BORLAND C++ 30

USER'S GUIDE

| Il INTEGRATED ENVIRONMENT
Il OPTIMIZATION
I COMMAND-LINE COMPILER

I INSTALLATION

BORLAND



Borlanak C++

Version 3.0

User’s Guide

BORLAND INTERNATIONAL, INC. 1800 GREEN HILLS ROAD
P.O. BOX 660001, SCOTTS VALLEY, CA 95067-0001



R1

Copyright ® 1991 by Borland International. All rights reserved. All
Borland products are trademarks or registered trademarks of
Borland International, Inc. Other brand and product names are
frademarks or registered trademarks of their respective holders.
Windows, as used in this manual, refers to Microsoft’s
implementation of a windows system.

PRINTED IN THE USA.
10987654321



Introduction 1
What'sinBorland C++ ................. 1
Hardware and software requirements ... 4
The Borland C++ implementation ....... 4
The Borland C++ package .............. 5
The User'sGuide ..................... 5
Tools and Utilities Guide .............. 6
The Programmer’s Guide .............. 7
The Library Reference ................. 8
Using themanuals .................... 8
Programmers learning Cor C++ ...... 9

Experienced C and C++ programmers . 9
Typefaces and icons used in these books . 9

How to contact Borland ............... 10
Resources in your package .......... 11
Borland resources .................. 11

Chapter 1 Installing Borland C++ 13

Using INSTALL ..................... 14
Protected mode and memory ........ 15
DPMINST ...................... 15
DPMIMEM ..................... 16
DPMIRES ....................... 16
Extended and expanded memory .. 17
Running BC ....................... 18
Laptopsystems .................... 18
The READMEfile .................... 18
The HELPME!LDOCfile ............... 19
Example programs .................. 19
Customizing theIDE ................. 19
Chapter 2 IDE basics 21
Starting and exiting .................. 22
Command-line options ............. 22
The /boption ................... 22

The /doption ................... 22

The /eoption ................... 23

The /hoption ...................
The /loption ....................
The /moption ...................
The /poption ...................
The /roption . ...................
The /soption....................
The /xoption ...................
Exiting Borland C++
The components .....................
The menu bar and menus ...........
Shortcuts
Command sets
Borland C++ windows ..............
Window management ............
Thestatusline .....................
Dialogboxes ......................
Check boxes and radio buttons .. ..
Input boxes and lists
Configuration and project files .........
The configurationfile ...............
Projectfiles..............ooooiii
The project directory .............
Desktop files ....................
Changing project files
Defaultfiles .....................
The Turbo C++ for Windows IDE ... ...
Starting Turbo C++ for Windows ....
Command-line options
Command sets
Configuration and project files . . ... ..
Using the SpeedBar ................

Chapter 3 Menus and options
reference
= (System)menu ...l
Repaint Desktop ...................




Transferitems .............covu.... 46
Filemenu ........................... 47
NeWw it cie e 47
Open ......oooviiiiiiiii 47
Using the Filelistbox ............... 48
SaAVE . i e e 49
Save AS .t e 49
Save All ...... ... ... .. ... ... 49
ChangeDir ..............c0oeiet 50
Print ..., 51
PrinterSetup ...................... 51
DOSShell ..........oiiiiiin.., 51
EXit v i e e 52
Closed File Listing ................. 52
Editmenu .................. ... 52
Undo .ovvii e 53
Redo ...t 53
Cut i e 54
COPY v 54
Paste ... 54
Clear .....coviiiiiii i 54
Copy Example ..................... 55
Show Clipboard ................... 55
Searchmenu ...............cccoven... 56
Find........ ... .. i 56
Replace ..., 58
Search Again ...................... 58
Go to Line Number ................ 59
PreviousError ..................... 59
NextError ..........ccvvviivenn... 59
Locate Function.................... 59
Runmenu .......................... 59
Run ..., 59
Source code thesame ............. 60
Source code modified ............. 60
ProgramReset ..................... 61
GotoCursor .........ccivvvvnennn. 61
TraceInto ......................... 61
StepOver ..., 62
Arguments ............. ...l 63
Debugger ............c.ooiiiiian, 63
Debugger Options ................. 64
Compilemenu....................... 64
Compile .............oiiiiiia 64

Make .......oooviiiiiii i 64
Link......oooooiiiiiiiii 65
Build .............o oo i 65
Information ................ ... ... 65
Remove Messages . ................. 66
Debug menu Borland C++ only . 66
Inspect ................ollll 66
Ordinal Inspector windows ....... 67
Pointer Inspector windows ........ 68
Array Inspector windows ......... 68
Structure and union Inspector
windows ... 69
Function Inspector windows ...... 69
Class Inspector windows .......... 69
Constant Inspector window ....... 69
Type Inspector window ........... 70
Evaluate/Modify .................. 70
CallStack ...t 71
Watches ................ .ol 73
AddWatch...................... 73
Delete Watch .................... 73
EditWatch ...................... 73
Remove All Watches ............. 74
Toggle Breakpoint ................. 74
Breakpoints .............. ..ol 74
Projectmenu ........................ 76
OpenProject ..........ccoonna.. 76
Close Project ............coovue. 77
AddItem .............. ... ... 77
Deleteltem ....................... 77
Local Options ..................... 77
IncludeFiles ..............oooiit. 78
Browse menu Turbo C++ only .79
Classes .......coovvviiiiiiiiinnn.., 80
Functions ......................... 80
Variables ................. ... ... 80
Symbols ............... ...l 81
Rewind ...............coooiiiiit, 81
Overview ...........coiiiiit, 81
Inspect ...l 81
Goto ... 81
Optionsmenu ...............covnen, 81
The Set Application Options dialog
box ... 82



Compiler ...........ooiiiiiiii.. 84
Code Generation . ................ 84
Advanced Code Generation ....... 86
Entry/ExitCode ................. 88
C++Options .................... 90
Advanced C++ Options ........... 92
Optimizations (Turbo C++ for
Windows) . .......ccooiiiiin.. 94
Optimizations (Borland C++) ...... 96
SOUICE + vttt it it i 98
Messages ..............ooanan 99
Names .......cccvviviiivnnnn., 100

Transfer ..........cccieiivinnn... 100
Transfer macros ................ 102

Make ...t 103

Linker .........ccoiiiiiiin... 104

Librarian ........................ 107

Debugger ...............coooill 108

Directories .........ccoviiiinin... 110

Environment ..................... 111
Preferences ..................... 111
Editor ........... ... i, 113
Mouse ..., 114
Desktop ............. ...l 116
Startup ............ ..ol 116
Colors vovvvie i 117

T < P 118

Windowmenu ..................... 118

Size/MoOVe ....vvviiii i 119

ZOOM oottt 119

Tile ..o 119

Cascade .......coviiiiiininnnnn.. 119

Arrangelcons ................ ... 119

Next ...t 120

CloSE o ovi it 120

Close All.......oviiiiiii... 120

Message ............ocoiiiiiian, 120

Output ............ .ot 120

Watch ............. ... ... ... 121

UserScreen ..........ooeeiuvun.n. 121

Register ................ ..ot 121

Project ...t 122

Project Notes ..................... 122

List All ... 122

Helpmenu................oooooit s 122
Contents .................cooett 123
Index ...........oooiiiiiiiiiii 124
TopicSearch ..................... 124
Previous Topic ................... 124
HelponHelp ..................... 124
ActiveFile ................ ... ... 125
About ............... ...l 125

Chapter 4 Managing multi-file

projects 127

Sampling the project manager ........ 128

Error tracking ................... ... 131
Stoppingamake .................. 131
Syntax errors in multiple source files . 132
Saving or deleting messages . ....... 133
Autodependency checking ......... 133

Using different file translators ........ 134

Overriding libraries ................. 136

More Project Manager features ....... 137
Looking at files in a project ......... 139
Notes for your project ............. 139

Chapter 5 The command-line com-

piler 141

Using the command-line compiler ... . .. 141
DPMIINST ...t 142
Running BCC .................... 142
Using the options ................. 142

Option precedencerules ......... 143
Syntax and filenames ............. 146
Responsefiles .................... 147
Configuration files ................ 147

Option precedence rules ......... 148

Compiler options ................... 148
Memorymodel ................... 149
Macro definitions ................. 150
Code-generation options ........... 151

The —vand -vioptions ........... 155
Optimization options .............. 156
Source code options ............... 156
Error-reporting options ............ 157

ANSI violations . .............. 157
Frequenterrors ............... 158



Portability warnings ...........
C++ warnings
Segment-naming control ...........
Compilation control options ........

EMS and expanded memory options .

C++virtual tables .................
C++ member pointers
Template generation options
Linkeroptions ......................
Environment options ................
Backward compatibility options
Searching for include and library
files
File-search algorithms
An annotated example ...........

.............................

Appendix A The Optimizer
What is optimization? ...............
When should you use the
optimizer? .............. ... ...
Optimization options ................
Backward compatibility ..........
A closer look at the Borland C++
Optimizer ........................
Global register allocation .. .......
Dead code elimination ...........
Common subexpression
elimination .................. ...
Loop invariant code motion
Copy propagation ...............
Pointer aliasing .................

173
173

173
174

Induction variable analysis and
strength reduction
Loop compaction

Code size versus speed
optimizations
Structure copy inlining
Code compaction
Redundant load suppresion
Intrinsic function inlining
Register parameter passing . ......
_fastcall modifier ...............
Parameterrules .................
Functionnaming ................

..............

Appendix B Editor reference
Block commands ..................
Other editing commands ...........

Appendix C Using EasyWin
DOS to Windows made easy
_InitEasyWin() ................. ...

Added functions ..................

Appendix D Precompiled headers

Howtheywork .....................
Drawbacks ............... ... ...

Using precompiled headers
Setting file names
Establishing identity
Optimizing precompiled headers ...

..........

Index



21:General hotkeys................... 27
22:Menuhotkeys ................ ... 27
2.3:Editing hotkeys ................... 28
2.4: Window management hotkeys ...... 28
2.5:Online Help hotkeys .............. 28
2.6: Debugging/Running hot keys ... .. .. 29
2.7: Manipulating windows ............ 32
2.8: General hotkeys .................. 40
2.9:Editing hotkeys ................... 40
2.10: Online Help hotkeys .............. 41

2.11: Compiling/Running hot keys ...... 41

3.1: Information settings ............... 66
3.2: Format specifiers recognized in
debugger expressions .............. 72

5.1: Command-line options summary ...143
Al: Optimization options summary ....174
A.2: Parameter types and possible registers

used ... 184
B.1: Editing commands ............... 185
B.2: Block commands in depth ......... 188

B.3: Borland-style block commands .. ... 189
B.4: Other editor commands in depth ...189




21: Atypical window ................. 31
2.2: Atypical statusline ................ 33
2.3: Asample dialogbox ............... 34
3.1: The Open a File dialog box .......... 47
3.2: The Save File As dialog box ......... 49
3.3: The Change Directory dialog box ... .50
3.4: The Find Text dialogbox ........... 56
3.5: The Replace Text dialog box ........ 58
3.6: The Breakpoints dialog box ......... 74
3.7: The Breakpoint Modify/New dialog

box ... 75
3.8: The Override Options dialog box ....77
3.9: The Include Files dialog box ........ 78
3.10: Set Application Options ........... 82
3.11: The Code Generation dialog box ... .84

3.12: The Advanced Code Generation dialog
DOX wvii 86

vi

3.13: The Entry/Exit Code Generation dialog

box ... 88
3.14: The C++ options dialogbox ........ 90
3.15: Advanced C++ Options ........... 92
3.16: The Turbo C++ for Windows

Optimization Options dialog box ...95
3.17: The Borland C++ Optimization

Options dialog box ............... 96
318: The Transfer dialogbox .......... 101

3.19: The Modify/New Transfer Item dialog

DOX i 101
3.20: The Make dialogbox ............. 103
3.21: The Linker dialogbox ............ 104
3.22: The Libraries dialog box .......... 106

3.23: The Librarian Options dialog box ..107

3.24: The Debugger dialog box ......... 108
3.25: The Startup Options dialog box ...116
3.26: The Colors dialogbox ............ 118



Borland C++ is a professional optimizing compiler for C++ and C
developers. With Borland C++, you get both C++ (AT&T v.2.1
compliant) and ANSI C. It is a powerful, fast, and efficient com-
piler with which you can create practically any application,
including Microsoft Windows applications.

C++ is an object-oriented programming (OOP) language, and
allows you to take advantage of OOP’s advanced design
methodology and labor-saving features. It’s the next step in the
natural evolution of C. It is portable, so you can easily transfer
application programs written in C++ from one system to another.
You can use C++ for almost any programming task, anywhere.

What's in Borland C++

Chapter 1 tells you how to
install Borland C++. This
Infroduction tells you where
you can find out more about
each of these features.

Infroduction

Borland C++ includes the latest features programmers have asked
for:

m C and C++: Borland C++ offers you the full power of C and
C++ programming, with a complete implementation of the
AT&T v. 211 specification as well as a 100 % ANSI C compiler.
Borland C++ 3.0 also provides a number of useful C++ class
libraries, plus the first complete commercial implementation of
templates, which allow efficient collection classes to be built
using parameterized types.

m Global Optimization: a full suite of state-of-the-art optimization
options gives you complete control over code generation, so
you can program in the style you find most convenient, yet still
produce small, fast, highly efficient code.

m Faster compilation speed: Borland C++ 3.0 cuts compilation
time for C++ by up to half. Precompiled headers, a Borland
exclusive, significantly shorten recompilation time.



Optimizations are also performed at high speed, so you don’t
have to wait for high quality code.

m DPMI Compiler: Compile huge programs limited only by the
memory on your system. Borland C++ 3.0 now uses the
industry-standard DPMI protected mode protocol that allows
the compiler (as well as the IDE, the linker, and other programs)
to be run in protected mode under DOS or Windows 386
enhanced mode.

m Microsoft Windows programming: Borland C++ 3.0 provides
complete support for developing Windows applications,
including dynamic link libraries (DLLs) and EXEs. Added
support for Windows programming includes the Resource
Compiler, the Help Compiler, and the Resource Workshop.
We've also included many sample C and C++ Windows
applications to help get you going.

m EasyWin: Automatic Windows-conversion feature lets you turn
standard DOS applications using printf, scanf, and other
standard I/O functions into Windows applications without
changing a single line of code. Just set a single compiler switch (or
select “Windows application” in the IDE), and your DOS
program runs in a window!

m Programmer’s Platform: Borland C++ 3.0 comes with an
improved version of the Programmer’s Platform, Borland’s
open-architecture IDE that gives you access to a full range of
programming tools and utilities, including

« a multi-file editor, featuring both an industry-standard
Common User Access (CUA) interface and a familiar alternate
interface that is compatible with previous versions of Borland
CH+

e advanced Turbo Editor Macro Language (TEML) and
compiler

« multiple overlapping windows with full mouse support

o integrated resource linking, making it easy to develop
Windows applications in a single environment

o fully integrated debugger running in DPMI, for debugging
large applications

e a built-in assembler and support for inline assembler code
o complete undo and redo capability with an extensive buffer

and much more.

Borland C++ User's Guide



Infroduction

m Windows-hosted IDE: The included Turbo C++ for Windows
IDE lets you edit, compile, and run your programs under
Windows, so you don’t have to task switch between Windows
and a DOS compatibility box to create Windows programs. This
greatly increases your productivity by allowing you to
program, compile, link, debug and execute completely within
the Windows environment.The Turbo C++ for Windows IDE
also includes

o built-in ObjectBrowser that lets you visually explore your
class hierarchies, functions and variables, locate inherited
function and data members, and instantly browse the source
code of any element you select

« visual SpeedBar for instant point-and-click access to
frequently-used menu selections

m WinSight: Windows message-tracing utility lets you see inside
your program’s interaction with Windows.

® VROOMM: Borland C++’s Virtual Run-time Object-Oriented
Memory Manager lets you overlay your code without
complexity. You select the code segments for overlaying;
VROOMM takes care of the rest, doing the work needed to fit
your code into 640K.

m Help: Online context-sensitive hypertext help, with copy-and-
paste program examples for practically every function.

m Streams: Borland C++ includes full support for C++ iostreams,
plus special Borland extensions to the streams library that allow
you to position text, set screen attributes, and perform other
manipulations to streams within the Windows environment.

m Container classes: Advanced container class libraries giving
you sets, bags, lists, arrays, B-trees and other reusable data
structures, implemented both as templates and as object-based
containers for maximum flexibility.

m Windows API: The complete Windows API documentation in
online help.

Other features:

m Over 200 new library functions for maximum flexibility and
compatibility.

m Complex and BCD math, fast huge arithmetic.

m Heap checking and memory management functions, with far
objects and huge arrays.




m Run-time library in a DLL for Windows applications.
m New BGI fonts and BGI support for the full ASCII character set.

m Shared project, configuration, and desktop files to let
programmers work with the same environment whether they
use the Programmer’s Platform or the Windows-hosted IDE.

m Response files for the command-line compiler.
m NMAKE compatibility for easy transition from Microsoft C.

Hardware and software requirements

Borland C++ runs on the IBM PC compatible family of computers,
including the AT and PS/2, along with all true IBM compatible
286, 386 or 486 computers. Borland C++ requires DOS 3.31 or
higher, a hard disk, a floppy drive, and at least 640K plus 1MB of
extended memory; it runs on any 80-column monitor. The Turbo
C++ for Windows IDE requires protected mode Windows 3.0 or
higher, at least 2MB of extended memory and a Windows-
compatible monitor).

Borland C++ includes floating-point routines that let your pro-
grams make use of an 80x87 math coprocessor chip. It emulates
the chip if it is not available. Though it is not required to run
Borland C++, the 80x87 chip can significantly enhance the
performance of your programs that use floating point math
operations.

Borland C++ also supports (but does not require) any Windows-
compatible mouse. The Resource Workshop requires a mouse.

The Borland C++ implementation

Borland C++ is a full implementation of the AT&T C++ version
2.1. It also supports the American National Standards Institute
(ANSI) C standard. In addition, Borland C++ includes certain
extensions for mixed-language and mixed-model programming
that let you exploit your PC’s capabilities. See Chapters 1 through
4 in the Programmer’s Guide for a complete formal description of
Borland C++.

4 Borland C++ User’s Guide



The Borland C++ package

The User’s Guide tells you
how to use this product; the
Programmer’s Guide and the
Library Reference focus on
programming in C and C++.
the Tools and Utilities Guide
describes and gives you
insfructions for using
specialized programming
tools.

The User's Guide

Infroduction

Your Borland C++ package consists of a set of disks and nine
manuals:

m Borland C++ User’s Guide (this manual)

m Borland C++ Tools and Utilities Guide

m Borland C++ Programmer’s Guide

m Borland C++ Library Reference

m Resource Workshop User’s Guide

m Turbo Debugger User’s Guide

m Turbo Profiler User’s Guide

m Turbo Assembler User’s Guide

m Turbo Assembler Quick Reference

In addition to these manuals, you'll find a convenient Quick
Reference card. The disks contain all the programs, files, and
libraries you need to create, compile, link, and run your Borland
C++ programs; they also contain sample programs, many
standalone utilities, a context-sensitive help file, an integrated

debugger, and additional C and C++ documentation not covered
in these guides.

The User’s Guide introduces you to Borland C++ and shows you
how to create and run both C and C++ programs. It consists of in-
formation you’ll need to get up and running quickly, and
provides reference chapters on the features of Borland C++:
Borland’s Programmer’s Platform, including the editor and Project
Manager, as well as details on using the command-line compiler.
These are the chapters in this manual:

Introduction introduces you to Borland C++ and tells you where
to look for more information about each feature and option.

Chapter 1: Installing Borland C++ tells you how to install Borland
C++ on your system; it also tells you how to customize the colors,
defaults, and many other aspects of Borland C++.

Chapter 2: IDE Basics introduces the features of the
Programmer’s Platform, giving information and examples of how




Tools and Utilities
Guide

to use the IDE to full advantage. It includes information on how
to start up and exit from the IDE.

Chapter 3: Menus and options reference provides a complete
reference to the menus and options in the Programmer’s Platform.

Chapter 4: Managing multi-file projects introduces you to Borland
C++'s built-in project manager and shows you how to build and
update large projects from within the IDE.

Chapter 5: The command-line compiler tells how to use the
command-line compiler. It also explains configuration files.

Appendix A: The Optimizer introduces the concepts of compiler
optimization, and describes the specific optimization strategies
and techniques available in Borland C++.

Appendix B: Editor reference provides a convenient command
reference to using the editor with both the CUA command
interface and the Borland C++ alternate interface.

Appendix C: Using EasyWin provides a guide to using the
EasyWin functions to quickly and easily turn your DOS programs
into applications that run under Microsoft Windows.

Appendix D: Precompiled headers tells you how to use Borland
C++'s exclusive precompiled headers feature to save substantial
time when recompiling large projects, especially Windows
applications.

This volume introduces you to the many programming tools and
utility programs provided with Borland C++. It contains informa-
tion you’'ll need to make full use of the Borland C++ program-
ming environment, including the Make utility, the Turbo
Librarian and Linker, the WinSight program and special utilities
for Microsoft Windows programming.

Chapter 1: Import library tools tells you how to use the IMPDEF,
IMPLIB, and IMPLIBW utilities to define and specify import
libraries.

Chapter 2: Make: The program manager introduces the Borland
C++ MAKE utility, describes its features and syntax, and presents
some examples of usage.

Borland C++ User’s Guide



The Programmer’s

Intfroduction

Guide

Chapter 3: TLIB: The Turbo librarian tells you how to use the
Borland C++ Turbo Librarian to combine object files into
integrated library (.LIB) files.

Chapter 4: TLINK: The Turbo linker is a complete reference to the
features and functions of the Turbo Linker (TLINK).

Chapter 5: Using WinSight provides instructions for using Win-
Sight to inspect your programs running under Microsoft
Windows.

Chapter 6: RC: The Windows resource compiler tells you how to
use the Resource Compiler to compile .RC scripts into .RES
resource files for your Windows programs.

Chapter 7: HC: The Windows Help compiler contains instructions
for using the Help Compiler to create help systems for your
Microsoft Windows programs.

Chapter A: Error messages lists and explains run-time, compile-
time, linker, librarian, and Help compiler errors and warnings,
with suggested solutions.

The Programmer’s Guide provides useful material for the experi-
enced C user: a complete language reference for C and C++,
writing Windows applications, a cross-reference to the run-time
library, C++ streams, memory models, mixed-model program-
ming, video functions, floating-point issues, and overlays, plus
error messages.

Chapters 1 through 4: Lexical elements, Language structure, C++
specifics, and The preprocessor, describe the Borland C++
language.

Chapter 5: Using C++ streams tells you how to use the C++
iostreams library, as well as special Borland C++ extensions for
Windows.

Chapter 6: The container class library tells you how to use the
Borland C++ container class library in your programs.

Chapter 7: Converting from Microsoft C provides some
guidelines on converting your Microsoft C programs to Borland
Ct++.




Chapter 8: Building a Windows application introduces you to the
concepts and techniques of writing applications for Microsoft
Windows using Borland C++.

Chapter 9: DOS memory management covers memory models,
mixed-model programming, and overlays.

Chapter 10: Math covers floating-point and BCD math.

Chapter 11: Video functions is devoted to handling text and
graphics in Borland C++.

Chapter 12: BASM and inline assembly tells how to write inline
assembly language functions that can be assembled with the
built-in assembler (BASM) and used within your Borland C++
program.

Appendix A: ANSI implementation-specific standards describes
those aspects of the ANSI C standard that have been left loosely
defined or undefined by ANSI, and how Borland has chosen to
implement them.

The Library

Reference The Library Reference contains a detailed list and explanation of
Borland C++'s extensive library functions and global variables.

Chapter 1: The main function describes the main function.

Chapter 2: The run-time library is an alphabetically arranged
reference to all Borland C++ library functions.

Chapter 3: Global variables defines and discusses Borland C++'s
global variables.

Appendix A: Library cross-reference provides a complete
indexed locator reference to all Borland C++ library functions.

Using the manuails

The manuals are arranged so that you can pick and choose among
the books and chapters to find exactly what you need to know at
the time you need to know it. The User’s Guide provides informa-
tion on how to use Borland C++ as a product; the Programmer’s
Guide and the Library Reference provide material on programming
issues in C and C++.

8 Borland C++ User's Guide



Programmers
learning C or C++

Experienced C
and C++
programmers

Chapter 1 of this manual (the User’s Guide) tells you how to install
Borland C++ and how to customize Borland C++’s defaults. The
remaining chapters of the User’s Guide are for use as reference
chapters to using Borland C++'s IDE, editor, project manager,
command-line compiler, precompiled headers, and online
utilities.

If you don’t know C or C++, there are many good products on the
market that can get you going in these languages. You can use
Chapters 1 through 5 in the Programmer’s Guide for reference on
specific technical aspects of Borland C++.

Your next step is to start programming in C and C++. You’ll find
Chapter 2, “The run-time library” in the Library Reference to be a
valuable reference on how to use each function. Chapter 1, “The
main function,” provides information on aspects of the main
function that is seldom found elsewhere. Or, you might prefer to
use the online help; it contains much of the same information as
the Library Reference, and includes programming examples that
you can copy into your own programs. Once you have grown
comfortable with programming, you may want to move into the
more advanced issues covered in the Programmer’s Guide.

If you are an experienced C or C++ programmer and you've
already installed Borland C++, you'll probably want to jump
immediately to the Programmer’s Guide and to the Library Reference.

The Programmer’s Guide covers certain useful programming issues,
such as C++ streams, assembly language interface, memory
models, video functions, overlays, and far and huge pointers. If
you are interested in writing a Windows application in C++,
Chapter 8, “Building a Windows application,” provides an
overview.

Typefaces and icons used in these books

Infroduction

All typefaces and icons used in this manual were produced by
Borland’s Sprint: The Professional Word Processor, on a PostScript
laser printer.




Monospace type

ALL CAPS
0

<>

Boldface

Italics

Keycaps

This typeface represents text as it appears onscreen or in a pro-
gram. It is also used for anything you must type literally (such as
BC to start up Borland C++).

We use all capital letters for the names of constants and files.

Square brackets [ ] in text or DOS command lines enclose optional
items that depend on your system. Text of this sort should not be
typed verbatim.

Angle brackets in the function reference section enclose the names
of include files.

Borland C++ function names (such as printf), class, and structure
names are shown in boldface when they appear in text (but not in
program examples). This typeface is also used in text for Borland
C++ reserved words (such as char, switch, near, and cdecl), for
format specifiers and escape sequences (%d, \t), and for
command-line options (/A).

Italics indicate variable names (identifiers) that appear in text.
They can represent terms that you can use as is, or that you can
think up new names for (your choice, usually). They are also used
to emphasize certain words, such as new terms.

This typeface indicates a key on your keyboard. For example,
“Press Esc to exit a menu.”

This icon indicates keyboard actions.
This icon indicates mouse actions.

This icon indicates language items that are specific to C++. It is
used primarily in the Programmer’s Guide.

This icon indicates material that applies to Turbo C++ for
Windows, or which relates specifically to writing a Windows
program.

How to contact Borland

10

Borland offers a variety of services to answer your questions
about this product. Be sure to send in the registration card;

Borland C++ User’s Guide



Resources in your
package

Borland resources

800-822-4269 (voice)
Techfax

408-439-9096 (modem)
File Download BBS
2400 Baud

Online information services

408-438-5300 (voice)
Technical Support
é6a.m. fos5p.m. PST

Introduction

registered owners are entitled to technical support and may
receive information on upgrades and supplementary products.

This product contains many resources to help you:

m The manuals provide information on every aspect of the
program. Use them as your main information source.

m While using the program, you can press F1 for help.

& Many common questions are answered in the DOC files listed
in the README file located in the program directory.

Borland Technical Support publishes technical information sheets
on a variety of topics and is available to answer your questions.

TechFax is a 24-hour automated service that sends free technical
information to your fax machine. You can use your touch-tone
phone to request up to three documents per call.

The Borland File Download BBS has sample files, applications,
and technical information you can download with your modem.
No special setup is required.

Subscribers to the CompuServe, GEnie, or BIX information
services can receive technical support by modem. Use the
commands in the following table to contact Borland while
accessing an information service.

Service Command
CompuServe GO BORLAND
BIX JOIN BORLAND
GEnie BORLAND

Address electronic messages to Sysop or All. Don’t include your
serial number; messages are in public view unless sent by a
service’s private mail system. Include as much information on the
question as possible; the support staff will reply to the message
within one working day.

Borland Technical Support is available weekdays from 6:00 a.m.
to 5:00 p.m. Pacific time to answer any technical questions you
have about Borland products. Please call from a telephone near

11



12

408-438-5300 (voice)
Customer Service
7 a.m. to5p.m. PST

your computer, and have the program running. Keep the
following information handy to help process your call:

m Product name, serial number, and version number.

m The brand and model of any hardware in your system.

m Operating system and version number. (Use the DOS command
VER to find the version number.)

m Contents of your AUTOEXEC.BAT and CONFIG.SYS files
(located in the root directory (\) of your computer’s boot disk).

m The contents of your WIN.INI and SYSTEM.INI files (located in
your Windows directory).
m A daytime phone number where you can be contacted.

m If the call concerns a problem, the steps to reproduce the
problem.

Borland Customer Service is available weekdays from 7:00 a.m. to
5:00 a.m. Pacific time to answer any non-technical questions you
have about Borland products, including pricing information,
upgrades, and order status.

Borland C++ User’s Guide



Your Borland C++ package
includes two different
versions of Borland C++: the
IDE (Programmer’s Platform)
the DOS command line
version. It also includes Turbo
C++ for Windows, which runs
as a true Windows
application.

If you don’t already know
how to use DOS commands,
refer to your DOS reference
manual before setfing up
Borland C++ on your system.

Installing Borland C++

Borland C++ comes with an automatic installation program called
INSTALL. Because we used file-compression techniques, you
must use this program; you can’t just copy the Borland C++ files
onto your hard disk. Instead, INSTALL automatically copies and
uncompresses the Borland C++ and Turbo C++ for Windows files.
For reference, the README file on the installation disk includes a
list of the distribution files.

We assume you are already familiar with DOS commands. For
example, you'll need the DISKCOPY command to make backup
copies of your distribution disks. Make a complete working copy
of your distribution disks when you receive them, then store the
original disks away in a safe place.

None of Borland’s products use copy protection schemes. If you
are not familiar with Borland’s No-Nonsense License Statement,
read the agreement included with your Borland C++ package. Be
sure to mail us your filled-in product registration card; this guar-
antees that you'll be among the first to hear about the hottest new
upgrades and versions of Borland C++.

This chapter contains the following information:

m installing Borland C++ and Turbo C++ for Windows on your
system

m accessing the README file

m accessing the HELPME! file

m a pointer to more information on Borland’s example programs

Chapter 1, Installing Borland C++ 13




Using INSTALL

m information about customizing Borland C++ (set or change
defaults, colors, and so on)

Once you have installed Borland C++, you'll be ready to start
digging into Borland C++. But certain chapters and manuals were
written with particular programming needs in mind. The
Introduction tells where to find out more about Borland C++'s
features in the documentation set.

We recommend that you

read the README file before

14

installing.

Important!

Among other things, INSTALL detects what hardware you are
using and configures Borland C++ appropriately. It also creates
directories as needed and transfers files from your distribution
disks (the disks you bought) to your hard disk. Its actions are
self-explanatory; the following text tells you all you need to know.

To install Borland C++:

1. Insert the installation disk (disk 1) into drive A. Type the
following command, then press Enter.

A:INSTALL
2. Press Enter at the installation screen.
3. Follow the prompts.

4. At the end of installation, you may want to add this line to
your CONFIG.SYS file:
FILES = 20
and this line to your AUTOEXEC.BAT file (or modify your
existing PATH statement, if you already have one):
PATH = C:\BORLANDC\BIN

When it is finished, INSTALL allows you to read the latest about
Borland C++ in the README file, which contains important, last-
minute information about Borland C-++. The HELPME!.DOC file
also answers many common technical support questions.

The next time you start Microsoft Windows (after you exit from
the README file viewer) a Borland C++ program group will be
created and installed in Program Manager. The program group
will contain icons for the following Borland C++ programs and
utilities:

m Borland C++

Borland C++ User's Guide



m Turbo Profiler

m Turbo Debugger for Windows
m Turbo C++ for Windows

& Resource Workshop

m WinSight

m Import Librarian

m Fconvert utility

Importanfl  INSTALL assumes that Microsoft Windows is installed in the
directory you specified as your Windows directory during
installation. It also assumes that the Program Manager starts up
automatically as your Windows “shell” when you start Windows.
If you normally use a different command shell from Program
Manager, should edit the SYSTEM.INI file in your Windows
directory to include the line

SHELL=PROGMAN.EXE

otherwise you may get a message saying “cannot communicate
with Program Manager” when you first open Windows and
Borland C++ tries to create a new Program Manager group. Once
Turbo C++ for Windows and the other tools are installed in a
Program Manager group, you can examine their settings, then
reinstall them in your alternate command shell if you want.

Protected mode

and memory  Borland C++ utilizes the DPMI (Dos Protected Mode Interface) to
run the compiler in protected mode, giving you access to all your
computer’s memory without swapping. The protected mode
interface is completely transparent to the user, and you should
never have to even think about it, with a few possible exceptions.

DPMIINST  Once such exception may be when you run Borland C++ for the
very first time. Borland C++ uses an internal database of various
machine characteristics to determine how to enable protected
mode on your machine, and configures itself accordingly. If your
machine is not recognized by Borland C++, you will receive an
error message saying

Machine not in database (RUN DPMIINST)

If you get this message, simply run the DPMIINST program by
typing (at the DOS prompt)

Chapter 1, Installing Borland C++ 15




16

DPMIMEM

DPMIRES

DPMIINST

and following the program’s instructions. DPMIINST runs your
machine through a series of tests to determine the best way of
enabling protected mode, and automatically configures Borland
C++ accordingly. Once you have run DPMIINST, you will not
have to run it again.

By default, the Borland C++ DPMI interface will allocate all
available extended and expanded memory for its own use. If you
don’t want all of the available memory to be taken by the DPMI
kernel, an environment variable must be set which specifies a
maximum amount of memory to use. This variable can be entered
directly at the DOS prompt or inserted as a line in your
AUTOEXEC.BAT file, using the syntax

DPMIMEM=MAXMEM nnnn
where nnnn is the amount of memory in kilobytes.

For example, if a user has a system with 4MB and wants the
DPMI kernel to use 2MB of it, leaving the other 2MB alone, the
DPMIMEM variable would be set as follows:

c:> set DPMIMEM=MAXMEM 2000

When running under Windows 3.0 in 386 enhanced mode, it is
not necessary to set the DPIMEM variable; instead, you should
use a Windows PIF file to configure the memory usage of Borland
C+.

Under Windows standard mode, we suggest that the Borland
DPMI kernel be pre-loaded prior to running windows. This is
done by running DPMIRES.EXE (see the discussion of DPMIRES
which follows). When using DPMIRES is conjunction with
Windows, you should always set the DPMIMEM variable to less
than the maximum available memory to insure that Windows will
have enough physical memory to operate.

DPMIRES is a Borland utility that can be used with BC 3.0 to
increase performance of some of the Borland language tools
under certain conditions. In particular, the performance of the
following tools can be enhanced through its use:

mBCC

m TASMX

Borland C++ User’s Guide



Extended and
expanded memory

m TLINK

When run, DPMIRES will enable the Dos Protected Mode
interface and spawn a DOS command shell. The applications
mentioned above will load faster into this shell. Typing ‘EXIT” to
the shell will remove it.

DPMIRES is especially useful if you are compiling with MAKER
(the real mode MAKE) or with batch files, instead of using the
protected mode MAKE. In this situation, it will be more efficient
to run DPMIRES and then run MAKER or the batch file, since the
compiler will load faster on each invocation.

NOTE: If you are running under DPMIRES, you may not run
Windows 3.0 in enhanced mode. You must first exit to DOS and
then run Windows 3.0.

Once the DPMI kernel is loaded (either by running BC or through
the DPMIRES utility), the Borland C++ integrated development
environment interacts directly with the DPMI server to allocate its
memory, both to load and while operating. By default, the IDE
will use all the extended memory reserved by the DPMI kernel
and all available EMS (expanded) memory, the EMS memory
being used as a swap device.

The Options | Environment | Startup... dialog and the /X and /E
command line switches can be used to change this behavior.
These setting do not affect the memory reserved by the kernel
itself, only how much of it is used by the IDE.

The Use Extended Memory dialog item (and the /X command line
option) can be used to tell BC how much of the memory reserved
by the DPMI kernel to use. The main reason for limiting BC’s use
of the kernel’s memory is to allow running of other DPMI
applications from within the IDE’s (using the Transfer capability),
or from a DOS shell opened from the IDE.

The Use EMS Memory dialog item (and the /E command line
option) are used to tell the IDE how many 16K EMS pages to use
as a swap device. Unless the kernel has been instructed to leave
aside some available memory, there will be no EMS pages
available to the IDE.

Chapter 1, Installing Borland C++ 17



The README file

Running BC

Laptop systems

Once you have installed Borland C++, and if you're anxious to get
up and running, change to the Borland C++ \BIN directory, type
BC and press Enter. Or, you may wish to run Turbo C++ for
Windows, by clicking on the Turbo C++ for Windows icon in the
Program Manager. Otherwise, continue reading this chapter and
the next for important start-up information.

After you have tried out the IDE, you may want to permanently
customize some of the options. The Options | Environment |
Startup and Options | Environment | Colors selections in the IDE
make this easy to do; see page 19 for more information.

If you have a laptop computer (one with an LCD or plasma
display), in addition to carrying out the procedures given in the
previous sections, you need to set your screen parameters before
using Borland C++. The IDE works best if you type MODE BW80 at
the DOS command line before running Borland C++.

Although you could create a batch file to take care of this for you,
you can also easily install Borland C++ for a black-and-white
screen from within the IDE, using the Options | Environment |
Startup option. Choose “Black and White / LCD” from the Video
options group.

18

The README file contains last-minute information that may not
be in the manuals.

Borland C++ automatically places you in the README file when
you run the INSTALL program. To access the README file at a
later time you can use the Borland C++ README program by
typing at the DOS command line:

README

Borland C++ User's Guide



The HELPME!LDOC file

Your installation disk also contains a file called FILELIST.DOC,
which lists every file on the distribution disks, with a brief
description of what each one contains, and HELPME!.DOC,
which contains answers to problems that users commonly run
into. Consult it if you find yourself having difficulties. You can
use the README program to look at HELPMELDOC. Type this at
the command line:

README HELPME!.DOC

Example programs

Your Borland C++ package includes the source code for a large
number of example programs in C and C++ for both DOS and
Windows, including a complete spreadsheet program called
Turbo Calc. These programs are located in the .. \EXAMPLES
directory (and subdirectories) created by INSTALL. The ..\
EXAMPLES directory also contains subdirectories for examples of
the other tools and utilities that come with Borland C++ (like the
Turbo Assembler, Debugger and Resource Workshop). Before you
compile any of these example programs, you should read the
printed or online documentation for them.

Customizing the IDE

For defailed information on
the menus and options in the
IDE, see Chapter 2, “IDE
Basics,” and Chapter 3,
“Menus and options
reference.”

Borland C++ version 3.0 allows you completely customize your
installation from within the IDE itself, using the various options
that appear under the Options | Environment menu. These options
allow you to specify the video mode, editing modes, menu colors,
and default directories, among others.

Chapter 1, Installing Borland C++ 19




20

Borland C++ User’s Guide



Chapter 2, IDE basics

IDE basics

Borland’s Programmer’s Platform, also known as the integrated
development environment or IDE, has everything you need to
write, edit, compile, link, and debug your programs. It provides
m multiple, movable, resizable windows

= mouse support

m dialog boxes

m cut, paste, and copy commands that use the Clipboard

m full editor undo and redo

m examples ready to copy and paste from Help

m a built-in assembler

m quick transfer to other programs (like Turbo Assembler) and

back again

m an editor macro language

This chapter explains how to start up and exit the Borland C++
IDE, discusses its generic components, and explains how
configuration and project files work. Since the Turbo C++ for
Windows IDE comes in this package, the last section describes its

environment. Most of the features of the Borland C++ IDE are in
the Turbo C++ for Windows IDE also.

2]




Starting and exiting

22

Borland C++ runs only in
protected mode.

Command-line
options

The /b option

The /d option

To start the IDE, type BC at the DOS prompt. You can follow it
with one or more command-line options.

The command-line options for Borland C++’s IDE are /b, /d, /e, /h,
/I, /m, /p, Irx,/s, and /x which use this syntax:

BC [option [option...]] [sourcename | projectname [sourcename]]

where option can be one or more of the options, sourcename is any
ASCII file (default extension assumed), and projectname is your
project file (it must have the .PR]J extension).

To turn an option off, follow the option with a minus sign. For
example,

BC /e-

turns off the default swap to expanded memory option.

The /b option causes Borland C++ to recompile and link all the
files in your project, print the compiler messages to the standard
output device, and then return to the operating system. This
option allows you to start Borland C++ from a batch file so you
can automate project builds. Borland C++ determines what .EXE
to build based on the project file you specified on the command
line or the file loaded in the active edit window if no project file is
found.

To specify a project file, enter the BC command followed by /b and
then the project file name. For example,

BC /b myproj.prj

This command loads a file in the editor and then compiles and
links it:

BC myprog /b

The /d option causes Borland C++ to work in dual monitor mode
if it detects appropriate hardware (for example, a monochrome
card and a color card); otherwise, the /d option is ignored. Using
dual monitor mode makes it easier to watch a program’s output
while you are debugging the program.

Borland C++ User’s Guide



The /e option

The /h option

The /I option

The /m opftion

Chapter 2, IDE basics

If your system has two monitors, DOS treats one monitor as the
active monitor. Use the DOS MODE command to switch between
the two monitors (MODE C080, for example, or MODE MONO). In dual
monitor mode, the normal Borland C++ screen appears on the
inactive monitor, and program output will go to the active
monitor. So when you type BC /d at the DOS prompt on one
monitor, Borland C++ comes up on the other monitor. When you
want to test your program on a particular monitor, exit Borland
C++, switch the active monitor to the one you want to test with,
and then issue the BC /d command again. Program output then
goes to the monitor where you typed the BC command.

Keep the following in mind when using the /d option:

m Don’t change the active monitor (by using the DOS MODE
command, for example) while you are in a DOS shell (File | DOS
Shell).

m User programs that directly access ports on the inactive moni-
tor’s video card are not supported, and can cause unpredictable
results.

B When you run or debug programs that explicitly make use of
dual monitors, do not use the Borland C++ dual monitor option
(/d).

The /e option tells Borland C++ to swap to expanded memory if
necessary; it is on by default. The syntax for this option is as
follows:

/el=n]

where 7 equals the number of pages of expanded memory that
you want the IDE to use for swapping. A page is 16K.

If you type BC/h on the command line, you get a list of all the
command-line options available. Their default values are also
shown.

Use the /l option if you're running Borland C++ on an LCD
screen.

The /m option lets you do a make rather than a build (that is, only
outdated source files in your project are recompiled and linked).
Follow the instructions for the /b option, but use /m instead.

23




24

The /p option

The /r option

The /s option

The /x option

Exiting Borland
C++

If your program modifies the EGA palette registers, use the /p
option, which controls palette swapping on EGA video adapters.
The EGA palette is restored each time the screen is swapped.

In general, you don’t need to use this option unless your program
modifies the EGA palette registers or unless your program uses
BGI to change the palette.

/rx specifies the swap drive. If all your virtual memory fills up,
you can have Borland C++ swap to a drive you specify, usually a
RAM disk. The x in /rx is the letter of the fast swap drive. For
example, /rd will use drive D as the swap drive.

Using the /s option, the compiler allows the majority of available
memory to be allocated for its internal tables while compiling. If it
is compiling large modules, little memory may remain for the
needed overlays; therefore, the compiler may spend a long time
“thrashing,” that is, swapping overlays in and out of memory.

If you specify /s-, the compiler won’t permit its internal tables to
severely restrict the overlay space in memory. As a result, if you
are compiling very large modules, the compilation may fail and
you'll get an out-of-memory error, but the compiler won't thrash
excessively.

Use the /x switch to tell Borland C++ how much of the available
extended memory to use for its heap space.

/x
uses all available memory.
/x[=n]

where 1 equals the amount of memory in kilobytes, let’s you
specify how much extended memory should be used.

There are three ways to leave the IDE.

m Choose File | Exit to leave the IDE completely; you have to type
BC again to reenter it. You'll be prompted to save your
programs before exiting, if you haven’t already done so.

Borland C++ User’s Guide



m Choose File | DOS Shell to shell out from the IDE to enter
commands at the DOS command line. When you're ready to
return to the IDE, type EXIT at the command line and press Enter.
The IDE reappears just as you left it.

Youreturn fo the IDE affer  m Choose a program from the System menu (=) to temporarily
you exit the program you  ransfer to another program without leaving the IDE. You can
transferred to. . ;
add new Transfer programs with the Options | Transfer
command.

The components

There are three visible components to the IDE: the menu bar at the
top, the window area in the middle, and the status line at the bot-
tom. Many menu items also offer dialog boxes. Before we describe
each menu item in the IDE, we'll explain these more generic
components.

The menu bar

and menus  The menu bar is your primary access to all the menu commands.
The menu bar is always visible except when you're viewing your
program’s output or transferring to another program.

If a menu command is followed by an ellipsis (...), choosing the
command displays a dialog box. If the command is followed by
an arrow (»), the command leads to another menu (a pop-up
menu). If the command has neither an ellipsis nor an arrow, the
action occurs as soon as you choose the command.

Here is how you choose menu commands using the keyboard:

==
1. Press F10. This makes the menu bar active; the next thing you

type will relate to the items on the menu bar.

2. Use the arrow keys to select the menu you want to display.
Then press Enter.

To cancel an action, As a shortcut for this step, you can just press the highlighted
press Esc. letter of the menu title. For example, from the menu bar, press

E to move to and display the Edit menu. From anywhere,
press Altand the highlighted letter (such as Alt+E) to display the
menu you want.

3. Use the arrow keys again to select a command from the menu
you've opened. Then press Enter.

Chapter 2, IDE basics 25




e

Borland C++ uses only the left

mouse button. You can,

however, customize the right

26

button and make other
mouse option changes, by
choosing Options |
Environment | Mouse.

Shortcuts

Command sets

At this point, Borland C++ either carries out the command,
displays a dialog box, or displays another menu.

There are two ways to choose commands with a mouse:

m Click the desired menu title to display the menu and click the
desired command.

m Or, drag straight from the menu title down to the menu
command. Release the mouse button on the command you
want. (If you change your mind, just drag off the menu; no
command will be chosen.)

Note that some menu commands are unavailable when it would
make no sense to choose them. However, you can always get
Online Help about currently unavailable commands.

Borland C++ offers a number of quick ways to choose menu
commands. The click-drag method for mouse users is an example.
From the keyboard, you can use a number of keyboard shortcuts
(or hot keys) to access the menu bar and choose commands. Short-
cuts for dialog boxes work just as they do in a menu. (But be
aware that you need to hold down Alt while pressing the high-
lighted letter when moving from an input box to a group of
buttons or boxes.) Here’s a list of the shortcuts available:

Do this... To accomplish this...
Press Alt plus the highlighted Display the menu or carry out the
letter of the command (just command.

press the highlighted letter
in a dialog box). For the
= menu, press Alt+Spacebar.

Type the keystrokes next to a Carry out the command.
menu command.

For example, to cut selected text, press Alt+E T (for Edit | Cut) or
you can just press Shift+Del, the shortcut displayed next to it.

Many menu items have corresponding hot keys; one- or two-key
shortcuts that immediately activate that command or dialog box.

Borland C++ has two command sets: the Common User Access
(CUA) command set, the standard used by most Windows
programs and the Alternate command set popularized in
previous Borland products. The shortcuts available to you differ
depending on which command set you use. You can select a

Borland C++ User’s Guide



command set by choosing Options | Environment | Preferences

and then selecting the command set you prefer in the Preferences

dialog box.

If you are a long-time Borland language user, you may prefer the
Alternate command set.

The following tables list the most-used Borland C++ hot keys in

both command sets.

Table 2.1: General hot keys

CUA Alternate  Menu item Function
F1 F1 Help Displays a help screen.
F2 File|Save Saves the file that’s in the active edit window.
F3 File | Open Brings up a dialog box so you can open a file.
F4 Run | Go to Cursor Runs your program to the line where the cursor is
positioned.
F5 Window | Zoom Zooms the active window.
Cirl+F6  F6 Window | Next Cycles through all open windows.
F7 F7 Run | Trace Into Runs your program in debug mode, tracing into
functions.
F8 F8 Run | Step Over Runs your program in debug mode, stepping over
function calls.
F9 F9 Compile | Make Invokes the Project Manager to make an .EXE file.
F10 F10 (none) Takes you to the menu bar.

Table 2.2: Menu hot keys

CUA Alternate Menu item Function

Alt+Spacebar  Alt+Spacebar = menu Takes you to the = (System) menu
Alt+C AlC Compile menu Takes you to the Compile menu
Alt+D Alt+D Debug menu Takes you to the Debug menu
Alt+E Al+E Edit menu Takes you to the Edit menu
Alt+F Alt+F File menu Takes you to the File menu
Alt:H Alt+H Help menu Takes you to the Help menu
Alt+0 Altz0 Options menu Takes you to the Options menu
Alt+P Alt+P Project menu Takes you to the Project menu
Alt+R Alt+R Run menu Takes you to the Run menu
Alt+S Alt+S Search menu Takes you to the Search menu
Alt+W AW Window menu Takes you to the Window menu
Alt+F4 Alt+X File | Exit Exits Borland C++ to DOS

Chapter 2, IDE basics

27




Table 2.3: Editing hot keys

CUA Alternate  Menu item Function
Clrl+ins Ctrl+lns Edit | Copy Copies selected text to Clipboard
Shift+Del Shift+Del Edit | Cut Places selected text in the Clipboard, deletes
selection
Shift+lns  Shift+Ins Edit | Paste Pastes text from the Clipboard into the
active window
Ctrl+Del Ctrl+Del Edit | Clear Removes selected text from the window
and doesn’t put it in the Clipboard
Alt+Bkspc  Alt+Bkspc Edit| Undo Restores the text in the active window to a
previous state
Alt+Shift+Bksp Alt+Shft+Bksp Edit | Redo “Undoes” the previous Undo.
F3 Ctrl+L Search|Search Again  Repeats last Find or Replace command
F2 File | Save Saves the file in the active edit window
F3 File | Open Lets you open a file

Table 2.4: Window management hot keys

CUA Alternate  Menu item Function

Alt+# Alt+# Displays a window, where # is the number
of the window you want to view

Alt+0 A0 Window | List Displays a list of open windows

Ctrl+F4 Alt+F3 Window | Close Closes the active window

Shift+F5 Window I Tile Tiles all open windows

Alt+F5 Alt+F4 Debug | Inspect Opens an Inspector window

Shift+F5 Alt+F5 Window | User Screen  Displays User Screen

F5 Window | Zoom Zooms/unzooms the active window
Cirl+F6 F6 Window | Next Switches the active window

Ctrl+F5

Changes size or position of active window

Table 2.5: Online Help hot keys

CuA Alternate  Menu item Function
F1 F1 Help | Contents Opens a context-sensitive help screen
F1F1 F1F1 Brings up Help on Help. (Just press F1
when you're already in the help system.)
Shift+F1 Shift+F1 Help | Index Brings up Help index
Alt+F1 Alt+F1 Help | Previous Topic ~ Displays previous Help screen
Ctri+F1 Ctrl+F1 Help | Topic Search Calls up language-specific help in the active
edit window
28 Borland C++ User’s Guide



Table 2.6: Debugging/Running hot keys

CUA Alternate  Menu item Function
Alt+F5 Alt+F4 Debug | Inspect Opens an Inspector window
Alt+F7 Alt+F7 Search | Previous Error Takes you to previous error
Alt+F8 Alt+F8 Search | Next Error Takes you to next error
Alt+F9 Alt+F9 Compile | Compile Compiles to .OBJ
Cirl+F2 Ctrl+F2 Run | Program Reset Resets running program

Ctrl+F3 Debug | Call Stack Brings up call stack

Cirl+F4 Debug | Evaluate/Modify  Evaluates an expression
Cirl+F5 Clrl+F7 Debug | Add Watch Adds a watch expression
F5 Ctrl+F8 Debug | Toggle Breakpoint Sets or clears conditional breakpoint
Cirl+F9 Ctrl+F3 Run|Run Runs program

F4 Run | Go To Cursor Runs program to cursor position
F7 F7 Run | Trace Into Executes tracing into functions
F8 F8 Run | Step Over Executes skipping function calls
F9 F9 Compile | Make Makes (compiles/links) program

Native makes the Alternate
command set the default for
Borland C++, the DOS-hosted
IDE, and the CUA command
set the default for Turbo C++
for Windows.

Chapter 2, IDE basics

If you choose Options | Preferences to display the Preferences
dialog box, you’ll notice a third command set option: Native. This
is the default setting.

If you write applications for Windows, you may do some of your
development with Borland C++ and some with Turbo C++ for
Windows. Both IDEs use the same configuration file,
TCCONFIG.TC, which determines which command set is in
effect. Therefore, if you have selected the CUA command set for
Turbo C++, that will be the one in effect the next time you start up
the Borland C++.

But maybe this is not what you want. When you are working with
the DOS product, Borland C++, you might prefer the Alternate
command set, and when you use Turbo C++ for Windows, you
might want to use the CUA command set. The Native option lets
this happen.

With Native selected, Borland C++ uses the Alternate command
set automatically, and Turbo C++ uses the CUA command set.

If you change the command set in either Borland C++ or Turbo
C++, you change it for both products.

While Native seems to imply that the default command set for
Borland C++ is Alternate, we recommend you choose the CUA
command set.

29




Borland C++
windows

If you exit Borland C++ with a

file open in a window, you

are returned fo your desktop.,
open file and all, when you

30

next use Borland C++.

Which command set you choose also determines which keys you
use within the editor, and, to some extent, how the editor works.
See more about using command sets in the editor in Appendix B.

Most of what you see and do in the IDE happens in a window. A
window is a screen area that you can open, close, move, resize,
zoom, tile, and overlap.

You can have many windows open in the IDE, but only one
window can be active at any time. The active window is the one
that you're currently working in. Any command you choose or
text you type generally applies only to the active window. (If you
have the same file open in several windows, the action will apply
to the file everywhere that it's open.)

You can spot the active window easily: It’s the one with the
double-lined border around it. The active window always has a
close box, a zoom box, and scroll bars. If your windows are over-
lapping, the active window is always the one on top of all the
others (the frontmost one).

There are several types of windows, but most of them have these
things in common:

m a title bar

m a close box

= scroll bars

m a zoom box

m a window number (1 to 9)

A edit window also displays the current line and column num-
bers in the lower left corner. If you've modified your file, an aste-
risk (*) will appear to the left of the column and line numbers.

The following figure shows a typical window:

Borland C++ User’s Guide



Figure 2.1
A typical window

Shortcut: Double-click the
fitle bar of a window to zoom
or restore it.

Alt+0 gives you a list of all
windows you have open.

Chapter 2, IDE basics

The EACHEG contains

the name of the window.

Click the Click on the
to to either enlarge or
quickly close shrink the window.
the window.

v v v
=[e] Window Title =—os=—ox——-—133 =[T]j

The first nine open #
windows have a [RIGEN

[ . Use Alt and # n
to open one of these.

Use a mouse to scroll the
contents of the window

Drag any corner to make 4|

windows larger or smaller

The close box of a window is the box in the upper left corner. Click
this box to quickly close the window. (Or choose Window | Close.)
The Inspector and Help windows are considered temporary; you
can close them by pressing Esc.

The title bar, the topmost horizontal bar of a window, contains the
name of the window and the window number. Double-clicking
the title bar zooms the window. You can also drag the title bar to
move the window around.

The zoom box of a window appears in the upper right corner. If the
icon in that corner is an up arrow (1), you can click the arrow to
enlarge the window to the largest size possible. If the icon is a
doubleheaded arrow (¢), the window is already at its maximum
size. In that case, clicking it returns the window to its previous
size. To zoom a window from the keyboard, choose Window |
Zoom.

The first nine windows you open in Borland C++ have a window
number in the upper right border. You can make a window active

31




Scroll bars also show you
where you are in your file.

e

Window management

Table 2.7
Manipulating windows

32

(and thereby bring it to the top of the heap) by pressing Altin
combination with the window number. For example, if the Help
window is #5 but has gotten buried under the other windows,
Alt+5 brings it to the front.

Scroll bars are horizontal or vertical bars that look like this:

N " >

You use these bars with a mouse to scroll the contents of the
window. Click the arrow at either end to scroll one line at a time.
(Keep the mouse button pressed to scroll continuously.) You can
click the shaded area to either side of the scroll box to scroll a
page at a time. Finally, you can drag the scroll box to any spot on
the bar to quickly move to a spot in the window relative to the
position of the scroll box.

You can drag any corner to make a window larger or smaller. To
resize using the keyboard, choose Size/Move from the Window
menu.

Table 2.7 gives you a quick rundown of how to handle windows
in Borland C++. Note that you don’t need a mouse to perform
these actions—a keyboard works just fine.

To accomplish this: Use one of these methods

Open an edit window Choose File | Open to open a file and
display it in a window.

Open other windows Choose the desired window from the
Window menu

Close a window Choose Close from the Window menu or

click the close box of the window.
Activate a window Click anywhere in the window, or

Press Alt plus the window number (1 to 9,
in the upper right border of the window),
or

Choose Window | List or press Alt+0 and
select the window from the list, or

Choose Window | Next to make the next
window active (next in the order you first
opened them).

Move the active window Drag its title bar. Or choose Window |
Size/Move and use the arrow keys to place

Borland C++ User’s Guide



Table 2.7: Manipulating windows (continued)

the window where you want it, then press
Enter.

Resize the active window  Drag any corner. Or choose Window |
Size/Move and press Shift while you use
the arrow keys to resize the window, then
press Enter.

Zoom the active window Click the zoom box in the upper right
corner of the window, or

Double-click the window’s title bar, or

Choose Window | Zoom.

The statfus line
The status line appears at the bottom of the screen; it

m reminds you of basic keystrokes and shortcuts (or hot keys)
applicable at that moment in the active window.

&2 lets you click the shortcuts to carry out the action instead of
choosing the command from the menu or pressing the shortcut
keystroke.

m tells you what the program is doing. For example, it displays
Saving filename... when an edit file is being saved.

m offers one-line hints on any selected menu command and dialog
box items.

The status line changes as you switch windows or activities. One
of the most common status lines is the one you see when you’re
actually writing and editing programs in an edit window. Here is
what it looks like:

Figure 2.2
A typical status line F1 Help F2 Save F3 Open F7 Trace F8 Step F9 Make F10 Menu

When you've selected a menu title or command, the status line
changes to display a one-line summary of the function of the
selected item.

Dialog boxes

A menu command with an ellipsis after it (...) leads to a dialog box.
Dialog boxes offer a convenient way to view and set multiple
options. When you're making settings in dialog boxes, you work
with five basic types of onscreen controls: radio buttons, check

Chapter 2, IDE basics 33




Figure 2.3
A sample dialog box

If you have a color monifor,

colors for various elements of

Borland C++ uses different

the dialog box.

You can select another

button with Tab; press Enter to

34

choose that button.

Check boxes and
radio buttons

[X] Checked check box
[ 1 Unchecked check box

boxes, action buttons, input boxes, and list boxes. Here’s a sample
dialog box that illustrates some of these items:

g UK I

Item one

Item two
ad1o Item three
Option B Item five

Option C @ Item six

Option D Item seven
Item eight

Buttons
% § Option A Item four i Cancel ] |

This dialog box has three standard buttons: OK, Cancel, and Help.
If you choose OK, the choices in the dialog box are made; if you
choose Cancel, nothing changes and no action is made, but the
dialog box is put away. Choose Help to open a Help window
about this dialog box. Escis always a keyboard shortcut for
Cancel (even if no Cancel button appears).

If you're using a mouse, click the button you want. When you're
using the keyboard, press Alfand the highlighted letter of an item
to activate it. For example, Alt+K selects the OK button. Press Tab or
Shift+ Tab to move forward or back from one item to another in a
dialog box. Each element is highlighted when it becomes active.

In this dialog box, OK is the default button, which means you need
only press Enter to choose that button. (On monochrome systems,
arrows indicate the default; on color monitors, default buttons are
highlighted.) Be aware that tabbing to a button makes that button
the default.

When you select a check box, an x appears in it to show you it’s
on. An empty box indicates it’s off. To change the status of a check
box, click it or its text, press Tab until the check box is highlighted
and then press Spacebar, or select Alt and the highlighted letter. You
can have any number of check boxes checked at any time.

If several check boxes apply to a topic, they appear as a group. In
that case, tabbing moves to the group. Once the group is selected,
use the arrow keys to select the item you want, and then press
Spacebar to check or uncheck it. On monochrome monitors, the
active check box or group of check boxes will have a chevron
symbol (») to the left and right. When you press Tab, the chevrons
move to the next group of checkboxes or radio buttons.

Borland C++ User’s Guide



Radio buttons are so called
because they act just like the
buttons on a car radio. There
is always one—and only
one—button pushed in at a
time. Push one in, and the
one that was in pops out.

) None

*) Emulation
) 8087

) 80287

(
(
(
(

Input boxes and lists

You can confrol whether
history lists are saved to the
desktop using Options |
Environment | Desktop.

Chapter 2, IDE basics

Radio buttons differ from check boxes in that they present
mutually exclusive choices. For this reason, radio buttons always
come in groups, and only one radio button can be on in any one
group at any one time. To choose a radio button, click it or its text.
From the keyboard, select Altand the highlighted letter, or press
Tab until the group is highlighted and then use the arrow keys to
choose a particular radio button. Press Tab or Shift+Tab again to
leave the group with the new radio button chosen. The column to
the left gives an example of a set of radio buttons.

Input boxes let you type in text. Most basic text-editing keys work
in the text box (for example, arrow keys, Home, End, and
insert/overwrite toggles by Ins). If you continue to type once you
reach the end of the box, the contents automatically scroll. If
there’s more text than what shows in the box, arrowheads appear
at the end («and »). You can click the arrowheads to scroll or drag
the text. If you need to enter control characters (such as AL or *M)
in the input box, then prefix the character with a ~P. So, for
example, to enter *L into the input box, hold down the Ctrlkey
and press P L. (This capability is useful for search strings.)

If an input box has a down-arrow icon to its right, there is a
history list associated with that input box. Press Enter to select an
item from this list. In the list you'll find text you typed into this
box the last few times you used this dialog box. The Find box, for
example, has such a history list, which keeps track of the text you
searched for previously. If you want to reenter text that you
already entered, press { or click the ¢ icon. You can also edit an
entry in the history list. Press Esc to exit from the history list
without making a selection.

Here is what a history list for the Find text box might look like if
you had used it six times previously:

35




Text to find EEEG—_—TLT [

struct date
printf(
char buf[7]
/*

return(0
return()

A final component of many dialog boxes is a list box, which lets
you scroll through and select from variable-length lists (often file
names) without leaving a dialog box. If a blinking cursor appears
in the list box and you know what you're looking for, you can
type the word (or the first few letters of the word) and Borland
C-++ will search for it.

You make a list box active by clicking it or by choosing the high-
lighted letter of the list title (or press Tab until it’s highlighted).
Once a list box is displayed, you can use the scroll box to move
through the list or press T or | from the keyboard.

Configuration and project files

The configuration

36

file

With configuration files, you can specify how you want to work
within the IDE. Project files contain all the information necessary
to build a project, but don’t affect how you use the IDE.

The configuration file, TCCONFIG.TC, contains only
environmental (or global) information. The information stored in
TCCONFIG.TC file includes

m editor key binding and macros

m editor mode setting (such as autoindent, use tabs, etc.)
m mouse preferences

m auto-save flags

The configuration file is not required to build programs defined
by a project.

When you start a programming session, Borland C++ looks for
TCCONFIG.TC first in the current directory and then in the

Borland C++ User’s Guide



Project files

Chapter 2, IDE basics

directory that contains BC.EXE. Turbo C++ also looks in the
current directory but, if it doesn’t find TCCONFIG.TC, it looks in
the directory that contains TCW.EXE.

The IDE places all information needed to build a program into a
binary project file, a file with a .PR] extension. Project files contain
information on all other settings and options including

m compiler, linker, make and librarian options

m directory paths

m list of all files that make up the project

m special translators (such as Turbo Assembler)

In addition, the project file contains other general information on

the project, such as compilation statistics (shown in the project
window), and cached autodependency information.

Project files for the IDE correspond to the .CFG configuration files
that you supply to the command-line compiler (the default
command-line compiler configuration file is TURBOC.CFG). The
PRJCFG utility can convert .PR] files to .CFG files and .CFG files
to .PRY] files.

You can load project files in any of three ways:

1. When starting Borland C++, give the project name with the
.PRJ extension after the BC command; for example,

BC myproj.PRJ
2. You must use the .PR] extension to differentiate it from source
files.
3. If there is only one .PR] file in the current directory, the IDE
assumes that this directory is dedicated to this project and
automatically loads it. Thus, typing BC alone while the current

directory contains one project file causes that project file to be
loaded.

4. From within the IDE, you load a project file using the Project |
Open Project command.

37




The project directory

Desktop files

You can set some of these
options on or off using
Options | Environment |
Desktop.

Changing project files

38

Default files

When a project file is loaded from a directory other than the
current directory, the current DOS directory is set to where the
project is loaded from. This allows your project to be defined in
terms of relative paths in the Options | Directories dialog box and
also allows projects to move from one drive to another or from
one directory branch to another. Note, however, that changing
directories after loading a project may make the relative paths
incorrect and your project unbuildable. If this happens, change
the current directory back to where the project was loaded from.

Each project file has an associated desktop file (prjname.DSK) that
file contains state information about the associated project. While
none of its information is needed to build the project, all of the
information is directly related to the project. The desktop file
includes

m the context information for each file in the project (for example,
the position in the file)

m the history lists for various input boxes (for example, search
strings, file masks, and so on)

m the layout of the windows on the desktop
m the contents of the Clipboard

m watch expressions

m breakpoints

Because each project file has its own desktop file, changing to
another project file causes the newly loaded project’s desktop to
be used, which can change your entire window layout. When you
create a new project (by using Project | Open Project and typing in
a new .PR] file), the new project’s desktop inherits the previous
desktop. When you select Project | Close Project, the default
project is loaded and you get the default desktop and project
settings.

When no project file is loaded, there are two default files that
serve as global place holders for project- and state-related infor-
mation: TCDEF.DPR and TCDEF.DSK files, collectively referred
to as the default project.

Borland C++ User’s Guide



In Turbo C++ for Windows,
the default files are
TCDEFW.DPR and
TCDEFW.DSK.

These files are usually stored in the same directory as BC.EXE,
and are created if they are not found. When you run the IDE from
a directory without loading a project file, you get the desktop and
settings from these files. These files are updated when you change
any project-related options (for example, compiler options) or
when your desktop changes (for example, the window layout).

When you start a new project, the options you set in your
previous project will be in effect.

The Turbo C++ for Windows IDE

Starting Turbo
C++ for Windows

Chapter 2, IDE basics

The Turbo C++ for Windows IDE has everything you need to
write, edit, compile, and link your programs in a Windows-
hosted environment. You can even start up the powerful Turbo
Debugger for Windows without leaving the IDE.

The Turbo C++ IDE is based on Windows Multiple Document
Interface (MDI). If you are familiar with other Windows
programs, you'll feel right at home with the Turbo C++ IDE.

As you do with other Windows products, double-click the Turbo
C++ icon in the Program Manager to start Turbo C++.

If you have more than one project, you might want to create an
icon for each project. Here’s how to create a project icon:
m Choose File | New.

m Select Program Item and the New Program Object dialog box
appears.

m Type in a description for your project, and, in the command-
line text box, type TCW followed by the project file name
including the full path.

Now when you double-click the icon in the Program Manager,
your project will load into Turbo C++.

39




Command-line options

Command sefts

You can specify two command-line options when you start Turbo
C++: /b for building a project or /m for doing a make on a project.
To specify either of these options:

m Select the Turbo C++ icon in the Program Manager.
m Choose File | Run.

m Add the command-line option you want to the command line
in the command-line text box and choose OK.

When you use either of these options, your messages are
appended to a file named the same as your project file except it
carries the extension .MSG. For example, if your project file is
MYPROJ.PR], the message file is MYPROJ.MSG.

Just as Borland C++ does, Turbo C++ has two command sets: the
Common User Access (CUA) command set used by most
Windows programs, and the Alternate command set. The menu
shortcuts available to you differ depending on which command
set you use. You can select a command set by choosing Options |
Preferences and then selecting the command set you prefer in the
Preferences dialog box.

Here are the menu shortcuts in the Turbo C++ IDE:

Table 2.8: General hot keys

CUA Alternate Menu item Function
F2 File |Save Saves the file that’s in the active edit window
F3 File | Open Brings up a dialog box so you can open a file
Alt+F4 Alt+X File | Exit Exits Turbo C++
Alt+Space  Alt+Space (none) Takes you to the Control menu

Table 2.9: Editing hot keys

CuA Alternate  Menu item Function
Ctrl+ins CtrltIns Edit | Copy Copies selected text to Clipboard
Shift+Del Shift+Del Edit | Cut Places selected text in the Clipboard, deletes
selection
Shift+Ins Shift+Ins Edit | Paste Pastes text from the Clipboard into the active
window
Ctrl+Del Ctrl+Del Edit | Clear Removes selected text from the window and
doesn’t put it in the Clipboard
40 Borland C++ User's Guide



Table 2.9: Editing hot keys (continued)

Alt+Bkspc  Alt+Bkspc Edit| Undo

Alt+Shft+Bksp Alt+Shft+Bksp Edit| Redo
F3 Cirl+L Search | Search Again

Restores the text in the active window to a
previous state.

“Undoes” the previous Undo.

Repeats last Find or Replace command

Table 2.10: Online Help hot keys

CuA Alternate  Menu item Function
Shift+F1 Shift+F1 Help | Index Brings up Help index
Ctrl+F1 Ctrl+F1 Help | Topic Search Calls up language-specific help in the active edit

window

Table 2.11; Compiling/Running hot keys

CuA Alternate  Menu item Function

Alt+F7 Alt+F7 Search | Previous Error Takes you to previous error

Shift+F4 Alt+F8 Search | Next Error Takes you to next error

Ctri+F9 Ctrl+F9 Run | Run Runs program

F9 F9 Compile | Make Invokes Project Manager to make an .EXE, .DLL,
or .LIB file

Alt+F9 Alt+F9 Compile | Compile Compiles file in active edit window

Although there are only two command sets, there is a third
command set option: Native. It's purpose is to make switching
between the Borland C++ and the Turbo C++ IDEs easier. See
page 29 for information about the Native option.

Which command set you choose also determines which keys you
use within the editor, and, to some extent, how the editor works.
See more about using command sets in the editor in Appendix B.

Configuration

and project files Turbo C++ handles project management just as it does for
Borland C++. See page 36 for information about configuration,
project, and desktop files.

Chapter 2, IDE basics

41




42

Using the

SpeedBar  Turbo C++ for Windows has a SpeedBar you can use as a quick

o

way to choose menu commands and other actions with your
mouse. The first time you start Turbo C++ for Windows, the
SpeedBar will be a horizontal grouping of buttons just under the
menu bar. You can use it as it is, change it to be a vertical bar that
appears on the left side of the Turbo C++ desktop window, or
change it to be a pop-up palette you can move anywhere on your
screen. You can also turn it off. To reconfigure the SpeedBar,
choose Options | Environment | Desktop and select the option you
want.

The buttons on the SpeedBar represent menu commands. They
are shortcuts for your mouse, just as certain key combinations are
shortcuts when you use your keyboard. To choose a command,
click a button with your mouse. If you click the File | Open button,
for example, Turbo C++ responds just as if you chose the Open
command on the File menu.

The SpeedBar is context sensitive. Which buttons appear on it
depend on which is your active window: the Turbo C++ desktop
window, an edit window, the Project window, or the Message
window.

These are the buttons that appear on the SpeedBar:

Help Search again

Open a file Cut to Clipboard

Save file Copy to Clipboard

ES

Search for text Paste from Clipboard

Borland C++ User's Guide



Chapter 2, IDE basics

Undo

Compile

Delete item from project

Edit source file View file with error

Exit Turbo C++

Some of the buttons on the SpeedBar are occasionally dimmed,
just as some of the menu commands are. This means that, in the
current context, the command the button represents is not
available to you. For example, the Paste from Clipboard button
will be dimmed if there is nothing in your Clipboard.

43




Borland C++ User's Guide



Menus and options reference

CUA

Alternate

Alt
(i) (i)

Borland C++ only

This chapter provides a reference to each menu option in the IDE.
It is arranged in the order that the menus appear on the screen.
For information on starting and exiting the IDE, using the IDE
command-line options, and general information on how the IDE
works, see Chapter 2.

Next to some of the menu option descriptions in this reference
you'll see keyboard shortcuts, or hot keys. If a command set
appears above the hot key, the hot key is valid only in that
command set. If no command set appears, the hot key works in
both command sets. For example,

this means Alt+F4 is a hot key in the CUA command set,

this means Aft+X is a hot key in the Alternate command set,

and this means Ctrl+Ins is a hot key in both command sets.

If you are also using Turbo C++ for Windows, you’ll find the IDE
very similiar to the Borland C++ IDE. Throughout this menu
reference, we've noted the major differences between the two
IDEs:

m This note indicates the feature occurs only in Borland C++.

m The Windows icon indicates the discussion is relevant only to
Turbo C++ for Windows.

Chapter 3, Menus and options reference 45



m If neither of these items appear next to the text, the text is
relevant to both IDEs.

= (System) menu

Borland C++ only

Al

ANI(RN
LR

Repaint Desktop

Borland C++ only

Transfer items

Borland C++ only

46

The = menu appears on the far left of the menu bar. Alt+Spacebar is
the fastest way to get there. When you pull down this menu, you
see the Repaint Desktop command and the names of programs
you've installed with the Options | Transfer command.

Turbo C++ for Windows has a Control menu on the far left of the
Title bar. Alt+Spacebar is the shortcut key. The Control menu
primarily lets you manage windows through menu commands
instead of using a mouse. It is the standard Windows Control
menu.

Choose = | Repaint Desktop to have Borland C++ redraw the
screen. You may need to do this, for example, if a memory-
resident program has left stray characters on the screen, or
possibly if you have screen-swapping turned off (Options |
Debugger and you've selected None for the Display swapping
option) and you're stepping through a program.

A program that appears here on the = menu can be run directly
from the IDE. You install programs here with the Options |
Transfer command. To run one of these programs, choose its
name from the = menu.

If you have more than one program installed with the same
shortcut letter on this menu, the first program listed with that
shortcut will be selected. You can select the second item by
clicking it or by using the arrow keys to move to it and then
pressing Enter.

Borland C++ User’s Guide



2| Repaint Desktop

File menu

Al The File menu lets you open and create program files in edit
windows. The menu also lets you save your changes, perform
other file functions, and quit the IDE.

New

The File | New command lets you open a new edit window with
the default name NONAMExx.CPP (the xx stands for a number
from 00 to 31). These NONAME files are used as a temporary edit
buffer; the IDE prompts you to name a NONAME file when you
save it.

Open
Alternate  The File | Open command displays a file-selection dialog box for

you to select a program file to open in an edit window. Here is
what the box looks like:

Figure 3.1
The Open a File dialog box

CALLCT.CPP TODOLIST.CPP

CALCAVG.CPP | TODOWIN.CPP

DEF2.CPP VCIRC.CPP

DLLDEMO.CPP | VPOINT.CPP

DLLSHELL.CPP | WHELLO.CPP [[Cancel |
LIST2.CPP STARTUP\

S

BITHAP.CPP 1253 Jan 24,1992 3:14am
The dialog box contains an input box, a file list, buttons labeled

Open, Replace, Cancel, and Help, and an information panel that
describes the selected file. Now you can do any of these actions:

m Type in a full file name and choose Replace or Open. Open
loads the file into a new edit window. Replace saves the file in
the active window and replaces it with the contents of the
selected file. An edit window must be active if you choose
Replace.

m Type in a file name with wildcards, which filters the file list to
match your specifications.

Chapter 3, Menus and options reference 47



File1Open

If you choose Replace
instead of Open, the
selected file replaces the file
in the active edit window
instead of opening up a new
window.

Using the File list
box

In Borland C++, you can also
type a lowercase letter to
search for a file name or an
uppercase letter to search
for a directory name.

Borland C++ only

48

m Press | to choose a file specification from a history list of file
specifications you've entered earlier.

m View the contents of different directories by selecting a
directory name in the file list.

The input box lets you enter a file name explicitly or lets you enter
a file name with standard DOS wildcards (* and ?) to filter the
names appearing in the history list box. If you enter the entire
name and press Enter, Borland C++ opens it. (If you enter a file
name that Borland C++ can’t find, it automatically creates and
opens a new file with that name.)

If you press L when the cursor is blinking in the input box, a
history list drops down below the box. This list displays the last
15 file names or file name masks you've entered. Choose a name
from the list by double-clicking it or selecting it with the arrow
keys and pressing Enter.

Once you've typed in or selected the file you want, choose the
Open button (choose Cancel if you change your mind). You can
also just press Enter once the file is selected, or you can double-
click the file name in the file list.

The Turbo C++ File Open dialog box doesn’t have the Replace
button; therefore, you can only open another edit window rather
than replace the contents of the file in the window with the
contents of another file.

The File list box displays all file names in the current directory
that match the specifications in the input box, displays the parent
directory, and displays all subdirectories. Click the list box or
press Tab until the list box name is highlighted. You can now
press 4 or T to select a file name, and then press Enter to open it.
You can also double-click any file name in the box to open it. You
might have to scroll the box to see all the names. If you have more
than one pane of names, you can also use —» and « .

The file information panel at the bottom of the Open a File dialog
box displays path name, file name, date, time, and size of the file
you've selected in the list box. As you scroll through the list box,

the panel is updated for each file.

Borland C++ User's Guide



FilelSave

Save

Alfernate  The File | Save command saves the file in the active edit window
to disk. (This menu item is disabled if there’s no active edit
window.) If the file has a default name (NONAMEOQ0.CPP, or the
like), the IDE opens the Save File As dialog box to let you rename
and save it in a different directory or on a different drive. This
dialog box is identical to the one opened for the Save As
command, described next.

Save As
The File | Save As command lets you save the file in the active edit
window under a different name, in a different directory, or on a
different drive. When you choose this command, you see the Save
File As dialog box:
Figure 3.2 Save File As
The Save File As dialog box hSave File As : .
- , gL 0K 4]
Files ' ‘ I
SBITMAP.CPP  «| TODODLGS.CPP
CALLCT.CPP | TODOLIST.CPP
CALCAVG.CPP | TODOWIN.CPP
DEF2.CPP VCIRC. CPP
DLLDEMO.CPP | VPOINT.CPP :
DLLSHELL.CPP | WHELLO.CPP
LIST2.CPP STARTUP\
s
C:\BORLANDC\EXAMPLES\*.CPP
BITMAP.CPP 1235  Jan 24,1992 3:00am
Enter the new name, optionally with drive and directory, and
click or choose OK. All windows containing this file are updated
with the new name.
Save Al

The File | Save All command works just like the Save command
except that it saves the contents of all modified files, not just the
file in the active edit window. This command is disabled if no edit
windows are open.

Chapter 3, Menus and options reference 49




File | Change Dir

Change Dir

Borland C++ only

Figure 3.3
The Change Directory dialog
box

60

The File | Change Dir command lets you specify a drive and a
directory to make current. The current directory is the one
Borland C++ uses to save files and to look for files. (When using
relative paths in Options | Directories, they are relative to this
current directory only.)

Here is what the Change Directory dialog box looks like:
Change Directory
»Directory Name
C:\TEMP

Directory Tree
Drives

> L_[EL}EMP

Revert

There are two ways to change directories:

m Type in the path of the new directory in the input box and press
Enter, or

m Choose the directory you want in the Directory tree (if you're
using the keyboard, press Enter to make it the current directory),
then choose OK or press Esc.

If you choose the OK button, your changes will be made and the
dialog box put away. If you choose the Chdir button, the
Directory Tree list box changes to the selected directory and
displays the subdirectories of the currently highlighted directory
(pressing Enter or double-clicking on that entry gives you the same
result). If you change your mind about the directory you've
picked and you want to go back to the previous one (and you've
yet to exit the dialog box), choose the Revert button.

Opening a project in another directory automatically changes
directories, so you don’t have to change directories before you
open another project.

Borland C++ User’s Guide



Print

In Borland C++, you can also
print the contents of the
Output window.

Printer Setup

Use this option if you want to
change your printer setup
from its normal configuration.

DOS Shell

Borland C++ only

File I Print

The File | Print command lets you print the contents of the active
edit window or the Message window. This command is disabled
if the active window can’t be printed.

The Printer Setup command displays a Windows dialog box you
can use to set up your printer. When you installed Windows on
your system, you probably also installed one or more printer
drivers so you could print from Windows. The Printer Setup
command lets you select which printer you want to use for
printing from Turbo C++.

If you choose Setup in the Printer Setup dialog box, another
dialog box appears allowing you to select a paper size, specify a
particular font, and so forth. The options available to you will
depend on the capabilities of your printer.

The File I DOS Shell command lets you temporarily exit Borland
C++ to enter a DOS command or program. To return to Borland
C++, type EXIT and press Enter.

You may find that when you're debugging there’s not enough
memory to execute this command. If that’s the case, terminate the
debug session by choosing Run | Program Reset.

Don't install any TSR programs (like SideKick) or print a file with
the DOS print command while you've shelled to DOS, because
memory may get misallocated.

Note: In dual monitor mode, the DOS command line appears on
the Borland C++ screen rather than the User Screen. This allows

you to switch to DOS without disturbing the output of your pro-
gram.

You can also use the transfer items on the = (System) menu to
quickly switch to another program without leaving Borland C++.

Chapter 3, Menus and options reference 51




File IDOS Shell

Exit
CUA

Alternate

Alt
Closed File Listing

Edit menu

The File | Exit command exits the IDE and removes it from
memory. If you have made any changes that you haven’t saved,
the IDE asks you if you want to save them before exiting.

If you have opened files and then closed them, you'll see the last
five files listed at the bottom of the File menu. If you select the file
name on the menu, the file will open. When you work with many
open files, you can close some, yet open them again quickly using
the list and reduce the clutter on your desktop.

Alt)(E]

52

The Edit menu lets you cut, copy, and paste text in edit windows.
If you make mistakes, you can undo changes and even reverse the
changes you've just undone. You can also open a Clipboard
window to view or edit its contents, and copy text from the
Message and Output windows.

Before you can use most of the commands on this menu, you need
to know about selecting text (because most editor actions apply to
selected text). Selecting text means highlighting it. You can select
text either with keyboard commands or with a mouse; the princi-
ple is the same even though the actions are different.

From the keyboard:
m Press Shift while pressing any key that moves the cursor.

See page 187 in Appendix B for additional text selection
commands.

With a mouse:

m To select text with a mouse, drag the mouse pointer over the
desired text. If you need to continue the selection past a
window’s edge, just drag off the side and the window will
automatically scroll.

Borland C++ User’s Guide



Edit

m To select a single word, double-click it.

m To extend or reduce the selection, Shift-click anywhere in the
document (that is, hold Shift and click).

Once you have selected text, the Cut and Copy commands in the
Edit menu become available.

The Clipboard is the magic behind cutting and pasting. It's a
special window that holds text that you have cut or copied, so
you can paste it elsewhere. The Clipboard works in close concert
with the commands in the Edit menu.

Here’s an explanation of each command in the Edit menu.

Undo

0 The Edit | Undo command restores the file in the current window
Al to the way it was before the most-recent edit or cursor movement.
If you continue to choose Undo, the editor continues to reverse
actions until your file returns to the state it was in when you
began your current editing session.

Undo inserts any characters you deleted, deletes any characters
you inserted, replaces any characters you overwrote, and moves
your cursor back to a prior position. If you undo a block
operation, your file appears as it did before you executed the
block operation.

Undo doesn’t change an option setting that affects more than one
window. For example, if you use the Ins key to change from Insert
to Overwrite mode, then choose Undo, the editor won’t change
back to Insert mode.

Undo can undo groups of  The Group Undo option in the Editor Options dialog box
commands.  (Options | Environment | Editor) affects Undo and Redo. See page
113 for information on Group Undo.

Redo

Alt The Edit | Redo command reverses the effect of the most recent
Undo command. The Redo command only has an effect
immediately after an Undo command or after another Redo
command. A series of Redo commands reverses the effects of a
series of Undo commands.

Chapter 3, Menus and options reference 53




Edit1 Cut

54

Copy
(Ctr)(ins]

Borland C++ only

Paste

Clear

The Edit | Cut command removes the selected text from your
document and places the text in the Clipboard. You can then
paste that text into any other document (or somewhere else in the
same document) by choosing Paste. The text remains selected in
the Clipboard so that you can paste the same text many times.

The Edit | Copy command leaves the selected text intact but places
an exact copy of it in the Clipboard. You can then paste that text
into any other document by choosing Paste.

If the Output or Message window is the active window when you
select Edit | Copy, the entire contents of the window buffer
(including any nonvisible portion) is copied to the Clipboard.

You can also copy text from a Help window: With the keyboard,
use Shift and the arrow keys; with the mouse, click and drag the
text you want to copy.

To copy text from a Help window in Turbo C++, display the text
you want to copy, then select Edit | Copy. The entire contents of
the window is copied to the Clipboard.

The Edit | Paste command inserts text from the Clipboard into the
current edit window at the cursor position. The text that is
actually pasted is the currently marked block in the Clipboard
window.

The Edit | Clear command removes the selected text but does not
put it into the Clipboard. This means you cannot paste the text as
you could if you had chosen Cut or Copy. The cleared text is not
retrievable unless you use the Edit| Undo command. Clear is
useful if you want to delete text, but you don’t want to overwrite
text being held in the Clipboard. You can clear the Clipboard itself
by selecting all the text in the Clipboard, then choosing Edit |
Clear.

Borland C++ User’s Guide



Copy Example

Borland C++ only

Show Clipboard

Borland C++ only

You can save the Clipboard
contents across sessions in
Borland C++. Choose
Options | Environment |
Desktop command and
select the Clipboard option.

Edit] Copy Example

The Edit | Copy Example command copies the preselected
example text in the current Help window to the Clipboard. The
examples are already predefined as blocks you can paste, so you
don’t need to bother marking the example.

To copy a Help example in Turbo C++ for Windows, follow these
steps:

1. Display the example you want to copy in the Help window.

2. Choose Edit | Copy and all the text in the Help window is
copied to the Clipboard.

3. Make the window you want the example copied to the active
window.

4. Choose Edit | Paste.

The Edit | Show Clipboard command opens the Clipboard
window, which stores the text you cut and copy from other
windows. The text that’s currently selected (highlighted) is the
text Borland C++ uses when you choose Paste.

You can think of the Clipboard window as a history list of your
cuts and copies. And you can edit the Clipboard so that the text
you paste is precisely the text you want. Borland C++ uses
whatever text is selected in the Clipboard when you choose Paste.

The Clipboard window is just like other edit windows; you can
move it, resize it, and scroll and edit its contents. The only
difference you'll find in the Clipboard window is when you
choose to cut or copy text. When you select text in the Clipboard
window and choose Cut or Copy, the selected text immediately
appears at the bottom of the window. (Remember, any text that
you cut or copy is appended to the end of the Clipboard and
highlighted—so you can paste it later.)

The Edit | Show Clipboard option doesn’t appear in the Turbo
C++ IDE. Of course, you can display the Clipboard at any time
using the Program Manager.

Chapter 3, Menus and options reference 55




Search

Search menu

56

Alt

Find
(ct)(Q)(F]

Figure 3.4
The Find Text dialog box

You can set up your right
mouse button to Find Text.
Choose Options |
Environment | Mouse and
select the Search option.

[Eii Case sensitive|

|[ ] Whole words on1y|

|[ 1 Regular expressﬁﬂﬂ

The Search menu lets you search for text, function declarations,
and error locations in your files.

The Search | Find command displays the Find Text dialog box,
which lets you type in the text you want to search for and set
options that affect the search.
Find Text &=
Options Direction
[X] Case sensitive () Forward

[ ] Whole words only ( ) Backward
[ ] Regular expression :

Origin
(e) From cursor
{ ) Entire scope

The Find Text dialog box contains several buttons and check
boxes:

Check the Case Sensitive box if you do want the IDE to
differentiate uppercase from lowercase.

Check the Whole Words Only box if you want the IDE to search
for words only (that is, the string must have punctuation or space
characters on both sides).

Check the Regular Expression box if you want the IDE to
recognize GREP-like wildcards in the search string. The wildcards
are™, $,.,* +,11, and \. Here’s what they mean:

A A circumflex at the start of the string matches the start of a
line.

$ A dollar sign at the end of the expression matches the end
of a line.

A period matches any character.

* A character followed by an asterisk matches any number of
occurrences (including zero) of that character. For example,
bo* matches bot, b, boo, and also be.

Borland C++ User’s Guide



Direction
(*) Forward
( ) Backward

Scope
(*) Global
() Selected text

Origin
(¢} From cursor
( ) Entire scope

Search|Find

+ A character followed by a plus sign matches any number of
occurrences (but not zero) of that character. For example,
bo+ matches bot and boo, but not be or b.

[] Characters in brackets match any one character that
appears in the brackets but no others. For example [bot]
matches b, 0, or t.

[*] A circumflex at the start of the string in brackets means not.
Hence, ["bot] matches any characters except b, o, or t.

[-] A hyphen within the brackets signifies a range of
characters. For example, [b-0o] matches any character from b
through o.

\ A backslash before a wildcard character tells Borland C++
to treat that character literally, not as a wildcard. For
example, \* matches " and does not look for the start of a
line.

Enter the string in the input box and choose OK to begin the
search, or choose Cancel to forget it. If you want to enter a string
that you searched for previously, press | (or Aft+d in Turbo C++)
to show a history list to choose from.

You can also pick up the word that your cursor is currently on in
the edit window and use it in the Find Text box by simply
invoking Find from the Search menu. In Borland C++, you can
take additional characters from the text by pressing — .

Choose from the Direction radio buttons to decide which
direction you want the IDE to search—starting from the origin
(which you can set with the Origin radio buttons).

Choose from the Scope buttons to determine how much of the file
to search in. You can search the entire file (Global) or only the text
you've selected.

Choose from the Origin buttons to determine where the search
begins. When Entire Scope is chosen, the Direction radio buttons
determine whether the search starts at the beginning or the end of
the scope. You choose the range of scope you want with the Scope
radio buttons.

Chapter 3, Menus and options reference 57




Search | Replace

Replace
Alternate

ETEY

Figure 3.5
The Replace Text dialog box

Search Again
CUA

Alternate

58

The Search | Replace command displays a dialog box that lets you
type in text you want to search for and text you want to replace it
with.

»Text to Findl !
]

Options Direction
[X] Case sensitive *) Forward
[ ] Whole words only ) Backward
[ ] Regular expression

d [X] Prompt on replace

Scope Origin
(-? Global (*) From cursor
) Selected text () Entire scope

B[ 0K JEEEM|Change All

The Replace Text dialog box contains several radio buttons and
check boxes—many of which are identical to the Find Text dialog
box, discussed previously. An additional checkbox, Prompt on
Replace, controls whether you're prompted for each change.

Enter the search string and the replacement string in the input
boxes and choose OK or Change All to begin the search, or choose
Cancel to forget it. If you want to enter a string you used
previously, press | (or Alt+l in Turbo C++) to show a history list
to choose from.

If the IDE finds the specified text and Prompt on Replace is on, it
asks you if you want to make the replacement. If you choose OK,
it will find and replace only the first instance of the search item. If
you choose Change All, it replaces all occurrences found, as
defined by Direction, Scope, and Origin.

The Search | Search Again command repeats the last Find or
Replace command. All settings you made in the last dialog box
used (Find or Replace) remain in effect when you choose Search
Again.

Borland C++ User’s Guide



Go to Line
Number

Previous Error
Alt

Next Error
Alt

Locate Function

Borland C++ only

Run menu

Search | Go to Line Number

The Search | Go to Line Number command prompts you for the
line number you want to find.

The IDE displays the current line number and column number in
the lower left corner of every edit window.

The Search | Previous Error command moves the cursor to the
location of the previous error or warning message. This command
is available only if there are messages in the Message window
that have associated line numbers.

The Search | Next Error command moves the cursor to the location
of the next error or warning message. This command is available
only if there are messages in the Message window that have
associated line numbers.

The Search | Locate Function command displays a dialog box for
you to enter the name of a function to search for. This command is
available only during a debugging session.

Enter the name of a function or press | to choose a name from the
history list. As opposed to the Find command, this command
finds the declaration of the function, not instances of its use.

At)(R)

Run

The Run menu’s commands run your program, start and end
debugging sessions in Borland C++ and start Turbo Debugger for
Windows in the Turbo C++ IDE.

The Run | Run command runs your program, using any
arguments you pass to it with the Run | Arguments command. If
the source code has been modified since the last compilation, it

Chapter 3, Menus and options reference 59




RunlRun

Borland C++ only

If you want to have all
Borland C++'s features
available, keep Source
Debugging set to On.

Source code the same

Source code modified

60

will also invoke the Project Manager to recompile and link your
program. (The Project Manager is a program building tool
incorporated into the IDE; see Chapter 3, “The Project menu,” for
more on this feature.)

If you're using Turbo C++ and aren’t planning to debug your
program with Turbo Debugger for Windows, you can compile
and link it with the Source Debugging unchecked in the Options |
Linker dialog box. Your program will link faster.

The rest of this discussion about Run | Run applies only to
Borland C++.

If you don’t want to debug your program in Borland C++, you
can compile and link it with the Source Debugging radio button
set to None (which makes your program link faster) in the
Options | Debugger dialog box. If you compile your program with
Source Debugging set to On, the resulting executable code will
contain debugging information that will affect the behavior of the
Run | Run command in the following ways:

If you have not modified your source code since the last
compilation,

m the Run | Run command causes your program to run to the next
breakpoint, or to the end if no breakpoints have been set.

If you have modified your source code since the last compilation,

m and if you're already stepping through your program using the
Run | Step Over or Run | Trace Into commands, Run | Run
prompts you whether you want to rebuild your program:

o If you answer yes, the Project Manager recompiles and links
your program, and sets it to run from the beginning.

o If you answer no, your program runs to the next breakpoint
or to the end if no breakpoints are set.

m and if you are not in an active debugging session, the Project
Manager recompiles your program and sets it to run from the
beginning.

Pressing Cirl+Break causes Borland C++ to stop execution on the
next source line in your program. If Borland C++ is unable to find
a source line, a second Cirl+Break will terminate the program and
return you to the IDE.

Borland C++ User’s Guide



RuniRun

;> Youcan't runor debug Windows applications within the IDE. If
you try to do so, you'll get an error dialog box to that effect.

Program Reset

Borland C++only  The Run | Program Reset command stops the current debugging
session, releases memory your program has allocated, and closes
any open files that your program was using. Use this command
when you want to cancel a debugging session or if there’s not
enough memory to run transfer programs or invoke a DOS shell.

Go to Cursor

Borland C++only  The Run | Go to Cursor command runs your program from the
beginning of the program (or the last executed statement if you're
in the middle of a debugging session) to the line the cursor is on
in the current edit window. If the cursor is at a line that does not
contain an executable statement, the command displays a
warning.

Go to Cursor does not set a permanent breakpoint, but it does
allow the program to stop at a permanent breakpoint if it
encounters one before the line the cursor is on. If this occurs, you
must move the cursor back and choose the Go to Cursor com-
mand again.

Use Go to Cursor to advance the run bar (the highlighted line of
code that represents the next statement to be executed) to the part
of your program you want to debug. If you want your program to
stop at a certain statement every time it reaches that point, set a
breakpoint on that line.

Note that if you position the cursor on a line of code that is not
executed, your program will run to the next breakpoint or the end
if no breakpoints are encountered. You can always use Cirl+Break
to stop a running program.

Trace Into

Borland C++only  The Run | Trace Into command runs your program statement-by-
statement. If you Trace Into a function call, the run bar stops on
the first line of the function instead of executing the function as a
single step (see Run | Step Over). If a statement contains no calls to
functions accessible to the debugger, Trace Into stops at the next
executable statement.

Chapter 3, Menus and options reference 61




Run|Trace Into

62

Step Over

Borland C++ only

Use the Trace Into command to enter a function called by the
function you are now debugging. The next section illustrates the
differences between the Trace Into and Step Over commands.

If the statement contains a call to a function accessible to the
debugger, Trace Into halts at the beginning of the function’s
definition. Subsequent Trace Into or Step Over commands run the
statements in the function’s definition. When the debugger leaves
the function, it resumes evaluating the statement that contains the
call; for example,

if (funcl() && func2())
do_something();

With the run bar on the if statement, F7 will trace into func1i;
when the run bar is on the return in func1, F7 will trace into
func2. F8 will step over func2 and stop on do_something.

Note: The Trace Into command recognizes only functions defined
in a source file compiled with these two options on:

m In the Advanced Code Generation dialog box (Options |
Compiler), the Debug Info in OBJs check box must be checked.

m The Source Debugging radio buttons must be set to On (in the
Options | Debugger dialog box).

The Run | Step Over command executes the next statement in the
current function. It does not trace into calls to lower-level
functions, even if they are accessible to the debugger.

Use Step Over to run the function you are now debugging, one
statement at a time without branching off into other functions.

Here is an example of the difference between Run | Trace Into and
Run | Step Over. These are the first 12 lines of a program loaded
into an edit window:

int findit(void) /* Line 1 */
{

return(2);

}

Borland C++ User’s Guide



Run|Step Over

void main(void) /* Line 6 */
{
int i, 3;
i = findit(); /* Line 10 */
printf ("%d\n", i}; /* Line 11 */
j=0; ... /* Line 12 */

findit is a user-defined function in a module that has been
compiled with debugging information. Suppose the run bar is on
line 10 of your program. To position the run bar on line 10, place
the cursor on line 10 and either press F4 or select Run | Go to
Cursor.

m If you now choose Run | Trace Into, the run bar will move to the
first line of the findit function (line 1 of your program), allowing
you to step through the function.

m If you choose Run | Step Over, the findit function will execute
and the run bar will move to line 11.

If the run bar had been on line 11 of your program, it would have
made no difference which command you chose; Run | Trace Into
and Run | Step Over both would have executed the printf function
and moved the run bar to line 12. This is because the printf
function does not contain debug information.

Arguments

The Run | Arguments command allows you to give your running
programs command-line arguments exactly as if you had typed
them on the DOS command line. DOS redirection commands will
be ignored.

When you choose this command, a dialog box appears with a
single input box. You only need to enter the arguments here, not
the program name. Arguments take effect when your program
starts.

Borland C++only  If you are already debugging and want to change the arguments,
select Program Reset and Run | Run to start the program with the
new arguments.

Debugger

The Run | Debugger command starts Turbo Debugger for
Windows so you can debug your program. Turbo C++ tells Turbo

Chapter 3, Menus and options reference 63




Run|Debugger

Compile menu

Debugger
Options

Debugger which program to debug. Before you can use Turbo
Debugger for Windows to debug your program you must:

1. Choose Options | Compiler and in the Advanced Code
Generation dialog box check the Debug Info in OBJs option.

2. Choose Options | Linker and set Source Debugging to on.

The Run | Debugger Options command lets you pass arguments to
Turbo Debugger for Windows when you choose the Run |
Debugger command. See the Turbo Debugger for Windows manual
for a description of all options.

64

Alt

Compile

Make

Use the commands on the Compile menu to compile the program
in the active window or to make or build your project. To use the
Compile, Make, Build, and Link commands, you must have a file
open in an active edit window or a project defined.

The Compile | Compile command compiles the file in the active
edit window. If the Project or Message Window is active,
Compile | Compile compiles the highlighted file.

When the compiler is compiling, a status box pops up to display
the compilation progress and results. When compiling is
complete, press any key to remove this box. In Turbo C++, press
Enter or choose OK. If any errors or warnings occurred, the
Message window becomes active and displays and highlights the
first error.

The Compile | Make command invokes the Project Manager to
compile and link your source code to the target executable or
library.

Compile | Make rebuilds only the files that aren’t current.

The .EXE file name listed is derived from one of two names in the
following order:

Borland C++ User’s Guide



Link

Build

Information

Compile | Make

m the project file (PR]) specified with the Project | Open Project
command

m the name of the file in the active edit window. If no project is
defined, you'll get the default project defined by the file
TCDEFE.DPR, or, if you're using Turbo C++, the default project
defined by the file TCDEFW.DPR.

The Compile | Link command takes the files defined in the current
project file or the defaults and links them.

This command is similar to Compile | Make except that it rebuilds
all the files in the project whether or not they are current. It
performs the following steps:

1. It deletes the appropriate precompiled header (SYM) file, if it
exists.

2. It deletes any cached autodependency information in the
project.

3. It sets the date and time of all the project’s .OB] files to zero.

4. Finally, it does a make.

If you abort a Build command by pressing Cirl+Break in Borland
C++, pressing Esc or choosing Cancel in Turbo C+4+, or get errors
that stop the build, you can pick up where it left off simply by
choosing Compile | Make.

The Compile | Information command displays a dialog box with
information on the current file or project. The information is for
display only; you can’t change it in the dialog box. The following
table tells you what each line in the File Information dialog box
means and where you can go to change the settings if you want
to.

Chapter 3, Menus and options reference 65




Compile | Information

Table 3.1
Information settings

You'll see only some of these
settings in Turbo C++.

Remove
Messages

Debug menu

Setting Meaning

Current directory
Current file
Expanded memory in use

The default directory.

File in the active window.

Amount of expanded memory reserved by
Borland C++.

Lines compiled
Total warnings
Total errors

Number of lines compiled.
Number of warnings issued.
Number of errors generated.

Total time Amount of time your program has run
(debugger only).

Program loaded Debugging status.

Program exit code DOS termination code of last terminated
program.

Available memory Amount of memory available to Borland C++
in bytes.

The Compile | Remove Messages command removes all messages
from the Message window.

Borland C++ only

Ait)(D]

£

=

Inspect
Alt

66

The Debug menu appears in Borland C++ only. The commands
on the Debug menu control all the features of the integrated
debugger. You specify whether or not debugging information is
generated in the Options | Debugger dialog box.

You can’t run or debug Windows applications within the Borland
C++ IDE. If you try to do so, you'll get an error dialog box to that
effect. You must run them under Microsoft Windows and use
Turbo Debugger for Windows.

To debug applications in the Turbo C++ IDE, use Turbo Debugger
for Windows. Start Turbo Debugger with the Run | Debugger
command.

The Debug | Inspect command opens an Inspector window that
lets you examine and modify values in a data element. The type of
element you're inspecting determines the type of information

Borland C++ User’s Guide



Debuglinspect

presented in the window. There are two ways to open an
Inspector window:

Youcansetup yourright  mYou can position the cursor on the data element you want to
mouse buffon fo ispect. - jnspect, then choose Alt+F4.

Choose Options |
Environment IMouse and  m You can also choose Debug | Inspect to bring up the Inspector
select the Inspect option. dialog box, and then type in the variable or expression you

want to inspect. Alternatively, you can position the cursor on an
expression, select Debug | Inspect, and, while in this dialog box,
press — to bring in more of the expression. Press Enter to
inspect it.

To close an Inspector window, make sure the window is active
(topmost) and press Esc or choose Window | Close.

Here are some additional inspection operations you can perform:

w Sub-inspecting: Once you're in an Inspector window, you can
inspect certain elements to isolate the view. When an inspector
item is inspectable, the status line displays the message “.
Inspect.” To sub-inspect an item, you move the inspect bar to
the desired item and press Enter.

m Modifying inspector items: When an inspector item can be
modified, the status line displays “Alt+M Modify Field.” Move
the cursor to the desired item and press Alt+M; a dialog box will
prompt you for the new value.

m Inspect range: When you are inspecting certain elements, you
can change the range of values that is displayed. For example,
you can range-inspect pointer variables to tell Borland C++
how many elements the pointer points to. You can range-
inspect an inspector when the status line displays the message
“Set index range” and with the command Alt+/.

The following sections briefly describe the eight types of Inspector
windows possible.

Ordinal Inspector  Ordinal Inspector windows show you the value of simple data
windows items, such as

char x = 4;
unsigned long y = 123456L;

These Inspector windows only have a single line of information
following the top line (which usually displays the address of the
variable, though it may display the word “constant” or have other
information in it, depending on what you're inspecting). To the

Chapter 3, Menus and options reference 67




DebuglInspect

68

Pointer Inspector
windows

Array Inspector
windows

left appears the type of the scalar variable (char, unsigned long,
and so forth), and to the right appears its present value. The value
can be displayed as decimal, hex, or both. It’s usually displayed
first in decimal, with the hex values in parentheses (using the
standard C hex prefix of 0x).

If the variable being displayed is of type char, the character
equivalent is also displayed. If the present value does not have a
printing character equivalent, the backslash (\) followed by a hex
value displays the character value. This character value appears
before the decimal or hex values.

Pointer Inspector windows show you the value of data items that
point to other data items, such as

char *p = "abc";

int *ip = 0;

int **ipp = &ip;
Pointer Inspector windows usually have a top line that contains
the address of the pointer variable and the address being pointed
to, followed by a single line of information.

To the left appears [0], indicating the first member of an array. To
the right appears the value of the item being pointed to. If the
value is a complex data item such as a structure or an array, as
much of it as possible is displayed, with the values enclosed in
braces ({ and }).

If the pointer is of type char and appears to be pointing to a null-
terminated character string, more information appears, showing
the value of each item in the character array. To the left in each
line appears the array index ([1], [2], and so on), and the value
appears to the right as it would in a scalar Inspector window. In
this case, the entire string is also displayed on the top line, along
with the address of the pointer variable and the address of the
string that it points to.

Array Inspector windows show you the value of arrays of data
items, such as

long thread(3][4] [5];
char message[] = "eat these words";

There is a line for each member of the array. To the left on each
line appears the array index of the item. To the right appears the
value of the item being pointed to. If the value is a complex data

Borland C++ User's Guide



DebuglInspect

item such as a structure or array, as much of it as possible is
displayed, with the values enclosed in braces ({ and }).

Structure and union  Structure and union Inspector windows show you the value of
Inspector windows the members in your structure, class, and union data items. For
example,

struct date {
int year;
char month;
char day;

} today;

union {
int small;
long large;

} holder;

Structures and unions appear the same in Inspector windows.
These Inspector windows have as many items after the address as
there are members in the structure or union. Each item shows the
name of the member on the left and its value on the right,
displayed in a format appropriate to its C data type.

Function Inspector  Function Inspector windows show the return type of the function
windows  at the bottom of the inspector. Each parameter that a function is
called with appears after the memory address at the top of the list.

Function Inspector windows give you information about the
calling parameters, return data type, and calling conventions for a
function.

Class Inspector  The Class (or object) Inspector window lets you inspect the details
windows  of a class variable. The window displays names and values for
members and methods defined by the class.

The window can be divided into two panes horizontally, with the
top pane listing the data fields or members of the class, and the
bottom pane listing the member function names and the function
addresses. Press Tab to move between the two panes of the Class
Inspector window.

If the highlighted data field is a class or a pointer to a class,
pressing Enter opens another Class Inspector window for the
highlighted type. In this way, you can quickly inspect complex
nested structures of classes with a minimum of keystrokes.

Chapter 3, Menus and options reference 69




DebuglInspect

Constant Inspector
window

Type Inspector window

Evaluate/Modify

The Evaluate button is the
default button; when you
tab fo the New Value field,
the Modify button becomes
the default.

70

Constant Inspector windows are much like Ordinal Inspector
windows, but they have no address and can never be modified.

The Type Inspector window lets you examine a type. There is a
Type Inspector window for each kind of instance inspector
described here. The difference between them is that instance
inspectors display the value of a field and type inspectors display
the type of a field.

The Debug | Evaluate/Modify command evaluates a variable or
expression, displays its value, and, if appropriate, lets you modify
the value. The command opens a dialog box containing three
fields: the Expression field, the Result field, and the New Value
field.

The Expression field shows a default expression consisting of the
word at the cursor in the Edit window. You can evaluate the
default expression by pressing Enter, or you can edit or replace it
first. You can also press — to extend the default expression by
copying additional characters from the Edit window.

You can evaluate any valid C expression that doesn’t contain

m function calls

m symbols or macros defined with #define

m local or static variables not in the scope of the function being
executed

If the debugger can evaluate the expression, it displays the value
in the Result field. If the expression refers to a variable or simple
data element, you can move the cursor to the New Value field and
enter an expression as the new value.

Press Esc to close the dialog box. If you've changed the contents of
the New Value field but do not select Modify, the debugger will
ignore the New Value field when you close the dialog box.

Use a repeat expression to display the values of consecutive data
elements. For example, for an array of integers named xarray,

mxarray[0],5 displays five consecutive integers in decimal.
mxarray[0],5x displays five consecutive integers in hexadecimal.

Borland C++ User’s Guide



Call Stack

Compiling with Standard
Stack Frame unchecked (O
C | Entry/Exit Code) causes
some functions fo be omitted
from the call stack. For more
details, see page 90.

Debug | Evaluate/Modify

An expression used with a repeat count must represent a single
data element. The debugger views the data element as the first
element of an array if it isn’t a pointer, or as a pointer to an array
if it is.

The Debug | Evaluate/Modify command displays each type of
value in an appropriate format. For example, it displays an int as
an integer in base 10 (decimal), and an array as a pointer in base
16 (hexadecimal). To get a different display format, precede the
expression with a comma followed by one of the format specifiers
shown in Table 3.2 on page 72.

The Debug | Call Stack command opens a dialog box containing
the call stack. The Call Stack window shows the sequence of
functions your program called to reach the function now running.
At the bottom of the stack is main; at the top is the function that’s
now running.

Each entry on the stack displays the name of the function called
and the values of the parameters passed to it.

Initially the entry at the top of the stack is highlighted. To display
the current line of any other function on the call stack, select that
function’s name and press Enter. The cursor moves to the line
containing the call to the function next above it on the stack.

For example, suppose the call stack looked like this:

func2 ()
funcl ()
main()

This tells you that main called fune1, and func1 called func2. If
you wanted to see the line of func1 that called func2, you could
select func1 in the call stack and press Enter. The code for funci
would appear in the Edit window, with the cursor positioned on
the call to func2.

To return to the current line of the function now being run (that
is, to the run position), select the topmost function in the call stack
and press Enter.

Chapter 3, Menus and options reference 71



Debug | Call Stack

Table 3.2: Format specifiers recognized in debugger expressions

Character

Function

C

HorX

Fn

Character. Shows special display characters for control characters (ASCII 0 through 31);
by default, such characters are shown using the appropriate C escape sequences (\n, \t,
and so on). Affects characters and strings.

String. Shows control characters (ASCII 0 through 31) as ASCII values using the
appropriate C escape sequences. Since this is the default character and string display
format, the S specifier is only useful in conjunction with the M specifier.

Decimal. Shows all integer values in decimal. Affects simple integer expressions as well as
arrays and structures containing integers.

Hexadecimal. Shows all integer values in hexadecimal with the Ox prefix. Affects simple
integer expressions as well as arrays and structures containing integers.

Floating point. Shows n significant digits (n is an integer between 2 and 18). The default
value is 7. Affects only floating-point values.

Memory dump. Displays a memory dump, starting with the address of the indicated
expression. The expression must be a construct that would be valid on the left side of an
assignment statement, that is, a construct that denotes a memory address; otherwise, the
M specifier is ignored.

By default, each byte of the variable is shown as two hex digits. Adding a D specifier with
the M causes the bytes to be displayed in decimal. Adding an H or X specifier causes the
bytes to be displayed in hex. An S or a C specifier causes the variable to be displayed as a
string (with or without special characters). The default number of bytes displayed
corresponds to the size of the variable, but a repeat count can be used to specify an exact
number of bytes.

Pointer. Displays pointers in seg:ofs format with additional information about the address
pointed to, rather than the default hardware-oriented seg:ofs format. Specifically, it tells
you the region of memory in which the segment is located, and the name of the variable at
the offset address, if appropriate. The memory regions are as follows:

Memory region Evaluate message

0000:0000-0000:03FF Interrupt vector table
0000:0400-0000:04FF BIOS data area
0000:0500-Borland C++ MS-DOS/TSRs

Borland C++—User Program PSP Borland C++
User Program PSP User Process PSP

User Program—top of RAM Name of a static user variable if its address falls inside the
variable’s allocated memory; otherwise nothing

A000:0000-AFFE.FFFF EGA/VGA Video RAM
B000:0000-B7FF:FFFF Monochrome Display RAM
B800:0000-BFFF:FFFF Color Display RAM
C000:0000-EFFF:FFFF EMS Pages/ Adaptor BIOS ROMs
F000:0000-FFFF:FFFF BIOS ROMs

Structure/Union. Displays field names as well as values, such as { X:1, Y:10, Z:5 }. Affects
only structures and unions.

72

Borland C++ User's Guide



Debug | Watches

Watches

The Debug | Watches command opens a pop-up menu of
commands that control the use of watch expressions. Watch
expressions can be saved across sessions; see Options|
Environment | Desktop. The following sections describe the
commands in this pop-up menu.

Add Watch The Add Watch command inserts a watch expression into the
Watch window.

CUA  When you choose this command, the debugger opens a dialog
box and prompts you to enter a watch expression. The default
expression is the word at the cursor in the current Edit window.
Alfernate  There’s also a history list available if you want to quickly enter an
Ctrl expression you've used before.

When you type a valid expression and press Enfér or click OK, the
debugger adds the expression and its current value to the Watch
window. If the Watch window is the active window, you can
insert a new watch expression by pressing Ins.

Delete Watch  The Delete Watch command deletes the current watch expression
from the Watch window. To delete a watch expression other than
the current one, select the desired watch expression by
highlighting it. Then choose Delete Watch. When the Watch
Window is active, you can press Del or Cirl+Y to delete a watch.

Edit Watch  The Edit Watch command allows you to edit the current watch
expression in the Watch window. A history list is available to save
you time retyping.

When you choose this command, the debugger opens a dialog
box containing a copy of the current watch expression. Edit the
expression and press Enter. The debugger replaces the original
version of the expression with the edited one.

You can also edit a watch expression from inside the Watch
window by selecting the expression and pressing Enter.

Chapter 3, Menus and options reference 73



DebuglWatches | Remove All Watches

Remove All Watches

Toggle Breakpoint

CUA

Alternate

Breakpoints

Figure 3.6
The Breakpoints dialog box

74

The Remove All Watches command deletes all watch expressions
from the Watch window.

The Debug | Toggle Breakpoint command lets you set or clear an
unconditional breakpoint on the line where the cursor is
positioned. When a breakpoint is set, it is marked by a breakpoint
highlight. Breakpoints can be saved across sessions using
Options | Environment | Desktop.

The Debug | Breakpoints command opens a dialog box that lets
you control the use of breakpoints—both conditional and
unconditional ones. Here is what the dialog box looks like:

Breakpoints

Line# Condition

The dialog box shows you all set breakpoints, their line numbers,
and the conditions. The condition has a history list so you can
select a breakpoint condition that you've used before.

The row of buttons at the bottom of the dialog box give you
several options:

m Choose Delete to remove a highlighted breakpoint from your
program.

m Choose View to display the source code where the selected
breakpoint is set.

m Choose At to set a breakpoint at a particular function. You must
be debugging to choose At.

m Choose Edit to add a new breakpoint or modify an existing one
and the Breakpoint Modify /New dialog box appears:

Borland C++ User's Guide



Debug | Breakpoints

Figure 3.7 point Modify/New
The Breakpoint Modify/New onaTt1on
dialog box S Modity 3

Pass Count

File Name
C:\BORLANDC\EXAMPLES\BITMAP.CPP
Line Number

If you choose New, a breakpoint is set at the location of your
cursor in the active edit window. You can modify a breakpoint by
making changes in this dialog box.

The Condition text box accepts any expression that evaluates to
either true or false. When your program reaches that condition
while you're debugging, it stops executing.

You can specify when the debugger should stop on the
breakpoint. In the Pass Count text box, type in a number. If you
enter a 1, the debugger stops the first time the breakpoint is
reached. If you enter a 2, the debugger stops the second time the
breakpoint is reached, and so on.

Generally you will not change the file name, but you can if you
want. You can also specify a new line number. The primary
purpose of these two options is to identify a breakpoint you have
already set.

When you are done modifying your breakpoint, choose Modify
and the IDE accepts the new settings.

When a source file is edited, each breakpoint “sticks” to the line

where it is set. Breakpoints stay set until you

m delete the source line a breakpoint is set on

& clear a breakpoint with Toggle Breakpoint

Borland C++ will continue to track breakpoints until

m you edit a file containing breakpoints and then don’t save the
edited version of the file.

m you edit a file containing breakpoints and then continue the
current debugging session without remaking the program.
(Borland C++ displays the warning prompt “Source modified,
rebuild?”)

Chapter 3, Menus and options reference 75



Debug | Breakpoints

Project menu

Before you compile a source file, you can set a breakpoint on any
line, even a blank line or a comment. When you compile and run
the file, Borland C++ validates any breakpoints that are set and
gives you a chance to remove, ignore, or change invalid
breakpoints. When you are debugging the file, Borland C++
knows which lines contain executable statements, and will warn
you if you try to set invalid breakpoints.

You can set an unconditional breakpoint without going through
the dialog box by choosing the Debug | Toggle Breakpoint
command.

76

Alt)(P]

Borland C++ only

Borland C++ only
Borland C++ only

Borland C++ only

Open Project

The Project menu contains all the project management commands

to

m create a project

m add or delete files from your project

m specify which program your source file should be translated
with

m set options for a file in the project

m specify which command-line override options to use for the
translator program

m specify what the resulting object module is to be called, where it
should be placed, whether the module is an overlay, and
whether the module should contain debug information

m view included files for a specific file in the project

The Open Project command displays the Open Project File dialog
box, which allows you to select and load a project or create a new
project by typing in a name.

This dialog box lets you select a file name similar to the File | Open
dialog box, discussed on page 47. The file you select will be used
as a project file, which is a file that contains all the information
needed to build your project’s executable. Borland C++ uses the
project name when it creates the .EXE, .DLL, or .LIB file and .MAP
file. A typical project file has the extension .PR].

Borland C++ User’s Guide



Project | Close Project

Close Project

Choose Project | Close Project when you want to remove your
project and return to the default project.

Add ltem

Choose Project | Add Item when you want to add a file to the
project’s file list. This brings up the Add to Project List dialog box.

This dialog box is set up much like the Open a File dialog box
(File | Open). Choosing the Add button puts the currently
highlighted file in the Files list into the Project window. The
chosen file is added to the Project window File list immediately
after the highlight bar in the Project window. The highlight bar is
advanced each time a file is added. (When the Project Window is
active, you can press Ins to add a file.)

Delete Item

Choose Project | Delete Item when you want to delete the
highlighted file in the Project window. When the Project window
is active, you can press Del to delete a file.

Local Options
Borland C++only  The Local Options command opens the following dialog box:

Figure 3.8 g Override Options
; S Project Item: CIRCLE.CPP -
The Override Options dialog roject Ttem

box p8ommand Line Options

VRl O IR
Output [gath E—— '
DLLSHELL.0BJ

Project File YJranslators
>Borland C++ Integrated Compiler
~Turbo Assembler

R¥esource Compiler
~Import Librarian

Overlay this module s
] Exclude debug information
[ ] Exclude from link

Chapter 3, Menus and options reference 77




Project | Local Options

These command-line options
are not supported: ¢,
Efilename, e, Ipathname, L,
XM Q,y.

|[ ] Overlay this module |

|[ ] Exclude debug information |

|[ ] Exclude from link |

Include Files

Figure 3.9
The Include Files dialog box

78

The Override Options dialog box lets you include command-line
override options for a particular project-file module. It also lets
you give a specific path and name for the object file and lets you
choose a translator for the module.

Any program you installed in the Transfer dialog box with the
Translator option checked appears in the list of Project File
Translators (see page 100 for information on the Transfer dialog
box).

Check the Overlay this Module option if you want the selected
project item to be overlaid. This item is local to one file. It is
ignored if the Overlaid DOS EXE option is not selected in the
Output radio button in Options | Linker | Settings.

Check the Exclude Debug Information option to prevent debug
information included in the module you've selected from going
into the .EXE.

Use this switch on already debugged modules of large programs.
You can change which modules have debug information simply
by checking this box and then re-linking (no compiling is
required).

Check the Exclude from Link option if you don’t want this
module linked in.

Choose Project | Include Files to display the Include Files dialog
box or, if you're in the Project window, press the Spacebar. If you
haven’t built your project yet, the Project | Include Files command
will be disabled.

The Include Files dialog box looks like this:

Include Files
Include files for CIRCLE.CPP

N»Include files Location
»GRAPHICS . H ..\INCLUDE
POINT.H .
CONIO.H ..\INCLUDE

Borland C++ User’s Guide



Projectlinclude Files

You can scroll through the list of files displayed. Select the file
you want to view and press Enter.

Browse menu Turbo C++ only

The Browse menu in the Turbo C++ for Windows IDE gives you
access to the ObjectBrowser so you can visually browse through
your class hierarchies, functions, and variables.

See page 64 fo find out how  Before you can use the ObjectBrowser, you must compile your
fo fuin on debugoing  rooram so that debugging information is included in your
information. . .
executable file. If your executable is composed of more than one
source code file, open the related project file in the IDE before
using the ObjectBrowser.

To browse with your mouse,  You can access the ObjectBrowser either through the Browse
__choose Opfions|  many or directly from your source code by clicking the right
Environment | Mouse and he d £ . iabl ish
select the Browse Right ~ ouse button on the class, function or variable you wish to

Mouse Button option.  inspect.

The ObjectBrowser has buttons on the title bar of the
ObjectBrowser window. Choose them by clicking them with your
mouse or using specific key combinations. By choosing one of
these buttons, you tell the ObjectBrowser to perform some action.
Not all of the buttons are available at all times. These are the
buttons you will see, their keyboard equivalents, and the action
they perform:

F1 Help.

Ctrl+tG  Go to the source code for the selected item.

Cirl+l  Inspect (view the details of) the selected item.

Cir+R  Rewind the ObjectBrowser to the previous view.

Cil+O  Show an overview of the class hierarchy.

Chapter 3, Menus and options reference 79




Browse | Classes

Classes

Functions

Variables

80

The Browse | Classes command opens an ObjectBrowser window
that displays all of the classes in your application, arranged as a
horizontal “tree” to show parent-child relationships. The window
is automatically sized to display as much of your class hierarchy
as possible. If the entire image does not fit within the window, use
the scroll bars to move the image to view hidden sections. You
can highlight any class in the display by using the arrow cursor
keys, or by clicking directly on the class name. Using the buttons
at the top of the ObjectBrowser window, you can

m exit the ObjectBrowser.
m go to the source code that defines the highlighted class.
m inspect the functions and data elements of the highlighted class.

The Functions command opens a window that lists every function
in your program, in alphabetical order. Class member functions
are listed together by class (for example, MyClass::MyFunc). In
addition, an incremental search field is provided at the bottom of
the dialog that allows you to quickly search through the function
list by typing the first few letters of the function name. As you
type, the selections in the list change to match the characters you
have typed in. Using the buttons at the top of the ObjectBrowser
window, you can

m exit the ObjectBrowser.
m go to the source code that defines the highlighted function.
m inspect the declaration of the highlighted function.

The Variables command opens a window that lists every global
variable in your program, in alphabetical order. This dialog box
also contains an incremental search field. Using the buttons at the
top of the ObjectBrowser window, you can

m exit the ObjectBrowser.

m open an edit window on the source code that defines the
highlighted variable.

m inspect the declaration of the highlighted variable.

Borland C++ User’s Guide



Symbols

You can also inspect a
symbol by clicking it in your
source code with your right
mouse button. Set up your
mouse this way with
Options | Environment |
Mouse and select Browse.

Rewind

Overview

Inspect

Goto

Options menu

Browse |Symbol at cursor

The Symbol at Cursor command opens an ObjectBrowser window
for the symbol the cursor is on in the active edit window. The
symbol may be any class, function, or variable symbol that is
defined in your source code.

The Rewind command takes the ObjectBrowser back to the
previous view. Choosing the Rewind command is the same as
choosing the Rewind button.

The Overview command shows an overview. An overview of
classes is the class hierarchy. An overview of functions is a list of
all functions. An overview of variables is a list of all variables.
Choosing the Overview command is the same as choosing the
Overview button.

The Inspect command displays the detail of the selected item.
Choosing the Inspect command is the same as choosing the
Inspect button.

The Goto command takes you to the source code for the selected
item. Choosing the Goto command is the same as choosing the
Goto button.

Ait)(O]

The Options menu contains commands that let you view and
change various default settings in Borland C++. Most of the
commands in this menu lead to a dialog box.

When you first view the settings in any of the options dialog
boxes, you will see certain settings are already selected. These are

Chapter 3, Menus and options reference 81




Browse | Goto

82

The Set
Application
Options dialog
box

Figure 3.10
Set Application Options

Borland C++ only

the default settings, which Borland C++ will use if you do not
make any changes. These default settings are illustrated in the
screen diagrams in this chapter. You can change any of the default
settings by making the desired changes and selecting save project
on the Options | Save dialog box. Alternatively, if you check the
Project box in the Autosave group on the Options | Environment |
Preferences menu, your changes will be automatically saved
when you exit from Borland C++.

The Options | Application menu choice brings up the Set
Application Options dialog box. This dialog box provides the
easiest and safest way to set up compilation and linking for a DOS
or Windows executable. To use this dialog box, simply push one
of the buttons. Borland C++ will verify and, if necessary, change
some of the settings in the Code Generation, Entry/Exit Code
Generation, and Linker dialog boxes. See page 88 (Entry/Exit
Code) for detailed information on the code generated. Use this
dialog box for initial setup only.

In the Turbo C++ for Windows environment, only the Windows
App and Windows DLL options are available. Standard DOS and
DOS overlay applications must be compiled with the Borland
C++ IDE (or using the Borland C++ command line compiler).

Set Application Options

Current Settings
Linker output Standard DOS EXE
Protog/Epilog DOS standard

Model Small
Assume SS equals DS Default for memory model

1005 Etandard| EERID0S bveray) W indows Gop) JTWindons Wi LR

oo 18 [ Help ]|

The standard options for applications and libraries each
accomplish a set of tasks. You can choose only one button at a
time. The current settings fields are updated when you press the
button.

DOS Standard:

m pushes the Small memory model radio button in the Code
Generation dialog box

Borland C++ User's Guide



Options | Application

msets Assume SS equals DS to Default for memory model in the
Code Generation dialog box

m pushes the DOS Standard radio button in the Entry/Exit Code
Generation dialog box

m pushes the Standard DOS .EXE radio button in the Linker |
Settings dialog box

DOS Overlay:

Borland C++only  m pushes the Medium memory model button in the Code

Generation dialog box

m sets Assume SS equals DS to Default for memory model in the
Code Generation dialog box

m pushes the DOS Overlay button in the Entry/Exit Code
Generation dialog box

m pushes the Overlaid DOS .EXE button in the Linker | Settings
dialog box

Windows App:

m pushes the Small memory model button in the Code Generation
dialog box

m sets Assume SS equals DS to Default for memory model in the
Code Generation dialog box

m pushes the Windows All Functions Exportable button in the
Entry/Exit Code Generation dialog box

m pushes the Windows .EXE button in the Linker | Settings dialog
box

m unchecks the Graphics Library option in the Libraries dialog
box

Windows DLL.:

m pushes the Compact memory model button in the Code
Generation dialog box

m sets Assume SS equals DS to Never in the Code Generation
dialog box

8 pushes the Windows DLL All Functions Exportable button in
the Entry/Exit Code Generation dialog box

m pushes the Windows .DLL button in the Linker | Settings dialog
box

m unchecks the Graphics Library option in the Libraries dialog
box

Chapter 3, Menus and options reference 83



Options | Compiler

Compiler

Code Generation

Figure 3.11
The Code Generation dialog
box

84

The Options | Compiler command displays a pop-up menu that
gives you several options to set that affect code compilation. The
following sections describe these commands.

The Code Generation command displays a dialog box. The
settings in this box tell the compiler to prepare the object code in
certain ways. The dialog box looks like this:

Code Generation

Options
B [X] Treat enums as ints
[ ] Word alignment
[ ] Duplicate strings merged
[ ] Unsigned characters
[ ] Pre-compiled headers
[ ] Generate assembler source
[ ] Compile via assembler

Assume SS Equals DS

BBl () Default for memory model
() Never

B () Always

befinesf

T (SEEEmI

Here are what the various buttons and check boxes mean:

The Model buttons determine which memory model you want to
use. The default memory model is Small. The memory model
chosen determines the normal method of memory addressing.
Refer to Chapter 9, “DOS memory management,” in the
Programmer’s Guide for more information about memory models in
general.

There are some restrictions about which memory models you can
use for Windows executables. The Turbo C++ for Windows IDE
allows you to select Small, Medium, Compact and Large memory
models. Tiny and Huge are not supported.

The options control various code generation defaults.

Borland C++ User’s Guide



ptions

[X] Treat enums as ints

[ ] Word alignment

[ ] Duplicate strings merged
[ 1 Unsigned characters
[]
{1
[]

>< ot

Pre-compiled headers
Generate assembler source
Compile via assembler

See Appendix D for more on
precompiled headers.

Borland C++ only

Borland C++ only

Assume SS Equals DS
(*) Default for memory model
() Never
() Always

Options | Compiler | Code Generation

m When checked, Treat enums as ints causes the compiler to
always allocate a whole word for variables of type enum.
Unchecked, this option tells the compiler to allocate an
unsigned or signed byte if the minimum and maximum values
of the enumeration are both within the range of 0 to 255 or -128
to 127, respectively.

m Word Alignment (when checked) tells Borland C++ to align
noncharacter data (within structures and unions only) at even
addresses. When this option is off (unchecked), Borland C++
uses byte-aligning, where data (again, within structures and
unions only) can be aligned at either odd or even addresses,
depending on which is the next available address.

Word Alignment increases the speed with which 80x86
processors fetch and store the data.

m Duplicate Strings Merged (when checked) tells Borland C++ to
merge two strings when one matches another. This produces
smaller programs, but can introduce bugs if you modify one
string.

m Unsigned Characters (when checked) tells Borland C++ to treat
all char declarations as if they were unsigned char type.

& Check Precompiled Headers when you want the IDE to
generate and use precompiled headers. Precompiled headers
can dramatically increase compilation speeds, though they
require a considerable amount of disk space. When this option
is off (the default), the IDE will neither generate nor use
precompiled headers. Precompiled headers are saved in
PROJECTNAME.SYM.

@ Check Generate Assembler Source to tell Borland C++ to
produce an .ASM assembly language source file as its output,
rather than an .OB]J object module.

m Compile Via Assembler allows you to specify that the compiler
should produce assembly language output, then invoke TASM
to assemble the output.

If the Default for Memory Model radio button is pushed, whether
the stack segment (SS) is assumed to be equal to the data segment
(DS) is dependent on the memory model used. Usually, the
compiler assumes that SS is equal to DS in the small, tiny, and
medium memory models (except for DLLs).

When the Never radio button is pushed, the compiler will not
assume SS is equal to DS.

Chapter 3, Menus and opftions reference 85




Options | Compiler | Code Generation

Advanced Code
Generation

Figure 3.12
The Advanced Code
Generation dialog box

Floating Point
) None
»(e) [Bmulation «
() 8087
( ) 80287

Instruction Set
(+) 8088/8086
() 80186
() 80286

86

The Always button tells the compiler to always assume that SS is
equal to DS. It causes the IDE to substitute the COFx.OB]J startup
module for COx.OB]J to place the stack in the data segment.

Use the Defines input box to enter macro definitions to the
preprocessor. You can separate multiple defines with semicolons
(;) and assign values with an equal sign (=); for example,

TESTCODE; PROGCONST=5

Leading and trailing spaces will be stripped, but embedded
spaces are left intact. If you want to include a semicolon in a
macro, you must place a backslash (\) in front of it.

The Advanced Code Generation menu choice takes you to the
Advanced Code Generation dialog box. Here’s what that dialog
box looks like:

Advanced Code Generation

] Generate underbars
Line numbers debug info
Debug info in OBJs
Browser info in 0BJs
Fast floating point
Instruction Set Fast huge pointers
() 8088/8086 Generate COMDEFs
() 80186
() 80286

[Far Data lhreshold W 32767
g O 1§ | telp ||

The Floating Point buttons let you decide how you want Borland
C++ to generate floating-point code.

m Choose None if you're not using floating point. (If you choose
None and you use floating-point calculations in your program,
you get link errors.)

m Choose Emulation if you want your program to detect whether
your computer has an 80x87 coprocessor (and to use it if you
do). If it is not present, your program will emulate the 80x87.

m Choose 8087 (Borland C++ only) or 80287 to generate direct
8087 or 80287 inline code.

The Instruction Set (Borland C++ only) radio buttons let you
choose what instruction set to generate code for. The default

instruction set, 8088 /8086, works with all PCs.

Borland C++ User’s Guide



Options

[X] Generate underbars

[ ] Line numbers debug info
Debug info in 0BJs
Browser info in 0BJs
Fast floating point
Fast huge pointers
Generate COMDEFs
Automatic far data

[X
[
[X
[
[
[

[ T Tt TR Yt

See page 153 for more
details on fast huge pointers.

Options | Compilerl Advanced Code Generation

m When checked, the Generate Underbars option automatically
adds an underbar, or underscore, character ( _ ) in front of every
global identifier (that is, functions and global variables). If you
are linking with standard libraries, this box must be checked.

m Line Numbers Debug Info (when checked) includes line
numbers in the object and object map files (the latter for use by
a symbolic debugger). This increases the size of the object and
map files but does not affect the speed of the executable pro-
gram.

Since the compiler might group together common code from
multiple lines of source text during jump optimization, or
might reorder lines (which makes line-number tracking
difficult), you might want to make sure the Jump Optimization
check box (Options | Compiler | Optimizations) is off
(unchecked) when this option is checked.

m Debug Info in OB]Js controls whether debugging information is
included in object (.OB]J) files. The default for this check box is
on (checked), which you need in order to use either the
integrated debugger or the standalone Turbo Debugger.

Turning this option off allows you to link and create larger
object files. While this option doesn’t affect execution speed, it
does affect compilation time.

m Browser Info in OB]Js controls whether information needed by
the Turbo C++ for Windows ObjectBrowser is included in
object (.OBYJ) files. The default for this check box is off
(unchecked). If you want to use ObjectBrowser to inspect your
program (from within the Turbo C++ for Windows IDE), you
must turn this option on.

Leaving this option off saves space in your object files.

m Fast Floating Point lets you optimize floating-point operations
without regard to explicit or implicit type conversions. When
this option is unchecked, the compiler follows strict ANSI rules
regarding floating-point conversions.

m The Fast Huge Pointers option normalizes huge pointers only
when a segment wrap-around occurs in the offset portion of the
segment. This greatly speeds up the computation of huge
pointer expressions, but must be used with caution, as it can
cause problems for huge arrays if array elements cross a
segment boundary.

m When checked, the Generate COMDEFs option allows a
communal definition of a variable to appear in header files as

Chapfter 3, Menus and opfions reference 87




Options | Compiler| Advanced Code Generation

This option is ignored if you're
using the tiny, small, or
medium memory models.

Entry/Exit Code

See Chapter 8 in the Library
Reference for more on
prolog and epilog code.

Figure 3.13
The Entry/Exit Code
Generation dialog box

88

long as it is not initialized. Thus a definition such as int
SomeArray[256]; could appear in a header file that is then
included in many modules, and the compiler will generate it as
a communal variable rather than a public definition (a
COMDEF record rather than a PUBDEF record). The linker will
then only generate one instance of the variable so it will not be
a duplicate definition linker error.

m The Automatic Far Data option and the Far Data Threshold
type-in box work together. When checked, the Automatic Far
Data option tells the compiler to automatically place data
objects larger than a predefined size into far data segments; the
Far Data Threshold specifies the minimum size above which
data objects will be automatically made far.

When you compile a C or C++ program for Windows or DOS, the
compiler needs to know which kind of prolog and epilog to create
for each of a module’s functions.

If the program is intended for Windows, the compiler generates a
different prolog and epilog than it would for DOS. Because of
this, you must use the Entry/Exit Code Generation dialog box to
set the appropriate application. If you use the Set Application
Options dialog box (described on page 82), the settings in the
Entry/Exit Code dialog box will already be correct for the type of
application you choose.

This dialog box also allows you to select the calling convention
and to set a couple of stack options. All options affect what code is
generated for function calls and returns.

Entry/Exit Code Generation

»Prolog/Epilog Code Generation

»(*) DOS Btandard

( ) DOS overlay

) Windows all functions exportable
) Windows explicit functions exported
Windows smart callbacks
Windows DLL all functions exportable
Windows DLL explicit ns exported

5
(
(
(

)
)
)
1
)
)

Calling ConventionjStack Options
() C [X] Standard stack frame
g Pascal [ ] Test stack overflow
R

) Register

gL O\ /Ll (Cancel /Rl Help ]|

If you want to set the prolog/epilog code for a DOS application,
you need to select DOS Standard or DOS Overlay.

Borland C++ User’s Guide



Borland C++ only

Calling Convention
(o) C

( ) Pascal
( ) Register

Options | Compiler| Entry/Exit Code

m Push the DOS Standard radio button to tell the compiler to
generate code that may not be safe for overlays. If you don’t
plan to create an overlaid application, use this option.

® Push the DOS Overlay radio button to tell the compiler to
generate overlay safe code. Use this option when you're
creating an overlaid application.

If you want to set the prolog/epilog code for a Windows applica-
tion, you need to select one of five options.

m Windows All Functions Exportable is the most general kind of
Windows executable, although not necessarily the most
efficient. It assumes that all functions are capable of being called
by the Windows kernel or by other modules, and generates the
necessary overhead information for every function, whether the
function needs it or not. The module definition file will control
which functions actually get exported.

m Use Windows Explicit Functions Exported if you have
functions that will not be called by the Windows kernel; it isn't
necessary to generate export-compatible prolog/epilog code
information for these functions. The _export keyword provides
a way to tell the compiler which specific functions will be
exported: Only those far functions with _export will be given
the special Windows prolog/epilog code.

m Push the Windows Smart Callbacks button to select Borland
C++ smart callbacks. See Chapter 8, “Building a Windows

application,” in the Programmer’s Guide for details on smart
callbacks.

m Push the Windows DLL All Functions Exportable button to
create an .OB]J file to be linked as a .DLL with all functions
exportable.

= Push the Windows DLL Explicit Functions Exported button to
create an .OB] file to be linked as a .DLL with certain functions
explicitly selected to be exported. Otherwise this is essentially
the same as Windows Explicit Functions Exported, see that
discussion for more.

The Calling Convention options cause the compiler to generate
either a C calling sequence or a Pascal calling sequence for
function calls. The differences between C and Pascal calling
conventions are in the way each handles stack cleanup, order of
parameters, case, and prefix (underbar) of global identifiers.

Chapter 3, Menus and options reference 89




Options | Compiler | Entry /Exit Code

Borland C++only  In the Borland C++ IDE, you can also select Register, to specify
the new fastcall parameter-passing convention. For more
information about the fastcall convention, see Appendix A,
“Optimization.”

Important! Do not change this option unless you're an expert and have read
Chapter 12, “BASM and inline assembly,” in the Programmer’s Guide.

Stack Options m Standard Stack Frame (when checked) generates a standard
[X] Standard stack frame stack frame (standard function entry and exit code). This is
[ ] Test stack overfiow helpful when debugging—it simplifies the process of tracing
back through the stack of called subroutines.

If you compile a source file with this option off (unchecked),
any function that does not use local variables and has no
parameters is compiled with abbreviated entry and return code.
This makes the code shorter and faster, but prevents the

Debug | Call Stack command from “seeing” the function. Thus,
you should always check the option when you compile a source
file for debugging.

This option is automatically turned off when you turn
optimizations on; a duplicate of the Standards Stack Frame
option also appears on the Options | Compiler | Optimization
dialog box.

m When checked, the Test Stack Overflow generates code to check
for a stack overflow at run time. Even though this costs space
and time in a program, it can be a real lifesaver, since a stack
overflow bug can be difficult to track down.

C++ Options  The C++ Options command displays a dialog box that contains
settings that tell the compiler to prepare the object code in certain
ways when using C++.

Figure 3.14 C++ Options

The C++ options dialog box wUse C++ Compiler C++ Virtual Tables
»(*) CPP efitension «
() C++ always

External

Out-of-1ine inline functions
Far virtual tables

gL O 3 Il Help |}

Q0 Borland C++ User's Guide



Use C++ Compiler
»(*) CPP eftension «
() C++ always

C++ Virtual Tables
() Smart
() Local
( ) External
( ) Public

Template Generation
(e) Smart
() Global
( ) External

Borland C++ only

Options | Compiler | C++ Options

The Use C++ Compiler radio buttons tell Borland C++ whether to
always compile your programs as C++ code, or to always compile
your code as C code except when the file extension is .CPP.

The C++ Virtual Tables radio buttons let you control C++ virtual
tables and the expansion of inline functions when debugging.

m The Smart option generates C++ virtual tables (and inline
functions not expanded inline) so that only one instance of a
given virtual table or inline function will be included in the
program. This produces the smallest and most efficient
executables, but uses .OBJ (and .ASM) extensions only available
with TLINK 3.0 and TASM 2.0 (or newer).

m The Local option generates local virtual tables (and inline
functions not expanded inline) such that each module gets its
own private copy of each virtual table or inline function it uses;
this option uses only standard .OBJ (and .ASM) constructs, but
produces larger executables.

m The External option generates external references to virtual
tables; one or more of the modules comprising the program
must be compiled with the Public option to supply the
definitions for the virtual tables.

m The Public option generates public definitions for virtual tables.

The Template Generation options allow you to specify how
Borland C++ generates template instances in C++. For more
information about templates, see Chapter 3 “C++ specifics,” in the
Programmer’s Guide.

m Smart generates public (global) definitions for all template
instances, but if more than one module generates the same
template instance the linker will automatically merge
duplicates to produce a single definition. This is the default
setting, and is normally the most convenient way of generating
template instances.

m Global, like Smart, generates public definitions for all template
instances. However, it does not merge duplicates, so if the same
template instance is generated more than once the linker will
report public symbol redefinition errors.

m External tells the compiler to generate external references to all
template instances. If you use this option, you must make
certain that the instances are publicly defined elsewhere in your
code.

Chapter 3, Menus and options reference 21




Options | Compiler | C++ Options

92

Advanced C++
Options

Figure 3.15
Advanced C++ Options

m Use Out-of-Line Inline Functions when you want to step
through or set breakpoints on inline functions.

Options
[X} Out-of-line inline functions
[ ] Far virtual tables

m The Far Virtual Tables option causes virtual tables to be created
in the code segment instead of the data segment, and makes
virtual table pointers into full 32-bit pointers (the latter is done
automatically if you are using the huge memory model).

There are two primary reasons for using this option: to remove
the virtual tables from the data segment, which may be getting
full, and to be able to share objects (of classes with virtual
functions) between modules that use different data segments
(for example, a DLL and an executable using that DLL). You
must compile all modules that may share objects either entirely
with or entirely without this option. You can achieve the same
effect by using the huge or _export modifiers on a class-by-class
basis.

The Advanced C++ Options command displays a dialog box with
settings that control advanced code generation options for C++.
Since Borland C++ version 3.0 handles certain C++ features more
efficiently (but differently) than previous versions of Borland
C++, some of these options are intended primarily for backward
compatibility, where it is necessary to link with object modules or
libraries compiled with older versions.

Advanced C++ Options

»C++ Member Pointers
»(*) Support f11 cases el oy I8
() Support multiple inheritance .
( ) Support single inheritance
( ) Smallest for class

Virtual Base Pointers

(*) Always near

( ) Same size as 'this' pointer

Options
[ ] 'deep' virtual bases
[ ] True 'pascal' member functions
[ ] Honor precision of member pointers

[ ] Disable constructor displacements
[ ] Pass class values via reference
[ ] Vtable pointer follows data members

Borland C++only  Borland C++ supports three different kinds of member pointer

types, which you can control with these options.

Borland C++ User’s Guide



Options | Compiler | Advanced C++ Options

C++ Member Pointers
»(e) Support f11 cases
( ) Support multiple inheritance
2 ) Support single inheritance
) Smallest for class

m Support All Cases (the default) places no restrictions on what
members can be pointed to. Member pointers will use the most
general (but not always the most efficient) representation.

m Support Multiple Inheritance allows member pointers to point
to members of multiple inheritance classes, with the exception
of members of virtual base classes.

m Support Single Inheritance permits member pointers to point to
members of base classes that use single inheritance only.

m Smallest for Class specifies that member pointers will use the
smallest possible representation that allows member pointers to
point to all members of their particular class.

Virtual Base Pointers
(*) Always near
() Same size as 'this' pointer

When a class inherits virtually from a base class, the compiler
stores a hidden pointer in the class object to access the virtual base
class sub-object. Borland C++ 3.0 always makes this hidden
pointer a near pointer by default, to generate more efficient code.
Previous versions of Borland C++ matched the size of this pointer
to the size of the ‘this” pointer used by the class itself.

m Always Near specifies that the hidden pointer should always be
near, for the smallest and most efficient code.

m Same Size as ‘this’ Pointer tells the compiler to match the size of
the hidden pointer to the size of the ‘this’ pointer in the instance
class, for backward compatibility.

Options
[ 1 'deep' virtual bases
[ 1 True 'pascal' member functions
[ ] Honor precision of member pointers
[ ] Disable constructor displacements
[ 1 Pass class values via reference
[ ] vtable pointer follows data members

Borland C++ 3.0 sometimes handles pointers differently from
previous versions, in order to permit greater efficiency and
flexibility. In some cases, this results in behavior that is
incompatible with previous versions. To permit complete
compatibility, the following options are provided:

Chapter 38, Menus and options reference Q3




Options | Compiler | Advanced C++ Options

94

Optimizations (Turbo
C++ for Windows)

m ‘Deep’ Virtual Bases directs the compiler not to change the
layout of any classes in order to relax the restrictions on
pointers to members of base classes through multiple levels of
virtual inheritance.

m True Pascal Member Functions directs the compiler to pass the
‘this” pointer to ‘pascal’ member functions as the first parameter
on the stack. By default, Borland C++ 3.0 passes the ‘this’
pointer as the last parameter, which permits smaller and faster
member function calls.

m Honor Precision of Member Pointers tells the compiler to honor
an explicit cast to a pointer to a member of a simpler base class,
even though it is actually pointing to a derived class member.

m Disable Constructor Displacements instructs the compiler not to
add hidden members and code to a derived class, which it does
by default to prevent an erroneous value for the ‘this” pointer in
special cases where the constructor of a derived class containing
an inherited virtual function that it overrides, calls that function
using a pointer to the virtual base class. This option ensures
compatibility with the behavior of previous versions.

m Pass Class Values Via Reference tells the compiler to use a
reference to a temporary variable in order to pass arguments of
type class to a function. By default Borland C++ 3.0 copy-
constructs the argument values directly to the stack.

m Vtable Pointer Follows Data Members instructs the compiler to
place virtual table pointers after any nonstatic data members of
the class, for compatibility with previous versions of Borland
C++. The default method for version 3.0 is to place these
pointer before any nonstatic data members, to make virtual
member function calls smaller and faster.

The Optimizations command displays a dialog box. The settings
in this box tell the compiler to prepare the object code in certain
ways to optimize for size or speed.

The Borland C++ IDE supports a full range of professional
optimization options, while the Turbo C++ for Windows
environment provides a more limited subset of optimizations.

For Turbo C++ for Windows, the Optimizations dialog box looks
like this:

Borland C++ User's Guide



Figure 3.16

The Turbo C++ for Windows
Optimization Options dialog
box

Optimization Options
[ 1 Register optimization
[ ] Jump optimization

Importani!

Register Variables
() None
( ) Register keyword
(*) Automatic

Options | Compiler | Optimizations

The Optimizations Options affect how optimization of your code
occurs.

m Register Optimization suppresses the reloading of registers by
remembering the contents of registers and reusing them as
often as possible.

Exercise caution when using this option. The compiler can’t
detect whether a value has been modified indirectly by a
pointer.

® Jump Optimization reduces the code size by eliminating
redundant jumps and reorganizing loops and switch
statements.

When this option is checked, the sequences of tracing and
stepping in the debugger can be confusing, since there might be
multiple lines of source code associated with a particular
generated code sequence. For best stepping results, turn this
option off (uncheck it) while you are debugging.

The Register Variables radio buttons suppress or enable the use of
register variables.

With Automatic chosen, register variables are automatically
assigned for you. With None chosen, the compiler does not use
register variables even if you've used the register keyword. With
Register keyword chosen, the compiler uses register variables
only if you use the register keyword and a register is available.
(See Chapter 9, “DOS memory management,” in the Programmer’s
Guide for more details.) ‘

Generally, you can keep this option set to Automatic unless
you're interfacing with preexisting assembly code that does not
support register variables.

Chapter 3, Menus and options reference 95




Options | Compiler | Optimizations

Optimize For
() Size
() Speed

Optimizations (Borland

C++)

Figure 3.17
The Borland C++

Optimization Options dialog

box

=

Optimizations
] Global register allocation

Invariant code motion

[ ] Induction variables

Loop Optimizations

[ ] Suppress redundant loads
[ ] Copy propagation
] Assume no pointer aliasing
] Dead code elimination
] Jump optimization

Inline intrinsic functions

] Standard stack frame

96

The Optimize For buttons let you change Borland C++'s code
generation strategy. Normally the compiler optimizes for size,
choosing the smallest code sequence possible. You can also have
the compiler optimize for speed, so that it chooses the fastest
sequence for a given task. If you are creating Windows
applications, normally you'll want to optimize for speed.

In the Borland C++ character-based IDE, you have full access to
the professional optimization features introduced in Borland C++
3.0. The dialog box presents you with three separate categories of
options, to let you fully customize the way the compiler optimizes
your code. These features are listed briefly below. For your
convenience, the command-line compiler switches corresponding
to each option are indicated. A more complete discussion of
optimization, including a description of the use and functionality
of each menu option, appears in Appendix A, “The Optimizer.”

Optimization Options

M»Optimizations Register Variables .
» E1obal register allocation «jll ( ) None
] Invariant code motion { ) Register keyword
] Induction variables (*) Automatic

] Loop optimization

] Supress redundant loads

] Copy propagation

] Assume no pointer aliasing
] Dead code elimination

] Jump optimization

] Inline intrinsic functions
] Standard stack frame

Common Subexp
(e} N

ze globally
Optimize For
(e) Size
( ) Speed

[[Bmallest Code

{Default  JJIastest Code

gL O [ Help ||

The Optimizations Options affect how optimization of your code
occurs.

m Global Register Allocation corresponds to the -Oe switch on the
command line compiler. It enables global register allocation and
variable live range analysis.

m Invariant Code Motion, corresponding to the -Om command
line switch, moves invariant code out of loops.

m Induction Variables corresponds to the -Ov command line
switch. It enables loop induction variables and strength
reduction optimizations.

Borland C++ User’s Guide



Register Variables
(') None
( ) Register keyword
() Automatic

Common subexpressions
(*) No optimization
() Optimize globally
() Optimize locally

Options | Compiler | Optimizations

m Loop Optimizations corresponds to -Ol option, and compacts
loops into REP/STOSX instructions.

» Suppress Redundant Loads corresponds to the —Z command
line switch. It suppresses reloads of values that are already in
registers.

m Copy Propagation, corresponding to the -Op command line
switch, propagates copies of constants, variables, and
expressions where possible.

m Assume no pointer aliasing corresponds to the -Oa command
line switch. It instructs the compiler to assume that pointer
expressions are not aliased in common subexpression
evaluation.

m Dead Code Elimination corresponds to the -Ob command line
switch, and eliminates stores into dead variables.

m Jump Optimization, corresponding to the O compiler switch,
removes jumps to jumps, unreachable code, and unnecessary
jumps.

m Inline Intrinsic Functions, corresponding to the -Oi compiler
switch, instructs the compiler to expand common functions like
strepy() inline.

m Standard Stack Frame instructs the compiler to generate a
standard function entry/exit code. Corresponds to the -k-
compiler option.

The Register Variables selections affect how the compiler handles
the use of register variables. For more information about register
variables see Chapter 9, “DOS memory management,” in the
Programmer’s Guide.

m None instructs the compiler not to use register variables even if
you have used the register keyword.

m Register Keyword specifies that register variables will be used
only if you use the register keyword and a register is available.

m Automatic directs the compiler to automatically assign register
variables for you.

The Common Subexpressions tells the compiler how to find and
eliminate duplicate expressions in your code, to avoid
reevaluating the same expression.

m No Optimization instructs the compiler not to eliminate
common subexpressions.

Chapter 3, Menus and options reference 97



Options | Compiler | Optimizations

Optimize For
(*) Size
() Speed

Default

Fastest Code

Smallest Code

Source

Source Options
[ 1 Nested comments

Keywords
() Borland C++
() ANSI
() UNIX V
( ) Kernighan and Ritchie

98

m Optimize Globally corresponds to the -Og command line
switch, and instructs the compiler to eliminate common
subexpressions within an entire function.

m Optimize Locally corresponds to the -Oc command line switch,
and instructs the compiler to eliminate common subexpressions
within basic blocks only.

The Optimize For options let you change Borland C++’s code
generation strategy. For backward compatibility, these buttons
correspond to the same buttons in the Turbo C++ for Windows
environment, and in earlier versions of Borland C++. They are not
identical to the “Smallest Code” and “Fastest Code” buttons that
appear at the bottom of the Optimization dialog box.

The three buttons at the bottom of the Optimizations dialog box
allow you to specify “groups” of settings by making a single
selection.

m No Optimizing corresponds to the -Od command line switch. It
automatically disables all of the optimization options.

m Fastest Code corresponds to the -O2 command line switch. It
automatically sets all of the optimization options to generate
the fastest possible code.

m Smallest Code corresponds to the -O1 command line switch. It
automatically sets the optimization options to produce the
smallest possible code.

The Source command displays a dialog box. The settings in this
box tell the compiler to expect certain types of source code. The
dialog box presents the following options:

The Nested Comments check box allows you to nest comments in
Borland C++ source files. Nested comments are not allowed in
standard C implementations. They are not portable.

The Keywords radio buttons tell the compiler how to recognize
keywords in your programs.

m Choosing Borland C++ tells the compiler to recognize the
Borland C++ extension keywords, including near, far, huge,
asm, cdecl, pascal, interrupt, _es, _export, _ds,_cs, _ss, and
the register pseudovariables (_AX, _BX, and so on). For a
complete list, refer to Chapter 1, “Lexical elements,” in the
Programmer’s Guide.

Borland C++ User’s Guide



Identifier Length 32

Messages

Display...

Portability...

Options | Compiler | Source

m Choosing ANSI tells the compiler to recognize only ANSI
keywords and treat any Borland C++ extension keywords as
normal identifiers.

m Choosing UNIX V tells the compiler to recognize only UNIX V
keywords and treat any Borland C++ extension keywords as
normal identifiers.

m Choosing Kernighan and Ritchie tells the compiler to recognize
only the K&R extension keywords and treat any Borland C++
extension keywords as normal identifiers.

Use the Identifier Length input box to specify the number (1) of
significant characters in an identifier. Except in C++, which
recognizes identifiers of unlimited length, all identifiers are
treated as distinct only if their first # characters are distinct. This
includes variables, preprocessor macro names, and structure
member names. The number can be from 1 to 32; the default is 32.

The Messages command displays a submenu that lets you set
several options that affect compiler error messages in the IDE.

Display presents a dialog box that allows you to specify how (and
if) you want error messages to be displayed.

m Errors: Stop After causes compilation to stop after the specified
number of errors have been detected. The default is 25, but you
can enter any number from 0 to 255.

m Warnings: Stop After causes compilation to stop after the
specified number of warnings have been detected. The default
is 100, but you can enter any number from 0 to 255. (Entering 0
causes compilation to continue until the end of the file or until
the error limit entered above been reached, whichever comes
first.)

m The Display Warnings options allow you to choose whether the
compiler will display all warnings, only the warnings selected
in the Messages submenu option, or to display no warnings.

When you choose Portability on the Messages submenu, a dialog
box appears that lets you specify which types of portability
problems you want to be warned about.

Check the warnings you want to be notified of and uncheck the
ones you don’t. Choose OK to return to the Compiler Messages
dialog box.

Chapter 3, Menus and options reference 99




Options | Compiler | Messages | ANSI violations

100

ANSI violations...

C++ warnings...

Frequent errors...

Less frequent errors...

Names

Transfer

Borland C++ only

When you choose ANSI Violations on the Messages submenu, a
dialog box appears that lets you specify which, if any, ANSI
violations you want to be warned about.

Check the warnings you want to be notified of and uncheck the
ones you don’t. Choose OK to return to the Compiler Messages
dialog box.

When you choose the C++ Warnings button in the Messages
submenu, another dialog box appears that lets you determine
which specific C++ warnings you want to enable.

Check the warnings you want to be notified of and uncheck the
ones you don’t. Choose OK to return to the Compiler Messages
dialog box.

When you choose the Frequent Errors button in the Compiler
Messages dialog box, another dialog box appears that lets you
specify which frequently-occurring errors you want to be warned
about.

Check the errors you want to be notified of and uncheck the ones
you don’t. Choose OK to return to the Compiler Messages dialog
box.

Choosing Less frequent errors lets you make the same choice, to
be warned or not, about several less frequently occurring errors.

Check or uncheck these errors as in the previous dialog boxes,
and choose OK to return to the Messages dialog box.

The Names command brings up a dialog box which lets you
change the default segment, group, and class names for code,
data, and BSS sections. Do not change the settings in this command
unless you are an expert and have read Chapter 9, “DOS memory
management,” in the Programmer’s Guide.

The Options | Transfer command (available in the Borland C++
IDE only) lets you add or delete programs in the = menu. Once
you've done so, you can run those programs without actually
leaving Borland C++. You return to Borland C++ after you exit
the program you transferred to. The Transfer command displays
this dialog box:

Borland C++ User’s Guide



Options | Transfer

Figure 3.18 Transfer
The Transfer dialog box ; ; o

f “Turbo Assembler RllEdit |
Turbo “~Debugger
Turbo “Profiler [[Belete]]
R¥esource Compiler

B “Import Librarian
L Help ]|

The Transfer dialog box has two sections:

m the Program Titles list
m the Transfer buttons

The Program Titles section lists short descriptions of programs
that have been installed and are ready to execute. You might need
to scroll the list box to see all the programs available.

The Transfer buttons let you edit and delete the names of
programs you can transfer to, as well as cancel any changes
you've made to the transfer list. There’s also a Help button to get
more information about using the transfer dialog box.

The Edit button  Choose Edit to add or change the Program Titles list that appears
in the = menu. The Edit button displays the Modify /New Trans-
fer Item dialog box.

If you're positioned on a transfer item when you select Edit, the
input boxes in the Modify/New dialog box are automatically
filled in; otherwise they’re blank.

Figure 3.19 Modify/New Transfer Item

e oo o W e W
Item dialog box GREP| () Unassigned
(s) Shift F2
() shift
() shift
N () shift
(
(
(
(
(

Program [jath
grep
Blvormand Line
-n+ $MEM(64) $NOSWAP $PROMPT $CAP MSG»J

| L] Thansiator |

Shift
Shift
Shift
Shift
Shift

N |MEERRRDI Blieio

Using the Modify/New dialog box, you take these steps to add a
new file to the Transfer dialog box:

1. Type a short description of the program you're adding on the
Program Title input box.

Chapter 3, Menus and options reference 101




Options | Transfer

For a full description of these

powerful macros, see the

“Transfer macros” section in

102

utiL.DOC

This step is optional.

[ ] Translator

The Delete button

Transfer macros

Note that if you want your program to have a keyboard
shortcut (like the S in the Save command or the t in the Cut
command), you should include a tilde (~) in the name. What-
ever character follows the tilde appears in bold or in a special
color in the = menu, indicating that you can press that key to
choose the program from the menu.

2. Tab to Program Path and enter the program name and
optionally include the full path to the program. (If you don’t
enter an explicit path, only programs in the current directory
or programs in your regular DOS path will be found.)

3. Tab to Command Line and type any parameters or macro
commands you want passed to the program. Macro com-
mands always start with a dollar sign ($) and are entered in
uppercase. For example, if you enter $CAP EDIT, all output from
the program will be redirected to a special Edit window in
Borland C++.

4. If you want to assign a hot key, tab to the Hot Key options and
assign a shortcut to this program. Transfer shortcuts must be
Shift plus a function key. Keystrokes already assigned appear
in the list but are unavailable.

5. Now click or choose the New button to add this program to
the list.

To modify an existing transfer program, cursor to it in the
Program Titles list of the Transfer dialog box and then choose
Edit. After making the changes in the Modify/New Transfer
dialog box, choose the Modify button.

The Translator check box lets you put the Transfer program into
the Project File Translators list (the list you see when you choose
Project | Local Options). Check this option when you add a
transfer program that is used to build part of your project.

The Delete button removes the currently selected program from
the list and the = menu.

The IDE recognizes certain strings of characters called transfer
macros in the parameter string of the Modify /New Transfer Item
dialog box. The transfer macros are fully documented in the
online file UTIL.DOC.

Borland C++ User's Guide



Make

Figure 3.1
The Make dialog box

Break Make On
() Warnings
(¢) Errors
() Fatal errors
() A1l sources processed

After Compiling

Stop
(*)} Run linker
( ) Run librarian

Borland C++ only

Generate Import Library
() No

(*) Use DLL file exports
() Use DEF file exports

Options | Make

The Options | Make command displays a dialog box that lets you
set conditions for project management. Here’s what the dialog box
looks like:

( ) Warnings
w() Errors
( ) Fatal errors
o () AN sources processed

After Comp111ng
( HK Il
(e Run hnker :
( ) Run librarian

G?m)erate Import Library [(Cancel]]
No

(*) Use DLL file exports
( ) Use DEF file exports

| [X] Mheck auto-dependencies

Note that the Turbo C++ for Windows version of the Make dialog
box is slightly different from the Borland C++ version. In Turbo
C++ for Windows, neither the “Run librarian” nor the “Generate
Import Library” options are available.

Use the Break Make On radio buttons to set the condition that will
stop the making of a project. The default is to stop after compiling
a file with errors.

Use the After Compiling radio buttons to specify what to do after
all the source code modules defined in your project have been
compiled. You can choose to Stop (leaving .OBJ files), Run linker
to generate an .EXE file, or Run librarian to combine your projects
.OBJ files into a .LIB (library) file. The default is to run the linker
to generate an executable application.

The Generate Import Library buttons are available in the Borland
C++ IDE only.

These buttons control when and how IMPLIB is executed during
the MAKE process. The Use DLL File Exports option generates an
import library that consists of the exports in the DLL. The Use
DEF File Exports generates an import library of exports in the
DEF file. If either of these options is checked, MAKE invokes
IMPLIB after the linker has created the DLL. This option controls
how the transfer macro $IMPLIB gets expanded.

Chapter 3, Menus and options reference 103




Options | Make

[X] Check Auto-dependencies |

104

See the SDEP() transfer
macro in UTIL.DOC,

Linker

s

Figure 3.21
The Linker dialog box

When the Check Auto-dependencies option is checked, the Project
Manager automatically checks dependencies for every .OBJ file on
disk that has a corresponding .C source file in the project list.

The Project Manager opens the .OB] file and looks for information
about files included in the source code. This information is always
placed in the .OB] file by both Borland C++ and Turbo C++ for
Windows, as well as the command-line version of Borland C++
when the source module is compiled. Then every file that was
used to build the .OB] file is checked for time and date against the
time and date information in the .OB]J file. The source file is
recompiled if the dates are different. This is called an autodepen-
dency check. If this option is off (unchecked), no such file checking
is done.

After the C source file is successfully compiled, the project file
contains valid dependency information for that file. Once that
information is in the project file, the Project Manager uses it to do
its autodependency check. This is much faster than reading each
.OBJ file.

The Options | Linker command lets you make several settings that
affect linking. The Linker command opens a submenu containing
the choices Settings and Libraries.

Note that the Borland C++ and Turbo C++ for Windows
environments provide slightly different linker options. This is
because Turbo C++ for Windows is a “Windows only”
programming environment; therefore, DOS-oriented options are
not supported.

For Borland C++ the Settings command opens up this dialog box:

Linker

Initialize segments
Default 1ibraries

Pack code segments
Warn duplicate symbols
"No stack" warning
Case-sensitive link

u Case-sensitive exports
tandard DOS EXE Compress debug info
verlaid DOS EXE

indows EXE Code Pack Sipe 8192
indows DLL Segllent Alignment § 512

gL O I3 L Help ]|

Borland C++ User's Guide



Options|LinkerlSettings

This dialog box has several check boxes and radio buttons. The
following sections contain short descriptions of what each does.

Map File Use the Map File radio buttons to choose the type of map file to be
(+) Off produced. For settings other than Off, the map file is placed in the
2 ; segments|  output directory defined in the Options | Directories dialog box.

() Detailed| The default setting for the map file is Off.

Use these radio buttons to set your application type. Standard
tandard D0S EXE | DOS EXE produces a normal executable that runs under DOS.

Output
us :

Qrerlaid %05 EXE | Overlaid DOS EXE produces an executable that is capable of

W

utp
()
()
()
()

indows EXE
indows DLL being overlaid. Windows EXE produces a Windows application,

while Windows DLL produces a Windows dynamic link library.

If checked, Initialize Segments tells the linker to initialize
uninitialized segments. (This is normally not needed and will
make your .EXE files larger.)

l[ ] Initialize segments|

Some compilers place lists of default libraries in the .OB] files they
produce. If the Default Libraries option is checked, the linker tries
to find any undefined routines in these libraries as well as in the
default libraries supplied by Borland C++. When you're linking
with modules created by a compiler other than Borland C++, you
may wish to leave this option is off (unchecked).

|[X] Default libraries‘

This option applies only to Windows applications and DLLs.
When this option is checked, the linker tries to minimize the
number of code segments by packing multiple code segments
together; typically, this will improve performance. This option
will never create segments greater than 64K.

[ 1 Pack code segments

The Warn Duplicate Symbols option affects whether the linker

[ 1 Warn duplicate symbols . . )
| I warns you of previously encountered symbols in .LIB files.

The “No Stack” Warning option affects whether the linker
generates the “No stack” message. It'’s normal for a program
generated under the tiny model to display this message if the
message is not turned off.

l[X] "No stack" warning '

Borland C++only  The “No Stack” Warning option does not appear in the Turbo
C++ for Windows IDE, since Windows does not support the tiny
model.

The Case-Sensitive Link option affects whether the linker is case-
sensitive. Normally, this option should be checked, since C and
C++ are both case-sensitive languages.

|[X] Case-sensitive Link|

By default, the linker ignores case with the names in the
IMPORTS and EXPORTS sections of the module definition file. If

l[ ] Case-sensitive exportsl

Chapter 3, Menus and options reference 105



Options | Linker | Settings

you want the linker be case-sensitive in regard to these names,
check this option. This option is probably only useful when you
are trying to export non-callback functions from DLLs—as in
exported C++ member functions. This option isn’t necessary for
normal Windows callback functions (declared FAR PASCAL).

The Compress debug info option instructs the linker to compress
the debugging information in the output file. This option will
slow down the linker, and should only be checked in the event of
a “Debugger information overflow” error when linking.

[ ] Compress debug info

Code Pack Size 819z | Youcanchange the defa'ult code packing size to anything.
Segment Alignment 512 between 1 and 65,536 with Code Pack Size. See Chapter 4 in the
Tools and Utilities Guide for a more in-depth discussion of
desirable sizes.

With Segment Alignment, you can set the segment alignment.
Note that the alignment factor will be automatically rounded up
to the nearest power of two (meaning that if you enter 650, it will
be rounded up to 1,024). The possible numbers you can enter
must fall in the range of 2 to 65,535.

Figure 3.22 Libraries

The Libraries dialog box bLibraries Container Class Library
»[ 1 Eraphics library« E-g None

Static

( ) Dynamic

[ ] Turbo Vision

ObjectWindows Library JlStandard Run-time Libraries
(e) None () None

() Static () Static

( ) Dynamic M ( ) Dynamic

O I8 L Help |}

The Libraries dialog box has several radio buttons that allow you
to choose what libraries will automatically be linked into your
application.

The Graphics Library option controls the automatic searching of
the BGI graphics library. When this option is checked, it is
possible to build and run single-file graphics programs without
using a project file. Unchecking this option speeds up the link step
a bit because the linker doesn’t have to search in the BGI graphics
library file.

[ 1 Graphics library

Borland C++only  The BGI Graphics library is not windows-compatible, so this
option does not appear in the Turbo C++ for Windows IDE.

106 Borland C++ User's Guide



[ ] Turbo Vision

Borland C++ only

Container class library
(*) None
() Static
( ) Dynamic

ObjectWindows Library
() None
() Static
( ) Dynamic

Standard Run-time Libraries
() None
(*) Static
( ) Dynamic

Librarian

Figure 3.23
The Librarian Options dialog
box

OptionsliLinker|Libraries

Note: You can uncheck this option and still build programs that
use BGI graphics, provided you add the name of the BGI graphics
library (GRAPHICS.LIB) to your project list.

The Turbo Vision library option (Borland C++ only) instructs the
linker to automatically include the Turbo Vision application
framework library when linking your application.

Turbo Vision is a DOS character-mode application framework. It
is not windows-compatible, and this option does not appear in
the Turbo C++ for Windows IDE.

The Container class library option tells the linker to automatically
link in the Borland C++ container class library, which is available
in both static (.LIB) and dynamic (.DLL) form. These radio butto