Reference Guide

Borland

ObjectWindows

for G++

Reference Guide

4 Borland ;
ObjectWindows*®
for C++

- Version 2.0

Borland may have patents andbr pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents.

COPYRIGHT © 1991, 1993 by Borland International. All rights reserved. All Borland products
are trademarks or registered trademarks of Borland International, Inc. ObjectWindows is a
registered trademark of Borland International, Inc. Other brand and product names are
trademarks or registered trademarks of their respective holders.

Borland International, Inc.
100 Borland Way, Scotts Valley, CA 95067-3249
PRINTED IN THE UNITED STATES OF AMERICA

1E0R993
9394959697-9876543
‘W1

Contents

Introduction 1
Contents of thismanual 1
Icons and typefaces used in this manual 2
Conventions used in thismanual 3
ObjectWindows hierarchy diagram 3
Chapter 1 Library reference 7
TBird class [sample] 8

Publicdatamembers 8

Public constructors and destructor 8

Public member functions 8

Protected datamembers 9

Protected constructors 9

Protected member functions 9

Response tableentries 10
ObjectWindows libraries 10
The ObjectWindows header files 11
The ObjectWindows resource files 15
The ObjectWindows library reference 16
BF_xxxx constants e 16
CM_xxxx editconstants 16
CM_xxxx edit file constants 17
CM_xxxx edit file exit constant 17
CM_xxxx edit replace constants 17
CM_xxxx MDI constants 18
DECLARE_RESPONSE_TABLE macro 18
DEFINE_DOC_TEMPLATE_CLASS macro18
DEFINE_RESPONSE_TABLE macros 19
dmxxxx document manager mode constants ... 19
dnxxxx document message enum 20
dt document view constants 20
END_RESPONSE_TABLEmacro 21
EV XXXXMacrosoooviieieenennnnn.. 21
ID_xxxx fileconstants 22
ID_xxxx printer constants 23
IDA_xxxx accelerator ID constants 23
IDM_xxxx menu IDconstant 23
IDS_xxxx document string ID constants 23
IDS_xxxx edit file ID constants 24
IDS_xxxx exception messages 24
IDS_xxxx listview ID constants 25
IDS_xxxx printer string ID constants 25
IDS_xxxx validator ID constants 25
IDW_MDICLIENT constant 26

IDW_MDIFIRSTCHILD constant 26
ImParentconstant 26
LongMulDiv function'....................... 26
MAX_RSRC_ERROR_STRING constant 26
NBitsfunctioncoiviviviinn. 27
NColorsfunction, 27
ofxxxx document openenum 27
phxxxx property attribute constants 28
_BUILDOWLDLLmMacroc.cvvuvvuvn... 28
_OWLCLASSMAacroovvveiieiinennnnn. 29
_OWLDATAMACIO .. vvvveeineiianennn 29
_OWLDLLMACIO ...vvvieeiee e 29
_OWLFARMACIOcoviivieianannnn.n. 29
_OWLFUNCmacro.............. e 29
OWLGetVersion function 30
shxxxx document sharing enum 30
TActionFunc typedef 30
TActionMemFunc typedef 30
TAnyPMF typedef 31
TAnyDispatcher typedef 31
TApplicationclasscooou. 31
Public datamembers 31
Public constructors and destructor 32
Public member functions 33
Protected datamembers 37
Protected member functions 38
TApplication: TXInvalidMainWindow class ... 39
Public constructorsc.eviiinnn... 39
Public member functions 39
TBandInfoclassooovieiiniinnn... 40
TBitmapclassl 40
- Publicconstructorsc.ooiun... 40
‘Public member functions 42
Protected member functions 43
TBitmapGadgetclass 43
Public constructors and destructor 44
Public member functions 44
Protected member functions 44
TBitSetclassoovviiiinin i, 45
Constructors . ..ot et e 45
Public member functions 45
TBrushclassccoiiiiiiin i, 46
Public datamembers 46

- Protected datamembers 47

Public constructors

....................... 47

Public member functions 48
TButtonclasscvvviiiiiinininennnn. 48
Publicdatamembers 49
Publicconstructorsccoiiinann. 49
Protected datamembers 49
Protected member functions 49
Response table entries 50
TButtonGadgetclass 50
Publicdatamembers 51
Public constructors and destructor 51
Public member functions 51
Protected datamembers 52
Protected member functions 53
TCelArrayclass 55
Public constructors and destructor 55
Public member functions 56
Protected datamembers 57
TCharSet classuuveeer e, 57
Public constructors, 57
Public member functions 58
TCheckBox classooveneeiiin i, 58
-Publicdatamembers 58
Public constructors 58
Public member functions 59
Protected member functions 60
Response tableentries 61
TChooseColorDialog class 61
Public constructors, 61
Public member functions 61
Protected datamembers 61
Protected member functions 62
Response table entries 62
TChooseColorDialog::TData struct 62
Publicdatamembers 63
TChooseFontDialog class 63
Public constructors 64
Protected datamembers 64
Protected member functions 64
Responsetableentries 65
TChooseFontDialog::TData struct 65
Publicdatamembers 65
TClientDC classovviiiiiiiieeennnnn, 67
Public constructorscccoiun... 67
TClipboard classc.ocoiia... 67
Publicdatamembers 67
Public member functions 67
Protected datamembers 70
Protected constructors and destructor 70

TClipboardViewerclass 71
Public constructors 71"
Public member functions 71
Protected datamembers 72
Response table entries 72

TColorclasscoveiiieiin i, 72
Publicdatamembers 72
Public constructorscc.coiiieinn... 73
Public member functions 74
Protected datamembers 75

TComboBoxclasscoviiiiiinnn. .. 76
Publicdatamembers 76
Public constructorscciiiiian.. 76
Public member functions 77
Protected member functions 80

TComboBoxDataclassc...... 81
Publicdatamembers 81
Public constructors and destructor 81
Public member functions 81

TCommonDialogclass 82
Public constructors 82
Public member functions 82
Protected datamembers 82
Protected member functions 83
Response table entries 83,

TCondFunc typecooviivninon.. 83

TCondMemFunc typedef 84

TControlclassooviiiiinnenennan.. 84
Public constructorsoviunien.. 84
Public member functions 84
Protected member functions 85
Response table entries 86

TControlBarclassccoiiiininnn. 86
Public constructorsc.iiiiiiin. 87
Public member functions 87
Protected member functions 87

TControlGadgetclass 87
Public constructors and destructor 88
Protected datamembers 88
Protected member functions 88
Response table entries 89

TCreatedDC classcovveinneninnnann. 89
Public constructors and destructor 89
Protected member functions 90

TCursorclassccviiiiininannnn.. 20
Public constructors and destructor 90
Public member functions 91

TDCclass ...vviiii e 91
Public data members 92

Public constructors and destructor 92
Public member functions 93
Protected data members 134
Protected constructors 135
Protected member functions 136
TDecoratedFrameclass 136
. Public constructors 136
Public member functions 136
Protected datamembers 137
Protected member functions 137
Response tableentries 138
TDecoratedMDIFrameclass................. 138
Public constructors 138
Protected member function 138
Response tableentries 139
TDesktopDCclass 139
Public constructorsccouinn.. 139
TDialogclass ...t 139
Publicdatamembers 140
Public constructors and destructor 140
Public member functions 140
Protected member functions 143
Response tableentries 144
TDialogAttrstruct 144
Publicdatamembers 144
TDibclasscooviiiii i 145
Protected data members 145
Public constructors and destructor 146
Public member functions 147
Protected member functions 151
TDIbDCclass ...ovvviiiii it it ii i 151
Public constructors 151
TDocManager class 152
Public data members 153
Public constructors and destructor 153
Public member functions 153
Protected member functions 156
Response table entries 157
TDocTemplateclass 157

Public member functions 157
Protected constructors and destructor 160
Protected member functions 160
TDocTemplateT<D,V>class 160
Public constructors 161
Public member functions 161
TDocumentclassccivviieenienn. 162
Publicdatamembers 163
Public constructors and destructor 163
Public member functions 164

Protected datamembers 168
Protected member functions 168
TDocument:Listclasscocvvvian... 169
Public constructors and destructor 169
Public member functionss...... 169
TDropInfoclassoooivuiinn.n. 169
Public constructors 169
Public member functions 170
TEdgeConstraint struct 171
Public member functions 171
TEdgeOrSizeConstraint struct 172
Public member functions 172
TEditclass R 173
Public constructorsiun. .. 174
Public member functions 174
Protected datamembers 179
Protected member functions 179
Response table entries 181
TEditFileclasscccoviiiiininnn. 182
Public datamembers 182
Public constructors and destructor 182
Public member functions 183
Protected member functions 184
Response table entries 185
TEditSearchclasscoovviiennennnnn. 185
Public datamembers 185
Public constructorscooivnin.. 185
Public member functions 186
Response table entries 186
TEditViewclasscovviinnniea .. 187
Public constructors and destructor 187
Public member functions 187
Protected datamember 188
Protected member functions 188
Response table entries 189
TEventHandlerclass 189
Public member functions 189
Protected member functions 190
TEventHandler:TEqualOperator type 190
TEventHandler::TEventInfoclass 190
Public datamembers 190
Public constructorsc.ocviin... 191
TEventStatusenumc.ccovivnvnn... 191
TEventHandler: TEqualOperator type 191
TFileDocumentclasscoov... 192
Public constructors and destructor 192
Public member functions 192
Protected datamembers 194
Protected member functions 194

TFileOpenDialog class 195
Public constructors 195
Public member functions 195

TFileSaveDialogclass 195
Public constructors 195

~ Public member functions 196

TFilterValidatorclass 196
Public constructorsoviine. 196
Public member functions 196
Protected datamembers 197

TFindDialogclass 197
Public constructors 197
Protected member functions 197

TFindReplaceDialog class 197
Public constructorsccovvuvnn.. 198
Public member functions 198
Protected datamembers 198
Protected member functions 199
Response table entries 199

TFindReplaceDialog::TData struct 199
Public member functions 199

TFloatingFrameclass 200
Public constructors 201
Public member functions 201
Response tableentries 202

TFontclasscvvviinin i 202
Publicdatamembers 202
Protected datamembers 202
Public constructorsccovevn... 202
Public member functions 203

TFrameWindowclass 203
Publicdatamember...................... 204
Public constructors and destructor 204
Public member functions 204
Protected datamembers 206
Protected member functions 206
Response table entries 208

TGadgetclassoooviiiiiiia., 208
Publicdatamembers 208
Public constructors and destructor 209
Public member functions 210
Protected data members 212
Protected member functions 213

TGadgetWindow class 214
Public constructors and destructor 215
Public member functions 215
Protected datamembers 218
Protected member functions 219
Response table entries 221

TGadgetWindowFontclass 221
Public constructorscovvunvnn.. 221
TGaugeclasscooiiiiian.. 222
Public member functions. 222
Public constructorsooveun.. 223
Protected datamembers 223
Protected member functions 223
Response table entries 224
TGdiObjectclasscovviiniiiino .. 224
Publicdatamembers 225
Public member functions 225
Protected datamembers 227
Protected constructors and destructor 227
MacCIOS « o oottt e e 228
TGdiObject:TXGdiclass 229
Public constructorsc.oouvun... 230
Public member functions 230
TGroupBoxclasscooiiian.. 230
Publicdatamembers 231
Public constructorsccovivn... 231
Public member functions 231
Protected member functions 232
THintModeenumccvvunn. 232
THSliderclassccovviiiiinnnnenennn. 232
Public constructors- e 232
Protected member functions 232
TICclassoviiii e 233
Public constructorsc.. ..., 233
TIcoN Class .. .vv i et ie e iieee e 233
Public constructors and destructor 234
Public member functions 235
TInputDialogclass 235
Public datamembers 235
Public constructors 0. 236
Public member function 236
Protected member function 236
TInStream class e 236
Public constructors 236
TKeyboardModeTrackerclass 237
Publicdatamembers 237
Public constructors 0o 237
Protected datamembers 237
Protected member functions 238
Response table entries 239
TLayoutConstraintstruct 239
Public datamembers 240
TLayoutMetricsclasscoooinn... 241
Public datamembers 242
Public constructorscoveu.... 242

TLayoutWindow class 244
"Examples ... 244
Public constructors and destructor L., 247
Public member functions 247
Protected datamembers 248
Protected member functions 248
Response tableentries 248
TListBoxclasscovviniiiiiinn., 248
Public constructors 248
Public member functions 249
Protected member functions 254
TListBoxDatastruct 254
Publicdatamembers 254
Public constructors and destructor 255
Public member functions 255
TListView class ovvvvie et ein i 256
Public constructors and destructor 256
Publicdatamember...................... 256
Public member functions 256
Protected datamembers 257
Protected member functions 257
Response tableentry 259
TLookupValidatorclass 260
Public constructors 260
Public member functions 260
TMDIChildclasscovviviiinninn... 261
Public constructors and destructor 261
Public member functions 261
Protected member functions 262
Response tableentries 263
TMDIClientclassccvvveieiniunn... 263
Publicdatamember...................... 263
Public constructors and destructor 263
Public member functions 263
Protected member functions 265
Response table entries 266
TMDIFrameclasscocovviienen. .. 267
Publicdatamembers 267
Public constructors, 267
Public member functions 268
Protected member function 268
Response tableentries 268
TMeasurementUnits enum 269
TMemoryDCclassou... 269
Public constructors 269
Public member functions 269
Protected datamember 270
TMenuclass P 270

Public constructors and destructor 270

Public member functions 271

Protected datamembers 273
TMenuDescrclassc.coovvviiinnann .. 273
Publicdatamembers 275
Public Constructorso.vvvvevnennenn.. 275
TMenuDescr:: TGroupenum 276
TMessageBarclass 276
Public constructors 276
Public member function 276
Protected datamember 277
Protected member functions 277
TMetaFileDCclasscoovvinivennnn.. 277
Constructors and destructor 277
Public member function e 278
TMetaFilePictclassccovviinnan.. 278
Protected datamember 278
Public constructors and destructor 278
Public member functions 280
TModuleclassc.coiiiiin... 280
Public datamembers 280
Public constructors and destructor 281
Public member functions 282
Protected datamembers 287
TModule:: TXInvalidModuleclass 287
- Publicconstructors 287
TOpenSaveDialog class 287
Public constructors 288
Public member functions 288
Protected datamembers 288
Protected constructors 288
Protected member functions 289
Response table entries 290
TOpenSaveDialog:TData struct 290
Publicdatamembers 290
Public constructors and destructor 291
Public member functions 292
TOutStreamclasso, 292
Public constructors 292
TPaintDC class A P 292
Publicdatamembers 292
Public constructors and destructor 292
TPaletteclassccovvniiiineiin... 293
Public datamembers 293
Protected datamembers 293
Public constructors 293
Public member functions 295
Protected member functions 297
TPaletteEntry class 297
Public constructors 298

TPenclasscoovviiiinin i, 298
Publicdatamembers 298
Protected data members 299
Public constructors, 299
Public member functions 300

TPicResultenumcccvvvninn.. 300

TPlacement enumc.oovurvunnn. 301

TPointclass i, 301
Public constructors, 301
Public member functions 302
Friend functionsuu.. 303

TPointer<>classooviiniin ., 304
Public constructors 304
Public member functions 304

TPopupMenuclass 305
Public constructors, 305
Public member functions 305

TPreviewPageclass 306
Public constructors 307
Public member functions 307
Protected datamembers 307
Protected member functions 308
Response tableentries 308

TPrintDCclasscovvviiiiiiininnnnn.. 308
Public constructors 308
Public member functions 308
Protected datamembers 319

TPrintDialog class 319

" Public constructorso.... 319
Public member functions 319
Protected datamembers 320
Protected member functions 320
Response tableentries 320

TPrintDialog::TData struct 320
Publicdatamembers 321
Public member functions 322

TPrintPreviewDC classovvveenneennnn.. 323
Public constructors and destructor 324
Public member functions 324
Protected data members 327
Protected member functions 327

TPrinter class e 327
Public constructors and destructor 327
Public member functions 328
Protected datamembers 328

Protected member functions 329

TPrinterAbortDIg classco.vunn... 329
Public constructors 329
Public member functions 330

vi

TPrintoutclassc.coviiiennn.. 330
Public constructors and destructor 330
Public member functions 330
Protected data members 332

TPrintoutFlagsenum 332

TProcInstanceclasscovviiivnninnn. 333
Public constructors and destructor 333
Public member functions 333"

TPXPictureValidatorclass 333
Public constructorsccoouiein. 333
Public member functions 334
Protected datamember 335
Protected member functions 335

TRadioButtonclasscovenvunn.. 336
Public constructors 336
Protected member functions 337
Response table entries 337

TRangeValidatorclass 337
Public constructors 337
Public member functions 337
Protected datamembers 338

TRectclassovviiniei i 338
Publicconstructorscouvunenn.. 339
Public member functions 340
Friend functionscoo.... 344

TRegionclass 345
Publicdatamembers 345
Publicconstructors0.vn... 345
Public member functions 346

TRelationshipenum 349

TReplaceDialog class 349
Public constructors 349
Protected member functions 349

TResIdclasscovviiiniiiinnnenn.n 350
Publicconstructorscoviiana.l 350
Public member functions 350
Friend functionsc..... ..., 350

TResponseTableEntry class 351
Public datamembers 351

TRgbQuad classccooin... 352
Public constructors 352

TRgbTripleclass 353
Public constructors 353

TScreenDC classvviiniiniinnnennn, 354
Public constructors, 354

TScrollBar ... 354
Publicdatamembers 354
Public constructors 355
Public member functions 355

Protected member functions 357
TScrollBarData structcovvvnivn. .. 358
Public datamembers 358
TScrollerclassoveiiviiin i 358
Publicdatamembers 359
Public constructors and destructor 359
Public member functions 360
TSeparatorGadgetclass 362
- Public member functions 362
TSizeclassovviiiiiii i 363
Public constructors 363
Public member functions 364
Friend functions 365
TSliderclasscciiiiiiiinin.. 365
Public constructors and destructor 367
Public member functions 367
Protected member functions 368
Protected datamembers 371
Response tableentries 372
TSortedStringArray typedef 373
TStaticclassovvvviii i 373
Publicdatamembers 373
Public constructors 373
Public member functions 374
Protected member functions 375
TStatusclasscoviviiiiii... 375
Public constructorscoieiiin. 375
Public datamembers 375
TStatusBarclassccoiiiiinn. .. 375
Publicdatamembers 376
Public constructors, 376
Public member functions 376
Protected datamembers 377
Protected member functions 378
TStreamclasscccviiiiiiienon.. 378
Publicdatamembers 378
Publicdestructor 378
Public member functions 379
Protected datamembers 379
Protected constructors 379
TStringLookupValidator class 379
Public constructors and destructor 379
Public member functions 380
Protected datamember 380
TSystemMenuclass 380
Public constructorschviienn.. 380
TTextGadgetclass 381
Publicdatamembers 381
Public constructors 381

vii

Public member functions 381
Protected datamembers 382
Protected member functions 382
TTileDirectionenumcveueu.n. 383
TTinyCaptionclasscooiiin, 383
Protected datamembers 384
Protected constructors and destructor 385
Protected member functions 385
Response table entries 389
TToolBoxclassvvviiiniieiiiinnennn 389
Public constructorsc. ... 390
Public member functions 390
Protected data members 390
Protected member functions 391
TTransferDirectionenum 391
TValidatorclass i 391
Public constructors and destructor 392
Public member functions 392
Protected datamembers 394
TValidator::TXValidatorclass 395
Public constructorscoveiennenn.. 395
TVbxControlclasscoovivivienenenn .. 395
Public constructors and destructor 396
Public member functions 397
Protected member functions 401
Response table entries 402
TVbxEventHandlerclass 402
Protected member functions 407
Response table entries 407
TViewclassooiin i 407
Public datamembers 408
Public constructors and destructor 408
Public member functions 409
Protected datamembers 410
Protected member functions 410
TVSliderclasscooviiii i, 411
Public constructors 411
Protected member functions 411
TWidthHeightenum 412
TWindowclass 412
Public datamembers 413
Public constructors and destructor 414
Public member functions 415
Protected datamembers 445
Protected member functions 446
Response table entries 447
TWindow=TXWindowclass 448
Public constructorsooueeeaun.. 448

- Publicdatamembers 448

Public member functions
TWindowFlag enum
TWindowAttr struct

Public data members
TWindowDC class)

Public constructors and destructor

Protected constructors

Protected data member
TWindowView class

Public constructors and destructor

Public member functions

Response table entries
TXCompatibility class

Public constructors

Public member functions
TXOwI class

Public constructors and destructor

Public member functions
Vnxxxx view notification constants
Voxxxx validator constants
xs exception status enum

Chapter 2 Event handlers

Chapter 3 Dispatch functions

HBRUSH_HDC_W_U_Dispatch
i LPARAM_Dispatch
i_U_W_U_Dispatch
i WPARAM_Dispatch
LRESULT_WPARAM_LPARAM_ Dispatch ...
« U_POINT_Dispatch
U_U_U_U_Dispatch
U_U_U_W_Dispatch
U_Dispatch
U_WPARAM_LPARAM_Dispatch
v_LPARAM_Dispatch
v_POINT_Dispatch
v_POINTER_Dispatch
v_U_B.W_Dispatch
v_U_POINT _Dispatch
v_U_U_Dispatch
v_U_U_U_Dispatch
v_U_U_W_Dispatch
v_Dispatch
v_WPARAM_Dispatch
v_WPARAM_LPARAM_Dispatch
v_W_W_Dispatch ’

Chaptef 4 WIN API encapsulated functions

Appendix A Inheritance diagrams
TApplication
TBitMap
TBitMapGadget
TButton
TButtonGadget
TCheckbox
TChooseColorDialog
TChooseFontDialog
TClipboardViewer
TComboBox
TComboBoxData
TCommonDialog
TControl
TControlBar
TControlGadget
TDecoratedFrame
TDecoratedMDIFrame
TDialog ...
TDocManager
TDocTemplate
TDocument
TEdit
TEditFile
TEditSearch
TEditView
TFileDocument
TFileOpenDialog
TFileSaveDialog
TFindDialog
TFloatingFrame
TGadgetWindow
TGauge
TLayoutWindow
TListBox '
TListView
TMDIClient
TMDIFrame
TRadioButton
TShder ..o
TStatusBar
TTextGadget,
TToolBox

TWindow View
TWindow

Index

viii

Tables

11 Summary of static and import libraries 10
1.2 Summary of dynamic link libraries 11
1.3 Summary of header files 11
1.4 Summary of resourcefiles 15
1.5 Button flag constants 16
1.6 Command-based constants 16
1.7 Command-based constants 17
1.8 Command-based constant 17
1.9 Command-based constants 17
110 Command message constants 18
111 Document manager mode constants 19
112 Document messageenum 20
113 Document view constants 20
114 EV_XXXXTNACTOS « ottt veriieinennnnnns 22
115 IDfileconstantscovunt. 22
116 ID printer constants 23
117 Accelerator ID constants 23
118 MenulIDconstants 23
119 Document string ID constants 23
1.20 EditfileIDconstants 24
1.21 Exception message constants 24
1.22 Listview string ID constants 25
1.23 Printer string ID constants 25
1.24 Validator ID constants 25
1.25 shxxxxconstants 30
1.26 TCheckBox checkstates 59
1.27 Event statusconstants 191
1.28 Picture format characters 335
1.29 Transfer function constants 391
1.30 Property and C++types 399
1.31 Basic and C++ VBX datatypes 405
1.32 VBX eventarguments 405

1.33 Shiftkeybitvalues 406
1.34 Mouse button key arguments 406
1.35 TWindow’ attribute masks 449
1.36 Vnxxxx view notificationIDs 455
1.37 Voxxxx validator constants 455
1.38 xs exception statusenum 456
21 WM_COMMAND messages............. 458
2.2 WM_xxxx Window messages 458
2.3 Child ID notification messages 461
2.4 Button notification messages 461
2.5 Combo box notification messages 461
2.6 List box notification messages 462
2.7 Edit control notification messages 462
2.8 New document and view messages 462
2.9 Document view messages 463
210 VBXmessages -ooveennneannnn.. 463
41 Encapsulated inline HWND functions 474
4.2 Encapsulated Window messages 474
4.3 Window coordinates and dimensions 474
4.4 Window properties 475
4.5 Window placement 475
4.6 Window relationships 476
4.7 Window painting functions 476
4.8 Window scrolling functions 476
4.9 Child window ID functions 477
410 Menu and menu bar functions 477
411 Clipboard functions 477
412 Timer functions 478
413 Caret and cursor functions 478
414 Hotkey functions 478
415 Help and task functions 478

Introduction

This Reference Guide can be used to help you perform the following tasks in
ObjectWindows:
m Look up the overall purpose for each class.

m Learn the details about how to use a particular ObjectWindows class and
its members and functions.

m View the virtual and nonvirtual multiple inheritance relationships
among ObjectWindows classes.

m Learn which classes introduce or redefine funct1ons

m Determine which ancestor of a class introduced a data member or
member function.

m Learn how data members and member functions are declared.
m Use event-handling functions to respond to messages.
m Use dispatch functions to crack Windows messages.

Contents of this manual

This manual has four reference chapters and one appendix:

Chapter 1: Library reference is an alphabetical listing of all the standard
ObjectWindows classes, including explanations of their purpose, usage,
and members. It also describes the nonobject elements such as structures,
constants, variables, and macros that classes use.

Chapter 2: Event handlers lists the ObjectWindows functions and
notification codes that crack Windows messages.

Chapter 3: Dispatch functions lists all of the ObjectWindows functions that
dispatch Windows messages.

Chapter 4: WIN API encapsulated functions lists the ObjectWindows
functions that encapsulate Windows API functions.

Appendix A: Inheritance diagrams lists the member functions for each class
and shows which functions override functions defined in the base class.

Introduction - 1

Icons and typefaces used in this manual

Boldface

Italics

Monospace

Key1

Key1+Key2

MenulCommand

-

Depending on the Windows application programming (API) environment
you are using, different ObjectWindows functions are available. If a data
member or function is available only under the Windows 32-bit API,
including Windows NT, the Win32 icon is displayed to the left of the data
member or function.

Similarly, if a class member is functional only under Winl6, the Win16 icon
is displayed to the left of the data member or function. Any differences in
implementation between Win16 and Win32 are described. Otherwise, a
class member is considered fully functional under both the Win16 and
Win32 APIs.

Boldface type indicates language keywords (such as char, SWItch and
begin) and command-line options (such as —rn).

Italic type indicates program variables and constants that appear in text.
This typeface is also used to emphasize certain words, such as new terms.

Monospace type represents text as it appears onscreen or in a program. It is
also used for anything you must type literally (such as TD32 to start up the
32-bit Turbo Debugger).

- This typeface indicates a key on your keyboard. For example, “Press Esc to

exit a menu.”

Key combinations produced by holding down one or more keys
simultaneously are represented as Key7+Key2. For example, you can execute
the Program Reset command by holding down the Cirfkey and pressing F2
(which is represented as Ctri+F2).

This command sequence represents a choice from the menu bar followed
by a menu choice. For example, the command “File | Open” represents the
Open command on the File menu.

This icon indicates material you should take special notice of.

ObjectWindoWs 2.0 Reference Guide

Conventions used in this manual

Inline functions, those functions that are declared and defined within a
class, are prefaced by the keyword “inline” before the function declaration.
For example,

inline virtual int AddString(const char far* string);

Cross-referenced entries to ObjectWindows functions include the class
name, the scope resolution operator, and the function name. For example,

See also: TApplication::PumpWaitingMessages

Windows API function calls are prefixed with the scope resolution operator
(::). For example,

See also: ::ShowWindow

C++ data types that ai'e keywords (such as int and long) are in lowercase
bold. Predefined Windows types (such as HWND and UINT) are in capital
letters; for example,

inline BOOL TrackPopupMenu(UINT flags, int x, int y, int rsvd, HWND wnd,
TRect* rect=0);

ObjectWindows hierarchy diagram

Introduction

The ObjectWindows hierarchy diagram shows the classes that are
described in this manual. The classes are grouped according to functional
categories, and all related classes are in one shaded unit. A class is enclosed
in dashed lines if it is a parent class for a multiply-inherited class. For
example, TListBox is the parent class for TListView, which is derived from
both TView and TListBox. The second page shows additional classes.

ObjectWindOWS class hierarchy

TEventHandler

TStreamableBase

TVbxEventHandler TModule TWindow - ‘ TDocument

TApplication

TEditSearch TListBox

TListView

TEditView

TWindowView

TinputDialog |
I TChoseColorDlalog

TPrinterAbortDig TCommonDialog
TFindReplaceDialog

TChooseFontDialog TOpenSaveDialog

TFindDialog TReplaceDialog TFileOpenDialog TFileSaveDialog

See next page

Nonvirtual inhefitance Virtual inheritance

4 ObjectWindows 2.0 Reference Guide.

TStreamableBase

TRangeValidator

T ®

TPrinter

TXValidatol TXWindow

TXinvalidModule

AR

TMenuDescr |

TClipboard

TGDIObject

Introduction

ObjectWindows 2.0 Reference Guide

Library reference

This chapter alphabetically lists the ObjectWindows classes, data members,
member functions, macros, constants, and data types. The header file that
The ObjectWindows defines each entry is listed opposite the entry name. Class members are
library-reference oroyped according to their access specifiers—public or protected. Within
entries begin on page . .
16. Asampleentry these categories, data members, then constructors (and the destructor, if

that explainsthe one exists), and member functions are listed alphabetically.
contents of each .)))
entry sectionis ~ Because many of the properties of the classes in the hierarchy are inherited

providedonpage 7. from base classes, only data members and member functions that are new
or redefined for a particular class are listed. Private members are not listed. If
any response table entries exist, they are also listed. The cross-referenced
- Formore information entries provide additional information about how to use the specified

on Windows types ; i i
such as LPSTR. se6 entry. The first sample entry (on page 7) illustrates this format.

the online Help. - To find information about a particular inherited member function, use the
inheritance diagram in A. The inheritance diagram shows the ancestry of
the class, excluding TEventHandler and TStreamableBase, from which all

classes are inherited.

The following figure uses a sample class and its functions to illustrate this
format. In this example, TBird inherits functions from TParent and
overrides the shaded member functions, OwlHoot and OwlSleep, defined in
the base class. The underlined functions OwlSleep and Zatslt are defined as
virtual functions in TBird. For more information about virtual functions
(those functions defined in base classes and overidden in derived classes),
see the Object Windows Programmer’s Guide. '

TParent TBird
Catchlit EvGetD1gCode
Bl OwiHoot OwlHoot
OwlSieep OwlSlee
WhazzAt OwTCry
ZatsSo ZatsIt

Chapter 1, Library reference 7

1 DIIY CIdSS |Samplie]

TBird class [sample] , bird.h

Public data members

This section alphabétically lists all public data members and their
declarations, and explains how they are used.

anOwlIBeak anOwlType anOwlBeak;

anOwlBeak is a data member that holds information about this sample class.
This text explains what anOwlBeak contains, and how you use it.

See also: Related data members, member functions, classes, constants, and
types
anOwlWing anOwlType anOWLWing;

anOwlWing is another public data member.

Public constructors and destructor

This section lists any public constructors and destructor for this class.
Classes can have more than one constructor; they never have more than
one destructor.

Constructor TBird(anOwlType aParameter);
Constructor for a new sample class; sets the anOwlBeak data member to
aParameter.

Destructor ~TBird;

Destructor for a new samplé class; destroys the TBird object.

Public member functions

This section alphabetically lists all public member functions that are either
newly defined for this class or that are redefined inherited member
functions. If a function overrides a virtual base class function, the text
specifies this.

EvGetDIgCode UINT OwlHoot () ;
‘ Responds to WM_GETDLGCODE messages.
OwliHoot void OwlHoot ();

8 ' . ObjectWindows 2.0 Reference Guide

OwiSleep

anOwlFeather

Constructor

OwlCry

Zatslt

Chapter 1, Library reference

1BIra class |sample|

The OwlHoot member function causes the sample class to perform some
action. This function overrides the function OwlHoot in its base class,
TParent.

See also: TParent::OwlHoot
virtual int OwlSleep(int index);

The OwlSleep function performs another action and overrides the function
OwlSleep in its base class, TParent.

See also: TParent::OwlSleep

Protected data members

This section alphabetically lists all protected data members and their
declarations, and explains how they are used.

anOwlType anOwlFeather;

anOuwlFeather is a protected data member that holds information about this
sample class.

See also: Related data members, member functions, classes, constants, and
types

Protected constructors

TBird (anOwlType bParameter);

If the class has a protected constructor, it is listed here.

Protected member functions

This section lists all protected member functions.
BOOLEAN OwlCry;

The OwlCry member function causes the sample class to perform some
action.

See also: TSomethingElse::OwlCry
virtual int ZatsIt(int index);

The Zatslt function performs a particular function in class TBird.

IBIrG C1ass [sample|

Response table entries

The TBird response table contains this predefined macro for the EV_xxxx
messages and calls this member function:

Member function

EVGetDigCode

Response table entry

EV_WM_GETDLGCODE

ObjectWihdows libraries

The following table lists the ObjectWindows static libraries, their uses, and
the operating system under which the library is available. These files are in
your library directory.

The name of the OWLWx.LIB file varies, depending on several factors—
whether you are building a small, medium, or large memory model
application or a WIN16 or WIN32 application. For example, if the
application is built for a 16-bit, small memory model, the name of the
library file is OWLWS.LIB. If you’re building a flat model WIN32
application, the name of the library file is OWLWF.LIB where “F” indicates
a flat model application.

Basic versions of the ObjectWindows files are included on your installation
disk. You can build the additional versions by invoking the
ObjectWindows makefile located in your SOURCE\OWL subdirectory
using the -DDIAGS and -DMODEL switches.

10

Table 1.1
Summary of static File name Application Use
and import libraries .
OWLWS.LIB Win16 16-bit small mode!
OWLWM.LIB Win16 16-bit medium model
OWLWL.LIB Win16 16-bit large model
OWLDWS.LIB Win16 16-bit diagnostic small model
OWLDWM.LIB Win16 16-bit diagnostic medium model
OWLDWL.LIB Win16 16-bit diagnostic large model
OWLWF.LIB Win32s, Win32 32-bit library ‘
OWLDWF.LIB Win32, Win32s 32-bit diagnostic library
OWLWL.LIB Win16 16-bit import library for OWL200.DLL
OWLDWI.LIB Win16 16-bit import library for OWL200D.DLL
OWLWFI.LIB Win32, Win32s 32-bit import library for OWL200F.DLL
OWLDWFI.LIB Win32, Win32s

32-bit import library for OWL200DF.DLL

ObjectWindows 2.0 Reference Guide

TBird class [sample]

The dynamic-link (DLL) versions of ObjectWindows are contained in your
\BIN subdirectory. The following table lists the DLL names and uses.

Table 1.2 - -
Summary of dynamic File name - Application Use
ink ibraries - o\ yL200.DLL Win 16 16-bit dynamic library
OWL200F.DLL Win 32 32-bit dynamic library
OWL200D.DLL Win 16 Diagnostic version of 16-bit dynamic library
OWL200DF.DLL Win 32 Diagnostic version of 32-bit dynamic library

The ObjectWindows header files

Header files, located in your OWL\INCLUDE subdirectory, contain -
declarations for class functions and definitions for data types and constants.

Table 1.3: Summary of header files

File name Class definition Use

applicat.h TApplication Controls the basic behavior of all
ObjectWindows applications.

bitmapga.h TBitMapGadget Displays an array of bitmap images.

bitset.h TBitSet Sets or clears one or more bits.

TCharSet Sets or clears bytes.

button.h TButton Creates different types of button controls.

buttonga.h TButtonGadget Creates button gadgets that can be clicked on
or off.

celarray.h TCelArray Creates an array of cels.

checkbox.h TCheckBox Represents a check box control.

chooseco.h TChooseColor Represents modal dialog boxes that allow color

‘ selection.

choosefo.h TChooseFont Represents modal dialog boxes that allow font
selection,

clipboarh TClipboard Contains functions that control how Clipboard
data is handled.

clipview.h TClipboardViewer Registers a TClipboardViewer as a Clipboard
viewer,

colorh TColor Contains functions used to simplify standard

Chapter 1, Library reference

Windows color operations.

11

TBird class [sample]

Table 1.3: Summary of header files (continued)

combobox.h

commdial.h
compath
control.h
controlb.h
controlg.h

dec.h

decframe.h
decmdifrh

dialog.h

dispatch.h

docmanag.h

docview.h

edit.h
editfile.h

editsearh

12

TCombobox

TCommonDialog

TControl
TControlBar
TControlGadget

TBandInfo, TClientDC,
TCreatedDC, TDC,
TDesktopDC, TDibDC
TIC, TMemoryDC,
TMetaFileDC, TPaintDC
TPrintDC, TScreenDC,
TWindowDC

TDecoratedFrame

TDecoratedMDIFrame

TDialog

TDialogAttr

+ TDocManager

TDocTemplate

TDocument, TView,
TWindowView, TStream,
TinStream, TOutStream

TEdit
TEditFile
TEditSearch

Creates combo boxes or combo.box controls in
a window, and class TComboBoxData, which is
used to transfer data between combo boxes.

Abstract base class for TCommonDialog
objects.

Defines functions and constants used internally
by ObjectWindows.

Used to create control objects in derived
classes.

Implements a control bar that prbvides
mnemonic access for its button gadgets.

Allows controls to be placed in a gadget
window.

GDI DC wrapper classes that create
DC objects.

Creates a client window into which decorations
can be placed. ‘

Creates a frame object that supports.decorated
child windows.

Creates modal and modeless dialog box
interface elements.
Hoids the dialog box element’s attributes.

Defines dispatch functions designed to crack
Windows messages.

Creates a document manager object that
manages the documents and templates.
Creates the templates.

Create, destroy, and send messages about
document views.

Creates an edit control interface element.
Creates a file editing window.

Creates an edit control that responds to search
and replace commands.

ObjectWindows 2.0 Reference Guide

Table 1.3: Summary of header files (continued)

TBird class [sample]

editview.h -

eventhan.h

except.h

filedoc.h
findrepl.h
floatfra.n

framewin.h

gadget.h

gadgetwi.h
gauge.h
gdibase.h
gdiobjec.h

groupbox.h

inputdia.h
keymodet.h

layoutco.h

layoutwi.h
listbox.h

listview.h

Chapter 1, Library reference

TEditView
TEventHandler

TXOwl
TXCompatibility
TXOutOfMemory
TStatus

TFileDocument

TFindDialog,
TFindReplaceDialog::

TFloatingFrame

TFrameWindow

TMenuDescr
TGadget

TGadgetWindow
TGauge
TGdiBase

TGdiObject

TPen, TBrush, TFont,
TPalette, TBitmap,
Tlcon, TCursor, TDib,
TRegion.

TGroupBox

TinputDialog

TKeyboardModeTracker

TLayoutConstraint

TLayoutMetrics

TListBox
TListBoxData

TListView

View wrapper for TEdit.

Used to derive class capable of handling

messages.

Base exception-handling

class.

Describes a status exception.
Describes an out-of-memory exception.
Included for backward compatibility.

Opens and closes document views.

These classes create and define the attributes
of modeless dialog boxes that respond to
search and replace commands.

Implements a floating frame within a parent

window.

Controls window-specific behavior such as

keyboard navigation and
Describes a menu bar.

command processing.

Creates gadget objects that belong to a gadget
window and have specified attributes.

Maintains a list of tiled gadgets for a window.

Establishes the behavior

of gauge controls.

Abstract base class for all GDI classes.

Base GDI class. -

These classes create specified GDI objects.

Creates a group box object that represents a
group box element in Windows.

Generic dialog box.

A mix-in class designed to track changes in

keyboard modes.

Creates layout constraints.

Contains the layout constraints used to define
the layout metrics for a window.

Creates a list box object.

Used to transfer the contents of a list box.

Provides views for list boxes.

13

’

TBird class [sample]

Table 1.3: Summary of header files (continued)

mdi.h TMDIClient
) TMDIFrame
mdichild.h TMDIChild
menu.h : TMenu, TPopupMenu,
TSystemMenu
messageb.h TMessageBar
metafile.h TMetaFilePict
module.h TModule
opensave.h TOpenSave
owlall.h
owlcore.h
owldefs.h
owlpch.h
point.h TPoint, TSize, TRect
TDroplnfo’
TProcinstance
TPointer
preview.h TPreviewPage
printdia.h TPrintDialog
printerh TPrinter
TPrintout
TPrinterAbortDIg
radiobuth TRadioButton
scrollba.h TScrollBar

TScrollBarData

scroller.h TScroller

signaturh

14

Manages MDI child windows.
The main window of MDI-compliant
applications.

Defines the behavior of MDI child windows.

Create menu objects.

Implements a message bar.
A wrapper class used with TMetaFileDC.

Defines the basic behavior for ObjectWindows
libraries and applications.

Base class for modal open and save dialog
boxes. '

Include file for all of the ObjectWindows
classes.

Include file for the core ObjectWindows classes.

Includes definitions of macros used by all
ObjectWindows programs.

Contains definitions of macros, data, and
functions used by ObjectWindows.

Mathematical classes. ;
Supports file-name drag and drop operations.
A Win16 support class.

Provides exception-safe pointer manipulation.

Displays a document page in a print preview
window.

Displays a modal print or print setup dialog box.

Represents the printer device.
Represents the printed document.
Represents the printer-abort dialog box.

Create a radio button control.

Represents a vertical or horizontal scroll bar
control.

Contains the values of the thumb position on
the scroll bar. '

Implements automatic window scrolling.

Defines the message cracking signature
templates used by ObjectWindows event-
handling functions.

ObjectWindows 2.0 Reference Guide

Table 1.3: Summary of header files (continued)

TBird class [sample]

sliderh

static.n
statusba.h
textgadg.h
tinycapt.h

. toolbox.h

validate.h

vbxctl.h

version.h

window.h

windowev.h

TSlider
THSlider
TVSlider

TStatic
TStatusBar
TTextGadget
TTinyCaption
TToolBox

TValidator

. TPXPictureValidator
TFilterValidator
TRangeValidator
TLookupValidator
TStringLookupValidator

TVbxControl
TVbxEventHandler

TWindow

Defines the basic behavior of sliders.
A horizontal slider.
A vertical slider.

Create a static control in a window.
Constructs a status bar.

Construct a text gadget object.

Produces a smaller caption bar for a window.

Creates a toolbox object with a specified
number of rows and columns.

Base validator class.
Picture validator.
Filter validator.
Range validatator.
Lookup validation.
String validation.

Interface for VBX controls.
Handles events from VBX controls.

Defines the intefnal version number of theL
ObjectWindows library. \

Provides window-specific behavior and
encapsulates many of the Windows AP}
functions.

Defines event handlers and response table
macros for Windows messages.

The ObjectWindows resource files

The ObjectWindows resource files define resource and command IDs.

Table 1.4
Summary of resource

files

Chapter 1, Library reference

File name Use
Directory of OWLINCLUDE _
docview.rh Defines resource and command IDs to use with docview.h and
- docview.rc.
edit.rh Defines command IDs to use with edit.h.
editfile.rh Defines resource and command IDs to with in editfile.rc and
. editfile.h.
editsear.rh Defines resource and command IDs to use in editsear.rc and
editsearh.’
except.rh Defines string resource IDs to use with except.h and except.rc.

15

TBird class [sample]

Table 1.4: Summary of resource files (continued)

inputdia.rh Defines resource IDs to use with inputdia.rc and inputdia.h.
mdi.th Defines resource & command IDs to use with mdi.h.

printerrh Defines resource IDs to use with printer.rc and printer.h.
slider.rh Defines resource IDs to use with sliderh.

validate.rh Defines resources to use with TValidator and derived classes.
window.rh Defines command IDs to use with window.h.

The ObjectWindows library reference

The following section lists the classes, data types, and symbolic constants
used by ObjectWindows applications.

BF_xxxx constants checkbox.h

Check box and radio button objects use the button flag constants to indicate
the state of a selection box.

Table 1.5 :
Button flag constants Constant Meaning
BF_CHECKED Item is checked.
BF_GRAYED Item is grayed.
BF_UNCHECKED Item is unchecked.
See also: TCheckbox::GetCheck, TCheckbox::SetCheck
CM_xxxx edit constants edit.rh
TEdit defines these command-based member functions, which are invoked
in response to a particular edit menu selection or command.
Table 1.6
Commang.bgsed Constant Member function Menu equivalent
constants T o\ EDITCLEAR TEdit:CMEditClear ~ EditiClear
CM_EDITCOPY TEdit::CMEditCopy EditlClear
CM_EDITCUT TEdit::CMEditCut Edit/Cut
CM_EDITDELETE TEdit::CMEditDelete EditIDelete
CM_EDITPASTE TEdit::CMEditPaste Edit|Paste

CM_EDITUNDO TEdit::CMEditUndo EditlUndo

16 ObjectWindows 2.0 Reference Guide

CM_xxxx edit file constants

CM_xxxx edit file constants docview.rh

These command-based member functions are invoked in response to open,
close, print, and save commands.

Table 1.7

Command-based Constant Member function Menu equivalent
constants T M _FILECLOSE
CM_FILENEW TEditFile::CmFileNew FileINew
CM_FILEOPEN TEditFile::CmFileOpen FilelOpen
CM_FILEPRINT FilelPrint
CM_FILEPRINTERSETUP S FilelPrinter Setup
CM_FILESAVE TEditFile::CmFileSave FilelSave
CM_FILESAVEAS TEditFile::CmFileSaveAs FilelSave As
CM_xxxx edit file exit constant window.rh
This command-based member function is invoked in response to a file exit
request from a user.
Table 1.8
Commang.bgsed Constant Member function Menu equivalent
constant " oy _exiT TWindow:CmExit FilelExi
CM_xxxx edit replace constants » editsear.rh
These command-based member functions are invoked when the
corresponding find and replace command is received.
Table 1.9)
Commang.bgsed Constant Member function Menu equivalent
tant
consans GM_EDITFIND TEditWindow::CMEditFind EditFind
CM_EDITFINDNEXT TEditWindow::CMEditFindNext EditlFindINext
CM_EDITREPLACE TEditWindow::CMEditReplace - EditiReplace

Chapter 1, Library reference ~ 17

CM_xxxx MDI constants

CM_xxxx MDI constants | mdi.rh

These MDI functions are invoked when the corresponding MDI command
message is received.

1.
CommandTﬁggsaég Constant Member function Menu equivalent
constants CM_ARRANGEICONS TMDIClient::CmArrangelcons WindowlArrange
Icons
CM_CASCADECHILDREN TMDIClient::CmCascadeChildren WindowlCascade
CM_CLOSECHILDREN TMDIClient::CmCiloseChildren WindowlIClose All
CM_CREATECHILD TMDIClient::.CmCreateChild
CM_TILECHILDREN TMDIClient::.CmTileChildren Window|Tile
DECLARE_RESPONSE_TABLE macro eventhan.h
To handle events for a class, you need to declare a response table using the
DECLARE_RESPONSE_TABLE macro within the class definition and you
need to define the response table using one of the
VDEFINE_RESPONSE_TABLE macros. For example, to declare a response
table, use
DECLARE_RESPONSE_TABLE (Class);
where Class represents the name of the current class.
See also: DEFINE_RESPONSE_TABLE macros, END_RESPONSE_TABLE
macro
For more information about response table entries, see TEventHandler
(where the response table entries are defined) or TWindow (where the
member functions are defined). For more information about how to declare,
define, and add message response entries to a response table, see Chapter 5
in the Object Windows Programmer’s Guide.
DEFINE_DOC_TEMPLATE_CLASS macro ' docmanag.h

18

Used to create a document template, the
DEFINE_DOC_TEMPLATE_CLASS takes three arguments: the name of the
document class that holds the data, the name of the view class that displays
the data, and the name of the template class. The following examples from
DVSAMPLE.CPP, a sample program on your distribution disk, associate
document and view classes with new template classes.

ObjectWindows 2.0 Reference Guide

DEFINE_DOC_TEMPLATE_CLASS macro

DEFINE_DOC_TEMPLATE_CLASS (TFileDocument, TListView, ListTemplate);
DEFINE_DOC_TEMPLATE_CLASS (TFileDocument, TEditView, EditTemplate);

See also: TDocTemplate

DEFINE_RESPONSE_TABLE macros eventhan.h

The DEFINE_RESPONSE_TABLEx macro takes one plus x number of
arguments: the name of the class that is defining the response table, and its
immediate as well as any virtual base classes. Use the
END_RESPONSE_TABLE macro to end the definition for the response
table. Between the DEFINE_RESPONSE_TABLE and
END_RESPONSE_TABLE macros, you might need to insert the message
response entries. For example,

DEFINE_RESPONSE_TABLEL (TMyClass, TWindow)
EV_WM_PAINT,

.~ EV_WM_LBUTTONDOWN,

END_RESPONSE_TABLE;

In this example, EV_WM_PAINT and EV_WM_LBUTTONDOWN
illustrate the message response entries for the class TMyClass derived from
TWindow.

‘The following table shows the form the DEFINE_RESPONSE_TABLE
macro takes depending on the number of base classes.

Base classes Macro]
0 DEFINE_RESPONSE_TABLE(Class)
1 DEFINE_RESPONSE_TABLE(Class, Base)
2 DEFINE_RESPONSE_TABLE2(Class, Base1, Base2) ‘
3 DEFINE_RESPONSE_TABLE3(Class, Base1, Base2, Base3)

See also: END_RESPONSE_TABLE macro

dmxxxx document manager mode constants docmanag.h

TDocManager uses the dmxxxx constants to indicate if a document supports
single or multiple open documents, and to indicate if it has file menu IDs.

Table 1.11 -
Document manager Constant Meaning
mode constants
dmMenu Sets IDs for file menu.
dmMDI Supports multiple open documents.

Chapter 1, Library reference ' 19

dmxxxx document manager mode constants

dnxxxx document message enum

Table 1.11: Document manager mode constants (continued)

dmNoRevert
dmSaveEnable
dmSDI

Disables the File|Revert menu command.
Enables FilelSave menu command.
Does not support muttiple open documents.

See also: TDocManager::TDocManager

docmahag.h

Table 112
Document message
enum

TDocManager uses the dnxxxx message constants to indicate that a
document or view has been created or closed. You can set up response table
entries for these messages using the EV_OWLVIEW or
EV_OWLDOCUMENT macros. See Chapter 9 in the Object Windows
Programmer’s Guide for information about how to do this.

Constant
dnCreate -A new document or view has been created.
dnClose A document or view has been closed.

See also: TDocManager::TDocManager

dt document view constants

docmanag.h

dtxxxx constants are used by TDocument and TDocTemplate to create
templates. Several constants are equivalent to the OFN_xxxx constants
defined by Windows in commd]lg.h.

- Table 1.13: Document view constants

Constant Windows equivalent Meaning

dtAutoDelete Deletes the document when the last view is deleted.
dtAutoOpen Opens a document upon creation.

diCreatePrompt (OFN_CREATEPROMPT) Prompts the user before creating a document that does not

dtFileMustExist

diHidden
dtHideReadOnly
dtNewDoc

20

(OFN_FILEMUSTEXIST)

(OFN_HIDEREADONLY)

currently exist.

Lets the user enter only existing file names in the File Name
entry field. If an invalid file name is entered, causes a warning
message to be displayed. :

Hides the template from the user’s selection.
Hides the read-only check box.

Creates a riew document with no path specified.

ObjectWindows 2.0 Reference Guide

dt document view constants

Table 1.13: Document view constants (continued)

dtNoAutoView Does not automatically create the default view type.
dtNoReadOnly (OFN_NOREADONLYRETURN}) Returns the specified file as writeable.
dtNoTestCreate (OFN_NOTESTFILECREATE) Does not perform document-creation tests. The file is created

after the dialog box is closed. If the application sets this flag,
there is no check against write protection, a full disk, an open
drive door, or network protection. For certain network
environments, this flag should be set.

dtOverwritePrompt ~ (OFN_OVERWRITEPROMPT) When the Save As dialog box is displayed, asks the user if it's
‘ OK to overwrite the file.
dtPathMustExist (OFN_PATHMUSTEXIST) Allows only valid document paths to be entered. If an invalid
path name is entered, causes a warning message to be
displayed.
dtProhibited (OFN_ALLOWMULTISELECT) Doesn't support these specified Windows options.

{OFN_ENABLEHOOK)
(OFN_ENABLETEMPLATE)
(OFN_ENABLETEMPLATEHANDLE)
(

dtReadOnly OFN_READONLY) Checks the read-only check box when the dialog box is
created.
dtSelected Indicates the last selected template.
diSingleView Provides only a single view for each document.
dtUpdateDir Updates the directory with the dialog directory.
See also: TDocument::CreateFlags, TDocTemplate::Flags
END_RESPONSE_TABLE macro eventhan.h
This macro indicates the end of a response table.
END_RESPONSE_TABLE; .
See also: DEFINE_RESPONSE_TABLE macro
EV_xxxx macros ' ~ - windowev.h

The EV_xxxx macros create response table entries that match events to
member functions. See Chapter 2 for a list of the EV_xxxx macros and their
corresponding functions and Chapter 5 in Object Windows Programmer’s
Guide for details about how to use these macros.

* Chapter 1, Library reference » ’ 21

EV_XXXX macros

Table 1.14: EV_xxxx macros

Macro

Meaning

EV_CHILD_NOTIFY(id,notifyCode,method)

EV_CHI LD_NOTIFY_ALL_COIjES
EV_CHILD_NOTIFY_AND_CODE(id, notifyCode, method)
EV_COMMAND(id, method)

EV_COMMAND_AND_ID(id, method)
EV_COMMAND_ENABLE(id, method)

EV_MESSAGE(message, method)
EV_NOTIFY_AT_CHILD(notifyCode, method)
EV_OWLDOCUMENT(id, method)
EV_OWLNOTIFY(id, method)
EV_OWLVIEW(id, method) - -
EV_REGISTERED(str, method)

Handles child ID notifications (for example, button, edit
control, list box, combo box, and scroll bar notification
messages) at the child’s parent window. Passes no
arguments.

Passes all notifications to the response function and
passes the notification code in as an argument.

Handles child ID notifications at the child’s parent window
and passes the notification code as an argument.

Handler for menu selections, accelerator keys, and push
buttons.

Handler for multiple commands using a single response
function. Passes the menu ID in as an argument.

Enables and disables commands such as buttons and

_menu items.

General purpose macro for Windows WM_xxxx messages.
Handles all child ID notifications at the child window.
Handles new document notifications.

Generic document handler.

Handles view notifications.

Handles registered MSG messages.

ID_xxxx file constants

inputdia.rh

These are the resource and control IDs for the input dialog box.

Table 1.15 .
ID file constants Constant Meaning
IDD_INPUTDIALOG Resource ID number for the input dialog
box.
ID_INPUT Control ID for the user input.
ID_PROMPT Control ID for the static text.

See also: TInputDialog::SetUpWindow

22

ObjectWindows 2.0 Reference Guide

ID_xxxx printer constants

ID_xxxx printer constants printer.rh

The ID_xxxx printer constants are the resource and control IDs for the
printer abort dialog box.

Table 1.16 -
ID printer constants Constant Meaning
IDD_ABORTDIALOG Resource ID number for the abort dialog box.
iD_TITLE Control ID for the selected printer driver.
ID_DEVICE Control ID for the selected printer.
ID_PORT Control ID for the selected printer port.
IDA_xxxx accelerator ID constants editfile.rh
IDA_EDITFILE is a resource ID for accelerator keys.
Table 1.17)
Accelerator ID Constant Meaning
It
constants "T\oA EDITFILE Resource ID for accelerator keys.
IDM_xxxx menu ID constant editfile.rh
IDM_EDITFILE is a resource ID for menu selections.
Table 1.18 : :
Menu ID constants Constant Meaning
' IDM_EDITFILE Resource |D for menu selections.
IDS_xxxx document string ID constants docview.rh
Table 1.19 - ;
Document string ID Constant Displays these messages:
constants IDS_DOCCHANGED If the document has been changed, displays the message, “Do you
. want to save the changes?”
IDS_DOCLIST Document is a document type.
IDS_NOTCHANGED The document has not been changed.
IDS_UNABLECLOSE Document manager is unable to close the document.
IDS_UNABLEOPEN Document manager is unable to open the document.
VIDS_U NTITLED Document is untitled.
IDS_VIEWLIST Document is a view type.

Chapter 1, Library reference , 23

1DS_xxxx edit file ID constants

IDS_xxxx edit file ID constants

editfile.rh

ObjectWindows defines these string constants used by edit and file classes
to display information about files.

Table 1.20

Edit file ID constants Constant

Meaning

IDS_FILECHANGED
IDS_FILEFILTER
IDS_UNABLEREAD
IDS_UNABLEWRITE

- The text in the file has changed. Do you want to save the changes?

Use this filter to display text files.
Unable to read the file from the disk.
Unable to write the file to the disk.

IDS_xxxx exception messages

except.rh

The following list includes general and application exception message
constants grouped according to message types.

Table 1.21

Exception message

24

constants

Constant

Meaning

IDS_INVALIDMAINWINDOW
IDS_INVALIDMODULE
IDS_NOAPP
IDS_OUTOFMEMORY
IDS_UNKNOWNERROR
IDS_MENUFAILURE
IDS_VALIDATORSYNTAX
IDS_PRINTERERROR

Owl 1 compatibility messages:

IDS_INVALIDCHILDWINDOW
IDS_INVALIDCLIENTWINDOW
IDS_INVALIDWINDOW

TXWindow messages:
IDS_CHILDCREATEFAIL
IDS_CHILDREGISTERFAIL
IDS_CLASSREGISTERFAIL
IDS_WINDOWCREATEFAIL
IDS_WINDOWEXECUTEFAIL

GDI messages:
IDS_GDIALLOCFAIL
IDS_GDICREATEFAIL
IDS_GDIDELETEFAIL
IDS_GDIDESTROYFAIL
IDS_GDIFAILURE
|DS_GDIFILEREADFAIL

Invalid MainWindow
Invalid module specified for window
No application object

_Out of memory

Unknown error

Menu creation failure
Validator syntax error
Printer érror

Invalid child window
Invalid client window
Invalid window

Child create fail for window

Child class registration fails for window
Class registration fails for window
Create fail for window

Execute fail for window

GDiI allocate failure

GDI creation failure

GDI object delete failure
GDI object destroy failure
GD!I failure

GDi file read failure

ObjectWindows 2.0 Reference Guide

IDS_xxxx exception messages

Table 1.21: Exception message constants (continued)

IDS_INVALIDDIBHANDLE Invalid DIB handle
IDS_GDIRESLOADFAIL GDI resource load failure
IDS_xxxx listview ID constants . listview.rc

ObjectWindows uses list view constants to define operations perfomed on
views. These include clearing the document, inserting a new line, copymg
text to the Clipboard, and so on.

Table 1.22 -
Listview string ID Constant Meaning
constants IDS_LISTVIEW Resource ID for listview constants.
IDS_xxxx printer string ID constants ~ printer.rh

ObjectWindows defines several constants used by printer classes to
determine the printer status.

Table 1.23

Printer string ID Constant String displayed
COnSIANtS oS PRNCANCEL Printing is canceled.

IDS_PRNERRORCAPTION Printer error occurred.
IDS_PRNERRORTEMPLATE Document was not printed.
IDS_PRNGENERROR Error encountered during printing.
IDS_PRNMGRABORT Printing aborted in Print Manager.
IDS_PRNON ‘ Printer is on.
IDS_PRNOUTOFDISK Qut of disk space.
IDS_PRNOUTOFMEMORY Out of memory.

IDS_xxxx validator ID constants validator.rh
ObjectWindows defines several constants used by validator classes to
determine the validator status.

VE?}E';J;?S Constant Meaning
constants .
IDS_VALPXPCONFORM Item doesn't conform to correct picture format.
IDS_VALINVALIDCHAR Character isn't one of the valid entries.
IDS_VALNOTINRANGE Entry isn’t within the specified range.
IDS_VALNOTINLIST String isn't found in the list of valid entries.

Chapter 1, Library reference k ‘ ' 25

IDW_MDICLIENT constant

IDW_MDICLIENT cohstant framewin.h

Child ID constant used to identify MDI client windows.
IDW_MDICLIENT

IDW_MDIFIRSTCHILD constant ' framewin.h

Child ID constant used to identify the first MDI client window.
IDW__F-IRSTMDICHILD

ImParent constant layoutco.h

LmParent is used to construct layout metrics (for example, edge and size
constraints).

#define lmParent 0

See also: TLayoutConstraint

LongMulDiv function scroller.h

TScroller uses this function to convert horizontal range values (XRange)
from the scroll bar to horizontal scroll values (XScrollValue) and vice versa,
or to convert vertical range values (YRange) from the scroll bar to vertical
scroll values (Y ScrollValue) and vice versa.

inline long LongMulDiv(long mull, long mul2, long divl);

See also: TScroller

MAX_RSRC_ERROR_STRING constant except.h

Maximum number of characters possible for an error message.

const int MAX_RSRC_ERROR_STRING = 255;

26 ‘ ObjectWindows 2.0 Reference Guide

NBits function

NBits function color.h

WORD NBits(int colors);
Returns the bit count corresponding to the given color count.

See also: NColors, TColor class

NColors function ~ color.h

Returns the color count corresponding to the given bit count, or -1 if the bit
count is not supported by Windows. Bit counts currently supported are 1,
4,8, and 24.

int NColors(WORD bitCount);
See also: NBits, TColor class

ofxxxx document open enum docview.h

This enum defines the document and open sharing modes used for
constructing streams and storing data. Any constants that have the same
functionality as those used by OLE 2.0 docfiles are indicated in the
following table; for example, STGM_TRANSACTED, STGM_CONVERT,
STGM_PRIORITY, and STGM_DELETEONRELEASE.

Although files are typically used for data storage, databases or
spreadsheets can also be used. I/O streams rather than DOS use these bit
values. Documents open the object used for storage in one of the following

modes:

Constant Meaning

ofParent A storage object is opened using the parents mode.
ofRead A storage object is opened for reading.

ofWrite A storage object is opened for writing.

ofReadWrite A storage object is opened for reading and writing.
ofAtEnd Seek to end-of-file when opened originally.
ofAppend Data is appended to the end of the storage object.
ofTruncate An already existing file is truncated.

ofNoCreate Open fails if file doesn't exist.

“ofNoReplace. Open falils if file already exists.

ofBinary Data is stored in a binary, not text, format. Carriage returns are not

stripped.
oflosMask All of the above bits are used by the ios class.

Chapter 1, Library reference . 27

ofxxxx document open enum

Constant Meaning
ofTransacted Changes to the storage object are preserved until the data is either
committed to permanent storage or discarded. (STGM_TRANSACTED)

1 ofPreserve Backs up previous storage data using before creating.a new storage
* object with the same name. (STGM_CONVERT)

ofPriority Supports temporary, efficient reading before opening the storage.

’ (STGM_PRIORITY)
ofTemporary The storage or stream is automatically destroyed when it is destructed.

(STGM_DELETEONRELEASE)

See also: TStream, InStream, OutStream

pfxxxx property attribute constants docview.h

These constants define document and view property attributes. Documents,
views, and applications use these attributes to determine how to process a
document or view.

Constant Meaning

pfGetText Property is accessible in a text format.

pfGetBinary - Property is accessible as a native nontext format.

pfConstant Property can’t be changed for the object instance.

pfSettable Property can be set as a native format.

pfUnknown Property is defined but unavailable for the object.

pfHidden Property should be hidden from the user during normal-browsing.
pfUserDef Property has been user-defined at run time.

See also: TDocument, TView

_BUILDOWLDLL macro owidefs.h

_BUILDOWLDLL, which must be defined to build the ObjectWindows
DLL, is used internally to control values for the _OWLCLASS,
_OWLDATA, and _OWLFUNC macros. It is included in ObjectWindows
makefiles to build the ObjectWindows DLL.

_BUILDOWLDLL
See also:. _OWLDLL

28 , \ . ObjectWindows 2.0 Reference Guide

_OWLCLASS macro

_OWLCLASS macro owldefs.h

Used internally by ObjectWindows, _OWLCLASS is the ObjectWindows
version of _RTLCLASS adjusted to export and import WIN32 DLLs.
Possible definitions for this macro are _export, __far, _near, __tiny, _ large,
or __huge model.

_OWLCLASS

_OWLDATA macro owldefs.h

The macro _OWLDATA is the ObjectWindows version of _RTLDATA
adjusted to export and import WIN32 DLLs for ObjectWindows. Possible
definitions for this macro are __export, _import, or nothing.

_OWLDATA

_OWLDLL macro | owldefs.h

_OWLDLL, which is automatically defined if _RTLDLL is turned on,
controls values for the _OWLCLASS, OWLDATA, and _OWLFUNC
macros. It must be defined if you are writing ObjectWindows applications
or DLLs that use DLLs. This macro can also be turned on by a makefile.

_OWLDLL

_OWLFAR macro ~ owldefs.h

The macro _OWLFAR is the ObjectWindows version of RTLFAR adapted
to promote far data pointers in DLLs for ObjectWindows. Possible
definitions for this macro are __export or __import.

_OWLFAR

_OWLFUNC macro owldefs.h

The macro _OWLFUNC is ObjectWindows function version of _RTLFUNC
adapted to export and import functions if building WIN32 DLLs for

Chapter 1, Library reference , o 29

_OWLFUNC macro

ObjectWindows. Possible definitions for this macro are __export, __import,
_ far, or _ near.

_OWLFUNC

OWLGetVersion function | owldefs.h

Returns the version number of the ObjectWindows library. The version
number is represented as an unsigned short.

unsigned short far _OWLFUNC OWLGetVersion();

shxxxx document sharing enum docview.h
The following file-sharing modes are available when opening document
streams.
Table 1.25 Constant Meaning
shxxxx constants
shCompat Used for noncompliant applications, but should be avoided if possible.
shNone DENY_ALL functionality..
shRead DENY_WRITE functionality.
shWrite DENY_READ functionality.
shReadWrite DENY_NONE functionality.
shDefault Use stream implementation default value.
shMask shCompatlshNonelshReadIshWrite
TActionFunc typedef , window.h
typedef void(*TActionFunc) (TWindow* win, void* param);
Passes a function pointer to TWindow::ForEach.
See also: TWindow::ForEach
TActionMemFunc typedef window.h

typedef void{TWindow::*TActionMemFunc) (TWindow* win, void* param);
Passes a member function pointer to TWindow::ForEach.

See also: TWindow::ForEach

30 ‘ ObjectWindows 2.0 Reference Guide

TAnyPMF typedef

TAnyPMF typedef dispatch.h

typedef void(GENERIC::*TAnyPMF) ();

TAnyPMF is a generic pointer to a member function.

TAnyDispatcher typedef dispatch.h

typedef LRESULT(*TAnyDispatcher) (GENERIC&, TAnyPMF, WPARAM, LPARAM);

TAnyDispatch is a message dispatcher type. All message dispatcher
functions conform to this type and take four parameters:

w-A reference to an object

m A pointer to the member function in which the signature varies
according to the cracking that the function performs

» WPARAM ’ ‘

» LPARAM

TApplication class ‘ applicat.h

cmdLine

Derived from TModule, T Application acts as an object-oriented stand-in for a
Windows application module. TApplication and TModule supply the basic
behavior required of a Windows application. T Application member
functions create instances of a class, create main windows, and process
messages. See Chapter 3 in the Object Windows Programmer’s Guide for
information about using application objects.

Public data members

const char far* cmdLine;

A null-terminated string, cmdLine points to a copy of the command-line
arguments passed when the TApplication object is constructed. cmdLine is
different from the WIN32 cmdLine in which the full path name of the
module is appended to the command-line arguments. Whether running
under WIN16 or WIN32, ObjectWindows’ T Application::cmdLine data
member includes only the command-line arguments. Note that the run-
time library global variables _argv[] and _argc contain identical
information for both WIN16 and WIN32 APIs, and that _argv[0] points to
the full path name of the module.

Chapter 1, Library reference : ‘ 31

TApplication class

cmdShow

HAccTable -

hPrevinstance

nCmdShow

Constructor

32

See also: TApplication:: T Application
int cmdShow;

nCmdShow indicates how the main window is to be displayed (either
maximized or as an icon). These correspond to the WinMain parameter
CmdShow. See TApplication::nCmdShow for a description of these constants.

See also: TApplication::nCmdShow
HACCEL HAccTable;

Included to provide backward compatibility, HAccTable holds a handle to
the current Windows accelerator table being used by the application. New
applications should instead use the accelerator table handle TWindow.

See also: TWindow::LoadAcceleratorTable, TWindowAttr
HINSTANCE hPrevInstance;

Contains the handle of the previously executing instance of the Windows
application. If hPrevInstance is 0, there was no previously executing instance
when this instance began execution. Under Win32, this value is always 0.

int nCmdShow;

Indicates how the main window is to be displayed (eithér maximized or as
an icon). These correspond to the WinMain parameter CmndShow. nCmdShow
can contain one of the following Windows API constants:

Constant Meaning

SW_SHOWDEFAULT Shows the default SW_xxxx command.

SW_HIDE Hides the window.

SW_MINIMIZE Minimizes the specified window.

SW_SHOW Activates a window using current size and position.

SW_SHOWMAXIMIZED Displays a maximized window.

SW_SHOWMINIMIZED Displays a minimized window.

SW_SHOWNA Displays window in its current state.

SW_SHOWNOACTIVATE Displays the window as an icon.

SW_SHOWNORMAL Displays a window in its original size and position.

SW_SHOWSMOOTH Shows a window by updating it in a bitmap and then copying the
bits to the screen. :

See also: ::ShowWindow

Public‘ constructors and destructor

TApplication(const char far* name = 0);

ObjectWindows 2.0 Reference Guide

Constructor

Destructor

BeginModal

BWCCEnabled

CanClose

TApplication class

This TApplication constructor creates a T Application object. Use this
constructor in your OwlMain function.

TApplication(const char far* name = 0, HINSTANCE instance,
HINSTANCE prevInstance, const char far* cmdLine, int cmdShow,
TModule* gModule = ::Module);

This TApplication constructor creates a TApplication object with the
application name (name), the application instance handle (instance), the
previous application instance handle (prevInstance), the command line
invoked (¢mdLine), and the number of main windows that should be shown
(cmdShow). If you want to create your own WinMain, use this constructor
because it provides access to the various arguments required by WinMain.

See also: TApplication::nCmdShow
~TApplication();
~TApplication destroys the TApplication object.

Public member functions

int BeginModal (TWindow* window, int flags = MB_APPLMODAL);

BeginModal is called to begin a modal window’s modal message loop. After
determining which window to disable, BeginModal saves the current status
of the window, disables the window, calls MessageLoop, and then reenables
the window when the message loop is finished. The flags (which are the
same as those passed to the Windows API function MessageBox) determine
how BeginModal treats the window. flags can be one of the following values:

Constant Meaning
MB_APPLMODAL The window to be disabled (which is usually an ancestor of the modal
‘ window) is identified by window. If window is 0, no window is
disabled.
MB_SYSTEMMODAL The window to become system modal is identified by window.
MB_TASKMODAL All top-level windows are disabled, and window is ignored.

BeginModal returns -1 if an error occurs.
See also: ::MessageBox
inline BOOL BWCCEnabled() const;

Indicates if the BWCC (Borland Custom Controls library) is enabled.
Returns TRUE if BWCC is enabled or FALSE if BWCC is disabled.

virtual BOOL CanClose();

Chapter 1, Library reference 33

TApplication class

Condemn

Ctl3dEnabled

EnableBWCC

EnableCti3d

Returns TRUE if it's OK for the application to close. By default, CanClose
calls the CanClose member function of its main window and returns TRUE
if both the main window and the document manager (TDocManager) can be
closed. If any of the CanClose functions return FALSE, the application
doesn’t close. This member function is seldom redefined; closing behavior
is usually redefined in the main window’s CanClose member function, if
needed. ‘ ’

See also: TWindow::CanClose, TWindow::EvDestroy
void Condemn (TWindow* win); ;

Performs window cleanup.

inline BOOL ’Ct13dEnabled() :

Returns TRUE if three-dimensional support (Microsoft 3-D Controls
Library DLL) is enabled.

See also: TApplication::EnableCtl3d
void EnableBWCC(BOOL enable = TRUE, UINT Language = 0);

Loads and registers BWCC.DLL if you are running 16-bit applications or
BWCC32.DLL if you are running 32-bit applications. By default, BWCC is
enabled. To disable BWCC, set enable to FALSE.

See also: TDialog
void EnableCt13d(BOOL enable = TRUE);

Enables or disables the use of the CTL3D DLL. If enable is TRUE,
EnableCt13d loads and registers the CTL3D.DLL if it's not already enabled.

See also: TApplication::Ct13dEnabled

EnableCti3dAutosubclass void EnableCtl3dAutosubclass(BOOL enable);

EndModal

34

Enables or disables CTL3D’s use of autosubclassing if CTL3D is already
enabled using CtI3dEnabled. If autosubclassing is enabled, any
non-ObjectWindows dialog boxes have a 3-D effect. The common dialog
classes and TDocManager use this function to turn on autosubclassing
before creating a non-ObjectWindows dialog box to make it three-
dimensional and to turn off autosubclassing immediately after the dialog
box is destroyed.

See also: TDialog::EvCtlColor
void EndModal (int result);

ObjectWindows 2.0 Reference Guide

Find

GetDocManager

GetMainWindow

GetWinMainParams

TApplication class

EndModal is called to end a modal window’s modal message loop. It uses
the BreakMessageLoop flag to break the message loop and calls
MessageLoopResult to pass the result.

BOOL Find(TEventInfo &, TEqualOperator = 0);

Calls TDocManager to handle events. Delegates events as needed to the
document manager.

See also: TDocManager::Application
inline TDocManager* GetDocManager () const;

Returns a pointer to the document manager object that invoked the
application.

See also: TApplication::SetDocManager

inline TFrameWindow* GetMainWindow(TFrameWindow* window);
Returns a pointer to the application’s main window.

See also: TApplication::SetMain Window

inline void GetWinMainParams();

GetWinMainParams initializes a static instance of an application.

~ ObjectWindows OwlMain uses this function to support static application

MessageLoop

PostDispatchAction

PreProcessMenu

|

instances.
See also: TApplication::Set WinMainParams
virtual int MessageLoop(); -

Operates the application’s message loop, which runs during the lifetime of
the application. Queries Windows for messages; if one is received,
MessageLoop processes it by calling ProcessAppMsg. If the query returns
without a message, MessageLoop calls IdleAction to perform some processing
during the idle time. MessageLoop calls Pump WaitingMessages to get and
dispatch waiting messages. MessageLoop can be broken if BreakMessageLoop
is set by EndModal.

See also: TApplication::IdleAction, T Application::Process AppMsg
void PostDispatchAction(); '

If TApplication’s message loop is not used, this function should be called
after each message is dispatched

virtual void PreProcessMenu (HMENU hmenu) ;

Your application can call PreProcessMenu to process the main window’s
menu before it is displayed.

Chapter 1, Library reférence ' ' 35

TApplication class

ProcessAppMsg

See also: TDocmanager::EvPreProcessMenu, TMenu::TMenu
virtual BOOL ProcessAppMsg(MSG& msg);

Checks for any special processing that is required for modeless dialog box,
accelerator, and MDI accelerator messages. Calls the virtual
TWindow::PreProcessMsg function of the window receiving the message. If
your application does not create modeless dialog boxes, does not respond
to accelerators, and is not an MDI application, you can improve
performance by overriding this member function to return FALSE.

See also: TWindow::PreProcessMsg

PumpWaitingMessages BOOL PumpWaitingMessages () ;

‘QueryThrow

ResumeThrow

Run

SetDocManager

SetMainWindow

36

Called by MessageLoop, PumpWaitingMessages processes and dispatches all
waiting messages until the queue is empty. It also sets BreakMessageLoop
when a WM_QUIT message is received.

inline int QueryThrow();

QueryThrow tests to see if an exception is suspended and returns one or
more of the bit flags in the xs exception status enum.

See also: xs exception status enum
void ResumeThrow() ;

ResumeThrow checks and rethrows suspended exceptions. Call this function
any time you reenter ObjectWindows code from exception-unsafe code
where an exception could have been thrown.

virtual int Run();

Initializes the instance, calling InitApplication for the first executing instance
and InitInstance for all instances. If the initialization is successful, Run calls
MessageLoop and runs the application. If exceptions are thrown outside the
message loop, Run catches these exceptions.

If an error occurs in the creation of a window, Run throws a TX Window
exception. If Status is assigned a nonzero value (which ObjectWindows
uses to identify an error), a TXCompatibility exception is thrown.

See also: TApplication::Init Application, TApplication::InitInstance,
TApplication::MessageLoop

TFrameWindow* SetDocManager (TDocManager* docManager);
Sets a pointer to the document manager object that invoked the application.
See also: TApplication::GetDocManager ‘

TFrameWindow* SetMainWindow (TFrameWindow* window);

ObjectWindows 2.0 Reference Guide

SetWinMainParams

SuspendThrow

SuspendThrow

SuspendThrow

SuspendThrow

BreakMessageLoop

MessageLoopResult

TApplication class

Sets up a new main window and sets the WM_MAINWINDOW flag so that
the application knows this is the main window.

See also: TApplication::GetMainWindow

inline static void SetWinMainParams (HINSTANCE instance, HINSTANCE
previnstance, const char far* cmdLine,
int cmdShow) ;

ObjectWindows default WinMain function calls SetMain WinParams so that
TApplication can store the parameters for future use. To construct an
application instance, WinMain calls the OwIMain function that’s in the user’s
code. As it's being constructed, the application instance can fill in the
parameters using those set earlier by SetMain WinParams.

See also: TApplication::Get WinMainParams

void SuspendThrow(xallock x);

This version of SuspendThrow saves xalloc exception information.
void SuspendThrow (xmsg& X); ’

This version of SuspendThrow saves xmsg exception information.
void SuspendThrow (TXOwl& x);

This version of SuspendThrow saves a copy of a TXOwl exception.

- void SuspendThrow(int);

This version of SuspendThrow sets the xs exception status bit flags to the
specified exception, for example Bad_cast or Bad_typeid.

See also: xs exception status enum

Protected data members

BOOL BreakMessageLoop;

Causes the current modal message loop to break and terminate. If the
current modal message loop is the main application, and your program sets
BreakMessageLoop, your main application terminates.

See also: TApplication::EndModal, T Application::MessageLoop,
TApplication::Pump WaitingMessages

int MessageLoopResult;

MessageLoopResult is set by a call to EndModal. It contains the value that is
returned by MessageLoop and BeginModal.

Chapter 1, Library reference 37

TApplication class

See also: TApplication::BeginModal, T Application::EndModal,
TApplication::MessageLoop

Protected member functions

IdleAction virtual void BOOL IdleAction(long idleCount);

ObjectWindows calls IdleAction when no messages are waiting to be
processed. You can override IdleAction to do background processing. The
default action is to give the main window a chance to do idle processing as
long as IdleAction returns TRUE. idleCount specifies the number of times
IdleAction has been called between messages.

See also: TFrameWindow::IdleAction
InitApplication virtual void InitApplication();

ObjectWindows calls Init Application to initialize the first instance of the
application. For subsequent instances, this member function is not called.

The following sample program calls InitApplication the first time an instance
of the program begins.

class TTestApp : public TApplication {
public:
TTestApp(): TApplication("Instance Tester")
{strcpy (WindowTitle, "Additional Instance");}

protected:
char WindowTitle[20];

void InitApplication() {strcpy(WindowTitle, "First Instance");}
void InitMainWindow() {MainWindow = new TFrameWindow(0, WindowTitle);}
b
static TTe‘stApp App;
Initinstance virtual void InitInstance();

Performs each instance initialization necessary for the application. Unlike
InitApplication, which is called for the first instance of an application,
Initlnstance is called whether or not there are other executing instances of
the application. InitInstance calls InitMainWindow, and then creates and
shows the main window element by TWindow::Create and TWindow::Show.
If the main window can’t be created, a TXInvalidMain Window exception is
thrown.

38 ’ ObjectWindows 2.0 Reference Guide

InitMainWindow

Terminstance

TApplication class

If you redefine this member function, be sure to exp11c1tly call
TApplication::InitInstance.

See also: TApplication::InitApplication, TApplication::InitMainWindow,
TApplication::Run, TModule::Make Window, T Window::Show

virtual void InitMainWindow();

By default, InitMain Window constructs a generic TFrameWindow object with
the name of the application as its caption. You can redefine InitMain Window
to construct a useful main window object of TFrameWindow (or a class
derived from TFrameWindow) and store it in MainWindow. The main
window must be a top-level window; that is, it must be derived from
TFrameWindow. A typical use is

virtual void TMyApp::InitMainWindow() {
MainWindow = new TMyWindow (NULL, Caption);
}

InitMainWindow can be overridden to construct a useful application.
virtual int TermInstance(int status);

Handles the termination of each executing instance of an ObjectWindows
aplication.

TApplication::TXInvalidMainWindow class ~ applicat.h

Constructor

Clone

A nested class, TXInvalidMain Window describes an exception that results
from an invalid Window. This exception is thrown if there is not enough
memory to create a window or a dialog object. InitInstance throws this
exception if it can’t initialize an instance of an application object.

Public constructors

TXInvalidMainWindow() ;

Constructs a TXInvalidMainWindow object with a default
IDS_INVALIDMAINWINDOW message.

Public member functions

virtual TXOwl* Clone();

Chapter 1, Library reference : B

TApplication::TXInvalidMainWindow class

Makes a copy of the exception object. Clone must be implemented in any

class derived from TXOwl.

Throw virtual void Throw();

Throws the exception object. Throw must be implemented in any class
derived from TXOwl.

TBandinfo class dc.h
An ObjectWindows struct equivalent to BANDINFOSTRUCT, TBandlnfo is
used to pass information to a printer driver that supports bandmg
TBandlInfo is declared as follows:

struct TBandInfo {
BOOL HasGraphics;
BOOL HasText;
TRect GraphicsRect;
bi
HasGraphics is TRUE if graphics are (or are expected to be) on the page or in
the band; otherwise, it is FALSE. HasText is TRUE if text is (or is expected to
be) on the page or in the band; otherwise, it is FALSE. GraphicsRect defines
the bounding region for all graphics on the page.
See also: TPrintDC::BandInfo, TPrintDC::NextBand

TBitmap class gdiobjec.h
TBitmap is the GDI bitmap class derived from TGdiObject. TBitMap can
construct a bitmap from many sources. TBitmap objects are DDBs (device-
dependent bitmaps), which are different from the DIBs (device-
independent bitmaps) represented by TDib objects.

Public constructors

Constructor TBitmap (HBITMAP handle, TAutoDelete autoDelete = NoAutoDelete);
Creates a TBitmap object and sets the Handle data member to the given
borrowed handle. The ShouldDelete data member defaults to FALSE,
ensuring that the borrowed handle will not be deleted when the C++ object
is destroyed.
See also: TGdiObject::Handle, TGAiObject::ShouldDelete

40 ObjectWindows 2.0 Reference Guide

Constructor

Constructor

Constructor

Constructor

Constructor

Constructor

Constructor

Constructor

TBitmap

TBitmap (const TClipboard& clipboard);

Creates a TBitmap object with values from the given Clipboard.

See also: TClipBoard::GetClipboardData

TBitmap(const TBitmapé& bitmap) ;

Creates a copy of the given bitmap object.

See also: TBitmap::GetObject, : CreateCompatzblethmap, ::CreateBitmap

TBitmap (int width, int height, BYTE planes, BYTE bitCount = 1,
void far* bits = 0);

Creates a bitmap object from bitCount bits in the bits buffer with the given
width, height, and planes argument values.

See also: ::CreateBitmap

TBitmap (const BITMAP far* bitmap);

Creates a bitmap object with the values found in the given bitmap structure.
See also: ::CreateBitmapIndirect, struct BITMAP

TBitmap (const TDC& Dc, int width, int height, BOOL discardable = FALSE);

Creates a bitmap object for the given device context with the given
argument values.

See also: ::CreateDiscardableBitmap, TDC
TBitmap(const TDC& Dc, const TDib& dib, DWORD usage = CMB_INIT);

Creates a bitmap object for the given dev1ce context with the given dib and
usage argument values.

See also: ::CreateDIBBitmap, TDC, TDib

TBitmap(const TMetaFilePict& metaFile, TPalette& palette,
const TSize&k size);

Creates a bitmap object from the given metaFile, using the given palette and
size arguments.

See also: TPalette
TBitmap(const TDib& dib, const TPalette* palette = 0);

Creates a bitmap object from the given dib and palette arguments. A
working palette constructed from the DIB’s color table is used if no palette
is supplied. The default system palette can also be passed using
&TPalette::GetStock(TPalette::Default);

Chapter 1, Library reference v 4

TBitmap class

See also: TScreenDC::RealizePalette, ::CreateDIBBitmap, TDib
Constructor TBitmap (HINSTANCE instance, TResID resID);

‘Creates a bitmap object for the given application instance from the given
. resource.

See also: ::LoadBitmap

Public member functions

BitsPixel BYTE BitsPixel() const;
Returns the number of bits per pixel in this bitmap.
See also: TBitmap::GetObject
GetBitmapBits inline DWORD GetBitmapBits(DWORD count, void far* ‘bits) const;
Copies up to count bits of this bitmap to the buffer bits.
See also: ::GetBitmapBits, TBitmap::GetObject,
GetBitmapDimension i n1ine BOOL GetBitmapDimension(TSizes size) const:

Retrieves the size of this bitmap (width and height, measured in tenths of
millimeters) and sets it in the size argument. Returns TRUE if the call is
successful; otherwise returns FALSE.

See also: ::GetBitmapDimensionEx, TBitmap::SetBitmapDimension, TSize
GetObject inline BOOL GetObject (BITMAP far& bitmap) const;

Retrieves data (width, height, and color format) for this bitmap and sets it
in the given BITMAP structure. To retrieve the bit pattern, use
GetBitmapBits.

See also: TBitMap::GetBitmapBits, struct BITMAP
Height * int Height() const;
Returns the height of this bitmap.
; See also: TBitmap::GetObject
operator<< inline TClipboard& operator<<(TClipboard& clipboard, TBitmap& bitmap);

Copies the given bitmap to the given clipboard argument. Returns a reference
to the resulting Clipboard, which allows normal chaining of <<.

operator - inline operator HBITMAP() -const;
HBITMAP()

42 ‘ ObjectWindows 2.0 Reference Guide

TBitmap class

Typecasting operator. Converts this bitmap’s Handle to type HBITMAP (the
Windows data type representing the handle to a physical bitmap).

Planes BYTE Planes() const;
Returns the number of planes in this bitmap.
See also: TBitmap::GetObject
SetBitmapBits inline DWORD SetBitmapBits(DWORD count, const void far* bits);
Copies up to count bits from the bits buffer to this bitmap.
See also: ::GetBitmapBits
SetBitmapDimension in1ine BOOL SetBitmapDimension(const TSize& size, TSize* oldSize=0);

Sets the size of this bitmap from the given size argument (width and height,
measured in tenths of millimeters). The previous size is set in the 0ldSize
argument. Returns TRUE if the call is successful; otherwise returns FALSE.

See also: ::SetBitmapDimensionEx, TBitmap::GetBitmapDimension, TSize
ToClipboard void ToClipboard(TClipboards clipboard);
Copies this bitmap to the given Clipboard.
See also: * TClipboard::SetClipboardData
Width ' int Width() . const;
Returns the width of this bitmap.
- See also: TBitmap::GetObject

Protected member functions

HandleCreate void HandleCreate(const TDib& dib, const TPalette &palette);
void HandleCreate(const TBitmap &src);

Creates a bitmap handle from the given argument objects.

TBitmapGadget class bitmapga.h

Derived from TGadget, TBitmapGadget is a simple gadget that can display an
array of bitmap images one at a time.

Chapter 1, Library reference . 43

TBitmapGadget class

Constructor

Destructor

Selectimage

SysColorChange

GetDesiredSize

Paint

SetBounds

44

Public constructors and destructor

TBitmapGadget (TResId bmpResId, int Id, TBorderStyle borderStyle,
TResId bitmapName, int numImages, int startImage);

Constructs a TBitmapGadget and sets the current image to the beginning
image in the array of images. Then, sets the border style to the current
TGadget border style and numlmages to the number of images in the array.

~TBitmapGadget () ;

Deletes the array of images.

Public member functions

int SelectImage(int imageNum, BOOL immediate);

Determines the current image and repaints the client area if the image has
changed. Calls the Windows API function ::UpdateWindow to update the
client area if the image has changed.

void SysColorChange();

When the system colors have been changed, SysColorChange is called by the
gadget window’s EvSysColorChange so that bitmap gadgets can-be rebuilt
and repainted.

Protected member functions

void GetDesiredSize (TSize& size);

Calls TGadget::GetDesiredSize, which determines how big the bitmap gadget
can be. The gadget window sends this message to query the gadget’s size. If
shrink-wrapping is requested, GetDesiredSize returns the size needed to
accommodate the borders and margins. If shrink-wrapping is not
requested, it returns the gadget’s current width and height. TGadget Window
needs this information to determine how big the gadget needs to be, but it
can adjust these dimensions if necessary. If WideAsPossible is TRUE, then
the width parameter (size.cx) is ignored.

void Paint (TDC& dc);
Paints the gadget’s border and the contents of the bitmap.

void SetBounds(TRect& r);

ObjectWindows 2.0 Reference Guide

TBitmapGadget class

Calls TGadget::SetBounds and passes the dimensions of the bitmap gadget.
SetBounds informs the control gadget of a change in its bounding rectangle.

See also: TGadget::SetBounds

TBitSet class bitset.h
TBitSet sets or clears a single bit or a group of bits. You can use this class to
set and clear option flags and to retrieve information about a set of bits. The
class TCharSet performs similar operations for a string of characters.
Constructors

Constructor TBitSet () ;

Constructs a TBitSet object.
Constructor TBitSet (const TBitSeté& bs);
Constructs a TBitSet object as a copy of another TBitSet.
Public member functions
Disableltem void Disableltem(int item);
Clears a single bit at item.
Disableltem void Disableltem(const TBitSet& bs);
Clears the set of bits enabled in bs.
Enableltem void Enableltem(int item);
Sets a single bit at item.
Enableltem void Enableltem(const TBitSet& bs);
Sets the set of bits enabled in bs.
Has int Has(int item);
Is nonzero if item is in the set of bits.

IsEmpty int TBitSet::IsEmpty();

Is nonzero if the set is empty; otherwise, is 0.
operator += inline TBitSet& operator +=(int item);

Chapter 1, Library reference ’ 45

TBitSet class

Calls Enableltem to set a bit in the copied set. Returns a reference to the
copied TBitSet object. '

operator += inline TBitSet& operator +={(const TBitSet& bs);

Calls Enableltem to set the bits enabled in bs. Returns a reference to the
copied TBitSet object.

operator —= inline TBitSet& operator -=(int item);

Calls Disableltem to clear a bit in the set. Returns a reference to the copied
TBitSet object.

operator —= inline TBitSet& operator -=(const TBitSet& bs);

Calls Disableltem to clear the bits enabled in bs. Returns a reference to the
copied TBitSet object.

operator &= TBitSet& operator &=(const TBitSet&); ,

AND:s all of the bits in the éopied set and returns a reference to the copied
TBitSet object.

operator |= TBitSet& operator |=(const TBitSet&);

ORs all of the bits in the copied set and returns a reference to the copied
TBitSet object.

operator ~ TBitSet operator ~{const TBitSet&);

Returns the set of bits that is the opposite of a specified set of bits. For
example, if the set of bits is 01010101, the returned set is 10101010. Returns
a reference to the copied TBitSet object.

TBrush class gdiobjec.h
The GDI Brush class is derived from TGdiObject. TBrush provides
constructors for creating solid, styled, or patterned brushes from explicit
information. It can also create a brush indirectly from a borrowed handle.
Public data members

enum Stockld enum TStockId{Null, Black, DkGray, Gray, LtCray, White};

Enumerates the attributes of the stock brush objects.
46 ObjectWindows 2.0 Reference Guide

Stocks|[]

Note: This array no
longer exists. Use
TDC::SelectStockObject
instead.

Constructor

_Constructor

Constructor

Constructor

Constructor

TBrush class

Protected data members

static TBrush Stocks(];

The single static array of Windows stock pen objects serving all TBrush
objects. The stock brushes are NULL_BRUSH, BLACK_BRUSH,
DK_GRAY_BRUSH, GRAY_BRUSH, LTGRAY_BRUSH, and
WHITE_BRUSH.

Public constructors

TBrush (HBRUSH handle, TAutoDelete autoDelete = NoAutoDelete);

Creates a TBrush object and sets the Handle data member to the given
borrowed handle. The ShouldDelete data member defaults to FALSE,
ensuring that the borrowed handle will not be deleted when the C++ objec
is destroyed.) ‘

See also: TGdiObject::Handle, TGdiObject::ShouldDelete
TBrush(TColor color);

Creates a solid TBrush object with the given color. Sets Handle via a Win
API CreateSolidBrush(color) call. To save a brush creation, this constructor
uses a cache that can detect any color that matches a stock color.

See also: ::CreateSolidBrush, TColor
TBrush(TColor color, int style);

Creates a hatched TBrush object with the given style and color. Sets Handle
via a Win API CreateHatchedBrush(style, color) call. v

See also: ::CreateHatchedBrush, ::CreateHashBrush, TColor
TBrush (const TBitmap& pattern);

Creates a patterned TBrush object with the given pattern. Sets Handle via a
Win API CreatePatternBrush(pattern) call.

See also: ::CreatePatternBrush
TBrush(const TDib& pattern);

Creates a patterned TBrush object with the given DIB pattern. Sets Handle
via a Win API CreateDIBPatternBrush(pattern, pattern.usage()) call or the
Win32 API CreateDIBPatternBrushPt(pattern, pattern.usage()) call.

See also: ::CreateDIBPatternBrushPt, ::CreateDIBPatternBrush

Chapter 1, Library reference 47

TBrush class

Constructor

GetObject

operator
HBRUSH()

UnrealizeObject

TButton class

TBrush (const LOGBRUSH far* logBrush);

Creates a TBrush object with values from the given logBrush. Sets Handle via
a Win API CreateBrushIndirect(logBrush) call.

See also: ::CreateBrushIndirect

Public member functions

inline BOOL GetObject (LOGBRUSH far& logBrush) const;

Retrieves information about this brush object and places it in the given
LOGBRUSH structure. Returns TRUE if the call is successful; otherwise
returns FALSE.

See also: TGdiObject::GetObject, struct LOGBRUSH
inline operator HBRUSH() const;

Typecasting operator. Converts this brush’s Handle to type HBRUSH (the
Windows data type representing the handle to a physical brush).

BOOL UnrealizeObject();

Directs the GDI to reset the origin of this brush the next time it is selected.
Returns TRUE if call is successful; otherwise returns FALSE.

See also: ::UnrealizeObject

button.h

48

TButton is an interface class that represents a push-button interface element
in Windows. You must use a TButton to create a button control in a parent
TWindow. You can also use a TButton to facilitate communication between
your application and the button controls of a TDialog. This class is
streamable.

There are two types of push buttons: regular and default. Regular buttons -
have a thin border. Default buttons (which represent the default action of
the window) have a thick border.

ObjectWindows 2.0 Reference Guide

IsDefPB

Constructor

Constructor

IsCurrentDefPB

BMSetStyle

TButton class

Public data members

BOOL IsDefPB;

Indicates whether the button is to be considered the default push button.
Used for owner-draw buttons, IsDefPB is set by a TButton constructor based
on BS_DEFPUSHBUTTON style setting.

Public constructors

TButton(Window *parent, int Id, const char far *text, int X, int Y, int W,
int H, BOOL isDefault = FALSE, TModule* module = 0);

Constructs a button object with the supplied parent window (parent),
control ID (Id), associated text (text), position (X, Y) relative to the origin of
the parent window’s client area, width (W), and height (H). If IsDefault is
TRUE, the constructor adds BS_DEFPUSHBUTTON to the default styles set
for the TButton (in Attr.Style). Otherwise, it adds BS_PUSHBUTTON.

See also: TControl:: TControl
TButton(TWindow *parent, int reslID, TModule"‘ module = 0);

Constructs a TButton object to be associated with a button control of a
TDialog. Calls DisableTransfer to exclude the button from the transfer
mechanism because there is no data to be transferred.

The resld parameter must correspond to a button resource that you define.

See also: TControl:: TControl

Protected data members

BOOL IsCurrentDefPB;

Indicates whether the current button is the default push button.

Protected member functions

LRESULT BMSetStyle (WPARAM, LPARAM);

Because a button can’t have both owner-drawn and push button styles,
BMSetStyle keeps track of the style if the button is owner-drawn and
Windows tries to set the style to BS_DEFPUSHBUTTON. BMSetStyle sets
IsCurrentDefPB to TRUE if the button style is BS_DEFPUSHBUTTON.

Chapter 1, Library reference _ : 49

TButton class

EvGetDIgCode

GetClassName

SetupWindow

UINT EvGetDlgCode (MSG far*);

Responds to WM_GETDLGCODE messages from the dialog manager. For
owner-drawn buttons, EvDIgCode returns a code that indicates whether the
button is the default button.

See also: TControl

char far* GetClassName();

Returns the name of TButton’s Windows registration class, “BUTTON.”
void SetupWindow();

If the button is the default push button and an owner-drawn button,
SetupWindow sends a DM_SETDEFID message to the parent window.

Response table entries

Response table entry Member function

EV_WM_GETDLGCODE EVGetDIgCode
EV_MESSAGE (BM_SETSTYLE, BMSetStyle) BMSetStyle

TButtonGadget class | buttonga.h

50

Derived from TGadget, TButtonGadgets represent buttons that you can click .
on or off. You can also apply attributes such as color, style, and shape
(notched or unnotched) to your button gadgets.

In general, button gadgets are classified as either command or attribute
buttons. Attribute buttons include radio buttons (which are considered
exclusive), or check boxes (which are nonexclusive). The public data
member, TType, enumerates these button types.

TButtonGadget objects respond to mouse events in the following manner:
when a mouse button is pressed, the button is pressed; when the mouse
button is released, the button is released. Commands can be entered only
when the mouse button is in the “up” state. When the mouse is pressed,

'TButtonGadget objects capture the mouse and reserve all mouse messages

for the current window. When the mouse button is up, button gadgets
release the capture for the current window. The public data member,
TState, enumerates the three button states.

ObjectWindows 2.0 Reference Guide

TShadowStyle
enum

TState enum

TType enum

Constructor

Destructor

CommandEnable

GetButtonState

1 BUlioNGauyet Class

Public data members

enum TShadowStyle;

Enumerates button shadow styles—either single (1) or double (2) shadow
borders.

enum TState;

TState enumerates the three button positions during which the button can
be pressed: up (0), down (1), and an indeterminate state (2). A nonzero
value indicates a highlighted button.

enum TType;

Enumerates the types of buttons: command, exclusive, or nonexclusive.

Public constructors and destructor

TButtonGadget (TResId uiBitmap, int id, TType type = Command,
BOOL enabled = FALSE, TState state = Up, -
BOOL repeat = FALSE);

Constructs a TButtonGadget object using the specified bitmap ID, button
gadget ID, and type, with the button enabled and in a button-up state.

See also: TButtonGadget::State
~TButtonGadget () ;

Deconstructs a TButtonGadget object.

Public member functions

void CommandEnable();

Enables the button gadget to capture messages. Calls SendMessage to send a
WM_COMMAND_ENABLE message to the gadget window’s parent,
passing a TCommandEnable: EvCommandEnable message for this button.

inline TState GetButtonState();

Returns the state of the button. If 0, the button is up, if 1, the button is
down, if 2, the state is indeterminate.

See also: TButtonGadget::State

Chapter 1, Library reference , _ 51

I uttontGaaget class

GetButtonType

SetButtonState

SetNotchCorners

SetShadowStyle

SysColorChange

BitmapOrigin

NotchCorners

Pressed

52

inline TType GetButtonType(};

Returns the button type as 1 if the button is a command, 2 if exclusive, or 3
if nonexclusive.

void SetButtonState(TState);

Sets the state of the button. If the state has changed, the button is exclusive,
and is in the down state, checks that the button is exclusive, sets State, and
calls Invalidate to mark the changed area of the gadget for repainting.

See also: TButtonGadget::State
void SetNotchCorners (BOOL) ;

By default, SetNotchCorners implements notched corners for buttons. To
repaint the frame of the button if the window has already been created, call
InvalidateRect with the Bounds rectangle.

See also: TButtonGadget::Invalidate, TGadget::InvalidateRect, TGadget::Paint
void SetShadowStyle (TShadowStyle);

Sets the button style to a shadow style which, by default, is DoubleShadow.
Sets the left and top borders to 2 and the right and bottom borders to
ShadowStyle + 1.

void SysColorChange();

SysColorChange responds to an EvSysColorChange message forwarded by the
owning TGadget Window by setting the dither brush to zero. If a user-
interface bitmap exists, SysColorchange deletes and rebuilds it to get the new
button colors.

Protected data members

TPoint BitmapOrigin;
Points to the x and y coordinates of the bitmap used for this button gadget.
UINT NotchCorners;

Initialized to 1, NotchCorners is 1 if the button gadget has notched corners
or 0 if it doesn’t have notched corners.

UINT Pressed;

Initialized to 1, Pressed is 1 if the button is released or 0 if it isn’t released.

ObjectWindows 2.0 Reference Guide

Repeat

Resld

ShadowStyle

State

Type

UiBitmap

Activate

BeginPressed

CancelPressed

Chapter 1, Library reference

TButtonGadget class

See also: TButtonGadget::Activate, TButtonGadget::BeginPressed,
TButtonGadget::CancelPressed

UINT Repeat;

Initialized to 1, Repeat stores the repeat count for keyboard events.
TResId ResId;

Holds the resource ID for this button gadget’s bitmap.
TShadowStyle ShadowStyle;

Holds the shadow style for the button—1 for single and 2 for double.
TState State;

Holds the state of the button—either up, down, or indeterminate.

TType Type;

Holds the type of the button—either command, exclusive, or nonexclusive.
TUIBitmap *UIBitmap;

Holds the bitmap associated with the button gadget.

Protected member functions

virtual void Activate(TPoint& p);

Invoked when the mouse is in the “up” state, Activate sets Pressed to
FALSE, changes the state for attribute buttons, and paints the button in its
current state. To do this, it calls CancelPressed, posts a WM_COMMAND
message to the gadget window’s parent, and sends menu messages to the
gadget window’s parent.

See also: TButtonGadget::Pressed
virtual void BeginPressed(TPointé& p);

When the mouse button is pressed, Beginpressed sets Pressed to TRUE,
paints the pressed button, and sends menu messages to the gadget
window’s parent.

See also: TButtonGadget::Pressed
virtual void CancelPressed(TPoint& p);

When the mouse button is released, CancelPressed sets Pressed to FALSE,
paints the button, and sends menu messages to the gadget window’s
parent.

53

TButtonGadget class

- GetDesiredSize

Invalidate

LButtonDown

LButtonUp

MouseMove

Paint

54

See also: TButtonGadget::Pressed
void GetDesiredSize(TSize& size);

Stores the width and height (measured in pixels) of the button gadget in
size. Calls TGadget’s GetDesiredSize to calculate the relationship between one
rectangle and another.

void Invalidate();

If a button is pressed or the state of the button is changed, Invalidate
invalidates (marks for repainting) the changed area of the gadget. Invalidate
only invalidates the area that changes. To repaint the entire gadget, call
TGadget::InvalidateRect and pass the rectangle’s boundaries.

See also: TButtonGadget::State, TGadget::InvalidateRect
void LButtonDown(UINT modKeys, TPoint& p);

Overrides TGadget member function and responds to a left mouse button
click by calling BeginPressed.

See also: TButtonGadget::BeginPressed
void LButtonUp(UINT modKeys, TPoint& p);

Overrides TGadget member functions and responds to a release of the left
mouse button by calling Activate.

See also: TButtonGadget::Activate
void MouseMove (UINT modKeys, TPoint& p);

Calls TGadget::MouseMove in response to the mouse being dragged. If the
mouse moves off the button, MouseMove calls CancelPressed. If the mouse
moves back onto the button, MouseMove calls BeginPressed.

See also: TButtonGadget::BeginPressed, TButtonGadget::CancelPressed
void Paint(TDC& dc);

Calls ::Get SystemMetrics to get the width and height of the window frame
(in pixels), calls GetImageSize to retrieve the size of the bitmap, and sets the
inner rectangle to the specified dimensions. Calls TGadget::PaintBorder to
perform the actual painting of the border of the control. Before painting the
control, Paint determines whether the corners of the control are notched,
and then calls GetSysColor to see if highlighting or shadow colors are used.
Paint assumes the border style is plain. Then, Paint draws the top, left,
right, and bottom of the control, adjusts the position of the bitmap, and
finishes drawing the control using the specified embossing, fading, and
dithering.

ObjectWindows 2.0 Reference Guide

SetBounds

TButtonGadget class

void SetBounds(TRect& r);

Gets the size of the bitmap, calls TGadget::SetBounds to set the boundary of
the rectangle, and centers the bitmap within the button’s rectangle.

See also: TGadget::SetBounds

TCelArray class celarray.h

Constructor

Constructor

Constructor

Destructor

TCelArray is a horizontal array of cels (a unit of animation) created by
slicing a portion of or an entire bitmap into evenly sized shapes. Gadgets
such as buttons can use a TCelArray to save resource space. TCelArray’s
functions let you control the dimensions of each cel and determine if the cel
can delete the bitmap.

OTfset from the top left corner of the bitmap

ENENENEREN

Number of cells

<---Bitmap

Public constructors and destructor

TCelArray(TBitmép* bmp, int numCels, TSize celSize = 0, TPoint Offset = 0,
TAutoDelete = AutoDelete);

Constructs a TCel Array from a bitmap by slicing the bitmap into a
horizontal array of cels of a specified size. If autoDelete is TRUE, TCel Array
can automatically delete the bitmap. The ShouldDelete data member defaults
to TRUE, ensuring that the handle will be deleted when the bitmap is
destroyed. '

TCelArray (TDib& dib, int numCels);

Constructs a TCelArray from a DIB (Device Independent Bitmap) by slicing
the DIB into a horizontal array of evenly sized cels.

TCelArray (const TCelArray& src);

Constructs a TCelArray as a copy of an existing one. If the original
TCel Array owned its bitmap, the constructor copies this bitmap; otherwise,
it keeps a reference to the bitmap.

virtual ~TCelArray();

Chapter 1, Library reference . : 55

TCelArray class

CelSize

CelOffset

CelRect

NumCels
Offset
operator |
operator =
operator
TBitmap&
SetCelSize

SetOffset

SetNumCels

56

%

If ShouldDelete is TRUE (the default value), the bitmap is deleted. If

ShouldDelete is FALSE, no action is taken.

Public member functions

inline TSize CelSize() const;
Returns the size in pixels of each cell.

inline TPoint CelOffset (TPoint offs);

Returns the position of the upper left corner of a given cel relative to the

upper left corner of the bitmap.

TRect CelRect(int cel) const;

Returns the upper left and lower right corner of a given cell relative to the

upper left corner of the bitmap.

inline int NumCels() const;

Returns the number of cels in the array.
int Offset() const;

Returns the offset of the entire CelArray.
inline TRect operator [](int cel) const;
Returns CelRect.

TCelArrayé& operator =(const TCelArray&);
Returns TCel Array.

inline operator TBitmap&();

Returns a reference to the bitmap.

inline void SetCelSize(TSize size);

Sets the size of each cel in the array.
inline void SetOffset(TPoint offs);

Sets the offset for the cels in the array.
inline void SetNumCels (int numCels);

Sets the number of cels in the array.

ObjectWindows 2.0 Reference Guide

Bitmap

CSize

Offs

NCels

- ShouldDelete

TCharSet class

TCelArray class

Protected data members

TBitmap* Bitmap;

Points to the bitmap.

TSize CSize;

The size of a cell in the array.
TPoint Offs;

Holds the offset of the upper left corner of the cel array from the upper left
corner of the bitmap.

int NCels;
The number of cells in the cel array.
BOOL ShouldDelete;

Is TRUE if the destructor needs to delete the bitmap associated with the cel
array.

bitset.h

Constructor

Constructor

Constructor

Derived from TBitSet, TCharSet sets and clears bytes for a group of
characters. You can use this class to set or clear bits in a group of characters,
such as the capital letters from “A” through “Z” or the lowercase letters
from “a” through “z.” The class TBitSet performs similar operations for a
group of bits.

Public constructors

TCharSet () ;

Constructs a TCharSet object.

TCharSet (const TCharSet&);

Copy constructor for a TCharSet object.
TCharSet (const char far* str);

Constructs a string of characters.

Chapter 1, Library reference : ' 57

TCharSet class

Public member functions

operator != inline int operator !=(const TBitSet& bsl, const TBitSet& bs2);
ORs all of the bits in the copied string and returns a reference to the copied
TCharSet object. ‘
TCheckBox class checkbox.h
See Chapter4inthe TCheckBox is a streamable interface class that represents a check box
p ObjectWindows o trol. Use TCheckBox to create a check box control in a parent window.
rogrammers Guide

for a description of
interface objects. See
Chapter 10 in the
ObjectWindows
Programmer’s Guide
for specific
instructions about
creating check box
controls.

Group

Constructor

Constructor

58

You can also use TCheckBox objects to more easily manipulate check boxes
you created in a dialog box resource.

Two-state check boxes can be checked or unchecked; three-state check boxes
have an additional grayed state. TCheckBox member functions let you easily
control the check box’s state. A check box can be in a group box (a
TGroupBox object) that groups related controls.

Public data members

TGroupBox *Group;

If the check box belongs to a group box (a TGrdupBox object), Group points
to that object. If the check box is not part of a group, Group is zero.

See also: TGroupBox:: TGroupBox

Public constructors

TCheckBox (TWindow *parent, int Id, const char far *title, int x, int y,
int w, int h, TGroupBox *group, TModule* module = 0);

Constructs a check box object with the specified parent window (parent),
control ID (Id), associated text (title), position relative to the origin of the
parent window’s client area (x, y), width (w), height (k), associated group
box (group), and owning module (module). Invokes the TButton constructor
with similar parameters. Sets the check box’s Attr.Style to WS_CHILD |
WS_VISIBLE | WS_TABSTOP | BS_AUTOCHECKBOX.

See also: TButton::TButton

TCheckBox (TWindow *parent, int resourceld, TGroupBox *group, TModule*
module = 0);

ObjectWindows 2.0 Reference Guide

Check

GetCheck

Table 1.26
TCheckBox check
states

GetState

SetCheck

" SetState

SetStyle

TCheckBox class

Constructs an associated TCheckBox object for the check box control with a
resource ID of resourceld in the parent dialog box. Sets Group to group and
then enables the data transfer mechanism by calling EnableTransfer.

See also: TButton::TButton, TWindow::EnableTransfer

Public member functions

void Check();

Forces the check box to be checked by calling SetCheck with the value of
BF_CHECKED. Notifies the associated group box, if there is one, that the
state was changed.

See also: TCheckBox::GetCheck, TCheckBox::Toggle, TCheckBox::Uncheck,
TGroupBox::SelectionChanged

inline UINT GetCheck() const;
Returns the state of the check box.

Check box state Return value
Checked BF_CHECKED
Unchecked BF_UNCHECKED
Grayed BF_GRAYED

See also: TCheckBox::SetCheck
inline UINT GetState() const;

Returns the check, focus, and highlight state of the check box. See the
BM_GETSTATE message in the Windows API online Help for more details.

See also: TCheckBox::SetState
void SetCheck (WORD check);

Forces the check box into the state specified by Check. See Table 1.26 for
possible values of Check.

See also: TCheckBox::GetCheck
inline void SetState(UINT state);

Sets the check, focus, and highlight state of the check box. See the
BM_SETSTATE message in the Windows API online Help for more details.

See also: TCheckBox::GetState

inline void SetStyle(UINT style, BOOL redraw);

Chapter 1, Library reference , 59

TCheckBox class

Toggle

Transfer

Uncheck

BNClicked

EvGetDIgCode

GetClassName

60

Changes the style of the check box. See the BM_SETSTYLE message in the
Windows API online Help for more details.

void Toggle();

Toggles the check box between checked and unchecked if it’s a two-state
check box; toggles it between checked, unchecked, and gray if it’s a three-
state check box.

See also: TCheckBox::SetCheck
virtual WORD Transfer(void *buffer, TTransferDirection direction);

Overrides TWindow::Transfer. Transfers the check state of the check box to
or from buffer, using the values specified in Table 1.26. If direction is
tdGetDate, the check box state is transferred into the buffer. If direction is
tdSetData, the check box state is changed to the settings in the transfer
buffer.

Transfer returns the size of the transfer data in bytes. To get the size without
actually transferring the check box, use tdSizeData as the direction argument.

inline void Uncheck();

Forces the check box to be unchecked by calling SetCheck with a value of
BF_UNCHECKED. Notifies the associated group box, if there is one, that
the state has changed.

See also: TCheckBox::Check, TCheckBox::SetCheck, TCheckBox::Toggle

Protected member functions

void BNClicked();

Responds to notification message BN_CLICKED, indicating that the user
clicked the check box. If Group isn’t 0, BNClicked calls the group box’s
SelectionChanged member function to notify the group box that the state has
changed.

See also: TGroupBox::SelectionChanged
UINT EvGetDlgCode();

Overrides TButton’s response to the WM_GETDLGCODE message, an
input procedure associated with a control that is not a check box, by calling
DefaultProcessing.

See also: TButton::EvGetDIgCode, TWindow::DefaultProcessing

char far* GetClassName();

ObjectWindows 2.0 Reference Guide

TCheckBox class

If BWCC is enabled, TCheckBox returns CHECK_CLASS. If BWCC is not
enabled, returns “BUTTON.”

Response table entries
Response table entry Member function
EV_NOTIFY_AT_CHILD (BN_CLICKED, BNClicked) BNClicked
EV_WM_GETDLGCODE EVGetDigCode
TChooseColorDialog class chooseco.h

Constructor

SetRGBColor

cc

TChooseColorDialog objects represent modal dialog box interface elements
that allow color selection and custom color adjustment. TChooseColorDialog
can be made to appear modeless to the user by creating the dialog’s parent
as an invisible pop-up window and making the pop-up window a child of
the main application window.

Public constructors

TChooseColorDialog (TWindow* parent, TData& data, TResId templateID = 0,
const char far* title = 0, TModule* module = 0);

Constructs a dialog box with specified parent window, data, resource
identifier, window caption, and library ID.

See also: TChooseColorDialog::TData

Public member functions

inline void SetRGBColor(TColor color);

Sets the current RGB color for the open dialog box by sending a
SetRGBMsgld. You can use SetRGBColor to send a message to change the
current color selection. ‘

Protected data members

CHOOSECOLOR cc;

Chapter 1, Library reference 61

TChooseColorDialog class

Data

SetRGBMsgld

DialogFunction

DoExecute

EvSetRGBColor

Stores the length of the TChooseColorDialog structure, the window that owns
the dialog box, and the data block that contains the dialog template. It also
points to an array of 16 RGB values for the custom color boxes in the dialog
box, and specifies the dialog-box initialization flags. This information is
passed to the Windows API ChooseColor function.

See also: TChooseColorDialog:: TData

TData& Data;

Data is a reference to the TData object passed in the constructor.
See also: TChooseColorDialog::TData

static UINT SetRGBMsgld;

Contains the ID of the registered message sent by SetRGBColor.

Protected member functions

BOOL DialogFunction(UINT message, WPARAM, LPARAM);
Returns TRUE if a message is handled.

See also: TDialog::DialogFunction

int DoExecute();

If no error occurs, DoExecute copies flags and colors into Data and returns
zero. If an error occurs, DoExecute returns the IDCANCEL with Data.Error
set to the value returned from CommDIgExtendedError.

inline LPARAM EvSetRGBColor (WPARAM, LPARAM);

Responds to the message sent by SetRGBColor by forwarding it to the
original class via DefaultProcessing. This event handler is not in the response
table. ’

Response table entries

The TChooseColorDialog response table has no entries.

TChooseColorDialog::TData struct -~ chooseco.h

62

The TChooseColorDialog::TData struct defines information necessary to
initialize the dialog box with the user’s color selection.

ObjectWindows 2.0 Reference Guide

TChooseColorDialog:: TData struct

Public data members

Color- TColor Color;

Color specifies the color that is initially selected when the dialog box is
created and contains the user’s color selection when the dialog box is
closed.

CustColors TColor* CustColors;
CustColors points to an array of 16 colors.
Error DWORD Error;

Error contains one of the following CommDIgExtendedError codes:

Constant ' Meaning

CDERR_DIALOGFAILURE Failed to create a dialog box.

CDERR_FINDRESFAILURE Failed to find a specified resource.

CDERR_LOADRESFAILURE Failed to load a specified resource.

CDERR_LOCKRESOURCEFAILURE Failed to lock a specified resource.

CDERR_LOADSTRFAILURE Failed to load a specified string.
Flags DWORD Flags;

Flags can be a combination of the following Windows API constants:

Constant Meaning

CC_FULLOPEN Causes the entire dialog box to appear when the dialog box is
created.

CC_PREVENTFULLOPEN Disables the “Define Custom Colors” push button.

CC_RGBINIT Causes the dialog box to use the color specified in rgbResult as
the initial color selection.

CC_SHOWHELP Causes the dialog box to show the Help push button.

See also: TChooseColorDialog::Data, ::ChooseColor

* TChooseFontDialog class choosefo.h

A TChooseFontDialog represents modal dialog-box interface elements that
create a system-defined dialog box from which the user can select a font, a
font style (such as bold or italic), a point size, an effect (such as strikeout or
underline), and a color. TChooseFontDialog can be made to appear modeless
by creating the dialog’s parent as an invisible pop-up window and making
the pop-up window a child of the main application window.

Chapter 1, Library reference 63

- TChooseFontDialog class

See Chapter 4 in the Object Windows Programmer’s Guide for a general
description of interface objects and Chapter 8 in the Object Windows
Programmer’s Guide for specific instructions about creating dialog boxes.

Public constructors

Constructor TChooseFontDialog (TWindow* parent, TData& data, TResID templateID = 0,
const char far* title = 0, TModule* module = 0);

Constructs a dialog box with specified data, parent window, resource
identifier, window caption, and library ID.

See also: TChooseFontDialog::TData

Protected data members

cf CHOOSEFONT cf;

Contains font attributes that ObjectWindows passes to the Windows API
Choosefont function. cf is initialized using fields in the
TChooseFontDialog::TData class. It stores the length of the structure, the
window that owns the dialog box and the data block that contains the
dialog template. It also specifies the dialog-box initialization flags.

See also: TChooseFontDialog::TData
Data TData& Data;
Data is a reference to the TData object passed in the constructor.

See also: TChooseFontDialog::TData

Protected member functions

CmFontApply inline void CmFontApply () ;
Default handler for the third push button (the apply button) in the dialog
box. ;

DialogFunction BOOL DialogFunction(UINT message, WPARAM, LPARAM):

Returns TRUE if a message is handled.
See also: TDialog::DialogFunction
DoExecute int DoExecute();

64 ’ ObjectWindows 2.0 Reference Guide

TChooseFontDialog class

If no error occurs, DoExecute copies the flag values and font information
into Ddata, and returns 0. If an error occurs, DoExecute returns the
CommDIgExtendedError.

See also: TChooseFontDialog::TData

Response table entries

The TChooseFontDialog response table contains no entries.

TChooseFontDialog::TData struct choosefo.h

The ChooseFontDialog structure defines information necessary to initialize
the dialog box with the user’s font selection.

Public data members

Color TColor Color;

Indicates the font color that is initially selected when the dialog box is
created; contains the user’s font color selection when the dialog box is
closed.

DC HDC DC;
Handle to the device context from which fonts are obtained.
Error DWORD Error;

Error contains one of the following CommDIgExtendedError codes:

Constant Meaning

CDERR_DIALOGFAILURE Failed to create a dialog box.

CDERR_FINDRESFAILURE Failed to find a specified resource.

CDERR_LOCKRESOURCEFAILURE Failed to lock a specified resource.

CDERR_LOADRESFAILURE Failed to load a specified resource.

CDERR_LOADSTRFAILURE Failed 1o load a specified string.

CFERR_MAXLESSTHANMIN The size specified in SizeMax is less than the size in
SizeMin.

CFERR_NOFONTS No fonts exist.

Flags DWORD Flags;

Flags can be a combination of the following Windows API constants:

Chapter 1, Library reference ' 65

TChooseFontDialog::TData struct

Constant Meaning

CF_APPLY Enables the display and use of the Apply button.

CF_ANSIONLY Specifies that the ChooseFontDialog structure allows only the
selection of fonts that use the ANSI character set.

CF_BOTH Causes the dialog box to list both the available printer and
screen fonts. . .

CF_EFFECTS Enables strikeout, underline, and color effects.

CF_FIXEDPITCHONLY
CF_FORCEFONTEXIST

CF_INITTOLOGFONTSTRUCT
CF_LIMITSIZE
CF_NOSIMULATIONS
CF_PRINTERFONTS

CF_SCALABLEONLY
CF_SCREENFONTS

CF_SHOWHELP
CF_TTONLY
CF_USESTYLE

CF_WYSIWYG

Enables fixed-pitch fonts only.:

Indicates an error if the user selects a nonexistent font or
style.

Uses the LOGFONT structure at which LogFont points to
initialize the dialog controls.

Limits font selection to those between SizeMin and SizeMax.
Does not allow GDI font simulations.

Causes the dialog box to list only the fonts supported by the
printer that is associated with the device context.

Allows only the selection of scalable fonts.

Causes the dialog box to list only the system-supported

_screen fonts.

Causes the dialog box to show the Help button.

Enumerates and allows the selection of TrueType fonts only.
Specifies that Style points to a buffer containing the style
attributes used to initialize the selection of font styles.

Allows only the selection of fonts available on both the printer
and the screen.

Style of the font such as bold, italic, underline, or strikeout.

LogFont LOGFONT LogFont;
Attributes of the font.
PointSize int PointSize;
Point size of the font.
Style char far* Style;
FontType WORD FontType;
| Font type or name.
SizeMax int SizeMax;
Maximum size of the font.
SizeMin int SizeMin; ‘
Minimum size of the font.
66

ObjectWindows 2.0 Reference Guide

TClientDC class

See also: TChooseFontDialog::Data

TClientDC class dc.h

A DC class derived from TWindowDC, TClientDC provides access to the
client area owned by a window.

Public constructors

Constructor TClientDC {HWND wnd) ;
Creates a TClientDC object with the given owned window. The data
member Wnd is set to wnd.
See also: TWindowDC::Wnd, TDC::TDC

TClipboard class o clipboar.h
TClipboard encapsulates several Windows API Clipboard functions that
manipulate Clipboard data. You can open, close, empty, and paste data in a
variety of data formats between the Clipboard and the open window.
Public data members

DefaultProtocol static const char* DefaultProtocol;

CloseClipboard

Points to a string that specifies the name of the protocol the client needs.
The default protocol is “StdFileEditing,” which is the name of the object
linking and embedding protocol. The macros _OLE_H or _INC_OLE must
be defined before this function can be used.

See also: TClipboard::QueryCreate

Public member functions

inline void CloseClipboard()

Closes the Clipboard and returns TRUE if the Clipboard is closed or FALSE
if it is not closed. Closing the Clipboard allows other applications to access
the Clipboard.

See also: TClipboard::CloseClipboard , ::CloseClipboard

Chapter 1, Library reference ' 67

TClipboard class

CountClipboardFormats inline int CountClipboardFormats() const;

Returns a count of the number of types of data formats the Clipboard can
use.) '

See also: TClipboard::RegisterClipboardFormats
EmptyClipboard inline BOOL EmptyClipboard();

Clears the Clipboard and frees any handles to the Clipboard’s data. Returns
TRUE if the Clipboard is empty, or FALSE if an error occurs.

See also: ::EmptyClipboard
GetClipboardData in1ine HANDLE GetClipboardData (UINT format) const;

Retrieves data from the Clipboard in the format specified by format. For a
description of Windows CF_xxxx data formats, see the Windows API online
Help.

See also: TClipboard::SetClipboardData, ::GetClipboardData

GetClipboardFormatName inline int GetClipboardFormatName (UINT format, char far* formatName,
int maxCount) const;

Retrieves the name of the registered format specified by format and copies
the format to the buffer pointed to by formatName. maxCount specifies the
maximum length of the name of the format. If the name is longer than
maxCount, it is truncated.

See also: TClipboard::CountClipboardFormats

GetClipboardOwner :n1ine HiND GetClipboardOwner () const;
Retrieves the handle of the window that currently owns the Clipboard.
See also: ::GetClipboardOwner

GetClipboardViewer inline HWND GetClipboardviewer() const;
Retrieves the handle of the first window in the Clipboard-view chain.
See also: TClipboard::SetClipboardViewer

GetOpenClipboardWindow HWND GetQpenClipboardWindow() const;

Retrieves the handle of the window that currently has the Clipboard open.
If the Clipboard is not open, the return value is FALSE.

GetPriorityClipboardFormat inline int GetPriorityClipboardFormat (UINT FAR * priorityList,
int count) const;

68 ‘ ObjectWindows 2.0 Reference Guide

TClipboard class

Returns the first Clipboard format in a list. priorityList points to an array
that contains a list of the Clipboard formats arranged in order of priority.
See the Windows API online Help for a description of these formats.

IsClipboardFormatAvailable inline BOOL IsClipboardFormatAvailable(UINT format) const;

OpenClipboard

operator BOOL

QueryCreate

QueryLink

Indicates if the format specified in format exists for use in the Clipboard. See
the Windows API online Help for a description of Clipboard data formats.

See also: ::IsClipboardFormatAvailable

inline BOOL OpenClipboard (HWND Wnd) ;

Opens the Clipboard and associates it with the window specified in Wnd.
See also: TClipboard::CloseClipboard, ::OpenClipboard

opefator BOOL() const;

Checks handle. Should use IsOk instead.

inline BOOL QueryCreate(const char far* protocol = DefaultProtocol,
OLEOPT_RENDER renderopt = olerender_draw,
OLECLIPFORMAT format = 0);

QueryCreate determines if the object on the Clipboard supports the specified
protocol and rendering options. DefaultProtocol points to a string specifying
the name of the protocol the client needs to use. renderopt specifies the client
application’s display and printing preference for the Clipboard object.
renderopt is set to olerender_draw, which specifies that the client application
calls the Windows API function OleDraw, which tells the client library to
obtain and manage the data presentation. format specifies the Clipboard
format the client application requests. The macros _OLE_H or _INC_OLE
must be defined before this function can be used.

See the Windows API online Help for more information and a description
of Clipboard formats.

See also: TClipboard::QueryLink

inline BOOL QueryLink(const char far* protocol = DefaultProtocol,
OLEOPT_RENDER renderopt = olerender_draw,
OLECLIPFORMAT format = 0);

QueryLink determines if a client application can use the Clipboard data to
produce a linked object that uses the specified protocol and rendering
options. See TClipboard::QueryCreate for a description of the parameters.
The macros OLE_H or _INC_OLE must be defined before this function
can be used.

Chapter 1, Library reference 69

TClipboard class

See the Windows API online Help for more information about this
function. '

See also: TClipboard::QueryCreate

RegisterClipboardFormat inline UINT RegisterClipboardFormat (const char far* formatName)

SetClipboardData

SetClipboardViewer

IsOpen

TheClipboard '

Constructor

Destructor

70

const;

Registers a new Clipboard format. formatName points to a character string
that identifies the new format. If the format can’t be registered, the return
value is 0. See the Windows API online Help for more information.

See also: TClipboard::CountClipboardFormats
inline HANDLE SetClipboardData(UINT format, HANDLE handle);

Sets a handle to the block of data at the location indicated by handle. format
specifies the format of the data block. If successful, the return value is a
handle to the data; if an error occurs, the return value is 0. See the Windows
API online Help for more information.

See also: TClipboard::GetClipboardData, ::SetClipboardData
inline HWND SetClipboardViewer (HWND Wnd) const;

Adds the window specified by Wnd to the chain of windows that
WM_DRAWCLIPBOARD notifies whenever the contents of the Clipboard
change.

See also: TClipboard::GetClipboardViewer

Protected data members

BOOL IsOpen;
Returns TRUE if the Clipboard is open.
static TClipboard TheClipboard;

Protected constructors and destructor

TClipboard();

Constructs a TClipboard object.
~TClipboard() ;

Destroys a TClipboard object.

ObjectWindows 2.0 Reference Guide

TClipboardViewer class

TClipboardViewer class clipview.h

Constructor

Constructor

EvChangeCBChain

EvDestroy

EvDrawClipboard

SetupWindow

Registers a TClipboardViewer as a Clipboard viewer when the user interface
element is created, and removes itself from the Clipboard-viewer chain
when it is destroyed.

Public constructors

TClipboardviewer () ;
Constructs a TClipboardView object.
TClipboardviewer (HWND hWnd, TModule* module = 0);

Constructs a TClipboardViewer object with a handle (hWnd) to the windows
that will receive notification when the Clipboard’s contents are changed.

Public member functions

void EvChangeCBChain (HWND hWndRemoved, HWND hWndNext);

Responds to a Windows API WM_CHANGECBCHAIN message.
hWndRemoved is a handle to the window that’s being removed. hWndNext is
the window following the removed window.

void EvDestroy();

Responds to a Windows API WM_DESTROY message when a window is
removed from the Clipboard-viewer chain.

void EvDrawClipboard();

Responds to a Windows API WM_DRAWCLIPBOARD message sent to the
window in the Clipboard-viewer chain when the contents of the Clipboard
change.

void SetupWindow();
Adds a window to the Clipboard-viewer chain.

See also: TWindow::Setup Window

Chapter 1, Library reference ' 71

TClipboardViewer class

Protected data members
HWndNext HWND HWndlNext;
Specifies the next window in the Clipboard-viewer chain.
Response table entries
Response table entry Member function
EV_WM_CHANGECBCHAIN EVChangerChain
EV_WM_DESTROY EvDestroy
EV_WM_DRAWCLIPBOARD EvDrawClipBoard
TColor class color.h
TColor is a support class used in conjunction with the classes TPalette,
TPaletteEntry, TRgbQuad, and TRgbTriple to simplify all Windows color
operations. TColor has ten static data members representing the standard
RGB COLORREF values, from Black to White. Constructors are provided to
create TColor objects from COLORREF and RGB values, palette indexes,
palette entries, and RGBQUAD and RGBTRIPLE values. See the entries for
NBits and NColors for a description of TColor-related functions.
Public data members
Black static comst TColor Black;
The static TColor object with fixed Value set by RGB(0, 0, 0). See the RGB
Windows macro for more information.
Gray static const TColor Gray;
Contains the static TColor object with fixed Value set by RGB(128, 128, 128).
LiBlue static const TColor LtBlue;
Contains the static TColor object with the fixed Value set by RGB(0, 0, 255).
LtCyan static const TColor LtCyan;
Contains the static TColor object with the fixed Value set by RGB(0, 255,
255).
LtGray static const TColor LtGray;
72 ObjectWindows 2.0 Reference Guide

LtGreen

LtMagenta

LtRed

LtYellow

White

Constructor

Constructor

Constructor

Constructor

TColor class

Contains the static TColor object with the fixed Value set by RGB(192, 192,
192).

static const TColor LtGreen;
Contains the static TColor object with the fixed Value set by RGB(0, 255, 0).
static const TColor LtMagenta;

Contains the static TColor object with the fixed Value set by RGB(255, 0,
255).

static const TColor LtRed;
Contains the static TColor object with the fixed Value set by RGB(255, 0, 0).
static const TColor LtYellow; '

Contains the static TColor object with the fixed Value set by RGB(255,
255, 0).

static const TColor White;

Contains the static TColor object with the fixed Value set by RGB(255, 255,
255). .

See also: Windows macro RGB

Public constructors

TColor () ;

The default constructor sets Value to 0.

See also: TColor::Value

TColor (COLORREF value);

Creates a TColor object with Value set to the given value.
See also: TColor::Value

TColor (long value);

TColo;:(long value) : Value((COLORREF)value) {}
Creates a TColor object with Value set to (COLORREF)value.
See also: TColor::Value, COLORREF

TColor (int r, int g, int b);

Creates a TColor object with Value set to RGB(r,g,b).

Chapter 1, Library reference v 73

TGolor class

Constructor

Constructor

Constructor

Constructor

Constructor

Blue

Flags

Green

74

See also: TColor::Value, RGB macro
TColor({int r, int g, int b, int f); ' N

Creates a TColor object with Value set to RGB(r,g,b) with the flag byte
formed from f.

See also: TColor::Value, PALETEENTRY struct
TColor (int index);
Creates a TColor object with Value set to PALETTEINDEX(index).
See also: TColor::Value, PALETTEINDEX macro ‘
TColor (const PALETTEENTRY far& pe);
Creates a TColor object with Value set to:

RGB(pe.peRed, pe.peGreen, pe.peBlue)
See also: TColor::Value, RGB macro, PALETEENTRY struct
TColor (const RGBQUAD far& q);
Creates a TColor object with Value set to:

RGB(q.rgbRed, g.rgbGreen, q.rgbBlue)
See also: TColor::Value, RGB macro, RGBQUAD struct
TColor (const RGBTRIPLE far& t);
Creates a TColor object with Value set to:

RGB(t.rgbtRed, t.rgbtGreen, t.rgbtBlue)
See also: TColor::Value, RGB macro, RGBTRIPLE struct

Public member functions

inline BYTE Blue() const;

Returns the blue component of this color’s Value.

See also: TColor::Red, TColor::Green, RGB

inline BYTE Flags() const;
Returns the peFlags value of this object’s Value.
See also: TPaletteEntry '

inline BYTE Green() const;

ObjectWindows 2.0 Reference Guide

_ operator==

operator
COLORREF()

Index

Palindex

PalRelative

Red

Rgb

Value

TColor class

Returns the green component of this color’s Value.

See also: TColor::Red, TColor::Blue, RGB

inline BOOL operator=={const TColor& clrVal);

Returns TRUE if this color’s Value equals clrValue; otherwise returns FALSE.
See also: TColor::Value

inline operator COLORREF() const;

Type-conversion operator that returns Value.

See also: TColor::Value

inline int Index() const;

Returns the index value corresponding to this color’s Value by masking out
the two upper bytes. Used when color is a palette index value.

See also: TColor::Value, COLORREF
inline TColor Pallndex() const; '

Returns the palette index corresponding to this color’s Value. The returned
color has the high-order byte set to 1.

See also: TColor::Value, TColor::Index, COLORREF
inline TColor PalRelative() const;

Returns the palette-relative RGB corresponding to this color’s Value. The
returned color has the high-order byte set to 2.

See also: TColor::Value, TColor::Rgb, COLORREF
inline BYTE Red() const;

Returns the red component of this color’s Value.
See also: TColor::Blue, TColor::Green, RGB

inline TColor Rgb() const;

Returns the explicit RGB color corresponding to this color’s Value by
masking out the high-order byte.

See also: TColor::Value, COLORREF

Protected data members

COLORREF Value;

Chapter 1, Library reference ~ 75

TColor class

The color value of this TColor object. Value can have three different forms,
depending on the application:

m Explicit values for RGB (red, green, blue)

m An index into a logical color palette

m A palette-relative RGB value

TComboBox class combobox.h

TextLen

Constructor

76

You can use TComboBox to create a combo box or a combo box control in a
parent TWindow, or to facilitate communication between your application
and the combo-box controls of TDialog. TComboBox objects inherit most of
their behavior from TListBox. This class is streamable.

There are three types of combo boxes: simple, drop down, and drop down
list. These types are governed by the style constants CBS_SIMPLE,
CBS_DROPDOWN, and CBS_DROPDOWNLIST. These constants, supplied
to the constructor of a TComboBox, tell Windows the type of combo box
element to create.

Public data members

WORD TextLen;

Contains the length of the text in the combo box’s associated edit control.

Public constructors

TComboBox (TWindow *parent, int Id, int x, int y, int w, int h,
DWORD style, WORD textLen, TModule* module = 0});

Constructs a combo box object with the specified parent window (parent),
control ID (Id), position (x, y) relative to the origin of the parent window’s
client area, width (w), height (), style (style), and text length (textLen).

Invokes the TListBox constructor with similar parameters. Then sets
Attr.Style as follows:

Attr.Style = WS_CHILD | WS_VISIBLE | WS_GROUP | WS_TABSTOP | CBS_SORT |
CBS_AUTOHSCROLL | WS_VSCROLL | style;

One of the following combo box style constants must be among the styles
set in style: CBS_SIMPLE, CBS_DROPDOWN, CBS_DROPDOWNLIST,
CBS_OWNERDRAWEFIXED, or CBS_OWNERDRAWVARIABLE.

ObjectWindows 2.0 Reference Guide

Constructor

AddString

Clear

ClearList

DeleteString

DirectoryList

FindString

GetCount

TComboBox class

See also: TComboBox::TextLen, TListBox:: TListBox
TComboBox (TWindow* parent, int Id, WORD textLen, TModule* module = 0);

Constructs a default combo box with the given parent window, control ID,
and text length.

Public member functions

inline virtual int AddString(const char far* string);

Adds a string to an associated list part of a combo box. Returns the index of
the string in the list. The first entry is at index zero. Returns a negative
value if an error occurs.

inline void Clear();

Clears the text of the associated edit control.

inline virtual void ClearList();

Clears out all associated entries in the associated list.
inline virtual int DeleteString(int index);

Deletes the string at the passed index in the associated list part of a combo
box. Returns a count of the entries remaining in the list or a negative value
if an error occurs.

inline virtual int DirectoryList (UINT attrs, const char far* fileSpec);
Fills the combo box with file names from a specified directory.
inline virtual int FindString(const char far* find, int indexStart) const;

Searches for a match beginning at the passed Index. If a match is not found
after the last string has been compared, the search continues from the
beginning of the list until a match is found or until the list has been
completely traversed. Returns the index of the first string in the associated
list part of a combo box or a negative value if an error occurs.

inline virtual int GetCount() const;

Returns the number of entries in the associated list part of the combo box or
a negative value if an error occurs.

GetDroppedControlRect inline void GetDroppedControlRect (TRect& Rect) const;

GetDroppedState

For combo boxes, gets the screen coordinates of the dropped down list box.

inline BOOL GetDroppedState() const;

Chapter 1, Library reference 77

TComboBox class

GetEditSel

GetExtendedUI

GetltemData

GetltemHeight

GetSellndex

GetString

GetStringLen

78

For drop down combo boxes, determines if a list box is visible.
int GetEditSel(int &startPos, int &endPos);

Returns the starting and ending positions of the text selected in the
associated edit control. Returns CB_ERR if the combo box has no edit
control.

inline BOOL GetExtendedUI() const;

Determines if the combo box has the extended user interface, which differs
from the default user interface in the following ways:

m Displays the list box if the user clicks the static text field.
m Displays the list box if the user presses the | key.
m Disables scrolling in the static text field if the item list is not visible.

Returns TRUE if the combo box has the extended user interface; otherwise
returns FALSE.

See also: TComboBox::SetExtendedUI

inline virtual DWORD GetItemData(int index) const;

Returns the 32-bit value associated with the combo box’s item.
See also: TListBox::GetltemData

inline int GetItemHeight (int index) const;

Returns the height in pixels of the Combo box’s list items or CB_ERR if an
error occurs. '

See also: TComboBox::GetltemData, TListBox::GetltemData

inline virtual int GetSellndex() const;

Returns the index of the list selection or a negative value if none exists.
inline virtual int GetString(char far* str, int index) const;

Retrieves the contents of the string at the position supplied in index and
returns it in string. GetString returns the string length or a negative value if
an error occurs. The buffer must be large enough for the string and the
terminating zero.

See also: TListBox::GetString
inline virtual int GetStringLen(int index) const;

Returns the string length (excluding the terminating zero) of the item at the
position index supplied in index. Returns a negative value if an error
occurs.

ObjectWindows 2.0 Reference Guide

TComboBox class

See also: TListBox::GetStringLen
GetText inline int GetText(char far* str, int maxChars) const;

Retrieves the number of characters in the edit or static portion of the combo
box.

GetTextLen inline int GetTextLen() const;

Returns the text length (excluding the terminating zero) of the edit control
or static portion of the combo box.

HideList inline void HideList();
Hides the drop down list of a drop down or drop down list combo box.
InsertString inline virtual int InsertString(const char far* str, int index);

Inserts a string in the associated list part of a combo box at the position
supplied in Index. Returns the index of the string in the list or a negative
value if an error occurs.

See also: TListBox::InsertString
SetEditSel inline int SetEditSel (int startPos, int endPos);

Selects characters that are between startPos and endPos in the
edit control of the combo box. Returns CB_ERR if the combo box
does not have an edit control.

SetExtendedUl inline int SetExtendedUI (BOOL extended);
If the combo box has the extended user interface, sets the extended user
interface.
See also: TComboBox::GetExtendedUI

SetitemData inline virtual int SetItemData(int index , DWORD data);

Sets the 32-bit value associated with the TComboBox’s item. Returns
CB_ERR if an error occurs.

SetitemHeight inline int SetItemHeight(int index, int height);

Sets the height of the list items or the edit control portion in a combo box. If
the index or height is invalid, returns CB_ERR.

‘ See also: TComboBox::GetltemHeight
SetSelindex inline virtual int SetSellndex(int index);
Sets the index of the list selection.

See also: TComboBox::GetSellndex

Chapter 1, Library reference 79

TComboBox class

SetSelString inline virtual int SetSelString(const char far* findStr, int indexStart);

Selects a string of characters in the associated list box and sets the contents
of the associated edit control to the supplied string.

SetText void SetText (const char far* string);

Selects the first string in the associated list box that begins with the
supplied string. If there is no match, SetText sets the contents of the
associated edit control to the supplied string and selects it.

ShowList inline void ShowList();
Shows the list of a drop down or drop down list combo box.

See also: TComboBox::HideList

ShowList -void ShowList (BOOL show);
Returns TRUE if the list is displayed.
Transfer WORD Transfer (void* buffer, TTransferDirection direction);

Transfers the items and selection of the combo box to or from a transfer
buffer if tdSetData or tdGetData, respectively, is passed as the direction.
buffer is expected to point to a TComboBoxData structure.

Transfer returns the size of a pointer to a TComboBoxData. To retrieve the
size without transferring data, your application must pass tdSizeData as
the direction.

W You must use a pointer in your transfer buffer to these structures. You
cannot embed copies of the structures in your transfer buffer, and you
cannot use these structures as transfer buffers.

See also: TComboBoxData, TWindow::Transfer

Protected member functions

GetClassName virtual char far* GetClassName();

Returns the name of TComboBox’s Windows registration class,
“ComboBox.”

SetupWindow void SetupWindow();

Sets up the window and limits the amount of text the user can enter in the
combo box’s edit control to the value of TextLen minus 1.

See also: TWindow::Setup Window

80 ObjectWindows 2.0 Reference Guide

TComboBoxData class

TComboBoxData class combobox.h

ltemDatas

Selection

Selindex

Strings

Constructor

Destructor

AddltemData

AddString

A TComboBoxData is an interface object that represents a transfer buffer for
a TComboBox.

Public data members

TDwordArray* ItemDatas;

Array of DWORD:s to transfer into and out of the combo box’s associated
list box.

See also: TComboBoxData::SetltemData, TComboBoxData::GetltemData
char* Selection;

Points to the currently selected string to transfer to or from a combo box.
int SelIndex;

Index of the selected item in the strings array. If zero, the index is used to
transfer to. If negative, no item is selected.

TStringArray* Strings;

Array of class string to transfer in or out of the combo box’s assoc1ated list
box.

Public constructors and destructor

TComboBoxData () ;

Constructs a TComboBox object, initializes Strings and ItemDatas to empty
arrays, and initializes Selection and Sellndex to 0.

~TComboBoxData () ;

Deletes Strings, ItemDatas, and Selection.

Public member functions

inline void AddItemData (DWORD itemData);
Adds the user-defined item data to the ItemDatas array.
void AddString(const char *str, BOOL isSelected = FALSE);

Chapter 1, Library reference 81

TComboBoxData class

Adds the specified string to the array of Strings. If IsSelected is TRUE,
AddString deletes Selection and copies string into Selection.

AddsStringitem inline void AddStringItem(const char* str, DWORD itemData,
BOOL isSelected = FALSE);

Calls AddltemData to add the item data to the ItemDatas array, and calls
AddString to add a string to the array of Strings.

TCommonDialog class | commdial.h

Derived from TDialog, TCommonDialog is the abstract base class for
TCommonDialog objects. It provides the basic functionality for creating
dialog boxes using the common dialog DLL.

Public constructors
Constructor TCommonDialog (TWindow* parent, const char far* title = 0, TModule*
module = 0);

Invokes a TWindow constructor, passing parent and library ID. Constructs a
common dialog box.

Public member functions

DoCreate HWND DoCreate();

Called by Create, DoCreate creates a modeless dialog box. It returns 0 if
unsuccessful.

See also: TDialog::Create
DoExecute " int DoExecute();

Called by Execute, DoExecute creates a modal dialog box. It returns
IDCANCEL if canceled or unsuccessful.

See also: TDialog::Execute

Protected data members

CDTitle const char far* CDTitle;

CDTitle stores the optional caption displayed in the common dialog box.

82 \ , ObjectWindows 2.0 Reference Guide

TCommonbialog class

See also: TDialog::SetCaption

Protected member functions

CmHelp inline void CmHelp();
Default handler for the pshHelp push button (the Help button in the dialog
box).

CmOkCancel inline void CmOkCancel();

Responds to a click on the dialog box’s OK or Cancel button by calling
DefaultProcessing to let the common dialog DLL process the command.

See also: TDialog::Cancel, TDialog::Ok
EvClose inline void EvClose();

Responds to a WM_CLOSE message by calling DefaultProcessing to let the
common dialog DLL process the command.

See also: TDialog::EvClose

SetupWindow void SetupWindow();
Assigns the caption of the dialog box to CDTitle if CDTitle is nonzero.
See also: TDialog::SetupWindow

Response table entries
Response table entry Member function
EV_COMMAND(IDCANCEL, CmOkCancel) CmOkCancel
EV_COMMAND(IDOK, CmOkCancel) CmOkCancel
EV_WM_CLOSE EvClose
EV_WM_CTLCOLOR EvCtiColor
TCondFunc type window.h

Defines a member function type used by TWindow’s function FirstThat.
typedef BOOL (*TCondFunc) (TWindow *win, void *param) ;
See also: TWindow::FirstThat

. Chapter 1, Library reference 83

TCondMemFunc typedef

TCondMemFunc typedef | window.h

Defines a member function type used by TWindow’s function FirstThat.
typedef BOOL (TWindow::TCondMemFunc) (*win, void *param);
See also: TWindow::FirstThat

TControl class control.h

TControl unifies its derived control classes, such as T'ScrollBar,
TControlGadget, and TButton. Control objects of derived classes are used to
represent control interface elements in Windows. A control object must be
used to create a control in a parent TWindow or a derived window. A
control object can be used to facilitate communication between your
application and the controls of a TDialog. TControl is a streamable class.

Public constructors

Constructor TControl (TWindow *parent, int Id, const char far *title, int x, int y,
int w, int h, TModule* module = 0);

Invokes TWindow’s constructor, passing it parent (parent window), title
(caption text), and module. Sets Attr using the supplied library ID (Id),
position (x, y) relative to the origin of the parent window’s client area,
width (w), and height (1) parameters. It sets Attr.Style to WS_CHILD |
WS_VISIBLE | WS_GROUP | WS_TABSTOP.

See also: TWindow:: T Window
Constructor TControl (TWindow *parent, int resourceld, TModule* module = 0);

Constructs an object to be associated with an interface control of a TDialog.
Invokes the TWindow constructor, and then enables the data transfer
mechanism by calling EnableTransfer.

The Resld parameter must correspond to a control interface resource that
you define.

See also: TWindow::TWindow, TWindow::EnableTransfer

Public member functions

Compareltem virtual int Compareltem (COMPAREITEMSTRUCT far &);

84 ObjectWindows 2.0 Reference Guide

Deleteltem

Drawltem

Measureltem

EvPaint

ODADrawEntire

ODAFocus

TControl class

Used in owner-draw combo boxes, Compareltem compares two items. The
derived class supplies the compare logic.

virtual void Deleteltem (DELETEITEMSTRUCT far &);

Deleteltem is used in owner-draw combo boxes. In such cases, the derived
class supplies the delete logic.

virtual void DrawItem(DRAWITEMSTRUCT far &drawInfo);

Drawltem responds to a message forwarded to a drawable control by
TWindow when the control needs to be drawn. TControl::Drawltem calls
ODADrawEntire if the entire control needs to be drawn, calls ODASelect if
the selection state of the control has changed, or calls ODAFocus if the focus
has been shifted to or from the control.

See also: TControl::ODADrawEntire, TControl::ODASelect,
TControl::ODAFocus, TWindow::EvDrawltem

virtual void MeasureItem (MEASUREITEMSTRUCT far &);

Used by owner-drawn controls to inform Windows of the dimensions of
the specified item. For list boxes and control boxes, this function applies to
specific items; for other owner-drawn controls, this function is used to
inform Windows of the total size of the control.

Protected member functions

void EvPaint();

If the control has a predefined Windows class, EvPaint calls
TWindow::DefaultProcesing for Windows-supplied painting. Otherwise, it
calls TWindow::EvPaint. '

See also: TWindow::DefaultProcesing, TWindow::EvPaint
virtual void ODADrawEntire (DRAWITEMSTRUCT far &drawlnfo);

Responds to a notification message sent to a drawable control when the
control needs to be drawn. ODADrawEntire can be redefined by a drawable
control to specify the manner in which it is to be drawn.

See also: TWindow::EvDrawltem, TControl::Drawltem
virtual void ODAFocus (DRAWITEMSTRUCT far &drawlInfo);

Responds to a notification sent to a drawable control when the focus has
shifted to or from the control. ODAFocus can be redefined by a drawable
control to specify the manner in which it is to be drawn when losing or
gaining the focus.

Chapter 1, Library reference , : ; 85

I Control class

ODASelect

See also: TWindow::EvDrawltem, TControl::Drawltem
virtual void ‘ODASelect(DRAWITEMSTRUCT far &drawInfo);

Responds to a notification sent to a drawable control when the selection
state of the control changes. By default, ODASelect calls Parent->Drawltem.
ODASelect can be redefined by a drawable control to specify the manner in
which it is drawn when its selection state changes.

See also: TWindow::EvDrawltem, Drawltem

Response table entries

‘Response table entry Member function

EV_WM_PAINT EvPaint

TControlBar class controlb.h

86

Derived from TGadget Window, TControlBar implements a control bar that
provides mnemonic access for its button gadgets. To construct, build, and
insert a control bar into a frame window, you can first define the following
response table: ‘

DEFINE_RESPONSE_TABLEL (TMDIFileApp, TApplication)
EV_COMMAND (CM_FILENEW, CmFileNew),
EV_COMMAND (CM_FTLEOPEN, CmFileOpen),
EV_COMMAND (CM_SAVESTATE, CmSaveState),
EV_COMMAND (CM_RESTORESTATE, CmRestoreState),
END_RESPONSE_TABLE;

Next, add statements that will construct a main window and load its menu,
accelerator table, and icon. Then, to construct, build and insert a control bar
into the frame window, insert these statements:

TControlBar* cb = new TControlBar(frame);

ch->Insert (*new TButtonGadget (CM_FILENEW, CM_FILENEW));
cb->Insert (*new TButtonGadget (CM_FILEOPEN, CM_FILEOPEN));
cb->Insert (*new TButtonGadget (CM_FILESAVE, CM_FILESAVE))
cb->Insert (*new TSeparatorGadget (6));

cb->Insert (*new TButtonGadget (CM_EDITCUT, CM_EDITCUT));
ch->Insert (*new TButtonGadget (CM_EDITCOPY, CM_EDITCOPRY));
cb->Insert (*new TButtonGadget (CM_EDITPASTE, CM_EDITPASTE));
cb->Insert (*new TSeparatorGadget (6)); A
cb->Insert (*new TButtonGadget (CM_EDITUNDO, CM_EDITUNDO));
frame->Insert (*cb, TDecoratedFrame::Top);)

’

ObjectWindows 2.0 Reference Guide

Cohstructor

PreProcessiMsg

PositionGadgét

TControlBar class

The sample MDIFILE.CPP ObjectWindows program on your dlstrlbutlon
disk displays the following control bar:

—
Button gadgets Control bar

Public constructors

TControlBar (TWindow* parent = 0, TTileDirection direction = Horizontal,
TFont* font = new TGadgetWindowFont, TModule* module = 0);

Constructs a TControlBar interface object with the specified direction (either
horizontal or vertical) and window font.

Public member functions

BOOL PreProcessMsg (MSG& msq) ;

Performs preprocessing of Windows messages. Because PreProcessMsg does -
not translate any accelerator keys for TControlBar, it returns FALSE.

Protected member functions

void PositionGadget (TGadget* previous, TGadget* next, TPointé& p);

Gets the border style, determines the direction of the gadget, and positions
the button gadget on either a horizontal or vertical border if any
overlapping is required.

TControlGadget class » ~ controlg.h

TControlGadget serves as a surrogate for TControl so that you can place
TControl objects such as edit controls, buttons, sliders, gauges, or VBX
controls, into a gadget window. If necessary, TControlGadget sets a parent
window and creates the control gadget. See TGadget for more information
about gadget objects.

Chapter 1, Library reference f 87

- TControlGadget class

Constructor

Destructor

Control

GetDesiredSize

GetinnerRect

Inserted

Invalidate

InvalidateRect

- Removed

88

Public constructors and destructor

TControlGadget(TWindow&‘ control, TBorderStyle = None);

Creates a TControlGadget object associated with the specified TControl
window.

~TControlGadget () ;

Destroys a TControlGadget object and removes it from the associated
window.

Protected data members

TWindow* Control;

Points to the control window that is managed by this TControlGadget.

Protected member functions

void GetDesiredSize(TSize& size);

Calls TGadget::GetDesiredSize and passes the size of the control gadget.
See also: TGadget::GetDesiredSize

void GetInnerRect (TRect&) ;

Computes the area of the control gadget’s rectangle eXcluding the borders
and margins.

void Inserted();

Called when the control gadget is inserted in'the parent window. Calls
:Show Window to display the window in its current size and position.

void Invalidate(BOOL erase = TRUE);

Used to invalidate the active (uSually nonborder) portion of the control
gadget, Invalidate calls InvalidateRect and passes the boundary width and
height of the area to erase.

void InvalidateRect {const TRect&, BOOL erase = TRUE);
Invalidates the control gadget rectangle in the parent window.
void Removed();

Called when the control gadget is removed from the parent window.

ObjectWindows 2.0 Reference Guide

SetBounds

Update

TControlGadget class

vold SetBounds (TRect& rect);

Calls TGadget::SetBounds and passes the dimensions of the control gadget’s
rectangle. SetBounds informs the control gadget of a change in its bounding
rectangle.

See also: TGadget::SetBounds
void Update();

Calls the Windows API function ::UpdateWindow to update the client area of
the specified window by sending a WM_PAINT message immediately.

Response table entries

The TControlGadget class has no response table entries.

TCreatedDC class ~ dc.h

Constructor

Constructor

Destructor

An abstract TDC class, TCreatedDC serves as the base for DCs that are
created and deleted. TCreatedDC does much of the work of creating and -
deleting HDCs using CreateDC and ::DeleteDC. See TDC for more
information about DC objects.

Public constructors and destructor

TCreatedDC(const char far* driver, const char far* device,
const char far* output, const DEVMODE far* initData=0);

Creates a DC object for the device specified by driver (driver name), device
(device name), and output (the name of the DOS file or device [port] for the
physical output medium). The optional initData argument provides a
DEVMODE structure containing device-specific initialization data for this
DC. initData must be 0 (the default) if the device is to use any default
initializations specified by the user via the Control Panel.

See also: ::CreateDC, ::ExtDeviceMode

- TCreatedDC (HDC handle, TAutoDelete autoDelete);

Creates a DC object using an existing DC.

- See also: enum TDC::T AutoDelete, TDC::ShouldDelete

~TCreatedDC();

Chapter 1, Library reference- : ; 89

TCreatedDC class

TCreatedDC

-Calls RestoreObjects and clears any nonzero OrgXXX data members. If

ShouldDelete is TRUE, the destructor deletes this DC via ::DeleteDC.
See also: TDC::ShouldDelete, ::DeleteDC, TDC::RestoreObjects

Protected member functions

TCreatedDC();
Creates a device context for the given device. DC objects can be constructed
either by borrowing an existing HDC handle or by supplying device and
driver information.
See also: ::CreateDC

TCursor class gdiobjec.h
TCursor, derived from TGdiobject, represents the GDI cursor object class.
TCursor constructors can create cursors from a resource or from explicit .
information. Because cursors are not real GDI objects, the TCursor
destructor overloads the base destructor, ~TGdiOject().
Public constructors and destructor

Constructor TCursor (HCURSOR handle, TAutoDelete autoDelete = NoAutoDelete);
Creates a TCursor object and sets the Handle data member to the given
borrowed handle. The ShouldDelete data member defaults to FALSE,
ensuring that the borrowed handle will not be deleted when the C++ object
is destroyed.
See also: TGdiObject::Handle, TGdiObject::ShouldDelete

Constructor TCursor (HINSTANCE instance, const TCUrsor& cursor);
Creates a copy of the given cursor object by calling the Win API function
CopyCursor(instance, cursor). -
See also: ::Copylcon, ::CopyCurSor

Constructor TCursor (KINSTANCE instance, TResID resID);
Constructs a cursor object from the specified resource ID.
See also: ::LoadCursor

90 ObjectWindows 2.0 Reference Guide

Constructor

Constructor

Constructor

Destructor

operator
HCURSOR()

Getlconinfo

TDC class

TCursor class

TCursor (HINSTANCE instance, const TPoint& hotSpot, const TSize& size,
void far* andBits, void far* xorBits);

Constructs a TCursor object of the specified size and at the specified point.
See also: ::CreateCursor, TPoint, TSize

TCursor (const void* resBits, DWORD resSize);

Constructs a TCursor object from the specified resource.

See also: ::CreatelconFromResource v

TCursor (const ICONINFO* iconlnfo);

Creates a TCursor object from the specified ICONINFO structure
information.

See also: ::Createlconlndirect
virtual ~TCursor(};
Destroys a TCursor object.

See also: ~TGdiObject

Public member functions

operator HCURSOR() const;

An inline typecasting operator. Converts this cursor’s Handle to type
HCURSOR (the Windows data type representing the handle to a cursor
resource).

inline BOOL GetIconInfo(ICONINFO* iconInfo) const;

Retrieves information about this icon and copies it in the given ICONINFO
structure. Returns TRUE if the call is successful; otherwise returns FALSE. .

See also: ::Getlconlnfo, struct ICONINFO ‘

dc.h

TDC is the root class for GDI DC wrappers. Each TDC object has a Handle
protected data member of type HDC (handle to DC). Win API functions
that take an HDC argument can therefore be called by a corresponding
TDC member function without this explicit handle argument.

Chapter 1, Library reference) g 91

TDC class

enum
TAutoDelete

Constructor

Constructor

92

DC objects can be created directly with TDC constructors, or via the
constructors of specialized subclasses (such as TWindowDC, TMemoryDC,
TMetaFileDC, TDibDC, and TPrintDC) to get specific behavior. DC objects
can be constructed with an already existing and borrowed HDC handle or
from scratch by supplying device/driver information as with ::CreateDC().
The class TCreateDC takes over much of the creation and deletion work
from TDC.

TDC has four handles as protected data members: OrgBrush, OrgPen,
OrgFont, and OrgPalette. These handles keep track of the stock GDI objects
selected into each DC. As new GDI objects are selected with SelectObject() or
SelectPalette(), these data members store the previous objects. The latter can
be restored individually with RestoreBrush, RestorePen(), and so on, or they
can all be restored with RestoreObjects(). When a TDC object is destroyed
(via ~TDC::TDC), all the originally selected objects are restored. The data
member TDC::ShouldDelete controls the deletion of the underlying
Windows DC.

Public data members

enum TAutoDelete{NoAutoDelete, AutoDeleté};

Flag for handle constructors to control GDI object deletion in the TDC
destructor.

See also: TDC::ShouldDelete, ~TDC

Public constructors and destructor

TDC (HDC handle, TAutoDelete autoDelete = NoAutoDelete);

Creates a DC object “borrowing” the handle of an existing DC. The Handle
data member is set to the given handle argument.

See also: enum TDC::TAutoDelete, TDC::ShouldDelete

TDC (const char far* driver, const char far* device,
const char far* output, const DEVMODE far* initData = 0);

Creates a DC object for the device specified by driver (driver name), device
(device name), and output (the name of the DOS file or device [port] for the
physical output medium). The optional initData argument provides a
DEVMODE structure containing device-specific initialization data for this
DC. initData must be 0 (the default) if the device is to use any default

‘initializations specified by the user via the Control Panel.

ObjectWindows 2.0 Reference Guide

Destructor

AngleArc

Arc

BeginPath

TDC class

See also: ::CreateDC, ::ExtDeviceMode, TCreatedDC
virtual ~TDC();

Calls RestoreObjects and clears any nonzero OrgXXX data members. If
ShouldDelete is TRUE, the destructor deletes this DC via ::DeleteDC.

‘ See also: TDC::ShouldDelete, ::DeleteDC, TDC::RestoreObjects

- Public member functions

inline BOOL AngleArc(int x, int y, DWORD radius, float startAngle,
float sweepAngle);

inline BOOL AngleArc(const TPoint& center, DWORD radius, float startaAngle,
float sweepAngle);

Draws a line segment and an arc on this DC using the currently selected
pen object. The line is drawn from the current position to the beginning of
the arc. The arc is that part of the circle (with the center at logical
coordinates (x, y) and positive radius, radius) starting at startAngle and
ending at (startAngle + sweepAngle). Both angles are measured in degrees,
counterclockwise (the default arc direction) from the x-axis. The arc might
appear to be elliptical, depending on the current transformation and
mapping mode. AngleArc returns TRUE if the figure is drawn successfully;
otherwise, it returns FALSE. If successful, the current position is moved to
the end point of the arc.

See also: ::AngleArc, TDC::Arc, ::Set ArcDirection

inline BOOL Arc(int x1, int yl, int x2, int y2, int x3, int y3, int x4,
int y4);
inline BOOL Arc(const TRect& r, const TPoint& start, const TPoint& end);

Draws an elliptical arc on this DC using the currently selected pen object.
The center of the arc is the center of the bounding rectangle, specified either
by (x1,y1)/(x2, y2) or by the rectangle r. The starting/ending points of the
arc are specified either by (x3, y3)/(x4, y4) or by the points start and end. All
points are specified in logical coordinates. Arc returns TRUE if the arc is
drawn successfully; otherwise, it returns FALSE. The current position is
neither used nor altered by this call. The drawing direction is set by
::SetArcDirection; the default is counterclockwise.

See also: ::Arc, ::SetArcDirection, TDC::AngleArc
inline BOOL BeginPath();

Opens a new path bracket for this DC and discards any previous paths
from this DC. Once a path bracket is open, an application can start calling

Chapter 1, Library reference o 93

TDC class

BitBIt

Chord

94

draw functions on this DC to define the points that lie within that path. The
draw functions that define points in a path are the following TDC
members: AngleArc, Arc, Chord, CloseFigure, Ellipse, ExtTextOut, LineTo,
MoveToEx, Pie, PolyBezier, PolyBezierTo, PolyDraw, Polygon, Polyline,
PolylineTo, PolyPolygon, PolyPolyline, Rectangle, RoundRect, and TextOut.

A path bracket can be closed by calling TDC::EndPath.

BeginPath returns TRUE if the call is successful; otherwise, it returns
FALSE.

See also: ::BeginPath, TDC::FillPath, TDC::EndPath,
TDC::PathToRegion, TDC::StrokePath, TDC::StrokeandFillPath,
TDC::WidenPath .

inline BOOL BitBlt(int dstX, int dstY, int w, int h, const TDC& srcDC,
int srcX, int srcY, DWORD rop);
inline BOOL BitBlt (const TRect& dst, const TDC& srcDC, const TPoint& src,
~ DWORD rop);

Performs a bit-block transfer from srcDc (the given source DC) to this DC
(the destination DC). Color bits are copied from a source rectangle to a
destination rectangle. The location of the source rectangle is specified either
by its upper left-corner logical coordinates (srcX, srcY), or by the TPoint
object, src. The destination rectangle can be specified either by its upper
left-corner logical coordinates (dstX, dstY), width w, and height 4, or by the
TRect object, dst. The destination rectangle has the same width and height
as the source. The rop argument specifies the raster operation used to
combine the color data for each pixel. See TDC::MaskBlt for a detailed list of
rop codes.

- When recording an enhanced metafile, an error occurs if the source DC

identifies the enhanced metafile DC.

If necessary, PlgBIt adjusts the source color formats to match those of the
destination. Before using PIgBlt, an application should call GetDeviceCaps to
determine if the source and destination DCs are compatible. If they are
incompatible, an error occurs.

See also: ::BitBlt

inline BOOL Chord{int x1, int y1, int x2, int y2, int x3, int y3, int x4,
int v4);

inline BOOL Chord(const TRect& R, const TPoint& Start, const TPoint& End);

Draws and fills a chord (a region bounded by the intersection of an ellipse
and a line segment) on this DC using the currently selected pen and brush
objects. The ellipse is specified by a bounding rectangle given either by (x1,
y1)/(x2,y2) or by the rectangle R. The starting/ending points of the chord

ObjectWindows 2.0 Reference Guide

CloseFigure

DPtoLP

DrawFocusRect

Drawlcon

TDC class

are specified either by (x3, y3)/ (x4, y4) or by the points Start and End. Chord
returns TRUE if the call is successful; otherwise, it returns FALSE. The
current position is neither used nor altered by this call.

See also: ::Chord, TDC::Arc
inline BOOL CloseFigure();

Closes an open figure in this DC’s open path bracket by drawing a line from
the current position to the first point of the figure (usually the point
specified by the most recent TDC::MoveTo call), and connecting the lines
using the current join style for this DC. If you close a figure with
TDC::LineTo instead of with CloseFigure, end caps (instead of a join) are
used to create the corner. The call fails if there is no open path bracket on
this DC. Any line or curve added to the path after a CloseFigure call starts a
new figure. A figure in a path remains open until it is explicitly closed with
CloseFigure even if its current position and start point happen to coincide.

CloseFigure returns TRUE if the call is successful; otherwise, it returns
FALSE. -

See also: ::CloseFigure, TDC::BeginPath, TDC::EndPath
inline BOOL DPtoLP(TPoint* points, int count = 1) const;

Converts each of the count points in the points array from device points to
logical points. The conversion depends on this DC’s current mapping mode
and the settings of its window and viewport origins and extents. DPtoLP
returns TRUE if the call is successful; otherwise, it returns FALSE.

See also: TDC::LPtoDP, ::DPtoLP

inline BOOL DrawFocusRect (int x1, int x2, int yl, int y2);
inline BOOL DrawFocusRect (const TRect& rect);

Draws the given rectangle on this DC in the style used to indicate focus.
Calling the function a second time with the same rect argument will
remove the rectangle from the display. A rectangle drawn with
DrawFocusRect cannot be scolled. DrawFocusRect returns TRUE if the call is
successful; otherwise, it returns FALSE. .

See also: ::DrawFocusRect

inline BOOL DrawIcon{int X, int y, const TIcon& icon);

inline BOOL DrawIcon(const TPoints point, const TIcon& icon);

Draws the given icon on this DC. The upper left corner of the drawn icon
can be specified by x- and y-coordinates or by the point argument. Drawlcon
returns TRUE if the call is successful; otherwise, it returns FALSE.

See also: ::Drawlcon

Chapter 1, Library reference ' ‘ 95

‘ TDC class

DrawText

.96

inline virtual BOOL DrawText (const char far* string, int count,

const TRect& r, WORD format = 0);

Formats and draws in the given rectangle, 7, up to count characters of the
null-terminated string using the current font for this DC. If count is -1, the
whole string is written. The rectangle must be specified in logical units.
Formatting is controlled with the format argument, Wthh can be various
combinations of the following values:

Value

Meaning

DT_BOTTOM

DT_CALCRECT

DT_CENTER
DT_EXPANDTABS

DT_EXTERNALLEADING

DT_LEFT
DT_NOCLIP

DT_NOPREFIX

DT_RIGHT
DT_SINGLELINE

DT_TABSTOP.

DT_TOP
DT_VCENTER

Specifies bottom-justified text. This value must be combined (bitwise
OR'd) with DT_SINGLELINE.

Determines the width and height of the rectangle. If there are multiple
lines of text, DrawText uses the width of r (the rectangle argument)
and extends the base of the rectangle to bound the last line of text. If
there is only one line of text, DrawText uses a modified value for the -
right side of rso that it bounds the last character in the line. In both
cases, DrawText returns the height of the formatted text but does not
draw the text.

Centers text horizontally.

Expands tab characters. The default number of characters per tab is
eight. ;

Includes the font external leading in line height. Normally, external

- leading is not included in the height of a line of text.

Aligns text flush-left.

Draws without clipping. DrawText is somewhat faster when
DT_NOCLIP is used.

Tums off processing of prefix characters. Normally, DrawText
interprets the prefix character & as a directive to underscore the
character that follows, and the prefix characters && as a directive to

-print a single &. By specifying DT. NOPREFIX this processing is

turned off.
Aligns text flush-right.

Specifies single line only. Carriage returns and linefeeds do not break -
the line.

Sets tab stops. Bits 15-8 (the high-order byte of the low-order word)
of the format argument are the number of characters for each tab.
The default number of characters per tab is eight.

Specifies top-justified text (single line only).
Specifies vertically centered text (single line only).

ObjectWindows 2.0 Reference Guide

- Ellipse

EndPath

EnumFontFamilies

TDC class

DT_WORDBREAK Specifies word breaking. Lines are automatically broken between
words if a word would extend past the edge of the rectangle specified
by r. A carriage return/line sequence will also break the line.

Note that the DT _CALCRECT, DT_EXTERNALLEADING,
DT_INTERNAL, DT_NOCLIP, and DT _NOPREFIX values cannot be used
with the DT_TABSTOP value.

DrawText uses this DC’s currently selected font, text color, and background
color to draw the text. Unless the DT_NOCLIP format is used, DrawText
clips the text so that it does not appear outside the given rectangle. All
formatting is assumed to have multiple lines unless the DT_SINGLELINE
format is given.

1If the selected font is too large for the specified rectangle, DrawText does

not attempt to substitute a smaller font.
If successful, DrawText returns the height of the text; otherwise, it returns 0.
See also: ::DrawText, TDC::GrayString, TDC::TabbedTextOut, TDC::TextOut

inline BOOL Ellipse(int xI, int yl1, int x2, int.y2);

inline BOOL Ellipse(const TPoint& pl, const TPoint& p2);
inline BOOL Ellipse(const TPoint& point, const TSize& size);
inline BOOL Ellipse(const TRect& rect);

Draws and fills an ellipse on this DC using the currently selected pen and
brush objects. The center of the ellipse is the center of the bounding
rectangle specified either by (x1, y1)/(x2, y2) or by the rect argument. Ellipse
returns TRUE if the call is successful; otherwise, it returns FALSE. The
current position is neither used nor altered by this call.

See also: ::Ellipse, TDC::Arc
inline BOOL EndPath();

Closes the path bracket and selects the path it defines into this DC.
Returns TRUE if the call is successful; otherwise, returns FALSE.

See also: ::EndPath, TDC::BeginPath, TDC:: ClosePzgure

inline int EnumFontFamllles(const char far* family, FONTENUMPROC proc,
void* data) const;

Enumerates the fonts available to this DC in the font family specified by
family. The given application-defined callback proc (created with
::MakeProcInstance) is called for each font in the family or until proc returns
0. data lets you pass both application-specific data and font data to proc. If
successful, the call returns the last value returned by proc.

See also: ::EnumFontFamilies, ::EnumFontFamProc

Chapter 1, Library reference . 97

TDC class

EnumFonts

EnumMetaFile

EnumObijects

ExcludeClipRect

98

inline int EnumFonts(const char far* faceName, ‘OLDFONTENUMPROC callback,
void* data) const;

Enumerates the fonts available on this DC for the given faceName. The font
type, LOGFONT, and TEXTMETRIC data retrieved for each available font
is passed to the user-defined callback function together with any optional,
user-supplied data placed in the data buffer. The callback function can
process this data in any way desired. Enumeration continues until there are
no more fonts or until callback returns 0. If faceName is 0, EnumFonts
randomly selects and enumerates one font of each available typeface.
EnumFonts returns the last value returned by callback(). Note that
OLDFONTENUMPROC is defined as FONTENUMPROC for Win32 only.
FONTENUMPROC is a pointer to a user-defined function; it has the
following prototype:

int CALLBACK EnumFontsProc (LOGFONT *1plf, TEXTMETRIC *1ptm, DWORD dwType, LPARAM
lpData); '

where dwType specifies the font type: DEVICE_FONTTYPE,
RASTER_FONTTYPE, or TRUETYPE_FONTTYPE.

See also: ::EnumFonts, ::EnumFontsProc, TDC::EnumFontFamilies

inline int EnumMeétaFile(const TMetaFilePicté& metaFile,
MFENUMPROC callback, void* data) const;

Enumerates the GDI calls within the given metaFile. Each such call is
retrieved and passed to the given callback function, together with any client
data from data, until all calls have been processed or a callback function
returns 0. ‘

See also: ::EnumMetaFile, TDC::PlayMetaFile

int EnumObjects() const;

Enumerates the pen or brush objects available for this DC.
inline int ExcludeClipRect (const TRect& rect);

Creates a new clipping region for this DC. This new region consists of the
current clipping region minus the given rectangle, rect. The return value
indicates the new clipping region’s type as follows:

Region ' Meaning

COMPLEXREGION Clipping Region has overlapping borders.
ERROR Invalid DC. .

NULLREGION Clipping region is empty.

SIMPLEREGION Clipping region has no overlapping borders.

ObjectWindows 2.0 Reference Guide

ExcludeUpdateRgn

ExtFloodFill

ExtTextOut

TDC class

See also: ::ExcludeClipRect, TDC::GetClipBox
inline int ExcludeUpdateRgn (HWND iwnd);

Prevents drawing within invalid areas of a window by excluding an
updated region of this DC’s window from its clipping region. The return
value indicates the resulting clipping region’s type as follows:

Region Meaning

COMPLEXREGION Clipping Region has overlapping borders.
ERROR Invalid DC.

NULLREGION Clipping region is empty.

SIMPLEREGION Clipping region has no overlapping borders.

See also: TDC::IntersectClipRect, :ExcludeUpdateRgn, TDC::GetClipBox

inline BOOL ExtFloodFill({const TPoint& point, TColor color,
WORD £illType);

Fills an area on this DC starting at point and using the currently selected
brush object. The color argument specifies the color of the boundary or of
the region to be filled. The fillType argument specifies the type of fill, as
follows:

FLOODFILLBORDER The fill region is bounded by the given color. This style coincides with
the filing method used by FloodFill().

FLOODFILLSURFACE The fill region is defined by the given color. Filling continues outward
in all directions as long as this color is encountered. Use this style
when filling regions with multicolored borders.

Not every device supports ExtFloodFill, so appliéations should test first with
TDC::GetDeviceCaps.

ExtFloodFill returns TRUE if the call is successful; otherwise, it returns
FALSE.

See also: TDC::FloodFill, ::ExtFloodFill, TDC::GetDeviceCaps

inline virtual BOOL ExtTextOut(int X, int y, WORD options, const TRect* r,
const char far* string, int count,
const int* dx = 0);
inline BOOL ExtTextOut(const TPoint& p, WORD options, const TRect* r,
const char far* string, int count,
const int* dx = 0);

- Draws up to count characters of the given null-terminated string in the

current font on this DC. If count is -1, the whole string is written.

Chapter 1 , Library reference 99

TDC class

FillPath

FillRect

FillRgn

100

An optional rectangle r can be specified for clipping, opaquing, or both, as
determined by the options value. If options is set to ETO_CLIPPED, the
rectangle is used for clipping the drawn text. If options is set to
ETO_OPAQUE, the current background color is used to fill the rectangle.
Both options can be used if ETO_CLIPPED is OR’d with ETO_OPAQUE.

The (x, y) or p arguments specify the logical coordinates of the reference
point that is used to align the first character. The current text-alignment
mode can be inspected with TDC::GetTextAlign and changed with
TDC::SetTextAlign. By default, the current position is neither used nor
altered by ExtTextOut. However, if the align mode is set to
TA_UPDATECP, ExtTextOut ignores the reference point argument(s) and
uses or updates the current position as the reference point.

The dx argument is an optional array of values used to set the distances
between the origins (upper left corners) of adjacent character cells. For
example, dx[i] represents the number of logical units separating the origins
of character cells i and i+1. If dx is 0, ExtTextOut uses the default inter-
character spacings.

ExtTextOut returns TRUE if the call is successful; otherwise, it returns
FALSE.

See also: TDC::TextOut, TDC::GetTextAlign, TDC::TabbedTextOut,
:ExtTextOut

inline BOOL FillPath();

Closes any open figures in the current path of this DC and fills the path’s
interior using the current brush and polygon fill mode. After filling the
interior, FillPath discards the path from this DC.

FillPath returns TRUE if the call is successful; otherwise, it returns FALSE.

See also: :FillPath, TDC::BeginPath, TDC::CloseFigure, TDC::StrokePath,
TDC::StrokeAndFillPath, TDC::SetPolyFillMode

inline BOOL FillRect (int x1, int x2, int yl, int y2, const TBrush& brush);
inline BOOL FillRect (const TRecté& rect, const TBrushé& brush);

Fills the given rectangle on this DC using the specified brush. The fill
covers the left and top borders but excludes the right and bottom borders.
FillRect returns TRUE if the call is successful; otherwise, it returns FALSE.

See also: ::FillRect
inline BOOL FillRgn(const TRegion& region, const TBrush& brush);

Fills the given region on this DC using the specified brush. FillRgn returns

_ TRUE if the call is successful; otherwise, it returns FALSE.

ObjectWindows 2.0 Reference Guide

FlattenPath

FloodFill

FrameRect

FrameRgn

GetAspectRatioFilter

GetBkColor

GetBkMode

TDC class

See also: TDC::InvertRgn, TDC::PaintRgn, ::FillRgn
inline BOOL FlattenPath{();

Transforms any curves in the currently selected path of this DC. All such
curves are changed to sequences of linear segments. Returns TRUE if the
call is successful; otherwise returns FALSE.

See also: ::FlattenPath, TDC::WidenPath, TDC::BeginPath
inline BOOL FloodFill(const TPointé& point, TColor color);

Fills an area on this DC starting at point and using the currently selected
brush object. The color argument specifies the color of the boundary or of
the area to be filled. Returns TRUE if the call is successful; otherwise,
returns FALSE. FloodFill is maintained in the WIN32 API for compatibility
with earlier APIs. New WIN32 applications should use TDC::ExtFloodFill().

See also: TDC::ExtFloodFill, ::FloodFill

inline BOOL FrameRect (int x1, int x2, int y1, int y2,
const TBrush& brush);)
‘inline BOOL FrameRect (const TRect& rect, const TBrush& brush);

Draws a border on this DC around the given rectangle using the given
brush. The height and width of the border is one logical unit. Returns
TRUE if the call is successful; otherwise returns FALSE.

See also: ::FrameRect

inline BOOL FrameRgn(const TRegioﬁ& region, const TBrush& brush,
const TPointé& p);

Draws a border on this DC around the given region, region, using the given
brush, brush. The width and height of the border is specified by the p
argument. Returns TRUE if the call is successful; otherwise, returns FALSE.

See also: ::FrameRgn

inline BOOL GetAspectRatioFilter (TSize& size) const;

Retrieves the setting of the current aspect-ratio filter for this DC.
See also: ::GetAspectRatioFilter, ::SetMapperFlags

inline TColor GetBkColor() tonst;

Returns the current background color of this DC.

See also: . TDC::SetBkColor, ::GetBkColor

inline int GetBkMode() const;

Chapter 1, Library reference ‘ ‘ ' 101

- TDC class

GetBoundsRect

‘GetBrushOrg

GetCharABCWidths

GetCharWidth

102

Returns the background mode of this DC, either'OPAQUE or
TRANSPARENT.

See also: TDC::SetBkMode, ::GetBkMode

inline BOOL GetBoundsRect (TRect& bounds, WORD flags) const;

‘Reports in bounds the current accumulated bounding rectangle of this DC

or of the Windows manager, depending on the value of flags. Returns TRUE
if the call is successful; otherwise returns FALSE.

The flags argument can be DCB_RESET or DCB_WINDOWMGR or both.
The flags value work as follows:

DCB_RESET Forces the bounding rectangle to be cleared after being set in bounds.
DCB_WINDOWMGR Reports the Windows current bounding rectangle rather than that of this
DC.

There are two bounding-rectangle accumulations, one for Windows and
one for the application. GetBoundsRect returns screen coordinates for the
Windows bounds, and logical units for the application bounds. The
Windows accumulated bounds can be queried by an application but not
altered. The application can both query and alter the DC’s accumulated
bounds.

See also: TDC::SetBoundsRect, ::GetBoundsRect
inline BOOL GetBrushOr\g(TPoint& point) const;

Places in point the current brush origin of this DC. Returns TRUE if
successful; otherwise returns FALSE.

See also: TDC::SetBrushOrgEx
inline BOOL GetCharABCWidths(UINT firstChar, UINT lastChar, ABC* abc);

Retrieves the widths of consecutive characters in the range firstChar to
lastChar from the current TrueType font of this DC. The widths are reported
in the array abc of ABC structures. Returns TRUE if the call is successful;
otherwise returns FALSE.

See also: ::GetCharABCWidths, ABC struct, TDC::GetCharWidth
inline BOOL GetCharWidth(UINT firstChar, UINT lastChar, int* buffer);

Retrieves the widths in logical units for a consecutive sequence of

‘characters in the current font for this DC. The sequence is specified by the

inclusive range, firstChar to lastChar, and the widths are copied to the given
buffer. If a character in the range is not represented in the current font, the

' ObjectWindows 2.0 Reference Guide

GetClipBox

GetClipRgn

GetCurrentObject

GetCurrentPosition

GetDCOrg

TDC class

width of the default character is assigned. Returns TRUE if the call is
successful; otherwise returns FALSE

See also: ::GetCharWidth, TDC::GetChar ABCWidths

inline int GetClipBox(TRect& rect) const;
inline TRect GetClipBox() const;

Places the current clip box size of this DC in rect. The clip box is defined as
the smallest rectangle bounding the current clipping boundary. The return
value indicates the clipping region’s type as follows:

Region - Meaning

COMPLEXREGION Clipping Region has overlapping borders.
ERROR Invalid DC.

NULLREGION Clipping region is empty.

SIMPLEREGION Clipping region has no overlapping borders.

See also: ::GetClipBox, TDC::ExcludeClipRect

inline BOOL GetClipRgn(TRegion& region) const;

- Retrieves this DC’s current clip-region and, if successful, places a copy of it

in the region argument. You can alter this copy without affecting the current
clip-region. Returns TRUE if the call is successful; otherw1se returns
FALSE.

See also: ::GetClipRgn-
inline HANDLE GetCurrentObject (UINT objectType) const;

Returns a handle to the currently selected object of the given objectType
associated with this DC. Returns 0 if the call fails. objectType can be
OBJ_PEN, OB]_BRUSH, OBJ_PAL, OBJ_FONT, or OBJ_BITMAP.

See also: ::GetObject, ::SelectObject
inline BOOL GetCurrentPosition(TPoint& point) const;

Reports in point the logical coordinates of this DC’s current position.
Returns TRUE if the call is successful; otherwise returns FALSE.

See also: ::GetCurrentPosition
inline BOOL GetDCOrg(TPoint& point) const;

Obtains the final translation origin for this device context and places the
value in point. This value specifies the offset used to translate device
coordinates to client coordinates for points in an application window.
Returns TRUE if the call is successful; otherwise returns FALSE.

Chapter 1, Library reference / ' g 103

TDC class

GetDeviceCaps

GetDIBits

GetFontData

104

See also: ::GetDCOrg
inline virtual int GetDeviceCaps (int index) const;

Used under WINB.1 or later, GetDeviceCaps returns capability information
about this DC. The index argument specifies the type of information
required.

See also: ::GetDeviceCaps

inline BOOL GetDIBits(const TBitmap& bitmap, WORD startScan,
WORD numScans, void HUGE* bits,
const BITMAPINFO far& info, WORD usage);
inline BOOL GetDIBits(const TBitmap& bitmap, TDib& dib);

The first version retrieves some or all of the bits from the given bitmap on
this DC and copies them to the bits buffer using the DIB (device-
independent bitmap) format specified by the BITMAPINFO argument, info.
numScan scanlines of the bitmap are retrieved, starting at scanline startScan.
The usage argument determines the format of the bmiColors member of the
BITMAPINFO structure, according to the following table:

Value Meaning

DIB_PAL_COLORS The color table is an array of 16-bit indices into the current logical
palette.

DIB_RGB_COLORS The color table contains literal RGB values.

DIB_PAL_INDICES There is no color table for this bitmap. The DIB bits consist of indices

into the system palette. No color translation occurs. Only the
BITMAPINFOHEADER portion of BITMAPINO is filled in.

In the second version of GetDIBits, the bits are retrieved from bitmap and
placed in the dib.Bits data member of the given TDib argument. The
BITMAPINFO argument is supplied from dib.info.

GetDIBits returns TRUE if the call is successful; otherwise, it returns FALSE.
See also: TDC::SetDIBits, ::GetDIBits, TDib::info

inline DWORD GetFontData (DWORD table, DWORD offset, void* buffer,
long data);

Retrieves font-metric information from a scalable TrueType font file
(specified by table and starting at offset into this table) and places it in the
given buffer. data specifies the size in bytes of the data to be retrieved. If the
call is successful, it returns the number of bytes set in buffer; otherwise, ~1 is
returned. '

See also: ::GetFontData

ObjectWindows 2.0 Reference Guide

GetKerningPairs

GetMapMode

TDC class

inline int GetKerningPairs(int palrs, KERNINGPAIR far* krnPair);

Retrieves up to pairs of the kerning pairs for the current font of this DC and
copies them into the krnPair array of KERINGPAIR structures. If successful,
the function returns the actual number of pairs retrieved. If the font has
more than pairs kerning pairs, the call fails and returns 0. The krnPair array
must allow for at least pairs KERNINGPAIRS structures. If krnPair is set to
0, GetKerningPairs returns the total number of kerning pairs for the current
font. ' '

See also: ::GetKerningPairs, KERNINGPAIR struct
inline int GetMapMode() const;

If successful, GetMapMode returns the current window mapping mode of
this DC; otherwise, it returns 0. The mapping mode defines how logical
coordinates are mapped to device coordinates. It also controls the
orientation of the device’s x- and y-axes. The mode values are shown in the
following table:

Value Meaning

MM_ANISOTROPIC Logical units are mapped to arbitrary units with arbitrarily scaled
axes. The SetWiridowExtEx and SetViewportExtEx functions must be
used to specify the desired units, orientation, and scaling.

MM_HIENGLISH Each logical unit is mapped to 0.001 inch. Positive x is to the right;
positive yis at the top.

MM_HIMETRIC Each logical unit is mapped to 0.01 millimeter. Positive x is to the
: right; positive y is at the top.

MM_ISOTROPIC Logical units are mapped to arbitrary units with equally scaled axes;
that is, one unit along the x-axis is equal to one unit along the y-axis.
The SetWindowExtEx and SetViewportExtEx functions must be used
to specify the desired units and the orientation of the axes. GDI
makes adjustments as necessary to ensure that the x and y units
remain the same size (e.g., if you set the window extent, the viewport
is adjusted to keep the units isotropic).

MM_LOENGLISH Each logical unit is mapped to 0.01 inch. Positive x is to the right;
: positive y is at the top.

MM_LOMETRIC Each logical unit is mapped to 0.1 millimeter. Positive xis to the right;
positive yis at the top.

MM_TEXT Each logical unit is mapped to one device pixel. Positive xis to the
right; positive y is at the bottom.

MM_TWIPS Each logical unit is mapped to one twentieth of a printer’s point
(1/1440 inch). Positive xis to the right; positive yis at the top.

Chapter 1, Library reference . : 105

TDC class

GétNearestCoIor

See also: TDC::SetMapMode, ::GetMapMode
inline TColor GetNearestColor(TColor Color) const;

Returns the nearest color to the given Color argument for the current
palette of this DC. :

See also: ::GetNearestColor

GetOutlineTextMetrics inline DWORD GetOutlineTextMetrics (UINT data,

GetPixel

GetPolyFillMode

GetROP2()

GetStretchBltMode

106

OUTLINETEXTMETRIC far& otm);
inline WORD GetOutlineTextMetrics (UINT data,
OUTLINETEXTMETRIC far& otm);

Retrieves metric information for TrueType fonts on this DC and copies it to
the given array of OUTLINETEXTMETRIC structures, otm. This structure
contains a TEXTMETRIC and several other metric members, as well as four
string-pointer members for holding family, face, style, and full font names.
Since memory must be allocated for these variable-length strings in
addition to the font metric data, you must pass (via the data argument) the
total number of bytes required for the retrieved data. If
GetOutlineTextMetrics is called with otm = 0, the function returns the total
buffer size required. You can then assign this value to data in subsequent
calls.

The WIN32 version returns a DWORD value.

Returns nonzero if the call is successful; otherwise, returns 0.

See also: ::GetOutlineTextMetrics, OUTLINETEXTMETRICS struct,
TCD::GetTextMetrics

inline TColor GetPixel(int x, int y) const; -
inline TColor GetPixel (const TPoint& point) const;

Returns the color of the pixel at the given location.
See also: TDC::SetPixel, ::GetPixel ‘
inline int GetPolyFillMode() const;

Returns the currentk’polygon-ﬁlling mode for this DC, either ALTERNATE
or WINDING.

See also: TDC::SetPolyFillMode, ::GeiPolyFillMode

inline int GetROP2() const; ’

Returns the current drawing (raster operation) mode of this DC.
See also: TDC::SetROP2(), ::GetROP2

inline int GetStretchBltMode() const;

ObjectWindows 2.0 Reference Guide

TDC class

Returns the current stretching mode for this DC: BLACKONWHITE,
COLORONCOLOR, or WHITEONBLACK. The stretching mode
determines how bitmaps are stretched or compressed by the StretchBlt
function.

See also: TDC::SetStretchBltMode, ;:GetStretchBltMode, TDC::StretchBlt

GetSystemPaletteEntries inline UINT GetSystemPaletteEntries (int start, int num,
PALETTEENTRY far* entries) const;

Retrieves a range of up to num palette entries, starting at start, from the
system palette to the entries array of PALETTEENTRY structures. Returns
the actual number of entries transferred.

See also: ::GetSystemPaletteEntries
GetSystemPaletteUse inline UINT GetSystemPaletteUse() const;

Determines whether this DC has access to the full system palette. Returns
SYSPAL_NOSTATIC or SYSPAL_STATIC.

See also: TDC::SetSystemPaletteUse, ::GetSystemPaletteUse

GetTabbedTextExtent in1ine BOOL GetTabbedTextExtent (const char far* string, int stringlen,
int numPositions, const int* positions,
TSize& size) const;
inline TSize GetTabbedTextExtent (const char far* string, int stringLen,
int numPositions,
const int* positions) const;

Computes the extent (width and height) in logical units of the text line
consisting of stringLen characters from the null-terminated string. The
extent is calculated from the metrics of the current font or this DC, but
ignores the current clipping region. In the first version of
GetTabbedTextExtent, the extent is returned in size; in the second version, the
extent is the returned TSize object. Width is size.x and width is size.y .

The width calculation includes the spaces implied by any tab codes in the
string. Such tab codes are interpreted using the numPositions and positions
arguments. The positions array specifies numPositions tab stops given in
device units. The tab stops must have strictly increasing values in the array.
If numPositions and positions are both 0, tabs are expanded to eight times the
average character width. If numPositions is 1, all tab stops are taken to be
positions[0] apart.

If kerning is being applied, the sum of the extents of the characters in a
string might not equal the extent of the string.

See also: ::GetTabbedTextExtent, TDC::TabbedTextOut, TDC::GetTextExtent

Chapter 1, Library reference 107

TDC class

GetTextAlign

108

inline UINT GetTextAlign() const;

If successful, GetTextAlign returns the current text-alignment flags for this
DC; otherwise, it returns the value GDI_ERROR. The text-alignment flags
determine how TDC::TextOut() and TDC::ExtTextOut align text strings in
relation to the first character’s screen position. GetTextAlign returns certain
combinations of the flags listed in the following table:

Value Meaning

TA_BASELINE The reference point will be on the baseline of the text.

TA_BOTTOM The reference point will be on the bottom edge of the bounding
rectangle.

TA_TOP The reference point will be on the top edge of the bounding rectangle.

TA_CENTER The reference point will be aligned horizontally with the center of the
bounding rectangle.

TA_LEFT The reference point will be on the left edge of the bounding rectangle.

TA_RIGHT The reference point will be on the right edge of the boﬁnding rectangle.

TA_NOUPDATECP The current position is not updated after each text output call.

TA_UPDATECP The current position is updated after each text output call.

When the current font has a vertical default baseline (as with Kaniji) the
following values replace TA_BASELINE and TA_CENTER:

VTA_BASELINE . The reference point will be on the baseline of
- the text.
VTA_CENTER The reference point will be aligned vertically

with the center of the bounding rectangle.

The text-alignment flags are not necessarily single bit-flags and might be
equal to 0. The flags must be examined in groups of the following related
flags:

m TA_LEFT, TA_RIGHT, and TA_CENTER

m TA_BOTTOM, TA_TOP, and TA_BASELINE

m TA_NOUPDATECP and TA_UPDATECP

If the current font has a vertical default baseline (as with Kanji), these are
groups of related flags: :

m TA_LEFT, TA_RIGHT, and VTA_BASELINE

m TA_BOTTOM, TA_TOP, and VTA_CENTER

m TA_NOUPDATECP and TA_UPDATECP

ObjectWindows 2.0 Reference Guide

GetTextColor

GetTextExtent

; GetTextFace

TDC class

To verify that a particular flag is set in the return value of this function, the
application must perform the following steps:

1. Apply the bitwise OR operator to the flag and its related flags.
2. Apply the bitwise AND operator to the result and the return value.
3. Test for the equality of this result and the flag.

The following example shows a method for determining which horizontal
alignment flag is set:

switch ((TA_LEFT | TA_RIGHT | TA_CENTER) & dc.GetTextAlign()) {
case TA_LEFT:

case TA_RIGHT:
case TA_CENTER:

}

See also: TDC::SetTextAlign, ::GetTextAlign, TDC::TextOut,
TDC::ExtTextOut

inline TColor GetTextColor() const;

Returns the current text color of this DC. The text color determines the
color displayed by TDC::TextOut() and TDC::ExtTextOut().

See also: TDC::SetTextColor, ::GetTextColor, TDC::TextOut, TDC::ExtTextOut

inline BOOL GetTextExtent (const char far* string, int stringLen,
TSize& size);
inline TSize GetTextExtent (const char far* string, int stringLen);

Computes the extent (width and height) in logical units of the text line
consisting of stringLen characters from the null-terminated string. The
extent is calculated from the metrics of the current font or this DC, but
ignores the current clipping region. In the first version of GetTextExtent the
extent is returned in size; in the second version, the extent is the returned
TSize object. Width is size.x and width is size.y.

If kerning is being applied, the sum of the extents of the characters in a
string might not equal the extent of the string.

GetTextExtent is not supported under WIN32. WIN32 applications should
use TDC::GetTextExtentPoint.

See also: ::GetTextExtent, TDC::GetTextExtentPoint

inline int GetTextFace(int count, char far* facename) const;

Chapter 1, Library reference v 109

TDC class

GetTextMetrics

GetViewportExt

110

Retrieves the typeface name for the current font on this DC. Up to count
characters of this name are copied to facename. If successful, GetTextFace
returns the number of characters actually copied; otherwise, it returns 0.

See also: ::GetTextFace, TDC::GetTextAlign, TDC::GetTextMetrics
inline BOOL GetTextMetrics (TEXTMETRIC far& metrics) const;

Fills the metrics structure with metrics data for the current font on this DC.
Returns TRUE if the call is successful; otherwise, returns FALSE.

See also: ::GetTextMetrics, TEXTMETRIC struct

DWORD GetGlyphOutline(UINT chr, UINT format, GLYPHMETRICS far& gm,
DWORD buffSize, void far* buffer,
const MATZ2 far& mat2);

Retrieves TrueType metric and other data for the given character, chr, on
this DC and places it in gm and buffer. The format argument specifies the
format of the retrieved data as follows:

Value Meaning
1 Retrieves the glyph bitmap.
2 Retrieves the curve data points in the rasterizer's native format and uses the font’s

design units. With this value of format, the mat2 transformation argument is ignored.

The gm argument specifies the GLYPHMETRICS structure that describes
the placement of the glyph in the character cell. buffSize specifies the size of
buffer that receives data about the outline character. If either buffSize or
buffer are 0, GetGlyphOutline returns the required buffer size. Applications
can rotate characters retrieved in bitmap format (format = 1) by specifying a
2 x 2 transformation matrix via the mat2 argument.

GetGlyphOutline returns a positive number if the call is successful;
otherwise, it returns GDI_ERROR.

See also: ::GetGlyphOutline, GLYPHMETRICS struct,
TDC::GetOutlineTextMetrics

inline BOOL GetViewportExt (TSize& extent) const;
inline TSize GetViewportExt () const;

The first version retrieves this DC’s current viewports x- and y-extents (in
device units) and places the values in extent. This version returns TRUE if
the call is successful; otherwise, it returns FALSE. The second version
returns only these x- and y-extents. ~

The extent value determines the amount of stretching or compression
needed in the logical coordinate system to fit the device coordinate system.

ObjectWindows 2.0 Reference Guide

GetViewportOrg

GetWindowExt

GetWindowOrg

GrayString

TDC class

extent also determines the relative orientation of the two coordinate
systems.

See also: TDC::SetViewportExt, ::GetViewportExt

inline BOOL GetViewportOrg(TPointé& point) const;
inline TPoint GetViewportOrg() const;

The first version sets in the point argument the x- and y-extents (in device-
units) of this DC’s viewport. It returns TRUE if the call is successful;
otherwise, it returns FALSE. The second version returns the x- and y-
extents (in device-units) of this DC'’s viewport.

See also: TDC::SetViewportOrg, TDC::OffsetViewportOrg, ::GetViewportOrg

inline BOOL GetWindowExt (TSize& extent) const; ‘
inline TSize GetWindowExt () const;

Retrieves this DC’s window current x- and y-extents (in device units). The
first version places the values in extent and returns TRUE if the call is
successful; otherwise, it returns FALSE. The second version returns the
current extent values. The extent value determines the amount of stretching
or compression needed in the logical coordinate system to fit the device
coordinate system. extent also determines the relative orientation of the two -
coordinate systems.

See also: TDC::Set WindowExt, ::Get WindowExt

inline BOOL GetWindowOrg (TPoint& point) const;
inline TPoint GetWindowOrg() const;

Places in point the x- and y-coordinates of the origin of the window
associated with this DC. Returns TRUE if the call is successful; otherwise
returns FALSE.

See also: TDC::SetWindowOrg, TDC::Offset WindowOrg, ::Get WindowOrg

inline virtual BOOL GrayString({const TBrush& brush,
GRAYSTRINGPROC outputFunc,
const char far* string, int count,
const TRect& r);

Draws in the given rectangle (r) up to count characters of gray text from
string using the given brush and the current font for this DC. If count is -1
and string is null-terminated, the whole string is written. The rectangle
must be specified in logical units. If brush is 0, the text is grayed with the
same brush used to draw window text on this DC. Gray text is primarily
used to indicate disabled commands and menu items.

Chapter 1, Library reference , : 11

TDC class

IntersectClipRect

InvertRect

“InvertRgn

112

GrayString writes the selected text to a memory bitmap, grays the bitmap,
then displays the result. The graying is performed regardless of the current
brush and background color.

The outputFunc pointer-to-function can specify the procedure-instance of an
application-supplied drawing function. If outputFunc is 0, GrayString uses
TextOut and string is assumed to be a normal, null-terminated character
string. If string cannot be handled by TextOut (for example, if the string is
stored as a bitmap), you must provide a suitable drawing function via
outputFunc.

If the device supports a solid gray color, it is possible to draw gray strings
directly without using GraySring. Call GetSysColor to find the color value;
for example, G of COLOR_GRAYTEXT. If G is nonzero (non-black), you can
set the text color with SetTextColor(G) and then use any convenient text-
drawing function.

GrayString returns TRUE if the call is successful; otherwise, it returns
FALSE. Failure can result if TextOut or outputFunc return FALSE, or if there
is insufficient memory to create the bitmap.

See also: ::GrayString, TDC::TextOut
int IntersectClipRect (const TRect& rect);

Creates a new clipping region for this DC’s window by forming the
intersection of the current region with the rectangle specified by rect. The
return value indicates the resulting clipping region’s type as follows:

Region Meaning

COMPLEXREGION Clipping Region has overlapping borders.
ERROR Invalid DC.

NULLREGION : Clipping region is empty.

SIMPLEREGION Clipping region has no overlapping borders.

See also: TDC::GetClipBox, ::IntersectClipRect

inline BOOL InvertRect(int x1, int x2, int yl, int y2);
inline BOOL InvertRect (const TRect& rect);

Inverts the given rectangle on this DC. On monochrome displays, black and
white pixels are interchanged. On color displays, inversion depends on
how the colors are generated for particular displays. Calling InvertRect an
even number of times restores the original colors. InvertRect returns TRUE
if the call is successful; otherwise, it returns FALSE.

See also: :InvertRect

inline BOOL InvertRgn(const TRegion& region);

ObjectWindows 2.0 Reference Guide

LineDDA

LineTo

LPtoDP

TDC class

Inverts the given region, on this DC. On monochrome displays, black and
white pixels are interchanged. On color displays, inversion depends on
how the colors are generated for particular displays. Calling InvertRegion an
even number (n>=2) of times restores the original colors. Returns TRUE if
the call is successful; otherwise, it returns FALSE.

See also: TDC::PaintRgn, TDC::FillRgn, :InvertRgn

inline BOOL LineDDA(int x1, int y1, int x2, int y2, LINEDDAPROC proc,
LPARAM 1Param) ;

inline BOOL TextRect (const TPoint& pl, const TPoint& p2, LINEDDAPROC proc,
LPARAM lParam);

Determines which pixels should be highlighted for a line given by the start
(x1, y1 or point p1) and end (x2, 2 or point p2) point arguments. Each point
along the path (excluding the end point) is passed to the user-defined
callback function, proc, together with the optional user-supplied data via
[Param. The proc argument must be of type pointer to LineDDAFunc, a
function declared as

void CALLBACK LineDDAFunc(int x, int y, LPARAM lParam);
where x and y specify the current point in the path.
LineDDA returns TRUE if the call is successful; otherwise, it returns FALSE.
See also: ::LineDDA

inline BOOL LineTo({int x, int y);
inline BOOL LineTo(const TPoint& point);

Draws a line on this DC using the current pen object. The line is drawn
from the current position up to, but not including, the given end point,
which is specified by (x, y) or by point. If the call is successful, LineTo
returns TRUE and the current point is reset to point; otherwise, it returns
FALSE. -

See also: . :LineTo
inline BOOL LPtoDP(TPoint* points, int count = 1) const;

Converts each of the count points in the points array from logical points to
device points. The conversion depends on this DC’s current mapping mode
and the settings of its window and viewport origins and extents. Returns
TRUE if the call is successful; otherwise, it returns FALSE.

See also: TDC::DPtoLP, +LPtoDP

Chapter 1, Library reference) 113

TDC class

MaskBit

114

inline BOOL MaskBlt (const TRect& dst, const TDC& srcDC, const TPoint& src,
const TBitmap& maskBm, const TPointé& maskPos,
DWORD rop) ;

Copies a bitmap from the given source DC to this DC. MaskBIt combines
the color data from source and destination bitmaps using the given mask
and raster operation. The srcDC argument specifies the DC from which the
source bitmap will be copied. The destination bitmap is given by the

‘rectangle, dst. The source bitmap has the same width and height as dst. The

stc argument specifies the logical coordinates of the upper left corner of the
source bitmap. The maskBm argument specifies a monochrome mask
bitmap. An error will occur if maskBm is not monochrome. The maskPos
argument gives the upper left corner coordinates of the mask. The raster-
operation code, rop, specifies how the source, mask, and destination
bitmaps combine to produce the new destination bitmap. The raster-
operation codes are as follows:

Value of rop Meaning

BLACKNESS Fill dst with index-0 color of physical palette (default is black).

DSTINVERT Invert dt. ‘

MERGECOPY - Merge the colors of source with mask with Boolean AND.

MERGEPAINT Merge the colors of mverted -source with the colors of dst using Boolean
OR.

NOTSRCCOPY Copy inverted-source to dst.

NOTSRCERASE Combine the colors of source and dst using Boolean OR, then invert
result.

PATCOPY Copy mask to dst.

PATINVERT Combine the colors of mask with the colors of dst using Boolean XOR.

PATPAINT Combine the colors of mask with the colors of inverted-source using

-Boolean OR, then combine the result with the colors of dst using Boolean

OR. ‘

SRCAND Combine the colors of source and dsf using the Boolean AND.

SRCCOPY Copy source directly to dst.

SRCERASE Combine the inverted colors of dst with the colors of source using

‘ Boolean AND.
SRCPAINT Combine.the colors of source and dst using Boolean OR.
WHITENESS Fill dst with index-1 color of physical palette (defa‘ult is white).

ObjectWindows 2.0 Reference Guide

TDC class

If rop indicates an operation that excludes the source bitmap, the srcDC
argument must be 0. A value of 1 in the mask indicates that the destination
and source pixel colors should be combined using the high-order word of
rop. A value of 0 in the mask indicates that the destination and source pixel
colors should be combined using the low-order word of rop. If the mask
rectangle is smaller than dst, the mask pattern will be suitably duplicated.

When recording an enhanced metafile, an error occurs if the source DC
identifies the enhanced metafile DC.

If a rotation or shear transformation is in effect for the source DC when
MaskBlt is called, an error occurs. Other transformations are allowed. If
necessary, MaskBIt will adjust the destination and mask color formats to
match that of the source bitmaps. Before using MaskBIt, an application
should call GetDeviceCaps to determine if the source and destination DCs
support MaskBIt.

MaskBIt returns TRUE if the call is successful; otherwise, it returns FALSE.
See also: ::MaskBIt, TDC::BitBlt, TDC::PlgBIt, TDC::GetDeviceCaps

ModifyWorldTransform inline BOOL ModifyWorldTransform(XFORM far& xform, DWORD mode);

MoveTo

Changes the current world transformation for this DC using the given
xform and mode arguments. mode determines how the given XFORM
structure is applied, as listed below.

Value Meaning

MWT_IDENTITY Resets the current world transformation using the identity matrix.
If this mode is specified, the XFORM structure pointed to by
IpXform is ignored.

MWT_LEFTMULTIPLY Multiplies the current transformation by the data in the XFORM
structure. (The data in the XFORM structure becomes the left
multiplicand, and the data for the current transformation becomes
the right multiplicand.)

MWT_RIGHTMULTIPLY Multiplies the current transformation by the data in the XFORM
structure. (The data in the XFORM structure becomes the right
multiplicand,c and the data for the current transformation
becomes the left multiplicand.) ModifyWorldTransform returns
TRUE if the call is successful; otherwise, it returns FALSE.

See also: TDC::SetWorldTransform, ::ModifyWorldTransform

inline BOOL MoveTo(int x, int y);
inline BOOL MoveTo(const TPoint& point);
inline BOOL MoveTo{const TPoint& point, TPoint& oldPoint);

Chapter 1, Library reference 115

TDC class

OffsetClipRgn

OffsetViewportOrg

OffsetWindowOrg

operator HDC()

Painthn

116

Moves the current position of this DC to the given x- and y-coordinates or
to the given point. The third version, corresponding to ::MoveT oEx, sets the
previous current position in oldPoint. Returns TRUE if the call is successful;
otherwise returns FALSE. ‘

See also: ::MoveTo, ::MoveToEx
inline int OffsetClipRgn(const TPoint& delta);

Moves the clipping region of this DC by the x- and y-offsets specified in
delta. The return value indicates the resulting clipping region’s type as
follows:

Region Meaning

COMPLEXREGION Clipping region has overlapping borders.
ERROR Invalid DC.

NULLREGION Clipping region is empty.

SIMPLEREGION Clipping region has no overlapping borders.

See also: ::OffsetClipRgn, TDC::GetClipBox

inline virtual BOOL OffsetViewportOrg(const TPoint& delta, TPoint* 0ldOrg
= 0);

Modifies this DC’s viewport origin relative to the current values. The delta
x- and y-components are added to the previous origin and the resulting
point becomes the new viewport origin. The previous origin is saved in
0ldOrg. Returns TRUE if the call is successful; otherwise, returns FALSE.

See also: TDC::SetViewportOrg, TDC::GetViewportOrg, ::OffsetViewportOrg
inline BOOL OffsetWindowOrg(const TPointé& delta, TPoint* o0ldOrg = 0);

Modifies this DC’s window origin relative to the current values. The delta
x- and y-components are added to the previous origin and the resulting
point becomes the new window origin. The previous origin is saved in
0ldOrg. Returns TRUE if the call is successful; otherwise returns FALSE.

See also: TDC::GetWindowOrg, TDC::Set WindowOrg, ::Offset WindowOrg
operator HDC() const{return Handle;}

Typecasting operator. Converts a pointer to type HDC (the Windows data
type representing the handle to a DC).

inline BOOL PaintRgn(const TRegion& region);

Paints (fills) the given region on this DC using the currently selected brush.
Returns TRUE if the call is successful; otherwise returns FALSE.

See also: TDC::FillRgn, ::PaintRgn, TDC::Select Object

ObjectWindows 2.0 Reference Guide

PatBlt

PathToRegion

Pie

TDC class

inline BOOL PatBlt(int x, int y, int w, int h, DWORD rop);
inline BOOL PatBlt (const TRect& dst, DWORD rop);

Paints the given rectangle using the currently selected brush for this DC.
The rectangle can be specified by its upper left coordinates (x, y), width w,
and height &, or by a single TRect argument. The raster-operation code, rop,
determines how thebrush and surface color(s) are combined, as explained
in the following table:

Value Meaning

PATCOPY Copies pattern to destination bitmap.

PATINVERT Combines destination bitmap with pattern using the Boolean OR operator.
DSTINVERT Inverts the destination bitmap.

BLACKNESS Turns all output to binary 0s.

WHITENESS Turns all output to binary 1s.

The allowed values of rop for this function are a limited subset of the full
256 ternary raster-operation codes; in particular, an operation code that
refers to a source cannot be used with PatBIt.

Not all devices support the PatBlt function, so applications should call
TDC::GetDeviceCaps to check the features supported by this DC.

PatBlt returns TRUE if the call is successful; otherwise returns FALSE.
See also: ::PatBlt, TDC::GetDeviceCaps
inline HRGN PathToRegion();

If successful, PathToRegion returns a region created from the closed path in

1 this DC; otherwise, it returns 0.

See also: ::PathToRegion

inline BOOL Pie{int x1, int yl, int x2, int y2, int x3, int y3, int x4,
int y4);

inline BOOL Pie{const TRect& rect, const TPoint& start,
const TPoint& end);

Using the currently selected pen and brush objects, draws and fills a pie-
shaped wedge by drawing an elliptical arc whose center and end points are
joined by lines. The center of the ellipse is the center of the rectangle-
specified either by (x1, y1)/(x2, y2) or by the rect argument. The ‘
starting /ending points of pie are specified either by (x3, y3)/(x4, y4) or by
the points Start and End. Returns TRUE if the call is successful; otherwise,
returns FALSE. The current position is neither used nor altered by this call.

Chapter 1, Library reference 117

TDC class

PlayMetaFile

PlayMetaFileRecord

PlgBIt

118

See also: ::Pie, TDC::Chord, TDC::Arc
inline BOOL PlayMetaFile(const TMetaFilePict& metaFile);

Plays the contents of the given metaFile on this DC. The metafile can be
played any number of times. Returns TRUE if the call is successful;
otherwise returns FALSE.

See also: ::PlayMetaFile, TDC::EnumMetaFile, TDC::PlayMetaFileRecord

inline void PlayMetaFileRecord (HANDLETABLE far& Handletable, ‘
METARECORD far& metaRecord, int count);

Plays the metafile record given in metaRecord to this DC by executing the
GDI function call contained in that record. Handletable specifies the object
handle table to be used. count specifies the number of handles in the table.

See also: ::PlayMetaFileRecord, TDC::PlayMetaFile, TDC::EnumMetaFile

inline BOOL PlgBlt (const TPointé& dst, const TDC& srcDC, const TRecté& src,
const TBitmap& maskBm, const TPoint& maskPos,
DWORD rop) ;

Performs a bit-block transfer from the given source DC to this DC. Color
bits are copied from the src rectangle on srcDC, the source DC, to the
parallelogram dst on this DC. The dst array specifies three points A, B, and
C as the corners of the destination parallelogram. The fourth point D is
generated internally from the vector equation D = B + C — A. The upper left
corner of src is mapped to A, the upper right corner to B, the lower left
corner to C, and the lower right corner to D. An optional monochrome
bitmap can be specified by the maskBm argument. (If maskBm specifies a
valid monochrome bitmap, PIgBIt uses it to mask the color bits in the
source rectangle. An error occurs if maskBm is not a monochrome bitmap.)
maskPos specifies the upper left corner coordinates of the mask bitmap.
With a valid maskBm, a value of 1 in the mask causes the source color pixel
to be copied to dst; a value of 0 in the mask indicates that the corresponding
color pixel in dst will not be changed. If the mask rectangle is smaller than
dst, the mask pattern will be suitably duplicated.

The destination coordinates are transformed according to this DC (the
destination DC). The source coordinates are transformed according to the
source DC. If a rotation or shear transformation is in effect for the source
DC when PIgBIt is called, an error occurs. Other transformations, such as
scaling, translation, and reflection are allowed. The stretching mode of this
DC (the destination DC) determines how PlgBIt will stretch or compress the
pixels if necessary. When recording an enhanced metafile, an error occurs if
the source DC identifies the enhanced metafile DC.

ObjectWindows 2.0 Reference Guide

PolyBezier

PolyBezierTo

PolyDraw

TDC class

If necessary, PlgBIt adjusts the source color formats to match that of the
destination. An error occurs if the source and destination DCs are
incompatible. Before using PIgBIt, an application should call GetDeviceCaps
to determine if the source and destination DCs are compatible.

PlgBIt returns TRUE if the call is successful; otherwise, it returns FALSE.

See also: ::PlgBIt, TDC::GetDeviceCaps, TDC::SetStretchBltMode, MaskBlt,
TDC::StretchBlt

inline BOOL PolyBezier(const TPoint* points, int count);

Draws one or more connected cubic Bezier splines through the points
specified in the points array using the currently selected pen object. The first
spline is drawn from the first to the fourth point of the array using the

“second and third points as controls. Subsequent splines, if any, each require

three additional points in the array, since the previous end point is taken as
the next spline’s start point. The count argument (>= 4) specifies the total
number of points needed to specify the complete drawing. To draw n
splines, count must be set to (31 + 1). Returns TRUE if the call is successful;
otherwise returns FALSE. The current position is neither used nor altered
by this call. The resulting figure is not filled.

See also: TDC::PolyBezierTo, ::PolyBezier
inline BOOL PolyBezierTo(const TPoint* points, int count);

Draws one or more connected cubic Bezier splines through the points
specified in the points array using the currently selected pen object. The first
spline is drawn from the current position to the third point of the array
using the first and second points as controls. Subsequent splines, if any,
each require three additional points in the array, since the previous end
point is taken as the next spline’s start point. The count argument (>=4)
specifies the total number of points needed to specify the complete
drawing. To draw n splines, count must be set to 3n. Returns TRUE if the
call is successful; otherwise returns FALSE. The current position is moved
to the end point of the final Bezier curve. The resulting figure is not filled.

See also: TDC::PolyBezier, ::PolyBezierTo
inline BOOL PolyDraw(const TPoint* points, BYTE* types, int count);

Draws one or more, possibly disjoint, sets of line segments and /or Bezier
splines on this DC using the currently selected pen object. The count points
in the points array provide the end points for each line segment and /or the
end points and control points for each Bezier spline. The count BYTEs in the
types array determine how the corresponding point in points is to be
interpreted:

Chapter 1, Library reference k 119

TDC class

Polygon '

Polyline

120

Byte Meaning

PT_BEZIERTO This point is a control or end point for a Bezier spline. PT_BEZIERTO
" types must appear in sets of three: the current position is the Bezier

start point; the first two PT_BEZIERTO points are the Bezier control
points; and the third PT_BEZIERTO point is the Bezier end point,
which becomes the new current point. An error occurs if the
PT_BEZIERTO types do not appear in sets of three. An end-point
PT_BEZIERTO can be bit-wise OR'd with PT_CLOSEFIGURE to
indicate that the current figure is to be closed by drawing a spline
from this end point to the start point of the most recent disjoint figure.

PT_CLOSEFIGURE Optional flag that can be bit-wise OR’d with PT_LINETO or
PT_BEZIERTO, as explained above. Closure updates the current
point to the new end point.

PT_LINETO Aline is drawn from the current position to this point, which then
becomes the new current point. PT_LINETO can be bit-wise OR'd
with PT_CLOSEFIGURE to indicate that the current figure is to be
closed by drawing a line segment from this point to the start point of
the most recent disjoint figure.

PT_MOVETO This point starts a new (disjoint) figure and becomes the new current
point.

PolyDraw is an alternative to consecutive calls to MoveTo, LineTo, Polyline,
PolyBezier, and PolyBezierTo. If there is an active path invoked via BeginPath,
PolyDraw will add to this path.

Returns TRUE if the call is successful; otherwise returns FALSE.

See also: ::PolyDraw, TDC::MoveTo, TDC::LineTo, TDC::PolyBezz'erTo,
PolyBezier, TDC::Polyline, TDC::BeginPath

inline BOOL Polygon(const TPoint* points, int count);

Draws and fills a closed polygon of count (>= 2) line segments on this DC
using the current pen and polygon-filling mode. The points array specifies
the vertices of the polygon to be drawn. The polygon is automatically
closed, if necessary, by drawing a line from the last to the first vertex. The
current position is neither used nor altered by Polygon. Returns TRUE if the
call is successful; otherwise returns FALSE.

See also: TDC::Polyline, ::Polygon, TDC::SetPolyFillMode,
TDC::GetPolyFillMode

inline BOOL Polyline(const TPoint* points, int count);

‘Draws a sequence of count (>=2) line segments on this DC using the

current pen object. The points array specifies the sequence of points to be

ObjectWindows 2.0 Reference Guide

PolylineTo

PolyPolygon

PolyPolyline

PtVisible

TDC class

connected. The current position is neither used nor altered by Polyline.
Returns TRUE if the call is successful; otherwise returns FALSE.

See also: TDC::Polygon, ::Polyline, TDC::PolyPolyline
inline BOOL PolylineTo{const TPoint* points, int count);

Draws one or more connected line segments on this DC using the currently
selected pen object. The first line is drawn from the current position to the
first of the count points in the points array. Subsequent lines, if any, connect
the remaining points in the array, with each end point providing the start
point of the next segment. The final end point becomes the new current
point. No filling occurs even if a closed figure is drawn. Returns TRUE 1f
the call is successful; otherwise returns FALSE.

See also: TDC::PolyDraw, ::PolylineTo, TDC::LineTo

inline BOOL PolyPolygon({const TPoint* points, const int* PolyCounts,
int count);

Draws and fills a series of count (>= 2), possibly overlapping, closed
polygons on this DC using the current pen and polygon-filling mode. The
points array specifies the vertices of the polygons to be drawn. PolyCounts is
an array of count integers specifying the number of vertices in each
polygon. Each polygon must be a closed polygon. The current position is
neither used nor altered by Polygon. Returns TRUE if the call is successful;
otherwise returns FALSE.

See also: ::PolyPolygon, TDC::PolyPolyline, TDC::SetPolyFillMode,
TDC::GetPolyFillMode

inline BOOL PolyPolyline(const TPoint* points, const int* PolyCounts,
int count);

Draws a series of count polylines (connected line segments) on this DC
using the currently selected pen object. The resulting figures are not filled.
The PolyCounts array provides count integers specifying the number of
points (>= 2) in each polyline. The points array provides, consecutively,
each of the points to be connected. Returns TRUE if the call is successful;
otherwise returns FALSE. The current position is neither used nor altered
by this call.

See also: ::PolyPolyline, ‘TDC::Polyline, TDC::PolyPolygon
inline BOOL PtVisible(const TPoint& point) const;

Returns TRUE if the given point lies within the clipping region of this DC;
otherwise returns FALSE.

See also: TDC::RectVisible, ::PtVisible

Chapter 1, Library reference 121

TDC class

RealizePalette

Rectangle

RectVisible

ResetDC

RestoreBrush

RestoreDC

RestoreFont

RestoreObjects

122

inline int RealizePalettef{);
Maps to the system palette the logical palette entries selected into this DC.
See also: ::RealizePalette

inline BOOL Rectangle(int x1, int y1, int x2, int y2);
inline BOOL Rectangle(const TPoint& pl, const TPointé& p2);
inline BOOL Rectangle(const TPoint& point, const TSize& g);
inline BOOL Rectangle({const TRect& rect);

Draws and fills a rectangle of the given size on this DC with the current pen
and brush objects. The current position is neither used nor altered by this
call. Returns TRUE if the call is successful; otherwise returns FALSE.

See also: TDC::RoundRect, ::Rectangle
inline BOOL RectVisible(const TRect& rect) const;

Returns TRUE if any part of the given rectangle lies within the clipping
region of this DC; otherwise returns FALSE.

See also: TDC::PtVisible, ::RectVisible:
inline virtual BOOL ResetDC(DEVMODE far& devMode);

Updates this DC using data in the given devMode structure. Returns TRUE
if the call is successful; otherwise returns FALSE.

See also: ::ResetDC

void RestoreBrush();

Restores the original GDI brush object to this DC.
See also: ::SelectObject, TDC::OrgBrush

inline virtual BOOL RestoreDC(int savedDC = -1);

Restores the given savedDC. Returns TRUE if the context is successfully
restored; otherwise returns FALSE.

See also: TDC::SaveDC, ::RestoreDC

virtual void RestoreFont();

Restores the original GDI font object to this DC.
See also: ::SelectObject, TDC:.'Ongont

void RestoreObjects();

Restores all the original GDI objects to this DC.

ObjectWindows 2.0 Reference Guide

RestorePalette

RestorePen

RestoreTextBrush

RoundRect

SaveDC

ScaleViewportExt

TDC class

See also: ::SelectObject

void RestorePalette();

Restores the original GDI palette object to this DC.
See also: ::SelectPalette, TDC::OrgPalette

void RestorePen();

Restores the original GDI pen object to this DC.

See also: ::SelectObject, TDC::OrgPen

vold RestoreTextBrush();

Restores the original GDI text brush object to this DC.
See also: ::SelectObject

inline BOOL RoundRect (int x1, int y1, int x2, -int y2, int x3, int y3);
inline BOOL RoundRect (const TPoint& pl, const TPoint& p2,

const TPoint& rad);
inline BOOL RoundRect (const TPoint& p, const TSize& s, const TPoint& rad);
inline BOOL RoundRect (const TRect& rect, const TPointé& rad);

Draws and fills a rounded rectangle of the given size on this DC with the
current pen and brush objects. The current position is neither used nor
altered by this call. Returns TRUE if the call is successful; otherwise returns
FALSE. :

See also: TDC::Rectangle, ::RoundRect
inline virtual int SaveDC() const;

Saves the current state of this DC on a context stack. The saved state can be
restored later with RestoreDC(). Returns a value specifying the saved DC or
0 if the call fails.

See also: TDC::RestoreDC, ::SaveDC

inline virtual BOOL ScaleViewportExt (int xNum, int xDenom, int yNum,
int yDenom, TSize* oldExtent = 0);

Modifies this DC’s viewport extents relative to the current values. The new
extents are derived as follows:

xNewVE = (xOIdVE * xNum)/ xDenom
yNewVE = (yOIdVE * yNum)/ yDenom

The previous extents are saved in oldExtent. Returns TRUE if the call is
successful; otherwise returns FALSE.

See also: ::ScaleViewportExt, TDC::SetViewportExt

Chapter 1, Library reference ’ , 123

TDC class

ScaleWindowExt inline virtual BOOL ScaleWindowExt (int xNum, int xDenom, int yNum,
' int yDenom, TSize* oldExtent = 0);

Modifies this DC’s window extents relative to the current values. The new
extents are derived as follows:

xNewWE = (xOIdWE * xNum)/ xDenom
yNewWE = (yOIdWE * yNum)/ yDenom

The previous extents are saved in oldExtent. Returns TRUE if the call is
successful; otherwise returns FALSE.

See also: TDC::Set WindowExt, ::ScaleWindowExt

ScrolIDC inline BOOL ScrollDC(int x, int y, const TRect& scroll, const TRect& clip,
TRegion& updateRgn, TRect& updateRect);
inline BOOL ScrollDC(const TPoint& delta, const TRect& scroll,
const TRect& clip, TRegion& updateRgn,
TRect& updateRect);

Scrolis a rectangle of bits horizontally by x (or delta.x in the second version)
device-units, and vertically by y (or delta.y) device-units on this DC. The
scrolling and clipping rectangles are specified by scroll and clip. ScrollDC
provides data in the updateRgn argument telling you the region (not
necessarily rectangular) that was uncovered by the scroll. Similarly,
ScrollDC reports in updateRect the rectangle (in client coordinates) that
bounds the scrolling update region. This is the largest area that requires
repainting.

Returns TRUE if the call is successful; otherwise returns FALSE.
, See also: ::ScrollDC, ::Scroll Window, ::InvalidateRegion
SelectClipPath inline BOOL SelectClipPath(int mode);

Selects the current path on this DC as a clip region, combining any existing
clip region using the specified mode as shown in the following table:

Mode Meaning

RGN_AND The new clip region includes the overlapping areas of the current clip region
and the current path (intersection).

RGN_COPY The new clip region is the current path.

RGN_DIFF The new clip region includes the areas of the current clip region with those of
the current path excluded.

RGN_OR The new clip region includes the combined areas of the current clip region and
the current path (union).

124 " ObjectWindows 2.0 Reference Guide

SelectClipRgn

SelectObject

SelectStockObject

SeiBkColor

TDC class

RGN_XOR The new clip region includes the combined areas of the current clip region and
the current path but without the overlapping areas.

Returns TRUE if the call is successful; otherwise returns FALSE.
See also: ::SelectClipPath
inline int SelectClipRgn(const TRegion& region);

Selects the given region as the current clipping region for this DC. A copy of
the given region is used, letting you select the same region for other DC
objects. The return value indicates the new clipping region’s type as
follows:

Region Meaning

COMPLEXREGION Clipping Region has ovetlapping borders.
ERROR Invalid DC.

NULLREGION Clipping region is empty.

SIMPLEREGION Clipping region has no overlapping borders.

See also: TDC::OffsetClipRgn, TDC::GetClipBox, ::SelectClipRgn

void SelectObject (const TBrush& brush);

void SelectObject (const TPen& pen);

virtual void SelectObject (const TFont& font);

void SelectObject (const TPalette& palette, BOOL forceBackground = FALSE);

Selects the given GDI object into this DC. The previously selected object is
saved in the appropriate OrgXXX data member. For a palette argument, if
forceBackgound is set FALSE (the default), the selected logical palette is a
foreground palette when the window has input focus. If forceBackground is
TRUE, the selected palette is always a background palette whether the
window has focus or not.

See also: ::SelectObject, ::SelectPalette, TDC::OrgXXX
TMemoryDC::SelectObject,

virtual void SelectStockObject (int index);

Selects into a DC a predefined stock pen, brush, font, or palette.
See also: TPrintPreviewDC::SelectStockObject

inline virtual TColor SetBkColor(TColor color);

Sets the current background color of this DC to the given color value or the
nearest available. Returns 0x80000000 if the call fails.

Chapter 1, Library reference - 125

TDC class

SetBkMode

SetBoundsRect

SetBrushOrg

SetDIBits

126

See also: TDC::GetBkColor, ::SetBkColor
inline int SetBkMode (int mode);

Sets the background mode to the given mode argument, OPAQUE or
TRANSPARENT. Returns the previous background mode.

See also: TDC:GetBkMode, ::SetBkMode
inline UINT SetBoundsRect (TRect& bounds, UINT flags);

Controls the accumulation of bounding-rectangle information for this DC.
Depending on the value of flags, the given bounds rectangle (possibly
NULL) can combine with or replace the existing accumulated rectangle.
flags can be any appropriate combination of the following values:

Constant Meaning

DCB_ACCUMULATE Add bounds (rectangular union) to the current accumulated rectangle.

DCB_DISABLE Turn off bounds accumulation.

DCB_ENABLE Turn on bounds accumulation (the default setting for bounds
accumulation is disabled).

DCB_RESET Set the bounding rectangle empty.

DCB_SET Set the bounding rectangle to bounds.

There are two bounding-rectangle accumulations, one for Windows and
one for the application. The Windows-accumulated bounds can be queried
by an application but not altered. The application can both query and alter
the DC’s accumulated bounds.

See also: TDC::GetBoundsRect, ::SetBoundsRect
inline BOOL SetBrushOrg{const TPoint& origin, TPoint* 0ldOrg = 0);

Sets the origin of the currently selected brush of this DC with the given
origin value. The previous origin is passed to 0ldOrg. Returns TRUE if
successful; otherwise returns FALSE.

See also: TDC::GetBrushOrg

inline BOOL SetDIBits(TBitmap& bitmap, WORD startScan, WORD numScans,
const void HUGE* bits, const BITMAPINFO far& Info,
WORD usage) ;

inline BOOL SetDIBits(TBitmap& Bitmap, const TDib& dib);

The first version sets the pixels in bitmap (the given destination bitmap on
this DC), from the source DIB (device-independent bitmap) color data

- found in the byte array bits and the BITMAPINFO structure, Info. numScan

scanlines are taken from the DIB, starting at scanline startScan. The usage

ObjectWindows 2.0 Reference Guide

SetDIBitsToDevice

SetMapMode

SetMapperFlags

TDC class

argument specifies how the bmiColors member of BITMAPINFO is
interpreted, as explained in TDC::GetDIBits().

In the second version of SetDIBits, the pixels are set in bitmap from the
given source TDib argument.

SetDIBits returns TRUE if the call is éuccessful; otherwise, it returns FALSE.
See also: TDC::GetDIBits, TDC::SetDIBitsToDevice, ::SetDIBits

inline BOOL SetDIBitsToDevice(const TRect& dst, const TPoint& src,

WORD startScan, WORD numScans,

const void HUGE* bits,

const BITMAPINFO far& bitsInfo, WORD usage);
inline BOOL SetDIBitsToDevice(const TRect& dst, const TPointé& src,

const TDib& dib);

The first version sets the pixels in dst (the given destination rectangle on
this DC) from the source DIB (device-independent bitmap) color data
found in the byte array bits and the BITMAPINFO structure, bitsInfo. The
DIB origin is specified by the point src. numScan scanlines are taken from
the DIB, starting at scanline startScan. The usage argument determines how
the bmiColors member of BITMAPINFO is interpreted, as explained in
TDC::GetDIBits().

In the second version of SetDIBitsToDevice, the pixels are set in dst from dib,
the given source TDib argument.

SetDIBits returns TRUE if the call is successful; otherwise, it returns FALSE.
See also: TDC::GetDIBits, ::SetDIBitsToDevice, TDib
inline virtual int SetMapMode (int mode);

Sets the current window mapping mode of this DC to mode. Returns the
previous mapping mode value. The mapping mode defines how logical
coordinates are mapped to device coordinates. It also controls the
orientation of the device’s x- and y-axes. See TDC::GetMapMode for a
complete list of mapping modes.

- See also: TDC::GetMapMode, ::SetMapMode

inline DWORD SetMapperFlags (DWORD flag);

Alters the algorithm used by the font mapper when mapping logical fonts
to physical fonts on this DC. If successful, the function sets the current
font-mapping flag to flag and returns the previous mapping flag; otherwise
GDI_ERROR is returned. The mapping flag determines whether the font
mapper will attempt to match a font’s aspect ratio to this DC’s aspect ratio.
If bit 0 of flag is set to 1, the mapper selects only matching fonts. If no -

Chapter 1, Library reference ' 127

TDC class

SetMiterLimit

SetPixel

SetPolyFillMode

SetROP2

128

matching fonts exist, a new aspect ratio is chosen and a font is retrieved to
match this ratio.

See also: ::SetMapperFlags

inline BOOL SetMiterLimit(float newLimit, float* oldLimit = 0);

Sets the limit of miter joins to newLimit and puts the previous value in

oldLimit. Returns TRUE if successful; otherwise returns FALSE.
See also: ::SetMiterLimit

inline TColor SetPixel(int x, int y, TColor color);
inline TColor SetPixel(const TPoint& p, TColor color);

Sets the color of the pixel at the given location to the given color and
returns the pixel’s previous color.

See also: TDC::GetPixel, ::SetPixel
inline int SetPolyFillMode(int mode);

Sets the polygon-filling mode for this DC to the given mode value, either
ALTERNATE or WINDING. Returns the previous fill mode.

See also: TDC::GetPolyFillMode, ::SetPolyFillMode, TDC::Polygon
inline int SetROP2(int mode); ‘ .

Sets the current foreground mix mode mode of this DC to the given mode
value and returns the previous mode. The mode argument determines how
the brush, pen, and existing screen image combine when filling and
drawing. mode can be one of the following values:

Value ‘ Meaning

R2_BLACK
R2_COPYPEN
R2_MASKNOTPEN

Pixel is always binary 0.

Pixel is the pen color.

Pixel is a combination of the colors common to both the display and
the inverse of the pen.

Pixel is a combination of the colors common to both the pen and the
display.

Pixel is a combination of the colors common to both the pen and the
inverse of the display.

Pixel is a combination of the pen color and the dlsplay color.

Pixel is a combination of the display color and the inverse of the pen

R2_MASKPEN
R2_MASKPENNOT

R2_MERGEPEN
R2_MERGENOTPEN

color.

R2_MERGEPENNOT Pixel is a combination of the pen color and the inverse of the display
color.

R2_NOP Pixel remains unchanged.

R2_NOT Pixel is the inverse of the display color.

R2_NOTCOPYPEN Pixel is the inverse of the pen color.

ObjectWindows 2.0 Reference Guide

SetStretchBltMode

TDC class

Value Meaning

R2_NOTMASKPEN Pixel is the inverse of the R2_MASKPEN color.

R2_NOTMERGEPEN Pixel is the inverse of the R2_MERGEPEN color.

R2_NOTXORPEN Pixel is the inverse of the R2_XORPEN color.

R2_WHITE Pixel is always binary 1.

R2_XORPEN Pixel is a combination of the colors in the pen and in the display, but
not in both.

See also: TDC::GetROP2, ::5etROP2, TDC::GetDeviceCaps
inline int SetStretchBltMede(int mode);

Sets the stretching mode of this DC to the given mode value and returns the
previous mode. The mode argument defines which scan lines and /or
columns are eliminated by TDC::StretchBIt(): BLACKONWHITE,
COLORONCOLOR, or WHITEONBLACK.

See also: TDC::GetStretchBltMode, ::SetStretchBltMode, TDC::StretchBlt

SetSystemPaletteUse inline int SetSystemPaletteUse(int usage);

SetTextAlign

Changes the usage of this DC’s system palette. The usage argument can be
SYSPAL_NOSTATIC or SYSPAL_STATIC. Returns the previous usage
value.

See also: TDC::GetSystemPaletteUse, ::SetSystemPalettelse
inline UINT SetTextAlign(UINT flags);

Sets the text-alignment flags for this DC. If successful, SetTextAlign returns
the previous text-alignment flags; otherwise, it returns GDI_ERROR. The
flag values are as listed for the TDC::GetTextAlign function. The text-
alignment flags determine how TDC::TextOut() and TDC::ExtTextOut align
text strings in relation to the first character’s screen position.

See also: TDC:GetTextAlign, ::SetTextAlign, TDC::TextOut,
TDC::ExtTextOut

GetTextCharacterExtra inline int GetTextCharacterExtra{) const;

If successful, returns the current intercharacter spacing, in logical units, for
this DC; otherwise returns INVALID_WIDTH.

See also: TDC::SetTextCharacterExtra, ::GetTextCharacterExtra

SetTextCharacterExtra inline int SetTextCharacterExtra(int extra);

If successful, sets the current intercharacter spacing to extra, in logical units,
for this DC, and returns the previous intercharacter spacing. Otherwise,

Chapter 1, Library reference _ 129

TDC class

SetTextColor

SetTextJustification

SetViewportExt

SetViewportOrg

130

returns 0. If the current mapping mode is not MM_TEXT, the extra value is
transformed and rounded to the nearest pixel.

See also: TDC::GetTextCharacterExtra, ::SetTextCharacterExtra
inline virtual TColor SetTextColor (TColor color);

Sets the current text color of this DC to the given color value. The text color
determines the color displayed by TDC::TextOut() and TDC::ExtTextOut().

See also: TDC::GetTextColor, ::SetTextColor
inline BOOL SetTextJustification(int breakExtra, int breakCount);

Sets breakExtra logical units as the total extra space to be added to
breakCount break characters when text strings are displayed using
TDC::TextOut() and TDC::ExtTextOut(). The extra space is distributed
evenly between the break characters. The break character is usually the
ASCII 32 space, but some fonts define other characters.
TDC::GetTextMetrics() can be used to retrieve the value of the break
character. TDC::GetTextExtentPoint() must be called to obtain text width
before justification. From this, the breakExtra value can be computed for the
SetText]ustification call.

If the current mapping mode is not MM_TEXT, the extra value is
transformed and rounded to the nearest pixel.

SetText[ustification returns TRUE if the call is successful; otherwise, it
returns FALSE.

See also: ::SetTextJustification, TDC::GetTextExtentPoint

inline virtual BOOL SetViewportExt (const TSize& extent, TSize* oldExtent
= 0);

Sets this DC’s viewport x- and y-extents to the given extent values. The
previous extents are saved in oldExtent. Returns TRUE if the call is
successful; otherwise, returns FALSE. The extent value determines the
amount of stretching or compression needed in the logical coordinate
system to fit the device coordinate system. extent also determines the
relative orientation of the two coordinate systems.

See also: TDC::GetViewportExt, ::SetViewportExt

inline virtual BOOL SetViewportOrg(const TPointé origin, TPoint* 0ldOrg
=0);

Sets this DC’s viewport origin to the given origin value, and saves the
previous origin in 0ldOrg. Returns TRUE if the call is successful; otherwise
returns FALSE.

ObjectWindows 2.0 Reference Guide

SetWindowExt

SetWindowOrg

SetWorldTransform

StretchBIt

TDC class

See also: TDC::GetViewportOrg, TDC::OffsetViewportOrg, ::SetViewportOrg

inline virtual BOOL SetWindowExt (const TSize& extent, TSize* oldExtent
= 0);

Sets this DC’s window x- and y-extents to the given extent values. The
previous extents are saved in oldExtent. Returns TRUE if the call is
successful; otherwise, returns FALSE. The extent value determines the
amount of stretching or compression needed in the logical coordinate
system to fit the device coordinate system. extent also determines the
relative orientation of the two coordinate systems.

See also: TDC::GetWindowExt, ::SetWindowExt, TDC::ScaleWindowExt
inline BOOL SetWindowOrg(const TPoint& origin, TPoint* o0ldOrg = 0);

Sets the origin of the window associated with this DC to the given origin
value, and saves the previous origin in 0ldOrg. Returns TRUE if the call is
successful; otherwise, returns FALSE.

See also: TDC::GetWindowOrg, TDC::Offset WindowOrg, ::Set WindowOrg
inline BOOL SetWorldTransform(XFORM far& xform);

Sets a two-dimensional linear transformation, given by the xform structure,
between world space and page space for this DC. Returns TRUE if the call
is successful; otherwise, returns FALSE.

See also: TDC:ModifyWorldTransform, ::SetWorldTransform, XFORM

inline BOOL StretchBlt({int dstX, int dstY, int dstW, int dstH,
const TDC& sreDC, int srcX, int srcY, int srcW,
int srcH, DWORD rop);

inline BOOL StretchBlt(const TRect& dst, const TDC& srcDC,
const TRect& src, DWORD rop);

Copies a bitmap from the source DC to a destination rectangle on this DC
specified either by upper left-corner coordinates (dstX, dstY), width dstW,
and height dstH, or (in the second version) by a TRect object, dst. The source
bitmap is similarly specified with (srcX, srcY), srcW, and srcH, or by a TRect
object, src. StretchBlt stretches or compresses the source according to the
stretching mode currently set in this DC (the destination DC). The raster-
operation code, rop, specifies how the colors are combined in output
operations that involve a brush, a source bitmap, and a destination bitmap.
The rop codes are described in the entry for TDC::MaskBlt.

See also: ::StretchBlt, TDC::MaskBlt, TDC::SetStretchBltMode

Chapter 1, Library reference) 131

TDC class

StretchDIBits

StrokeAndFillPath

StrokePath

TabbedTextOut

132

inline BOOL StretchDIBits(const TRect& dst, const TRecté& src,
const void HUGE* bits,
const BITMAPINFO far& bitsInfo, WORD usage,
DWORD rop) ;
inline BOOL StretchDIBits(const TRect& dst, const TRecté& src,
const TDib& dib, DWORD rop);

Copies the color data from src, the source rectangle of pixels in the given
DIB (device-independent bitmap) on this DC, to dst, the destination
rectangle. The DIB bits and color data are specified in either the byte array
bits and the BITMAPINFO structure bitslnfo or in the TDib object, dib. The
rows and columns of color data are stretched or compressed to match the
size of the destination rectangle. The usage argument specifies how the
bmiColors member of BITMAPINFO is interpreted, as explained in
TDC::GetDIBits(). The raster operation code, rop, specifies how the source
pixels, the current brush for this DC, and the destination pixels are
combined to produce the new image. See TDC::MaskBlIt for a detailed list of
rop codes.

See also: ::StretchDIBits, TDC::MaskBIt, TDib
inline BOOL StrokeAndFillPath();

Closes any open figures in the current path of this DC, strokes the outline
of the path using the current pen, and fills its interior using the current
brush and polygon fill mode. Returns TRUE if the call is successful;
otherwise returns FALSE.

See also: TDC::StrokePath, ::StrokeAndFillPath, TDC::BeginPath,
TDC::FillPath, TDC::EndPath, TDC::SetPolyFillMode,

inline BOOL StrokePath();
Renders the current, closed path on this DC, using the DC’s current pen.
See also: ::StrokePath, TDC::StrokeAndFillPath, TDC::BeginPath

inline virtual BOOL TabbedTextOut (const TPoint& p, const char far* string,
int count, int numPositions,
const int* positions, int tabOrigin);
inline BOOL TabbedTextOut (const TPoint& p, const char far* string,
int count, int numPositions,
const int* positions, int tabOrigin,
TSize& size);

Draws up to count characters of the given null-terminated string in the
current font on this DC. If count is -1, the whole string is written.

ObjectWindows 2.0 Reference Guide

TextOut

TextRect

TDC class

Tabs are expanded according to the given arguments. The positions array
specifies numPositions tab stops given in device units. The tab stops must
have strictly increasing values in the array. If numPositions and positions are
both 0, tabs are expanded to eight times the average character width. If
numPositions is 1, all tab stops are taken to be positions[0] apart. tabOrigin
specifies the x-coordinate in logical units from which tab expansion will
start.

The p argument specifies the logical coordinates of the reference point that
is used to align the first character depending on the current text-alignment
mode. This mode can be inspected with TDC::GetTextAlign and changed
with TDC::SetTextAlign. By default, the current position is neither used nor
altered by TabbedTextOut. However, if the align mode is set to
TA_UPDATECP, TabbedTextOut ignores the reference point argument(s)
and uses/updates the current position as the reference point.

The size argument in the second version of TabbedTextOut reports the
dimensions (size.y = height and size.y = width) of the string in logical units.

TabbedTextOut returns TRUE if the call is successful; otherwise, it returns
FALSE.

See also: TDC::TextOut, ::Tabbed TextOut

inline virtual BOOL TextOut (int x, int y, const char far* string,
int count = -1); ‘
inline BOOL TextOut (const TPoint& p, const char far* string, int count
= -1);

Draws up to count characters of the given null-terminated string in the
current font on this DC. If count is -1 (the default), the entire string is
written.

The (x, y) or p arguments specify the logical coordinates of the reference
point that is used to align the first character, depending on the current text-
alignment mode. This mode can be inspected with TDC::GetTextAlign and
changed with TDC::SetTextAlign. By default, the current position is neither
used nor altered by TextOut. However, the align mode can be set to
TA_UPDATECP, which makes Windows use and update the current
position. In this mode, TextOut ignores the reference point argument(s).

TextOut returns TRUE if the call is successful; otherwise, it returns FALSE.
See also: TDC::ExtTextOut, ::TextOut, TDC::GetTextAlign

inline BOOL TextRect(int x1, int y1, int x2, int y2);

inline BOOL TextRect (const TRect& rect);

inline BOOL TextRect(int x1, int y1, int x2, int y2, TColor color);
inline BOOL TextRect (const TRect rect, TColor color);

Chapter 1, Library reference 133

TDC class

UpdateColors

WidenPath

Handle

OrgBrush

134

Fills the given rectangle by calling ::ExtTextOut with an ETO_OPAQUE
rectangle type argument and a NULL string. If no color argument is
supplied, the current backgound color is used. If a color argument is
supplied, that color is set to the current background color which is then
used for filling. TextRect returns TRUE if the call is successful; otherwise,
returns FALSE. "

See also: ::ExtTextOut, TDC::SetBkColor, ETO_OPAQUE,
inline void UpdateColors();

Updates the client area of this DC by matching the current colors in the
client area to the system palette on a pixel-by-pixel basis.

See also: ::UpdateColors
inline BOOL WidenPath();

Redefines the current, closed path on this DC as the area that would be
painted if the path were stroked with this DC’s current pen. The current
pen must have been created under the following conditions:

If ::CreatePen or the TPen::TPen(int Style, int Width, TColor Color) or
TPen::TPen(const LOGPEN* LogPen) constructors were used, the width of
the pen in device units must be greater than 1.

If :ExtCreatePen or the TPen::TPen(DWORD PenStyle, DWORD Width, const
TBrush& Brush, DWORD StyleCount, LPDWORD pSTyle) or
TPen::TPen(DWORD PenStyle, DWORD Width, const LOGBRUSHE& logBrush,
DWORD StyleCount, LPDWORD pSTyle) constructors were used, the pen
must be a geometric pen.

Any Bezier curves in the path are converted to sequences of linear
segments approximating the widened curves, so no Bezier curves remain in
the path after a WidenPath call.

WidenPath returns TRUE if the call is successful; otherwise, it returns
FALSE.

See also: ::WidenPath, TDC::FlattenPath, TDC::BeginPath

Protected data members

HDC Handle;
The Windows handle of this DC.
See also: TDC constructors

HBRUSH OrgBrush;

ObjectWindows 2.0 Reference Guide

OrgFont

OrgPalette

OrgPen

OrgTextBrush

ShouldDelete

Constructor

TDC class

Handle to the original GDI brush object for this DC. Holds the previous
brush object whenever a new brush is selected with SelectObject(brush).

See also: TDC::SelectObject, ::SelectObject
HFONT OrgFont;

Handle to the original GDI font object for this DC. Holds the previous font
object whenever a new font is selected with SelectObject(font).

See also: TDC::SelectObject, ::SelectObject
HPALETTE OrgPalette;

Handle to the original GDI palette object for this DC. Holds the previous
palette object whenever a new palette is selected with SelectObject(palette).

See also: TDC::SelectObject, ::SelectPalette
HPEN OrgPen;

Handle to the original GDI pen object for this DC. Holds the previous pen
object whenever a new pen is selected with SelectObject(pen).

See also: TDC::SelectObject, ::SelectObject
HBRUSH OrgTextBrush;

The handle to the original GDI text brush object for this DC. Stores the
previous text brush handle whenever a new brush is selected with
SelectObject(text_brush).

See also: TDC::SelectObject, ::SelectObject
BOOL ShouldDelete;

Set to TRUE if Handle for this object should be deleted by the destructor;
otherwise set to FALSE.

See also: enum TDC::T AutoDelete, ~TDC

Protected constructors

TDC() ;

For use by derived classes only. Calls Init to clear the OrgXXX data
members and sets ShouldDelete to TRUE.

See also: TDC::Init

Chapter 1, Library reference o ‘ 135

TDC class

GetAttributeHDC

GetHDC

Init

Protected member functions

virtual HDC GetAttributeHDC() const;
Returns the attributes of the DC object.
See also: TPrintPreview::GetAttributeHDC
inline HDC GetHDC() const;

Returns a handle to the DC.

void Init();

Sets OrgBrush, OrgPen, OrgFont, OrgBitmap, and OrgPalette to 0, and sets
ShouldDelete to TRUE. This function is for internal use by the TDC
constructors.

See also: TDC constructors, SelectObject

TDecoratedFrame class : decframe.h

Constructor

Insert

136

TDecoratedFrame automatically positions its client window (you must
supply a client window) so that it is the same size as the client rectang]le.
You can add additional decorations like toolbars and status lines to a
window. TDecoratedFrame is a streamable class. For more information about
decorated frame windows, see Chapter 6 in the Object Windows Programmer’s
Guide.

Public constructors

TDecoratedFrame (TWindow* parent, const char far *title, TWindow*
clientWnd, BOOL trackMenuSelection = FALSE, TModule*
module = 0);

Constructs a TDecoratedFrame object with the specified parent window
(parent), window caption (title), and module ID. Sets Attr.Title to the new
title. Passes a pointer to the client window if one is specified. By default set
to FALSE, trackMenuSelection controls whether hint text appears at the
bottom of the window when a menu item is highlighted.

Public member functions

void Insert (TWindowé& decoration, TLocation = Top);

ObjectWindows 2.0 Reference Guide

PreProcessMsg

Menultemid

TrackMenuSelection

EvCommand

EvCommandEnable

EvEnterldle

EvMenuSelect

TDecoratedFrame class

After you specify where the decoration should be placed, Insert adds it just
above, below, left, or right of the client window. This process is especially
important when there are multiple decorations. Insert looks at the
decoration’s Attr.Style member and checks the WS_VISIBLE flag to tell
whether the decoration should initially be visible or hidden. To position the
decoration, Insert uses TLocation enum, which describes Top, Left, Bottom,
and Right positions where the decoration can be placed.

BOOL PreProcessMsg (MSG& msg);

Overrides the virtual function defined in TFrameWindow to give decorations
an opportunity to perform mnemonic access preprocessing.

See also: TFrameWindow::PreProcessMsg, TWindow::PreProcessMsg

Protected data members

UINT MenultemID;
Specifies the menu item ID.
BOOL TrackMenuSelection;

Specifies whether you want menu selection and help status information
visible.

Protected member functions

LRESULT EvCommand (UINT Id, HWND hwndCtl, UINT notifyCode);
Automates hiding and showing of decorations.
void EvCommandEnable (TCommandEnablers cé) ;

Handles checking and unchecking of menu items that are associated with
decorations.

See also: TMenultemEnabler::TCommandEnabler
void EvEnterIdle(UINT source, HWND hwWndDlg);

Responds to a Windows AP1 WM_ENTERIDLE message that tells an
application’s main window that a dialog box or a menu is entering an idle
state. EvEnterldle also handles updating the status bar with the appropriate
help message.

See also: ::WM_ENTERIDLE
void EvMenuSelect (UINT MenuItemId, UINT flags, HMENU hMenu);

Chapter 1, Library reference ' ’ 137

- TDecoratedFrame class

_ Responds to user menu selection. If MenultemId is blank, displays an empty
help message; otherwise, it displays a help message with the specified
string ID. See EvEnterldle for a description of how the help message is
loaded.

EvSize inline void EvSize(UINT sizeType, TSize& size);
Passes a WM_SIZE message to TLayout Window.
See also: TWindow::EvSize
SetupWindow void SetupWindow();
Calls Layout to size and position the decoration.
See also: TFrameWindow::SetUpWindow, T Window::SetUpWindow

Response table entries

Response table entry Member function
EV_WM_ENTERIDLE EvEnterldle
EV_WM_MENUSELECT EvMenuSelect
EV_WM_SIZE EvSize
TDecoratedMDIFrame class decmdifr.h

TDecoratedMDIFrame is an MDI frame that supports decorated child
windows. TDecorated MDIFrame is a streamable class.

Public constructors

Constructor TDecoratedMDIFrame (const char far *title, TResId menuResId,
TMDIClient &clientWnd = *new TMDIClient,
BOOL trackMenuSelection = FALSE, TModule* module = 0);

Constructs a decorated MDI frame of the specified client window with the
indicated menu resource ID. By default, menu hint text is not displayed.

Protected member function

DefWindowProc LRESULT DefWindowProc (UINT message, WPARAM wParam, LPARAM 1Param);

138 ' ObjectWindows 2.0 Reference Guide

TDesktopDC class

TDecoratedMDIFrame class

Overrides TWindow:DefWindowProc and calls the Windows API function
::DefFrameProc that provides default processing for any incoming message
the MDI child window does not process.

See also: ::DefFrameProc, ::DefWindowProc, TMDIFrame::DefWindowProc

Response table entries

The TDecoratedMDIFrame response table has no entries.

dc.h

Constructor

TDialog class

A DC class derived from TWindowDC, TDesktopDC provides access to the
desktop window’s client area, which is the screen behind all other
windows.

Public constructors

TDesktopDC () ;
Default constructor for TDesktopDC objects.

dialog.h

See Chapter 4 in the
ObjectWindows
Programmer’s Guide
for a description of
interface objects. See
Chapter 8 in the
ObjectWindows
Programmer’s Guide
for specific
instructions about
creating dialog boxes.

Chapter 1, Library reference

TDialog objects represent both modal and modeless dialog box interface
elements. (A modal dialog box disables operations in its parent window
while it is open.) A TDialog object has a corresponding resource definition
that describes the placement and appearance of its controls. The identifier
of this resource definition is supplied to the constructor of the TDialog
object. A TDialog object is associated with a modal or modeless interface
element by calling its Execute or Create member function, respectively.
TDialog is a streamable class.

ObjectWindows provides three-dimensional (3-D) support for dialog boxes.
If your application expects to use Microsoft’s CTL.3D DLL, you need to
register your application by calling T Application::EnableCtl3d.
ObjectWindows will then automatically forward the WM_CTLCOLOR
message to the CTL3D DLL.

ObjectWindows also provides BWCC support for dialog boxes. Unless a
custom template is specified, TDialog uses the BWCC templates. (By

139

TDialog class

default, TApplication’s member function EnableBWCC enables BWCC
support.) :

Public data members

Attr TDialogAttr Attr;
Attr holds the dialog creation attributes of the dialog box. TDialogAttr is
defined on page 156.

IsModal BOOL IsModal;

IsModal is TRUE if the dialog box is modal and FALSE if it is modeless.

Public constructors and destructor

Constructor TDialog (TWindow* parent, TResId resId, TModule* module = 0);

Invokes a TWindow constructor, passing parent and module, and calls
Disable AutoCreate so that the TDialog will not be automatically created and
displayed along with its parent. TDialog then initializes Title to —1 and sets
Attr.Name using the dialog’s integer or string resource identifier, which
must correspond to a dialog resource definition in the resource file. Finally,
it initializes Attr.Param to 0 and sets IsModal to FALSE.

See also: Tapplication::EnableBWCC, TWindow:: T Window,
TWindow::DisableAutoCreate

Destructor ~TDialog();

If Attr.Name is a string and not an integer resource identifier, this destructor
frees memory allocated to hold the name of the TDialog (Attr.Name).

See also TWindow::~TWindow

Public member functions

CloseWindow void CloseWindow(int retValue = IDCANCEL);

Conditionally shuts down the dialog box. If the dialog box is modeless, it
calls TWindow::Close Window. If the dialog box is modal, it calls CanClose. If
CanClose returns TRUE, CloseWindow calls TransferData to transfer dialog
box data, passing it retValue. The default value of retValue is IDCANCEL.

See also: TWindow::CloseWindow
CmCancel void CmCancel();

140 ' \ ObjectWindows 2.0 Reference Guide

CmOk

Create

Destroy

DialogFunction

DoCreate

DoExecute

TDialog class

Automatic response to a click on the Cancel button of the dialog box. Calls
CloseWindow, passing IDCANCEL.

See also TDialog::CloseWindow
void CmOk();

Responds to a click on the dialog box’s OK button (with the identifier
IDOK). Calls CloseWindow, passing IDOK.

See also: TDialog::CloseWindow
virtual BOOL Create();

Creates a modeless dialog box interface element associated with the TDialog
object. Calls Disable AutoCreate to prevent automatic creation of all child
windows. Calls EnableKBHandler to enable keyboard handling. Registers all
the dialog’s child windows for custom control support. Calls the Windows
function CreateDialogParam to create the dialog box.

Create returns TRUE if successful. If unsuccessful, Create throws a
TXInvalid Window exception.

See also: TDialog::Execute, TModule::Make Window,
TWindow::Disable AutoCreate

virtual void Destroy{int retValue = IDCANCEL);

Destroys the interface element associated with the TDialog object. If the
element is a modeless dialog box, Destroy calls TWindow::Destroy. If the
element is a modal dialog box, Destroy calls EnableAutoCreate on all child
windows. Then Destroy calls the Windows function EndDialog, passing
retValue as the value returned to indicate the result of the dialog’s
execution. The default retValue is IDCANCEL.

See also: TWindow::Destroy, TWindow::EnableAutoCreate
virtual BOOL DialogFunction(UINT message, WPARAM, LPARAM);

To process messages within the dialog function, your application must
override this function. DialogFunction returns TRUE if the message is
handled and FALSE if the message is not handled.

virtual HWND DoCreate();

Create calls DoCreate to perform the actual creation of a dialog box. DoCreate
calls the Windows API function CreateDialogParam to perform the actual
creation of the dialog box.

virtual int DoExecute();

Chapter 1, Library reference 141

TDialog class

EvCIose

EvinitDialog

EvPaint

EvSetFont

Execute

GetDefaultld

GetltemHandle

PreProcessMsg

142

Execute calls DoExecute, which calls the Windows API function
DialogBoxParam to perform the actual execution of a dialog box.

void EvClose();
Responds to an incoming EvClose message by shutting down the window.
virtual BOOL EvInitDialog(HWND hWndFocus);

EvlnitDialog is automatically called just before the dialog box is displayed.
It calls Setup Window to perform any setup required for the dialog box or its
controls.

See also: TWindow::Setup Window
void EvPaint();

If the control has a predefined Windows class, EvPaint calls DefWndProc for
Windows-supplied painting. Otherwise, it calls TWindow::EvPaint.

See also: TWindow::EvPaint
virtual void EvSetFont (HFONT) ;

: Responds‘to a request to change a dialog’s font.

virtual int Execute();

Execute creates and executes a modal dialog box interface element
associated with the TDialog object. If the element is successfully associated,

~ Execute does not return until the TDialog is closed.

Execute then calls DisableAutoCreate to prevent all child windows from
being created automatically. After it calls EnableKBHandler to enable
keyboard handling, DialogBoxParam registers all the dialog’s child windows
for custom control support. Finally, Execute calls DoExecute, which calls the
Windows API function DialogBoxParam to execute the dialog box. If errors
occur, a TXInvalid Window exception is thrown.

See also: TModule::ExecDialog, TWindow::DisableAutoCreate
UINT GetDefaultId() const;
Gets the default resource ID.

. HWND GetItemHandle(int childId);

Returns the dialog box control’s window handle identified by the supplied
ID. Because GetltemHandle is now obsolete, new applications should use
TWindow::GetDIgltem.

BOOL PreProcessMsg (MSG &) ;

ObjectWindows 2.0 Reference Guide

SendDlgltemMsg

SetCaption

SetDefaultld

EvCtiColor

GetClassName

TDialog class

Performs preprocessing of window messages. If the child window has
requested keyboard navigation, PreProcessMsg handles any accelerator key
messages and then calls the Windows API function ::IsDialogMessage to
process any other keyboard messages.

See also: TWindow::PreProcessMsg
DWORD SendDlgItemMsg(int ChildId, WORD Msg, WORD WParam, DWORD LParam);

Sends a Windows control message, identified by Msg, to the dialog box’s
control identified by its supplied ID, ChildID. WParam and LParam become
parameters in the control message. SendDlgltemMsg returns the value
returned by the control, or 0 if the control ID is invalid.

void SetCaption(const char far* title);

If Title is not -1, calls TWindow::SetCaption.
See also: SetupWindow, TWindow::SetCaption
void SetDefaultId(UINT Id);

Sets the default resource ID.

Protected member functions

HBRUSH EvCtlColor (HDC, HWND hWndChild, UINT ctlType);

Passes the handle to the display context for the child window, the handle to
the child window, and the default system colors to the parent window. The
parent window then uses the display-context handle given in HDC to set
the text and background colors of the child window.

If three-dimensional (3-D) support is enabled, EvCtiColor handles the
EV_WM_CTLCOLOR message by allowing the CTL3D DLL to process the
WM_CTLCOLOR message in order to set the background color and
provide a background brush for the window.

See also: TApplication::EnableCti13d
char far* GetClassName();

GetClassName overrides the virtual function defined in TWindow and
returns the name of the dialog box’s default Windows class, which must be
used for a modal dialog box. For a modeless dialog box, GetClassName
returns the name of the default TWindow. If BWCC is enabled,
GetClassName returns BORDLGCLASS.

| See also: TWindow::GetClassName

Chapter 1, Library Reference : ’ T4

TDialog class

GetWindowClass

SetupWindow

void GetWindowClass (WNDCLASS& wndClass);

Opverrides the virtual function defined in TWindow. Fills WndClass with a
TDialog registration attributes obtained from an existing TDialog window or
BWCC if enabled. By default, a TDialog object has a standard application
icon and arrow cursor. To change these or other registration attributes,
redefine this member function and GetClassName in your TDialog derived
class. Be sure to call Get WindowClass in your Get WindowClass member
function prior to modifying the defaults that TDialog sets.

See also: TWindow::Get WindowClass
void SetupWindow() ;

Overrides the virtual function defined in TWindow. Sets up the dialog box
by calling SetCaption (sets Title) and T Window::SetupWindow.

If three-dimensional (3-D) support is enabled, SetupWindow calls the CTL3D
DLL to create the dialog box.

See also: TCommonDialog::Setup Window, TDialog::SetCaption,
TWindow::Setup Window

Response table entries

Response table entry Member function

EV_COMMAND (IDCANCEL, CmCancel) CmCancel
EV_COMMAND (IDOK, CmOk) CmOk
EV_CTLCOLOR EvCtiColor
EV_WM_CLOSE EvClose
EV_WM_PAINT EvPaint

TDialogAttr struct ’ : dialog.h

Name

Param

144

A TDialogAttr is used to hold a TDialog’s creation attributes.

Public data members

char far* Name;
Name holds the identifier of the dialog resource.

DWORD Param;

ObjectWindows 2.0 Reference Guide

TDib class

TDialogAttr struct

Param holds a parameter that is supplied to the dialog box when it is
created. After Windows accepts Param, it is then available in the message
response functions associated with WM_INITDIALOG.

See also: TDialog::Attr

gdiobjec.h

Bits

Info

IsCore

Mode

The class TDib, derived from TGdiObject, represents GDI Device
Independent Bitmap (DIB) objects. TDibDCs encapsulate the creation of
DCs using DIB.DRV (a GDI driver provided with Windows MME and 3.1).
DIBs have no Windows handle; they are just structures containing format
and palette information and a collection of bits or pixels. TDib provides a
convenient way to work with DIBs like any other GDI object. The memory
for the DIB is in one GlobalAlloc’d unit so it can be passed to the Clipboard,
OLE, and so on.

The TDib destructor overloads the base destructor because DIBs are not real
GDI objects.

Protected data members

void HUGE* Bits;

Bits points into the block of memory pointed to by Info.
See also: TDib::GetBits

int H;

The height of this DIB in pixels.

See also: TDib::Height, TDib::Size, TDib::NumScans
BITMAPINFO far* Info;

Locked global allocated block.

See also: TDib::GetInfo

BOOL IsCore;

Set TRUE if this DIB is an old-style PM DIB using core headers; otherwise,
set FALSE.

See also: TDib::isPM

WORD Mode;

Chapter 1, Library reference ‘ 145

~TDib class

NumClrs

Constructor

Constructor

Constructor

Constructor

146

If Mode is DIB_RGB_Colors, the color table contains 4-byte RGB entries. If
Mode is DIB_PAL_COLORS, the color table contains 2-byte indexes into
some other palette (such as the system palette). Because either of these two
cases might exist, two versions of certain functions (such as GetColors() and
GetIndices()) are required.

See also: TDib::GetColors, TDib::GetIndices, TDib::Usage
long NumClré; ;

The number of colors associated with this DIB.

See also: TDib::NumColors

int W;

The width of this DIB in pixels.

See also: TDib::Width, TDib::Size

Public constructors and destructor

TDib (HGLOBAL handle, TAutoDelete autoDelete = NoAutoDelete);

Creates a TDib object and sets the Handle data member to the given
borrowed handle. The ShouldDelete data member defaults to FALSE,
ensuring that the borrowed handle will not be deleted when the C++ object
is destroyed.

See also: TGdiObject::Handle, TGdiObject::ShouldDelete,
TDib::InfoFromHandle

TDib{const TClipboard& clipboard);

Constructs a TDib object with a handle borrowed from the given
Clipboard.

See also: TDib::InfoFromHandle, ::GetClipboardData
TDib(const TDib& dib);

This public copy constructor creates a complete copy of the given dib object,
as in: ’

TDib myDib = yourDib;
TDib(int width, int height, int nColors, WORD mode = DIB_RGB_COLORS);

Creates a DIB object with the given width, height, number of colors, and
mode values.

See also: DIB_RGB_COLORS

ObjectWindows 2.0 Reference Guide

Constructor

Constructor

Constructor

Destructor

ChangeModeToPal

ChangeModeToRGB

FindColor

Findindex

TDib class

TDib (HINSTANCE instance, TResID resID);
Creates a DIB object from the resource with the given ID.
See also: TDib::LoadResource

TDib{const char* name);

Creates a DIB object from the given resource file.

‘See also: TDib::LoadFile

TDib(const TBitmap& bitmap, const TPalette* pal = 0);

Creates a DIB object from the given resource bitmap and palette. If pal is 0
(the default), the default palette is used.

See also: TScreenDC

~TDib(};

Overrides the base destructor.
See also: ~TGdiObject

Public member functions

BOOL ChangeModeToPal (const TPalette& pal);

Converts the existing color table in place to use palette relative values. The
palette that is passed is used as a reference.
See also: TDib::ChangeModeToRGB, TPalette::GetPaletteEntry

BOOL ChangeModeToRGB (const TPalette& pal); '

Converts the existing color table in place to use absolute RGB values. The
palette that is passed is used as a reference. Returns TRUE if the call is
successful; otherwise returns FALSE.

See also: TDib::ChangeModetoPal, TPalette::GetPaletteEntry
int FindColor(TColor color);
Returns the palette entry for the given color.

See also: TDib::GetColor, TColor, TDib::SetColor
TDib::MapColor

int FindIndex (WORD index);

Returns the palette entry corresponding to the given index.

Chapter 1, Library referénce) 147

TDib class

GetBits

GetColor

GetColors

Getindex

Getindices

Getinfo

GetinfoHeader

Height

IsOK

148

See also: TDib::GetIndex, TDib::SetIndex, TDib::MapIndex

const void HUGE* GetBits() const;
void HUGE* GetBits();

Returns the Bits data member for this DIB.

See also: TDib::Bits

TColor GetColor(int entry) const;

Returns the color for the given palette entry.

Sée also: TDib::SetColor, TColor, TDib::FindColor, TDib::MapColor

inline const TRgbQuad far* GetColors() const;
inline TRgbQuad far* GetColors();

Returns the bmiColors value of this DIB.

See also: TRgbQuad

WORD GetIndex(int entry) const;

Returns the color index for the given palette entry.

See also: TDib::SetIndex, TDib::FindIndex,, TDib::MapIndex

inline const WORD far* GetIndices() const;
inline WORD far* GetIndices();

Returns the bmiColors indices of this DIB.
See also: TDib::GetColors

inline const BITMAPINFO far* GetInfo() const;
inline BITMAPINFO far* GetInfo();

Returns this DIB’s Info field.
See also: TDib::Anfo, TDib::GetInfoHeader, BITMAPINFO

inline const BITMAPINFOHEADER far* GetInfoHeader() const;
inline BITMAPINFOHEADER far* GetInfoHeader();

Returns this DIB's bmiHeader.

See also: TDib::Info, TDib::GetInfo, BITMAPINFOHEADER
inline int Height () const;

Returns 0 if Info is O; otherwise returns H, this DIB’s height.
See also: TDib::Info

inline BOOL IsOK() const;

ObjectWindows 2.0 Reference Guide

IsPM

MapColor

Maplindex

NumColors

NumScans

operator <<

I Dib class

Returns FALSE if Info is 0, otherwise returns TRUE. If there is a problem
with the construction of the DIB, memory is freed and Info is set to 0.
Therefore, using Info is a reliable way to determine if the DIB is constructed
correctly.

See also: TDib constructors, TDib::Info

inline BOOL IsPM() const;

_Returns TRUE if IsCore is TRUE,; that is, if the DIB is an old-style PM DIB

using core headers. Otherwise returns FALSE.
See also: TDib::IsCore
int‘MapColor(TColor fromColor, TColor toColor, BOOL doAll = FALSE);

Maps the fromColor to the toColor in the current palette of this DIB.
Returns the palette entry for the given color. Returns the palette entry for
the toColor argument. ‘

See also: TDib::GetColor, TColor, TDib::SetColor, TDib::FindColor
int MapIndex (WORD fromIndex, Word toIndex, BOOL doAll = FALSE);

Maps the fromIndex to the tolndex in the current palette of this DIB.
Returns the palette entry for the tolndex argument.

See also: TDib::FindIndex, TDib::SetIndex, TDib::GetIndex
inline long NumColors() const;

Returns 0 if Info is 0; otherwise returns NumClrs, the number of colors in
this DIB'’s palette.

See also: TDib::Info

inline int NumScans() const;

Returns 0 if Info is 0; otherwise returns H, the number of scans in this DIB.
See also: TDib::StartScan

inline TClipboardé& operator<<(TClipboard& clipboard, TDib& dib);

Writes the given dib to the given clipboard. Returns a reference to the
resulting Clipboard, allowing the normal chaining of <<.

See also: TClipboard

operator BITMAPINFO() operator const BITMAPINFO far*() const;

operator BITMAPINFO far*();

Typecasts this DIB by returning a pointer to its bitmap information
structure.

Chapter 1, Library reference’ 149

IDib class

See also: TDib::Getlnfo, BITMAPINFO |

operator BITMAPINFOHEADER() operator const BITMAPINFOHEADER far*() const;
operator BITMAPINFOHEADER far*();

Typecasts this DIB by returning a pointer to its bitmap info header.
See also: TDib::GetInfoHeader
operator inline operator HANDLE() const;
HANDLE(Typecasts this DIB by returning its Handle.
See also: TGdiObject::Handle

operator operator const TRgbQuad far*() const;
TRgbQuad() operator TRgbQuad far*() const;

Typecasts this DIB by returning a pointer to its colors structure.
See also: TDib::GetColors, TRgbQuad
SetColor ~ void SetColor(int entry, TColor color);
Sets the given color for the given palette entry.
See also: TDib::GétColor, TColor, TDib::MapColor, TDib::FindColor
Setindex void SetIndex(int entry, WORD index);
Sets the given index for the given entry.
See also: TDib::Getlndex, TDib::FindIndex, TDib::MapIndex
Size inline TSize Size() const; '

Returns TSize(0,0) if Info is 0; otherwise returns TSize(W,H), the size of this

DIB.
See also: TDib::Info, TSize
StartScan inline int StartScan() const;

Returns the DIB’s starting scan line.
See also: TDib:numScans

ToCliphoard void ToClipboard(TClipboard& clipboard);
Puts this DIB onto the specified Clipboard.
See also: TClipboard \

Usage in‘line‘ WORD Usage() const;

Returns the Mode for this DIB. This value tells GDI how to treat the colof
table. ' v

150 : ‘ ‘ - ObjectWindows 2.0 Reference Guide

TDib class

See also: TDib::Mode

Width inline int Width() 'const;
Returns 0 if Info is 0; otherwise returns W, the DIB width.
See also: TDib::Info

WriteFile BOOL WriteFile(const char* filename);
Returns TRUE if the call is successful; otherwise returns FALSE.
Protected member functions

InfoFromHandle vold InfoFromHandle(); /
Locks this DIB’s handle and extracts the remaining data member values
from the DIB header.
See also: TDib::GetInfoHeader

LoadFile BOOL LoadFile(const char* name);
Loads this DIB from the given file name. Returns TRUE if the call is
successful; otherwise returns FALSE.
See also: TDib::LoadResource, TDib constructors

LoadResource BOOL LoadResource (HINSTANCE instance, TResID resiD);
Loads this DIB from the given resource and returns TRUE if successful.
See also: TDib::LoadFile, TDib constructors

Read BOOL Read{TFile& file, long offBits = 0);
Reads data to this DIB, starting at offset offBits, from any file, BMP, or
resource. Returns TRUE if the call is successful; otherwise returns FALSE.
See also: TDib::LoadFile

TDibDC class dc.h
A DC class derived from TDC, TDibDC provides access to device—‘
independent bitmaps (DIBs) using the DIB.DRV driver.
Public constructors

Constructor TDibDC (const TDib& dib);

Chapter 1, Library reference 151

TDibDC class

Constructor

Creates a TDibDC object with the data provided by the given TDib object.
See also: class TDib, TDC::TDC

TDibDC(const TDC& DC);

Creates a TDib object compatible with the given DC argument.

See also: TDC:TDC

TDocManager class docmanag.h

152

TDocManager creates a document manager object that manages the list of
current documents and registered templates, handles standard file menu
commands, and displays the user-interface for file and view selection
boxes. To provide support for documents and views, an instance of
TDocManager must be created by the application and attached to the
application.

The document manager normally handles events on behalf of the
documents by using a response table to process the standard
CM_FILENEW, CM_FILEOPEN, CM_FILECLOSE, CM_FILESAVE,
CM_FILESAVEAS, and CMVIEWCREATE File menu commands. In
response to a CM_FILENEW or a CM_FILEOPEN command, the document
manager creates the appropriate document based on the user’s selections.
In response to the other commands, the document manager determines
which of the open documents contains the view associated with the
window that has focus. The menu commands are first sent to the window
that is in focus and then through the parent window chain to the main
window and finally to the application, which forwards the commands to
the document manager.

When you create a TDocManager or a derived class, you must specify that it
has either a multi-document (dmMDI) or single-document (dmSDI)
interface. In addition, if you want the document manager to handle the
standard file commands, you must OR these with dmMenu.

You can also enable or disable the document manager menu options by
passing dmSaveEnable or dmNoRevert in the constructor. If you want to
enable the File | Save menu option if the document is unmodified, pass the
dmSaveEnable flag in the constructor. To disable the “Revert to Saved” menu
option, pass dmNoRevert in the constructor. '

When the application directly creates a new document and view, it can
attach the view to its frame window, create MDI children, float the
window, or create a splitter. However, when the document manager creates

ObjectWindows 2.0 Reference Guide

DoclList

Constructor

Destructor

CmFileClose

TDocManager class

anew document and view from the File | Open or File | New menu
selection, the application doesn’t control the process. To give the
application control, the document manager sends messages after the new
document and view are successfully created. Then, the application can use
the information contained in the template to determine how to install the
new document or view object.

TDocManager and derived classes can be created to support specialized
needs such as an OLE 2.0 server.

Public data members

TDocument: :List DocList;

Holds the list of attached documents or 0 if no documents exist.

Public constructors and destructor

TDocManager {int mode) ;

Constructs a TDocManager object that supports either single (SDI) or
multiple (MDI) open documents depending on the application. mode is set
to either dmMenu, dmMDI, dmSDI, dmSaveEnable, or dmNoRevert. To install
the standard TDocManager File menu commands, you must OR dmMDI or
dmSDI with dmMenu. For example,

DocManager = new TDocManager (DocMode | dmMenu);

The document manager can then use its menu and response table to handle
these events. If you do not specify the dmMenu parameter, you must
provide the menu and functions to handle these commands. However, you
can still use your application object’s DocManager data member to access the
document manager’s functions. '

See also: dmxxxx document manager mode constants
virtual ~TDocManager();

Destroys a TDocManager object and removes attached documents and
templates. The constructor resets TDocTemplate::StaticHead so that it points
to the head of the static template list.

Public member functions

virtual void CmFileClose();

Chapter 1, Library reference . 153

TDocManager class

CmFileNew

CmFiIeOpeﬁ

CmFileRevert

CmFileSave

CmFileSaveAs

CmViewCreate

CreateAnyDoc

CreateAnyView

154

Responds to a file close message. Tests to see if the document has been
changed since it was last saved, and if not, prompts the user to confirm the
save operation.

virtual void CmFileNew();

Calls CreateAnyDoc and sets dtNewDoc to a value that indicates this is a new
document with no path specified.

See also: TDocManager::CreateAnyDoc, dtxxxx document view constants
virtual void CmFileOpen();

Lets the user select a registered template from the list displayed in the
dialog box. Calls CreateAnyDoc.

See also: TDocManager::Create AnyDoc
virtual void CmFileRevert();

Reverts to the previously saved document.
virtual void CmFileSave();

Responds to a file save message. Set doc to the current document. Calls
IsDirty and returns IDS_NOTCHANGED if the document hasn’t been
changed since the last time it was saved.

virtual void CmFileSaveAs();
Prompts the user to enter a new name for the document.
virtual void CmViewCreate();

Responds to a view create message by creating a document view based on
the specified directory path.

virtual TDocument* CreateAnyDoc(const char far* path, long flags= 0);

Creates a document based on the directory path and the specified template.
flags, one of the document view constants, determines how the document
template is created. If path is 0 and this is not a new document (the flag
dtNewDoc is not set), it displays a dialog box. If path is 0, dtNewDoc is not
set, and more than one template exists, it displays a dialog box and a list of
templates.

See also: TDocTemplate::CreateDoc. dtxxxx document view constants
virtual TView* CreateAnyView(TDocument& doc, long flags= 0);

Creates a document view based on the directory path and specified
template. flags, one of the document view constants, determines how the
document template is created.

ObjectWindows 2.0 Reference Guide

DeleteTemplate

EvCanClose

EvPreProcessMenu

FlushDoc

GetApplication

GetCurrentDoc

MatchTemplate

PostDocError

TDocManager class

See also: TDocTemplate::CreateView, dtxxxx document view constants

void DeleteTemplate (TDocTemplate&);

Removes a template from the list of templates attached to the document.
See also: TDocManager::RefTemplate

BOOL EvCanClose();

Checks to see if all child documents can be closed before closing the current
document. If any child returns FALSE, returns FALSE and aborts the
process. If all children return TRUE, EvCanClose calls
TDocManager::FlushDoc for each document. If FlushDoc finds that the
document is dirty, it displays a message asking the user to save the
document, discard any changes, or cancel the operation. If the document is
not dirty and EvCanClose returns TRUE, EvCanClose returns TRUE.

See also: TApplication::CanClose, TDocManager::FlushDoc
void EvPreProcessMenu (HMENU hmenu);

Called from MainWindow, EvPreProcessMenu loads and deletes a menu at
the position specified by MF_POSITION or MF_POPUP. Your application
can call EvPreProcessMenu to process the main window’s menu before it is
displayed.

See also: TApplication::PreProcessMenu
virtual BOOL FlushDoc (TDocument& doc);

Updates the document with any changes and prompts the user for
confirmation of updates.

inline TApplication* GetApplication();
Returns the current application.
virtual TDocument * GetCurrentDoc () ;

Calls TWindow::GetFocus to determine the window with the focus. Searches
the list of documents and returns the document that contains the view with
the focus. Returns 0 if no document has a view with focus.

TDocTemplate* MatchTemplate(const char far* path);

MatchTemplate returns the first registered template whose pattern matches
the given file name. If no template is compatible with the supplied file
name, it returns 0.

virtual UINT PostDocError(TDocument& doc, UINT sid, UINT choice = MB_OK);

Chapter 1, Library reference - 155

TDocManager class

PostEvent

PostEvent

RefTemplate

SelectAnySave

UnRefTemplate

SelectDocPath

SelectDocType

- 156

'

Displays a message box with the error message passed as a string resource
ID in sid. By default, the message box contains either an OK push button or
a question mark icon. If an error message can’t be found, PostDocError
displays a “Message not found” message. choice can be one or more of the
Windows MB_Xxxx style constants. See the Windows API online Help for a
description of the values. This function can be overridden.

See also: TDocument::PostError
virtual void PostEvent (int 1d, TDocument& doc);

If the current document changes, calls ::SendMessage and passes a
WM_OWLDOCUMENT message to indicate a change in the status of the
document. ’

virtual void PostEvent (int id, TView& view);

If the current view changes, calls ::SendMessage and passes a
WM_OWLVIEW message to indicate a change in the status of the view.

voild RefTemplate(TDocTemplate&);

. Adds a template to the list of templates attached to the document.

See also: TDocManager::UnRefTemplate

virtual TDocTemplate* SelectAnySave(TDocumenté& doc, BOOL samedoc = TRUE);
Selects a registered template to save with this document.

void UnRefTemplate (TDocTemplate&);

Removes a template to the list of templates attached to the document.

See also: TDocManager::RefTemplate

Protected member functions

virtual int SelectDocPath(TDocTemplate** tpllist, int tplcount, char far*
path, int buflen, long flags, BOOL save=FALSE);

‘Prompts the user to select one of the templates to use for the file to be

opened. Returns the template index used for the selection or 0 if
unsuccessful. For a file open operation, save is FALSE. For a file save
operation, save is TRUE. This function can be overridden to provide a
customized user-interface.

virtual int SelectDocType (TDocTemplate** tpllist, int tplcount); -

ObjectWindows 2.0 Reference Guide

TDocManager class

SelectDocType, which can be overridden, lets the user select a document
type from a list of document templates. Returns the template index used for
the selection or 0 if unsuccessful.

SelectViewType virtual int SelectViewType(TDocTemplate** tpllist, int tplcount);
SélectViewType, which can be overridden, lets the user select a view name
for a new view from a list of view names. Returns the template index used
for the selection or 0 if unsuccessful.

Response table entries
Response table entry Member function
EV_COMMAND(CM_FILECLOSE, CmFileClose) CmFileClose
EV_COMMAND(CM_FILENEW, CmFileNew), CmFileNew
EV_COMMAND(CM_FILEOPEN, CmFileOpen}) CmFileOpen
EV_COMMAND(CM_FILEREVERT, CmFileRevert) ‘ CmFileRevert
EV_COMMAND(CM_FILESAVE, CmFileSave) “CmFileSave
EV_COMMAND(CM_FILESAVEAS, CmFileSaveAs) CmFileSaveAs
EV_COMMAND(CM_VIEWCREATE, CmViewCreate) CmViewCreate
EV_COMMAND_ENABLE(CM_FILECLOSE, CmEnableClose) CmEnableClose
EV_COMMAND_ENABLE(CM_FILENEW, CmEnableNew) CmEnableNew
EV_COMMAND_ENABLE(CM_FILEOPEN, CmEnableOpen) CmEnableOpen
EV_COMMAND_ENABLE(CM_FILEREVERT, CmEnableRevert) EmEnableRevert
EV_COMMAND_ENABLE(CM_FILESAVE, CmEnableSave) CmEnableSave
EV_COMMAND_ENABLE(CM_FILESAVEAS, CmEnableSaveAs) CmEnableSaveAs
EV_COMMAND_ENABLE(CM_VIEWCREATE, CmEnableCreate) CmEnableCreate
EV_WM_OWLCANCLOSE ' EvCanClose
EV_WM_OWLPREPROCMENU EvPreProcessMenu

TDocTemplate class docmanag.h
TDocTemplate is an abstract base class that contains document template
functionality. TDocTemplate classes create documents and views from
resources and handle document naming and browsing. The document
manager maintains a list of the current template objects. Each document
type requires a separate document template.

Public member functions

ClearFlag inline void ClearFlag(long flag);

Clears a document view constant.

Chapter 1, Library reference 157

TDocTemplate class

CreateDoc

CreateView

GetDefaultExt

GetDescription

GetDirectory

GetDocManager
GetFileFilter

GetFlags

GetViewName

158

See also: dtxxxx document view constants
virtual TDocument* CreateDoc(const char far* path, long flags = 0)= 0;

A pure virtual function that must be defined in a derived class, CreateDoc
creates a document based on the directory path (path) and the specified
template and flags value. If the path is 0 and the new flag (dtNewDoc) is not
set, the dialog box is displayed.

See also: TDocManager::CreateAnyDoc
virtual TView* CreateView(TDocument& doc, long flags) = 0;

A pure virtual function that must be defined in a derived class, CreateView
creates the view specified by the document template class.

See also: TDocManager::Create AnyView
inline const char far* GetDefaultExt () const;

Gets the default extension to use if the user has entered the name of a file
without any extension. If there is no default extension, GetDefaultExt
contains 0.

inline const char far* GetDescription() const;

Gets the template description to put in the file-selection list box or the File |
New menu-selection list box.

inline const char far* GetDirectory() const;

Gets the directory path to use when searching for matching files. This will

. get updated if a file is selected and the dtUpdateDir flag is set.

See also: dt document view constants

inline -TDocManager* GetDocManager () const;

Points to the document manager. '

inline const char far* GetFileFilter() const;

Gets any valid document matching pattern to use when searching for files.
inline long GetFlags() const;

Gets the document view constants, which indicate how the document is
created and opened.

See also: dtxxxx document view constants

virtual const char far* GetViewName() = 0;

-A pure virtual function that must be defined in a derived class,

GetViewName gets the name of the view associated with the template.

ObjectWindows 2.0 Reference Guide

IsFlagSet

IsMyKindOfDoc

IsVisible

SelectSave

SetDefaultExt

SetDirectory

SetDocManager

SetFileFilter

SetFlag

TDocTemplate class

inline BOOL IsFlagSet (long flag); -

Returns nonzero if the document view flag is set.
See also: dtxxxx document view constants

virtual TDocument* IsMyKindOfDoc (TDocument& doc)=0;

A pure virtual function that must be defined in a derived class,
IsMyKindOfDoc tests if the template belongs to the same class as the
document or to a derived class.

See also: TDocTemplateT::IsMyKindOfDoc
inline BOOL IsVisible();

Indicates whether the document can be displayed in the file selection dialog
box. A document is visible if dtHidden isn’t set and Description isn’t 0.

BOOL SelectSave(TDocumenté& doc);

Prompts the user to select a file name for the document. Filters out read-
only files.

void SetDefaultExt (const char far*);

Sets the default extension to use if the user has entered the name of a file
without any extension. If there is no default extension, SetDefaultExt
contains 0.

void SetDirectory(const char far*, int len);

Sets the directory path to use when searching for matching files. This will
get updated if a file is selected and the dtUpdateDir flag is set.

See also: TDocTemplate::GetDirectory

inline void SetDocManager (TDocManager* dm);

Sets the current document manager to the argument dm:

void SetFileFilter(const char far*);

Sets the valid document matching pattern to use when searching for files.
inline void SetFlag(long flag);

Sets the document view constants, which indicate how the document is
created and opened.

See also: dtxxxx document view constants

Chapter 1, Library reference ‘ 159

I Doclemplate class

Constructor

Destructor

InitDoc

InitView

Protected constructors and destructor

TDocTemplate(const char far* desc, const char far* filt, const char
far* dir, const char far* ext, long flags):

Constructs a TDocTemplate with the specified file description (desc), file
filter pattern (filt), search path for viewing the directory (dir), default file
extension (ext), and flags representing the view and creation options (flags).
Sets Description to desc, FileFilter to filt, Directory to dir, DefaultExt to ext, and
Flags to flags. Then, adds this template to the document manager’s template
list. If the document manager is not yet constructed, adds the template to a
static list, which the document manager will later add to its template list.

~TDocTemplate() ;

Destroys a TDocTemplate object and frees the data members (FileFilter,
Description, Directory, and DefaultExt). The destructor is called only when no
views or documents are associated with the template. Instead of calling this
destructor directly, use the Delete member function.

Protected member functions

TDocument* InitDoc (TDocument* doc, const char far* path, long flags);
Called only from the subclass to continue CreateDoc processing.

See also: TDocTemplate::CreateDoc

TView* InitView(TView* view);

Called only from the subclass to continue CreateView processing.

See also: TDocTemplate::CreateView

TDocTemplateT<D,V> class docmanag.h

160

To register the associated document and view classes, a parameterized
subclass, TDocTemplateT<D,V>, is used to construct a particular document
and view, where D represent the document class and V represents the view
class. The parameterized template classes are created using a macro, which
also generates the associated streamable support. The document and view
classes are provided through the use of a parameterized subclass. The
template class name is used as a typedef for the parameterized class. For
example,

DEFINE_DOC_TEMPLATE_CLASS (TFileDocument, TEditView, MyEditFile)

ObjectWindows 2.0 Reference Guide

Constructor

. CreateDoc

CreateView

IsMyKindOfDoc

IsMyKindOfView

TDocTemplate 1 <D, V> class

You can instantiate a document template using either a static member or an
explicit construction. For example,

MyEditFile etl("Edit text files",
C"Fotxtt, "Di\\doc", " TXT" ", dtNoAutoView) ;
new MyEditFile(.....)

When a document template is created, the document manager
(TDocManager) registers the template. When the document template’s delete
function is called to delete the template, it is no longer visible to the user.
However, it remains in memory as long as any documents still use it.

Public constructors

TDocTemplateT (const char far* filt, const char far* desc, const char far*
dir, const char far* ext, long flags);

Constructs a TDocTemplateT with the specified file description (desc), file
filter pattern (filt), search path for viewing the directory (dir), default file
extension (ext), and flags representing the view and creation options (flags).

Public member functions

D* CreateDoc(const char far* path, long flags);

CreateDoc creates a document of type D based on the directory path (path)
and flags value.

' See also: TDocTemplate::CreateDoc

TView* CreateView(TDocument& doc, longflags);

CreateView creates the view specified by the document template class.
See also: TDocManager::Create AnyView

D* TIsMyKindOfDoc {TDocument& doc);

IsMyKindOfDoc tests to see if the document (doc) is the same class as the
template’s document class or if the document is a derived class. If the
template can’t use the document, IsMyKIndOfDoc returns 0.

See also: TDocTemplate::IsMyKindOfDoc
V* TsMyKindOfvView (TView& view);

IsMyKindOfView tests to see if the view (view) is the same class as the
template’s view class or if the view is a derived class. If the template can’t
use the view, IsMyKIndOfView returns 0.

Chapter 1, Library reference 161

Iuocemplate<D,V> class

GetViewName

inline virtual const char far* GetViewName();

GetViewName gets the name of the view associated with the template.

TDocument class docview.h

162

TDocument is an abstract base class that serves as an interface between the
document, its views, and the document manager (TDocManager class).
TDocument creates, destroys, and sends messages about the view. For
example, if the user changes a document, TDocument tells the view that the
document has been updated.

In order to send messages to its associated views, the document maintains
a list of all the views existing for that document and communicates with the
views using ObjectWindows event-handling mechanism. Rather than using
the function SendMessage, the document accesses the view’s event table. The
views can update the document’s data by calling the member functions of
the particular document. Views can also request streams, which are
constructed by the document.

Both documents and views have lists of properties for their applications to
use. When documents and views are created or destroyed, messages are
sent to the application, which can then query the properties to determine
how to process the document or view. It is the document manager’s
responsibility to determine if a particular view is appropriate for the given
document.

Because the property attribute functions are virtual, a derived class (which
is called first) might override the properties defined in a base class. Each
derived class must implement its own property attribute types of either
string or binary data. If the derived class duplicates the property names of
the parent class, it should provide the same behavior and data type as the
parent. See Chapter 9 in the Object Windows Programmer’s Guide for more
information about how to use property attributes.

Although documents are usually associated with files, they do not
necessarily have to be files; they can also consist of database tables, mail
systems, fax or modem transmissions, disk directories, and so on. See
Chapter 9 in the Object Windows Programmer’s Guide for a visual
representation of the general form of communication among views (some
of which contain windows), documents, and persistent (or disk) storage.

ObjectWindows 2.0 Reference Guide

ChildDoc

Property enum

Tag

Constructor

Destructor

TDocument class

Public data members

List ChildDoc;
The list of child documents associated with this document.

enum {
PrevProperty = 0,
DocumentClass,
TemplateName,
ViewCount,
StoragePath,
DocTitle,
NextProperty,

¥

These property values, defined for TDocument, are available in classes
derived from TDocument. PrevProperty and NextProperty are delimiters for
every document’s property list. See Chapter 9 in the Object Windows
Programmer’s Guide for information about how to use these enumerated
property values.

LPVOID Tag;

Tag holds a pointer to the application-defined data. Typically, you can use
Tag to install a pointer to your own application’s associated data structure.
Tag, which is initialized to O at the time a TDocument is constructed, is not
used otherwise by the document view classes.

Public constructors and destructor

TDocument (TDocument* parent = 0);

Although you don’t create a TDocument object directly, you must call the
constructor when you create a derived class. parent points to the parent of
the new document. If no parent exists, parent is 0.

virtual ~TDocument () ;

Deletes a TDocument object. Normally, Close is called first. The ~TDocument
destroys all children and closes all open streams. If this is the last document
that used the template, closes the object’s template, and any associated

_views, deletes the object’s stream, and removes itself from the parent’s list

of children if a parent exists. If there is no parent, removes itself from the
document manager’s document list.

See also: TDocument::Close

Chapter 1, Library reference © 163

TDocument class

CanClose

Close

Commit

FindProperty

GetDocManager

GetDocPath

164

Public member functions

virtual BOOL CanClose();

Checks to see if all child documents can be closed before closing the current
document. If any child returns FALSE, CanClose returns FALSE and aborts
the process. If all children return TRUE, calls TDocManager::FlushDoc. If
FlushDoc finds that the document has been changed but not saved, it
displays a message asking the user to either save the document, discard
any changes, or cancel the operation. If the document has not been changed
and all children’s CanClose functions return TRUE, this CanClose function
returns TRUE.

See also: TView::CanClose, TDocManager::FlushDoc
virtual BOOL Close();

Closes the document but does not delete or detach the document. Before
closing the document, Close checks any child documents and tries to close
them before closing the parent document. Even if you write your own Close
function, call TDocument’s version so that all child documents are checked
before the parent document is closed.

virtual BOOL Commit (BOOL force = FALSE);

Saves the current data to storage. When a file is closed, the document
manager calls either Commit or Revert. If force is TRUE, all data is written to
storage. TDocument’s Commit checks any child documents and commits
their changes to storage also. Before the current data is saved, all child
documents must return TRUE. If all child documents return TRUE, Commit
flushes the views for operations that occurred since the last time the view
was checked. Once all data for the document is updated and saved, Commit

returns TRUE.

See also: TDocument::Revert
virtual int FindProperty(const char far* name);

FindProperty gets the property index, given the property name (name).
Returns the integer index number that corresponds to the name or 0 if the
name isn’t found in the list of properties.

See also: pfxxxx property attribute constants, TDocument::PropertyName
inline TDocManager& GetDocManager(); -
Returns a pointer to the current document manager.

inline LPCSTR GetDocPath();

ObjectWindows 2.0 Reference Guide

GetOpenMode

GetParentDoc

GetProperty

GetTemplate

GetTitle

HasFocus

InStream

IsDirty

Isopen

TDocument class

Returns the directory path for the document. This might change the SaveAs
operation.

int GetOpenMode;

Gets the mode and protection flag values for the current document.
See also: TDocument::SetOpenMode

inline TDocument* GetParentDoc():

Returns the parent document of the current document or 0 if there is no
parent document.

virtual int GetProperty(int index, void far* dest, int textlen=0);

Returns the total number of properties for this document where index is the
property index, dest contains the property data, and textlen is the size of the
array. If textlen is O, property data is returned as binary data; otherwise,
property data is returned as text data.

See also: pfxxxx property attribute constants, TDocument::SetProperty
inline TDocTemplate* GetTemplate();

Gets the template used for document creation. The template can be
changed during a SaveAs operation.

inline LPCSTR GetTitle();
Returns the title of the document.
BOOL HasFocus (HWND hwnd) ;

Used by the document manager to determine if the document contains a
view with a focus.

inline virtual TInStream* InStream(int mode, LPCSTR strmId=0);

Generic input for the particular storage medium, InStream returns a pointer
to a TInStream. mode is a combination of the ios bits defined in iostream.h.
strmld is one of the shxxxx file-sharing modes. strmld is used for documents
that support named streams. Override this function to provide streammg
for your document class.

See also: TDocument::OutStream
virtual BOOL IsDirty();

Returns TRUE if the document or one of its views has changed but has not
been saved. :

inline virtual BOOL IsOpen();

Chapter 1, Library reference o 165

TDocument class

NextStream

NextView

NotifyViews

Open

OutStream

PostError

PropertyCount

166

Checks to see if the document has any streams in its stream list. Returns
FALSE if no streams are open; otherwise, returns TRUE.

TStream* NextStream(const TStream* strm);)

Gets the next entry in the stream. Holds 0 if none exists.
TView* NextView(const TView* view); '

Gets the next view in the list of views. Holds 0 if none exists.
BOOL NotifyViews(int event, long item=0, TView* exclude=0);

Notifies the views of the current document and the views of any child
documents of a change, In contrast to QueryViews, NotifyViews sends
notification of an event to all views and returns TRUE if any views
returned a TRUE result. The event, EV_OWLNOTIFY, is sent with an event
code, which is private to the particular document and view class, and a
long argument, which can be cast appropriately to the actual type passed in
the argument of the response function.

See also: TDocument::QueryViews
inline virtual BOOL Open(int mode, LPCSTR path = 0);

Opens the document using the path specified by DocPath. Sets OpenMode to
mode. TDocument’s version always returns TRUE and actually performs no
actions. Other classes override this function to open specified file
documents and views.

See also: TFileDocument::Open
inline virtual TOutStream* OutStream(int mode, LPCSTR strmId = 0);

Generic output for the particular storage medium, OutStream returns a
pointer to a TOutStream. mode is a combination of the ios bits defined in
iostream.h. strmld is used for documents that support named streams.
TDocument ‘s version always returns 0. Override this function to provide
streaming for your document class.

See also: TDocument::InStream .
virtual UINT PostError (UINT sid, UINT cholce = MB_OK);

Posts the error message passed as a string resource ID in sid. choice is one or -
more of the Windows MB_Xxxx style constants. See the Windows API
online Help for a description of the values.

See also: TDocManager::PostDocError

inline virtual int PropertyCount ();

ObjectWindows 2.0 Reference Guide

PropertyFlags

PropertyName

QueryViews

Revert

RootDocument

SetDocManager

SetDocPath

TDocument class

Gets the total number of properties for the TDocument object. Returns
NextProperty —1.

See also: pfxxxx property attribute constants
virtual int PropértyFlags(int index) ;

Returns the attributes of a specified property given the index (index) of the
property whose attributes you want to retrieve.

See also: pfxxxx property attribute constants, TDocument::FindProperty,
TDocument::PropertyName

virtual const char* PropertyName{int index);

Returns the name of the property given the index value (index).

See also: pfxxxx property attribute constants, TDocument::FindProperty
TView* QueryViews (int event, long item=0, TView* exclude=0);

Queries the views of the current document and the views of any child
documents about a specified event, but stops at the first view that returns
TRUE, In contrast to NotifyViews, QueryViews returns a pointer to the first
view that responded to an event with a TRUE result. The event,
EV_OWLNOTIFY, is sent with an event code (which is private to the
particular document and view class) and a long argument (which can be
cast appropriately to the actual type passed in the argument of the response
function).

See also: TDocument::NotifyViews
virtual BOOL Revert(BOOL clear = FALSE);

Performs the reverse of Commit and cancels any changes made to the
document since the last commit. If clear is TRUE, data is not reloaded for
views. Revert also checks all child documents and cancels any changes if all
children return TRUE. When a file is closed, the document manager calls
either Commit or Revert. Returns TRUE if the operation is successful.

See also: TDocument::Commit

virtual TDocument& RootDocument {);

Returns the this pointer as the root document.

inline void SetDocManager (TDocManagers dm);

Sets the current document manager to the argument dm.
virtual BOOL SetDocPath(LPCSTR path);

Sets the document path for Open and Save operations.

Chapter 1, Library reference ‘ 167

1uocument class

SetOpenMode

SetProperty

SetTemplate

SetTitle

DirtyFlag

AttachStream

DetachStream

168

void SetOpenMode (int mode);

Sets the mode and protection flag values for the current document.
See also: TDocument::GetOpenMode

virtual BOOL SetProperty(int index, const void far* src);

Sets the value of the property, given the index of the property, and src, the
data type (either binary or text) to which the property must be set.

See also: pfxxxx property attribute constants, TDocument::GetProperty
BOOL SetTemplate(TDocTemplate* tpl);

Sets the document template. However, if the template type is incompatible
with the file, the document manager will refuse to save the file as this
template type.

virtual void SetTitle(LPCSTR title);
Sets the title of the document.

Protected data members

BOOL DirtyFlag;

Indicates that unsaved chahges have been made to the document. Views
can also independently maintain their local disk status.

Protected member functions

virtual void AttachStream(TStream& strm);

Called from TStream’s constructor, AttachStream attaches a stream to the
current document.

virtual void DetachStream(TStream& strm);

Called from TStream’s destructor, AttachStream detaches a stream associated
with the current document.

ObjectWindows 2.0 Reference Guide

TDocument::List class

TDocument::List class docview.h

Constructor

Destructor

Destroy

Insert

Remove

The TDocument::List nested class encapsulates the chain of documents. It
allows addition, removal, and destruction of documents from the
document list.

Public constructors and destructor

List();
Constructs a TDocument::List object.
inline ~List();

Destructs a TDocument::List object.

Public member functions

void Destroy();
Deletes all documents.
BOOL Insert (TDocument* doc);

Inserts a new document into the document list. Fails if the document
already exists.

BOOL Remove (TDocument* doc);

Removes a document from the document list.

TDroplnfo class point.h

Constructor

TDroplnfo is a simple class that supports file-name drag and drop
operations using the Windows API WM_DROPFILES message. Each
TDroplnfo object has a private handle to the HDROP structure returned by
the WM_DOPFILES message. Member functions simplify calls to
:DragQueryFile, ::DragQueryPoint, and ::DragFinish.

Public constructors

TDropInfo (HDROP handle);

Creates a TDroplnfo object with Handle set to the given handle.

Chapter 1, Library reference 169

TDroplnfo class

DragFinish

See also: TDroplnfo::Handle

Public member functions

inline void DragFinish();

~ Releases any memory allocated for the transferring of this TDroplnfo object’s

DragQueryFile

DragQueryFileCount

files during drag operations.
See also: ::DragFinish
inline UINT DragQueryFile(UINT index, char far* name, UINT nameLen)

Retrieves the name of the file and related information for this TDroplnfo
object. If index is set to -1 (OxFFFF), DragQueryFile returns the number of
dropped files. This is equivalent to calling DragQueryFileCount.

If index lies between 0 and the total number of dropped files for this object,
DragQueryFile copies to the name buffer (of length nameLen bytes) the name
of the dropped file that corresponds to index, and returns the number of
bytes actually copied.

If name is 0, DragQueryFile returns the required buffer size (in bytes) for the
given index. This is equivalent to calling DragQueryFileNameLen.

See also: ::DragQueryFile, TDropInfo::DragQueryPoint,
TDroplInfo::DragQueryFileCount, TDroplnfo::DragQueryFileCount

inline UINT DragQueryFileCount();

Returns the number of dropped files in this TDroplnfo object. This call is
equivalent to calling DragQueryFile(-1, 0, 0).

See also: TDroplInfo::DragQueryFile

DragQueryFileNameLen inline UINT DragQueryFileNameLen (UINT index)

DragQueryPoint

170

Returns the length of the name of the file in this TDroplnfo object
corresponding to the given index. This call is equivalent to calling
DragQueryFile(index, 0, 0).

See also: TDropInfo::DragQueryFile
inline BOOL DragQueryPoint {TPoint& point)

Retrieves the mouse pointer position when this object’s files are dropped
and copies the coordinates to the given point object. point refers to the
window that received the WM_DROPFILES message. DragQueryPoint
returns TRUE if the drop occurs inside the window’s client area, otherwise
FALSE.

ObjectWindows 2.0 Reference Guide

TDroplnfo class

See also: . ::DragQueryPoint, TPoint, WM_DROPFILES

operator HDROP() injine operator HDROP();
Typecasting operator that returns Handle.
See also: TDropInfo::Handle

TEdgeConstraint struct ' layoutco.h
TEdgeConstraint adds member functions that set edge (but not size)
constraints. TEdgeConstraint always places your window one pixel above
the other window and then adds margins. For example, if the margin is 4,
TEdgeConstraint places your window 5 pixels above the other window. The
margin, which does not need to be measured in pixels, is defined using the
units specified by the constraint. Therefore, if the margin is specified as 8
layout units (which are then converted to 12 pixels), your window would
be placed 13 pixels above the other window. See TLayout Window for an
example of layout constraints.
See also: TLayoutConstraint
Public member functions

Above inline void Above (TWindow *sibling, int margin = 0)
Positions your window above a sibling window. You must specify the
sibling window and an optional margin between the two windows. If no
margin is specified, Above sets the bottom of one window one pixel above
the top of the other window.
See also: TEdgeConstraint::Below

Absolute inline void Absolute (TEdge edge, int value)
Sets an edge of your window to a fixed value.

o See also: TEdgeConstraint::PercentOf
Below inline void Beldw(’l‘window *sibling, int margin = 0);

Positions your window with respect to a sibling window. You must specify
the sibling window and an optional margin between the two windows. If
no margin is specified, Below sets the top of one window one plxel below
the bottom of the other window.

See also: TEdgeConstraint::Above

Chapter 1, Library reference ‘ 171

TEdgeConstraint struct

LeftOf

PercentOf

RightOf

SameAs

Set

inline void LeftOf (TWindow *sibling, int margin = 0)

Positions one window with respect to a sibling window. You can specify
the sibling window and an optional margin between the two windows.

See also: TEdgeConstraint::RightOf

inline void PercentOf (TWindow *otherWin, TEdge edge, int percent)

Specifies that the edge of one window indicated in edge should be a
percentage of the corresponding edge of another window or other Win.

inline void RightOf (TWindow *sibling, int margin = 0)

Positions one window with respect to a sibling window. You can specify
the sibling window and an optional margin between the two windows.

See also: TEdgeConstraint::LeftOf
inline void SameAs (TWindow *otherWin, TEdge edge)

Sets the edge of your window indicated by edge equivalent to the
corresponding edge of the window in other Win.

See also: TEdgeConstraint::Set

inline void Set (TEdge edge, TRelationship rel, TWindow *otherWin,
TEdge otherEdge, int value = 0);

Used for setting arbitrary edge constraints, Set specifies that your window’s
edge should be of a specified relationship to other Win’s specified edge.

See also: TEdgeConstraint::SameAs

TEdgeOrSizeConstraint struct | layoutco.h

Absolute

172

Derived from TEdgeConstraint, TEAgeOrSizeConstraint is a template class
that supports size constraints in addition to all the operations that
TEdgeConstraint provides. The width or height is specified in the template
instantiation of this class. There are two versions of each member function:
one sets both edge and size constraints; the other sets only edge constraints.

Public member functions

inline void Absolute (int value)

Sets the width or height of your window to a fixed value.

ObjectWindows 2.0 Reference Guide

Absolute

PercentOf

PercentOf

SameAs

SameAs

TEdit class

TEdgeOrSizeConstraint struct

inline void Absolute (TEdge edge, int value)

Used to determine edge constraints only, Absolute sets the edge of your
window to a fixed value.

See also: TEdgeConstraint::Absolute

inline void PercentOf (TWindow *otherWin, int percent,
TWidthHeight otherWidthHeight = widthOrHeight)

Although a window’s width or height defaults to being a percentage of the
sibling or parent window’s corresponding dimension, it can also be a
percentage of the sibling or parent’s opposite dimension. For example, one
window’s width can be 50% of the parent window’s height.

See also: TEdgeOrSizeConstraint::Absolute

~inline void PercentOf (TWindow *otherWin, TEdge edge, int percent)

Used to determine edge constraints only, PercentOf specifies that the edge
of one window indicated in edge should be a percentage of the
corresponding edge of another window or other Win.

See also: TEdgeConstraint::PercentOf

inline void SameAs (TWindow *otherWin,
TWidthHeight otherWidthHeight = widthOrHeight,
int value = 0)

Although a window’s width or height defaults to being the same as the
sibling or parent window’s corresponding dimension, it can be the same of
the sibling’s or parent’s opposite dimension. For example, one window’s
width can be the same as the parent window’s height.

See also: TEdgeOrSizeConstraint::PercentOf
inline void SameAs (TWindow *otherWin, TEdge edge)

Used to determine edge constraints only, SameAs sets the edge of one
window the same as the corresponding edge of the other window specified
in other Win.

See also: TEdgeConstraint::SameAs

edit.h

A TEdit is an interface object that represents an edit control interface
element in Windows. A TEdit object must be used to create an edit control
in a parent TWindow. A TEdit can be used to facilitate communication

Chapter 1, Library reference ‘ 173

TEdit class

Constructor

Constructor

CanUndo

174

between your application and the edit controls of a TDialog. This class is
streamable.

There are two styles of edit control objects: single line and multiline.
Multiline edit controls allow editing of multiple lines of text.

The position of the first character in an edit control is zero. For a multiline
edit control, the position numbers continue sequentially from line to line;
line breaks count as two characters. ‘

Most of TEdit's member functions manage the edit control’s text. TEdit also
includes some automatic member response functions that respond to selec-
tions from the edit control’s parent window menu, including cut, copy, and
paste. Two important member functions inherited from TEdit’s base class
(TStatic) are GetText and SetText.

Public constructors

TEdit (TWindow* parent, int Id, const char far *text, int x, int y, int w,
int h, UINT textLen, BOOL multiline = FALSE, TModule* module = 0);

Constructs an edit control object with a parent window (parent). Sets the
creation attributes of the edit control and fills its Attr data members with
the specified control ID (Id), position (x, y) relative to the origin of the
parent window’s client area, width (w), and height (k).

If text buffer length (fextLen) is 0 or 1, there is no explicit limit to the num-
ber of characters that can be entered. Otherwise textLen — 1 characters can
be entered. By default, initial text (fext) in the edit control is left-justified
and the edit control has a border. Multiline edit controls have horizontal
and vertical scroll bars.

TEdit (TWindow* parent, int resourceID, UINT textLen, TModule* module = 0);

Constructs a TEdit object to be associated with an edit control of a TDialog.
Invokes the TStatic constructor with identical parameters. The resourcelD
parameter must correspond to an edit resource that you define. Enables the
data transfer mechanism by calling EnableTransfer. ‘

See also: TStatic:: TStatic

Public member functions

BOOL CanUndo () ;
Returns TRUE if it is possible to undo the last edit.

ObjectWindows 2.0 Reference Guide

ClearModify

Copy

Cut

DeleteLine

DeleteSelection

DeleteSubText

EmptyUndoBuffer

FormatLines

GetFirstVisibleLine

GetHandle

TEdit class

See also: TEdit::Undo
void ClearModify();

Resets the change flag of the edit control causing IsModified to return
FALSE. The flag is set when text is modified.

See also: TEdit::IsModified

void Copy ();

Copies the currently selected text into the Clipboard.

void Cut();

Deletes the currently selected text and copies it into the Clipboard.
BOOL DeleteLine(int lineNumber);

Deletes the text in the line specified by lineNumber in a multiline edit
control. If -1 passed, deletes the current line. DelefeLine does not delete the
line break and affects no other lines. Returns TRUE if successful. Returns
FALSE if lineNumber is not -1 and is out of range or if an error occurs.

BOOL DeleteSelection();
Deletes the currently selected text, and returns FALSE if no text is selected.
BOOL DeleteSubText (UINT startPos, UINT endPos);

Deletes the text between the starting and ending positions specified by
startPos and endPos, respectively. DeleteSubText returns TRUE if successful.

{

void EmptyUndoBuffer();

If an operation inside the edit control can be undone, the edit control undo
flag is set. EmptyUndoBuffer resets or clears this flag.

inline void FormatLines (BOOL addEOL);

Indicates if the end-of-line characters (carriage return, linefeed) are to be
added or removed from text lines that are wordwrapped in a multiline edit
control. Returns TRUE if these characters are placed at the end of
wordwrapped lines or FALSE if they are removed.

inline int GetFirstVisibleLine() const;

Indicates the topmost visible line in an edit control. For single-line edit
controls, the return value is 0. For multiline edit controls, the return value is
the index of the topmost visible line.

inline HANDLE GetHandle() const;

Chapter 1, Library reference 175

TEdit class

GetLine

GetLineFromPos

GetLinelndex

GetLineLength

GetNumLines

GetPasswordChar

176

Returns the data handle of the buffer that holds the contents of the control
window.

See also: :TEdit::SetHandle
BOOL GetLine(char far* str, int strSize, int lineNumber);

Retrieves a line of text (whose line number is supplied) from the edit
control and returns it in str (NULL-terminated). strSize indicates how many
characters to retrieve. GetLine returns FALSE if it is unable to retrieve the
text or if the supplied buffer is too small.

See also: TStatic::GetText, TEdit::GetNumLines, TEdit::GetLineLength
inline int GetLineFromPos(UINT charPos);

From a multiline edit control, returns the line number on which the char-
acter position specified by charPos occurs. If charPos is greater than the
position of the last character, the number of the last line is returned. If
charPos is-1, the number of the line that contains the first selected character
is returned. If there is no selection, the line containing the caret is returned.

See also: ::EM_LINEFROMCHAR
inline UINT GetLineIndex{int lineNumber);

In a multiline edit control, GetLinelndex returns the number of characters
that appear before the line number specified by lineNumber. If lineNumber is
~1, GetLinelndex returns the number of the line that contains the caret is
returned.

See also: :EM_LINEINDEX
int GetLineLength(int lineNumber);

From a multiline edit control, GetLineLength returns the number of
characters in the line specified by lineNumber. If it is -1, the following
applies: if no text is selected, GetLineLength returns the length of the line
where the caret is positioned; if text is selected on the line, GetLineLength
returns the line length minus the number of selected characters; if selected
text spans more than one line, GetLineLength returns the length of the lines
minus the number of selected characters.

inline int GetNumLines();

Returns the number of lines that have been entered in a multiline edit
control: 1 if the edit control has no text (if it has one line with no text in it),
or 0 if there is no text or if an error occurs.

See also: ::EM_GETNUMLINES

inline UINT GetPasswordChar() const;

ObjectWindows 2.0 Reference Guide

GetRect

GetSelection

GetSubText

GetWordBreakProc

Insert

IsModified

LockBuffer

TEdit class

Returns the character to be displayed in place of a user-typed character.
When the edit control is created with the ES_PASSWORD style specified,
the default display character is an asterisk (*).

See also: TEdit::SetPasswordChar, ::EM_GETPASSWORDCHAR,
:ES_PASSWORD

inline void GetRect (TRect& frmtRect) const;

Gets the formatting rectangle of a multiline edit control.
See also: TEdit::SetRect, TEdit::SetRectNP, ::EM_GETRECT
inline void GetSelection (UINT& startPos, UINT& endPos);

Returns the starting (startPos) and ending (endPos) positions of the currently
selected text. By using GetSelection in conjunction with GetSubText, you can
get the currently selected text.

See also: TEdit::GetSubText
vold GetSubText (char far* str, UINT startPos, UINT endPos);

Retrieves the text in an edit control from indices startPos to endPos and
returns it in str.

See also: TEdit::GetSelection
inline EDITWORDBREAKPROC GetWordBreakProc() const;

Retrieves the current wordwrap function. Returns the address of the
wordwrap function defined by the application or 0 if none exists.

See also: TEdit::SetWordBreakProc, ::EM_GETWORDBREAKPROC
inline void Insert (const char far* str);

Inserts the text supplied in str into the edit control at the current text
insertion point (cursor position), and replaces any currently selected text.
Insert is similar to Paste, but does not affect the Clipboard.

See also: TEdit::Paste

BOOL IsModified();

Returns TRUE if the user has changed the text in the edit control.
See also: TEdit::ClearModify

char far* LockBuffer (UINT newsize=0);

Locks the edit control’s buffer and returns a pointer to the buffer. Passing
newsize greater than 0 causes the buffer to be resized to newsize. Y ou must
call Unlock when you are finished.

Chapter 1, Library reference 177

TEdit class

Paste

Scroll

Search

SetHandle

SetPasswordChar

SetReadOnly

SetRect

SetRectNP

178

See also: TEdit::UnLockBuffer
void Paste();

Inserts text from the Clipboard into the edit control at the current text
insertion point (cursor position).

See also: TEdit::CMEditPaste
inline void Scroll(int horizontalUnit, int verticalUnit);

Scrolls a multiline edit eontrol horizontally and vertically using the
numbers of characters specified in horizontalUnit and verticalUnit. Positive
values result in scrolling to the right or down in the edit control, and
negative values result in scrolling to the left or up.

int Search(UINT startPos, const char far* text, BOOL caseSensitive=FALSE,
BOOL wholeWord=FALSE, BOOL up=FALSE);

Performs either a case-sensitive or case-insensitive search for the supplied
text. If the text is found, the matching text is selected, and Search returns the
position of the beginning of the matched text. If the text is not found in the
edit control’s text, Search returns —1. If -1 is passed as startPos, then the
search starts from either the end or the beginning of the currently selected
text, depending on the search direction.

inline void SetHandle (HLOCAL localMem);

Sets a handle to the text buffer used to hold the contents of a multiline edit
control.

See also: :TEdit::GetHandle
void SetPasswordChar (UINT ch);

SetPasswordChar sets the character to be displayed in place of a user-typed
character. When the ES_PASSWORD style is specified, the default display
character is an asterisk (*).

See also: TEdit::GetPasswordChar, :ES_PASSWORD
inline void SetReadOnly (BOOL readOnly);

Sets the edit control to be read-only or read-write.
inline void SetRect (const TRect& frmtRect);

Sets the formatting rectangle for a multiline edit control.
See also: TEdit::GetRect, TEdit::SetRectNP

inline void SetRectNP(const TRect& frmtRect);

Object'Windows 2.0 Reference Guide

SetSelection

SetTabStops

SetWordBreakProc

Undo

UnlockBuffer

Validator

CanClose

TEdit class

Sets the formatting rectangle for a multiline edit control. Unlike SetRect,
SetRectNP does not repaint the edit control.

See also: TEdit::GetRect, TEdit::SetRect
inline BOOL SetSelection(UINT startPos, UINT endPos);

Forces the selection of the text between the positions specified by startPos
and endPos, but not including the character at endPos.

void inline SetTabStops(int numTabs, const int far* tabs);
Sets the tab stop positions in a multiline edit control.
inline void SetWordBreakProc (EDITWORDBREAKPROC proc);

In a multiline edit control, Set WordBreakProc indicates that an application-
supplied word-break function has replaced the default word-break
function. The application-supplied word-break function might break the
words in the text buffer at a character other than the default blank
character. ' ‘

See also: TEdit::GetWordBreakProc

void Undo();

Undoes the last edit. :

See also: TEdit::CaﬁUndo, TEdit::CMEditUndo

void UnlockBuffér(const char far* buffer, BOOL updateHandle=FALSE);

Unlocks a locked edit control buffer. If the contents were changed,
updateHandle should be TRUE.

See also: ‘TEdit::LockBuffer

Protected data members

Talidator* Validator;

Points to the validator object constructed in your derived class to validate
input text. If no validator exists, Validator is zero.

Protected member functions

BOOL CanClose();

Checks to see if all child windows can be closed before closing the current
window. If any child window returns FALSE, CanClose returns FALSE and

Chapter 1, Library reference ' B 179

TEdit class

CmEditClear

CmeEditCopy

CmEditCut

CmEditDelete

CmEditPaste

CmEditUndo

ENErrSpace

EvChar

180

terminates the process. If all child WindoWs can be closed, CanClose returns
TRUE.

void CmEditClear();

Automatically responds to a menu selection with a menu ID of
CM_EDITCLEAR by calling Clear. '

See also: TStatic::Clear
void CmEditCopy () ;

Automatically responds to a menu selection with a menu ID of
CM_EDITCOPY by calling Copy.

See also: TEdit::Copy
void CmEditCut();

Automatically responds to a menu selection with a menu ID of
CM_EDITCUT by calling Cut.

See also: TEdit::Cut
void CmEditDelete();

Automatically responds to a menu selection with a menu ID of
CM_EDITDELETE by calling DeleteSelection.

See also: TEdit::DeleteSelection
void CmEditPaste();

Automatically responds to a menu selection with a menu ID of
CM_EDITPASTE by calling Paste.

See also: TEdit::Paste
void CmEditUndo();

Automatically responds to a menu selection with a menu ID of
CM_EDITUNDO by calling Undo.

See also: TEdit::Undo
void ENErrSpace();

Sounds a beep in response to an error notification message that is sent
when the edit control unsuccessfully attempts to allocate more memory.

void EvChar (UINT key, UINT repeatCount, UINT flégs);

Validates the text entered into the edit control. If the input is incorrect, the
original text is restored. Otherwise, the validated and modified text is
placed back into the edit control, so the results of the auto-fill (if any) can be

ObjectWindows 2.0 Reference Guide

EvGetDlgCode

EvKeyDown

EvKillFocus

GetClassName

SetupWindow

|EQIt Class

viewed. When IsValidInput is called, the SupressFill parameter defaults to
False, so that the string can be modified.

o

UINT EvGetDlgCode();

Responds to the GetDIgCode query according to the current state of the
control. If the edit control contains valid input, then Tabs are allowed for
changing focus.

void EvKeyDown (UINT key, UINT repeatCount, UINT flags);

EvKeyDown translates the virtual key code into a movement. key indicates
the virtual key code of the pressed key, repeatCount holds the number of
times the same key is pressed, flags contains one of the messages that
translates to a virtual key (VK) code for the mode indicators. If the Tab key
is sent to the Edit Control, EvKeyDown checks the validity before allowing
the focus to change.

void EvKillFocus (HWND hWndGetFocus);

In response to a WM_KILLFOCUS message sent to a window that is losing
the keyboard, EvKillFocus hides and then destroys the caret. EvKillFocus
validates text whenever the focus is about to be lost and holds onto the
focus if the text is not valid. Doesn’t kill the focus if another application, a
Cancel button, or an OK button (in which case CanClose is called to validate
text) has the focus.

char far* GetClassName ()

Returns the name of TEdit’s Windows registration class, “EDIT.”
See also: TWindow::GetClassName

void SetupWindow () ;

If the textLen data member is nonzero, Setup Window limits the number of
characters that can be entered into the edit control to textLen —1.

See also: TStatic::TextLen, TWindow::Setup Window

Response table entries

Response table entry Member function
EV_COMMAND (CM_EDITCLEAR, CmEditClear) CmEditClear
EV_COMMAND (CM_EDITCOPY, CmEditCopy) " CmEditCopy
EV_COMMAND (CM_EDITCUT, CmEditCut) CmEditCut
EV_COMMAND (CM_EDITDELETE, CmEditDelete) CmEditClear
EV_COMMAND (CM_EDITPASTE, CmEditPaste) CmEditPaste

Chapter 1, Library reference ~ . - 181

| EQIT Class

Response table entry ‘ Member function
EV_COMMAND (CM_EDITUNDO, CmEditUndo) CmEditUndo
EV_COMMAND_ENABLE(CM_EDITCLEAR, CmCharsEnabIe) CmCharsEnable
EV_COMMAND_ENABLE(CM_EDITCOPY, CmSelectEnable) CmSelectEnable
EV_COMMAND_ENABLE(CM_EDITCUT, CmSelectEnable) CmSelectEnable
EV_COMMAND_ENABLE(CM_EDITDELETE, CmSelectEnable) CmSelectEnable
EV_COMMAND_ENABLE(CM_EDITPASTE, CmPasteEnable) CmPasteEnable
EV_COMMAND_ENABLE(CM_EDITUNDO, CmModEnable) . CmModEnable
EV_NOTIFY_AT_CHILD (EN_ERRSPACE, ENErrSpace) ENErSpace
EV_WM_CHAR :) ' EvChar
EV_WM_GETDLGCODE ‘ EvGetdlgcode
EV_WM_KEYDOWN EvKeydown
EV_WM_KILLFOCUS EvKillFocus
EV_WM_CHILDINVALID ' EvChildinvalid
editfile.h

TEditFile class

FileData

FileName

I Constructor .

‘Destructor

182

TEditFile is a file-editing window. TEditFile’s data members and member
functions manage the file dialog box and automatic responses for file
commands such as Open, Read, Write, Save, and SaveAs. TEditFile is
streamable. ‘

Public data members

TObénSaveDialog: :TData FileData;

Contains information about the user’s file open or save selection.
See also: TOpenSaveDialog::TData

char far* FileName;

Contains the name of the file being edited.

Public constructors and destructor

TEditFile(TWihdow* parent = 0, int Id = 0, const char far* text = 0,
const char far* fileName = 0, TModule* .module = 0);

Constructs a TEditFile window given the parent window, resource ID (Id),
text, file name, and module ID. Sets Filename to fileName.

~TEditFile();

ObjectWindows 2.0 Reference Guide

CanClear
CanClose

CmFileNew

CmFileOpen

CmFileSave

CmFileSaveAs

NewFile

Open

TEditFile class

Frees memory allocated to hold the name of the TEditFile.

Public member functions

virtual BOOL CanClear();

" Returns TRUE if the text of the associated edit control can be cleared.

virtual BOOL CanClose();

Returns TRUE if the edit window can be closed.

inline void CmFileNew();

Calls NewFile in response to an incoming File New command with a
CM_FILENEW command identifier.

See also: TEditFile::NewFile .
inline void CmFileOpen()~

Calls Open in response to an incoming File Open command with a

. CM_FILEOPEN command identifier.

See also: TEditFile::Open
inline void CmFileSave();

Calls Save in response to an incoming File Save command with a
CM_FILESAVE command identifier.

See also: TEditFile::Save
inline void CmFileSaveAs();

Calls SaveAs in response to an incoming File SaveAs command with a
CM_FILESAVEAS command identifier.

See also: TEditFile::SaveAs
void NewF:Lle()

Begins the edit of a new file after calling CanCleur to determine that it is safe
to clear the text of the editor.

See also: TEditFile::CanClear
Open() ;

Opens a new file after determining that it is OK to clear the text of the
Editor. Calls CanClear, and if TRUE is returned, brings up a file dialog box
to retrieve the name of a new file from the user. Calls ReplaceWith to pass
the name of the new file.

Chapter 1, Library reference’ . . ‘ ‘ 183

TEditFile class

Read

ReplaceWith

Save

SaveAs

SetFileName

‘Write

SetupWindow

184

See also: TEditFile::CanClear, TEditFile::Replace With
BOOL Read(const char far* fileName=0);

Reads the contents of a previously specified file into the Editor. Returns
TRUE if read operation is successful.

void ReplaceWith(const char far* fileName);

Calls SetFileName and Read to replace the file currently being edited with a
file whose name is supplied.

See also: TEditFile::SetFileName, TEditPile::Réud '
BOOL Save();

Saves changes to the contents of the Edifor to a file. If Editor->IsModified
returns FALSE, Save returns TRUE, indicating there have been no changes
since the last open or save.

See also: TEdlthle::SaUeAs, TEditFile::Write
BOOL SaveAs();

Saves the contents of the Editor to a file whose name is retrieVed from the
user, through execution of a File Save dialog box. If the user selects OK,
SaveAs calls SetFileName and Write. Returns TRUE if the file was saved.

See also:- TEditFile::SetFileque, TEditFile:: Write
void SetFileName (const char far* fileName);

Sets FileName and updates the caption of the window.

. BOOL Write(const char far* fileName=0);

Saves the contents of the Editor to a file whose name is specified by
FileName. Returns TRUE if the write operation is successful.

Protected member functions

void SetupWindow();

Creates the edit window’s Editor edit control by calling
TEditFile::Setup Window. Sets the window’s caption to FileNatne, if available;
otherwise sets the name to “Untitled.”

See also: TEditFile::SetFileName, TEditFile::Read

ObjectWindows 2.0 Reference Guide

TEditFile class

Response table entries

Response table entry Member function

EV_COMMAND (CM_FILENEW, CmFileNew) * CmFileNew

EV_COMMAND (CM_FILEOPEN, CmFileOpen) CmpFileOpen

EV_COMMAND (CM_FILESAVE, CmFileSave) \ CmFileSave

EV_COMMAND (CM_FILESAVEAS, CmFileSaveAs) CmFileSaveAs
TEditSearch class editsear.h

SearchCmd:

SearchData

SearchDialog

Constructor

TEditSearch is an edit control that responds to Find, Replace, and FmdNext
menu commands. This class is streamable.

o

Public data members

UINT SearchCmd;

- Contains the search command identifier that opened the dialog box if one is

open.
TFindReplaceDialog::TData SearchData;

The SearchData structure defines the search text string, the replacement text
string, and the size of the text buffer.

See also: TFindReplaceDialog::TData
TFindReplaceDialog* SearchDialog;

Contains find or replace dialog-box information (such as the text to find
and replace) and check box settings.

Public constructors

TEditSearch(TWindow* parent = 0, int Id = 0, const char far* text = 0,
TModule* module = 0);

Constructs a TEditSearch object given the parent window, resource ID, and
character string (text). '

Chapter 1, Library reference | : : 185

TEditSearch class

CmEditFind

CmEditFindNext

CmEditReplace

DoSearch

EvFindMsg

SetupWindow

186

Public member functions

void CmEditFind();

Opens a TFindDialog in response to an ihcoming Find command with a
CM_EDITFIND command.

void CmEditFindNext(); .
Respondys to an incoming FindNext command with a CM_EDITFINDNEXT

- command identifier by calling DoSearch to repeat the search operation.

See also: TEditSearch::DoSearch
void CmEditReplace();

Opens a TReplaceDialog in response to an incoming Replace command with
a CM_EDITREPLACE command.

void DoSearch(); ’ ,

Performs a search or replace operation base on information in SearchData.
See also: TFindReplaceDialog::TData

LRESULT EvFindMsg(WPARAM, ‘LPARAM) ;

Responds to a message sent by the modeless find or replace dialog box.
Calls DoSearch to continue searching if text is not found or the end of the
document has not been reached.

See also: TEditSearch:.;DoSeurch
void SetupWindow();

Posts a CM_EDITFIND or a CM_EDITREPLACE message to re-open a find
or replace modeless dialog box. Calls TEdit::Setup Window.

See also: Tedit::SetupWindow

Response table entries
Response table entry Member function
EV_COMMAND(CM_EDITFIND, CmEditFind) : CmEditFind
EV_COMMAND(CM_EDITFINDNEXT, CmEditFindNext) CmEditFindNext-
EV_COMMAND(CM_EDITREPLACE, CmEditReplace) * CmEditReplace

. EV_REGISTERED(FINDMSGSTRING, EvFindMsg) EvFindMsg .

ObjectWindows 2.0 Reference Guide

TEditView class

. TEditView class | - f editview.h

Constructor

Destructor

CanClose

Create

GetViewName

GetWindow

PerformCreate

Derived from TView and TEditSearch, TEditView provides a view wrapper
for ObjectWindows text edit class (TEdit). A streamable class, TEditView
includes several event-handling functions that handle messages between a
document and its views.

Public constructors and destructor

TEditView (TDocument& doc, TWindow* parent = 0);

Creates a TEditView object associated with the specified dociument and
parent window. Sets Attr.AccelTable to IDA_EDITVIEW to identify the edit
view. Sets TView:: ViewMenu-to the new TMenuDescr for this view.

~TEditView()

Destroys a TEditView object.

Public member functions

inline BOOL CanClose() , ,
Returns nonzero if the view can be closed.
See also: TEditFile::CanClose

BOOL Create()

- Overrides TWindow::Create and calls TEditSearch::Create to create the view’s

window. Calls GetDocPath to determine if the file is new or already has
data. If there is data, calls LoadData to add the data to the view. If the view’s
window can’t be created, Create indicates the view is invalid.

inline LPCSTR GetViewName() ;

Overrides TView::GetViewName and returns the descriptive name of the
class (StaticName). ‘

See also: TEditView::StuticName, TView::GetViewName

inline TWindow* GetWindow();

GetWindow overrides GetWindow in TView and returns this asa TWindow.
See also: TView::Get Window

void PefformCreate(int menuOrId);

Chapter 1, Library reference ' o , : ' 187.

I EditView class

SetDocTitle

StaticName

Origin '

EvNCDestroy

LoadData

VnCommit

VnDocClosed

VnlsDirty

188

Allocates memory as necessary so that TEditView can handle files up to and

including 30,000 bytes.

~ inline BOOL SetDocTitle(LPCSTR docname, int index)

Overrides TView::SetDocTitle and forwards the title to its base class,

TEditSearch.

See also: TWindow::SetDocTitle, TView::SetDocTitle

“inline static LPCSTR StaticName();

Returns “Edit View,” the descriptive name of the class for the ViewSelect

menu.

Protected data member

long Origin;

Holds the file position at the beginning of the display.

Protected member functions .

void EvNCDestroy();

EvNcDestroy is used internally by TEditView to manage memory.

BOOL LoadData();

LoadData reads the view from the stream and closes the file. It returns
nonzero if the view was successfully loaded. If the file can’t be read, posts

an error and returns 0.

BOOL VnCommit (BOOL force);

VnCommit commits changes made in the view to the document. If force is
nongzero, all data, even if it’s unchanged, is saved to the document.

BOOL VnDocClosed (int omode);

‘See also: TEditView::vnRevert, vnxxxx view notification constants

VnDocClosed indicates that the document has been closed. mode is one of the

ofxxxx document open constants.

See also: ofxxxx document open enum, vnxxxx view notification constants

inline BOOL VnIsDirty();

VnlsDirty returns nonzero if changes made to the data in the view have not
been saved to the document; otherwise, it returns 0.

N\

ObjectWindoWs 2.0 Reference Guide

VnisWindow

VnRevert

TEditView class

See also: vnxxxx view notification constants
inline BOOL VnTsWindow (HWND hind);

VnlsWindow returns nonzero if the window’s handle passed in hWnd is the
same as that of the view’s display window.

BOOL VnRevert (BOOL clear);

VnRevert is nonzero if changes made to the view should be erased, and the
data from the document should be restored to the view. If clear is nonzero,
the data is cleared instead of restored to the view.

See also: TEditView::Commit

Response table entries

’ Respoﬁse table entry Member function

EV_VN_COMMIT VnCommit
EV_VN_DOCCLOSED VnDocClosed
EV_VN_ISDIRTY VnlsDirty -
EV_VN_ISWINDOW VnlsWindow
EV_WM_NCDESTROY EvNcDestroy
EV_VN_REVERT VnRevert

TEventHandler class eventhan.h

Dispatch

Find

TEventHandler is a base class from which you can derive classes that handle

- messages. See Chapter 2 for a list of the Windows messages that

Ob]ecthdows handles.:

Public member functions

" virtual LRESULT Dlspatch(TEventInfo& WPARAM, LPARAM = 0);

Takes the message data from Msg and dispatches it to the correct event
handler.

virtual BOOL Find(TEvent‘Info&, TEqualOperator = 0);

Searches the list of response table entries looking for a match. Because
TEventHandler doesn’t have any entries, TEventHandler’s implementation of
this routine returns FALSE.

‘ Chapter 1, Library reférence . ; ‘ 189

TEventHandler class

SearchEntries

Protected member functions

BOOL SearghEntries(TGenericTableEntry __RTFAR* entries, TEventInfog,
TEqualOperator) ;

Searches the entries in the response table for an entry that matches
TEventInfo or, if so designated, an entry that TEqualOperator spec1f1es isa
match

TEventHandler::TEqualOperator type | eventhan.h

A nested class, TequalOperator is used to perform special kinds of searches
and to faciliate finding response table entries. TEqualOperator compares a
particular message event (TEventInfo&) with a response table entry
(TGenericTableEntry) to determine if they match.

typedef BOOL(*TEqualOperator) (TGenericTableEntry __RTFARS, TEventInfo&);
See also: TResponseTableEntry

TEventHandler::TEventinfo class eventhani.h '

Dispatch

-Find

Msg

- 190

A nested class, TEventInfo provides specific information about the type of
message sent, the class that contains the function to be handled, the
corresponding response table entry, and the dispatch function that
processes the message. .

Public data members |

LRESULT Dispatch(GENERIC &object, TGenericTableEntry &entry,
WPARAM wParam, LPARAM lParam);

Generic dispatch function to crack and dispatch Windows messages.
GENERIC &object is the pointer to the object (for example, TEdit);

- TGenericTAbleEntry &entry is the response table entry (for example,

EvActivate); WPARAM and LPARAM are the message parameters the
dispatcher cracks.

virtual TGenerlcTableEntry *Find(GENERIC *sobject, UINT_msg, UINT 14,
TEqualOperator = 0);

Find locates and returns an entry that a TEventHandler class can respond to.

const UINT Msg;

ObjectWindows 2.0 Reference Guidé

Object

Entry

Conétructor

TEventHandler::TEventinfo class

Contains the type of message sent. These can be command messages, child
id messages, notify-based messages such as LBN_SELCHANGE, or
windows messages such as LBUTTONDOWN.

const UINT Id;

Contains the menu or accelerator resource ID (CM_xxxx) for the message
response member function.

GENERIC *Ob]ect;
Points to the‘object that contains the function to be handled.
TGenericTableEntry _ RTFAR *Entry;

Points to the response table entry, for example EvActivate.

Public constructors

TEventInfo(UINT msg, UINT id = 0) : Msg(msg), Id(id);

Constructs a TEventInfo object with the specified ID and message type. -

TEventStatus enUm . , window.h

Table 1.27
Event status
constants

Event status constants indicate the status of 3 mix-in window event
implementation. For example, depending on the implementation of a
keyboard event, DoKeyDown and DoSetFocus return one of TEventStatus
constants.

Constant Meaning

esPartial Additional handlers can be invoked
esComplete No additional handlers are needed

See also: TKeyBoardModeTracker::DoKeyDown,
TKeyBoardModeTracker::DoSetFocus

TEventHandIer::TEquaIOpéfatdr type eventhan.h

A nested class, TequalOperator is used to perform special kinds of searches
and to faciliate finding response table entries. TEqualOperator compares a
particular message event (T'EventInfo&) with a response table entry
(TGenericTableEntry) to determine if they match.

Chapter 1, 'Library reference o 191

TEventHandler:: TEqualOperator type

typedef BOOL (*TEqualOperator) (TGenericTableEntry _ RTFAR&, TEventInfo&);

See also: TResponseTableEntry

‘TFileDocument class | | filedoc.h

Constructor

Destructor .

Close

Commit
~ FindProperty

192:

Derived from TDocument, TFileDocument opens and closes views and
provides stream support for views. Streams are created on top of DOS files
using Windows file services. TFileDocument has member functions that
continue to process FileNew and FileOpen messages after a view is
constructed. You can add support for specialized file types by deriving
classes from TFileDocument. TFileDocument makes this process easy by
hiding the actual processs of storing file types.

Public constructors and destructor

TFileDocument (TDocument * parent = 0);
Constructs a TFileDocument object with the optional parent document.
~TFileDocument ()

Destroys a TFileDocument object.

Public member functions

inline BOOL Close();

- Closes the document but does not delete or detach any associated views.

Before closing the document, Close calls TDocument’s Close to make sure all
child documents are closed. If any children are open, Close returns 0 and
doesn’t close the document. If all children are closed, checks to see if any
associated streams are open, and if so, returns 0 and doesn’t close the
document. If there are no open streams, closes the file.

See also: TDocument::Close
BOOL Commit (BOOL clear = FALSE);

Calls TDocument::Commit and clears TDocument’s DirtyFlag data member,
thus indicating that there are no unsaved changes made to the document.

See also: TDocument::Commit

int. FindProperty (const char far* name);

~ ObjectWindows 2.0 Reference Guide

GetProperty

InStream

IsOpen

Open

Open

OutStream

PropertyFlags

TFileDocument class

FindProperty gets the property index, given the property name (name).
Returns 0 if the name isn’t found.

See also: pfxxxx property attribute constants
GetProperty(int index, void far* dest, int textlen=0);

Overrides TDocument::GetProperty and gets the property ID for the current
file document.

See also: pfxxxx property attribute constants
TInStream* InStream(int mode, LPCSTR strmId = 0);

Overrides Tdocument::InStream and provides generic input for the particular
storage medium. InStream returns a pointer to a TInStream. mode is a
combination of the ios bits defined in iostream.h. strmld is not used for file
documents. The viéw reads data from the document as a stream or through
stream functions.

See also: TFileDocument::OutStream

inline BOOL Isopen() ;

Is nonzero if the document or any streams are open.
inline BOOL Open(HFILE fhdl);

Opens a file document using an existing file handle. Sets
TDocument::OpenMode to PREV_OPEN and read /write. Sets the document
path to 0. Sets FHd to fhdl. Always returns nonzero.

inline BOOL Open(int mode, LPCSTR path=0);

Overrides TDocument::Open and opens the file using the specified path. If
the file is already open, returns 0. Calls TDocument::SetDocPath to set the
directory path. If omode isn’t 0, sets TDocument OpenMode to omode. If the
file can’t be opened, returns 0.

See also: - TDocument::DocPath, TDocument :Open, ofxxxx document open
enum

inline TOutStream* OutStream (int mode, LPCSTR strmId = 0);

Overrides TDocument::OutStream and provides generic input for the

particular storage medium. OutStream returns a pointer to. a TOutStream.

mode is a combination of the ios bits defined in iostream.h. strmld is not
used for file documents. Instead, the view reads data from the document
through stream functions.

See also: TFileDocument::InStream

int PropertyFlags(int index);

Chapter 1, Library reference o . ; ' \ 193

[FileDocument ciass

PropertyName

Revert

SetProperty

FHdl

CloseThisFile

OpenThisFile

194

Returns the property attribute constants (pfGetText, przdden, and so on)
See also: pfrxxx property attribute constants '
const char* PropertyName (int index);

Returns the text name of the property given the index value.

See also: - pfxa‘cxx propérty attribute constants

BOOL Revert (BOOL clear = FALSE) ; |

N

Calls TDocument::Revert to notify the views to refresh their data. If clear is
FALSE, the data is restored instead of cleared.

See also: TFileDoc::Commit
BOOL SetProperty(int index, const Void far* src);

Sets the property data, which must be in the native data type (either string
or binary).

See also: pfxxxx property attribute constants

Protected data members

HFILE FHAI;

Holds the file handle to an open file docuinent.

Protected member functions

vold CloseThisFile(HFILE fhdl, into omode);

If the associated file was opened by TFileDocument, CloseThisFile closes the
file handle. Calls TDocument::NotifyView to notify all views that the file
document has closed.

See also: ofxxxx document open enum
HFILE OpenThisFile(int omo'de,y LPCSTR name, streampos* pseekpos);

Opens the file document after checking the file sharing mode (orode). Ifa
file mode is not specified as read, write, or read and write, returns 0.

See also: ofxxxx document open enum, shxxxx document sharing modes

' ObjectWindows 20 Reference Guide

TFileOpenDialog class -

TFileOpenDialog class | opensave.h

TFileOpenDialog is a modal dialog box that lets you specify the name of a
file to open.

Public constructors

Constructor TFileOpenDialog (TWindow* parent, TData& data, TResID templatelID = 0,

; const char far* title = 0, TModule* module = 0);

Constructs and initializes the TFileOpen object based on information in the
TOpenSaveDialog::TData data structure. The Windows API
OPENFILENAME structure is also initialized.
See also: TOpenSaveDialog::TData
Public member functions

DoExecute int- DoExecute(); ‘
DoExecute calls the Windows API function GetOpenFileName and passes it
the Windows API OPENFILENAME structure, which tells it how to create
the TFileOpenDialog object.
See also: TDialog::DoExecute

TFileSaveDialog class opensave.h
‘TFileSaveDialog is a modal dialog that lets you enter the name of a file to
save.
Public constructors

‘Constructor , TFiIeSaveDialbg (TWindow* pé:ent, TData& data, TResID terhplate'ID =0,

const char far* title = 0, TModule* module = 0);

Constructs and initializes the TFileOpen ob]ect based on information in the
TOpenSaveDlulog :TData data structure.

Chapter 1, Library reference - : | o 195

TFileSaveDialog class

DoExecute

Public member functions

‘int DoExecute();

DoExecute calls the Windows API function GetOpenFileName and passes it
the OPENFILENAME structure, which tells GetOpenFileName how to create
the TFileSaveDialog object.

See also: TDialog::DoExecute, TOpenSaveDialog

TFilterValidator class | validate.h

Constructor

Error

IsValid

IsValidinput

196

A streamable class, TFilterValidator checks an input field as the user types
into it. The validator holds a set of allowed characters. When the user
enters a character, the filter validator indicates whether the character is
valid or invalid. See TValidator for an example of input validation.

Public constructors

TFilterValidator(const TCharSet& validChars);

Constructs a filter validator object by first calling the constructor inherited
from TValidator, then setting ValidChars to validChars.

Public member functions

void Error();

Error overrides TValidator’s virtual function and displays a message box
indicating that the text string contains an invalid character.

See also: TValidator::Error
BOOL IsValid(const char far* str);

IsValid overrides TValidator's virtuals and returns TRUE if all characters in
str are in the set of allowed characters, ValidChar; otherwise, it returns
FALSE.

BOOL IsValidInput({char far* str, BOOL suppressFill);

IsValidInput overrides TValidator’s virtual function and checks each
character in the string str to ensure it is in the set of allowed characters,
ValidChar. IsValidInput returns TRUE if all characters in str are valid;
otherwise, it returns FALSE. .

ObjectWindows 2.0 Reference Guide

. TFilterValidator class

See also: TValidator:IsValidInput

Protected data members
ValidChars TCharSet ValidChars;
| Contains the set of all characters the user can type. For example, to allow
only numeric digits, set ValidChars to “0-9”. ValidChars is set by the
validChars parameter passed to the constructor.

TFindDialog class ‘ findrepl.h
TFindDialog objects represents modeless dialog box interface elements that
let you specify text to find. TFindDialog communicates with the owner
window using a registered message.

Public constructors
Constructor TFindDialog (TWindow* parent, TData& data, TResId templateld = 0,
const char far* title = 0, TModule* module = 0);
Constructs a TFindDialog object with the given parent window, resource ID,
and caption. Sets the attributes of the dialog box based on information in
the TFindReplaceDialog::TData structure.
See also: TFindReplaéeDialog::TData
Protected member functions

DoCreate HWND DoCreate();

Creates the modeless interface element of a find dialog box.

TFindReplaceDialog class ; findrepl.h

TFindReplaceDialog is an abstract base class for a modeless dialog box that
lets you search for and replace text. TFindReplaceDialog communicates with
- the owner window using a registered message.

Chapter 1, Library reference : _ ; 197

TFindReplaceDialog class

“Constructor .

CmCancel
CmFindNext
CmReplace
CmReplaceAll

EvNCDestroy

Data

fr

198

Public constructors

TFindReplaCeDialog(TWindow* parent, TData& data, TResId templateId = 0,
const char far* title = 0, TModule* module = 0);

Constructs a TandRepluceDmlog object with a parent window, resource ID
and caption. Sets the attributes of the dialog box with the specified data.

See also: TFindReplaceDialog::TData

Public member functions

inline void CmCancel();
Responds to a click of the Cancel button.
inline void CmFindNext ();

Responds to a click of the Find Next button. |

~ inline void CmReplace();

Responds to a click of the Replace button.
inline void CmReplaceAil (); ‘
Responds to a click of the Replace All button.
inline void EvNCDestroy();

Calls TWindow::EvNCDestroy, which responds to an incoming
EV_WM_NCDESTROY message.

See also: TWindow::EvNCDestroy

‘Protected data members

TData& Data; ‘

Data is a reference to the TData object passed in the constructor. |
See also: TFindReplace:: TData

FINDREPLACE fr;

Contains find-and-replace attributes such as the text string to be searched
for and replaced as well as the length of the string that ObjectWindows
passes to the Windows API FindText function. Returns an error message if

“text is not found.

ObjectWindows 2.0 Reference Guide

. TFindReplaceDialog class

Protected member functions

DoCreate HWND DoCreate()=0;

DoCreate is a virtual function that is overriden in derived classes to create a
modeless find or replace dialog box.

DialogFunction BOOL DialogFunction(UINT message, WPARAM, LPARAM);
Returns TRUE if a message is handled.
See also: TDialog::DialogFunction

Init o void Init(TResId templateld);

Used by constructors in derived classes, Init initializes a TFindReplaceDialog
object with the current resource ID and other members.

Response table entries

Respbnse table entry < Member function
EV_WM_NCDESTROY EvNCDestroy
TFindReplaceDialog::TData struct » findreplh

The TFindReplaceDialog::TData structure defines information necessary to
initialize a TFindReplace dialog box.

Public member functions

BuffSize int BuffSize;
BuffSize contains the size of the text buffer.
Error DWORD Error; ‘
Error contains one or more of the following CdmlegExtendedError codes:

i)
r

Constant ' Meaning
CBERR_LOCKRESOURCEFAILURE Failed to lock a specified resource.
CDERR_LOADRESFAILURE Failed to load a specified resource.

Chapter 1, Library reference ’ o . 199

TFindReplaceDialog:: TData struct

FindWhat

| Flags

Replacewith

Constant

Meaning

CDERR_LOADSTRFAILURE
- CDERR_REGISTERMSGFAIL

Failed to load a specified string.
The Windows AP RegisteriWindowMessage
function returned an error when it was called.

char* FindWhat;

FindWhat contains the search string.

DWORD Flags;

Flags indicates the state of the control buttons and the action that occurred
in the dialog box, and can be a combination of the following Window API

constants:
Constant Meaning
FR_DOWN The Down button in the Direction group of the Find dialog box is

FR_HIDEMATCHCASE
FR_HIDEWHOLEWORD
FR_HIDEUPDOWN.
FR_MATCHCASE
FR_NOMATCHCASE

FR_NOUPDOWN

selected.

The Match Case check box is h|dden
The Whole Word check box is hidden.
The Up and Down buttons are hidden.

“The Match Case check box is checked.

The Match Case check box is disabled. This occurs when the
dialog box is first initialized.
The Up and Down buttons are disabled. This occurs when the

" dialog box is first initialized.

FR_NOWHOLEWORD

FR_REPLACE
FR_REPLACEALL
FR_WHOLEWORD

The Whole Word check box is disabled. This occurs when the
dialog box is first initialized.

The Replace button was pressed in the Replace dialog box.
The Replace All button was pressed in the Replace dialog box.
The Whole Word check box is checked.

char* ReplaceWith;

ReplaceWith contains the replacement string.

See also: TEditSearch::SearchData, TFindReplace::Data

TFloatingFrame class

floatfra.h

200

Derived from TFrameWindow and TTinyCaption, TFloatingFrame implements
a floating frame that can be positioned anywhere in the parent window.
Except for the addition of a tiny caption bar, the default behavior of
TFrameWindow and TFloatingFrame is the same. Therefore, an application
that uses TFrameWindow can easily gain the functionality of TFloatingFrame
by just changing the name of the class to TFloatingFrame. /

" ObjectWindows 2.0 Reference Guide

Constructor

SetMargins

TFloatingFrame class

If there is a client window, the floating frame shrinks to fit the client
window, leaving room for margins on the top, bottom, left, and right of the
frame. Because the floating frame expects the client window to paint its
own background, it does nothing in response to a WM_ERASEBKGND
message. However, if there is no client window, the floating frame erases
the client area background using COLOR_BTNFACE.

See PAINT.CPP, the sample program on your distribution disk, for an

example of a floating frame.

Public constructors

TFloatingFrame (TWindow *owner, char *title = 0, TWindow* clientWnd = 0,
BOOL shrinkToClient = FALSE, int CaptionHeight,\ BOOL
enablePalette, Module* module = 0);

Constructs a TFloatingFrame object attached to the specified parent window.
By default, the floating frame window doesn’t shrink to fit the client
window, and the floating palette style isn’t enabled.

Set enablePalette to TRUE if you want to enable a floating palette style for
the window. The floating palette is a popup window with a tiny caption, a
standard window border, and a close box instead of a system menu box.
There are no maximize or minimize buttons. A one pixel border is added
around the client area in case a toolbox is implemented. This style must be
turned on before the window is created. After the window is created, its
style can’t be changed. '

See also: TFrameWindow:: TFrameWindow, TTinyCaption::TTinyCaptioyn

Public member functions

void SetMargins(const TSize& margin);

Sets the margins of the floating palette window to the size specified in
margin and sets the height of the tiny caption bar.

See also: TTinyCaption::EnableTinyCaption

Chapter 1, Library reference , ' S 201

TFloatingFrame class

Response table entries
Response table entry Member function
EV_WM_SYSCOMMAND EvSysCommand
EV_WM_NCCALCSIZE EvNCCalcSize
EV_WM_NCPAINT EVNCPaint
TFontclass : gdiobjec.h

TFont derived from TGdiObject provides constructors for creatmg font
objects from explicit information or indirectly.

Public data members

enum TStockld enum TStockId{AnsiFixed, AnsiVar, DeviceDefault, OemFixed, Systen,
SystemFixed}; :

Enumerates the stock fonts.
See also: TGdiObject::Stocks[]

Protected data members

Stocks|] static TFont Stocks[];

’ NZ)‘: eTrhg(ggaJUS’g The single static array of Windows stock fonts serving all TFont objects. The
TDC:: Selgcfstockobjec[stock fonts are AN SI FIXED FON T ANSI VAR POINT
instead. DEVICE_DEFAULT_FONT, OEM_FIXED_FONT, SYSTEM . FONT and’

SYSTEM_FIXED_FONT.

See also: enum TStockld

Public constructors

Constructor TFont (HFONT handle, TAutoDelete autoDelete = NoAutoDelete);

.Creates a TFont object and sets the Handle data member to the given
borrowed handle. The ShouldDelete data member defaults to FALSE,
ensurmg that the borrowed handle will not be deleted when the C++ object
is destroyed ”

See also: TGdzObje’ct::Hundle,‘ TGdiObject::ShouldDelete

202 : ‘ - ObjectWindows 2.0 Reference Guide

TFont class

- Constructor TFont (const char far* facename = 0, int height = 0, int width = 0,
int escapement = 0, int orientation = 0, int weight = FW_NORMAL,
BYTE pitchAndFamily = DEFAULT_PITCH|FF_DONTCARE, BYTE italic
= FALSE, BYTE underline = FALSE, BYTE strikeout = FALSE,
BYTE charSet = 1, BYTE outputPrecision = OUT_DEFAULT_PRECIS,
BYTE clipPrecision = CLIP_DEFAULT PRECIS, BYTE quality
= DEFAULT_QUALITY); s
Creates a TFqnt object with the given values. Sets Handle via a Win API
CreateFont call with the given default values. :
See also: ::CreateFont '
Constructor TFont (const LOGFONT far* logFont);
Creates a TFont object from the given logFont. Sets Handle via a WinAPI
CreateFontIndirect(logFont) call.
See also: ::CreateFontIndirect
Public member functions
GetObject inline BOOL GetObject (LOGFONT far& logFont) const;
Retrieves information about this pen object and places it in the given
LOGFONT structure. Returns TRUE 1f successful and FALSE if
unsuccessful.
See also: TGdiObject::GetObject, struct LOGFONT
GetStock static TFont& GetStock(TStockId id);
Provides access to stock Windows font objects. Returns TFont::Stocks[id].
‘ See also: enum TStockld
operator HFONT() inline operator HFONT() const ;
Typecasting operator that converts this font’s Handle to type HFONT (the
Windows data type representing the handle to a physical font).
TFrameWindow class . ; framewin.h

Derived from TWindow, TFrameWindow controls such window- speckific
~behavior as keyboard navigation and command processing for client -
windows. For example, when a window is reactivated, TFrame Wmdow is

Chapter 1, Library reference v o ' a .) 203

TFrémeWindow class

_ responsible for restoring a window’s input focus and for adding menu bar

KeyboardHandling

Constructor

Constructor

Destructor

AssignMenu

EnableKBHandler

204

and icon support. TFrameWindow is a streamable class.

See TFloutmgmee for a description of a floating frame with the same
default functionality as a frame window.

Public data member

BOOL KeyboardHandling;

Indicates if keyboard navigation is required.

Public constructors and destructor

TFrameWindow (TWindow* parent,‘ const char far *title = 0,
TWindow *clientWnd = 0, BOOL shrinkToClient = FALSE,
TM_odule* module = 0);

Constructs a window object with the parent window supplied in parent.
Sets the position and extent fields of Attr structure to defaults appropriate
for overlapped and pop-up windows.

See also: TWindow:: TWindow, TFloutmgmee TFloutmgFrame
TFrameindow (HWND hWnd, TModule* module = 0);

Constructor for a TFrameWindow that is being used as an alias for a
non-ObjectWindows window.

~TFrameWindow;

Deletes any associated menu descriptor.

Public member functions

virtual BOOL AssignMenu{TResId menuResId);

Sets Attr.Menu to the supplied menuResld and frees any previous strings -
pointed to by Attr.Menu. If HWindow is nonzero, 10ads and sets the menu of
the window, destroying any previously existing menu.

See also: TMDIFrame::AssignMenu, TFrameWindow::SetMenu
void EnableKBHandler();

Sets a flag ihdicating that the receiver has requested keyboard navigation
(translation of keyboard input into control selections). By default, the

ObjectWindows 2.0 Reference Guide

GetClientWindow

GetMenuDescr

HoldFocusHwnd

IdleAction

MergeMenu

By)

PreProcessMsg

RestoreMenu

SetClientWindow

TFrameWindow class

keyboard interface, which lets users use the tab and arrow keys to move
between the controls, is disabled for windows and dialog boxes.

inline virtual TWindow *GetClientWindow();

Returns a pointer to the client window.

See also: TMDIClient::GetClient Window

inline const TMenuDescr* GetMenuDescr();

Returns a pointer to the menu descriptor.

See also: TFrameWindow::SetMenuDescr

virtual BOOL HoldFocusHWnd (HWND hWndLose, HWND hwndGain);

Responds to a request by a child window to hold its HWND when it is
losing focus. Stores the child’s HWND in HwndRestoreFocus.

See also: TWindow::HoldFocusHwnd
void IdleAction();

TApplication calls the main window’s IdleAction when no messages are
waiting to be processed. TFrameWindow uses this idle time to perform
command enabling for the menu bar. It also forwards IdleAction to each of
its children. IdleAction can be overridden to do background processing.

See also: TApplication::IdleAction
BOOL MergeMenu {const TMenuDescr& childMenuDescr);

Merges the given menu descriptor with this frame’s own menu descriptor
and displays the resulting menu in this frame. See TMenuDescr for a
description of menu bar types that can be merged.

See also: TMenuDescr class

BOOL PreProcessMsg (MSG& msg) ;

- Performs preprocessing of window messages. If the child window has

requested keyboard navigation, PreProcessMsg handles any accelerator key
messages and then calls the Windows API function : IsDzulogMessage to
process any other keyboard messages.

See also: TWindow::PreProcessMsg

BOOL RestoreMenu() ;

Restores the default menu of the frame window.

virtual TWindow. *SetClientWindow(TWindow* clientWindow);

Sets the client window to the specified window.

Chapter 1, Library reference ‘ , ' - 205

TFrameWindow class

Setlcon

SetMenuDescr

ClientWnd
DocTitleIndex

HWndRestoreFocus

EvCommand

EvConimandEnable

EvEraseBkgnd

EvinitMenuPopup

206

t

BOOL SetIcon(TInstance iconInst, TResId iconResId);
Sets the icon to the specified resource ID.

See also: TFrameWindow::EvQueryDraglcon

void SetMenuDescr (const ThenuDescré menuDescr) ;

Sets the menu descriptor to the new menu descriptor.

See also: TFrameWindow::GetMenuDescr

Protected data members

TWindow *ClientWnd;
ClientWnd points to the frame’s client window.

int DocTitleIndex;

"Holds the index number for the document title.

HWND HWndRestoreFocus,
Stores the handle of the child wmdow whose focus gets restored.
See also: TFrameWindow::HoldFocusHuwnd

Protected member functions

LRESULT EvCommand (UINT id, HWND hWndCtl, UINT notifyCode);

Provides extra processing for commands and lets the focus window and its
parent windows handle the command first. : -

void EvCommandEnable (TCommandEnabler& ce)

Handles checking and unchecking of the frame wmdow s menu items.
See also: TMenultemEnabler::TCommandEnabler

BOOL EvEraseBkgnd (HDC) ;

EvEraseBkgnd erases the background of the w1ndow specified in HDC. It
returns TRUE if the background is erased; otherwise, it returns FALSE.

HANDLE EvInitMenuPopup (HMENU hPopupMenu, UINT index,y BOOL sysMenu) ;

Sent before a pop-up menu is displayed, EvlnitMenuPopup lets an
application change the items on the menu before the menu is displayed.
EvInitMenuPopup controls whether the items on the pop-up menu are

~ ObjectWindows 2.0 Reference Guide

TFrameWindow class

enabled or disabled, checked or unchecked, or strings. HMENU indicates
the menu handle. index is the index of the pop-up menu. sysMenu indicates
if the pop-up menu is the system menu.

See also: ::WM_INITMENUPOPUP
EvPaint void EvPaint();

Responds to a WM_PAINT message in order to paint the iconic window’s
icon or to allow client windows a chance to paint the icon.

See also: TWindow::EvPaint, TWindow::Paint, TScroller:: Bengzew
TScroller::EndView

EvParentNotify void EvParentNotify (UINT event, UINT childHandleOrX, UINT childIDOrY);

Responds to a message to notify the parent window that a given event has
occurred. If the client window is destroyed, closes the parent window. If
shrinkToClient is set and the child window has changed size, the frame is
adjusted.

EvQueryDraglcon yaxpLE EvQueryDragTcon();

Responds to a Windows API WM_QUERYDRAGICON message sent to a
minimized (iconic) window that is going to be dragged. Instead of the
default Windows icon, EquermegIcon uses the icon that was set usmg
SetIcon.

See also: TFrameWindow::Setlcon, :: WM_QUERYDRAGICON
EvSetFocus void EvSetFocus (HWND hWndLostFocus);

Restores the focus to the active window. If the object is an aiias, EvSetFocus
calls TWindow:: Activate. hWndLostFocus contains the handle to the window

that lost the focus.
See also: TWindow::EvActivate, :WM_SETFOCUS
EvSize ~ void EvSize(UINT sizeType, TSize &size);

Resizes the client window’s size so that it is equivalent to the client
rectangle’s size. Calls TWindow::EvSize in response to an incoming
Windows API WM_SIZE message.

. See also: TWz’ndow::Ei;Size’ o
SetupWindow void SetupWindow();

Calls Twindow::SetUpWindow to create windows in a child list. Setup Window
performs the initial adjustment of the client window if one exists, assigns
the frame’s menu based on the menu descriptor, and 1n1t1a11zes
HuwndRestoreFocus.

Chapter 1, Library reference | o o , ' 207

TFrameWindow class

TGadget class

See also: TWindow::SetUpWindow

Response table entries
Résponse tableentry . Member function
EV_WM_ERASEBKGND EvEraseBkgnd
EV_WM_INITMENUPOPUP EvWminitMenuPopup
EV_WM_PAINT EvPaint
EV_WM_PARENTNOTIFY EvParentNotify
EV_WM_QUERYDRAGICON EvQueryDraglcon
EV_WM_SETFOCUS EvWmSetFocus
EV_WM_SIZE EvWmSize
gadget.h

Clip-

TBorders struct

208

TGadget is the base class for the derived classes—TBitmapGadget,
TButtonGadget, TControlGadget, TTextGadget, and TSeparatorGadget. TGadget
interface objects belong to a gadget window, have borders and margins,
and have their own coordinate system. The margins are the same as those
for TGadget Window and borders are always measured in border units.

To set the attributes for the gadget, you can either choose a border style
(which automatically sets the individual border edges) or set the borders
and then override the member function PaintBorder to create a custom look
for your gadget. If you change the borders, margins, or border style, the
gadget window’s GadgetChangedSize member function is invoked.

Although, by default, gadgets shrink-wrap to fit around their contents, you
can control this attribute by setting your own values for Shrink Wrap Width
and ShrinkWrapHeight.

Public data members

BOOL Clip;

If Clip is FALSE, clipping borders have not been established. If Clip is
TRUE, the drawing for each gadget is restrained by the gadget’s border.

TBorders structure holds the values for the left, right, top, and bottom
measurements of the gadget. '

ObjectWindows 2.0 Reference Guide

TBordérSter ‘
enum)

1

TMargins struct

WideAsPossibIe

Constructor

Destructor

TGadget class

struct TBorders
unsigned Left;
unsigned Right;
unsigned Top;
unsigned Bottom;

enum TBorderStyle;

Enumerates border styles as either none, plain, raised, recessed, or
embossed. For an example of border styles, see the sample ObjectWindows
program, MDIFILE.CPP, on your distribution disk.

Used by the TGadget Window and TGadget classes, TMargins contains the
measurements of the margins for the gadget. The constructor initializes
Units to LayoutUnits and sets Left, Right, Top, and Bottom equal to 0.

struct TMargins { :
enum TUnits {Pixels, LayoutUnits, BorderUnits};
TUnits Units; '
int Left;
int Right;
int Top;
int Bottom;

See also: TGadget Window::SetMargins
BOOL WideAsPossible;

Initially set to FALSE, WideAsPossible indicates whether the gadget width
will be adjusted by the gadget window to be as wide as possible in the
remaining space.

See also: TGadget Window::WideAsPossible

Public constructors and destructor

TGadget (int id = 0, TBorderStyle = None);
Constructs a TGadget object with the specified ID and border style.
virtual ~TGadget();

Destroys a TGadget interface object and removes it from its associated
window.

Chapter 1, Library reference ‘ - 209

TGadget class

CommandEnable

* GetBorders

GetBorderStyle
GetBounds

GetDesii’edSize

GetEnabled

Getld

GetMargins

210

Public ﬁember functions

virtual void CommandEnable();

CommandEnable is provided so that the gadget can perform command
enabling (so it can handle an incoming message, if it's appropriate to do so).

inline TBorders &GetBorders();

Gets the gadget’s borders measured in border units that are based on
SM_CXBORDER and SM_CYBORDER.

See also: TGadget::SetBorders
inline TBorderStyle GetBorderStyle();

Gets the style for the gadget’s borders.

See also: TGadget::SetBorderStyle

inline TRect &GetBounds();

Returns the boundary rectangle for the gadget.
See also: TButtonGadget::SetNotchCorners
virtual void GetDesiredSize(TSize& size);

GetDesiredSize determines how big the gadget can be. The gadget window
sends this message to query the gadget’s size. If shrink-wrapping is
requested, GetDesiredSize returns the size needed to accommodate the
borders and margins. If shrink-wrapping is not requested, it returns the
gadget’s current width and height. TGadget Window needs this information
to determine how big the gadget needs to be, but it can adjust these
dimensions if necessary. If WideAsPossible is TRUE, then the width
parameter (size.cx) is ignored.

“inline BOOL GetEnabled();

'Determines whether keyboard and mouse input have been enabled for the

specified gadget. If the gadget is enabled, GetEnabled returns TRUE;
otherwise, it returns FALSE. By default, keyboard and mouse input are
enabled. ‘

See also: TGadget::SetEnabled
inline int GetId();

Gets the ID for the gadget.
inline TMargins &GetMa‘r'gins ();

Gets the margin dimensions.

ObjectWindows 2.0 Reference Guide

GetOuterSizes

. NextGadget

S'etBofders

SetBorderSter

SetBounds

SetEnabled

SetMargins

SetShrinkWrap

SetSizg

IGaaget class

void GetOuterSiées(int& left, int& right, int& top, int& bottom);

Returns the amount of space (in pixelé) taken up by the borders and
margins. ‘

inline TGadget *NextGadget();
Returns the next gadget in the list of gadgets.
void SetBorders (TBorders& borders);

Sets the borders for the gadget. If the borders are changed, SetBorders calls
TGadget Window::GadgetChangedSize to notify the gadget window of the
change.

See also: TGadget::GetBorders, TGadget Window::GadgetChangedSize
void SetBorderStyle(TBorderStyle);

Sets the border style for the gadget.

See also: TGadget::GetBorderStyle
virtual void SetBounds(TRect& rect);

SetBounds informs the gadget of a change in its bounding rectangle.
Although the default behavior updates only the instance variable Bounds,
you can override this method to also update the internal state of the gadget.

virtual void »SetEnabled(BOOL) H

Enables or disables keyboard’and mouse input for the gadget. By default,

- the gadget is disabled when it is created and must be enabled before it can

be activated.
See also: TGadget::GetEnabled

void SetMargins(TMargins& margins);

Sets the margins of the gadget. If the margins are changed, SetMargins calls

‘TGadget Window::GadgetChangedSize to notify the gadget window.

See also: TGadget::GetMargins ‘
void SetShrinkWrap (BOOL shrinkWrapWidth, BOOL shrinkWrapHeight);

Sets the ShrinkWrapWidth and ShrinkWrapHeight data members. Your
derived class can call TGadget Window’s GadgetChangedSize member function

~ if you want to change the size of the gadget.
~ See also: TGadget Window:: GadgetChangedSzze

void Set81ze(TS1ze& 51ze)

Chapter 1, Library reference o , ‘- ' 211

I Gadget class

SetSize alters the size of the gadget and then calls
TGadget Window::GadgetChangedSize for the size change to take effect.

~ This function is needed only if you have turned off shrink-wrapping in one
or both dimensions; otherwise, use the GetDesiredSize member function to
return the shrink-wrapped size.

SysColorChange virtual void SysColorChange();

SysColofChunge is called when the system colors have been changed so that
gadgets can rebuild and repaint, if necessary.

Protected data members

Bounds TRect Bounds;

Contains the bounding rectangle for the gadget in gadget window
- coordinates.

See also: TGadget::GetInnerReci
BorderStyle TBorderStyle BorderStyle;
Contains the border style for the gadget.
Borders TBorders Borders; '
Contains the border measurements for the gadget.
See also: TGadget::GetInnerRect
Id int 1d;
Contains the gadget’s ID.
Margins » TMargins Margins;
Contains the margin measurements of the rectangle,
See also: TGadgét::GetInnerRect
ShrinkWrapHeight poor, shrinkwrapHeight ;
B - Indicates if the gadget is to be shrink-wrapped to fit around its contents.
ShrinkWrapWidth goor, shrinkwrapwidth;] ‘
Indicates if the gadget is to be shrink-wrapped to fit around its contents.
TrackMouse - BOOL TrackMouse; o

212 , : ObjectWindows 2.0 F{eferencre‘ Guide

Window

GetlnnerRect

Inserted

Invalidate

InvalidateRect

LButtonDown

LButtonUp

MouseEnter

MouselLeave

‘TGadget class

Initjalized to FALSE. When TrackMouse is TRUE, the gadget captures and
releases the mouse on LButtonDown and LButtonUp by calling
TGadget Window’s GadgetSetCapture and GadgetReleaseCapture.

See also: TGadget::LButtonDown, TGadget::LButtonUp
TGadgetWindow *Window;

References the owning or parent window for the gadget.

Protected member functions

void GetInnerRect (TRect& rect);

Computes the area of the gadget’s rectangle excluding the borders and
margins.

virtual void Inserted();
Called after a gadget is inserted into a window.
void Invalidate(BOOL erase = TRUE);

Used to invalidate the active (usually nonborder) portion of the gadget,
Invalidate calls InvalidateRect and passes the boundary width and height of
the area to erase.

void InvalidateRect (vco'nst TRect& rect, BOOL erase = TRUE);
Invalidates the gadget-relative rectangle in the parent window.
virtual void LButtonDown (UINT modKeys, TPoint& point}; ‘

Captures the mouse if TrackMouse is set. point is located in the gadget’s
coordinate system.

See also: TGadget:: TrackMouse
virtual void LButtonUp(UINT modKeys, TPoint& point);

Releases the mouse capture if TrackMouse is set. point is located in the
gadget’s coordinate system.

See also: TGadget::TrackMouse

virtual void MouseEnter (UINT modKeys, TPoint& point);
Called when the mouse enters the gadget.

See also: TGadget::MouseLeave

virtual void MouseLeave (UINT modKeys, TPoint& point);

Chapter 1, Libra)y reference / 213

TGadget class

MouseMove

Paint

PaintBorder

Ptin

Removed

Called when the mouse leaves the gadget.
See also: TGadget::MouseEnter
virtual void MouseMove (UINT modKeys, TPointé& point);

If mouse events are captured, EvMouseMove responds to a mouse dragging
message. point is located in the receiver’s coordinate system.

See also: TGadget::MouseEnter, TGadget::MouseLeave
virtual void Paint(TDC&); »

Calls PaintBorder to paint the indicated device context.
See: TTextGadget::Paint

Virtﬁal void PaintBorder (TDC& dc);

Used to paint the border, PaintBorder calls ::GetSystemMetrics to obtain the
width and height of the gadget and uses the color returned by GetSyscolor
to paint or highlight the area with the specified brush. Depending on
whether the border style is raised, embossed, or recessed, PaintBorder
paints the specified boundary. You can override this function if you want to
implement a border style that isn’t supported by ObjectWindows’s gadgets.

" virtual BOOL PtIn(TPointé& point);

PtIn determines if the point is within the receiver’s bounding rectangle and
returns TRUE if this is the case; otherwise, returns FALSE.

. virtual void Removed();

Called after a gadget is removed from a window.

TGadgetWindow class , gadgetwi.h

214

Derived from TWindow, TGadget Window maintains a list of tiled gadgets for
a window and lets you dynamically arrange tool bars. You can specify the
following attributes of these gadgets:

m Horizontal or vertical tiling. Positions the gadgets horizontally or
vertically within the inner rectangle (the area excluding borders and
margins).

m Gadget font. Default font to use for gadgets and for calculating layout
units. For font information, see the description of TGadgetFont.

m Left, right, top, and bottom margins. Specified in pixels, layout units
(based on the window font), or border units (the width or height of a thin
window border).

ObjectWindows 2.0 Reference Guide

Constructor

Destructor

FirstGadget

TGadgetWindow class

m Measurement units. Specified in pixels, layout units, or border units.

m Gadget window size. A gadget window can shrink-wrap its width,
height, or both to fit around its gadgets. By default, horizontally tiled
gadgets shrink-wrap to fit the height of the window and vertically tiled
gadgets shrink-wrap to fit the width of the window.

TGadget Window is the base class for the following derived classes:
TControlBar, TMessageBar, TToolBox, and TStatusBar.

Public constructors and destructor

TGadgetWindow (TWindow *parent = 0, TTiléDirection direction = Horizontal,
TFont *font = new TGadgetWindowFont, TModule* module = 0);

- Creates a TGadget Window interface object with the default tile direction and

font and passes module with a default value of 0.
‘ ~TGadgetWindow () ;
Destructs the TGadget Window object by deleting all of its gadgets and fonts.

Public member functions

inline TGadget* FirstGadget() const;
Returns the FirstGadget in the list.
See also: TGadget Window::FirstGadget

GadgetChangedSize 14 GadgetChangedSize (TGadgets gadget) ;

- GadgetFromPoint

Used to notify the gadget window that a gadget has changed its size,
GadgetChangedSize calls LayoutSession to re-layout all gadgets.

See also: TGadget::SetShrinkWrap, T GudgetWindow::GadgetChangédSize
TGadget* GadgetFromPoint (TPoint& point);

Returns the gadget at the given window coordinates.

GadgetReleaseCapture void Gadg‘etReleaseCapture(TGadget& gadget);

Releases the capture so that other windows can receive mouse messages.

 See also: TGadgetWindow::GadgetSetCapture

GadgetSetCapture pooL, GadgetSetCapture (TGadgets gadget);

Chapter 1, Lfbra/y reference o ' 215

TGadgetWindow class

GadgetWithid

GetDirection

GetFont

GetFontHeight
GetHintMode

IdleAction

Insert

LaydutSession

GadgetSetCapture reserves all mouse messages for the gadget window until
the capture is released. Although gadgets are always notified if a left
button-down event occurs within the rectangle, the derived gadget class
must call GadgetSetCapture if you want the gadget to be notified when a
mouse drag and a mouse button-up event occurs.

See also: TGadget Window::Gadget ReleaseCapture

TGadget *GadgetWithId(int id) const;

Returns a pointer to the gadget associated with the given ID (id).
inline TTileDirection GetDirection() const;

Gets the horizontal or vertical orientation of the gadgets.
See also: TGadget Window::SetDirection

inline TFont &GetFont();

Returns the font (which is MS Sans Serif by default).

See also: TGadget WindowFont:: TGadget WindowFont
inline UINT GetFontHeight () const;

Gets the height of the window’s font.

inline THintMode GetHintMode();

Returns the hint mode.

void IdleAction();

While no messages are waiting to be processed, IdleAction is called and
iterates through the gadgets, invoking their CommandEnable member
function.

See also: TGadget::CommandEnable

virtual void Insert (TGadget& gadget, TPlacement = After,
TGadget *sibling = 0);

Inserts a gadget before or after a sibling gadget (TPlacement). If sibling is 0,
then the new gadget is inserted at either the beginning or the end of the
gadget list. If this window has already been created, LayoutSession needs to
be called after inserting gadgets.

See also: TGadget Window::LayoutSession, TGadget Window::Remove

virtual void LayoutSession();

- LayoutSession is typically called when a change occurs in the size of the

216

margins or gadgets or when gadgets are added or deleted. LayoutSession

ObjectWindows 2.0 Reference Guide

NextGadget

Remove

SetDirection

SetHintCommand

SetHintMode

SetMargins

SetShrinkWrap

TGadgetWindow class

calls TileGadgets to tile the gadgets in the specified direction and Invalidate
to mark the area as invalid (needs repainting).

See also: TGadget Window::Insert, TGadget Window::Remouve,
TWindow::Invalidate

inline TGadget *NextGadget (TGadget& gadget) const;
Returns the next gadget after gadget or 0 if none exists.
virtual TGadget* Remove(TGadget& gadget);

Removes a gadget from the gadget window. The gadget is returned but not
destroyed. Remove returns 0 if the gadget is not in the window.

If this window has already been created, the calling application must call
LayoutSession after any gadgets have been removed.

See also: TGadget Window::Insert, TGadget Window::LayoutSession
virtual void SetDirection(TTileDirection direction);

Sets the horizontal or vertical orientation of the gadgets. If the gadget
window is already created, SetDirection readjusts the dimensions of the
gadget window to fit around the gadgets. :

See also: TGadgetWindow::GetDirection
void SetHintCommand(int id);

Simulates menu selection messages so that ObjectWindows command
processing can display command hints.

See also: WM_MENUSELECT, WM_ENTERIDLE
inline void SetHintMode(THintMode hintMode) :

Sets the mode of the hint text. Defaults to PressHints (displays hint text
when a button is pressed).

See also: THintMode enum
void SetMarging(TMargins &margins);
Sets or changes the margins for the gadget window and calls LayoutSession.

See also: TGadget Window::Margins
void SetShrinkWrap (BOOL shrinkWrapWidth, BOOL shrmkWrapHelght)

Sets the width and height of the data members. By default, if the tile
direction is horizontal, Shrink WrapWidth is FALSE and ShrinkWrapHeight is
TRUE. Also by default, if the direction is vertical, ShrinkWrapWidth is TRUE
and ShrinkWrapHeight is FALSE. :

Chapter 1, Library reference | ‘ ‘ 217

TGadgetWindow class

Protected data merhbers

AtMouse TGadget* AtMouse;

The last gadget at the mouse position.
BkgndBrush TBrush* BkgndBrush;

The color of the background brush.
Capture TGadget *Capture;

Points to the gadget that currently has the mouse capture; otherwise, if no
gadget has the mouse capture, Capture is 0.

See also: TGadgetWindow::GadgetSetCuﬁture
Direction TTileDirection Direction;
‘ The direction of the tiling—either horizontal or vertical.
DirtyLayout BOOL DirtyLayout;

Indicates the layout has changed and gadgets need to be re-tiled. Using
DirtyLayout avoids redundant tiling when gadget windows are created.

See also: TGadgetWindow::LayoutSession
Font TFont *Font;
Points to the font used to calculate layout units.
, See also: TGadget Window::GetFont
FontHeight UINT FontHeight; |
Holds the height of the gadget window’s font.
See also: TGadget Window::GetFont

Gadgets TGadget *Gadgets;

Points to the first gadget in the gadget list.
HintMode THintMode HintMode;

Holds the hint text mode.

See also: THintMode enum
Margins - TMargins Margins; '
Holds the margin values for the gadget window.
See also: TGadget Window::SetMargins
NumGadgets UINT NumGadgets; ‘

218 - » - ObjectWindows 2.0 Reference Guide

ShrinkWrapHeight

ShrinkWrapWidth

WideAsPossible

Create

EvLButtonDown

EvLButtonUp

EvMouseMove

EvSize

TGadgetWindow class

The number of gadgets in the window.
BOOL ShrinkWrapHeight;

If ShrmkapHezght is TRUE, the window will shrink its w1dth to fit the
tallest gadget for horizontally tiled gadgets.

See also: TGadget Window::SetShrink Wrap
BOOL ShrinkWrapWidth;

If ShrinkWrapWidth is TRUE, the wihdow will shrink its width to fit the
widest gadget for vertically tiled gadgets.

See also: TGadget Window::SetShrinkWrap
UINT WideAsPossible;

The number of gadgets that are as wide as possible.

Protectéd member functions

BOOL Create();

Overrides TWindow member function and chooses the initial size of the
gadget if shrink-wrapping was requested.

See also: TGadgetWindow::SetShrinkWrap
void EvLButtonDown (UINT modKeys, TPointé& point);

Responds to a left button-down mouse message by forwarding the event to
the gadget positioned under the mouse.

void EvLButtonUp (UINT modKeys, TPointé point);

Responds to a left button-up mouse message by forwarding the event to the
gadget that has the capture.

void EvMouseMove (UINT modKeys, TPointé& point);

If mouse events are captured, EvMouseMove responds to a mouse move
message by forwarding the event to the gadget that has the capture.

void EvSize(UINT sizeType, TSize &);

Calls TWindow::EvSize to perform any default processing. If DirtyLayout .
TRUE and WideAsPossible is greater than 0, EvSize sets DirtyLayout to TRUE
and calls TileGadgets to read]ust the size and Invalidate to mark the area for
redrawing.

See also: TWindow::EvSize

Chapter 1, Library reference ; o 219 -

TGadgetWindow class

EvSysColorChange

GetDesiredSize

GetinnerRect |

GetMargins

LayoutUnitsToPixels

Paint

PaintGadgets

220

void EvSysColorChange();

EvSysColorChange, which is called when any system colors have changed,
forwards the event to all gadgets.

virtual void GetDesiredSize(TSize &size);

If shrink-wrapping was requested, GetDesiredSize returns the size needed to
accommodate the borders and the margins of the widest and highest
gadget; otherwise, it returns the width and height in the window’s Attr
structure.

If you want to leave extra room for a specific look (for example, a separator
line between gadgets, a raised line, and so on), you can override this
function. However, if you override GetDesiredSize, you will probably also
need to override GetInnerRect to calculate your custom inner rectangle.

See also: TGadget Window::GetInnerRect
virtual void GetInnerRect(TRect &);

GetInnerRect computes the rectangle inside of the borders and margins of
the gadget.

If you want to leave extra room for a specific look (for example, a separator
line between gadgets, a raised line, and so on), you can override this
function. If you override GetInnerRect, you will probably also need to
override GetDesiredSize to calculate your custom total size.

See also: TGadget Window::GetDesiredSize
void GetMargins(TMargins&, int &left, int &right, int &top, int &bottom);

Returns the left, right, top, and bottom 'margihs in pixels.
int LayoutUnitsToPixels(int units);

Converts layouf units to pixels. A layout unit is determined by dividing the
window font height by eight.

See also: TGadget Window::LayoutSession

void Paint (TDC& dc, BOOL erase, TRect& rect);

Puts the font into the device context and calls PaintGadgets.
See also: TGadgetWindow::PaintGadgets

virtual void PaintGadgets(TDC& dc, BOOL erase, TRect&‘reCt);

Called by Paint to repaint all of the gadgets, PaintGadgets iterates through
the list of gadgets, determines the gadget’s area, and repaints each gadget.

ObjectWindows 2.0 Reference Guide

PositionGadget

TileGadgets

TGadgetWindow class

You can override this function to implement a specific look (for example,
separator line, raised, and so on).

See also: TGadgetWindow::EvPaint

virtual void PositionGadget (TGadget *previous, TGadget *next, TPointé
point);

‘PositionGadget is called to allow spacing adjustments to be made before

each gadget is positioned.
See also: TGadget Window::TileGadgets
virtual void TileGadgets{();

Tiles the gadgets in the direction requested (horizontal or vertical).
Calls PositionGadget to give derived classes an opportunity to adjust the
spacing between gadgets in their windows.

See also: TGadgetWindow::PositionGadget

Response table entries

Response table entry : Member function

EV_WM_LBUTTONDOWN EvLButtonDown
EV_WM_LBUTTONUP EvLButtonUp
EV_WM_MOUSEMOVE EvMouseMove
EV_WM_SIZE) EvSize)
EV_WM_SYSCOLORCHANGE EvSysColorChange

TGadgetWindowFont class gadgetwi.h

Constructor

Derived from TFont, TGadget WindowFont is a specific font used in gadget
windows for sizing and default text. You can specify the point size of the
font (not the size in pixels) and whether it is bold or italic. You can use a
variety of the Windows API FW_xxxx or FF_xxxx constants to set the font

type.

Public constructors

TGadgetWiridowFont(int pointSize = 10, BOOL bold = FALSE,

BOOL italic = FALSE);

Chapter 1, Library reference 221

1 Gauge class

‘TGauge class

~ Constructs a TGadget WindowFont interface object with a default point size

of 10 picas without bold or italic typeface. By default, the constructor
creates the system font: a variable-width, sans-serif Helvetica.

gauge.h

GetRange
GetValue

SetLed

SetRange

SetValue

222

A streamable class derived from TControl, TGauge defines the basic
behavior of gauge controls. Gauges are display-only horizontal or vertical
controls that provide duration or analog information about a particular
process. In general, horizontal gauges with a broken (dashed-line) bar are
used to display short-duration, process information whereas horizontal
gauges with a solid bar are used to illustrate long-duration, process
information. Usually, vertical gauges are preferred for displaying analog
information.

Public member functions

inline void GetRange (int& min, ints max) const

Gets the minimum and maximum values for the gauge.
inline int GetValue() const

Gets the current value of the gauge.

void SetLed(int spacing, int thick = 90);

Sets the LedSpacing and LedThick data members to the values spacing and
thick.

void SetRange(int min, int max);

Sets the Min and Max data members to min and max values returned by the
constructor. If Max is less than or equal to Min, SetRange resets Max to Min
plus 1. :

void SetValue(int value);

Restricts the value so that it is within the minimum and maximum values
established for the gauge. If the current value has changed, SetValue marks
the old position for repainting. Then, it sets the data member Value to the
new value. ‘

ObjectWindows 2.0 Reference Guide

Constructor

IsHorizontal
LedSpacing

LedThick
~ Max
Min

Margin

Value

EvEraseBkgnd

TGauge class

Public constructors

TGauge (TWindow* parent, const char far* title, int id,
int X, int Y, int W, int H, BOOL isHorizontal = TRUE,
int margin = 0, TModule* module = 0);

Constructs a TGauge object with borders that are determined by using the
value of SM_CXBORDER from ::GetSystemMetrics. Sets IsHorizontal to
isHorizontal Sets border thickness and spacing between dashed borders
(LEDs) to 0. Sets the range of possible values from 0 to 100.

Protected data members

int IsHorizontal;

Set to the ishorizontal argument of the constructor. IsHorizontal is TRUE if
the gauge is horizontal and FALSE if it is vertical.

~ int LedSpacing;

Holds the integer value (in gauge units) of the spacing between the broken
bars of the gauge.

int LedThick;

Holds the thickness of the broken bar.

int Max;

Holds the maximum value (in gauge units) displayed on the gauge.
int Min; |

Holds the minimum value (in gauge units) displayed on the gaﬁge.
int Margin;

The border width and height of the gauge. Margin is calculated by
multiplying the value returned by GetSystemMetrics in the SM_CXBORDER
parameter by the value in the constructor’s parameter, margin.

int Value;
Holds the current value of the gauge.

Protected member functions

BOOL EvEraseBkgnd (HDC) ;

Chapter 1, Library reference c223

| Gauge class

Paint

Overrides TWindow’s EvEraseBkgnd function and erases the background of
the gauge. Whenever the background is repamted EvEraseBkgnd is called to
avoid flickering.

See also: TWindow::EvEraseBkgnd
void Paint();

Overrides TWindow’s Paint function and paints the area and border of the

‘gauge. Assigns the horizontal and vertical border values of the gauge’s

rectangle to the values of the SM_CXBORDER and SM_CYBORDER
parameters of GetSystemMetrics. Determines the color by using the value -
returned by the COLOR_BTNSHADOW option of GetSysColor and uses the
values in LedSpacing and IsHorizontal to draw a horizontal or vertical gauge
with solid or broken bars.

See also: TGauge::LedSpacing, TGauge::IsHorizontal

Response table entries

Response table entry Member function

EV_WM_ERASEBKGND EvEraseBkgnd

TGdiObject class gdiobjec.h

224

GdiObject is the root, pseudo-abstract base class for ObjectWindows’s GDI
(Graphics Device Interface) wrappers. WIN API calls that take a GDI
handle argument are typically replaced by simpler ObjectWindows
member function invocations in which the handle (and possibly other
arguments) is “supplied” by the calling object. The TGdiOject-based classes
let you work with a GDI handle and construct a C++ object with an aliased
handle. Some GDI objects are also based on TGdiObject for handle
management. Generally, the TGdiObject-based class hierarchy handles all
GDI objects apart from the DC (Device Context) objects handled by the
TDC-based tree.

The five DC selectable classes (TPen, TBrush, TFont, TPalette, and TBitmap),
and the TIcon, TCursor, TDib, and TRegion classes, are all derived dlrectly
from TGdiObject.

TGdiObject maintains the GDI handle and a ShouldDelete flag that
determines if and when the handle and object should be destroyed.

ObjectWindows 2.0 Reference Guide

enum
TAutoDelete

enum TType

GetObject

TGdiObject class

Protected constructors are provided for use by the derived classes: one for
borrowed handles, and one for normal use.

An optional orphan control mechanism is provided. By default, orphan
control is active, but you can turn it off by defining the
NO_GDI_ORPHAN_CONTROL identifier:

#define NO_GDI_ORPHAN_CONTROL

With orphan control active, the following static member functions are
available:

RefAdd, RefCount, RefDec, RefFind, Reflnc, and RefRemove.

These maintain object reference counts and allow safe orphan recovery and
deletion. Macros, such as OB]_REF_ADD, let you deactivate or activate
your orphan control code by simply defining or undefining
NO_GDI_ORPHAN_CONTROL. When NO_GDI_ORPHAN_CONTROL is
undefined, for example, OB]_REF_ADD(handle, type) expands to
TGdiObject::RefAdd((handle) (type)), but when
NO_GDI_ORPHAN_CONTROL is defined, the macro expands to handle.

Public data members

enum TAutoDelete(NoAutoDelete, AutoDelete);

Enumerates the flag values for GDI Handle constructors. This flag is used
to control GDI object deletion in the destructors.

See also: The second protected constructor in this class

enum TType (TpNone, TpPen, TpBrush, TpFont, TpPalette, TpBitmap,
TpTextBrush) ;

This enumeration is used to store the object type in the struct TObjInfo. This
internal structure is used to track object reference counts during debugging
sessions.

See also: TGdiObject::RefXXX

Public member functions

inline int GetObject (int count, void far* object) const;

Wrapper for the Win API GetObject(Handle, count, object) call. Obtains
information about this GDI object and places it in the object buffer. If the call
succeeds and object is not 0, GetObject returns the number of bytes copied to
the object buffer. If the call succeeds and object is 0, GetObject returns the

Chapter 1, Library reference : : 225

| GdiObject class

IsGDIObject

IsOk

RefAdd

RefCount

RefDec

226

number of bytes needed in the object buffer for the type of object being
queried.

See also: ::GetObject, TPen::GetObject
inline BOOL IsGDIObject(});

Returns TRUE if the data member Handle represents an exisﬁng (valid) GDI
object.

See also: TGdiObject::IsOK, TGdiObject::Handle
inline BOOL IsOK() const;

Returns TRUE if the current Handle is nonzero. -
See also: TGdiObject::Handle

static void RefAdd(HANDLE handle, TType type);

Available only if orphan control is active (that is, if
NO_GDI_ORPHAN_CONTROL is undefined). RefAdd adds a reference
entry for the object with the given handle and type to the ObjInfoBag table
and sets the reference count to 1.If the table already has a matching entry,
no action is taken. ‘

See also: TGdiObject::RefXXX, macro OB]_REF_ADD
static int RefCount (HANDLE handle);

Available only if orphan control is active, that is, if :
NO_GDI_ORPHAN_CONTROL is undefined. RefCount returns this object’s
current reference count or —1 if the object is not in the ObjInfoBag table.

See also: TGdiObject::RefXXX, macro OB]_REF_COUNT

static void RefDec (HANDLE handle); ,
static void RefDec (HANDLE handle, BOOL wantDelete);

Available only if orphan control is active, that is, if

- NO_GDI_ORPHAN_CONTROL is undefined. RefDec decrements this

object’s reference count by 1 and deletes the object when the reference count
reaches zero. A warning is issued if the deletion was supposed to happen
but didn’t. Likewise, a warning is issued if the deletion wasn’t supposed to
happen but did. The deleted object is also detached from the ObjInfoBag
table.

The second version of RefDec is available only if the __TRACE identifier is
defined. You can vary the normal deletion strategy by setting wantDelete to
TRUE or FALSE.

See also: TGdinjeét::RefXXX, macro OB]_REF _DEC

ObjectWWindows 2.0 Reference Guide

RefFind

Reflnc

RefRemove

Handle

ShouldDelete

Constructor

1 GAIUDJECT Class

static TObjInfo* RefFind (HANDLE object);

Available only if orphan control is active (that is, if NO_GDI
_ORPHAN_CONTROL is undefined). RefFind searches the ObjInfoBag table
for an entry for the given object. If found, the object’s type and reference
count are returned in the specified TObjInfo object. RefFind returns 0 if no
match is found. ,

See also: TGdiObject::RefXXX, TObjInfo, TObjlnfoBag

static void RefInc (HANDLE handle);

Available only if orphan control is active (that is, if

NO_GDI_ORPHAN_CONTROL is undefined). RefInc increments by 1 the
reference count of the object associated with handle.

See also: 'TGdiObject::RefXXX, macro OBJ_REF_INC -
s)tatic void RefRemove (HANDLE handle);

Available only if orphan control is active (that is, if
NO_GDI_ORPHAN_CONTROL is undefined). RefRemove removes the
reference entry to the object with the glven handle from the Ob]InfoBag table.
If the given handle is not found, no action is taken.

See also: TGdiObject::RefXXX, macro OB] _REF_REMOVE

Protected data members

HANDLE Handle;

The GDI handle of this object.

See also: TGdiObject constructors

BOOL ShouldDelete;

Set TRUE if the destructor needs to delete this object’s GDI handle.

See also: TGdiObject constructors and destructor

Protected constructors and destructor

TGdiObject () ;

This default constructor sets Handle to 0 and ShouldDelete to TRUE. This
constructor is intended for use by derived classes that must set the Handle
member.

Chapter 1, Library reference ’ ' ‘ : 227

1UIVDJECT Class

Constructor

Destructor

- OBJ_REF_ADD

OBJ_REF_COUNT

228

See also: TGdiObject::Handle, TGdiObject::ShouldDelete
TGdiObject (HANDLE handle, TAutoDelete autoDelete = NoAutoDelete);

This constructor is intended for use by derived classes only. The Handle
data member is “borrowed” from an existing handle, given by the
argument handle. The ShouldDelete data member defaults to FALSE,
ensuring that the borrowed handle will not be deleted when the ob]ect is
destroyed.

See also: enum TAutoDelete, TGdiObject::ShouldDelete

virtual ~TGdiObject();

If ShouldDelete is FALSE, no action is taken. Otherw1se, with ShouldDelete
TRUE, the action of the destructor depends on whether orphan control is
active or not. If orphan control is inactive (that is, if ;
NO_ORPHAN_CONTROL. is defined) ~TGdiObject deletes the GDI object
by calling ::DeleteObject(Handle). If orphan control is active (the default),
~TGdiObject calls RefDec(Handle, TRUE), so that ::DeleteObject(Handle) is
called only if the object’s reference count is 0.

See also: TGdiObject::Handle, TGdiObject::ShouldDelete, TGAdiObject::RefXXX

Macros

OBJ_REF_ADD(handle, type)

If orphan control is active (the default), OB]_REF_ADD(handle, type) is
defined as TGdiObject::RefAdd((handle), (type)). The latter adds to the
ObjInfoBag table a reference entry for the object with the given handle and
type, and sets its count to 1.

If orphan control is inactive, OB]_REF_ADD(handle) is defined as handle.
This macro lets you write orphan control code that can be easily
deactivated with the single statement #define NO_GDI_ORPHAN_CONTROL.

See also: TGdiObject::RefAdd
OBJ_REF_COUNT (handle)

If orphan control is active (the default), OB]_REF_COUNT (handle) is
defined as TGdiObject::RefCount((handle)). The latter returns the reference
count of the object with the given handle, or -1 if no such object exists. If
orphan control is inactive, OB]_REF_COUNT(handle) is defined as —1. This
macro lets you write orphan control code that can be easily deactivated
with the single statement #define NO_GDI_ORPHAN_CONTROL.

ObjectWindows 2.0 Reference Guide

OBJ: REF _DEC

OBJ_REF_INC

OBJ_REF_REMOVE

1 GAIUDJECI Class

See also: TGdiObject::RefCount
OBJ_REF_DEC (handle, wantDelete)

If orphan control is active (the default), OB]_REF_DEC(handle, wantDelete) is
defined as either TGdiObject::RefDec((handle)) or TGdiObject::RefDec((handle),
(wantDelete)). The latter format occurs only if _ _TRACE is defined.
RefDec(handle) decrements the reference count of the object associated with
handle and optionally deletes orphans or warns you of their existence. If
orphan control is inactive, OB]_REF_DEC(handle) is defined as handle. This

" macro lets you write orphan control code that can be easily deactivated

with the single statement #define NO_GDI_ORPHAN_CONTROL.
See also: TGdiObject::RefDec
OBJ_REF_INC (handle)

If orphan control is active (the default), OB]_REF_INC(handle) is defined as
TGdiObject::Reflnc((handle)). The latter increments the reference count of the
object associated with handle. If orphan control is inactive,
OBJ_REF_DEC(handle) is defined as handle. This macro lets you write
orphan control code that can be easily deactivated with the single statement
#define NO_GDI_ORPHAN_CONTROL.

See also; TGdiObject::Reflnc
OBJ_REF_REMOVE (handle)

I (; orphan control is active (the default), OB]_REF_REMOVE(handle) is

defined as TGdiObject::RefRemove((handle)). The latter removes from the
ObjInfoBag table the reference entry for the object associated with handle. If
orphan control is inactive, OB]_REF_REMOVE(handle) is defined as handle.
This macro lets you write orphan control code that can be easily
deactivated with the single statement #define NO_GDI_ORPHAN_CONTROL.

See also: TGdiObject::RefRemove

TGdiObject::TXGdi class gdibase.h

Describes an exception resulting from GDI failures such as creating too
many TWindow DCs. This exception occurs, for example, if a dc driver -
can’t be located or if a DIB file can’t be read.

The following code from the PAINT.CPP sample program on your
distribution disk throws a TXGdi exception if a new DIB can’t be created.

Chapter 1, Library reference . , , 229

1 Galupject:.: 1 XGdi class

Constructor

~ Msg

void TCanvas: :NewDib{int width, int height, int nColors)
{ :
TDib* dib;
try { : .
dib = new TDib(width, height, nColors);
} .
catch (TGdiObject::TXGdi& x) {
MessageBox ("Could Not Create DIB", GetApplication()->Name, MB_OK);
return;

}

Public constructors

TXGdi (UVINT resId = IDS_GDIFAILURE, HANDLE = 0);
Constructs a TXGdi object with a default IDS_GDIFAILURE message.

Public member functions

static string Msg(UINT resId, HANDLE);

Converts the resource ID to a string and returns the string message.

‘TGroupBox class , B groupbox.h

230

An instance of a TGroupBox is an interface object that represents a
corresponding group box element in Windows. Generally, TGroupBox
objects are not used in dialog boxes or dialog windows (TDialog), but are
used when you want to create a group box in a window.

Although group boxes don’t serve an active purpose onscreen, they
visually unify a group of selection boxes such as check boxes and radio
buttons or other controls. Behind the scenes, however, they can take an
important role in handling state changes for their group of controls
(normally check boxes or radio buttons).

For example, you might want to respond to a selection change in any one of
a group of radio buttons in a similar manner. You can do this by deriving a
class from TGroupBox that redefines the member function SelectionChanged.

Alternatively, you could respond to selection changes in the group of radio
buttons by defining a response for the group box’s parent. To do so, define
a child-ID-based response member function using the ID of the group box.
The group box will automatically send a child-ID-based message to its

ObjectWindows 2.0 Reference Guide

NotifyParent

Constructor

Constructor

SelectionChanged

TGroupBox class

parent whenever the radio button selection state changes. This class is
streamable.

Public.data members

'BOOL NotifyParent;

Flag that indicates whether parent is to be notified when the state of the
group box’s selection boxes has changed. NotifyParent is TRUE by default.

Public constructors

TGroupBox (TWindow* parent, int Id, const char far *text, int x, int y,
int w, int h, TModule* module = 0);

Constructs a group box object with the supplied parent window (Parent),
control ID (Id), associated text (text), position (x, y) relative to the origin of
the parent window’s client area, width (w), and height (k). Invokes the
TControl constructor with similar parameters, then modifies Attr.Style, -
adding BS_GROUPBOX and removing WS_TABSTOP. NotifyParent is set to
TRUE; by default, the group box’s parent is notified when a selection
change occurs in any of the group box’s controls.

See also: TControl::TControl
TGroupBox (TWindow* parent, int resourceld, TModule* module = 0);

Constructs a TGroupBox object to be associated with a group box control of
a TDialog. Invokes the TControl constructor with identical parameters.
resource] D must correspond to a group box resource that you define.

See also: TControl::TControl, TWindow::DisableTransfer

Public member functions

virtual void SelectionChanged(int controlId);

If NotifyParent is TRUE, SelectionChanged notifies the parent window of the
group box that one of its selections has changed by sending it a child-ID-
based message. This member function can be redefined to allow the group .
box to handle selection changes in its group of controls.

Chapter 1, Library reference) 231

TGroupBox class -

GetClassName

Protected member functions

char far* GetClassName();

GetClassName returns the name of TGroupBox’s Windows registration class,
“BUTTON.” If BWCC is enabled, GetClassName returns BUTTON_CLASS.

THintMode enum gadgetwi.h

THSlider class

Enumerates the hint mode settings of the gadget—either no hints, hints
when a button is pressed, or hints when the mouse passes over a gadget.

enum THintMode

See also: TGadget Window::GetHintMode

slider.h

Constructor

HitTest

NotifyParent

232

Derived from TSlider, THSlider provides implementation details for
horizontal sliders. See TSlider for an illustration of a horizontal slider.

Public constructors

THSlider (TWindow* parent, int id, int X, int Y, int W, int H,’
TResId thumbResId, TModule* module = 0);

Constructs a slider object.

Protected member functibns

int HitTest (TPointé& point);

Overrides TSlider’s virtual function and gets information about where a
given X, Y location falls on the slider. The return value is in scrollCodes.

See also: TSlider::HitTest .
void NotifyParent{int scrollCode, int pos=0);

Overrides TSlider’s virtual function and sends a WS_HSCROLL message to
the parent window.

See also: TSlider::NotifyParent

ObjectWinHows 2.0 Reference Guide

PaintRuler

PaintSlot

PointToPos

PosToPoint

TIC class

THSlider class

void PaintRuler (TDC&) ;

Overrides TSlider’s virtual function and paints the horizontal ruler.
See also: TSlider::PaintRuler

void PaintSlot (TDC&);

Overrides TSlider’s virtual function and paints the slot in which the thumb
slides. ‘

See also: TSlider::PaintSlot
int PointToPos(TPoint& point);

Overrides TSlider’s virtual function and translates an X,Y point to a position
in slider units.

See also: TSlider::PointToPos
TPoint PosToPoint (int pos);

Overrides TSlider’s virtual function and translates a position in slider units
to an X,Y point.

See also: TSlider::PosToPoint

dc.h

Constructor

Tlcon class

Derived from TDC, TIC is a DC class that provides a constructor for
creating a DC object from explicit driver, device, and port names.

Public constructors

TIC(const char far* driver, const char far* device, const char far*
output, const DEVMODE far* initData=0);

Creates a DC object with the given driver, device, and port names and
initialization values. .

See also: ::DeviceCapabilitiesEx, DEVMODE struct, TDC::GetDeviceCaps

gdiobjec.h

Tlcon, derived from TGdiobject, represents the GDI object icon class. TIcon
constructors can create icons from a resource or from explicit information.

Chapter 1, Library reference 233

Tlcon class

'Because icons are not real GDI objects, the Tlcon destructor overloads the
base destructor, ~TGdiObject(). :

Public constructors and destructor

Constructor TIcon(HICON handle, TAutoDelete autoDelete = NoAutoDelete),

Creates a TIcon object and sets the Handle data member to the given
borrowed handle. The ShouldDelete data member defaults to FALSE,
ensuring that the borrowed handle will not be deleted when the C++ object
is destroyed.

See also: TGdiObject::Handle, TGAiObject::ShouldDelete,
Constructor TIcon (HINSTANCE instance, const TIcon& icon);

Creates a copy of the given icon object by calling the Win API function
Copylcon(instance, icon).

See also: ::Copylcon
Constructor TIcon (HINSTANCE instance, TResID resID);
Creates an icon object from the given resource.
See also: ::Loadlcon
Constructor TIcon (HINSTANCE instance, c¢onst char far* filename, int index);
Creates an icon object from the given resource file.
See also: ::Extractlcon

Constructor - TIcon (HINSTANCE instance, const TSize& size, int planes, int bitsPixel,
const void far* andBits, const void far* xorBits);

Creates an icon object with the given values.
See also: ::Createlcon
Constructor TIcon(const void* resBits, DWORD resSize);

Creates an icon object of the given size from the bits found in the resBits
buffer.

See also: ::CreatelconFromResource
Constructor TIcon(const ICONINFO* iconInfo);

Creates an icon object with the given ICONINFO information.

See also: ::CreatelconIndirect

|
234. : ObjectWindows 2.0 Reference Guide \

Destructor

Getlconlinfo

operator HICON()

Tlcon class

~TIcon();

Overrides the base destructor to call ::Destroylcon instead of the default
::DeleteObject.

See also: ~TGdiObject, ::Destroylcon

Public member functions

inline BOOL GetIconInfo(ICONINFO* iconInfo) const;

Retrieves information about this icon and copies it in the given ICONINFO
structure. Returns TRUE if the call is successful; otherwi\se returns FALSE.

See also: ::GetlconInfo, struct ICONINFO
inline operator HICON() const; -

Typecasting operator that converts this icon’s Handle to type HICON (the
Windows data type representing the handle to an icon resource).

TinputDialog class . inputdia.h

buffer

BufferSize

prompt

TInputDialog provides a generic dialog box to retrieve text input by a user.
When the input dialog box is constructed, its title, prompt, and default
input text are specified. TInputDialog is a streamable class.

Public data members

char far* buffer;

Pointer to the buffer that returns the text retrieved from the user. When -
passed to the constructor of the input dialog box, contains the default text
to be initially displayed in the edit control.

int BufferSize;

~Contains the size of the buffer that returns user input.

char far* prompt;

Points to the prompt for the input dialog box.

Chapter 1, Library reference , ; 235

TinputDialog class

Constructor

TransferData

SetupWindow

Public constructors

TInputDialog (TWindow* parent, const char far *title,
const char far *prompt, char far* buffer, int bufferSize,
TModule* module = 0); ‘

Invokes TDialog’s constructor, passing it parent, the resource identifier and
module. Sets the caption of the dialog box to title and the prompt static
control to prompt. Sets the Buffer and BufferSize data members to buffer and
bufferSize. ’

See also: TDialog::TDialog

Public member function

void TransferData(TTransferDirection direction);

Transfers the data of the input dialog box. If direction is tdSetData, sets the
text of the static and edit controls of the dialog box to the text in prompt and
buffer. If direction is tdGetData, fills the buffer with the current text of the
Editor.

Protected member function

_ virtual void SetupWindow(};

In setting up the window, SetupWindow calls TDialog::Setup Window, then
limits the number of characters the user can enter to bufferSize - 1.

TinStream class docview.h

: ‘Constructor

236

Derived from TStream and istream, TInStream is a base class used for
defining input streams for documents.

Public constructors

TInStream(TDocument& doc, LPCSTR name, int mode);

Constructs a TInStream object. doc refers to the document object, name is the
user-defined name of the stream, and mode is the mode of opening the
stream.

ObjectWindows 2.0 Reference Guide

TKeyboardModeTracker class

See also: TOutStream, of XXXX document open enum, shdocument sharing
enum

TKeyboardModeTracker class keymodet.h

Note: The functionality
of this class is provided
in TStatusBar. This class
no longer exists.

TModelndicator

Constructor

Modes

Derived from TWindow, TKeyboardModeTracker is a streamable, mix-in class
designed to track changes in keyboard modes that occur when the toggle
keys (CapsLock, NumLock, ScrollLock), or edit keys (Ins) keys are pressed. By
setting updateStatusBar in the constructor to TRUE, you can also specify that
the class updates the status bar whenever a mode change occurs.

Public data members

enum TModeIndicator

A subtype of the mode indicators supported by TStatusBar,
TKeyboardModeTracker’s mode indicator sets the CapsLock, NumLock,

~ ScrollLock, and Overtype indicators equivalent to those of TStatusBar’s mode

indicators.

See also: TStatusBar::TModelndicator

Public constructors

TKeyboardModeTracker (TWindow* parent, BOOL updateStatusBar = TRUE, UINT
modes = CapsLock | NumLock | Overtype, TModule*
module = 0); :

Constructs a TKeyboardModeTracker object that keeps track of the keyboard
modes and updates the status bar if updateStatusBar is set to TRUE (the
default value). You can use the modes parameter to indicate which modes
you want your application to track.

Protected data members

UINT Mecdes;

One or more of the keyboard indicator modes that you want your program
to track. The indicator modes correspond to the following virtual key

, codes:

Chapter 1, Library reference : ' 237

TKeyboardModeTracker class

OvertypeState
ScrollLockState

UpdateStatusBar

DoKeyDown

DoSetFocus

238

Mode Viﬂual key code
CapsLock VK_CAPITAL
NumLock VK_NUMLOCK
Overtype VK_INSERT
ScrollLock VK_SCROLL

BOOL ,QvertypeStéLte;

Is TRUE if overtype mode is activated.

BOOL ScrollLockState

Is TRUE if scroll lock mode is activated.

BOOL UpdateStatusBar;

Is TRUE if changes in keyboard modes are to be reflected on the status bar.
See also: TStatusBar::TStatusBar

Protected member functions

TEventStatus DoKeyDown (UINT key, UINT repeatCount, UINT flags);

DoKeyDown translates the virtual key code into a movement, calls
TStatusBar’s member function to change the status bar’s mode indicator, and
then returns TEventStatus. key indicates the virtual key code of the pressed
key, repeatCount holds the number of times the same key is pressed, flags
contains one of the messages that translates to a virtual key (VK) code for
the mode indicators. If UpdateStatusBar is TRUE and the state of the Ins key
or ScrollLock key changes, DoKeyDown passes the current state of the
keyboard to TStatusBar::SetModelndicator, which updates the mode
indicators on the status bar. If UpdateStatusBar is TRUE and the state of the
NumLock key or. CapsLock key changes, DoKeyDown passes the current state of
the keys to T'StatusBar::ToggleModelndicator, which updates the mode

_indicators on the status bar.

- Seealso: TEventStatus enum, TKeyboardModeTracker::EvKeyDown

TEventStatus DoSetFocus (HWND hWndLostFocus);

Restores the focus to the active window and returns TEventStatus.
hWndLostFocus contains a handle to the window that lost the focus. If
UpdateStatusBar is TRUE, DoSetFocus determines if any changes have
occurred in the keyboard mode and, if appropriate, updates the status of
the mode indicator on the status bar by calling TStatusBar::SetModelndicator.

ObjectWindows 2.0 Reference Guide

EvKeyDown

EvSetFocus

TKeyboardModeTracker class

See also: TEventStatus enum, TKeyboardModeTracker::EvSetFocus
void EvKeyDown (UINT key, UINT repeatCount, UINT flags);

Responds to a key-down message by calling DoKeyDown. If DoKeyDown
doesn’t return IsComplete, EvKeyDown calls TWindow::EvKeyDown.

See also: TKeyboardModeTracker::DoKeyDown-
void EvSetFocus (HWND hWndLostFocus);

Responds to a set-focus message by calling DoSetFocus. If DoSetFocus
doesn’t return IsComplete, EvSetFocus calls TWindow::EvSetFocus.

See also: TKeyboardModeTracker::DoSetFocus

OvertypeModeChange virtual void OvertypeModeChange (BOOL on);

If overtyping is changed from on to off or vice versa, OvertypeModeChange
is set to TRUE. :

ScrollLockModeChange virtual void ScrollLockModeChange (RBOOL on) ;

If scroll locking is changed from on to off or vice versa,
ScrollLockModeChange is set to TRUE.

Response table entries
Response table entry Member function
EV_WM_KEYDOWN EvKeyDown
EV_WM_SETFOCUS EvSetFocus
TLayoutConstraint struct layoutco.h

TLayoutConstraint is a structure that defines layout constraints. Layout
constraints are specified as a relationship between an edge or size of one
window and an edge or size of one of the window’s siblings or its parent. If
a parent-child relationship is established between windows, the dimensions -
of the child windows are dependent on the parent window. A window can
have one of its sizes depend on the size of the opposite dimension. For
example, the width can be twice the height. TLayoutMetrics lists the
relationships you can have among size and edge constraints

LAYOUT.CPP in the OWLAPINLAYOUT d1rectory shows you the following
example of how to set up layout constraints.

Chapter 1, Library reference : : * , 239

TLayoutConstraint struct

MyEdge

OtherEdge

Relationship

RelWin

240

Layout child windows

Layout Tweaker

P ——

Red oy Refationship Set these metrics to control
e O widh L the position and size of the
Vellow Otogey | Fehm layout child window

Volue [] units [iLayouUnt

Public data members

UINT MyEdge;

MyEdge contains the name of the edge or size constraint (ImTop, ImBottom,
ImLeft, ImRight, ImCenter, ImWidth, or ImHeight) for your window.

See also: TWidthHeight enum
UINT OtherEdge;

OtherEdge contains the MyEdge contains the name of the edge or size
constraint (ImTop, ImBottom, ImLeft, ImRight, ImCenter, ImWidth, or ImHeight)
for the other window.

See also: TWidthHeight enum
TRelationship Relationship;

Relationship specifies the type of relationship that exists between the two
windows (that is, ImRightOf, ImLeftOf, ImAbove, ImBelow, ImSameAs, or
ImPercentOf). A value of ImAbsolute actually indicates that no relationship
exists.) '

See also: TRelationship enum
TWindow *RelWin;

RelWin is a pointer to the sibling windows or, ImParent if the child is a
proportion of the parent’s dimensions. RelWin points to the window itself
(this) if a child window’s dimension is a proportion of one of its other
dimensions (for example, its height is a proportion of its width).

ObjectWindows 2.0 Reference Guide

Units

union
TLayoutConstraint

TLayoutConstraint struct

See also: TRelationship enum
TMeasurementUnits Units;

Units enumerates the units of measurement (either pixels or layout units)
used to measure the height and width of the windows. Unlike pixels,
layout units are based on system font size and will be consistent in their
perceived size even if the screen resolution changes.

See also: TMeasurementUnits enum

union {
int Margin;
int Value;
int Percent;
}i
This union is included for the convenience of naming the layout
constraints. Margin is used for ImAbove, ImLeftOf, ImLeftOf, or ImRightOf
enumerated values in TRelationship. Value is used for ImSameAs or
ImAbsolute enumerated value in TRelationship. Percent is used for the
ImPercentOf enumerated value in TRelationship.

See also: TMeasurementUnits enum

TLayoutMetrics class o layoutwi.h

TLayoutMetrics contains the four layout constraints used to define the
layout metrics for a window. This table lists the constraints you can use for
the X, Y, Height, and Width fields.

Field Constraints

X JlmLeft; ImCenter, ImRight

Y ImTop, ImCenter, ImBottom
Height ImCenter, ImRight, ImWidth
Width ImCenter, ImBottom, ImHeight

If the metrics for the child window are relative to the parent window, the
relation window pointer (ImParent) needs to be ImParent (not the actual
parent window pointer). For example,

TWindow* child = new TWindow(this, "");

TLayoutMetrics metrics;

nmetrics.X.Set (ImCenter, 1mSameAs, lmParent, ImCenter);
metrics.Y.Set (ImCenter, 1mSameAs, ImParent, lmCenter);
SetChildLayoutMetrics(*child, metrics);

Chapter 1, Library reference ; ~ 241

TLayoutMetrics class

Height

Width

XY

Constructor

242

The parent window pointer (this) should not be used as the relation
window pointer of the child window.

Public data members

TEdgeOrWidthConstréint Height;

Contains the height size constraint, center edge, or bottom edge constraint
of the window.

TEdgeOrWidthConstraint Width;

Contains the width size constraint, center edge, or right edge (lmRzght)
constraint of the window.

TEdgeConstraint X, Y;

X contains the X (left, center, right) edge constraint of the window. Y
contains the Y (top, center, bottom) edge constraint of the window.

Public constructors

TLayoutMetrics () ;

Creates a TLayoutMetrics object and initializes the object by setting the units
for the child and parent window to the specified layout units and the
relationship between the two windows to what is defined in ImAsIs (of
TRelationship). Sets the following default values:

RelWin = 0;

MyEdge = lmLeft;
Relationship = ImAsIs;
Units = lmLayoutUnits;
Value = 0;

RelWin = 0;

MyEdge = ImTop;
Relationship = ImAsIs;
Y.Units = lmLayoutUnlts,
Y.value = 0;

Width.RelWin = 0;
Width.MyEdge = lmWidth;
Width.Relationship = IlmAsIs;
Width.Units = lmLayoutUnits;
Width.value = 0;
Height.RelWin = 0;)
Height .MyEdge = 1mHeight;
Height.Relationship = lmAsIs;

ORGP D D

ObjectWindows 2.0 Reference Guide

Height.Units = lmLayoutUnits;

Height.Value

n

0;

TLayoutMetrics class

The following program creates two child windows and a frame into which
you can add layout constraints.

Chapter 1, Library reference

#include
#include
#include
#include
#include
#include

. #include

<owl\owl.h>

<owl\framewin.h>
<owl\applicat.h>
<owl\layoutwi.h>
<owl\decorate.h>
<owl\decmdifr.h>
<owl\layoutco.h>

#pragma hdrstop

// Create a derived class.

class TMyDecoratedFrame :
" public:
TMyDecoratedFrame (TWindow* parent, const char far* title,

TWindow& clientWnd, TWindow* MyChildWindow);

void

{

Setupwindow();

/1

public TDecoratedFrame {

TDecoratedFrame:: SetupWindow() ;

MyChi 1ldWindow->ShowWindow (SW_NORMAL) ;
MyChildWindow->BringWindowToTop () ;

}
}i

// Setup a frame window. //

TMyDecoratedFrame: : TMyDecoratedFrame (TWindow * parent, const char far * title,

TWindowé

clientWnd)

: TDecoratedFrame (parent, title, clientWnd),
TFrameWindow(parent, title, &clientWnd),
‘TWindow (parent, title)

{

// Create a new TMyChildWwindow. //

MyChildWindow = new TWindow(this, ""); ‘
MyChildWindow->Attr.Style |= WS_BORDER |WS_VISIBLE |WS_CHILD;
MyChildwindow->SetBkgndColor (RGB(0,100,0));

// Establish metrics for the child window. //

TLayoutMetrics

layoutMetrics;

layoutMetrics.X.Absolute (ImLeft, 10);
layoutMetrics.Y.Absolute (ImTop, 10);
layoutMetrics.Width.Absolute(80);

layoutMetrics.Height.Absolute(80);

SetChildLayoutMetrics (*MyChildWindow, layoutMetrics);

243

TLayoutMetrics class

class TMyApp : public TApplication {
public:

virtual void InitMainWindow()

{ ‘ ,
TWindow* client = new TWindow(0, "title");
MainWindow = new TMyDecoratedFrame (0, "Layout Window Ex", *client);

b

int OwlMain(int, char**) {
return TMyApp.Run();
'}

TLayoutWindow class _ layoutwi.h

244

Example 1

TLayout Window is derived from TWindow and provides options for defining
the layout metrics for a window. See TLayoutConstraint for a definition of
the layout constraints and TLayoutMetrics for a description of the metrics
you can use to set up layout constraints.

The following examples show how to set up various metrics using edge
constraints. For purposes of illustration, these examples use a parent-child
relationship, but you can also use a child-to-child (sibling) relationship.
Keep in mind that, as usual, if you move the parent’s origin (the left and top
edges), the child will move with the parent window.

Examples

To create growable windows, set the top and left edges of the child
window’s boundaries in a fixed relationship to the top and left edges of the
parent’s window. In this example, if you expand the bottom and right edges
of the parent, the child’s bottom and right edges grow the same amount..
Both the X and Y constraints are 10 units from the parent window’s edges.
Both the Width and Height constraints are 40 layout units from the parent
window’s edges. Specifically, Width (ImWidth) is 40 units to the left of the
parent’s right edge (ImLeftOf = ImSameAs + offset or sameas — 40).

ObjectWindows 2.0 Reference Guide

TLayoutWindow class

Y=10

X=10 40 Width

40 Height

Use the following layout constraints:

layoutmetrics.X.Set (ImLeft, 1mRightOf, lmParent, lmLeft, 10);
layoutmetrics.Y.Set (lmTop, lmBelow, lmParent, ImTop, 10);
layoutmetrics.Width.Set (lmRight, IlmLeftOf, lmParent, lmRight, 40);
layoutmetrics.Height.Set (ImBottom, lmAbove, ImParent, ImBottom, 40);
SetChildLayoutMetrics (*MyChildWindow, layoutMetrics);

Example2 To create fixed-size and fixed-position windows, set the child’s right edge a
fixed distance from parent’s left edge and the child’s bottom edge a fixed
distance from the parent’s top edge. In this example, both the X and Y edge
constraints are set to 10 and both the Width and Height edge constraints
are set to 100.

Y=10

X=10
Height=100

-—
Width=100

~ Use the following layout constraints:

layoutmetrics.X.Set (ImLeft, 1mRightOf, lmParent, lmLeft, 10);
layoutmetrics.Y.Set {1mTop, lmBelow, lmParent, IlmTop, 10);
layoutmetrics.Width.Absolute(100);
layoutmetrics.Height.Absolute(100);

SetChildLayoutMetrics (*MyChildWindow, layoutMetrics);

Example3 To create a fixed-size window that remains a constant distance from the
parent’s right corner, set the child’s top and bottom edges a fixed distance
(ImLayout unit or pixels) from the parent window’s bottom. Also, set the
child’s left and right edges a fixed distance from the parent’s right edge. In

Chapter 1, Library reference k 245

TLayoutWindow class

Example 4

246

this example, both the Width and the Height edge constraints are set to 10
and the X and Y edge constraints are set to 100. In this case, the child
window, which stays the same size, moves with the lower right corner of
the parent.

Width=100
-

X=10

Height=100

Y=10

Use the following layout constraints:

layoutmetrics.X.Set (ImRight, IlmLeftOf, lmParent, ImRight, 10);
layoutmetrics.Y.Set (ImBottom, lmAbove, lmParent, lmBottom, 10);
layoutmetrics.Width.Absolute(100);

layoutmetrics.Height .Absolute(100);

SetChildLayoutMetrics (*MyChildWindow, layoutMetrics);

To create a window in which the child’s edges are a percentage of the
parent’s window, set the child’s edges a percentage of the distance from the
parent’s edges. Specifically, the child’s top and bottom edges are a
percentage of the parent’s bottom edge. The child’s left and right edges are a
percentage of the parent’s right edge.

If you resize the parent window, the child window will change size and
origin (that is, the top and left edges will also change).

X=33%

- Width=66%
cight=66%

Y=33%

Y

Use the following layout constraints:

layoutmetrics.X.Set (ImLeft, lmPercentOf, ImParent, lmRight, 33);
layoutmetrics.Y.Set (ImTop, lmPercentOf, lmParent, lmBottom, 33);

ObjectWindows 2.0 Reference Guide

TLayoutWindow class

layoutmetrics.Width.Set (ImRight, lmPercentOf, lmParent, lmRight, 66);
layoutmetrics.Height.Set (ImBottom, IlmPercentOf, IlmParent, lmBottom, 66);
SetChildLayoutMetrics (*MyChildWindow, layoutMetrics);

Public constructors and destructor

Constructor TLayoutWindow (TWindow* parent, const char far *title = 0, TModule* -
module = 0); :

Creates a TLayout Window object with specified parent, window caption,
and library ID.

Destructor ~TLayoutWindow() ;

Deletes variables and frees the child metrics and constraints.

Public member functions

GetChildLayoutMetrics BOOL GetChildLayoutMetrics (TWindow &child, TLayoutMetrics &metrics) ,-V
‘Gets the layout metrics of the child window.
See also: TLayoutMetrics::GetChildMetrics

Layout ‘ void Layout() ;

Causes the window to resize and position its children accordmg to the

specified metrics. Call Layout to implement changes that occur in the layout
metrics.

RemoveChildLayoutMetrics BOOL RemoveChildLayoutMetrics(TWindow &child);
Removes the layout metrics for a child window.
SetChildLayoutMetrics void SetChildlayoutMetrics (TWindow &child, TLayoutMetrics &metrics);

- Sets the metrics for the window and removes any ex1st1ng ones. Set the
metrics as shown:

layoutMetrics~>X.Absolute(lmLeft, 10);

‘layoutMetrics->Y.Absolute(1mTop, 10);

layoutMetrics->Width.Set (ImWidth, 1mRightOf, GetClientWindow(), lmWidth, -40);
layoutMetrics->Height.Set (ImHeight, 1mRightOf, GetClientWindow(), lmHeight,
-40);

Then call SetChzldLayoutMetrzcs to associate them with the position of the
child window:

~ SetChildLayoutMetrics(* MyChildWindow, * layoutMetrics);

Chapter 1, Library reference : o 247

TLayoutWindow class

Protected data members

ClientSize TSize ClientSize;
Contains the size of the client area.
Protected member functions

EvSize ; void EvSize (UINT sizeType, TSize& size);
Responds to a change in window size by calling Layout to resize the
window. '
Response table entries

Response table entry Member function
EV_WM_SIZE EvSize

TListBox class listbox.h
A TListBox is an interface object that represents a corresponding list box
element in Windows. A TListBox must be used to create a list box control in
a parent TWindow. A TListBox can be used to facilitate communication
between your application and the list box controls of a TDialog. TListBox’s
member functions also serve instances of its derived class, TComboBox.
TListBox is a streamable class.
Public constructors

Constructor TListBox (TWindow* parent, int Id, int x, int y, int w, int h, TModule*

module = 0);

Constructs a list box object with the supplied parent window (parent)
library ID (module), position (x, y) relative to the origin of the parent
window’s client area, width (w), and height (k). Invokes a TControl
constructor. Adds LBS_STANDARD to the default styles for the list box to
provide it with
m A border (WS_BORDER)
m A vertical scroll bar (WS_VSCROLL)

248 ObjectWindows 2.0 Reference Guide

Constructor

AddString

ClearList

DeleteString

DirectoryList

FindExactString

TListBox class

m Automatic alphabetic sorting of list items (LBS_SORT)
m Parent window notification upon selection (LBS_NOTIFY)

The TListBox member functions that are described as being for single-
selection list boxes are inherited by TComboBox and can also be used by
combo boxes. Also, these member functions return -1 for multiple-selection
list boxes. ‘

See also: GetSellndex, GetSelString, SetSellndex, SetSelString
TListBox(TWindow* parent, int resId, TModule* module = ()

Constructs a TListBox object to be associated with a list box control of a
TDialog. Invokes the TControl constructor with similar parameters. The
module parameter must correspond to a list box resource that you define.

See also: TControl::TControl

Public member functions

virtual int AddString(const char far* str);

Adds string to the list box, returning its position in the list (0 is the first
position). Returns a negative value if an error occurs. The list items are
automatically sorted unless the style LBS_SORT is removed from the list
box object’s Attr.Style data member before creation.

See also: TListBox::DeleteString, TListBox::InsertString
inline virtual void ClearList(); '
Clears all itemg in the list.

virtual int inline DeleteString(int index);

Deletes the item in the list at the position (starting at 0) supplied in index.
DeleteString returns the number of remaining list items, or a negative value
if an error occurs.

See also: TListBox::AddString, TListBox::InsertString

virtual int inline DirectoryList{(UINT attrs, const char far* fileSpec)
Adds a list of file names to a list box.

int FindExactString (const char far* str, int searchIndex) const;

Starting at the line number passed in searchIndex, searches the list box for an
exact match with the string str. If a match is not found after the last string
has been compared, the search continues from the beginning of the list until
a match has been found or until the list has been completely traversed.

Chapter 1, Library reference ' 249

TListBox class

FindString

GetCaretindex

GetCount

GetHorizontalExtent

GetltemData

GetltemHeight

GetltemRect

GetSel

250

Searches from the beginning of the list when —1 is supplied as searchIndex.
Returns the index of the first string found if successful, a negative value if
an error occurs.

See also: TLi'stBox::AddString, TListBox::DeleteString

virtual int inline FindString(const char far* str, int Index) const;

‘Searches the list box as described under FindExactString, but looks for the

first entry that begins with str.
See also: TListBox::AddString, TListBox::DeleteString, TListBox::InsertString
int GetCaretIndex() const;

Returns the index of the currently focused list-box item. For single-selection
list boxes, the return value is the index of the selected item, if one is
selected.

See also: TListBox::SetCaretIndex
inline virtual int GetCount () const;

Returns the number of items in the list box, or a negative value if an error
occurs. -

inline int GetHorizontalExtent() const;

Returns the number of pixels by which the list box can be scrolled
horizontally. '

See also: TListBox::SetHorizontal Extent

inline virtual DWORD GetItemData(int index) const; ‘
Returns the 32-bit value of the list box item set by SetltemData.
See also: TListBox::SetltemData

inline virtual int GetItemHeight (int index) const;

Returns the height in pixels of the specified list box items.

See also: TListBox::SetItemHeight

inline int GetItemRect (int index, TRect& rect) const;

Returns the dimensions of the rectangle that surrounds a list-box item
currently displayed in the list-box window.

BOOL GetSel (int index) const;
Returns the index of the selected item in the list box.
See also: TListBox::SetSel

ObjectWindows 2.0 Reference Guide o

GetSelCount

GetSellndex

GetSelindexes

GetSelString

GetSelStrings

GetString

GetiStringLen

GetTopindex

TListBox class

int GetSelCount() const;

Returns the number of selected items in the single- or multiple-selection list
box or combo box.

virtual int GetSelIndex() const;

For single-selection list boxes. Returns the nonnegative index (starting at 0)
of the currently selected item, or a negative value if no item is selected.

See also: TListBox::SetSellndex
int GetSelIndexes(int* indexes, int maxCount) const;

For multiple-selection list boxes. Fills the indexes array with the indexes of
up to maxCount selected strings. Returns the number of items put in indexes
(-1 for single-selection list boxes and combo boxes).

See also: TListBox::SetSellndexes
int GetSelString(char far* str, int maxChars) const;

Retrieves the currently selected items, putting up to maxChars of them in
Strings. Each entry in the Strings array should have space for maxChars
characters and a terminating null. For single-selection list boxes, returns the
string length, a negative value if an error occurs, or 1 if no string is selected.
For multiple-selection list boxes, returns —1.

See also: TListBox::SetSelString
int GetSelStrings(char far** strs, int maxCount, int maxChars) const;

Retrieves the total number of selected items for a multiselection list and
copies them into the buffer. str is an array of pointers to chars. Each of the
pointers to the buffers is of maxChars. maxCount is the size of the array.

See also: TListBox::SetSelStrings
inline virtual int GetString(char far* str, int index) conmst;

Retrieves the item at the position (starting at 0) supplied in index and
returns it in str. GetString returns the string length, or a negative value if an
error occurs.

inline virtual int GetStringLen(int Index) const;

Returns the string length (excluding the terminating NULL) of the item at
the position index supplied in Index. Returns a negative value in the case of
an error.

inline int GetTopIndex() const;

Chapter 1, Library reference ' , 251

TListBox class

InsertString

SetCaretindex

SetColumnWidth

SetHorizontalExtent

SetltemData

SetltemHeight

SetSel

SetSelindex

SetSellndexes

252

Returns the index of the first item displayed at the top of the list box.
See also: TListBox::SetTopIndex
virtual int InsertString{const char far* str, int index);

Inserts str in the list box at the position supplied in index, and returns the
item’s actual position (starting at 0) in the list. A negative value is returned
if an error occurs. The list is not resorted. If index is -1, the string is
appended to the end of the list.

See also: TListBox::AddString, TListBox::DeleteString, TListBox::FindString
int SetCaretIndex(int index, BOOL partScrollOk);

Sets the focus to the item specified at index. An item that is not visible is
scrolled into view.

See also: TListBox::GetCaretIndex

inline void SetColumnWidth(int width);

Sets the width in pixels of the items in the list box.

void SetHorizontalExtent {int horzExtent);

Sets the number of pixels by which the list box can be scrolled horizontally.
See also: TListBox::GetHorizontalExtent

inline virtual int SetItemData(int index, DWORD itemData);

Sets the 32-bit value of the list box item at the specified index position.
See also: TListBox::GetItemData

inline virtual int SetItemHeight (int index, int height);

Sets the height in pixels of the items in the list box.

See also: TListBox::GetltemHeight

inline int SetSel(int index, BOOL select);

Selects an item at the position specified in index. For multiple-selection list
boxes.

See also: TListBox::GetSel
virtual int SetSelIndex{int index);

For single-selection list boxes. Forces the selection of the item at the
position (starting at 0) supplied in index. If index is —1, the list box is cleared
of any selection. SetSellndex returns a negative number if an error occurs.

int SetSelIndexes(int* indexes, int numSelections, BOOL shouldSet);

ObjectWindows 2.0 Reference Guide

SetSelltemRange

SetSelString

SetSelStrings

SetTabStops

SetTopindex

Transfer |

TListBox class

For multiple-selection list boxes. Selects/deselects the strings in the
associated list box at the indexes specified in the Indexes array. If ShouldSet
is TRUE, the indexed strings are selected and highlighted; if ShouldSet is
FALSE the highlight is removed and they are no longer selected. Returns
the number of strings successfully selected or deselected (-1 for single-
selection list boxes and combo boxes). If NumSelections is less than 0, all
strings are selected or deselected, and a negative value is returned on
failure.

inline int SetSelItemRange(BOOL select, int first, int last);
Selects the range of items specified from first to last.
int SetSelString(const char far* str, int searchIndex);

For single-selection list boxes. Forces the selection of the first item
beginning with the text supplied in str that appears beyond the position
(starting at 0) supplied in SearchIndex. If SearchIndex is -1, the entire list is
searched, beginning with the first item. SetSelString returns the position of
the newly selected item, or a negative value in the case of an error.

int SetSelStrings(const char far** prefixes, int numSelections,
BOOL shouldSet);

For multiple-selection list boxes. Selects the strings in the associated list box
that begin with the prefixes specified in the prefixes array. For each string
the search begins at the beginning of the list and continues until a match is
found or until the list has been completely traversed. If shouldSet is TRUE,
the matched strings are selected and highlighted; if shouldSet is FALSE the
highlight is removed from the matched strings and they are no longer
selected. Returns the number of strings successfully selected or deselected
(-1 for single-selection list boxes and combo boxes). If numSelections is less
than 0, all strings are selected or deselected, and a negative value is
returned on failure. :

inline BOOL SetTabStops(int numTabs, int far* tabs);

numTabs is the number of tabstops. tabs is the array of integers representing
the tab positions.

inline int SetTopIndex(int index);
Sets index to the first item displayed at the top of the list box.
See also: TListBox:GetToplndex

virtual WORD Transfer (void *buffer, TTransferDirection direction);

Chapter 1, Library reference ‘ 253

| LIStBOX class

GetClassName

Transfers the items and selection(s) of the list box to or from a transfer
buffer if tdSetData or tdGetData, respectively, is passed as the direction.
buffer is expected to point to a pointer to a TListBoxData structure.

Transfer, which overrides the TWindow virtual member function, returns the
size of TListBoxData (the pointer, not the structure). To retrieve the size
without transferring data, pass tdSizeData as the direction.

You must use a pointer in your transfer buffer to these structures. You can’t
embed copies of the structures in your transfer buffer, and you can’t use
these structures as transfer buffers.

See also: TListBoxData, TWindow::Transfer

Protected member functions

char far* GetClassName();

Returns the name of TListBox’s Windows registration class, “LISTBOX.”

TListBoxData struct | listbox.h

ltemDatas
SelCount

Selindices

SelStrings

Strings

254

A TListBoxData is a structure that is used to transfer the contents of a list
box.

Public data members

TDwordArray* ItemDatas;

Contains all item data DWORD for each item in the list box.
int SelCount;

Holds the number of selected items.

TIntArray* SellIndices

Contains the indexes of all the selected strings in a multiple-selection list
box.

TStringArray* SelStrings;

Pointer to an array of the strings to select when data is transferred into the
list box. When data is transferred out of the list box, SelStrings returns the
current selection(s).

TStringArray* Strings;

ObjectWindows 2.0 Reference Guide

Constructor

Destructor

‘AddString

AddStringltem

GetSelString

GetSelStringLength

ResetSelections
Select

SelectString

TListBoxData struct

Pointer to an array of strings to be transferred into a TListBox.

Public constructors and destructor

TListBoxData();
Constructs Strings and SelStrings. Initializes SelCount to 0.
~TListBoxDatal() ;

Deletes the space allocated for Strings and SelStrings.

Public member functions

void AddString(const char *str, BOOL isSelected = FALSE);

Adds the specified string to Strings. If IsSelected is TRUE, adds the string to
SelStrings and increments SelCount.

void AddStringItem(const char* str, DWORD itemData,
BOOL isSelected = FALSE));

Adds a string to the Strings array, optionally selects it, and adds item data
to the ItemDatas array.

void GetSelString(char far* buffer, int bufferSize, int index = 0) const;

~ Locates the string at the specified index in SelStrings and copies it into buffer.

bufferSize includes the terminating NULL.
int GetSelStringLength(int index = 0) const;

Returns the length (excluding the terminating NULL) of the string at the
specified index in SelStrings.

void ResetSelections();
Removes all étrings from SelStrings and sets SelCount to 0.

void Select (int index);

Selects the string at the given index.

void SelectString(const char far* str);

Adds str to SelStrings and increments SelCount.

Chapter 1, Library reference ‘ o 255

TListView class

TListView class | listview.h

Derived from TListBox and TView, TListView provides views for list boxes.
- See TView for a description of view functions and TListBox for listbox
functions.

Public constructors and destructor

Constructor TListView(TDocument& doc, TWindow* parent = 0);

Creates a TListView object associated with the specified document and
parent window. Sets Attr.AccelTable to IDA_LISTVIEW to identify the edit
view. Sets Attr.Style to WS_HSCROLL | LBS_NOINTEGRALHEIGHT.
Sets TView::ViewMenu to the new TMenuDescr for this view.

Destructor ~TListView() ;
After checking to see if there is an open view, this destructor destroys the
TListView object.
Public data member

DirtyFlag - BOOL DirtyFlag;

Is nonzero if the data in the list view has been changed; otherwise, is 0.

Public member functions

CanClose inline BOOL CanClose();

Checks to see if all child views can be closed before closing the current
view. If any child returns 0, CanClose returns 0 and aborts the process. If all
children return nonzero, it calls TDocManager::FlushDoc.

See also: TView::CanClose, TDocManager::FlushDoc
Create ‘ virtual BOOL Create();

Overrides TWindow::Create and calls TEditSearch::Create to create the view’s
window. Calls GetDocPath to determine if the file is new or already has
data. If there is data, calls LoadData to add the data to the view. If the view’s
window can’t be created, Create throws a TXInvalid Window exception.

GetViewName inline LPCSTR GetViewName();

256 \ - B ObjectWindows 2.0 Reference Guide

GetWindow

SetDocTitle

StaticName

MaxWidth

Origin

CmEditAdd

CmEditCopy

TListView class

Overrides TView’s virtual function and returns the descriptive name of the
class (StaticName).

See also: TView::GetViewName
inline TWindow* GetWindow();

Overrides TView’s virtual function and returns the list view object as a
TWindow.

See also: TView::Get Window
inline BOOL SetDocTitle(LPCSTR docname, int index);

Overrides TView's virtual function and stores the document title. This name
is forwarded up the parent chain until a TFrameWindow object accepts the
data and displays it in its caption.

See also: TView::SetDocTitle
inline static LPCSTR StaticName();

Overrides TView's function and returns a constant string, “ListView.” This
information is displayed in the user interface selection box.

See also: TView::GetViewName

Protected data members

int MaxWidth;

Holds the maximum horizontal extent (the number of pixels by which the
view can be scrolled horizontally).

long Origin;

Holds the file position at the beginning of the display.

Protected member functions

void CmEditAdd();

Automatically responds to CM_LISTADD message by getting the length of
the input string and calling InsertString to insert the text string into the list
view. Sets the data member DirtyFlag to TRUE.

vold CmEditCopy ()

Chapter 1, Library reference ' o 257

‘ TListView class .

CmEditCIear

CmEditCut

CmEditDelete

CmEdititem

CmEditPaste
CmEditUndo
CmSelChange

EvGetDIgCode

LoadData

258

Automatically responds to a menu selection with a menu ID of
CM_EDITCOPY by calling TListBox::Copy to copy the selected text to the
Clipboard. ,

void CmEditClear();

Automatically responds to a menu selection with a menu ID of
CM_EDITCLEAR by calling TListBox::Clear to clear the list view.

void CmEditCut();

Automatically responds to a menu selection with a menu ID of
CM_EDITCUT by calling CmEditCopy and CmEditDelete to delete a text
string from the list view. Sets the data member DirtyFlag to TRUE.

void CmEditDelete();

Automatically responds to a menu selection with a menu ID of
CM_EDITDELETE by calling TLIstBox::DeleteSelection.

void CmEditItem();

Automatically responds to a CM_LISTEDIT message by getting the input
text and inserting into the list view. Sets the DirtyFlag to nonzero to indicate
that the view has been changed and not saved. '

void CmEditPaste();

Automatically responds to a menu selection with a menu ID of
CM_EDITPASTE by calling TListBox::Paste.

void CmEditUndo();

Automatically responds to a menu selection with a menu ID of
CM_EDITUNDO by calling TListBox::Undo.

void .CmSelChange() ;

Automatically responds to a LBN_SELCHANGE message (which indicates
that the contents of the list view have changed) by calling DefaultProcessing.

UINT EvGetDlgCode();

Overrides TWindow’s response to a WM_GETDLGCODE message (an input
procedure associated with a control that isn’t a check box) by calling
DefaultProcessing.

BOOL LoadData(int top, int sel);

Reads the view from the stream and closes the file. Returns TRUE if the

~ view was successfully loaded.

ObjectWindows 2.0 Reference Guide

SetExtent

VnCommit

VnDocClosed

VnlsDirty

VnisWindow

VnRevert

ILIStView class

Throws an xmsg exception and displays the error message “TListView
initial read error” if the file can’t be read. Returns FALSE if the view can’t
be loaded.

void SetExtent (LPSTR str);
Sets the maximum horizontal extent for the list view window.
BOOL VnCommit (BOOL force); '

VnCommit commits changes made in the view to the document. If force is
nonzero, all data, even if it’s unchanged, is saved to the document.

See also: TListView::vnRevert, vnxxxx view notification constants
BOOL VnDocClosed (int omode) ;

VnDocClosed indicates that the document has been closed.

See also: vnxxxx view notification constants

inline BOOL VnIsDirty();

VnlsDirty returns nonzero if changes made to the data in the view have not
been saved to the document; otherwise, returns 0.

See also: vnxxxx view notification constants
inline BOOL VnIsWindow (HWND hwWnd) ;

VnlsWindow returns nonzero if the window’s handle passed in hWnd is the
same as that of the view’s display window.

See also: vnxxxx view notification constants
BOOL VnRevert (BOOL clear);

VnRevert indicates if changes made to the view should be erased, and the
data from the document should be restored to the view. If clear is nonzero,
the data is cleared instead of restored to the view.

See also: TListView::vnCommit

Response table entry
Entry Member function
EV_COMMAND(CM_LISTUNDO, CmEditUndo) CmEditUndo
EV_COMMAND(CM_LISTCUT, CmEditCut) CmEditcut
EV_COMMAND(CM_LISTCOPY, CmEditCopy) CmEditCopy
EV_COMMAND(CM_LISTPASTE, CmEditPaste) CmEditPaste
EV_COMMAND(CM_LISTCLEAR, CmEditClear) CmEditClear

Chapter 1, Library reference : 259

ILIStVIew class

TLookupValidator class

Entry Member function
EV_COMMAND(CM_LISTDELETE, CmEditDelete) CmEditDelete
EV_COMMAND(CM_LISTADD, CmEditAdd) CmEditAdd
EV_COMMAND(CM_LISTEDIT, CmEdititem) CmEdititem
EV_WM_GETDLGCODE EvGetDIgCode
EV_NOTIFY_AT_CHILD(LBN_DBLCLK, CmEdititem} CmEdititem
EV_NOTIFY_AT_CHILD(LBN_SELCHANGE, CmSelChange) CmSelchange
EV_VN_DOCCLOSED VnDocClosed
EV_VN_ISWINDOW VnisWindow
EV_VN_ISDIRTY VnisDirty
EV_VN_COMMIT VnCommit
EV_VN_REVERT * VnRevert
validate.h

Constructor

IsValid

Lookup

260

A streamable class, TLookupValidator compares the string typed by a user
with a list of acceptable values. TLookupValidator is an abstract validator
type from which you can derive useful lookup validators. You will never
create an instance of TLookupValidator. When you create a lookup validator
type, you need to specify a list of valid items and override the Lookup
method to return TRUE only if the user input matches an item in that list.
One example of a working descendant of TLookupValidator is :
TStringLookupValidator.

Public constructors

TLookupValidator () ;

Constructs a TLookupValidator object.

Public member functions

BOOL IsValid(const char far* str);

IsValid overrides TValidator’s virtual function and calls Lookup to find the
string st in the list of valid input items. IsValid returns TRUE if Lookup
returns TRUE, meaning Lookup found str in its list; otherwise, it returns
FALSE.

virtual BOOL Lookup(const char far* str);

Searches for the string str in the list of valid entries and returns TRUE if it
finds str; otherwise, returns FALSE. TLookupValidator’s Lookup is an abstract

ObjectWindows 2.0 Reference Guide

I LOOKUpvanaator Class

method that always returns FALSE. Descendant lookup validator types
must override Lookup to perform a search based on the actual list of
acceptable items.

TMDIChild class mdichild.h

Constructor

Constructor

Destructor

Destroy

TMDIChHhild defines the basic behavior of all MDI child windows. To be used
as MDI children, classes must be derived from TMDIChild. MDI children
can inherit keyboard navigation, focus handling, and icon support from
TFrameWindow. TMDIChild is a streamable class.

Public constructors and destructor

TMDIChild (TMDIClient &parent, const char far *title = 0,
TWindow *clientWnd = 0, BOOL shrinkToClient = FALSE, TModule*
module = 0);

Creates an MDI child window of the MDI client window specified by
parent, using the specified title, client window (client Wnd) and instance
(inst). Invokes the TFrameWindow base class constructor, supplying parent,
title, clientWnd, inst, and indicating that the child window is not to be
resized to fit. Invokes the TWindow base class constructor, specifying
parent, title, and inst. The window attributes are then adjusted to include
WS_VISIBLE, WS_CHILD, WS_CLIPSIBLINGS, WS_CLIPCHILDREN,
WS_SYSMENU, WS_CAPTION, WS_THICKFRAME, WS_MINIMIZEBOX,
and WS_MAXIMIZEBOX. The dimensions of the window are set to the
Windows default values.

TMDIChild (HWND hWnd, TModule* module = 0);

Creates an MDI child window object from a preexisting window, specified
by hWnd. The base class TFrameWindow constructor is invoked, specifying
this hWnd, as well as the specified inst. The base class TWindow constructor
is invoked, supplying the hWnd and inst parameters.

~TMDIChild () ;
Destructs the MDI child window object.

Public member functions

void Destroy(int = 0);

Chapter 1, Library reference 261

I VILICNIID class

PreProcessMsg

DefWindowProc

EvMDIActivate

PerformCreate

262

Destroys the interface element associated with the TMDIChild. Calls
EnableAutoCreate for each window in the child list so that the children are
also re-created when the parent window is re-created.

See also: TWindow::EnableAutoCreate
BOOL PreProcessMsg (MSG &) ;

Performs preprocessing of window messages for the MDI child window. If
keyboard handling is enabled the parent client window’s
TMDIClient::PreProcessMsg member function is called to preprocess
messages. In this case, the return value is TRUE. Otherwise,
TFrameWindow::PreProcessMsg is called and its return value becomes the
return value of this member function.

See also: TMDIClient::PreProcessMsg, TFrameWindow::PreprocessMsg

Protected member functions

LRESULT DefWindowProc (UINT msg, WPARAM wParam, LPARAM lParam);

Overrides TWindow:DefWindowProc and calls the Windows API function
:DefMDIChildProc that provides default processing for any incoming
message the MDI child window does not process.

See also: ::DefMDIChildProc, TWindow::DefWindowProc

vold EvMDIActivate(BOOL activate, HWND hWndActivated,
HWND hWndDeactivated) ;

Instructs a client window to activate or deactivate an MDI child window
and then sends a message to the child window being activated and the
child window being deactivated. ‘

voild PerformCreate(int menuOrId);

Creates the interface element associated with the MDI child window. If no
parent window has been specified, PerformCreate throws a
TWindow::TXInvalidChild Window exception. Otherwise, it calls
::SendMessage to notify the parent MDI client window to create the child
window’ interface element. The supplied menuOrld parameter is ignored
because MDI child windows cannot have menus.

Seealso: Windows message WM_MDICREATE, ::SendMessage

ObjectWindows 2.0 Reference Guide

TMDIChild class

Response table entries
Response table entry Member function
EV_WM_MDIACTIVATE EvMDlActivate
TMDIClient class | mdi.h

ClientAttr

Constructor

Destructor

Arrangelcons

Multiple Document Interface (MDI) client windows (represented by a
TMDIClient object) manage the MDI child windows of a TMDIFrame
parent. TMDIClient is a streamable class.

Public data member

LPCLIENTCREATESTRUCT ClientAttr;

ClientAttr holds a pointer to a structure of the MDI client window’s
attributes.

Public constructors and destructor

TMDIClient (TModule* module = 0); -

Creates an MDI client window object by invoking the base class TWindow
constructor, passing it a null parent window, a null title, and the specified
library ID. Sets Attr.Id to the default client window identifier
(IDW_MDICLIENT) and sets Attr.Style to include
MDIS_ALLCHILDSTYLES, WS_GROUP, WS_TABSTOP,
WS_CLIPCHILDREN, WS_VSCROLL, and WS_HSCROLL. Initializes the
ClientAttr data member, setting its idFirstChild member to
IDW_FIRSTMDICHILD.

See also: TWindow::TWindow
~TMDIClient ();

Frees the Client Attr structure.
See also: TWindow::~TWindow

- Public member functions

inline virtual void ArrangeIcOns();

Chapter 1, Library reference o ‘ : 263

TMDIClient class

CascadeChildren

CloseChildren

Create

CreateChild

GetActiveMDIChild

InitChild

264

Arranges the MDI child window icons at the bottom of the MDI client
window.

inline virtual void CascadeChildren();

Sizes and arranges all of the non-iconized MDI child windows within the
MDI client window. The children are overlapped, although each title bar is
visible.

virtual BOOL CloseChildren()}

First calls CanClose on each of the MDI child windows owned by this MDI
client. Returns TRUE if all MDI children are closed; otherwise returns
FALSE.

See also: TWindow::CanClose
BOOL Create();

Creates the interface element associated with the MDI client window. Calls
TWindow::Create after first setting the child window menu in ClientAttr to
the parent frame window’s child menu.

' See also: TWindow::Create, TFrameWindow::ChildMenuPos,

TFrameWindow::GetMenu
virtual TWindow* CreateChild();

Overrides member function defined by TWindow. Constructs and creates a
new MDI child window by calling InitChild and Create. Returns a pointer to
the new MDI child window.

See also: TMDIClient::InitChild, TModule::MakeWindow, T Window::Create
TMDIChild *GetActiveMDIChild();

GetActiveMDIChild points to the TMDIClient’s active MDI child window.
Get ActiveMDIChild is set by the child in its EvMDIActivate message

response member function. TMDIClient’s constructors initialize
GetActiveChild.

inline virtual TMDIChild *InitChild();

- Constructs an instance of TWindow as an MDI child window and returns a

pointer to it. Children must be created with MDI client as the parent
window. Redefine this member function in your derived MDI window
class to construct an instance of a derived MDI child class. For example,

PTWindowsObject TMyMDIClient::InitChild()
{ .

) return new TMyMDIChild(this, "");
}

ObjectWindows 2.0 Reference Guide

PreProcessMsg

TileChildren

CmArrangelcons

CmCascadeChildren

TMDIClient class

See also: TMDIClient::CreateChild
BOOL‘ PreProcessMsg (MSG &msg) ;

If the specified msg is one of WM. KEYDOWN or WM_SYSKEYDOWN,
then the Windows TranslateMDISysAccel function is called to translate
keyboard accelerators for the MDI client.

See also: TWindow::PreProcessMsg
inline virtual void TileChildren(int tile = MDITILE_VERTICAL);

Sizes and arranges all of the non-iconized MDI child windows within the
MDI client window. The children fill up the entire client area without
overlapping. ‘ :

Protected member functions

inline void CmArrangeIcons();

Calls Arrangelcons in response to a menu selection with an ID of
CM_ARRANGEICONS.

See also: TMDIClient:: Arrangelcons
inline void CmCascadeChildren();

Calls CascadeChildren in response to a menu selection with an ID of
CM_CASCADECHILDREN.

See also: TMDIClient::CascadeChildren

CmChildActionEnable void CmChildActionEnable(TCommandEnablers commandEnabler);

CmCloseChildren

CmCreateChild

CmTileChildren

If there are MDI child windows, CmChild ActionEnalbe enables any one of
the child window action menu items.

inline void CmCloseChildren();

Calls CloseChildren in response to a menu selection with an ID of
CM_CLOSECHILDREN.

See also: TMDIClient::CloseChildren
inline void CmCreateChild();

Calls CreateChild to produce a new child window in response to a menu
selection with a menu ID of CM_CREATECHILD.

See also: TMDIClient::CreateChild

inline void CmTileChildren();

Chapter 1, Library reference “ ‘ 265

TMDIClient class

CmTileChildrenHoriz

Calls TileChildren in response to a menu selection with an ID of
CM_TILECHILDREN. '

See also: TMDIClient::TileChildren
¥
inline void CmTileChildrenHoriz();

Calls TileChildren in response to a menu selection with an ID of
CM_TILECHILDREN and passes MDI child title flag as
MDITILE_HORIZONTAL.

EvMDICreate LRESULT EvMDICreate (MDICREATESTRUCT far& createStruct);
Intercepts the WM_MDICREATE message sent when MDI child windows
are created, and, if the client’s style includes MDIS_ALLCHILDSTYLES,
and the child window’s specified style is 0, then changes the child window
‘style attributes to WS_VISIBLE, WS_CHILD, WS_CLIPSIBLINGS,
WS_CLIPCHILDREN, WS_SYSMENU, WS_CAPTION,
WS_THICKFRAME, WS_MINIMIZEBOX, and WS_MAXIMIZEBOX. Then
returns the value of calling DefaultProcessing. '
See also: TWindow::DefaultProcessing

~ GetClassName char far *GetClassName();

Returns TMDIClient’s Windows registration class name, “MDICLIENT.”
Response table entries

Response table entry Member function

EV_COMMAND (CM_ARRANGEICONS, CmArrangelcons) CmArrangelcons

EV_COMMAND (CM_CASCADECHILDREN, CmCascadeChildren) CmCascadeChildren

EV_COMMAND (CM_CLOSECHILDREN, CmCloseChildren) CmCloseChildren

EV_COMMAND (CM_CREATECHILD, CmCreateChild) . CmCreateChild

EV_COMMAND (CM_TILECHILDREN, CmTileChildren) : CmTileChildren

EV_COMMAND(CM_TILECHILDRENHORIZ,CmTileChildrenHoriz) CmTileChildrenHoriz

EV_COMMAND_ENABLE(CM_TILECHILDREN, CmChildActionEnable) CmChildActionEnable

EV_COMMAND_ENABLE(CM_CASCADECHILDREN, CmChildActionEnable) CmChildActionEnable

EV_COMMAND_ENABLE(CM_ARRANGEICONS, CmChildActionEnable) CmChildActionEnable

EV_COMMAND_ENABLE(CM_CLOSECHILDREN, CmChlIdActlonEnable) CmChildActionEnalbe

EV_WM_MDICREATE EvMDICreate

’

266

" ObjectWindows 2.0 Reference Guide

TMDIFrame class

TMDIFrame class | mdi.h

ChildMenuPos

Constructor

Constructor

Multiple Document Interface (MDI) frame windows, represented by
TMDIFrame, are overlapped windows that serve as main windows of MDI-
compliant applications. TMDIFrame objects automatically handle the
creation and initialization of an MDI client “window” (represented by a
TMDIClient object) required by Windows. TMDIFrame sets window style
WS_CLIPCHILDREN by default so that minimal flicker occurs when the
MDI frame erases its background and the backgrounds of its children.
TMDIFrame is a streamable class.

Because TMDIFrame is derived from TFrameWindow, it inherits keyboard
navigation. As a result, all children of the MDI frame acquire keyboard
navigation. Howver, it’s best to enable keyboard navigation only for those
children who require it.

Public data members

int ChildMenuPos;

ChildMenuPos contains the position in the MDI window’s top-level menu of
the child window submenu. The zero position is at top left.

Public constructors

TMDIFrame (const char far *title, TResId menuResId,
TMDIClient &clientWnd = *new TMDIClient, TModule* module = 0);

Constructs an MDI frame window object using the caption (title) and
resource ID (menuResld). If no client window is specified (client Wnd), then
an instance of TMDIClient is created automatically and used as the client
window of the frame. The supplied library ID (module) is passed to the
TFrameWindow constructor along with a null parent window pointer,
caption, client window, and a flag indicating that the client window is not
to be resized to fit. The TWindow constructor is also invoked; it passes the
supplied caption and library ID, as well as a null parent window pointer.
Then the child menu position is initialized to be the leftmost menu item,
and the supplied menu resource ID is used in a call to AssignMenu.

See also: TMDIClient::TMDIClient, TFrameWindow::TFrameWindow,
TWindow::TWindow, TFrame Window:: AssignMenu

TMDIFrame (HWND hWindow, HWND clientHWnd, TModule* module = 0);

Chapter 1, Library reference - ' ' ’ 267

TMDIFrame class

GetClientWindow

SetMenu

DefWindowProc

268

Constructs an MDI frame window using an already created non-
ObjectWindows window. Invokes the TFrameWindow and TWindow
constructors, passing in the window handle (hWindow) and library ID
(module). Initializes the child menu position to the leftmost menu item, and
constructs a TMDIClient object that corresponds to the supplied
clientHWnd.

See also: TFrameWindow::TFrameWindow, TWindow::TWindow,
TMDIClient:: TMDIClient

Public member functions

inline TMDIClient *GetClientWindow ();
Returns a pointer to the MDI client window.
See also: TFrameWindow::GetClient Window
BOOL SetMenu (HMENU) ;

Looks for the MDI submenu in the new menu bar and updates
ChildMenuPos if the menu is found. Searches for the MDI child menu in the
new menu bar and updates the child menu position (ChildMenuPos) with
the specified menu index. Then sends the client window an
WM_MDISETMENU message to set the new menu and invokes
TWindow::DrawMenuBar to redraw the menu. Returns FALSE if the MDI
client indicates that there was no previous menu; otherwise returns TRUE.

See also: TWindow::DrawMenuBar

Protected member function

LRESULT DefWindowProc (UINT message, WPARAM wParam, LPARAM l1Param);

Overrides TWindow:DefWindowProc and calls the Windows API function
::DefFrameProc that provides default processing for any incoming message
the MDI frame window does not process.

See also: ::DefFrameProc, ::DefWindowProc

Response table entries

The TMDIFrame response table has no entries.

ObjectWindows 2.0 Reference Guide

TMeasurementUnits enum

TMeasurementUnits enum Iayoutco.h

enum TMeasurementUnits;

Used by the TLayoutConstraint struct, TMeasurementUnits enumerates the
measurement units (ImPixels or ImLayoutUnits) that control the dimension
of the window. These can be either pixels or layout units that are obtained
by dividing the font height into eight vertical and eight horizontal
segments.

See also: TLayoutConstraint struct

TMemoryDC class , dc.h

Constructor

Constructor

RestoreBitmap

RestoreObjects

A DC class derived from TDC, TMemoryDC provides access to a memory
DC.

Public constructors

TMemoryDC () ;

Default constructor for a memory DC object.

See also: TDC:TDC

TMemoryDC (const TDC& DC) ;

Creates a memory DC object compatible with the given DC argument.
See also: TDC:TDC

Public member functions

inline void RestoreBitmap();

Restores the originally selected bitmap object for this DC.
See also: TDC::RestoreObjects

inline void RestoreObjects();

Restores the originally selected brush, pen, font, palette, and bitmap objects
for this DC.

See also: TDC::RestoreObjects, TMemoryDC::RestoreBitmap

Chapter 1, Library reference , 269

TMemoryDC class

SelectObject

OrgBitmap

TMenu class

inline void SelectObject (const TBrushé& brush);

inline void SelectObject (const TPen& pen);

inline void SelectObject (const TFont& font);

inline void SelectObject (const TPalette& palette, BOOL
forceBackground=FALSE)) ;

void SelectObject (const TBitmapé& bitmap);

Selects the given GDI object into this DC.

See also: TDC::SelectObject, TMemoryDC::RestoreObjects,
TMemoryDC::RestoreBitmap

Protected data member

HBITMAP OrgBitmap;
The original bitmap selected into this DC.
See also: TMemoryDC::SelectObject, TMemoryDC::RestoreBitmap

menu.h

Constructor

Constructor

Constructor

270

The TMenu class encapsulates window menus. You can use TMenu member
functions to construct, modify, query, and create menu objects. You can also
use TMenu to add bitmaps to your menu or to specify if a menu item is
checked or unchecked.

Public constructors and destructor

TMenu (TAutoDelete autoDelete = AutoDelete);

Creates an empty menu and sets autoDelete, by default, so that the menu is
automatically deleted when the object is destructed.

TMeriu(HWND wnd, TRutoDelete autoDelete = NoAutoDelete):

Creates a menu object representing the window’s current menu and sets
autoDelete, by default, so that the menu is not automatlcally deleted when
the object is deconstructed.

TMenu(HMENU handle, TAutoDelete autoDelete = NoAutoDelete);

Creates a menu object from an already loaded menu and sets autoDelete, by
default, so the menu is not automatically deleted when the object is
deconstructed.

ObjectWinddws 2.0 Reference Guide

Constructor

Constructor

Destructor

AppendMenu

AppendMenu

CheckMenultem

DeleteMenu

EnableMenultem

TMenu class

TMenu (LPCVOID* menuTemplate);

Creates a menu object from a menu template in memory.
TMenu (HINSTANCE instance, TResId resId);

Creates a menu object from a specified resource ID.
virtual ~TMenu();

Destroys the pop-up menu.

Public member fuﬁctions

inline BOOL AppendMenu(UINT flags, UINT idNewItem, const TBitmap& newBmp);
Adds a bitmap menu item at the end of the menu. ‘

inline BOOL AppendMenu (UINT flags, UINT idNewItem = -1,
‘const char far* newltem = 0);

Adds a text menu item to the end of the menu.
inline BOOL CheckMenuItem(UINT idItem, UINT check);
Checks or unchecks the menu item.

inline BOOL DeleteMenu(UINT idItem, UINT flags);

Removes the menu item (idItem) from the menu or deletes the menu item if
it’s a pop-up menu. flags is used to identify the position of the menu item by
its relative position in the menu (MF_BYPOSITION) or by referencing the
handle to the top-level menu (MF_BYCOMMAND). See the Windows API

- online Help for information on these flags.

. See also: TMenu::RemoveMenu

inline BOOL EnableMenuItem(UINT idItem, UINT enable);

Enables or disables the menu options (MF_CHECKED, MF_GRAYED,
MF_HELP, MF_MENUBARBREAK, MF_MENUBREAK,
MF_OWNERDRAW, MF_POPUP) that control the appearance of the menu
item. See the Windows API online Help for information about these flags.

GetMenuCheckMarkDimensions inline static BOOL GetMenuCheckMarkDimensions (TSize& size); ‘

GetMenultemCount

Gets the size of the b1tmap used to dlsplay the default check mark on
checked menu items.

See also: TMenu::SetMenultemBitmaps

inline UINT GetMenuItemCount () const;

Chapter 1, Library reference ' 271

TMenu class

Returns the number of items in a top-level or pop- up menu.
GetMenultemiD inline UINT GetMenuItemID(int posItem) const;

Returns the ID of the menu item at the position specified by posltem.
GetMenuState inline UINT GetMenuState [UINT idItem, UINT flags) const;

Returns the values of the flags for a menu item specified by idltem. flags is a
combination of one or more of the Windows API MF_xxxx flags, such as
MF_POPUP, MF_GRAYED, MFCHECKED, and so on.

See also: ::MF_xxxx ﬂags

GetMenuString inline UINT CetMenuString(UINT idItem, char* str, int count, UINT flags)
const;

Returns the label (str) of the menu item (idItem).
GetSubMenu inline HMENU GetSubMenu(int posItem) const;
Returns the handle of the menu specified by posltem.

InsertMenu inline BOOL InsertMenu(UINT idItem, UINT flags, UINT idNewItem,
const TBitmapé& newBmp);

Adds a bitmap menu item after the menu item specified in idItem.

InsertMenu inline BOOL InsertMenu(UINT idItem, UINT flags, UINT idNewItem = -1,
const char far* newlItem = 0);

Inserts a new text menu item or pop-up menu into the menu after the menu
item specified in idItem.

IsOK BOOL IsOK() const;
Returns TRUE if the menu has a valid handle.

ModifyMenu inline BOOL ModifyMenu (UINT idItem, UINT flags, UINT idNewItem,
const TBitmap& newBmp) ;

Changes an existing menu item into a bitmap.

ModifyMenu inline BOOL ModifyMenu(UINT idItem, UINT flags, UINT idNewItem = -1,
const char far* newlItem = 0);

Changes an existing menu item from the item specified in idltem to
idNewltem.

operator HMENU operator muENU() ;

Returns the menu’s handle.

See also: . TMenu::UINT

272 o ’ ObjectWindows 2.0 Reference Guide

TMenu class

operator UINT operator UINT();

Returns the menu's handle. This function provides compatibility with some
Windows functions that require a UINT menu parameter.

See also: TMenu::HMenu
RemoveMenu inline BOOL RemoveMenu(UINT idTtem, UINT flags);

Removes the menu item from the menu but does not delete it if it is a sub-
menu. ~

See also: TMenu::DeleteMenu

SetMenultemBitmaps inline BOOL SetMenuItemBitmaps(UINT idItem, UINT flags,
const TBitmap* bmpUnchecked=0,
const TBitmap* bmpChecked=0);
static BOOL GetMenuCheckmarkDimensions(TSize& size

Specifies the bitmap to be displayed when the menu item is checked and
unchecked. idItem indicates the menu item to be associated with the bitmap.
flags indicates how the size parameter is interpreted (whether by
MF_BYPOSITION or by MF_BYCOMMAND).
GetMenuCheckmarkDimensions gets the size of the bitmap.

See also: TMenu::GetMenuCheckmarkDimensions

Protected data members

Handle operator HME/NU Handle;
Holds the handle to the menu.

ShouldDelete 0oL Shouldpelete;
ShouldDelete is set to TRUE if the destructor needs to delete the handle to
the menu. -

See also: TMenu::DeleteMenu,‘ TMenu::RemoveMenu

TMenuDescr class framewin.h

TMenuDescr describes your menu bar and its arrangement. It uses a
resource ID to identify the menu resource and an array of count values to
indicate the number of menus in each group on the menu bar. Actually,

‘ TMenuDescr’s constructor simply initializes the members based on the

Chapter 1, Library reference - _ 273

- TMenuDescr class

274

argumenté passed: TFrameWindow's MergeMenu function performs the real
work of merging the menu groups. - '

For example, if your original menu looked. like this:

lFﬂe Edit Search View Page Paragraph Word Window He]ri‘

you might use the following group counts:

Group Count Menu

FileGroup 1 File

EditGroup 2 Edit Search

ContainerGroup 1 View

ObjectGroup 3 Page Paragraph Word
* WindowGroup 1 Window

HelpGroup 1 Help

Then invoke the constructor in this way:
TMenuDescr (IDM_MYMENU, 1,2, 1, 3, 1, 1)

You can build the previous menu by merging two menus. Set your
application’s frame menu bar this way:

[Fﬂe View Window He]ﬂ

’

TMenuDescr (IDM_FRAME, 1, 0, 1, 0, 1, 1)

and the wofdfprocessor child menu bar this way:

{Edit Search Page Paragraph Word He1p|)

TMenuDescr (IDM_WPROC, 0, 2, 0, 3, 0, 1)

If no child is active, only the frame menu will be active. When the word
processor child window becomes active, the child menu bar is merged with
the frame menu. Every group that is 0 in the child menu bar leaves the
parent’s group intact. The previous example interleaves every group except
for the last group, the Help group, in which the child replaces the frame
menu. :

By convention, the even groups (File, Container, Window) usually beldng
to the outside frame or container, and the odd groups (Edit, Object, Help)
belong to the child or contained group.

If a—1is used in a group count, the merger eliminates the parent’s group

~ without replacing it. For example, another child menu bar, such as a

calculator, could be added to your application in this way.

ObjectWindows 2.0 Reference Guide

Id

TMenuDescr class

Edit Base Help

TMenuDescr (IDM_WCALC, 0, 1, -1, 1, 0, 1)

This produces a merged menu (with the View menu selection eliminated as

a result of the —1) that looks like this:

lFi]e Edit Base Window He1p]

You could add a paint window in this way:

I?ﬁt Bitmap Pixel He1p|

TMenuDescr (IDM_WPAINT, 0, 1, 0, 2, 0, 1)

This produces the following merged menu:

]Fne Edit View Bitmap Pixel Window He1p|

Public data members

TResId Id;

Resource ID for the menu.

GroupCount[NumGroups] int GroupCount [NumGroups];

Constructor

Constructor

An array of values indicating the number of pop-up menus within each
group on the menu bar.

See also: TMenuDescr::TGroup enum

Public Constructors

TMenuDescr () ;
Default constructor for a TMenuDescr object.
TMenuDescr (TResId id, int fg, int eg, int cg, int og, int wg, int hg);

Constructs a TMenuDescr object with the specified resource ID and number
of items in the file menu group (fg), edit menu group (eg), container menu
group (cg), object menu group (0g), window menu group (wg), and help
menu group (hg).

Chapter 1, Library reference ‘ 4 B . , 275

TMenuDescr:: TGroup enum

TMenuDescr:: TGroup enum - framewin.h

enum TGroup

Used by TMenuDescr, the TGroup enum describes the following constants
that define the index of the entry in the GroupCount array.

Constant Meaning

FileGroup Index of the File menu group count
EditGroup Index of the Edit menu group count
ContainerGroup Index of the Container menu group count
ObjectGroup Index of the Object group count
WindowGroup Index of the Window menu group count
HelpGroup Index of the Help menu group count
NumGroups Total number of groups

See also: TMenuDescr::GroupCount| NumGroups]

TMessageBar class messageb.h

Constructor

SetHintText

SetText

276

Derived from TGadget Window, TMessageBar implements a message bar with
one text gadget as wide as the window and no border. Normally positioned
at the bottom of the window, the message bar uses the default gadget
window font and draws a highlighted line at the top.

Public constructors

TMessageBar (TWindow* parent = 0, TFont* font = new TGadgetWindowFont,
TModule* module = 0);

Constructs a TMessageBar object with the gadget window font. Sets Attr.Id
to IDW_STATUSBAR, HighlightLine to TRUE, and TTextGadget’s member
WideAsPossible to TRUE, making the text gadget as wide as the window.

See also: TGadget WindowFont::TGadget WindowFont

Public member function

virtual void SetHintText (const char* text);

Sets or clears the menu hint text for the message bar. Hint text is displayed
over all other gadgets and is used for menu and control bar button help.

void SetText (const char* text);

ObjectWindows 2.0 Reference Guide

Highlightline

GetDesiredSize

GetinnerRect

PaintGadgets

TMessageBar class

Forwards the message in the message bar to the text gadget for formatting.

See also: TTextGadget::SetText

Protected data member

BOOL HighlightLine;
Is TRUE if a highlighted line is drawn.

Protected member functions

void GetDesiredSize(TSize& rect);

Calls TGadget Window’s GetDesiredSize to get the size of the message bar.
Then, if a highlighting line is drawn, adjusts the size of the message bar.

See also: TGadget Window::GetDesiredSize.
void GetInnerRect (TRect& rect);.

GetInnerRect computes the rectangle inside the borders and margins of the
message bar.

See also: TGadget Window::GetInnerRect
void PaintGadgets(TDC& dc, BOOL erase, TRecté& rect);

Adjusts the message bar and paints a highlight line. Then, Pai’ntGadgets
either paints the hint text if any is set or calls TGudgethdow :PaintGadgets
to repaint each gadget.

See also: TGadget Window::PaintGadgets

TMetaFileDC class) dc.h

Constructor

Derived from TDC, TMetaFileDC prov1des access to a DC w1th a metafile
selected for drawing.-

Constructors and destructor

TMetaFileDC (const char far* filename = 0);
Default constructor for TMetaFileDC objects.
See also: TDC::TDC :

Chapter 1, Library reference) 277

IMetarliebu class

Constructor

Destructor

Close

TMetaFilePict class : o metafile.h

TMetaFileDC (const char fart* filenaxﬁe = 0);

Creates a TMetaFileDC object with the data in the named file.
See also: TDC:TDC

~TMetaFileDC();

Destroys this object.

“Public member function

inline HMETAFILE Close();

Closes this metafile DC object. Sets the Handle data member to 0 and
returns a pointer to a new TMetaFilePict object.

See also: ::CloseMetaFile, TMetaFilePict, ::DeleteMetaFile

Extent

Constructor

Constructor

278

TMetaFilePict is a support class used with TMetaFileDC to simplify
Windows-format metafile operations, such as playing into a DC or storing
data on the Clipboard.

Protected data member

TSize Extent;

Holds the extent (size) of the metafile.

Public constructors and destructor

TMetaFilePict (HMETAFILE handle, TAutoDelete autoDelete);

- Creates a TMetaFilePict object with Handle set to the given handle argument.

See also: TMetaFilePict::Handle
TMetaFilePict (const TClipboards& clipboard);

Creates a TMetaFilePict object and sets Handle from the contents of the
specified Clipboard. :

ObjectWindows 2.0 Reference Guide

Constructor

Constructor

Constructor

Constructor

Destructor

TMetatllelict class

See also: TClipboard, ::GetClipBoardData, TMetaFilePict::Handle
TMetaFilePict (const char* filename);

Creates a TMetaFilePict object for the Windows—fofmat metafile stored in
the named file by calling ::GetMetaFile(filename). Handle is set from the
return value of the ::GetMetaFile(filename) call.

See also: ::GetMetaFile, TMetaFilePict::Handle
TMetaFilePict (UINT size, const void far* data);

Creates a TMetaFilePict object for the memory-based metafile specified by

‘data by calling ::SetMetaFileBitsEx(size, data). The data buffer must hold a

Windows-format metafile of length size bytes. Handle is set from the return
value of the ::SetMetaFileBitsEx call.

See also: ::SetMetaFileBitsEx, TMetaFilePict::GetMetaFileBitsEx,
TMetaFilePict::Handle

TMetaFilePict (HGLOBAL data);

Creates a TMetaFilePict object for the memory-based metafile specified by .
data by calling ::SetMetaFileBitsBetter(data). The data global memory block
must hold a Windows-format metafile. Handle is set from the return value
of the ::SetMetaFileBitsBetter call.

See also: ::SetMetaFileBitsBetter, TMetaFilePict::GetMetaFileBits,
TMetaFilePict::Handle

TMetaFilePict (const TMetaFilePict& orig, const char far* fileName = 0);

Copies the Windows-format metafile, orig, to the named file by calling
::CopyMetaFile(filename). If filename is O (the default), the metafile is copied to
a memory-based metafile. Handle is set from the return value of the
::CopyMetaFile call.

See also: ::CopyMetaFile, TMetaFilePict::Handle

~TMetaFilePict ()

Destroys this object. If Handle is nonzero, the associated metafile is also

destroyed via ::DeleteMetaFile.

See also: ::DeleteMetaFile, TMetaFilePict::Handle

Chapter 1, Library reference \ - 279

I MetarllePIct class

GetMetaFileBits

GetMetaFileBitsEx

N

IsOK

operator
HMETAFILE()

TModule class

Public member functions

inline HANDLE GetMetaFileBits();

Returns a handle to a global memory block containing this metafile as a
collection of bits by calling ::GetMetaFileBits(Handle). The memory block can
be used to determine the size of the metafile or to save the metafile as a file.

See also: ::GetMetaFileBits, ::SetMetaFileBits
inline DWORD GetMetaFileBitsEx(UINT size, void* data);

Retrieves the contents of the Windows-format metafile associated with this
object and copies them (up to size bytes) to the data buffer. If data is nonzero
and the call succeeds, the actual number of bytes copied is returned. If data
is 0, a successful call returns the number of bytes required by the buffer. A
return value of 0 always indicates a failure.

See also: ::GetMetaFileBitsEx, ::SetMetaFileBitsEx

inline BOOL IsOK() const;

Returns TRUE if this object’s Handle is nonzero, otherwise FALSE.
See also: TMetaFilePict::Handle A

inline operator HMETAFILE() const;

Type-conversion operator returning Handle.

See also: TMetaFilePict::Handle

module.h

IpCmdLine

280

ObjectWindows dynamic-link libraries (DLLs) construct an instance of
TModule, which acts as an object-oriented stand-in for the library (DLL)
module. TModule defines behavior shared by both library and application
modules. ObjectWindows applications construct an instance of
TApplication, derived from TModule. TModule’s constructors manage loading
and freeing of external DLLs, and the member functions provide support
for default error handling.

Public data members

char far* lpCmdLine;

ObjectWindows 2.0 Reference Guide

Module

Status

Constructor

Constructor

Constructor

Destructor

TModule class

A null-terminated string, IpCmdLine points to a copy of the command-line
arguments passed when the module is loaded. Notice that IpCmdLine is
different from the WIN32 IpCmdLine in which the full path name of the
module is appended to the command-line arguments. Whether running
under WIN16 or WIN32, ObjectWindows TModule::lpCmdLine data member
includes only the command-line arguments. Note that the run-time library
global variables _argv*[] and _argec contain identical information for both
WIN16 and WIN32 APIs, and that _argv[0] points to the full path name of
the module.

See also: TApplication

extern TModule *Module;

Holds a global pointer to the current module.

TStatus Status;

Status contains the module status and is included for backward
compatibility with ObjectWindows 1.0 applications. ObjectWindows 2.0
instead uses exceptions to handle errors. Setting Status to any nonzero
value will throw a TXCompatibility exception.

See also: TXCompatibility::MapStatusCodeToString

Public constructors and destructor

TModule (const char far* nafne, HINSTANCE Instance, const char far
cndLine) ; :

Constructs a TModule object for an ObjectWindows DLL or program from
within LibMain or WinMain. Calls InitModule to initialize hlnstance and
cmdLine.

TModule (const char far* name, HINSTANCE hlInstance);

Constructs a TModule object that is an alias for an already loaded DLL or
program with an available HInstance. When the TModule is destructed, the
instance isn’t automatically freed. name, which is optional, can be 0.

TModule (const char far* name, BOOL shouldLoad = TRUE);

Constructs a TModule object that is used as an alias for a DLL. If shouldLoad
is TRUE, Tmodule will automatically load and free the DLL. If shouldLoad is
FALSE, then the HInstance needs to be set later using InitModule.

virtual ~TModule();

Destroys a TModule object and deletes IpCmdLine.

Chapter 1, Library reference , , 281

- IModule class

AccessResource

AllocResource

CopyCursor

Copylcon

Error

Error

282

Public m’ember functions

inline int AccessResource (HRSRC hRsrc) cons‘t;

Used for 16-bit applications, AccessResource finds the specified resource.
The preferred method is to use FindResource.

See also: TModule::FindResource
inline HGLOBAL AllocResource(HRSRC hRsrc, DWORD size) const;

Used for 16-bit applicatiohs, AllocResource loads a resource into memory.
The preferred method is to use LoadResource.

See also: TModule::LoadResource
inline HCURSOR CopyCuréor(HCURSOR hCursor) const;

Coples the cursor specified in hCursor. The return value is a handle to the
duplicate cursor.

See also: TlIcon class
inline HICON CopyIcon(HICON hIcon) const;

Copylcon copies the icon specified in hlcon. The return value is a handle to
the icon or 0 if unsuccessful. When no longer required, the duplicate icon
should be destroyed.

virtual void Error{int errorCode);

Error processes errors identified by the error value supplied in errorCode.
Error displays the error code in a message box and asks the user if it is OK.
to continue. If the user does continue, the program might or might not be
able to recover. If the user does not continue, the program terminates. Error
can be overridden with another kind of exception handler. This function is

“included only for backward compatibility with ObjectWindows 1.0. If you

are writing ObjectWindows 2.0 applications, use the following Error
function instead. '

virtual int Error(xmsg& x, unsigned captlonResId unsigned promptResId=0);

Called when fatal exceptions occur, Error takes an xmsg exception object, a
resource ID for a message box caption, and an optional resource ID for a
user prompt. By default, Error calls HandleGlobalException with the xmsg
object and the strings obtained from the resources. An application (derived
from TApplication which'is derived from TModule) can reimplement this
function to provide alternative behavior.

A non-zero status code is returned to indicate that an error condition is to
be propagated; a zero status indicates that the condition has been handled

ObjectWindows 2.0 Reference Guide

ExecDialog

FindResource

GetClientHandle

GetClassinfo

Getinstance

GetinstanceData

GetModuIeFlleNme

TModule class

and that it is OK to proceed. ObjectWindows uses this status code inside its
message loop to allow the program to resume. The global error handler
(defined in except.h), which displays the message text, is

int _OWLFUNC HandleGlobalException(xmsg& x, char* caption, char*
canResume) ;

int ExecDialog(TDialog* dialog);

Executes a dialog box. This function is included only for backward
compatibility. Use TDialog::Execute instead.

inline HRSRC FindResource (TResId id, const’ char far* type) const;

Finds the resource indicated by id and type and, if successful, returns a
handle to the specified resource. If the resource cannot be found, the return
value is zero. The id and type parameters either point to zero-terminated
strings or specify an integer value. type can be one of the standard resource

' types (RT_ACCELERATOR, RT_BITMAP and so on). See the Windows API

function ::FindResource for a description of these values.

See also: TlInstance:: AccessResource, TInstance::LoadResource,
TInstance::SizeOfResource

HWND GetClientHandle (HWND hwWnd) ;
Gets the handle to the client window.

inline BOOL GetClassInfo(const char far* name, WNDCLASS far* wndclass)
const;

Used particularly for subclassing, GetClassInfo gets information about the
window class specified in wndclass. name points to a O-terminated string
that contains the name of the class. wndclass points to the WNDCLASS
structure that receives information about the class. See the Windows API
online Help for a description of this structure. If successful, GetClassInfo
returns nonzero. If a matching class cannot be found, GetClassInfo returns
Zero.

inline HINSTANCE GetInstance() const;

- Returns the instance handle‘for this module.

inline int GetInstanceData(void* data, int len) const;

GetInstanceData gets data from an already running instance of an
application. len is the size of the buffer.

inline int GetModuleFileName (char far* buff, int maxChars);

Returns the expanded filename (path and filename) of the file from which
the specified module was loaded. buff points to a buffer that holds the path

Chapter 1, Library reference ; 283

I'Module class

GetModuleUsage

GetName

GetParentObject

GetProcAddress

InitModule
IsLoaded

LoadAccelerators

LoadBitmap

284

and file name. maxChars specifies the length of the buffer. The expanded
filename is truncated if it exceeds this limit. GetModeFileName returns 0 if an
€ITOT OCCUrs.

See also: ::GetModuleFileName
inline int GetModuleUsage() const;

Returns the reference count of the module, if successful. The reference
count is incremented by one each time GetModuleUsage is called and -
decremented by one when FreeLibrary is called.

See also: ::GetModuleUsage

inline const char far* GetName() const;
Gets the name of the module.

See also: ::GetName

TWindow* GetParentObject (HWND hWndParent) ;

Gets a handle to the parent window. This function is included only for,
backward compatibility with ObjectWindows 1.0.

Seealso: ::GetParentObject

inline FARPROC GetProcAddress (const char far* fcnName) const;
Gets the address of an exported procedure or function.

See also: :GetProcAddress

void InitModule (HINSTANCE Instance, const char far* cmdLine);

Performs any instance initialization necessary for the module. If the module
can’t be created, a TXInvalidModule exception is thrown.

inline BOOL IsLoaded() const;

Returns nonzero if the instance handle is loaded. Use this function
primarily to ensure that a given instance is loaded.

inline HACCEL LoadAccelerators(TResId id) const;

Loads the accelerator table resource specified by id. Load Accelerators loads
the table only if it has not been previously loaded. If the table has already
been loaded, LoadAccelerators returns a handle to the loaded table.

See also: ::LoadAccelerators
inline HBITMAP LoadBitmap(TResId id) const;

Loads the bitmap resource specified by id. If the bitmap cannot be found,
LoadBitmap returns 0.

ObjectWindows 2.0 Reference Guide

LoadCursor

Loadicon

LoadMenu

LoadResource

TModule class

LoadBitmap can be used to load predefined Windows bitmaps. In such
cases, id must be one of the OBM_XXXX values (OBM_BTNCORNERS,
OBM_BTSIZE, and so on). See the Windows API online Help for a
description of these values.

See also: TBitMap class, ::LoadBitmap
inline HCURSOR LoadCursor(TResId id) const

Loads the cursor resource specified by id into memory and returns a handle
to the cursor resource. If the cursor resource cannot be found or identifies a
resource that is not a cursor, LoadCursor returns 0.

LoadCursor can be used to load a predefined Windows cursor if the id is one
of the IDC_XXXX values. See the Windows API online Help for a
description of these values. :

See also: TCursor class, ::LoadCursor

inline HICON LoadIcon(const char far* name) const;

‘Loads the icon resource indicated by the parameter, name, into memory.

LoadIcon loads the icon only if it has not been previously loaded. If the icon
resource cannot be found, LoadIcon returns 0.

LoadlIcon can be used to load a predefined Windows cursor if name points to
one of the IDI_XXXX values. See the Windows API online Help for a
description of these values.

See also: Tlcon class, ::Loadlcon
inline HMENU LoadMenu(TResId id) const;

Loads the menu resource indicated by id into memory. The menu resource
is typically a collection of one or more MENUITEMTEMPLATE structures,
which might contain one or more menu items. If the menu resource cannot
be found, LoadMenu returns 0.

See also: TMenu, ::LoadMenu
inline HGLOBAL LoadResource (HRSRC hRsrc) const;

Loads a resource indicated by hRsrc into memory and returns a handle to
the memory block that contains the resource. If the resource cannot be
found, the return value is 0. The hRsrc parameter must be a handle created
by FindResource.

LoadResource loads the resource into memory only if it has not been
previously loaded. If the resource has already been loaded, LoadResource
increments the reference count by one and returns a handle to the ex1st1ng
resource. The resource remains loaded until it is discarded.

Chapter 1, Library reference - 285

TMod,uIe class

LoadString

- LowMemory
MakeWindow

operator
HINSTANCE

RestoreMemory

Setinstance

SetResourceHandler

SizeOfResource

286

See also: ::LoadResource
inline int LoadString (UINT id, char far* buff, int maxChars) const;

Loads a string resource identified by id into the buffer pointed to by buff.
maxChars indicates the size of the buffer to which the zero-terminated
string is copied. A string longer than the length specified in maxChars is
truncated. The return value is the number of characters copied into the
buffer, or 0 if the string resource does not exist.

See also: ::LoadString -

inline BOOL LowMemory () ;

This function, which is obsolete, always returns 0.

TWindow* MakeWindow(TWindow* win); |

This function is obsolete. Use TWindow’s Create function instead.
inline operator HINSTANCE() const;

Returns the handle of the Windows application or DLL module
represented by this TModule. The handle must be supplied as a parameter
to Windows when loading resources. ' '

inline void RestoreMemory();
This function, which is obsolete, restores memory.
void SetInstance (HINSTANCE hInstance);

Sets the instance handle for this TModule. SetInstance is used for special
cases in which the hinstance is not known when the module is constructed.

inline RSRCHDLRPROC SetResourceHandler (const char far* type, RSRCHDLRPROC
loadProc) const;

Used for 16-bit applications, SetResourceHandler installs a callback function
that loads resources. type points to a resource type. loadProc is the address
of the callback procedure. If successful, SetResourceHandler returns a pointer
to a previously installed resource handler. If no resource handler has been
installed, SetResourceHandler returns a pointer to the default handler. This
function is useful for handling user-defined resource types.

inline DWORD SizleResource(HRSRC‘ hRsrc) const;

Returns the size, in bytes, of the resource indicated by hRscr. The resource
must be a resource handle created by FindResource. If the resource cannot
be found, the return value is 0.

ObjectWindows 2.0 Reference Guide |

ValidWindow

Hinstance

Name

TModule class

Because of alignment in the executable file, the returned size might be
larger than the actual size of the resource. An application cannot rely on
SizeofResource for the exact size of a resource.

See also: TlInstance::AccessResource, TInstance::LoadResource
inline TWindow* ValidWindow (TWindow* win);

This function, which is obsolete, returns a handle to the valid window.

Protected data members

HINSTANCE HInstance;

Contains the executing instance of either the Windows application or DLL
module. The instance must be supplied as a parameter to Windows when
loading resources.

char far* Name;

Holds the name of the application or DLL module.

TModule::TXInvalidModule class module.h

Constructor

A nested class, TXInvalidModule describes an exception that results from an
invalid module. A window throws this exception if it can’t create a valid
TModule object.

Public constructors

TXInvalidModule ();

~ Constructs a TXInvalidModule object.

TOpenSaveDialog class ; opensave.kh

TOpenSaveDialog is the base class for modal dialogs that let you open and
save a file under a specified name. TOpenSaveDialog constructs a TData
structure and passes it the TopenSaveDialog constructor. Then the dialog is
executed (modal) or created (modeless). Upon return, the necessary fields
are updated including an error field that contains 0, or a common dialog
extended error. |

Chapter 1, Library reference o B 287

TOpenSaveDialog class

Constructor

GetFileTitle

GetFileTitleLen

Data

ofn

ShareViMsgld

Constructor

288

Public constructors

TOpenSaveDialog (TWindow* parent, TData& data, TResID templatelID = 0,
const char far* title = 0, TModule* module = 0);

Constructs an open save dialog box object with the supplied parent
window, data, resource ID, title, and current module object.

See also: TOpenSaveDialog::TData struct

Public member functions

inline static int GetFileTitle(const char far* fileName,
char far* fileTitle, int fileTitleLen)

Stores the name of the file to be saved or opened.
inline static int GetFileTitleLen(const char far* fileName);

Stores the length of the name of the file to be saved or opened.

Protected data members

TData& Data;

Stores the file name, its length, extension, filter, initial directory, default
file-name extension, and any error messages.

. OPENFILENAME ofn;

Contains the attributes of the file name such as length, extension, and
directory. ofn is initialized using the fields in the TOpenSaveDialog::TData
class.

See also: TOpenSaveDialog::TData
static UINT ShareViMsgId;
Contains the message ID of the registered ShareViolation message.

See also: TFileOpenSave::TData, TOpenSave::ShareViolation

Protected constructors

TOpenSaveDialog (TWindow* parént, TData& data, TModule* module);

Constructs a TOpenSaveDialog box object with the supplied parent, data,
and current module object.

ObjectWindows 2.0 Reference Guide

CmLbSelChanged

CmOk

DialogFunction

- DoExecute

Init

ShéreViolation

TOpenSaveDialog class

See also: - TOpenSaveDialog:: TData struct

Protected member functions

inline void CmLbSelChanged();

Indicates that the selection state of the file name list box in the
GetOpenFileName or GetSaveFileName dialog boxes has changed.
CmLbSelChanged is a default handler for command messages sent by Ist1 or
Ist2 (the file and directory list boxes, respectively).

‘inline void CmOk();

Responds to a click on the dialog box’s OK button (with the identifier
IDOK). Calls CloseWindow (passing IDOK).

See also: TDialog::CloseWindow
BOOL DialogFunction(UINT message, WPARAM, LPARAM);

Returns TRUE if a message is handled, returns ShareViMsgId if a sharing
violation occurs, otherwise returns FALSE.

See also: TCommonDialog::DialogFunction

int DoExecute() = 0;

Creates and executes a modal dialog box.

void Init(TResID templatelID);

Initializes a TOpenSaveDialog object with the current resource ID.
virtual int ShareViolation (; |

If a sharing violation occurs when a file is opened or saved, ShareViolation is
called to obtain a response. The default return value is
OFN_SHAREWARN. Other Windows API sharing violation responses are
listed in this table: : ‘

Constant . Meaning

OFN_SHAREFALLTHROUGH Specifies that the file name can be used and that the dialog box
: ‘ should return it to the application.
OFN_OFN_SHARENOWARN Instructs the dialog box to perform no further action with the file
name and not to warn the user of the situation.
OFN_SHAREWARN This is the default response that is defined as 0. Instructs the
' dialog box to display a standard warning message.

See also: TFileOpenSave::TData, TOpenSave::ShareViMsgld

Chapter 1, Library reference , _ , 289

TOpenSaveDialog class

Response table entries

The TOpenSaveDialog response table has no entries. "

TOpenSaveDiang::TData struct opensave.h

TOpenSaveDzalog structure contains information about the user’s file open
or save selection.

Public data members

CustomFilter char* CustbmFilter;
CustomFilter stores the user-specified file filter; for example, *.CPP.
DefExt ~ char* DefExt; |
_ DefExt stores the default extension.
Error DWORD Error;

Error contains one or more of the following CommDIgExtendedError codes:

Constant Meaning

CDERR_DIALOGFAILURE Failed to create a dialog box.,

CDERR_LOCKRESOURCEFAILURE Failed to lock a specified resource.

CDERR_LOADRESFAILURE Failed to load a specified resource.

CDERR_LOADSTRFAILURE - Failed to load a specified string.
 Flags DWORD Flags;

Flag contains one or more of the following Windows API constants:

Constant Meaning

OFN_HIDEREADONLY Hides the read-only check box.

OFN_FILEMUSTEXIST Lets the user enter only names of existing files in the Flle Name entry field. If an invalid

, file name is entered, a warning message is displayed.

OFN_PATHMUSTEXIST Lets the user enter only valid path names. If an invalid path name is entered, a warning

o message is displayed. '

OFN_NOVALIDATE Performs no check of the file name and requires the owner of a derived class to perform
validation.

OFN_NOCHANGEDIR Sets the current directory back to what it was when the dialog was initiated.

OFN_ALLOWMULTISELECT Allows multiple selections in the File Name list box.

OFN_CREATEPROMPT Asks if the user wants to create a file that does not currently exist.

290 - ' » ' ObjectWindows 2.0 Reference Guide -

TOpenSaveDialog:: TData struct

Constant

Meaning

" OFN_EXTENSIONDIFFERENT
OFN_NOREADONLYRETURN

OFN_NOTESTFILECREATE

OFN_OVERWRITEPROMPT

" OFN_SHAREAWARE

OFN_SHOWHELP

Indicates the user entered a file name different from the specified in DefExt. This
message is returned to the caller.

The returned file does not have the Read Only attribute set and is not in a write-protected
directory. This message is returned to the caller.

The file is created after the dialog box is closed. If the application sets this flag, there is no
check against write protection, a full disk, an open drive door, or network protection. For
certain network environments, this flag should be set.

The Save As dialog box displays a message asking the user if its OK to overwrite an
existing file.

If this flag is set and a call to open a file fails because of a sharing violation, the error is
ignored and the dialog box returns the given file name. If this flag is not set, the virtual
function ShareViolation is called, which returns OFN_SHAREWARN (by default) or one of
the following values:

OFN_SHAREFALLTHROUGH - File name is returned from the dialog box.

OFN_SHARENOWARN No further action is taken.
OFN_SHAREWARN User receives the standard warning message for this
type of error. 7 ,

Shows the Help button in the dialog box.

FileName char* FileName;

Holds the name of the file to be saved or opened.

Filter char* Filter;

Filter holds the filter to use initially when displaying file names.

 Filterindex int FilterIndex;

FilterIndex indicates which filter to use initially when displaying file names.

InitialDir char* InitialDir;

InitialDir holds the directory to use initially when displaying file names.

Public constructors and destructor

Constructor TData (DWORD flags=0, char* filter=0, char* customFilter=0,
char* initialDir=0, char* defExt=0);

Constructs a TOpenSaveDialog::TData structure.

Destructor ~TData() ;

Destructs a TOpenSaveDialog::TData structure.
See also: ::CommDIgExtendedError, ::OpenFileName, TEditFile::FileData

Chapter 1, Library reference

291

TOpenSaveDialog::TData struct

SetFilter

Public member functions

void SetFilter(const char*filter = 0);

Makes a copy of the filter list used to display the file names.

TOutStream class | docview.h

Constructor

TPaintDC cIaSs

Derived from TStream and ostream, TOutStream is a base class used to create
output storage streams for a document.

Public constructors

TOutStream(TDocument& doc, LPCSTR name, int mode);

Constructs a TOutStream object. doc refers to the document object, name is
the user-defined name of the stream, and mode is the mode of opening the
stream.

See also: TInStream, of XXXX document open enum, shdocument sharing
enum

de.h

Ps

Constructor

292

A DC class derived from TWindowDC that wraps begin and end paint calls
for use in a WM_PAINT response function.

Public data members

PAINTSTRUCT Ps;
The paint structure associated with this TPaintDC object.
See also: PAINSTRUCT

Public constructors and destructor

TPaintDC (HWND wnd);

Creates a TPaintDC object with the given owned window. The data
member Wnd is set to wnd.

ObjectWindows 2.0 Reference Guide

Destructor

TPaIeﬂe class

TPaintDC class

See also: TWindowDC::Wnd, TDC::TDC
~TPaintDC{();

Destroys this object.

gdiobjec.h

enum TStockld

Stocks|]

Note: This array no
longer exists. Use
TDC::SelectStockObject
’ instead.

Constructor

Constructor

Constructor

TPalette is the GDI Palette class derived from TGdiObect. The TPalette
constructors can create palettes from explicit information or indirectly from
various color table types that are used by DIBs.

Public data members

enum TStockId{Default};

Enumerates the stock palette attributes.

Protected data members

static TPalette Stocks[];

The single static array of Windows stock palettes serving all TPalette
objects. The stock palette is DEFAULT_PALETTE.

Public constructors

TPalette (HPALETTE handle, TAutoDelete autoDelete = NoAutoDelete);

Creates a TPalette object and sets the Handle data member to the given
borrowed handle. The ShouldDelete data member defaults to FALSE,
ensuring that the borrowed handle will not be deleted when the C++ object
is destroyed.

See also: TGdiObject::Handle, TGdiObject::ShouldDelete
TPalette(const TClipboard&);

Creates a TPalette object with values taken from the given Clipboard.
See also: TClipboard::GetClipboardData

TPalette(const TPalette& palette);

Chapter 1, Library reference ~ 203

TPalette class

Constructor

Constructor

Constructor

Constructor

 Constructor

204

This public¢ copy constructor creates a complete copy of the given palette
object, asin .

TPalette myPalette = yourPalette;
See also: TPalette::GetPaletteEntries, ::CreatePalette

‘Tpalette(const LOGPALETTE far* logPalette);

Creates a TPalette object from the given logPalette array. Handle is set via a
WiInAPI CreatePalette(logPalette) call.

See also: ::CreatePalette

TPaleftte(const PALETTEENTRY far* entries, int count);

Creates a TPalette object with count entries from the given entries arrray.
See also: ::CreatePalette

TPalette (const BITMAPINFO far* info, UINT flags = 0);

Win 3.0 DIB header only. Creates a TPalette object from the color table
following the given BITMAPINFO structure. This constructor works only
for 2-, 16-, and 256-color bitmaps. A 0 handle is returned for other bitmaps
including 24-bit DIBs.

See also: ::CreatePalette
TPalette(const BITMAPCOREINFO far* core, UINT flags = 0);

Presentation Manager (PM) 1.x DIBs only. Creates a TPalette object from the
color table following the given BITMAPCOREINFO structure. This
constructor works only for 2-, 16-, and 256-color bitmaps. A 0 handle is
returned for other bitmaps including 24-bit DIBs. Note that every color in a
PM 1.x table must be present because there is no ClrUsed field in the DIB
header.

See also: ::CreatePalette
TPalette(const: TDib& dib, UINT flags = 0);

Creates a TPalette object from the given Win or PM DIB object. The flags
argument represents the values of the Wmdows Pe data structure used to
create the palette. - ¢

See also: ::CreatePalette

ObjectWindows 2.0 Reference Guide

AnimatePalette

TPalette class

Public member functions

inline void AnimatePalette(UINT start, UINT count,
const PALETTEENTRY far* entries);

Replaces entries in this logical palette from the entries array of
PALETTEENTRY structures. start specifies the first entry to be animated,
and count gives the number of entries to be animated. Windows maps the
new entries into the system palette immediately.

See also: ::AnimatePalette

GetNearestPalettelndex inline UINT GetNearestPaletteIndex(TColor color) const;

GetNumEntries

GetObject

GetPaletteEntries

| GetPaletteEntry

Returns the index of the color entry that represents the best color in this
palette to the given color.

See also: ::GetNearestPaletteIndex, TColor

inline UINT GetNumEntries() const;

Returns the number of entries in this palette or 0 if the call fails.
See also: TGdiObject::GetObject

inline BOOL GetObjecf (WORD fars& numEntries) const;

Finds the number of entries in this logical palette and sets the value in the
numEntries argument. To find the entire LOGPALETTE structure, use
GetPaletteEntries. Returns TRUE if the call is successful; otherwise returns
FALSE.

See also: TGdiObject: GetOb]ect TPalette :GetPaletteEntries, : GetObjéct, struct
LOGPALETTE

UINT GetPaletteEntries(WORD start, WORD count, PALETTEENTRY far* entries)
const;

Retrieves a range of entries in this logical palette, and places them in the
entries array. start specifies the first entry to be retrieved, and count gives
the number of entries to be retrieved. Returns the number of entries

- actually retrieved, or 0 if the call fails.

See also: GetPaletteEntrzes, TGdiObject:: SetPaletteEntrles ’
inline UINT GetPaletteEntry(WORD index, PALETTEENTRY far& entry) const;-

Retrieves the entry in this logical palette at index, and places it in the entries
array. Returns the number of entries actually retrieved: 1 if successful or 0 if

“the call fails.

See also: TPaiette::SetPaletteEntry, ::GetPaletteEntry

" Chapter 1, Library reference ' 295

TPalette class

GetStock

operator <<

operator
HPALETTE()

ResizePalette

SetPaletteEntries

SetPaletteEntry

ToClipboard

296

static TPalettes& GetStock(TStockId 1d);

Provides access to stock Windows palette objects. Returns
TPalette::Stocks[id].

See also: TPalette::Stocks[], enum TStockld.
inline TClipboard& operator<< (TClipboard& clipboard, TPalette& palette);

Copies the given palette to the given clipboard argument. Returns a reference
to the resulting Clipboard, which allows normal chaining of <<.

operator HPALETTE() const;

Typecasting operator. Converts this palette’s Handle to type HPALETTE,
which is the Windows data type representing the handle to a logical
palette.

inline BOOL ResizePalette (UINT numEntries);

Changes the size of this logical palette to the number given by numEntries.
Returns TRUE if the call is successful; otherwise returns FALSE.

See also: TPalette:: AnimatePalette

inline UINT SetPaletteEntries(WORD start, WORD count,
const PALETTEENTRY far* entries);

Sets the RGB color values in this palette from the entries array of
PALETTEENTRY structures. start specifies the first entry to be animated,
and count gives the number of entries to be animated. Returns the number
of entries actually set, or 0 if the call fails.

See also: ::SetPaletteEntries, TGdiObject::GetPaletteEntries
inline UINT SetPaletteEntry(WORD index, const. PALETTEENTRY far& entry);

Sets the RGB color value at index in this palette from the entry argument.
start specifies the first entry to be animated, and count gives the number of
entries to be animated. Returns 1 (the number of entries actually set if
successful) or 0 if the call fails.

See also: ::SetPaletteEntry, TGdiObject::GetPaletteEntry

* void ToClipboard (TClipboards clipboard);

Moves this palette to the target clipboard argument. If a copy is to be put on
the Clipboard, use TPalette(myPalette). ToClipboard(); to make a copy first.
The handle in the temporary copy of the object will be moved to the ,
Clipboard. ToClipboard should set delete to FALSE so that the object on the
Clipboard is not deleted. The handle will still be available for examination.

ObjectWindows 2.0 Reference Guide

TPalette class

See also: TClipBoard::SetClipBoardData
UnrealizeObject inline BOOL UnrealizeObject();

Directs the GDI to completely remap the logical palette to the system
palette on the next RealizePalette(HDC) or TDC::RealizePalette() call. Returns
TRUE if the call is successful; otherwise FALSE.

See also: ::UﬁrealizeObject, ::RealizePalette,

" Protected member functions

Create void Create(const BITMAPINFO far* info, UINT flags);
void Create(const BITMAPCOREINFO far* core, UINT flags);

Sets values in this palette from the given bitmap structure. These functions
are usually called by the constructor rather than directly.

TPaletteEntry class color.h

TPaletteEntry is a support class derived from the structure
tagPALETTEENTRY . The latter is defined as follows:

typedef struct tagPALETTEENTRY {
BYTE peRed;
BYTE peGreen;
BYTE peBlue;
BYTE peFlags;
} PALETTEENTRY;

where peRed, peGreen, and peBlue specify the red, green, and blue intensity;
values for a palette entry.

The peFlags member can have the following values:

Value Meaning

PC_EXPLICIT Specifies that the low-order word of the logical palette entry designates a
: hardware palette index. This flag allows the application to show the
contents of the display device palette.

PC_NOCOLLAPSE Specifies that the color be placed in an unused entry in the system
palette instead of being matched to an existing color in the system
palette. If there are no unused entries in the system palette, the color is
matched normally. Once this color is in the system palette, colors in other

logical palettes can be matched to this color.

Chapter 1, Library reference » ; - 297

TPaletteEntry class

Value : Meaning

PC_RESERVED Specifies that the logical palette entry be used for palette animation; this
prevents other windows from matching colors to this palette entry since
the color frequently changes. If an unused system-palette entry is
available, this color is placed in that entry. Otherwise, the color is
available for animation.

TPaletteEntry is used in conjunction with the classes TPalette and TColor to
simplify logical color-palette operations. Constructors are provided to
create TPaletteEntry objects from explicit COLORREF and RGB values, or
from TColor objects.

Public constructors

Constru_ctor ' TPaletteEntry(int r, int g, int b, int £ = 0);
Creates a palette entry object with peRed, peGreen, peBlue, and peFlags set to
7,8, b, and f, respectively. :
See also: tagPALETTEENTRY struct

Constructor TPaletteEntry(TColor ¢);
Creates a palette entry object with peRed, peGreen, peBlue, and peFlags set to
c.Red(), c.Green(), c.Blue(), and c.Flags, respectively.
See also: TColor::Red, TColor::Green, TColor::Blue

TPen class gdiobjec.h
TPen is derived from TGdiObject. It encapsulates the GDI pen tool. Pens can
be constructed from explicit information or indirectly. TPen relies on the
base destructor, ~TGdiObject.‘
Public data members

enum TStockld enum TStockId({Null, Black, White};
Enumerates the Windows stock pens.

298 ObjectiVindows 2.0 Reference Guide

“Stocks] |

Note: This array no
: longer exists. Use

TDC::SelectStockObject
instead.

Constructor

Constructor

TPen class

Protected data members

static class TPen Stocks([];

The single static array of Windows stock pen objects serving all TPen
objects. The three stock pens are NULL_PEN, BLACK_PEN, and
WHITE_PEN.

Public constructors

~ TPen (HPEN handle, TAutoDelete autoDelete = NoAutoDelete) ;

Creates a TPen object and sets the Handle data member to the given
borrowed handle. The ShouldDelete data member defaults to FALSE,
ensuring that the borrowed handle will not be deleted when the C++ object
is destroyed.

See also: TGdiObject::Handle, TGAiObject::ShouldDelete, ::CreatePenIndirect
TPen(TColor color, int width=1, int style=PS_SOLID};

Creates a TPen object with the given values. The width argument is in
device units, but if set to 0, a 1-pixel width is assumed. Sets Handle viaa
Win API CreatePen(style, width, color) call with the given default values. If -
color is black or white, width is one, and style is solid, a stock pen handle is
returned. The values for style are listed in the following table.

Value ‘ Meaning

PS_SOLID Creates a solid pen.

PS_DASH Creates a dashed pen. Valid only when the pen width is one or less
in device units. ,

PS_DOT Creates a dotted pen. Valid only when the pen width is one or less in
device units.

PS_DASHDOT Creates a pen with alternating dashes and dots. Valid only when the

. _pen width is one or less in device units.

PS_DASHDOTDOT ~ Creates a pen with alternating dashes and double-dots. Valid only
when the pen width is one or less in device units.

PS_NULL Creates a null pen.

PS_INSIDEFRAME Creates a solid pen. When this pen is used in any GDI drawing
: function that takes a bounding rectangle, the dimensions of the figure
will be shrunk so that it fits entirely in the bounding rectangle, taking
into account the width of the pen.

See also: ::CreatePen, TColor

Chapter 1, Library reference ; - 5 299

TPen class

Constructor

Constructor

Constructor

GetObject

- GetStock

operator HPEN()

TPen(const LOGPEN far* logPen);

Creates a TPen object from the given logPen values. Sets Handle via a Win
API CreatePenIndirect(logPen) call. '

See also: ::CreatePenIndirect

TPen (DWORD penStyle, DWORD width, const TBrush& brush, DWORD styleCount,
LPDWORD style);

Creates a TPen object with the given values. Sets Handle via a Win API
ExtCreatePen(penStyle, width, &logBrush, styleCount, style) call (where
logBrush reflects the value in the given brush object).

See also: ::ExtCreatePen

TPen (DWORD penStyle, DWORD width, const LOGBRUSH& logBrush,
DWORD styleCount, LPDWORD style);

Creates a TPen object with the given values. Sets Handle via a Win API
ExtCreatePen(penStyle, width, &logBrush, styleCount, style) call.

Public member functions

inline BOOL GetObject (LOGPEN far& logPen) const;

Retrieves information about this pen object and places it in the giveﬁ
LOGPEN structure. Returns TRUE if the call is successful, otherwise
FALSE.

See also: TGdiObject::GetObject, struct LOGPEN

inline static TPen& GetStock(TStockId id);

Provides access to stock Windows pen objects. Returns TPen::Stocks[id].
See also: TPen::Stocks[], enum TStockld

operator HPEN() const;

Typecasting operator. Converts this pen’s Handle to type HPEN (the
Windows data type representing the handle to a logical pen).

4

TPicResult enum | validate.h

300

TPicResult is the result type returned by the Picture member function of
TPXPictureValidator. It contains one of the following types:
princomplete, prEmpty, prError, prSyntax, prAmbiguous, princompNoFill.

ObjectWindows 2.0 Reference Guide

|

TPicResult enum

enum TPicResult;

See also: TPXPictureValidator

- TPlacement enum : | gadgetwi.h

TPoint class

Enumerates the placement of a gadget—either before or after another
gadget. '

enum TPlacement;

See also: TGadget Window::PositionGadgets

point.h

Constructor

TPoint is a support class, derived from tagPOINT. Under WIN32, the latter
is defined as '

typedef struct tagPOINT {
LONG x;
LONG y;

} POINT;

Under WIN16, tagPoint is defined as

typedef struct tagPOINT {
int x;
int y;

} POINT;

TPoint encapsulates the notion of a two-dimensional point that usually
represents a screen position. TPoint inherits two data members, the
coordinates x and y, from tagPOINT. A TPoint object can be created from a
pair of ints, from a point of type POINT, from a value of type SIZE, or from
the low and high words of a DWORD value. Member functions and
operators are provided for comparing, assigning, and manipulating points.
Overloaded << and >> operators are declared as friends of TPoint, allowing
chained insertion and extraction of TPoint objects with streams.

Public constructors

TPoint () ;

The default TPoint constructor.

Chapter 1, Library reference : v 301

TPoint class

Constructor

Constructor

Constructor

Constructor

Offset

OffsetBy

operator+

operator-

302

inline TPoint (int _x, int _y);

Creates a TPoint object with the given coordinates.

inline TPoint (const POINT point) ,

Creates a TPoint object with x = point.x and y = point.y.

See also: POINT '

inline TPoint (const SIZE size) ,

Creates a TPoint object with x = size.cx and y = size.cy.

See also: SIZE struct

inline TPoint (DWORD dw);

Creates a TPoint object with x = LOWORD(dw) and y = HIWORD(dw)).

Public member functions

inline TPoint& Offset(int dx, int dy);

Offsets this point by the given delta arguments. This point is changed to
(x + dx, y + dy). Returns a reference to this point.

See also: TPoint::OffsetBy, TPoint::operator+=
inline TPoint OffsetBy(int dx, int dy) const;

Calculates an offset to this point using the given displacement arguments.
Returns the point (x + dx, y + dy). This point is not changed.

See also: TPoint::operator+, TPoint::Offset
inlinekTPoint operator+(const TSize& size) const;

Calculates an offset to this point using the given size argument as the
displacement. Returns the point (x + size.cx, y + size.cy). This point is not
changed.

See also: TPoint::OffsetBy, TSize

inline TPoint operator-(const TSize& size) const; -
inline TSize operator-(const TPoint& point) const;
inlinve TPoint operator-() const;

The first version calculates a negative offset to this point using the given
size argument as the displacement. Returns the point (x - size.cx, y ~ size.cy). |
This point is not changed. ' \

ObjectWindows 2.0 Reference Guide

operator==

operator+=

operator-=

operator!=

operator>>

operator<<

TPoint class

The second version calculates a distance from this point to the point
argument. Returns the TSize object (x — point.x, y — point.y). This point is not
changed.

The third version returns the point (-x, —y). This point is not changed.
See also: TPoint::operator+,TSize
inline BOOL operator==(const TPoint& other) const;

Returns TRUE if this point is equal to the other point; otherwise returns
FALSE.

See also: TPoint::operator!=
inline TPoint& operator+=(const TSize& size) const;

Offsets this point by the given size argument. This péint is changed to -
(x + size.cx, y + size.cy). Returns a reference to this point.

See also: TPoint::Offset, TPoint::operator-=, TSize
inline TPoint& operator-=(const TSize& size) const;

Negatively offsets this point by the given size argument. This point is
changed to (x — size.cx, y — size.cy). Returns a reference to this point.

See also: TPoint::Offset, TPoint::operator+=, TSize
inline BOOL operator!=(const TPoint& other) const;

Returns FALSE if this point is equal to the other point; otherwise returns
TRUE.

See also: TPoint::operator==

Friend functions

friend inline ipstream& operator>7(ipstream& is, TPoint& p) const;

Extracts a TPoint object from is, the given input stream, and copies it to p..
Returns a reference to the resulting stream, allowing the usual chaining of
>> operations. ' '

See also: TPoint friend operator<x, class ipstream
friend inline opstream& operator<<(opstream& os, const TPoint& p) const;

Inserts the given TPoint object, p, into the opstream, os. Returns a reference
to the resulting stream, allowing the usual chaining of << operations.

See also: TPoint friend operator>>, opstream

Chapter 1, Library reference o ; 7 ; 303.

TPoint class

operator<<

friend inline ostream& operator<<(ostream& os, const TPoint& p) const;

Formats and inserts the given TPoint object, p, into the ostream, os. The
format is “(x,y)”. Returns a reference to the resulting stream, allowing the
usual chaining of << operations.

See also: TPoint friend operator>>, ostream

TPointer<> class ; point.h

Constructor

Constructor

operator()

304

A small utility class, TPointer, provides automatic destruction for objects
constructed using new. TPointer is a parameterized class that holds a
pointer of its parameterized type and that overloads operators to behave
like an object pointer. Once a pointer is assigned to a TPointer object, it is -
eventually be deleted, either when the function exits, an exception is
thrown, or another pointer is assigned to the same object. A TPointer object
can be instantiated using one of the following equivalent methods:

TPointer<SomeClass> p = new SomeClass;
TPointer<SomeClass> p(new SomeClass);
TPointer<SomeClass> p; p = new SomeClass;

TPointer objects must be created on the stack; they can’t be created with
new. However, when delete is called on the TPointer object, the overloaded
delete operator actually calls delete on the internal pointer. This process
permits explicit destruction of the object that is pointed to. (Note that an
ampersand must be used to provide delete with a pointer; for example,
delete &p.)

Public constructors

inline TPointer() : TPointerBase<T>();
Default constructor in which p is initialized to 0.
inline TPointer(T* pointer) : TPointerBase<T>(pointer);

Initialized constructor where p is initialized to pointer.

Public member functions

inline operator T*();

ObjectWindows 2.0 Reference Guide

operator =

operator =

operator !

operator ~

operator delete

T* operator

TPointer<> class

The overloaded type conversion operator allows the TPointer object to be
passed as a function argument or assigned to a variable as if it were a
pointer.

inline T* operator =(T* src);
Assignment operator T* is assigned to p.
T* operator =(const TPointer<T>& src);

Assignment operator used when r is a const reference to TPointer of T. This
operator saves converting if another pointer object is used.

inline int operator !();

Zero test operator that tests for p.
inline void operator ~();
Overloaded complement operator.
inline void operator delete(void* p);
Overloaded delete operator.

inline T* operator->();

Provides access to the pointer.

TPopupMenu class menu.h

Constructor

TrackPopupMenu

TPopupMenu creates an empty pop-up menu to add to an existing window
or pop-up menu. See Chapter 7 in the Object Windows Programmer’s Guide for
more information about menu objects.

Public constructors

TPopupMénu(TAutoDelete autoDelete = AutoDelete);

Constructs an empty pop-up menu.

Public member functions

inline BOOL TfackPopupMenu(UINT flags, int x, int y, int rsvd, HWND wnd,
TRect* rect = 0);

Allows the application to create a pop-up menu at the specified location in
the specified window. flags specifies a screen position and can be one of the

Chapter 1, Library reference ‘ - 305

TPopupMenu class

TrackPopupMenu

Windows API TPM_xxxx values(TPM_CENTERALIGN,
TMP_LEFTALIGN, TPM_RIGHTALIGN, TPM_LEFTBUTTON, or
TPM_RIGHTBUTTON). wnd is the handle to the window that receives
messages about the menu. x specifies the horizontal position in screen
coordinates.of the left side of the menu. y species the vertical position in
screen coordinates of the top of the menu (for example, 0,0 specifies thata .
menu’s left corner is in the top left corner of the screen). rect defines the area
that the user can click without dismissing the menu.

See also: ::TrackPopupMenu

inline BOOL TrackPopupMenu (UINT flags, TPoint& point, int rsvd, HWND wnd,
. TRect* rect = 0);

This function is the same as the previous TrackPopupMenu except that the x
and y positions are specified in point.

See also: ::TrackPopupMenu

TPreviewPage class preview.h

306

TPreviewPage displays a page of a document in a print preview window. To
obtain the information needed to display the page, TPreviewPage interacts
with TPrintPreviewDC and TPrintout. Specifically, it creates a
TPrintPreviewDC from the window DC provided in Paint and passes that
TPrintPreviewDC object to TPrintout’s SetPrintParams member function.
PRINT.CPP, in your OWLAPI\PRNTPREYV directory, displays the
following sample print preview window: '

Select Print Preview

’ to display the
Document window Print Preview window

] Printer Test m
BT origin®

Line 2: Text only.

ANeIaA sunt QUITIM CEDEN

*Zine\s) Ly migh

1 page of 5 Jif

“ine 5: Line ¢ might p6t be“digpls,

tkifve 4: This text should be on the bottom of the page.*

-ObjectWindows 2.0 Reference Guide

Constructor

Paint

SetPageNumber

PageNum |
PrintDC

PrintExtent -

I Previewrage class

Public constructors

PreviewPage (TWindow* parent, TPrintout& printout, TPrintDC& prndc,
TSize& printExtent, int pagenum = 1);

Constructs a TPreviewPage object where parent is the parent window,
printout is a reference to the corresponding TPrintout object, prndc is a
reference to the TPrintPreviewDC object, printExtent is the extent (width and
height) in logical units of the printed page, and pagenum is the number of
the preview page. Initializes the style bits in Attr.Style so that TPreviewPage
has the attributes of a visible child window with a thin border. Sets the
background color of the preview page window to white.

Public member functions

void Paint (TDC& dc, BOOL, TRect& clip);

Displays the page in the preview window. To determine the preview page’s
attributes (line width, and so on), Paint calls several of TPrintout’s member
functions. Then, to adjust the printer object for previewing, Paint
determines if the page fits in the preview window or if clipping is
necessary. Finally, Paint passes clipping and banding information to

. TPrintout’s PrintPage function, which is called to display the page in the

preview window.

See also: TPrintout::BeginPrinting, TPrmtout EndPrzntmg,
TPrintout::PrintPage

inline void SetPageNumber (int newNum);

Sets newNum to the number of the page currently displayed in the preview
window.

Protected data members

int PageNum;

Number of the page displayed in the preview window.
TPrintDC& PrintDC; | ,

PrintDC& is a handle to the device context to use for printing.
TSize PrintExtent;

Contains the extent (width and height) in logical units of the page.

Chapter 1, Library reference : : 307

I PreviewPage class

Printout

EvSize

"TPrintDC class

TPrintout& Printout;

Holds a reference to the TPrintout object.

Protected member functions

void EvSize (UINT sizeType, TSize& size);

Invalidates the entire window when the size of the page displayed in the
preview window changes.

See also: TWindow::EvSize

Response table entries

Response table entry Member function

EV_WM_SIZE EvSize

de.h

Constructor

Constructor

AbortDoc

308

Derived from TDC, TPrintDC provides access to a printer.

Public constructors

TPrintDC (HDC handle, TAutoDelete autoDelete = NoAutoDelete);
Creates a TPrint object for the DC given by handle.

}
See also: TAutoDelete, TDC::TDC

TPrintDC(const char far* driver, const char far* device, const char far*
output, const DEVMODE far* initData);

Creates a TPrint object given print driver, device, output, and data from the
DEVMODE structure.

Public member functions

~inline int AbortDoc();

ObjectWindows 2.0 Reference Guide

Bandinfo

DeviceCapabilities

I PrntDU class

Aborts the current print job on this printer and erases everything drawn
since the last call to StartDoc. AbortDoc calls the user-defined function set
with TPrintDC::Set AbortProc() to abort a print job because of error or user
intervention. TPrintDC::EndDoc should be used to terminate a successfully
completed print job.

If successful, AbortDoc returns a positive or zero value; otherwise a
negative value is returned.

Note that for pre-Win 3.1 applications, documents are aborted by calling
Escape() with escape value ABORTDOC. For Win 3.1 and later, this escape
method is superseded by the ::AbortDoc function. TPrintDC::AbortDoc
automatically selects the appropriate call.

See also: ::AbortDoc, TPrintDC::EndDoc, TPrintDC::SetAbortProc,
TPrintDC::Escape, ABORTDOC

inline int BandInfo(TBandInfo& bandInfo);

Retrieves information about the banding capabilities of this device, and
copies it to the given bandInfo structure. Returns 1 if the call is successful;
returns 0 if the call fails or if this device does not support banding.

See also: struct TBandInfo, TPrintDC::Escape, BANDINFO

static DWORD DeviceCapabilities(const char far* driver, const char far*
device, const char far* port,
int capability, char far* output=0,
LPDEVMODE devmode=0) ;

Retrieves data about the specified capability of the named printer driver,
device, and port, and places the results in the output char array. The driver,
device, and port names must be zero-terminated strings. The devmode
argument points to a DEVMODE struct. If devmode is 0 (the default),
DeviceCapabilities retrieves the current default initialization values for the
specified printer driver; otherwise, it retrieves the values contained in the
DEVMODE structure. The format of the output array depends on the
capability being queried. If output is 0 (the default), DeviceCapabilities
returns the number of bytes required in the output array. Possible values for
capability are as follows:

Value Meaning

DC_BINNAMES The function enumerates the paper bins on the given device. If a
device driver supports this constant, the output array is a data structure
that contains two members. The first member is an array identifying
valid paper bins: .

short BinList[cBinMax]

Chapter 1, Library reference , 309

IPIINUG Class

310

The second member is an array of character strings specifying the bin
names:

char PaperNames [cBinMax] [cchBinName

If a device driver does not support this value, the output afray is empty and
the return value is NULL.

If output is NULL, the return value specifies the number of bins supported.
DC_BINS

The function retrieves a list of constants that identify the available bins and
copies the list to the output array. If this array is NULL, the function returns
the number of supported bins. The following bin identifiers can be
returned: ‘

DMBIN_AUTO
DMBIN_CASSETTE
DMBIN_ENVELOPE
DMBIN_ENVMANUAL
DMBIN_FIRST
DMBIN_LARGECAPACITY
DMBIN_LARGEFMT
DMBIN_LAST
DMBIN_LOWER
DMBIN_MANUAL
DMBIN_MIDDLE
DMBIN_ONLYONE
DMBIN_SMALLEMT
DMBIN_TRACTOR
DMBIN_UPPER

DC_DRIVER
The function returns the driver version number.
DC_DUPLEX

The function returns the level of duplex support. The return value is 1 if the
function supports duplex output; otherwise it is 0.

DC_ENUMRESOLUTIONS

The function copies a list of available printer resolutions to the output array.
The resolutions are copied as pairs of LONG integers; the first value of the
pair specifies the horizontal resolution and the second value specifies the
vertical resolution. If output is 0, the function returns the number of
supported resolutions.

ObjectWindows 2.0 Reference Guide

I Printby class

DC_EXTRA

The function returns the number of bytes required for the device-specific
data that is appended to the DEVMODE structure.

DC_FIELDS

The function returns a value indicating which members of the DEVMODE
structure are set by the device driver. This value can be one or more of the
following constants:

DM_ORIENTATION
DM_PAPERSIZE
DM_PAPERLENGTH
DM_PAPERWIDTH
DM_SCALE
DM_COPIES
DM_DEFAULTSOURCE
DM_PRINTQUALITY
DM_COLOR
DM_DUPLEX
DM_YRESOLUTION
DM_TTOPTION

DC_FILEDEPENDENCIES

The function returns a list of files that must be loaded when the device
driver is installed. If output is 0 and this value is specified, the function
returns the number of file names that must be loaded. If output is nonzero,
the function returns the specified number of 64-character file names.

DC_MAXEXTENT

The function returns the maximum supported paper-size. These
dimensions are returned in a POINT structure; the x member gives the
maximum paper width and the y member gives the maximum paper
length.

DC_MINEXTENT

The function returns the minimum supported paper-size. These dimensions
are returned in a POINT structure; the x member gives the minimum paper
width and the y member gives the minimum paper length.

DC_PAPERS

The function retrieves a list of supported paper sizes and copies it to the
output array. The function returns the number of sizes identified in the
array. If output is 0, the function returns the number of supported paper
sizes.

Chapter 1, Library reference 311

1 PNNWC class

EndDoc

EndPage

312

DC_PAPERSIZE
The function retrieves the supported paper sizes (specified in .1 millimeter
units) and copies them to the output array.

DC_SIZE

The function returns the size of the DEVMODE structure required by the
given device driver.

DC_VERSION
The function returns the device driver version number.

If DeviceCapabilities succeeds, the return value depends on the value of
capability, as noted above. Otherwise, the return value is GDI_ERROR.

See also: ::DeviceCapabilitiesEx, struct DEVMODE, TDC::GetDeviceCaps
inline int EndDoc(); '

Ends the current print job on this printer. EndDoc should be called
immediately after a successfully completed print job. TPrintDC::AbortDoc
should be used to terminate a print job because of error or user
intervention.

If successful, EndDoc returns a positive or zero value; otherwise a negative
value is returned.)

For pre-Win 3.1 applications, documents are ended by calling Escape() with
escape value ENDDOC. For Win 3.1 and later, this escape method is
superseded by the ::EndDoc function. TPrintDC::EndDoc automatically
selects the appropriate call.

See also: ::EndDoc, TPrintDC::StartDoc, TPrintDC::AbortDC,
TPrintDC::Escape, ABORTDOC

inline int EndPage();

Tells this printer’s device driver that the application has finished writing to
a page. If successful, EndPage returns a positive or zero value; otherwise a
negative value is returned. Possible failure values are listed below:

Value Meaning

SP_ERROR General error.

SP_APPABORT - Job terminated because the application’s print-canceling function.
returned 0.

SP_USERABORT User terminated the job by using Windows Print Manager
(PRINTMAN.EXE).

ObjectiWindows 2.0 Reference Guide

I PrIntbuL Cclass

Value Meaning

SP_OUTOFDISK Insufficient disk space for spooling.
SP_OUTOFMEMORY Insufficient memory for spooling.

For pre-Win 3.1 applications, page ends are signaled by calling Escape()
with escape value NEWFRAME. For Win 3.1 and later, this escape method
is superseded by the ::EndPage function. TPrintDC::EndPage automatically
selects the appropriate call.

See also: ::EndPage, TPrintDC::StartPage, TPrintDC::Escape, NEWFRRAME

Escape inline int Escape(int escape, int count=0, const void* inData=0, void*
outData=0);

Allows applications to access the capabilities of a particular device that are
not directly available through the GDI of this DC. The Escape call is
specified by setting a mnemonic value in the escape argument. In Win32 the
use of Escape with certain escape values has been replaced by specific
functions. The names of these new functions are based on the
corresponding escape mnemonic, as shown in the following table:

Value Action
ABORTDOC Superseded by TPrintDC::AbortDoc() in Win32.
BANDINFO Obsolete in Win32. Because all printer drivers fot

Windows version 3.1 and later set the text flag in every
band, this escape is useful only for older printer drivers.

BEGIN_PATH No changes for Win32. This escape is specific to

PostScript printers.
CLIP_TO_PATH : No changes for Win32. This escape is specific to

PostScript printers. v
DEVICEDATA Superseded in Win32. Applications should use the

' PASSTHROUGH escape to achieve the same

functionality.

DRAFTMODE Superseded in Win32. Applications can achieve the same -

functionality by setting the dmPrintQuality member of the
DEVMODE structure to DMRES_DRAFT and passing this
structure to the CreateDC function.

DRAWPATTERNRECT No changes for Win32.

ENABLEDUPLEX Superseded in Win32. Applications can achieve the same
functionality by setting the dmDuplex member of the
DEVMODE structure and passing this structure to the
CreateDC function.

Chapter 1, Library reference ’ 313

1 PHNUL class

314

Value Action

ENABLEPAIRKERNING No changes for Win32.

ENABLERELATIVEWIDTHS No changes for Win32.

ENDDOC Superseded by TPrintDC::EndDoc() in Win32.

END_PATH No changes for Win32. This escape is specific to
PostSeript printers.

ENUMPAPERBINS Superseded in Win32. Applications can use
TPrintDC::DeviceCapabilities() to achieve the same
functionality.

ENUMPAPERMETRICS Superseded in Win32. Applications can use
TPrintDC::DeviceCapabilities() to achieve the same
functionality.

EPSPRINTING No changes for Win32. This escape is specific to

EXT_DEVICE_CAPS
EXTTEXTOUT

FLUSHOUTPUT
GETCOLORTABLE
GETEXTENDEDTEXTMETRICS

GETEXTENTTABLE

GETFACENAME

GETPAIRKERNTABLE
GETPHYSPAGESIZE

GETPRINTINGOFFSET

GETSCALINGFACTOR

PostScript printers.

Superseded in Win32. Applications can use
TDC::GetDeviceCaps() to achieve the same functionality.
This escape is specific to PostScript printers.

Superseded in Win32. Applications can use
TDC::ExtTextOut() to achieve the same functionality. This
escape is not supported by the version 3.1 PCL driver.

Removed for Win32.
Removed for Win32.

No changes for Win32. Support for this escape might
change in future versions of Windows.

Superseded in Win32. Applications can use
::GetCharWidth to achieve the same functionality. This
escape is not supported by the version 3.1 PCL or
PostScript drivers.

No changes for Win32. This escape is specific to
PostScript printers.

No changes for Win32. -

No changes for Win32. Support for this escape might
change in future versions of Windows.

No changes for Win32. Support for this escape might
change in future versions of Windows.

No changes for Win32. Support for this escape might
change in future versions of Windows.

ObjectWindows 2.0 Reference Guide

TPrintDC class

Value

Action

Chapter 1, Library reference

GETSETPAPERBINS

GETSETPAPERMETRICS

GETSETPAPERORIENT

GETSETSCREENPARAMS
GETTECHNOLOGY

GETTRACKKERNTABLE

GETVECTORBRUSHSIZE

GETVECTORPENSIZE

MFCOMMENT
NEWFRAME

NEXTBAND

PASSTHROUGH
QUERYESCAPESUPPORT
RESTORE_CTM

SAVE_CTM

Superseded in Win32. Applications can achieve the same
functionality by calling TPrintDC::DeviceCapabilities() to
find the number of paper bins, calling ::ExtDeviceMode to
find the current bin, and then setting the dmDefaultSource
member of the DEVMODE structure and passing this
structure to the CreateDC function. GETSETPAPERBINS
changes the paper bin only for the current device context.
A new device context will use the system-default paper bin

_ until the bin is explicitly changed for that device context.

Obsolete in Win32. Applications can use
TPrintDC::DeviceCapabilities() and : ExtDevuceMode()
achieve the same functionality.

Obsolete in Win32. Applications can achieve the same
functionality by setting the dmOQrientation member of the
DEVMODE structure and passing this structure to the
CreateDC function. This escape is not supported by the

"~ Windows 3.1 PCL driver.

No changes for Win32.

No changes for Win32. Support for this escape might
change in future versions of Windows. This escape is not
supported by the Windows 3.1 PCL driver.

No changes for Win32.

No changes for Win32. Support for this escape might
change in future versions of Windows.

No changes for Win32. Support for this escape might
change in future versions of Windows.

No changes for Win32.

No changes for Win32. Applications should use

::StartPage() and ::EndPage() instead of this escape.
Support for this escape mlght change in future versions of
Windows.

No changes for Win32. Support for this escape might
change in future versions of Windows.

No changes for Win32.
No changes for Win32.

No changes for Win32. This escape is specific to
PostScript printers.

No changes for Win32. This escape is specific to
PostScript printers.

315

TPrintDC class

316

Value Action

SELECTPAPERSOURCE - Obsolete in Win32. Applications can achieve the same
functionality by using TPrintDC::DeviceCapabilities().

SETABORTPROC Superseded in Win32 by ::SetAbortProc(). See
TPrintDC::SetAbortProc.

SETALLJUSTVALUES No changes for Win32. Support for this escape might

SET_ARC_DIRECTION

SET_BACKGROUND_COLCR

SET_BOUNDS
SETCOLORTABLE

SETCOPYCOUNT

SETKERNTRACK
SETLINECAP

SETLINEJOIN
SETMITERLIMIT
SET_POLY_MODE

SET_SCREEN_ANGLE
SET_SPREAD
STARTDOC

TRANSFORM_CTM

change in future versions of Windows. This escape is not
supported by the Windows 3.1 PCL driver.

No changes for Win32. This escape is specific to
PostScript printers.

No changes for Win32. Applications should use
::SetBkColor() instead of this escape. Support for this
escape might change in future versions of Windows.

No changes for Win32. This escape is specific to
PostScript printers.

No changes for Win32. Support for this escape might
change in future versions of Windows.

Superseded in Win32. An application should call
TPrintDC::DeviceCapabilities(), specifying DC_COPIES
for the nindex parameter, to find the maximum number of
copies the device can make. Then the application can set
the number of copies by passing to the CreateDC function
a pointer to the DEVMODE structure.

No changes for Win32.

No changes for Win32. This escape is specific to
PostScript printers.

No changes for Win32. This escape is specific to
PostScript printers.

No changes for Win32. This escape is specific to
PostScript printers.

No changes for Win32. This escape is specific to
PostScript printers.

No changes for Win32.
No changes for Win32.

Superseded in Win32. Applications should call ::StartDoc
instead of this escape.

No changes for Win32. This escape is specific to
PostScript printers.

ObjectWindows 2.0 Reference Guide

NextBand

QueryAbort

QueryEscSupport

TPrintDC class

Escape calls are translated and sent to the printer device driver. The inData
buffer lets you supply any data needed for the escape. You must set count

to the size (in bytes) of the inData buffer. If no input data is required, inData
and count should be set to the default value of 0. Similarly, you must supply
an outData buffer for those Escape calls that retrieve data. If the escape does
not supply output, set outData to the default value of 0.

See also: ::Escape
int NextBand(TRect& rect);

Tells this printer’s device driver that the application has finished writing to
a band. The device driver sends the completed band to the Print Manager
and copies the coordinates of the next band in the rectangle specified by
rect.

If successful, NextBand returns a positive or zero value; otherwise a
negative value is returned. Possible failure values are listed below:

Value Meaning

SP_ERROR General error.

SP_APPABORT Job terminated because the application’s print-canceling function
returned 0.

SP_USERABORT User terminated the job by using Windows Print Manager
(PRINTMAN.EXE).

SP_OUTOFDISK Insufficient disk space for spooling.

SP_OUTOFMEMORY Insufficient memoty for spooling.

See also: TprintDC::Escape, NEXTBAND, TPrintDC::BandInfo
inline BOOL QueryAbort (int rsvd=0);

Tries to call the AbortProc callback function for this printer to determine if a
print job should be aborted or not. QueryAbort returns the value returned
by AbortProc or TRUE if no such callback function exists. TRUE indicates
that printing should continue; FALSE indicates that the print job should be
terminated. The rsvd argument is a reserved value that should be set to 0.

See also: ::QueryAbort, TPrintDC::SetAbortProc, TPrintDC::AbortDoc,
::AbortProc '

inline UINT QueryEscSupport (int escapeNum);

Returns TRUE if the escape specified by escapeNum is implemented on this
device; otherwise FALSE.

See also: TPrintDC::Escape, QUERYESCSUPPORT

Chapter 1, Library reference 317

TPrintDC class

SetAbortProc

SetCopyCount

StartDoc

StartPage

318

inline int SetAbortProc (ABORTPROC proc);

Establishes the user-defined proc as the printer-abort function for this
printer. This function is called by TPrintDC::AbortDoc to cancel a print job
during spooling.

Note that for pre-Win 3.1 applications, abort functions are set by calling
Escape() with escape value SETABORTPROC. For Win 3.1 and later, this
escape method is superseded by the ::SetAbortProc function.
TPrintDC::Set AbortProc automatically selects the appropriate call.

Set AbortProc returns a positive (nonzero) value if successful; otherwise it
returns a negative (nonzero) value.

See also: ::SetAbortProc, TPrinterDC::Escape, SETABORTPROC
inline int SetCopyCount (int regestCount, int& actualCount);

Sets to requestCount the number of uncollated copies of each page that this
printer should print. The actual number of copies to be printed is copied to
actualCount. The actual count will be less than the requested count if the
latter exceeds the maximum allowed for this device. SetCopyCount returns 1
if successful; otherwise, it returns 0.

See also: TPrintDC::DeviceCapabilities, TPrintDC::Escape, SETCOPYCOUNT
inline int StartDoc(const char far* docName, const char far* output);

Starts a print job for the named document on this printer DC. If successful,
StartDoc returns a positive value, the job ID for the document. If the call
fails, the value SP_ERROR is returned. Detailed error information can be
obtained by calling GetLastError.

This function replaces the earlier ::Escape call with value STARTDOC.

See also: ::StartDoc, ::GetJob, ::SetJob, TPrintDC::EndDoc,
TPrintDC::Escape

int StartPage();

Prepares this device to accept data. The system disables ::ResetDC()
between calls to StartPage and EndPage, so that applications cannot change
the device mode except at page boundaries.

If successful, StartPage returns a positive value; otherwise, a negative or
zero value is returned.

See also: ::StartPage, TPrintDC::EndPage

ObjectWindows 2.0 Reference Guide

DOCINFO

TPrintDC class

Protected data members

DOCINFO DocInfo;

Holds the input and output filenames used by TPrintDC::StartDoc(). The
DOCINFO structure is defined as follows:

typedef struct { .
int cbSize; // size of the structure, bytes
LPSTR lpszDocName; // document name <= 32 chars inc. final 0
LPSTR lpszOutput; // output file name

} DOCINFO;

The IpszOutput field allows a print job to be redirected to a file. If this field
is NULL, the output will go to the device for the specified DC.

See also: TPrintDC::StartDoc

TPrintDialog class printdia.h

Constructor

DoExecute

GetDefaultPrinter

TPrintDialog displays a modal print or a print setup dialog box. The print
dialog box lets you specify the characteristics of a particular print job. The
setup dialog box lets you configure the printer and specify additional print
job characteristics. ~

Public constructors

TPrintDialog (TWindow* parent, TData& data, const char far*
printTemplateName=0, const char far* setupTemplateName=0,
const char far* title=0, TModule* module=0);

Constructs a print or print setup dialog box with specified data, parent
window, window caption, and module.

Public member functions

int DoExecﬁte 0;

If no error occurs, DoExecute copies flags and print specifications into data.
If an error occurs, DoExecute sets the error number of data to a
CommDIgExtendedError code.

BOOL GetDefaultPrinter();

Chapter 1, Library reference 319

TPrintDialog class

Data

pd

CmSetup

DialogFunction

Without displaying a dialog box, GetDefaultPrinter gets the device mode
and name that are initialized for the system default printer.

Protected data members

TData& Data;

Data is a reference to the TData object passed in the constructor.
See also: TPrintDialog::TData

PRINTDLG pd;

Specifies the dialog box print job characteristics such as page range,
number of copies, device context, and so on necessary to initialize the print
or print setup dialog box. ObjectWindows passes this information to the
Windows API PrintDIg function.

See also: TPrintDialog::TData

Protected member functions

inline void CmSetup();

Responds to the click of the setup button with an EV_COMMAND
message.

BOOL DialogFunction(UINT message, WPARAM, LPARAM);
Returns TRUE if a message is handled.
See also: TDialog::DialogFunction

Response table entries

The TPrintDialog response table has no entries.

TPrintDialog::TData struct printdia.h

320

The TPrintDialog structure contains information necessary to initialize the
dialog box with the user’s printer selection.

ObjectWindows 2.0 Reference Guide

TPrintDialog::TData st

Public data members

ruct

Copies int Copies;

Copies indicates the number of copies to be printed.
Error DWORD Error;

Error contains one or more of the following CommDIgExtendedError codes:
Constant Meaning

CDERR_DIALOGFAILURE
CDERR_FINDRESFAILURE

CDERR_LOCKRESOURCEFAILURE

CDERR_LOADRESFAILURE

CDERR_MEMALLOCFAILURE

CDERR_MEMLOCKFAILURE
PDERR_CREATEICFAILURE

PDERR_DEFAULTDIFFERENT

PDERR_DNDMMISMATCH
PDERR_GETDEVMODEFAIL
PDERR_INITFAILURE
PDERR_LOADDRVFAILURE
PDERR_NODEFAULTPRN
PDERR_NODEVICES
PDERR_PARSEFAILURE

PDERR_PRINTERNOTFOUND

PDERR_RETDEFFAILURE

Failed to create a dialog box.

Failed to find a specified resource.

Failed to lock a specified resource.

Failed to load a specified resource.

Unable to allocate memory for internal data structures.
Unable to lock the memory associated with a handle.
TPrintDjalog failed to create an information context.

The printer described by structure members doesn’t match the default printer. This

error message can occur if the user changes the printer specified in the control
panel.

The printer specified in DevMode and in DevNames is different.

The printer device-driver failed to initialize the DevMode structure.

The TPrintDialog structure could not be initialized.

The specified printer’s device driver could not be loaded.

A default printer could not be identified.

No printer drivers exist.

The string in the [devices] section of the WIN.INI file could not be parsed.
The [devices] section of the WIN.INI file doesn't contain the specified printer.
Either DevMode or DevNames contain zero.

Flags DWORD Flags;

Flags can be one or more of the following Windows API constants:
Constant Meaning
PD_ALLPAGES Indicates that the All radio button was selected when the user closed the dialog box.
PD_COLLATE Causes the Collate checkbox to be checked when the dialog box is created.

PD_DISABLEPRINTTOFILE
PD_HIDEPRINTTOFILE
PD_NOPAGENUMS
PD_NOSELECTION
PD_NOWARNING
PD_PAGENUMS
'PD_PRINTSETUP
PD_PRINTTOFILE
PD_RETURNDC

Chapter 1, Library reference

Disables the Print to File check box.

Hides and disables the Print to File check box.

Disables the Pages radio button and the associated edit control.

Disables the Selection radio button.

Prevents the warning message from being displayed when there is no default printer.
Selects the Pages radio button when the dialog box is created.

Displays the Print Setup dialog box rather than the Print dialog box.

Checks the Print to File check box when the dialog box is created.

Returns a device context matching the selections that the user made in the dialog box.

321

TPrintDialog::TData struct

Constant

Meaning

PD_RETURNDEFAULT

PD_RETURNIC

PD_SELECTION
PD_SHOWHELP

Returns DevNames structures that are initialized for the default printer without dispfaying a
dialog box.

Returns an information context matching the selections that the user made in the dialog
box.

Selects the Selection radio button when the dialog box is created.

Shows the Help button in the dialog box.

PD_USEDEVMODECOPIES If a printer driver supports multiple copies, setting this flag causes the requested number of

copies to be stored in the dmCopies member of the DevMode structure and 1 in Copies. If a
printer driver does not support multiple copies, setting this flag disables the Copies edit
control. If this flag is not set, the number 1 is stored in DevMode and the requested number
of copies in Copies.

FromPage

MaxPage

MinPage

ToPage

ClearDevMode

ClearDevNames

GetDeviceName

322

int FromPage;
FromPage indicates the beginning page to print.
int MaxPage; V

MaxPage indicates the maximum value for the beginning and ending pages
to print.

int MinPage;

MinPage indicates the minimum value for the beginning and ending pages
to print.

int ToPage;
ToPage indicates the ending page to print.
See also: ::PRINTDLG

Public member functions

void ClearDevMode();

Clears device mode information (information necessary to initialize the
dialog controls).

void ClearDevNames();

Clears the device name information (information that contains three strings
used to specify the driver name, the printer name, and the output port
name).

const char far* GetDeviceName() const;

Gets the name of the output device.

ObjectWindows 2.0 Reference Guide

TPrintDialog:: TData struct

GetDevMode inline const DEVMODE far* GetDevMode() const;

Gets a pointer to a DEVMODE structure (a structure containing
information necessary to initialize the dialog controls).

GetDevNames inline const DEVNAMES far* GetDevNames() const;

Gets a pointer to a DEVNAMES structure (a structure containing three
strings used to specify the driver name, the printer name, and the output
port name).

GetDriverName const char far* GetDriverName() const;
‘ Gets the name of the printer device driver.
GetOutputName const char far* GetOutputName() const;

Gets the name of the physical output medium.

Lock void Lock();
Locks memory associated with the DEVMODE and DEVNAMES
structures.

SetDevMode void SetDevMode (const DEVMODE far* devMode);

Sets the values for the DEVMODE structure.

SetDevNames void SetDevNames (const char far* driver, const char far* device,
const char far* output);

Sets the values for the DEVNAMES structure. -
TransferDC TPrintDC* TransferDC();

Creates and returns a TPrintDC with the current settings.

Unlock void Unlock();
Unlocks memory associated with the DEVMODE and DEVNAMES
structures. '

TPrintPreviewDC class preview.h

Derived from TPrintDC, TPrintPreviewDC maps printer device coordinates
to logical screen coordinates. It sets the extent of the view window and
determines the screen and printer font attributes. Many of
TPrintPreviewDC's functions override TDC’s virtual functions.

Chapter 1, Library reference 323

TPrintPreviewDC class

Public constructors and destructor

Constructor TPrintPreview(TDC& screen, TPrintDC& printdc, const TRect& client, const
TRect& clip);

TPrintPreviewDC’s constructor takes a screen DC as well as a printer DC.
The screen DC is passed to the inherited constructor while the printer DC is
copied to the member, PrnDC.

Destructor ~TPrintPreviewDC();

Destroys a TPrintPreviewDC object.

Public member functions

GetDeviceCaps int GetDeviceCaps(int index) const;

GetDeviceCaps returns capability information, such as font and pitch
attributes, about the printer DC. The index argument specifies the type of
information required.

See also: TDC::GetDeviceCaps
LPtoSDP inline BOOL LPtoSDP(TPoint* points, int count = 1) const;
inline BOOL LPtoSDP(TRect& rect) const;

Converts each of the count points in the points array from logical points of
the printer DC to screen points. Returns nonzero if the call is successful;
otherwise, it returns O.

See also: TPrintPreviewDC::SDPtoLP, TDC::LPtoDP
OffsetViewportOrg oo 0ffsetViewportOrg(const TPointé delta, TPoint far* 0ldorg = 0);

Modifies this DC’s viewport origin relative to the current values. The delta
x- and y-components are added to the previous origin and the resulting
point becomes the new viewport origin. The previous origin is saved in
0ldOrg. Returns nonzero if the call is successful; otherwise, returns 0.

See also: TPrintPreviewDC::SetViewportOrg, TDC::OffsetViewportOrg
ReOrg virtual void ReOrg():

Gets the x- and y- extents of the viewport, equalizes the logical and screen
points, and resets the x- and y- extents of the viewport.

ReScale virtual void ReScale();

Maps the points of the printer DC to the screen DC. Sets the screen window
extent equal to the maximum logical pointer of the printer DC.

324 , : " ObjectWindows 2.0 Reference Guide

RestoreFont

ScaleViewportExt

ScaleWindowExt

SDPtoLP

SelectObject

SelectStockObject

TPrintPreviewDC class

void RestoreFont();
Restores the original GDI font object to this DC.

See also: TPrintPreviewDC::SelectObject, TDC::OrgFont

BOOL ScaleViewportExt (int xNum, int xDenom, int yNum, int yDenom,
TSize far* oldExtent = 0);

Modifies this DC’s viewport extents relative to the current values. The new
extents are derived as follows:

xNewVE = (xOIdVE * xNum)/ xDenom
yNewVE = (yOIdVE * yNum)/ yDenom

The previous extents are saved in oldExtent. Returns nonzero if the call is
successful; otherwise returns 0.

See also: TDC::ScaleViewportExt, TPrintPreviewDC::SetViewportExt

BOOL ScaleWindowExt (int xNum, int xDenom,. int yNum, int yDenom,
TSize far* oldExtent = 0);

Modifies this DC’s window extents relative to the current values. The new
extents are derived as follows:

xNewWE = (xOIdWE * xNum)/ xDenom
yNewWE = (yOIdWE * yNum)/ yDenom

The previous extents are saved in oldExtent. Returns nonzero if the call is
successful; otherwise returns 0.

See also: TDC::SetWindowExt, TPrintPreviewDC::ScaleWindowExt
inline BOOL SDPtoLP(TPoint* points, int count = 1) const;
inline BOOL SDPtoLP(TRect& rect) const;

Converts each of the count points in the points array from screen device
points to logical points of the printer DC. SDPtoLP returns nonzero if the
call is successful; otherwise, it returns 0.

See also: TPrintPreviewDC::LPtoSDP, TDC::DPtoLP

void SelectObject (const TFont& newFont);

Selects the given font object into this; DC.

See also: TPrintPreviewDC::SelectStockObject, TDC::SelectObject

void SelectStockObject (int index);

Chapter 1, Library reference 325

TPrintPreviewDC class

SetBkColor

SetMapMode

SetTextColor

SetViewportExt

SetViewportOrg

SetWindowExt

326

Retrieves a handle to a predefined stock font.
See also: TDC::SelectStockObject
TColor SetBkColor(TColor color);

Sets the current background color of this DC to the given color value or the
nearest available. Returns 0x80000000 if the call fails.

See also: TDC::SetBkColor

int SetMapMode (int mode);

Sets the current window mapping mode of this DC to mode. Returns the
previous mapping mode value. The mapping mode defines how logical
coordinates are mapped to device coordinates. It also controls the
orientation of the device’s x- and y-axes.

See also: TDC::GetMapMode, TDC::SetMapMode

TColor SetTextColor (TColor color);

Sets the current text color of this DC to the given color value. The text color
determines the color displayed by TDC::TextOut and TDC::ExtTextOut.

See also: TDC::GetTextColor, TDC::SetTextColor
BOOL SetViewportExt (const TSize& extent, TSize far* oldExtent = 0);

Sets the screen’s viewport x- and y-extents to the given extent values. The
previous extents are saved in oldExtent. Returns nonzero if the call is
successful; otherwise, returns 0. The extent value determines the amount of
stretching or compression needed in the logical coordinate system to fit the
device coordinate system. extent also determines the relative orientation of
the two coordinate systems.

See also: TDC::GetViewportExt, TDC::SetViewportExt
BOOL SetViewportOrg(const TPoint& origin, TPoint far* 0ldOrg=0);

Sets the printer DC'’s viewport origin to the given origin value, and saves
the previous origin in 0ldOrg. Returns nonzero if the call is successful;
otherwise returns 0.

See also: TPrintPreviewDC::OffsetViewportOrg, TDC::GetViewportOrg,
TDC::SetViewportOrg

BOOL SetWindowgExt (const TSize& extent, TSize far* oldExtent=0);

Sets the DC’s window x- and y-extents to the given extent values. The
previous extents are saved in oldExtent. Returns nonzero if the call is
successful; otherwise, returns 0. The extent value determines the amount of
stretching or compression needed in the logical coordinate system to fit the

ObjectWindows 2.0 Reference Guide

SyncFont

CurrentPreviewFont

PrnDC

PrnFont

GetAttributeHDC

TPrintPreviewDC class

device coordinate system. extent also determines the relative orientation of
the two coordinate systems.

See also: TDC::GetWindowExt, TDC::Set WindowExt,
TPrintPreviewDC::ScaleWindowExt

virtual void SyncFont ();

Sets the screen font equal to the current printer font.

Protected data members

TFont * CurrentPreviéwFont;

The current view font.

TPrintDC& PrnDC;

Holds a reference to the printer DC.
HFONT PrnFont;

The current printer font.

Protected member functions

HDC GetAttributeHDC() const;
Returns the attributes of the printer DC (PrnDC).
See also: TDC::GetAttributeHDC

printer.h

TPrinter class

Constructor

Destructor

TPrinter represents the physical printer device. To print or configure a
printer, initialize an instance of TPrinter.

Public constructors and destructor

TPrinter();

Constructs an instance of TPrinter associated with the default pﬂnter. To
change the printer, call SetDevice after the object has been initialized or call
Setup to let the user select the new device through a dialog box.

virtual ~TPrinter();

Chapter 1, Library reference 327

TPrinter class

ClearDevice

Print

ReportError

Setup

Data

Error

328

Frees the resources allocated to TPrinter.

Public member functions

virtual void ClearDevice();

Called by SetPrinter and the destructor, ClearDevice disassociates the device
with the current printer. ClearDevice changes the current status of the
printer to PE_UNASSOCIATED, which causes the object to ignore all calls

to Print until the object is reassociated with a printer.

virtual BOOL Print (TWindow* parent, TPrintout& printout, BOOL prompt);

Print renders the given printout object on the associated printer device and
displays an Abort dialog box while printing. It displays any errors
encountered during printing.

See also: TPrinter::Error
virtual void ReportError (TWindow* parent, TPrintout& printout);

Print calls ReportError if it encounters an error. By default, it brings up the
system message box with an error string created from the default string
table. This function can be overridden to show a custom error dialog box.

virtual void Setup(TWindow* parent);

Call this function when you want the user to select and /or configure the
currently associated printer. Setup calls to return the printer setup dialog
box that is shown to the user.

Protected data members

TPrintDialog::TData* Data;

Data is a reference to the TPrintDialog data structure that contains
information about the user’s print selection.

See also: TPrintDialog::TData struct
int Error;

Error is the error code returned by GDI during printing. This value is
initialized during a call to Print.

ObjectWindows 2.0 Reference Guide

TPrinter class

Protected member functions

CreateAbortWindow virtual TWindow* CreateAbortWindow(TWindow* parent, TPrintout& printout);

ExecPrintDialog

GetDefaultPrinter

SetPrinter

Creates a printer abort dialog message box.
virtﬁal BOOL ExecPrintDialog(TWindow* parent);
Executes a TPrintDialog.

Virtgal void GetDefaultPrinter();

Updates the printer structure with information about the user’s default
printer.

inline void SetPrinter (const char* driver, const char* device,
const char* output);

SetPrinter changes the printer device association. Setup calls SetPrinter to
change the association interactively. The valid parameters to this method
can be found in the [devices] section of the WIN.INI file.

Entries in the [devices] section have the following format:

<device name>=<driver>, <port> {, <port>}

TPrinterAbortDlg class printer.h

Constructor

TPrinterAbortDIg is the object type of the default printer-abort dialog box.
This dialog box is initialized to display the title of the current printout, as
well as the device and port currently used for printing.

TPrinter AbortDlg expects to have three static text controls, with control IDs
of 101 for the title, 102 for the device, and 103 for the port. These controls
must have “%s” somewhere in the text strings so that they can be replaced
by the title, device, and port. The dialog-box controls can be in any position
and tab order.

Public constructors

TPrinterAbortDlg (TWindow* parent, TResId resId, const char far* title,
const char far* device, const char far* port);

Constructs an Abort dialog box that contains a Cancel button and displays
the given title, device, and port.

Chapter 1, Library reference ; ; 329

TPrinterAbortDIg class

EvCommand

SetupWindow

TPrintout class

Public member functions

virtual LRESULT EvCommand(UINT id, HWND hwndCtl, UINT notifyCode);
Handles the Cancel button on the Printer-abort dialog box.
virtual void SetupWindow();

Associates objects with the dialog resource template so that the title, device,
and port can be determined for printing. See the description of
TPrintoutFlags for information about printing flags and printer status
information.

See also: TPrintoutFlags enum

printer.h

Constructor

“Destructor

BeginDocument

330

TPrintout represents the physical printed document that is to sent to a
printer to be printed. TPrintout does the rendering of the document onto
the printer. Because this object type is abstract, it cannot be used to print
anything by itself. For every document, or document type, a class derived
from TPrintout must be created and its PrintPage function must be
overridden.

Public constructors and destructor

TPrintout (const char far* title);
Constructs an instance of TPrintOut with the given title.
virtual ~TPrintout();

Destroys the resources allocated by the constructor.

Public member functions

virtual void BeginDocument (int startPage, int endPage, int flags);

The printer object’s Print function calls BeginDocument once before printing
each copy of a document. The flags field indicates if the current print band
accepts graphics, text, or both.

The default BeginDocument does nothing. Derived objects can override
BeginDocument to perform any initialization needed at the beginning of
each copy of the document.

ObjectWindows 2.0 Reference Guide

BeginPrinting

EndDocument

EndPrinting

GetDialoginfo

HasPage

PrintPage

SetPrintParams

TPrintout class

See also: TPrintoutFlags enum
virtual void BeginPrinting{();

The printer object’s Print function calls BeginPrinting once at the beginning
of a print job, regardless of how many copies of the document are to be
printed. Derived objects can override BeginPrinting to perform any
initialization needed before printing.

virtual void EndDocument () ;

The printer object’s Print function calls EndDocument after each copy of the
document finishes printing. Derived objects can override EndDocument to
perform any needed actions at the end of each document.

virtual void EndPrinting();

The printer object’s Print function calls EndPrinting after all copies of the
document finish printing. Derived objects can override EndPrinting to
perform any needed actions at the end of each document.

virtual void GetDialogInfo(int& minPage, int& maxPage, int& selFromPage,
int& selToPage); ‘

GetDialogInfo retrieves information needed to allow the printing of selected
pages of the document and returns TRUE if page selection is possible. Use
of page ranges is optional, but if the page count is easy to determine,
GetDialogInfo sets the number of pages in the document. Otherwise, set the
number of pages to 0; printing will continue until HasPage returns FALSE.

virtual BOOL HasPage(int pageNumber);

HasPage is called after every page is printed. By default, it returns FALSE,
indicating that only one page is to be printed. If the document contains
more than one page, this function must be overridden to return TRUE
while there are more pages to print.

virtual void PrintPage(int page, TRect& rect, unsigned flags);

PrintPage is called for every page (or band, if Banding is TRUE) and must be
overridden to print the contents of the given page. The rect and flags
parameters are used during banding to indicate the extent and type of band
currently requested from the driver (and should be ignored if Banding is
FALSE). page is the number of the current page.

virtual void SetPrintParams(TPrintDC* dc, TSize pageSize);

SetPrintParams sets DC to dc and PageSize to pageSize. The printer object’s
Print function calls SetPrintParams to obtain the information it needs to
determine pagination and page count. Derived objects that override
SetPrintParams must call the inherited function.

Chapter 1, Library reference 331

TPrintout class

See also: TPreviewPage::Paint

Protected data members

Banding BOOL Banding;
If Banding is TRUE, the printout is banded and the PrintPage function is
called once for every band. Otherwise, PrintPage is called only once for
every page. Banding a printout is more memory- and time-efficient than
not banding. By default, Banding is set to FALSE.
DC TPrintDC* DC;
DC is the handle to the device context to use for printing.
ForceAllBands BOOL ForceAllBands;
Many device drivers do not provide all printer bands if both text and
graphics are not performed on the first band (which is typically a text-only
band). Leaving ForceAllBands TRUE forces the printer driver to provide all
bands regardless of what calls are made in the PrintPage function. If
PrintPage does nothing but display text, it is more efficient for ForceAllBands
to be FALSE. By default, it is TRUE. ForceAllBands takes effect only if
Banding is TRUE.
PageSize TSize PageSize;
PageSize is the size of the print area on the printout page.
Title char far* Title;
Title is the current title to use for the printout. By default, this title appears
in the Abort dialog box and as the name of the job in the Print Manager.
TPrintoutFlags enum printer.h
ObjectWindows defines the following banding constants used to set flags
for printout objects.
Constant Meaning
pfBoth Current band accepts both text and graphics.
pfGraphics Current band accepts only graphics.
pfText Current band accepts only text.
See also: TPrinter, TPrintOut
332 ObjectWindows 2.0 Reference Guide

TProclnstance class

TProclinstance class point.h

Designed for Win16 applications, TProcInstance handles creating and
freeing an instance thunk. For Win32 applications, TProcInstance is non-
functional. The address returned from TProcInstance can be passed as a
parameter to call-back functions, window subclassing functions, or
Windows dialog box functions. See the Windows API online Help for more
information about MakeProcInstance and FreeProcInstance.

Public constructors and destructor

Constructor TProcInstance (FARPROC p);
Makes a TProclnstance, passing p as the address of the procedure. Under
Winl16, calls ::MakeProcInstance to make an instance thunk for p. Under
Win32, the constructor just saves p.
See also: ::MakeProcInstance
Destructor ~TProcInstance ()
Under WIN16, frees the instance thunk.
See also: ::FreeProcInstance.
Public member functions

operator operator FARPROC();

FARPROC
Under WIN16, returns the instance thunk. Under Win32, returns p from the
constructor.

TPXPictureValidator class | validate.h
TPXPictureValidator objects compare user input with a picture of a data
format to determine the validity of entered data. The pictures are
compatible with the pictures Borland’s Paradox relational database uses to
control data entry. For a complete description of picture specifiers, see the
Picture member function.

Public constructors
Constructor TPXPictureValidator (const char far* pic, BOOL autoFill=FALSE};

Chapter 1, Library reference ‘ 333

TPXPictureValidator class

Error

IsValid

IsValidinput

Picture

334

Constructs a picture validator object by first calling the constructor
inherited from TValidator and setting pic to point to it. Then sets the voFill
bit in Options if AutoFill is TRUE and sets Options to voOnAppend. Throws a
TXValidator exception if the picture is invalid.

Public member functions

void Error();

Overrides TValidator’s virtual function and displays a Ihessage box that
indicates an error in the picture format and displays the string pointed to
by Pic.

Sée also: TValidator::Error
BOOL IsValid(const char far* str);

IsValid overrides TValidator’s virtual function and compares the string
passed in str with the format picture specified in Pic. IsValid returns TRUE
if Pic is NULL or if Picture returns Complete for str, indicating that str needs
no further input to meet the specified format; otherwise, it returns FALSE.

See also: TPXPictureValidator::Picture
BOOL IsValidInput (char far* str, BOOL suppressFill);

IsValidInput overrides TValidator’s virtual function and checks the string
passed in str against the format picture specified in Pic. IsValid returns
TRUE if Pic is NULL or Picture does not return Error for str; otherwise, it
returns FALSE. The suppressFill parameter overrides the value in voFill for
the duration of the call to IsValidInput. :

If suppressFill is FALSE and voFill is set, the call to Picture returns a filled
string based on str, so the image in the edit control automatically reflects
the format specified in Pic.

See also: TPXPictureValidator::Picture
virtual TPicResult Picture(char far* input, BOOL autoFill=FALSE);

Formats the string passed in input according to the format specified by the
picture string pointed to by Pic. Picture returns prError if there is an error in
the picture string or if input contains data that cannot fit the specified
picture. Returns prComplete if input can fully satisfy the specified picture.
Returns prIncomplete if input contains data that incompletely fits the
specified picture.

ObjectWindows 2.0 Reference Guide

Table 1.28
Picture format
characters

Pic

CalcTerm

CheckComplete

Group

lteration

Process

Scan

TPXPictureValidator class

The following characters are used in creating format pictures:

Type of character Character ~ Description

Special # Accept only a digit
? Accept only a letter (case_insensitive)
& Accept only a letter, force to uppercase
@ Accept any character
!

Accept any character, force to uppercase

Match ; Take next character literally
* Repetition count
i Option
{ Grouping operators
Set of alternatives

Allothers Taken literally

See also: TPicResult enum

Protected data member

string Pic;

Points to a string containing the picture that specifies the format for data in
the associated edit control. The constructor sets Pic to a string that is passed
as one of the parameters.

Protected member functions

UINT CalcTerm(UINT termCh, UINT i);

Calculates the end of an input group without modifying it.

TPicResult CheckComplete(UINT termCh, UINT& i, TPicResult rslt);
Checks termCh and returns prAmbiguous if the result is ambiguous.
TPicResult Group(char far* input, UINT termCh, UINT& i, UINT& J);
Processes a picture group. '

TPicResult Iteration{char far* input, UINT termCh, UINT& i, UINT& J);

The input string (input) is repeated a specified number of times. termCh is
the position of the last character in the string. i is the current index.

TPicResult Process(char far* input, UINT termCh, UINT& 1, UINT& j);

Calls Scan to scan the input string for a specified character.
TPicResult Scan(char far* input, UINT termCh, UINT& i, UINT& J);

Chapter 1, Library reference 335

TPXPictureValidator class

SkipToComma

SyntaxCheck

ToGroupEnd

Scans the input string for specified characters.
BOOL SkipToComma (UINT termCh, UINT& i);

Finds the next comma separator in the edit control. Returns FALSE if the
edit control doesn’t contain a comma.

BOOL SyntaxCheck();

Checks the picture string for the specified character. If the picture string is
NULL, SyntaxCheck returns FALSE.

void ToGroupEnd (UINT termCh, UINT& i);

Skips a character or a picture group specified in termCh. Characters
specified include [,], {, }, ;, *.

TRadioButton class radiobut.h

Constructor

Constructor

336

A TRadioButton is an interface object that represents a corresponding radio
button element in Windows. Use TRadioButton to create a radio button
control in a parent TWindow. A TRadioButton can also be used to facilitate
communication between your application and the radio button controls of a
TDialog. ‘ '

Radio buttons have two states: checked and unchecked. TRadioButton
inherits its state management member functions from its base class,
TCheckBox. Optionally, a radio button can be part of a group (TGroupBox)
that visually and logically groups its controls. TRadioButton is a streamable
class.

Public constructors

TRadioButton (TWindow* parent, int id, const char far* title, int x, int y,
int w, int h, TGroupBox *group, TModule* module = 0);

Constructs a radio button object with the supplied parent window (parent),
control ID (id), associated text (title), position (x, y) relative to the origin of
the parent window’s client area, width (w), height (k), and associated group
box (group). Invokes the TCheckBox constructor with similar parameters.
Then sets the Attr.Style data member to WS_CHILD | WS_VISIBLE |
BS_AUTORADIOBUTTON.

See also: TControl::TControl

TRadioButton(TWindow* parent, int resourceld, TGroupBox *group,
TModule* module = 0);

ObjectWindows 2.0 Reference Guide

| Hadiopution class

Constructs a TRadioButton object to be associated with a radio button
control of a TDialog. Invokes the TCheckBox constructor with identical
parameters. The resourceld parameter must correspond to a radio button
resource that you define.

Protected member functions

BNClicked void BNClicked();
Responds to an incoming BN_CLICKED message.

Response table entries

Response table entry Member function

EV_MESSAGE (BM_SETSTYLE, BMSetStyle) . BMSetStyle

EV_WM_GETDIgCODE EvGetDigCode
TRangeValidator class validate.h

A TRangeValidator object determines whether the data typed by a user falls
within a designated range of integers. TRangeValidator is a streamable class.

Public constructors

Constructor TRangeValidator (long min, long max);

Constructs a range validator object by first calling the constructor inherited
from TFilterValidator, passing a set of characters containing the digits ‘0".."9’
and the characters ‘+" and ’-’. Sets Min to min and Max to max, establishing
the range of acceptable long integer values.

See also: TFilterValidator::TFilterValidator

Public member functions

Error void Error();

Error overrides TValidator’s virtual function and displays a message box
indicating that the entered value does not fall within the specified range.

IsValid BOOL IsValid(const char far* str);

Chapter 1, Libfary reference 337

I Hangevaldator class

Transfer

Max

Min

TRect class

Converts the string str into an integer number and returns TRUE if the
result meets all three of these conditions:

m It is a valid integer number
m Its value is greater than or equal to min
m [ts value is less than or equal to max

If any of those tests fails, IsValid returns FALSE.
UINT Transfer(char far* str, void* buffer, TTransferDirection direction);

Incorporates the three types, tdSizeData, tdGetData, and tdSetData, that a
range validator can handle for its associated edit control. str is the edit
control’s string value, and buffer is the data passed to the edit control.
Depending on the value of direction, Transfer either sets str from the number
in buffer or sets the number at buffer to the value of the string str. If direction
is tdSetData, Transfer sets str from buffer. If direction is tdGetData, Transfer
sets buffer from str. If direction is tdSizeData, Transfer neither sets nor reads
data.

Transfer always returns the size of the data transferred.

See also: TWindow::Transfer

Protected data members

long Max;
Max is the highest valid long integer value for the edit control.
long Min;

Min is the lowest valid long integer value for the edit control.

point.h

338

TRect is a support class derived from tagRect. Under Win32, tagRect
is defined as

typedef struct tagRECT {
LONG left;
LONG top;
LONG right;
LONG bottom;
} RECT;

ObjectWindows 2.0 Reference Guide

Constructor

Constructor

Constructor

I HeCt Ciass

Under Win16, fagRect is defined as

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;
} RECT;

TRect encapsulates the properties of rectangles with sides parallel to the x-
and y-axes. In ObjectWindows, these rectangles define the boundaries of
windows, boxes, and clipping regions. TRect inherits four data members
from tagRect: left, top, right, and bottom. These represent the top left and
bottom right (x, y) coordinates of the rectangle. Note that x increases from
left to right, and y increases from top to bottom.

TRect places no restrictions on the relative positions of top left and bottom
right, so it is legal to have left > right and top > bottom. However, many
manipulations—such as determining width and height, and forming
unions and intersections—are simplified by normalizing the TRect objects
involved. Normalizing a rectangle means interchanging the corner point
coordinate values so that left < right and top < bottom. Normalization does
not alter the physical properties of a rectangle. myRect.Normalized() creates
normalized copy of myRect without changing myRect, while

myRect Normalize() changes myRect to a normalized format. Both members
return the normalized rectangle.

TRect constructors are provided to create rectangles from either four ints,
two TPoint objects, or one TPoint and one TSize object. In the latter case, the
TPoint object specifies the top left point (also known as the rectangle’s
origin) and the TSize object supplies the width and height of the rectangle.
Member functions perform a variety of rectangle tests and manipulations.
Overloaded << and >> operators are declared as friends of TRect, allowing
chained insertion and extraction of TRect objects with streams.

Public constructors

TRect () ;

The default constructor. ,

inline ‘TRect (const RECT far& rect);

Copies the given rect to this object.

inline TRect(int _left, int _top, int _right, int _bottom);

Creates a rectangle with the given values.

Chapter 1, Library reference 339

I Hect class

Constructor

Constructor

Area

BottomLeft

BottomRight

Contains

Height

340

inline TRect (const TPointé& upLeft, const - TPoint& loRight);
Creates a rectangle with the given top left and bottom right points.
See also: TPoint

inline TRect (const TPointé& origin, const TSize& extent);

Creates a rectangle with its origin (top left) at origin, width at extent.cx, and
height at extent.cy.

See also: TPoint, TSize

Public member functions

inline long Area() const;
Returns the area of this rectangle.
See also: TRect::Size

inline TPoint BottomLeft () const;

Returns the TPoint object representing the bottom left corner of this
rectangle.

See also: TRect:: TopLeft, TRect:: TopRight, TRect::BottomRight

inline const TPoint& BottomRight () const;
inline TPoint& BottomRight ();

Returns the TPoint object representing the bottom right corner of this
rectangle.

See also: TRect::TopRight, TRect::BottomLeft, TRect:: TopLeft

inline BOOL Contains(const TPoint& point) const;
inline BOOL Contains{const TRect& other) const;

The first version returns TRUE if the given point lies within this rectangle;
otherwise, it returns FALSE. If point is on the left vertical or on the top
horizontal borders of the rectangle, Contains also returns TRUE, but if point
is on the right vertical or bottom horizontal borders, Contains returns
FALSE.

The second version returns TRUE if the other rectangle lies on or within
this rectangle; otherwise, it returns FALSE.

See also: TRect::Touches

inline int Height() const;

ObjectWindows 2.0 Reference Guide

InflatedBy

IsEmpty

IsNull

Normalize

Normalized

| Hect class

Returns the height of this rectangle (bottom — top).
See also: TRect::Width

inline TRect InflatedBy(int dx, int dy) const;
inline TRect InflatedBy(const TSize& size) const;

Returns a rectangle inflated by the given delta arguments. In the first
version, the top left corner of the returned rectangle is (left — dx, top — dy),
while its bottom right corner is (right + dx, bottom + dy). In the second
version the new corners are (left — size.cx, top — size.cy) and (right + size.cx,
bottom + size.cy). The calling rectangle object is unchanged.

See also: TRect::OffsetBy, TSize

inline BOOL IsEmpty () const;

Returns TRUE if left >= right or top >= bottom; otherwise, returns FALSE.
See also: TRect::SetEmpty, TRect::IsNull

inline BOOL IsNull() const; /

Returns TRUE if left, right, top, and bottom are all 0; otherwise, returns
FALSE.

See also: TRect::IsEmpty, TRect::SetEmpty
inline TRect& Normalize();

Normalizes this rectangle by switching the left and right data member
values if left > right, and switching the top and bottom data member values if -
top > bottom. Normalize returns the normalized rectangle. A valid but -
nonnormal rectangle might have left > right and /or top > bottom. In such
cases, many manipulations (such as determining width and height) become
unnecessarily complicated. Normalizing a rectangle means interchanging
the corner point values so that left < right and top < bottom. The physical
properties of a rectangle are unchanged by this process.

See also: TRect::Normalized
inline TRect Normalized{) const;

Returns a normalized rectangle with the top left corner at (Min(left, right),
Min(top, bottom)) and the bottom right corner at (Max(left, right), Max(top,
bottom)). The calling rectangle object is unchanged. A valid but nonnormal
rectangle might have left > right and /or top > bottom..In such cases, many
manipulations (such as determining width and height) become
unnecessarily complicated. Normalizing a rectangle means interchanging
the corner point values so that left < right and top < bottom. The physical
properties of a rectangle are unchanged by this process.

Chapter 1, Library reference , , 341

1 MEULCIdSS

Note that many calculations assume a normalized rectangle. Some
Windows API functions behave erratically if an inside-out Rect is passed.

- See also: TRect::Normalize
Offset inline TRect& Offset (int dx, int dy); .

Changes this rectangle so its corners are offset by the given delta values.
The revised rectangle has a top left corner at (left + dx, top + dy) and a
bottom right corner at (right + dx, bottom + dy). The rev1sed rectangle is
returned.

See also: TRect::operator+,TRect::operator+=, TRect::OffsetBy
OffsetBy inline TRect OffsetBy(int dx, int dy) const;

Returns a rectangle with the corners offset by the given delta values. The
returned rectangle has a top left corner at (left + dx, top + dy) and a bottom -
right corner at (right + dx, bottom + dy).

See also: TRect::operator+
operator+ - inline TRect operator+(const TSize& size) const;

Returns a rectangle offset positively by the delta values given size. The
returned rectangle has a top left corner at (left + size.x, top + size.y) and a
bottom right corner at (right + size.x, bottom + size.y). The calling rectangle
object is unchanged.

See also: TRect::OffsetBy, TSize
operator- inline TRect operator-(const TSize& size) const;

Returns a rectangle offset negatively by the delta values given size. The
~ returned rectangle has a top left corner at (left — size.cx, top — size.cy) and a
bottom right corner at (right — size.cx, bottom — size.cy). The calling rectangle
~ object is unchanged.

See also: ' TRect::OffsetBy, TSize
operator& - inline TRect operatoré&(const TRect& other) const;

Returns the intersection of this rectangle and the other rectangle. The calling
- rectangle object is unchanged. Returns a NULL rectangle if the two don't
intersect.

See also: TRect::operator | , TRect::operator&=
operatorl , inline TRect operator|(const TRect& other) const;

.Returns the union of this rectangle and the other rectangle. The calling
rectangle object is unchanged.

342 \ ' ' , ObjectWindows 2.0 Reference Guide

operator==

operator!=

operator+=

operator-=

operator&=

operatorl=

operator TPoint*()

TRect class

See also: TRect::operator&, TRect::operator | =
inline BOOL operator==(const TRect& other) const;

Returns TRUE if this rectangle has identical corner coordinates to the other
rectangle; otherwise, returns FALSE.

See also: TRect::operator!=
inline BOOL operator!=(const TRect& other) const;

Returns FALSE if this rectangle has identical corner coordinates to the other
rectangle; otherwise, returns TRUE.

See also: TRect::operator==
inline TRect& operator+={const TSize& delta);

Changes this rectangle so its corners are offset by the given delta values,
delta.x and delta.y. The revised rectangle has a top left corner at (left +
delta.x, top + delta.y) and a bottom right corner at (right + delta.x, bottom +
delta.y). The revised rectangle is returned.

See also: TRect::operator+, TRect::OffsetBy, TRect::Offset
inline TRect& operator-=(const TSize& delta);

Changes this rectangle so its corners are offset negatively by the given delta
values, delta.x and delta.y. The revised rectangle has a top left corner at (left
— delta.x, top — delta.y) and a bottom right corner at (right - delta.x, bottom —
delta.y). The revised rectangle is returned.

See also: TRect::operator-, TRect::operator+=, TRect::OffsetBy, TRect::Offset

inline TRect& operator&=(const TRect& other) const;

~ Changes this rectangle to its intersection with the other rectangle. This

rectangle object is returned. Returns a NULL rectangle if there is no
intersection.

See also: TRect::operator&, TRect::operator | =
inline TRect& operator|={const TRect& other) const;

Changes this rectangle to its union with the other rectangle. This rectangle
object is returned.

See also: TRect::operator |, TRect::operator&=

inline operator const TPoint*() const;
inline operator TPoint* ()

Type conversion operators converting the pointer to this rectangle to type
pointer to TPoint.

Chapter 1, Library reference 343

TRect class

Set

SetEmpty

Size

TopLeft

TopRight

Touches

Width

operator>>

operator<<

344

See also: class TPoint

inline void Set(int _left, int _top, int _right, int _bottom);
Repositions and resizes this rectangle to the given values.

inline void SetEmpty();

Empties this rectangle by setting left, top, right, and bottom to 0.

inline TSize Size() const; ’

Returns a TSize object representing the width and height of this rectangle.
See also: TSize

inline const TPoint& TopLeft() const;
inline TPoint& TopLeft();

Returns the TPoint object representing the top left corner of this rectangle.
See also: TRect::TopRight, TReét::BottomLeft, TRect::BottomRight

inline TPoint TopRight () const;

Returns the TPoint object representing the top right corner of this rectangle.
See also: TRect:: TopLeft, TRect::BottomLeft, TRect::BottomRight

inline BOOL Touches(const TRecté& other) const;

Returns TRUE if the other rectangle shares any interior points with this
rectangle; otherwise, returns FALSE.

See also: TRect::Contains

inline int Width() const;

‘Returns the width of this rectangle (right — left).

See also: TRect::Height

Friend functions

friend inline ipstream& operator>>(ipstream& is, TRect& r) const;

Extracts a TRect object from is, the given input stream, and copies it to .
Returns a reference to the resulting stream, allowing the usual chaining of
>> operations. ‘

See also: TRect friend operator<s, ipstream

friend inline opstream& operator<<(opstream& os, const TRect& r) cbnst;

ObjectWindows 2.0 Reference Guide

operator<<

TRegion class

TRect class

Inserts the given TRect object, r, into the opstream, os. Returns a reference to
the resulting stream, allowing the usual chaining of << operations.

See also: TRect friend operator>>, opstream
friend inline ostream& operator<<(ostream& os, const TRect& r) const;

Formats and inserts the given TRect object, r, into the ostream, os. The
format is (r.left, r.top)(r.right, r.bottom). Returns a reference to the resulting
stream and allows the usual chaining of << operations.

See also: TRect friend operator>>, ostream

gdiobjec.h

enum TEllipse

Constructor

Constructor

TRegion, derived from TGdiobject, represents GDI abstract shapes or
regions. TRegion can construct region objects with various shapes. Several
operators are provided for combining and comparing regions.

Public data members

enum TEllipse{Ellipse};

Defines the class-specific constant, Ellipse, used to distinguish the ellipse
constructor from the rectangle copy constructor.

See also: TRegion::TRegion(const TRect& rect), TRegion:: TRegion(const
TRect& E, TEllipse)

Public constructors

TRegion();

The default constructor creates an empty TRegion object. Handle is set to 0
and ShouldDelete is set to TRUE.

See also: TGdiObject::Handle, TGdiObject::ShouldDelete, ::CreateRectRgn
TRegion (HRGN handle, TAutoDelete autoDelete = NoAutoDelete);

Creates a TRegion object and sets the Handle data member to the given
borrowed handle. The ShouldDelete data member defaults to FALSE,
ensuring that the borrowed handle is not deleted when the C++ object is
destroyed. HRGN is the Windows data type representing the handle to an
abstract shape.

Chapter 1, Library reference 345

TRegion class

Constructor

Constructor

Constructor

Constructor

Constructor

Constructor

Contains

346

TRegion(const TRegion& region);

This public copy constructor creates a copy of the given TRegion object, as
in:

TRegion myRegion = yourRegion;
See also: ::CreateRectRgn, ::CombineRgn
TRegion(const TRect& rect);
Creates a region object from the given TRectangle object, as in:

TRegion myRegion (rectl);
TRegion* pRegion;
PRegion = new TRegion(rect2);

See also: ::CreateRectRgnIndirect, TRect
TRegion(const TRect& E, TEllipse);

Creates the elliptical TRegion object that inscribes the given rectangle E. The
TEllipse argument distinguishes this constructor from the TRegion(const
TRecté& rect) constructor.

See also: ::CreateEllipticRgnIndirect, TRect

TRegion(const TRect& rect, const TSize& corner);
Creates a TRegion object from the given rect and corner.
TRegion(const TPoint* points, int count, int fillMode);

Creates a filled TRegion object from the polygons given by points and
fillMode. '

See also: ::CreatePolygonRgn, TPoint

TRegion(const TPoint* points, const int* polyCounts, int count,
int fillMode);

Creates a filled TRegion object from the polygons given by points and
fillMode.

See also: ::CreatePolyPolygonRgn, TPoint

Public member functions

inline BOOL Contains(const TPointé& point) const;

Returns TRUE if this region contains the given point.

ObjectWindows 2.0 Reference Guide

GetRgnBox

operator==

operator !=

operator=

operator +=

operator -=

1 HEegion Ciass

See also: ::PtInRegion, TPoint

inline int GetRgnBox(TRect& box) const;
inline TRect GetRgnBox() const;

Finds the bounding rectangle (the minimum rectangle containing this
region). In the first version, the resulting rectangle is placed in box and the
returned values are as follows:

Value Meaning

COMPLEXREGION Region has overlapping borders.
NULLREGION Region is empty.

SIMPLEREGION Region has no overlapping borders.

In the second version, the resulting rectangle is returned.
See also: ::GetRgnBox, TRect

inline BOOL operator==(const TRegionk other) const;
Returns TRUE if this region is equal to the other region.
See also: ::Equaleﬁ, TRegion::opefator!=

inline BOOL operator!=(const TRegion& other) const;
Returns TRUE if this region is not equal to the other region.
See also: ::EqualRgn, TRegion::operator== ‘

TRegion& operator=(const TRegion& source);

" Assigns the source region to this region. A reference to the result is

returned, allowing chained assignments.

See also: ::CombineRgn

TRegion& operator+=(const TSize& delta);

Adds the given delta to each point of this region to displace (translate) it by
delta.x and delta.y. Returns a reference to the resulting region.

See also: ::OffsetRgn, TSize, TRegion::operator-=

TRegion& operator-=(const TSize& delta);
TRegion& operator-=(const TRegion& source);

The first version subtracts the given delta from each point of this region to
displace (translate) it by —delta.x and —delta.y. The second version uses the
RGN_DIF argument in ::CombineRegion to create a “difference” region
consisting of all parts of this region that are not parts of the source region.
Both versions returns a reference to the resulting region.

' Chapter 1, Library reference : 347

1 Heglon class

‘operator &=

operator |=

operator A=

operator HRGN()

SetRectRgn

Touches

348

See also: ::OffsetRgn, ::CombineRgn, TSize, TRegiqn::operator+=, RGN_DIFE.

TRegion& operator&=(const TRegion& source);
TRegion& operator&=(const TRect& source);

Creates the intersection of this region with the given source region or
rectangle, and returns a reference to the result.

See also: ::CombineRgn, TRect

TRegion& operator|=(const TRegion& source);
TRegion& operator|=(const TRect& source);

‘Creates the union of this region and the given source region or rectangle,

and returns a reference to the result.
See also: ::CombineRgn, TRect

TRegion& operator”=(const TRegion& source); .
TRegion& operator”=(const TRect& source);

Creates the union of this region and the given source region or rectangle,
but excludes any overlapping areas. Returns a reference to the resulting
region object.

See also: ::CombineRgn, TRect
inline operator HRGN() const;

Typecast operator. HRGN is the Windows data type representing the
handle to a physical region.

inline void SetRectRgn(const TRect& rect);

Uses the Win API SetRectRgn function to creates a rectangle of the size
given by rect. (Does not use the local memory manager.)

See also: ::SetRectRgn, TRect
inline BOOL Touches (const TRect& rect) const;
Returns TRUE if this region touches the given rectangle.

See also: ::RectInRegion, TRect

ObjectWindows 2.0 Reference Guide

|

TRelationship enum

TRelationship enum , layoutco.h

enum TRelationship;

- Used by the TLayoutConstraint struct, TRelationship specifies the relationship

between the edges and sizes of one window and the edges and sizes of
another window (which can be a parent or sibling). These relationships can
be specified as either the same value as the sibling or parent window
(ImAsls), an absolute value (ImAbsolute), a percent of one of the windows
(ImPercentOf), a value that is either added above (ImAbove) or left (ImLeftOf)
of one of the windows, or a value that is subtracted from below (ImBelow)
or right (ImRightOf) of one of the windows.

See also: TLayoutConstraint struct

TReplaceDiang class | : findrepl.h

Constructor

DoCreate

TReplaceDialog creates a modeless dialog box that lets the user enter a
selection of text to replace. »

Public constructors

TReplaceDialog (TWindow* parent, TData& data, TResID templateName=0,
const char far* title=0, TModule* module=0);

Constructs a TReplaceDialog object with a parent window, resource ID, and
caption. Sets the attributes of the dialog box with the specified data.

See also: TFindReplaceDialog::TData

Protected member functions

HWND DoCreate();
Creates a modeless dialog box.

See also: TDialog::DoCreate

Chapter 1, Library reference S . 349

TResld ¢class

TResld class ~point.h
TResID is a simple support class that creates a resource ID object from
either numerical or string resource identifier. This resource ID object can be
passed to various ObjectWindows classes.

Public constructors

Constructor TResID() ;

The default TResID constructor. Sets Id to 0.

Constructor TResID{int resNum); _ _

Creates a TResID object with the given resNum. Uses the Windows macro
MAKEINTRESOURCE to set Id to a compatible resource string for
Windows resource-management functions.

Constructor TResID(LPCSTR resString);

- Creates a TResID object with the given resString. Id is set to resString.
Public member functions

IsString inline BOOL IsString() ’const;

Returns TRUE if this resource ID was created from a string; otherwise,
returns FALSE.

operator LPSTR() - inline operator LPSTR();)

Typecasting operator that converts Id to type LPSTR.
Friend functions

operator>> friend ipstream& operator>>{ipstreams is, TResID& id);
Extracts a TResID object from is (the given input stream), and copies it to id.
Returns a reference to the resulting stream, allowing the usual chaining of
>> operations.
See also: TResID friend operator<<, ipstream

operator<< friend opstream& operator<<(opstream& os, ‘const TResID& id);

350 ObjectWindows 2.0 Reference Guide

operator<<

1 RESIU Cidsy

Inserts the given TResID object (id) into the opstream (0s). Returns a
reference to the resulting stream, allowing the usual chaining of <<
operations.

See also: TReslID friend operator>>, opstream
friend ostream& operator<<(ostream& os, const TResID& id);

Formats and inserts the given TResID object (id) into the ostream (os).
Returns a reference to the resulting stream, allowing the usual chaining of
<< operations. ‘

See also: TResID friend operator>>, ostream

TResponseTableEntry class eventhan.h

Dispatcher

Msg

NotifyCode

A template class, TResponseTableEntry lets you define a pattern for entries
into a response table. Entries consist of a message, a notification code, a
resource ID , a dispatcher type, and a pointer to a member function. See
Chapter 2 for a discussion of the format for response table entries.

See DECLARE_RESPONSE_TABLE and DEFINE_RESPONSE_TABLE for
additional information about the macros in the response tables.

Public data members

TAnyDispatcher Dispatcher;

An abstract dispatcher type, Dispatcher points to one of the dispatcher
functions.

UINT Id;

Contains the menu or accelerator resource ID (CM_xxxx) for the message
response member function.

UINT Msg;

Contains the ID of the message sent. These can be command messages,
child id messages, notify-based messages such as LBN_SELCHANGE, or
Windows messages such as LBUTTONDOWN.

UINT NotifyCode;

Stores the control notification code (for example, ID_LISTBOX) for the
response table entry. These can be button, combo box, edit control, or list
box notification codes.

Chapter 1, Library reference : 351

1 FEesponse | abieEntry class

PMF Pmf;

Pmf
Pmf points to the actual handler or member function.

T typedef void(T::*PMF) ();

Type for generic member function that responds to notification messages. T
is the template for the response table.

TRghQuad class color.h
TRnguad is a support class derived from the structure tagRGBQUAD
which is defined as follows:

typedef struct tagRGBQUAD {
BYTE rgbBlue;
BYTE rgbGreen;
BYTE rgbRed;
BYTE rgbReserved;
} RGBQUAD;
where rgbBlue, rgbGreen, and rgbRed specify the relative blue, green, and
red intensities of a color. rgbReserved is not used and must be set to 0.
TRgbQuad is used in conjunction with the classes TPalette and TColor to
simplify RGBQUAD-based color operations. Constructors are provided to
create TRgbQuad objects from explicit RGB values, from TColor objects, or
from other TRgbQuad objects.
Public constructors

Constructor TRgbQuad (int r, int g, int b);

Creates a TRgbQuad object with rgbRed, rgbGreen, and rgbBlue set to r, g, and
b respectively. rgbReserved is set to 0.
See also: tagRGBQUAD struct
Constructor TRgbQuad(TColor ¢);
Creates a TRgbQuad object with rgbRed, rgbGreen, and rgbBlue set to c.Red(),
c.Green(), and c.Blue() respectively. rgbReserved is set to 0.
See also: tagRGBQUAD struct, TColor::Red, TColor::Green, TColor::Blue
Constructor TRgbQuad (const RGBQUAD farg q);
352 ObjectWindows 2.0 Reference Guide

I HgDWuda Glass

Creates a TRgbQuad object with the same values as the referenced
RGBQUAD object.

See also: struct tagRGBQUAD

TRgbTriple class color.h

Constructor

Constructor

Constructor

TRgbTriple is a support class derived from the structure tagRgbTriple, which
is defined as follows:

typedef struct tagRGBTRIPLE {
BYTE rgbBlue;
BYTE rgbGreen;
BYTE rgbRed;

} RGBTRIPLE;

where rgbBlue, rgbGreen, and rgbRed specify the relative blue, green, and
red intensities for a color.

TRgbTriple is used in conjunction with the classes TPalette and TColor to
simplify bmci-color-based operations. Constructors are provided to create
TRgbTriple objects from explicit RGB values, from TColor objects, or from
other TRgbTriple objects.

Public constructors

TRgbTriple(int r, int g, int b);

Creates a TRgbTriple object with rgbRed, rgbGreen, and rgbBlue settor, g,
and b respectively.

See also: tagRGBTRIPLE struct
TRgbTriple(TColor ¢);

Creates a TRgbTriple object with rgbRed, rgbGreen, and rgbBlue set to c.Red(),
c.Green(), and c.Blue() respectively. rgbReserved is set to 0.

See also: tagRGBTRIPLE struct, TColor::Red, TColor::Green, TColor::Blue
TRgbTriple (const RGBTRIPLE far& t); '

Creates a TRgbTriple object with the same values as the referenced
RGBTRIPLE object.

See also: tagRGBTRIPLE struct

Chapter 1, Library reference 353

1 ouIeelUy Ciass

TScreenDC class dc.h

I

Derived from TWindowDC, TScreenDC is a DC class that provides direct
access to the screen bitmap. TScreenDC gets a DC for Window handle 0,
which is for the whole screen with no clipping. Window handle 0 paints on
top of other windows.

Public constructors

Constructor TScreenDC () ;

Default constructor for TScreenDC objects.

TScrollBar scrollba.h

TScrollBar objects represent standalone vertical and horizontal scroll bar
controls. Most of T'ScrollBar’s member functions manage the scroll bar’s
sliding box (thumb) position and range.

One special feature of the type TScrollBar is the notify-based set of member
functions that automatically adjust the scroll bar’s thumb position in
response to Windows scroll bar messages.

W Never place TScrollBar objects in windows that have either the
WS_HSCROLL or WS_VSCROLL styles in their attributes.

TScrollBar is a streamable class.

Public data members

LineMagnitude int LineMagnitude;

LineMagnitude is the number of range units to scroll the scroll bar when the
user requests a small movement by clicking on the scroll bar’s arrows.
TScrollBar’s constructor sets LineMagnitude to 1 by default. (The scroll range
is 0-100 by default.)

See also: TScrollBar::Setup Window
PageMagnitude ~ int pageMagnitude; |

PageMagnitude is the number of range units to scroll the scroll bar when the
user requests a large movement by clicking in the scroll bar’s scrolling area.

354 . ObjectWindows 2.0 Reference Guide

Constructor

Constructor

DeltaPos

GetPosition

GetRange

TScrollBar

TScrollBar’s constructor sets PageMagnitude to 10 by default. (The scroll
range is 0-100 by default.)

Public constructors

TScrollBar (TWindow* parént, int id, int x, int y, int w, int h,
BOOL isHScrollBar, TModule* module = 0);

Constructs and initializes a TScrollBar object with the given parent window
(parent), a control ID (id), a position (x,), and a size of (w, h). Invokes the
TControl constructor with similar parameters. If isHScrollBar is TRUE, adds
SBS_HORZ to the styles specified in Attr.Style. If not TRUE, adds
SBS_VERT. If the supplied height for a horizontal scroll bar or the supplied
width for a vertical scroll bar is 0, a standard value is used. LineMagnitude is
initialized to 1 and PageMagnitude is set to 10.

See also: TControl::TControl

. TScrollBar (TWindow* parent, int resourceld, TModule* module = 0);

Constructs a TScrollBar object to be associated with a.scroll bar control of a -
TDialog. Invokes the TControl constructor with identical parameters.

The resourceld parameter must correspond to a scroll bar resource that you
define.

Public member functions

virtual int DeltaPos(int delta);

Calls SetPosition to change the scroll bar’s thumb position by the value
supplied in delta. A positive delta moves the thumb down or right. A
negative delta value moves the thumb up or left. The new thumb position is
returned. '

See also: TScrollBar::SetPosition

inline virtual int GetPosition() const;

Returns the scroll bar’s current thumb position.

See a,lsb: TScrbllBar::SetPosition, TSérollBarDatu struct
inline virtual void GetRange(int& min, int& max) const;

Returns the end values of the present range of scroll bar thumb positions in
min and max.

Seealso: T ScrdllBur::SetPosition, TScrollBar::SetRange, TScrollBarData struct ’

Chapter-1, Library reference ’ ‘) o 355

TScrollBar

SBBottom

SBLineDown

SBLineUp

SBPageDown

SBPageUp

SBThumbPosition

- SBThumbTrack

356

virtual void SBBottom();

Calls SetPosition to move the thumb to the bottom or right of the scroll bar.
SB_BOTTOM is called to respond to the thumb being dragged to the
bottom or rightmost position of the scroll bar.

See also: TScrollBar::SetPosition
virtual void SBLineDown();

Calls SetPosition to move the thumb down or right (by LineMagnitude units).
SBLineDown is called to respond to a click on the bottom or r1ght arrow of
the scroll bar.

See also: TScrollBar::SetPosition
virtual void SBLineUp{(};

Calls SetPosition to move the thumb up or left (by LineMagnitude units).
SBLinellp is called to respond to a click on the top or left arrow of the scroll
bar.

See also: TScrollBayr::SetPosition
virtual void SBPageDown () ;

Calls SetPosition to move the thumb down or right (by PageMagnitude
units). SBPageDown is called to respond to a click in the bottom or right
scrolling area of the scroll bar.

See also: TScrollBar::SetPosition
virtual void SBPageUp();

Calls SetPosition to move the thumb up or left (by PageMagnitude units).
SBPagellp is called to respond to a click in the top or left scrolling area of
the scroll bar.

See also: TScrollBar::SetPosition
virtual void SBThumbPosition(UINT thumbPos) ;

Calls SetPosition to move the thumb. SBThumbPosition is called to respond
when the thumb is set to a new position. .

See also: TScrollBar::SetPosition
virtual void SBThumbTrack (UINT thumbPos);

Calls SetPosition to move the thumb as it is being dragged to a new
position.

See also: TScrollBar::SetPosition

ObjectWindows 2.0 Reference Guide

TScroliBar

SBTop virtual void SBTop(); -

Calls SetPosition to move the thumb to the top or right of the scroll bar.
SBTop is called to respond to the thumb being dragged to the top or
rightmost position on the scroll bar.

See also: TScrollBar::SetPosition
SetPosition virtual void SetPosition(int thumbPos);

Moves the thumb to the position specified in ThumbPos. If ThumbPos is
outside the present range of the scroll bar, the thumb is moved to the
closest position within range.

See also: TScrollBar::GetPosition
SetRange inline virtual void SetRange (int min, int max);
Sets the scroll bar to the range between min and max.
See also: TScrollBar::GetRange
Transfer virtual UINT Transfer (void* buffer, TTransferDirection direction);

Transfers scroll bar data to or from the transfer buffer pointed to by buffer.
buffer is expected to point to a TScrollBarData structure.

Data is transferred to or from the transfer buffer if tdGetData or tdSetData
is supplied as the direction. :

Transfer always returns the size of the transfer data (the size of the
TScrollBarData structure). To retrieve the size of this data without
transferring data, pass tdSizeData as the direction.

See also: TScrollBarData struct

Protected member functions

GetClassName char far* GetClassName();
Returns the name of TScrollBar's Windows registration class, -
“SCROLLBAR.” ‘

SetupWindow void SetupWindow();

Sets the scroll bar’s range to 0, 100. To redefine this range, call SetRange.
See also: TScrollBar::SetRange

Chapter 1, Library reference) 357

TScrollBarData struct

TScrollBarData struct ‘ | scrollba.h

The TScrollBarData structure contains integer values that represent a range
of thumb position on the scroll bar. TScrollBar’s function GetRange calls
TScrollBarData to obtain the highest and lowest thumb positions on the
scroll bar. GetPosition calls TScrollBarData to obtain the current thumb

- position on the scroll bar.

See also: TScrollBar::Transfer

Public data members

HighValue int HighValue;
Contains the highest value of the thulhb position in the scroll bar’s range.
See also: TScrollBar::GetRar;ge
LowValue ‘ int LowValue;
Contains the lowest value of thumb position in the scroll bar’s range.
See also: TScrollBar::GetRange
Position ' int Position;
Contains the scroll bar’s thumb position.

See also: TScrollBar::GetPosition

TScroller class | ’ ~scrollerh

TScroller supports an automatic window-scrolling mechanism (referred to
as autoscrolling) that works in conjunction with horizontal or vertical
window scroll bars (it also works if there are no scroll bars). When
autoscrolling is activated, the window automatically scrolls when the
mouse is dragged from inside the client area of the window to outside that
area. If the AutoMode data member is TRUE, TScroller performs
autoscrolling.

To use TScroller, set the Scroller member of your TWindow descendant to a
TScroller object instantiated in the constructor of your TWindow descendant.
TScroller is a streamable class.

358 . , ' ObjectWindows 2.0 Reference Guide

AutoMode
AutoOrg
HasHScrollBar,
HasVSCroliBar
TrackMode

Window

XLine, YLine

XPage, YPage

XPos,YPos

XRange, YRange

XUnit, YUnit

Constructor

1 Scrolier class

Public data members

BOOL AutoMode;

Is TRUE if automatic scrolling is activated.

BOOL AutoOrg;

Is TRUE if scroller offsets original.

BOOL HasHScrollBar, HasVSCrollBar;

Is TRUE if scroller has horizontal or vertical scroll.
BOOL TrackMode;

Is TRUE if track scrolling is activated.

TWindow* Window;

Points to the window whose client area scroller is to be managed.
int XLine, YLine;

Specifies the number of logical device units per line to scroll the rectangle
in the horizontal (X) and vertical (Y) directions. '

int XPage, YPage;

Specifies the number of logical device units per page to scroll the rectangle
in the horizontal (X) and vertical (Y) directions.

long XPosg, YPos;

Specifies the current position of the rectangle in horizontal (XPos) and
vertical (YPos) scroll units.

long XRange, YRahge;
Specifies the number of horizontal and vertical scroll units.
int XUnit, YUnit;

Specifies the amount (in logical device units) to scroll the rectangle in the
horizontal (X) and vertical (Y) directions. The rectangle is scrolled right if
XUnit is positive and left if XUnit is negative. The rectangle is scrolled
down if YUnit is positive and up if YUnit is negative.

Public constructors and destructor

TScroller (TWindow* window, int xUnit, int yUnit, long xRange,
long yRange);

Chapter 1, Library reference) 359

15croller class

Destructor

AutoScroll

BeginView

EndView

HScroli

IsAutoMode

IsVisibleRect

SetPageSize

360

Constructs a TScroller object with window as the owner window, and xUnit,
yUnit, xRange, and yRange as xUnit, yUnit, xRange and yRange, respectively.
Initializes data members to default values. HasHScrollBar and HasV ScrollBar
are set according to the scroll bar attributes of the owner window.

virtual ~TScroller();

Destructs a TScroller object. Sets owning window’s Scroller number variable
to 0.

Public member functions

virtual void AutoScroll();

Scrolls the owner window’s display in response to the mouse being
dragged from inside to outside the window. The direction and the amount
by which the display is scrolled depend on the current position of the
mouse.

virtual void BeginView({TDC& dc, TRect& rect);

If TScroller:: AutoOrg is TRUE (default condition), BeginView automatically
offsets the origin of the logical coordinates of the client area by XPos, YPos
during a paint operation. If AutoOrg is FALSE (for example, when the
scroller is larger than 32,767 units) you must set the offset manually.

virtual void EndView();

Updates the position of the owner window’s scroll bars to be coordinated
with the position of the TScroller.

virtual void HScroll (UINT scrollEvent, int thumbPos);

Responds to the specified horizontal scrollEvent by calling ScrollBy or
ScrollTo. The type of scroll event is identified by the corresponding
Windows SB_ constants. thumbPos contains the current thumb position
when the scroller is notified of SB_THUMBTRACK and
SB_THUMBPOSITION scroll events.

virtual BOOL IsAutoMode();

IsAutoMode is TRUE if automatic scrolling is activated.

See also: TScroller:: AutoMode

inline BOOL IsVisibleRect(long x, lony v, int xExt, int yExt);
Is TRUE if the rectangle (x, y, xExt, and yExt) is visible.

virtual void SetPageSize();

ObjectWindows 2.0 Reference Guide

SetRange

SetSBarRange

SetUnits

ScrollBy

ScrollTo

SetWindow

VScroll

XScrollValue

1 Scrolier class

Sets the XPage and YPage data members to the width and height (in XUnits
and YUwits) of the owner window’s client area.

See also: TScroller::XPage, TScroller::Y Page, TScroller::XUnit, TScroller::'Y Unit
virtual void SetRange(long xRange, long yRange);

Sets the xRange and yRange of the TScroller to the parameters specified.
Then calls SetSBarRange to synchronize the range of the owner window’s
scroll bars.

See also: TScroller::SetSBarRange
virtual void SetSBarRange();

Sets the range of the owner window’s scroll bars to match the range of the
TScroller.

virtual void SetUnits(int xUnit, int yUnit);

Sets the XUnit and YUnit data members to TheXUnit and TheY Unit,
respectively. Updates XPage and YPage by calling SetPageSize.

See also: TScroller::XPage, TScroller::YPage, TScroller::XUnit, TScroller::Y Unit
inline void ScrollBy(long dx, long dy); '

Scrolls to a position calculated using the passed delta values (dx and dy). A
positive delta position moves the thumb position down or right. A negative
delta position moves the thumb up or left.

virtual void ScrollTo(long x, long vy);

Scrolls the rectangle to the position specified in x and y.
inline void SetWindow(TWindow* win);

Sets the owning window to win. _
virtual void VScroll (UINT scrollEvent, int thumbPos);

Responds to the specified vertical scrollEvent by calling ScrollBy or ScrollTo.
The type of scroll event is identified by the corresponding Windows SB_
constants. thumbPos contains the current thumb position when the scroller
is notified of SB_THUMBTRACK and SB_THUMBPOSITION scroll events.

See also: TScroller::ScrollTo
inline int XScrollValue(long rangeUnit);

XScrollValue converts a horizontal range value from the scroll bar to a
horizontal scroll value.

See also: TScroller::YScrollValue

Chapter 1, Library reference 4 361

1ocrolier Class

XRangeValue inline int XRangeValue(int scrollUnit);
XRangeValue converts a horizontal scroll value from the scroll bar to a
horizontal range value.
See also: TScroller::YRangeValue

YScrollValue inline int YScrollvalue(long rangeUnit);
Y ScrollValue converts a vertical range value from the scroll bar to a vertical
scroll value.
See also: TScroller::XScrollValue

YRangeValue inline int YRangeValue(int scrollUnit);
YRangeValue converts a vertical scroll value from the scroll bar to a vertical
range value.
See also: TScroller::XRangeValue

TSeparatorGadget class ' gadget.h
TSeparatorGadget is a simple class you can use to create a separator between
gadgets. To do so, you must specify the size of the separator in units of
SM_CXBORDER (width of the window frame) and SM_CYBORDER
(height of the window frame). The right and bottom boundaries of the
separator are set after calling GetsystemMetrics. By default, the separator
disables itself and turns off shrink-wrapping. Note that the default border
style is none.
See also: TGadget::TBorderStyle enum
Public member functions

TSeparatorGadget TSeparatorGadget (int size = 6);
Used for both the width and the height of the separator, size is initialized at
6 border units (the width or height of a thin window border).

362 ObjectWindows 2.0 Reference Guide

TSize class

TSize class

point.h

Constructor
Constructor

Constructor

TSize is a support class derived from the structure tagSIZE. Under Win32,
the latter is defined as

typedef struct tagSize {
LONG x;
LONG y;

} POINT;

Under Win16, tagSize is defined as

typedef struct

tagSIZE
int x;
int y;
} POINT;

typedef struct tagSIZE {
LONG cx; .
LONG cy;

} SIZE;

TSize encapsulates the notion of a two-dimensional quantity that usually
represents a displacement or the height and width of a rectangle. TSize
inherits the two data members cx and cy from tagSIZE. As with TPoint,
TSize objects can be created from a pair of ints, a point of type POINT,
another value of type SIZE, or from the low and high words of a DWORD
value. Member functions and operators are provided for comparing,
assigning, and manipulating sizes. Overloaded << and >> operators are
declared as friends of TSize, allowing chained insertion and extraction of
TSize objects with streams.

Public constructors

inline TSize();

The default TSize constructor.

inline TSize(int dx, int dy);

Creates a TSize object with'cx = dx and cy = dy.

inline TSize(const POINT& point);

Creates a TSize object with cx = point.x and cy = point.y.

See also: Point

Chapter 1, Library reference e . 363

TSize class

Constructor

Constructor

Magnitude

operator+

operator-

operator==

operator!=

364

inline TSize(const SIZE& size);

Creates a TSize object with cx = size.cx and cy = size.cy.

See also: Size struct

inline TSize (DWORD dw);]

Creates a TSize object with cx = LOWORD(dw) and cy = HIWORD(dw)).

Public member functions

inline int Magnitude() const;

Returns the length of the diagonal of the rectangle represented by this
object. The value returned is an int approximation to the square root of
(ex®+ cy?).

inline TSize operator+(const TSize& size) const;

Calculates an offset to this TSize object using the given size argument as the
displacement. Returns the object (cx + size.cx, cy + size.cy). This TSize object
is not changed. A

See also: TSize::operator-

inline TSize operator-(const TSize& size) const;
inline TSize operator-() const;

The first version calculates a negative offset to this TSize object using the
glven size argument as the displacement. Returns the point (cx — size.cx,
cy — size.cy). This object is not changed.

The second version returns the TSize object (-cx, —cy). This object is not
changed.

See also: TSize::operator+
inline BOOL operator==(const TSize& other) const;

Returns TRUE if this size object is equal to the other TSize object; otherwise
returns FALSE. '

See also: TSize::operator!=
inline BOOL operator!=(const TSize& other) const;

Returns FALSE if this size object is equal to the other TSize object; otherwise
returns TRUE.

See also: TSize::operator==

ObjectWindows 2.0 Reference Guide

operator+=

operator-=

operator>>

operator<<

operator<<

TSlider class

TSize class

inline TSize& operator+={const TSize& size) const;

Offsets this TSize object by the given size argument. This TSize object is
changed to (cx + size.cx, cy +size.cy). Returns a reference to this.object.
See also: . TSize::operator-=

inline TSize& operator-={const TSize& size) const;

Negatively offsets this TSize object by the given size argument. This object is
changed to (cx —size.cx, cy — size.cy). Returns a reference to this object.

See also: TSize::operator+=

Friend functions

friend inline ipstream& operator>>(ipstream& 1s, TSize& s) const;

Extracts a TSize object from is, the given input stream, and copies it to s.
Returns a reference to the resulting stream, allowing the usual chaining of
>> operations.

See also: TSize friend operator<x, ipstream
friend inline opstream& operator<<(opstream& os, const TSize& s) const;

Inserts the given TSize object (s) into the opstream (0s). Returns a reference to
the resulting stream, allowing the usual chaining of << operations.

See also: TSize friend operator>>, opstream
friend inline ostream& operator<<{ostream& os, const TSize& s) const;

Formats and inserts the given TSize object (s) into the ostream (0s). The
format is “(cx x cy)”. Returns a reference to the resulting stream, allowing
the usual chaining of << operations.

See also: TSize friend operator>>, ostream

/

slider.h

An abstract base class derived from TScrollBar, TSlider defines the basic
behavior of sliders (controls that are used for providing nonscrolling,
position information). Like scroll bars, sliders have minimum and
maximum positions as well as line and page magnitude. Sliders can be
moved using either the mouse or the keyboard. If you use a mouse to move
the slider, you can drag the thumb position, click on the slot on either side

Chapter 1, Library reference : S 365

I Slider class

of the thumb position to move the thumb by a specified amount
(PageMagnitude), or click on the ruler to position the thumb at a specific
spot on the slider. The keyboard’s Home and End keys move the thumb
position to the minimum (Min) and maximum (Max) positions on the slider.

TSliders can cause the thumb positions to automatically align with the
nearest tick positions (this is called snapping). You can also specify the tick
gaps (the space between the lines that separate the major divisions of the X-
or Y-axis).

The SLIDER.CPP ObjectWindows program on your distribution disk
displays the following thermostat:

Maximum position

Thumb position

Vertical slider

Minimum position

Hotizontal slider

SLIDERAPP sets up the following constant values:

const WORD ID_THERMOSTAT = 201;
const WORD ID_HEATERTIME = 202;
const WORD ID_QUTSIDETEMP = 203;
const WORD ID_STATICTEMP = 205;
const WORD ID_STATICTIME = 206;

and then sets the following ruler ranges and positions:

TWindow: : SetupWindow() ;

Thermostat->SetRange (40, 120);’ -
Thermostat->SetRuler(5, FALSE);
Thermostat->SetPosition(75);

HeaterTime->SetRange (0, 20);
HeaterTime->SetRuler (2, FALSE);
HeaterTime->SetPosition(10);

366 » . * ObjectWindows 2.0 Reference Guide

Constructor

Destructor

GetPosition

GetRange

TSlider class

OutsideTenp->SetRange (20, 90);
OutsideTemp->SetRuler (5, FALSE);
OutsideTemp->SetPosition(40);

Thermometer->SetRange (40-10, 120+10);
Thermometer->SetValue(75);
Thermometer->SetLed (4, 90);

before establishing the following values for static, gauge, and sliders:

SetTimer (ID_TIMER, 1000);

UpdateTemp () ;

UpdateHeaterTime() ;

UpdateQTemp () ;

StaticTemp = new TStatic(this, ID_STATICTEMP, "', 135, 40, 160, 17,0);
Thermometer = new TGauge(this, ID_THERMOMETER, 70, 90, 240, 20, TRUE, 2);
Thermostat = new THSlider (this, ID_THERMOSTAT, 70, 150, 240, 40);

For the complete program, see the SLIDER.CPP ObjectWindows program
on your distribution disk.

See the two derived classes, THSlider and TV Slider, for specific details about
horizontal and vertical sliders.

Public constructors and destructor

TSlider (TWindow* parent, int id, int X, int Y, int W, int H,
TResId thumbResId, TModule* module = 0);

Constructs a slider object setting Pos and ThumbRgn to 0, TicGap to Range
divided by 10, SlotThick to 17, Snap to TRUE, and Sliding to FALSE. Sets
Attr.W and Attr.H to the values in X and Y. ThumbResId is set to thumbResId.

~T8lider(); ,
Deconstructs a TSlider object and deletes ThumbRgn.

Public member functions

inline int GetPosition() const;

Returns the slider’s current thumb position. Overloads TScrollBar’s virtual
function.

See also: TSlider::SetPosition

inline void GetRange(int &min, int &max) const;

Chapter 1, Library reference ‘ . 367

TSlider class

SetPosition

SetRange

SetRuler

EvEraseBkgnd

EvGetDIgCode

EvKeyDown

368

Returns the end values of the present range of slider thumb positions in
min and max. Overloads TScrollBar’s virtual function.

See also: TSlider::SetRange
void SetPosition(int thumbPos);

Moves the thumb to the position specified in thumbPos. If thumbPos is
outside the present range of the slider, the thumb is moved to the closest
position within the specified range. Overloads T'ScrollBar’s virtual function.

See also: TSlider::GetPosition
vold SetRange(int min, int max);

Sets the slider to the range between min and max. Overloads TScrollBar’s
virtual function.

See also: TSlider::GetRange
inline void SetRuler(int ticGap, BOOL snap = FALSE);

Sets the slider’s ruler. Each slider has a built-in ruler that is drawn with the
slider. The ruler, which can be blank or have tick marks on it, can be created
so that it forces the thumb to snap to the tick positions automatically.

Protected member functions

BOOL EvEraseBkgnd(HDC hDC) ;

Responds to a WM_ERASEBKGND message and erases the background of
the slider when the slider is changed. Calls the virtual functions PaintRuler,
PaintSlot, and PaintThumb to paint the components of the slider. To avoid
flickering, EvEraseBkgnd is called to erase the background as the painting
occurs.

See also: TSlider::EvPaint
UINT EvGetDlgCode();

Responds to a WM_GETDLGCODE message and controls the response to a
DIRECTION key or TAB key input. Captures cursor-movement keys to
move the thumb by returning a DLGC_WANTARROWS message, which
indicates that direction keys are desired.

void EvKeyDown (UINT key, UINT repeatCount, UINT flags);

EvKeyDown translates the virtual key code into a movement and then
moves the thumb. key indicates the virtual key code of the pressed or key,
repeatCount holds the number of times the same key is pressed, and flags

ObjectWindows 2.0 Reference Guide

EvKillFocus

EvLButtonDbIClk

EvLButtonDown

EvLButtonUp

EvMouseMove

TSlider class

contains one of the following messages, which translate to virtual key (VK)
codes:

Value Virtual key code
SB_PAGEUP VK_PRIOR
SB_PAGEDOWN VK_NEXT
SB_BOTTOM VK_END
SB_TOP VK_HOME
SB_LINEUP VK_LEFT(same as SB_LINELEFT)
SB_LINEUP VK_UP
SB_LINEDOWN VK_RIGHT(same as SB_LINERIGHT)
SB_LINEDOWN VK_DOWN

void EvKillFocus (HWND hWndGetFocus);

In response to a WM_KILLFOCUS message sent to a window that is losing
the keyboard, EvKillFocus hides and then destroys the caret.

void EvLButtonDblClk (UINT modKeys, TPoint& point);

Responds to a WM_LBUTTONDBLCLK message (which indicates the user
double-clicked the left mouse button), then throws away the messages so
the base class doesn’t receive them.

void EvLButtonDown(UINT modKeys, TPoint& point);

Responds to a mouse press by positioning the thumb or beginning a mouse
drag. If the mouse is pressed down while it is over the thumb,
EvLButtonDown enters sliding state. If the mouse is in the slot,
EvLButtonDown pages up or down. If the mouse is on the ruler,
EvLButtonDown jumps to that position. EvLButtonDown generates a scroll
code of SB_THUMBPOSITION, SB_LINEUP, SB_LINEDOWN,
SB_PAGEUP, SB_PAGEDOWN, SB_THUMBTRACK.

See also: TSlider::EvLButtonUp
void EvLButtonUp (UINT modKeys, TPointé& point);

If the mouse button is released, EvLButtonUp ends sliding, paging, or
jumping to a position on the ruler.

See also: TSlider::EvLButtonDown
void EvMouseMove (UINT modKeys, TPoint& point);

Moves the mouse to the indicated position. If the mouse is being dragged,
EvMouseMove positions the thumb and sends the appropriate message to
the parent window.

Chapter 1, Library reference ' \ 369

TSlider class

EvPaint

EvSetFocus

EvSize

GetBkColor

HitTest

NotifyParent

PaintRuler

PaintSlot

PaintThumb

PointToPos

370

vold EvPaint();

Paints the entire slider—ruler, slot, and thumb. Calls the virtual functions
PaintRuler, PaintSlot, and PaintThumb to paint the components of the slider.

See also: TSlider::EvEraseBkgnd

void EvSetFocus (HWND hWndLostFocus); .

Creates a blinking caret to show the focus in the current window.

See also: TSlider::GetFocus

void EvSize (UINT sizeType, TSize& size);

Recalculates the size of the slider when the window size is changed.

void GetBkColor (TDC& dc);

Sends a WM_CTLCOLOR message to the parent and calls dc::GetBkColor to

~ extract the background color for the slider.

virtual int HitTest (TPoint& point) = 0;

Gets information about where a given X, Y location falls on the slider. The
return value is in scrollCodes. Each of the derived classes performs
comparisons to return a scroll code.

See also: TSlider::NotifyParent
virtual void NotifyParent (int scrollCode, int pos=0) = 0;
Sends a WS_HSCROLL or WS_VSCROLL message to the parent window.

See also: THSlider::HitTest, TV Slider::HitTest
virtual void PaintRuler (TDC& dc) = 0;

Paints the ruler. It is assumed that the slot or thumb do not overlap the
ruler.

virtual void PaintSlot (TDC& dc) = 0;
Paints the slot in which the thumb slides.
virtual void PaintThumb (TDC& dc);

Paint the thumb itself using a resource DIB translated to the current system
button colors and which overlaps the slot.

virtual int PointToPos(TPoint& point) = 0;
Translates an X,Y point to a position in slider units.

See also: TSlider::PosToPoint

ObjectWindows 2.0 Reference Guide

PosToPoint

SetupThumbRgn

SetupWindow

SlideThumb

SnapPos

Bkcc?lor
CaretRect
AMax '

Min

MouseOffset

1 olaer class

virtual TPoint PosToPoint (int pos) = 0;
Translates a position in slider units to an X,Y point.

See also: TSlider::PointToPos
virtual void SetupThumbRgn();

Creates the region that defines the thumb shape for this slider class.
Although the default region is a simple bounding rectangle, it can be any
shape. While the slider thumb is being moved, this region is used for
testing the mouse position and updating the thumb position.

See also: ThumbRgn

void SetupWindow();

Calls TScrollBar:/:SetupWindow and SetupThumbRgn to set up the window.
See also: TScrollBar::Setup Window

virtual void SlideThumb(TDC& dc, int thumbPosl);

Slides the thumb to a given position and performs the necessary blitting
and painting. ‘

int SnapPos (int pos) ;

Constrains Pos so it is in the range from Min to Max and (if snapping is
enabled) performs snapping by rounding Pos to the nearest TicGap.

See also: TSlider::TicGap

Protected data members

TColor BkColor;

Stores the background color of the slider.

TRect CaretRect;

Refers to the position of the caret’s rectangle.

inﬁ Max;

Contains the maximum value of the slider position.
int Min;

Contains the minimum value of the slider position.
static TSize Méuseoffset;

Statics used while the mouse is down and the thumb is sliding.

Chapter 1, Library reference R ‘ o l | ‘ 371

1oliger class

Pos int Pos;
Indicates where the thumb is positioned on the slider.

See also: TSlider::GetPosition

Range UINT Range;
Contains the difference between the maximum and minimum range of the
slider. '

SlideDC static TDC* S1ideDC;

Statics used while the mouse is down and the thumb is sliding.

Sliding BOOL Sliding;

TRUE if the thumb is sliding.
SlotThick int SlotThick; k

Indicates the thickness of the slot. Set to 17 by default.
Snap BOOL, Snap;

TRUE if snapping is activated; otherwise FALSE.
ThumbRect TRect ThumbRect;

Holds the thumb’s bounding rectangle.

ThumbResld TResId ThumbResId;
ThumbResld is the bitmap resource ID for the thumb knob.
ThumbRgn TRegion* ThumbRgn;

Refers to the region, if any, that defines the thumb shape for this slider
class.

See also: TSlider::SetupThumbRgn
TicGap : int TicGap;

Specifies the amount of space in pixels between ticks.

Response table entries

Response table entry Member function
EV_WM_ERASEBKGND EvEraseBkgnd
EV_WM_GETDLGCODE EvGetDIgCode
EV_WM_KEYDOWN EvKeyDown

372 ; " . ObjectiWindows 2.0 Reference Guide

TSlider class

Response table entry Member function
EV_WM_KILLFOCUS EvKillFocus
EV_WM_LBUTTONDBLCLK EvLButtonDbIClk
EV_WM_LBUTTONDOWN EvLButtonDown
EV_WM_LBUTTONUP EvLButtonUp
EV_WM_MOUSEMOVE EvMouseMove
EV_WM_PAINT - EvPaint
EV_WM_SETFOCUS EvSetFocus
EV_WM_SIZE EvSize
TSortedStringArray typedef validate.h

‘TStatic class

typedef TSArrayAsVector<string> TSortedStringArray;
TSortedStringArray implements a sorted list of ASCII strings.
See also: TValidator, TLookupValidator

static.h

TextLen

Constructor

A TStatic is an interface object that represents a static text interface element
in Windows. It must be used to create a static control in a parent TWindow.
It can also be used to make it easier to modify the text of static controls in
TDialogs.

Public data members

UINT TextLen;

TextLen holds the size of the text buffer for static controls. The number of
characters that can actually be stored in the static control is one less than
TextLen because of the null terminator on the string. TextLen is also the
number of bytes transferred by the Transfer member function.

Public constructors

TStatic (TWindow* parent, int Id, const char far* title, int x, int y,
int w, int h, UINT textLen, TModule* module = 0);

Constructs a static control object with the supplied parent window (parent),
control ID (Id), text (title), position (x, y) relative to the origin of the parent

Chapter 1 Library reference ‘ 373

| Static class

Consfructor

Clear

GetText

GetTextLen
SetText

Transfer

374

window’s client area, width (w), height (%), and text length (textLen). By
default, the static control is visible upon creation and has left-justified text.
(Attr.Style is set to WS_CHILD | WS_VISIBLE | WS_GROUP | SS_LEFT.)
Invokes a TControl constructor.

See also: TControl::TControl

TStatic (TWindow* parent, int resourceId, UINT textLen,
TModule* module = 0);

Constructs a TStatic object to be associated with a static control interface
control of a TDialog. Invokes the TControl constructor with similar
parameters, then sets TextLen to textLen. Disables the data transfer
mechanism by calling DisableTransfer.

The resourceld parameter must correspond to a static control resource that
you define.

See also: TControl::TControl

Public member functions

inline void Clear();
Clears the static control’s text.
inline int GetText (char far* str, int maxChars);

Retrieves the static control’s text, stores it in the str argument of maxChars
size, and returns the number of characters copied.

inline int GetTextLen();

Returns the length of the static control’s text.

inline void SetText (const char far* string);

Sets the static control’s text to the string supplied in str.

inline virtual WORD Transfer {(void* buffer, TTransferDirection direction);

Transfers TextLen characters of text to or from a transfer buffer pointed to
by buffer. If direction is tdGetData, the text is transferred to the buffer from
the static control. If direction is tdSetData, the static control’s text is set to the
text contained in the transfer buffer. Transfer returns TextLen, the number of
bytes stored in or retrieved from the buffer. If direction is tdSizeData, -
Transfer returns TextLen without transferring data.

ObjectWindows 2.0 Reference Guide

GetClassName

TStatus class

TStatic class

Protected member functions

virtual char far* GetClassName();

Returns the name of TStatic’s Windows registration class (STATIC), or
returns STATIC_CLASS if BWCC is enabled.

except.h

Constructor

operator=

operator

Used primarily for backward compatibility with previous versions of
ObjectWindows, TStatus is used by TModule and TWindow to indicate an
error in the initialization of an interface object. If Status is set to a nonzero
value, a TXCompatibility exception is thrown.

Public constructors

TStatus();
Constructs a TStatus object and initializes the status code to 0.

See also: TModule::Status, TWindow::Status

Public data members

inline TStatus& operator=(int statusCode);
Sets the status code and throws a TXCompatibility exception.
inline operator int() const;

Returns the status code.

TStatusBar class : . statusba.h

In contrast to plain message bars, status bars provide several display
options. ObjectWindows status bars let you include multiple text gadgets
(the text on the left of the status bar) and different border styles. You can
also reserve space for mode indicators (the text that displays the program’s
current state, such as extended selection (of keys and other modes),
CapsLock, NumLock, ScrollLock, Overwrite, and macro recording). T'StatusBar
creates text gadgets for the mode indicators you request and adjusts the

Chapter 1, Library reference ; 375

TStatusBar class

spacing between mode indicators. The TSpacing struct stores spacing and
layout unit constraints. i

Like other control bars, the status bar is constructed and destroyed at the
same time as its parent’s window, but this is not a required procedure.

The following program statements show how to construct a status bar and
insert it at the bottom of the window.

" TStatusBar* sb = new TStatusBar (0, TGadget::Recessed,
TStatusBar::CapsLock | TStatusBar::NumLock |
TStatusBar::0vertype);

frame->Insert (*sb, TDecoratedFrame::Bottom);

MainWindow = frame;

‘See the MDIFILE.CPP sample program on your distribution disk for an
example of how to create a window with a status bar.

Public data members
TModelndicator enum TModeIndicator {ExtendSelection = 1, CapsLock = 1 << 1,
énum NumLock = 1 << 2, ScrollLock = 1 << 3,

Overtype = 1 << 4, RecordingMacro = 1 << 5};

Enumerates the program modes. By default, these are arranged
horizontally on the status bar from left to right.

Public constructors

Constructor TStatusBar (TWindow* parent = 0,
TGadget: : TBorderStyle borderStyle = TGadget::Recessed,
UINT modeIndicators = 0, TFont *font = new TGadgetWindowFont,
TModule* module = 0);

Constructs a T'StatusBar object in the parent window and creates any new
gadgets and mode indicator gadgets. Sets BorderStyle to borderStyle,
Modelndicators to modelndicators, and NumModelndicators to 0. Sets the
values of the margins and borders depending on whether the gadget is
raised, recessed, or plain.

Public member functions

Insert void Insert (TGadgets& gadget, TPlacement = After, TGadget* sibling = 0);

376 ObjectWindows 2.0 Reference Guide

operator

SetModelndicator

TStatusBar class

Inserts the gadget in the status bar. By default, the new gadget is placed just
after any existing gadgets and to the left of the status mode indicators.

TTextGadget* operator[] (UINT index);

Returns a gadget at a given index, but cannot access mode indicator
gadgets.

void SetModeIndicator (TModeIndicator, BOOL state);

Sets TModelndicator to a given text gadget and set the status (on, by default)
of the mode indicator. For the mode indicator to appear on the status bar,
you must specify the mode when the window is constructed.

See also: TStatusBar::TModelndicator, TKeyboardModeTracker::EvKeyDown

ToggleModelndicator 13 ToggleModeIndicator (TModeIndicator) ;

SetSpacing

BorderStyle

Modeindicators

NumModeindicators

Toggles the Modelndicator.
See also: TKeyboardModeTracker::EvKeyDown
inline void SetSpacing (TSpacing& spacing);

Uses the TSpacing values to set the spacing to be used between mode
indicator gadgets. TSpacing sets the status-bar margins in layout units.
Typically, the message indicator (the leftmost text gadget) is left-justified on
the status bar and the other indicators are right-justified. See TLayoutMetrics
for an detailed explanation of layout units and constraints.

struct TSpacing {
TMargins::TUnits Units;
int Value;
TSpacing() {Units = TMargins::LayoutUnits; Value = 0;}
}i

See also: T'StatusBar::TModelndicator

Protected data members

TGadget : : TBorderStyle BorderStyle;

One of the enumerated border styles—none, plain, raised, recessed, or
embossed—used by the mode indicators on the status bar.

UINT ModeIndicators;

The Modelndicators bit field indicates which mode indicators have been
created for the status bar.

UINT NumModeIndicators;

Chapter 1, Library reference 377

TStatusBar class

' Spacing

PositionGadget

TStream class

Specifies the number of mode indicators, which can range from 1 to 5.
TSpacing Spacing;

Specifies the spacing between mode indicators on the status bar.

Protected member functions

void PositionGadget (TGadget* previous, TGadget* next, TPointé& point);

Determines the position of the new gadget in relation to any previously
existing gadgets and uses the Pixels, LayoutUnits, and BorderUnits fields of
TMargins to determine the amount of spacing to leave between the mode "
indicators.

docview.h

OpenMode

StreamName

Destructor

378

An abstract base class, TStream provides links between streams and
documents, views, and document files.

Public data members

int OpenMode;

Holds mode flags used when opening document streams. For example, the
stream can be opened in ofRead mode to allow reading, but not changing
(writing to) the file.

See also: ofxxxx document open enum
LPCSTR StreamName;

Holds the name of the stream used for opening the document.

Public destructor

inline ~TStream();

Closes the stream. Derived classes generally close the docﬂment if it was
opened especially for this stream.

ObjectiWindows 2.0 Reference Guide

GetDocument

Doc

NextStream

Constructor

TStream class

Public member functions

inline TDocumenté& GetDocument () ;

Returns the current document open for streaming,.

Protected data members

TDocument& Doc;
Stores the document that owns this stream.
TStream* NextStream;

Points to the next stream in the list of active streams.

Protected constructors

TStream(TDocument& doc, LPCSTR name,int mode);

Constructs a TStream object. doc refers to the document object, name is the
user-defined name of the stream, and mode is the mode used for opening
the stream.

See also: TInStream, TOutStream, of XXXX document open enum, shdocument
sharing enum

TStringLookupValidator class ‘ * validate.h

Constructor

Destructor

Derived from TLookupValidator, TStringLookupValidator is a streamable class.
A TStringLookupValidator object verifies the data in its associated edit
control by searching through a collection of valid strings. You can use
string-lookup validators when your edit control needs to accept only
members of a certain set of strings.

Public constructors and destructor

TStringLookupValidator (TSortedStringArray strings);

Constructs a string-lookup object by first calling the constructor inherited
from TLookupValidator and then setting Strings to strings.

~TStringLookupValidator();

Chapter 1, Library reference 379

TStringLookupValidator class

Disposes of a list of valid strings by calling NewStringList and then disposes
of the string-lookup validator object by calling the destructor inherited
from TLookupValidator.

Public member functions

Error void Error();

Overrides TValidator’s virtual function and displays a message box
indicating that the typed string does not match an entry in the string list.
See also: TValidator::Error

Lookup BOOL Lookup (const char far* str);

Overrides TLookupValidator's virtual function. Returns TRUE if the string
passed in str matches any of the strings. Uses the search method of the
string collection to determine if str is present.

See also: TLookupValidator::Lookup

NewStringList void NewStringlList (TSortedStringArray strings);

Sets the list of valid input string for the string-lookup validator. Disposes of
any existing string list and then sets Strings to strings.
Protected data member

Strings TSortedStringArray Strings;

Points to a string collection containing all the valid strings the user can
type. If Strings is NULL, all input is validated.

TSystemMenu class , menu.h
TSystemMenu creates a system menu object that then becomes the existing
system menu. See Chapter 7 in the Object Windows Programmer’s Guide for
more information about menu objects.

Public constructors
Constructor TSystemMenu (HWND wnd, BOOL revert = FALSE);
380 ObjectWindows 2.0 Reference Guide

TSystemMenu class

Constructs a system menu object. If revert is TRUE, then the menu created
is a default system menu. Otherwise, it is the menu currently in the
window.

See also: TPopupMenu::TPopupMenu

TTextGadget class textgadg.h

TAlign

Constructor

GetText

SetText

Derived from TGadget, TTextGadget is a text gadget object. When you
construct a text gadget, you must specify how many characters you want to
reserve space for and how the text should be aligned horizontally. The
inner boundaries of the text gadget are computed by multiplying the
number of characters by the maximum character width.

Public data members

enum TAlign {Left, Center, Right};

Enumerates the text-alignment attributes. Left aligns the text at the left edge
of the bounding rectangle. Right aligns the text at the right edge of the
bounding rectangle. Center aligns the text horizontally at the center of the
bounding rectangle.

Public constructors

TTextGadget (int id = 0, TBorderStyle = Recessed, TAlign = Left, UINT
numChars = 10, const char* text = 0);

Constructs a TTextGadget object with the specified ID, border style, and
alignment. Sets Margins.Left and Margins.Right to 2. Sets Text and TextLen
to 0.

Public member functions

inline char* GetText();
Returns the text for the gadget.

void SetText (const char* text);

Chapter 1, Library reference 381

TTextGadget class

Align

NumChars

Text

TextLen

GetDesiredSize

Invalidate

Paint

382

If the text stored in Text is not the same as the new text, SetText deletes the
text stored in Text. Then, it sets TextLen to the length of the new string. If no
text exists, it sets both Text and TextLen to 0 and then calls Invalidate to

- invalidate the rectangle.

Protected data members

TAlign Align;

Text alignment attribute—left, center, or right-aligned.
UINT NumChars;

Holds the number of text characters.

char* Text;

Points to the text for the gadget.

UINT TextLen ;\

Stores the length of the text.

Protected member functions

void GetDesiredSize(TSize &size);

If shrink-wrapping is requested, GetDesiredSize returns the size needed to
accommodate the borders, margins, and text; otherwise, if shrink-wrapping
is not requested, it returns the gadget’s current width and height.

See also: TGadget::GetDesiredSize

void Invalidate();.

Calls TGadget::GetInnerRect to compute the area of the text for the gadget

and then TGadget::InvalidateRect to invalidate the rectangle in the parent
window.

See also: TGadget::GetInnerRect, TGadget::Invalidate
void Paint (TDC& dc);

Calls TGadget::PaintBorder to paint the border. Calls TGadget::GetInnerRect to
calculate the area of the text gadget’s rectangle. If the text is left-aligned,
Paint calls dc.GetTextExtent to compute the width and height of a line of the
text. To set the background color, Paint calls dc.GetSysColor and sets the
default background color to face shading (COLOR_BTNFACE). To set the

ObjectWindows 2.0 Reference Guide

TTextGadget class

button text color, Paint calls dc.SetTextColor and sets the default button text
color to COLOR_BTNTEXT. To draw the text, Paint calls dc.ExtTextOut and
passes the parameters ETO_CLIPPED (so the text is clipped to fit the
rectangle) and ETO_OPAQUE (so the rectangle is filled with the current
background color).

See also: TGadget::Paint

TTileDirection enum ~ gadgetwi.h

Enumerates the horizontal and vertical direction for tiling the gadget.
enum TTileDirection;

See also: TGadget Window::Direction

TTinyCaption class tinycapt.h

Derived from TWindow, TTinyCaption is a mix-in class that handles a set of
non-client events to produce a smaller caption bar for a window. Whenever
it displays the caption bar, TTinyCaption checks the window style and
handles the Windows WS_SYSMENU, WS_MINIMIZEBOX,
WS_MAXIMIZEBOX display attributes. Thus, you can use TTinyCaption to
set the attributes of the tiny caption bar before enabling the caption. For
example,

Attr.Style = WS_POPUP | WS_BORDER | WS_SYSMENU | WS_MINIMIZEBOX |
WS_MAXIMIZEBOX;

TTinyCaption provides functions that let you manipulate Windows frame
types, border styles, and menus. You can adjust the height of the caption
bar or accept the default height, which is about one-half the height of a
standard caption bar. If you set CloseBox to TRUE,then the window will
close when you click the close box instead of displaying the system menu.

OWLCMD.CPP, in your OWLAPPS\OWLCMD directory, displays the
following tiny caption bar:

Close List Minimize
box box box

CAEOELSMOC W LE S AMELES

Chapter 1, Library reference : 4 383

I 1inyCaption class

| Border
CaptionHeight
CaptionFont
CloseBox
DownHit
Frame
isPressed
TCEnabled

WaitingForSysCmd

384

If you are using TTinyCaption as a mix-in class that does partial event
handling, call the DoXxxx function in the mix-in class (instead of the
EvXxxx function) to avoid duplicating default processing. The following
example from OWLCMD.CPP (a sample program on your distribution
disk) illustrates this process:

void TMyFrame::EvSysCommand (UINT cmdType, TPoint& p)
{
if (TTinyCaption::DoSysCommand (cmdType, p) == esPartial)
TFrameWindow: : EvSysCommand (cmdType, p);

The TFLoatingFrame class can be used with TTinyCaption to produce a close
box. See the sample programs OWLCMD.CPP and MDIFILE.CPP on your
distribution disk for examples of how to use TTinyCaption.

Protected data members

TSize Border;

Thin frame border size for dividers.

int CaptionHeight;

Height of the caption bar.

TFont* CaptionFont;

Font used for the text in the tiny caption bar.

BOOL CloseBox;

If TRUE, the window will close when the close box is clicked.
UINT DownHit;

Location of mouse-button press or cursor move.

TSize Frame;

Actual left and right, top and bottom dimensions of the caption bar.
BOOL IsPressed;

Is TRUE if a mouse button is pressed.

BOOL TCEnabled;

Is TRUE if the tiny caption bar is displayed.

BOOL WailtingForSysCmd;

Is TRUE if TTinyCaption is ready to receive system messages.

ObjectWindows 2.0 Reference Guide

Constructor

Destructor

DoCommand

DoLButtonUp

DoMouselMove

DoNCActivate

DoNCCalcSize

TTinyCaption class

Protected constructors and destructor

TTinyCaption():

Constructs a TTinyCaption object attached to the given parent window.
Initializes the caption font to 0 and TCEnabled to FALSE so that the tiny
caption bar is not displayed automatically.

~TTinyCaption():

Destroys a TTinyCaption object and deletes the caption font.

Protected member functions

TEventStatus DoCommand (UINT 1d, HWND hWndCtl, UINT notifyCode, LRESULT&
evRes) ;

Displays the system menu using ::TrackPopup so that TTinyCaption sends .
WM_COMMAND instead of WM_SYSCOMMAND messages. If a system
menu command is received, it’s then transformed into a
WM_SYSCOMMAND message. If the tiny caption bar is FALSE,
DoCommand returns esPartial.

See also: TTinyCaption::EvCommand, TEventStatus enum
TEventStatus DoLButtonUp (UINT hitTest, TPoint& screenPt);

Releases the mouse capture if the caption bar is enabled and a mouse
button is pressed. Sets hitTest, indicating the mouse button has been
pressed. Captures the mouse message and repaints the smaller buttons
before returning esComplete.

See also: TTinyCaption::EvLButtonUp

TEventStatus DoMouseMove (UINT hitTest, TPoint& screenPt);
Returns TEventStatus.

TEventStatus DoNCActivate (BOOL active, BOOL& evRes);

If the tiny caption is not enabled or is iconic, returns esPartial. Otherwise,
repaints the caption as an active caption and returns esComplete.

See also: TTinyCaption::EvNCActivate

TEventStatus DoNCCalcSize (BOOL calcValidRects,
NCCALCSIZE_PARAMS far&calcSize, UINT& evRes);

If the caption bar is not enabled or is iconic, returns esPartial. Otherwise,
calculates the dimensions of the caption and returns esComplete.

Chapter 1, Library reference \ 385

I LinyCaption class

DoNCHitTest

DoNCLButtonDown

DoNCPaint

DoSysCommand

DoSysMenu

EnableTinyCaption

386

See also: TTinyCaption::EvNCCalcSize
TEventStatus DoNCHitTest (TPoint& screenPt, UINT& evRes);

If the caption bar is not enabled, returns esPartial. Otherwise, sends a
message to the caption bar that the mouse or the cursor has moved, and
returns esComplete.

See also: TTinyCaption::EvNCHitTest
TEventStatus DoNCLButtonDown (UINT hitTest, TPointé& screenPt);

If the caption bar isn’t enabled, returns esPartial. Otherwise, determines if
the user released the button outside or inside a menu, and returns
esComplete.

See also: TTinyCaption::EvNCLButtonDown

TEventStatus DoNCPaint () ;

. If the caption bar isn’t enabled or is iconized, returns esPartial. Otherwise,

gets the focus, paints the caption, and returns esPartial, thus indicating that
a separate paint function must be called to paint the borders of the caption.

See also: TTinyCaption::EvNCPaint
TEventStatus DoSysCommand {UINT cmdType, TPointé& p);

If the caption bar isn’t enabled, returns esPartial. If the caption bar is
iconized and the user clicks the icon, calls DoSysMenu to display the menu
in its normal mode and returns esComplete.

See also: TTinyCaption::EvSysCommand
void DoSysMenu();

Returns a handle to the system menu and makes a copy of the system
menu.

void EnableTinyCaption(int ch=45, BOOL closeBox=FALSE);

Activates the tiny caption bar. By default, EnableTinyCaption replaces the
system window with a tiny caption window that doesn’t close when the
system window is clicked. If the closeBox argument is TRUE, clicking on the
system menu will close the window instead of bringing up the menu. You
can use EnableTinyCaption to hide the window if you are using a tiny
caption in a derived class. To diminish the tiny caption bar, try the
following values:

EnableTinyCaption(30, TRUE);

ObjectWindows 2.0 Reference Guide

TTinyCaption class

Or, to maximize the tiny caption bar, use these values:
EnableTinyCaption (48, TRUE);
EvCommand LRESULT EvCommand (UINT id, HWND hwndCtl, UINT notifyCode);

EvCommand provides extra processing for commands, but lets the focus
window and its parent windows handle the command first.

See also: TTinyCaption::DoCommand
EvLButtonUp void EvLButtonUp(UINT hitTest, TPoint& screenPt);

Responds to a mouse button-up message by calling DoLButtonUp. If
DoLButtonUp doesn’t return IsComplete, EvLButtonUp calls
TWindow::EvLButtonlUp.

See also: TTinyCaption::DoLButtonlUp
EvMouseMove void EvMouseMove (UINT hitTest, TPoint& screenbt);

Responds to a mouse-move message by calling DoMouseMove. 1f
DoMouseMove doesn’t return IsComplete, EvMouseMove calls
TWindow::EvMouseMove. '

See also: TTinyCaption::DoMouseMove
EvNCActivate BOOL EvNCActivate(BOOL active);

Responds to a request to change a title bar or icon by calling DoNCActivate.
If DoNCActivate doesn’t return esComplete, ENCActivate calls
TWindow::EvNCActivate.

See also: TTinyCaption::DoNCActivate
EvNCCalcSize UINT EVNCCalcSize (BOOL calcvalidRects, NCCALCSIZE PARAMS fark calcSize);

Responds to a request to change a title bar or icon by calling DoNCActivate.
If DoNCActivate doesn’t return esComplete, ENC Activate calls
TWindow::EvNCActivate.

Calculates the size of the command window including the caption and
border so that it can fit within the window.

See also: TTinyCaption::DoNCActivate
EvNCHitTest UINT EvNCHitTest (TPoint& screenPt);

Responds to a cursor move or press of a mouse button by calling
DoNCHitTest. If DONCHitTest doesn’t return esComplete, ENCHitTest calls
TWindow::EvNCHitTest.

See also: TTinyCaption::DoNCHitTest v
EvNCLButtonDown yo:id EyNCLRuttonDown (UINT hitTest, TPointé screenbt);

Chapter 1, Library reference ' 387

TTinyCaption class

EvNCPaint

EvSysCommand

GetCaptionRect

GetMaxBoxRect

GetMinBoxRect

GetSysBoxRect

PaintButton

PaintCaption

388

Responds to a press of the left mouse button while the cursor is within the
nonclient area of the caption bar by calling DoNCLButtonDown. If
DoNCLButtonDown doesn’t return esComplete, EUNCLButtonDown calls
TWindow::EvNCLButtonDown.

 See also: TTinyCaption::DoNCLButtonDown

void EvNCPaint();

Responds to a request to change a title bar or icon by calling DoNCActivate.
If DoNCActivate doesn’t return esComplete, EUNCActivate calls
TWindow::EvNCActivate.

Calls TWindow::EvNCPaint to paint the indicated device context or display
screen.

See also: TTinyCaption::DoNCActivate
void EvSysCommand (UINT cmdType, TPoint& p);

Responds to a WM_SYSCOMMAND message by calling DoSysCommand. If
DoSysCommand returns esPartial, EvSysCommand calls
TWindow::EvSysCommand.

See also: TTinyCaption::DoSysCommand

TRect GetCaptionRect();

Gets the area of the caption for changing or repainting.
See also: TTinyCap::PaintCaption

TRect GetMaxBoxRect () ;

Returns the size of the maximize box rectangle.

See also: TTinyCap::PaintMaxBoxRect

TRect GetMinBoxRect (};

Returns the size of the minimize box rectangle.

See also: TTinyCap::PaintMinBoxRect

TRect GetSysBoxRect‘() ;

Returns the size of the system box rectangle.

See also: TTinyCap::PaintSysBoxRect

void PaintButton(TDC& dc, TRect& boxRect, BOOL pressed);
Paints a blank button.

void PaintCaption(TWindowDC &) ;

ObjectWindows 2.0 Reference Guide

TTinyCaption class

Calls dc.SelectObject to select the given rectangle and dc.PatBlt to paint the
tiny caption bar using the currently selected brush for this device context.

See also: TDC::SelectObject, TDC::PatBIt
PaintCloseBox void PaintCloseBox(TDC& dc, TRect& boxRect, BOOL pressed);

Paints a close box on the tiny caption bar. You can override the default box
if you want to design your own close box.

See also: TTinyCap::GetSysBoxRect

PaintMaxBox void PaintMaxBox (TDC& dc, TRect& boxRect, BOOL pressed);
Paints a maximize box on the tiny caption bar.
See also: TTinyCap::GetMaxBoxRect

PaintMinBox void PaintMinBox (TDC& dc, TRect& boxRect, BOOL pressed);
Paints a minimize box on the tiny caption bar.
See also: TTinyCap::GetMinBoxRect

PaintSysBox void PaintSysBox(TDC& dc, TRect& boxRect, BOOL pressed);
Paints the system box

See also: TTinyCap::GetSysBoxRect

Response table entries
Response table entry Member function
EV_WM_NCACTIVATE EvNCActivate
EV_WM_NCCALCSIZE EvNcCalcSize
EV_WM_NCHITTEST EvNcHitTest
EV_WM_NCPAINT EvNcPaint
EV_WM_NCLBUTTONDOWN EvNcIButtonDown
EV_WM_LBUTTONUP EvLButtonUp
EV_WM_MOUSEMOVE EvMouseMove
EV_WM_SYSCOMMAND EvSysCommand
TToolBox class toolbox.h

Derived from TGadget Window, TToolBox arranges gadgets in a matrix in
which all columns are the same width (as wide as the widest gadget) and
all rows are the same height (as high as the highest gadget).

Chapter 1, Library reference , 389

TToolBox class

Constructor

GetDesiredSize

Insert

SetDirection

NumColumns

NumRows

390

You can specify exactly how many rows and columns you want for your
toolbox, or you can let TToolbox calculate the number of columns and rows
you need. If you specify AS_MANY_AS_NEEDED, the TToolBox calculates
how many rows or columns are needed based on the opposite dimension.
For example, if there are twenty gadgets, and you requested four columns,
your matrix would have five rows.

Public constructors

TToolBox (TWindow* parent, int numColumns = 2,
int numRows = AS_MANY AS_NEEDED,
TTileDirection direction = Horizontal, TModule* module = 0);

Constructs a TToolBox object with the specified number of columns and
rows and tiling direction. Overlaps the borders of the toolbox with those of
the gadget and sets ShrinkWrapWidth to TRUE.

Public member functions

void GetDesiredSize(TSize& size);

Overrides TGadget’s GetDesiredSize function and computes the size of the
cell by calling GetMargins to get the margins.

See also: TGadget Window::GetDesiredSize
void Insert(TGadget& gadget, TPlacement = After, TGadget* sibling = 0);

Overrides TGadget's Insert function and tells the button not to notch its
corners.

See also: - TGadget Window::Insert
virtual void SetDirection(TTileDirection direction);

Sets the direction of the tiling—either horizontal or vertical.

Protected data members

int NumColumns;
Contains the number of columns for the toolbox.

int NumRows;

ObjectWindows 2.0 Reference Guide

1 100IBOX Class

Contains the number of rows for the toolbox.

Protected member functions

TileGadgets TRect TileGadgets();

Tiles the gadgets in the direction requested (horizontal or vertical).
Calls PositionGadget to give derived classes an opportunity to adjust the
spacing between gadgets.

See also: TGadget Window::TileGadget

TTransferDirection enum window.h

TTransferDirection enum describes the following constants, which the
transfer functions uses to determine how to transfer data to and from the

transfer buffer.
Table 1.29 Constant Meaning
Transfer function :
constants tdGetData Retrieve data from the class.

tdSetData Send data to the class.
tdSizeData Return the size of data transferred by the class.

See also: TWindow::Transfer, T Window::TransferData

TValidator class validate.h

A streamable class, TValidator defines an abstract data validation object.
Although you will never actually create an instance of TValidator, it
provides the abstract functions for the other data validation objects.

The VALIDATE.CPP sample program on your distribution disk derives
TV Alidate App from T Application in the following manner:

class TValidateApp : public TApplication {
public:
TvalidateApp() : TApplication("validateapp") {}
void InitMainWindow() {
MainWindow = new TTestWindow(0, "Validate Dialog Input");

Chapter 1, Library reference ' : 391

I vaigarr class .

Constructor

Destructor

Error

HasOption

392

and displays the following message box if the user enter an invalid
employee ID:

Main application window

Input

After you choose
InputiEmployee from
the menu, the

) Employee Data
Name: [OwWL] Entry dialog box

ValidateApp

if an invalid employee
@ Value is not in the range 1 to 999. ID is entered’ the
ValidateApp message
box appears.

Public constructors and destructor

Tvalidator();
Constructs an abstract validator object and sets Options fields to 0.
virtual ~Tvalidator() {}

Destroys an abstract validator object.

Public member functions

virtual void Error();

Error is an abstract function called by Valid when it detects that the user has
entered invalid information. By default, TValidator::Error does nothing, but
derived classes can override Error to provide feedback to the user.

inline BOOL HasOption(int option);
Gets the Options bits. Returns TRUE if a specified option is set.

See also: TValidator::Options, Voxxxx constants

ObjectWindows 2.0 Reference Guide

IsValid

IsValidinput

SetOption

Transfer

TValidator class

virtual BOOL IsValid(const char far* str);

By default, TValidator:IsValid returns TRUE. Derived validator types can
override IsValid to validate data for a completed edit control. If an edit
control has an associated validator object, its Valid method calls the
validator object’s Valid method, which in turn calls IsValid to determine
whether the contents of the edit control are valid.

See also: TValidator:Valid
virtual BOOL IsValidInput (char far* str, BOOL suppressFill);

If an edit control has an associated validator object, it calls IsValidInput after
processing each keyboard event. This gives validators such as filter
validators an opportunity to catch errors before the user fills the entire item
or screen.

By default, IsValidInput returns TRUE. Derived data validators can override
IsValidInput to validate data as the user types it, returning TRUE if str holds
valid data and FALSE otherwise.

str is the current input string. suppressFill determines whether the validator
should automatically format the string before validating it. If suppressFill is
TRUE, validation takes place on the unmodified string str. If suppressFill is
FALSE, the validator should apply any filling or padding before validating
data. Of the standard validator objects, only TPXPictureValidator checks
suppressFill.

IsValidInput can modify the contents of the input string; for example, it can
force characters to uppercase or insert literal characters from a format
picture. IsValidInput should not, however, delete invalid characters from the
string. By returning FALSE, IsValidInput indicates that the edit control
should erase the incorrect characters.

inline void SetOption(int option);
Sets the bits for the Options data member.
See also: TValidator::Options, Voxxxx constants

virtual UINT Transfer(char far* str, void* buffer,
TTransferDirection direction);

Allows a validator to set and read the values of its associated edit control.
This is primarily useful for validators that check non-string data, such as
numeric values. For example, TRangeValidator uses Transfer to read and
write values instead of transferring an entire string.

Chapter 1, Library reference - : _ 393

1 vanaator class

UnsetOption

Valid

Options

394

By default, edit controls with validators give the validator the first chance
to respond to DataSize, GetData, and SetData by calling the validator’s
Transfer method. If Transfer returns anything other than 0, it indicates to the
edit control that it has handled the appropriate transfer. The default action
of TValidator:Transfer is to always return 0. If you want the validator to
transfer data, you must override its Transfer method.

Transfer’s first two parameters are the associated edit control’s text string
and the tdGetData or tdSetData data record. Depending on the value of
direction, Transfer can set str from buffer or read the data from str into buffer.
The return value is always the number of bytes transferred.

If direction is tdSizeData, Transfer doesn’t change either str or buffer; it just
returns the data size. If direction is tdSetData, Transfer reads the appropriate
number of bytes from buffer, converts them into the proper string form, and
sets them into str, returning the number of bytes read. If direction is
tdGetData, Transfer converts str into the appropriate data type and writes
the value into buffer, returning the number of bytes written.

See also: TTransferDirection enum

inline void UnsetOption(int option);

Unsets the bits specified in the Options data member.
See also: TValidator::Options, Voxxxx constants
inline BOOL Valid(const char far* str);

Returns TRUE if IsValid returns TRUE. Otherwise, calls Error and returns
FALSE. A validator’s Valid method is called by the Valid method of its
associated edit control.

Edit controls with associated validator objects call the validator’s Valid
method under two conditions. The first condition is when the edit control’s
ofValidate option is set and the edit control calls Valid when it loses focus.
The second condition is when the dialog box that contains the edit control
calls Valid for all its controls, usually because the user requested to close the
dialog box or to accept an entry screen.

Protected data members

WORD Options;

Options is a bitmap member used to control options for various
descendants of TValidator. By default, the TValidator constructor clears all
the bits in Options.

ObjectWindows 2.0 Reference Guide

TValidator: :TXVa|idator class

See also: wvoxxxx constants, TValidator::SetOption, TValidator::UnsetOption

TValidator::TXValidator class validate.h

A nested class, TXValidator describes an exception that results from an
invalid validator object.

Public constructors

Constructor TXValidator UINT resId = 1DS_VALIDATORSYNTAX) ;
Constructs a TXValidator object, setting the resource ID to
IDS_VALIDATORSYNTAX.

TVbxControl class vbxctl.h

Derived from TControl, TVbxControl provides the interface for Visual Basic
(VBX) controls. You can use this class to get or set the properties of VBX
controls. Under certain conditions, you can also use additional methods for
processing controls.

You can manipulate the control’s properties using either an index value or a
name. Several overloaded GetProp functions are provided so that you can -
access different types of properties. Similarly, several overloaded SetProp
functions let you set the properties of controls using either the name of the
VBX control or the index value. Consult the documentation for your VBX
controls to find the name that corresponds to the property you want to
manipulate.

The VBXCTLX.CPP sample program on your distribution disks displays
the following VBX controls:

Chapter 1, Library reference » o) ‘ 395

TVbxControl class

Constructor

Constructor

396

Click Test to display
the VBX controls

Pictures Gauges

Dialog Tester S

Test

Vi Gomeos —————————|

Drag fihm here...

and drop here!

Switches

If you want the TVbx control object to process VBX events, you must derive
a class from TVbxControl and add a response table that has entries for the
events you want processed. For information about creating response tables
and handling VBX messages, see TVbxEventHandler.

For more information about how to design programs that use VBX controls,
see Chapter 15 in the Object Windows Programmer’s Guide.

~ Public constructors and destructor

TVbhxControl (TWindow* parent, int id, const char far* vbxName, const char
far* vbxClass, const char far* title, int x, int y, int.w, int
h, TModule* module = 0);

Constructs a VBX control where parent points to the parent window, id is
the control’s ID, vbxName is the name of the file containing the VBX control,
vbxClass is the VBX class name, title is the control’s caption, x and y are the
coordinates in the parent window where the controls are to be placed, w
and & are the width and height of the control, and module is the hbrary
resource ID for the control.

TVbxControl (TWindow* parent, int resourceld, TModule* module = 0);

If a VBX control is part of a dialog resource, its ID can be used to construct
a corresponding (or alias) ObjectWindows object. You can use this
constructor if a VBX control has already been defined in the application’s

ObjectWindows 2.0 Reference Guide

Destructor

Addltem

Drag

GetEventindex

GetEventName

GetHCTL

GetNumEvents

GetNumProps

GetProp

TVbeontrQI class

resource file. resourceld is the resource ID of the VBX control in the resource
file.

~TVbxControl () ;
Destroys the TVbxControl object.

Public member functions

inline BOOL AddItem(int index, const char far* item);

Adds an item (itemn) to the list of VBX control items at the specified index
(index). Returns nonzero if successful.

BOOL Drag(int action);

Controls the drag and drop state of the VBX control according to the value
of action, which can be 0 (cancel a drag operation), 1 (begin dragging a
control), or 2 (end dragging a control).

inline int GetEventIndex(const char far* name);

Returns the index of the event associated with the name of the event passed
in name. Returns —1 if an error occurs.

inline const char far* GetEventName (int eventindex);

Returns a string containing the name of an event associated with the
integer event index number (eventindex). Returns 0 if an error occurs.

HCTL GetHCTL()

Returns a handle to a VBX control associated with this TVbxControl object.
inline int GetNumEvents();

Returns the total number of events associated with the VBX control.
inline int GetNumProps();

Returns the total number of properties associated with the VBX control.
inline BOOL GetProp(int propIndex, inté& valué, int arrayIndex = -1);

Gets an integer property value. An overloaded function, GetProp gets a
VBX control property using an index value. propIndex is the index value of
the property whose value you want to get. value is a reference to the
variable that will receive the property values. arraylndex, an optional
argument, specifies the position of the value in an array property if the
property is an array type. If the property isn’t an array type, arrayIndex
defaults to 1. See the third-party reference guide for your VBX controls to

Chapter 1, Library reference 397

TVbxControl class

GetProp

GetProp

GetProp
GetProp

GetProp

GetProp

GetProp

GetProp

Getprop

Getprop

398

determine a property’s data type. GetProp returns nonzero if successful. To
get the property by specifying the property index, use one of the following
six GetProp functions. ‘

inline BOOL GetProp(int propIndex long& value, int arrayIndex = -1);

.Gets a long property value.

BOOL GetProp(int propIndex, ENUM& value, -int arrayIndex=-1);

Gets an enumerated property value. For example, a list of options
associated with a font style might be defined as an enumerated type.

BOOL GetProp(int propIndex, HPIC& value, int arrayIndex=-1};

Gets a picture (value). HPIC is a handle to the picture.

inline BOOL GetProp(int proplndex float& value, int arrayIndex = -1);
Gets a floating-point property value.

inline BOOL GetProp(int propIndex string& value, int arrayIndex = -1);
Gets a string property value.

See also: TVbxControl::SetProp

inline BOOL GetProp(const char far* name, int& value,
int arrayIndex = -1);

Returns an integer data value. An overloaded function, GetProp gets a VBX
control property. proplndex is the index value of the property whose value
you want to get. value is a reference to the variable that will receive the
property value. arraylndex, an optional argument, specifies the position of
the value in an array property if the property is an array type. If the
property isn’t an array type, arraylndex defaults to —1. GetProp returns
nonzero if successful. To get the property by specifying the name of the
property, use one of the following five GetProp functions.

inline BOOL GetProp(const char far* name, long& value,
int arrayIndex = -1);

Gets a long property value.

inline BOOL GetProp(const char far* name, float& value,
int arrayIndex = -1);

Gets a floating-point property value.
BOOL Getprop(const char far* name, ENUM& value, int arrayIndex=-1);
Gets an enumerated property value.

BOOL Getprop (const char far* name, HPIC& value, int arrayIndex=-1);

ObjectWindows 2.0 Reference Guide

GetProp

GetProplndex

GetPropName

GetPropType

Table 1.30
Property and C++
types

IsArrayProp

Method

Move

Chapter 1, Library referencek

TVbxControl class

Gets a picture (value) property value. HPIC is a handle to the picture.

inline BOOL GetProp(const char far* name, string& value,
int arrayIndex = -1);

Gets a string property value.
See also: TVbxControl::SetProp
inline int GetPropIndex(const char far* name);

Gets the integer index value for the property name passed in name. Returns
-1 if an error occurs. This usually indicates that the property name passed
in name couldn’t be located.

const char far* GetPropName(int index);

Gets the name for the property index passed in index. Returns 0 if an error
occurs.

inline int GetPropType (int index);

Gets the type for the property specified by index. Returns 0 if an error
occurs. The following table lists the names of the property types and their
corresponding C++ data types.

Property type C++ type
PTYPE_CSTRING HSZ
PTYPE_SHORT short
PTYPE_LONG LONG
PTYPE_BOOL BOOL
PTYPE_COLOR DWORD or COLORREF
PTYPE_ENUM BYTE or ENUM
PTYPE_REAL float
PTYPE_XPOS LONG (Twips)
PTYPE_XSIZE LONG (Twips)
PTYPE_YPOS LONG (Twips)
PTYPE_YSIZE LONG (Twips)
PTYPE_PICTURE HPIC
PTYPE_BSTRING HLSTR

inline BOOL IsArrayProp(int index);
Returns TRUE if the property specified by index is an array property.
inljne BOOL Method(int method, long far* args);

Used for invoking customized methods, Method returns TRUE if a VBX
control can respond to the specified method (method).

inline BOOL Move(int x, int y, int w, int h);

399

TVbxControl class

Refresh

Removeltem

SetProp

SetProp

SetProp

SetProp

SetProp

SetProp

SetProp

SetProp

400

Moves a VBX control to the coordinates specified in x and y, which
designate the upper left corner screen coordinates. Resizes the VBX control
to w pixels wide by & pixels high. Returns nonzero if successful.

inline BOOL Refresh();
Repaints the control’s display area.
inline BOOL RemoveItem(int index);

Removes an item (specified by index). The item could be removed from a
list box, a combo box, or a database, for example.

inline BOOL SetProp(int propIndex, int value, int arrayIndex = -1};

Sets the property to an integer value. An overloaded function, SetProp sets a
VBX control property. proplndex is the index number of the property whose
value you want to set. value specifies the new value for the property.
arraylndex specifies the position of the value in an array property if the
property is an array type. If the property isn’t an array type, arraylndex
defaults to —1. To set the property by passing the property’s index value,

use one of the following six SetProp functions.

inline BOOL SetProp(int propIndex, long value, int arrayIndex = -1);
Sets the property to a long value.

BOOL SetProp{int propIndex, ENUM value, int arrayIndex=-1);

Sets the property to an enumerated value.

BOOL SetProp(int propIndex, HPIC value, int arrayIndex=-1);

Sets a picture to an HPIC, or picture, value.

inline BOOL SetProp(int propIndex, float value, int arrayIndex = -1);
Sets the property to a floating-point value.

inline BOOL SetProp(int propIndex, const string& value,
int arrayIndex = -1);

Sets the property to a string value.

inline BOOL SetProp(int propIndex, const char far* value,
int arrayIndex = -1); :

Sets the property to a character string value.
See also: TVbxControl::GetProp

inline BOOL SetProp(const char far* name, int value, int arrayIndex = -1);

ObjectWindows 2.0 Reference Guide

SetProp

SetProp
SetProp

SetProp

SetProp

SetProp

GetClassName

GetVBXProperty

PerformCreate

TVbxControl class

Sets the property to an integer value. An overloaded function, SetProp sets a
VBX control property. arraylndex specifies the position of the value in an
array property if the property is an array type. If the property isn’t an array
type, arrayIndex defaults to 1. To set the property by using the property’s
name, use one of the following six SetProp functions.

inline BOOL SetProp(const char far* name, long value,
int arrayIndex = -1);

Sets the property to a long value.

BOOL SetProp(int propIndex, ENUM value, int arrayIndex=-1);
Sets the property to an enumerated value.

BOOL SetProp(int propIndex, HPIC value, int arrayIndex = -1);
Sets the picture property to an HPIC, or picture, value.

inline BOOL SetProp(const char far* name, float value,
int arrayIndex = -1);

Sets the property to a floating-point value.

inline BOOL SetProp(const char far* name, const string& value,
int arrayIndex = -1);

Sets the property to a string value.

inline BOOL SetProp(const char far* name, const char far* value,
int arrayIndex = -1);

Sets the property to a character string value.

Protected member functions

char far* GetClassName();
Gets the name of the VBX window class.
BOOL GetVBXProperty (int propIndex, void far* value, int arrayIndex = -1);

Returns nonzero if the specified property exists. propIndex specifies the
index value of the integer property whose value you want to get. value
points to the variable where the value will be stored.

void PerformCreate(int menuOrId);

Creates a new control window and associates the VBX control with the
window. Establishes the control ID, the VBX control name and class, and
the window caption. Sets Attr.style to the window style of the control,

Chapter 1, Library reference ' 40

TVbxControl class

Attr.X and Attr.Y to the upper-left screen coordinates of the control, and
Attr.W and Attr.H to the width and height of the control.

SetVBXProperty BOOL SetVBXProperty (int propIndex, LONG value, int arrayIndex=-1);

Returns nonzero if the specified property value is set, or 0 if unsuccessful.
propindex is the index number of the property whose value you want to set.
value is the value to be stored. An optional argument, arrayIndex, which is
-1 by default, specifies the index value in an array of values of the property
to be set.

Response table entries

The TVbxControl class has no response table entries.

TVbxEventHandler class ; vbxctl.h

Derived from TEventHandler, TVbxEventHandler handles events from VBX
controls. Although you will never need to modify this class,
TVbxEventHandler needs to be mixed in with your window class so that it
can receive events from VBX controls. For example,

class TMyWindow:public TWindow, public TVhxEventHandler
{
// Include class definition here.

}

The following diagram illustrates the flow of information between VBX
controls, parent windows, and response tables.

402 ' ObjectWindows 2.0 Reference Guide

TVbxkventHanaler class

TMyWindow

o
“s‘mf‘w
e

-

-
e
m@?‘gwmg{

E’wms o

i
-

7
nis

e

fn‘é@?,ggx@m

.

i -
¢ - - ;e;é -
- ?5& »f‘g i -
o

m, ,,W;m E%xg
.
a,

gﬁ .

%‘“

L msx;mu \
. - 8 . gﬁ
o §§§§-§ s‘ﬁx s&q%égwmg%‘” g“%%; |
- .
E@é‘%nﬁm“ - w%:ﬁ‘

r“%

5 -
g%gg%g.ffmw * -
. m.mgé?

N

response table

When a VBX control fires an event (sends an event message), the following
sequence of events occurs:

1. The VBX Control sends a WM_VBXFIREEVENT message to
TMyWindow.

2. TMyWindow’s TVbxEventHandler finds a WM_VBXFIREEVENT message
in its response table and calls EvVbxDispatch.

3. If a child window is present, EvaxDzsputch dispatches the event to the
child.

4. If there is an event-handling function in the child window’s response
table, the child window handles the event.

5. If there is no child window, or the child window doesn’t handle the
event, EvVbxDispatch dispatches the event to TMyWindow’s response
table.

In other words, when a VBX control sends a WM_VBXFIREEVENT
message, the parent window’s TVbxEventHandler catches this message first,

Chapter 1, Library reference , 403

1 vbxkeventHandler class

404

converts it into a form understood by a window’s response table, and
attempts to send the converted message to the child window. If there is no
child window or if the child window doesn’t handle the message,
TVbxEventHandler sends the converted message to the parent window.
When the parent window receives the message, it calls the handler function
that corresponds to the message.

Two response table macros, EV_VBXEVENTNAME and
EV_VBXEVENTINDEX, map VBX events to handler functions. Of the two
macros, EV_VBXEVENTNAME is more commonly used.
EV_VBXEVENTINDEX is intended for use with code generators, which can
determine the event index values for a VBX control. Both macros call an
event handler function and point to the VBXEVENT structure. A typical
EV_VBXEVENTNAME response table entry might be

EV_VBXEVENTNAME (IDC_BUTTON1, "MouseMove", EvMouseMove);

where IDC_BUTTONI1 is the event ID, “EvMouseMove” is the event name,
and EvMouseMove is the handler function.

The lparam of a WM_VBX FIREEVENT message points to a VBXEVENT
structure, which holds information about the event and the control that
generated the event. The VBXEVENT structure contains the following
members:

typedef struct VBXEVENT {
HCTL Control;
HWND Window;

int 1D;
int EventIndex;
LPCSTR EventName;
int NumParams ;
LPVOID ParamList;
} VBXEVENT;
where

m Control is a handle to the VBX control sending the message.
m Window is the handle of the VBX control window.

m ID is the ID of the VBX control.

m Eventlndex is the event index.

m EventName is the name of the event. ,

m NumParams holds the number of event arguments.

m ParamList is a pointer to a list of pointers to the event’s arguments. The
ParamList data member provides access to the actual arguments of the
event.

ObjectWindows 2.0 Reference Guide

Table 1.31
Basic and C++ VBX
data types

Table 1.32
VBX event arguments

TVbxEventHandler class

To handle VBX events, your program uses an event-handling function. In
the following example, EvMouseMove is the name of the handler function,
which passes a pointer to the VBXEVENT event structure.
VBX_EVENTARGNUM is the macro that takes event, type, and an index
number as its parameters. event references the VBXEVENT structure, short
is the event argument type, and 0 and 1 are the index numbers of the
argument. The argument types and indexes can be found in the
documentation for the VBX control.

void EvMouseMove (VBXEVENT FAR* event)

{ .
short X = VBX_EVENTARGNUM (event, short, 0);
short Y = VBX_EVENTARGNUM(event, short, 1);

}

Because VBX controls were originally designed to be used with Visual
Basic, their event arguments are documented in terms of Basic data types.
The following table lists the Basic types, their C++ equivalents, and macros.

Basic C++ Macro

Boolean short VBX_EVENTARGNUM(event, short, index)
Control’ HCTL VBX_EVENTARGNUM(event, HCTL, index)
Double double VBX_EVENTARGNUM(event, double, index)
Enum short VBX_EVENTARGNUM(event, short, index)
Integer short VBX_EVENTARGNUM(event, short, index)
Long long VBX_EVENTARGNUM(event, long, index)
Single float VBX_EVENTARGNUM(event, float, index)
String HLSTR VBX_EVENTARGSTR(event, index)

The following table lists the standard VBX events and corresponding
arguments that the Borland C-++ VBX emulation library supports.

Event Arguments

Click None

DblClick None . .

DragDrop Source as Control, X as Integer, Y as Integer

DragOver Source as Control, X as Integer, Y as Integer, State as Integer
GotFocus None

KeyDown Key as Integer, Shift as Integer

KeyPress Key as Integer, Shift as Integer

KeyUp Key as Integer, Shift as Integer

LostFocus None

MouseDown X as Integer, Y as Integer
MouseMove Xas Integer, Y as Integer, Shift as Integer, Button as Integer
MouseUp X as Integer, Y as Integer, Shift as Integer, Button as Integer

Chapter 1, Library reference : 405

TVbxEventHandler class

Table 1.33
Shift key bit values

Table 1.34
Mouse button key
arguments

406

For the DragOver event, the state argument can be one of the following

values:

m 0, where the source control is being dragged within a target’s range.

m 1, where the source control is being dragged out of a target’s range.

m 2, where the source control is being moved from one position in the
target to another.

For both the DragOver and DragDrop events, the Control argument type
should be translated to HCTL (a handle to the VBX control) for C++. The X
and Y values are in pixels, not twips.

If a standard VBX event has a Shift key argument, the argument has these
bit values:

Key Bit value

Shift Ox1

Ctrl 0x2

Alt 0x4 (Used in connection with a Menu selection)

If a standard VBX event has a Button key argument, the argument has these
bit values:

Button Bit value
Left 0x1
Right 0x2
Middle 0x4

The following example shows how you might use these Shift key
arguments. For example, if you want the VBX control to perform some
action when the mouse is moved and the Shift key is pressed, you could
write a function such as ‘

void EvMouseMove (VBXEVENT FAR* event)

{
short X = VBX_EVENTARGNUM (event, short, 0);
short Y = VBX_EVENTARGNUM (event, short, 1);
short Shift = VBX_EVENTARGNUM (event, short, 2);
short Button = VBX_EVENTARGNUM (event, short, 3);
if (shift & 0x2)

MessageBox ("The control key is pressed.");

}

Borland C++ uses pixels to express the X and Y coordinate arguments of
standard VBX events. This differs from Visual Basic, which expresses
coordinates in twips (1/20th of a point or 1/1440 of an inch). Custom

ObjectWindows 2.0 Reference Guide

EvVbxDispatch

TView class

TVbxEventHandler class

events are usually expressed in terms of twips. You can use these functions
to convert between pixels and twips.

Function Meaning

VBXPix2TwpX() Converts an X argument from pixels to twips
VBXPix2TwpY() Converts a Y argument from pixels to twips
0
0

VBXTwp2PixX Converts an X argument from twips to pixels
VBXTwp2PixY Converts a Y argument from twips to pixels

Protected member functions

LRESULT EvVbxDispatch(WPARAM wp, LPARAM lp);

After TVbxEventHandler receives a WM_VBXFIREEVENT message from the
parent window, it calls EvVbxDispatch, which sends the message to the
correct event-handling function and passes a pointer to the VBXEVENT
structure.

Response table entries

Response table entry Member function

EV_MESSAGE(WM_VBXFIREEVENT, EvVbxDispatch) EvVbxDispatch

docview.h

Derived virtually from both TEventHandler and TStreamableBase, TView is
the interface presented to a document so it can access its client views.
Views then call the document functions to request input and output
streams. Views own the streams and are responsible for attaching and
deleting them.

Instead of creating an instance of TView, you create a derived class that has
access to TView'’s virtual functions. The derived class must have a way of
knowing the associated window (provided by Get Window), of describing

- the view (provided by GetViewName), and of displaying a range of data

(GetSelection). The view must also be able to restore the view later
(SetSelection) and to display the document title in its window (SetDocTitle).

TView uses several event handler functions to query views, commit, and
close views. For example, to query views to find the one with the focus, you

Chapter 1, Library reference o 407

TView class

Property enum

Tag

Constructor

Destructor

408

would use the vnls Window function, passing a handle to the current
window. See Chapter 2 for a list of these response functions.

View classes can take various forms. For example, a view class can be a
window (through inheritance), can contain a window (an embedded
object), can reference a window, or can be contained within a window
object. A view class might not even have a window, as in the case of a voice
mail or a format converter. Some remote views (for example, those
displayed by OLE 2.0 or DDE servers) might not have local windows.

Public data members

enum {
PrevProperty = 0,
ViewClass,
ViewName,
NextProperty,

b

These property values, defined for TView, are available in classes derived
from TView. PrevProperty and NextProperty are delimiters for every
document’s property list. See Chapter 9 in the Object Windows