
2.0

BORLAND

Bar/ana C++
Version 2.0

Getting Started

BORLAND INTERNATIONAL, INC. 1800 GREEN HILLS ROAD
P.O. BOX 660001, SCOTTS VALLEY, CA 95067-0001

Rl

Copyright © 1991 by Borland International. All rights reserved. All
Borland products are trademarks or registered trademarks of
Borland International, Inc. Other brand and product names are
trademarks or registered trademarks of their respective holders.
Windows, as used in this manual, refers to Microsoft's
implementation of a windows system.

PRINTED IN THE USA.
10987654

c o N T

Introduction 1
What's in Borland c++ 1
Hardware and software requirements ... 3

Writing for Windows 3
The Borland c++ implementation 3
The Borland c++ package 4

Getting Started 4
The User's Guide .. 5
The Programmer's Guide 5
The Library Reference 6
The Whitewater Resource Toolkit 7

Typefaces and icons used in these books . 7
How to contact Borland 8

Chapter 1 Installing Borland C++ 11
Using INSTALL 12

Laptop systems 13
The README file 13
The HELPME!.DOC file 14
Turbo Calc .. 14
Customizing the IDE 14

Running BCINST 15
Using an EGA card with a CGA
monitor 15

The BCINST Installation menu. 15
Some specifics 17

Segment names 17
The Debugger menu. 17
Editor commands 18

Setting your video mode 18

Chapter 2 Navigating the Borland C++
manuals 21

Features 21
Windows 21
C++ 22
Real and protected modes 22

E N T s

Built-in assembly language
programming 22
VROOMM (overlays) 23
Borland's Programmer's Platform
(IDE) 23

Using the manuals 23
Programmers learning C or C++ 24
Experienced C and C++ programmers . 24

Chapter 3 For Microsoft C users 25
Environment and tools 25

The IDE and Windows 26
Paths for.h and .LIB files 26
MAKE 28
Command-line compiler 32
Compatibility command-line options and
libraries 37
Linker 37

Source-level compatibility 39
__ MSC 39
Header files 39
Memory models 40
Keywords. .. 40

Intrinsic functions 41
Register conventions 41
Floating-point return values 41
Structures returned by value 42

Chapter 4 A C++ primer 43
Encapsulation 45
Inheritance 48
Polymorphism 50
Overloading 50
Modeling the real world with classes ... 51

Building classes: a graphics example .. 51
Declaring objects 53
Member functions 53

Calling a member function 54
Constructors and destructors 55
Code and data together 58
Member access control: private, public,
and protected 58
The class: private by default 59
Running a C++ program 60

Inheritance .. 63
Rethinking the Point class 63

Inheritance and access control 65
Packaging classes into modules ' 66
Extending classes 70
Multiple inheritance 73

Virtual functions .. 78
Virtual functions in action 80
Defining virtual functions 81
Developing a complete graphics
module 82

Reference types 83
Ordinary or virtual member
functions? 90

Dynamic objects 90
Destructors and delete 92
An example of dynamic object
allocation 92

More flexibility in C++ 97
Inline functions outside class
definitions 97
Functions with default arguments 98
More about overloading functions 99
Overloading operators to provide new
meanings 102
Friend functions 105

The C++ streams libraries 106
Standard I/O 107
Formatted output 109

Manipulators 110
put, write, and get 110

Disk I/O 111
I/O for user-defined data types 114
Where to now? 115
Conclusion. .. 116

Chapter 5 Hands-on C++ 117
A better C: Making the transition from
C 118

Program 1 118
Program 2 119
Program 3 119
Program 4 120

Object support 121
Program 5 122

Program 6 124
Program 7 127
Program 8 128
Program 9 130

Summary 133

Bibliography 135
Beginning to intermediate 135
Advanced 136
Object-oriented programming in
general 137
Other languages and C 138
Programming Windows applications .. 138
Reference 138

Index 141

T A B L E s

3.1: MAKE and NMAKE options 3.3: CL and BCC options compared 33
compared 29 3.4: LINK and TLINK options compared .38

3.2: MAKE and NMAKE predefined macros 4.1: Class access 65
and directives 31

iii

F G u R E s

4.1: C versus C++ 48 4.3: Multiple inheritance 74
4.2: A partial taxonomy chart of insects .. 49 4.4: Circles with messages 78

iv

N T R

Borland C++ is highly
compatible with existing

Turbo C code.

o D u c T o N

Borland C++ is for professional C++ and C developers who want
a powerful, fast, and efficient compiler with which to create just
about any application, including Microsoft Windows applications.
Also with Borland C++, you get both AT&T's C++ version 2.0 and
ANSIC.

C++ is an object-oriented programming (OOP) language. It's the
next step in the natural evolution of C. It is portable, so you can
easily transfer application programs written in C++ from one
system to another. You can use C++ for almost any programming
task, anywhere.

What's in Borland C++

Chapter 1 tells you how to
install Borland C++. Chapter

2 tells you where you can
find out more about each of

these features.

New!

New!

New!

Introduction

Borland C++ includes many of the latest features users ask for:

• C++: Borland C++ offers you the full power of C++ program­
ming (implementing C++ version 2.0 from AT&T). To help you
get started, we're also including C++ class libraries. We've also
included support for C++ version 1.2 streams.

• ANSI C: Borland C++ provides you with an up-to-date imple­
mentation of the latest ANSI C standard.

• Microsoft Windows targeting: You can use Borland C++ to
write applications for Windows. Many features have been
added to support this capability, including the Resource
Compiler and the Whitewater Resource Toolkit. We've included
a few sample C and C++ Windows applications to help get you
going.

• Precompiled headers, which speed up program compilation
time.

• Real and protected-mode versions of each compiler. You get
four compilers with this product: a real and protected-mode

2

version of the Programmer's Platform, and a real and
protected-mode version of the command-line compiler. Each
compiler contains both C and C++ capabilities. Running the
compiler in protected mode gives you greater capacity with no
swapping.

_ A container class library giving you bags, sets, arrays, and so
on.

_ The Programmer's Platform, Borland's next generation of user
interface. The Programmer's Platform, also known as the IDE,
provides access to the full range of programs and tools on your
computer. Running either in protected or real mode, it includes:

• a multi-file editor

• multiple overlapping windows

• mouse support

• an integrated debugger
New! • a built-in assembler

New! • an undo and redo feature with an extensive buffer

• support for inline assembler code

and much more.
_ VROOMM (Virtual Run-time Object-Oriented Memory

Manager): VROOMM lets you overlay your code without
complexity. You select the code segments for overlaying;
VROOMM takes care of the rest, doing the work needed to fit
your code into 640K.

_ Online hypertext help, with copy-and-paste program examples
for practically every function.

New! _ The help now includes the Windows API.

_ Many indispensable library functions, including heap checking
functions and a complete set of complex and BCD math
functions.

Other features include:

New! _ Fast huge arithmetic.

_ Far objects and huge arrays.

_ Alternate .CFG files. You can create several and use the one that
suits your needs at any given time.

_ Response files for the command-line compiler.

Borland C++ Getting Started

Hardware and software requirements

Writing for
Windows

Borland C++ runs on the IBM PC family of computers, including
the XT, AT, and PS/2, along with all true IBM compatibles.
Borland C++ requires DOS 2.0 or higher, a hard disk, a floppy
drive, and at least 640K; it runs on any 80-column monitor.

Borland C++ includes floating-point routines that let your pro­
grams make use of an 80x87 math coprocessor chip. It emulates
the chip if it is not available. Though it is not required to run
Borland C++, the 80x87 chip can significantly enhance your
programs' performance.

Borland C++ also supports a mouse. Though the mouse isn't re­
quired, if you have one, you must have one of the following for
full compatibility:

• Microsoft Mouse version 6.1 or later, or any mouse compatible
with this mouse. If you have had your mouse for a while, you
may want to contact your mouse's manufacturer for the most
recent mouse drivers.

II Genus mouse version 9 or later.

a IMSI mouse version 6.11 or later.

• Logitech Mouse version 3.4 or later.

• Mouse Systems' PC Mouse version 6.22 or later.

If you plan to use Borland C++ to create Windows applications,
you may want to buy the documentation for Microsoft's Software
Developer's Kit (SDK) for Microsoft Windows. Alternatively, you
could purchase Charles Petzold's Programmming Windows.

The Borland C++ implementation

Introduction

Borland C++ is a full implementation of the AT&T C++ version
2.0. It is also American National Standards Institute (ANSI) C
standard and fully supports the Kernighan and Ritchie definition.
In addition, Borland C++ includes certain extensions for mixed­
language and mixed-model programming that let you exploit
your PC's capabilities. See chapters 1 through 4 in the Program­
mer's Guide for a complete formal description of Borland C++.

3

The Borland C++ package

Getting Storied and the
User's Guide tell you how to

use this product: the Pro­
grammer's Guide and the Li­

brary Reference focus on
programming in C and C++.

4

Getting Started

Chapters 4 and 5 work
together: The first provides

the theory, the other
provides the practice.

Your Borland C++ package consists of a set of disks and five
manuals:

• Borland C++ Getting Started (this manual)

• Borland C++ User's Guide
• Borland C++ Programmer's Guide
• Borland C++ Library Reference

• Whitewater Resource Toolkit

In addition to these manuals, you'll find a convenient Quick
Reference card. The disks contain all the programs, files, and
libraries you need to create, compile, link, and run your Borland
C++ programs; they also contain sample programs, many
standalone utilities, a context-sensitive help file, an integrated
debugger, and additional C and C++ documentation not covered
in these guides.

This volume introduces you to Borland C++ and shows you how
to create and run both C and C++ programs. It consists of infor­
mation you'll need to get up and running quickly: installation, tu­
torials, primers, and a guide to the Borland C++ documentation
set. These are the chapters in this manual:

Chapter 1: Installing Borland C++ tells you how to install Borland
C++ on your system; it also tells you how to customize the colors,
defaults, and many other aspects of Borland C++.

Chapter 2: Navigating the Borland C++ manuals introduces some
of Borland C++'s most interesting features; where appropriate, it
tells you where to find out more about them.

Chapter 3: For Microsoft C users gives some guidelines on how
to convert your Microsoft C 6.0 programs to Borland C++.

Chapter 4: A C++ primer is an introduction to the concepts of
object-oriented programming using C++.

Chapter 5: Hands-on C++ provides practical examples based on
the concepts introduced in Chapter 4.

The Bibliography contains a listing of books relating to generic C
and C++, and to Borland C++ specifically.

Borland C++ Getting Storied

The User's Guide

The Programmer's
Guide

Introduction

The User's Guide provides reference chapters on the features of
Borland C++: Borland's Programmer's Platform, including the
greatly enhanced editor and Project Manager, as well as details on
using the utilities and the command-line compiler.

Chapter 1: The Programmer's Platform introduces the features of
the Programmer's Platform, giving information and examples of
how to use the IDE to full advantage. It includes information on
how to start up and exit from the IDE.

Chapter 2: Menus and options reference provides a complete
reference to the menus and options in the Programmer's Platform.

Chapter 3: Building a Windows application tells you what you
need and how to pull it together to write an application for
Windows.

Chapter 4: Managing multi-file projects tells how to use the
Project Manager to manage multi-file programming projects.

Chapter 5: The editor from A to Z provides a complete reference
to the editor.

Chapter 6: The command-line compiler tells how to use the
command-line compiler. It also explains configuration files.

Chapter 7: Utilities describes a few of the many utility programs
that come with Borland C++.

The Programmer's Guide provides useful material for the experi­
enced C user: a complete language reference for C and C++,
writing Windows applications, a cross-reference to the run-time
library, C++ streams, memory models, mixed-model program­
ming, video functions, floating-point issues, and overlays, plus
error messages.

Chapters 1 through 4: Lexical grammar, Phrase-structure gram­
mar, C++, and The preprocessor, describe the Borland C++
language.

Chapter 5: C++ streams tells you how to use the C++ version 2.0
stream library. The C++ version 1.2 stream library is documented
online.

5

The Library

Chapter 6: Memory management covers memory models, mixed­
model programming, and overlays.

Chapter 7: Math covers floating-point and BCD math.

Chapter 8: Video functions is devoted to handling text and
graphics in Borland C++.

Chapter 9: Interfacing with assembly language tells how to write
assembly language programs so they work well when called from
Borland C++ programs. It includes information on the built-in
assembler in the IDE.

Chapter 10: Error messages lists and explains all run-time and
compiler-generated errors and warnings, and suggests possible
solutions.

Appendix A: ANSI implementation-specific standards describes
those aspects of the ANSI C standard that have been left loosely
defined or undefined by ANSI, and how Borland has chosen to
implement them.

Appendix B: Run-time library cross-reference provides some
information on the source code for the run-time library, lists and
describes the header files, and provides a cross-reference to the
run-time library, organized by subject. For example, if you want
to find out which functions relate to graphics, you would look in
this chapter under the topic "Graphics."

Appendix C: The container class library documents the container
class library included with Borland C++.

Reference The Library Reference contains a detailed list and explanation of
Borland C++'s extensive library functions and global variables.

Chapter 1 : The main function describes the main function.

Chapter 2: The run-time library is an alphabetically arranged
reference to all Borland C++ library functions.

Chapter 3: Global variables defines and discusses Borland C++'s
global variables.

6 Bor/and C++ Getting Started

The Whitewater
Resource Too/kit The Whitewater Resource Toolkit User's Guide tells how to create

resources for your Windows applications.

Chapter 1, "Getting started," tells you how to begin and end a
session in the Resource Toolkit.

Chapter 2, "About resources and files," provides an overview of
resources, and discusses the files you can work with in the Re­
source Toolkit.

Chapter 3, "The Resource Manager," tells you how to use the Re­
source Toolkit's main window, the Resource Manager.

Chapters 4 through 9 each tell you how to use a specific Resource
Toolkit editor.

Chapter 10, "Common keys and menus," tells you how to
navigate and edit tables in the Accelerator, String, and Menu
editors. It also tells you how to use the menus whose options are
common among the editors: the File, Edit, and Header menus.

Appendix A, "Troubleshooting and error messages," contains
questions and answers to help you solve problems you might
have while working with the Resource Toolkit.

Typefaces and icons used in these books

All typefaces and icons used in this manual were produced by
Borland's Sprint: The Professional Word Processor, on a PostScript
laser printer.

Monospace type This typeface represents text as it appears onscreen or in a pro­
gram. It is also used for anything you must type literally (such as
Be to start up Borland C++).

ALL CAPS We use all capital letters for the names of constants and files.

() Square brackets [] in text or DOS command lines enclose optional
items that depend on your system. Text of this sort should not be
typed verbatim.

< > Angle brackets in the function reference section enclose the names
of include files.

Introduction 7

Boldface

Italics

Keycaps

Borland C++ function names (such as printf), class, and structure
names are shown in boldface when they appear in text (but not in
program examples). This typeface is also used in text for Borland
C++ reserved words (such as char, switch, near, and cdecl), for
format specifiers and escape sequences (%d, \t), and for
command-line options (lA).

Italics indicate variable names (identifiers) that appear in text.
They can represent terms that you can use as is, or that you can
think up new names for (your choice, usually). They are also used
to emphasize certain words, such as new terms.

This typeface indicates a key on your keyboard. For example,
"Press Esc to exit a menu."

This icon indicates keyboard actions.

This icon indicates mouse actions.

~ This icon indicates language items that are specific to C++. It is
used primarily in the Programmer's Guide.

This icon indicates material that relates to writing a Windows
program.

How to contact Borland

8

Before contacting Borland,
read the README and

HELPME!.DOC files: many
common problems are

resolved in them.

The best way to contact Borland is to log on to Borland's Forum
on CompuServe: Type GO BOR from the main CompuServe menu
and choose "Borland Programming Forum B (Turbo Prolog &
Turbo C)" from the Borland main menu. Leave your questions or
comments there for the support staff to process.

If you prefer, write a letter with your comments and send it to

Borland International
Technical Support Department-Borland C++
1800 Green Hills Road
P.O. Box 660001
Scotts Valley, CA 95067-0001, USA

Borland C++ Getting Started

See the README file included
with your distribution disks for

details on how to report a
bug.

Introduction

You can also telephone our Technical Support department
between 6 a.m. and 5 p.m. Pacific time at (408) 438-5300. Have the
following information handy before you call:

1. Product name and serial number on your original distribution
disk. Please have your serial number ready, or we won't be
able to process your call.

2. Product version number. The version number for Borland C++
is displayed when you first load the program and before you
press any keys.

3. Computer brand, model, and the brands and model numbers
of any additional hardware.

4. Operating system and version number. (You can find this out
by typing VER at the DOS prompt.)

5. Contents of your AUTOEXEC.BA T file.

6. Contents of your CONFIG.SYS file.

9

10 Bor/and C++ Getting Storied

c H

Your Borland C++ package
includes four different

versions of Borland C++: the
IDE in real and protected

mode and the real and
protected mode versions
that can be run from the

DOS command line. If you
don't already know how to

use DOS commands, refer to
your DOS reference manual

before setting up Borland
C++ on your system.

A p T E R

1

Installing Borland C++

Borland C++ comes with an automatic installation program called
INSTALL. Because we used file-compression techniques, you
must use this program; you can't just copy the Borland C++ files
onto your hard disk. Instead, INSTALL automatically copies and
uncompresses the Borland C++ files. For reference, the README
file on the installation disk includes a list of the distribution files.

We assume you are already familiar with DOS commands. For
example, you'll need the DISKCOPY command to make backup
copies of your distribution disks. Make a complete working copy
of your distribution disks when you receive them, then store the
original disks away in a safe place.

None of Borland's products use copy protection schemes. If you
are not familiar with Borland's No-Nonsense License Statement,
read the agreement included with your Borland C++ package. Be
sure to mail us your filled-in product registration card; this guar­
antees that you'll be among the first to hear about the hottest new
upgrades and versions of Borland C++.

This chapter contains the following information:

• installing Borland C++ on your system
• accessing the README file
• accessing the HELPME! file
• a pointer to more information on Borland's Turbo Calc program
• how to customize Borland C++ (set or change defaults, colors,

and so on)

Chapter 7, Installing Borland C++ 11

Using INSTALL

We recommend that you
read the README file before

installing.

12

Important!

To exit Borland C++,
press Alt-X.

Once you have installed Borland C++, you'll be ready to start
digging into Borland C++. But certain chapters and manuals were
written with particular programming needs in mind. Chapter 2,
"Navigating the Borland C++ manuals," tells where to find out
more about Borland C++'s features in the documentation set.

Among other things, INSTALL detects what hardware you are
using and configures Borland C++ appropriately. It also creates
directories as needed and transfers files from your distribution
disks (the disks you bought) to your hard disk. Its actions are
self-explanatory; the following text tells you all you need to know.

To install Borland C++:

1. Insert the installation disk (disk 1) into drive A. Type the
following command, then press Enter.

A: INSTALL

2. Press Enter at the installation screen.

3. Follow the prompts.

4. At the end of installation, you may want to add this line to
your CONFIG.SYS file:

FILES = 20

and this line to your AUTOEXEC.BAT file:
PATH = C:\BORLANDC\BIN

When it is finished, INSTALL reminds you to read the latest
about Borland C++ in the README file, which contains
important,last-minute information about Borland C++. The
HELPME!.DOC file also answers many common technical
support questions.

Once you have installed Borland C++, and if you're anxious to get
up and running, change to the Borland C++ directory and type BC
(or BCX, depending on whether you want to run in real or pro­
tected mode) and press Enter. Otherwise, continue reading this
chapter and the next for important start-up information.

After you have tried out the IDE, you may want to permanently
customize some of the options. The BCINST program makes this
easy to do; see page 14 for more information.

Borland C++ Getting Started

Laptop systems

The README file

See Chapter 7, "The Pro­
grammer's Platform H in the

User's Guide, for more details
on using the Programmer's

Platform.

If you have a laptop computer (one with an LCD or plasma
display), in addition to carrying out the procedures given in the
previous sections, you need to set your screen parameters before
using Borland C++. The IDE works best if you type MODE BW80 at
the DOS command line before running Borland C++.

Although you could create a batch file to take care of this for you,
you can also easily install Borland C++ for a black-and-white
screen with the Borland C++ customization program, BCINST.
With this customization program, choose "Black and White" from
the Screen Modes menu.

The README file contains last-minute information that may not
be in the manuals. It also lists every file on the distribution disks,
with a brief description of what each one contains.

To access the README file:

1. If you haven't installed Borland C++, insert your Borland C++
disk into drive A. If you have installed Borland C++, skip to
step 3 or go on to the next paragraph.

2. Type A: and press Enter.

3. Type README and press Enter. Once you are in the file, use the l'
and J, keys to scroll through the file.

4. Press Esc to exit.

Once you've installed Borland C++, you can open README into
an edit window, following these steps:

1. Start Borland C++ by typing BC (or BCX) on the command line.
Press Enter.

2. Press F10. Choose File I Open. Type in README and press Enter.
Borland C++ opens the README file in an edit window.

3. When you're done with the README file, choose File I Quit
(or continue playing with the Platform).

Chapter 7, Installing Borland C++ 13

The HELPME!.DOC file

Turbo Calc

Your installation disk contains a file called HELPME!.DOC, which
contains answers to problems that users commonly run into.
Consult it if you find yourself having difficulties. You can use the
README program to look at HELPME!.DOC. Type this at the
command line:

README HELPME!.DOC

Your Borland C++ package includes the source code for a
spreadsheet program called Turbo Calc. Before you compile it,
read the online documentation (TCALC.DOC) for it.

Customizing the IDE

Borland C++ comes ready to
run: You don't need to run

BCINST if you don't want to.

14

Through BCINST, you can change various default settings in the
IDE (both the real and protected-mode versions: BC.EXE and
BCX.OVY), such as the editing modes, menu colors, and default
directories. BCINST also lets you specify and directly modify
other .EXE and .PRJ files. If you don't specify a file, BCINST
assumes BC.EXE. If BCINST doesn't find the file you specified, it
reports an error.

With BCINST, you can do any of the following:

• modify compiler options in a .PRJ file
• set up paths to the directories where your include, library, and

output files are located
• choose default settings for the integrated debugger
• set defaults for the compiler and linker
• customize the editor command keys
• set up the editor defaults
• set up the default video display mode
• change screen colors
• bind a key macro to the gray asterisk key (*) on your keyboard

in verbatim mode

Bor/and C++ Getting Staried

For detailed information on
the menus and options in the

IDE, see Chapter 2, "Menus
and options reference," in

the User's Guide.

Running BCINST

Note

Using an EGA card with
a eGA monitor

The BCINST

BCINST's menus are quite similar to the menus in the IDE. Any
option that you install with BCINST that also appears as a menu
option in BC.EXE will be overridden whenever you load a con­
figuration file that contains a different setting for that option, or
when you change the setting via the menu system of the IDE. So
changes made to BC.EXE are only realized when no configuration
files are loaded. For this reason, BCINST lets you directly modify
.PRJ files and the TCCONFIG.TC file.

The syntax for BCINST is

BCINST [option] [exepath [exename] I [configpathl
TCCONFIG.TC I [prjpathlprjname.PRJ]

If you don't give a path and/or file name, BCINST looks for
BC.EXE in the current directory. option lets you specify whether
you want to run BCINST in color (type I c) or in black and white
(type Ib). Normally, BCINST comes up in color if it detects a color
adapter in a color mode. You can override this default if, for
instance, you are using a composite monitor with a color adapter,
by using the /b option.

You can use BCINST to modify local copies of TCCONFIG.TC
and .PRJ files. In this way, you can customize different copies of
Borland C++ on your system to use different editor command
keys, different menu colors, and so on, by having different config­
uration files in your various project directories.

If you are running Borland C++ on a system with an EGA display
card and a CGA monitor, you must use BCINST to set Borland
C++ or it will not run properly. See page 18 for step-by-step in­
structions on how to do this.

Installation menu Although BCINST allows you to customize a wide range of
Borland C++'s components, BCINST is "smart." That is, it will
only show you those menus and selections that apply to what you
are customizing. For example, when you're installing a configura­
tion file (.PRJ or .TC), only the menu items representing values in
the configuration files are displayed. Therefore, when you're
using BCINST to modify the TCCONFIG.TC file, compiler options

Chapter 7, Installing Borland C++ 15

16

Installation Menu

Search
Run
Options
Editor conmands
Mode for display
Adjust colors
Save configuration
Quit

are not available; when you're installing a .PRJ file, color
customization is not available.

Also, since the BCINST installation menu and option choices
correspond with those portions of the IDE that you are modifying,
you can refer to Chapter 2, "Menus and options reference," in the
User's Guide for detailed information on what each item might
mean.

The first menu to appear on the screen is the BCINST Installation
menu.

• The Search option gives you access to the search defaults.

• The Run option allows you to set default command-line
arguments that will be passed to your running programs,
exactly as if you had typed them on the DOS command line
(redirection is not supported). It is only necessary to give the
arguments here; you don't need to give the program name.

• The Options command gives you access to default settings for a
great many features, including memory model, degree of opti­
mization, display of error messages, linker and environment
settings, and path names to the directories holding header and
library files.

• The Editor Commands option lets you customize the interactive
editor's keystroke commands. You can restore the default
Editor Commands by choosing the E option at the BCINST
main menu, then press R (for Restore factory defaults) and Esc.

• With Mode for Display, you can specify the video display mode
that Borland C++ will operate in, and whether yours is a
"snowy" video adapter.

• You can customize the colors of almost every part of the IDE
through the Adjust Colors menu.

• The Save Configuration option allows you a choice between
saving and not saving changes to the BC.EXE file. You can
always run BCINST again if you want to change your changes.

• The Quit option asks if you want to quit without saving the
changes you have made to the integrated development
environment.

To choose a menu item, just press the key for the highlighted
capital letter of the given option. For instance, press A to choose
the Adjust Colors option. Or use the i and J, keys to move the
highlight bar to your choice, then press Enter.

Borland C++ Getting Started

Some specifics

Pressing Esc (more than once if necessary) returns you to the main
installation menu.

While for the most part BCINST's menu items are self­
explanatory, there are some items that you may need a little more
informa tion on.

Segment names With the items in the Options I Compiler I Names menu, you can
set the default segment, group, and class names for Code, Data,
and BSS sections. When you choose one of these items, the
asterisk (*) on the next menu that appears tells the compiler to use
the default names. Important! Don't change this option unless you
are an expert and have read Chapter 9 ("Interfacing with
assembly language") in the Programmer's Guide.

The Debugger menu The items in the Debugger menu let you set certain default
settings for the Borland C++ integrated debugger.

When you compile your program with Source debugging set On,
you can debug it using either the integrated debugger or with a
standalone debugger, such as Borland's Turbo Debugger. When it
is set to Standalone, only the standalone debugger can be used.
When it is set to None, no debugging information is placed in the
.EXE file.

Display Swapping enables you to set the default level to None,
Smart, or Always. When you run your program with the default
setting Smart, the Debugger looks at the code being executed to
see whether the code will affect the screen (that is, output to the
screen). If the code outputs to the screen (or if it calls a function),
the screen is swapped from the Editor screen to the Execution
screen long enough for output to take place, then is swapped
back. Otherwise, no swapping occurs. The Always setting causes
the screen to be swapped every time a statement executes. The
None setting causes the debugger not to swap the screen at all.

Program Heap Size specifies the new program heap size in kilo­
bytes, from 4 through 640.

You have several choices for Inspector Options: Show Inherited
(On or Ott>, Show Methods (On or Ott>, and/or Show Integers As.
Show Integers As gives you the choice between Decimal, Hex, or
Both.

Chapter 7, Installing Borland C++ 17

Editor commands Many of the editor's commands and keystrokes can be custom­
ized. Most are self-explanatory. You might need to know that
secondary keystrokes take precedence over primary keystrokes,
and that there are certain rules governing the keystroke sequences
that you can define. Some of the rules apply to any keystroke
definition, while others come into effect only in certain keystroke
modes.

Chapter 7, "The Pro­
grammer's Platform, H in the

User's Guide contains a
complete list of the IDE's

predefined hot keys.

Setting your video
mode

18

1. You can enter a maximum of six keystrokes for any given
editor command. Certain key combinations are equivalent to
two keystrokes: These include Alt (any valid key); the cursor­
movement keys (I , .t, PgDn, Del, and so on); and all function
keys and their combinations (F4, Shift-F7, Alt-FB, and so on).

2. The first keystroke must be a character that is neither alpha­
numeric nor punctuation: that is, it must be a control key or a
special key.

3. To enter the Esc key as a command keystroke, type etr/-£.

4. To enter the Backspace key as a command keystroke, type etr/-H.

5. To enter the Enter key as a command keystroke, type etr/-M.

6. The predefined Help function keys (F1 and Alt-F1) can't be
reassigned as editor command keys. However, any other
function key can. If you enter a hot key as part of an editor
command key sequence, BCINST issues a warning that you
are overriding a hot key in the editor and verifies that you
want to override that key.

7. You can assign keys such as the grey asterisk, grey minus, and
grey plus by using the Borland C++ editor's verbatim mode.

Normally, Borland C++ correctly detects your system's video
mode. You should only change the Mode for Display menu if one
of the following holds true:

• You want to choose a mode other than the current video mode.

• You have a Color/Graphics Adapter that doesn't "snow."

• You think Borland C++ is incorrectly detecting your hardware.

• You have a laptop or a system with a composite screen (which
acts like a CGA with only one color). For this situation, choose
Black and White.

Borland C++ Getting Started

If you choose Default, Borland C++ always operates in the mode
that is active when you load it.

If you choose Color, Borland C++ uses 80-column color mode if a
color adapter is detected, no matter what mode is active when
you load the IDE, and switches back to the previously active
mode when you exit.

If you choose Black and White, Borland C++ uses 80-column
black-and-white mode if a color adapter is detected, no matter
what mode is active, and switches back to the previously active
mode when you exit. Use this with laptops and composite
monitors.

If you choose LCD or Composite, Borland C++ uses 80-column
black-and-white mode if a color adapter is detected, no matter
what mode is active, and switches back to the previously active
mode when you exit. Use this with laptops and composite
monitors.

If you choose Monochrome, Borland C++ uses monochrome mode
if a monochrome adapter is detected, no matter what mode is
active.

When you choose one of the first four options, the program
conducts a video test on your screen; refer to the Quick-Ref line
for instructions on what to do. When you choose one of the
options, the status line queries

Conducting vide~ test. Is your screen "snowy" now? Press any key to
answer.

When you press any key, you can choose

• Yes, the screen was "snowy"

• No, always turn off snow checking

• Maybe, always check the hardware

Look at the Quick-Ref line for more about Maybe. Press Esc to
return to the main installation menu.

Chapter 1, Installing Borland C++ 19

20 Borland C++ Getting Started

c H A p T E R

2

Navigating the Borland C++ manuals

This chapter accomplishes two things:

.It tells you briefly about Borland C++'s hottest features: what
they are, the concepts behind them, how to use them .

• It tells you where in these manuals you can find out more about
the new features and other aspects of Borland C++.

If you read the instructions on how to install Borland C++ on
page 12, you also learned how to start Borland C++ and how to
exit from it. If not, and if you want to just jump right in and start
programming, refer back to that page.

Features

Windows

Borland C++ has many powerful features, listed on page 1. This
section tells you a little more about some of these features, and
points you to where you can go for in-depth information on them.

01 With Borland C++, you can write applications that will run under
lEJl Microsoft's Windows. While the effect of this capability ripples

throughout the entire product, certain chapters are devoted to the
subject. Chapter 3, "For Microsoft C users" will help you become
acquainted with the differences between programming in
Microsoft C and programming using Borland C++; we think

Chapter 2, Navigating the Borland C++ manuals 21

c++

Real and
protected modes

22

Built-in assembly
language

programming

you'll be pleased with some of the nice touches in Borland C++
that make your programming task easier. Chapter 3, "Building a
Windows application," in the User's Guide tells you how to use
Borland C++ to write a Windows application.

With Borland C++, you get all the capabilities of ANSI C, plus all
the capabilities of C++. You can either program solely in ANSI C,
or you can make the transition from C to C++ as slowly or as
rapidly as you like.

In order to help you get started, we've included a ready-made set
of C++ class libraries. These libraries use classes to perform a
variety of functions for you. The streams library is discussed in
Chapter 5, "C++ streams," in the Programmer's Guide; the container
class library is documented in Appendix C, "The container class
library," also in the same manual. There are a number of excellent
third-party books available on C++ programming, many specific
to Borland's C and C++ products. The bibliography in this book
(Getting Started) lists some of them.

The IDE and command-line compilers come in two versions each:
a real-mode version and a protected-mode version. In each of two
chapters in the User's Guide (chapters 2 and 6, "Menus and options
reference" and "The command-line compiler") you'll find a
section on how to start up Borland C++ in your preferred mode,
and a discussion on which mode might be most appropriate for
your needs.

The IDE incorporates a built-in assembly language compiler,
called BASM for short. A subset of Turbo Assembler, BASM can
do everything Turbo Assembler can do, with a few exceptions.
Chapter 9, "Interfacing with assembly language," in the Program­
mer's Guide tells you two things: how to interface your C and C++
programs with assembly language code, and how to use both
BASM and Turbo Assembler to do so.

Borland C++ Getting Started

VROOMM
(overlays)

Chapter 6, "Memory
management," in the Pro­

grammer's Guide covers
overlays in depth.

Borland's
Programmer's
Platform (IDE)

Borland C++'s VROOMM (Virtual Run-time Object-Oriented
Memory Manager) gives you intelligent overlays, unlike any
overlay scheme you may have used before. If you are already
familiar with overlays in another (non-Borland) product, you
have some pleasant surprises coming. First, VROOMM can
determine how and when to overlay, thus relieving you of that
task. Second, since VROOMM is based on a set of highly
sophisticated algorithms, it is much faster and more efficient than
other overlay schemes.

Borland C++ has Borland's new integrated development
environment, called the Programmer's Platform because it allows
you to pull in your favorite tools for use within the environment.
Chapter 1, "The Programmer's Platform," in the User's Guide
covers the general appearance and functioning of the IDE.
Chapter 2, "Menus and options reference," in that same book
provides a reference to every menu and option.

Using the manuals

The manuals are arranged so that you can pick and choose among
the books and chapters to find exactly what you need to know at
the time you need to know it. Getting Started and the User's Guide
provide information on how to use Borland C++ as a product; the
Programmer's Guide and the Library Reference provide material on
programming issues in C and C++.

Chapter 1 of this manual (Getting Started) tells you how to install
Borland C++ and how to customize Borland C++'s defaults
(including its colors). Chapters 4 and 5 provide complementary
tutorials (theory and practice) on programming in C++.

The chapters of the User's Guide are for use as reference chapters
to using Borland C++'s IDE, editor, project manager, command­
line compiler, precompiled headers, and online utilities. As well,
it provides some information on programming in Windows.

Chapter 2, Navigating the Borland C++ manuals 23

Programmers
learning C or C++

24

Experienced C
and C++

programmers

If you are learning C++ but are already familiar with C, you may
want to check out chapters 4 and 5. These two chapters work
together, one providing the theory, the other providing the
practice of writing C++ programs.

If you don't know C, there are many good products on the market
that can get you going in that language. The bibliography
provides a list of useful books on programming in C, C++, and
Borland C++ especially.

In either case, you can use chapters 3 through 7 in the User's Guide
for reference on specific technical aspects of Borland C++.

Your next step is to start programming in C and C++. You'll find
Chapter 2, "The run-time library" in the Library Reference to be a
valuable reference on how to use each function. Chapter 1, "The
main function," provides information on aspects of the main
function that is seldom found elsewhere. Or, you might prefer to
use the online help; it contains much of the same information as
the Library Reference, and includes programming examples that
you can copy into your own programs. Once you have grown
comfortable with programming, you may want to move into the
more advanced issues covered in the Programmer's Guide.

If you are an experienced C or C++ programmer and you've
already installed Borland C++, you'll probably want to jump
immediately to the Programmer's Guide and to the Library Reference.

The Programmer's Guide covers certain useful programming issues,
such as C++ streams, assembly language interface, memory
models, video functions, overlays, and far and huge pointers. In
addition, the Programmer's Guide provides a cross-reference to the
Library Reference by functionality (Appendix B, "Run-time library
cross-reference"). So, for example, if you want to know which
functions are associated with graphics, you would turn to that
chapter and look up the subject "Graphics."

Borland C++ Getting Storied

c H A p T E R

3

For Microsoft C users

If you're an experienced C or C++ programmer, but the Borland
C++ programming environment is new to you, then you should
read this short chapter before you do anything else. We appreciate
that you want to be up and running fast with a new piece of soft­
ware, and we know that you want to spend as little time as
possible reading the manual. However, the time that you spend
reading this chapter will probably save you a lot of time later.
Please read on.

Environment and tools

You can find out more about
configuration and project
files in chapters 7 and 4 in

the User's Guide.

The Borland C++ IDE (integrated development environment) is
roughly the equivalent of the Programmer's Workbench, although
naturally we think you'll find the IDE much easier to use. Chapter
2 in the User's Guide provides a complete reference to the IDE. If
you're interested in building Windows applications, see Chapter 3
in the User's Guide.

The IDE loads its settings from two files: TCCONFIG.TC, the
default configuration file, and a project file (.PRJ). TCCONFIG.TC
contains general environmental information. The current project
file contains information more specific to the application you're
building.

A project is the IDE's equivalent of a makefile. It includes the list
of files to be built, as well as settings for the IDE options that

Chapter 3, For Microsoft C users 25

26

The IDE and

control the compilation and linkage of that program. If you don't
specify a project file when you start the IDE, a nameless project is
opened and set with default compiler and linker options, but no
file name list.

Unlike Microsoft C, however, Borland C++ does not automatically
create and run a makefile based on settings and file names that
you give it in the project. If you want to use the IDE to set up a
project, but use MAKE to do the actual build, then you can use
the PRJ2MAK utility to convert a project file to a makefile.

The following sections describe the significant differences be­
tween Borland C++'s MAKE, Project Manager,linker (TLINK),
and command-line compiler (BCC) and Microsoft C's NMAKE,
LINK, and CL.

Windows If you want to have both Windows and the IDE readily available,
load TKERNEL and then run Windows in standard mode. Alt-Esc
switches between the two environments.

Paths for .h and
.LlB files

To ensure that a project is placed in the correct directory, invoke
BCX with a .PIF file which has the Start-up Directory field set to
the desired directory for the project. If you don't use a .PIF file,
new projects will be placed in the default Borland C++ directory,
\BORLANDC\BIN.

Microsoft C works with two environment variables, LIB and
INCLUDE. The Microsoft linker uses the LIB variable to discover
the location of the run-time libraries; similarly, INCLUDE is used
to find standard header files. Borland C++ does not use environ­
ment variables to store the path for the library or include files.
Instead, you can easily set these paths in the IDE using the envi­
ronment options. If you are working with the command-line
compiler, the linker, or the Resource Compiler, you can use
command-line options or configuration files.

When you install Borland C++, you are asked to set paths for
include files and library files. Those paths are then the default
paths in the IDE. The include and library files paths are also
written to the default command-line compiler configuration file
TURBOC.CFG. The library path is written to the default stand­
alone linker configuration file TLINK.CFG.

Borland C++ Getting Storied

Borland C++ licenses the
Resource Compiler from

Microsoft.

• In the IDE, reset default search paths for libraries and header
files with the Options I Directories command. The settings in the
Directories dialog box become a part of the current project. If
you did not start the IDE with a project, or open a new project,
the IDE will use a default project.

• For the command-line compiler, you can reset the search path
for include and library files with the -I and -L options, respec­
tively. These options can also be reset in the configuration file
for the command-line compiler, TURBOC.CFG.

• For the linker, TLINK or TLINKX, you can use the -L option to
change search paths for libraries and initialization code (like
COs.OBI, the startup code for the small memory model). For
instance, this option

/LC: \ BORLANDC\LIB;C: \WINAPPS\LIB

tells the linker to look in the two paths named for library and
initialization files.

You can also create a TLINK.CFG file. TLINK.CFG is a regular
text file that contains a list of valid TLINK options.

• For the Resource Compiler, the -x option tells it to ignore the
INCLUDE variable. In addition, you can specify an additional
search path with the -i option (-i all by itself does not imply -x).

When the Resource Compiler is invoked from the command line,
it looks for windows.h on the path specified by the INCLUDE en­
vironment variable, if there is one. If that INCLUDE variable is set
to some other path than the location of the windows.h supplied
by Borland C++, your module might not be compiled correctly.
(This does not occur in the IDE, because the IDE passes the correct
information to the Resource Compiler.)

For instance, if you have been using Microsoft C, then you prob­
ably have an INCLUDE environment variable set to the path of
the Microsoft C header files. If you have also been using the Mi­
crosoft Windows SDK, then the version of windows.h included
with the SDK is probably also in the INCLUDE directory.

When you're building a Borland C++ application, the Resource
Compiler should include the windows.h shipped with Borland
C++. If you have a defined INCLUDE environment variable, then
you should tell the Resource Compiler to ignore it with the -x
option.

Chapter 3, For Microsoft C users 27

MAKE

28

The MAKE included with Borland C++ is based on the UNIX
version of MAKE and is similar to the new Microsoft utility
NMAKE. However, the MAKE utility of Microsoft C 5.1 has im­
portant differences from Borland C++ MAKE.

The primary difference between the Borland C++ MAKE and the
old Microsoft MAKE is that Microsoft MAKE updates all of the
targets sequentially. Borland C++ MAKE and NMAKE only up­
date the targets specified on the command line and any targets
that occur in their dependency lists. If no targets are supplied on
the command line, the first target listed in the makefile is
updated.

You can easily convert a Microsoft C 5.1 makefile to the Borland
C++ MAKE or Microsoft NMAKE format. If you have a single
target that depends on all the others you can move that depen­
dency to be the first dependency.

Another way to convert old makefiles is to create a new pseudo­
target as the first target, and have that first target depend on all
the other targets in the makefile.

For example, if you have the following makefile:

filel.exe: file.abj
$ (LINK)

file2.exe: file.abj
$ (LINK)

mylib.lib
$(LIB)

file.abj: file.c file.h
$(CC)

Just add as the first target:

ALL: filel.exe file2.exe mylib.lib

Microsoft C MAKE (version 5.1) allows multiple targets with the
same name in a single makefile. You can rewrite these rules into a
single rule. Move the dependent files to the dependency list of the
first rule, then move the commands to the end of the command
list of the first rule.

Borland C++ Getting Storied

For instance, Microsoft C MAKE would allow this makefile
fragment:

whello.exe: whello.obj whello.def
tlink ITw Iv In Ie C:\BORLANDC\LIB\eOws whello,\

whello, \
, \
C:\BORLANDC\LIB\ewins C:\BORLANDC\LIB\es

C:\BORLANDC\LIB\import,\
whello

whello.exe: whello.res
RC whello.res

However, the rules shown in this example would not work with
Borland C++ MAKE or Microsoft NMAKE. They can be rewritten,
like this:

whello.exe: whello.obj whello.def whello.res
tlink ITw Iv In Ie C:\BORLANDC\LIB\eOws whello,\

whello, \
, \
C:\BORLANDC\LIB\ewins C:\BORLANDC\LIB\es

C:\BORLANDC\LIB\import,\
whello

re whello.res

Here's a complete list of MAKE's command-line options. Note that
for Borland C++, case (upper or lower) is significant; the option-d
is not a valid substitution for -D. Case is not significant for Micro­
soft NMAKE options.

Table 3.1: MAKE and NMAKE options compared

Microsoft C 6.0
NMAKE option

/?

N/A

IA

IC

Ident="1"

Ident=String

10

Borland C++
MAKE option

-? or-h

-a

-B

N/A

-Oldent

What it does

Displays summary of NMAKE syntax.

Causes an automatic dependency check on .OBI files.

Builds all targets regardless of file dates.

Does not print copyright messages or nonfatal messages.

Defines the named identifier to the string consisting of the single
character 1 (one).

-Oldent=String Defines the named identifier Ident to String. The string cannot
contain any spaces or tabs.

N/ A Prints date/time stamp of accessed file when file is checked.

Chapter 3, For Microsoft C users 29

Table 3.1: MAKE and NMAKE options compared (continued)

Microsoft C 6.0 Borland C++
NMAKE option MAKE option What it does

IE

IF filename -ffilename

IHELP (See-h)

/I -i

N/A -I directory

N/A -K

IN -n

INOLOGO N/A

IP N/A

IQ N/A

IR N/A

N/A -S

IS -s

N/A -Uidentifier

N/A -W

IT N/A

IX FileName N/A

IZ N/A

30

Overrides defined macros with environment variables. (Note that the
Borland C++ utilities do not use the environment variable INCLUDE
and LIB; Borland C++ overrides environment variables with defined
macros.)

Uses filename as the MAKE file. If filename does not exist and no
extension is given, tries FILENAME.MAK.

In Microsoft's NMAKE, this option calls QuickHelp, if available, or
displays help onscreen.

Does not check (ignores) the exit status of all programs run.
Continues regardless of exit status.

Searches for include files in the indicated directory (as well as in the
current directory).

Keeps (does not erase) temporary files created by MAKE. All tempo­
rary files have the form MAKEnnnn.$$$, where nnnn ranges from
0000 to 9999. See Chapter 7in the User's Guide for more on temporary
files.

Prints the commands but does not actually perform them. This is
useful for debugging a makefile.

Does not print NMAKE sign-on banner.

Prints macro definitions and target descriptions.

Returns exit code from target (zero if target is current, nonzero if
target is out-of-date); useful for batch file invocation of NMAKE.

Ignores TOOLS.INI.

Swaps MAKE out of memory while executing commands. This
significantly reduces the memory overhead of MAKE, allowing it to
compile very large modules.

Does not print commands before executing. Normally, MAKE prints
each command as it is about to be executed.

Undefines any previous definitions of the named identifier.

Writes the current specified non-string options (like -s and -a) to
MAKE.EXE. (This makes them default.)

Changes modification date for out-of-date target files to the current
date. (For Borland C++, use the TOUCH utility.)

Sends error output to FileName (file or device). If you enter a dash
instead, sends output to standard output.

Internal option for Programmer's Workbench.

The following table compares NMAKE predefined macros,
pseudotargets, and directives with those of Borland C++ MAKE.

Borland C++ Getting Started

Table 3.2: MAKE and NMAKE predefined macros and directives

Microsoft C
NMAKE

N/A

N/A

$@

$*

N/A

$**

$<

$$@

$(CC)

$(AS)

$(MAKE)

$(MAKEDIR)

$(MAKEFLAGS)

!IF expression

!ELSE

N/A

!ENDIF

!IFDEF Macro

!IFNDEF Macro

!UNDEF Macro

!ERROR Text

Borland C++
MAKE

$d(Macro)

$:

$.

$&

$*

N/A

$<

N/A

N/A

N/A

N/A

N/A

N/A

!if expression

!else

!elif

!endif

N/A

N/A

!undef Macro

!error Text

Chapter 3, For Microsoft C users

What it does

Defined test macro. Expands to 1 if Macro is defined, 0 if not.
See !IFDEF directive, later in this table.

Path only macro.

Full file name macro, no path.

Base file name macro, no path.

Base file name macro with path.

List of all dependent files.

Full file name macro with path

The target currently being evaluated. (Used only in
dependency lines.)

Command to invoke command-line compiler. NMAKE
predefines this macro to CL

Command to invoke assembler. NMAKE predefines to AS.

Command to invoke NMAKE. Used to invoke NMAKE
recursively.

The directory from which NMAKE was invoked.

NMAKE options currently in effect.

Conditional execution. If expression is true, lines following
expression are executed until !else, !elif (Borland C++ only), or
!endif is encountered.

Conditional execution. If previous !if expression is false, lines
following !else are executed until !elif (Borland C++ only), or
!endif is encountered.

Nested conditional execution.

Ends conditional execution of !if block. For Microsoft C, also
ends !IFDEF, and !IFNDEF blocks.

Conditional execution. If Macro is defined, lines following
!IFDEF are executed until !ELSE or !ENDIFis encountered. See
$d(Macro) predefined macro for Borland C++ equivalent.

Conditional execution. If Macro is undefined, lines following
!IFDEF are executed until !ELSE or !ENDIF is encountered. See
$d(Macro) predefined macro for Borland C++ MAKE
equivalent.

Causes the definition for a specified macro to be forgotten.

Causes MAKE to stop and print an error message.

31

Table 3.2: MAKE and NMAKE predefined macros and directives (continued)

Microsoft C Borland C++
NMAKE MAKE What it does

!INCLUDE filename !include filename Specifies the file filename to be included in the makefile. If the
form <filename> is used, Microsoft NMAKE searches for
filename in directories specified by the INCLUDE environment
variable. For Borland C++ MAKE, use the -I option for the
same effect.

!CMDSWITCHES N I A Turns on or off NMAKE's II (ignore return code), ID (print
date/time), IN (print commands; don't execute), or IS (silent)
options. For Borland C++, use .ignore, .silent, or .nosilent.
(There is no equivalent for NMAKE's II.)

.IGNORE:

N/A

N/A

N/A

.sILENT:

N/A

N/A

N/A

N/A

.ignore

. noignore

.autodepend

.noautodepend

. silent

.nosilent

. swap

. noswap

.path.ext

Ignore return value of commands .

Turns off .ignore .

Turns on autodependency checking.

Turns off auto dependency checking .

Don't print commands before executing them .

Tells MAKE to print commands before executing them.

Tells MAKE to swap itself in and out of memory .

Tells MAKE to not swap itself in and out of memory .

Gives MAKE a path to search for files with extension .ext .

.sUFFIXES: ExtList N/A If no dependents are listed for a target, NMAKE tries files with
an extension listed in ExtList .

. PRECIOUS: Targets N/A Tells NMAKE to save named Targets, even if program building
target is interrupted.

32

Command-line
compiler The following table lists comparable BCC and CL command-line com­

piler options. Some of the CPP (standalone preprocessor) options are
listed. In many multi-pass compilers, a separate pass performs the wor
of the preprocc. ·'.F. and the results of the pass can be examined. Since
Borland C++ uses", integrated single-pass compiler, we provide the
standalone utility CPP to supply the first-pass functionality found in
other compilers.

Note that most CL options that take arguments allow for a space be­
tween the option and the argument. BCC options that take arguments
are usually immediately followed by the argument or list.

Borland C++ Geffing Started

Table 3.3: CL and BCC options compared

Microsoft C Borland C++
CL option BCC option

N/A @filename
N/A + filename

N/A -AK
N/A -AU
(See IZpn) -a
(See /Zpn) -a-
lAw IGw -WO

lAw IGW -WOE

lAx -rnx

IBn N/A
N/A -B
N/A -b
N/A -b-
IC -C
Ic -c
IOid -Oname
IOid=value -Oname:string
N/A -d
N/A -d-
N/A -Efilename
IE Cpp-p
IEP CPP-P-
N/A -f-
N/A -ff
N/A -ff-
N/A -f87
N/A -f287
IF hexnum
(By default) -Fc
N/A -Frn
(By default) -Fs
IFa [/istfile] N/A
IFbbound-exe
IFc [/istfile] -s

IFe exefile -eexefile
IFI [/istfile] N/A
IFrn [mapfile] -M

IFo objfile -oobjfile

Chapter 3, For Microsoft C users

What it does

Gives the command-line compiler a response file name.
Tell the command-line compiler to use the alternate configuration
file filename.
Use only Kernighan and Ritchie keywords.
Use only UNIX keywords.
Align word.
Align byte (default).
Creates an .OBJ for Windows to be linked as a .DLL with all
functions exportable.
Creates an .OBJ for Windows to be linked as a .DLL with explicit
export functions.
Use memory model x. For BCC, following t, s, or m with! tells
compiler to assume D5!= S5.
Use alternate preprocessor CnL.
Compile and call the assembler to process inline assembly code.
Make enums word-sized by default.
Make enums signed or unsigned.
Nested comments on.
Compile to .OBJ but do not link.
Define name to the string consisting of the null character.
Defines name to string.
Merge duplicate strings on.
Merge duplicate strings off (default).
Use filename as the assembler to use.
Preprocess source to standard output, include line numbers.
Preprocess source to standard output, without line numbers.
Don't do floating point.
Fast floating point (default).
Strict ANSI floating point.
Use 8087 hardware instructions.
Use 80287 hardware instructions.
Sets stack size to hexnum bytes (hexnum must be hexadecimal).
Generates COMDEFs.
Enables the -Fc, -Ff, and -Fs options.
Make DS = SS for all memory models.
Create assembly listing. Name for list file defaults to Source.EXT.
Creates a bound executable file.
Produces a combined source and assembly code listing. Name for list
file defaults to Source.COD.
exefile names executable file.
Creates object code list. Name for list file defaults to Source.COD.
Creates map file. Name defaults to Source.MAP, where source is the
first source file specified.
objfile names object file.

33

-

Table 3.3: CL and BCC options compared (continued)

Microsoft C
CL option

IFPa
IFPc

IFPc87
IFPi

IFPi87

IFr [browsefile]
IFR [browsefile]
IFs [/istfile]
IFx [xreffile]
GO
G1
G2
N/A
N/A
IGc

IGd
IGe
IGi
IGm
IGr

IGs
IGt [number]
IGw

IGW

N/A
N/A
N/A
N/A
By default
IH number

'/HELP
N/A
/I directory

N/A
IJ

N/A
N/A
ILc and ILr

34

Borland C++
BCC option

N/A
-f

N/A
N/A

-f87 or -f287

N/A
N/A
N/A
N/A
-1
-1-
-2
-G
-G-
-p

-p-
-N
N/A
N/A
N/A

-N-
-Ff[=size]
-W

-WE

-H
-H-
-Hu
-H=filename
-h
-inumber
BCC
-in
-Ipath

-jn
-K

-k
-Lpath
lTd

What it does

Generate floating-point calls; select alternate math library.
Emulate floating point (default for Borland C++); coprocessor used
if present at run time).
Selects 80x87 library (80x87 coprocessor must be present at run time).
Inlines 80x87 instructions; selects emulator library (coprocessor used
if present at run time).
Inlines 80x87 instructions; chooses coprocessor library (coprocessor
must be present at run time).
Generates standard PWB Source Browser database.
Generates extended PWB Source Browser database.
Produce source list file. Source list file name defaults to Source.LST.
xreffile specifies a name for the MASM cross-reference file.
Generate 80186 instructions.
Generate 8088/8086 instructions.
Generate 80286 protected-mode compatible instructions.
Optimize for speed.
Optimize for size (default).
Use Pascal calling convention. For CL, this is Pascal or FORTRAN,
but currently same calling convention.
Standard C calling conventions (default).
Check for stack overflow. (Default for CL, but not for BCC).
Compile incrementally (for use with quick compile option Iqc).
Store strings in CONST segment.
Enables _fastca" to call conventions for functions (if possible,
passing value in registers).
Turn off checking for stack overflow. (Off by default for BCe.)
Creates far variables automatically; size or number is threshold.
Creates correct prolog/ epilog for Windows program (for Borland
C++, this creates an application with all functions exportable).
Generates prolog/epilog for explicit functions (marked with _export)
in Windows program.
Causes the compiler to generate and use precompiled headers.
Turns off generation and use of precompiled headers (default).
Tells the compiler to use but not generate precompiled headers.
Sets the name of the file for precompiled headers.
Use fast huge pointer arithmetic.
Restricts length of external names to number.
Calls QuickHelp. For help on BCC, simply invoke without options.
Make significant identifier length to be n.
Directories for include files. For eL, adds directory to the beginning
of include file search directory list. See page 26.
Errors: Stop after n messages. '
Changes default for char. from signed to unsigned. For Borland C++,
-K- returns to signed.
Standard stack frame on (default).
Directories for libraries.
Tells linker to create a real mode executable.

Borland C++ Getting Started

Table 3.3: CL and BCC options compared (continued)

Microsoft C Borland C++
CL option BCC option What it does

lLi [number] N/A Use incremental linker, instead of standard linker. Number specifies
byte boundary for padding near functions.

ILp N/A Create protected mode executable (OS/2).
ILr See ILc.
llink options -I options Pass options to linker when invoked.
N/A -I-option Suppress option option for the linker.
N/A -M Instruct the linker to create a map file.
IMAoption -Toption Pass to assembler when invoked.
IMC N/A Creates a DLL for OS/2.
IML N/A Statically links a library to a DLL (OS/2).
IMT N/A Provides support for multithread programs for OS/2.
N/A -npath Set the output directory.
INCdataseg -zRname Sets the data segment name. For BCC, this option changes the name

of the uninitialized data segment class to name. By default, the
uninitialized data segments are assigned to class BSS.

INMmodu/e N/A Sets the module name to module.
Inologo N/A Don't print sign-on banner.
INTsegname -zCname Sets code segment name. This option changes the name of the code

segment to name. By default, the code segment is named _TEXT,
except for the medium, large and huge models, where the name is
filename_TEXT. (filename here is the source file name.)

N/A -0 Optimize jumps.
N/A -0- No optimization (default).

4> 10 [options] (See comment) Provides optimization. For Borland C++, see specific options; for
instance, -Z,-O, or-G.

N/A -P Perform a C++ compile regardless of source file extension.
N/A -Pext Perform a C++ compile and set the default extension to ext.
N/A -P- Perform a C++ or C compile depending on source file extension

(default).
N/A -P-ext Perform a C++ or C compile depending on extension; set default

extension to ext.
N/A -p- Use C calling convention (default).
IP CPP -ofilename Preprocesses source file and sends output to filename (CPP), or to

Source.! (CL).
N/A -Qe Instructs the compiler to use all available EMS memory (default).
N/A -Qe- Instructs the compiler to not use any EMS memory.
N/A -Qx Instructs the compiler to use all available extended memory.
N/A -Qx=nnnn Instructs the compiler to reserve nnnn Kb of extended memory for

other programs, and to use the rest itself.
N/A -Qx=nnnn,yyyy Instructs the compiler to reserve nnnn Kb of extended memory for

other programs and yyyy for itself.
N/A -Qx=,yyyy Instructs the compiler to reserve yyyy Kb of extended memory for

itself.
N/A -Qx- Instructs the compiler to not use any extended memory
N/A -r Use register variables on (default).
N/A -r- Suppresses the use of register variables.
N/A -rd Only allow declared register variables to be kept in registers.
Iqc N/A Invokes quick compile.

Chapter 3, For Microsoft C users 35

Table 3.3: CL and BCC options compared (continued)

Microsoft C Borland C++
CL option BCC option

ISxoption N/A
N/A -T-
ITa asm_srctile N/A
IT c c-srctile N/A
N/A -u
N/A -u-
lu N/A
IU /dent -U/dent
N/A -V
N/A -Vs
N/A -VO,-V1
N/A -Vf
N/A -vi,-vi-
IV string N/A
N/A -w
N/A -wxxx
N/A -w-xxx
Iw -w-
N/A -WS
IWn (See -w)
IWX -g1

N/A -X
IX N/A
N/A -V
N/A -Vo
N/A -Z
N/A -zAname
N/A -zBname
N/A -zDname
N/A -zEname
N/A -zFname
N/A -zGname
N/A -zHname
N/A -zPname
N/A -zSname
N/A -zTname
N/A -zx*
IZa -A

IZc N/A
/Zd Iy
IZe -A-,-AT
/Zg N/A
IZi IV

36

What it does

Set options for source listing. Where x is I, p, s, or t.
Remove all previous assembler options.
Specifies that asm_srcfile be treated as an assembler source file.
Specifies that c_srcfile be treated as a c source file.
Generate underscores (default).
Disable underscores.
Undefines all predefined identifiers.
Undefine any previous definitions of [dent.
Smart C++ virtual tables.
Local C++ virtual tables.
External and Public C++ virtual tables.
Far C++ virtual tables.
Controls expansion of inline functions.
Copies string to object file (for version control).
Display warnings on.
Enable xxx warning message.
Disable xxx warning message.
Display warnings off.
Creates an .OBI for Windows that uses smart callbacks.
Set warning level 0, 1,2,3, or 4.
Makes all warnings fatal. No object files are generated if warning
occurs. (The -g option takes the form -gn, where n is the limit to
number of warnings.)
Disable compiler autodependency output.
Ignore INCLUDE environment variable list of include search paths.
Enable overlay code generation.
Overlay the compiled files.
Enable register usage optimization.
Code class.
BSS class.
BSS segment.
Far segment.
Far class.
BSS group.
Far group.
Code group.
Data group.
Data class.
Use default segment, class, or group name for X.
Enforces ANSI compatibility. Use only ANSI keywords. No vendor­
specific extension allowed.
Ignores case for functions declared as -pascal.
Generates line numbers for symbolic debugger.
Enable vendor-specific extensions.
Generates function prototypes; writes to standard output.
For Microsoft, generates debugger information for CodeView. For
Borland C++, generates information for IDE debugger and Turbo
Debugger.

Bor/and C++ Getting Storied

Table 3.3: CL and BCC options compared (continued)

Microsoft C
CL option

Borland C++
BCC option

IZI
/Zpn
IZr

N/A
(See -a, -a-)
N/A

IZs sourcefiles N/A

Compatibility
command-line

options and
libraries

Linker

What it does

Library search records not written to object file.
Packs structure members on the n byte boundary. n can be 1,2, or 4.
Generates checks for null pointers and far pointers that are out of
range.
Syntax check only.

The COFx.OBJ modules are provided for compatibility with source
files intended for compilers from other vendors. The COFx.OBJ
modules substitute for the COx.OBJ modules; they are to be linked
with DOS applications only, not Windows applications or DLLs.
These initialization modules are written to alter the memory
model such that the stack segment is inside the data segment. The
appropriate COFx.OBJ module will be used automatically if you
use either the -Fs or the -Fm command-line compiler option.

The -Fe (generate COMDEFs),-Ff (create far variables),-Fs
(assume DS = SS in all models), and -Fm (enable all-Fx options)
command-line compiler options are provided for compatibility.
These options are documented in full in Chapter 6 in the User's
Guide.

The Borland C++ linker, TLINK, is invoked automatically from
the command-line compiler unless the -c compiler option is used.
Options such as memory model and target (Windows or DOS),
are passed from the compiler to TLINK; TLINK links the appro­
priate libraries based on the compile options.

TLINK can be used to build both DOS and Windows programs.
See the User's Guide, Chapter 7, for material on module definition
file statements.

The following table compares TLINK and LINK options. Note
that Borland C++ TLINK options are case-sensitive, while Micro­
soft TLINK options are not.

Chapter 3, For Microsoft C users 37

Table 3.4: LINK and TLINK options compared

Microsoft C 6.0 Borland C++
Link option TLiNK option

N/A 13
I A:size IA=nnnn
IBA N/A
N/A IC

ICO Iv
ICP:bytes N/A
N/A Id
I DOSSEG (See comment)

IDS N/A

IE N/A
IF By default

IHE I?
IHI N/A

N/A Ii
IINC N/A
IINF N/A
N/A I Lpaths
ILl II
1M 1m
INOD[:filename] In
INOE Ie
INOF N/A
INOI Ic
INOL N/A
INON N/A

INOP IP-
N/A 10

IO:number N/A

IPACKC[:number] IP=n

IPACKD[:number] NI A

IP ADC:padsize N/A
IP ADD:padsize N/A
IPAU N/A
IPM:type N/A

38

What it does

Enable 32-bit processing.
Specify segment alignment for NewExe (Windows) images.
BATCH. Suppresses prompts for library or object files not found.
Treat EXPORTS and IMPORTS section of module definition file as
case sensitive.
Include full symbolic debug information.
Sets the program's maximum memory allocation to bytes.
Warn if duplicate symbols in libraries.
For assembly programs, forces a certain ordering of segments in
executable. To enable DOSSEG for an assembly program, include
DOSSEG in the source code.
For assembly programs, tells linker to load data starting at high end
of OS instead of low end.
Packs the executable by removing repeated series of bytes.
For LINK, tells linker to optimize far calls to procedures in same
segment as caller. (Used with MS IP ACKCODE option.) For TLINK
optimizes far calls automatically.
Provides help on command-line options.
For real-mode assembly programs, places executable as high in
memory as possible.
Initialize all segments.
Prepares for ILINK.
Tells LINK to display link information while in process.
Specify library search paths.
Include source line numbers and associated addresses in map file.
Create map file with public global symbols.
Don't use default libraries.
Ignore Extended Dictionary.
Turns off far call translation (see LINK IF option).
Treat case as significant in symbols.
Causes LINK to suppress banner (logo).
Arrange segments in executable in the same order as they are
arranged by IDOSSEG.
Turn off code packing.
Overlay following modules or libraries. Microsoft LINK uses
parentheses around files to be overlaid. (Note that the overlay
scheme is different between products.)
Set interrupt number for passing control to overlays (other than the
default 63).
Pack code segments. number or n specifies maximum size of groups
formed by IP ACKC or IP.
Pack data segments. number specifies maximum size of groups
formed by IP ACKD.
Tells LINK to pad code module for ILINK.
Tells LINK to pad data segments by padsize bytes.
Pauses linking.
Sets window type for Presentation Manager.

Borland C++ Getting Storied

Table 3.4: LINK and TLINK options compared (continued)

Microsoft C 6.0 Borland C++
Link option TLiNK option What it does

IQ N/A
N/A Is
ISE:number N I A
IST:number N I A
IT It

N/A lTd
N/A ITdc
N/A ITde
N/A ITw
N/A ITwe
N/A ITwd
IW N/A
N/A Ix
N/A lye
N/A Iyx

Produces Quick library.
Create detailed map of segments.
Sets maximum number of segments allowed.
Sets stack size.
Produce .COM files.

Create target DOS executable.
Create target DOS .COM file.
Create target DOS .EXE file.
Create target Windows executable (.DLL or .EXE).
Create target Windows application (.EXE).
Create target Windows DLL (.DLL).
Warn fixups.
Don't create map file.
Use expanded memory for swapping.
Use extended memory for swapping.

Source-level compatibility

Header files

The following sections tell you how to make sure that your code
is compatible with Borland C++'s compiler and linker.

If a library function exists in both the Microsoft and the Borland
C++ libraries but it has a different name or a slightly different
signature, Borland C++ will substitute the Microsoft function with
its equivalent Borland C++ function. It will only do this if __ MSC
is defined. For compatibility, define _ _ MSC before any header file
is included in any of the source files.

Some nonstandard header files can be included by one of two
names, as follows.

Original name

alloc.h
dir.h
mem.h
varargs.h
search.h

Alias

malloc.h
direct.h
memory.h
(new to this version)
(new to this version)

Chapter 3, For Microsoft C users 39

Memory models

Keywords

40

If you are defining data in header files in your program, you
should use the -Fe command-line compiler option to generate
COMDEFs. Otherwise you will get linker errors. Chapter 6 of the
User's Guide provides a complete reference to the command-line
compiler options.

Although the same names are used for the six standard memory
models, there are fairly significant differences for the large data
models in the standard configuration.

In Microsoft C, all large data models (compact, large, and huge)
have a default NEAR data segment to which OS is maintained.
Data is allocated in this data segment if the data size falls below a
certain threshold, or in a far data segment otherwise. You can set
the threshold value with the -Gtn option, where n is a byte value.
The default threshold is 32,767. If -Gt is given but n is not speci­
fied, the default is 256.

In all other memory models under Microsoft C, both a near and a
far heap are maintained.

In Borland C++, the large and compact models (but not huge)
have a default NEAR data segment to which DS is maintained.
All static data is allocated to this segment by default, limiting the
total static data in the program to 64K, but making all external
data references near. In the huge model all data is far.

In Microsoft's version of the huge memory model, a default data
segment for the entire program is maintained which limits total
near data to 64K. No limit is imposed on array sizes since all
extern arrays are treated as huge Lhuge).

In Borland C++'s huge memory model, each module has its own
data segment. The data segment is loaded on function entry. All
data defined in a module is referenced as near data and all extern
data references are far. The huge model is limited to 64K of near
data in each module.

Borland C++ supports the same set of keywords as Microsoft C
5.1 with the exception of fortran.

Borland C++ supports the same set of keywords as Microsoft C
6.0 with the exception of:

Bor/and c++ Getting Storied

Intrinsic functions

Register
conventions

Floating-point
return values

• _based, _self, and _segnanie, because Borland C++ does not
support based pointers

• _segment; Borland C++'s keyword _seg is the equivalent of
_segment

• _fastcall, an optimization for which there is no direct
equivalent

• _emit; Borland C++ uses the pseudofunction __ emit __ 0, be­
cause this style allows addresses of variables to be given as
arguments, and allows multiple bytes to be output; _emit, by
contrast, works like an assembly DB, allowing one immediate
byte to be output

• _fortran; use the -pascal calling convention instead

Borland C++ provides _cs, _ds, _es, and _ss pointer types. See
the section "Mixed model programming: Addressing modifiers"
in the Library Reference, Chapter 6 for more information.

Borland C++ does not support intrinsic functions.

Borland C++ and Microsoft C both require the called routine to
preserve DS, SS, SI, DI, and BP. Microsoft C requires that the state
of the direction flag be preserved across function calls. Borland
C++ currently doesn't make any assumptions about the state of
the direction flag.

In Microsoft C, _cdecl causes float and double values to be re­
turned in the __ fac (floating point accumulator) global variable.
Long doubles are returned on the NDP stack. _fastcall causes
floating point types to be returned on the NDP stack. -pascal
causes the calling program to allocate space on the stack and pass
address to function. The function stores the return value and
returns the address.

In Borland C++, floating point values are returned on the NDP
stack.

Chapter 3, For Microsoft C users 41

Structures
returned by value

42

In a Microsoft C-compiled function declared with _cdecl, the
function returns a pointer to a static location. This static location is
created on a per-function basis. For a function declared with
_pascal, the calling program allocates space on the stack for the
return value. The calling program passes the address for the
return value in a hidden argument to the function.

Borland C++ returns 1-byte structures in AL, 2-byte structures in
AX and 4-byte structures in AX and DX. For 3-byte structures and
structures larger than 4-bytes, the compiler passes a hidden
argument (a far pointer) to the function that tells the function
where to return the structure.

Bor/and c++ Getting Started

c H

This chapter covers the basic
ideas of C++: Chapter 5,

"Hands-on C++," takes you
on a rapid romp through

several C++ program
examples.

Chapter 4, A C++ primer

A p T E R

4

A C++ primer

This chapter gives you the feel and flavor of the C++ language.
We demystify some of the jargon and combine a little theory with
simple, illustrative programs. The source code for these examples
is provided on your distribution disks so you can study, edit,
compile, and run them. (The graphics examples, of course, will
run only if you have a graphics adapter and monitor. Any CGA,
EGA, VGA, or Hercules setup will do.)

Borland C++ provides all the features of AT&T's C++ version 2.0.
C++ is an extension of the popular C language, adding special
features for object-oriented programming (OOP).

OOP is a method of programming that seeks to mimic the way we
form models of the world. To cope with the complexities of life,
we have evolved a wonderful capacity to generalize, classify, and
generate abstractions. Almost every noun in our vocabulary re­
presents a class of objects sharing some set of attributes or beha­
vioral traits. From a world full of individual dogs, we distill an
abstract class called dog. This allows us to develop and process
ideas about canines without being distracted by the details con­
cerning any particular dog. The OOP extensions in C++ exploit
this natural tendency we have to classify and abstract things-in
fact, C++ was originally called "C with Classes."

Three main properties characterize an OOP language:

• Encapsulation: Combining a data structure with the functions
(actions or methods) dedicated to manipulating the data.

43

44

Encapsulation is achieved by means of a new structuring and
data-typing mechanism-the class.

• Inheritance: Building new, derived classes that inherit the data
a'nd functions from one or more previously-defined base classes,
while possibly redefining or adding new data and actions. This
creates a hierarchy of classes.

• Polymorphism: Giving an action one name or symbol that is
shared up and down a class hierarchy, with each class in the
hierarchy implementing the action in a way appropriate to
itself.

Borland's C++ gives you the full power of object-oriented pro­
gramming:

• more control over your program's structure and modularity

• the ability to create new data types with their own specialized
operators

• and the tools to help you create reusable code

All these features add up to code that can be more structured,
extensible, and easier to maintain than that produced with non­
object-oriented languages.

To achieve these important benefits of C++, you may need to
modify ways of thinking about programming that have been
considered standard for many years. Once you do that, however,
C++ is a simple, straightforward, and superior tool for solving
many of the problems that plague traditional software.

Your background may affect the way you look at C++:

If you are new to C and C++. You may at first have some difficulty
with the new concepts discussed in this chapter, but working
through (and experimenting with) the examples will help make
the ideas concrete. Before you begin, you should make sure you
understand the basic elements of the C language. As a beginner,
you have one very real advantage: You probably have fewer old
programming habits to unlearn.

If you are an experienced C programmer. C++ builds upon the '
existing syntax and capabilities of C. This makes learning C++
much easier than if you had to learn a whole new language. It also
allows you to port existing C programs to C++ with a minimum
of recoding. You aren't losing C's power and efficiency: You're
adding the representational power of classes and the security of
controlling access to internal data.

Bor/and C++ Getting Storied

Encapsulation

Chapter 4, A C++ primer

If you program in Turbo Pascal 5.5. Turbo Pascal 5.5 embodies
many of the same object-oriented features found in C++. While
you will have to deal with basic syntax differences between the
two languages, you will find that Turbo Pascal 5.5 objects and
Borland C++ classes are structured similarly. You will recognize
C++ member functions as being like Turbo Pascal5.5's methods, and
may note many other similarities. The main difference you will
observe is that C++ has tighter control over data access.

If you are experienced in another object-oriented programming
language. You will find some differences in C++:

II First, the syntax of C++ is that of a traditional, procedural
language.

II Second, the way C++ and Smalltalk in particular actually deal
with objects during compilation is different. Smalltalk's binding
is done completely at run time (late binding); c++ allows both
compile-time (early) binding and late binding.

In this chapter, we begin by describing the three key OOP ideas­
encapsulation, inheritance, and polymorphism-in more detail.
The first listings show fragments of code to illustrate each topic.
Later, we present complete, compilable programs. The main ex­
ample develops object-oriented representations useful for
graphics, but occasional side tours show how C++ works with
strings and other data structures.

How does C++ change the way you work with code and data?
One important way is encapsulation: the welding of code and data
together into a single class-type object. For example, you might
have developed a data structure, such as an array holding the
information needed to draw a character font on the screen, and
code (functions) for displaying, scaling and rotating, highlighting,
and coloring your font characters.

In C, the usual solution is to put the data structures and related
functions into a single separately compiled source file in an
attempt to treat code and data as a single module. While this is a
step in the right direction, it isn't good enough. There is no expli­
cit relationship between the data and the code, and you or
another programmer can still access the data directly without
using the functions provided. This can lead to problems. For

45

In these manuals, we use
bold type to distinguish the

keyword class from the
generic word "class."

example, suppose that you decide to replace the array of font
information with a linked list? Another programmer working on
the same project may decide that she has a better way to access
the character data, so she writes some functions of her own that
manipulate the array directly. The problem is that the array isn't
there any more!

C++ comes to the rescue by extending the power of C's struct and
union keywords, and by adding a keyword not found in C: class.
All three keywords are used in C++ to define classes.

In C++, a single class entity (defined with struct, union, or class)
combines functions (known as member functions) and data (known
as data members). You usually give a class a useful name, such as
Font. This name becomes a new type identifier that you can use to
declare instances or objects of that class type:

class Font {
II here you declare your members: both data and functions;
II don't worry how for the moment.

};

Font Tiffany; II declares Tiffany to be of type class
I I Font.

Note that in Borland C++ you can now use two slashes (II) to
introduce a single-line comment in both C and C++. You can still
use the /* */ comment characters if you prefer them; in fact, they
are especially useful for long comments.

Warningl Use of the II comments is not usually portable to other C
compilers. However, it is portable to other C++ compilers.

46

The variable Tiffany is an instance (sometimes called an
instantiation) of the class Font. You can use the class name Font
very much like a normal C data type. For example, you can
declare arrays and pointers:

Font Times[10);
Font* font_ptr;

II declare an array of 10 Fonts
II declare a pointer to Font

A major difference between C++ classes and C structures
concerns the accessibility of members. The members of a C
structure are freely available to any expression or function within
their scope. With C++, you can control access to struct and class
members (code and data) by declaring individual members as
public, private, or protected. (A C++ union is more like a C union,
with all members public.) We'll explain these three access levels in
more detail later on.

Borland C++ Getting Started

c++ strucfs and unions are
not quite the same as the C

versions.

Chapter 4, A C++ primer

c++ structures and unions offer more than their C counterparts:
they can hold function declarations and definitions as well as data
members. In C++, the keywords struct, union, and class can all
be used to define classes.

• A class defined with struct is simply a class in which all the
members are public by default (but you can vary this
arrangement if you wish).

• A class defined with union has all its members public (this
access level cannot be changed).

• In a class defined with class, the members are private by
default (but there are ways of changing their access levels).

So, when we talk about classes in C++, we include structures and
unions, as well as types defined with the keyword class.

Typically, you restrict member-data access to member functions:
you usually make the member data private and the member
functions public.

Returning to the problem of handling fonts, how does the C++
class concept help?

By creating a suitable Font class, you can ensure that the private
font data can be accessed and manipulated only through the
public Font member functions that you have created for that
purpose. You are now free at any time to change the font data
structure from an array to a linked list, or whatever. You would,
of course, need to recode the member functions to handle the new
font data structure, but if the function names and arguments are
unchanged, programs (and programmers) in other parts of your
system will be unaffected by your improvements!

The next figure compares the ways C and C++ provide access to a
font.

47

Figure 4.1
C versus C++

Inheritance

48

A C STRUCTURE
AND CODE

struct data
{

}"

/* Code that does something *'
/* with the data: *'
{
init(...);
get(...);
sort(...);
print(...);

}

A C++ CLASS

class
{

/* Member functions *'
e constructor(...)

oget(...)

() sort(...)

() print(...)

Thus the technique of encapsulation in classes helps provide the
very real benefit of modularity, as found in languages such as Ada
and Modula-2. The C++ class establishes a well-defined interface
that helps you design, implement, maintain, and reuse programs.
Debugging a C++ program is often simpler since many errors can
be quickly traced to one particular class.

The class concept leads to the idea of data abstraction. Our font
data structure is no longer tied to any particular physical imple­
mentation; rather, it is defined in terms of the operations (member
functions) allowed on it. At the same time, the C philosophy that
views a program as a collection of functions, with data as second­
class citizens, has also shifted. The C++ class weds data and
function as equal, interdependent partners.

The descriptive branches of science (required before the
explanatory and predictive aims of science can bear fruit) spend
much time classifying objects according to certain traits. It often
helps to organize your classification as a family tree with a single
overall category at the root, with subcategories branching out into
subsubcategories, and so on.

Bor/and c++ Getting Started

Figure 4.2
A partial taxonomy chart of

insects

Chapter 4, A C++ primer

Entomologists, for example, classify insects as shown in Figure
4.2. Within the phylum insect there are two divisions: winged and
wingless. Under winged insects is a larger number of categories:
moths, butterflies, flies, and so on.

:::I[[@m-.

+~ I

This classification process is called taxonomy. It's a good starting
metaphor for OOP's inheritance mechanism.

The questions we ask in trying to classify some new animal or
object are these: How is it similar to the others of its general class?
How is it different? Each different class has a set of behaviors and
characteristics that define it. We begin at the top of a specimen's
family tree and start descending the branches, asking those
questions along the way. The highest levels are the most general,
and the questions the simplest: Wings or no wings? Each level is
more specific than the one before it, and less general.

Once a characteristic is defined, all the categories beneath that defi­
nition include that characteristic. So once you identify an insect as
a member of the order diptera (flies), you needn't make the point
that a fly has one pair of wings. The species fly inherits that
characteristic from its order.

OOP is the process of building class hierarchies. One of the im­
portant things C++ adds to C is a mechanism by which class types
can inherit characteristics from simpler, more general types. This
mechanism is called inheritance. Inheritance provides for common­
alty of function while allowing as much specialization as needed.
If a class 0 inherits from class S, we say that 0 is the derived class
and S is the base class.

49

Polymorphism

Overloading

50

It is by no means a trivial task, though, to establish the ideal class
hierarchy for a particular application. The insect taxonomy took
hundreds of years to develop, and is still subject to change and
acrimonious debate. Before you write a line of C++ code, you
must think hard about which classes are needed at which level.
As the application develops, you may find that new classes are
required that fundamentally alter the whole class hierarchy. The
bibliography lists many books on this subject. Remember also that
a growing number of vendors are supplying Borland C++
compatible libraries of classes. So don't reinvent too many wheels.

Occasionally, you encounter a class that combines the properties
of more than one previously established class. C++ version 2.0
offers a mechanism (not found in earlier C++ versions) known as
multiple inheritance, whereby a derived class can inherit from two
or more base classes. You'll see later how this is achieved as a
logical extension of the single inheritance mechanism.

The word polymorphism comes from the Greek: "having many
shapes." Polymorphism in C++ is accomplished with virtual func­
tions. Virtual functions let you use many versions of the same
function throughout a class hierarchy, with the particular version
to be executed being determined at run time (this is called late
binding).

In C, you can only have one function with a given name. For
example, if you declare and define the function

int cube (int number);

you can now get the cube of an integer. But suppose you want to
cube a float or a double? You can of course declare functions for
these purposes, but they can't use the name cube:

float fcube (float float_number);
double dcube (double double_number);

Borland C++ Getting Staried

In C++, however, you can overload functions. This means that you
can have several functions that have the same name but work
with different types of data. Thus you can declare:

int cube (int number);
float cube (float float_number);
double cube (double double_number);

As long as the argument lists are all different, C++ takes care of
calling the correct function for the argument given. If you have
the call cube(1O); the int version of cube is called, while if you call
cube(2.5); the double version will be called. If you call cube(2.5F),
then you are passing a floating-point literal rather than a double,
and the float version will be called. Even operators such as + can
be overloaded and redefined so they work not only with num­
bers, but with graphic objects, strings, or whatever is appropriate
for a given class.

Modeling the real world with classes

Building classes: a
graphics example

Chapter 4, A C++ primer

The C++ class provides a natural way of building computer
models of real-world systems-indeed, Bjarne Stroustrup devised
the language at AT&T Bell Labs in order to model a large
telephone switching system.

There have been many C++ applications in the motor industry.
When modeling vehicles, for instance, you would be interested in
both the physical description (the number of tires, engine power,
weight, and so on) and the behavior (acceleration, breaking,
steering, fuel consumption). A Car class could encapsulate the
physical parameters (data) and their behavior (functions) in a
very general way. Using inheritance, you might then derive
specialized Sports_car and Station_wagon classes, adding new
data types and functions, as well as modifying (overriding) some
of the functions of the base class. Much of the coding you have
done for the base class(es) is reused or at least recycled.

In a graphics environment, a reasonable place to start would be a
class that models the physical pixels on a screen with the abstract
points of plane geometry. A first try might be a struct class called
Point that brings together the X and Y coordinates as data
members:

51

When you define a class, you
add a new data type to

C++. The language treats
your new data type in the

same way that it treats built­
in data types.

52

The terms object and class
instance are used

interchangeably in C++.

The Boolean type will be
familiar to Turbo Pascal

programmers.

struct Point II defines a struct class called Point
int X; II struct member data are public by default
int Y;

};

You can now declare several particular variables of type struct
Point (for brevity, we often loosely refer to such variables as being
of type Point). In C, you would use declarations such as

struct Point Origin, Center, Cur_Pas, AnyPoint;

but in C++, all you need is

Point Origin, Center, Cur_Pas, AnyPoint;

A variable of type Point (such as Origin) is one of many possible
instances of type Point. Note carefully that you assign values (par­
ticular coordinates) to instances of the class Point, not to Point
itself. Beginners often confuse the data type Point with the
instance variables of type Point. You can write Center = Origin
(assign Origin's coordinates to Center), but Point = Origin is
meaningless.

When you need to think of the X and Y coordinates separately,
you can think of them as independent members (fields) X and Y
of the structure. On the other hand, when you need to think of the
X and Y coordinates working together to fix a place on the screen,
you can think of them collectively as Point.

Suppose you want to display a point of light at a position de­
scribed on the screen. In addition to the X and Y location mem­
bers you have already seen, you'll want to add a member that
specifies whether there is an illuminated pixel at that location.
Here's a new struct type that includes all three members:

enum Boolean {false, true}; II false = 0; true = 1

struct Point
int X;
int Y;
Boolean Visible;

};

This code uses an enumerated type (enum) to create a true/false
test. Since the values of enumerated types start at 0, Boolean can
have one of two values: 0 or 1 (false or true).

Borland C++ Getting Started

Declaring objects

Member
functions

Data members are what the
class knows: its member

functions are what the class
does.

Inline functions are discussed
in more detail on pages 67

and 97.

Chapter 4, A C++ primer

As with other data types, you can have pointers to classes and
arrays of classes:

Point Origin; II declare object Origin of type Point
Point Row[80];
Point *point_ptr;
point_ptr = &Origin;
point_ptr = Row;

II declare an array of 80 objects of type Point
II declare a 'pointer to type Point'
II point it to the object Origin
II then point it to Row[O]

As you saw earlier, C++ classes can contain functions as well as
data members. A member function is a function declared within the
class definition and tightly bonded to that class type. (Member
functions are known as methods in other object-oriented lan­
guages, such as Turbo Pascal and Smalltalk.)

Let's add a simple member function, GetX, to the class Point.
There are two ways of adding a member function to a class:

• Define the function inside the class

• Declare it inside the class, then define it outside the class

The two methods have different syntaxes and technical
implications.

The first method looks like this:

struct Point {

);

int X, Y;
Boolean Visible;
int GetX() { return X;) II inline member function defined

This form of definition makes GetX an inline function by default.
Briefly, inline functions are functions "small" enough to be use­
fully compiled in situ, rather like a macro, avoiding the overhead
of normal function calls.

Note that the inline member function definition follows the usual
C syntax for a function definition: the function GetX returns an int
and takes no arguments. The body of the function, between { and
}, contains the statements defining the function-in our case, the
single statement, return X;.

53

The :: is known as the scope
resolution operator: it tells the
compiler where the function

belongs.

Chapter 3, "C++," in the Pro­
grammers Guide explains
class scope in more detail.

Calling a member
function

54

In the second method, you simply declare the member function
within struct Point, (using normal C function declaration syntax),
then provide its full definition (complete with the body statements)
elsewhere, outside the body of the class definition.

struct Point (

};

int X, Y;
Boolean Visible;
int GetX(); II member function declared

int Point::GetX() II member function defined
return X; II outside the class

Member functions defined outside the class definition still can be
made inline (if certain conditions are met), but you have to re­
quest this explicitly with the keyword inline.

Note carefully the use of the scope resolution operator in
Point::GetX in the function definition. The class name Point is
needed to tell the compiler which class GetX belongs to (there
may be other versions of GetX around belonging to other classes).
The inside definition did not need the Point:: modifier, of course,
since that GetX clearly belongs to Point.

The Point:: in front of GetX also serves another purpose. Its
influence extends into the function definition, so that the X in
return Xi is taken as a reference to the X member of the class
Point. Note also that the body of Point::GetX is within the scope
of Point regardless of its physical location.

Whichever defining method we use, the important point is that
we now have a member function GetX tied to the class Point.
Since it is a member function, it can access all the data variables
that belong to Point. In our simple case, GetX just accesses X, and
returns its value.

Now member functions represent operations on objects of their
class, so when we call GetX we must somehow indicate which
Point object is being operated on. If GetX were a normal C func­
tion (or a C++ nonmember function), this problem would not
arise-you would simply invoke the function with the expression,
GetX(}. With member functions, you must supply the name of the
target object. The syntax used is a natural extension of that used

Borland C++ Getting Started

Constructors and

in C to reference structure members. Just as you would refer to
Origin.X for the X component of the object Origin, or to Endpoint. Y
for the Y component of the object Endpoint, you can invoke GetX
with Origin.GetXO or Endpoint.GetXO. The "." operator serves as
the class component selector for both data and function members.
The general calling syntax is

class-object-name.member-function-name(argument-list)

In the same way, if you had a pointer to a Point object, you would
use the pointer member selector, "_>": Point _pointer->GetX () .
You'll see many examples of such member function calls in the
examples in this chapter.

destructors There are two special types of member functions, constructors and
destructors, that playa key role in C++. To appreciate their impor­
tance, a short detour is needed. A common problem with non­
object-oriented languages is initialization: Before using a data
structure, you must initialize it and allocate memory for it.
Consider the task of initializing the structure defined earlier:

Chapter 4, A C++ primer

struct Point
int X;
int Y;
Boolean Visible;

);

Inexperienced programmers might try to assign initial values to
the X, Y, and Visible members in the following way:

Point ThisPoint;
ThisPoint.X = 17; .
ThisPoint.Y = 42;
ThisPoint.Visible = false;

This works, but it's tightly bound to one specific object, ThisPoint.
If more than one Point object needs to be initialized, you'll need
more assignment statements that do essentially the same thing.
The natural next step is to build an initialization function that
generalizes the assignment statements to handle any Point object
passed as an argument:

void InitPoint(Point *Target, Int NewX, Int NewY)
{

Target->X = NewX;
Target->Y = NewY;

55

56

Target->Visible = false;

This function takes a pointer to a Point object and uses it to assign
the given values to its members (note again the -> operator when
using pointers to refer to class members). You've correctly de­
signed the function InitPoint specifically to serve the structure
Point. Why, then, must you keep specifying the class type and the
particular object that InitPoint acts upon? The answer is that
InitPoint is not a member function. What we really need for true
object-oriented bliss is a member function that will initialize any
Point object. This is one of the roles of the constructor.

C++ aims to make user-defined data types as integral to the lan­
guage (and as easy to use) as built-in types. Therefore, C++ pro­
vides a special type of member function called a constructor. A
constructor specifies how a new object of a class type will be
created, i.e., allocated memory and initialized. Its definition can
include code for memory allocation, assignment of values to
members, conversion from one type to another, and anything else
that might be useful. Constructors can be user-defined, or C++
can generate default constructors. Constructors can either be
called explicitly or implicitly. The C++ compiler automatically
calls the appropriate constructor whenever you define a new
object of the class. This can happen in a data declaration, when
copying an object, or through the dynamic allocation of a new
object using the operator new.

Destructors, as the name indicates, destroy the class objects previ­
ously created by a constructor by clearing values and deallocating
memory. As with constructors, destructors can be called explicitly
(using the C++ operator delete) or implicitly (when an object goes
out of scope, for example). If you don't define a destructor for a
given class, C++ generates a default version for you. Later on,
we'll be looking at the syntax for defining destructors. First,
though, let's see how constructors are made.

The following version of Point adds a constructor:

struct Point
int X;
int Y;
Boolean Visible;
int GetX () {ret urn X;}
Point (int NewX, int NewY); II constructor declaration

};

Borland C++ Getting Storied

Point::Poinf indicates that we
are defining a constructor for

the class Point.

Chapter 4, A C++ primer

Point::Point(int NewX, int NewY) II constructor definition
(

};

x = NewX;
Y = NewY;
Visible = false;

The constructor definition here is made outside the class definition.
Constructors can also be legally defined inside the class, as inline
functions. Or they can be defined outside the class definition and
made inline with the keyword inline. However, some care is
needed: the amount of code generated by a constructor is not
always proportional to the visible source code in its definition.

Notice that the name of a constructor is the same as the name of
the class: Point. That's how the compiler knows that it is dealing
with a constructor. Also note that a constructor can have argu­
ments as with any other kind of function. Here the arguments are
NewX and NewY. The constructor body is built just like the body
of any member function, so a constructor can call any member
functions of its class or access any member data. A constructor,
though, never has a return type-not even void.

Now you can declare a new Point object like this:

Point Origin(!,!);

This declaration invokes the previously defined Point constructor
for you. As you'll see later, you can have more than one construc­
tor for a class-and, as with other C++ overloaded functions, the
appropriate version will be automatically invoked according to
the argument lists involved. You'll also see that if you do not
define a constructor, C++ generates a default constructor with no
arguments.

Another useful trick in C++ is that you can have default values for
function arguments:

Point::Point(int NewX=O, int NewY=O) II revised constructor definition
(

II as before
)

The declaration,

Point Origin(S);

would initialize X to 5 and Y to 0 by default.

57

58

Code and data
together

Member access
control: private,

public, and
protected

One of the most important tenets of object-oriented programming
is that the programmer should think of code and data together
during program design. Neither code nor data exist in a vacuum.
Data directs the flow of code, and code manipulates the shape and
values of data.

When your data and code are separate entities, there's always the
danger of calling the right function with the wrong data or the
wrong function with the right data. Matching the two is the pro­
grammer's job, and while ANSI C, unlike older versions of C, pro­
vides good type-checking, at best it can only say what doesn't go
together.

By bundling code and data declarations together, C++ classes help
keep them in sync. Typically, to get the value of one of a class's
data members, you call a member function belonging to that class
which returns the value of the desired member. To set the value of
a field, you call a member function that assigns a new value to
that field.

While the enhanced struct in C++ allows bundling of data and
functions, it is not as encapsulated or modular as it could be. As
we mentioned earlier, access to all data members and member
functions of a struct is public by default-that is, any statement
within the same scope can read or change the internal data of a
struct class. As noted earlier, this isn't desirable and can lead to
serious problems. Good C++ design practices data hiding or infor­
mation hiding-keeping member data private or protected, and
providing an authorized interface for accessing it. The general
rule is to make all data private so that it can be accessed only
through public member functions. There are only a few situations
where public rather than private or protected data members are
needed. Also, some member functions involved only in internal
operations can be made private or protected rather than public.

Three keywords provide access control to structure or class mem­
bers. The appropriate keyword (with a colon) is placed before the
member declarations to be affected:

Borland C++ Getting Started

The class: private
by default

Chapter 4, A C++ primer

private: Members following this keyword can be accessed
only by member functions declared within the same
class.

protected: Members following this keyword can be accessed by
member functions within the same class, and by
member functions of classes that are derived from
this class (see the discussion on page 63).

public: Members following this keyword can be accessed
from anywhere within the same scope as the class
definition.

For example, here is how to redefine the Point structure so that
the data members are private and the member functions are
public:

struct Point
private:

int Xi
int Yi

public:
int GetX () i

Point(int NewX, int NewY)i
}i

A struct class is public by default, so you have to use private: to
specify the private part, and then public: for the part to be made
available for general access. Since good C++ practice makes things
private by default and carefully specifies what should be public,
C++ programmers generally favor the class over the struct. The
only difference between a class and a struct is this matter of
default privacy.

Point redefined as a class looks like this:

class Point
int Xi
int Yi

II private by default

public: II needed to override the private default
int GetX () i

Point (int NewX, int NewY)i
}i

No private modifier is needed for the data members-they're
private by default. The member functions, however, must be

59

Data members are usually
private, while member func­

tions are usually public. Allow
public access only where it is

truly needed.

Running a C++

declared public so that they can be used outside of the class to
initialize and retrieve values of Point objects.

You can repeat access control specifications as often as needed:

enum Boolean {false, true};

class Employee {
double salary;
Boolean permanent;
Boolean professional;

public:
char name[50];
char dept_code[3];

private:
int Error_check(void);

public:

II private by default

Employee(double salary, Boolean permanent, Boolean professional,
char *name, char *dept_code);

};

Here the data members salary, permanent, and professional are
private by default; the data members name and dept_code are de­
clared to be public; the member function Error_check is declared
to be private (intended for internal use); and the constructor
Employee is declared to be public.

program It's time to put everything you've learned so far together into a
complete compilable program. To compile a C++ program in the
IDE, enter or load your text into the editor as usual. You can run
C++ programs from the IDE in either of two ways. First, by
default, any file with the .CPP extension will be compiled
assuming C++ syntax, and any files with the.C extension will be
compiled assuming C syntax. However, you can select the C++
Always button in the Source Options dialog box to have all files
treated as C++ source files, regardless of extension.

To compile a C++ program with the command-line compiler, just
give your file the extension .CPP. Or you can use the command­
line option -P, in which case Borland C++ will assume that the
file has an extension of .CPP. If the file has a different extension,
you must give the extension along with the file name. Life will be
easier for you (and your next-of-kin) if you give all C++ programs
a .CPP extension and all C programs a .C extension.

60 Borland C++ Getting Storied

This code is available to load
and run: POINT. CPP.

Chapter 4, A C++ primer

The program POINT.CPP defines the Point class and manipulates
its data values:

1* POINT.CPP illustrates a simple Point class *1

#include <iostream.h> II needed for Ctt 1/0

class Point II define Point class
int X; II X and Y ar~ private by default
int Y;

public:

);

Point(int InitX, int InitY) {X = InitX; Y = InitY;)
int GetX() {return X;) II public member functions
int GetY() {return Y;)

int main ()
{

int YourX, YourY;

cout « "Set X coordinate: "; II screen prompt
cin » YourX; II keyboard input to YourX

cout « "Set Y coordinate: "; II another prompt
cin » YourY; II key value for YourY

Point YourPoint(YourX, YourY); II declaration calls constructor

cout « "X is " « YourPoint.GetX (); I I call member function
cout « '\n'; I I newline
cout « fly is " « YourPoint.GetY(); II call member function
cout « '\n';
return 0;

The class Point now contains a new member function, GetY. This
function works just like the GetX defined earlier, but accesses the
private data member Y rather than X. Both are "short" functions
and good candidates for the inline form of definition within the
class body.

As with a macro using the #define directive, the code for an inline
function is substituted directly into your file each time the func­
tion is used, thereby avoiding the function call overhead at the
expense of code size. This is the classic "space versus time"
dilemma found in many programming situations. As a general
rule you should only use inline definitions for "short" functions,
say one to three statements. Note that, unlike a macro, an inline
function doesn't sacrifice the type checking that helps prevent
errors in function calls. The number of arguments in a function is
also relevant to your decision whether to "inline" or not, since the

61

The iostreams library is
discussed in detail on page

106 and also in Chapter 5,
"C++ streams," in the Pro­

grammer's Guide.

62

argument structure affects the function call overhead. The case for
inlining is strongest when the total code for the function body is
smaller than the code it takes to call the function out of line. You
may need to try both methods and examine the assembly code
output before deciding which approach is best for your needs.

Whether to inline a constructor or not can depend on whether
base constructors are involved. A derived class constructor,
especially where there are virtual functions (see page 78) in the
hierarchy, can generate a lot of "hidden" code.

In the above example, the Point constructor has been defined as
out-of-line, following the end of the class declaration. While you
can put definitions in any order (and even put them elsewhere in
the current file), it makes sense with smaller, single-file programs
to put those definitions that aren't inline right after the class
definition, in the order in which they were declared.

As your code gets larger, you'll probably have your class declara­
tions in header files, and your class function definitions (imple­
mentation code) in separately compiled C++ source files. Inline
function definitions, however, should always be in the header file.

This program also introduces the C++ iostreams library (note the
statement #include <iostream.h> at the beginning of the program).

cout represents the standard output stream (by default, the screen).
Data (variable values and strings, for example) are sent to it using
the "put to" or insertion operator, «.

cin represents the standard input stream (normally the keyboard).
Values typed at the keyboard are stored in variables using the »
("get from" or extraction) operator. The use of the shift operators,
»and «, for stream I/O is a typical example of operator
overloading in C++.

The streams functions save you having to deal directly with the
kinds of formatting details that printf and scanf require; they also
allow I/O to be tailored to particular classes.

Once the X and Yvalues have been received from the keyboard,
the Point object YourPoint is declared with the received values as
arguments. Recall that this declaration automatically invokes the
constructor for the Point class, which creates and initializes
YourPoint.

Try running the program. The result should look like this:

Set X coordinate: 50

Bor/and C++ Getting Storied

Inheritance

Rethinking the
Point class

Chapter 4, A C++ primer

Set Y coordinate: 100
X is 50
Y is 100

Classes don't usually exist in a vacuum. A program often has to
work with several different but related data structures. For exam­
ple, you might have a simple memory buffer in which you can
store and from which you can retrieve data. Later, you may need
to create more specialized buffers: A file buffer that holds data
being moved to and from a file, and perhaps a buffer to hold data
for a printer, and another to hold data coming from or going to a
modem. These specialized buffers clearly have many character­
istics in common, but each has some differences caused by the fact
that disk files, printers, and modems involve devices that work
differently.

The C++ solution to this "similar but different" situation is to al­
low classes to inherit characteristics and behavior from one or
more base classes. This is an intuitive leap; inheritance is perhaps
the single biggest difference between C++ and C. Classes that
inherit from base classes are called derived classes. And a derived
class may itself be the base class from which other classes are
derived (recall the insect family tree).

The fundamental unit of graphics is the single point on the screen
(one pixel). So far we've devised several variants of a Point class
that define a point by its X and Y locations, a constructor that
creates and initializes a point's location, and other member func­
tions that can return the point's current X and Y coordinates.
Before you can draw anything, however, you have to distinguish
between pixels that are "on" (drawn in some visible color) and
pixels that are "off" (have the background color). Later, of course,
you may want to define which of many colors a given point
should have, and perhaps other attributes (such as blinking).
Pretty soon you can end up with a complicated class that has
many data members.

Let's rethink our strategy. What are the two fundamental kinds of
information about points? One kind of information describes

63

64

This code is available as
point.h.

where the point is (location) and the other kind of information
describes how the point is (the point's state of being: You can
either see it, or you can't, and if you can see it, it is in some color).
Of the two, the location is most fundamental: Without a location,
you can't have a point at all.

Because all points must contain a location, you can make the class
Point a derived class of a more fundamental base class, Location,
which contains the information about X and Y coordinates. Point
inherits everything that Location has, and adds whatever is new
about Point to make Point what it must be.

These two related classes can be defined this way:

1* point.h--Example from Chapter 4 of Getting Started *1

II'point.h contains two classes:
II class Location describes screen locations in X and Y coordinates
II class Point describes whether a point is hidden or visible

enum Boolean {false, true}i

class Location
protected: II allows derived class to access private data

int Xi
int Yi

public: II these functions can be accessed from outside
Location(int InitX, int InitY);
int GetX()i
int GetY () i

};

class Point: public Location II derived from class Location
II public derivation means that X and Yare protected within Point

protected:
Boolean Visible; II classes derived from Point will need access

pUblic:

}i

Point(int InitX, int InitY)i
void ShOW()i
void Hide()i
Boolean IsVisible();
void MoveTo(int NewX, int NewY);

II constructor

Here, Location is the base class, and Point is the derived class.
The process can continue indefinitely: You can define other
classes derived from Location, other classes derived from Point,
yet more classes derived from Points derived class, and so on.
You can even have a class derived from more than one base class:

Bor/and c++ Getting Started

Inheritance and
access control

Table 4.1
Class access

In a derived class, access to
the elements of its base class

can be made more
restrictive but never less

restrictive.

Chapter 4, A C++ primer

This is called multiple inheritance, and will be discussed later. A
large part of designing a C++ application lies in building this class
hierarchy and expressing the family tree of the classes in the
application.

Before we discuss the various member functions in point.h, let's
review the inheritance and access control mechanisms of C++.

The data members of the Location class are declared to be
protected-recall that this means that member functions in both
the Location class and the derived class Point will be able to ac­
cess them, but the "public at large" won't be able to do so.

You declare a derived class as follows:

class 0 access_modifier B { II default is private

or

struct 0 access modifier B { II default is public

D is the name of the derived class, access_modifier is optional
(either public or private), and B is the name of the base class.

With class, the default access_modifier is private; with struct, the
default is public. (Note that unions can be neither base nor
derived classes.)

The access_modifier is used to modify the accessibility of inherited
members, as shown in the following table:

Access in base class

private
protected
public

private
protected
public

Access modifier

private
private
private

public
public
public

Inherited access in base

not accessible
private
private

not accessible
protected
public

When writing new classes that rely on existing classes, make sure
you understand the relationship between base and derived
classes. A vital part of this is understanding the access levels con­
ferred by the specifiers private, protected, and public. Access
rights must be passed on carefully (or withheld) from parents to

65

See Chapter 3, "C++, H in the
Programmer's Guide for

more advanced technical
details.

Bose closs members that you
wont to use in a derived

closs must be either
protected or public. private

bose closs members can't
be accessed except by their

own member functions or
through friend functions.

66

Packaging
classes into

modules

children to grandchildren. C++ lets you do this without "ex­
posing" your data to non-family and non-friends. The access level
of a base class member, as viewed by the base class, need not be
the same as its access level as viewed by its derived class. In other
words, when members are inherited, you have some control over
how their access levels are inherited.

A class can be derived privately or publicly from its base class.
private derivation (the default for class type classes) converts
public and protected members in the base class into private
members of the derived class, while private members remain
private. (Although private derivation is the default for classes, it is
by no means the most commonly used method of derivation-so
we have a rare situation where the default is not the norm).

A public derivation leaves the access level unchanged.

A derived class inherits all members of its base class, but can only
use the protected and public members of its base class. private
members of the base class are not directly available through the
members of the derived class.

The particular definitions of Location and Point adopted here will
allow us later on to derive further classes from Point for more
complex graphics applications.

If you use public derivation, protected members of the base class
remain protected in the derived class, and thus won't be available
from outside except to other publicly derived classes and friends.
It's a good idea to always specify public or private, whatever the
default, to avoid confusion. Good comments, too, will improve
your source code legibility.

Classes such as Location and Point can be packaged together for
use in further program development. With its built-in data, mem­
ber functions, and access control, a class is inherently modular. In
developing a program, it often makes sense to put the declara­
tions for each class or group of related classes in a separate header
file, and the definitions for its non-inline member functions in a
separate source file. (See Chapter 4, "Managing multi-file pro­
jects," in the User's Guide for details on how to use the Project
Manager to manage programs that consist of multiple source
files.)

Borland C++ Getting Storied

This code is available as
POINT2.CPP.

Chapter 4, A C++ primer

You can also combine several class object files into a library using
TLIB. (See Chapter 7, "Utilities," in the User's Guide to learn how
to create libraries.)

There are further advantages to modularizing classes: You can
distribute your classes in object form to other programmers. The
other programmers can derive new, specialized classes from the
ones you made available, without needing access to your source
code. Even though C++ version 2.0 is quite new, third-party class
libraries are already appearing, and you can expect that your
fellow C++ programmers will be offering many more goodies that
you can use to get a head start in your programming projects.

We can now develop a separately compiled "module" containing
the Location and Point classes. First, the declarations for the two
classes (including their member functions) as listed on page 64 are
put in the file point.h (on your distribution disks).

Note again how the class Point is derived from the class Location:

class Point: public Location { ...

The keyword public is needed before Location to ensure that the
member functions of the derived class, Point, can access the
protected members X and Y in the base class, Location. In
addition to the X and Y location members, Point inherits the
member functions GetX and GetY from Location. The class Point
also adds the protected data member Visible (of the enumerated
type Boolean), and five public member functions, including the
constructor Point::Point. Note again that we have used protected
rather than private access for certain elements so that point.h can
be used in later examples that have further classes derived from
Location and Point.

The file POINT2.CPP contains the definitions for all of the mem­
ber functions of these two classes:

1* POINT2.CPP--Exarnple from Chapter 4 of Getting Started *1

II POINT2.CPP contains the definitions for the Point and Location
II classes that are declared in the file point.h

'include "point.h"
'include <graphics.h>

II member functions for the Location class
Location::Location(int InitX, int InitY) {

};

X = InitX;
Y ::: InitY;

67

A base constructor is invoked
before the body of the

derived class constructor.

68

int Location::GetX(void)
return X;

};

int Location::GetY(void)
return Y;

};

II member functions for the Point class: These assume
II the main program has initialized the graphics system

Point::Point(int InitX, int InitY) : Location (InitX, InitY)
Visible = false; II make invisible by default

};

void Point::Show(void)
Visible = true;
putpixel(X, Y, getcolor());

};

void Point::Hide(void) {
Visible = false;

II uses default color

putpixel(X, Y, getbkcolor()); II uses background color to erase
};

Boolean Point::lsVisible(void)
return Visible;

};

void Point::MoveTo(int NewX, int NewY) {
Hide(); II make current point invisible
X = NewX; II change X and Y coordinates to new location
Y = NewY;
Show () ; II show point at new location

};

This example introduces the important concept of base-class con­
structors. When a Point object is defined, we want to make use of
the fact that its base class, Location, already has its own user­
defined constructor. The definition of the constructor Point::Point
begins with a colon and a reference to the base constructor
Location(InitX,InitY). This specifies that the Point constructor will
first call the Location constructor with the arguments InitX and
InitY, thereby creating and initializing data members X and Y.
Then the Point constructor body is invoked, creating and initial­
izing the data member Visible. By explicitly spec~fying a base
constructor, we have saved ourselves some coding (in larger
examples, of course, the savings may be more significant).

In fact, derived-class constructors always call a constructor of the
base class first to ensure that inherited data members are correctly

Bor/and c++ Getting Staried

You'll need to compile and
link POINT2. CPP, PIXEL. CPP,

and GRAPHICS. LIB, using the
PIXEL.PRJ project file supplied

on your distribution disks.
(Read Chapter 4, "Manag­

ing multi-file projects, " in the
User's Guide if you don't
know how to use project

files.)

Chapter 4, A C++ primer

created and initialized. If the base class is itself derived, the pro­
cess of calling base constructors continues down the hierarchy. If
you don't define a constructor for a particular class X, C++ will
generate a default constructor of the form X::X(}; that is, a
constructor with no arguments.

If the derived-class constructor does not explicitly invoke one of
its base-class constructors, or if you have not defined a base-class
constructor, the default base class constructor (with no argu­
ments) will be invoked. (There's more on base class constructors
in Chapter 3, "C++," in the Programmer's Guide.)

Notice that the reference to the base class constructor,
Location(InitX,InitY) appears in the definition, not the declaration,
of the derived class constructor.

Here's a main program (available on your distribution disks as
PIXEL.CPP) that demonstrates the capabilities of the Point and
Location classes.

1* PIXEL.CPP--Example from Chapter 4 of Getting Started *1

II PIXEL.CPP demonstrates the Point and Location classes
II compile with POINT2.CPP and link with GRAPHICS.LIB

#include <graphics.h>
#include <conio.h>
#include "point.h"
classes

int main ()
(

II declarations for graphics library
II for getch() function
II declarations for Point and Location

II initialize the graphics system
int graphdriver = DETECT, graphmode;
initgraph(&graphdriver, &graphrnode, "c: .. \\bgi");

II move a point across the screen
Point APoint(100, 50); II Initial X, Y at 100, 50
APoint.Show(); II APoint turns itself on
getch(); II Wait for keypress
APoint.MoveTo(300, 150); II APoint moves to 300,150
getch(); II Wait for keypress
APoint.Hide(); II APoint turns itself off
getch(); II Wait for keypress
closegraph(); II Restore original screen
return 0;

69

Extending classes

This code is on your disks:
CIRCLE. CPP.

70

One of the beauties of classes is the way that new objects can be
accommodated and given appropriate functionality. The next ex­
ample takes the already defined Location and Point classes and
derives a new class, Circle, along with functions to show, hide,
expand, move, and contract circles.

1* CIRCLE.CPP--Example from Chapter 4 of Getting Started *1

II CIRCLE.CPP A Circle class derived from Point

#include <graphics.h>
#include "point.h"
#include <conio.h>

II graphics library declarations
II Location and Point class declarations
II for getch() function

II link with point2.obj and graphics.lib

class Circle: Point { II derived privately from class Point
II and ultimately from class Location

int Radius; II private by default

public:
Circle(int InitX, int InitY, int InitRadius);
void Show(void);
void Hide(void);
void Expand(int ExpandBy);
void MoveTo(int NewX, int NewY);
void Contract (int ContractBy);

};

Circle: :Circle(int InitX, int InitY, int InitRadius)
Point (InitX, InitY)
{

Radius ;:: InitRadius;
};

void Circle::Show(void)
{

Visible ;:: true;
circle (X, Y, Radius);

void Circle::Hide(void)
{

unsigned int TempColor;
TempColor;:: getcolor();
setcolor(getbkcolor());
Visible;:: false;
circle (X, Y, Radius);
setcolor(TempColor);

II draw the circle

II to save current color
II set to current color
II set drawing color to background

II draw' in background color to erase
II set color back to current color

Borland C++ Getting Started

Chapter 4, A C++ primer

};

void Circle::Expand(int ExpandBy)
{

};

Hide () ;
Radius t= ExpandBy;
if (Radius < 0)

Radius = 0;
Show () ;

II erase old circle
II expand radius
II avoid negative radius

II draw new circle

void Circle::Contract(int ContractBy)
(

Expand(-ContractBy); II redraws with (Radius - ContractBy)
};

void Circle::MoveTo(int NewX, int NewY)
{

};

Hide () ;
X = NewX;
Y = NewY;
Show () ;

II erase old circle
II set new location

II draw in new location

main ()
(

II test the functions

II initialize the graphics system
int graphdriver = DETECT, graphmode;
initgraph(&graphdriver, &graphmode, " .. \\bgi");

Circle MyCircle(lOO, 200, 50);
MyCircle.Show();
getch();
MyCircle.MoveTo(200, 250);

getch () ;
MyCircle.Expand(50);
getch () ;
MyCircle.Contract(75) ;
getch () ;
closegraph();
return 0;

II declare a circle object
II show it
II wait for keypress
II move the circle (tests hide
II and show also)

II make it bigger

II make it smaller

To see how this works for the Circle class, you need to examine
the member functions in the listing CIRCLE.CPP and refresh
yourself on the class declarations in point.h.

Note first that the member functions of Circle need to access
various data members in the classes Circle, Point, and Location.

71

72

Consider Circle::Expand. It needs access to int Radius. No
problem. Radius is defined as private (by default) in Circle itself.
So, Radius is accessible to Circle::Expand-indeed, it is accessible
only to member functions of Circle. (Later, you'll see that the
private members of a class can also be accessed by functions that
have been specially defined as friends of that class.)

Next,look at the member function Circle::Hide. This needs to
access Boolean Visible from its base class Point. Now Visible is
protected in Point, and Circle is derived privately (by default)
from Point. So, from the rules outlined above, Visible is private
within Circle, and is accessible just like Radius. Note that if Visible
had been defined as private in Point, it would have been inaccess­
ible to the member functions of Circle. So, you might be tempted
to make Visible public. However, this is overkill: Visible would
become accessible to non-member functions. You might say that
protected is private with a dash of public for derived classes:
member functions of a derived class can access a protected
member without exposing that member to public abuse.

Finally, consider Circle::Show. Circle::Show needs to access
Location's members X and Y in order to draw the circle. How is
this achieved? Circle is not directly derived from Location, so the
access rights are not immediately obvious. Circle derives from
Point which derives from Location. Let's trace the access
declarations.

1. Members X and Yare declared protected in Location.

2. Point specifies public derivation from Location, so Point also
inherits the X and Y members as protected.

3. Circle is derived from Point using the default private
derivation.

4. Circle therefore inherits X and Y as private. Circle: :Show can
access X and Y. Note that X and Yare still protected within
Location.

Having digested this chain of access rights, you might want to
consider the situation if a derived class of Circle, such as PieChart
or Arc, was needed. Yes, you would need to change the derivation
of Circle from Point-it would need to be a public derivation and
Radius would need to become protected.

It should now be pretty easy to see what is going on in
CIRCLE.CPP. A circle, in a sense, is a fat point: It has everything a
point has (an X,Y location and a visible/invisible state) plus a

Borland C++ Getting Storied

Multiple
inheritance

Chapter 4, A C++ primer

radius. Class Circle appears to have only the single member
Radius, but don't forget about all the members that Circle inherits
by being a derived class of Point. Circle has X, Y, and Visible as
well, even if you don't see them in the class definition for Circle.

Compile and link CIRCLE.CPP, POINT2.CPP, and
GRAPHICS. LIB. The project file CIRCLE.PRJ on your distribution
disks will help you do this. As you press a key, you should see a
circle. Press a key again and the circle moves. Again, and the
circle expands, and again and the circle contracts.

As we mentioned earlier, a class can inherit from more than one
base class. This multiple inheritance mechanism was one of the
main features added to C++ release 2.0. To see a practical
example, the next program lets you display text inside a circle.

Your first thought might be to simply add a string data member
to the Circle class and then add code to Circle: :Show so that it
displays the text with the circle drawn around it. But text and
circles are really quite different things: When you think of text
you think of fonts, character size, and possibly other attributes,
none of which really has anything to do with circles. You could, of
course, derive a new class directly from Circle and give it text
capabilities. When dealing with fundamentally different function­
alities, however, it is often better to create new "fundamental"
base classes, and then derive specialized classes that combine the
appropriate features. The next listing, MCIRCLE.CPP, illustrates
this approach.

We'll define a new class called GMessage that displays a string on
the screen starting at specified X and Y coordinates. This class will
be MCircle's other parent. MCircle will inherit GMessage::Show
and use it to draw the text. The relationships of all of the classes
involved is shown in the next figure.

73

Figure 4.3
Multiple inheritance

This code is available on your
disks: MCIRCLE.CPP. You

need to run it using
MCIRCLE.PRJ.

74

class Location: {
Int X;
Int y;

j"

I

+ +
class Point : Location { class GMessage : Location (
Int Visible; char *msg;

j"
Int Font;
Int Field;
)

~
class Circle : Point {
Int Radius;

j"

I

+
class. MClrcle : Circle. GMessage {

j"

1* MCIRCLE.CPP--Example for Chapter 4 of Getting Started *1

II MCIRCLE.CPP Illustrates multiple inheritance

#include <graphics.h> II Graphics library declarations
#include "point.h" II Location and Point class declarations
#include <string.h> II for string functions
#include <conio.h> II for console IIO
II link with point2.obj and graphics.lib

II The class hierarchy:
II Location->Point->Circle
II (Circle and CMessage)->MCircle

class Circle: public Point { II Derived from class Point and
II ultimately from class Location

protected:
int Radius;

public:
Circle(int InitX, int InitY, int InitRadius);
void Show(void);

};

Borland C++ Getting Storied

Chapter 4, A C++ primer

class GMessage : public Location {
II display a message on graphics screen

char *msg; II message to be displayed
int Font; II BGI font to use
int Field; II size of field for text scaling

public:

};

II Initialize message
GMessage(int msgX, int msgY, int MsgFont, int FieldSize,

char *text);
void Show(void); II show message

class MCircle : Circle, GMessage { II inherits from both classes
public:

MCircle(int mcircX, int mcircY, int mcircRadius, int Font,

};

char *msg);
void Show(void);

II Member functions for Circle class

IICircle constructor

II show circle with message

Circle::Circle(int InitX, int InitY, int InitRadius) :
Point (InitX, InitY) II initialize inherited members

Iialso invokes Location constructor

Radius = InitRadius;
};

void Circle::Show(void)
{

Visible = true;
circle (X, Y, Radius); II draw the circle

}

II Member functions for GMessage class

IIGMessage constructor
GMessage::GMessage(int msgX, int msgY, int MsgFont,

int FieldSize, char *text)
Location (msgX, msgY)

IIX and Y coordinates for centering message
{

Font = MsgFont; II standard fonts defined in graph.h
Field = FieldSize; II width of area in which to fit text
msg = text; II point at message

};

void GMessage::Show(void)
{

75

The :: operator is used to
specify a function from

another scope rather than
(by default) using the func­

tion of that name in the
current scope.

76

int size = Field I (8 * strlen(msg)); II 8 pixels per char.
settextjustify(CENTER_TEXT, CENTER_TEXT); II centers in circle
settextstyle(Font, HORIZ_DIR, size); II magnify if size> 1
outtextxy(X, Y, msg); II display the text

IIMember functions for MCircle class

IIMCircle constructor
MCircle::MCircle(int mcircX, int mcircY, int mcircRadius, int Font,

char *msg) : Circle (mcircX, mcircY, mcircRadius),
GMessage(mcircX,mcircY,Font,2*mcircRadius,msg)

void MCircle::Show(void)
(

Circle: : Show () ;
GMessage::Show();

main ()
(

Iidraws some circles with text

int graphdriver = DETECT, graphmode;
initgraph{&graphdriver, &graphmode, " .. \\bgi");
MCircle Small(250, 100, 25, SANS_SERIFJONT, "You");
Small. Show () ;
MCircle Medium(250, 150, 100, TRIPLEXJONT, "World");
Medium.Show();
MCircle Large(250, 250, 225, GOTHICJONT, "Universe");
Large.Show();
getch ();
closegraph();
return 0;

As you read the listing, check the class declarations and note
which data members and member functions are inherited by each
class. You may also want to look at point.h again, since the
Location and Point classes are defined there. Notice that both
MCircle and GMessage have Location as their ultimate base class:
MCircle by way of Point and Circle, and GMessage directly.

In the body of the definition of MCircle::Show, you will see the
two function calls Circle::ShowO; and GMessage::ShowO;. This
syntax shows another common use of :: (the scope resolution
operator). When you want to call an inherited function, such as
Show, the compiler may need some help: which Show is re­
quired? Without the scope resolution "override," ShowO would
refer to the Show() in the current scope, namely MCircle::ShowO.

Borland C++ Getting Started

You'll find a more detailed
account of how C++ handles
scope in Chapter 3, "C++," in

the Programmer's Guide.

See Chapter 3, "C++," in the
Programmer's Guide for

details on constructor calling
sequences.

Chapter 4, A C++ primer

To call the Show() of another scope (assuming, of course, that you
have access permission), you must supply the appropriate class
name followed by:: and the function name (with arguments, if
any). What if there happened to be a nonmember function called
Show that you wanted to call? You would use ::Show() with no
preceding class name.

A member function of a given name in the derived class overrides
the member function of the same name in the base class, but you
can still get at the latter by using ::. The scoping rules for C++ are
slightly different from those for C.

Before leaving MCIRCLE.CPP, a brief word about the constructor
for MCircle. You saw earlier how the Point constructor explicitly
invoked its base constructor in Location. Since MCircle inherits
from both Circle and GMessage, the MCircle constructor can con­
veniently initialize by calling both base constructors:

MCircle: :MCircle
(int mcircX, int mcircY, int mcircRadius, int font, char *msg)
Circle (mcircX, mcircY, mcircRadius),
GMessage(mcircX, mcircY, 2*mcircRadius,msg) {

The constructor body is empty here because all the necessary
work is accomplished in the member initialization list (after the :
you enter a list of initializing expressions separated by commas.
You met a simpler version of this syntax in the single base class
constructors used in the Point and Circle class definitions). When
the MCircle constructor is invoked (by declaring an MCircle
object, for example), quite a spate of activity is triggered behind
the scenes.

First, the Circle constructor is called. This constructor then calls
the Point constructor, which in turn calls the Location constructor.
Finally, the GMessage constructor is called, which calls the
Location constructor for its own copy of its base class X and Y.
The arguments given in the MCircle constructor are passed on to
initialize the appropriate data members of the base classes.

When destructors are called (when an object goes out of scope, for
example), the deallocation sequence is the reverse of that used
during construction. (Virtual base class constructors and destruc­
tors have some sequencing quirks beyond the scope of this
chapter).

77

Figure 4.4
Circles with messages

Virtual functions

78

In passing, recall the point made earlier: if you don't supply your
own constructors or destructors, C++ will generate and invoke
default versions behind the scenes.

Figure 4.4 shows the output of MCIRCLE:

World

Each class type in our graphics hierarchy represents a different
type of figure onscreen: a point or a circle. It certainly makes sense
to say that you can show a point on the screen, or show a circle.
Later on, if you were to define classes to represent other figures
such as lines, squares, arcs, and so on, you could write a member
function for each that would display that object onscreen. In the
new way of object-oriented thinking, you could say that all these
graphic figure types had the ability to show themselves on the
screen.

What is different for each object type is the way it must show itself
onscreen. A point is drawn with a point-plotting routine that
needs only an X,Y location and perhaps a color value. A circle
needs a more complex graphics routine to display itself, taking
into account not only X and Y, but a radius as well. Still further,
an arc needs a start angle and an end angle, and a different

Borland C++ Getting Storied

Chapter 4, A C++ primer

drawing algorithm. The same situation, of course, applies to
hiding, dragging, and other basic shape manipulations.

The ordinary member functions you have seen so far certainly
allow us to define a Show function for each shape class. But they
lack an essential ingredient. Graphics modules based on our
existing classes and member functions would need source code
changes and recompilations each time a new shape class was
introduced with its own member function Show. The reason is
that the C++ mechanisms revealed so far allow essentially only
three ways to resolve the question: which Show is being
referenced ?:

1. There's the distinction by argument signature-Show(int,char)
is not the same function as Show(char*,float), for example.

2. There's the use of the scope resolution operator, whereby
Circle::Show is distinguished from Point::Show and ::Show.

3. There's the resolution by class object: ACircle.Show invokes
Circle::Show, while Apoint.Show invokes Point::Show.
Similarly with pointers to objects: APointyointer->Show
invokes Point::Show.

All these function resolutions, so far, have been made at compile
time-a mechanism which is referred to as early or static binding.

A typical graphics toolbox would provide the user with class defi­
nitions in .R source files together with the precompiled .OBI or
.LIB code for the member functions. With the early binding re­
strictions, the user cannot easily add new class shapes, and even
the developer faces extra chores in extending the package. C++
offers a flexible mechanism to solve these problems: late (or dy­
namic) binding by means of special member functions called
virtual functions.

The key concept is that virtual function calls are resolved at run
time (hence the term, late binding). In practical terms, it means
that the decision as to which Show function is called can be de­
ferred until the object type involved is known during execution. A
virtual function Show, "hidden" in a class B in the precompiled
toolbox library, is not bound to the objects of B in the way that
ordinary member functions of B are. You are free to create a class
D derived from B for your own favorite shape, and write appro­
priate functions (putting on your Show, as it were). You then
compile and link your OBI or LIB code to that of the toolbox. Calls
made on Show, whether from existing member functions of B or

79

Virtual functions in

from the new functions you have written for 0, will automatically
reference the correct Show. This resolution is made entirely on the
object type involved in the call. Let's look at virtual functions in
action. We have a potential candidate in the earlier code given for
CIRCLE.CPP

action Consider the member function Circle::MoveTo in CIRCLE.CPP:

80

void Circle::MoveTo(int NewX, int NewY)
{

Boolean vis = Visible;
if (vis) Hide(); II hide only if visible
X = NewX; Y = NewY; II set new location
if (vis) Show(); II draw at new location if previously

II visible

Notice how similar this definition is to Point::MoveTo found in
the Circle's base class Point. In fact, the return value, function
name, number and types of formal arguments (known as the
function signature), and even the function body itself, all appear to
be identical! If C++ encounters two function calls using the same
function name but differing in signatures, we have already seen
that the C++ compiler is smart enough to resolve the potential
ambiguities caused by function-name overloading. (Recall that C,
unlike C++, demands unique function names.) In C++, member
functions with different signatures are really different functions,
even if they share the same name.

But, our two MoveTos do not, at first sight, offer any distinguish­
ing clues to the compiler-so will it know which one you in­
tended to call? The answer, as you've seen, with ordinary member
functions is that the compiler determines the target function from
the class type of the object involved in the call.

So, why not let Circle inherit Point's MoveTo, just as Circle inher­
its Point's GetX and GetY (via Location)? The reason, of course, is
that the Hide and Show called in Circle::MoveTo are not the same
Hide and Show called in Point::MoveTo. Only the names and
signatures are the same. Inheriting MoveTo from Point would
lead to the wrong Hide and Show being called when trying to
move a circle. Why? Because Point's versions of these two func­
tions would be bound to Point's (and hence also to Circle's)
MoveTo at compile time (early binding). As you may have

Borland C++ Getting Started

Defining virtual
functions

guessed already, the answer is to declare Hide and Show as
virtual functions. This will delay the binding so that the correct
versions Hide and Show can be invoked when MoveTo is actually
called to move a point or a circle (or whatever).

Note again that if we wanted to precompile our class definitions
and member functions for Location, Point, and Circle in a neat
standalone library (with the implementation source locked up
with our other trade secrets), we certainly could not know in
advance the objects that MoveTo may be asked to move. Virtual
functions not only provide this technical advantage; they also
provide a conceptual gain that lies at the heart of OOP. We can
concentrate on developing reusable classes and methods with less
anxiety about name clashes.

While it is true that add-on library extensions are available for
most languages, the use of virtual functions and multiple inheri­
tance in C++ makes extensibility more natural. You inherit every­
thing that all your base classes have, and then you add the new
capabilities you need to make new objects work in familiar ways.
The classes you define and their versions of the virtual functions
become a true extension of an orderly hierarchy of capabilities.
Because this is part of the language design rather than an
afterthought, there is very little penalty in performance.

Having sold you on the merits of virtual functions, let's see how
you can implement them, and some of the rules you have to
follow.

The syntax is straightforward: add the qualifier virtual in the
member function's first declaration:

virtual void Show();
virtual void Hide();

-.. Important! Only member functions can be declared as virtual.
Once a function is declared virtual, it must not be redeclared in
any derived class with the same formal argument signature but
with a different return type. If you redeclare Show with the same
formal argument signature and same return type, the new Show
automatically becomes virtual, whether you use the virtual
qualifier or not. This new, virtual Show is said to override the
Show in its base class.

Chapter 4, A C++ primer 81

Developing a
complete

graphics module

82

You are free to redeclare Show with a different formal argument
signature {whether you change the return type or not)-but the
virtual mechanism is inoperable for this version of Show.
Beginners should avoid rash overloading-there are situations
where a non-virtual function can hide a virtual function declared
in its base.

The particular Show called will depend only on the class of the
object for which Show is invoked, even if the call is invoked via a
pointer (or reference) to the base class. For example,

Circle ACirclei
Point* APoint_pointer = &ACirclei II pointer to Circle assigned to

II pointer to base class, Point
APoint_pointer->Show()i 1/ calls Circle::Show!

vpoint.h and VCIRC.CPP (available on your distribution disks)
are versions of point.h and CIRCLE.CPP with Show and Hide
made virtual. Compile VCIRC.CPP with POINT2.CPP using
VCIRC.PRJ. It will run exactly like CIRCLE.CPP. We don't list the
virtual versions in full here since the differences can be summed
up simply as follows:

• In vpoint.h, Point's Show and Hide have been declared with the
keyword virtual. The Show and Hide in the VCIRC's derived
class Circle have the same argument signature and return
values as the base versions in Point; this implies that they are
also virtual, even though the keyword virtual is not used in
their declarations.

• In VCIRC.CPP, Circle no longer has its own MoveTo member
function.

• We now derive Circle publicly from Point to allow access to
MoveTo

To recap the significance of these changes:

Circle objects can now safely call the MoveTo inherited from
Point. The Show and Hide called by MoveTo will be bound at run
time to Circle's own Show and Hide. Any Point objects calling
MoveTo will invoke the Point versions.

As a more complete and realistic example of virtual functions, let's
create a module that defines some shape classes and a generalized
means of dragging them around the screen. This module,

Borland C++ Getting Storied

figures.h and FIGURES.CPP (on your distribution disks), is a
simple implementation of the graphics toolbox discussed earlier.

A major goal in designing the FIGURES module is to allow users
of the module to extend the classes defined in the module-and
still make use of all the module's features. It is an interesting chal­
lenge to create some means of dragging an arbitrary graphics fig­
ure around the screen in response to user input.

As a first approach, we might consider a function that takes an
object as an argument, and then drags that object around the
screen:

void Drag(Point& AnyFigure, int DragBy)
(

};

int DeltaX,DeltaY;
int FigureX,FigureY;
AnyFigure.Show(); II Display figure to be dragged
FigureX = AnyFigure.GetX(); II Get the initial X,Y of figure
FigureY = AnyFigure.GetY();

II This is the drag loop
while (GetDelta(DeltaX, DeltaY))
{

};

II Apply delta to figure X,Y
FigureX = FigureX + (DeltaX * DragBy);
FigureY = FigureY + (DeltaY * DragBy);
II And tell the figure to move
AnyFigure.MoveTo(FigureX, FigureY);

Reference types Notice that AnyFigure is declared to be of type Point&. This means
"a reference to an object of type Point" and is a new feature of
C++. As you know, C ordinarily passes arguments by value, not
by reference. In C, if you want to act directly on a variable being
passed to a function, you have to pass a pointer to the variable,
which can lead to awkward syntax, since you have to remember
to dereference the pointer. C++ lets you pass and modify the
actual variable by using a reference. To declare a reference, simply
follow the data type with an ampersand (&) in the variable
declaration.

Chapter 4, A C++ primer

Drag calls an auxiliary function not shown here, GetDelta, that
obtains some sort of change in X and Y from the user. It could be
from the keyboard, or from a mouse, or a joystick. (For

83

84

simplicity's sake, our example obtains input from the arrow keys
on the keyboard.)

An important point to notice about Drag is that any object of type
Point, or any type derived from Point, can be passed in the
AnyFigure reference argument. Objects of Point or Circle type, or
any type defined in the future that inherits from Point or Circle,
can be passed without complication in AnyFigure.

Adding a new member function to an existing class hierarchy
involves a little thought. How far up the hierarchy should the
member function be placed? Think about the utility provided by
the function and decide how broadly applicable that utility is.
Dragging a figure involves changing the location of the figure in
response to input from the user. In terms of inheritability, it sits
right beside MoveTo-any object to which MoveTo is appropriate
should also inherit Drag. Therefore Drag should be a member of
Point, so that all of Point's derived types can share it.

Having resolved the place of Drag in the hierarchy, we can take a
closer look at its definition. As a member function of the base
class Point, there is no need for the explicit reference to the Point&
AnyFigure argument. We can rewrite Drag so that the functions it
calls, such as GetX, Show, MoveTo, and Hide, will correctly
reference the versions appropriate to the type of the object being
dragged. As we saw earlier, the functions Show and Hide that
require special shape-related code can be made virtual. We can
then redefine them for any future classes without disturbing the
FIGURES module. This also takes care of MoveTo, since MoveTo
calls the correct Show and Hide (you'll recall that that was our
original motivation for making Show and Hide virtual). GetX and
GetY present no problem: as ordinary member functions inherited
from Point via Location, they simply return the X and Y data
members of the calling object of any derived class, present or
future. Remember, though, that X and Yare protected in
Location, so we must use public derivation as shown.

The next design decision is whether to make Drag virtual. The
litmus test for making any function virtual is whether its function­
ality is expected to change somewhere down the hierarchy. There
is no golden rule here, but later on we'll discuss the various trade­
offs: extensibility versus performance overhead (virtual functions
require slightly more memory and a few more memory-access
cycles). We have taken the view that some future class in, say, a
CAD (Computer Aided Design) application might conceivably
need a special dragging action. Perhaps dragging an isometric

Borland C++ Getting Started

Remember to recompile
everything that uses this

header file.

This code is on your disks:
figures.h.

Chapter 4, A C++ primer

drawing will require some scaling actions, and so on. In our new
Point class definition in figures.h, we have therefore made Drag
virtual.

class Point : public Location
protected:

Boolean Visible;
pUblic:

};

Point(int InitX, int InitY);
virtual void Show(); II Show and Hide are virtual
virtual void Hide();
Boolean IsVisible() {return Visible;}
void MoveTo(int NewX, int NewY);
virtual void Drag(int DragBy);

Here is the header file figures.h containing the class declarations
for the FIGURES module. This is the only part of the package that
needs to be distributed in source code form:

II figures.h contains three classes.
II
II Class Location describes screen locations in X and Y
II coordinates.
II
II Class Point ,describes whether a point is hidden or visible.
II
II Class Circle describes the radius of a circle around a point.
II
II To use this module, put #include <figures.h> in your main
II source file and compile the source file FIGURES.CPP together
II with your main source file.

enum Boolean {false, true};

class Location
protected:

int X;
int Y;

pUblic:

};

Location(int InitX, int InitY) {X = InitX; Y = InitY;}
int GetX() {return X;}
int GetY() {return Y;}

class Point : public Location
protected:

Boolean Visible;
public:

Point(int InitX, int InitY);

85

This code is on your disks:
FIGURES.CPP. You should

compile this code and link it
to GRAPHICS. LIB to get

FIGURES.OBJ. You'll need
FIGURES.OBJ for the next

exercise.

86

virtual void Show(); II Show and Hide are virtual
virtual void Hide();
virtual void Drag(int DragBy); II new virtual drag function
Boolean IsVisible() {return Visible;}
void MoveTo(int NewX, int NewY);

};

class Circle: public Point { II Derived from class Point and
II ultimately from class Location

protected:
int Radius;

public:
Circle(int InitX, int InitY, int InitRadius);
void Show();

};

void Hide();
void Expand(int ExpandBy);
void Contract (int ContractBy);

II prototype of general-purpose, non-member function
II defined in FIGURES.CPP

Boolean GetDelta(int& DeltaX, int& DeltaY);

Here is the file FIGURES.CPP containing the member function
definitions. This is what would be distributed in object or library
form commercially. Note that we have defined the Circle con­
structor outside the class since it invokes base constructors. You
may wish to experiment by making it an inline function (see the
discussion on page 97). The nonmember function GetDelta will
repay some study if you are new to C. Note the use of reference
arguments, which is a C++ touch; the rest of the code is what you
might be used to in any program.

II FIGURES.CPP: This file contains the definitions for the Point
II class (declared in figures.h). Member functions for the
II Location class appear as inline functions in figures.h.

#include "figures.h"
#include <graphics.h>
#include <conio.h>

II member functions for the Point class

Ilconstructor
Point: :Point(int InitX, int InitY) : Location (InitX, InitY)
{

Visible = false;

void Point::Show()
{

II make invisible by default

Borland C++ Getting Storied

Chapter 4, A C++ primer

Visible = true;
putpixel(X, Y, getcolor()); II uses default color

void Point::Hide()
{

Visible = false;
putpixel(X, Y, getbkcolor()); II uses background color to erase

void Point::MoveTo(int NewX, int NewY)
{

}

Hide () ;
X = NewX;
Y = NewY;
Show () ;

II make current point invisible
II change X and Y coordinates to new location

II show point at new location

II a general-purpose function for getting keyboard
II cursor movement keys (not a member function)

Boolean GetDelta(int& DeltaX, int& DeltaY)
{

char KeyChar;
Boolean Quit;
DeltaX = 0;
DeltaY = 0;

do

KeyChar = getch(); II read the keystroke
if (KeyChar == 13) II carriage return

if
return(false);
(KeyChar == 0) II an extended keycode
{

Quit = true; II assume it is usable
KeyChar = getch(); II get rest of keycode

switch (KeyChar) {
case 72: DeltaY = -1; break; II down arrow
case 80: DeltaY = 1; break; II up arrow
case 75: DeltaX = -1; break; II left arrow
case 77: DeltaX = 1; break; II right arrow
default: Quit = false; II bad key
};

};

while (!Quit);
return (true) ;

void Point::Drag(int DragBy)
{

int DeltaX, DeltaY;

87

88

int FigureX, FigureY;

Show(); II display figure to be dragged
FigureX = GetX(); II get initial position of figure
FigureY = GetY();

II This is the drag loop
while (GetDelta(DeltaX, DeltaY))

II Apply delta to figure at X, Y
FigureX += (DeltaX * DragBy);
FigureY += (DeltaY * DragBy);
MoveTo(FigureX, FigureY); II tell figure to move
);

II Member functions for the Circle class

Ilconstructor
Circle::Circle(int InitX, int InitY, int InitRadius) Point (InitX,
InitY)
{

Radius InitRadius;

void Circle::Show()
{

Visible = true;
circle (X, Y, Radius);

void Circle::Hide()
{

unsigned int TempColor;
TempColor = getcolor();
setcolor(getbkcolor());
Visible = false;
circle (X, Y, Radius);
setcolor(TempColor);

II draw the circle

II to save current color
II set to current color
II set drawing color to background

II draw in background color to
II set color back to current color

void Circle::Expand(int ExpandBy)
{

Hide () ;
Radius += ExpandBy;
if (Radius < 0)

Radius = 0;
Show () ;

II erase old circle
II expand radius
II avoid negative radius

II draw new circle

void Circle::Contract(int ContractBy)
{

Expand(-ContractBy); II redraws with (Radius-ContractBy)

Bor/and C++ Getting Started

This code is on your disks as
FIGDEMo.CPP. You need to

compile it and link it to
FIGURES.OBJ.

Chapter 4, A C++ primer

We are now ready to test FIGURES by exposing it to a new shape
class called Arc that is defined in FIGDEMO.CPP. Arc is (natur­
ally) derived publicly from Circle. Recall that Drag is about to
drag a shape it has never seen before!

II FIGDEMO.CPP -- Exercise for Chapter 4

II demonstrates the Figures toolbox by extending it with
II a new type Arc.

II Link with FIGURES.OBJ and GRAPHICS.LIB

'include "figures.h"
'include <graphics.h>
'include <conio.h>

class Arc : public Circle
int StartAngle;
int EndAngle;

public:
II constructor

Arc(int InitX, int InitY, int InitRadius, int InitStartAngle, int
InitEndAngle) : Circle (InitX, InitY, InitRadius) {
StartAngle = InitStartAngle; EndAngle = InitEndAngle;}

void Show(); II these functions are virtual in Point
void Hide();

};

II Member functions for Arc

void Arc: : Show ()
{

Visible = true;
arc(X, Y, StartAngle, EndAngle, Radius);

void Arc: : Hide ()
{

int TempColor;
TempColor = getcolor();
setcolor (getbkcolor());
Visible = false;
II draw arc in background color to hide it
arc(X, Y, StartAngle, EndAngle, Radius);
setcolor(TempColor);

int main() II test the new Arc class
{

int graphdriver = DETECT, graphmode;
initgraph (&graphdriver, &graphrnode, "c: .. \ \bgi");

89

Ordinary or virtual
member

functions?

Circle ACircle(151, 82, 50);
Arc AnArc(151, 82, 25, 0, 190);

II you first drag an arc using arrow keys (5 pixels per key)
II press Enter when tired of this!
II Now drag a circle (10 pixels per arrow key)
II Press Enter to end FIGDEMO.

AnArc.Drag(5); II drag increment is 5 pixels
AnArc.Hide();
ACircle.Drag(10); II now each drag is 10 pixels
closegraph();
return 0;

In general, because calling a non-virtual member function is a
little faster than calling a virtual one, we recommend that you use
ordinary member functions when extensibility is not a consider­
ation, but performance is. Use virtual functions otherwise.

To recap our earlier discussion, let's say you are declaring a class
named Base, and within Base you are declaring a member func­
tion named Action. How do you decide whether Action should be
virtual or ordinary? Here's the rule of thumb: Make Action virtual
if there is a possibility that some future class derived from Base
will override Action, and you want that future code to be accessi­
ble to Base. Make Action ordinary if it is evident that for derived
types, Action will perform the same steps (even if this involves
invoking other, virtual, functions); or the derived types will not
make use of Action.

Dynamic objects

90

All the examples shown so far, except for the message array allo­
cation in MCIRCLE.CPP, have had static or automatic objects of
class types that were declared as usual with their memory being
allocated by the compiler at compile time. In this section we look
at objects that are created at run time, with their memory allo­
cated from the system's free memory store. The creation of dynamic
objects is an important technique for many programming
applications where the amount of data to be stored in memory
cannot be known before the program is run. An example is a

Bor/and C++ Getting Storied

To aI/ocate an object from
free store, dec/are a pointer

to the object's type and
assign the result of the

expression new object type
to the pointer. You can now

use the pOinter to refer to the
newly created object.

You can find this on your
disks: DYNPOINT. CPP. Or use

DYNPOINT.PRJ.

Chapter 4, A C++ primer

free-form database program that holds data records of various
sizes in memory for rapid access.

c++ can use the dynamic memory allocation functions of C such
as malloc. However, C++ includes some powerful extensions that
make dynamic allocation and deallocation of objects easier and
more reliable. More importantly, it ensures that constructors and
destructors are called. For example,

Circle *ACircle = new Circle(151,82,50);

Here ACircle, a pointer to type Circle, is given the address of a
block of memory large enough to hold one object of type Circle. In
other words, ACircle now points to a Circle object allocated from
free store. A Circle constructor is then called to initialize the object
according to the arguments supplied.

If you are allocating an array rather than a standard-length data
type, use the optional syntax

new object [size]

For example, to dynamically allocate an array of 50 integers called
counts, use

counts = new int [50];

If you wanted to create a dynamic Point class object, you might do
it like this:

II DPOINT.CPP -- exercise in Chapter 4, Getting Started

#include <iostream.h>
#include <graphics.h>
#include <conio.h>
#include "figures.h"

int main ()
{

II Assign pointer to dynamically allocated object; call constructor
Point *APoint = new Point (50, 100);

II initialize the graphics system
int graphdriver = DETECT, graphmode;
initgraph (&graphdriver, &graphmode, " .. \ \bgi");

II Demonstrate the new object
APoint->Show () ;
cout « "Note pixel at (50,100). Now, hit any key ... ";
getch () ;
delete APoint;
closegraph();

91

Destructors and
delete

You can find more on
destructor syntax in Chapter

3, "C++, H in the Programmer's
Guide.

92

An example of
dynamic object

allocation

return (0);

)

Just as you can define a constructor that will be called whenever a
new object of a class is created, you can define a destructor that
will be called when it is time to destroy an object, that is to say,
clear its value and deallocate its memory.

Space for static objects is allocated by the compiler; the
constructor is called before main and the destructor is called after
main. In the case of auto objects, deallocation occurs when the
declaration goes out of scope (when the enclosing block
terminates). Any destructor you define is called at the time the
static or auto objects is destroyed. (If you haven't defined a
destructor, C++ uses an implicit, or built-in one.)

If you create a dynamic object using the new operator, however,
you are responsible for deallocating it, since C++ has no way of
"knowing" when the object is no longer needed. You use the
delete operator to deallocate the memory. Any destructor you
have defined is called when delete is executed.

The delete operator has the syntax

delete pointer;

where pointer is the pointer that was used with new to allocate the
memory.

You have seen that a constructor for the class X is identified by
having the same name, viz X: :XO. The name of a destructor for
class X is X:: ... XO. In addition to deallocating memory, destructors
can also perform other appropriate actions, such as writing mem­
ber field data to disk, closing files, and so on.

The next example program provides some practice in the use of
objects allocated dynamically from free store, including the use of
destructors for object deallocation. The program shows how a
linked list of graphics objects might be created in memory and
cleaned up using delete calls when the objects are no longer
required.

Bor/and c++ Getting Storied

See the next listing for the
dec/orations of List and

Node.

This code is on your disks as
LlSTDEMo. CPP.

Chapter 4, A C++ primer

Building a linked list of objects requires that each object contain a
pointer to the next object in the list. Type Point contains no such
pointer. The easy way out would be to add a pointer to Point, and
in doing so ensure that all Points derived types also inherit the
pointer. However, adding anything to Point requires that you
have the source code for Point, and as noted earlier, one advan­
tage of c++ is the ability to extend existing objects without
necessarily being able to recompile them. So for this example
we'll pretend that we don't have the source code to Point and
show how you can extend the graphics tool kit anyway.

One of the many solutions that requires no changes to Point is to
create a new class not derived from Point. Type List is a very
simple class whose purpose is to head up a list of Point objects.
Because Point contains no pointer to the next object in the list, a
simple struct, Node, provides that service. Node is even simpler
than List, in that it has no member functions and contains no data
except a pointer to type Point and a pointer to the next node in the
list.

List has a member function that allows it to add new figures to its
linked list of Node records by inserting a new Node object imme­
diately after itself, as a referent to its Nodes pointer member. The
Add member function takes a pointer to a Point object, rather than
a Point object itself. Remember that rules for the class hierarchy in
c++ allows pointers to any type publicly derived from Point to be
passed in the Item argument to List::Add.

Program ListDemo declares a static variable, AList, of type List,
and builds a linked list with three nodes. Each node points to a
different graphics figure that is either a Point or one of its derived
classes. The number of bytes of free storage space is reported be­
fore any of the dynamic objects are created, and then again after
all have been created. Finally, the whole structure, including the
three Node records and the three Point objects, is cleaned up and
removed from memory, thanks to the destructor for the List class
called automatically for its object AList.

1* LISTDEMO.CPP--Example from Chapter 4 of Getting Started *1

II LISTDEMO.CPP Demonstrates dynamic objects

II Link with FIGURES.OBJ and GRAPHICS.LIB

#include <conio.h>
#include <alloc.h>
#include <stdlib.h>
#include <string.h>

I I for getch ()
II for coreleft()
I I for itoa ()
I I for strcpy ()

93

*include <graphics.h>
*include "figures.h"

class Arc : public Circle
int StartAngle, EndAngle;

public:

};

II constructor
Arc(int InitX, int InitY, int InitRadius, int InitStartAngle,

int InitEndAngle);
II virtual functions
void Show();
void Hide();

struct Node {
Point *Item;
Node *Next;

II the list item
II can be Point or any class derived from Point
II point to next Node object

};

class List { II the list of objects pointed to by nodes
Node *Nodes; II points to a node

public:

};

II constructor
List () ;
II destructor
-List();
II add an item to list
void Add (Point *Newltem);
II list the items
void Report();

II definitions for standalone functions

void OutTextLn(char *TheText)
{

outtext(TheText);
moveto(O, gety() + 12); II move to equivalent of next line

void MemStatus(char *StatusMessage)
{

unsigned long MemLeft; II to match type returned by
I I coreleft ()
II temp string to send to outtext() char CharString[12);

outtext(StatusMessage);
MemLeft = long (coreleft());

II convert result to string with ltoa then copy into
II temporary string
ltoa(MemLeft, CharString, 10);
OutTextLn(CharString);

94 Borland C++ Getting Started

Chapter 4, A C++ primer

II member functions for Arc class

Arc::Arc(int InitX, int InitY, int InitRadius, int InitStartAngle,
int InitEndAngle) : Circle (InitX, InitY,InitRadius)

II calls Circle
II constructor

StartAngle = InitStartAngle;
EndAngle = InitEndAngle;

void Arc: : Show ()
(

Visible = true;
arc(X, Y, StartAngle, EndAngle, Radius);

void Arc: : Hide ()
(

unsigned TempColor;
TempColor = getcolor();
setcolor(getbkcolor());
Visible = false;
arc(X, Y, StartAngle, EndAngle, Radius);
setcolor(TempColor);

II member functions for List class

List: : List () {
Node *N;
N = new Node;
N->Item = NULL;
N->Next = NULL;
Nodes = NULL;

List: : -List ()
{

while (Nodes != NULL)
Node *N = Nodes;
delete (N->Item) ;
Nodes = N->Next;

delete N;
};

II sets node pointer to "empty"
II because nothing in list yet

II destructor

II until end of list
II get node pointed to
II delete item's memory
II point to next node
II delete pointer's memory

void List::Add(Point *Newltem)
{

Node *N; II N is pointer to a node

95

96

N = new Node;
N->Item = Newltem;
N->Next = Nodes;
Nodes = N;

II create a new node
II store pointer to object in node
II next item points to curent list pos
II last item in list now points
II to this node

void List::Report()
{

char TempString[12];
Node *Current = Nodes;
while (Current != NULL)

};

II get X value of item in current node and convert to string
itoa(Current->Item->GetX(), TempString, 10);
outtext ("X = ");

OutTextLn(TempString);
II do the same thing for the Y value
itoa(Current->Item->GetY(), TempString, 10);
outtext("y = ");
OutTextLn(TempString);
II point to the next node
Current = Current->Next;

void setlist(void);

II Main program
main ()
{

int graphdriver = DETECT, graphmode;
initgraph(&graphdriver, &graphmode, "c: .. \\bgi");

MemStatus("Free memory before list is allocated: ");
setlist();
MemStatus("Free memory after List destructor: ");
getch();
closegraph();

void setlist() {

II declare a list (calls List constructor)
List AList;

II create and add several figures to the list
Arc *Arc1 = new Arc(151, 82, 25, 200, 330);
AList.Add(Arc1) ;
MemStatus("Free memory after adding arc1: ");
Circle *Circle1 = new Circle(200, 80, 40);
AList.Add(Circle1);

Borland C++ Getting Storied

MemStatus("Free memory after adding circle1: H);
Circle *Circle2 = new Circle(305, 136, 35);
AList.Add(Circle2);
MemStatus("Free memory after adding circle2: H);
II traverse list and display X, Y of the list's figures
AList. Report II ;
II The 3 Alist nodes and the Arc and Circle objects will be
II deallocated automatically by their destructors when they
II go out of scope in main(). Arc and Circle use implicit
II destructors in contrast to the explicit ~List destructor.
II However, you could delete explicitly here if you wish:
II delete Arc1; delete Circle1; delete Circle2;
getch(); II wait for a keypress
return;

Once you have mastered LISTDEMO.CPP, you might wish to
develop a more satisfying solution based on the following idea:
define a new class called PointList by multiple inheritance from
classes Point and List.

More flexibility in C++

Although it will take you some time to master the nuances of this
new style of programming, you have now learned the essential
elements of c++. There are a number of additional features that
we touch on briefly here so that you will know what they are and
how to use them.

None of these features are • Inline functions outside class definitions
essential to understanding

C++, but they can add to its • Default function arguments
flexibility and power. iii Overloading functions and multiple constructors

Inline functions
outside class

definitions

Chapter 4, A C++ primer

• Friend functions-another way of providing access to a class

• Overloading operators to provide new meanings

• More about C++ I/O and the streams library

You have already seen that you can include an inline definition of
a member function within the class declaration as shown here
with the Point class:

class Point:
int X;

II define Point class
II these are private by default

97

Remember that inline code is
enclosed in braces.

Functions with
default

arguments
If you plan to use certain

values often for a function,
use those values as default
arguments for the function.

98

Default values must be
specified the first time the

function name is given.

int Y;
public: II public member functions

Point(int InitX, int InitY) {X = InitX, Y = InitY;}
int GetX(void) {return X;}
int GetY(void) {return Y;}

};

All three member functions of the Point class are defined inline,
so no separate definition is necessary. For functions with only a
line or so of code, this provides a more compact, easier to read de­
scription of the class.

Functions can also be declared as in line. The only difference is that
you have to start the function declaration with the keyword
inline. For example, in LISTDEMO.CPP, there is an operation that
simply moves the output location for text in graphics mode down
one line (it is used in the function OutTextLn). If this function
were to be used in many other places in the code, it would be
more efficient to declare it as a separate inline function:

inline void graphLn() (moveto(O, gety() + 12); }

If you wish, you can format your inline definitions to look more
like a regular function definition:

inline void graphLn()
(

moveto(O, gety() + 12);

Another advantage to using the inline keyword is that you can
avoid revealing your implementation code in the distributed
header files.

You can define functions that you can call with fewer arguments
than defined. The arguments that you don't supply are given de­
fault values. If you are going to be using these default values most
of the time, such an "abbreviated" call saves typing. You don't
lose flexibility, because when you want to override the defaults,
you simply specify the values you want.

For example, the following version of the constructor for the Circle
class gives a default circle of radius 50 pixels centered at (X = 200,
Y = 200). A more portable program, of course, would have to
determine the graphics hardware available and adjust these
values accordingly.

Borland C++ Getting Started

As with ANSI C, C++ allows
functions to have a variable
number of arguments, such

as float average (int
number, ...), which can
take one or more integer

values. See Chapter 7, "Lexi­
cal grammar," in the Pro­

grammer's Guide for details.

More about
overloading

functions

Chapter 4, A C++ primer

class Circle public Point { II Derived from class Point and
II ultimately from class Location

protected:
int Radius;

pUblic:

};

Circle(int InitX = 200, int InitY = 200, int InitRadius = 50);
void Show(void);
void Hide(void)i
void Expand(int ExpandBy);
void Contract (int ContractBy);

Now the declaration

Circle ACircle;

gives you a circle with the default center at (200,200) and radius
50. The declaration

Circle ACircle(50, 100);

gives a circle with center at 50, 100, with the default radius of 50.

The declaration

Circle ACircle(300)

gives a circle at X = 300, with default Y = 200 and radius = 50.

Any default arguments must be in consecutive rightmost posi­
tions in the argument list. For example, you couldn't declare

void func(int a = 10, int b, int c)

because the compiler wouldn't know which values are being
supplied.

Overloading is an important and pervasive concept in C++. When
several different functions (whether member functions or
ordinary) are defined with the same name within the same scope,
they are said to be overloaded. You have met several such cases;
for example, the three functions called cube on page 50. (Earlier
versions of C++ required that such declarations be preceded by
the keyword overload, but this is now obsolete.)

The basic idea is that overloaded function calls are distinguished
by comparing the types of the actual arguments in the call and the
formal argument signatures in the function definitions. The actual

99

You can load and run
STRING.CPP from the IDE.

After running it, you'll have to
activate the User Screen to
see the output. Use the hot

key Alt-F5 or the Window I User
Screen menu item.

100

rules for disambiguation are beyond the scope of a primer and
should rarely affect the beginner (who is hereby cautioned against
the rash replication of function names). Among the possible com­
plications are functions called with default actual arguments, or
with a variable numbers of arguments; also, there are the normal
C conversions of argument type to be considered, together with
additional type conversions peculiar to C++. When faced with a
call to a heavily overloaded function, the compiler tries to find a
best match. If there is no best match, a compiler error results.

One of the most common cases is over loading a constructor so as
to provide several different ways to create a new object of a class.
To illustrate this, we will define a very simple String class. (For
some fully functional string classes, refer to the books in the
bibliography.)

IISTRING.CPP--Example from Chapter 4 of Getting Started *1

#include <iostream.h>
#include <string.h>

class String {
char *char_ptr; II pointer to string contents
int length; II length of string in characters

public:

};

II three different constructors
String(char *text); II constructor using existing string
String(int size = 80); II creates default empty string
String(String& Other_String); II for assignment from another

~String() {delete char_ptr;};
int Get_len (void);
void Show (void);

II object of this class

String::String (char *text)
{

};

length = strlen(text); II get length of text
char_ptr = new char[length + 1];
strcpy(char_ptr, text);

String::String (int size)
{

};

length = size;
char_ptr = new char[length+1];
*char-ptr = '\0';

String::String (String& Other_String)

Borland C++ Getting Staried

When calling a constructor
with no arguments (or when
accepting all default argu­

ments), don't put empty
parentheses after the name
of the object. For example,
declare String BString;,

not String BString () ;.

Chapter 4, A C++ primer

};

length = Other_String. length; II length of other string
char_ptr = new char [length + 1]; II allocate the memory
strcpy (char_ptr, Other_String.char_ptr); II copy the text

int String::Get_len(void)
(

return (length);
);

void String::Show(void)
{

cout « char _ptr « "\n";
};

main ()
{

II test the functions

String AString ("Allocated from a constant string.");
AString. Show () ;

String BString; II uses default length
cout « "\n" « BString.Get_len() « "\n" ; Iidisplay length
BString = "This is BString";

String CString(BString);
CString. Show () ;

II invokes the third constructor
II note its contents

The class String has three different constructors. The first takes an
ordinary string constant such as "This is a string" and initializes a
string with these contents. The second constructor uses a default
length of 80, and allocates the string without storing any charac­
ters in it (this might be used to create a temporary buffer). Note
that you can override the default simply by calling the constructor
with a different length: Instead of declaring String AString, you
could declare, for example, String AString (40).

The third constructor takes a reference to another object of type
String (recall that the ampersand after a type means a reference to
that type, and is used to pass the address of a variable rather than
a copy of its contents.) With this constructor you can now write
statements such as these:

String AString("This is the first string"); II create and initialize
String BString = Astring; II create then assign BString from AString

Note that constructors are involved in three related but separate
aspects of an object's life story: creation, initialization, and assign­
ment. The use of the = operator for class assignments leads us
nicely to our next topic, operator overloading. Unless you define a

101

Overloading
operators to
provide new

meanings

Whitespace is okay between
the keyword operator and

the operator symbol.

102

special = operator for a class, c++ defaults to a member-by­
member assignment.

c++ has a special feature found in few other languages: existing
operators such as + can be given new definitions to make them
work in an appropriate, user-defined manner with your own class
objects. Operators are a very concise way of doing business. If you
didn't have them, an expression such as line * width + pos would
have to be written something like this: add {mult (line, width), pos).
Fortunately, the arithmetic operators in C (and C++) already
know how to work with all of the numeric data types-the same +
that works with int values also works with float, for example. The
same operator is used, but the code generated is clearly different,
since integers and floating-point numbers are represented
differently in memory. In other words, operators such as + are
already overloaded, even in regular C. C++ simply extends this
idea to allow user-defined versions of the existing operators.

To define an operator, you define a function that has as its name
the keyword operator followed by the operator symbol. (So, for
example, operatort names a new version of the + operator.) All
operator functions are by definition overloaded: They use an op­
erator that already has a meaning in C, but they redefine it for use
with a new data type. The + operator, for example, already has the
capability to add two values of any of the standard numeric types
(int, float, double, and so on.)

Now we can add a + operator to the String class. This operator
will concatenate two string objects (as in BASIC) returning the
result as a string object with the appropriate length and contents.
Since concatenating is "adding together," the + symbol is the ap­
propriate one to use. The BASIC lobby often criticizes C for not
having such natural string operations. With C++, you can go far
beyond the built-in BASIC string facilities.

The file XSTRING.CPP, available on your distribution disks, has
the following additions to STRING.CPP to provide a simple
operator +.

IIXSTRING.CPP--Example from Chapter 4 of Getting Started *1
II version of STRING.CPP with overloaded operator +

#include <iostream.h>
#include <string.h>

Borland C++ Getting Storied

Chapter 4, A C++ primer

class String (
char *char_ptr; II pointer to string contents
int length; II length of string in characters

public:
II three different constructors
String(char *text); II constructor using existing string

};

String(int size = 80); II creates default empty string
String(String& Other_String); II for assignment from another

II object of this class
~String() {delete char_ptr;}; II inline destructor
int Get_len (void);
String operatort (String& Arg);
void Show (void);

String::String (char *text)
(

};

length = strlen(text); II get length of text
char_ptr = new char[length t 1];
strcpy(char_ptr, text);

String::String (int size)
{

};

length = size;
char_ptr = new char[lengtht1];
*char_ptr = '\0';

String::String (String& Other_String)
{

};

length = Other_String. length; II length of other string
char_ptr = new char [length + 1]; II allocate the memory
strcpy (char_ptr, Other_String.char_ptr); II copy the text

String String::operatort (String& Arg)
(

String Temp(length t Arg.length);
strcpy(Temp.char_ptr, char_ptr);
strcat(Temp.char_ptr, Arg.char_ptr);
return Temp;

int String::Get_len(void)

return (length);
};

void String::Show(void)
{

cout « char _ptr « "\n";

103

To see this display from the
IDE, press Alt-F5 or Window I

User:

this is discussed in greater
detail in the Programmer's

Guide.

104

};

main () II test the functions

String AString ("The Quick Brown fox");
AString. Show () ;

String BString(" jumps over Bill");
String CString;
CString = AString + BString;
CString. Show () ;

When you run the program, CString is assigned the concatenation
of the two strings AString and BString. So CString.ShowO displays

The Quick Brown Fox jumps over Bill

The overloaded + takes only one explicit argument, so you may
wonder how it manages to concatenate two strings. Well, the
compiler treats the expression AString + BString as

AString. (operator +(BString))

so the + operator does access two string objects. The first is the
String object currently being referenced, and the other is a second
string object. The operator function adds the lengths of the two
strings together, then uses the streat library function to combine
the contents of the two strings, which is then returned. This re­
markable trick makes use of a "hidden" pointer known as this.
What is this?

Every call by a member function sets up a pointer to the object
upon which the call is acting. This pointer can be referred via the
keyword this (also known as "self" or rather "pointer-to-self" in
OOP parlance), allowing functions to access the actual object.
Now this is of type "pointer to String", so the return value must
be *this, the actual current object, is exactly what is needed. Note,
too, that individual members of the object involved in a function
call can be referenced via the expression this->member. A further
point to watch: this is available only to member functions, not to
friend functions.

There are some restrictions when overloading operators:

• C++ can't distinguish between the prefix and postfix versions of
++ and --.

• The operator you wish to define must already exist in the
language. For example, you can't define the operator #.

Borland C++ Getting Started

Friend functions

The position of the dec/o­
ration doesn't matter.

Chapter 4, A C++ primer

• You can't overload the following operators:

.. * :: ?:

• Overloaded operators keep their original precedence.

• If @ stands for any unary operator, the expressions @x and x@
may be interpreted as eitherx.operator@() or as operator@(x).
If both forms have been declared, the compiler will try to
resolve the ambiguity by matching the arguments. Similarly,
with an overloaded binary operator, @, x@ycould mean either
x.operator@(y) or operator@(x,y), and the compiler needs to
look at the arguments if both forms have been defined. You saw
an example of a binary operator in the string version of +,
where AString + BString was interpreted as AString. (operator
+ (BString)) .

Normally, access to the private members of a class is restricted to
member functions of that class. Occasionally it may be necessary
to give outside functions access to the class's private data. The
friend declaration within a class declaration lets you specify out­
side functions (or even outside classes) that will be granted access
to the declared class's private members. You'll sometimes see an
overloaded operator declared as a friend, but generally speaking
friend functions are to be used sparingly-if their need persists in
your project, it is often a sign that your class hierarchy needs
revamping.

But, suppose that there is a fancy formatted printing function
called Fancy_Print that you want to have access to the contents of
your objects of class String. You can add the following line to the
list of member function declarations:

class String (

friend void Fancy_Print (String& AString);

In this admittedly artificial example, the Fancy_Print function can
access the members char _ptr and length of objects of the String
class. That is, if AString is a string object, Fancy_Print can access
AString. char _Ptr and AString . length.

If the Fancy_Print function is a member of another class (for ex­
ample, the class Format), use the scope resolution operator in the
friend declaration:

105

The C++ streams
libraries

This section is intended
merely to whet your appetite

and point you in the right
direction. We encourage you

to study the examples in
Chapter 5, "C++ streams," in
the Programmer's Guide and

experiment on your own.

friend void Format::Fancy_Print(String& AString);

You can also make a whole class the friend of the declared class,
by using the word class in the declaration:

friend class Format;

Now any member function of the Format class can access the
private members of the String class. Note that in C++, as in life,
friendship is not transitive: if X is a friend of V, and V is a friend of
Z, it does not follow that X is a friend of Z.

The friend declaration should be used only when it is really neces­
sary; when without it you would have to have a convoluted class
hierarchy. By its nature, the friend declaration diminishes encap­
sulation and modularity. In particular, if you find yourself
wanting to make a whole class the friend of another class, con­
sider instead the possibility of deriving a common derived class
and using it to access the needed members.

While all the stdio library I/O functions (such as printf and scanf)
are still available, C++ also provides a group of classes and func­
tions for I/O defined in the iostreams library. To access these,
your program must have the directive.#include <iostream. h>, as
you may have noticed in some of our examples.

There are many advantages in using iostreams rather than stdio.
The syntax is simpler, more elegant, and more intuitive. The C++
stream mechanism is also more efficient and flexible. Formatting
output, for example, is simplified by extensive use of overloading.
The same operator can be used to output both predefined and
user-defined data types, avoiding the complexities of the printf
argument list.

Starting with the stream as an abstraction for modeling any flow
of data from a source (or producer) to a sink (or consumer),
iostream provides a rich hierarchy of classes for handling
buffered and unbuffered I/O for files and devices.

_ Borland C++ also supports the older (version 1.x) C++ stream
library to assist programmers during the transition to the new
iostream library of C++ release 2.0. If you have any C++ code that
uses the obsolete stream classes, you can still maintain and run it
with Borland C++. However, given a choice, you should convert
to the more efficient iostream and avoid stream when writing

1 06 Borland C++ Getting Started

new code. Chapter 5, "C++ streams," in the Programmer's Guide
explains the differences between the stream and iostream
libraries, and provides some hints on conversion. See also
OLDSTR.DOC on your distribution disks.

In this section we cover only the simpler classes in iostream. For a
more detailed account, you should read Chapter 5, "C++
streams," in the Programmer's Guide. You can also browse through
iostream.h on your distribution disks to see the many classes
defined there and how they are derived using both single and
multiple inheritance.

Standard I/O C++ provides four predefined stream objects defined as follows:

Chapter 4, A C++ primer

IIIIcin

EI cout

I!Icerr

cclog

standard input, usually the keyboard, corre­
sponding to stdin in C

standard output, usually the screen, correspond­
ing to stdout in C

standard error output, usually the screen, corre­
sponding to stderr in C

a fully-buffered version of cerr (no C equivalent)

You can redirect these standard streams from and to other devices
and files. (In C, you can redirect only stdin and stdout.) You have
already seen the most common of these, cin and cout, in some of
the examples in this chapter.

A simplified view of the iostream hierarchy, from primitive to
specialized, is as follows:

II streambuf provides methods for memory buffers

Elios

l'iI istream

II ostream

II iostream

II istream_withassign

handles stream state variables and
errors

handles formatted and unformatted
character conversions from a streambuf

handles formatted and unformatted
character conversions to a streambuf

combines istream and ostream to
handle bidirectional operations on a
single stream

provides constructors and assignment
operators for the cin stream.

107

« used with streams is called
the insertion or put to

operator, while » is called
the extraction or get from

operator.

This program simply stores
each input character in the

variable ch and then outputs
the value of ch to the

screen.

108

.ostream_withassign provides constructors and assignment
operators for the cout, cerr and clog
streams.

The istream class includes overloaded definitions for the » oper­
ator for the standard types [int, long, double, float, char, and
char* (string)]. Thus the statement cin » Xi calls the appropriate
» operator function for the istream cin defined in iostream.h and
uses it to direct this input stream into the memory location repre­
sented by the variable x. Similarly, the ostream class has over­
loaded definitions for the « operator, which allows the statement
cout « Xi to send the value of x to ostream cout for output.

These operator functions return a reference to the appropriate
stream class type (e.g., ostream&) in addition to moving the data.
This allows you to chain several of these operators together to
output or input sequences of characters:

int i=O, x=243; double d=O;
cout « "The value of x is " « x « '\n';
cin » i » d; II key an int, space, then a double

The second line would display "The value of x is 243" followed by
a new line. The next statement would ignore whites pace, read and
convert the keyed characters to an integer and place it in i, ignore
following whitespace, read and convert the next keyed characters
to a double and place it in d.

The following program simply copies cin to couto In the absence
of redirection, it copies your keyboard input to the screen:

II COPYKBD.CPP Copies keyboard input to screen

#include <iostream.h>

int main(void)
{

char ch;
while (cin » ch)

cout « ch;

Note how you can test (cin» ch) as a normal Boolean expression.
This useful trick is made possible by definitions in the class ios.
Briefly, an expression such as (cout) or (cin »ch) is cast as a
pointer, the value of which depends on the error state of the
stream. A null pointer (tested as false) indicates an error in the
stream, while a non-null pointer (tested as true) means no errors.

Borland C++ Getting Storied

You can also reverse the test using !, so that (fcout) is true for an
error in the cout stream and false if all is well:

if (!cout) errmsg("Output error!");

Formatted output Simple I/O in C++ is efficient because only minimal conversion is
done according to the data type involved. For integers, conversion
is the same as the default for printf. The statements

Chapter 4, A C++ primer

int i=5; cout « i;

and

int i=5; printf("%d",i);

give the same result.

Formatting is determined by a set of format state flags enumera­
ted in ios. These determine, for each active stream, the conversion
base (decimal, octal, and hexadecimal), padding left or right, the
floating-point format (scientific or fixed), and whether whitespace
is to be skipped on input. Other parameters you can vary include
field width (for output) and the character used for padding. These
flags can be tested, set, and cleared by various member functions.
The following snippet shows how the functions ios::width and
ios::fill work:

int previous_width, i = 87;
previous_width = cout.width(7); II set field width to 7

cout.fill('*');
II and save previous width
II set fill character to *

cout « i « '\n'; II display *****87 <newline>
II after « the width is cleared to 0
II previous width may have been set without a subsequent «
II so you may want to restore it with the following line.
cout.width(previous_width) ;

Setting width to zero (the default) means that the display will take
as many screen positions as needed. If the given width is insuffic­
ient for the correct representation, a width of zero is assumed
(that is, there is no truncation). Default padding gives right
justification (left padding) for all types.

setf and unsetf are two general functions for setting and clearing
format flags:

cout.setf(ios::left, ios::adjustfield);

This sets left padding. The first argument uses enumerated mne­
monics for the various bit positions (possibly combined using &

109

110

and I), and the second argument is the target field in the format
state. unsetf works the same way but clears the selected bits.
(More on these in Chapter 5, "C++ streams," in the Programmer's
Guide.)

Manipulators

A rather more elegant way of setting the format flags (and per­
forming other stream chores) uses special mechanisms known as
manipulators. Like the« and» operators, manipulators can be
embedded in a chain of stream operations:

cout « setw(7) « dec « i « setw(6) « oct « j;

Without manipulators, this would take six separate statements.

The parameterized manipulator setw takes a single int argument to
set the field width.

The non-parameterized manipulators, such as dec, oct, and hex,
set the conversion base to decimal, octal, and hexadecimal. In the
above example, int i would display in decimal on a field of width
7; int j would display in octal on a field of width 6.

Other simple parameterized manipulators include setbase, setfill,
setprecision, setiosflags, and resetiosflags. To use any of the
parameterized manipulators, your program must have include
both of these header files: iomanip.h and iostream.h. Non­
parameterized manipulators do not require iomanip.h.

Useful non-parameterized manipulators include:

ws (whitespace extractor): istream » ws; will discard any
whitespace in istream.

end I (endline and flush): ostream « endl; will insert a newline in
ostream, then flush the ostream.

ends (end string with null): ostream « ends; will append a null to
ostream.

flush (flush output stream): ostream « flush; flushes the ostream.

put, write, and get

Two general output functions are worthy of mention: put and
write, declared in ostream as follows:

ostream& ostream::put(char ch);

Bor/and c++ Getting Started

II send ch to ostream

ostream& ostream: :write(const char* buff, int n);
II send n characters from buff to ostream; watch the size of nl

put and write let you output unformatted binary data to an
ostream object. put outputs a single character, while write can
send any number of characters from the indicated buffer. write is
useful when you want to output raw data that may include nulls.
(Note that writing binary data requires that the file be opened in
binary mode.) The normal string extractor would not work since
it terminates on a null.

The input version of put is called get:

char ch;
cin. get (ch) ;
II grab next char from cin whether whitespace or not

Another version of get lets you grab any number of raw, binary
characters from an istream, up to a designated maximum, and
place them in a designated buffer (as with write, files must be
opened in binary mode):

istream& istream::get(char *buf, int max, int term='\n');
II read up to max chars from istream, and place them in buf. Stop if
II term char is read.

You can set term to a specific terminating character (the default is
the newline character), at which get will stop if reached before
max characters have been transferred to buf

Disk I/O The iostream library includes many classes derived from
streambuf, ostream, and istream, thereby allowing a wide choice
of file I/O methods. The filebuf class, for example, supports I/O
through file descriptors with member functions for opening,
closing, and seeking. Contrast this with the class stdiobuf that
supports I/O via stdio FILE structures, allowing some
compatibility when you need to mix C and C++ code.

This code is available as
DCOPY.CPP.

Chapter 4, A C++ primer

The most generally useful classes for the beginner are ifstream
(derived from istream), ofstream (derived from ostream), and
fstream (derived from iostream). These all support formatted file
I/O using filebuf objects. Here's a simple example that copies an
existing disk file to another specified file:

1* DCOP¥.CPP -- Example from Chapter 4 of Getting Started *1

1* DCOPY source-file destination-file

111

112

* copies existing source-file to destination-file
* If latter exists, it is overwritten; if it does not *
* exist, DCOPY will create it if possible
*1

#include <iostream.h>
#include <process.h>
#include <fstream.h>

II for exit ()
II for ifstream, of stream

main(int argc, char* argv[]) II access command-line arguments
{

char ch;
if (argc != 3)
{

II test number of arguments

cerr « "USAGE: dcopy file! file2\n";
exit(-l);

ifstream source;
of stream dest;

II declare input and output streams

source.open(argv[l],ios::nocreate); II source file must be there
if (! source)
{

cerr « "Cannot open source file" « argv[l] «
" for input\n";

exit(-l);

dest.open(argv[2]); II dest file will be created if not found
II or cleared/overwritten if found

if (! dest)
{

cerr « "Cannot open destination file" « argv[2] «
" for output \n";

exit(-!);

while (dest && source.get(ch)) dest.put(ch);

cout « "DCOPY completed\n";

source.close();
dest.close();

II close both streams

Note first that #include <fstream> also pulls in iostream.h. DeOpy
uses the standard method of accessing command-line arguments
to check whether the user specified the two files involved. When
this argument list is used with the main function, the argument
argc contains the number of command-line arguments (including

Borland C++ Getting Storied

Chapter 4, A C++ primer

the name of the program itself), and the strings argv[l] and argv[2]
contain the two file names entered. A typical command-line
invocation of this program would be

dcopy letter.spr letter.bak

To see how DCOPY works, examine the following lines:

ifstream source; II declare an input stream (ifstream object)

open.source(argv[l],ios::nocreate); II source file must be there

The declaration invokes a constructor of ifstream (the class for
handling input file streams) to create a stream object called source.
Before we can make use of source, we must create a file buffer and
associate the stream and buffer with a real, physical file. Both
tasks are performed by the member function open in ifstream.
The open function needs a file name string and, optionally, one or
two other arguments to specify the mode and protection rights.
The file name here is given as argv[l], namely, the source file
supplied in the command line.

A neater alternative to the above declaration is:

ifstream source(argv[l],ios::nocreate); II source file must be there
II this creates source and opens the file as well

The mode argument ios::nocreate tells open not to create a file if
the named file is not found. For DCOPY, we clearly want open to
fail if the named source file is not on the disk. Later, you'll see the
other mode arguments available. If the file argv[1] cannot be
opened for any reason (usually because the file is not found), the
value of source is effectively set to zero (false), so that (! source)
tests true, giving us an error message, then exiting.

In fact, we could determine the possible reason for the failure to
open the source file by examining the error bits set in the stream
state. The member functions eof, fail, and bad test various error
bits and return true if they are set. Alternatively, rdstate returns
the error state in an int, and you can then test which bits are set.
The eof (end of file) is not really an error per se, but it needs to be
tested and acted upon since a stream cannot be usefully accessed
beyond its final character. Note that once a stream is in an error
state (including eof), no further I/O is permitted. The function
clear is provided for clearing some or all error bits, allowing you
to resume after clearing a nonfatal situation.

Back in DCOPY.CPP, if all is well with the source file, we then try
to open the destination file with the ofstream object, dest. With

113

When C tests (x && y), it will
not bother to test y if x proves

false. Since dest is less likely
to "foi/" than source.get(ch),
you might consider reversing

the entries.

output files, the default situation is that a file will be created if it
does not exist; if it exists it will be cleared and recreated as an
empty file. You can modify this behavior by adding a second
argument, mode, to the declaration of dest. For example:

of stream dest(argv[2],ios::applios::nocreate);

will try to open dest in append mode, failing if dest is not found. In
append mode, the data in the source file would be added to the
end of dest, leaving the previous contents undisturbed. Other
mode flags enumerated in class ios (note the scope operator in
ios::app), are ate (seek to end of file); in (open for input, used
with fstreams, since they can be opened for both input and
output); out (open for output, also used with fstreams); trunc
(discard contents if file exists); noreplace (fail if file exists).

Once both files have been opened, the actual copying is achieved
in typically condensed C fashion. Consider the Boolean expres­
sion tested by the while loop:

(dest && source.get(ch))

We have seen that dest will test true until an error occurs.
Similarly the call source.get(ch) will test true until either a reading
error occurs or until the end of the file is reached. In the absence
of "hard" errors, then, the loop gets characters from source and
puts them in dest until an end of file situation makes source false.

There are many more file I/O features in the iostream library.
And iostream can also help you with in-memory formatting,
where your streams are in RAM. Special classes, such as
strstreambuf, are provided for in-memory stream manipulation.

I/O for user-defined data types

114

A real benefit with C++ streams is the ease with which you can
overload » and « to handle I/O for your own personal data
types. Consider a simple data structure that you may have
declared:

struct emp {
char *name;
int dept;
long sales;

};

Bor/and C++ Getting Started

Where to now?

Chapter 4, A C++ primer

To overload « to output objects of type emp, you need the
following definition:

ostream& operator « (ostream& str, emp& e)
(

str « setw(25) « e.name « ": Department" « setw(6) « e.dept «
« tab « " Sales $" « e.sales « '\n';
return str;

Note that the operator-function« must return ostream&, a
reference to ostream, so that you can chain your new « just like
the predefined insertion operator. You can now output objects of
type emp as follows:

#include <iostream.h>
#include <iomanip.h> II don't forget this!

emp jones = {"So Jones", 25, lOOO};
cout « jones;

giving the display

S. Jones: Department 25 Sales $1000

Did you spot the manipulator tab in the« definition? This is not
a standard manipulator-but a user-defined one:

ostream& tab(ostream& str)
return str « '\t';

This, of course, is trivial, but nevertheless makes for more legible
code.

An input routine for emp can be similarly devised by overloading
». This is left as an exercise for the reader.

A suggestion for your first C++ project is to take the FIGURES
module shown on page 85 (you have it on disk) and extend it.
Points, circles, and arcs are by no means enough. Create objects
for lines, rectangles, and squares. When you're feeling more
ambitious, create a pie-chart object using a linked list of indivi­
dual pie-slice figures.

115

Conclusion

116

One more subtle challenge is to implement classes to handle
relative position. A relative position is an offset from some base
point, expressed as a positive or negative difference. A point at
relative coordinates -17,42 is 17 pixels to the left of the base point,
and 42 pixels down from that base point. Relative positions are
necessary to combine figures effectively into single larger figures,
since multiple-figure combinations cannot always be tied together
at each figure's anchor point. Better to define an RX and RY field
in addition to anchor point X, Y, and have the final position of the
object onscreen be the sum of its anchor point and relative
coordinates.

Once you feel comfortable with C++, start building its concepts
into your everyday programming chores. Take some of your more
useful existing utilities and rethink them in C++ terms. Try to see
the classes in your hodgepodge of function libraries-then rewrite
the functions in class form. You'll find that libraries of classes are
much easier to reuse in future projects. Very little of your initial
investment in programming effort will ever be wasted. You will
rarely have to rewrite a class from scratch. If it will serve as is, use
it. If it lacks something, extend it. But if it works well, there's no
reason to throwaway any of what's there.

C++ is a direct response to the complexity of modern applications,
complexity that has often made many programmers throw up
their hands in despair. Inheritance and encapsulation are extreme­
ly effective means for managing complexity. C++ imposes a
rational order on software structures that, like a taxonomy chart,
imposes order without imposing limits.

Add to that the promise of the extensibility and reusability of
existing code, and you not only have a toolkit-you have tools to
build new tools!

Bor/and C++ Getting Storied

c H

This chapter is a concise,
hands-on tutorial for C++.

Important!

Chapter 5, Hands-on C++

A p T E R

5

Hands-on C++

In order to give you a sense of how C++ looks and how to ac­
complish tasks in C++, this chapter moves quickly through a large
number of concepts with a minimum of verbiage. It is intended to
be used as you work at your computer; you can load and run each
of these programs (which are in your EXAMPLES subdirectory,
along with any header and other files that you'll need). If you
want a more in-depth treatment of C++, especially of the concepts
underlying object-oriented programming, read Chapter 4, "A C++
primer." You might also want to refer to Chapter 3, "C++," in the
Programmer's Guide for precise details about the syntax and use of
C++.

In this chapter, we assume that you are familiar with the C lan­
guage, and that you know how to compile, link, and execute a
source program with Borland C++. We start with simple examples
that grow in complexity so that new concepts will stand out. It is
reasonable that such examples will not be bulletproof (in other
words, they don't check for memory failure and so on). This
chapter is not a treatise on data structures or professional pro­
gramming techniques; instead, it is a gentle introduction to a
complicated language.

This chapter is divided into two sections. The first section pro­
vides C++ alternatives to C programming knowledge and habits
you might have. The second section provides a swift introduction
to the kernel of C++: Object-oriented programming using classes
and inheritance.

117

A better C: Making the transition from C

118

When referring to line
numbers, we've counted

blank lines.

Program 1
Source

Output

Although knowing C is helpful to learning C++, sometimes that
knowledge can get in the way, particularly in the areas that aren't
specifically object-oriented programming, yet where C++ does
things differently from C. For that reason, this section shows how
to accomplish in C++ many of the same kinds of actions you
would perform in C: writing text to the screen, commenting your
code, creating and using constants, working with stream I/O and
inline functions, and so on.

II exl.cpp: A First Glance
II from Chapter 5 of Getting Started
#include <iostream.h>

main ()
{

cout « "Frankly, my dear ... \n";
cout « "Ctt is a better C.\n";

Frankly, my dear ...
Ctt is a better C.

Note the new comment syntax in the first line of this program. All
characters from the first occurrence of double slashes to the end of
a line are considered a comment, although you can still use the
traditional r ... */ style. File names which have a .CPP extension are
assumed to be C++ files (or you could use the command-line com­
piler option -Pl.
The third line includes the standard header file iostream.h, which
replaces much of the functionality of stdio.h. cout is an output
stream, and is used to send characters to standard output (as
stdout does in C). The « operator (pronounced "put to") sends
the data on its right to the stream on its left. The context of the «
operator here distinguishes it from the arithmetic shift-left opera­
tor, which uses the same symbol. (Such multiple use of operators
and functions is quite common in C++ and is called overloading.)

Bor/and c++ Getting Started

Program 2
Source

Sample execution

Program 3
Source

Chapter 5, Hands-on C++

II ex2.cpp: An interactive example
II from Chapter 5 of Getting Started
#include <iostream.h>

main()
{

char name[16);
int age;

cout « "Enter your name: ";
cin » name;
cout « "Enter your age: ";
cin » age;

if (age < 21)
cout « "You young whippersnapper, " « name « "!\n";

else if (age < 40)
cout « name « ", you're still in your prime! \n";

else if (age < 60)
cout « "You're over the hill, " « name « "!\n";

else if (age < 80)
cout « "I bow to your wisdom, " « name « "! \n";

else
cout « "Are you really" « age « ", " « name « "?\n"i

Enter your name: Don
Enter your age: 40
You're over the hill, Don!

cin is an input stream connected to standard input. It can correct­
ly process all the standard data types. You may have noticed in C
that printing a prompt without a newline character to stdout re­
quired a call to fflush(stdout) in order for the prompt to appear. In
C++, whenever cin is used it flushes cout automatically (you can
tum this automatic flushing off if it's on by default).

II ex3.cpp: Inline Functions
II from Chapter 5 of Getting Started
#include <iostream.h>

const float Pi = 3.1415926;

inline float area(const float r) {return Pi * r * ri}

main ()

119

Sample execution

Program 4
Source

120

float radius;

cout « "Enter the radius of a circle: ";
cin » radius;
cout « "The area is " « area(radius) « "\n";

Enter the radius of a circle: 3
The area is 28.274334

A constant identifier behaves like a normal variable (that is, its
scope is the block that defined it, and it is subject to type check­
ing) except that it cannot appear on the left-hand side of an as­
signment statement (or anywhere an lvalue is required). Using
#define is almost obsolete in c++.

The keyword inline tells the compiler to insert code directly
whenever possible, in order to avoid the overhead of a function
call. In all other ways (scope, etc.) an inline function behaves like
a normal function. Its use is recommended over #defined macros
(except, of course, where you depend on the macro-substitution
tricks of the preprocessor). This feature is intended for simple,
one-line functions.

II ex4.cpp: Default arguments and Pass-by-reference
II from Chapter 5 of Getting Started
#include <iostream.h>
#include <ctype.h>

int get_word(char *, int &, int start = 0);

main()
{

int word_len;
char *s =" These words will be printed one-per-line ";

int word_idx = get_word(s,word_len);
while (word_len> 0)
{

cout.write(stword_idx, word_len);
cout « "\n";

I I line 13

Ilcout « form("%.*s\n",word_len,stword_idx);
word_idx = get_word(s,word_len,word_idxtword_len);

Bor/and C++ Getting Started

It's good programming style
to make nul/loop bodies

stand out.

In an important change from
C, dec/orations can appear
anywhere a statement can.

int get_word{char *s, int& size, int start)
{

II Skip initial whitespace
for (int i = start; isspace(s[i]); ++i)

int start_of_word = i;

II Traverse word
while (s[i] != '\0' && !isspace(s[i]))

++i;
size = i - start_of_word;
return start_of_word;

Output These

One exciting feature.of C++
is the default argument.

Object support

Chapter 5, Hands-on C++

words
will
be
printed
one-per-line

The prototype for the function get_word in the sixth line has two
special features. The second argument is declared to be a reference
parameter. This means that the value of that argument will be mo­
dified in the calling program (this is equivalent to var parameters
in Pascal, and is accomplished through pointers in C). By this
means, the variable word_len is updated in main, and yet we can
still return another useful value with the function get_word.

The third argument is a default argument. This means that it can
be omitted (as in line 13), in which case the value of 0 is passed
automatically. Note that the default value need only be specified
in the first mention of the function. Only the trailing arguments of
a function can supply default values.

The world is made up of things that both possess attributes and
exhibit behavior. C++ provides a model for this by extending the
notion of a structure to contain functions as well as data members.
This wayan object's complete identity is expressed through a
single language construct. The notion of object-oriented support
then is more than a notational conve~ience-it is a tool of
thought.

121

Program 5

You'll need to compile
OEF.CPP to an OBJ file, then

link it in with either EX6. CPP or
EX7.CPP (or load EX5.PRJ).

You might also want to
compile it with Debug Info
checked so you can step

through and watch the
program flow.

In other object-oriented
languages, member func­

tions are offen called
methods.

122

Suppose we want to have an online dictionary. A dictionary is
made up of definitions for words. We will first model the notion
of a definition.

II def.h: A word definition class
II from Chapter 5 of Getting Started
#include <string.h>

const int Maxmeans = 5;

class Definition

char *word; II Word being defined
char *meanings[Maxmeans];
int nmeanings;

public:
void put_word(char *);

II Various meanings of this word

char *get_word(char *s) {return strcpy(s,word);}; II line 15
void add_meaning(char *);
char *get_meaning(int, char *);

};

In traditional C style, we put definitions in an include file. The
keyword class introduces the object description. By default,
members of a class are private (though you can explicitly use the
keyword private), so in this case the fields in lines 9 through 11
can only be accessed by functions of the class. (In C++, class
functions are called member functions.) To make these functions
available as a user interface, they are preceded by the keyword
public. Note that the inline keyword is not required inside class
definitions (line 15).

The implementation is usually kept in a separate file:

II def.cpp: Implementation of the Definition class
II from Chapter 5 of Getting Started
#include <string.h>
#include "def.h"

void Definition::put_word(char *s)
{ .

word = new char[strlen(s)+l];
strcpy(word,s);
nmeanings == 0;

void Definition::add_meaning(char *s)

Borland C++ Getting Storied

Source

Output

Chapter 5, Hands-on C++

if (nmeanings < Maxmeans)
{

meanings [nmeanings] = new char[strlen(s)+1];
strcpy(meanings[nmeanings++),s);

char * Definition::get_meaning(int level, char *s)

if (0 <= level && level < nmeanings)
return strcpy(s,meanings[level));

else
return 0; // line 27

The scope resolution operator (::) informs the compiler that we are
defining member functions for the Definition class (it's good
practice to capitalize the first letter of a class to avoid name
conflicts with library functions). The keyword new in line 8 is a
replacement for the dynamic memory allocation function malloe.
In C++, by convention, zero is used instead of NULL for pointers
(line 27). Although we didn't do so here, it is advisable to verify
that new returns a non-zero value.

II ex5.cpp: Using the Definition class
II from Chapter 5 of Getting Started
#include <iostream.h>
#include "def.h"

main()
{

Definition d;
char s[81];

II Assign the meanings
d.put_word("class") ;

/1 Declare a Definition object

d.add_meaning("a body of students meeting together to \
study the same subject");

d.add_meaning("a group sharing the same economic status");
d.add_meaning("a group, set or kind sharing the same attributes");

I I Print them
cout « d.get_word(s) « ":\n\n";
for (int i = 0; d.get_meaning(i,s) != 0; ++i)

cout « i+1 « ": " « s « "\n";

class:

1: a body of students meeting together to study the same subject

123

Program 6

From the command line,
build DICTlON.OBJ and

DEF.OBJ with EX6.CPP. From
the Programmer:S Platform,
use the EX6.PRJ project file.

124

2: a group sharing the same economic status
3: a group, set, or kind sharing the same attributes

We can now define a dictionary as a collection of definitions.

II diction.h: The Dictionary class
II from Chapter 5 of Getting Started
'include "def.h"

const int Maxwords = 100;

class Dictionary
{

Definition *words;
int nwords;

II An array of definitions; line 9

int find_word(char *); II line 12

public:
II The constructor is on the next line
Dictionary(int n = Maxwords)

{nwords = 0; words = new Definition[n];};
-Dictionary() {delete words;}; II The destructor
void add_def(char *s, char **def);
int get_def(char *, char **);

};

The function find_word on line 12 is for internal use only by the
Dictionary class and ~o is kept private. A function with the same
name as the class is called a constructor (line 16). It is called once
whenever an object is declared. It is used to perform initializa­
tions; here we are dynamically allocating space for an array of
definitions. A destructor (line 17) is called whenever an object goes
out of scope (in this case, the delete operator will free the memory
previously allocated by the constructor). In order to have an array
of member objects (line 9), the included class must either have a
constructor with no arguments or no constructor at all (the
Definition class has none).

II diction.cpp: Implementation of the Dictionary class
II from Chapter 5 of Getting Started
#include "diction.h"

int Dictionary::find_word(char *s)
{

char word[81];
for (int i = 0; i < nwords; ++i)

Borland C++ Getting Started

Source

Chapter 5, Hands-on C++

if (stricmp (words [i] .get_word(word),s) == 0)
return i;

return -1;

void Dictionary::add_def(char *word, char **def)
{

if (nwords < Maxwords)
{

words [nwords] .put_word(word);
while (*def != 0)

words [nwords] .add_meaning(*def++);
++nwords;

int Dictionary::get_def(char *word, char **def)
{

char meaning[81];
int nw = 0;
int word_idx = find_word(word);
if (word_idx >= 0)
{

while (words [word_idx] . get_meaning (nw,meaning) != 0)
{

def[nw] = new char[strlen(meaning)+1];
strcpy(def[nw++],meaning);

def[nw] = 0;

return nw;

We can now use the Dictionary class without any reference to the
Definition class (the output is the same as in the previous
example).

II ex6.cpp: Using the Dictionary class
II from Chapter S of Getting Started
#include <iostream.h>
#include "diction.h"

main()
{

Dictionary d(S);
char *word = "class";
char *indef[4] =

{"a body of students meeting together to study the same",
"subject a group sharing the sa!1le economic status",

125

Build LlST.OBJ with EX7. cpp

126

"a group, set or kind sharing the same attributes",
O} ;

char *outdef[4];

d.add_def(word,indef);
cout « word « ":\n\n";
int ndef = d.get_def(word,outdef);
for (int i = 0; i < ndef; iii)

cout « i+l « ": " « outdef[i] « "\n";

In the Dictionary implementation, we specifically called the Defi­
nition member functions. Sometimes it is desirable to allow cer­
tain functions or even an entire class to have access to the private
members of another. We could declare the Dictionary class to be a
friend to the Definition class (line 18);

II def2.h: A word definition class
II from Chapter 5 of Getting Started
#include <string.h>

const int Maxmeans = 5;

class Definition

char *word;
char *meanings[Maxmeans];
int nmeanings;

pUblic:
void put_word(char *);

II Word being defined
II Various meanings of this word

char *get_word(char *s) {return strcpy(s,word);};
void add_meaning(char *);
char *get_meaning(int, char *);
friend class Dictionary; II line 18

};

The implementation of find_word could then access Definition
members directly (line 5 in the following code):

int Dictionary::find_word(char *s)
{

char word[81];
for (int i = 0; i < nwords; iii)

if (stricmp(words[i] .word),s) == 0)
return i;

return -1;

Bor/and C++ Getting Started

Program 7

To try these out, build
LIST. OBJ and EX7. CPP, or use

EX7.PRJ.

Chapter 5, Hands-on C++

One of the key features of object-oriented programming is inheri­
tance. A new class can inherit the data and member functions of
an existing ("base") class (the new class is said to be derived from
the base class). In this program, we define List, a base class for
processing a list of integers, then derive Stack, a class to handle a
stack (which is a special kind of list). First, we create the header
file:

II list.h: A Integer List Class
II from Chapter 5 of Getting Started
canst int Max_elem = 10i

class List

int *listi
int nmax;
int nelemi

pUblic:

II An array of integers
II The dimension of the array
II The number of elements

List (int n = Max_elem) {list = new int[n]i nmax = ni nelem = Oi}i
-List () {delete list i } i

}i

int put_elem(int, int)i
int get_elem(int&, int)i
void setn(int n) {nelem = ni}i
int getn() (return nelemi}i
void incn() {if (nelem < nmax) ++nelemi}i
int getmax() {return nmaxi}i
void print () ,.

Then we create the source code:

II list.cpp: Implementation of the List Class
II from Chapter 5 of Getting Started
#include <iostream.h>
#include "list.h"

int List::put_elem(int elem, int pas)
{

if (0 <= pas && pas < nmax)
{

list [posj = .elemi
return Oi

else
return -Ii

II Put an element into the list

II Non-zero means error

127

int List::get_elem(int& elem, int pas)
{

if (0 <= pas && pas < nmax)
{

elem = list[pos];
return 0;

else
return -1;

void List:: print ().
{

II Retrieve a list element

II non-zero means error

for (int i = 0; i < nelem; ++i)
cout « list[ij « "\n";

And finally we use the new class:

II ex7.cpp: Using the List class
II from Chapter 5 of Getting Started
Unclude "list .h"

main()
{,

List 1(5);
int i = 0;

II Insert the numbers 1 through 5
while (1.put_elem(i+1,i) == 0)

++i;
1. setn (i) ;

1.print () ;

Output 1

Program 8
Build STACK.OBJ and UST.OBJ
with EX8. CPP, or use EX8.PRJ.

128

2
3
4
5

II stack2.h: A Stack class derived from the List class

'include "list.h"

class Stack : public List
{

int top;

public:

Borland C++ Getting Started

Chapter 5, Hands-on C++

};

StackO {top = o:}:
Stack (int n) : List (n) {top = o:}:
int push(int elem);
int pop(int& elem);
void print 0 ;

To define a derived class, the base class definition must be avail­
able, so we include its header file (line 3). Line 5 informs the com­
piler that the Stack class is derived from the List class. The key­
word public states that the public members of List should be con­
sidered public in Stack also (this is what is usually needed). Since
the List class has a constructor that takes an argument, the Stack
constructor invokes the List constructor directly (line 11). Base
class constructors are executed before those of a derived class.

II stack.cpp: Implementation of the Stack class
II from Chapter 5 of Getting Started
#include <iostream.h>
#include "stack.h"

int Stack::push(int elem)
{

int m = getmax();
if (top < m)
{

put_elem(elem,top++);
return 0;

else
return -1;

int Stack::pop(int& elem)
{

if (top> 0)
{

get_elem(elem,--top);
return 0;

else
return -1;

void Stack::print()
{

int elem;

for (int i = top-I; i >= 0; --i)

129

II Print in LIFO order
get_elem(elem,i);
cout « elem « "\n";

Note that the public member functions of the List class can be
used directly, because a Stack is a List. However, the private
members of the List portion of a Stack object cannot be referenced
directly.

II ex8.cpp: Using the Stack Class
II from Chapter 5 of Getting Started
'include "stack.h"

main ()
{

Stack s(5);
int i = 0;

II Insert the numbers 1 through 5
while (s.push(i+l) == 0)

Hi;

s .print ();

Output 5

Program 9

Build EX9.CPP, UST2.08J,
STACK2.0BJ, or use EX9.PRJ

130

4
3
2
1

Sometimes it is convenient to allow a derived class to have direct
access to some of the private data members of a base class. Such
data members are said to be protected.

II list2.h: A Integer List Class
II from Chapter 5 of Getting Started
canst int Max_elem = 10;

class List

protected:

int *list;
int nmax;
int nelem;

II The protected keyword gives subclasses
II direct access to inherited members

II An array of integers
II The dimension of the array
II The number of elements

Borland C++ Getting Started

Chapter 5, Hands-on C++

public:
List(int n = Max_elem) {list = new int[n]; nmax = n; nelem = a;};
~List () {delete list;};

};

int put_elem(int, int);
int get_elem(int&, int);
void setn(int n) {nelem = n;};
int getn() {return nelem;};
void incn() {if (nelem < nmax) ++nelem;};
int getmax() {return nmax;};
virtual void print(); II line 22

We can now replace calls to List's member functions with direct
references to List's data in the Stack implementation.

II stack2.cpp: Implementation of the Stack class

#include <iostream.h~
#include "stack2.h"

int Stack::push(int elem)
{

if (top < nmax)
(

list [top++] = elem:
return 0;

else
return -1;

int Stack::pop(int& elem)

if (top> 0)
{

elem = list [--top];
return 0;

else
return -1;

void Stack::print()
{

for (int i = top-1; i >= 0; --i)
cout « list[i] « "\n";

And then we can try it out:

131

Output

132

II ex9.cpp: Using the print() virtual function
II from Chapter 5 of Getting Started
#include <iostream.h>
#include "stack2.h"

main ()
{

Stack s(5);
List 1, *lp;
int i = 0;

II Insert the numbers 1 through 5 into the stack
while (s.push(i+1) == 0)

++i;

II Put a couple of numbers into the list
l.put_elem(1, 0);

l.put_elem(2, 1);
l.setn(2) i

cout « "Stack:\n";
lp = &s; II line 22
lp->print(); II Invoke the Stack print() method; line 23

cout « "\nList:\n";
lp = &1;
Ip->print(); II Invoke the List print() method; line 27

Stack:
5
4
3
2

List:
1
2

The above example illustrates polymorphism (also known as "late
binding" or "dynamic binding," which in c++ is accomplished
using virtual functions), This means that an object's type is not
identified until run time. By defining the print member function to
be virtual (see line 22 of "list2.h"), we can invoke the different
print member functions through a pointer to the base class. In line
22 above, lp points to a Stack object (remember: a Stack is a List),
so the Stack print method is invoked in line 23. Likewise, the List
print member function is executed in line 27.

Borland C++ Getting Started

Summary

Chapter 5, Hands-on C++

There is much more to C++'than this chapter covers. As stated at
the beginning, this chapter is intended give you a sense of the
"look and feel" of C++, to show how it differs from C, and to
demonstrate how to use most of the basic features of C++. For
more information on the basic concepts of C++, read or review
Chapter 4, "A C++ primer." Chapter 3, "C++," in the Programmer's
Guide gives more advanced material on C++. And check the
bibliography; it provides a list of books on C++, many specific to
Borland C++.

133

134 Bor/and C++ Getting Staried

Bibliography

Many leading book publishers support Borland products with a
wide range of excellent books, serving everyone from beginning
programmers to advanced users. This bibliography lists primarily
books that are specific to Turbo C++; however, much of what is in
those books will also apply to Borland C++.

Beginning to intermediate

Bibliography

Burnap, Steve. COMPUTE's Turbo C for Beginners. Radnor, PA:
COMPUTE! Publications, 1988.

Chui, Paul and Greg Voss. Turbo C++ DiskTutor. Berkeley, CA:
Osborne/McGraw-Hill, 1990.

Derman, Bonnie (editor) and Strawberry Software. Complete Turbo
C. Glennview, IL: Scott, Foresman & Co, 1989.

Edmead, Mark. Illustrated Turbo C. Plano, TX: Wordware Pub­
lishing, 1989.

Flamig, Bryan and Keith Weiskamp. Turbo C++: A Self-Teaching
Guide. New York, NY: John Wiley & Sons, 1990.

Goldstein, Larry and Larry Gritz. Hands On Turbo C. New York,
NY: Brady Books, 1989.

Hergert, Douglas. The ABCs of Turbo C 2.0. Alameda, CA: Sybex,
Inc, 1989.

Jamsa, Kris. Turbo C Programmer's Library. Berkeley, CA: Os­
borne/McGraw-Hill, 1988.

Kelly-Bootle, Stan. Mastering Turbo C++. Alameda, CA: Sybex, Inc,
1990.

Ladd, Scott. Turbo C++ Programming. Carmel, IN: Que
Corproation, 1990.

Ladd, Scott. Turbo C++ Techniques and Applications. Redwood City,
CA: M & T Books, 1990.

LaFore, Robert. The Waite Groups C Programming Using Turbo C++.
Indianapolis, IA: Howard W. Sams & Co, 1990.

135

Advanced

136

Miller, Larry and Alex Quilici. The Official Borland Turbo C Survival
Guide. New York, NY: John Wiley & Sons, 1989.

Pohl, Irci and Al Kelley. A Book on C. Menlo Park, CA: Benja­
min/Cummings, 1984.

Pohl, Ira and Al Kelly. Turbo C by Dissection. Menlo Park, CA:
Benjamin/Cummings, 1987.

Pohl, Ira and Al Kelly. Turbo C, The Essentials of Programming.
Menlo Park, CA: Benjamin/Cummings, 1988.

Schildt, Herbert. Using Turbo C++. Berkeley, CA: Os­
borne/McGraw-Hill, 1990.

Smith, Norman. Illustrated Turbo C++. Worldware Publishing,
1990.

Wiener, Richard. Turbo C at Any Speed. New York, NY: John Wiley
& Sons, 1988.

Zimmerman, S. Scott and Beverly Zimmerman. Programming with
Turbo C. Glennview, IL: Scott, Foresman & Co, 1989.

Alonso, Robert. Turbo C DOS Utilities. New York, NY: John Wiley
and Sons, 1988.

Burnap, Steve. COMPUTE's Advanced Turbo C Programming.
Radnor, P A: COMPUTE! Publications, 1988.

Davis, Stephen R. Turbo C: The Art of Advanced Program Design, Op­
timization and Debugging. Redwood City, CA: M & T Books,
1987.

Ezzell, Ben. Graphics Programming in Turbo C++: An Object-Oriented
Approach. Reading, MA: Addison-Wesley, 1990.

Ezzell, Ben. Object-Oriented Programming in Turbo C++. Reading,
MA: Addison-Wesley, 1989.

Goldentahl, Nathan. Turbo C Programmer's Guide. Chesterland, OH:
Weber Systems, Inc, 1988.

Hunt, William. The C Toolbox. Reading, MA: Addison-Wesley,
1985.

Borland C++ Getting Storied

Johnsonbaugh, Richard and Martin Kalin. Applications Program­
ming in Turbo C. New York, NY: Macmillan Publishing Co,
1989.

Lane, Alex. Turbo c++ By Example. Redwood City, CA: M & T
Books, 1990.

Mosich, Donna, Namir Shammas, and Bryan Flamig. Advanced
Turbo C Programmer's Guide. New York, NY: John Wiley &
Sons, 1988.

Pappas, Chris H. and William H. Murray III. Turbo C++
Professional Handbook. Berkeley, CA: Osborne/McGraw-Hill,
1990.

Porter, Kent. Stretching Turbo C. New York, NY: Brady Books,
1989.

Schildt, Herbert. Advanced Turbo C, 2nd edition. Berkeley, CA: Os­
borne/McGraw-Hill, 1989.

Stevens, AI. Turbo C: Memory Resident Utilities, Screen I/O and
Programming Techniques. Portland, OR: MIS: Press, 1987.

Weiskamp, Keith. Advanced Turbo C Programming. Boston, MA:
Academic Press, 1988.

Weiskamp, Keith. Object-Oriented Programming with Turbo C++.
New York, NY: John Wiley & Sons, 1990.

Weiskamp, Keith and Lorem Heiny. Power Graphics Using Turbo
C++. New York, NY: John Wiley & Sons, 1990.

Young, Michael. Systems Programming in Turbo C. Alameda, CA:
Sybex, Inc, 1988.

Object-oriented programming in general

Bibliography

Dewhurst, Stephen C. and Kathy T. Stark. Programming in C++.
Englewood Cliffs, NJ: Prentice Hall, 1989.

Eckel, Bruce. Using C++. Berkeley, CA: Osborne/Mcgraw-Hill,
1990.

Lippman, Stanley B. C++ Primer. Reading, MA: Addison-Wesley,
1989.

Pohl, Ira. C++ For C Programmers. Menlo Park, CA: Benja­
min/Cummings, 1989.

137

Stroustrup, Bjarne. The C++ Programming Language. Reading, MA:
Addison-Wesley, 1987.

Weiner, Richard S. and Lewis J. Pinson. An Introduction to Object­
Oriented Programming and c++. Reading, MA: Addison­
Wesley, 1988.

Other languages and C

Brown, Douglas L. From Pascal to C. Belmont, CA: Wadsworth
Publisher, 1985.

Traister, Robert. AI Programming in Turbo C. Blue Ridge Summit,
PA: Tab Books, Inc, 1989.

Programming Windows applications

Reference

138

International Business Machines Corporation. Systems Application
Architecture: Common User Access Advanced Interface Design
Guide, IBM, 1989.

Microsoft Corporation. Microsoft Windows User's Guide. Redmond,
W A: Microsoft Corporation, 1990.

Microsoft Corporation. Microsoft Windows Software Development
Kit: Programmer's Reference. Redmond, WA: Microsoft
Corporation, 1990.

Petzold, Charles. Programming Windows. Redmond, W A: Microsoft
Press, 1988.

American National Standard for Information Systems (ANSI).
Programming Language C. Document number X3J11/90-013.
Washington, DC: Computer & Business Equipment Manufac­
turers Association, 1990.

Barkakati, Nabajyoti. The Waite Group's Essential Guide to Turbo C.
Indianapolis, IA: Howard W. Sams & Co, 1989.

Borland C++ Getting Storied

Bibliography

Barkakati, Nabajyoti. The Waite Group's Turbo C++ Bible.
Indianapolis, IA: Howard W. Sams & Co, 1990.

Bloom, Eric. The Turbo C++ Trilogy. Blue Ridge Summit, P A: Tab
Books, Inc, 1990.

Harbison, Samuel P. and Guy L. Steele. C: A Reference Manual.
Englewood Cliffs, NJ: Prentice-Hall, 1987.

Holtz, Frederick. Turbo C Programmer's Resource Book. Blue Ridge
Summit, PA: Tab Books, Inc., 1987.

Kernighan, Brian W. and Dennis M. Ritchie. The C Programming
Language, 2nd edition, Englewood Cliffs, NJ: Prentice-Hall,
1988. .

O'Brien, Stephen. Turbo C: The Complete Reference. Berkeley, CA:
Osborne/McGraw-Hill, 1988.

Purdum, Jack and Tim Leslie. C Standard Library. Carmel, IN: Que
Corporation, 1987.

Rought, Edward R. and Thomas D. Hoops. Turbo C Developer's
Library. Indianapolis, IA: Howard W. Sams & Co, 1988.

Schildt, Herbert. Turbo C: The Pocket Reference. Berkeley, CA: Os­
borne/McGraw-Hill, 1988.

Schildt, Herbert. Turbo C/Turbo C++: The Complete Reference.
Berkeley, CA: Osborne/McGraw-Hill, 1990.

139

140 Bor/and C++ Getting Storied

N

/ / (comments) 46, 118
:: (scope resolution operator) 54, 56, 76, 123
; (for empty loops) 121
« operator

overloading See see overloaded operators
» operator

overloading See see overloaded operators
+ operator

overloading See overloaded operators,
addition (+)

- operator
destructors 92

l's complement See operators, l's complement

A
access

class members 122
classes 46

structures vs. 59
data members 58, 105
data members and member functions 46
functions and variables 56
information hiding and 58
inheritance and 65
member functions 58
structures

classes vs. 59
address, Borland 8
addresses, memory See memory, addresses
Adjust Colors menu, BCINST 16
alloc.h (header file)

malloc.h and 39
allowed keystrokes 18
American National Standards Institute See

ANSI
ancestors See classes, base
ANSI

C standard 3

Index

D E

arguments
constructors 57
default 57,98

C++ 121
constructors and 101

mode 113
passing in C++ 83

arrays
new operator and 91

auto variables See variables, automatic

B
bad (member function) 113
bar

execution See run bar
run See run bar

base classes See classes, base
_based (keyword) 40

x

BC and BCC See Borland C++; command-line
compiler; integrated environment

BCINST 14-19
black-and-white option 15
colors

changing 15
exiting 16
invoking 15
menus 14

choosing items 16
exiting 16

overriding 14, 15
starting 15

bibliography 135-139
binding See C++, binding
Black and White option, BCINST 19
blocks, text See editing, block operations
Boolean data type 52
Borland

address 8

141

CompuServe Forum 8
technical support 8

Borland C++ See also C++; integrated
environment
converting to from Microsoft C 25-42
exiting 12
implementation data 3
installing 12-13

on laptops 13
starting 12

branching See if statements; switch statements
BSS segment

class 17
group 17
renaming 17

buffers
file 113

bugs See also debugging
reporting to Borland 9

c
C++ 43-116,117-133

arguments 98, 121
passing 83

binding
early vs.late 79
late 50, 78, 132, See also member functions,
virtual

early vs. 79
example 82

Borland C++ implementation 3
classes See classes
comments 46, 118
compiling 60
constants 120
constructors 129, See constructors
data members See data members
declarations 121
#define and 120
destructors See destructors

defined 125
dynamic objects See also objects
encapsulation 45

defined 43
examples

dictionary 122
file buffers 113

142

formatting See formatting
friend functions

declaring 126
functions See also member functions

default arguments for 98
friend 105, 106
inherited 76
inline 61, 97, 120

classes and 122
header files and 62

one line 120
overloading See overloaded functions
virtual 132
virtual keyword and 81

graphics classes 51
header files 66, 118
hierarchies See classes
I/O 107

flushing cout 119
formatting 111
performing 118

inheritance See inheritance
initialization 125
inline functions See C++, functions, inline
I/O

disk 111
formatting 109
put and write functions and 110

member functions See member functions
members

initialization list 77
objects

declaring 53
operators See operators, C++; overloaded

operators
polymorphism See polymorphism
primer 43-116
programs

compiling 60
Smalltalk vs. 45
streams See streams, C++

cin, cout, and cerr 107
cout

flushing 119
defined 62

strings
concatenating 102

Borland C++ Getting Storied

structures See structures
tutorial 117-133
types

reference See reference types
variables

declaring anywhere 120
C language See also C++
case statements See switch statements
_ cdecl (keyword)

Microsoft C 42
cerr (C++ stream) 107
characters

char data type See data types, char
charts See graphics, charts
cin (C++ stream) 62, 107

using 119
CL options

command-line compiler options and 32
class (keyword) 122
classes See also structures

access 126
structures vs. 59

base 63, 127
defined 49

class keyword 122
constructors 55

arguments 57
defining 57
inline 57
naming 57

defined 46
derived 63, 127

creating 65, 129
defined 49

deriving 70
destructors 56
friend functions and 106, 126
graphics 51
hierarchies

common attributes in 84
initializing automatically 55
inline keyword and 122
instantiation and 46
istream, ostream, and iostream 107
libraries 67
members

access 122

Index

private
accessing 126

overloaded operators and 108
projects and 66
relative position 115
streambuf 107
structures vs. 46
TLIB and 66

clear (function)
C++ stream errors and 113

clog (C++ stream) 107
code segment

class 17
group 17
naming and renaming 17

Color/Graphics Adapter (eGA)
EGA card and 15
snow and 18

Color option, BCINST 19
colors See graphics, colors
COMDEFs

generating 40
command-line compiler

directives See directives
INCLUDE environment variable and 27
LIB environment variable and 27
options

CL options versus 32
compatibility 37
compile C++ (-P) 60
-P (compile C++) 60

commands See individual command names
comments

/ /46, 118
compatibility

command-line options 37
mice 3
with Microsoft C 25-42

compiler directives See directives
composite screens

customizing Borland C++ for 18
CompuServe Forum, Borland 8
configuration files

BCINST overridden by 14
IDE

modifying 15

143

constants
C++ 120
manifest or symbolic See macros

constructors 55, See C++, constructors
accepting default arguments 101
arguments 57
calling with no arguments 101
classes

base 68
derived 68

default 69
defining 57
inline 57, 62
naming 57
new operator and 56
order of calling

example 77
conventions

typographic 7
conversion specifications See format specifiers
copy and paste See editing, copy and paste
copy protection 11
cout (C++ stream) 62, 107

flushing 119
.CPP files See C++
customizing

D

EGA 15
keystroke commands 16
multiple versions of Borland C++ 15
order of precedence of commands 15
quitting 16

data
hiding See access
structures See also arrays; structures

data members
access 46, 47, 58
accessing 58

private 105
defined 46
member functions and 56
scope 65

data segment
class 17
group 17
renaming 17

144

data types See also data
Boolean 52
converting See conversions
floating point See floating point
integers See integers

Debugger menu, BCINST 17
debugging

breakpoints See breakpoints
screen swapping 17

dec (manipulator) 110
declarations

data See data, declaring
location

C++ 121
objects 53

default arguments See arguments, default
Default option, BCINST 18
defaults

restoring 16
delete (operator)

destructors and 56, 92
syntax 92

derived classes See classes, derived
descendants See classes, derived
destructors

auto objects and 92
deallocating memory and 92
delete operator and 56, 92
dynamic objects and 92
implicit 92
static objects and 92

dialog boxes See also buttons; check boxes; list
boxes; radio buttons

dictionary example 122
dir.h (header file)

direct.h and 39
direct.h (header file)

dir.h and 39
directives

#define
C++ and 120

MAKE See MAKE (program manager),
directives

Microsoft compatibility 39
disks

distribution
defined 12

Borland C++ Getting Storied

Display Swapping option, BCINST 17
displays See screens
distribution disks 4

backing up 11
distributions disks, defined 12
division See floating point, division; integers,

division
do while loops See loops, do while
double (floating point) See floating point,

double
dynamic binding See C++, binding, late
dynamic objects See objects, dynamic

E
early binding See C++, binding
Edit See also editing
editing See also Edit

pasting See editing, copy and paste
editor

allowed keystrokes 18
BCINST and 16
commands

restoring 16
else clauses See if statements
__ emit __ 041
_emit (keyword) 41
empty loops 121
encapsulation 43, See also C++
endl (manipulator) 110
ends (manipulator) 110
Enhanced Graphics Adapter (EGA)

CGA monitor and 15
environment See integrated environment

variables 26
Resource Compiler and 27

eof (member function) 113
errors

C++ streams
clearing 113

messages
which book to look in·for 5

.EXE files
modifying 14

execution
bar See run bar

expressions
watch See Watch, expressions

Index

extensibility See also C++
extraction operator (») See overloaded

operators

F
fail (member function) 113
_fastcall (keyword) 41
features of Borland C++ 1,21
field width, C++ 110
files See also individual file-name extensions

buffers, C++ 113
C++ See C++
.CCP See C++
disk

copying using C++ 111
editing See editing
header See header files
HELPME!.DOC 12, 14
include See include files
library CLIB) See libraries
modifying 14
README 13
README.DOC 12

Find command See Search menu
flags

format state See formatting, C++, format
state flags

floating point See also integers; numbers
double

long See floating point, long double
Microsoft C and 41

flush (manipulator) 110
for loops See loops, for
format specifiers See also formatting
format state flags See formatting, C++, format

state flags
formatting See also format specifiers

C++
field width 110
format state flags 109
put and write functions and 110

C++ I/O 109, 111
fortran (keyword) 40

_pascal keyword and 41
friend (keyword)

classes and 106
friend functions See C++, friend functions

145

function signature 80
functions See also individual function names;

member functions; scope
friend See C++, functions, friend
inline

C++ 97
syntax 98

inline, C++ 120
classes and 122

intrinsic 41
member See member functions
one line 120
ordinary member See member functions,

ordinary
overloaded See overloaded functions
parameters See parameters
signature 80
virtual See member functions, virtual

syntax 81

G
Genus mouse compatibility 3
get (function) 111
get from (») See overloaded operators
global declarations See declarations, global
graphics See also graphics drivers

classes 51
graphics drivers See also graphics

H
hardware

requirements
mouse 3

requirements to run Borland C++ 3
header files See also include files

Borland C++ versus Microsoft C 39
C++ 66
inline C++ functions and 62
Microsoft C 39
stream.h vs. stdio.h 118
windows.h See windows.h

HELPMELDOC file 12, 14
hex (manipulator) 110
hexadecimal numbers See numbers,

hexadecimal

146

hierarchies See classes
hot keys

redefining 18

icons used in books 7
IDE See integrated environment
IMSI mouse compatibility 3
INCLUDE environment variable 26

Resource Compiler and 27
windows.h and 27

include files See also header files
paths 26

indexes See arrays
information hiding See access
inheritance 48, 63

access and 65
base and derived classes and 63
defined 44
example 127
functions and 76
multiple 50, 73

defined 64
rules 65

initialization See specific type of initialization
constructors and destructors and 55

initialization modules 37
inline (keyword) 120

classes and 122
constructors and 57
member functions and 54

inline functions, C++ See C++, functions, inline
insertion operator «<) See overloaded

operators
Inspector Options option, BCINST 17
installation 12-13

on a laptop system 13
Installation menu, BCINST 15
instances See classes, instantiation ~nd
instantiation See classes, instantiation and
integers See also floating point; numbers
~ntegrated debugger See debugging
mtegrated development environment See

integrated environment
integrated environment

customizing 14

Bor/and C++ Getting Storied

debugging See debugging
editing See editing
getting the best out of 23
INCLUDE environment variable and 26
LIB environment variable and 26
menus See menus
monitor

default 18
Programmer's Workbench and 25
Windows and 26

intrinsic functions 41
invoking

BCINST 15
I/O

C++ See C++, I/O
disk 111

iomanip.h (header file) 110
istream 107

K
keys, hot See hot keys
keystrokes

allowed (in customizing) 18
commands

customizing 16
primary and secondary 18

keywords

L

class 122
inline 120

classes and 122
Microsoft C 40
new

malloc and 123
operator 102

laptop computers
customizing Borland C++ for 18
installing Borland C++ onto 13

late binding See C++, binding
LCD displays

installing Borland C++ for 13
LCD or Composite option, BCINST 19
LIB environment variable 26
libraries

class 67

Index

paths 26
streams 106

license statement 11
LINK (Microsoft)

TLINK versus 37
Logitech Mouse compatibility 3
long double (floating point) See floating point,

long double
long integers See integers, long
loops

empty 121

M
MAKE (program manager)

directives
Microsoft NMAKE versus 31

macros
Microsoft NMAKE versus 31

Microsoft C and 28
options 29

Microsoft NMAKE versus 29
malloc (function)

new and 123
malloc.h (header file)

alloc.h and 39
manifest constants See macros
manipulators 110, See also formatting, C++;

individual manipulator names
header file for 110
parameterized 110
user-defined 115

manuals
using 23

maximize See zooming
mem.h (header file)

memory.h and 39
member functions 53, See also C++, functions;

data members
access 46, 58, 122
access to variables 56
adding 53
calling 54
choosing type 90
data

access 47
defined 46
defined outside the class 54 .

147

example 56
inline 53, 54
open and close 111
ordinary

problems with inherited 79
virtual vs. 79, 85, 90

overriding 77
positioning in hierarchy 84
signature 80
stream state 113
virtual 78, 79,81, See also C++, binding, late

ordinary vs. 85, 90
pros and cons 84

members
data See data members
functions See member functions

memory
deallocating

destructors and 92
memory.h (header file)

mem.hand 39
memory models

Microsoft C and 40
menus See also individual menu names

BCINST and 14
items

choosing 16
messages See errors; warnings
methods See member functions
mice See mouse
Michaels, Marina ,See

project editor, Borland C++
Microsoft C

Borland C++ projects and 25
_cdecl keyword 42
CL options

BeC options versus 32
COMDEFs and 40
converting from 25-42
environment variables and 26
floating-point return values 41
header files 39

Borland C++ header files versus 39
intrinsic functions 41
keywords 40
MAKE and 28

macros and directives 31

148

options 29
memory models and 40
registers and 41
structures 42
TLINKand 37

Microsoft Mouse compatibility 3
Microsoft's Software Developer's Kit (SDK) 3
Microsoft Windows See also Microsoft Win-

dows applications
IDE and 26
resources See resources

Microsoft Windows applications See also
Microsoft Windows
requirements for writing 3

mode arguments 113
Mode for Display menu, BCINST 16, 18
modularity See encapsulation
monitors

setting default 18
Monochrome option, BCINST 19
mouse

compatibility 3
Mouse Systems mouse compatibility 3
moving text See editing, moving text
__ MSC macro 39
multiple inheritance See inheritance

N
names See identifiers
Names menu, BCINST 17
new (keyword)

recommended return value 123
new (operator)

arrays and 91
constructors and 56
dynamic objects and 91
malloc function and 123
syntax 91

NMAKE (Microsoft's MAKE utility) 28
MAKE and 29, 31

No-Nonsense License Statement 11
null character See characters, null
numbers See also floating point; integers

real See floating point

Borland C++ Getting Started

o
object-oriented programming See C++
objects See also C++

auto
destructors and 92

dynamic 90
allocating and deallocating 92
destructors and 92
new operator and 91

static
destructors and 92

oct (manipulator) 110
octal numbers See numbers, octal
one-line functions

C++ 120
one's complement See operators, l's

complement
online help See help
OOP See C++
open (function) 113

C++ formatting and 111
operator (keyword) 102
operators

associativity See associativity
C++ See also overloaded operators

delete See delete (operator)
get from (») See overloaded operators
new 123, See new (operator)
new (operator) 91
put to «<) See overloaded operators
scope resolution (::) 54, 56, 76

one's complement See operators, l's
complement

overloading See overloaded operators
scope resolution (::) 123

options See integrated environment
Options menu, BCINST 16
ordinary member functions See member

functions, ordinary
overlays

getting the best out of 23
overloaded functions 50, 99
overloaded operators 102

> > (get from) 62, 114
« (put to) 62, 114, 118
addition (+) 102
class for 108

Index

p

defined 118
restrictions 104

-P BCC option (compile C++) 60
parameterized manipulators 110
parameters

reference 121
_pascal (keyword)

fortran keyword and 41
pasting See editing, copy and paste
PC Mouse compatibility 3
plasma displays

installing Borland C++ for 13
pointers

to self See this (keyword)
polymorphism

defined 44
example 132
virtual functions and 50, 132

pop-up menus See also menus
preprocessor directives See directives
primary and secondary keystrokes 18
primer

C++ 43
private (keyword) 58

classes and 59
.PRJ files

modifying 14
procedures See functions
Program Heap Size option, BCINST 17
Programmer's Platform See integrated

environment
Programmer's Workbench

integrated environment and 25
programming

with classes See C++
programs

C++ See C++
projects

classes and 66
files

modifying 15
Microsoft C and 25

protected (keyword) 59, 130
public (keyword) 59, 129
pull-down menus See menus

149

put (function) 110
put to «<) See overloaded operators
put to operator «<) See overloaded operators

Q
Quit option, BCINST 16

R
random numbers See numbers, random
rdstate (member function) 113
README 13
README.DOC 12
real numbers See floating point
reference parameters 121
reference types 83
referencing and dereferencing 121
registers

Microsoft C and 41
relational operators See operators, relational
relative position

C++ and 115
resetiosflags (manipulator) 110
Resize Windows option, BCINST 16
Resource Compiler

environment variables and 27
Ritchie, Dennis See Kernighan and Ritchie
Run menu, BCINST 16

5
scope See also variables

C++
data members 65
functions 54

resolution operator (::) 54, 56, 76, 123
screen

Color 19
screens

Black and White 19
composite

customizing Borland C++ for 18
Default 18
LCD

installing Borland C++ for 13
LCD or Composite 19
monochrome 19

150

plasma
installing Borland C++ for 13

snowy
correcting 19

swapping 17
search.h (header file) 39
Search menu, BCINST 16
_seg (keyword)

_segment keyword and 41
_segment (keyword) 41
segments

naming and renaming 17
_segname (keyword) 40
self See this (keyword)
_self (keyword) 40
setbase (manipulator) 110
setfill (manipulator) 110
setiosflags (manipulator) 110
setprecision (manipulator) 110
setw (manipulator) 110
shortcuts See hot keys
signature, function 80
Smalltalk

C++ vs. 45
smart screen swapping 17
snowy screens 19
software See programs
Software Developer's Kit (SDK) 3
software license agreement 11
software requirements to run Borland C++ 3
statements See also break statements; if

statements; switch statements
static binding See C++, binding, early
staux, functions of See also streams
stdin, functions of See also streams
stdio.h (header file)

stream.h vs. 118
stdout, functions of See also streams
sterr, functions of See also streams
stprn, functions of See also streams
stream.h

stdio.h vs. 118
streambuf 107
streams

C++ 106-114
file buffers 113
library 106

Borland C++ Getting Storied

manipulators and See manipulators
open function and 113

strings, concatenating 102
structures

access
classes vs. 59

Borland C++ versus Microsoft C 42
C++ See also classes
classes vs. 46

switch statements
break See break statements

symbolic constants See macros
syntax

delete operator 92
inline functions 98
new operator 91

system requirements 3

T
tab (manipulator) 115
taxonomy

defined 49
TCCONFIG.TC. modifying 15
technical support 8
text

blocks See editing, block operations
screen mode See screens

text files See also editing
this (keyword) 104
TLIB (librarian)

classes and 66
TLINK (linker)

LIB environment variable and 27
LINK (Microsoft) versus 37
Microsoft C and 37

Index

tutorials
C++ 117-133

typefaces used in these books 7
types See data types
typographic conventions 7

u
unary operators See operators, unary
unconditional breakpoints See breakpoints

V
varargs.h (header file) 39
variables See also scope

declaring anywhere (C++) 120
instances and objects and 52

verbatim mode 14, 18
virtual (keyword) 81
virtual access See also C++
virtual functions See member functions, virtual
visibility See scope

w
warnings

messages
which book to look in for 5

while loop See loops, while
windows

Edit See Edit, window
Windows (Microsoft) See Microsoft Windows
windows.h (header file)

INCLUDE environment variable and 27
write (function) 110
ws (manipulator) 110

151

2.0

B o R L A N D

CORPORATE HEADOUARTERS: 1100 GREEN HILLS ROAD. P.O. lOX 110001 . SCOTTS VALLEY. CA 15017-0001.14011431-5300.
OFFICES IN: AUSTRALIA. DENMARK. FRANCE. GERMANY. ITALY. JAPAN. SWEDEN AND THE UNITED KINGDOM. PART . lCMN-TCP02 • lOR 1971

