFuncName @Ordinal

ExportFuncName @Ordinal

where FileName is the DLL's root filename, Description is the value
of the DESCRIPTION statement if the DLL was previously linked
with a module definition file that included a DESCRIPTION
statement, ExportFuncName names an exported function and
Ordinal is that function's ordinal value (an integer).

This utility is particularly handy Jor a DLL that uses C++ classes,
for two reasons. First, if you use the _export keyword when
defining a class, all of the non-inline member functions and static
data members for that class are exported. It's easier to let IMPDEF
make a module definition file for you because it lists all the
exported functions, automatically including the member functions
and static data members.

Since the names of these functions are mangled, it would be very
tedious to list them all in the EXPORTS section of a module
definition file simply to create an import library from the module
definition file. If you use IMPDEF to create the module definition
file, it will include the ordinal value for each exported function. If
the exported name is mangled, IMPDEF will also include that
function's unmangled, original name as a comment following the
function entry. So, for instance, the module definition file created
by IMPDEF for a DLL that used C++ classes would look
something like this:

LIBRARY FileName

DESCRIPTION 'Description'

EXPORTS
MangledExportFuncName @Ordinal ExportFuncName

MangledExportFuncName @Ordinal ExportFuncName

where FileName is the DLL's root filename, Description is the value
of the DESCRIPTION statement if the DLL was previously linked
with a module definition file that included a DESCRIPTION
statement, MangledExportFuncName provides the mangled name,
Ordinal is that function's ordinal value (an integer), and
ExportFuncName gives the function's original name.

Tools and Utilities Guide

Functions in a DLL
IMPDEF creates an editable source file that lists all the exported
functions in the DLL. You can edit this .DEF file to contain only
those functions that you want to make available to a particular
application, then run IMPLIB on the edited .DEF file. This results
in an import library that contains import information for a specific
subset of a DLL's export functions.

For instance, let's say you're distributing a DLL that provides
functions to be used by several applications. Every export
function in the DLL is defined with _export. Now, if all the
applications used all the DLL's exports, then you could simply use
IMP LIB to make one import library for the DLL, and deliver that
import library with the DLL, which would provide import
information for all of the DLL's exports. The import library could
be linked to any application, thus eliminating the need for the
particular application to list every DLL function it uses in the
IMPORTS section of its module definition file.

Now, let's say you want to give only a handful of the DLL's
exports to a particular application. Ideally, you want a customized
import library to be linked to that application-an import library
that only provides import information for the subset of functions
that the application will use. All of the other export functions in
the DLL will be hidden to that client application.

To create an import library that satisfies these conditions, run
IMPDEF on the compiled and linked DLL. IMPDEF produces a
module definition file that contains an EXPORT section listing all
of the DLL's export functions. You can edit that module definition
file, removing EXPORTS section entries for those functions that
you don't want in the customized import library. Once you've
removed the exports that you don't want, run IMPLIB on the
module definition file. The result will be an import library that
contains import information for only those export functions listed
in the EXPORTS section of the module definition file.

Chapter 7, Import library tools 5

IMPLIB: The import librarian

01 The IMPLIB utility creates an import library that can be
~ substituted for part or all of the IMPORTS section of a module

definition file for a Windows application.

Since TUNKs default settings
suffice for most applications,
module definition files aren't

usually needed.

See page 3 for information
on using IMPDEF and IMPUB

to customize an import library
for a specific application.

Note that a DLL can also
have an extension of .EXE or

DRV, not just DLL.

Table 1.1
IMPLIB options

You can use either a hyphen
or a slash to precede IMPLlBs
options but the options must

be lowercase.

6

If a module uses functions from DLLs, you have two ways to tell
the linker about them:

• You can add an IMPORTS section to the module definition file
and list every function from DLLs that the module will use.

• Or you can include the import library for the DLLs when you
link the module.

If you've created a Windows application, you've already used at
least one import library, IMPORT.LIB. IMPORT.LIB is the import
library for the standard Windows DLLs. (IMPORT.LIB is linked
automatically when you build a Windows application in the IDE
and when using Bee to link. You only have to explicitly link with
IMPORT.LIB if you're using TLINK to link separately.)

An import library lists some or all of the exported functions for
one or more DLLs. IMPLIB creates an import library directly from
DLLs or from module definition files for DLLs (or a combination
of the two).

To create an import library for a DLL, type

IMPLIBOptions LibName [DefFiles ... I DLLs ...

where Options is an optional list of one or more IMPLIB options
(see Table 1.1), LibName (required) is the name for the new import
library, DefFiles is a list of one or more existing module definition
files for one or more DLLs, and DLLs is a list of one or more
existing DLLs. You must specify at least one DLL or module
definition file.

Option What it does

-i Tells IMPLIB to ignore WEP, the Windows exit
procedure required to end a DLL. Use this option if you
are specifying more than one DLL on the IMPLIB
command line.

Warning control:
-t Terse warnings.
-v Verbose warnings.
-w No warnings.

Tools and Utilities Guide

Re-creating
IMPORT.LlB

Enter this command on a
single line while at the

Windows SYSTEM directory.

When Microsoft releases new versions of Windows, you will
probably need to replace the current version of IMPORT. LIB with
a new one. The easiest way to do this is to build it yourself.

This command line builds the current version of IMPORT.LIB:

IMPLIB -i IMPORT.LIB GDI.EXE KERNEL.EXE USER.EXE KEYBOARD.DRV
SOUND.DRV WIN87EM.DLL

If Windows is extended so that it uses additional DLLs, any new
DLLs will also have to appear on the command line.

IMPLIBW: The import librarian for Windows

See the discussion of IMPLIB
on page 6 for more

information on the uses of
import libraries and DLLs.

Select an import
library

From a DLL

From a module
definition file

The IMPLIBW Windows utility creates an import library that can
be substituted for part or all of the IMPORTS section of a module
definition file for a Windows application. Unlike most of the other
tools and utilities discussed in this book, IMPLIBW is an
application that runs under Windows.

To create an import library with IMPLIBW, double-click on the
IMPLIBW icon. An empty window will appear. Selecting File I
Create ... will bring up a dialog box listing all DLLs in the current
directory. You can navigate between directories as normal by
double-clicking on directory names in the list box.

When you select a DLL and click on Create (or simply double­
click on a DLL filename), IMPLIBW will create an import library
with the same base name as the selected DLL, and an extension of
.LIB.

If you have a module definition (.DEF) file for a DLL, you can use
it instead of the DLL itself to create an import library.

Instead of selecting a DLL, type the name of a .DEF file into the
edit control and click on Create. IMPLIBW will create an import

Chapter 7, Import library tools 7

8

Creating the
import library

See Appendix A "Error mes­
sages, " for possible IMPLlBW

error messages.

library with the same base name as the selected .DEF file, and an
extension of .LIB.

If there were no errors as IMPLIBW examined the DLL or module
definition file and created the import library, the window will
report "No Warnings." That's all there is to it. You now have a
new import library that you can include in a project;

T oo/s and Utilities Guide

c H A p T E R

2

Make.' The program manager

To find out how to create a
makefile for a Windows

application, see Chapter 8,
"Building a Windows

application" in the
Programmer's Guide.

Borland's command-line MAKE, derived from the UNIX'program
of the same name, helps you keep the executable versions of your
programs current. Many programs consist of many source files,
each of which may need to pass through preprocessors, assem­
blers, compilers, and other utilities before being combined with
the rest of the program. Forgetting to recompile a module that has
been changed-or that depends on something you've changed­
can lead to frustrating bugs. On the other hand, recompiling
everything just to be safe can be a tremendous waste of time.

MAKE solves this problem. You provide MAKE with a descrip­
tion of how the source and object files of your program are pro­
cessed to produce the finished product. MAKE looks at that
description and at the date stamps on your files, then does what's
necessary to create an up-to-date version. During this process,
MAKE may invoke many different compilers, assemblers, linkers,
and utilities, but it never does more than is necessary to update
the finished program.

MAKE's usefulness extends beyond programming applications.
You can use MAKE to control any process that involves selecting
files by name and processing them to produce a finished product.
Some common uses include text processing, automatic backups,
sorting files by extension into other directories, and cleaning
temporary files out of your directory.

Chapter 2, Make: The program manager 9

How MAKE works

The original IBM PC and
compatibles didn't come

with a built-in clock. If your
system falls into this category,
be sure to set the system time

and date correctly.

Starting MAKE

10

MAKE keeps your program up-to-date by performing the
following tasks:

iii Reads a special file (called a makefile) that you have created.
This file tells MAKE which .OBJ and library files have to be
linked in order to create your executable file, and which source
and header files have to be compiled to create each .OBJ file.

B Checks the time and date of each .OBJ file against the time and
date of the source and header files it depends on. If any of these
is later than the .OBJ file, MAKE knows that the file has been
modified and that the source file must be recompiled .

• Calls the compiler to recompile the source file .

.. Once all the .OBJ file dependencies have been checked, checks
the date and time of each of the .OBJ files against the date and
time of your executable file.

g If any of the .OBJ files is later than the .EXE file, calls the linker
to recreate the .EXE file.

MAKE relies completely upon the time stamp DOS places on each
file. This means that, in order for MAKE to do its job, your
system's time and date must be set correctly. Make sure the system
battery is in good repair. Weak batteries can cause your system's
clock to lose track of the date and time, and MAKE will no longer
work as it should.

There are two versions of MAKE: A protected mode version­
MAKE.EXE-and a real mode version-MAKER.EXE. They work
identically; the only difference is that the protected mode version
can process larger make files. When we refer to MAKE, we mean
either version.

To use MAKE, type make at the DOS prompt. MAKE then looks for
a file specifically named MAKEFILE. If MAKE can't find
MAKEFILE, it looks for MAKEFILE.MAK; if it can't find that or
BUILTINS.MAK (described later), it halts with an error message.

Tools and Utilities Guide

MAKE stops if any command
it has executed is aborted

via a CtrI-Break. Thus, a CtrI-Break
stops the currently executing
command and MAKE as well.

Command-line

What if you want to use a file with a name other than MAKEFILE
or MAKEFILE.MAK? You give MAKE the file (-1) option, like
this: .

MAKE -f MYFILE.MAK

The general syntax for MAKE is

make [option ...] [target. ..]

where option is a MAKE option (discussed later), and target is the
name of a target file to make.

Here are the MAKE syntax rules:

EI The word make ·is followed by a space, then a list of make
options.

El Each make option must be separated from its adjacent options
by a space. Options can be placed in any order, and any number
of these options can be entered (as long as there is room in the
command line). All options that do not specify a string (-5 or
±a, for example) can have an optional- or + after them. This
specifies whether you wish to turn the option off (-) or on (+).

[J The list of MAKE options is followed by a space, then an
optional list of targets.

c Each target must also be separated from its adjacent targets by a
space. MAKE evaluates the target files in the order listed, re­
compiling their constituents as necessary.

If the command line does not include any target names, MAKE
uses the first target file mentioned in an explicit rule. If one or
more targets are mentioned on the command line, they will be
built as necessary.

options Here's a complete list of MAKE's command-line options. Note that
case (upper or lower) is significant; for example, the option -d is
not a valid substitution for -D. Also note that you can use either a
- or a I to introduce the options.

Chapter 2, Make: The program manager 11

Table 2.1: MAKE options

Option What it does

-? or -h Prints a help message. The default options are displayed with plus signs following.

-a Causes an automatic dependency check on .OBI files.

-8 Builds all targets regardless of file dates.

-ddirectory When used with the -S options, tells MAKE to write its swap file in the specified
directory. directory can include a drive letter. Has no effect with the protected-mode
version of MAKE.

-0 identifier Defines the named identifier to the string consisting of the single character 1 (one).

[-O]iden=string Defines the named identifier iden to the string after the equal sign. If the string contains
any spaces or tabs, it must be enclosed in quotes. The -0 option is optional.

-e Ignores any attempt to redefine a macro whose name is the same an environment
variable. (In other words, causes the environment variable to take precedence.)

-f filename Uses filename as the MAKE file. If filename does not exist and no extension is given, tries
filename.MAK. The space after the -f is optional.

-i Does not check (ignores) the exit status of all programs run. Continues regardless of
exit status. This is equivalent to putting '-' in front of all commands in the MAKE FILE
(described below).

-I directory Searches for include files in the indicated directory (as well as in the current directory).

-K Keeps (does not erase) temporary files created by MAKE. All temporary files have the
form MAKEnnnn.$$$, where nnnn ranges from 0000 to 9999. See page 18 for more on
temporary files.

-m Displays the date and time stamp of each file as MAKE processes it.

-n Prints the commands but does not actually perform them. This is useful for debugging
a makefile.

-N Increases MAKE's compatibility by resolving conflicts between MAKE's syntax and the
syntax of Microsoft's NMAKE. See the rest of this chapter and Chapter 7, "Converting
from Microsoft C" in the Programmer's Guide for the exact differences.

-p Displays all macro definitions, implicit, rules, and macro definitions before executing
the makefile.

-r Ignores the rules (if any) defined in BUILTINS.MAK.

-5 Does not print commands before executing. Normally, MAKE prints each command as
it is about to be executed.

-S Swaps MAKE out of memory while executing commands. This significantly reduces
the memory overhead of MAKE, allowing it to compile very large modules. This
option has no effect on the protected-mode version of MAKE.

-Uidentifier Undefines any previous definitions of the named identifier.

-w Writes the current specified non-string options (like -5 and -a) to MAKE.EXE. (This
makes them default.)

12 Tools and Utilities Guide

The BUILTINS,MAK
file You will often find that there are MAKE macros and rules that

you use again and again. There are three ways of handling them.

e First, you can put them in every makefile you create.

c Second, you can put them all in one file and use the !include
directive in each makefile you create. (See page 35 for more on
directives.)

c Third, you can put them all in a BUlLTlNS.MAK file.

Each time you run MAKE, it looks for a BUlLTINS.MAK file;
however, there is no requirement that any BUlL TlNS.MAK file
exist. If MAKE finds a BUlLTlNS.MAK file, it interprets that file
first. If MAKE cannot find a BUlL TlNS.MAK file, it proceeds
directly to interpreting MAKE FILE or MAKEFILE.MAK (or
whatever makefile you specify with the -f option).

The first place MAKE searches for BUlL TlNS.MAK is the current
directory. If it's not there, MAKE then searches the directory from
which MAKE.EXE was invoked. You should place the
BUlLTlNS.MAK file in the same directory as the MAKE.EXE file.

MAKE always searches for the makefile in the current directory
only. This file contains the rules for the particular executable
program file being built. Both BUlLTlNS.MAK and the makefile
files have identical syntax rules.

MAKE also searches for any !include files (see page 38 for more
on this MAKE directive) in the current directory. If you use the-I
(include) option, it will also search in the directory specified with
the -I option.

A simple use of MAKE

For our first example, let's look at a simple use of MAKE that
doesn't involve programming. Suppose you're writing a book,
and decide to keep each chapter of the manuscript in a separate
file. (Let's assume, for the purposes of this example, that your

Chapter 2, Make: The program manager 13

MAKE can also back up files,
pull files out of different

subdirectories, and even
automatically run your

programs should the data
files they use be modified.

14

book is quite short: It has three chapters, in the files CHAPl.MSS,
CHAP2.MSS, and CHAP3.MSS.) To produce a current draft of the
book, you run each chapter through a formatting program, called
FORM.EXE, then use the DOS COpy command to concatenate the
outputs to make a single file containing the draft, like this:

Chap1.MSS forrn.9> Chapt1.TXT

Chap2.MSS form.9> Chapt2.TXT Book.TXT

Chap3.MSS form.9> Chap3.TXT

Like programming, writing a book requires a lot of concentration.
As you write, you may modify one or more of the manuscript
files, but you don't want to break your concentration by noting
which ones you've changed. On the other hand, you don't want to
forget to pass any of the files you've changed through the
formatter before combining it with the others, or you won't have a
fully updated draft of your book!

One inelegant and time-consuming way to solve this problem is
to create a batch file that reformats everyone of the manuscript
files. It might contain the following commands:

FORM CHAP1.MSS
FORM CHAP2.MSS
FORM CHAP3.MSS
COPY /A CHAP1.TXT+CHAP2.TXT+CHAP3.TXT BOOK. TXT

Running this batch file would always produce an updated version
of your book. However, suppose that, over time, your book got
bigger and one day contained 15 chapters. The process of refor­
matting the entire book might become intolerably long.

MAKE can come to the rescue in this sort of situation. All you
need to do is create a file, usually named MAKEFILE, which tells
MAKE what files BOOK. TXT depends on and how to process
them. This file will contain rules that explain how to rebuild
BOOK.TXTwhen some of the files it depends on have been
changed.

In this example, the first rule in your makefile might be

Tools and Utilities Guide

BOOK.TXT: CHAP1.TXT CHAP2.TXT CHAP3.TXT
COpy /A CHAP1.TXT+CHAP2.TXT+CHAP3.TXT BOOK.TXT

What does this mean? The first line (the one that begins with
BOOK. TXT:) says that BOOK.TXT depends on the formatted text of
each of the three chapters. If any of the files that BOOK.TXT
depends on are newer than BOOK. TXT itself, MAKE must rebuild
BOOK. TXT by executing the COpy command on the subsequent
line.

This one rule doesn't tell the whole story, though. Each of the
chapter files depends on a manuscript (.MSS) file. If any of the
CHAP?TXT files is newer than the corresponding .MSS file, the
.MSS file must be recreated. Thus, you need to add more rules to
the make file as follows:

CHAP1.TXT: CHAP1.MSS
FORM CHAP1.MSS

CHAP2.TXT: CHAP2.MSS
FORM CHAP2.MSS

CHAP3.TXT: CHAP3.MSS
FORM CHAP3.MSS

Each of these rules shows how to format one of the chapters, if
necessary, from the original manuscript file.

MAKE understands that it must update the files that another file
depends on before it attempts to update that file. Thus, if you
change CHAP3.MSS, MAKE is smart enough to reformat Chapter
3 before combining the .TXT files to create BOOK.TXT.

We can add one more refinement to this simple example. The
three rules look very much the same-in fact, they're identical
except for the last character of each file name. And, it's pretty easy
to forget to add a new rule each time you start a new chapter. To
solve these problems, MAKE allows you to create something
called an implicit rule, which shows how to make one type of file
from another, based on the files' extensions. In this case, you can
replace the three rules for the chapters with one implicit rule:

.MSS.TXT:
FORM $*.MSS

This rule says, in effect, "If you need to make a .TXT file out of an
.MSS file to make things current, here's how to do it." (You'll still
have to update the first rule-the one that makes BOOK.TXT, so
that MAKE knows to concatenate the new chapters into the

Chapter 2, Make: The program manager 15

output file. This rule, and others following, make use of a macro.
See page 28 for an in-depth discussion of macros.)

Once you have the makefile in place, all you need to do to create
an up-~o-date draft of the book is type a single command at the
DOS prompt: MAKE.

Creating makefiles

Creating a program from an assortment of program files, include
files, header files, object files, and so on, is very similar to the
text-processing example you just looked at. The main difference is
that the commands you'll use at each step of the process will
invoke preprocessors, compilers, assemblers, and linkers instead
of a text formatter and the DOS COpy command. Let's explore
how to create makefiles-the files that tell MAKE how to do these
things-in greater depth.

A makefile contains the definitions and relationships needed to
help MAKE keep your program(s) up-to-date. You can create as
many makefiles as you want and name them whatever you want;
MAKE FILE is just the default name that MAKE looks for if you
don't specify a make file when you run MAKE.

You create a makefile with any ASCII text editor, such as the IDE
built-in editor, Sprint, or SideKick. All rules, definitions, and
directives end at the end of a line. If a line is too long, you can
continue it to the next line by placing a backslash (\) as the last
character on the line.

Use whitespace (blanks and tabs) to separate adjacent identifiers,
(such as dependencies) and to indent commands within a rule.

Components of a makefile

16

Creating a makefile is like writing a program, with definitions,
commands, and directives. These are the constructs allowed in a
makefile:

• comments

• explicit rules

• implicit rules

Tools and Utilities Guide

Comments

Explicit and implicit rules are
discussed following the
section on commands.

Command lists for
implicit and
explicit rules

• macro definitions

• directives:

• file inclusion directives
• conditional execution directives
• error detection directives
• macro undefinition directives

Let's look at each of these in more detail.

Comments begin with a pound sign (#) character; the rest of the
line following the # is ignored by MAKE. Comments can be
placed anywhere; they don't have to start in a particular column.

A backslash will not continue a comment onto the next line;
instead, you must use a # on each line. In fact, you cannot use a
backslash as a continuation character in a line that has a comment.
If the backslash precedes the #, it is no longer the last character on
tl1e line; if it follows the #, then it is part of the comment itself.

Here are some examples of comments in a makefile:

Makefile for my book

This file updates the file BOOK. TXT each time I
change one of the .MSS files

Explicit rule to make BOOK. TXT from six chapters. Note the
continuation lines.

BOOK.TXT: CHAPl.TXT CHAP2.TXT CHAP3.TXT\
CHAP4.TXT CHAPS.TXT CHAP6.TXT
COPY fA CHAPl.TXT+CHAP2.TXT+CHAP3.TXT+CHAP4.TXT+\

CHAPS.TXT+CHAP6.TXT BOOK. TXT

Implicit rule to format individual chapters
.MSS.TXT:

FORM $*.MSS

Both explicit and implicit rules (discussed later) can have lists of
commands. This section describes how these commands are pro­
~essed by MAKE.

Commands in a command list take the form

[prefix ...] command_body

Chapter 2, Make: The program manager 17

18

Each command line in a command list consists of an (optional) list
of prefixes, followed by a single command body.

Prefixes The prefixes allowed in a command modify the treatment of these
commands by MAKE. The prefix is either the at-sign (@) or a
hyphen (-) followed immediately by a number.

Table 2.2
MAKE prefixes

Exit codes are status codes
returned by the executed

commands.

Command body and
operators

Prefix

@

-num

What it does

Prevents MAKE from displaying the command before
executing it. The display is hidden even if the -5 option is not
given on the MAKE command line. This prefix applies only
to the command on which it appears.

Affects how MAKE treats exit codes. If a number (num) is
provided, then MAKE aborts processing only if the exit status
exceeds the number given. In this example, MAKE aborts
only if the exit status exceeds 4:

-4 MYPROG SAMPLE.X

If no -num prefix is given and the status is nonzero, MAKE
stops and deletes the current target file.

With a hyphen but no number, MAKE will not check the exit
status at all. Regardless of the exit status, MAKE continues.

& The ampersand operator causes MAKE to execute the
command for each of the dependents the $** or $? macros in
an explicit rule expands to. See page 34 for more information
on these macros.

The command body is treated exactly as if it were entered asa
line to the DOS command line, with the exception that pipes (I)
are not supported.

In addition'to the <, >, and» redirection operators, MAKE adds
the« and && operators. These operators create a file on the fly
for input to a command. The «operator creates a temporary file
and redirects the command's standard input so that it comes from
the created file. If you have a program that accepts input from
stdin, the command

MYPROG «!

This is a test

would create a temporary file containing the string "This is a
test \n", redirecting it to be the sole input to myprog. The excla­
mation point (!) is a delimiter in this example; you can use any
character except # or \ as a delimiter for the file. The first line
containing the delimiter character as its first character ends the

Tools and Utilities Guide

Macros are covered starting
onpage2B.

The KEEP option for the «
operator in compatibility

mode tells MAKE not to
delete specific temporary
files. See the next section.

file. The rest of the line following the delimiter character (in this
case, an exclamation point) is considered part of the preceding
command.

The && operator is similar to «. It creates a temporary file, but
instead of making the file the standard input to the command, the
&& operator is replaced with the temporary file's name. This is
useful when you want MAKE to create a file that's going to be
used as input to a program. The following example creates a
"response file" for TLINK:

MYPROG.EXE: $ (MYOBJS)
TLINK Ie @&&!

cos $ (MYOBJS)
$*
$*
$ (MYLIBS) EMU.LIB MATHS.LIB CS.LIB

Note that macros (indicated by $ signs) are expanded when the
file is created. The $* is replaced with the name of the file being
built, without the extension, and $(MYOBJS) and $(MYLIBS) are
replaced with the values of the macros MYOBJS and MYLIBS.
Thus, TLINK might see a file that looks like this:

cos A.OBJ B.OBJ C.OBJ D.OBJ
MYPROG
MYPROG
W.LIB X.LIB Y.LIB Z.LIB EMU.LIB MATHS.LIB CS.LIB

All temporary files are deleted unless you use the -K command­
line option. Use the -K option to "debug" your temporary files if
they don't appear to be working correctly.

Compatibility option

If you specified -N on the MAKE command line, the « operator
changes its behavior to be more like that of the && operator; that
is, the temporary file isn't redirected to standard input, it's just
created on the fly for use mainly as a response file. This behavior
is consistent with Microsoft's NMAKE.

The format for this version of the «operator is:

command «ffilenamel] ... «ffilenameN]
text .

Chapter 2, Make: The program manager 19

Note that there must be no
space after the « and

before the KEEP or NOKEEP
option.

«[KEEP I NOKEEP]
text

«[KEEP I NOKEEP]

20

The KEEP option tells MAKE to not delete the file after it's been
used. If you don't specify anything or specify NOKEEP, MAKE
will delete the temporary file (unless you specified the -K option
to keep temporary files).

Botching programs MAKE allows utilities that can operate on a list of files to be
batched. Suppose, for example, that MAKE needs to submit
several C files to Borland C++ for processing. MAKE could run
BCC once for each file, but it's much more efficient to invoke BCC
with a list of all the files to be compiled on the command line.
This saves the overhead of reloading Borland C++ each time.

MAKE's batching feature lets you accumulate the names of files to
be processed by a command, combine them into a list, and invoke
that command only once for the whole list.

To cause MAKE to batch commands, you use braces in the
command line:

command { batch-item} .. . rest-oJ-command

This command syntax delays the execution of the command until
MAKE determines what command (if any) it has to invoke next. If
the next command is identical except for what's in the braces, the
two commands will be combined by appending the parts of the
commands that appeared ~side the braces.

Here's an example that shows how batching works. Suppose
MAKE decides to invoke the following three commands in
succession:

Bee {file1.c
Bee {file2.c
Bee {f i 1 e 3. c

Rather than invoking Borland C++ three times, MAKE issues the
single command

Bee filel.c file2.c file3.c

Note that the spaces at the ends of the file names in braces are
essential to keep them apart, since the contents of the braces in
each command are concatenated exactly as-is.

Tools and Utilities Guide

Here's an example that uses an implicit rule. Suppose your
makefile had an implicit rule to compile C programs to .OBJ files:

.c.obj:
BCC -c {$< }

As MAKE uses the implicit rule on each C file, it expands the
macro $< into the actual name of the file and adds that name to
the list of files to compile. (Again, note the space inside the braces

. to keep the names separate.) The list grows until one of three
things happens:

I:J MAKE discovers that it has to run a program other than BCC

Il there are no more commands to process

lJ MAKE runs out of room on the command line

If MAKE runs out of room on the command line, it puts as much
as it can on one command line, then puts the rest on the next
command line. When the list is done, MAKE invokes BCC (with
the -c option) on the whole list of files at once.

Executing commands MAKE searches for any other command name using the DOS
search algorithm:

1. MAKE first searches for the file in the current directory, then
se~rches each directory in the path.

2. In each directory, MAKE first searches for a file of the specified
name with the extension .COM. If it doesn't find it, it searches
for the same file name with an .EXE extension. Failing that,
MAKE searches for a file by the specified name with a .BA T
extension.

3. If MAKE finds a .BAT file, it invokes a copy of COM­
MAND.COM to execute the batch file.

4. If MAKE can't find a .COM, .EXE, or .BA T file matching the
command to be executed, it will invoke a copy of the DOS
command processor (COMMAND.COM by default) to execute
the command.

If you supply a file name extension in the command line, MAKE
searches only for that extension. Here are some examples:

• This command causes COMMAND.COM to change the current
directory to C: \INCLUDE:

cd c: \ include

Chapter 2, Make: The program manager 21

22

Explicit rules

Note that the braces must
be included if you use the

paths parameter.

• MAKE uses the full search algorithm in searching for the
appropriate files to p~rform this command:

tlink lib\cOs x y,z,z,lib\cs

• MAKE searches for this file using only the .COM extension:
myprog.com geo.xyz

a MAKE executes this command using the explicit file name
provided:

c:\myprogs\fil.exe -r

The first rule in the example on page 17 is an explicit rule-a rule
that specifies complete file names explicitly. Explicit rules take the
form

target [target ...] : [{paths}] [dependent ...]
[command]

where target is the file to be updated, dependent is a file on which
target depends, paths is a list of directories, separated by
semicolons and enclosed in braces, in which dependent files
might reside, and command is any valid DOS command (including
invocation of .BAT files and execution of .COM and .EXE files).

Explicit rules define one or more target names, zero or more
dependent files, and an optional list of commands to be
performed. Target and dependent file names listed in explicit
rules can contain normal DOS drive and directory specifications;
they can also contain wildcards.

.. Syntax here is important .

• target must be at the start of a line (in column 1).

a The dependent file(s) must be preceded by at least one space or
tab, after the colon.

a paths, if included, must be enclosed in braces.

• Each command must be indented, (must be preceded by at least
one blank or tab). As mentioned before, the backslash can be
used as a continuation character if the list of dependent files or
a given command is too long for one line.

Both the dependent files and the commands are optional; it is
possible to have an explicit rule consisting only of target [target ... J
followed by a colon.

T oo/s and Utilities Guide

The idea b"ehind an explicit rule is that the command or com­
mands listed will create or update target, usually using the
dependent files. When MAKE encounters an explicit rule, it first
checks to see if any of the dependent files are themselves target files
elsewhere in the makefile. If so, MAKE evaluates that rule first.

MAKE will check for dependent files in the current directory first.
If it can't find them, MAKE will then check each of the directories
specified in the path list.

Once all the dependent files have been created or updated based on
other rules, MAKE checks to see if target exists. If not, each com­
mand is invoked in the order given. If target does exist, its time
and date of last modification are compared against the time and
date for each dependent. If any dependent has been modified more
recently than target, the list of commands is executed.

A given file name can occur on the left side of an explicit rule only
once in a given execution of MAKE.

Each command line in an explicit rule begins with whitespace.
MAKE considers all lines following an explicit rule to be part of
the command list for that rule, up to the next line that begins in
column 1 (without any preceding whitespace) or to the end of the
file. Blank lines are ignored.

Special considerations An explicit rule with no command lines following it is treated a
little differently than an explicit rule with command lines.

!J If an explicit rule includes commands, the only files that the
target depends on are the ones listed in the explicit rule.

D If an explicit rule has no commands, the targets depend on two
sets of files: the files given in the explicit rule, and any file that
matches an implicit rule for the target(s). This lets you specify a
dependency to be handled by an implicit rule. For example in

.c.obj:
Bee -c $<

prog.obj:

PROG.OBJ depends on PROG.C; If PROG.OBJ is out of date,
MAKE executes the command line

Bee -c prog.c

Chapter 2, Make: The program manager 23

24

Multiple explicit rules
for a single target

A single target may have more than a single explicit rule. You
might use multiple explicit rules to create a module library with
TLIB, for example, since the .OBJ object module files might be
built differently (some with BCC and some with T ASM, for
example).

The format is the same as for normal explicit rules, except there
are two colon~ following the target. The second colon tells MAKE
to expect additional explicit rules for this target.

In the following example, MYLIB.LIB consists of four object
modules, two of which are C++ modules. The other two are
assembly modules. The first explicit rule compiles the C++
modules and updates the library. The second explicit rule
assembles the ASM files and also updates the library.

mylib.lib:: fl.epp f2.epp
bee -e fl.epp f2.epp
tlib mylib -+fl.obj -+f2.obj

mylib."lib:: f3.asmf4.asm
tasm /mx f3.asm f4.asm
tlib mylib -+f3.obj -+f4.obj

Examples Here are some examples of explicit rules:

1. prog.exe: myprog.obj prog2.obj
Bee myprog.obj prog2.obj

2. myprog.obj: myprog.c include\stdio.h
Bee -c myprog.c

3. prog2.obj: prog2.c include\stdio.h
Bee -c -K prog2.c

The three examples are from the same makefile. Only the modules
affected by a change are rebuilt. If PROG2.C is changed, it's the
only one recompiled; the same holds true for MYPROG.C. But if
the include file stdio.h is changed, both are recompiled. (The link
step is done if any of the .OBJ files in the dependency list have
changed, which will happen when a recompile results from a
change to a source file.)

Tools and Utilities Guide

Automatic
dependency checking

Implicit rules

Borland C++ works with MAKE to provide automatic
dependency checking for include files. BCC and BC produce .OBJ
files that tell MAKE what include files were used to create those
.OBJ files. MAKE's -a command-line option checks this
information and makes sure that everything is up-to-date.

When MAKE does an automatic dependency check, it reads the
include files' names, times, and dates from the .OBJ file. The
autodependency check will also work for include files inside of
include files. If any include files have been modified, MAKE
causes the .OBJ file to be recompiled. For example, consider the
following explicit rule:

myprog.obj: myprog.e inelude\stdio.h
BCC -e myprog.e

Now assume that the following source file, called MYPROG.C,
has been compiled with BCC:

#inelude <stdio.h>
#include "del. h"

void myprog() {}

If you then invoke MAKE with the following command line

make -a myprog.obj

it checks the time and date of MYPROG.C, and also of stdio.h and
dcl.h.

MAKE allows you to define implicit rules as well as explicit ones.
Implicit rules are generalizations of explicit rules; they apply to all
files that have certain identifying extensions.

Here's an example that illustrates the relationship between the
two rules. Consider this explicit rule from the preceding example.
The rule is typical because it follows a general principle: An .OBJ
file is dependent on the .C file with the same file name and is
created by executing BCC. In fact, you might have a makefile
where you have several (or even several dozen) explicit rules
following this same format.

Chapter 2, Make: The program manager 25

The symbol $< is a special
macro. Macros are discussed

starting on page 28. The $<
macro will be replaced by

the full name of the
appropriate. C source file
each time the command

executes.

26

By rewriting the explicit rule as an implicit rule, you can eliminate
all the explicit rules of the same form. As an implicit rule, it
would look like this:

.c.obj:
BCC -c $<

This rule means" Any file with the extension .C can be translated
to a file of the same name with the extension .OBJ using this
sequence of commands." The .OBJ file is created with the second
line of the rule, where $< represents the file's name with the
source (.C) extension.

Here's the syntax for an implicit rule:

[{source _dir}] .source _extension. [{ target _dir}] target_extension:
[command]

As before, the commands are optional and must be indented.

source_dir (which must be enclosed by braces) tells MAKE to
search for source files in the specified directory. target _dir tells
MAKE where the target files will be placed.

source_extension is the extension of the source file; that is, it applies
to any file having the format

fname.source _extension

Likewise, the target_extension refers to the file

fname . target _extension

where fname is the same for both files. In other words, this implicit
rule replaces all explicit rules having the format

fname .target_extension: fname.source _extension
[command]

for any fname.

MAKE uses implicit rules if it can't find any explicit rules for a
given target, or if an explicit rule with no commands exists for the
target.

The extension of the file name in question is used to determine
which implicit rule to use. The implicit rule is applied if a file is
found with the same name as the target, but with the mentioned
source extension.

Tools and Utilities Guide

Note that with the -N
compatibility option, the

searches go in the opposite
direction: from the bottom of

the makefile up.

For example, suppose you had a makefile (named MAKE FILE)
whose contents were

.c.obj:
Bee -c $<

If you had a C program named RA TIO.C that you wanted to
compile to RATIO.OBJ, you could use the command

make ratio.obj

MAKE would take RA TIO.OBJ to be the target. Since there is no
explicit rule for creating RA TIO.OBJ, MAKE applies the implicit
rule and generates the command

Bee -c ratio.c

which, of course, does the compile step necessary to create
RATIO.OBJ.

MAKE also uses implicit rules if you give it an explicit rule with
no commands. Suppose you had the following implicit rule at the
start of your makefile:

.c.obj:
Bee -c $<

You could then remove the command from the rule:

myprog.obj: myprog.c include\stdio.h
Bee -c myprog.c

and it would execute exactly as before.

If you're using Borland C++ and you enable automatic
dependency checking in MAKE, you can remove all explicit
dependencies that have .OBJ files as targets. With automatic
dependency checking enabled and implicit rules, the three-rule C
example shown in the section on explicit rules becomes

.c.obj:
Bee -c $<

prog.exe: myprog.obj prog2.obj
tlink lib\cOs myprog prog2, prog, , lib\cs

You can write several implicit rules with the same target exten­
sion. If more than one implicit rule exists for a given target exten­
sion, the rules are checked in the order in which they appear in
the makefile, until a match is found for the source extension, or
until MAKE has checked all applicable rules.

Chapter 2, Make: The program manager 27

Macros

28

MAKE uses the first implicit rule that involves a file with the
source extension. Even if the commands of that rule fail, no more
implicit rules are checked.

All lines following an implicit rule, up to the next line that begins
without whitespace or to the end of the file, are considered to be
part of the command list for the rule.

Often, you'll find yourself using certain commands, file names, or
options again and again in your makefile. For instance, if you're
writing a e program that uses the medium memory model, all
your Bee commands will use the option -mm, which means to
compile to the medium memory model. But suppose you wanted
to switch to the large memory model. You could go through and
change all the -mm options to -ml. Or, you could define a macro.

A macro is a name that represents some string of characters. A
macro definition gives a macro name and the expansion text;
thereafter, when MAKE encounters the macro name, it replaces
the name with the expansion text.

Suppose you defined the following macro at the start of your
makefile:

MODEL = m

This line defines the macro MODEL, which is now equivalent to the
string m. Using this macro, you could write each command to
invoke the e compiler to look something like this:

Bee -c -m$(MODEL) myprog.c

When you run MAKE, each macro (in this case, $ (MODEL) is
replaced with its expansion text (here, m). The command that's
actually executed would be

Bee -c -mm myprog.c

Now, changing memory models is easy. If you change the first
line to

MODEL = 1

you've changed all the commands to use the large memory model.
In fact, if you leave out the first line altogether, you can specify
which memory model you want each time you run MAKE, using
the -0 (define) command-line option:

Tools and Utilities Guide

make -DMODEL=l

This tells MAKE to treat MODEL as a macro with the expansion
text 1.

Defining macros Macro definitions take the form

macro _name = expansion text

where macro _name is the name of the macro. macro _name should
be a string of letters and digits with no whitespace in it, although
you can have whitespace between macro_name and the equal sign
(=). The expansion text is any arbitrary string containing letters,
digits, whitespace, and punctuation; it is ended by newline.

If macro _name has previously been defined, either by a macro
definition in the makefile or on the MAKE command line, the new
definition replaces the old.

Case is significant in macros; that is, the macro names model,
Model, and MODEL are all different.

Using macros You invoke macros in your make file using this format

Using environment
variables as macros

$(macro_name)

You need the parentheses for all invocations, except when the
macro name is just one character long. This construct-
$ (macro_name)-is known as a macro invocation.

When MAKE encounters a macro invocation, it replaces the
invocation with the macro's expansion text. If the macro is not
defined, MAKE replaces it with the null string.

If you invoke a macro where macro_name hasn't been defined in
the makefile or on the command line, MAKE will try to find
macro_name as a DOS environment variable. If MAKE does find it
in the environment, the expansion text will be the value of the
environment variable.

Macros defined in the makefile or on the command line override
environment variables of the same name unless the -e option was
specified.

Chapter 2, Make: The program manager 29

Substitution within You can invoke a macro while simultaneously changing some of
macros its text by using a special format of the macro invocation format.

Note that no extraneous
whitespace should appear

between the: and =. If
spaces appear offer the

colon, MAKE will attempt to
find the string, including the

preceding space.

Special considerations

See page 35 for information
on directives.

Instead of the standard macro invocation form, use

$(macro_name: textl =text2)

In this form, every occurrence of textl in macro_name will be
replaced with text2. macro_name can also be one of the predefined
macros. This is useful if you'd prefer to keep only a single list of
files in a macro. For example, in the following example, the macro
SOURCE contains a list of all the C++ source files a target
depends on. The TLINK command line changes all the .CPP
extensions to the matching .OBJ object files and links those.

SOURCE = fl.epp f2.epp f3.epp

rnyapp.exe: $ (SOURCE)
bee -e $ (SOURCE)
tlink cOs $(SOURCE:.epp=.obj) ,rnyapp"es

Macros in macros: Macros cannot be invoked on the left side
(macro_name) of a macro definition. They can be used on the right
side (expansion text), but they are not expanded until the macro
being defined is invoked. In other words, when a macro
invocation is expanded, any macros embedded in its expansion
text are also expanded.

Macros in rules: Macro invocations are expanded immediately in
rule lines.

Macros in directives: Macro invocations are expanded imme­
diately in !if and !elif directives. If the macro being invoked in an
!if or !elif directive is not currently defined, it is expanded to the
value 0 (FALSE).

Macros in commands: Macro invocations in commands are
expanded when the command is executed.

Predefined macros MAKE comes with several special macros built in: $d, $*, $<, $:,
$., $&, $@, $**, and $? The first is a test to see if a macro name is
defined; it's used in the conditional directives !if and !elif. The
others are file name macros, used in explicit and implicit rules.
Finally, MAKE defines several other macros; see Table 2.3.

30 Tools and Utilities Guide

Table 2.3
MAKE predefined macros

Table 2.4
MAKE filename macros

__ MSDOS __
__ MAKE __

"1" if running MAKE under DOS
MAKE's version number in hexadecimal (for this
version, "Ox0360")

MAKE MAKE's executable filename (usually MAKE or
MAKER)

MAKEFLAGS
MAKEDIR

Any options used on the MAKE command line
The directory from which MAKE was run

What part of the file name it returns in an
Macro implicit rule explicit rule

$*
$<
$:
$.
$&
$@
$**
$?

Dependent base with path
Dependent full with path
Dependent path only
Dependent full without path
Dependent base without path
Target full with path
Dependent full with path
Dependent full with path

Defined Test Macro ($d)

Target base with path
Target full with path
Target path only
Target full without path
Target base without path
Target full with path
All dependents
All out of date dependents

The defined test macro ($d) expands to 1 if the given macro name
is defined, or to 0 if it is not. The content of the macro's expansion
text does not matter. This special macro is allowed only in !if and
!elif directives.

For example, suppose you want to modify your makefile so that if
you don't specify a memory model, it'll use the medium one. You
could put this at the start of your makefile:

!if !$d(MODEL) # if MODEL is not defined
MODEL=m# define it to m (MEDIUM)
!endif

If you then invoke MAKE with the command line

make -DMODEL=l

then MODEL is defined as 1. If, however, you just invoke MAKE
by itself,

make

then MODEL is defined as m, your "default" memory model.

Chapter 2, Make: The program manager 31

32

File name macros The various file name macros work in similar ways, expanding to
some variation of the full path name of the file being b.uilt.

Base file name macro ($ *)

The base file name macro is allowed in the commands for an
explicit or an implicit rule. This macro ($*) expands to the file
name being built, excluding any extension, like this:

File name is A:\P\TESTFILE.C
$* expands to A:\P\TESTFILE

For example, you could modify this explicit rule

prog.exe: myprog.obj prog2.obj
tlink lib\cOs myprog prog2, prog, , lib\cs

to look like this:

prog.exe: myprog.obj prog2.obj
tlink lib\cOs myprog prog2, $*, , lib\cs

When·the command in this rule is executed, the macro $* is
replaced by the target file name without an extension and with a
path. For implicit rules, this macro is very useful.

For example, an implicit rule might look like this:

.cpp.obj:
BCC -c $*

Full file name macro ($<)

The full file name macro ($<) is also used in the commands for an
explicit or implicit rule. In an explicit rule, $< expands to the full
target file name (including extension), like this:

File name is A:\P\TESTFILE.C
$< expands to A:\P\TESTFILE.C

For example, the rule

mylib.obj: mylib.c
copy $< \oldobjs
BCC -c $*.c

copies MYLIB.OBJ to the directory \OLDOBJS before compiling
MYLIB.C.

Tools and Utilities Guide

In an implicit rule, $< takes on the file name plus the source exten­
sion. For example, the implicit rule

.c.obj:
BCC -c $*.c

produces exactly the same result as

.c.obj:
BCC -c $<

because the extension of the target file name must be .C.

File name path macro ($:)

This macro expands to the path name (without the file name), like
this:

File name is A:\P\TESTFILE.C
$: expands to A:\P\

File name and extension macro ($.)

This macro expands to the file name, with an extension but
without the path name, like this:

File name is A:\P\TESTFILE.C
$. expands to TESTFILE.C

File name only macro ($&)

This macro expands to the file name only, without path or exten­
sion, like this:

File name is A:\P\TESTFILE.C
$& expands to TESTFILE

Full target name with path macro ($@)

This macro expands to the full target file name with path and
extension, like this:

File name is A:\P\TESTFILE.C
$@ expands to A:\P\TESTFILE.C

The $@ macro is similar to the $< macro, except that $@ expands
to the full target file name in both implicit and explicit rules, which

Chapter 2, Make: The program manager 33

34

expands to the target in an explicit rule and the dependent in an
implicit rule.

All dependents macro ($**)

In an explicit rule, this macro expands to all the dependents of the
target, including the full filename with path and extension. For
example, in the following explicit rule, the $** will be replaced
with myprog . obj prog2. obj, the two dependents of prog. exe:

prog.exe: rnyprog.obj prog2.obj
tlink lib\eOs $**, $*, , lib\es

All out of date dependents macro ($?)

In an explicit rule, this macro expands to all the out of date
dependents of the target, including the full filename with path
and extension. Out of date dependents are those that have been
modified since the target was last made. Therefore, in the
following example explicit rule, the $? will be replaced with
fl. cpp and/or f2. cpp depending on which dependent(s) were out
of date:

rnylib.lib: fl.epp f2.epp
bee -e $?
&tlib rnylib -+$(?:.epp=.obj)

N ate the use of the & prefix so MAKE will repeat the command
for each of the out of date dependents.

Macro modifiers If there isn't a predefined filename macro to give you the parts of
a filename you need, you can use macro modifiers to extract any
part of a filename macro. The format is:

$(macro[D I FIB I R])

where macro is one of the predefined filename macros and D, F, B,
and R are the modifiers. Note that since the macro is now longer
than a single character, parentheses are necessary. The following
table describes what each modifier does. The examples assume
that $< returns C: \OBJS\BOB.OBJ.

Tools and Utilities Guide

Table 2.5
MAKE macro modifiers

Directives

Modifier What part of the filename

D
F
B
R

Drive and directory
Base and extension
Base only
Drive, directory, and base

Example

$«D) = C:\OBJS\
$(<F) = BOB.OBJ
$«B) = BOB
$«R) = C:\OBJS\BOB

Borland's MAKE allows something that other versions of MAKE
don't: directives similar to those allowed in C, assembler, and
Turbo Pascal. You can use these directives to perform a variety of
useful and powerful actions. Some directives in a makefile begin
with an exclamation point (!) as the first character of the line.
Others begin with a period. Here is the complete list of MAKE
directives:

Table 2.6
MAKE directives .autodepend

!elif
Turns on auto dependency checking.
Conditional execution.

!else
!endif
!error
!if
!ifdef
!ifndef
. ignore
!include
. noautodepend
. noignore
.nosilent

.noswap

.path.ext

.precious

.silent

.swap

.suffixes

!undef

Chapter 2, Make: The program manager

Conditional execution.
Conditional execution.
Causes MAKE to stop and print an error message.
Conditional execution.
Conditional execution.
Conditional execution.
Tells MAKE to ignore return value of a command .
Specifies a file to include in the makefile.
Turns off auto dependency checking .
Turns off .ignore .
Tells MAKE to print commands before executing
them.
Tells the real mode version of MAKE to not swap
itself in and out of memory. Has no effect in the
protected-mode version of MAKE.
Gives MAKE a path to search for files with extension
.EXT.
Tells MAKE to not delete the specified target even if
the commands to build the target fail.
Tells MAKE to not print commands before executing
them.
Tells the real mode version of MAKE to swap itself in
and out of memory. Has no effect in the protected­
mode version of MAKE.
Tells MAKE the implicit rule to use when a target's
dependent is ambiguous.
Causes the definition for a specified macro to be
forgotten.

35

36

Dot directives
Each of the following directives has a corresponding command­
line option, but takes precedence over that option. For example, if
you invoke MAKE like this:

make -a

but the makefile has a .noautodepend directive, then
autodependency checking will be off .

. autodepend and .noautodepend turn on or off autodependency
checking. They correspond to the -a command-line option .

.ignore and .noignore tell MAKE whether or not to ignore the
return value of a command, much like placing the prefix - in front
of it (described earlier). They correspond to the·-i command-line
option .

. silent and .nosilent tell MAKE whether or not to print commands
before executing them. They correspond to the -s command-line
option .

. swap and .noswap tell MAKE whether or not to swap itself out
of memory. They correspond to the -S option .

. precious The syntax for the .precious directiv~ is:

.precious: target [...]

where target is one or more target files . . precious prevents MAKE
from deleting the target if the commands building the target fail.
In some cases, the target is still viable. For example, if an object
module can't be added to a library, the library shouldn't be
deleted, or, when building a Windows application, if the Resource
Compiler fails, the .EXE executable shouldn't be deleted .

. path.ext This directive, placed in a makefile, tells MAKE where to look for
files of the given extension. For example, if the following is in a
makefile:

.path.c = C:\CSOURCE

.c.obj:
BCC -c $<

trnp.exe: trnp.obj
BCC trnp.obj

Tools and Utilities Guide

MAKE will look for TMP.C, the implied source file for TMP.OBJ,
in C: \ CSOURCE instead of the current directory.

The .path is also a macro that has the value of the path. The
following is an example of the use of .path. The source files are
contained in one directory, the .OBJ files in another, and all the
.EXE files in the current directory .

. path.e = C:\CSOURCE

.path.obj = C:\OBJS

.e.obj:
BCC -e -o$(.path.obj)\$& $<

.obj.exe:
BCC -e$&.exe $<

tmp.exe: tmp.obj

.suffixes In the following example, MYPROG.OBJ can be created from
MYPROG.ASM, MYPROG.CPP, and MYPROG.C.

myprog.exe: myprog.obj
tlink myprog.obj

.asm.obj:
tasm /rnx $<

.epp.obj:
bee -P $<

.e.obj:
bee -P- $<

If more than one of these sources is available, the .suffixes
directive determines which will be used. The syntax for .suffixes
is:

.suffixes: .source_extension ...

where .source_extension is a list of the extensions for which there
are implicit rules, in order of which source extension implicit rule
should be used.

For example, if we add . suf fixes: . asm . C • cpp to the top of the
previous makefile example, MAKE would first look for
MYPROG.ASM, then MYPROG.C, and finally MYPROG.CPP.

Chapter 2, Make: The program manager 37

38

File-inclusion
directive A file-inclusion directive (!include) specifies a file to be included

into the makefile for interpretation at the point of the directive. It
takes the following form:

Conditional
execution
directives

!include filename

filename can be surrounded by quotes (''filename'') or angle
brackets (<filename». You can nest these directives to any depth.
If an include directive attempts to include a file that has already
been included in some outer level of nesting (so that a nesting
loop is about to start), the inner include directive is rejected as an
error.

How do you use this directive? Suppose you created the file
MODEL.MAC that contained the following:

!ifndef MODEL
MODEL=ffi
!endif

You could use this conditional macro definition in any makefile
by including the directive

!include "MODEL.MAC"

When MAKE encounters !include, it opens the specified file and
reads the contents as if they were in the make file itself.

Conditional execution directives (!if, !ifdef, !ifndef, !elif, !else, and
!endif) give you a measure of flexibility in constructing makefiles.
Rules and macros can be made conditional, so that a command­
line macro definition (using the -0 option) can enable or disable
sections of the makefile.

The format of these directives parallels those in C, assembly
language, and Turbo Pascal:

!if expression
[lines]

!endif

!if expression

Tools and Utilities Guide

[lines]

!else
[lines]

!endif

!if expression
[lines]

!elif expression
[lines]

!endif

!ifdef macro
[lines]

!endif

!ifndef macro
[lines]

!endif

[lines] can be any of the following statement types:

.. macro definition
II explicit rule
.. implicit rule
• include directive
.if group
• error directive
• undef directive

The conditional directives fo~m a group, with at least an Iif, lifdef,
or !ifndef directive beginning the group and an !endif directive
closing the group.

• One !else directive can appear in the group.

• !elif directives can appear between the !if (or !ifdef and !ifndef)
and any !else directives.

• Rules, macros, and other directives can appear between the
various conditional directives in any number. Note that
complete rules, with their commands, cannot be split across
conditional directives.

• Conditional directive groups can be nested to any depth.

Chapter 2, Make: The program manager 39

Expressions allowed in
conditional directives

If you program in assembly
language or Turbo Pasco"

be sure to look closely at the
examples that follow.

40

Any rules, commands, or directives must be complete within a
single source file.

All !if, !ifdef, and !ifndef directives must have matching !endif
directives within the same source file. Thus the following include
file is illegal, regardless of what's in any file that might include it,
because it doesn't have a matching !endif directive:

lif $ (FILE_COUNT) > 5
some rules

lelse
other rules

<end-of-file>

The !ifdef directive is another way of testing whether a macro is
defined. ! ifdef MACRO is equivalent to ! if $d(MACRO). The same
holds true for !ifndef; ! ifndef MACRO is equivalent to ! if !
$d{MACRO) .

Expressions are allowed in an !if or an !elif directive; they use a
C-like syntax. The expression is evaluated as a simple 32-bit
signed integer or strings of characters.

You can enter numbers as decimal, octal, or hexadecimal
constants. If you know the C language, you already know how to
write constants in MAKE; the formats are exactly the same. These
are legal constants in a MAKE expression:

4536 # decimal constant
0677 # octal constant (distinguished by leading 0)
Ox23aF # hexadecimal constant (distinguished by leading Ox)

Any expression that doesn't follow one of those formats is
considered a string.

An expression can use any of the following operators (an asterisk
indicates the operator is also available with string expressions):

Tools and Utilities Guide

Table 2.7
MAKE operators Operator Operation Operator Operation

See Chapter 2 of the
Programmer's Guide for

complete descriptions of
these operators.

Error directive

Unary operators

Negation
Bit complement
Logical NOT

Binary operators

+ Addition

*
I
%

»
«

Subtraction
Multiplication
Division
Remainder

Right shift
Left shift

& Bitwise AND
I Bitwise OR
1\ BitwiseXOR

&& Logical AND
II Logical OR

Greater than * >
Less than * <

>= Greater than or equal*
<= Less than or equat
-- Equality*
!= Inequality*

Ternary operator

? : Conditional expression

The operators have the same precedences as they do in the C
language. Parentheses can be used to group operands in an
expression. Unlike the C language, MAKE can compare strings
using the normal ==, !=, >, <, >=, and => operators. You can't
compare a string expression with a numeric expression, nor can
you use numeric operators (like + or *) with strings.

A string expression may contain spaces, but if it does it must be
enclosed in quotes:

Model = "Medium model"

!if $ (Model) == "Medium model"
CFLAGS = -mm

!elif $ (Model) == "Large model"
CFLAGS = -ml

!endif

You can invoke macros within an expression; the special macro
$d() is recognized. After all macros have been expanded, the
expression must have proper syntax.

The error directive (!error) causes MAKE to stop and print a fatal
diagnostic containing the text after !error. It takes the format

!error any_text

Chapter 2, Make: The program manager 41

Macro
undefinition

directive

This directive is designed to be included in conditional directives
to allow a user-defined error condition to abort MAKE. For
example, you could insert the following code in front of the first
explicit rule:

! if ! $d (MODEL)
if MODEL is not defined
!error MODEL not defined
!endif

If you reach this spot without having defined MODEL, then
MAKE stops with this error message:

Fatal makefile 4: Error directive: MODEL not defined

The macro "undefinition" directive (!undef) causes any definition
for the named macro to be forgotten. If the macro is currently
undefined, this directive has no effect. The syntax is

!undef macro_name

The compatibility option -N

42

The -N command line option increases compatibility with
Microsofts's NMAKE. You should use it only when you need to
build a project using makefiles created for NMAKE tools.
Running MAKE without the -N option is preferred, since-N
introduces some subtle differences in how makefiles work:

a $ $ expands to a single $ and a single $ expands to nothing.

tI The caret character /\ causes the character that follows, if a
special character, to be treated literally. For example,

TEST = this is A

a test

will cause TEST to expand to this is \na test where the \n is
the C symbol for a new line. It's especially useful when you
need to end a line with the line continuation character:

SOURCEDIR = C:\BOB\OBJS A
\

iii If the caret is followed by a normal character (one without a
special meaning), the caret will be ignored.

Tools and Utilities Guide

e The $d macro won't be the special defined test macro. Use the
lifdef and !ifndef directives instead.

e Predefined macros that return paths only will not end in a
trailing backslash. For example, without the -N.switch $(<D)
might return C:\OBJS\, but with the -N switch, the same $«D)
macro would return C:\OBJS.

e Unless there's a matching .suffixes directive, MAKE will search
for implicit rules from the bottom of the makefile up.

e The $* macro always expands to the target name. (In normal
mode, $* expands to the dependent in an implicit rule.)

Chapter 2, Make: The program manager 43

44 Tools and Utilities Guide

c H

When it modifies an existing
library, TLlB a/ways creates a

copy of the origina/library
with a . BAK extension. Better

safe than sorry!

See the section on the IE
option (page 49) for details.

A p T E R

3

TLIB.· The Turbo librarian

TLIB is a utility that manages libraries of individual .OB} (object
module) files. A library is a convenient tool for dealing with a
collection of object modules as a single unit.

The libraries included with Borland C++ were built with TLIB.
You can use TLIB to build your own libraries, or to modify the
Borland C++ libraries, your own libraries, libraries furnished by
other programmers, or commercial libraries you've purchased.
You can use TLIB to

IJ create a new library from a group of object modules

IJ add object modules or other libraries to an existing library

IJ remove object modules from an existing library

I'J replace object modules from an existing library

IJ extract object modules from an existing library

c list the contents of a new or existing library

TLIB can also create (and include in the library file) an Extended
Dictionary, which may be used to speed up linking.

Although TLIB is not essential for creating executable programs
with Borland C++, it is a useful programming productivity tool.
You will find TLIB indispensable for large development projects.
If you work with object module libraries developed by others, you
can use TLIB to maintain those libraries when necessary.

Chapter 3, TUB: The Turbo librarian 45

Why use object module libraries?

When you program in C and C++, you often create a collection of
useful functions and classes. Because of C and C++'s modularity,
you are likely to split those functions into many separately com­
piled source files. You use only a subset of functions from the
entire collection in any particular program. It can become quite
tedious, however, to figure out exactly which files you are using.
On the other hand, if you always include all the source files, your
program becomes extremely large and unwieldy.

An object module library solves the problem of managing a
collection of functions and classes. When you link your program
with a library, the linker scans the library and automatically
selects only those modules needed for the current program.

The TLIB command line

46

To get a summary of TUB's
usage, just type TLIB and

press Enter.

The TLIB command line takes the following general form, where
items listed in square brackets ([like this]) are optional:

tlib [I C] [IE] [I Ps ize] libname [operations] [, listfile]

Tools and Utilities Guide

Table 3.1: TUB options

Option

libname

Ie

IE

IPsize

operations

listfile

Description

The DOS path name of the library you want to create or manage. Every TLIB command
must be given a libname. Wildcards are not allowed. TLIB assumes an extension of .LIB if
none is given. We recommend that you do not use an extension other than .LIB, since
both BCC and BC's project-make facility require the .LIB extension in order to recognize
library files. Note: If the named library does not exist and there are add operations, TLIB
crea tes the library.

The case-sensitive flag. This option is not normally used; see page 50 for a detailed
explanation.

Creates Extended Dictionary; see page 49 for a detailed explanation.

Sets the library page size to size; see page 50 for a detailed explanation.

The list of operations TLIB performs. Operations may appear in any order. If you only
want to examine the contents of the library, don't give any operations.

The name of the file listing library contents. The listfile name (if given) must be preceded
by a comma. No listing is produced if you don't give a file name. The listing is an
alphabetical list of each module. The entry for each module contains an alphabetical list
of each public symbol defined in that module. The default extension for the listfile is
.LST. You can direct the listing to the screen by using the listfile name CON, or to the
printer by using the name PRN.

This section summarizes each of these command-line compo­
nents; the following sections provide details about using TLIB.
For TLIB examples, refer to the "Examples" section on page 51.

The operation list
The operation list describes what actions you want TLIB to do. It
consists of a sequence of operations given one after the other.
Each operation consists of a one- or two-character action symbol
followed by a file or module name. You can put whitespace
around either the action symbol or the file or module name, but
not in the middle of a two-character action or in a name.

You can put as many operations as you like on the command line,
up to DOS's COMMAND. COM-imposed line-length limit of 127
characters. The order of the operations is not important. TLIB
always applies the operations in a specific order:

1. All extract operations are done first.

2. All remove operations are done next.

3. All add operations are done last.

Chapter 3, TUB: The Turbo librarian 47

You can replace a module by first removing it, then adding the
replacement module.

File and module names TLIB finds the name of a module by taking the given file name
and stripping any drive, path, and extension information from it.
(Typically, drive, path, and extension are not given.)

48

Note that TLIB always assumes reasonable defaults. For example,
to add a module that has an .OBJ extension from the current
directory, you only need to supply the module name, not the path
and .OBJ extension.

Wildcards are never allowed in file or module names.

TUB operations TLIB recognizes three action symbols (-, +, *), which you can use
singly or combined in pairs for a total of five distinct operations.
The order of the characters is not important for operations that
use a pair of characters. The action symbols and what they do are
listed here:

Table 3.2
TUB action symbols

To create a library, add
modules to a library that

does not yet exist.

Action
symbol Name Description

+ Add TUB adds the named file to the library. If the
file has no extension given, TLIB assumes an
extension of .OBJ. If the file is itself a library
(with a .LIB extension), then the operation adds
all of the modules in the named library to the
target library.

*

If a module being added already exists, TLIB
displays a message and does not add the new
module.

Remove TUB removes the named module from the
library. If the module does not exist in the
library, TLIB displays a message.

Extract

A remove operation only needs a module name.
TUB allows you to enter a full path name with
drive and extension included, but ignores
everything except the module name.
TUB creates the named file by copying the cor­
responding module from the library to the file.
If the module does not exist, TLIB displays a
message and does not create a file. If the named
file already exists, it is overwritten.

Tools and Utilities Guide

You can't directly rename
modules in a library. To

rename a module, extract
and remove it, rename the
file just created, then add it

back into the library.

Table 3.2: TUB action symbols (continued)

-*
*-

-+
+-

Extract & TUB copies the named module to the
Remove corresponding file name and then removes it

from the library. This is just shorthand for an
extract followed by a remove operation.

Replace TUB replaces the named module with the cor­
responding file. This is just shorthand for a
remove followed by an add operation.

Using response files

See "Examples" for a sample
response file and a TUB com­

mand line incorporating it.

When you are dealing with a large number of operations, or if
you find yourself repeating certain sets of operations over and
over, you will probably want to start using response files. A
response file is simply an ASCII text file (which can be created
with the Borland C++ editor) that contains all or part of a TLIB
command. Using response files, you can build TLIB commands
larger than would fit on one DOS command line.

To use a response file pathname, specify @pathname at any position
on the TLIB command line.

IJ More than one line of text can make up a response file; you use
the "and" character (&) at the end of a line to indicate that
another line follows.

Il You don't need to put the entire TLIB command in the response
file; the file can provide a portion of the TLIB command line,
and you can type in the rest.

E! You can use more than one response file in a single TLIB
command line.

Creating an extended dictionary: The IE option

To speed up linking with large library files (such as the standard
Cx.LIB library), you can direct TLIB to create an extended dictionary
and append it to the library file. This dictionary contains, in a very
compact form, information that is not included in the standard
library dictionary. This information enables TLINK to process
library files faster.

Chapter 3, TUB: The Turbo librarian 49

To create an extended dictionary for a library that is being modi­
fied, use the IE option when you invoke TLIB to add, remove, or
replace modules in the library. To create an extended dictionary
for an existing library that you don't want to modify, use the IE
option and ask TLIB to remove a nonexistent module from the
library. TLIB will display a warning that the specified module was
not found in the library, but it will also create an extended
dictionary for the specified library. For example, if you enter

tlib IE mylib -bogus

TLINK will ignore the debugging information in a library that has
an extended dictionary, unless the Ie option is used on the TLINK
command line.

Setting the page size: The IP option

Every DOS library file contains a dictionary (which appears at the
end of the .LIB file, following all of the object modules). For each
module in the library, this dictionary contains a 16-bit address of
that particular module within the .LIB file; this address is given in
terms of the library page size (it defaults to 16 bytes).

The library page size determines the maximum combined size of
all object modules in the library-it cannot exceed 65,536 pages.
The default (and minimum) page size of 16 bytes allows a library
of about 1 MB in size. To create a larger library, the page size must
be increased using the IP option; the page size must be a power of
2, and it may not be smaller than 16 or larger than 32,768.

All modules in the library must start on a page boundary. For
example, in a library with a page size of 32 (the lowest possible
page size higher than the default 16), on the average 16 bytes will
be lost per object module in padding. If you attempt to create a
library that is too large for the given page size, TLIB will issue an
error message and suggest that you use IP with the next available
higher page size.

Advanced operation: The Ie option

50

When you add a module to a library, TLIB maintains a dictionary
of all public symbols defined in the modules of the library. All
symbols in the library must be distinct. If you try to add a module

Tools and Utilities Guide

If you want to use the library
with other linkers (or allow

other people to use the
library with other linkers), for

your own protection you
should not use the Ie option.

Examples

to the library that would cause a duplicate symbol, TLIB displays
a message and won't add the module.

Normally, when TLIB checks for duplicate symbols in the library,
uppercase and lowercase letters are not considered as distinct. For
example, the symbols lookup and LOOKUP are treated as dupli­
cates. Since C and c++ do treat uppercase and lowercase letters as
distinct, use the Ie option to add a module to a library that
includes a symbol differing only in case from one already in the
library. The Ie option tells TLIB to accept a module with symbols
in it that differ only in case from symbols already in the library.

It may seem odd that, without the Ie option, TLIB rejects symbols
that differ only in case, especially since C and c++ are case­
sensitive languages. The reason is that some linkers fail to
distinguish between symbols in a library that differ only in case.
Such linkers, for example, will treat stars, Stars, and STARS as the
same identifier. TLINK, on the other hand, has no problem distin­
guishing uppercase and lowercase symbols, and it will properly
accept a library containing symbols that differ only in case. In this
example, then, Borland c++ would treat stars, Stars, and STARS
as three separate identifiers. As long as you use the library only
with TLINK, you can use the TLIB Ie option without any
problems.

Here are some simple examples demonstrating the different
things you can do with TLIB.

1. To create a library named MYLIB.LIB with modules X.OBJ,
Y.OBJ, and Z.OBJ, type

tlib mylib tX +y tZ

2. To create a library as in #1 and get a listing in MYLIB.LST too,
type

tlib mylib tX +y +Z, mylib.lst

3. To get a listing in CS.LST of an existing library CS.LIB, type
tlib cs, cs.lst

4. To replace module X.OBJ with a new copy, add A.OBJ and
delete Z.OBJ from MYLIB.LIB, type

tlib mylib -+x ta -z

Chapter 3, TUB: The Turbo librarian 51

52

5. To extract module Y.OBJ from MYLIB.LIB and get a listing in
MYLIB.LST, type

tlib mylib *y, mylib.lst

6. To create a new library named ALPHA, with modules A.OBJ,
B.OBJ, ... , G.OBJ using a response file:

First create a text file, ALPHA.RSP, with
ta.abj tb.abj te.abj &

td.abj te.abj tf.abj &
tg.abj

Then use the TLIB command, which produces a listing file
named ALPHA.LST:

tlib alpha @alpha.rsp, alpha. 1st

Tools and Utilities Guide

c

Appendix A, "Error mes­
sages," lists linker messages
generated by TUNK and by

the built-in IDE linker.

Invoking TLINK

Note that this version of TUNK
is sensitive to the case of its

options; It is not the same
option as IT.

A p T E R

4

TLINK.· The Turbo linker

The IDE has its own built-in linker. When you invoke the
command-line compiler BCC, TLINK is invoked automatically
unless you suppress the linking stage. If you suppress the linking
stage, you must invoke TLINK manually. This chapter describes
how to use TLINK as a standalone linker.

By default, the command-line compiler calls TLINK when compil­
ation is successful; TLINK then combines object modules and
library files to produce the executable file.

You can invoke TLINK at the command line by typing tlink with
or without parameters. When invoked without parameters,
TLINK displays a summary of parameters and options. Table 4.1
briefly describes the TLINK options.

Table 4.1
TUNK options Option What it does --

13 Enables processing of 32-bit modules.
You can use either a hyphen IA=nnnn Specifies segment alignment for NewExe (Windows)
or a slash to precede TUNKs images. '

commands. Ie Treats case as significant in symbols.
Ie Treats EXPORTS and IMPORTS section of module

Id
Ie
Ii

Chapter 4, TUNK: The Turbo linker

definition file as case sensitive.
Warns if duplicate symbols in libraries.
Ignores Extended Dictionary.
Initializes all segments.

53

54

An example of

Table 4.1: TLlNK options (continued)

II Includes source line numbers.
IL Specifies library search paths.
1m Creates map file with publics.
In Doesn't use default libraries.
10 Overlays following modules or libraries.
IP Packs code segments.
Is Creates detailed map of segments.
It Generates .COM file. (Also /Tdc.)
lTd Creates target DOS executable.
ITdc Creates target DOS .COM file.
ITde Creates target DOS .EXE file.
fl'w Creates target Windows executable (.DLL or .EXE).
ITwe Creates target Windows application (.EXE).
ITwd Creates target Windows DLL (.DLL).
Iv Includes full symbolic debug information.
Ix Doesn't create map file.
lye Uses expanded memory for swapping.
Iyx Configures TUNK's use of extended memory.

The general syntax of a TLINK command line is

TLINK objfiles, exefile, mapfile, lib files, deffile

This syntax specifies that you supply file names in the given order,
separating the file types with commas.

linking for DOS If you supply the TLINK command line

tlink Ie mainline wd In tX,fin,mfin,work\lib\eomm work\lib\support

TLINK will interpret it to mean that

rn Case is significant during linking (Ie).

£1 The .OBJ files to be linked are MAINLINE.OBJ, WD.OBJ,
LN.OBJ, and TX.OBJ.

EJ The executable program name will be FIN.EXE.

EJ The map file is MFIN.MAP.

m The library files to be linked in are COMM. LIB and
SUPPORT. LIB, both of which are in subdirectory WORK\LIB.

III No module definition file is specified.

Tools and Utilities Guide

An example of
linking for
Windows

10
~

This example shows how
complex linking a Windows

application can get. It's
much easier to use the

command line compiler or
IDE project manager,

because they will
automatically provide the

correct link switches and
libraries for the memory

model.

File names on the
TLiNK command

line

To create a Windows application executable, you might use this
command line:

tlink ITw Ie \BORLANDC\lib\eOws winappl winapp2, winapp, winapp,
\BORLANDC\lib\ews \BORLANDC\lib\import, winapp.def

where

[] The fTw option tells TLINK to generate Windows executables.

[] The Ie option tells TLINK to be case-sensitive during linking.
Note that the EXPORTS and IMPORTS sections in the module
definition file will be still treated as case-insensitive unless the
Ie option is used.

r:::J \BORLANDC\LIB\COWS is the standard Windows
initialization file and WINAPPI and WINAPP2 are the
module's object files; for all three files the .OBJ extension is
assumed.

[] WINAPP.EXE is the name of the target Windows executable.

[] WINAPP.MAP is the name of the map file.

[] \BORLANDC\LIB\CWS is the small memory model runtime
library for Windows and \BOR~ANDC\LIB\IMPORT is the
library that provides access to the built-in Windows functions.

[] WINAPP.DEF is the Windows module definition file used to
specify additional link options.

If you don't specify an executable file name, TLINK derives the
name of the executable by appending .EXE or .DLL to the first
object file name listed.

If you specify a complete file name for the executable file, TLINK
will create the file with that name, but the actual nature of that
executable depends on other options or on settings in the module
definition file. For instance, if you specify WINAPP.EXE, but you
provide the fTwd option, the executable will be created as a DLL
but named WINAPP.EXE-probably not what you intended.
Similarly, if you give WINAPP.DLL as the executable name, but
include a fTd option on the command line, the file will be a DOS
executable.

Chapter 4, TUNK: The Turbo linker 55

56

If no map file name is given, TLINK adds a .MAP extension to the
.EXE file name. If no libraries are included, none will be linked. If
you don't specify a module definition (.DEF) file and you have
used the rrw option, TLINK creates a Windows application based
on default settings.

TLINK assumes or appends extensions to file names that have
none:

•. OBJ for object files

II.EXE for DOS and Windows executable files (when you use the
It or the rrde option, the executable file extension defaults to
.COM rather than .EXE)

BI II.DLL for Windows dynamic link libraries (when you use the
JEJ /Twd option, or the /Tw option and the module definition file

Using response
files

specifies a library)

•. MAP for map files

... LIB for library files

II .DEF for module definition files.

All of the file names except object files are optional. So, for
instance,

TLINK dosapp dosapp2

links the files DOSAPP.OBJ and DOSAPP2.0BJ, creates a DOS
executable file called DOSAPP.EXE, creates a map file called
DOSAPP.MAP, links no libraries, and uses no module definition
file.

TLINK lets you supply the various parameters on the command
line, in a response file, or in any combination of the two.

A response file is just a text file that contains the options and file
names that you would usually type in after the name TLINK on
your command line.

Unlike the command line, however, a response file can be
continued onto several lines of text. You can break a long list of
object or library files into several lines by ending one line with a
plus character (+) and continuing the list on the next line. When a
plus occurs at the end of a line but it immediately follows one of
the TLINK options that uses + to enable the option (such as Iye+),
the + is not treated as a line continuation character.

Tools and Utilities Guide

The TUNK

You can also start each of the four components on separate lines:
object files, executable file, map file, libraries. When you do this,
you must leave out the comma used to separate components.

To illustrate these features, suppose that you rewrote the
command line .

tlink Ie mainline wd In tX,fin,mfin,work\lib\eomm work\lib\support

with the following response file, FINRESP:

Ie mainline wdt
In tx,fin
mfin
work\lib\eomm work\lib\support

You would then enter your TLINK command as

tlink @finresp

Note that you must precede the file name with an "at" character
(@) to indicate that the next name is a response file.

Alternately, you may break your link command into multiple
response files. For example, you can break the previous command
line into the following two response files:

File name

LISTOBJS

LISTLIBS

Contents

rnainlinet
wdt
In tx
lib\cornrnt
lib\support

You would then enter the TLINK command as

tlink Ie @listobjs,fin,mfin,@listlibs

configuration file The command line version of TLINK looks for a file called
TLINK.CFG first in the current directory, or in the directory from
which it was loaded.

TLINK.CFG is a regular text file that contains a list of valid
TLINK options. Unlike a response file, TLINK.CFG can't list the
groups of file names to be linked.

For instance, the following TLINK.CFG file

Chapter 4, TLlNK: The Turbo linker 57

Using TLiNK with
Borland C++

modules

ILc:\BORLANDC\lib;c:\winapps\lib
Iv Is
ITw

tells TLINK to search the specified directories for libraries, include
debug information, create a detailed segment map, and produce a
Windows program.

Borland C++ supports six different memory models: tiny, small,
compact, medium, large, and huge. When you create an
executable Borland C++ file using TLINK, you must include the
initialization module and libraries for the memory model being
used.

The general format for linking Borland C++ programs with
TLINK is

tlink CO[W I D I F]x myobjs, exe,[map], [IMPORT] [mylibs]
[OVERLAY] [CWx I Cx] [EMU I FPS7 mathx], [deffile]

where

ill myobjs is the .OBJ files you want linked, specify path if not in
current directory

II exe is the name to be given the executable file

(optional) II map is the name to be given the map file

(optional) II mylibs is the library files you want included at link time. You
must specify the path if not in current directory, or use IL
option to specify search paths

If you are using the tiny
model and you want TUNK to

produce a .COM file, you
must also specify the If or

ITdc option.

DOS only!

58

• deffile is the module definition file for a Windows executable

Be sure to include paths for the startup code and libraries (or use
the IL option to specify a list of search paths for startup and
library files). The other file names on this general TLINK com­
mand line represent Borland C++ files, as follows:

• COx I COFx I COWx I CODx is the initialization module for DOS
executable, DOS executable written for another compiler, Win­
dows application, or Windows DLL (choose one) with memory
model t (DOS only), s, c, m, I, or h (DOS only).

• IMPORT is the Windows import library; the library that
provides access to the built-in Windows functions.

II OVERLAY is the overlay manager library; needed only for
overlaid programs (not compatible with Windows).

Tools and Utilities Guide

Startup code

m CWx is the run-time library for executables under Windows
with memory model s, c, m, or I.

m EMU I FPS7 is the floating-point libraries (choose one).

EiI MATHx is the math library for memory model s, c, m, I, or h.

D Cx is the run-time library for memory model s, c, m, I, or h.

The initialization modules have the name COx.OBJ, COWx.OBJ, or
CODx.OBJ (for DOS, a Windows application, and a Windows
DLL, respectively), where x is a single letter corresponding to the
model: t for tiny (DOS only), s for small, c for compact, m for
medium, I for large, and h for huge (DOS only).

The COFx.OBJ modules are provided for compatibility with source
files intended for compilers from other vendors. The COFx.OBJ
modules substitute for the COx.OBJ modules; they are to be linked
with DOS applications only, not Windows applications or DLLs.
These initialization modules alter the memory model so that the
stack segment is inside the data segment. The appropriate
COFx.OBJ module will be used automatically if you use either the
-Fs or the -Fm command-line compiler option.

Failure to link in the correct initialization module usually results
in a long list of error messages telling you that certain identifiers
are unresolved, that no stack has been created, or that fix up
overflows occurred.

The initialization module must also appear as the first object file
in the list. The initialization module arranges the order of the
various segments of the program. If it is not first, the program
segments may not be placed in memory properly, causing some
frustrating program bugs.

Be sure that you give an explicit name for the executable file name
on the TLINK command line. Otherwise, your program name will
be something like COx.EXE-probably not what you wanted!

Libraries The order of objects and libraries is very important. You must
always put the Borland C++ start-up module (COx.OBJ, COFx,

.. COWx.OBJ, or CODx.OBJ) first in the list of objects. Then, the
library list should contain, in this order:

Chapter 4, TLlNK: The Turbo linker 59

60

II your own libraries (if any)

II if you want to overlay your program (DOS only), you must
include OVERLAY.LIB; this library must precede the Cx.LIB
library

0[• CWx.LIB, the run-time library for Windows, or Cx.LIB, run-
jEJ time library for DOS

II if you are using floating point math, FP87.LIB or EMU.LIB
(required for DOS only), followed by MATHx.LIB or
MATHWx.LIB

0[If you want to create a Windows application or DLL you must
jEJ link IMPORT.LIB to provide access to the built-in Windows

functions. IMPORT. LIB can be included anywhere in the list.

BGI graphics library

DOS only! If you are using any Borland C++ BGI graphics functions, you
must link in GRAPHICS. LIB anywhere in the list. The BGI
graphics library is independent of memory models, but is for DOS
only (not Windows).

Math libraries

If your program uses any floating-point, you must include a math
library (MATHx.LIB or MATHWx.LIB) in the link command. For
DOS applications (but not for Windows applications or DLLs),
you will also need to include either the EMU.LIB or FP87.LIB
floating-point libraries. Borland C++'s two floating-point libraries
are independent of the program's memory model.

• Use EMU.LIB if you want to include floating-point emulation
logic. With EMU.LIB the program will work on machines
whether they have a math coprocessor (80x87) chip or not.

II If you know that the program will always be run on a machine
with a math coprocessor chip, the FP87.LIB library will produce
a smaller and faster executable program.

The math libraries have the name MATHx.LIB, where x is a single
letter corresponding to the model: s, c, m, I, h (the tiny and small
models share the library MATHS.LIB).

You can always include the emulator (DOS only) and math
libraries in a link command line. If you do so, and if your
program does no floating-point work, nothing from those libraries

Tools and Utilities Guide

If you don't use all six
memory models, you may

want to keep only the files for
the model(s) you use.

Table 4.2
DOS application .OBJ and

.LlB files

Note that the tiny and small
models use the same

libraries, but have different
startup files (COT. OBJ vs.

COS.OBJ).

Table 4.3
Windows application .OBJ

and .LlB files

Table 4.4
DLL object and library files

See Chapter 8, "Building a
Windows application" in the

Programmer's Guide for
more information on DLLs.

will be added to your executable program file. However, if you
know there is no floating-point work in your program, you can
save some time in your links by excluding those libraries from the
command line.

Run-time libraries

You must always include the e run-time library for the program's
memory model. The e run-time libraries have the name ex.LIB,
where x is a single letter corresponding to the model, as before.
Use the same e run-time library for both DOS and Windows
executables.

Here's a list of the library files needed for each memory model
(you'll also need FP87.LIB or EMU.LIB for DOS only, and
IMPORT.LIB for Windows):

Regular Compatibility
Startup Startup Math Run-time

Model Module Module Library Library

Tiny COT.OBJ COFT.OBJ MATHS.LIB CS.LIB
Small COS.OBJ COFS.OBJ MATHS.LIB CS.LIB
Compact COCOBJ COFCOBJ MATHCLIB CCLIB
Medium COM.OBJ COFM.OBJ MATHM.LIB CM.LIB
Large COL.OBJ COFL.OBJ MATHL.LIB CL.LIB
Huge COH.OBJ COFH.OBJ MATHH.LIB CH.LIB

Startup for Windows Math
Model applications RTL Library

Small COWS.OBJ CWS.LIB MATHWS.LIB
Compact COWCOBJ CWCLIB MATHWCLIB
Medium COWM.OBJ CWM.LIB MATHWM.LIB
Large COWL.OBJ CWL.LIB MATHWL.LIB

Startup Windows Math
Model for DLLs RTL Library

Small CODS.OBJ CWCLIB MATHWCLIB
Compact CODCOBJ CWCLIB MATHWCLIB
Medium CODM.OBJ CWL.LIB MATHWL.LIB
Large CODL.OBJ CWL.LIB MATHWL.LIB

Chapter 4, TLlNK: The Turbo linker 61

Using TUNK with
Bee

See Chapter 5, "The
command-line compiler," in
the Programmer's Guide for

more on BCe.

You can also use BCC, the standalone Borland C++ compiler, as a
"front end" to TLINK that will invoke TLINK with the correct
startup file, libraries, and executable program name.

To do this, you give· file names on the BCC command line with
explicit .OBJ and .LIB extensions. For example, given the
following BCC command line,

BCC -mx MAINFILE.OBJ SUB1.OBJ MYLIB.LIB

BCC will invoke TLINK with the files COx.OBJ, EMU.LIB,
MATHx.LIB and Cx.LIB (initialization module, default 8087
emulation library, math library and run-time library for memory
model x). TLINK will link these along with your own modules
MAINLINE.OBJ and SUBl.OBJ, and your own library MYLIB.LIB.

10 To compile and link a Windows program, include one of the-W
lEl options on the compiler command-line, as well as any other

options. The compiler will take care of linking in COWx.OBJ,
CWx.LIB, and IMPORT.LIB.

TLINK options

The TUNK

When BCC invokes TLINK, it uses the Ic (case-sensitive link)
option by default. You can override this default with -I-c).

TLINK options can occur anywhere on the command line. The
options consist of a slash (I), a hyphen (-), or the DOS switch
character, followed by the option.

If you have more than one option, spaces are not significant (/m/c
is the same as 1m Ic), and you can have them appear in different
places on the command line. The following sections describe each
of the options.

configuration file The command-line version of TLINK looks for a file called
TLINK.CFG first in the current directory, or in the directory from
which it was loaded.

62 Tools and Utilities Guide

/3 (32-bit code)
This option increases the
memory requirements of

TLlNK and slows down linking,
so it should be used only

when necessary.

/A (align
segments)

/c (case
sensitivity)

TLINK.CFG is a regular text file that contains a list of valid
TLINK options. Unlike a response file, TLINK.CFG can't list the
groups of file names to be linked. Whitespace is ignored.

For instance, the following TLINK.CFG file

ILc: \ BORL]l}JDC \ lib; c: \winapps \lib

Iv Is
ITw

tells TLINK to search the specified directories for libraries, include
debug information, create a detailed segment map, and produce a
Windows progran1.

The 13 option should be used when one or more of the object
modules linked has been produced by TASM or a compatible
assembler, and contains 32-bit code for the 80386 or the i486 pro­
cessor.

The IA option specifies a byte value on which to align segments.
Segments smaller than the specified value will be padded up to
the value. The syntax is

1/l.=11111111

where 11111111 is a number which represents the alignment factor.
l111nl1 must be a power of two. For instance, /A=16 indicates that
segments should be aligned on a paragraph boundary.

The default segment alignment size is 512. For efficiency, you
should use the smallest value that still allows for correct segment
offsets in the segment table. The file addresses in the segment
table are multiplied by the alignment factor in order to be used as
byte offsets into the executable file. Since the offsets are stored as
16-bit words, 65536 times the alignment factor is the limit of
segment offsets that can be represented in the segment table. If
you get this message, increase the segment alignment value.

The Ie option forces the case to be significant in public and
external symbols.

Chapter 4, TLlNK: T.'le Turbo linker 63

Ie (case sensitive
exports)

/d (duplicate
symbols)

The exception to this rule is
OVERLAY. LIB. OVERLAY.LlB

does duplicate some
symbols found in other

libraries: that's why
OVERLAY. LIB must be the first
standard library specified on

the TLINK command line.

64

By default, TLINK treats the EXPORTS and IMPORTS sections of
the module definition file as case-insensitive. The Ie or le+ option
turns on case-sensitivity; le- turns off case-sensitivity.

Normally, TLINK will not warn you if a symbol appears in more
than one library file. If the symbol must be included in the pro­
gram, TLINK will use the copy of that symbol in the first file on
the command line in which it is found. Since this is a commonly
used feature, TLINK does not normally warn about the duplicate
symbols. The following hypothetical situation ill,ustrates how you
might want to use this feature.

Suppose you have two libraries: one called SUPPORT.LIB, and a
supplemental one called DEBUGSUP.LIB. Suppose also that
DEBUGSUP.LIB contains duplicates of some of the routines in
SUPPORT.LIB (but the duplicate routines in DEBUGSUP.LIB
include slightly different functionality, such as debugging ver­
sions of the routines). If you include DEBUGSUP.LIB first in the
link command, you will get the debugging routines and not the
routines in SUPPORT.LIB.

If you are not using this feature or are not sure which routines are
duplicated, you may include the Id option. TLINK will list all
symbols duplicated in libraries, even if those symbols are not
going to be used in the program.

Given this option, TLINK will also warn about symbols that
appear both in an .OBJ and a .LIB file. In this case, since the
symbol that appears in the first (left-most) file listed on the com­
mand line is the one linked in, the symbol in the .OBJ file is the
one that will be used.

With Borland C++, the distributed libraries you would use in any
given link command do not contain any duplicated symbols. So
while EMU.LIB and FP87.LIB (or CS.LIB and CL.LIB) obviously
have duplicate symbols, they would never rightfully be used
together in a single link. There are no symbols duplicated
between EMU.LIB, MATHS.LIB, and CS.LIB, for example.

Tools and Utilities Guide

/e (no extended
dictionary)

/i (uninitialized
trailing segments)

/1 (line numbers)

/L (library search
paths)

The library files that are shipped with Borland C++ all contain an
extended dictionary with information that enables TLINK to link
faster with those libraries. This extended dictionary can also be
added to any other library file using the IE option with TLIB (see
the section on TLIB starting on page 45). The TLINK Ie option
disables the use of this dictionary.

Although linking with libraries that contain an extended
dictionary is faster, you might want to use the Ie option if you
have a program that needs slightly more memory to link when an
extended dictionary is used.

Unless you use Ie to turn off extended dictionary use, TLINK will
ignore any debugging information contained in a library that has
an extended dictionary.

The Ii option causes uninitialized trailing segments to be output
into the executable file even if the segments do not contain data
records. This option is not normally necessary.

The II option creates a section in the .MAP file for source code line
numbers. To use it, you must have created the .OBJ files by com­
piling with the -y or -v option. If you uSe the Ix to tell TLINK to
create no map at all, this option will have no effect.

The IL option lets you specify a list of directories that TLINK
searches for libraries if an explicit path is not specified. TLINK
searches the current directory before those specified with the IL
option. For example,

TLINK /Lc:\BORLANDC\lib;c:\mylibs splash logo" ,utils . \logolib

With this command line, TLINK·first searches the current
directory for UTILS.LIB, then searches C:\BORLANDC\LIB and
C:\MYLIBS. Because .\LOGOLIB explicitly names the current
directory, TLINK does not search the libraries specified with the
IL option to find LOGOLIB.LIB.

Chapter 4, TLlNK: The Turbo linker 65

66

/m, /s, and /x
(map options)

TLINK also searches for the C or C++ initialization module
(COx.OBJ, COWx.OBJ, CODx.OBJ) on the specified library search
path.

By default, TLINK always creates a map of the executable file.
This default map includes only the list of the segments in the
program, the program start address, and any warning or error
messages produced during the link. If you don't want to create a
map, turn it off with the Ix option.

If you want to create a more complete map, the 1m option will add
a list of public symbols to the map file, sorted alphabetically as
well as in increasing address order. This kind of map file is useful
in debugging. Many debuggers can use the list of public symbols
to allow you to refer to symbolic addresses when you are
debugging.

The Is option creates a map file with segments, public symbols
and the program start address just like the 1m option did, but also
adds a detailed segment map. Figure 4.1 is an example of a
detailed segment map.

For each segment in each module, this map includes the address,
length in bytes, class, segment name, group, module, and ACBP
information.

If the same segment appears in more than one module, each
module will appear as a separate line (for example, SYMB.C).
Except for the ACBP field, the information in the detailed segment
map is self-explanatory.

Tools and Utilities Guide

Figure 4.1
Detailed map of segments

Address Length Class Segment Name Group Module Alignment/
(Bytes) Combini ng

0000:0000 OE58 C=CODE S=SYMB TEXT G=(none) M=SYMB.C ACBP=28
00E5:000B 2735 C=CODE S=QUAL -TEXT G=(none) M=QUAL.C ACBP=28
0359:0000 002B C=CODE S=SCOPV TEXT G=(none) M=SCOPY ACBP=28
035B:000B 003A C=CODE S=LRSH TEXT G=(none) M=LRSH ACBP=20
035F:0005 0083 C=CODE S=PADA-TEXT G=(none) M=PADA ACBP=20
0367:0008 005B C=CODE S=PADD-TEXT G=(none) M=PADD ACBP=20
036D:0003 0025 C=CODE S=PSBP-TEXT G=(none) M=PSBP ACBP=20
036F:0008 05CE C=CODE S=BRK TEXT G= (none) M=BRK ACBP=28
03CC:0006 066F C=CODE S=FLOi'iJ TEXT G=(none) M=FLOAT ACBP=20
0433:0006 OOOB C=DATA S= DATA- G=DGROUP M=SYMB.C ACBP=48
0433:0012 00D3 C=DATA S= -DATA G=DGROUP M=QUAL.C ACBP=48
0433:00E6 OOOE C=DATA S= -DATA G=DGROUP M=BRK ACBP=48
0442:0004 0004 C=BSS S=-BSS G=DGROUP M=SYMB.C ACBP=48
0442:0008 0002 C=BSS S=-BSS G=DGROUP M=QUAL.C ACBP=48
0442:000A OOOE C=BSS S==BSS G=DGROUP M=BRK ACBP=48

The ACBP field encodes the A (alignment), C (combination), and B
(big) attributes into a set of four bit fields, as defined by Intel.
TLINK uses only three of the fields, the A, C, and B fields. The
ACBP value in the map is printed in hexadecimal: The following
values of the fields must be OR'ed together to arrive at the ACBP
value printed.

Field Value

The A field 00
(alignment) 20

40
60
80
AD

The C field 00
(combination) 08

The B field 00
(big) 02

Description

An absolute segment.
A byte-aligned segment.
A word-aligned segment.
A paragraph-aligned segment.
A page-aligned segment.
An unnamed absolute portion of storage.

May not be combined.
A public combining segment.

Segment less than 64K.
Segment exactly 64K.

When you request a detailed map with the Is option, the list of
public symbols (if it appears) has public symbols flagged with
"idle" if there are no references to that symbol. For example, this
fragment from the public symbol section of a map file indicates
that symbols Symboll and Symbol3 are not referenced by the image
being linked:

OC7F:031E idle
OOOO:3EA2
OC7F:0320 idle

Symboll
Symbol2
Symbol3

Chapter 4, TUNK: The Turbo linker 67

In (ignore default
libraries)

10 (overlays)

The In option causes the linker to ignore default libraries'specified
by some compilers. You may want to use this option when linking
modules written in another language.

The b option causes the code in all modules or libraries specified
after the option to be overlaid. It remains in effect until the next
comma (explicit or implicit) or b- on the command line. b- turns
off overlaying. (Chapter 9, "DOS memory management," in the
Programmer's Guide covers overlays in more detail.)

The b option can be optionally followed by a segment class name;
this will cause all segments of that class to be overlaid. When no
such name is specified, all segments of classes ending with CODE
will be overlaid. Multiple b options can be given, thus overlaying
segments of several classes; all b options remain in effect until the
next comma or b- is encountered. '

The syntax b#xx, where xx is a two-digit hexadecimal number,
overrides the overlay interrupt number, which by default is 3FH.

Here are some examples of b options:

Table 4.5
TLINK overlay options Option Result ---

10 Overlay all code segments until next comma or 10-.

10- Stop overlaying.

1o0VY Overlay segments of class OVY until the next
comma or 10-.

loCO DE 100VL Y

Io#FO

Overlay segments of class CODE or class OVL Y
until next comma or 10-.

Use interrupt vector OFOH for overlays. '

If you use the b option, it will be turned off automatically before
the libraries are processed. If you want to overlay a library, you
must use another b right before all the libraries or right before the
library you want to overlay.

o You can't use the b option with any rrw option; Windows
lEJl applications can't be overlaid. However, in order to achieve

essentially the same results under Windows, use discardable code

68 Tools and Utilities Guide

IP (pack code

segments (see page 72 for information on defining code segments
attributes in the module definition file).

segments) When you use IP, when TLINK links Windows executables,
TLINK combines as many code segments as possible in one
physical segment up to the code segment packing limit. Code

/// . segment packing never creates segments greater than this limit;
TLINK starts a new segment if it needs to.

It (tiny model
.COM file)

The default code segment packing limit is S,192 bytes (SK). To
change it, use

jP=n

where n specifies the number of bytes between 1 and 65,536. You
would probably want the limit to be a multiple of 4K under 3S6
enhanced mode.

Although the optimum segment size in 3S6 enhanced mode is 4K,
the default code segment packing size is SK. Because typical code
segments are likely to be from 4K to SK, an SK packing size will
probably result in more effective packing.

Because there is a certain amount of system overhead for every
segment maintained, code segment packing, by reducing the
number of segments to maintain, typically increases performance.
The IP option is on by default./P- turns off code segment packing
(useful if you've turned it on in the configuration file and want to
disable it for a particular link).

If you compile your file in the tiny memory model and link it with
this option toggled on, TLINK will generate a .COM file instead of
the usual.EXE file. Also, when you use It, the default extension
for the executable file is .COM. This works the same as the fTde
option. Neither It or fTde is compatible with the Windows option,
fTw.

Note: .COM files may not exceed 64K in size, cannot have any
segment-relative fixups, cannot define a stack segment, and must
have a starting address equal to 0:100H. When an extension other
than .COM is used for the executable file (.BIN, for example), the
starting address may be either 0:0 or 0:100H.

Chapter 4, TLlNK: The Turbo linker 69

70

lTd and ITw
(target options)

Iv (debugging
information)

TLINK can't generate debugging information for a .COM file. If
you need to debug your program, create and debug it as an .EXE
file, then relink it as a .COM file. Alternatively, if you have Turbo
Debugger, you can use the TDSTRIP utility with the -c option;
this creates a .COM file from an .EXE.

These options are called target options. You use them (with c, e,
or d) to produce a .COM, .EXE, or .DLL file .

• lTd creates a DOS .EXE file .

• lTdc creates a DOS .COM file .

• lTde creates a DOS .EXE file .

• lTw tells TLINK to create a Windows executable file. This
option is not necessary if you include a module definition file
with an EXETYPE Windows statement. With or without the ITw
option, if the included module definition file has a NAME
statement, TLINK creates an application (.EXE); if the module
definition file has a LIBRARY statement, TLINK creates a DLL.

If no module definition file is included in the link, you must
specify the ITw or ITwe option for a Windows .EXE, or the ITwd
option for a Windows DLL.

None of the ITw options are compatible with the /0 option
(overlay modules) .

• lTwe creates Windows .EXE files. The ITwe option overrides a
LIBRARY statement in the module definition file (which
normally causes TLINK to create a DLL) .

• lTwd creates Windows DLLs. The ITwd option overrides a
NAME statement in the module definition file (which normally
causes TLINK to create an .EXE file).

The Iv option directs TLINK to include debugging information in
the executable file. If this option is found anywhere on the
command line, debugging information will be included
executable for all object modules that contained debugging
information. You can use the Iv+ and Iv- options to selectively
enable or disable inclusion of debugging information on a
module-by-module basis (but not on the same command line as
Iv). For example, this command

Tools and Utilities Guide

lye (expanded
memory)

Iyx (extended
memory)

tlink modl /Vt mod2 mod3 /v- mod4

includes debugging information for modules nzod2 and mod3, but
not for modl and mod4.

TLINK can't generate debugging information for a .COM file (one
created with the It or fTdc options). If you need to debug your
program, create and debug it as an .EXE file, then relink it as a
.COM file. Alternatively, if you have Turbo Debugger, you can
use the TDSTRIP utility with the -c option; this creates a .COM
file from an .EXE.

This option controls TLINK's use of expanded memory for I/O
buffering. If, while reading object files or while writing the
executable file, TLINK needs more memory for active data
structures, it will either purge buffers or swap them to expanded
memory.

In the case of input file buffering, purging simply means throwing
away the input buffer so that its space can be used for other data
structures. In the case of output file buffering, purging means
writing the buffer to its correct place in the executable file. In
either case, you can substantially increase the speed of a link by
allowing these buffers to be swapped to expanded memory.

TLINK's capacity is not increased by swapping; only its
performance is improved. By default, swapping to extended
memory is enabled, while swapping to expanded memory is
disabled. If swapping is enabled and no appropriate memory
exists in which to swap, then swapping does not occur.

This option has several forms, shown below

lye or Iye+
Iye-

enable expanded memory swapping (default)
disable expanded memory swapping

The Iyx option controls TLINK's use of extended memory for I/O
buffering. By default, TLINK will take up to 8MB of extended
memory. You can change TLINK's use of extended memory with
one of the following forms of this option:

Iyx+ Use all available extended memory.

Iyxn Use only up to n KB extended memory.

Chapter 4, TUNK: The Turbo linker 71

The module definition file

o The module definition file provides information to the linker
jEJ about the contents and system requirements of a Windows

Module definition
file defaults

72

application. More specifically, it

• names the application or dynamic link library (DLL)

• identifies the type of application as Windows or OS/2

• lists imported functions and exported functions

• describes the code and data segment attributes; allows you to
specify attributes for additional code and data segments

• specifies the size of the heap and stack

• provides for the inclusion of a DOS stub program

Note that the IMPLIB utility can use a module definition file to
create an import library (see page 6). The IMPDEF utility can
actually create a module definition file for use with IMPLIB (see
page 3).

The module definition file is not strictly necessary to produce a
Windows executable under Borland C++.

If no module definition file is specified, the following defaults are
assumed.

CODE
DATA

HEAP SIZE
STACKSIZE

PRELOAD MOVEABLE DISCARDABLE
PRELOAD MOVEABLE MULTIPLE (for
applications) or PRELOAD MOVEABLE
SINGLE (for DLLs)
4096
5120

To replace the EXETYPE statement, the Borland C++ linker can
discover what kind of executable you want to produce by
checking settings in the IDE or options on the command line.

You can include an import library to substitute for the IMPORTS
section of the module definition.

You can use the _export keyword in the definitions of export
functions in your C and C++ source code to remove the need for
an EXPORTS section. Note, however, that if _export is used to

Tools and Utilities Guide

A quick example

export a function, that function will be exported by name rather
than by ordinal (ordinal is usually more efficient).

If you want to change various attributes from the default, you'll
need to have a module definition file.

Here's a module definition from the WHELLO example, discussed
in Chapter 8, "Building a Windows application," in the
Programmer's Guide:

NAME WHELLO
DESCRIPTION 'ett Windows Hello World'
EXETYPE vJINDOWS
CODE MOVEABLE
DATA MOVEABLE MULTIPLE
HEAPSIZE 1024
STACKSIZE 5120
EXPORTS MainWindowProc

Let's take this file apart, statement by statement:

EiJ NAME specifies a name for an application. If you want to build
a DLL instead of an application, you would use the LIBRARY
statement instead. Every module definition file should have
either a NAME statement or a LIBRARY statement, but never
both. The name specified must be the same name as the
executable file.

II DESCRIPTION lets you specify a string that describes your
application or library.

II EXETYPE can be either WINDOWS or OS2. Only WINDOWS is
supported in this version of Borland C++.

II CODE defines the default attributes of code segments. The
MOVEABLE option means that the code segment can be moved
in memory at run-time.

m DATA defines the default attributes of data segments.
MOVEABLE means that it can be moved in memory at run­
time. Windows lets you run more than one instance of an
application at the same time. In support of that, the MULTIPLE
options ensures that each instance of the application has its own
data segment.

L1 HEAPSIZE specifies the size of the application's local heap.

Chapter 4, TUNK: The Turbo linker 73

• STACKSIZE specifies the size of the application's local stack.
You can't use the STACKSIZE statement to create a stack for a
DLL.

• EXPORTS lists those functions in the WHELLO application that
will be called by other applications or by Windows. Functions
that are intended to be called by other modules are called
callbacks, callback functions, or export functions.

• To help you avoid the necessity of creating and maintaining
long EXPORTS sections, Borland C++ provides the _export
keyword. Functions flagged with _export will be identified by
the linker and entered into an export table for the module. If the
Smart Callbacks option is used at compile time (IWS on the
BCC command-line, or Options I Compiler I Entry /Exit Code I
Windows Smart Callbacks), then callback functions do not need
to be listed either in the EXPORTS statement or flagged with
the _export keyword. Borland C++ compiles them in such a
way so that they can be callback functions.

This application doesn't have an IMPORTS statement, because the
only functions it calls from other modules are those from the Win­
dows API; those functions are imported via the automatic
inclusion of the IMPORT.LIB import library. When an application
needs to call other external functions, these functions must be
listed in the IMPORTS statement, or included via an import
library (see page 6 for a discussion of import libraries).

This application doesn't include a STUB statement. Borland C++
uses a built-in stub for Windows applications. The built-in stub
simply checks to see if the application was loaded under Win­
dows, and, if not, terminates the application with a message that
Windows is required. If you want to write and include a custom
stub, specify the name of that stub with the STUB statement.

Module definition reference

CODE

74

This section describes each statement in a module definition file.

The CODE statement defines the default attributes of code
segments. Code segments can have any name, but must belong to
segment classes whose name ends in CODE. For instance, valid
segment class names are CODE or MYCODE. The syntax is

Tools and Utilities Guide

DATA

CODE [FIXED I MOVEABLE]
[DISCARDABLE I NONDISCARDABLE]
[PRELOAD I LOADONCALL]

FIXED means that the segment remains at a fixed memory
location; MOVEABLE means that the segment can be moved.

DISCARDABLE means that the segment can be discarded if it is
no longer needed. DISCARDABLE implies MOVEABLE.
NONDISCARDABLE means that the segment can't be discarded.

PRELOAD means that the segment is loaded when the module is
first loaded; LOADONCALL means that the segment is loaded
when code in this segm~nt is called. The Resource Compiler and
the Windows loader set the code segment containing the initial
program entry point to PRELOAD regardless of the setting in the
module definition file.

Default attributes for code segments are

II FIXED

II NONDISCARDABLE

III LOAD ON CALL

The DATA statement defines the default attributes of data
segments.

The syntax of the DATA statement is

DATA [NONE I SINGLE I MULTIPLE] [FIXED I MOVEABLE]

NONE means that there is no data segment. If you specify NONE,
do not include any other options. This option is available only for
libraries.

SINGLE means that a single segment is shared by all instances of
the module. MULTIPLE means that each instance of an
application has a segment. SINGLE is only valid for libraries;
MULTIPLE is only valid for applications.

FIXED means that the 'segment remains at a fixed memory
location. MOVEABLE means that the segment can be moved.

The default attributes for data segments in applications are FIXED
MULTIPLE. For libraries the default attributes are FIXED
SINGLE.

Chapter 4, TLlNK: The Turbo linker 75

DESCRIPTION

EXETYPE

EXPORTS

76

The automatic data segment is the segment whose group is
DGROUP. This physical segment also contains the local heap and
stack (see the HEAP SIZE and STACKSIZE module definition file
statements). The Resource Compiler and the Windows loader set
the automatic data segment to be PRELOAD, regardless of the
setting in the module definition file.

The DESCRIPTION statement inserts text into the application
module. The DESCRIPTION statement is typically used to embed
author, date, or copyright information. DESCRIPTION is an
optional statement. The syntax is

DESCRIPTION 'Text'

Text specifies an ASCII string delimited with single quotes.

The EXETYPE statement specifies the default executable file
(.EXE) header type (Windows or OS/2). You can only specify
WINDOWS in this version of Borland C++, so the syntax is

EXETYPE WINDOWS

The EXPORTS statement defines the names and attributes of the
functions to be exported. The EXPORTS keyword marks the
beginning of the definitions. It can be followed by any number of.
export definitions, each on a separate line. The syntax is

EXPORTS
ExportName [Ordinal] [RESIDENTNAME] [NODATA] [Parameter]

ExportName specifies an ASCII string that defines the symbol to be
exported. It has the following form:

EntryName [=InternalName]

InternalName is the name used within the application to refer to
this entry. EntryName is the name listed in the executable file's
entry table is externally visible.

Ordinal defines the function's ordinal value. It has the following
form:

Tools and Utilities Guide

HEAPSIZE

@ordinal

where ordinal is an integer value that specifies the function's
ordinal value.

When an application module or DLL module calls a function
exported from a DLL, the calling module can refer to the function
by name or by ordinal value. In terms of speed, referring to the
function by ordinal is faster since string comparisons are not
required to locate the function. In terms of memory allocation,
exporting a function by ordinal (from the point of view of that
function's DLL) and importing/ calling a function by ordinal
(from the point of view of the calling module) is more efficient.
When a function is exported by ordinal, the name resides in the
non-resident name table. When a function is exported by name,
the name resides in the resident name table. The resident name
table for a module is resident in memory whenever the module is
loaded; the non-resident name table isn't.

The RESIDENTNAME option lets you specify that the function's
name must be resident at all times. This is useful only when
exporting by ordinal (when the name wouldn't be resident by
default).

The NODATA option lets you specify that the function is not
bound to a specific data segment. The function will use the
current data segment.

Parameter is an optional integer value that specifies the number of
words the function expects to be passed as parameters.

The HEAPSIZE statement defines the number of bytes needed by
the application for its local heap. An application uses the local
heap whenever it allocates local memory. The syntax is

HEAPSIZE bytes

bytes is an integer value that specifies the heap size in bytes. It
must not exceed 65,536 (the physical segment size).

The default heap size is zero. The minimum size is 256 bytes. The
sum total of the automatic data segment (DGROUP), the local
heap, and the stack must not exceed 65,536.

Chapter 4, TLlNK: The Turbo linker 77

IMPORTS

LIBRARY

78

The IMPORTS statement defines the names and attributes of the
functions to be imported from dynamic link libraries. Instead of
listing imported DLL functions in the IMPORTS statement, you
can either specify an import library for the DLL in the TLINK
command line, or-in the IDE-include the import library for the
DLL in the project.

The IMPORTS key word marks the beginning of the definitions. It
can be followed by any number of import definitions, each on a
separate line. The syntax is

IMPORTS
[InternalName=j ModuleName. Entry

InternalName is an ASCII string that specifies the unique name
that the application will use to call the function.

ModuleName specifies one or more uppercase ASCII characters
that define the name of the executable module that contains the
function. The module name must match the name of the
executable file. For example, the file SAMPLE.DLL has the the
module name SAMPLE.

Entry specifies the function to be imported. It can be either an
ASCII string that names the function, or an integer that gives the
function's ordinal value.

The LIBRARY statement defines the name of a DLL module. A
module definition file can contain either a NAME statement to
indicate an application or a LIBRARY statement to indicate a DLL,
but not both.

Like an application's module name, a library's module name must
match the name of the executable file. For example, the library
MYLIB.DLL has the module name MYLIB. The syntax is

LIBRARY LibraryName

LibraryName specifies an ASCII string that defines the name of the
library module.

The start address of the library module is determined by the
library'S object files; it is an internally defined function.

Tools and Utilities Guide

NAME

SEGMENTS

LibraryName is optional. If the parameter is not included, TLINK
uses the filename part of the executable file (that is, the name with
the extension removed).

If the module definition file includes neither a NAME nor a
LIBRARY statement, TLINK assumes a NAME statement without
a ModuleName parameter.

The NAME statement defines the name of the application's
executable module. The module name identifies the module when
exporting functions. The syntax is

NAME ModuleName

ModuleName specifies one or more uppercase ASCII characters
that define the name of the executable module. The module name
must match the name of the executable file. For example, an
application with the executable file SAMPLE.EXE has the module
name "SAMPLE".

The ModuleName parameter is optional. If the parameter is not
included, TLINK assumes that the module name matches the
filename of the executable file. For example, if you do not specify
a module name and the executable file is named MYAPP.EXE,
TLINK assumes that the module name is "MYAPP".

If the module definition file includes neither a NAME nor a
LIBRARY statement, TLINK assumes a NAME statement without
a ModuleName parameter.

The SEGMENTS statement defines the segment attributes of
additional code and data segments. The syntax is

SEGMENTS
SegmentName [CLASS 'ClassName'] [MinAlloc]
[FIXED I MOVEABLE]
[DISCARDABLE I NONDISCARDABLE]
[SHARED I NONSHARED]
[PRELOAD I LOADONCALL]

SegmentName specifies a character string that names the new
segment. It can be any name, including the standard segment
names _TEXT and _DATA, which represent the standard code
and data segments. .

Chapter 4, TLlNK: The Turbo linker 79

STACKSIZE

STUB

80

ClassName is an optional key word that specifies the class name of
the specified segment. If no class name is specified, TLINK uses
the class name CODE by default.

MinAlloc is an optional integer value that specifies the minimum
allocation size for the segment. Currently, TLINK ignores this
value.

FIXED means that the segment remains at a fixed memory
location. The MOVEABLE option means that the segment can be
moved if necessary, in order to compact memory.

DISCARDABLE means that the segment can be discarded if it is
no longer needed; NONDISCARDABLE means that the segment
can not be discarded.

PRELOAD means that the segment is loaded immediately;
LOADONCALL means that the segment is loaded when it is
accessed or called. The Resource Compiler may override the
LOADONCALL option and preload segments instead.

Default attributes for additional segments are as described for
CODE and DATA segments (depending on the type of additional
segment).

The STACKSIZE statement defines the number of bytes needed
by the application for its local stack. An application uses the local
stack whenever it makes function calls. Do not use the STACK­
SIZE statement for dynamic link libraries. The syntax is

STACKSIZE bytes

bytes is an integer value that specifies the stack size in bytes.

If the application makes no function calls, ST ACKSIZE defaults to
o. If your application does make function calls the minimum size
is 5120 bytes (if you specify less, it will be changed to 5120). The
sum total of the automatic data segment (DGROUP), the local
heap, and the stack must not exceed 65,536.

The STUB statement appends a DOS executable file specified by
FileName to the beginning of the module. The executabl~ stub
should display a warning message and terminate if the user
doesn't have Windows loaded.

Tools and Utilities Guide

Borland C++ adds a built-in stub to the beginning of a Windows
application unless a different stub is specified with the STUB
statement. Therefore, you should not use the STUB statement
merely to include WINSTUB.EXE, because the linker will do this
for you automatically.

The syntax is

STUB "FileName"

FileName specifies the name of the DOS executable file that will be
appended to the module. The name must have the DOS file name
format.

If the file named by FileName is not in the current directory,
TLINK searches for the file in the directories specified by the
PATH environment variable.

Chapter 4, TLlNK: The Turbo linker 81

82 Tools and Utilities Guide

c H

Getting started

Chapter 5, Using WinSight

A p T E R

5

Using WinSight

WinSight is a debugging tool that gives you information about
windows, window classes, and messages. You can use it to study
a Windows application-yours or others-to see how windows
and window classes are created and used, and what messages the
windows receive.

You can configure WinSight to trace messages

II by window

II by window class

II by message type

• by a combination of these

Remember that WinSight is a passive observer: It intercepts and
displays information about messages, but it does not keep
messages from getting to other applications.

Double-clicking on the WinSight icon brings up the main window
in its default configuration, which is a list of all the windows
currently active on the desktop.

In general, you will find that you want to use a mouse to
manipulate items in the WinSight window. Table 5.1 summarizes
the mouse actions and their keyboard and menu equivalents.

83

Table 5.1: Mouse and keyboard actions

Desired action

Select an item
Move selection bar
Toggle highlighted item
Show details of item
Expand window tree
Expand a branch
Collapse window tree
Expand tree completely
Activate following pane
Activate previous pane

Getting out

With the mouse

Left click

Ctrl+ Left click
Left Double-click

Right click on <->
Left click on < + >

With the keyboard

ior-l-
Ctrl+ i or Ctrl+-l­
Spacebar
Enter
+

Ctrl+*
Tab or F6
Shift+ Tab or Shift+F6

With menus

Spy I Open detail
Tree I Expand one level
Tree I Expand branch
Tree I Collapse branch
Tree I Expand all

When you are through with WinSight, exit using the Spy I Exit
menu command.

Choosing a view

Picking a pane

84

You can select va!ious views and degrees of information for your
message tracing.

WinSight offers three panes that can appear within its main
window: a window tree, a class list, and a message trace. You can
choose to look at any or all of the panes. WinSight will
automatically tile the panes within the main window, but you can
resize them to suit your needs.

• The window tree displays the hierarchy of windows on the
desktop. This is the default display when you start WinSight.

• The class list pane shows all the currently registered window
classes.

• The message trace pane displays information about messages
received by selected windows or window classes.

You can hide or display panes at any time, using the View menu.
Information and selections are not lost when a pane is hidden.

Tools and Utilities Guide

Arranging the
panes

Getting more
detail

Class detail

Window detail

When you have two or more panes displayed in the main
window, you can choose to display them either stacked on top of
one another or arrayed side by side. The Split Vertical and Split
Horizontal commands on the view menu toggle between these
configurations.

Within the window tree and class list panes, you can get more
detailed information about a selected window or class. Choosing
Open Detail from the Spy menu will bring up detail windows on
selected windows or selected classes, depending on which pane is
focused.

Double-clicking or pressing Enter on an item in the class list pane
brings up a Class Detail window that shows full detailed
information about that window class.

Double-clicking or pressing Enter on an item in the window tree
brings up a Window Detail window that shows full detailed
information on that window, in addition to information about
that window's class.

Using the window tree

Chapter 5, Using WinSight

The Window Tree pane shows an outline of the hierarchy of all
existing windows. You can use this display in several ways:

• to determine what windows are actually present

III to see the status of windows, including hidden windows

• to see which windows are receiving messages

• to select the windows you want to trace messages for

Next to each entry in the Window Tree pane is a small diamond.
An empty diamond means the window has no child windows. A
plus sign (+) in the diamond indicates that the window has
children, but they are hidden. A minus sign (-) in the diamond
means that the window's children are currently shown.

85

Pruning the tree

Showing child windows

Notice that the plus sign in
the diamond changes to a
minus sign, to show that the

windows children are shown.

Hiding child windows

Notice that the minus sign in
the diamond changes back

to a plus sign, showing .that
the windows children are

hidden.

Finding a window

Important! All other
applications are suspended
while you're in Find Window

mode.

86

Leaving Find Window
mode

Within the Wind<;>w Tree pane, you can show or hide lists of child
windows.

To show a window's children, click on the diamond next to the
window with the left mouse button or press +. All windows
which are children of the window appear. To show all the levels of
child windows (children of children, etc.), click with the right
mouse button.

To hide all of a window's child windows, click (or double-click)
on the diamond next to that window or press -. All child
windows (and their child windows, if any) will disappear from
the Window Tree.

WinSight has a special mode for locating windows. It can work in
two ways, either identifying the line in the Window Tree that
corresponds to a window you point at, or highlighting a window
you select in the Window Tree.

In either case, you enter Find Window mode by choosing Spy I
Find Window. In this mode, whenever the mouse passes into the
boundaries of a window, a thick border appears around that
window, and the window is selected in the Window Tree pane.

Alternatively, once in Find Window mode, you can select
windows in the Window Tree with the mouse or cursor keys, and
WinSight will put the thick border around the selected window or
windows.

Once you have located the window you want, you can leave Find
Window mode by clicking the mouse button, or by pressing the
Esc or Enter keys. This removes the the border from the screen,
leaving the current window selected in the Win~ow Tree.

Tools and Utilities Guide

Spying on
windows Once you have selected a window from the Window Tree, you

can trace the messages going to that window by choosing
Messages I Selected Windows. Changing the selection in the
Window Tree will immediately change which windows have
messages traced.

You can also choose to spy on all windows, regardless of what is
selected in the Class List or the Window Tree, by choosing
Messages I All Windows.

Choosing Messages I Selected Windows or Windows I All
Windows when the Message Trace pane is hidden causes the
Message Trace pane to become visible.

Choosing Messages I Trace off will disable message tracing
without causing the Message Trace pace to become hidden.

Working with classes

Using the Class
List pane

Spying on classes

Chapter 5, Using WinSlght

Sometimes, instead of choosing specific windows to trace
messages for, you might want to look at messages for entire
classes of windows. WinSight helps you do this using the Class
List pane.

A "Class" in WinSight refers to the class name with which the
window class was registered with Windows, not C++ classes as
used in ObjectWindows.

The Class List pane works much the same way as the Window
Tree pane, but it's much simpler, since classes are not hierarchical.
The Class List pane shows all the currently-registered window
classes. You can get full details about a class by double-clicking on
it or pressing Enter when it's selected. The diamonds to the left
work the same way as they do in the Window Tree pane.

Once you have selected a class from the Class List pane, you can
choose Messages I Selected Classes to trace only messages going to

87

Taking time out

Turning off tracing

Suspending
screen updates

that particular class. If the Message Trace pane is hidden when
you choose Messages I Selected Classes, it will become visible.

Note that tracing messages to a class enables you to see all
messages to windows of that class, including creation messages,
which would otherwise not be accessible.

Changing the selection in the Class List while tracing messages by
class immediately changes which classes have their messages
traced.

Several parts of WinSight can be disabled and reenabled at your
control.

Choosing Messages I Trace Off turns off message tracing. The
Message Trace pane remains visible, and tracing resumes when
you choose another of the message-tracing menu options, Selected
Classes, Selected Windows, or All Windows.

The Stop! command on the main menu bar turns off all real-time
updating in WinSight. Normally, all the panes are kept current as
classes ,are registered, windows are created and destroyed, and
messages are received. Choosing Stop! suspends all of these, and
changes the menu command to Start!. Choosing Start! resumes
normal operation.

Using Stop! has two main purposes: It gives you a chance to study
a particular situation, and it removes the overhead of having Win­
Sight update itself constantly.

Choosing messages to trace

88

WinSight gives you several ways to narrow down the tracing of
messages. Watching the messages to specific windows and
window classes is described in "Spying on a window" and
"Spying on a class," elsewhere in this chapter.

Tools and Utilities Guide

Filtering out
messages

Message tracing
options

Formatting message
parameters

Logging traced
messages

Table 5.2
Mouse messages

Chapter 5, Using WinSight

You may also want to specify which types of messages you want
to trace, regardless of which windows you're spying on. This is
done with the Message Trace Options dialog box, brought up by
the Messages I Options ... command.

By default, WinSight traces all messages. If you uncheck the All
Messages box, you can then select any or all of ten subgroups of
messages. These subgroups are described in Tables 5.2 through
5.10. Checking All Messages again disables all the separate
subgroups and will trace all messa"ges.

The Message Trace Options dialog box gives two other useful
options, one which determines the format of the Message Trace
pane's display, and the other which logs traced messages to a file.

Normally, the Message Trace pane interprets each message's
parameters and displays them in a readable format. You can
disable this by checking Hex Only in the Message Trace Options
dialog box. When Hex Only is checked, message parameters
appear only as hex values of wParam and IParam.

Information on traced messages usually goes only to the Message
Trace pane. By checking Log File in the Message Trace Options
dialog box and typing in a file name, you can capture the message
trace to a log file. If the file already exists, messages are appended
to the end. To stop logging message traces to the file, uncheck Log
File.

To send logged messages to a printer or other device, type in the
name of the device instead of a file name. For example, typing
PRN for the log file would send output to the printer port.

WM_HSCROLL
WM_LBUTTONDBLCLK
WM_LBUTTONDOWN
WM_LBUTTONUP
WM_MBUTTONDBLCLK
WM_MBUTTONDOWN
WM_MBUTTONUP

WM_MOUSEACTIVATE
WM_MOUSEMOVE
WM_RBUTIONDBLCLK
WM_RBUTIONDOWN
WM_RBUTIONUP
WM_SETCURSOR
WM_VSCROLL

89

Table 5.3
Window messages

WM_ACTIVATE WM_KILLFOCUS
WM_ACTIV A TEAPP WM_MOVE
WM_CANCELMODE WM_PAINT
WM_CHILDACTIVATE WM_PAINTICON
WM_CLOSE WM_QUERYDRAGICON
WM_CREATE WM_QUERYENDSESSION
WM_CTLCOLOR WM_QUERYNEWPALETTE
WM_DESTROY WM_QUERYOPEN
WM_ENABLE WM_QUIT
WM_ENDSESSION WM_SETFOCUS
WM_ERASEBKGND WM_SETFONT
WM_GETDLGCODE WM_SETREDRAW
WM_GETMINMAXINFO WM_SETTEXT
WM_GETTEXT WM_SHOWWINDOW
WM_GETTEXTLENGTH WM_SIZE
WM_ICONERASEBKGND

Table 5.4
Input messages

WM_CHAR WM_MENUSELECT
WM_CHARTOITEM WM_PARENTNOTIFY
WM_COMMAND WM_SYSCHAR
WM_DEADCHAR WM_SYSDEADCHAR
WM_KEYDOWN WM_SYSKEYDOWN
WM_KEYLAST WM_SYSKEYUP
WM_KEYUP WM_TIMER
WM_MENUCHAR WM_ VKEYTOITEM

Table 5.5
System messages

WM_QUEUESYNC WM_COMPACTING
WM_DEVMODECHANGE WM_SPOOLERSTA TUS
WM_ENTERIDLE WM_SYSCOLORCHANGE
WM_FONTCHANGE WM_SYSCOMMAND
WM_NULL WM_TIMECHANGE
WM_P ALETTECHANGED WM_ WININICHANGE
WM_P ALETTEISCHANGING

Table 5.6
Initialization messages

WM_INITDIALOG WM_INITMENUPOPUP
WM_INITMENU

90 T oo/s and Utilities Guide

Table 5.7
Clipboard messages

Table 5.8
DDE messages

Table 5.9
Non-client messages

Table 5.10
Control messages

Chapter 5, Using WinSight

WM_ASKCBFORMATNAME
WM_CHANGECBCHAIN
WM_CLEAR
WM_CUT
WM_COPY
WM_DESTROYCLIPBOARD
WM_DRA WCLIPBOARD
WM_HSCROLLCLIPBOARD

WM_DDE_ACK
WM_DDE_ADVISE
WM_DDE_DATA
WM_DDE_EXECUTE
WM_DDE_INITIATE

WM_NCACTIVATE
WM_NCCREATE
WM_NCCALCSIZE
WM_NCDESTROY
WM_NCHITTEST
WM_NCLBUTTONDBLCLK
WM_NCLBUTTONDOWN
WM_NCMBUTTONDBLCLK

BM_GETCHECK
BM_SETCHECK
BM_GETSTATE
BM_SETSTATE
BM_SETSTYLE

BN_CLICKED
BN_PAINT
BN_HILITE
BN_ UNHILITE
BN_DISABLE
BN_DOUBLECLICKED

CB _ GETEDITSEL
CB_LIMITTEXT
CB_SETEDITSEL
CB_ADDSTRING
CB_DELETESTRING

WM_PASTE
WM_PAINTCLIPBOARD
WM_RENDERALLFORMATS
WM_RENDERFORMAT
WM_SIZECLIPBOARD
WM_UNDO
WM_ VSCROLLCLIPBOARD

WM_DDE_POKE
WM_DDE_REQUEST
WM_DDE_TERMINATE
WM_DDE_UNADVISE

WM_NCLBUTTONUP
WM_NCMBUTTONDOWN
WM_NCMBUTTONUP
WM_NCMOUSEMOVE
WM_NCPAINT
WM_NCRBUTTONDBLCLK
WM_NCRBUTTONDOWN
WM_NCRBUTTONUP

CB_DIR
CB_GETCOUNT
CB_GETCURSEL
CB_GETLBTEXT
CB_GETLBTEXTLEN
CB_INSERTSTRING
CB_RESETCONTENT
CB_FINDSTRING
CB_SELECTSTRING
CB_SETCURSEL
CB_SHOWDROPDOWN
CB_GETITEMDATA
CB_SETITEMDATA
CB_GETDROPPEDCONTROLRECT
CB_MSGMAX

CBN_SELCHANGE
CBN_DBLCLK

91

Table 5.11
Other messages

Messages not documented
by Microsoft are shown in

lowercase.

92

Table 5.10: Control messages (continued)

CBN SETFOCUS
CBN)<ILLFOCUS
CBN_EDITCHANGE
CBN_EDITUPDATE
CBN_DROPDOWN

DM_GETDEFID
DM_SETDEFID

EM_GETSEL
EM_SETSEL
EM_GETRECT
EM_SETRECT
EM_SETRECTNP
EM_SCROLL
EM_LINESCROLL
EM_ GETMODIFY
EM_SETMODIFY
EM_ GETLINECOUNT
EM LINE INDEX
EM=SETHANDLE
EM_GETHANDLE
EM GETTHUMB
EM - LINE LENGTH
EM=REPLACESEL
EM_SETFONT
EM_GETLINE
EM LIMITTEXT
EM=CANUNDO
EM UNDO
EM - FMTLINES
EM - LINEFROMCHAR
EM - SETWORDBREAK
EM - SETTABSTOPS
EM - SETPASSWORDCHAR
EM=EMPTYUNDOBUFFER
EM_MSGMAX

EN SETFOCUS
EN=KILLFOCUS

wm_alttabactive
wm_begindrag
WM_COMPAREITEM
wm_convertrequest
wm_convertresult
WM_DELETEITEM
wm_dragloop
wm_dragmove
wm_ dragselect
WM_DRAWITEM

EN_CHANGE
EN UPDATE
EN=ERRSPACE
EN_MAXTEXT
EN HSCROLL
EN=VSCROLL

LB ADDSTRING
LB -INSERTSTRING
LB - DELETE STRING
LB=RESETCONTENT
LB_SETSEL
LB_SETCURSEL
LB GETSEL
LB=GETCURSEL
LB GETTEXT
LB=GETTEXTLEN
LB GETCOUNT
LB=SELECTSTRING
LB DIR
LB - GETTOPINDEX
LB - FIND STRING
LB -GETSELCOUNT
LB - GETSELITEMS
LB - SETT ABSTOPS
LB - GETHORIZONTALEXTENT
LB - SETHORIZONTALEXTENT
LB - SETCOLUMNWIDTH
LB - SETTOPINDEX
LB - GETITEMRECT
LB - GETITEMDATA
LB - SETITEMDATA
LB - SELITEMRANGE
LB=MSGMAX

LBN_SELCHANGE
LBN_DBLCLK
LBN SELCANCEL
LBN - SETFOCUS
LBN=KILLFOCUS

wm_dropobject
wm_entermenuloop
wm entersizemove
wm=exitmenuloop
wm exitsizemove
wm=filesyschange
WM_GETFONT
wm isactiveicon
wm)btrackpoint
WM_MDIACTIVATE

Tools and Utilities Guide

Table 5.11: Other messages (continued)

WM_MDICASCADE
WM_MDIC RE ATE
WM_MDIDESTROY
WM_MDIGETACTIVE
WM_MDIICONARRANGE
WM_MDIMAXIMIZE
WM_MDINEXT
WM_MDIRESTORE
WM_MDISETMENU
WM_MDITILE
WM_MEASUREITEM

WM_NEXTDLGCTL
wm_nextmenu
wm_querydropobject
wm_queryparkicon
wm_setvisible
wm_systemerror
wm_syncpaint
wm_synctask
wm_systimer
wm_testing.

WinSight windows

Class List pane

This section describes the various windows and window panes
WinSight provides.

Displays all registered window classes.

Display format Class (Module) Function Styles

Chapter 5, Using WinSight

The diamonds have one more purpose: whenever the window
receives any messages, they invert color momentarily. This gives
you an overview of which windows are currently receiving
messages. If a window's children are collapsed in the tree, the
diamond for that window will invert to show message activity in
the children.

Class is the name of the class. Some predefined Windows classes
have numeric names. For example, the popup menu class uses the
number 32768 as its name. These classes are shown with both the
number and a name, such as #32768:PopupMenu. However, the
actual class name is only the number itself, in the
MAKEINTRESOURCE format also used for resource ID's.

Module is the name of the executable module (.EXE or .DLL) that
registered the class.

Function is the address of the class window function.

Styles is a list of the CS_ styles for the class. The names are the
same as the CS_ definitions in windows.h, except the CS_ is
removed and the name is in mixed case.

93

94

Window Tree
pane

Display format

Message Trace

Displays all windows in existence, showing their parent-child
rela tionships.

Tree Handle {Class} Module position "Title"

The lines on the left show the tree structure. Each window is
connected to its parent, siblings, and children with these lines.
The lines are in the same fashion as the File Manager. The
diamond next to each window shows whether the window has
any children. If it is empty, there are no children. If it contains a
plus sign, there are children but they are collapsed out in the tree
display. If it contains a minus sign, there are children and they are
visible in the tree display (at least one level of child windows is
visible; further levels may be collapsed).

Handle is the window handle as returned by CreateWindow.

Class is the window class name, as described in the Class List
pane.

Module is the name of the executable module (.EXE or .DLL) that
created the window. Strictly speaking, this is the name of the
module owning the data segment passed as the hlnstance
parameter to CreateWindow.

Position is either (hidden) if the window is hidden, or
(xBegin,yBegin)-(xEnd,yEnd) if the window is visible. For top­
level windows, these are screen coordinates. For child windows,
they are coordinates within the parent window's client area, as
used in CreateWindow for a child window.

Title is the window title or text, as returned by GetWindowText or
a WM_GETTEXT message. If the title is the null string, the quotes
are omitted.

pane Displays messages received by selected window classes or
windows. Messages received via Send Message are shown twice,
once when they are sent and again when they return to show the
return value. Dispatched messages are shown once only, since
their return value is meaningless. The message display is
indented to show how messages are nested within other
messages.

Tools and Utilities Guide

Format Handle ["Title" I {Class} J Message Status

Chapter 5, Using WinSight

Handle is the window handle receiving the message.

Title is the window's title. If the title is the null string, the class
name is displayed instead, in curly braces.

Message is the message name as defined in WINDOWS.H. Known
undocumented Windows messages are shown in lower case.
Unknown message numbers (user-defined) are shown as
WM_USER+OxXXXX if they are greater-than or equal to
WM_USER, or WM_OxXXXX if they are less than WM_USER.
Registered message numbers (from RegisterWindowsMessage)
are shown with their registered name in single quotes.

Status is one or more of the following:

III Dispatched indicates the message was received via
DispatchMessage

• Sent [from XXXX] indicates the message was received via
Send Message. If it was sent from another window, from XXX X
gives that window's handle. If it was sent from the same
window receiving it, this is shown with from self. If it was sent
from Windows itself, the "from" phrase is omitted.

II Returns indcates the message was received via Send Message
. and is now returning.

II Additional information specific to each message. In the case of a
returning message, this gives the return value, either in
numeric form, or with more specific information for messages
such as WM_GETTEXT. for sent and dispatched messages, this
gives the message parameters. WinSight interprets the
parameters to give a readable display, and for messages that
have associated data structures (WM_CREATE, for example) it
grabs those structures and includes th~m in the display.

95

96 Tools and Utilities Guide

c H A p T E R

6

Re.· The Windows resource compiler

Most Windows programs are easy to use because they provide a
standard user interface. For example, most Windows programs
use menus to let you implement program commands, and change
cursors to let the mouse pointer represent a wide variety of tools,
such as arrows or paint brushes.

Menus and cursors are two examples of a Windows program's
resources. Resources are data stored in a program's executable
(.EXE) file separate from the program's normal data. Resources are
designed and specified outside the program code, then added to
the program's compiled code to create a program's executable file.

These are the resources you will create and use most often:

• Menus
• Dialog boxes
• Icons
• Cursors
1;;1 Keyboard accelerators
• Bitmaps
.. Character strings

Creating resources

You can create resources using a resource editor or the Resource
Compiler. In most cases, it's easier to use a resource editor and
visually create your resources. However, it is sometimes

Chapter 6, RC: The Windows resource compiler 97

convenient to use the Resource Compiler to compile resource
script files that appear in books or magazines.

Regardless of which approach you take, you normally create a
resource file (.RES) for each application. This resource file
contains binary information for all of the menus, dialogs, bitmaps,
and other resources used by your application.

The binary resource file (.RES) is added to your executable file
(.EXE) by using the Resource Compiler as described later in this
chapter. You must also write code that loads the resources into
memory. Each resource must be loaded into memory separately.
This gives you flexibility, since your program will only use
memory for the resources that are currently required.

Adding resources to an executable

98

Resource
compiling from

the IDE

Once the resources are stored in binary format in a .RES file, they
must be added to the program's executable (.EXE) file. The result
is a file that contains the application's compiled code as well as its
resources.

There are two ways to add resources to an executable file:

• Use a resource editor to copy resources from a .RES file into the
program's already-compiled .EXE file.

I!! Use the Resource Compiler (RC) to copy resources from a .RES
file into the program's already-compiled .EXE file.

From the IDE, the Resource Compiler is invoked by the Project
Manager when building a Windows project. Any .RC file (source
file) included in a project causes Borland C++ to invoke the
Resource Compiler to compile it to a .RES file. Then, after TLINK
has linked the project's application or DLL, the Resource Compiler
marks and binds the resources to it.

Tools and Utilities Guide

Resource
compiling from
the command

line

Resource
compiling from a

makefile

From the command line, you can compile the resource files you
want to use in your Windows application with the Resource
Compiler. When you're ready to build the application, you use the
Resource Compiler to bind the .RES file to the .EXE or .DLL.

In a make file, add the .RES file to the list of files in the explicit
rule that governs the build of the final .EXE. In that rule, also add
the command to invoke the Resource Compiler with the correct
.RES file. You can also add a rule to invoke the Resource Compiler
on an out-of-date .RES file.

Resource Compiler syntax

See Table 6.7 for a
description of the Resource

Compiler options.

This is how you invoke the Resource Compiler from the
command line:

RC [options] ResourceFile [ModuleFile]

For example, to compile WHELLO.RC file and add it to
WHELLO.EXE, you would give this command line:

re whello

This simplest form only works if the resource file and the
executable file share the same name. If WHELLO.RC was instead
named WHELLORS.RC, you would type

re whellors whello

To compile only the WHELLO.RC resource file (and not add the
resulting WHELLO.RES to WHELLO.EXE), use the -R option,
like this:

re -r whello

You would then have a WHELLO.RES file. To add WHELLO.RES
to WHELLO.EXE, type

re whello. res

To mark a module as Windows-compatible, but not add any
resources to it, simply invoke the Resource Compiler with the

Chapter 6, RC: The Windows resource compiler 99

module name (note that the file name must have one of these
extensions: .EXE, .DLL, or .DRV). For example,

rc whello. exe

The following table describes the Resource Compiler options.
Note that Resource Compiler options are not case sensitive (-e is
the same as -E). Also, options that take no arguments can be
combined (for instance, -kpr is legal).

Table 6.1: Resource Compiler options

-?
-d Symbol
-e
-fe FileName
-fo FileName
-h
-i Path

-k

-I

-lim32
-m

-multinst
-p

-r
-t

-v
-x

100

Lists help on Resource Compiler options (also -H).
Defines Symbol for the preprocessor.
Changes location of global memory for a DLL to above the EMS bank line
Renames the .EXE file to FileName.
Renames the .RES file to FileName.
Lists help on Resource Compiler options (also -?).
After searching the current directory for include files and resource files, RC searches
the directory named in Path. The -i option can be repeated if you want to specify
more than one search path. Also see the description for the -x option.
Turns off load optimization for segments and resources. (Normally, the Resource
Compiler preloads all data segments, nondiscardable code segments, and the
entry-point code segment, even if the segments were not marked as PRELOAD in
the module definition file. In addition, the Resource Compiler normally places all
preloaded segments in a contiguous area in the executable file.) .
Informs Windows that the application will be using expanded memory, according
to the LIM 3.2 specification.
Same as -I option.
Assigns each instance of a task to a different EMS bank, if the expanded memory
under Windows is configured under EMS 4.0.
Same as -m option.
Makes a DLL private to one or more instances of a single application, which might
result in performance gains.
Compile the .RC file into a .RES file, but do not add it to an .EXE.
Creates application to be run only in standard mode or 386 enhanced mode
(protected mode). If the user tries to run in real mode, a message will be displayed.
Display all compiler progress messages (compile verbose).
Excludes searching in the directories named in the INCLUDE environment variable.
Also see the description for the -i option.

Tools and Utilities Guide

c H A p T E R

7

He.' The Windows Help compiler

A Help system provides users with online information about an
application. Creating the system requires the efforts of both a
Help writer and a Help programmer. The Help writer plans,
writes, codes, builds, and keeps track of Help topic files, which
are text files that describe various aspects of the application. The
Help programmer ensures that the Help system works properly
with the application.

This chapter describes the following topics:

.. Providing and creating the Help system

.. Planning the Help system

• Creating Help topic files

II Building the Help file

• Help examples and compiler error messages

This section and those that follow assume you are familiar with
Windows Help. The sections use examples from sample
applications provided on your disks. If you are unfamiliar with
Windows Help, take a moment to run the sample application.

Creating a Help system: The development cycle

The creation of a Help system for a Windows application
comprises the following major tasks:

Chapter 7, HC: The Windows Help compiler 101

102

How Help
appears to the

user

1. Gathering information for the Help topics.

2. Planning the Help system. The section, "Planning the Help
system," describes considerations you should keep in mind
when planning your Help system.

3. Writing the text for the Help topics.

4. Entering all required control codes into the text files. Control
codes determine how the user can move around the Help
system. The section titled, "How Help Appears to the Writer,"
includes an example of several control codes. A later section,
"Creating the Help topic files," describes the codes in detail.

5. Creating a project file for the build. The Help project file
provides information that the Help Compiler needs to build a
Help resource file. A later section, "Building the Help files,"
describes the Help project file.

6. Building the Help resource file. The Help resource file is a
compiled version of the topic files the writer creates. Later in
this chapter, the section "Building the Help files" describes
how to compile a Help resource file.

7. Testing and debugging the Help system.

S. Programming the application so that it can access Windows
Help.

To the user, the Help system appears to be part of the application,
and is made up of text and graphics displayed in the Help
window in front of the application. Figure 7.1 illustrates the Help
window that appears when the user asks for help with copying
text in Helpex.

The Help window displays one sample Help topic, a partial
description of how to perform one task. In Figure 7.1, the first
sentence includes a definition of the word "clipboard." By
pressing the mouse button when the cursor is on the word
(denoted by dotted underlined text), the user can read the
definition, which appears in an overlapping box as long as the
mouse button is held down.

Tools and Utilities Guide

Figure 7.1
Helpex help window

How Help
appears to the

help writer

Figure 7.2
Topic file

This topic explains how to copy text to and from the rlipJ(.9f;;!~~i"
(This topic is associated with the keywords "copy" and
"clipboard,")

Cross-references to related topics are called jumps. By clicking on
a jump term for a related topic (denoted by underlined text), the
user changes the content of the Help window to a description of
the new topic or command. Figure 7.1 includes a look-up to the
definition of "clipboard."

To the writer, the Help system is a group of topic files, which are
text files that include special codes. Figure 7.2 illustrates the
source text that corresponds to the topic shown in Figure 7.1.

cliphoardterm clipboard

This topic explains how to copy text to and from the clipboardterm clipboard. [This topic
is associated with the keywords "copy" and "clipboard."

This topic explains how to delete text. [This topic is associated with the keywords
"delete" and "clipboard."

This topic explains how to exit HelpEx.

To create this topic, the Help writer describes the task, formats the
text, and inserts codes using strikethrough text, underlined text,
and footnotes. In place of strikethrough, the writer can use double

Chapter 7, HC: The Windows Help compiler 103

How Help
appears to the

help programmer
See "Building the Help files"

for details about the Help
application programming

interface (API).

underlining if the word processor does not support strikethrough
formatting. Footnotes in the text contain linking information
required by the Help Compiler. The section "Planning the Help
system" discusses formatting considerations. Another section,
"Creating the Help topic files," describes how to create topics and
enter the special codes that the Help system uses.

To the programmer, Windows Help is a stand alone Windows
application which the user can run like any other application.
Your application can call the WinHelp function to ask Windows to
run the Help application and specify which topic to display in the
Help window.

Planning the Help system

104

Developing a
plan

The initial task for the Help writer is to develop a plan for
creating the system. This section discusses planning the Help
system for a particular application; it covers these topics:

• Developing a plan

• Determining the topic file structure

• Designing the visual appearance of Help topics

Before you begin writing Help topics using the information you
have gathered, you and the other members of the Help team
should develop a plan that addresses the following issues:

• The audience for your application

• The content of the Help topics

• The structure of topics

• The use of context-sensitive topics

You might want to present your plan in a design document that
includes an outline of Help information, a diagram of the
structure of topics, and samples of the various kinds of topics
your system will include. Keep in mind that context-sensitive
Help requires increased development time, especially for the
application programmer.

Tools and Utilities Guide

Defining the audience The audience you address determines what kind of information
you make available in your Help system and how you present the
information.

Table 7.1
Your application audience

Users of Help systems might be classified as follows:

User

Computer novice

Application novice

Application intermediate

Application expert

Background

Completely new to computing.

Some knowledge of computing, but new to
your kind of application. For example, if you
are providing Help for a spreadsheet
program, the application novice might be
familiar only with word-processing
packages.

Knowledgeable about your kind of
application.

Experienced extensively with your type of
application.

Keep in mind that one user may have various levels of know­
ledge. For example, the expert in word processors may have no
experience using spreadsheets.

Planning the contents You should create topics that are numerous enough and specific
enough to provide your users with the help they need.

Novice users need help learning tasks and more definitions of
terms. More sophisticated users occasionally seek help with a
procedure or term, but most often refresh their memory of
commands and functions. The expert user tends only to seek help
with command or function syntax, keyboard equivalents, and
shortcut keys.

There are no rules for determining the overall content of your
Help system. If you are providing Help for all types of users, you
will want to document commands, procedures, definitions,
features, functions, and other relevant aspects of your application.
If you are providing help for expert users only, you might want to
omit topics that describe procedures. Let your audience definition
guide you when deciding what topics to include.

Keep in mind that the decision to implement context-sensitive
Help is an important one. Context-sensitive Help demands a close
working relationship between the Help author and the

Chapter 7, HC: The Windows Help compiler 105.,

application programmer, and will therefore increase the
development time necessary to create a successful Help system.

Planning the structure Many Help systems structure topics hierarchically. At the top of
the hierarchy is an index or a table of contents, or both. The index
and table of contents list individual topics or categories of topics
available to the user.

Figure 7.3
Example of a help hierarchy

106

Topics themselves can be related hierarchically. Each successive
step takes the user one level down in the hierarchy of the Help
system until the user reaches topic information. The hierarchical
relationship of Help topics determines in part how the user
navigates through the Help system. Figure 7.3 illustrates a
possible hierarchy:

Continuation of topics

Helpex contains an index that lists several categories of topics.
Each category includes a secondary index, which lists topics in the
category, and the topics themselves.

Moving from the index to a topic, the user goes from the general
to the specific.

, Tools and Utilities Guide

For more about the search
feature, see page 118.

For more about browse
sequences, see page 113.

Displaying context­
sensitive Help topics

For information on creating a
Help project file, see page

129.

The hierarchical structure provides the user a point of reference
within Help. Users are not constrained to navigate up and down
the hierarchy; they can jump from one topic to another, moving
across categories of topics. The effect of jumps is to obscure
hierarchical relationships. For example, the Windows Help
application contains a search feature that lets the user enter a
keyword into a dialog box and search for topics associated with
that keyword. The Help application then displays a list of titles to
choose from in order to access information that relates to the
keyword.

Because users often know which feature they want help with,
they can usually find what they want faster using the search
feature than they can by moving through the hierarchical
structure.

In addition to ordering topics hierarchically, you can order them
in a logical sequence that suits your audience. The logical
sequence, or "browse sequence," lets the user choose the Browse
button to move from topic to topic. Browse sequences are
especially important for users who like to read several related
topics at once, such as the topics covering the commands on the
File menu.

Whichever structure you decide to use, try to minimize the
number of lists that users must traverse in order to obtain
information. Also, avoid making users move through many levels
to reach a topic. Most Help systems function quite well with only
two or three levels.

Windows Help supports context-sensitive Help. When written in
conjunction with programming of the application, context­
sensitive Help lets the user press F1 in an open menu to get help
with the selected menu item. Alternatively, the user can press
Shift+F1 and then click on a screen region or command to get help
on that item.

Developing context-sensitive Help requires coordination between
the Help writer and the application programmer so that Help and
the application pass the correct information back and forth.

To plan for context-sensitive Help, the Help author and the
application programmer should agree on a list of context
numbers. Context numbers are arbitrary numbers that correspond
to each menu command or screen region in the application, and
are used to create the links to the corresponding Help topics. You

Chapter 7, HC: The Windows Help compiler 107

For more on assigning
context numbers, see page

141.

See page 138 for more on
context-sensitive Help. '

Page 127 provides you with
more information about

using a tracker.

Determining the
topic file structure

108

Figure 7.4
Basic help file structure

can then enter these numbers, along with their corresponding
context-string identifiers, in the Help project file, which the Help
Compiler uses to build a Help resource file.

The context numbers assigned in the Help project file must
correspond to the context numbers that the application sends at
run time to invoke a particular topic.

If you do not explicitly assign context numbers to topics, the Help
Compiler generates default values by converting topic context
strings into context numbers.

To manage context numbers and file information, you might want
to create a Help tracker to list the context numbers for your
context-sensitive topics.

The Help file structure remains essentially the same for all
applications even though the context and number of topic files
differ. Topic files are segmented into the different topics by means
of page breaks. When you build the Help system, the compiler
uses these topic files to create the information displayed for the
user in the application's Help window. .

Figure 7.4 shows this basic file structure.

HELP FILES TO BE PASSED TO BUILD OPERATION
I

1 l l l .
Word File Word File More Word Files Word Fil.e

Page 1 Page 1 Page 1

I
Page n

Page n

Page n

Tools and Utilities Guide

Choosing a file
structure for your

application

Figure 7.5
Help file structure showing

hypertext jumps

When choosing a file structure for your Help system, consider the
scope and content of the Help system you are planning. For
example, you could place all Help topics in a single large topic
file. Or, you could place each Help topic in a separate file. Neither
of these file structures is generally acceptable. An enormous
single file or too many individual files can present difficulties
during the creation of the Help resource file.

...-

L....

TOPIC FILE
(Index Topic)

Index item 1
Index item 2
Index item 3

END-OF-FILE

TOPIC FILE
(Help Topics)

TOPIC 1

-
PAGE BREAK

TOPIC 2

PAGE BREAK

TOPIC 3

t--

PAGE BREAK

TOPIC 4
PAGE BREAK
TOPIC 5

PAGE BREAK
TOPIC 6

END-OF-FILE

'--

TOPIC FILE
(Help Topics)

TOPIC 7 -r-- PAGE BREAK

TOPIC 8

PAGE BREAK

TOPIC 9

PAGE BREAK

TOPIC 10
PAGE BREAK

TOPIC 11
...-1----

END-OF-FILE

TOPIC FILE
(Subject Topic)

INDEX ITEM 1
Subject item 1
Subject item 2
Subject item 3
Subject item 4 -

PAGE BREAK

INDEX ITEM 2
Subject item 5
Subject item 6
Subject item 7

PAGE BREAK

INDEX ITEM 3
Subject item 8
Subject item 9
Subject item 10
Subject item 11
Subject item 12
Subject item 13

END-OF-FILE

I---

TOPIC FILE
(Help Topics)

TOPIC 12-
+--

L- f----.

PAGE BREAK

I
TOPIC 13

PAGE BREAK

TOPIC 14

PAGE BREAK

TOPIC 15

PAGE BREAK

TOPIC 16

PAGE BREAK

TOPIC 17

END-OF-FILE

TOPIC FILE
(Help Topics)

J-- TOPIC 18

'--t--
PAGE BREAK

TOPIC 19

PAGE BREAK

...- TOPIC 20

PAGE BREAK

TOPIC 21 -

0 PAGE BREAK

TOPIC 22 -PAGE BREAK

TOPIC 23

PAGE BREAK

TOPIC 24

END-OF-FILE

Chapter 7, HC: The Windows Help compiler 109

The number of topics relates to the number of features covered by
the Help system. Consequently, you cannot make extensive
changes to one without making changes to the other. For instance,
if a number of additional product features are added to Help,
then additional topics must be created to accommodate the new
informa tion.

Figure 7.5 illustrates the file structure of a possible Help system.
The number of topics and topic files is limited to simplify the
diagram and more clearly show the concept of linking the topics
together through jumps, shown in the figure as arrows. The figure
is not intended to show the number of files that can be included in
the Help file system. Moreover, the figure does not show how
topic files are ordered using the browse feature.

Designing Help
topics How the information in the Help window appears to the user is

primarily a function of the layout of the Help topic. The Windows
Help application supports a number of text attributes and graphic
images you can use to design your Help window.

This section provides general guidelines for designing a window
and describes fonts and graphic images that Windows Help
supports.

Layout of the Help text Help text files are not limited to plain, unformatted text. You can
use different fonts and point sizes, include color and graphics to
emphasize points, indent paragraphs to present complex
information, and use a variety of other visual devices to present
your information.

Research on screen format and Help systems has produced
general guidelines for presenting information to users. Table 7.2
summarizes the findings of these studies.

Table 7.2: Help design issues

Design Issue

Language

Amount of text

110

Guideline

Use language appropriate for the audience you have defined: Language that is too
sophisticated for your audience can frustrate users by requiring them to learn the
definition of unfamiliar terms and concepts.

Use a minimum of text. Studies indicate that reading speed decreases by 30 percent
when users read online text rather than printed text. Minimal, concise text helps
users compensate for the decreased reading speed.

Tools and Utilities Guide

Table 7.2: Help design issues (continued)

Paragraph length Use short paragraphs. Online users become overloaded with text more easily than
do readers of printed material. Breaking your text into short paragraphs helps
avoid this problem.

Whitespace

Highlighting

Graphics and
icons

Design
consistency

Use it to help group information visually. Whitespace is important to making online
text more readable. Use it liberally, while also considering the overall size that a
topic will occupy on the screen. Users tend to think there is more information on
a screen than exists. For example, if the ratio of whitespace to text is 50:50, users
perceive the ratio to be 40:60.

Use highlighting techniques judiciously. Windows Help provides a variety of
highlighting devices, such as font sizes, font types, and color. Using a few devices
can help users find information quickly. Using many devices will decrease the
effectiveness of your VIsual presentation and frustrate users. As with print-based
documentation, use only one or two fonts at a time.

Use graphics to support the explanation of visual events. Windows Help supports the
use of bitmapped graphic images. Use appropriate images to help explain the
function of icons and screen elements in your application. Remember that
graphics will draw the user's eye before the accompanying text. Be sure to crop
your images to remove distracting information. Use color images only if you are
certain that all your users' systems have color capability. As with context­
sensitive Help, consider the additional time necessary to create accurate and
meaningful graphic images.

Be rigorously consistent in your design. Users expect the appearance
of Help topics to be the same, regardless of the information presented. Consistent
titling, highlighting, fonts, and positioning of text in the window is essential to
an effective Help system.

Type fonts and sizes The Windows Help application can display text in any font and
size available to the system. When the topic files are passed to the
build process, the Help Compiler attempts to use the fonts and
sizes found in the topic files. If a font or point size cannot be
matched exactly when the Help file is displayed by Windows
Help, the closest available font and size on the user's system will
be used.

Windows ships with only certain fonts in specific font sizes. If you
write Help files using these fonts and sizes, the displayed Help
file will closely match the printed word-processed file. Because
fonts other than those shipped with Windows may not be
available on users' machines, you might want to limit your font.
selection to the shipped Windows fonts.

Chapter 7, HC: The Windows Help compiler 111

The fonts included with Windows are shown in Table 7.3:

Table 7.3
Windows fonts Font Sizes

Graphic images

For more information on
placing graphics into your

Help files, see page 724.

112

Courier
Helv
Modern
Roman
Script
Symbol
TmsRrnn

10,12,15
8,10,12,14,18,24

8,10,12,14,18,24
8,10,12,14,18,24

Since Windows Help supports any Windows font, special
symbols such as arrows can be included in your topics by using
the Symbol font.

The Windows Help application allows you to embed graphics in
the Help file. Graphics can be placed and displayed anywhere on
the page. Text can appear next to the graphic.

Color graphic images can be included, provided you use only the
available Windows system colors. If you use graphics tools that
support an enhanced color palette to create or capture images,
these images may not always display with the intended colors.
And since you cannot control the color capabilities on a user's
machine, you might want to limit your graphic images to black
and white bitmaps.

Keep in mind that graphics are most effective when they
contribute to the learning process. Graphics not tied to the
information are usually distracting rather than helpful and should
be avoided.

For additional information about screen design, refer to the
following books and journals:

• Bradford, Annette Norris. "Conceptual Differences Between the
Display Screen and the Printed Page." Technical Communication
(Third Quarter 1984): 13-16.

• Galitz, Wilbert O. Handbook of Screen Format Design. 3d ed.
Wellesley, MA: QED Information Sciences, Inc., 1989.

• Houghton, Raymond C., Jr. "Online Help Systems: A
Conspectus." Communications of the ACM 27(February 1984):
126-133.

Tools and Utilities Guide

• Queipo, Larry. "User Expectations of Online Information."
IEEE Transactions on Professional Communications PC 29
(December 1986): 11-15.

Creating the Help topic files

Choosing an
authoring tool

Structuring Help
topic files

Probably the most time-consuming task in developing a Help
system for your application is creating the Help topic files from
which you compile the Help system. Help topic files are text files
that define what the user sees when using the Help system. The
topic files can define various kinds of information, such as an
index to information on the system, a list of commands, or a
description of how to perform a task.

Creating topic files entails writing the text that the user sees when
using Help, and entering control codes that determine how the
user can move from one topic to another. This section describes
the following topics:

1!1 Choosing an authoring tool

II Structuring Help topic files

II Coding Help topic files

• Managing Help topic files

To write your text files, you will need a Rich Text Format (RTF)
editor, which lets you create the footnotes, underlined text, and
strikethrough or double-underlined text that indicate the control
codes. These codes are described in the section titled "Coding
Help Topic Files" on page 114. RTF capability allows you to insert
the coded text required to define Help terms, such as jumps,
keywords, and definitions.

A Help topic file typically contains multiple Help topics. To
identify each topic within a file:

• Topics are separated by hard page breaks.

• Each topic accessible via a hypertext link must have a unique
identifier, or context string.

Chapter 7, HC: The Windows Help compiler 113

114

Coding Help

m Each topic can have a title.

a Each topic can have a list of keywords associated with it.

l'!I Each topic can have a build-tag indicator.

EJ Any topic can have an assigned browse sequence.

For information about inserting page breaks between topics, see
the documentation for the editor you are using. For information
about assigning context strings and titles to topics, see the
following sections.

topic files The Help system uses control codes for particular purposes:

Table 7.4
Help control codes Control Code

Asterisk (*) footnote

Pound sign (#)

Dollar sign ($) footnote

Letter "K" footnote

Plus sign (+) footnote

Strikethrough or
double-underlined text

Underlined text

Purpose

Build tag-Defines a tag that specifies topics
the compiler conditionally builds into the
system. Build tags are optional, but they
must appear first in a topic when they are
used.

Context string-Defines a context string that
uniquely identifies a topic. Because
hypertext relies on links provided by context
strings, topics without context strings can
only be accessed using keywords or browse
sequences.

Title-Defines the title of a topic. Titles are
optional.

Keyword-Defines a keyword the user uses'
to search for a topic. Keywords are optional.

Browse sequence number-Defines a
sequence that determines the order in which
the user can browse through topics. Browse
sequences are optional. However, if you omit
browse sequences, the Help window will
still include the Browse buttons, but they
will be grayed.

Cross-reference-Indicates the text the
user can choose to jump to another topic.

Definition-Specifies that a temporary or
"look-up" box be displayed when the user
holds down the mouse button or Enter key.
The box can include such information as the
definition of a word or phrase, or a hint
about a procedure.

Tools and Utilities Guide

Assigning build tags

For information about the
BUILD option, the (8uildTags)
section and the Help project

file, see "Building the Help
files. "

Table 7.4: Help control codes (continued)

Hidden text Cross-reference context string-Specifies the
context string for the topic that will be
displayed when the user chooses the text
that immediately precedes it.

If you are using build tags, footnote them at the very beginning of
the topic. Place other footnotes in any order you want. For
information about assigning specific control codes, see the
following sections.

Build tags are strings that you assign to a topic in order to
conditionally include or exclude that topic from a build. Each
topic can have one or more build tags. Build tags are not a
necessary component of your Help system. However, they do
provide a means of supporting different versions of a Help
system without having to create different source files for each
version. Topics without build tags are always included in a build.

You insert build tags as footnotes using the asterisk (*). When you
assign a build tag footnote to a topic, the compiler includes or
excludes the topic according to build information specified in the
BUILD option and [BuildTags] section of the Help project file.

To assign a build tag to a topic:

1. Place the cursor at the beginning of the topic heading line, so
that it appears before all other footnotes for that topic.

2. Insert the asterisk (*) as a footnote reference mark.

Note that a superscript asterisk (*) appears next to the
heading.

3. Type the build tag name as the footnote.

Be sure to allow only a single space between the asterisk (*)
and the build tag.

Build tags can be made up of any alphanumeric characters. The
build tag is not case-sensitive. The tag may not contain spaces.
You can specify multiple build tags by separating them with a
semicolon, as in the following example:

* AppVersionl; AppVersion2; Test_Build

Including a build tag footnote with a topic is equivalent to setting
the tag to true when compared to the value set in the project file.
The compiler assumes all other build tags to be false for that topic.

Chapter 7, HC: The Windows Help compiler 115

Assigning context
strings

For information about
assigning jumps, see page

122; for assigning browse
sequences, see page 120; for

assigning keywords, see
page 118.

116

After setting the truth value of the build tag footnotes, the
compiler evaluates the build expression in the Options section of
the Help project file. Note that all build tags must be declared in
the project file, regardless of whether a given conditional
compilation declares the tags. If the evaluation results in a true
state, the compiler includes the topic in the build. Otherwise, the
compiler omits the topic.

The compiler includes in all builds topics that do not have a build
tag footnote regardless of the build tag expressions defined in the
Help project file. For this reason, you may want to use build tags
primarily to exclude specific topics from certain builds. If the
compiler finds any build tags not declared in the Help project file,
it displays an error message.

By allowing conditional inclusion and exclusion of specific topics,
you can create multiple builds using the same topic files. This
saves time and effort for the Help development team. It also
means that you can develop Help topics that will help you
maintain a higher level of consistency across your product lines.

Context strings identify each topic in the Help system. Each
context string must be unique. A given context string may be
assigned to only one topic within the Help project; it cannot be
used for any other topic.

The context string provides the means for creating jumps between
topics or for displaying look-up boxes, such as word and phrase
definitions. Though not required, most topics in the Help system
will have context-string identifiers. Topics without context strings
may not be accessed through hypertext jumps. However, topics
without context-string identifiers can be accessed through browse
sequences or keyword searches, if desired. It is up to the Help
writer to justify the authoring of topics that can be accessed only
in these manners.

To assign a context string to a Help topic:

1. Place the cursor to the left of the topic heading.

2. Insert the pound sign (#) as the footnote reference mark.

Note that a superscript pound sign (#) appears next to the
heading.

3. Type the context string as the footnote.

Tools and Utilities Guide

Be sure to allow only a single space between the pound sign
(#) and the string.

Context strings are not case-sensitive.

Valid context strings may contain the alphabetic characters A - Z,
the numeric characters 0- 9, and the period (.) and underscore C)
characters. The following example shows the context string
footnote that identifies a topic called "Opening an Existing Text
File":

#OpeningExistingTextFile

Although a context string has a practical limitation of about 255
characters, there is no good reason for approaching this value.
Keep the strings sensible and short so that they're easier to enter
into the text files.

Assigning titles Title footnotes perform the following functions within the Help
system:

II They appear on the Bookmark menu.

III They appear in the "Topics found" list that results from a
keyword search. (Topics that do not have titles, but are
accessible via keywords are listed as »»untitled Topic<<<< in
the Topics found list.)

Although not required, most topics have a title. You might not
assign a title to topics containing low-level information that Help's
search feature, look-up boxes, and system messages do not access.

To assign a title to a topic:

1. Place the cursor to the left of the topic heading.

2. Insert a footnote with a dollar sign ($) as the footnote reference
mark.

Note that a superscript dollar sign ($) appears next to the
heading.

3. Type the title as the footnote.

Be sure to allow only a single space between the dollar sign ($)
and the title.

The following is an example of a footnote that defines the title for
a topic:

$ Help Keys

Chapter 7, HC: The Windows Help compiler 117

118

Table 7.5
Restrictions of Help titles

When adding titles, keep in mind the following restrictions:

Item Restrictions

Characters Titles can be up to 128 characters in length. The Help
compiler truncates title strings longer than 128
characters. The help system displays titles in a list box
when the user searches for a keyword or enters a
bookmark.

Formatting Title footnote entries cannot be formatted.

Assigning keywords Help allows the user to search for topics with the use of keywords
assigned to the topics. When the user searches for a topic by
keyword, Help matches the user-entered word to keywords
assigned to specific topics. Help then lists matching topics by their
titles in the Search dialog box. Because a keyword search is often a
fast way for users to access Help topics, you'll probably want to
assign keywords to most topics in your Help system. .

Note You should specify a keyword footnote only if the topic has a title
footnote, since the title of the topic will appear in the search
dialog when the user searches for the keyword.

To assign a keyword to a topic:

1. Place the cursor to the left of the topic heading.

2. Insert an uppercase K as the footnote reference mark.

Note that a superscript K (K) appears next to the heading.

3. Type the keyword, or keywords, as the footnote.

Be sure to allow only a single space between the K and the first
keyword.

If you add more than one keyword, separate each with a semi-
colon. '

The following is an example of keywords for a topic:

K open; opening; text file;ASCII;existing;text only; documents;

Whenever the user performs a search on any of these keywords,
the corresponding titles appear in a list box. More than one topic
may have the same keyword.

Tools and Utilities Guide

Table 7.6
Help keyword restrictions

For information on the
MULTIKEY option, see page

136.

When adding keywords, keep in mind the following restrictions:

Item Restrictions

Characters Keywords can include any ANSI character,
including accented characters. The maximum length
for keywords is 255 characters.

A space embedded in a key phrase is considered to
be a character, permitting phrases to be keywords.

Phrases Help searches for any word in the specified phrase.

Formatting Keywords are unformatted.

Case sensitivity Keywords are not case-sensitive.

Punctuation Except for semicolon delimiters, you can use
punctuation.

Creating multiple keyword tables

Multiple keyword tables are useful to allow a program to look up
topics that are defined in alternate keyword tables. You can use an
additional keyword table to allow users familiar with keywords
in a different application to discover the matching keywords in
your application.

Authoring additional keyword tables is a two-part process. First,
the MULTIKEY option must be placed in the [Options] section of
the project file.

Second, the topics to be associated with the additional keyword
table must be authored and labeled. Footnotes are assigned in the
same manner as the normal keyword footnotes, except that the
letter specified with the MUL TIKEY option is used. With this
version of the Help Compiler, the keyword footnote used is case­
sensitive. Therefore, care should be taken to use the same case,
usually uppercase, for your keyword footnote. Be sure to
associate only one topic with a keyword. Help does not display
the normal search dialog box for a multiple keyword search.
Instead it displays the first topic found with the specified
keyword. If you want the topics in your additional keyword table
to appear in the normal Help keyword table, you must also
specify a "K" footnote and the given keyword.

The application you are developing Help for can then display the
Help topic associated with a given string in a specified keyword
table. Keywords are sorted without regard to case for the
keyword table. For information on the parameters passed by the

Chapter 7, HC: The Windows Help compiler 119

120

Assigning browse
sequence numbers

application to call a topic found in alternate keyword table, see
page 147.

The Browse »» and Browse «« buttons on the icon bar in the
Help window let users move back and forth between related
topics. The order of topics that users follow when moving from
topic to topic is called a "browse sequence." A browse sequence is
determined by sequence numbers, established by the Help writer.

To build browse sequences into the Help topics, the writer must

1. Decide which topics should be grouped together and what
order they should follow when viewed as a group.

Help supports multiple, discontiguous sequence lists.

2. Code topics to implement the sequence.

.. In this version of Help, topics defined in browse sequences are
accessed using the Browse buttons at the top of the Help window.
Future versions of Help will not normally display browse buttons
for the user. However, if your Help resource file includes browse
sequences authored in the format described here, these future
versions will support the feature by automatically displaying
browse buttons for the user.

Organizing browse sequences

When organizing browse sequences, the writer must arrange the
topics in an order that will make sense to the user. Topics can be
arranged in alphabetical order within a subject, in order of
difficulty, or in a sensible order that seems natural to the
application. The following example illustrates browse sequences
for the menu commands used in a given application. The Help
writer has subjectively defined the order that makes the most
sense from a procedural point of view. You may, of course, choose
a different order.

SampleApp Commands
File Menu - commands:005

New Command - file_menu:005
Open Command - file_menu:010
Save Command - file_menu:015
Save As Command - file_menu:020
Print Command - file_menu:025
Printer Setup Command - file_menu:030
Exit Command - file_menu:035

Tools and Utilities Guide

Edit Menu - commands:010
Undo Command - edit_menu:025
Cut Command - edit_menu:015
Copy Command - edit_menu:010
Paste Command - edit_menu:020
Clear Command - edit_menu:005
Select All Command - edit_menu:030
word Wrap Command - edit_menu:035
Type Face Command - edit_menu:040
Point Size Command - edit_menu:045

Search Menu - commands:015
Find Command - search_menu:005
Find Next Command - search_menu:010
Previous Command - search_menu:015

Window Menu - com~ands:020

Tile Command - window_menu:005
Cascade Command - window_menu:010
Arrange Icons Command - window_menu:015
Close All Command - window_menu:020
Document Names Command - window_menu:025

Each line consists of a sequence list name followed by a colon and
a sequence number. The sequence list name is optional. If the
sequence does not have a list name, as in the following example,
the compiler places the topic in a "null" list:

Window Menu - 120

Note that the numbers used in the browse sequence example
begin at 005 and advance in increments of 005. Generally, it is
good practice to skip one or more numbers in a sequence so you
can add new topics later if necessary. Skipped numbers are of no
consequence to the Help Compiler; only their order is significant.

Sequence numbers establish the order of topics within a browse
sequence list. Sequence numbers can consist of any alphanumeric
characters. During the compiling process, strings are sorted using
the ASCII sorting technique, not a numeric sort.

Both the alphabetic and numeric portions of a sequence can be
several characters long; however, their lengths should be
consistent throughout all topic files. If you use only numbers in
the strings make sure the strings are all the same length;
otherwise a higher sequence number could appear before a lower
one in certain cases. For example, the number 100 is numerically
higher than 99, but 100 will appear before 99 in the sort used by
Help, because Help is comparing the first two digits in the strings.

Chapter 7, HC: The Windows Help compiler 121

122

Creating cross­
references between

topics

In order to keep the topics in their correct numeric order, you
would have to make 99 a three-digit string: 099.

Coding browse sequences

After determining how to group and order topics, code the
sequence by assigning the appropriate sequence list name and
number to each topic, as follows:

1. Place the cursor to the left of the topic heading.

2. Insert the plus sign (+) as the footnote reference mark.

Note that a superscript plus sign (+) appears next to the
heading.

3. Type the sequence number using alphanumeric characters.

For example, the following footnote defines the browse sequence
number for the Edit menu topic in the previous browse sequence
example:

+ comrnands:010

While it may be easier to list topics within the file in the same
order that they appear in a browse sequence, it is not necessary.
The compiler orders the sequence for you.

Cross-references, or "jumps," are specially-coded words or
phrases that are linked to other topics. Although you indicate
jump terms with strikethrough or double-underlined text in the
topic file, they appear underlined in the Help window. In
addition, jump terms appear in color on color systems. For
example, the strikethrough text (double-underlined in Word for
Windows) NevI CeFfl"'8Rs appears as New Command in green
text to the user.

To code a word or phrase as a jump in the topic file:

1. Place the cursor at the point in the text where you want to
enter the jump term.

2. Select the strikethrough (or double-underline) feature of your
editor.

3. Type the jump word or words in strikethrough mode.

4. Turn off strikethrough and select the editor's hidden text
feature.

Tools and Utilities Guide

5. Type the context string assigned to the topic that is the target
of the jump.

When coding jumps, keep in mind that:

• No spaces can occur between the strikethrough (or double­
underlined) text and the hidden text.

• Coded spaces before or after the jump term are not permitted.

• Paragraph marks must be entered as plain text.

Defining terms Most topic files contain words or phrases that require further
definition. To get the definition of a word or phrase, the user first
selects the word and then holds down the mouse button or Enter
key, causing the definition to appear in a box within the Help
window. The Help writer decides which words to define,
considering the audience that will be using the application and
which terms might already be familiar.

.. The look-up feature need not be limited to definitions. With the
capability of temporarily displaying information in a box, you
might want to show a hint about a procedure, or other suitable
information for the user.

Defining a term requires that you

• Create a topic that defines the term.

The definition topic must include a context string. See the
section titled" Assigning Context Strings." on page 116.

• Provide a cross-reference for the definition topic whenever the
term occurs.

You don't need to define the same word multiple times in the
same topic, just its first occurrence. Also, consider the amount
of colored text you are creating in the Help window. See the
following "Coding definitions" section.

Creating definition topics

You can organize definition topics any way you want. For
example, you can include each definition topic in the topic file
that mentions the term. Or you can organize all definitions in one
topic file and provide the user with direct access to it. Helpex uses
the latter method, with all definitions residing in the TERMS.RTF
file. Organizing definition topics into one file provides you with a
glossary and lets you make changes easily.

Chapter 7, HC: The Windows Help compiler 123

Inserting graphic
images

124

Creating and
capturing bitmaps

Coding definitions

After creating definition topics, code the terms as they occur, as
follows:

1. Place the insertion point where you want to place the term that
requires definition.

2. Select the underline feature of your editor.

3. Type the term.

4. Turn off the underline feature, and select the editor's hidden­
text feature.

S. Type the context string assigned to the topic that contains the
definition of the term.

Bitmapped graphic images can be placed in Help topics using
either of two methods. If your word processor supports the
placement of Windows 2.1 or Windows 3.0 graphics directly into a
document, you can simply paste your bitmaps into each topic file.
Alternatively, you can save each bitmap in a separate file and
specify the file by name where you want it to appear in the Help
topic file. The latter method of placing graphics is referred to as
"bitmaps by reference." The following sections describe the
process of placing bitmaps directly or by reference into your Help
topics.

You can create your bitmaps using any graphical tools, as long as
the resulting images can be displayed in the Windows
environment. Each graphic image can then be copied to the
Windows clipboard. Once on the clipboard, a graphic can be
pasted into a graphics editor such as Paint, and modified or
cleaned up as needed. .

Windows Help 3.0 supports color bitmaps. However, for future
compatibility, you might want to limit graphics to monochrome
format. If you are producing monochrome images, you might
have to adjust manually the elements of your source graphic that
were originally different colors to either black, white, or a pattern
of black and white pixels.

When you are satisfied with the appearance of your bitmap, you
can either save it as a file, to be used as a bitmap by reference, or
you can copy it onto the clipboard and paste it into your word

Tools and Utilities Guide

Placing bitmaps using
a graphical word

processor

Placing bitmaps by
reference

processor. If you save the graphic as a file, be sure to specify its
size in your graphics editor first, so that only the area of interest is
saved for display in the Help window. The tighter you crop your
images, the more closely you will be able to position text next to
the image. Always save (or convert and save if necessary)
graphics in Windows' .BMP format.

Bitmap images should be created in the same screen mode that
you intend Help to use when topics are displayed. If your Help
files will be displayed in a different mode, bitmaps might not
retain the same aspect ratio or information as their source images.

The easiest way to precisely place bitmaps into Help topics is to
use a graphical word processor. Microsoft Word for Windows
supports the direct importation of bitmaps from the clipboard.
Simply paste the graphic image where you want it to appear in
the Help topic. You can format your text so that it is positioned
below or alongside the bitmap. When you save your Help topic
file in RTF, the pasted-in bitmap is converted as well and will
automatically be included in the Help resource file.

If your word processor cannot import and display bitmaps
directly, you can specify the location of a bitmap that you have
saved as a file. To insert a bitmap reference in the Help topic file,
insert one the following statements where you want the bitmap to
appear in the topic:

{bmc filename.bmp}
{bml filename.bmp}
{bmr filename.bmp}

Do not specify a full path for filename. If you need to direct the.
compiler to a bitmap in a location other than the root directory for
the build, specify the absolute path for the bitmap in the
[Bitmaps] section of the project file.

The argument bmc stands for "bitmap character," indicating that
the bitmap referred to will be treated the same as a character
placed in the topic file at the same location on a line. Text can
precede or follow the bitmap on the same line, and line spacing
will be determined based upon the size of the characters
(including the bitmap character) on the line. Don't specify
negative line spacing for a paragraph with a bitmap image, or the
image may inadvertently overwrite text above it when it's
displayed in Help. When you use the argument bmc, there is no

Chapter 7, He: The Windows Help compiler 125

automatic text wrapping around the graphic image. Text will
follow the bitmap, positioned at the baseline.

The argument bml specifies that the bitmap appear at the left
margin, with text wrapping automatically along the right edge of
the image. The argument bmr specifies that the bitmap appear at
the right margin, with text to its left. Bitmap filenames must be
the same as those listed in the [Bitmaps] section of the Help
project file. The [Bitmaps] section is described in the section
"Building the Help files."

-.. Multiple references to a bitmap of the same name refer to the
same bitmap when the Help file is displayed. This means that
bitmap references can be repeated in your Help system without
markedly increasing the size of the Help resource file.

Figure 7.6
Help topic display showing

bitmaps by reference

Managing topic
files

126

Figure 7.6 shows the placement of three bitmaps with related text
in a topic as displayed in Help.

Bitmaps by Reference

A bitmap can be placed in a sentence El just like any character. Click on
the maximize button bitmap to open a pop-up box with more information.

ll~ You can also put bitmaps at the left margin of the Help window.
~1 Text will automatically wrap along the right edge of the bitmap.

WinWord

Orthe bitmap can be atthe right window margin, and text will
automatically wrap along its left edge.

Help topic files can be saved in the default word-processor format
or in RTF. If you always save your files in RTF, and later need to
make a change, the word processor may take additional time to
interpret the format as it reloads the file. If you anticipate making
numerous changes during Help development, you might want to
minimize this delay by saving topic files in both default and RTF
formats, with different file extensions to distinguish them. The
compiler needs only the RTF files, and you will have faster access

T 00/5 and Utilities Guide

to the source files for changes. On a large project, this practice can
save a considerable amount of development time.

Keeping track of files It is important to keep track of all topic files for the following
and topics reasons:

[] To ensure that no topics are left out of the build process

[] To ensure that each topic has been assigned a unique context
string

[] To double-check browse sequencing within general and specific
lists

[] To show keyword and title matches

[] To allow writers to see where the text for each of the topics is
located

[] To keep track of changes to files and the current status

IJ To track any other aspect of the Help development process that
you think essential

At a minimum, writers must keep track of their own topic files,
and must pass the filenames to the person who is responsible for
creating the Help project file.

Creating a help tracker While it is important that you track topic files throughout the
development cycle, the tracking tool can be anything that suits
your needs. You can maintain a current list of topics in an ASCII
text file, in a Quattro Pro spreadsheet, or in another format.

When you or another writer creates or revises a topic, you should
update the Help tracking file to reflect the change. The contents of
the tracking file are not rigidly defined, but should contain entries
for filename, context string, title, browse sequence, and keywords.
If your application makes use of the context-sensitive feature of
Help, you may want to keep track of the context-sensitive
information as well. This entry is necessary only if you are
assigning context numbers to topics in the Help project file. You
can also include optional information, such as date created, date
modified, status, and author, if you want to keep track of all
aspects of the Help development process. How you organize this
information is entirely up to you.

The following sample text file and worksheet illustrate how the
tracker might be organized for the Help system topics. The
examples show both Help menu and context-sensitive Help

Chapter 7, HC: The Windows Help compiler 127

Figure 7.7
Help tracker text file example

128

Figure 7.8
Help tracker worksheet

example

entries for the topic files. Typically, the same topics that the user
accesses when choosing commands from the Help menus can be
accessed by the context-sensitive Help feature. The topics with
entries in the context ID column are used for context-sensitive
help as well as for the Help menus. Notice that some topics have
more than one context-sensitive help number. This enables the
topic to be displayed when the user clicks on different regions of
the screen. Of course, you're free to keep track of your topic files
in any manner you choose.

Ctx. String Title Browse Seq. Key Words Ctx. No.
hlpidx_id_mp Multipad Help Index OxFFFF
mc_cmd_mp Multipad Commands commands:OOOl commands; menus Oxl000
fm_cmd_mp File Menu commands:0004 commands; menus; files; Oxl00l

documents
nc_cmd_mp New Command commands:0008 commands; new files; Oxl002

new documents
oc_cmd_mp Open Command commands:0012 commands; file; open; Oxl003

sac_cmd_mp Save Command commands:0016
documents; read only
commands; file; save; save as; Oxl004
documents; files

sasc_cmd_mp Save As Command commands:0020 commands; file; save as; save; Oxl005
documents; files

ptc_cmd_mp Print Command commands:0024 commands; file; print; Oxl006
documents; files

psc_cmd_mp Print Setup Command commands:0028 commands; file; printer setup; Oxl007

ec_cmd_mp Exit Command commands:0032
print
commands; file; exit; exiting;
close; closing; quit; quitting

Oxl008

em_cmd_mp Edit Menu commands:0036 commands; menus; editing; Oxl009
documents

uc_cmd_mp Undo Command commands:0040 commands; edit; editing; undo; Oxl00A

ctc_cmd_mp Cut Command commands:0044
typing
commands; edit; editing; cut; Oxl00B
cutting; text; Clipboard

cyc_cmd_mp Copy Command commands:0048 commands ; edit; editing; copy; Oxl00C

pec_cmd_mp Paste Command commands:0052
copying; text; Clipboard

Oxl00D fn~~~a~~~rt~~~; t~~~~in8iiP~~~t~
crc_cmd_mp Clear Command commands:0056 commands; edit; editing; clear; Oxl00E

text
salc_cmd_mp Select All Command commands:0060 commands; edit; editing; select all; Oxl00F

select; selecting; text
wwc_cmd_mp Word Wrap Command commands:0064 commands; edit; editing; word wrap; Oxl0l0

wrapping; text; format
tfc_cmd_mp Type Face Command commands:0068 commands; edit; editing; type face;

font; text; format
ptsc_cmd_mp Point Size Command commands:0072 commands; edit; editing; point size;

text; format

ABO

~ ~~dXS:~i~p ifu1,p~('!_1:!-elp ndex Browse Seq. Key Words

;s me em mp MU tl a<J"C""omman s cornman 5: 'UU~ cornman 5; menus
4 m em m I e Menu cornman s: U04 cornman 5; menus; I es;
5 ocuments
b nc cmd_ m New cornman $: 'UUts cornman s' new I es'
7 new ocuments
tf ac cma_ m Jpen amman cornman S:Ul. 1£ cornman S' Ie; 0 en;
9 ocuments; rea only

sac em m cornman S:UL cornman 5; I e; save; save as'
ocuments; I es

sase em m ave AS ommand comman s: '02C comman S' I e' save as' save'
ocuments;

tc em m ommana com man s: U:~4 cornman s; Ie; nn;
documents; I es

sc cm m nnt etu ommana comman s: IUO:::'i comman s; I e; pnnter setu ;

ut omman

print
cornrnan S: IU00:::' commanas; I e; eXit; eXit In ;

ocuments
cornman S: U4C cornman s; e I; e I In ; un o'

tYiClnO
comman s:O 44 cornman s; e It; e Itln ; cu;

CU Ing; ext; Ipeoar
cornman s: cornmans;el;elln;co;

27 cOPYln . text· I oara
28 ec cmd mD aste omman cornman s: 5~ cornman s; e It; e It In ; aste;

eX!

Oxl0ll

Oxl012

E
Ctx. No.
OxFFFF

XlUW
xlU

xlUU~

X1UU;$

X1UU4

xlUU

x UUf

x uu

IUXIUU~

xlUUA

xlUUtI

Oxl00

Oxl00t;.

sa c cm m e ec A" ommano comman s: 'Utl commanos; eOI ; e ling; se eCI a,,; x uut­
se ec; S8 ec In ; 8

4 wwc crn mp or vvrap omman cornman S:UVt>4 commanas; eal ; e ling; wor wra; x1
wrappln ; eX!; onma

3 t c cmo_ m I ype race ommand commands:0068 commands; edl; edl Ing; ype ace;
on; 8Xl; erma

38 tsc em m oint :::)Ize omman comman s: 1072 commanas; e I; e I In ; size; Ox1012
39 text; onma

Filename Modified Status
helpex.idx 5/16/89 Done
helpex.cmd 5/16/89 Done
helpex.cmd 5/16/89 Done

helpex.cmd 5/16/89 Done

helpex.cmd 5/16/89 Test

helpex.cmd 5/16/89 Done

helpex.cmd 5/16/89 Done

helpex.cmd 5/16/89 Done

helpex.cmd 5/16/89 Debug

helpex.cmd 5/16/89 Done

helpex.cmd 5/16/89 Done

helpex.cmd 5/16/89 Done

helpex.cmd 5/16/89 Done

helpex.cmd 5/16/89 Done

helpex.cmd 5/16/89 Done

helpex.cmd 5/16/89 Done

helpex.cmd 5/16/89 Done

helpex.cmd 5/16/89 Done

helpex.cmd 5/16/89 Test

helpex.cmd 5/16/89 Test

F G H
Filename Modified Status
hel ex.l x 516/89

elpex.cm Ilbltl~

InelPeX.cm 51l6/t!~

Inelpex.cm oll6/tI~

elpex.cm Ilbltl~

lnelpex.cm flO tI~

elpex.cm oll6/tI~

8lpex:cm bflO j~ e ug

elpex.cm bflO tI~

elpex.cm 5116/89 uone

InelPex.cm 51l6/t!~

Inelpex.cm 5Ilblt!~

helpex.cmd 5 16/89

elPeX.cm 5 16/89

elpex.cm 011 6/tI!J

helpex.cmd 5 1 j~

e ex.cmd 5116/89 est

hel ex.cmd 5 16 89 est

Tools and Utilities Guide

Building the Help file

While the examples in this
chapter are in C, you can

also do the same tasks in
Turbo Pascal. Code

examples for both languages
are included on your Borland

product disks.

Creating the Help
project file

Table 7.7
Help project file sections

After the topic files for your Help system have been written, you
are ready to create a Help project file and run a build to test the
Help file. The Help project file contains all information the
compiler needs to convert help topic files into a binary Help
resource file.

You use the Help project file to tell the Help Compiler which topic
files to include in the build process. Information in the Help
project file also enables the compiler to map specific topics to
context numbers (for the context-sensitive portion of Help).

After you have compiled your Help file, the development team
programs the application so the user can access it.

This section describes the following:

II Creating a Help project file

1'1 Compiling the Help file

r:'I Programming the application to access Help

You use the Help project file to control how the Help Compiler
builds your topic files. The Help project file can contain up to six
sections that perform the following functions:

Section Function

[Files] Specifies topic files to be included in the build. This
section is mandatory.

[Options] Specifies the level of error reporting, topics to be
included in the build, the directory in which to find
the files, and the location of your Help index. This
section is optional.

[BuildTags] Specifies valid build tags. This section is optional.

[Alias] Assigns one or more context strings to the same topic.
This section is optional.

[Map] Associates context strings with context numbers. This
section is optional.

[Bitmaps] Specifies bitmap files to be included in the build. This
section is optionaL

Chapter 7, HC: The Windows Help compiler 129

Specifying topic
files

For more information about
the ROOT option, see the

section titled "Specifying the
root directory."

130

You can use any ASCII text editor to create your Help project file.
The extension of a Help project file is .HPJ. If you do not use the
extension .HPJ on the He command line, the compiler looks for a
project file with this extension before loading the file. The .HLP
output file will have the same name as the .HPJ file.

The order of the sections within the Help project file is arbitrary,
except: that an [Alias] section must always precede the [Map]
section (if an [Alias] section is used).

Section names are placed within square brackets using the
following syntax:

[section-name]

You can use a semicolon to indicate a comment in the project file.
The compiler ignores all text from the semicolon to the end of the
line on which it occurs.

Use the [Files] section of the Help project file to list all topic files
that the Help Compile~ should process to produce a Help
resource file. A Help project file must have a [Files] section.

The following sample shows the format of the [Files] section:

[FILES]
HELPEX.RTF ;Main topics for HelpEx application
TERMS. RTF ;Lookup terms for HelpEx application

Using the path defined in the ROOT option, the Help Compiler
finds and processes all files listed in this section of the Help
project file. If the file is not on the defined path and cannot be
found, the compiler generates an error.

You can include files in the build process using the C #include
directive command. The #include directive uses this syntax:

#include <filename>

You must include the angle brackets around the filename. The
pound sign (#) must be the first character in the line. The
filename must specify a complete path, either the path defined by
the ROOT option or an absolute directory path to the file.

You may find it easier to create a text file that lists all files in the
Help project and include that file in the build, as in this example:

Tools and Utilities Guide

Specifying build
tags

For information about coding
build tags in topic files, see

page 115.

Specifying
options

[FILES]
#include <hlpfiles.inc>

If you code build tags in your topic files, use the [BuildTags]
section of the Help project file to define all the valid build tags for
a particular Help project. The [BuildTags] section is optional.

The following example shows the format of the [BuildTags]
section in a sample Help project file:

[BUILDTAGS]
WINENV
DEBUGBUILD
TESTBUILD

itopics to include in Windows build
itopics to include in debugging build
itopics to include in a mini-build for testing

The [BuildTags] section can include up to 30 build tags. The build
tags are not case-sensitive and may not contain space characters.
Only one build tag is allowed per line in this section. The
compiler will generate an error message if anything other than a
comment is listed after a build tag in the [BuildTags] section.

Use the [Options] section of the Help project file to specify the
following options:

Table 7.8
The Help (Options) options Option ---

Meaning

BUILD Determines what topics the compiler includes in the
build.

COMPRESS Specifies compression of the Help resource file.

FORCE FONT Specifies the creation of a Help resource file using
only one font.

INDEX Specifies the context string of the Help index.

MAPFONT SIZE Determines the mapping of specified font sizes to
different sizes.

MULTIKEY Specifies alternate keyword mapping for topics.

ROOT Designates the directory to be used for the Help
build.

TITLE Specifies the title shown for the Help system.

WARNING Indicates the kind of error message the compiler
reports.

Chapter 7, HC: The Windows Help compiler 131

Specifying error
reporting

Table 7.9
WARNING levels

Use the DOS Ctrl+PrtSc
accelerator key before you

begin your compilation to
echo errors which appear on

the screen to your printer:
Type Ctrl+PrtSc again to stop
sending information to the

printer:

Specifying build topics

See "Creating the Help topic
files" on page 113 for

information on assigning
build tags to topics in the

Help topic files.

132

These options can appear in any order within the [Options]
section. The [Options] section is not required.

Detailed explanations of the available options follow.

Use the WARNING option to specify the amount of debugging
information that the compiler reports. The WARNING option has
the following syntax:

WARNING = level

You can set the WARNING option to any of the following levels:

Level Information Reported

1 Only the most severe warnings.
2 An intermediate level of warnings.
3 All warnings. This is the default level if no WARNING option is

specified.

The following example specifies an intermediate level of error
reporting:

[OPTIONS]

WARNING=2

The compiler reports errors to the standard output file, typically
the screen. You may want to redirect the errors to a disk file so

. that you can browse it when you are debugging the Help system.
The following example shows the redirection of compiler screen
output to a file.

He HELPEX » errors.out

If you have included build tags in your topic files, use the BUILD
option to specify which topics to conditionally include in the
build. If your topic files have no build tags, omit the BUILD option
from the [Options] section.

All build tags must be listed in the [BuildTags] section of the
project file, regardless whether or not a given conditional
compilation declares the tags.

The BUILD option line uses the following syntax:

BUILD = expression

Build expressions cannot exceed 255 characters in length, and
must be entered on only one line. Build expressions use Boolean

Tools and Utilities Guide

Table 7.10
Build tag order of

precedence

logic to specify which topics within the specified Help topic files
the compiler will include in the build. The compiler evaluates all
build expressions from left to right. The tokens of the language
(listed in order of precedence from highest to lowest) are:

Token

<tag>
()

&
I

Description

Build tag
Parentheses
NOT operator
AND operator
OR operator

For example, if you coded build tags called WINENV, APPI, and
TEST_BUILD in your topic files, you could include one of the
following build expressions in the [Options] section:

Table 7.11: Build expression examples

Build expression Topics built

BUILD = WINENV Only topics that have the WINENV tag

BUILD = WINENV & APPI Topics that have both the WINENV and APPI tags

BUILD = WINENV I APPI Topics that have either the WINENV tag or the APPI tag

BUILD = (WINENV I APPl) & TESTBUILD Topics that have either the WINENV or the APPI tags
and that also have the TESTBUILD tag

BUILD =- APPI

Specifying the root
directory

Topics that do not have an APPI tag

Use the ROOT option to designate the root directory of the Help
project. The compiler searches for files in the specified root
directory.

The ROOT option uses the following syntax:

ROOT = pathname

For example, the following root option specifies that the root
directory is \ BUILD \ TEST on drive D:

[OPTIONS]
ROOT=D:\BUILD\TEST

The ROOT option allows you to refer to all relative paths off the
root directory of the Help project. For example, the following
entry in the [Files] section refers to a relative path off the root
directory:

TOPICS\FILE.RTF

Chapter 7, HC: The Windows Help compiler 133

To refer to a file in a fixed location, independent of the project
root, you must specify a fully qualified or "absolute" path,
including a drive letter, if necessary, as in the following line:

D:\HELPTEST\TESTFILE.RTF

If you do not include the ROOT option in your Help project file,
all paths are relative to the current DOS directory.

Specifying the index Use the INDEX option to identify the context string of the Help
index. Because the Index button gives the user access to the index
from anywhere in the Help system, you will probably not want to
author terms to jump to the index. Users access this general index
either from the Help menu of the application or by choosing the
Index button from the Help window.

Assigning a context string to the index topic in the [Options]
section lets the compiler know the location of the main index of
Help topics for the application's Help file. If you do not include
the INDEX option in the [Options] section, the compiler assumes
that the first topic it encounters is the index.

The INDEX option uses the following syntax:

INDEX = context-string

For information on assigning
context strings, see page

776.

The context string specified must match the context string you
assigned to the Help index topic. In the following example, the
writer informs the compiler that the context string of the Help

Assigning a title to the
Help system

134

index is "main_index":

[OPTIONS]
INDEX=main_index

You can assign a title to your Help system with the TITLE option.
The title appears in the title bar of the Help window with the
word "Help" automatically appended, followed by the DOS
filename of the Help resource file.

The TITLE option uses the following syntax:

TITLE = Help-system-title-name

Titles are limited to 32 characters in length. If you do not specify a
title using the TITLE option, only the word Help followed by the
Help system filename will be displayed in the title bar. Because

. the compiler always inserts the word Help, don't duplicate it in
your title.

Tools and Utilities Guide

Converting fonts

See page 112 for a list of the
fonts Windows ships with.

You can use the FORCEFONT option to create a Help resource file
that is made up of only one typeface or font. This is useful if you
must compile a Help system using topic files that include fonts
not supported by your users' systems.

The FORCEFONT option uses the following syntax:

FORCEFONT = fontname

Thefontname parameter is any Windows system font. Note that
the fontname used in the FORCEFONT option cannot contain
spaces. Therefore, Tms Rmn font cannot be used with FORCE- .
FONT.

Font names must be spelled the same as they are in the Fonts
dialog box in Control Panel. Font names do not exceed 20
characters in length. If you designate a font that is not recognized
by the compiler, an error message is generated and the
compilation continues using the default Helvetica (Helv) font.

Changing font sizes The font sizes specified in your topic files can be mapped to
different sizes using the MAPFONTSIZE option. In this manner,
you can create and edit text in a size chosen for easier viewing in
the topic files and have them sized by the compiler for the actual
Help display. This may be useful if there is a large size difference
between your authoring monitor and your intended display
monitor.

The MAPFONTSIZE option uses the following syntax:

MAPFONTSIZE = m[-n]:p

The m parameter is the size of the source font, and the p param­
eter is the size of the desired font for the Help resource file. All
fonts in the topic files that are size m are changed to size p. The
optional parameter n allows you to specify a font range to be
mapped. All fonts in the topic files falling between m and n,
inclusive, are changed to size p. The following examples illustrate
the use of the MAPFONTSIZE option:

MAPFONTSIZE=12-24:16 ;make fonts from 12 to 24 corne out 16.
MAPFONTSIZE=8:12 ;make all size 8 fonts corne out size 12.

Note that you can map only one font size or range with each
MAPFONTSIZE statement used in the Options section. If you use
more than one MAPFONTSIZE statement, the source font size or

Chapter 7, HC: The Windows Help compiler 135

136

Multiple keyword
tables

range specified in subsequent statements cannot overlap previous
mappings. For instance, the following mappings would generate
an error when the compiler encountered the second statement:

MAPFONTSIZE=12-24:16 MAPFONTSIZE=14:20

Because the second mapping shown in the first example contains
a size already mapped in the preceding statement, the compiler
will ignore the line. There is a maximum of five font ranges that
can be specified in the project file.

The MUL TIKEY option specifies a character to be used for an
additional keyword table.

The MULTIKEY option uses the following syntax:

MUL TIKEY = footnote-character

The footnote-character parameter is the case-sensitive letter to be
used for the keyword footnote. The following example illustrates
the enabling of the letter L for a keyword-table footnote:

MULTIKEY=L

.. You must be sure to limit your keyword-table footnotes to one
case, usually uppercase. In the previous example, topics with the
footnote L would have their keywords incorporated into the
additional keyword table, whereas those assigned the letter 1
would not.

You may use any alphanumeric character for a keyword table
except K and k, which are reserved for Help's normal keyword
table. There is an absolute limit of five keyword tables, including
the normal table. However, depending upon system configuration
and the structure of your Help system, a practical limit of only
two or three may actually be the case. If the compiler cannot
create an additional table, the excess table is ignored in the build.

Compressing the file You can use the COMPRESS option to reduce the size of the Help
resource file created by the compiler. The amount of file
compression realized will vary according to the number, size and
complexity of topics that are compiled. In general, the larger the
Help files, the more they can be compressed.

The COMPRESS option uses the following syntax:

COMPRESS = TRUE I FALSE

Tools and Utilities Guide

Specifying
alternate context

strings

Because the Help application can load compressed files quickly,
there is a clear advantage in creating and shipping compressed
Help files with your application. Compiling with compression
turned on, however, may increase the compile time, because of
the additional time required to assemble and sort a key-phrase
table. Thus, you may want to compile without compression in the
early stages of a project.

The COMPRESS option causes the compiler to compress the
system by combining repeated phrases found within the source
file(s). The compiler creates a phrase-table file with the .PH
extension if it does not find one already in existence. If the
compiler finds a file with the .PH extension, it will use the file for
the current compilation. This is in order to speed compression
when not a lot of text has changed since the last compilation.

Deleting the key-phrase file before each compilation will prevent
the compiler from using the previous file. Maximum compression
will result only by forcing the compiler to create a new phrase
table.

Use the [Alias] section to assign one or more context strings to the
same topic alias. Because context strings must be unique for each
topic and cannot be used for any other topic in the Help project,
the [Alias] section provides a way to delete or combine Help
topics without recoding your files. The [Alias] section is optional.

For example, if you create a topic that replaces the information in
three other topics, and you delete the three, you will have to
search through your files for invalid cross-references to the
deleted topics. You can avoid this problem by using the [Alias]
section to assign the name of the new topic to the deleted topics.
You can also use the [Alias] section when your application
program has multiple context identifiers for which you have only
one topic. This can be the case with context-sensitive Help.

Each expression in the [Alias] section has the following format:

con text_s tring=alias

In the alias expression, the alias parameter is the alternate string,
or alias name, and the contexCstring parameter is the context
string identifying a particular topic. An alias string has the same
format and follows the same conventions as the topic context
string. That is, it is not case-sensitive and may contain the

Chapter 7, HC: The Windows Help compiler 137

Mapping
context -sensitive

topics
For more information on

context-sensitive Help, see
page 107.

138

alphabetic characters A - Z, numeric characters 0 - 9, and the
period and underscore characters.

The following example illustrates an [Alias] section:

[ALIAS]

sm_key=key_shrtcuts
cc_key=key_shrtcuts
st_key=key_shrtcuts;combined into keyboard shortcuts topic
clskey=us_dlog_bxs
maakey=us_dlog_bxs;covered in using dialog boxes topic
chk_key=dlogprts
drp_key=dlogprts
lst_key=dlogprts
opt_key=dlogprts
tbx_key~dlogprts;combined into parts of dialog box topic
frmtxt=edittxt
wrptxt=edittxt
seltxt=edittxt;covered in editing text topic

You can use alias names in the [Map] section of the Help project
file. If you do, however, the [Alias] section must precede the
[Map] section.

If your Help system supports context-sensitive Help, use the
[Map] section to associate either context strings or aliases to
context numbers. The context number corresponds to a value the
parent application passes to the Help application in order to
display a particular topic. This section is optional.

When writing the [Map] section, you can do the following:

• Use either decimal or hexadecimal numbers formatted in
standard C notation to specify context numbers .

• Assign no more than one context number to a context string or
alias.
Assigning the same number to more than one context string
will generate a compiler error.

II Separate context numbers and context strings by an arbitrary
amount of whitespace using either space characters or tabs.

You can use the C #include directive to include other files in the
mapping. In addition, the Map section supports an extended
format that lets you include C files with the .H extension directly.

Tools and Utilities Guide

These eight entries give
hexadecimal equivalents for

the context numbers.

These five entries show
decimal context numbers.

These five entries show how
you might include topics

defined in a C include file.

This entry shows a C #include
directive for some generic

topics.

Entries using this format must begin with the #define directive
and may contain comments in C format, as in this example:

#define context_string context_number /* comment */

The following example illustrates several formats you can use in
the [Map] section:

[MAP]

Edit_Window
Control_Menu
Maximize_Icon
Minimize_Icon
Split_Bar
Scroll_Bar
Title_Bar
Window_Border

dcmb_scr
dmxi_scr
dmni_scr
dri_scr
dtb_scr

Ox0001
Ox0002
Ox0003
Ox0004
Ox0005
Ox0006
Ox0007
Ox0008

30; Document Control-menu Icon
31; Document Maximize Icon
32; Document Minimize Icon
33; Document Restore Icon
34; Document Title Bar

#define vscroll Ox010A
#define hscroll Ox010E
#define scrollthm Ox0111

/* Vertical Scroll Bar */
/* Horizontal Scroll Bar */
/* Scroll Thumb */

#define upscroll OxOl12 /* Up Scroll Arrow */
#define dnscroll OxOl13 /* Down Scroll Arrow */

#include <sample.h>

If context numbers use the #define directive, and the file contain­
ing the #define statements is included in both the application code
and the Help file, then updates made to the context numbers by
the application programmers will automatically be reflected in the
next Help build.

You can define the context strings listed in the [Map] section
either in a Help topic or in the [Alias] section. The compiler
generates a warning message if a context string appearing in the
[Map] section is not defined in any of the topic files or in the
[Alias] section.

.. If you use an alias name, the [Alias] section must precede the
[Map] section in the Help project file.

Chapter 7, HC: The Windows Help compiler 139

Including bitmaps
by reference

140

Compiling Help
files

If your Help system: uses bitmaps by reference, the filenames of
each of the bitmaps must be listed in the [Bitmaps] section of the
project file. The following example illustrates the format of the
[Bitmaps] section.

[BITMAPS]
DUMP01.BMP
DUMP02.BMP
DUMP03.BMP
c:\PROJECT\HELP\BITMAPS\DUMP04.BMP

The [Bitmaps] section uses the same rules as the [Files] section for
locating bitmap files.

After you have created a Help project file, you are ready to build a
Help file using the Help Compiler. The compiler generates the
binary Help resource file from the topic files listed in the Help
project file. When the build process is complete, your application
can access the Help resource file that results.

Before initiating a build operation to create the Help file, consider
the locations of the following files:

• The Help Compiler, HC.EXE. The compiler must be in a
directory from which it can be executed. This could be the
current working directory, on the path set with the PATH
environment variable, or a directory specified by a full
pathname, as follows:

C:\BIN\HC HELPEX.HPJ

• The Help project file,Jilename.HPJ. The project file can be
located either in the current directory or specified by a path, as
follows:

C:\BIN\HC D:\MYPROJ\HELPEX.HPJ

• The topic files named in the Help project file, saved as RTF. The
topic files may be located in the current working directory, a
subdirectory of the current working, directory specified in the
[Files] section, or the location specified in the Root option.

• Files included with the #include directive in the Help project
file. Since the #include directive can take pathnames, then any
number of places will work for these files.

Tools and Utilities Guide

Using the Help
Compiler

Programming the
application to

access Help

• All bitmap files listed by reference in the topic files.

You must also place any files named in an #include directive in
the path of the project root directory or specify their path using
the ROOT option. The compiler searches only the directories
specified in the Help project file. For information about the ROOT
option, see the section titled "Specifying the root directory," on
page 133.

If you use a RAM drive for temporary files (set with the DOS
environment variable TMP), it must be large enough to hold the
compiled Help resource file. If your Help file is larger than the
size of the available RAM drive, the compiler will generate an
error message and the compilation will be aborted.

To run the Help Compiler, use the He command. There are no
options for He. All options are specified in the Help project file.

The He command uses the following syntax:

HC filename.HPJ

As the compiler program runs, it displays sequential periods on
the screen, indicating its progress in the process. Error messages
are displayed when each error condition is encountered. When
the Help Compiler has finished compiling, it writes a Help
resource file with an .HLP extension in the current directory and
returns to the DOS prompt. The Help resource file that results
from the build has the same name as does the Help project file.

Compiler errors and status messages can be redirected to a file
using standard DOS redirection syntax. This is useful for a
lengthy build where you may not be monitoring the entire
process. The redirected file is saved as a text file that can be
viewed with any ASCII editor.

The application development team must program the application
so that the user can access both the Windows Help application
and your Help file. The Help application is a stand alone
Windows application, and your application can ask Windows to
run the Help application and specify the topic that Help is to
show the user. To the user, Help appears to be part of your
application, but it acts like any other Windows application.

Chapter 7, HC: The Windows Help compiler 141

Calling Win Help from
an application

The C and Pascal samples
are provided on disk.

142

Table 7.12
wCommand values

An application makes a Help system available to the user by
calling the Win Help function.

The Win Help function uses the following syntax:

BOOL WinHelp (hWnd, lpHelpFile, wCommand, dwData)

The h Wnd parameter identifies the window requesting Help. The
Windows Help application uses this identifier to keep track of
which applications have requested Help.

The IpHelpFile parameter specifies the name (with optional
directory path) of the Help file containing the desired topic.

The wCommand parameter specifies either the type of search that
the Windows Help application is to use to locate the specified
topic, or that the application no longer requires Help. It may be
set to anyone of the following values:

Value

HELP _CONTEXT

HELP _HELPONHELP

HELP_INDEX

HELP_KEY

HELP_QUIT

HELP _SETINDEX

Meaning

Displays Help for a particular topic
identified by a context number.

Displays the Using Help index topic.

Displays the main Help index topic.

Displays Help for a topic identified by a
keyword.

Displays Help for a topic identified by a
keyword in an alternate keyword table.

Informs the Help application that Help is no
longer needed. If no other applications have
asked for Help, Windows closes the Help
application.

Displays a designated Help index topic.

The dwData parameter specifies the topic for which the
application is requesting Help. The format of dwData depends
upon the value of wCommand passed when your application calls
WinHelp. The following list describes the format of dwData for'
each value ofwCommand.

Tools and Utilities Guide

Table 7.13
dwData formats wCommand value dwData format

Getting context­
sensitive Help

HELP_CONTEXT An unsigned long integer containing the

HELP _HELPONHELP

HELP_INDEX

HELP_KEY

HELP _MULTIKEY

HELP_QUIT

HELP _S"ETINDEX

context number for the topic. Instead of
using HELP_INDEX, HELP_CONTEXT can
use the value -1.

Ignored.

Ignored.

A long pointer to a string which contains a
keyword for the desired topic.

A long pointer to the MULTIKEYHELP
structure, as defined in WINDOWS.H. This
structure specifies the table footnote
character and the keyword.

Ignored.

An unsigned long integer containing the
context number for the topic.

Because it can specify either a context number or a keyword,
Win Help supports both context-sensitive and topical searches of
the Help file.

To ensure that the correct index remains set,the application
" should call WinHelp with wCommand set to HELP _SETINDEX
(with dwData specifying the corresponding context identifier)
following each call to WinHelp with a command set to
HELP_CONTEXT. HELP_INDEX should never be used with
HELP _SETINDEX.

Context-sensitive Help should be made available when a user
wants to learn about the purpose of a particular window or
control. For example, the user might pull down the File menu,
select the Open command (by using the arrow keys), and then
press F1 to get Help for the command.

Implementing certain types of context-sensitive help requires
advanced programming techniques. The Helpex sample
application illustrates the use of two techniques. These techniques
are described in the following sections.

Chapter 7, HC: The Windows Help compiler 143

144

Shift+F 1 support

To implement a Shift+F1 mode, Helpex responds to the Shift+F1
accelerator key by calling SetCursor to change the shape of the
cursor to an arrow pointer supplemented by a question mark.

case WM_KEYDOWN:
if (wParam == VK_FI) {

/* If Shift-FI, turn help mode on and set help
cursor */

if (GetKeyState(VK_SHIFT)) {
bHelp = TRUE;
SetCursor(hHelpCursor);
return (DefWindowProc(hWnd, message,

wParam, lParam));

/* If FI without shift, then call up help main
index topic */

else {
WinHelp(hWnd,szHelpFileName,HELP_INDEX,OL);

else if (wParam == VK_ESCAPE && bHelp) {
/* Escape during help mode: turn help mode off */
bHelp = FALSE;
SetCursor((HCURSOR)GetClassWord(hWnd,GCW_HCURSOR));

break;

As long as the user is in Help mode (that is, until the user clicks
the mouse or presses Esc), Helpex responds to WM_SETCURSOR
messages by resetting the cursor to the arrow and question mark
combination.

case WM_SETCURSOR:
/* In help mode it is necessary to reset the cursor

in response to every WM_SETCURSOR message.
Otherwise, by default, Windows will reset the
cursor to that of the window class. */

if (bHelp) {
SetCursor(hHelpCursor);
break;

return (DefWindowProc(hWnd, message, wParam, lParam));
break;

case WM_INITMENU:
if (bHelp) {

SetCursor(hHelpCursor)i

Tools and Utilities Guide

return (TRUE);

When the user is in Shift+F1 Help mode and clicks the mouse
button, Helpex will receive a WM_NCLBUTTONDOWN message
if the click is in a nonclient area of the application window. By
examining the wParam value of this message, the program can
determine which context ID to pass to Win Help.

case WM_NCLBUTTONDOWN:
/* If we are in help mode (Shift+Fl), then display

context-sensitive help for nonclient area. */

if (bHelp) {
dwHelpContextId =

(wParam == HTCAPTION)
(wParam == HTSIZE)
(wParam == HTREDUCE)
(wParam == HTZOOM)
(wParam == HTSYSMENU)
(wParam == HTBOTTOM)
(wParam == HTBOTTOMLEFT)
(wParam == HTBOTTOMRIGHT)
(wParam == HTTOP)
(wParam == HTLEFT)
(wParam == HTRIGHT)
(wParam == HTTOPLEFT)
(wParam == HTTOPRIGHT)
(DWORD)OL;

(DvIORD) HELPID_TITLE_BAR:
(DWORD)HELPID_SIZE_BOX:
(DWORD)HELPID_MINIMIZE_ICON:
(DWORD)HELPID_MAXIMIZE_ICON:
(DWORD)HELPID_SYSTEM_MENU:
(DWORD)HELPID_SIZING_BORDER:
(DWORD)HELPID_SIZING_BORDER:
(DWORD)HELPID_SIZING_BORDER:
(DWORD)HELPID_SIZING_BORDER:
(DWORD)HELPID_SIZING_BORDER:
(DWORD)HELPID_SIZING_BORDER:
(DWORD)HELPID_SIZING_BORDER:
(DWORD)HELPID_SIZING_BORDER:

if (! ((BOOL)dwHelpContextId))
return (DefWindowProc(hWnd, message, wParam, lParam));

bHelp = FALSE;
WinHelp(hWnd,szHelpFileName,HELP_CONTEXT,dwHelpContextId);
break;

return (Def\~indowProc (hvlnd, message, wParam, lParam));

Fl support

Context-sensitive F1 support for menus is relatively easy to
implement in your application. If a menu is open and the user
presses F1 while one of the menu items is highlighted, Windows
sends a WM_ENTERIDLE message to the application to indicate
that the system is going back into an idle state after having
determined that F1 was not a valid key stroke for choosing a

Chapter 7, HC: The Windows Help compiler 145

146

menu item. You can take advantage of this idle state by looking at
the keyboard state at the time of the WM_ENTERIDLE message.

If the F1 key is down, then you can simulate the user's pressing
the Enter key by posting a WM_KEYDOWN message using
VK_RETURN. You don't really want your application to execute
the menu command. What you do is set a flag (bHelp=TRUE) so
that when you get the WM_COMMAND message for the menu
item, you don't execute the command. Instead, the topic for the
menu item is displayed by Windows Help.

The following code samples illustrate F1 sensing for menu items.

case WM_ENTERIDLE:
if ((wParam == MSGF_MENU) &&

(GetKeyState(VK]l) & Ox8000))
bHelp = TRUE;
PostMessage(hWnd, WM_KEYDOWN, VK_RETURN, OL);

break;

case WM_COMMAND:
/* Was Fl just pressed in a menu, or are we in help mode

(Shift+Fl)? */

if (bHelp) {
dwHelpContextld =

(wParam == IDM_NEW)?(DWORD)HELPID_FILE_NEW:
(wParam == IDM_OPEN)? (DWORD)HELPID_FILE_OPEN:
(wParam == IDM_SAVE)? (DWORD)HELPID_FILE_SAVE:
(wParam == IDM_SAVEAS)?(DWORD)HELPID_FILE_SAVE_AS:
(wParam == IDM_PRINT)?(DWORD)HELPID_FILE_PRINT:
(wParam == IDM_EXIT)? (DWORD)HELPID_FILE_EXIT:
(wParam == IDM_UNDO)? (DWORD)HELPID_EDIT_UNDO:
(wParam == IDM_CUT)?(DWORD)HELPID_EDIT_CUT:
(wParam == IDM_CLEAR)?(DWORD)HELPID_EDIT_CLEAR:
(wParam == IDM_COPY)? (DWORD)HELPID_EDIT_COPY:
(wParam == IDM_PASTE)?(DWORD)HELPID_EDIT_PASTE:
(DWORD)OL;

if (!dwHelpContextld) {
Messagebox(hWnd, "Help not available for Help Menu item",

"Help Example", MB_OK);
return (DefWindowProc(hWnd, message, wParam, lParam));

bHelp = FALSE;
WinHelp(hWnd,szHelpFileName,HELP_CONTEXT,dwHelpContextId);
break;

Tools and Utilities Guide

Getting help on items
on the Help menu

Accessing additional
keyword tables

Detecting F1 in dialog boxes is somewhat more difficult than in
menus. You must install a message filter, using the
WH_MSGFILTER option of the SetWindowsHook function. Your
message filter function responds to WM_KEYDOWN and
WM_KEYUP messages for VK_Fl when they are sent to a dialog
box, as indicated by the MSGF _DIALOGBOX code. By examining
the message structure passed to the filter, you can determine the
context of the F1 help-what the dialog box is, and the specific
option or item. You should not call WinHelp while processing the
filtered message, but rather post an application-defined message
to your application to call WinHelp at the first available
opportunity.

Sometimes users may want information about a general concept
in the application rather than about a particular control or
window. In these cases, the application should provide Help for a
particular topic that is identified by a keyword rather than a
context identifier.

For example, if the Help file for your application contains a topic
that describes how the keyboard is used, you could place a
"Keyboard" item in your Help menu. Then, when the user selects
that item, your application calls WinHelp and requests that topic:

case IDM_HELP_KEYBOARD:
WinHelp (hWnd, lpHelpFile, HELP_KEY, (LPSTR) "Keyboard");
break;

Your application may have commands or terms that correspond
to terms in a similar, but different, application. Given a keyword,
the application can call WinHelp and look up topics defined in an
alternate keyword table. This multikey functionality is accessed
through the Win Help hook with the wCommand parameter set to
HELP _MULTIKEY.

You specify the footnote character for the alternate keyword table,
and the keyword or phrase, via a MUL TIKEYHELP structure
which is passed as the dwData parameter in the call to Win Help.
This structure is defined in WINDOWS.H as:

typedef struct tagMULTIKEYHELP {
WORD rndSize;
BYTE rnkKeyList;
BYTE szKeyPhrase[l];

} MULTIKEYHELP;

Chapter 7, HC: The Windows Help compiler 147

148

Table 7.14
MULTIKEYHELP structure

formats

The following table lists the format of the fields of the MULTIKEY­
HELP structure:

Parameter

mkSize

mkKeyList

szKeyPhrase

Format

The size of the structure, including the keyword (or
phrase) and the assoCiated key-table letter.

A single character which defines the footnote
character for the alternate keyword table to be
searched.

A null-terminated keyword or phrase to be looked
up in the alternate keyword table.

The following example illustrates a keyword search for the word
"frame" in the alternate keyword table designated with the
footnote character "L":

MULTIKEYHELP rnk;
char szKeyword[]="frarne";
rnk.rnkSize = sizeof(MULTIKEYHELP) + (WORD)lstrlen(szKeyword);
rnk.rnkKeylist = 'L';
rnk.szKeyphrase = szKeyword;
WinHelp(hWnd, IpHelpfile, HELP_MULTIKEY, (LPSTR)&rnk);

Canceling Help The Windows Help application is a shared resource that is
available to all Windows applications. In addition, since it is a
stand alone application, the user can execute it like any other
application. As a result, your application has limited control over
the Help application. While your application cannot directly close
the Help application window, your application can inform the
Help application that Help is no longer needed. Before closing its
main window, your application should call WinHelp with the
wCommand parameter set to HELP_QUIT, as shown in the
following example, to inform the Help application that your
application will not need it again.

case 1'lM_DESTROY:
WinHelp (hWnd, IpHelpFile, HELP_QUIT, NULL);

An application that has called WinHelp at some point during its
execution must call Win Help with the wCommand parameter set to
HELP_QUIT before the application exits from WinMain (typically
during the WM_DESTROY message processing).

If an application opens more than one Help file, then it must call
WinHelp to quit help for each file.

Tools and Utilities Guide

Help examples

Figure 7.9
Word for Windows topic

If an application or DLL has opened a Help file but no longer
wants the associated instance of the Help engine (WINHELP.EXE)
to remain active, then the application or DLL should call WinHelp
with the wCo11l11land parameter set to HELP_QUIT to destroy the
instance of the Help engine.

Under no circumstances should an application or DLL terminate
without calling WinHelp for any of the opened Help files. A Help
file is opened if any other WinHelp call has been previously made
using the Help filename.

The Windows Help application does not exit until all windows
that have called WinHelp have called it with wCo11l11land set to
HELP_QUIT. If an application fails to do so, then the Help
application will continue running after all applications that
requested Help have terminated.

This section contains some examples of Help source files and their
corresponding topics as displayed in Help. Each example shows a
topic (or part of a topic) as it appears to the Help writer in the
RTF-capable word processor and as it appears to the user in the
Help window. You can use these examples as guides when
creating your own topic files. The examples should help you
predict how a particular topic file created in a word processor will
appear to the user.

#$tE..di1..MJ:.n.u

The Edit menu includes commands that enable you to move text to and from the
clipboard. to delete tex\. and to undo 8 previous editing operation.

For more information. select the Edit menu command name.

I

ClearHFI PID EDIT CI FAR
CopyHFI PID EDIT COPY
ClltHEI PID EDIT ClIT
PasfeHFI PID EDIT PASTF
lIndoHFI PID EDIT lINDO

menu edit
S Edit M-enu
t commands:Ol0
menu file
S File M-enu

Deletes text without moving it to the clipboard.
Copies text to the clipboard.
Deletes text and moves it to the clipboard.
Moves text from the clipboard to the edit window.
Cancels a previous operation.

Chapter 7, HC: The Windows Help compiler 149

Figure 7.10
Help topic display

Figure 7.11
Bitmap by reference in topic

150

The Edit menu includes commands that enable you to move text
to and from the clipboard, to delete text and to undo a previous
editing operation.

For more information, select the Edit menu command name.

Q1.eet'
!:~~Qln(
I;;;.U.!
P<'-~Si(:l

1Jndo

Deletes text without moving it to the clipboard.
Copies text to the clipboard.
Deletes text and moves itto the clipboard.
Moves text from the clipboard to the editwindow.
Cancels a previous operation.

A bitmap can be placed in a sentence {ttm.uu.a;;;2kmJ...tunp.). Just like any character. Click
on the maximize button bitmap to open a pop-up box with more information.

{bml winword.bmp}You can also put bitmaps at the left margin of the Help window. Text
will automatically wrap along the right edge of the bitmap.

{omr !1WSl31>.bmp}Or the bitmap can be at the right window margin. and text will
automatically wrap along its left edge.

coding for this bitmap is:
tex! {hme cndec hmp}lcx!

N.!!1c..: You cannot code bml or bmr bitmaps
as hotspots in this version of Help.

II BITMAPS_REF

S Bitmaps by Reference

.. bitmap:0005

II BITMAP CODEC

II BITMAP=WINWORD
S Visually Placed Bitmap

Tools and Utilities Guide

Figure 7.12
Help topic display

The Helpex

Bitmaps by Reference

A bitmap can be placed in a sentence E1 just like any character. Click on
the maximize button bitmap to open a pop-up box with more information.

11~'i:'~~~ You can also put bitmaps at the left margin of the Help window.
~fS) Text will automatically wrap along the right edge of the bitmap.

Or the bitmap can be at the right window margin, and text will
automatically wrap along its left edge.

project file The following is the Helpex (sample Help) project file:

[OPTIONS]
ROOT=c:\help
INDEX=main_index
TITLE=Help Example
COMPRESS=true

[FILES]
helpex.rtf jump topics
terms.rtf look-up terms

[MAP]
main_index OxFFFF
#define HELPID_EDIT_CLEAR 100
#define HELPID_EDIT_COPY 101
#define HELPID_EDIT_CUT 102
#define HELPID_EDIT_PASTE 103
#define HELPID_EDIT_UNDO 104
#define HELPID_FILE_EXIT 200
#define HELPID_FILE_NEW 201
#define HELPID_FILE_OPEN 202
#define HELPID_FILE_PRINT 203
#define HELPID_FILE_SAVE 204
#define HELPID_FILE_SAVE_AS 205
#define HELPID_EDIT_WINDOW 300
#define HELPID_MAXIMIZE_ICON 301
#define HELPID_MINIMIZE_ICON 302
#define HELPID_SPLIT_BAR 303
#define HELPID_SIZE_BOX 304

Chapter 7, HC: The Windows Help compiler 151

#define HELPID_SYSTEM_MENU 305
#define HELPID_TITLE_BAR 306
#define HELPID_SIZING_BORDER 307

152 Tools and Utilities Guide

A p

Finding a message in
this appendix

p

Appendix A, Error messages

E N D x

A

Error messages
Borland C++ error messages include: compile-time, DPMI server,
Help, MAKE, run-time, TLIB, and TLINK. We explain them here;
user-interface error messages are explained in online Help.

The type of message (such as Compile-time or Help) is noted in the
column to the left. Most explanations provide a probable cause
and remedy for the error or warning message.

The messages are listed in ASCII alphabetic order; messages
beginning with symbols normally come first, followed by
numbers and letters of the alphabet.

Since messages that begin with a variable cannot be alphabetized
by what you will actually see when you receive such a message,
all such messages are alphabetized by the word following the
variable.

For example, if you have a C++ function goforit, you might
receive the following actual message:

goforit must be declared with no arguments

In order to look this error message up, you would need to find

function must be declared with no arguments

alphabetized starting with the word "must".

If the variable occurs later in the text of the error message (for
example, "Address of overloaded function function doesn't match

153

Type"), you can find the message in correct alphabetical order; in
this case, under the letter A.

Types of messages

Compile-time

The kinds of messages you get are different, depending on where
they come from. This section lists each category with a table of
variables that it may contain.

messages The Borland C++ compiler diagnostic messages fall into three
classes: fatal errors, errors, and warnings.

Fatal errors are rare. Some of them indicate an internal compiler
error. When a fatal error occurs, compilation stops immediately.
You must take appropriate action and then restart compilation.

Errors indicate program syntax errors, command-line errors, and
disk or memory access errors. The compiler completes the current
phase of the compilation and then stop. The compiler attempts to
find as many real errors in the source program as possible during
each phase (preprocessing, parsing, optimizing and code­
generating).

Warnings do not prevent the compilation from finishing. They
indicate conditions that are suspicious, but are usually legitimate
as part of the language. The compiler also produces warnings if
you use some machine-dependent constructs in your source files.

The compiler prints messages with the message class first, then
the source file name and line number where the compiler detected
the condition, and finally the text of the message itself.

Line numbers are not exact You should be aware of one detail about line numbers in error
messages: the compiler only generates messages as they are
detected. Because C and C++ do not force any restrictions on
placing statements on a line of text, the true cause of the error
may be one or more lines before or after the line number
mentioned.

154

The following variable names and values are some of those that
appear in the compiler messages listed in this appendix (most are
self-explanatory). When you get an error message, the
appropriate name or value is substituted.

Tools and Utilities Guide

Table A.l What you'll see
Compile-time message in the manual What you'll see on your screen

variables --------------------------­

DPMI server

argument
class
filename
function
group
identifier
language
member
message
module
number
option
parameter
segment
specifier
symbol
type
XXXXh

An argument (command-line or other)
A class name
A file name (with or without extension)
A function name
A group name
An identifier (variable name or other)
The name of a programming language
The name of a data member or member function
A message string
A module name
An actual number
An option (command-line or other)
A parameter name
A segment name
A type specifier
A symbol name
A type name
A 4-digit hexadecimal number, followed by h

messages All Dos Protected Mode Interface (DPMI) server error messages
but one relate to conditions that are out of the scope of Borland's
software control. If the program can't find your machine-type, the
message directs you to a solution. Otherwise there is a problem
with the configuration of your system, your disks, or the
hardware itself. Normally you will receive one of the common
messages but if your disk has been damaged and you receive an
undocumented message, call Technical Support.

Help compiler

The error messages are all fatal. They contain no variables and
there are no warnings.

messages The Help Compiler displays messages when it encounters errors
or warnings in building the Help resource file. Messages during
processing of the project file are numbered beginning with the
letter P and appear as in the following examples:

Appendix A, Error messages

Error P1025: line ... 7 of filename.HPJ : Section heading sectionname
unrecognized.

Warning P1039: line ... 38 of filename.HPJ : [BUILDTAGSj section
missing.

155

156

Messages that occur during processing of the RTF topic file(s) are
numbered beginning with the letter R and appear as in the
following examples:

Error R2025: File environment error.

warning R2501: Using old key-phrase table.

Topic numbers Whenever possible, the compiler will display the topic number or
file name that contains the error. If you numbered your topics, the
topic number given with an error message refers to that topic's
sequential position in your RTF file (first, second, and so on).
These numbers may be identical to the page number shown by
your word processor, depending on the number of lines you have
assigned to the hypothetical printed page. Remember that topics
are separated by hard page breaks, even though there is no such
thing as a "page" in online Help.

Messages beginning with the word "Error" (on your screen) are
fatal errors. Errors are always reported, and no usable Help
resource file will result from the build. Messages beginning with
the word "Warning" (on your screen) are less serious in nature. A
build with warnings will produce a valid Help resource file that
will load under Windows, but the file may contain operational
errors. You can specify the amount of warning information to be
reported by the compiler.

During processing of the project file, the compiler ignores lines
that contain errors and attempts to continue with the build. This
means that errors encountered early in a build may result in many
more errors being reported as the build continues. Similarly,
errors during processing of the RTF topic files will be reported
and if not serious, the compiler will continue with the build. A
single error condition in the topic file may result in more than one
error message being reported by the compiler. For instance, a
misidentified topic will cause an error to be reported every time
jump terms refer to the correct topic identifier. Such a mistake is
easily rectified by simply correcting the footnote containing the
wrong context string.

Table A.2 What you'll see
Help message variables in the manual

contextname
context-string
filename
fontname
optionname

What you'll see on your screen

A context string alias
A context string
A file name (with or without extension)
The name of a font
An option name

T oo/s and Utilities Guide

MAKE messages

Table A.3
MAKE error message

variables

Run-time error
messages

TLiB messages

Table A.2: Help message variables (continued)

sectionname
tagname
topicnumber

A section heading
A build tag
A topic number

MAKE diagnostic messages fall into two classes: errors and fatal
errors .

• Errors indicate some sort of syntax or semantic error in the
source makefile .

• Fatal errors prevent processing of the makefile. You must take
appropriate action and then restart MAKE.

The following generic names and values appear in the messages
listed in this section. When you get an error message, the

,appropriate name or value is substituted.

What you'll see
in the manual

argument(s)
expression
filename
line number
message
target

What you'll see on your screen

An argument (command-line or other)
An expression
A file name (with or without extension)
A line number
A message string
A receiver

Borland C++ has a small number of run-time error messages.
These errors occur after the program has successfully compiled
and while it is running.

TLIB has error and warning messages. The following generic
names and values appear in TLIB messages. When you get a
message, the variable is substituted.

Table A.4 What you'll see
TUB message variables in the manual What you'll see on your screen

--
filename A file name (with or without extension)
function A function name
len An actual number'
module A module name
num An actual number

Appendix A, Error messages 157

TUNK messages

Table A4: TLiB message variables (continued)

path
reason
size
type

A path name
Reason given in warning message
An actual number
A type name

The linker has three types of messages: fatal errors, errors, and
warnings.

• A fatal error causes TLINK to stop immediately; the .EXE file is
deleted.

• An error (also called a nonfatal error) does not delete .EXE or
.MAP files, but you shouldn't try to execute the .EXE file. Errors
are treated as fatal errors in the IDE.

• Warnings are just that: warnings of conditions that you
probably want to fix. When warnings occur, .EXE and .MAP
files are still created.

The following generic names and values appear in the error
messages listed in this section. When you get an error message,
the appropriate name or value is substituted.

Table AS What you'll see
TLiNK error message variables in the manual What you'll see on your screen

errorcode Error code number for internal errors
filename A file name (with or without extension)
group A group name
linenum The line number within a file
module A module name
segment A segment name
symbol A symbol name
XXXXh A 4-digit hexadecimal number, followed by h

Message explanations

MAKE fatal error ')' missing in macro invocation in command command
A left parenthesis is required to invoke a macro.

Compile-time error (expected
A left parenthesis was expected before a parameter list.

158 Tools and Utilities Guide

Compile-time error) expected
A right parenthesis was expected at the end of a parameter list.

Compile-time error ,expected
A comma was expected in a list of declarations, initializations,
or parameters.

Compile-time error : expected after private/protected/public
When used to begin a private/protected/public section of a
c++ class, these reserved words must be followed by a colon.

Compile-time error < expected
The keyword template was not followed by a left angle bracker
(<). Every template declaration must include the template
formal parameters enclosed within angle brackets (< >),
immediately following the template keyword.

TUB error @ seen, expected a response-files name
The response file is not given immediately after @.

Compile-time error { expected
A left brace ({) was expected at the start of a block or
initialization.

Compile-time error } expected
A right brace ()) was expected at the end of a block or
initialization.

TUNK fatal error 32-bit record encountered
An object file that contains 80386 32-bit records was
encountered, and the /3 option had not been used.

Compile-time error 286/287 instructions not enabled
Use the -2 command-line compiler option or the 80286 options
from the Options I Compiler I Code Generation I Advanced
Code Generation dialog box to enable 286/287 opcodes. Be
aware that the resulting code cannot be run on 8086- and 8088-
based machines.

DPMIINST error A20 line already enabled, so test is meaningless
DPMIINST generates this message while you are running it to
locate and add information about your machine to the kernel's
database. If you encounter a series of these messages, boot clean
(that is, with a plain generic CONFIG.5YS and
AUTOEXEC.BAT) and try again. See the message Machine not
in database (run DPMIINST) on page 198.

Appendix A, Error messages 159

Run-time error Abnormal program termination
The program called abort because there was not enough
memory to execute. Can happen through memory overwrites.

Compi/e-time error Access can only be changed to public or protected
A C++ derived class may modify the access rights of a base
class member, but only to public or protected. A base class
member cannot be made private.

TUB warning added file filename does not beg!n correctly, ignored
The librarian has decided that in no way, shape, or fonn is the
file being added an object module, so it will not try to add it to
the library. The library is created anyway.

Compi/e-time error Address of overloaded function function doesn't match type
A variable or parameter is assigned/ initialized with the
address of an overloaded function, and the type of the
variable/parameter doesn't match any of the overloaded
functions with the specified name.

TUB warning module already in LIB, not changed!
An attempt to use the + action on the library has been made,
but there is already a object with the same name in the library.
If an update of the module is desired, the action should be +-.
The library has not been modified.

Compi/e-time error Ambiguity between function1 and function2
Both of the named overloaded functions could be used with the
supplied parameters. This ambiguity is not allowed.

Compi/e-time error Ambiguous member name name
A structure member name used in inline assembly must be
unique. If it is defined in more than one structure all of the
definitions must agree in type and offset within the structures.
The member name in this case is ambiguous. Use the syntax
(struct xxx) .yyyinstead.

Compile-time warning Ambiguous operators need parentheses
This warning is displayed whenever two shift, relational, or
bitwise-Boolean operators are used together without paren­
theses. Also, an addition or subtraction operator that appears
unparenthesized with a shift operator will produce this
warning. Programmers frequently confuse the precedence of
these operators.

160 Tools and Utilities Guide

Command line fatal error Application load & execute error 0001
Application load & execute error FFEO

There was insufficient extended memory available for the
protected mode command line tool to load.

Compile-time error Array allocated using new may not have an initializer
When initializing a vector (array) of classes, you must use the
constructor that has no arguments. This is called the default
constructor, which means that you may not supply constructor
arguments when initializing such a vector.

Compile-time error Array bounds missing]
Your source file declared an array in which the array bounds
were not terminated by a right bracket.

Compile-time error Array must have at least one element
ANSI C and C++ require that an array be defined to have at
least one element (objects of zero size are not allowed). An old
programming trick declares an array element of a structure to
have zero size, then allocates the space actually needed with
malloc. You can still use this trick, but you must declare the
array element to have (at least) one element if you are
compiling in strict ANSI mode. Declarations (as opposed to
definitions) of arrays of unknown size are still allowed, of
course.

For example,

char ray[];
char ray[O];
extern char ray[];

/* definition of unknown size -- illegal */
/* definition of 0 size -- illegal */
/* declaration of unknown size -- ok */

Compile-time error Array of references is not allowed
It is illegal to have an array of references, since pointers to
references are not allowed and array ~ames are coerced into
pointers.

Compile-time warning Array size for 'delete' ignored
With the latest specification of C++, it is no longer necessary to
specify the array size when deleting an array; to allow older
code to compile, the compiler ignores this construct, and issues
this warning.

Compile-time error Array size too large
The declared array is larger than 64K.

Appendix A, Error messages 161

I

Compile-time warning Array variable identifier is near
Whenever you use either the -Ff or -Fm command-line or the
IDE Options I Compiler I Advanced Code Generation ... I Far
Data Threshold selection to set threshold limit, global variables
larger than the threshold size are automatically made far by the
compiler. However, when the variable is an initialized array
with an unspecified size, its total size is not known when the
decision whether to make it near or far has to be made by the
compiler, and so it is made near. If the number of initializers
given for the array causes the total variable size to exceed the
data size threshold, the compiler issues this warning. If the fact
that the variable is made near by the compiler causes problems
(for example, the linker reports a group overflow due to too
much global data), you must make the offending variable
explicitly far by inserting the keyword far immediately to the
left of the variable name in its definition.

Compile-time error Assembler statement too long
Inline assembly statements may not be longer than 480 bytes.

Compile-time warning Assigning type to enumeration
Assigning an integer value to an enum type. This is an error in
C++, but is reduced to a warning to give existing programs a
chance to work.

Compile-time error ASSignment to this not allowed, use X::operator new instead
In early versions of C++, the only way to control allocation of
class of objects was by assigning to the this parameter inside a
constructor. This practice is no longer allowed, since a better,
safer, and more general technique is to define a member
function operator new instead.

TLINK warning Attempt to export non-public symbol symbol
A symbol name was listed in the EXPORTS section of the
module definition file, but no symbol of this name was found
as public in the modules linked. This either implies a mistake
in spelling or case, or that a procedure of this name was not
defined.

Compile-time error Attempt to grant or reduce access to identifier
A C++ derived class can modify the access rights of a base class
member, but only by restoring it to the rights in the base class.
It cannot add or reduce access rights.

162 Tools and Utilities Guide

Compile-time error Attempting to return a reference to a local object
In a function returning a reference type, you attempted to
return a reference to a temporary object (perhaps the result of a
constructor or a function call). Since this object will disappear
when the function returns, the reference will then be illegal.

Compile-time error Attempting to return a reference to local variable identifier
This C++ function returns a reference type, and you are trying
to return a reference to a local (auto) variable. This is illegal,
since the variable referred to disappears when the function
exits. You may return a reference to any static or global
variable, or you may change the function to return a value
instead.

TUNK error Automatic data segment exceeds 64K
The sum of the DGROUP physical segment, local heap, and
stack exceeded 64K. Either specify smaller values for the
HEAPSIZE and STACKSIZE statements in the module
definition file, or decrease the size of your near data in
DGROUP. The map file will show the sizes of the component
segments in DGROUP. The Is TLINK command-line option is
useful to help you find out how much each module contributes
to DGROUP.

Compile-time fatal error Bad call of intrinsic function
You have used an intrinsic function without supplying a
prototype, or you supplied a prototype for an intrinsic function
that was not what the compiler expected.

TUNK fatal error Bad character in parameters
One of the following characters was encountered in the com-

v mand line or in a response file:

"*<=>?[]

or any control character other than horizontal tab, line feed,
carriage return, or Ctrl-l.

Compile-time error Bad define directive syntax
A macro definition starts or ends with the ## operator, or
contains the # operator that is not followed ?y a macro
argument name.

DPMI seNer fatal error bad environment params

Appendix A, Error messages

The value for the environmental variable DPMIMEM had
incorrect syntax.

163

I

164

Compile-time error Bad file name format in include directive
Include file names must be surrounded by quotes
("FILENAME.H") or angle brackets «FILENAME.H». The file
name was missing the opening quote or angle bracket. If a
macro was used, the resulting expansion text is incorrect; that
is, not surrounded by quote marks.

MAKE error Bad file name format in include statement
Include file names must be surrounded by quotes or angle
brackets. The file name was missing the opening quote or angle
bracket.

Compile-time error Bad file name format in line directive
Line directive file names must be surrounded by quotes
("FILENAME.H") or angle brackets «FILENAME.H». The file
name was missing the opening quote or angle bracket. If a
macro was used, the resulting expansion text is incorrect; that
is, not surrounded by quote marks.

TUB warning bad GCD type in GRPDEF, extended dictionary aborted
bad GRPDEF type encountered, extended dictionary aborted

The librarian has encountered an invalid entry in a group
definition (GRPDEF) record in an object module while creating
an extended dictionary. The only type of GRPDEF record that
the librarian (and linker) supports are segment index type. If
any other type of GRPDEF is encountered, the librarian won't
be able to create an extended dictionary. It's possible that an
object module created by products other than Borland tools
may create GRPDEF records of other types. It's also possible for
a corrupt object module to generate this warning.

TUB error Bad header in input LIB
When adding object modules to an existing library, the
librarian has determined that it has a bad library header.
Rebuild the library.

Compile-time error Bad ifdef directive syntax
An #ifdef directive must contain a single identifier (and no­
thing else) as the body of the directive.

MAKE error Bad macro output translator
Invalid syntax for substitution within macros. For example:

$ (MODEL:=s) or $(MODEL:) or $(MODEL:s)

Tools and Utilities Guide

TUNK fatal error Bad object file record in library file filename in module module
near module file offset Oxxxxxxxxx
Bad object file record in module filename near module file offset
Oxxxxxxxxx

An ill-formed object file was encountered. This is most
commonly caused by naming a source file or by naming an
object file that was not completely built. This can occur if the
machine was rebooted during a compile, or if a compiler did
not delete its output object file when a Gtr/-Brk was pressed.

TUB error bad OMF record type type encountered in module module
The librarian encountered a bad Object Module Format (OMF)
record while reading through the object module. The librarian
has already read and verified the header records on the module,
so this usually indicates that the object module has become
corrupt in some way and should be recreated.

Compile-time error Bad syntax for pure function definition
Pure virtual functions are specified by appending" = 0" to the
declaration. You wrote something similar, but not quite the
same.

Compile-time error Bad undef directive syntax
An #undef directive must contain a single identifier (and
nothing else) as the body of the directive.

MAKE error Bad undef statement syntax
An !undef statement must contain a single identifier and
nothing else as the body of the statement.

TUNK fatal error Bad version number in parameter block
This error indicates an internal inconsistency in the IDE. If it
occurs, exit and restart the IDE. This error will not occur in the
standalone version.

Compile-time error Base class class contains dynamically dispatchable functions
Currently, dynamically dispatched virtual tables do not
support the use of multiple inheritance. This error occurs
because a class which contains DDVT function attempted to
inherit DDVT functions from multiple parent classes.

Compile-time warning Base class class is inaccessible because also in class
It is not legal to use a class as both a direct and indirect base
class, since the members are automatically ambiguous. Try
making the base class virtual in both locations.

Appendix A, Error messages 165

I

Compile-time error Base class class is included more than once
A C++ class may be derived from any number of base classes,
but may be directly derived from a given class only once.

Compile-time error Base class class is initialized more than once
In a C++ class constructor, the list of initializations following
the constructor header includes base class class more than once.

Compile-time error Base initialization without a class name is now obsolete
Early versions of C++ provided for initialization of a base class
by following the constructor header with just the base class
constructor parameter list. It is now recommended to include
the base class name.

This makes the code much clearer, and is required when there
are multiple base classes.

Old way:

derived: :derived(int i) (i, 10) { ...)

New way:

derived::derived(int i) : base(i, 10) { ... }

Compile-time error Bit field cannot be static
Only ordinary C++ class data members can be declared static,
not bit fields.

Compile-time error Bit field too large
This error occurs when you supply a bit field with more than
16 bits. '

Compile-time error Bit fields must be signed or unsigned int
In ANSI C, bit fields may only be signed or unsigned int (not
char or long, for example).

Compile-time warning Bit fields must be signed or unsigned int
In ANSI C, bit fields may not be of type signed char or
unsigned char; when not compiling in strict ANSI mode,
though, the compiler will allow such constructs, but flag them
with this warning.

Compile-time error Bit fields must contain at least one bit
You cannot declare a named bit field to have 0 (or less than 0)
bits. You can declare an unnamed bit field to have 0 bits, a
convention used to force alignment of the following bit field to
a byte boundary (or word boundary, if you select the -a
alignment option or IDE Options I Compiler I Code

. 166 Tools and Utilities Guide

Generation I Word Alignment). In C++, bit fields must have an
integral type; this includes enumerations.

Compi/e-time error Bit fields must have integral type
In C++, bit fields must have an integral type; this includes
enumerations.

Compile-time error Body has already been defined for function function
A function with this name and type was previously supplied a
function body. A function body can only be supplied once.

Compi/e-time warning Both return and return with a value used
The current function has return statements with and without
values. This is legal in C, but almost always an error. Possibly a
return statement was omitted from the end of the function.

Compi/e-time error Call of nonfunction
The name being called is not declared as a function. This is
commonly caused by incorrectly declaring the function or mis­
spelling the function name.

Compile-time warning Call to function function with no prototype

Compile-time error

The "Prototypes required" warning was enabled and you
called function function without first giving a prototype for that
function.

CHAR 34

Cannot add or subtract relocatable symbols
The only arithmetic operation that can be performed on a
relocatable symbol in an assembler operand is addition or
subtraction of a constant. Variables, procedures, functions, and
labels are relocatable symbols. Assuming that Var is a variable
and Canst is a constant, then the instructions

MOV AX,ConsttConst

and

MOV AX,VartConst

are valid, but MOV AX, VartVar is not.

Compi/e-time error Cannot allocate a reference

Appendix A, Error messages

An attempt to create a reference using the new operator has
been made; this is illegal, as references are not objects and
cannot be created through new.

167

I

168

Compile-time error identifiercannot be declared in an anonymous union
The compiler found a declaration for a member function or
static member in an anonymous union. Such unions can only
contain data members.

Compile-time error function1 cannot be distinguished from function2
The parameter type lists in the declarations of these two
functions do not differ enough to tell them apart. Try changing
the order of parameters or the type of a parameter in one
declaration.

Compile-time error Cannot call near class member function with a pointer of type
type

Member functions of near classes (remember that classes are
near by default in the tiny, small, and medium memory
models) cannot be called using far or huge member pointers.
(Note that this also applies to calls using pointers to members.)
Either change the pointer to be near, or declare the class as far.

Compile-time error Cannot cast from type1 to type2
A cast from type typel to type type2 is not allowed. In C, a
pointer may be cast to an integral type or to another pointer.
An integral type may be cast to any integral, floating, or
pointer type. A floating type may be cast to an integral or
floating type. Structures and arrays may not be cast to or from.
You cannot cast from a void type.

C++ checks for user-defined conversions and constructors, and
if one cannot be found, then the preceding rules apply (except
for pointers to class members). Among integral types, only a
constant zero may be cast to a member pointer. A member
pointer may be cast to an integral type or to a similar member
pointer. A similar member pointer points to a data member if
the original does, or to a function member if the original does;
the qualifying class of the type being cast to must be the same
as or a base class of the original.

Compile-time error Cannot convert type1 to type2
An assignment, initialization, or expression requires the
specified type conversion to be performed, but the conversion
is not legal.

Compile-time error Cannot create instance of abstract class class
Abstract classes-those with pure virtual functions-cannot be
used directly, only derived from.

Tools and Utilities Guide

Compile-time error Cannot define a pointer or reference to a reference
It is illegal to have a pointer to a reference or a reference to a
reference.

Compile-time error Cannot find class:: class (class &) to copy a vector
When a C++ class classl contains a vector (array) of class class2,
and you want to construct an object of type classl from another
object of type classl, there must be a constructor
class2::class2(class2&) so that the elements of the vector can
be constructed. This constructor takes just one parameter
(which is a reference to its class) and is called a copy constructor.

Usually the compiler supplies a copy constructor automati­
cally. However, if you have defined a constructor for class
class2 that has a parameter of type class2& and has additional
parameters with default values, the copy constructor cannot be
created by the compiler. (This is because
class2: : dass2 (class2&) and class2: : class2 (class2&, int = 1)
cannot be distinguished.) You must redefine this constructor so
that not all parameters have default values. You can then
define a copy constructor or let the compiler create one.

Compile-time error Cannot find class::operator=(class&) to copy a vector
When a C++ class classl contains a vector (array) of class class2,
and you wish to copy a class of type classl, there must be an
assignment operator class2::operator=(class2&) so that the
elements of the vector can be copied. Usually the compiler
supplies such an operator automatically. However, if you have
defined an operator= for class class2, but not one that takes a
parameter of type class2&, the compiler will not supply it
automatically-you must supply one.

Compile-time error Cannot find default constructor to initialize array element of type
class

When declaring an array of a class that has constructors, you
must either explicitly initialize every element of the array, or
the class must have a default constructor (it will be used to
initialize the array elements that don't have explicit
initializers). The compiler will define a default constructor for a
class unless you have defined any constructors for the class.

Compi/e-time error Cannot find default constructor to initialize base class class
Whenever a C++ derived class class2 is constructed, each base
class classl must first be constructed. If the constructor for
class2 does not specify a constructor for classl (as part of class2's
header), there must be a constructor class1 ::class1 0 for the

Appendix A, Error messages 169

I

base class. This constructor without parameters is called the
default constructor. The compiler will supply a default
constructor automatically unless you have defined any
constructor for class classl; in that case, the compiler will not
supply the default constructor automatically-you must
supply one.

Compile-time error Cannot find default constructor to initialize member identifier
When a C++ class classl contains a member of class class2, and
you wish to construct an object of type classl but not from
another object of type classl, there must be a constructor
class2::class2() so that the member can be constructed. This
constructor without parameters is called the default
constructor. The compiler will supply a default constructor
automatically unless you have defined any constructor for class
class2; in that case, the compiler will not supply the default
constructor automatically-you must supply one.

TUNK fatal error Cannot generate COM file: data below initial CS:IP defined
This error results from trying to generate data or code below
the starting address (usually 100) of a .COM file. Be sure that
the starting address is set to 100 by using the (ORC 100H) in­
struction. This error message should not occur for programs
written in a high-level language. If it does, ensure that the
correct startup (COx) object module is being linked in.

TUNK fatal error Cannot generate COM file: invalid initial entry point address
You used the ITdc or It option, but the program starting
address is not equal to 100H, which is required with .COM
files.

TUNK fatal error Cannot generate COM file: program exceeds 64K
You used the ITdc or It option, but the total program size
exceeds the .COM file limit.

TUNK fatal error Cannot generate COM file: segment-relocatable items present
You used the ITdc or It option, but the program contains
segment-relative fixups, which are not allowed with .COM
files.

TUNK fatal error Cannot generate COM file: stack segment present
You used the ITdc or It option, but the program declares a stack
segment, which is not allowed with .COM files.

170 Tools and Utilities Guide

Compile-time error Cannot generate function from template function template
A call to a template function was found, but a matching
template function cannot be generated from the function
template.

Compile-time error Cannot have a near class member in a far class
All members of a C++ far class must be far. This member is in a
class that was declared (or defaults to) near.

Compile-time error Cannot have a non-in line function in a local class
Cannc;>t have a static data member in a local class

All members of classes declared local to a function must be
entirely defined in the class definition. This means that such
local classes may not contain any static data members, and all
of their member functions must have bodies defined within the
class definition.

MAKE error Cannot have multiple paths for implicit rule
You can only have a single path for each of the extensions in an
implicit rule. Multiple path lists are only allowed for
dependents in an explicit rule. For example:

{pathlipath2}.c.obj:
{path} .c.obj

Invalid
Valid

MAKE error Cannot have path list for target
You can only specify a path list for dependents of an explicit
rule. For example:

{path1ipath2}prog.exe: prog.obj # Invalid
prog.exe: {path1ipath2}prog.obj # Valid

Compile-time error Cannot initialize a class member here
Individual members of structs, unions, and c++ classes may
not have initializers. A struct or union may be initialized as a
whole using initializers inside braces. A C++ class may only be
initialized by the use of a constructor.

Compile-time error Cannot initialize type1 with type2
You are attempting to initialize an object of type typel with a
value of type type2, which is not allowed. The rules for
initialization are essentially the same as for assignment.

Compile-time error Cannot modify a const object
This indicates an illegal operation on an object declared to be
const, such as an assignment to the object.

Appendix A, Error messages 171

I

Compile-time error

Compile-time error

Compile-time error

Compile-time error

BI
EJ

TUB error

TUB error

Compile-time error

Compile-time error

Cannot overload 'main'
main is the only function which cannot be overloaded.

I

function cannot return a value
A function with a return type void contains a return statement
that returns a value; for example, an int.

identifier cannot start an argument declaration
Undefined identifier found at the start of an argument in a
function declarator. Often the type name is misspelled or the
type declaration is missing (usually caused by not including
the appropriate header file).

Cannot use tiny or huge memory model with Windows
This message is self-explanatory. Use small, medium, compact,
or large instead.

cannot write GRPDEF list, extended dictionary aborted
The librarian cannot write the extended dictionary to the tail
end of the library file. This usually indicates lack of space on
the disk.

can't grow LElLIDATA record buffer
Command-line error. See out of memory reading LElLIDATA
record from object module.

Case bypasses initialization of a local variable
In C++ it is illegal to bypass the initialization of a local variable
in any way. In this case, there is a case label which can transfer
control past this local variable.

Case outside of switch
The compiler encountered a case statement outside a switch
statement. This is often caused by mismatched braces.

Compile-time error Case statement missing:
A case statement must have a constant expression followed by
a colon. The expression in the case statement either is missing
a colon or has an extra symbol before the colon.

MAKE or compile-time error Character constant must be one or two characters long
Character constants can be only one or two characters long.

MAKE fatal error Circular dependency exists in makefile
The makefile indicates that a file needs to be up-to-date
BEFORE it can be built. Take, for example, the explicit rules:

filea: fileb

172 Tools and Utilities Guide

fileb: filee
filee: filea

This implies that filea depends on fileb, whiCh depends on filee,
and filee depends on filea. This is illegal, since a file cannot
depend on itself, indirectly or directly.

Compile-time error Class class may not contain pure functions
The class being declared cannot be abstract, and therefore it
may not contain any pure functions.

Compile-time error Class member member declared outside its class
C++ class member functions can be declared only inside the
class declaration. Unlike nonmember functions, they cannot be
declared multiple times or at other locations.

Compile-time warning Code has no effect
The compiler encountered a statement with operators that have
no effect. For example the statement

a + b;

has no effect on either variable. The operation is unnecessary
and probably indicates a bug in your file.

MAKE error Colon expected
You have forgotten to put the colon at the end of your implicit
rule .

. c.obj:

.c.obj
Correct
Incorrect

MAKE error Command arguments too long
The arguments to a command were more than the 127-
character limit imposed by DOS.

MAKE error Command syntax error
This message occurs if

a The first rule line of the makefile contained any leading
whitespace.

c An implicit rule did not consist of .ext.ext:.
c An explicit rule did not contain a name before the : character.

13 A macro definition did not contain a name before the =
character.

MAKE error Command too long
The length of a command has exceeded 128 characters. You
might want to use a response file.

Appendix A, Error messages 173

TLlNK error Common segment exceeds 64K
The program had more than 64K of near uninitialized data. Try
declaring some uninitialized data as far.

Compile-time error Compiler could not generate copy constructor for class class
The compiler cannot generate a needed copy constructor due to
language rules.

Compile-time error Compiler could not generate default constructor for class class
The compiler cannot generate a needed default constructor due
to language rules.

Compile-time error Compiler could not generate operator= for class class
The compiler cannot generate a needed assignment operator
due to language rules.

Compile-time fatal error Compiler table limit exceeded
One of the compiler's internal tables overflowed. This usually
means that the module being compiled contains too many
function bodies. Making more memory available to the
compiler will not help with such a limitation; simplifying the
file being compiled is usually the only remedy.

Compile-time error Compound statement missing}
The compiler reached the end of the source file and found no
closing brace. This is often caused by mismatched braces.

Compile-time warning Condition is always false
Condition is always true

The compiler encountered a comparison of values where the
result is always true or false. For example:

void proc(unsigned x)
{

if (x >= 0)

{

/* always 'true' */

Compile-time error Conflicting type modifiers
This occurs when a declaration is given that includes, for
example, both near and far keywords on the same pointer.
Only one addressing modifier may be given for a single
pointer, and only one language modifier (cdecl, pascal, or
interrupt) may be given for a function.

17 4 Tools and Utilities Guide

TUNK warning symbol conflicts with module module in module module
This indicates an inconsistency in the definition of symbol;
TLINK found one virtual function and one common definition
with the same name.

Compile-time error Constant expression required
Arrays must be declared with constant size. This error is
commonly caused by misspelling a #define constant.

Compile-time warning Constant is long
The compiler encountered either a decimal constant greater
than 32767 or an octal (or hexadecimal) constant greater than
65535 without a letter 1 or L following it. The constant is treated
as a long.

Compile-time error Constant member member ill class without constructors
A class that contains constant members must have at least one
user-defined constructor; otherwise, there would be no way to
ever initialize such members.

Compile-time warning Constant member member is not initialized
This C++ class contains a constant member member, which does
not have an initialization. Note that constant members may be
initialized only, not assigned to.

Compile-time warning Constant out of range in comparison
Your source file includes a comparison involving a constant
sub-expression that was outside the range allowed by the other
sub-expression's type. For example, comparing an unsigned
quantity to -1 makes no sense. To get an unsigned constant
greater than 32767 (in decimal), you should either cast the
constant to unsigned (for example, (unsigned)65535) or append
a letter u or U to the constant (for example, 65535u).

Whenever this message is issued, the compiler will still
generate code to do the comparison. If this code ends up
always giving the same result, such as comparing a char
expression to 4000, the code will still perform the test.

Compile-time error Constant variable variable must be initialized
This C++ object is declared const, but is not initialized. Since
no value may be assigned to it, it must be initialized at the
point of declaration.

Compile-time error constructor cannot be declared const or volatile

Appendix A, Error messages

A constructor has been declared as const and/or volatile, and
this is not allowed.

175

•

Compile-time error

Compile-time warning

Compile-time error

This message used only by
IDE debugger.

Compile-time error

Compile-time error

TUB error

TUB error

Compile-time error

176

constructor cannot have a return type specification
C++ constructors have an implicit return type used by the
compiler, but you cannot declare a return type or return a
value.

Conversion may lose significant digits
For an assignment operator or some other circumstance, your
source file requires a conversion from long or unsigned long to
int or unsigned int type. Since int type and long type variables
don't have the same size, this kind of conversion may alter the
behavior of a program.

Conversion of near pointer not allowed
A near pointer cannot be converted to a far pointer in the ex­
pression evaluation box when a program is not currently
running. This is because the conversion needs the current value
of DS in the user program, which doesn't exist.

Conversion operator cannot have a return type specification
This C++ type conversion member function specifies a return
type different from the type itself. A declaration for conversion
function operator may not specify any return type.

Conversion to type will fail for members of virtual base class
This warning is issued in some cases when a member pointer is
cast to another member pointer type, if the class of the member
pointer contains virtual bases, and only if the -Vv option or
IDE Options I Compiler I Advanced Compiler I Deep Virtual
Bases has been used. It means that if the member pointer being
cast happens to point (at the time of the cast) to a member of
class, the conversion cannot be completed, and the result of
the cast will be a NULL member pointer. (See the User's Guide
for details).

could not allocate memory for per module data
The librarian has run out of memory.

could not create list file filename
The librarian could not create a list file for the library. This
could be due to lack of disk space.

Could not find a match for argument(s)
No C++ function could be found with parameters matching the
supplied arguments.

Tools and Utilities Guide

Compile-time error Could not find file filename
The compiler is unable to find the file supplied on the
command line.

TUB error Could not write output.
The librarian could not write the output file.

TUB error couldn't alloc memory for per module data
The librarian has run out of memory.

TUB warning filename couldn't be created, original won't be changed
An attempt has been made to extract an object ('*' action) but
the librarian cannot create the object file to extract the module
into. Either the object already exists and is read only, or the
disk is full.

TUB error couldn't get LE/LIDATA record buffer
Command-line error. See out of memory reading LEiLIDATA
record from object module.

TUNK warning Debug info switch ignored for .COM files
Borland C++ does not include debug information for .COM
files. See the description of the Iv option on page 70.

TUNK warning Debug information in module module will be ignored
Object files compiled with debug information now have a
version record. The major version of this record is higher than
what TLINK currently supports and TLINK did not generate
debug information for the module in question.

Compile-time error Declaration does not specify a tag or an identifier
This declaration doesn't declare anything. This may be a struct
or union without a tag or a variable in the declaration. C++
requires that something be declared.

Compile-time error Declaration is not allowed here
Declarations cannot be used as the control statement for while,
for, do, if, or switch statements.

Compile-time error Declaration missing;
Your source file contained a declaration that was not followed
by a semicolon.

Compile-time error Declaration syntax error
Your source file contained a declaration that was missing some
symbol or had some extra symbol added to it.

Appendix A, Error messages 177

Compile-time error Declaration terminated incorrectly
A declaration has an extra or incorrect termination symbol,
such as a semicolon placed after a function body. A C++ mem­
ber function declared in a class with a semicolon between the
header and the opening left brace also generates this error.

Compile-time error Declaration was expected
A declaration was expected here but not found. This is usually
caused by a missing delimiter such as a comma, semicolon,
right parenthesis, or right brace.

Compile-time error Declare operator delete (void*) or (void*, size_t)
Declare the operator delete with a single void* parameter, or
with a second parameter of type size_t. If you use the second
version, it will be used in preference to the first version. The
global operator delete can only be declared using the single­
parameter form.

Compile-time warning Declare type type prior to use in prototype
When a function prototype refers to a structure type that has
not previously been <:leclared, the declaration inside the proto­
type is not the same as a declaration outside the prototype. For
example,

int func(struct s *pS)i

struct s { /* ... */ }i

Since there is no struct s in scope at the prototype for func, the
type of parameter ps is pointer to undefined struct s, and is not
the same as the struct s which is later declared. This will result
in later warning and error messages about incompatible types,
which would be very mysterious without this warning mes­
sage. To fix the problem, you can move the declaration for
struct s ahead of any prototype which references it, or add the
incomplete type declaration struct s i ahead of any prototype
which references struct s. If the function parameter is a struct,
rather than a pointer to struct, the incOlnplete declaration is not
sufficient; you must then place the struct declaration ahead of
the prototype.

Compile-time warning identifier is declared but never used
Your source file declared the named variable as part of the
block just ending, but the variable was never used. The
warning is indicated when the compiler encounters the closing
brace of the compound statement or function. The declaration

178 Tools and Utilities Guide

of the variable occurs at the beginning of the compound
statement or function.

Compile-time error Default argument value redeclared for parameter parameter
When a parameter of a C++ function is declared to have a
default value, this value cannot be changed, redeclared, or
omitted in any other declaration for the same function.

Compile-time error Default expression may not use local variables
A default argument expression is not allowed to use any local
variables or other parameters.

Compile-time error Default outside of switch
The compiler encountered a default statement outside a switch
statement. This is most commonly caused by mismatched
braces.

Compile-time error Default value missing
When a C++ function declares a parameter with a default
value, all of the following parameters must also have default
values. In this declaration, a parameter with a default value
was followed by a parameter without a default value.

Compile-time error Default value missing following parameter parameter
All parameters following the first parameter with a default
value must also have defaults specified.

Compile-time error Define directive needs an identifier
The first non-whitespace character after a #define must be an
identifier. The compiler found some other character.

TLlNK error or warning symbol defined in module module is duplicated in module
module

There is a conflict between two symbols (either public or
communal). This usually means that a symbol is defined in two
modules. An error occurs if both are encountered in the .OBJ
file(s), because TLINK doesn't know which is valid. A warning
results if TLINK finds one of the duplicated symbols in a
library and finds the other in an .OBJ file; in this case, TLINK
uses the one in the .OBJ file.

Compile-time error Delete array size missing]
The array specifier in an operator date is missing a right
bracket.

Compile-time error Destructor cannot be declared const or volatile
A destructor has been declared as const and/or volatile, and
this is not allowed.

Appendix A, Error messages 179

Compile-time error Destructor cannot have a return type specification
It is illegal to specify the return type for a destructor.

Compile-time error Destructor for class is not accessible
The destructor for this C++ class is protected or private, and
cannot be accessed here to destroy the class. If a class destruc­
tor is private, the class cannot be destroyed, and thus can never
be used. This is probably an error. A protected destructor can
be accessed only from derived classes. This is a useful way to
ensure that no instance of a base class is ever created, but only
classes derived from it.

Compile-time error Destructor for class required in conditional expression
If the compiler must create a temporary local variable in a
conditional expression, it has no good place to call the
destructor, since the variable mayor may not have been
initialized. The temporary variable can be explicitly created, as
with classname (val, val), or implicitly created by some other
code. Recast your code to eliminate this temporary value.

Compile-time error Destructor name must match the class name
In a C++ class, the tilde (~) introduces a declaration for the
class destructor. The name of the destructor must be the same
as the class name. In your source file, the tilde (~) preceded
some other name.

Run-time error Divide error
You've tried to divide an integer by zero. For example,

int n = 0;
n = 2 / n;

You can trap this error with the signal function. Otherwise,
Borland C++ calls abort and your program terminates.

Compile-time error Division by zero
Your source file contained a division or remainder operator in
a constant expression with a zero divisor.

Compile-time warning Division by zero
A division or remainder operator expression had a literal zero
as a divisor.

MAKE error Division by zero
A division or remainder operator in an !if statement has a zero
divisor.

180 Tools and Utilities Guide

Compile-time error do statement must have while
Your source file contained a do statement that was missing the
closing while keyword.

MAKE fatal error filename does not exist - don't know how to make it
There's a nonexistent file name in the build sequence, and no
rule exists that would allow the file name to be built.

TLINK fatal error DOS error, ax = number
This occurs if a DOS call returned an unexpected error. The ax
value printed is the resulting error code. This could indicate a
TLINK internal error or a DOS error. The only DOS calls
TLINK makes where this error could occur are read, write,
seek, and close.

Compile-time error do-while statement missing (
In a do statement, the compiler found no left parenthesis after
the while keyword.

Compile-time error do-while statement missing)
In a do statement, the compiler found no right parenthesis after
the test expression.

Compile-time. error do-while statement missing;
In a do statement test expression, the compiler found no semi­
colon after the right parenthesis.

Compile-time error Duplicate case
Each case of a switch statement must have a unique constant
expression value.

TLINK warning filename (linenum): Duplicate external name in exports
Two export functions listed in the EXPORTS section of a
module definition file defined the same external name. For
instance,

EXPORTS
AnyProc=MyProcl
AnyProc=MyProc2

TLINK warning filename (linenum): Duplicate internal na~e in exports

Appendix A, Error messages

Two export functions listed in the EXPORTS section of the
module definition file defined the same internal name. For
example,

EXPORTS
AnyProcl=MyProc
AnyProc2=MyProc

181

I

TUNK warning filename (linenum): Duplicate internal name in imports
Two import functions listed in the IMPORTS section of the
module definition file defined the same internal name. For
instance,

IMPORTS
AnyProc=MyModl.MyProcl
AnyProc=MyMod2.MyProc2

or

IMPORTS
MyModl.MyProc
MyMod2.MyProc]

TUNK warning Duplicate ordinal number in exports
This warning occurs when TLINK encounters two exports with
the same ordinal value. First check the module definition file to
ensure that there are no duplicate ordinal values specified in
the EXPORTS section. If not, then you are linking with
modules which specify exports by ordinals and one of two
things happened: either two export records specify the same
ordinal, or the exports section in the module definition file
duplicates an ordinal in an export record.

Export records (EXPDEF) are comment records found in object
files and libraries which specify that particular variables are to
be exported. Optionally, these records can specify ordinal
values when exporting by ordinal (rather than by name).

Compile-time error Enum syntax error
An enum declaration did not contain a properly formed list of
identifiers.

TUB error error changing file buffer size
TLIB is attempting to adjust the size of a buffer used while
reading or writing a file but there is not enough memory. It is
likely that quite a bit of system memory will have to be freed
up to resolve this error.

Compile-time fatal error Error directive: message
The text of the #error directive being processed in the source
file is displayed.

MAKE fatal error Error directive: message
MAKE has processed an #error directive in the source file, and
the text of the directive is displayed in the message.

182 Tools and Utilities Guide

TUB error error opening filename
TLIB cannot open the specified file for some reason.

TUB error error opening filename for output
TLIB cannot open the specified file for output. This is usually
due to lack of disk space for the target library, or a listing file.
Additionally this error will occur when the target file exists but
is marked as a read only file.

TUB error error renaming filename to filename
TLIB builds a library into a temporary file and then renames
the temporary file to the target library file name. If there is an
error, usually due to lack of disk space, this message will be
posted.

Compile-time fatal error Error writing output file
A DOS error that prevents Borland C++ from writing an .OBJ,
.EXE, or temporary file. Check the -n or Options I Directories I
Output directory and make sure that this is a valid directory.
Also check that there is enough free disk space.

Compile-time error Expression expected
An expression was expected here, but the current symbol can­
not begin an expression. This message may occur where the
controlling expression of an if or while clause is expected or
where a variable is being initialized. It is often due to an acci­
dentally inserted or deleted symbol in the source code.

Compile-time error Expression of scalar type expected
The not (!), increment (++), and decrement (-) operators re­
quire an expression of scalar type-only types char, short, int,
long, enum, float, double, long double, and pointer types are
allowed.

Compile-time error Expression syntax
This is a catchall error message when the compiler parses an
expression and encounters some serious error. This is most
commonly caused by two consecutive operators, mismatched
or missing parentheses, or a missing semicolon on the previous
statement.

MAKE error Expression syntax error in ! if statement
The expression in an !if statement is badly formed-it contains
a mismatched parenthesis, an extra or missing operator, or a
missing or extra constant.

Appendix A, Error messages 183

I

184

TUB warning reason - extended dictionary not created
TLIB could not produce the extended dictionary because of the
reason given in the warning message.

Compile-time error extern variable cannot be initialized
The storage class extern applied to a variable means that the
variable is being declared but not defined here-no storage is
being allocated for it. Therefore, you can't initialize the variable
as part of the declaration.

Compi/e-time error Extra argument in template class name template
A template class name specified too many actual values for its
formal parameters.

Compi/e-time error Extra parameter in call
A call to a function, via a pointer defined with a prototype, had
too many arguments given.

Compile-time error Extra parameter in call to function
A call to the named function (which was defined with a proto­
type) had too many arguments given in the call.

Command line fatal error Failed to locate DPMI server (DPMI16BI.OVL)
Failed to locate protected mode loader (DPMILOAD.EXE)

Make sure that DPMI16BLOVL and DPMILOAD.EXE are
somewhere on your path or in the same directory as the
protected mode command line tool you were attempting to
use.

Compi/e-time error File must contain at least one external declaration
This compilation unit was logically empty, containing no
external declarations. ANSI C and c++ require that something
be declared in the compilation unit.

Compile-time error File name too long
The file name given in an #include directive was too long for
the compiler to process. Path names in DOS must be no more
than 79 characters long.

MAKE error File name too long
The path name in an !include directive overflowed MAKE's
internal buffer (512 bytes).

TUB warning filename file not found
The command-line librarian attempted to add a nonexisting
object but created the library anyway.

Tools and Utilities Guide

TUB error filename file not found
The IDE creates the library by first removing the existing
library and then rebuilding. If any objects do not exist, the
library is considered incomplete and thus an error. If the IDE
reports that an object does not exist, either the source module
has not been compiled or there were errors during compilation.
Performing either a Compile I Make or Compile I Build should
resolve the problem or indicate where the errors have occurred.

TUNK fatal error filename (linenum): File read error
A DOS error occurred while TLINK read the module definition
file. This usually means that a premature end of file occurred.

TUNK error Fixup overflow at segmentxxxxh, target = segmentxxxh in
module module
Fixup overflow at segmentxxxxh, target = symbol in module
module

Either of these messages indicate an incorrect data or code
reference in an object file that TLINK must fix up at link time.

The cause is often a mismatch of memory models. A near call
to a function in a different code segment is the most likely
cause. This error can also result if you generate a near call to a
data variable or a data reference to a function. In either case the
symbol named as the target in the error message is the
referenced variable or function. The reference is in the named
module, so look in the source file of that module for the
offending reference.

In an assembly language program, a fixup overflow frequently
occurs if you have declared an external variable within a
segment definition, but this variable actually exists in a
different segment.

If this technique does not identify the cause of the failure, or if
you are programming in assembly language or a high-level
language besides Borland C++, there may be other possible
causes for this message. Even in Borland C++, this message
could be generated if you are using different segment or group
names than the default values for a given memory model.

Run-time error Floating point error: Divide by o.
Floating point error: Domain.
Floating point error: Overflow.

These fatal errors result from a floating-point operation for
which the result is not finite.

Appendix A, Error messages 185

186

• "Divide by 0" means the result is +INF or -INF exactly, such
as 1.0/0.0.

• "Domain" means the result is NAN (not a number),like
0.0/0.0.

• "Overflow" means the result is +INF (infinity) or -INF with
complete loss of precision, such as assigning le200*le200 to
a double.

Run-time error Floating point error: Partial loss of precision.
Floating point error: Underflow.

These exceptions are masked by default, and the error mes­
sages do not occur. Underflows are converted to zero and
losses of precision are ignored. They can be unmasked by
calling _controI87.

Run-time error Floating point error: Stack fault.
The floating-point stack has been overrun. This error does not
normally occur and may be due to assembly code using too
many registers or due to a misdeclaration of a floating-point
function.

These floating-point errors can be avoided by masking the
exception so that it doesn't occur, or by catching the exception
with signal. See the functions _control87 and signal (in the
Library Reference) for details.

In each of the above cases, the program prints the error
message and then calls abort, which prints

Abnormal program termination

and calls _exi t (3) • See abort and _exit for more details.

Compile-time error For statement missing (
In a for statement, the compiler found no left parenthesis after
the for keyword.

Compile-time error For statement missing)
In a for statement, the compiler found no right parenthesis
after the control expressions.

Compile-time error For statement missing;
In a for statement, the compiler found no semicolon after one
of the expressions.

Compile-time error Friends must be functions or classes
A friend of a C++ class must be a function or another class.

Tools and Utilities Guide

Compile-time error Function call missing)

Compi/e-time error

This message used only by
IDE debugger.

Compi/e-time error

The function call argument list had some sort of syntax error,
such as a missing or mismatched right parenthesis.

Function calls not supported
In integrated debugger expression evaluation, calls to functions
(including implicit conversion functions, constructors, destruc­
tors, overloaded operators, and inline functions) are not
supported.

Function defined inline after use as extern
Functions cannot become inline after they have already been
used. Either move the inline definition forward in the file or
delete it entirely.

Compi/e-time error Function definition cannot be a Typedef'ed declaration
In ANSI C a function body cannot be defined using a typedef
with a function Type.

Compi/e-time error Function function cannot be static
Only ordinary member functions and the operators new and
delete can be declared static. Constructors, destructors and
other operators must not be static.

Compile-time error Function function should have a prototype
A function was called with no prototype in scope.

In C, int faa () ; is not a prototype, but int faa (int) ; is, and so
is int faa (void) ;. In C++, int faa () ; is a prototype, and is the
same as int faa (void) ;. In C, prototypes are recommended for all
functions. In C++, prototypes are required for all functions. In
all cases, a function definition (a function header with its body)
serves as a prototype if it appears before any other mention of
the function.

Compile-time warning Function should return a value
This function was declared (maybe implicitly) to return a val­
ue. A return statement was found without a return value or the
end of the function was reached without a return statement
being found. Either return a value or declare the function as
void.

Compi/e-time error Function should return a value

Appendix A, Error messages

Your source file declared the current function to return some
type other than void in C++ (or int in C), but the compiler
encountered a return with no value. This is usually some sort
of error. In C int functions are exempt, since in old versions of

187

I

C there was no void type to indicate functions which return
nothing.

Compile-time error Functions function1 and function2 both use the same dispatch
number

Dynamically dispatched virtual table (DDVT) problem.

Compile-time warning Functions containing local destructors are not expanded inline in
function function

You've created an inline function for which Borland C++ turns
off inlining. You can ignore this warning if you like; the
function will be generated out of line.

Compile-time warning Functions containing reserved word are not expanded inline
Functions containing any of the reserved words do, for, while,
goto, switch, break, continue, and case cannot be expanded
inline, even when specified as in line. The function is still per­
fectly legal, but will be treated as an ordinary static (not global)
function.

Compile-time error Functions may not be part of a struct or union
This C struct or union field was declared to be of type function
rather than pointer to function. Functions as fields are allowed
only in C++.

TUNK fatal error General error
General error in library file filename in module module near
module file offset Oxyyyyyyyy.
General error in module module near module file offset
Oxyyyyyyyy

TLINK gives as much information as possible about what
processing was happening at the time of the unknown fatal
error.

Compile-time error Global anonymous union not static
In C++, a global anonymous union at the file level must be
static.

Compile-time error Goto bypasses initialization of a local variable
In C++ it is illegal to bypass the initialization of a local variable
in any way. In this case, there is a goto which can transfer
control past this local variable.

Compile-time error Goto statement missing label
The goto keyword must be followed by an identifier.

188 T 00/5 and Utilities Guide

TLINK fatal error

Compile-time error

TLINK warning

01
]!a

Compile-time error

Compile-time warning

Compile-time warning

Group group exceeds 64K
A group exceeded 64K bytes when the segments of the group
were combined.

Group overflowed maximum size: group
The total size of the segments in a group (for example,
DGROUP) exceeded 64K.

Group group1 overlaps group group2

This means that TLINK has encountered nested groups. This
warning only occurs when overlays are used or when linking a
Windows program.

specifier has already been included
This t~pe specifier occurs more than once in this declaration.
Delete or change one of the occurrences.

Hexadecimal value contains more than 3 digits
Under older versions of C, a hexadecimal escape sequence
could contain no more than three digits. The ANSI standard
allows any number of digits to appear as long as the value fits
in a byte. This warning results when you have a long
hexadecimal escape sequence with many leading zero digits
(such as "\x00045"). Older versions of C would interpret such
a string differently.

function1 hides virtual function function2
A virtual function in a base class is usually overridden by a
declaration in a derived class. In this case, a declaration with
the same name but different argument types makes the virtual
functions inaccessible to further derived classes.

Compile-time error Identifier expected
An identifier was expected here, but not found. In C, this is in a
list of parameters in an old-style function header, after the re­
served words struct or union when the braces are not present,
and as the name of a member in a structure or union (except for
bit fields of width 0). In C++, an identifier is also expected in a
list of base classes from which another class is derived,
following a double colon (::), and after the reserved word
operator when no operator symbol is present.

Compile-time error Identifier identifier cannot have a type qualifier
A C++ qualifier class::identifier may not be applied here. A
qualifier is not allowed on typedef names, on function declara­
tions (except definitions at the file level), on local variables or

Appendix A, Error messages 189

parameters of functions, or on a class member except to use its
own class as a qualifier (redundant but legal).

Compile-time error If statement missing (
In an if statement, the compiler found no left parenthesis after
the if keyword.

Compile-time error If statement missing)
In an if statement, the compiler found no right parenthesis after
the test expression.

MAKE error If statement too long
Ifdef statement too long
Ifndef statement too long

An If, Ifdef, or Ifndef statement has exceeded 4,096 characters.

TUB warning ignored module, path is too long
The path to a specified .obj or .lib file is greater than 64
characters. The max path to a file for TLIB is 64 characters.

Compile-time error Illegal character character (Ox value)
The compiler encountered some invalid character in the input
file. The hexadecimal value of the offending character is
printed. This can also be caused by extra parameters passed to
a function macro.

MAKE error Illegal character in constant expression expression
MAKE encountered a character not allowed in a constant
expression. If the character is a letter, this probably indicates a
misspelled identifier.

TUNK fatal error Illegal group definition: group in module module
This error results from a malformed GRPDEF record in an .OBJ
file. This latter case could result from custom-built .OBJ files or
a bug in the translator used to generate the .OBJ file. If this
occurs in a file created by Borland C++, recompile the file. If
the error persists, contact Borland.

Compile-time error Illegal initialization
In C, initializations must'be either a constant expression, or else
the address of a global extern or static variable plus or minus a
constant.

MAKE or compile-time error Illegal octal digit
An octal constant was found containing a digit of 8 or 9.

Compile-time error Illegal parameter to _emit_
You supplied an argument to emit which is not a constant or an
address.

190 Tools and Utilities Guide

Compi/e-time error

Compile-time error

Compile-time error

Compile-time error

Compile-time error

Compile-time error

Compi/e-time warning

Compi/e-time error

TLlNK error

Appendix A, Error messages

Illegal pointer subtraction
This is caused by attempting to subtract a pointer from a non­
pointer.

Illegal structure operation
In C or C++, structures may be used with dot (.), address-of
(&), or assignment (=) operators, or be passed to or from
functions as parameters. In C or C++, structures can also be
used with overloaded operators. The compiler encountered a
structure being used with some other operator.

Illegal to take address of bit field
It is not legal to take the address of a bit field, although you can
take the address of other kinds of fields.

Illegal use of floating point
Floating-point operands are not allowed in shift, bitwise
Boolean, indirection (*), or certain other operators. The
compiler found a floating-point operand with one of these
prohibited operators.

Illegal use of member pointer
Pointers to class members can only be used with assignment,
comparison, the .*, ->*, ?:, && and II operators, or passed as
arguments to functions. The compiler has encountered a
member pointer being used with a different operator.

Illegal use of pointer
Pointers can only be used with addition, subtraction, assign­
ment, comparison, indirection (*) or arrow (-». Your source file
used a pointer with some other operator.

III-formed pragma
A pragma does not match one of the pragmas expected by the
Borland C++ compiler.

Implicit conversion of type1 to type2 not allowed
When a member function of a class is called using a pointer to a
derived class, the pointer value must be implicitly converted to
point to the appropriate base class. In this case, such an implicit
conversion is illegal.

Imported reference from a VIRDEF to symbol
The linker does not currently support references from VIRDEFs
to symbols that are imported from dynamically-linked
libraries. If you have an inline function in an executable which

191

192

references a static data member of a class in a DLL, take the
function out of the line.

Compile-time error Improper use of typedef identifier
Your source file used a typedef symbol where a variable should
appear in an expression. Check for the declaration of the sym­
bol and possible misspellings.

TLINK fatal error filename (linenum): Incompatible attribute
TLINK encountered incompatible segment attributes in a
CODE or DATA statement. For instance, both PRELOAD and
LOADONCALL can't be attributes for the same segment.

Compile-time error Incompatible type conversion
The cast requested can't be done. Check the types.

MAKE fatal error Incorrect command-line argument: argument
You've used incorrect command-line arguments.

Compile-time error Incorrect command-line option: option
The compiler did not recognize the command-line parameter as
legal.

Compile-time error Incorrect configuration file option: option
The compiler did not recognize the configuration file param­
eter as legal; check for a preceding hyphen (-).

Compile-time error Incorrect number format
The compiler encountered a decimal point in a hexadecimal
number.

Compile-time error Incorrect use of default
The compiler found no colon after the default keyword.

Compile-time warning Initializing enumeration with type
You're trying to initialize an enum variable to a different type.
For example,

enurn count { zero, one, two} x = 2;

will result in this warning, because 2 is of type int, not type
enum count. It is better programming practice to use an enum
identifier instead of a literal integer when assigning to or
initializing enum types.

This is an error, but is reduced to a warning to give existing
programs a chance to work.

Tools and Utilities Guide

Compile-time error Inline assembly not allowed in inline and template functions
The compiler cannot handle inline assembly statements in a
C++ inline or template function. You could eliminate the inline
assembly code or, in case of an inline function, make this a
macro, or remove the inline storage class.

MAKE error Int and string types compared
You have tried to compare an integer operand with a string
operand in an !if or !elif expression.

TUNK fatal error Internal linker error errorcode
An error occurred in the intemallogic of TLINK. This error
shouldn't occur in practice, but is listed here for completeness
in the event that a more specific error isn't generated. If this
error persists, write down the errorcode number and contact
Borland.

Compile-time error Invalid combination of opcode and operands

TUNK warning

10
~

TUNK error

Compile-time error

The built-in assembler does not accept this combination of
operands. Possible causes are:

IJ There are too many or too few operands for this assembler
opcode; for example, INC AX,BX, or MOV AX.

II The number of operands is correct, but their types or order
do not match the opcode; for example DEC 1, MOV AX,CL,
or MOV 1,AX.

Invalid entry at xxxxh

This error indicates that a necessary entry was missing from
the entry table of a Windows executable file. The application
may not work in real mode unless you fix the code and data.

Invalid entry point offset
This message occurs only when modules with 32-bit records
are linked. It means that the initial program entry point offset
exceeds the DOS limit of 64K. '

Invalid indirection
The indirection operator (*) requires a non-void pointer as the
operand.

TUNK fatal error Invalid initial stack offset
This message occurs only when modules with 32-bit records
are linked. It means that the initial stack pointer value exceeds
the DOS limit of 64K.

Appendix A, Error messages 193

194

TUNK fatal error Invalid limit specified for code segment packing
This error occurs if you used the fP option or IDE Options I
Linker I Settings I Pack code segments and specified a size limit
that was out of range. To be valid, the size limit must be
between 1 and 65536 bytes; the default is 8192.

Compile-time error Invalid macro argument separator
In a macro definition, arguments must be separated by
commas. The compiler encountered some other character after
an argument name.

TUB warning invalid page size value ignored
Invalid page size is given. The page size must be a power of 2,
and it may not be smaller than 16 or larger than 32,768.

Compile-time error Invalid pointer addition
Your source file attempted to add two pointers together.

Compile-time error Invalid register combination (e.g. [BP+BX])
The built-in assembler detected an illegal combination of
registers in an instruction. Valid index register combinations
are [BX], [BP], [SI], [01], [BX+SI], [BX+DI], [BP+SI], and [BP+OI].
Other index register combinations (such as [AX], [BP+BX], and
[SI+DX]) are not allowed.

-.. Local variables (variables declared in procedures and
functions) are usually allocated on the stack and accessed via
the BP register. The assembler automatically adds [BP] in
references to such variables, so even though a construct like
Local[BX] (where Local is a local variable) appears valid, it is
not since the final operand would become Local[BP+BX].

TUNK fatal error Invalid segment definition in module module
The compiler produced a flawed object file. If this occurs in a
file created by Borland C++, recompile theiile. If the problem
persists, contact Borland.

TUNK error Invalid size specified for segment alignment

This error occurs if an invalid value is specified for the
Options I Linker I Settings I Segment alignment (or fA) option.
The value specified must be an integral multiple of 2 and less
than 64K. Common values are 16 and 512. This error only
occurs when linking for Windows.

Tools and Utilities Guide

Compile-time error Invalid template argument list
In a template declaration, the keyword template must be
followed by a list of formal arguments enclosed within the <
and> delimiters; an illegal template argument list was found.

Compile-time error Invalid template qualified name template::name
When defining a template class member, the actual arguments
in the template class name that is used as the left operand for
the :: operator must match the formal arguments of the
template class. For example:

template <class T> class X
{

void f();
};

template <class T> void X<T>::f(){}

The following would be illegal:

template <class T> void X<int>: :f() {}

Compile-time error Invalid use of dot
An identifier must immediately follow a period operator (.).

Compile-time error Invalid use of template template
Outside of a template definition, it is illegal to use a template
class name without specifying its actual arguments. For
example, you can use vector<int> but not vector.

Compile-time fatal error Irreducible expression tree
This is a sign of some form of compiler error. Some expression
on the indicated line of the source file has caused the code gen­
erator to be unable to generate code. Whatever the offending
expression is, it should be avoided. Notify Borland if the com­
piler ever encounters this error.

Compile-time error base is an indirect virtual base class of class
A pointer to a C++ member of the given virtual base class
cannot be created; an attempt has been made to create such a
pointer (either directly, or through a cast). See the -Vv switch in
the User's Guide.

Compile-time warning identifier is assigned a value that is never used
The variable appears in an assignment, but is never used
anywhere else in the function just ending. The warning is
indicated only when the compiler encounters the closing brace.

Appendix A, Error messages 195

196

Compile-time warning identifier is declared as both external and static
This identifier appeared in a declaration that implicitly or
explicitly marked it as global or external, and also in a static
declaration. The identifier is taken as static. You should review
all declarations for this identifier.

TLlNK error or warning symbol is duplicated in module module
There is a conflict between two symbols (either public or
communal) defined in the same module. An error occurs if
both are encountered in an .OBI file. A warning is issued if
TLINK finds the duplicates in a library; in this case, TLINK
uses the first defhlition.

Compile-time error constructor is not a base class of class
A C++ class constructor class is trying to call a base class
constructor constructor, or you are trying to change the access
rights of class::constructor. constructor is not a 'base class of class.
Check your declarations.

Compile-time error identifier is not a member of struct
You are trying to reference identifier as a member of struct, but
it is not a member. Check your declarations.

Compile-time error identifier is not a non-static data member and can't be initialized
here

Only data members can be initialized in the initializers of a
constructor. This message means that the list includes a static
member or function member.

Compile-time error identifier is not a parameter
In the parameter declaration section of an old-style function
definition, identifier is declared but is not listed as a parameter.
Either remove the declaration or add identifier as a parameter.

Compile-time error identifier is not a public base class of classtype
The right operand of a .*, ->*, or ::operator was not a pointer to.
a member of a class that is either identical to or an
unambiguous accessible base class of the left operand's class
type.

Compile-time error member is not accessible
You are trying to reference C++ class member member, but it is
private or protected and cannot be referenced from this func­
tion. This sometimes happens when attempting to call one
accessible overloaded member function (or constructor), but
the arguments match an inaccessible function. The check for

Tools and Utilities Guide

Compile-time error

TUB warning

TUB error

TUNK fatal error

overload resolution is always made before checking for
accessibility. If this is the problem, try an explicit cast of one or
more parameters to select the desired accessible function.

Last parameter of operator must have type int
When a postfix operator++ or operator- ± is declared, the last
parameter must be declared with the type int.

library contains COMDEF records - extended dictionary not
created

An object record being added to a library contains a COMDEF
record. This is not compatible with the extended dictionary
option.

library too large, please restart with IP size
library too large, restart with library page size size

The library being created could not be built with the current
library page size. You can set the library page size with the IP
command-line switch detailed in Chapter 3, "TLIB: The Turbo
librarian" in the Tools and Utilities Guide. In the IDE, the library
page size can be set from the Options I Librarian dialog box.

Limit of 254 segments for new executable file exceeded
The new executable file format only allows for 254 segments.
Examine the map file. Usually, one of two things cause the
problem. If the application is large model, the code segment
packing size could be so small that there are too many code
segments. Increasing the code segment packing size with the
IP option could help.

The other possibility is that you have a lot of far data segments
with only a few bytes of data in them. The map file will tell you
if this is happening. In this case, reduce the number of far data
segments.

Compile-time error Linkage specification not allowed
Linkage specifications such as extern "C" are only allowed at
the file level. Move this function declaration out to the file
level.

TUNK fatal error Linker stacl< overflow

Appendix A, Error messages

TLINK uses a recursive procedure for marking modules to be
included in an executable image from libraries. This procedure
can cause stack overflows in extreme circumstances. If you get
this error message, remove some modules from libraries,
include them with the object files in the link, and try again.

197

Compile-time error Lvalue required
The left hand side of an assignment operator must be an
addressable expression. These include numeric or pointer
variables, structure field references or indirection through a
pointer, or a subscripted array element.

DPMI server fatal error Machine not in database (run DPMIINST)
The Dos Protected Mode Interface (DPMI) server searched the
kernel's database and could not locate information about your
machine. Run DPMIINST (several times, if necessary) to
update the database. DPMIINST also generates a .DB file for
you to send to Borland. See also A20 line already enabled, so
test is meaningless on page 159.

Compile-time error Macro argument syntax error
An argument in a macro definition must be an identifier. The
compiler encountered some non-identifier character where an
argument was expected.

Compile-time error Macro expansion too long
A macro cannot expand to more than 4,096 characters.

MAKE error Macro expansion too long
A macro cannot expand to more than 4,096 characters. This
error often occurs if a macro recursively expands itself. A
macro cannot legally expand to itself.

MAKE fatal errors Macro substitute text string is too long
Macro replace text string is too long

The macro substitution or replacement text string overflowed
MAKE's internal buffer of 512 bytes.

Compile-time error main must have a return type of int
In C++, function main has special requirements, one of which is
that it cannot be declared with any return type other than int.

Compile-time error Matching base class function for function has different dispatch
number.

If a DDVT function is declared in a derived class, the matching
base class function must have the same dispatch number as the
derived function.

Compile-time error Matching base class function for function is not dynamic
If a DDVT function is declared in a derived class, the matching
base class function must also be dynamic.

198 Tools and Utilities Guide

Compi/e-time warning Maximum precision used for member pointer type type
When a member pointer type is declared, its class has not been
fully defined, and the -Vmd option has been used, the compiler
has to use the most general (and the least efficient)
representation for that member pointer type. This may not only
cause less efficient code to be generated (and make the member
pointer type unnecessarily large), but it can also cause
problems with separate compilation; see the -Vm compiler
switch discussion in Chapter 5, "The command-line compiler"
in the User's Guide for details.

Compile-time error Member function must be called or its address taken
When a member function is used in an expression, either it
must be called, or its address must be taken using the &
operator. In this case, a member function has been used in an
illegal context.

Compile-time error Member identifier expected
The name of a structure or C++ class member was expected
here, but not found. The right side of a dot (.) or arrow (-»
operator must be the name of a member in the structure or
class on the left of the operator.

Compi/e-time error Member is ambiguous: member1 and member2
You must qualify the member reference with the appropriate
base class name. In C++ class class, member member can be
found in more than one base class, and was not qualified to
indicate which was meant. This happens only in multiple
inheritance, where the member name in each base class is not
hidden by the same member name in a derived class on the
same path. The C++ language rules require that this test for
ambiguity be made before checking for access rights (private,
protected, public). It is therefore possible to get this message
even though only one (or none) of the members can be
accessed.

Compi/e-time error Member member cannot be used without an object
This means that the user has written class::member where
member is an ordinary (non-static) member, and there is no class
to associate with that member. For example, it is legal to write
obj.class::member, but not to write class::member.

Compi/e-time error Member member has the same name as its class

Appendix A, Error messages

A static data member, enumerator, member of an anonymous
union, or nested type may not have the same name as its class.

199

I

I
I

Only a member function or a non-statiC member may have a
name that is identical to its class.

Compile-time error Member member is initialized more than once
In a C++ class constructor, the list of initializations following
the constructor header includes the same member name more
than once.

Compile-time error Member pointer required on right side of .* or ->*
The right side of a C++ dot-star (.*) or an arrow-star (->*)
operator must be declared as a pointer to a member of the class
specified by the left side of the operator. In this case, the right
side is not a member pointer.

TUB warning Memory full listing truncated!
The librarian has run out of memory creating a library listing
file. A list file will be created but is not complete .

. Compile-time error Memory reference expected
The built-in assembler requires a memory reference. Most
likely you have forgotten to put square brackets around an
index register operand; for example, MOV AX,BX+SI instead of
MOV AX,[BX+SI].

Compile-time error Misplaced break
The compiler encountered a break statement outside a switch
or looping construct.

Compile-time error Misplaced continue
The compiler encountered a continue statement outside a
looping construct.

Compile-time error Misplaced decimal point
The compiler encountered a decimal point in a floating-point
constant as part of the exponent.

Compile-time error Misplaced elif directive
The compiler encountered an #elif directive without any
matching #if, #ifdef, or #ifndef directive.

MAKE error Misplaced elif statement
An !elif directive is missing a matching !if directive.

Compile-time error Misplaced else
The compiler encountered an else statement without a
matching if statement. An extra else statement could cause this
message, but it could also be caused by an extra semicolon,
missing braces, or some syntax error in a previous if statement.

200 Tools and Utilities Guide

Compile-time error Misplaced else directive
The compiler encountered an #else directive without any
matching #if, #ifdef, or #ifndef directive.

MAKE error Misplaced else statement
There's an !else directive without any matching !if directive.

Compile-time error Misplaced endif directive
The compiler encountered an #endif directive without any
matching #if, #ifdef, or #ifndef directive.

MAKE error Misplaced endif statement
There's an !endif directive without any matching !if directive.

TUNK fatal error filename (linenum): Missing internal name
In the IMPORTS section of the module definition file there was
a reference to an entry specified via module name and ordinal
number. When an entry is specified by ordinal number an
internal name must be assigned to this import definition. It is
this internal name that your program uses to refer to the
imported definition. The syntax in the module definition file
should be:

<internalname>=<modulename>.<ordinal>

Compile-time warning Mixing pointers to signed and unsigned char
You converted a signed char pointer to an unsigned char
pointer, or vice versa, without using an explicit cast. (Strictly
speaking, this is incorrect, but it is often harmless.)

Compile-time error Multiple base classes require explicit class names
In a C++ class constructor, each base class constructor call in
the constructor header must include the base class name when
there is more than one immediate base class.

Compile-time error Multiple declaration for identifier
This identifier was improperly declared more than once. This
might be caused by conflicting declarations such as int ai

double ai, a function declared two different ways, or a label
repeated in the same function, or some declaration repeated
other than an extern function or a simple variable (in C).

Compile-time error identifier must be a member function

Appendix A, Error messages

Most C++ operator functions may be members of classes or
ordinary nonmember functions, but certain ones are required
to be members of classes. These are operator =, operator ->,
operator 0, and type conversions. This operator function is not
a member function but should be.

201

Compile-time error identifier must be a member function or have a parameter of
class type

MostC++ operator functions must have an implicit or explicit
parameter of class type. This operator function was declared'
outside a class and does not have an explicit parameter of class
type.

Compile-time error identifier must be a previously defined class or struct
You are attempting to declare identifier to be a base class, but
either it is not a class or it has not yet been fully defined. Cor­
rect the name or rearrange the declarations.

Compile-time error identifier must be a previously defined enumeration tag
This declaration is attempting to reference identifier as the tag of
an enum type, but it has not been so declared. Correct the
name, or rearrange the declarations.

Compile-time error function must be declared with no parameters
This C++ operator function was incorrectly declared with
parameters.

Compile-time error function must be declared with one parameter
This C++ operator function was incorrectly declared with more
than one parameter.

Compile-time error operator must be declared with one or no parameters
When operator++ or operator - - is declared as a member
function, it must be declared to take either no parameters (for
the prefix version of the operator) or one parameter of type int
(for the postfix version).

Compile-time error operator must be declared with one or two parameters
When operator++ or operator - - is declared as a nonmember
function, it must be declared to take either one parameter (for
the prefix version of the operator) or two parameters (the
postfix version).

Compile-time error function must be declared with two parameters
This C++ operator function was incorrectly declared with other
than two parameters.

Compile-time error Must take address of a memory location
Your source file used the address-of operator (&) with an
expression which cannot be used that way; for example, a
register variable (in C).

202 Tools and Utilities Guide

Compile-time error Need an identifier to declare
In this context, an identifier was expected to complete the
declaration. This might be a typedef with no name, or an extra
semicolon at file level. In C++, it might be a class name
improperly used as another kind of identifier.

IDE debugger error 'new' and 'delete' not supported
In integrated debugger expression evaluation, the new and
delete oJ?erators are not supported.

TUNK fatal error New executable header overflowed 64K
The size of all the components of the new executable header of
a Windows application is greater than 64K. Usually this is
caused by a very large RESIDENTNAME table. If your
application exports many functions, try exporting more of
them by ordinal, rather than by name.

Compile-time error No: following the?
The question mark (?) and colon (:) operators do not match in
this expression. The colon may have been omitted, or paren­
theses may be improperly nested or missing.

TUNK warning No automatic data segment

~ No group named DGROUP was found. Because the Borland
C++ initialization files define DGROUP, you will only see this
error if you don't link with an initialization file and your
program doesn't define DGROUP. Windows uses DGROUP to
find the local data segment. The DGROUP is required for Win­
dows applications (but not DLLs) unless DATA NONE is
specified in the module definition file.

Compile-time error No base class to initialize
This C++ class constructor is trying to implicitly call a base
class constructor, but this class was declared with no base
classes. Check your declarations.

MAKE error No closing quote
,There is no closing quote for a string expression in a !if or !elif
expression.

Compile-time warning No declaration for function function

Appendix A, Error messages

You called a function without first declaring that function. In C,
you can declare a function without presenting a prototype, as
in "int funcO;". In C++, every function declaration is also a
prototype; this example is equivalent to "int func(void);". The
declaration can be either classic or modern (prototype) style.

203

•

204

Compile-time error No file name ending
The file name in an #include statement was missing the correct
closing quote or angle bracket.

MAKE error No file name ending
The file name in an !include statement is missing the correct
closing quote or angle bracket.

Compile-time error No file names given
The command line of the Borland C++ command-line compiler
(BCC) contained no file names. You have to specify a source file
name.

MAKE error No macro before =
You must give a macro a name before you can assign it a value.

MAKE error No match found for wildcard expression

TUNK warning

10
Eli

TUNK warning

TUNK warning

There are no files matching the wildcard expression for MAKE
to expand. For example, if you write

prog.exe: *.obj

MAKE sends this error message if there are no files with the
extension .OBI in the current directory.

No module definition file specified: using defaults

TLINK was invoked with one of the Windows options, but no
module definition file was specified. See page 72 for more
information about module definition file defaults.

No program starting address defined

This warning means that no module defined the initial starting
address of the program. This is almost certainly caused by
forgetting to link in the initialization module COx.OBI. This
warning should not occur when linking a Windows DLL.

No stack
This warning is issued if no stack segment is defined in any of
the object files or in any of the libraries included in the link.
This is a normal message for the tiny memory model in
Borland C++, or for any application program that will be
converted to a .COM file. For other programs (except DLLs),
this indicates an error.

~f a BorlandC++ program produces this message for any but
the tiny memory model, make sure you are using the correct
COx startup object files.

Tools and Utilities Guide

TLlNK warning No stub for fixup at segmentxxxxh in module module
This error occurs when the target for a fixup is in an overlay
segment, but no stub is found for a target external. This is
usually the result of not making public a symbol in an overlay
that is referenced from the same module.

MAKE fatal error No terminator specified for in-line file operator

Compi/e-time error

This message used only by
IDE debugger.

Compile-time warning

The make file contains either the && or« command-line
operators to start an in-line file, but the file is not terminated.

No type information
Debugger has no type information for this variable. Module
may have been compiled without debug switch turned on, or
by another compiler or assembler.

Non-const function function called for const object
A non-const member function was called for a const object.
This is an error, but was reduced to a warning to give existing
programs a chance to work.

Compile-time warning Nonportable pointer comparison
Your source file compared a pointer to a non-pointer other than
the constant zero. You should use a cast to suppress this
warning if the comparison is proper.

Compi/e-time error Nonportable pointer conversion
An implicit conversion between a pointer and an integral type
is required, but the types are not the same size. This cannot be
done without an explicit cast. This conversion may not make
any sense, so be sure this is what you want to do.

Compile-time warning Nonportable pointer conversion
A nonzero integral value is used in a context where a pointer is
needed or where an integral value is needed; the sizes of the
integral type and pointer are the same. Use an explicit cast if
this is what you really meant to do.

Compile-time error Nontype template argument must be of scalar type
A nontype formal template argument must have scalar type; it
can have an integral, enumeration, or pointer type.

Compile-time error Non-virtual function function declared pure
Only virtual functions can be declared pure, since derived
classes must be able to override them.

Compile-time warning Non-volatile function function called for volatile object
In C++, a class member function was called for a volatile object
of the class type, but the function was not declared with

Appendix A, Error messages 205

I

Compile-time error

This message used only by
IDE debugger.

Compile-time error

MAKE fatal error

TUNK fatal error

TUB error

DPMI server fatal error

TUB warning

Run-time error

206

"volatile" following the function header. Only a volatile
member function may be called for a volatile object.

Not a valid expression format type
Invalid format specifier following expression in the debug
evaluate or watch window. A valid format specifier is an
optional repeat value followed by a format character (c, d, f[nl,
h, x, m, p, r, or s).

Not an allowed type
Your source file declared some sort of forbidden type; for
example, a function returning a function or array.

Not enough memory
All your working storage has been exhausted.

Not enough memory
There is not enough memory to run TLINK. Try reducing the
size of any RAM disk or disk cache currently active. Then run
TLINK again. If you are running real mode, try using the
MAKE -S option, removing TSRs and network drivers. If you
are using protected mode MAKE, try reducing the size of any
ram disk or disk cache you may have active.

Not enough memory for command-line buffer
This error occurs when TLIB runs out of memory.

not enough memory for PM init
There was not enough extended memory available for the
DPMI server to initialize protected mode.

module not found in library
An attempt to perform either a '_' or '*' on a library has been
made and the indicated object does not exist in the library.

Null pointer assignment
When a small or medium memory model program exits, a
check is made to determine if the contents of the first few bytes
within the program's data segment have changed. These bytes
would never be altered by a working program. If they have
been changed, the message "Null pointer assignment" is
displayed to inform you that (most likely) a value was stored to
an uninitialized pointer. The program may appear to work
properly in all other respects; however, this is a serious bug
which should be attended to immediately. Failure to correct an
uninitialized pointer can lead to unpredictable behavior
(including "locking" the computer up in the large, compact,

Tools and Utilities Guide

and huge memory models). You can use the integrated
debugger to track down null pointers.

Compile-time error Numeric constant too large
String and character escape sequences larger than hexadecimal
\xFF or octal \377 cannot be generated. Two-byte character
constants may be specified by using a second backslash. For
example, \xOD\xOA represents a two-byte constant. A numeric
literal following an escape sequence should be broken up like
this:

printf("\xOD" "12345");

This prints a carriage return followed by 12345.

TUB error object module filename is invalid
The librarian could not understand the header record of the
object module being added to the library and has assumed that
it is an invalid module.

Compile-time error Objects of type type cannot be initialized with {}
Ordinary C structures can be initialized with a set of values
inside braces. c++ classes can only be initialized with construc­
tors if the class has constructors, private members, functions or
base classes which are virtual.

MAKE error Only «KEEP or «NO KEEP
You have specified something besides KEEP or NOKEEP when
closing a temporary inline file.

Compile-time error Only member functions may be 'const' or 'volatile'
Something other than a class member function has been
declared const and/or volatile.

Compile-time error Only one of a set of overloaded functions can be "e"
C++ functions are by default overloaded, and the compiler
assigns a new name to each function. If you wish to override
the compiler's assigning a new name by declaring the function
extern "C", you can do this for only one of a set of functions
with the same name. (Otherwise the linker would find more
than one global function with the same name.)

Compile-time error Operand of delete must be non-const pointer
It is illegal to 'delete a constant pointer value using operator
delete.

Compile-time error Operator [] missing]
The C++ operator[] was declared as operator [. You must add
the missing] or otherwise fix the declaration.

Appendix A, Error messages 207

I

Compile-time error operator -> must return a pointer or a class
The C++ operator-> function must be declared to either return
a class or a pointer to a class (or struct or union). In either case,
it must be something to which the -> operator can be applied.

Compile-time error operator delete must return void
This C++ overloaded operator delete wa? declared in some
other way.

Compile-time error Operator must be declared as function
An overloaded operator was declared with something other
than function type.

Compile-time error operator new must have an initial parameter of type size_t
Operator new can be declared with an arbitrary number of
parameters, but it must always have at least one, which is the
amount of space to allocate.

Compile-time error operator new must return an object of type void *
The C++ overloaded operator new was declared another way.

Compile-time error Operators may not have default argument values
It is illegal for overloaded operators to have default argument
values.

Compile-time fatal error Out of memory
The total working storage is exhausted. Compile the file on a
machine with more memory. When running under Windows,
close one or more applications to free up memory.

TUB error Out of memory
For any number of reasons, TLIB or Borland C++ ran out of
memory while building the library: For many specific cases a
more detailed message is reported, leaving "Out of memory"
to be the basic catchall for general low memory situations.
When running under Windows, close one or more applications
to free up memory.

If this message occurs when public symbol tables grow too
large, you must free up memory. For the comnland line this
could involve removing TSR's or device drivers using real
mode memory. In the IDE, some additional memory can be
gained by closing editors. When running under Windows,
close one or more applications to free up memory.

208 Tools and Utilities Guide

TLiNK fatal error Out of memory
TLINK has run out of dynamically allocated memory needed
during the link process. This error is a catchall for running into
a TLINK limit on memory usage. This usually means that too
many modules, externals, groups, or segments have been
defined by the object files being linked together. You can try
reducing the size of RAM disks and/or disk caches that may be
active. If running under Windows, close one or more
applications to free up memory.

TLlB error out of memory creating extended dictionary
The librarian has run out of memory creating an extended
dictionary for a library. The library is created but will not have
an extended dictionary.

TLiB error out of memory reading LElLIDATA record from object module
The librarian is attempting to read a record of data from the
object module, but it cannot get a large enough block of
memory. If the module that is being added has a large data
segment or segments, it is possible that adding the module
before any other modules might resolve the problem. By
adding the module first, there will be memory available for
holding public symbol and module lists later.

TLiB error Out of space allocating per module debug struct
The librarian ran out of memory while allocating space for the
debug information associated with a particular object module.
Removing debugging information from some modules being
added to the library might resolve the problem.·

TLlB error Output device is full
The output device is full, usually no space left on the disk.

TLiNK warning Overlays generated and no overlay manager included
This warning is issued if overlays are created but the symbol
__ OVRTRAP __ is not defined in any of the object modules or
libraries linked in. The standard overlay library
(OVERLAY.LIB) defines this symbol.

TLiNK warning Overlays ignored in new executable image
o This error occurs if you attempt to link a Windows program
~ with the b option on. Windows executables can't be overlaid,

although, with discardable code segments, you should be able
to achieve a similar effect.

Appendix A, Error messages 209

•

Compile-time error Overlays only supported in medium, large, and huge memory
models

As explained in Chapter 9,"005 memory management" of the
Programmer's Guide, only non-Windows programs using the
medium, large, or huge memory models may be overlaid.

Compile-time warning overload is now unnecessary and obsolete

Compile-time error

Compile-time error

Compile-time error

This message used only by
IDE debugger.

Compile-time warning

Help project message

210

Early versions of C++ required the reserved word overload to
mark overloaded function names. C++ now uses a "type-safe
linkage" scheme, whereby all functions are assumed over­
loaded unless marked otherwise. The use of overload should
be discontinued.

Overloadable operator expected
Almost all C++ operators can be overloaded. The only ones
that can't be overloaded are the field-selection dot (.), dot-star
(.*), double colon (::), and conditional expression (?:). The
preprocessor operators (# and ##) are not C or C++ language
operators and thus cannot be overloaded. Other nonoperator
punctuation, such as semicolon (;), of course, cannot be
overloaded.

Overloaded function name ambiguous in this context
The only time an overloaded function name can be used
without actually calling the function is when a variable or
parameter of an appropriate type is initialized or assigned. In
this case an overloaded function name has been used in some
other context.

Overloaded function resolution not supported
In integrated debugger expression evaluation, resolution of
overloaded functions or operators is not supported, not even to
take an address.

Overloaded prefix 'operator operator' used as a postfix operator
With the latest specification of C++, it is now possible to
overload both the prefix and postfiX versions of the ++ and - -
operators. To allow older code to compile, whenever only the
prefix operator is overloaded, but is used in a postfix context,
Borland C++ uses the prefix operator and issues this warning.

P1001 Unable to read file filename
The file specified in the project file is unreadable. This is a DOS
file error.

Tools and Utilities Guide

Help project message P1003 Invalid path specified in Root option
The path specified by the Root option cannot be found. The
compiler uses the current working directory.

Help project message P1005 Path and filename exceed limit of 79 characters
The absolute pathname, or the combined root and relative
pathname, exceed the DOS limit of 79 characters. The file is
skipped.

Help project message P1007 Root path exceeds maximum limit of 66 characters
The specified root pathname exceeds the DOS limit of 66
characters. The pathname is ignored and the compiler uses the
current working directory.

Help project message P1009 [FILES] section missing
The [Files] section is required. The compilation is aborted.

Help project message P1011 Option optionname previously defined
The specified option was defined previously. The compiler
ignores the attempted redefinition.

Help project message P1 013 Project file extension cannot be .HLP
You cannot specify that the compiler use a project file with the
.HLP extension. Normally, project files are given the .HPJ
extension.

Help project message P1 015 Unexpected end-of-file
The compiler has unexpectedly come to the end of the project
file. There might be an open comment in the project file or an
included file.

Help project message P1 017 Parameter exceeds maximum length of 128 characters
An option, context name or number, build tag, or other
parameter on the specified line exceeds the limit of 128
characters. The line is ignored.

Help project message P1021 Context number already used in [MAP] section
The context number on the specified line in the project file was
previously mapped to a different context string. The line is
ignored.

Help project message P1023 Include statements nested too deeply
The #include statement on the specified line has exceeded the
maximum of five include levels.

Help project message P1025 Section heading sectionname unrecognized
A section heading that is not supported by the compiler has
been used. The line is skipped.

Appendix A, Error messages 211

I

•

Help project message P1027 Bracket missing from section heading sectionname
The right bracket (D is missing from the specified section
heading. Insert the bracket and compile again.

Help project message P1029 Section heading missing
The section heading on the specified line is not complete. This
error is also reported if the first entry in the project file is not a
section heading. The compiler continues with the next line.

Help project message P1030 Section sectionname previously defined
A duplicate section has been found in the project file. The lines
under the duplicated section heading are ignored and the
compiler continues from the next valid section heading.

Help project message P1031 Maximum number of build tags exceeded
The maximum number of build tags that can be defined is 30.
The excess tags are ignored.

Help project message P1033 Duplicate build tag in [BUILDTAGS] section
A build tag in the [BUILDTAGS] section has been repeated
unnecessarily.

Help project message P1035 Build tag length exceeds maximum
The build tag on the specified line exceeds the maximum of 32
characters. The compiler skips this entry.

Help project message P1037 Build tag tagname contains invalid characters
Build tags can contain only alphanumeric characters or the
underscore C) character. The line is skipped.

Help project message P1039 [BUILDTAGS] section missing
The BUILD option declared a conditional build, but there is no
[BuildTags] section in the project file. All topics are included in
the build.

Help project message P1043 Too many tags in Build expression
The Build expression on the specified line has used more than
the maximum of 20 build tags. The compiler ignores the line.

Help project message P1045 [ALIAS] section found after [MAP] section
When used, the [Alias] section must precede the [Map] section
in the project file. The [Alias] section is skipped otherwise.

Help project message P1047 Context string contextname already assigned an alias
You cannot do: a=b then a=c<_>(A context string can only have
one alias.) The specified context string has previously been
aliased in the [Alias] section. The attempted reassignment on
this line is ignored.

212 Tools and Utilities Guide

Help project message P1049 Alias string alias name already assigned
You cannot do: a=b then b=c. An alias string cannot, in turn, be
assigned another alias.

Help project message P1051 Context string contextname cannot be used as alias string
You cannot do: a=b then c=a. A context string that has been
assigned an alias cannot be used later as an alias for another
context string.

Help project message P1053 Maximum number of font ranges exceeded
The maximum number of font ranges that can be specified is
five. The rest are ignored.

Help project message P1055 Current font range overlaps previously defined range
A font size range overlaps a previously defined mapping.
Adjust either font range to remove any overlaps. The second
mapping is ignored.

Help project message P1056 Unrecognized font name in Forcefont option
A font name not supported by the compiler has been
encountered. The font name is ignored and the compiler uses
the default Helvetica font.

Help project message P1057 Font name too long
Font names cannot exceed 20 characters. The font is ignored.

Help project message P1059 Invalid multiple-key syntax
The syntax used with a MUL TIKEY option is unrecognized. See
"Building the Help files" for the proper syntax.

Help project message P1061 Character already used
The specified keyword-table identifier is already in use. Choose
another character.

Help project message P1063 Characters 'K' and 'k' cannot be used
These characters are reserved for Help's normal keyword table.
Choose another character.

Help project message P1065 Maximum number of keyword tables exceeded
The limit of five keyword tables has been exceeded. Reduce the
number. The excess tables are ignored.

Help project message P1067 Equal sign missing
An option is missing its required equal sign on the specified
line. Check the syntax for the option.

Help project message P1069 Context string missing

Appendix A, Error messages

The line specified is missing a context string before an equal
sign.

213

I

214

Help project message P1071 Incomplete line in sectionname section
The entry on the specified line is not complete. The line is
skipped.

Help project message P1073 Unrecognized option in [OPTIONS] section
An option has been used that is not supported by the compiler.
The line is skipped.

Help project message P1075 Invalid build expression
The syntax used in the build expression on the specified line
contains one or more logical or syntax errors.

Help project message P1077 Warning level must be 1, 2, or 3
The WARNING reporting level can only be set to I, 2, or 3. The
compiler will default to full reporting (level 3).

Help project message P1079 Invalid compression option
The COMPRESS option can only be set to TRUE or FALSE. The
compilation continues without compression.

Help project message P1081 Invalid title string
The TITLE option defines a string that is null or contains more
than 32 characters. The title is truncated.

Help project message P1083 Invalid context identification number
The context number on the specified line is null or contains
invalid characters.

Help project message P1085 Unrecognized text
The unrecognizable text that follows valid text in the specified
line is ignored.

Help project message P1086 Invalid font-range syntax
The font-range definition on the specified line contains invalid
syntax. The compiler ignores the line. Check the syntax for the
MAPFONTSIZE option.

Help project message P1089 Unrecognized sort ordering
You have specified an ordering that is not supported by the
compiler. Contact Borland Technical Support for clarification of
the error.

Compile-time error Parameter names are used only with a function body
When declaring a function (not defining it with a function
body), you must use either empty parentheses or a function
prototype. A list of parameter names only is not allowed.

Example declarations include:

Tools and Utilities Guide

int func();
int func(int, int);

II declaration without prototype--OK
II declaration with prototype--OK

int func(int i, int j); II parameter names in prototype--OK
int func(i, j); II parameter names only--illegal

Compi/e-time error Parameter number missing name
In a function definition header, this parameter consisted only of
a type specifier number with no parameter name. This is not
legal in C. (It is allowed in C++, but there's no way to refer to
the parameter in the function.)

Compile-time warning Parameter parameter is never used
The named parameter, declared in the function, was never used
in the body of the function. This mayor may not be an error
and is often caused by misspelling the parameter. This warning
can also occur if the identifier is redeclared as an automatic
(local) variable in the body of the function. The parameter is
masked by the automatic variable and remains unused.

TUB error path - path is too long
This error occurs when the length of any of the library file or
module file's path is greater than 64.

Compi/e-time error Pointer to structure required on left side of -> or ->*
Nothing but a pointer is allowed on the left side of the arrow
(-» in C or C++. In C++ a ->* operator is allowed.

Compile-time warning Possible use of identifier before definition
Your source file used the named variable in an expression be­
fore it was assigned a value. The compiler uses a simple scan of
the program to determine this condition. If the use of a variable
occurs physically before any assignment, this warning will be
generated. Of course, the actual flow of the program may
assign the value before the program uses it.

Compile-time warning Possibly incorrect assignment

Appendix A, Error messages

This warning is generated when the compiler encounters an
assignment operator as the main operator of a conditional ex­
pression (that is, part of an if, while or do-while statement).
Usually, this is a typographical error for the equality operator.
To suppress this warning, enclose the assignment in
parentheses and compare the whole thing to zero explicitly.
Thus,

if (a = b) '"

should be rewritten as

if ((a = b) != 0)

215

I

TUNK error Program entry point may not reside in an overlay
Although almost all of an application can be overlaid, the
initial starting address cannot reside in an overlay. This error
usually means that an attempt was made to overlay the
initialization module COx.OBJ, for instance, by specifying the /0
option before the startup module.

TUB error public symbol in module module1 clashes with prior module
module2

A public symbol may only appear once in a library file. A
module which is being added to the library contains a public
symbol that is already in a module of the library and cannot be
added. The command-line message reports the module2 name.

TUB error public symbol in module filename clashes with prior module
A public symbol may only appear once in a library file. A
module which is being added to the library contains a public
symbol that is already in a module of the library and cannot be
added.

Help RTF message R2001 Unable to open bitmap file filename
The specified bitmap file is unreadable. This is a DOS file error.

Help RTF message R2003 Unable to include bitmap file filename
The specified bitmap file could not be found or is unreadable.
This is a DOS file error or an out-of-memory condition.

Help RTF message R2005 Disk full
The Help resource file could not be written to disk. Create
more space on the destination drive.

Help RTF message R2009 Cannot use reserved DOS device name for file filename
A file has been referred to as COMl, LPT2, PRN, etc. Rename
the file.

Help RTF message R2013 Output file filename already exists as a directory
There is a subdirectory in the Help project root with the same
name as the desired Help resource file. Move or rename the
subdirectory.

Help RTF message R2015 Output file filename already ~xists as read-only
The specified filename cannot be overwritten by the Help
resource file because the file has a read-only attribute. Rename
the project file or change the file's attribute.

216 Tools and Utilities Guide

Help RTF message R2017 Path for file filename exceeds limit of 79 characters
The absolute pathname, or the combined root and relative
pathname, to the specified file exceed the DOS limit of 79
characters. The file is ignored.

Help RTF message R2019 Cannot open file filename
The specified file is unreadable. This is a DOS file error.

Help RTF message R2021 Cannot find file filename
The specified file could not be found or is unreadable. This is a
DOS file error or an out-of-memory condition.

Help RTF message R2023 Not enough memory to build Help file
To free up memory, unload any unneeded applications, device
drivers, and memory-resident programs.

Help RTF message R2025 File environment error
The compiler has insufficient available file handles to continue.
Increase the values for FILES= and BUFFERS= in your
CONFIG.5YS file and reboot.

Help RTF message R2027 Build tag tagname not defined in [BUILDTAGS] section of
project file

The specified build tag has been assigned to a topic, but not
declared in the project file. The tag is ignored for the topic.

Help RTF message R2033 Context string in Map section not defined in any topic
There are one or more context strings defined in the project file
that the compiler could not find topics for.

Help RTF message R2035 Build expression missing from project file
The topics have build tags, but there is no Build= expression in
the project file. The compiler includes all topics in the build.

Help RTF message R2037 File filename cannot be created, due to previous error(s)
The Help resource file could not be created because the
compiler has no topics remaining to be processed. Correct the
errors that preceded this error and recompile.

Help RTF message R2039 Unrecognized table formatting in topic topicnumber of file
filename

The compiler ignores table formatting that is unsupported in
Help. Reformat the entries as linear text if possible.

Appendix A, Error messages 217

II

Help RTF message R2041 Jump contexCstring unresolved in topic topicnumber of
file filename

The specified topic contains a context string that identifies a
nonexistent topic. Check spelling, and that the desired topic is
included in the build.

Help RTF message R2043 Hotspot text cannot spread over paragraphs
A jump term spans two paragraphs. Remove the formatting
from the paragraph mark.

Help RTF message R2045 Maximum number of tab stops reached in topic
topicnumber of file filename

The limit of 32 tab stops has been exceeded in the specified
topic. The default stops are used after the 32nd tab.

Help RTF message R2047 File filename not created
There are no topics to compile, or the build expression is false
for all topics. There is no Help resource file created.

Help RTF message R2049 Context string text too long in topic topicnumber of file
filename

Context string hidden text cannot exceed 64 characters. The
string is ignored.

Help RTF message R2051 File filename is not a valid RTF topic file
The specified file is not an RTF file. Check that you have saved
the topic as RTF from your word processor.

Help RTF message R2053 Font fontname in file filename not in RTF font table
A font not defined in the RTF header has been entered into the
topic. The compiler uses the default system font.

Help RTF message R2055 File filename is not a usable RTF topic file
The specified file contains a valid RTF header, but the content is
not RTF or is corrupted.

Help RTF message R2057 Unrecognized graphic format in topic topicnumber of file
filename

The compiler supports only Windows bitmaps. Check that
metafiles or Macintosh formats have not been used. The
graphic is ignored.

Help RTF message R2059 Context string identifier already defined in topic
topicnumber of file filename

There is more than one context-string identifier footnote for the
specified topic. The compiler uses the identifier defined in the
first # footnote.

218 Tools and Utilities Guide

Help RTF message R2061 Context string contextname already used in file filename
The specified context string was previously assigned to another
topic. The compiler ignores the latter string and the topic has
no identifier.

Help RTF message R2063 Invalid context-string identifier for topic top;cnumber of
file filename

The context-string footnote contains nonalphanumeric
characters or is null. The topic is not assigned an identifier.

Help RTF message R2065 Context string defined for index topic is unresolved
The index topic defined in the project file could not be found.
The compiler uses the first topic in the build as the index.

Help RTF message R2067 Footnote text too long in topic top;cnumber of file
filename

Footnote text cannot exceed the limit of 1000 characters. The
footnote is ignored.

Help RTF message R2069 Build tag footnote not at beginning of topic top;cnumber
of file filename

The specified topic contains a build tag footnote that is not the
first character in the topic. The topic is not assigned a build tag.

Help RTF message R2071 Footnote text missing in topic top;cnumber of file filename
The specified topic contains a footnote that has no characters.

Help RTF message R2073 Keyword string is null in topic top;cnumber of file
filename

A keyword footnote exists for the specified topic, but contains
no characters.

Help RTF message R2075 Keyword string too long in topic top;cnumber of file
filename

The text in the keyword footnote in the specified topic exceeds
the limit of 255 characters. The excess characters are ignored.

Help RTF message R2077 Keyword(s) defined without title in topic top;cnumber of
file filename

Keyword(s) have been defined for the specified topic, but the
topic has no title assigned. Search Topics Found displays
Untitled Topic« for the topic.

Help RTF message R2079 Browse sequence string is null in topic top;cnumber of file
filename

Appendix A, Error messages

The browse-sequence footnote for the specified topic contains
no sequence characters.

219

I

Help RTF message R2081 Browse sequence string too long in topic topicnumber of
file filename

The browse-sequence footnote for the specified topic exceeds
the limit of 128 characters .. The sequence is ignored.

Help RTF message R2083 Missing sequence number in topic topicnumber of file
filename

A browse-sequence number ends in a colon (:) for the specified
topic. Remove the colon, or enter a "minor" sequence number.

Help RTF message R2085 Sequence number already defined in topic topicnumber of
file filename

There is already a browse-sequence footnote for the specified
topic. The latter sequence is ignored.

Help RTF message R2087 Build tag too long
A build tag for the specified topic exceeds the maximum of 32
characters. The tag is ignored for the topic.

Help RTF message R2089 Title string null in topic topicnumber of file filename
The title footnote for the specified topic contains no characters.
The topic is not assigned a title.

Help RTF message R2091 Title too long in topic topicnumber of file filename
The title for the specified topic exceeds the limit of 128
characters. The excess characters are ignored.

Help RTF message R2093 Title titlename in topic topicnumber of file filename used
previously

The specified title has previ?usly been assigned to another
topic.

Help RTF message R2095 Title defined more than once in topic topicnumber of file
filename

There is more than one title footnote in the specified topic. The
compiler uses the first title string.

Help RTF message R2501 Using old key-phrase table
Maximum compression can only result by deleting the .PH file
before each recompilation of the Help topics.

Help RTF message R2503 Out of memory during text compression
The compiler encountered a memory limitation during
compression. Compilation continues with the Help resource
file not compressed. Unload any unneeded applications, device
drivers, and memory-resident programs.

220 Tools and Utilities Guide

Help RTF message R2505 File environment error during text compression
The compiler has insufficient available file handles for
compression. Compilation continues with the Help resource
file not compressed. Increase the values for FILES= and
BUFFERS= in your CONFIG.5YS file and reboot.

Help RTF message R2507 DOS file error during text compression
The compiler encountered a problem accessing a disk file
during compression. Compilation continues with the Help
resource file not compressed.

Help RTF message R2509 Error during text compression
One of the three compression errors-R2503, R2505, or R2507-
has occurred. Compilation continues with the Help resource
file not compressed.

Help RTF message R2701 Internal error
R2703 Internal error
R2705 Internal error
R2707 Internal error
R2709 Internal error

Contact Borland Technical Support for clarification of the error.

TUB error record kind num found, expected theadr or Iheadr in module
filename

The librarian could not understand the header record of the
object module being added to the library and has assumed that
it is an invalid module.

TUB error record length len exceeds available buffer in module module
This error occurs when the record length len exceeds the
available buffer to load the buffer in module module. This
occurs when TLIB runs out of dynamic memory.

TUB error record type type found, expected theadr or Iheadr in module
TLIB encountered an unexpected type type instead of the
expected THEADR or LHEADER record in module module.

Compile-time warning Redefinition of macro is not identical
Your source file redefined the named macro using text that was
not exactly the same as the first definition of the macro. The
new text replaces the old.

MAKE error Redefinition of target filename
The named file occurs on the left side of more than one explicit
rule.

Appendix A, Error messages 221

I

222

Compi/e-time error Reference initialized with type1, needs Ivalue of type type2
A reference variable or parameter that is not declared constant
must be initialized with an lvalue of the appropriate type. In
this case, the initializer either wasn't an lvalue, or its type
didn't match the reference being initialized.

Compi/e-time error Reference member member in class without constructors
A class that contains reference members must have at least one
user-defined constructor; otherwise, there would be no way to
ever initialize such members.

Compile-time error Reference member member is not initialized
References must always be initialized. A class member of refer­
ence type must have an initializer provided in all constructors
for that class. This means that you cannot depend on the
compiler to generate constructors for such a class, since it has
no way of knowing how to initialize the references.

Compi/e-time error Reference member member needs a temporary for initialization
You provided an initial value for a reference type which was
not an lvalue of the referenced type. This requires the compiler
to create a temporary for the initialization. Since there is no
obvious place to store this temporary, the initialization is
illegal.

Compi/e-time error Reference variable variable must be initialized
This C++ object is declared as a reference but is not initialized.
All references must be initialized at the point of their
declaration.

Compi/e-time fatal error Register allocation failure
This is a sign of some form of compiler error. Some expression
in the indicated function was so complicated that the code
generator could not generate code for it. Try to simplify the
offending function. Notify Borland Technical Support if the
compiler encounters this error.

TUNK fatal error Relocation item exceeds 1 MB DOS limit
The DOS executable file format doesn't support relocation
items for locations exceeding 1MB. Although DOS could never
load an image this big, DOS extenders can, and thus TLINK
supports generating images greater than DOS could load. Even
if the image is loaded with a DOS extender, the DOS executable
file format is limited to describing relocation items in the first
1MB of the image.

Tools and Utilities Guide

TUNK fatal error Relocation offset overflow
This error only occurs for 32-bit object modules and indicates a
relocation (segment fixup) offset greater than the DOS limit of
64K.

TUNK fatal error Relocation table overflow

Compile-time error

This message used only by
IDE debugger.

This error only occurs for 32-bit object modules. The file being
linked contains more base fixups than the standard DOS
relocation table can hold (base fixups are created mostly by
calls to far functions).

Repeat count needs an Ivalue
The expression before the comma (,) in the Watch or Evaluate
window must be a manipulable region of storage. For example,
expressions like this one are not valid:

itt,10d

x = y, 10m

TUB warning results are safe in file filename
The librarian has successfully built the library into a temporary
file, but cannot rename the file to the desired library name. The
temporary file will not be removed (so that the library can be
preserved).

MAKE error Rule line too long
An implicit or explicit rule was longer than 4,096 characters.

TUNK fatal error Segment alignment factor too small

~ This error occurs if the segment alignment factor (set with
Options I Linker I .. .segment Alignment the fA option) is too
small to represent the file addresses of the segments in the .EXE
file. This error only occurs when linking for Windows. See the
documentation for the fA option on page 63 for more

TUNK fatal error

TUNK warning

Appendix A, Error messages

informa tion.

Segment segment exceeds 64K
This message occurs if too much data is defined for a given
data or code segment when TLINK combines segments with
the same name from different source files.

Segment segment is in two groups: group1 and group2
The linker found conflicting claims by the two named groups.
Usually, this only happens in assembly language programs. It
means that two modules assigned the segment to two different
groups.

223

,

I
I

TUNK fatal error

101
El

Segment too large for segment table
This error should never occur in practice. It means that a
segment was bigger than 64K and its size cannot be
represented in the executable file. This error can only occur
when linking for Windows; the format of the executable file
used for Windows does not support segments greater than
64K.

Compile-time error

This message used only by
IDE debugger.

Side effects are not allowed
Side effects such as assignments, ++, or - - are not allowed in
the debugger watch window. A common error is to use x = y
(not allowed) instead of x == Y to test the equality of x and y.

224

Compile-time error Size of identifier is unknown or zero
This identifier was used in a context where its size was needed.
A struct tag may only be declared (the struct not defined yet),
or an extern array may be declared without a size. It's illegal
then to have some references to such an item (like sizeof) or to
dereference a pointer to this type. Rearrange your declaration
so that the size of identifier is available.

Compile-time error sizeof may not be applied to a bit field
sizeof returns the size of a data object in bytes, which does not
apply to a bit field.

Compile-time error sizeof may not be applied to a function
sizeof may be applied only to data objects, not functions. You
may request the size of a pointer to a function.

Compile-time error Size of the type is unknown or zero
This type was used in a context where its size was needed. For
example, a struct tag may only be declared (the struct not de­
fined yet). It's illegal then to have some references to such an
item (like sizeof) or to dereference a pointer to this type. Rear­
range your declarations so that the size of this type is available.

Compile-time error identifier specifies multiple or duplicate access
A base class may be declared public or private, but not both.
This access specifier may appear no more than once for a base
class.

Run-time error Stack overflow
The default stack size for Borland C++ programs is 5120 bytes.
This should be enough for most programs, but those which
execute recursive functions or store a great deal of local data
can overflow the stack. You will only get this message if you

Tools and Utilities Guide

have stack checking enabled. If you do get this message, you
can try increasing the stack size or decreasing your program's
dependence on the stack. For Windows, to increase your stack
size, use STACKSIZE in your module definition .DEF file. See
Chapter 3, "Global variables" in the Library Reference for
information on changing the stack size by altering the global
variable _stklen. Try switching to a larger memory model to fit
the larger stack.

To decrease the amount of local data used by a function, look at
the example below. The variable buffer has been declared static
and does not consume stack space like list does.

void anyfunction(void)
{

static int buffer[2000li /* resides in the data segment */
int list[2000li /* resides on the stack */

There are two disadvantages to declaring local variables as
static.

1. It now takes permanent space away from global variables
and the heap. (You have to rob Peter to pay Paul.) This is
usually only a minor disadvantage.

2. The function may no longer be reentrant. What this means
is that if the function is called recursively or asynchro­
nously and it is important that each call to the function have
its own unique copy of the variable, you cannot make it
static. This is because every time the function is called, it
will use the same exact memory space for the variable,
rather than allocating new space for it on each call. You
could have a sharing problem if the function is trying to
execute from within itself (recursively) or at the same time
as itself (asynchronously). For most DOS programs this is
not a problem.

TLINK warning Stack size is less than 1400h. It has been reset to 1400h.
Windows 3.0 requires the stack size of an application to be at

//0 least 1400h. If the automatic data segment (ADS) is near 64K,
but your stack is less than 1400h, this can cause the ADS to
overflow at load time, but not at link time. To protect against
this, TLINK forces the stack size to be at least 1400h for a
Windows application.

Appendix A, Error messages 225

I

226

Compile-time error Statement missing ;
The compiler encountered an expression statement without a
semicolon following it.

Compile-time error Storage class storage class is not allowed here
The ·given storage class is not allowed here. Probably two
storage classes were specified, and only one may be given.

MAKE error String type not allowed with this operand
You have tried to use an operand which is not allowed for
comparing string types. Valid operands are ==, !=, <, >, <=,
and >=.

Compile-time warning Structure passed by value
A structure was passed by value as an argument to a function
without a prototype. It is a frequent programming mistake to
leave an address-of operator (&) off a structure when passing it
as an argument. Because structures can be passed by value, this
omission is acceptable. This warning provides a way for the
compiler to warn you of this mistake.

Compile-time error Structure required on left side of. or .*

The left side of a dot (.) operator (or C++ dot-star operator)
must evaluate to a structure type. In this case it did not.

Compile-time error Structure size too large
Your source file declared a structure larger than 64K.

TUNK fatal error Stub program exceeds 64K

~ This error occurs if a DOS stub program written for a Windows
application exceeds 64K. Stub programs are specified via the
STUB module definition file statement; TLINK only supports
stub programs up to 64K.

Compile-time warning Style of function definition is now obsolete
In C++, this old C style of function definition is illegal:

int func(pI, p2)
int pI, p2;
{

This practice may not be allowed by other C++ compilers.

Tools and Utilities Guide

Compile-time error Subscripting missing]
The compiler encountered a subscripting expression which was
missing its closing bracket. This could be caused by a missing
or extra operator, or mismatched parentheses.

Compile-time warning Superfluous & with function
An address-of operator (&) is not needed with function name;
any such operators are discarded.

Compile-time warning Suspicious pointer conversion
The compiler encountered some conversion of a pointer which
caused the pointer to point to a different type. You should use
a cast to suppress this warning if the conversion is proper.

Compile-time error Switch selection expression must be of integral type
The selection expression in parentheses in a switch statement
must evaluate to an integral type (char, short, int, long, enum).
You may be able to use an explicit cast to satisfy this
requirement.

Compile-time error Switch statement missing (
In a switch statement, the compiler found no left parenthesis
after the switch keyword.

Compile-time error Switch statement missing)
In a switch statement, the compiler found no right parenthesis
after the test expression.

TLINK fatal error filename (linenum): Syntax error
TLINK found a syntax error in the module definition file. The
filename and line number tell you where the syntax error
occurred.

TLINK fatal error Table limit exceeded
One of linker's internal tables overflowed. This usually means
that the programs being linked have exceeded the linker's
capacity for public symbols, external symbols, or for logical
segment definitions. Each instance of a distinct segment name
in an object file counts as a logical segment; if two object files
define this segment, then this results in two logical segments.

Compile-time error Template argument must be a constant expression

Appendix A, Error messages

A non-type actual template class argument must be a constant
expression (of the appropriate type); this includes constant
integral expressions, and addresses of objects or functions with
external linkage or members.

227

I

Compile-time error Template class nesting too deep: 'class'
The compiler imposes a certain limit on the level of template
class nesting; this limit is usually only exceeded through a
recursive template class dependency. When this nesting limit is
exceeded, the compiler will issue this error message for all of
the nested template classes, which usually makes it easy to spot
the recursion. This is always followed by the fatal error Out of
memory.

For example, consider the following set of template classes:

template<class T> class A
{

friend class B<T*>i

}i

template<class T> class B
{

friend class A<T>i
}i

A<int> Xi

This snippet will be flagged with the following errors:

Error: Template class nesting too deep: 'B<int * * * * *>'
Error: Template class nesting too deep: 'A<int * * * *>'
Error: Template class nesting too deep: 'B<int * * * *>'
Error: Template class nesting too deep: 'A<int * *" *>' ,
Error: Template class nesting too deep: ' B<int * * *>'
Error: Template class nesting too deep: 'A<int * *>'
Error: Template class nesting too deep: ' B<int * *>'
Error: Template class nesting too deep: ' A<int *>'
Error: Template class nesting too deep: 'B<int *>'
Error: Template class nesting too deep: ' A<int>'
Fatal: Out of memory

Compile-time error Template function argument argument not used in argument
types

The given argument was not used in the argument list of the
function. The argument list of a template function must use all
of the template formal arguments; otherwise, there is no way to
generate a template function instance based on actual
argument types.

Compile-time error Template functions may only have type-arguments
A function template was declared with a non-type argument.
This is not allowed with a template function, as there is no way
to specify the value when calling it.

228 Tools and Utilities Guide

Compile-time error Templates can only be declared at file level
Templates cannot be declared inside classes or functions, they
are only allowed in the global scope (file level).

Compile-time error Templates must be classes or functions
The declaration in a template declaration must specify either a
class type or a function.

Compile-time warnings Temporary used to initialize identifier
Temporary used for parameter number in call to function
Temporary used for parameter parameter in call to function
Temporary used for parameter number
Temporary used f.or parameter parameter

In C++, a variable or parameter of reference type must be
assigned a reference to an object of the same type. If the types
do not match, the actual value is assigned to a temporary of the
correct type, and the address of the temporary is assigned to
the reference variable or parameter. The warning means that
the reference variable or parameter does not refer to what you
expect, but to a temporary variable, otherwise unused.

For example, here function f requires a reference to an int, and c
is a char:

f(int&)i

char Ci

f (c) i

Instead of calling f with the address of c, the compiler generates
code equivalent to the C++ source code:

int X = C, f(X)i

TUNK fatal error Terminated by user
You canceled the link.

TUB error The combinations '+*' or '*+' are not allowed
It is not legal to add and extract an object module from a
library in one action. The action probably desired is a '+_'.

Compile,-time error The constructor constructor is not allowed
Constructors of the form X::(X) are not allowed. The correct
way to write a copy constructor is X::(const X&).

Compile-time error The value for identifier is not within the range of an int
All enumerators must have values which can be represented as
an integer. You attempted to assign a value which is out of the

Appendix A, Error messages 229

I
I

range of an integer. In C++ if you need a constant of this value,
use a const integer.

Compile-time error 'this' can only be used within a member function
In C++, this is a reserved word that can be used only within
class member functions.

Compile-time warning This initialization is only partly bracketed
Result of IDE Options I Compiler I Messages I ANSI violations
selection. Initialization is only partially bracketed. When
structures are initialized, braces can be used to mark the
initialization of each member of the structure. If a member
itself is an array or structure, nested pairs of braces may be
used. This ensures that your idea and the compiler's idea of
what value goes with which member are the same. When some
of the optional braces are omitted, the compiler issues this
warning.

Compile-time error Too few arguments in template class name template
A template class name was missing actual values for some of
its formal parameters.

Compile-time error Too few parameters in call
A call to a function with a prototype (via a function pointer)
had too few arguments. Prototypes require that all parameters
be given.

Compile-time error Too few parameters in call to function
A call to the named function (declared using a prototype) had
too few arguments.

Compile-time error Too many decimal points
The compiler encountered a floating-point constant with more
than one decimal point.

Compile-time error Too many default cases
The compiler encountered more than one default statement in a
single switch.

Compile-time error Too many error or warning messages
A maximum of 255 errors and warnings can be set before the
compiler stops.

TUNK error Too many error or warning messages
The number of messages reported by the compiler has
exceeded its limit. This error indicates that TLINK reached its
limit.

230 Tools and Utilities Guide

Compile-time error Too many expone~ts
The compiler encountered more than one exponent in a
floating-point constant.

Compile-time error Too many initializers
The compiler encountered more initializers than were allowed
by the declaration being initialized.

Compile-time error Too many storage classes in declaration
A declaration may never have more than one storage class.

MAKE error Too many suffixes in .SUFFIXES list
You have exceeded the 255 allowable suffixes in the suffixes
list.

Compile-time error Too many types in declaration
A declaration may never have more than one of the basic types:
char, int, float, double, struct, union, enum, or typedef-name.

Compile-time error Too much global data defined in file
The sum of the global data declarations exceeds 64K bytes.
Check the declarations for any array that may be too large.
Also consider reorganizing the program or using far variables
if all the declarations are needed.

Compile-time error Trying to derive a far class from the huge base base
If a class is declared (or defaults to) huge, all derived classes
must also be huge.

Compile-time error Trying to derive a far class from the near base base
If a class is declared (or defaults to) near, all derived classes
must also be near.

Compile-time error Trying to derive a huge class from the far base base
If a class is declared (or defaults to) far, all derived classes must
also be far.

Compile-time error Trying to derive a huge class from the near base base
If a class is declared (or defaults to) near, all derived classes
must also be near.

Compile-time error Trying to derive a near class from the far base base
If a class is declared (or defaults to) far, all derived classes must
also be far.

Compile-time error Trying to derive a near class from the huge base base
If a class is declared (or defaults to) hugh, all derived classes
must also be hugh.

Appendix A, Error messages 231

I

Compile-time error

Compile-time error

Type mismatch family ..
Compile-time error

Compile-time error

Compile-time error

Compile-time error

232

Two consecutive dots
Because an ellipsis contains three dots (...), and a decimal point
or member selection operator uses one dot (.), there is no way
t~o consecutive dots can legally occur in a C program.

Two operands must evaluate to the same type
The types of the expressions on both sides of the colon in the
conditional expression operator (?:) must be the same, except
for the usual conversions like char to int or float to double, or
void* to a particular pointer. In this expression, the two sides
evaluate to different types that are not automatically
converted. This may be an error or you may merely need to
cast one side to the type of the other.

When compiling c++ programs, the following messages that
refer to this note are always preceded by another message that
explains the exact reason for the type mismatch; this is usually
"Cannot convert 'type1' to 'type2"', but the mismatch may be
due to many other reasons.

Type mismatch in default argument value
Type mismatch in default value for parameter parameter

The default parameter value given could not be converted to
the type of the parameter. The first message is used when the
parameter was not given a name.

Type mismatch in parameter number
The function called, via a function pointer, was declared with a
prototype; the given parameter number (counting left to right
from 1) could not be converted to the declared parameter type.
See the previous note on Type mismatch family.

Type mismatch in parameter number in call to function
Your source file declared the named function with a prototype,
and the given parameter number (counting left to right from 1)
could not be converted to the declared parameter type. See the
previous note on Type mismatch family.

Type mismatch in parameter parameter
Your source file declared the function called via a function
pointer with a prototype, and the named parameter could not
be converted to the declared parameter type. See the previous
note on Type mismatch family.

Tools and Utilities Guide

Compile-time error Type mismatch in parameter parameter in call to function
Your source file declared the named function with a prototype,
and the named parameter could not be converted to the de­
clared parameter type. See entry for Type mismatch in
parameter parameter.

Compile-time error Type mismatch in parameter parameter in template class name
template
Type mismatch in parameter number in template class name
template

The actual template argument value supplied for the given
parameter did not exactly match the formal template
parameter type. See the previous note on Type mismatch
family.

Compile-time error Type mismatch in redeclaration of identifier
Your source file redeclared with a different type than was
originally declared. This can occur if a function is called and
subsequently declared to return something other than an
integer. If this has happened, you must declare the function
before the first call to it.

Compile-time error Type name expected
One of these errors has occurred:

• In declaring a file-level variable or a struct field, neither a
type name nor a storage class was given.

• In declaring a typedef, no type for the name was supplied.

• In declaring a destructor for a c++ class, the destructor name
was not a type name (it must be the same name as its class).

• In supplying a C++ base class name, the name was not the
name ofa class.

Compile-time error Type qualifier identifier must be a struct or class name
The C++ qualifier in the construction qual::identifier is not the
name of a struct or class.

Compile-time fatal error Unable to create output file filename
The work disk is full or write-protected or the output directory
does not exist. If the disk is full, try deleting unneeded files and
restarting the compilation. If the disk is write-protected, move
the source files to a writable disk and restart the compilation.

Compile-time error Unable to create turboc.$ln

Appendix A, Error messages

The compiler cannot create the temporary file TURBOC.$LN
because it cannot access the disk or the disk is full.

233

I

MAKE fatal error Unable to execute command
A command failed to execute; this may be because the com­
mand file could not be found, it was misspeiled, there was no
disk space left in the specified swap directory, swap directory
does not exist, or (less likely) because the command itself exists
but has been corrupted.

Compile-time error Unable to execute command command
TLINK or TASM cannot be found, or possibly the disk is bad.

TUNK fatal error and TUB error Unable to open file filename
unable to open filename

This occurs if the named file does not exist or is misspelled.

TUB error unable to open filename for output
TLIB cannot open the specified file for output. This is usually
due to lack of disk space for the target library, or a listing file.
Additionally this error will occur if the target file exists but is
marked as a read only file.

Compile-time error Unable to open include file filename
The compiler could not find the named file. This could also be
caused if an #include file included itself, or if you do not have
FILES set in CONFIG.5YS on your root directory (try FILES=20).
Check whether the named file exists.

MAKE error Unable to open include file filename
The compiler could not find the named file. This could also be
caused if an !include file included itself, or if you do not have
FILES set in CONFIG.SYS on your root directory (try FILES=20).
Check whether the named file exists.

Compile-time error Unable to open input file filename
This error occurs if the source file cannot be found. Check the
spelling of the name and whether the file is on the proper disk
or directory.

Command line fatal error unable to open 'dpmimem.dll'
Make sure that DPMIMEM.DLL is somewhere on your path or
in the same directory as the protected mode command line tool
you were attempting to use.

MAKE fatal error Unable to open makefile
The current directory does not contain a file named
MAKEFILE, MAKEFILE.MAK, or does not contain the file you
specified with -f.

234 Tools and Utilities Guide

MAKE fatal error Unable to redirect input or output
MAKE was unable to open the temporary files necessary to
redirect input or output. If you are on a network, make sure
you have rights to the current directory.

TLiB error unable to rename filename to filename
TLIB builds a library into a temporary file and then renames
the temporary file to the target library file name. If there is an
error, usually due to lack of disk space, this message will be
posted.

Compile-time error Undefined label identifier
The named label has a goto in the function, but no label
definition.

Compile-time warning Undefined structure identifier
The named structure was used in the source file, probably on a
pointer to a structure, but had no definition in the source file.
This is probably caused by a misspelled structure name or a
missing declaration.

Compile-time error Undefined structure structure
Your source file used the named structure on some line before
where the error is indicated (probably on a pointer to a struc­
ture) but had no definition for the structure. This is probably
caused by a misspelled structure name or a missing
declaration.

Compile-time error Undefined symbol identifier
The named identifier has no declaration. This could be caused
by a misspelling either at this point or at the declaration. This
could also be caused if there was an error in the declaration of
the identifier.

TLiNK error Undefined symbol symbol in module module

Appendix A, Error messages

The named symbol is referenced in the given module but is not
defined anywhere in the set of object files and libraries
included in the link. Check to make sure the symbol is spelled
correctly.

You will usually see this error from TLINK for Borland C++
symbols if you did not properly match a symbol's declarations
of pascal and cdecl type in different source files, or if you have
omitted the name of an .OBJ file your program needs. If you
are linking C++ code with C modules, you might have
forgotten to wrap C external declarations in extern "e" { ... }.

, 235

I
I

You might have a case mismatch between two symbols. See the
IC and Ic switches.

Compile-time error Unexpected}
An extra right brace was encountered where none was ex­
pected. Check for a missing {.

TUB error Unexpected char X in command line
TLIB encountered a syntactical error while parsing the
command line.

MAKE error Unexpected end of file
The end of the makefile was reached without a temporary
inline file having been closed.

Compile-time error Unexpected end of file in comment started on line number
The source file ended in the middle of a comment. This is nor­
mally caused by a missing close of comment (* I).

MAKE or compile-time error Unexpected end of file in conditional started on line line number
The source file ended before the compiler (or MAKE)
encountered an !endif. The !endif was either missing or
misspelled.

Compile-time error union cannot be a base type
A union cannot be used as a base type for another class type.

Compile-time error union cannot have a base type
A union cannot be derived from any other class.

Compile-time error Union member member is of type class with constructor
Union member member is of type class with destructor
Union member member is of type class with operator=

A union may not contain members that are of type class with
user-defined constructors, destructors, or operator=.

Compile-time error unions cannot have virtual member fu'nctions
A union may not have virtual functions as its members.

Compile-time warning Unknown assembler instruction

See Chapter 12 in the
Programmer's Guide for

more on opcode spelling.

The compiler encountered an inline assembly statement with a
disallowed opcode. Check lthe spelling of the opcode. This
warning is off by default.

TUB warning

236

unknown command line switch X ignored
A forward slash character (I) was encountered on the
command line or in a response file without being followed by
one of the allowed options.

Tools and Utilities Guide

Co'mpile-time error Unknown language, must be C or C++
In the C++ construction

extern "name" type func(/* ... */)i

The name given in quotes must be "c" or "C++"; other
language names are not recognized. For example, you can
declare an external Pascal function without the compiler's
renaming like this:

extern "e" int pascal func(/* ... */) i

A C++ (possibly overloaded) function may be declared Pascal
and allow the usual compiler renaming (to allow overloading)
like this:

extern int pascal func(/* ... */) i

TUNK fatal error Unknown option
A forward slash character (I), hyphen (-), or DOS switch
character was encountered on the command line or in a
response file without being followed by one of the allowed
options. This might mean that you used the wrong case to
specify an option.

Compile-time error Unknown preprocessor directive: identifier
The compiler encountered a # character at the beginning of a
line, and the name following was not a legal directive name, or
the rest of the directive was not well-formed.

MAKE error Unknown preprocessor statement
A! character was encountered at the beginning of a line, and
the statement name following was not error, undef, if, elif,
include, else, or endif.

Compile-time warning Unreachable code
A break, continue, goto or return statement was not followed
by a label or the end of a loop or function. The compiler checks
while, do and for loops with a constant test condition, and
attempts to recognize loops which cannot fall through.

Compile-time error Unterminated string or character constant
The compiler found no terminating quote after the beginning
of a string or character constant.

Compile-time error Use. or -> to call function
You tried to call a member function without giving an object.

Appendix A, Error messages 237

I
I

Compile-time error Use. or -> to call member, or & to take its address
A reference to a non-static class member without an object was
encountered. Such a member may not be used without an
object, or its address must be taken using the & operator.

Compile-time error Use:: to take the address of a member function
If f is a member function of class c, you take its address with
the syntax &c::f. Note the use of the class type name, not the
name of an object, and the:: separating the class name from the
function name. (Member function pointers are not true pointer
types, and do not refer to any particular instance of a class.)

TUB warning use Ie with TLiNK to obtain debug information from library
The library was built with an extended dictionary and also
includes debugging information. TLINK will not extract
debugging information if it links using an extended dictionary,
so in order to obtain debugging information in an executable
from this library, the linker must be told to ignore the extended
dictionary using the / e switch. NOTE: The IDE linker does

. NOT support extended dictionaries therefore no settings need
be altered in the IDE.

MAKE error Use of : and :: dependants for target target
You have tried to use the t~rget in both single and multiple
description blocks (using both the: and :: operators).
Examples:

filea: fileb
filea:: filec

Compile-time warning Use qualified name to access nested type type
In older versions of the c++ specification, typedef and tag
names declared inside classes were directly visible in the global
scope. With the latest specification of C++, these names must
be prefixed with a class:: qualifier if they are to be used
outside of their class' scope. To allow older code to compile,
whenever such a name is uniquely defined in one single class,
Borland C++ will allow its usage without class:: and issues
this warning.

TUNK or compile-time error User break
You pressed Gtrl-Break while compiling or linking in the IDE,
aborting the process. (This is not an error, just a confirmation.)

238 Tools and Utilities Guide

DPMI seNer fatal error v8G task without vcpi
Another application is running, preventing the DPMI server
from switching to protected mode. Remove the interfering
application, such as a desktop manager or debugger, then
reboot.

Compile-time error Value of type void is not allowed
A value of type void is really not a value at all, and thus may
not appear in any context where an actual value is required.
Such contexts include the right side of an assignment, an argu­
ment of a function, and the controlling expression of an if, for,
or while statement.

Compile-time error Variable variable has been optimized.
You have tried to inspect, watch, or otherwise access a variable
which the optimizer removed. This variable is never assigned a
value and has no stack location.

Compile-time error Variable identifier is initialized more than once
This variable has more than one initialization. It is legal to
declare a file level variable more than once, but it may have
only one initialization (even if two are the same).

Compile-time error 'virtual' can only be used with member functions
A data member has been declared with the virtual specifier;
only member functions may be declared virtual.

Compile-time error Virtual function function1 conflicts with base class base
A virtual function has the same argument types as one in a
base class, but a different return type. This is illegal.

Compile-time error virtual specified more than once
The C++ reserved word virtual may appear only once in a
member function declaration.

Compile-time error void & is not a valid type
A reference always refers to an object, but an object cannot
have the type void. Thus the type void is not allowed.

Compile-time warning Void functions may not return a value
Your source file declared the current function as returning
void, but the compiler encountered a return statement with a
value. The value of the return statement will be ignored.

Compile-time error function was previously declared with the language language
Only one language can be used with extern for a given
function. This function has been declared with different
languages in different locations in the same module.

Appendix A, Error messages 239

I

240

Compile-time error While statement missing (
In a while statement, the compiler found no left parenthesis
after the while keyword.

Compile-time error While statement missing)
In a while statement, the compiler found no right parenthesis
after the test expression.

TUNK fatal error Write failed, disk full?
This occurs if TLINK could not write all of the data it
attempted to write. This is almost certainly caused by the disk
being full.

Compile-time error Wrong number of arguments in call of macro macro
Your source file called the named macro with an incorrect
number of arguments.

Tools and utilities Guide

N

$** (all dependents macro) 34
$? (all out of date dependents macro) 34
- + and + - (TLIB action symbols) 49
$* (base file name macro) 32
$. (file name and extension macro) 33
$& (file name only macro) 33
$: (file name path macro) 33
$< (full file name macro) 32
$@ (full name with path macro) 33
-? MAKE help option 12
13 TLINK option (32-bit code) 63
& (ampersand) MAKE command (multiple

dependents) 18
-* and *- (TLIB action symbols) 48
32-bit code 63
- (hyphen) MAKE command (ignore exit status)

18
(MAKE comment character) 17
&& operator, MAKE 18
«operator, MAKE 18
»operator, MAKE 18
-? RC help option 100
* (TLIB action symbol) 48
+ (TLIB action symbol) 48
- (TLIB action symbol) 48
$ editor macros See individual names of macros
@ MAKE command 18
80x86 processors

32-bit code 63
#include directive See include files
.LST files See listfile (TLIB option)
IP TLINK option (pack code segments) 69

A
-a MAKE option (auto dependency check) 12,

25
I A TLINK option (align segments) 63
ACBP field 67

Index

D E

action symbols See TLIB (librarian)
add (TLIB action symbol) 48
Alias section 137
alignment attribute 67
ampersand (&) MAKE command (multiple

dependents) 18
applications See Microsoft Windows

applications
attribut~s 67
.autodepend MAKE directive 36
automatic dependencies

x

checking, MAKE (program manager) 12, 25
MAKE option 36

B
-B MAKE option (build all) 12
base file name macro (MAKE) 32
batch files, MAKE 20
BBS segment See segments
BCC.EXE See command~line compiler
BGIOBJ See The online document UTIL.DOC
big attribute 67
Bitmaps section 140
bugs See debugging
BUILD option 132
BuildTags section 131
BUlL TINS.MAK 13

c
IC TLIB option (case sensitivity) 47, 50
I C TLINK opd~n (case sensitive imports) 64
I c TLINK option (case sensitivity) 63
COFx.OBJ 59
COx.OBJ 58
callbacks

smart See smart callbacks
case sensitivity

module definition file and 64

241

TLIB.opti0!l 47, 50
TLINKand 63

classes, DLLs and 4
code segment, discardable 68
.COM files

generating 58
TLINK 69

limitations 69
combining attribute 67
command-line compiler

MAKE and 36
options

-:-v (debugging information) 65
TLINKand 62

commands
printing, MAKE option 36

comments, in makefiles 17
com pa tibility

initialization modules 59
MAKE 12

compilers
command line See command-line compiler
diagnostic messages 154-240
memory models 59-61, See memory models

COMPRESS option 136
conditional execution directives (MAKE) 38

expressions in 40
coprocessors 60
CPP (preprocessor) See The online document

UTIL.DOC
CWx.LIB 60
Cx.LIB 60

D
$d MAKE macro (defined test) 31

expressions and 41
-D MAKE option (define identifier) 12,28
-d RC option (define symbol) 100
I d TLINK option (duplicate symbols) 64
data types

floating point 60
debugging

information 65
MAKE 12
map files 66
TLINKand 70

defined test macro (MAKE) 31

242

dependencies, automatic 25
diagnostic messages

compiler 154-158
directional delimiters See delimiters
directives 17

MAKE See MAKE(program manager),
directives
MAKE (program manager) 35-42

directories
include files, MAKE 12

DLLs See also import libniries
classes and 4
export functions, hiding 5
extended and expanded memory 100
import libraries (IMPLIB) and 5, 6
MAKE and 60
mangled names and 4
packing code segments 69
private 100
TLINK option 70

DOS
commands

MAKE and 21
environment strings, macros 30
paths

MAKE 36
dot directives (MAKE) 36
DPMI server messages 155
duplicate symbols 64
dynamic link libraries See DLLs

E
-e MAKE option 12
-e RC option (EMS) 100
IE TLIB option (extended dictionary) 47, 49
Ie TLINK option 65
editor macros See MAKE (program manager)
!elif MAKE directive 38

defined test macro and 31
macros and 30

!else MAKE directive 38
EMS See extended and expanded memory
EMU.LIB 60, 61
!endif MAKE directive 38
environment, DOS

macros and 30
!error MAKE directive 41

Tools and Utilities Guide

errors
command line

defined 154
compiler 154-240
disk access 154
DPMI server 155
fatal 154
Help compiler 155
MAKE 157
memory access

defined 154
messages

list 154-240
run-time 157
syntax

defined 154
TLIB 157
TLINK (list) 158
undocumented 155

examples
MAKE (program manager) 13

batch files 20
.EXE files

.COM files and 71
debugging information 70
renaming 100
TLINKand 70

executable files See .EXE files
exit codes

MAKE and 18
expanded memory

TLINKand 71
explicit

rules (MAKE) 16, 22
expressions See debugging

MAKE and 40, 41
extended and expanded memory

DLLs and 100
Resource Compiler and 100

extended dictionary
TLIB and 47, 49

extended memory
TLINKand 71

extensions, file, s\lpplied by TUNK 56
extract and remove (TUB action) 48

Index

F
-f MAKE option (MAKE file name) 10, 12
fatal errors See errors

Compile-time 154
-fe RC option (rename .EXE file) 100
file-inclusion directive (!include) 38
file name macros (MAKE) 33, 34
files

batch 20
.COM58,69

.EXE files and 71
TUNK and 70, 71

executable See .EXE files
extensions 56
include See include files
library See libraries
make See MAKE (program manager)
map See map files
names

extensions (meanings) 56
.RES 98
response 48, 56, See response files
updating 9

Files section
Help project file 130

-fo RC option (rename .RES file) 100
FORCE FONT option 134
FP87.UB 61
full file name macro (MAKE) 32

G
graphics, library

TLINKand 60
GREP See The online document UTIL.DOC

H
-h MAKE option (help) 12
-h RC option (help on options) 100
header files See include files
help, MAKE 12
hyphen (-) MAKE command (ignore exit

status) 18

-i MAKE option (ignore exit status) 12

243

-I MAKE option (include files directory) 12, 13
-i RC option (include files) 100
/i TLINK option (uninitialized trailing

segments) 65
identifiers

defining 28
!if MAKE directive 38

defined test macro and 31
macros and 30

!ifdef MAKE directive 38
!ifndef MAKE directive 38
ignore exit status (MAKE command) 18
.ignore MAKE directive 36
IMPDEF (module definition files) 3-5

IMPUB and 3
IMPLIB (import libraries) 6-7

DLLsand 6
IMPDEF and 3
warnings 6

$IMPLIB See import libraries
implicit

rule (MAKE) 16
import libraries 6-7, See also DLLs

creating new 7
customizing 3
DLLsand 5, 6

!include directive (MAKE) 13, 38
include files

automatic dependency checking (MAKE) 25
MAKE 13,38

directories 12
Resource Compiler and 100

INDEX option 134
initialization modules

compatibility 59
used with TLINK 58, 59

integrated debugger See debugging

K
-K MAKE option (keep temporary files) 12, 19
'-k RC option (disable load optimization) 100

L
-1 RC option (expanded memory) 100
/1 TLINK option (line numbers) 65
.LIB files See libraries

244

libname (TLIB option) 47
librarian See TLIB
libraries

duplicate symbols in 64
dynamic link (DLL) See DLLs
floating point

TLINKand 60
graphics

TLINKand 60
import See import libraries
memory models and 59-61
numeric coprocessor 60
object files 45, 46

creating 48
order of use 60
page size 50
run time

TLINK and 61
TLINK and 58, 59

ignoring 68
utility See TUB
Windows applications and 60

-lim32 RC option (expanded memory) 100
line numbers, TLINK and 65
linker See TLINK
listfile (TLIB option) 47
load optimization

disabling (Resource Compiler) 100
. LST files 47

M'
-m MAKE option (display time/date stamp) 12
-m RC option (expanded memory) 100
macros See MAKE (program manager)

DOS
environment strings and 30
path (MAKE) 36

invocation
defined 29

Turbo editor See The online document
UTIL.DOC

MAKE
NMAKEvs.42

__ MAKE __ macro 30
MAKE (program manager)

automatic dependency checking 12,25
batching files and 20

Tools and Utilities Guide

BUILTINS.MAK file 13
clocks and 10
commands

@ (hide commands) 18
ampersand (&) (multiple dependents) 18
hiding (@) 18
hyphen (-) (ignore exit status) 18
-num (stop on exit status num) 18

compatibility 12
debugging 12
directives

.autodepend 36
command-line compiler options and 36
conditional execution 38

expressions in 40
defined 35
dot 36
!elif 38

macros and 30
!else 38
!endif 38
!error 41
file inclusion 38
!if 38

macros and 30
!ifdef 38
!ifndef 38
.ignore 36
!include 38
.noautodepend 36
.noignore 36
.nosilent 36
.noswap 36
.silent 36
.swap 36
!undef 42

DLLsand 60
DOS commands and 21
example 13
exit codes and 18
explicit rules See MAKE (program manager)
external commands and 21
functionality 10
hide commands 18
implicit rules See MAKE (program manager)
!include directive 13
macros 18, 26, 28, 30

Index

$? 18
$** 18
all dependents ($**) 34
all out of date dependents ($?) 34
base file name ($*) 32
defined test 31
!elif directive and 30, 31
example 26
file name and extension ($.) 33
file name only ($&) 33
file name path ($:) 33
full file name ($<) 32
full name with path ($&) 33
!if directive and 30, 31
in expressions $d 41
__ MAKE __ 30
predefined 30
undefining 42
version number 30

makefiles
comments in 17
creating 16
defined 14
naming··16
parts of 16

multiple dependents and 18
operators 41
options 11

-? (help) 12
automatic dependency checking (-a) 25
build all (-B) 12
default (-w) 12
define identifier (-D) 12

conditional execution 38
display rules (-p) 12
display time/ date stamp (-m) 12
don't print commands (-s) 12
environment variables(-e) 12
file name (-f) 10, 12
help (-? and -h) 12
ignore BUILTINS.MAK (-r) 12
ignore exit status (-i) 12
include files directory (-I) 12, 13
keep files (-K) 12, 19
-N (increase compatibility) 12
-n (print commands but don't execute) 12
saving (-w) 12

245

swap MAKE out of memory (-S) 12
un define (-U) 12
using 11
-W (save options) 12

.path directive 36

.precious directive 36
printing commands 36
redirection operators 18
rules

explicit
considerations 23
defined 22
example 17, 24

implicit 15
discussion 25
example 17

swapping in memory 36
syntax 11
wildcards and 22
Windows applications and 60

MAKE.EXE (protected-mode MAKE) 10
makefiles See MAKE (program manager)
MAKER.EXE (real-mode MAKE) 10
mangled names

DLLs and 4
map 66
map files

debugging 66
generated by TLINK 66

Map section 138
MAPFONTSIZE option 135
math coprocessors 60
MATHx.LIB 60
memory

extended and expanded See extended and
expanded memory
swapping MAKE in 36

memory models 59-61
messages See also errors; warnings

Compile-time 154
DPMI155
Help compiler 155
MAKE 157
run-time 157
TLIB 157
TLINK (list) 158
tracing 88

246

Microsoft Windows applications
code segments 69
import libraries 3
MAKE and 60
modes 100
overlays and 68
TLINKand 62
TLINK option 70

Microsoft Windows Help
appearance to programmer 104
appearance to user 102, 103
appearance to writer 103, 104
audience definition 104, 105
bitmaps 124-126
calling WinHelp 142, 143
canceling 148, 149
compiler 140-141
context-sensitive 107-108, 143-147
control codes 114
development cycle described 101, 102
FI support 146, 147
file structure 108-110
graphics 112
keywords 106, 118-120
keywords table

accessing 147, 148
on Help menu item 147
planning, overview 104
tracker 127-128

Microsoft Windows Help Project file
accessing from an application 142
Alias section 137, 138
bitmaps, including by reference 140
Bitmaps section 140
BUILD option 132, 133
BuildTags section 131
compiling 140, 141
COMPRESS option 136, 137
context-sensitive Help 143, 144, 145, 146,
147
context-sensitive topics 138, 139, 140
context strings, alternate 137, 138
creating 129, 130
FI support 146, 147
Files section 130, 131
FORCEFONT option 135
INDEX option 134

Tools and Utilities Guide

keyword table, accessing 147, 148
Map section 138, 139, 140
MAPFONTSIZE option 135, 136
MULTIKEY option 136
on Help menu item 147
Options section 131, 132
ROOT option 133, 134
TITLE option 134
WARNING option 132-133

Microsoft Windows Help text
fonts 111, 112
layout 110, 111

Microsoft Windows Help topic files
authoring tool 113
browse sequence numbers 120, 121, 122
build tags 115, 116
context strings 116, 117
control codes 114
cross references 122
definitions 123, 124
graphics 124
jumps 122
keywords 118, 119, 120
managing 127
title footnotes 117, 118
tracking 127, 128

Microsoft Windows Help topics
content 105
context-sensitivity 107, 108
cross-references 122
definitions 123, 124
file structure 108, 109, 110
jumps 122
structure of 106, 107

models, memory See memory models
module definition file

case sensitivity and 64
module definition files 72-81

IMPDEF and 3
ITw TLINK option and 70

module names, TLIB 48
MULTIKEY option 136
-multinst RC option (expanded memory) 100
multiple dependents

MAKE and 18

Index

N
-N MAKE option (increase compatibility) 12
-n MAKE option (print commands but don't

execute) 12
In TUNK option (ignore default libraries) 68
names See identifiers
NMAKE

MAKEvs.42
.noautodepend MAKE directive 36
.noignore MAKE directive 36
nondirectional delimiters See delimiters
nonfatal errors See errors
.nosilent MAKE directive 36
.noswap MAKE directive 36
-num MAKE command 18
numeric coprocessors

TLINKand 60

o
10 TUNK option (overlays) 68

ITw option and 68
.OBI files (object files)

duplicate symbols in 64
libraries

advantages of using 46
creating 48
TLIB and 45

OBIXREF See The online document UTIL.DOC
operations

precedence 47
operations (TUB option) 47
operators

MAKE 18,41
optimizations, Resource Compiler 100
options See specific entries (such as command­

line compiler, options)
Options section 131
overlays

TLINKand 68
Windows applications and 68

p
-p MAKE option 12
-p RC option (private DLLs) 100
IP TLIB option (page size) 50
page size (libraries) 50

247

pane
classes 84
messages 84

. windows 84
.path directive (MAKE) 36
PF87.LIB 60
precedence, TUB commands 47
.precious directive (MAKE) 36
PRJ2MAK See The online document UTIL.DOC
PRJCFG See The online document UTIL.DOC
PRJCNVT See The online document UTIL.DOC
program manager (MAKE) See MAKE

(program manager)

R
-r RC option (compile .RC to .RES) 100
.RC files See Resource Compiler
real numbers See floating point
redirection operators, MAKE 18
remove (TLIB action) 48
replace (TLIB action) 49
.RES files 98, See resources
Resource Compiler 97

.EXEfiles
renaming 100

include files 100
messages 100
options 100

help 100
resources, renaming files 100·
syntax 99

resources 97
adding to executable 98
compiling 97
creating 97
files 98

renaming 100
loading 98
types of 97

response files
defined 56
TLIB49
TUNKand 56

ROOT option 133

248

5
-s MAKE option (don't print commands) 12
-S MAKE option (swap MAKE out of memory)

12
segments

aligning 63
code

discardable 68
minimizing 69
packing 69

map of
ACBP field and 67
TLINKand 66

uninitialized, TLINK and 65
.silent MAKE directive 36
source files

separately compiled 46
standalone utilities 1, See also MAKE (program

manager); TLIB (librarian); TLINK (linker)
standard library files See libraries
startup code (TUNK) 59
startup modules for memory models 61
.swap MAKE directive 36
switches See command-line compiler
symbolic

constants See macros
symbols

action See TLIB
duplicate warning (TLINK) 64

syntax
MAKE 11

T

Resource Compiler 99
TLIB 46
TLINK54

-t RC option (standard/386 mode) 100
It TLINK option 58, 69
TASM See Turbo Assembler
lTd and ITw TLINK options (target file) 70
TDSTRIP

TLINKand 71
TEML See The online document UTIL.DOC
THELP See The online document UTIL.DOC
32-bit code 63
13 TLINK option (32-bit code) 63

Tools and Utilities Guide

thunks See callbacks
TITLE option 134
TLIB (librarian) 45-52

action symbols 47-49
capabilities 45
examples 51
extended dictionary (I e)

TLINKand 50
module names 48
operations 47, 48

precedence 47
options

case sensitivity (I c) 47, 50
IE 47, 49
extended dictionary (I e) 47, 49
libname 47
lfstfile 47
operations 47
page size (lP) 50
using 46

response files
using 49

syntax 46
TLINK (linker)

ACBP field and 67
assembler code and 63
.COM files and 69, 71
command-line compiler and 62
debugging information 70, 71
executable file map generated by 66
floating-point libraries 60
graphics library and 60
initialization modules 59
invoking 53
libraries 59
memory models and 58
numeric coprocessor libraries 60
options 62

align segments (I A) 63
case sensitive imports (lC) 64
case sensitivity (I c) 63
.COM files (It) 58, 69
.COM files (lTd and ITw) 70
debugging information (Iv) 70
DLLs (lTwe) 70
duplicate symbols warning (I d) 64
executable files (lTd and ITw) 70

Index

expanded memory (lye) 71
extended dictionary (/ e) 65
extended memory (lyx) 71
file extension 56, 58
Ii (uninitialized trailing segments) 65
II (source code line numbers) 65
libraries, ignoring (In) 68
line numbers (II) 65
map files (1m)

debugging 66
public symbols in 66
segments in 66

In (ignore default libraries) 68
overlays (10) 68
pack code segments (lP) 69
Is (map files) 66
source code line numbers (II) 65
target files 70
lTd (Windows executable) 68
lTd and ITw (target files) 70
32-bit assembler code and (13) 63
tiny model.COM files (It) 58,69
ITw (Windows executable) 68
uninitialized trailing segments (Ii) 65
Iv (debugging information) 70
Windows executable (lTd and ITw) 68, 70
Ix (map files) 66
lye (expanded memory) 71
Iyx (extended memory) 71

response files 56
example 57

segment limit 209
starting 53
startup code 59
syntax 54
target file options (lTd and ITw) 70
TLIB extended dictionary and 50
Windows applications and 62

topic numbers, Help compiler 156
tracing, messages 88
trailing segments, uninitialized 65
TRIGRAPH See The online document

UTIL.DOC
Turbo Assembler

TLINKand 63
Turbo Editor Macro Language compiler See

The online document UTIL.DOC

249

u
-U MAKE option (un define) 12
!undef MAKE directive 42
utilities See also The online document

UTIL.DOC
standalone 1
TLIB 45-52

v
-v option (debugging information) 65
-v RC option (display compiler messages) 100
Iv TLINK option (debugging information) 70

w
-W MAKE option (save options) 12
WARNING option 132

250

warnings See also errors
Compile-time 154
defined 154
Help compiler 155
IMPLIB 6
TLIB 157
TLINK 158

wildcards
MAKE and 22

Windows See Microsoft Windows applications

x
-x RC option (exclude include directories) 100

y
lye TLINK option (expanded memory) 71
Iyx TLINK option (extended memory) 71

Tools and Utilities Guide

3.1

B o R L A N D
Corporate Headquarters: 1800 Green Hills Road, P.O. Box 660001, Scotts Valley, CA 95067-0001 , (408) 438-5300. Offices in: Australia,
Belgium, Canada, Denmari<, France, Germany, Hong Kong, Italy, Japan, Korea, Malaysia, Netheriands, New Zealand, Singapore, Spain,
Sweden, Taiwan and Un~ed Kingdom . Part #14MN-BCP02-31 • BOR 3859

