
Borland·
ObieclWindows®)
lor C++ .

Programmer's Guide

Borland
:. ObjectWindows®
. for C++
. Version 2.0

Borland may have patents andbr pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents.

COPYRIGHT © 1991, 1993 by Borland International. All rights reserved. All Borland products
are trademarks or registered trademarks of Borland International, Inc. ObjectWindows is a
registered trademark of Borland International, Inc. Other brand and product names are
trademarks or registered trademarks of their respective holders.

Borland International, Inc.
100 Borland Way, Scotts Valley, CA 95067-3249

PRINTED IN THE UNITED STATES OF AMERICA

1 EOR1093
9394959697-9876543
W1

Contents

Introduction 1
ObjectWindows documentation 1

ObjectWindows Programmer's Guide
organization 2

Typefaces and icons used in this book 3

Chapter 1 ObjectWindowsoverview 5
Working with class hierarchies 5

Using a class 5
Deriving new classes 5
Mixing object behavior 6
Instantiating classes 6
Abstract classes 7

Inheriting members ~ 7
Types of member functions 8

Virtual functions 8
N onvirtual functions 8
Pure virtual functions . 9
Default placeholder functions '. 9

Object typology ' 9
Window classes 10

Windows l0
Frame windows 10
MDI windows 10
Decorated windows 10

Dialog box classes 10
Common dialog boxes ~ 11
Other dialog boxes 11

Control classes 11
Standard Windows controls 11
Widgets 11
Gadgets ; ,11
Decorations 12

Graphics classes 12
DC classes 12,
GDI objects 13

Printing classes 13
Module and application classes 13
Doc/View classes 14
Miscellaneous classes 14

Menus 14
Clipboard 14

Chapter 2 Learning ObjectWindows 15
Getting started .. 15

Files in the tutorial 15
Step 1: The basic application. 16

Where to find more information 17
Step 2: Handling Windows events 18

Adding a window class 18
Adding a response table 18
Event-handling functions 20
Encapsulated API calls. 21
Overriding the CanClose function 21
Using TMyWindow as the main window. . .. 22
Where to find more information 22

Step 3: Writing in the window 23
Constr.ucting a device context. 23
Printing in the device context 24
Clearing the window 24
Where to find more information ... ,....... 25

Step 4: Drawing in the window 25
Adding new events. .. 25
Adding a TClientDC pointer. 26

Initializing DragDC 27
Cleaning up after DragDC 27

Where to find more information 28
Step 5: Changing line thickness 28

Adding a pen .. 28
Initializing the pen 28
Selecting the pen into DragDC 29

Changing the pen size 29
Constructing an input dialog box 30
Executing an input dialog box•.... 30

Calling SetPenSize 31
Cleaning up after Pen .. 32
Where to find more information 32

Step 6: Pa~ting the window and adding
menus, 33

Repainting the window '" 33
. Storing the drawing 33
TPoints 34
TPointsIterator : " 35
Using the,array classes. " 36
Paint function :.................. 37

Menu commands 38

Adding event identifiers 39
Adding menu resources' 39
Adding response table entries 40
Adding event handlers , 40
Implementing the event handlers 40

Where to find more information 41
Step 7: Using common dialog boxes 41

Changes to TMyWindow 42
FileData 42
IsDirty 42
IsNewFile .' 42

Improving CanClose 43
CmFileSave function 44
CmFileOpen function ; 44
CmFileSaveAs function 45
Opening and saving drawings 45

OpenFile function 46
SaveFile function ... 46

CmAbout function 47
Where to find more information 48

Step 8: Adding multiple lines 48
TLine class 48
TUnes array " 49
Insertion and extraction of TUne objects 50

Insertion operator« 50
Extraction operator > > 50

Extending TMyWindow 51
Paint function 51

Where to find more information 52
Step 9: Changing pens 53

Changes to the TUne class 53
Pen access functions 54
Draw function 55
Insertion and extraction operators 56

Changes to the TMyWindow class 56
CmPenColor function 56

Where to find more information 57
Step 10: Adding decorations 57

Changing the main window 58
Creating the status bar 58
Creating the control bar 59

Constructing TControlBar 59
Building button gadgets 60
Separator gadgets 61
Inserting gadgets into the control bar 61 .

Inserting objects into a decorated frame 62
Where to find more information 63

Step 11: Moving to the Doc/View model 63
Organizing the application source 63

Doc/View model 64
TDrawDocument class , 65

Creating and destroying TDrawDocument . 65
Storing line data ' 65
Implementing TDocument virtual
functions .. 65
Opening and closing a drawing , 66
Saving and discarding changes 68
Accessing the document's data , 70

TDrawView class 71
TDrawView data members ., , 72
Creating the TDrawView class 72
Naming the class ' ... , 73
Protected functions .. 73
Event handling in TDrawView , 74

Defining document templates , 75
Supporting Doc/View in the application 76

InitMain Window function , 76
InitInstance function. 77
Adding functions to TMy App 78
CmAbout function 78
EvDropFiles function , 79
EvNewView function. 80
EvClose View function 81

Where to find more information 82
Step 12: Moving to MDI ~. 82

Supporting MDI in the application 82
Changing to a decorated MDI frame , 82
Changing the hint mode 83
Setting the main window's menu 84
Setting the document manager 84
InitInstance function , 84
Opening a new view. 84
Modifying drag 'and drop 85
Closing a view .. 86

Changes to TDrawDocument and
TDrawView 86 ~

Defining new events , 87
Changes to TDrawDocument , 88
Property functions 89
New functions in TDrawDocument , 92
Changes to TDrawView , 95
New functions in TDrawView 95

TDrawUstView , 97
Creating the TDrawUstView class. 98
Naming the class .. , , 99
Overriding TView and TWindow virtual
functions .. 99
Loading and formatting data 100

Event handling in TDrawListView 101
Where to find more information 104

For further study 104

Chapter 3 Application objects 107
The minimum requirements 108

Including the header file. 108
Creating an object 108
Finding the object 108
Creating the minimum application 109

Initializing applications 109
Constructing the application object 109

Using WinMain and OwlMain 110
Initializing the application 111
Initializing each new instance 113
Initializing the main window 113

Specifying the main window display
mode 114
Changing the main window 115

Application message handling 115
Extra message processing 115
Idle processing " : .. 115

Closing applications 116
Changing closing behavior 116

Closing the application 116
Modifying CanClose 117

Using control libraries 117
Using the Borland Custom Controls Library. 117
Using the Microsoft 3-D Controls Library ... 117

Chapter 4 Interface objects 119
Why interface objects? 120

What do interface objects do? 120
The generic interface object: TWindow 120
Creating interface objects 121

When is a window handle valid? 121
Making interface elements visible 122
Object properties : ;. 122
Window properties 123

Destroying interface objects 123
Destroying the interface element 124
Deleting the iitterface object 124

Parent and child interface elements 124
Child-window lists 125
Constructing child windows 125
Creating child interface elements 126
Destroying windows 127
Automatic creation 127
Manipulating child windows 128

iii

Operating on all children: ForEach 128
Finding a specific child 129
Working with the child list 129

Registering window classes 129

Chapter 5 Event handling 131
Declaring response tables 132
Defining response tables 132
Defining response table entries 133

Command message macros. 133
Windows message macros 135
Child ID notification message macros 136

Chapter 6 Window objects 139
Using window objects 139

Constructing window objects 139
Setting creation attr~butes 140

Overriding default attributes 141
Child-window attributes 141

Creating window interface elements 142
Layout windows '" 143

Layout constraints 143
Defining constraints 144
Defining constraining relationships 147
Indeterminate constraints 148

Using layout windows ',' 148
Frame windows .. 150

Constructing frame window objects 150
Constructing a new frame window 150
Constructing a frame window alias 151

Modifying frame windows 152
Decorated frame windows 152

Constructing decorated frame window
objects 153
Adding decorations to decorated frame
windows .. 154

MDI windows 154
MDI applications. .. 154

MDI Window menu 155
MDI child windows 155
MDI in ObjectWindows 155

Building MDI applications 155
Creating an MDlframe window , ... 156
Adding behavior to an MDI client
window 156
Creating MDI child windows 157

Chapter 7 Menu objects 159
Constructing menu objects 159
Modifying menu objects 160

Querying menu objects 161
Using system menu objects ; ,161
Using pop-up menu objects 162
Adding men~ resources to frame windows ... 162

Chapter 8 Dialog box objects , 163
Using dialog box objects 163

Constructing a dialog box object 164
Calling the constructor 164

Executing a'dialog box 164
Modal dialog boxes 164
Modeless q.ialog boxes 165
Using autocreation with dtalog boxes 167
Managing dialog boxes 168
Handling errors executing dialog boxes ., 168

Closing the dialog box 168
Using a dialog box as your main window 169
Manipulating controls in dialog boxes 170

Communicating with controls 170
Associating interface objects with controls 171

Control objects 171
Setting up controls 172

Using dialog boxes 173
Using input dialog boxes 174
Using common dialog boxes 174

Constructing common dialog boxes 174
Executing common 'dialog boxes 175

Using color common dialog boxes 176
Using font common dialog boxes 177
Using file'open common dialog boxes 178
Using file save common dialog boxes 179
Using find and replace common dialog
boxes : 180

Constructing and creating find and replace
common dialog boxes 180
Processing find-and-replace messages 181
Handling a Find Next command 182

Using printer common dialog boxes 182

Chapter 9 DocNiew objects 185
How documents and views work together 185

Documents , 187
Views " 187
Associating document and view classes 188
Managing Doc/View . ' 189

Document templates 189
Designing document template classes 189
Creating template class instances 190
Modifying existing templates 192

iv

Using the document manager. 192
Constructing the document manager 194
TDocManager event handling 195

Creating a document class 196
Constructing TDocument 196
Adding functionality to documents 196
Data access functions ' 197,

Stream access ~ 197
Stream list .. 198
Complex data access .. : 198
Data access helper functions 199

Closing a document 199
Expanding document functionality 200
Working with the document manager. 200
Working with views 200

Creating a view class 202
Constructing TView 202
Adding functionality to views 203

TView virtual functions 203
Adding a menu .. 203

Adding a display to a view 203
Adding pointers to interface objects 204
Mixing TView with interface objects 204

Closing a view .. 205
Doc/View event handling. 205

Doc/View event handling in the application
object ','" ' 205
Doc/View event handling in a view 206

Handling predefined Doc/View events .. 207
Adding custom view events 207

Doc/View properties 209
Property values and names 209
Accessing property information. 210

Getting and setting properties 211

Chapter 10 Control objects 213
Control classes ; .. 213

What are control objects? 214
Constructing and destroying control objects .. 214

Constructing control objects " 214
Adding the control object pointer data
member 215
Calling control object constructors 215
Changing control attributes .'........... 216
Initializing the control 216

Showing controls 217
Destroying the control 217

Communicating with control objects. 217
Manipulating controls 217

Responding to controls 217
Making a window act like a dialog box 218

Using particular controls 218
Using list box controls 218

Constructing list box objects 218
Modifying list boxes 218
Querying list boxes 219
Responding to list boxes 220

Using static controls 220
Constructing static control objects 221
Modifying static controls 221
Querying static controls 222

Using button controls 222
Constructing buttons 222
Responding to buttons 222

Using check box and radio button controls .. 223
Constructing check boxes and radio
buttons 223
Modifying selection boxes 224
Querying selection boxes 224

U sing group boxes 225
Constructing group boxes 225
Grouping controls 225
Responding to group boxes 225

Using scroll bars 225
Constructing scroll bars 225
Controlling the scroll bar range 226
Controlling scroll amounts 226
Querying scroll bars 226
Modifying scroll bars 226
Responding to scroll-bar messages 227

Using sliders and gauges 228
Using edit controls 229

Constructing edit controls 229
Using the Clipboard and the Edit menu .. 229
Querying edit controls 230
Modifying edit controls 231

Using combo boxes 231
Varieties of combo boxes 232
Choosing combo box types 232
Constructing combo boxes 233
Modifying combo boxes 233
Querying combo boxes 233

Setting and reading control values 234
Using transfer buffers 234
Defining the transfer buffer 235

·List box transfer 236
Combo box transfer 236

v

Defining the corresponding window or dialog
box 237

Using transfer with a dialog box 237
Using transfer with a window 237

Transferring the data 238
Transferring data to a window 238
Transferring data from a dialog box 238
Transferring data from a window 238
Supporting transfer for customized
controls .. 238

Chapter 11 Gadget and gadget window objects 241
Gadgets. .. 241

Class TGadget 241
Constructing and destroying TGadget ... 241
Identifying a gadget 242
Modifying and accessing gadget
appearance .. 243
Bounding the gadget 243
Shrink wrapping a gadget 244
Setting gadget size 244
Matching gadget colors to system colors . 244
TGadget public data members 245
Enabling and disabling a gadget 245

Deriving from TGadget 246
Initializing and cleaning up 246
Painting the gadget. 246
Invalidating and updating the gadget 247
Mouse events in a gadget 247

ObjectWindows gadget classes 248
Class TSeparatorGadget 249
Class TTextGadget 249

Constructing and destroying
TTextGadget 249
Accessing the gadget text 250

Class TBitmapGadget 250
Constructing and destroying
TBitmapGadget .. 250
Selecting a new image 250
Setting the system colors 251

Class TButtonGadget 251
Constructing and destroying
TButtonGadget 251
Accessing button gadget information 252
Setting button gadget style 253
Command enabling 253
Setting the system colors 253

Class TControlGadget 253

Constructing and destroying
TControlGadget 253

Gadgetvvindovvs 254
Constructing and destroying
TGadgetWindovv 254
Creating a gadget vvindovv 255
Inserting a gadget into a gadget vvindovv . 255
Removing a gadget from a gadget
vvindovv 256
Setting vvindovv margins and layout
direction 256
Laying out the gadgets 256
~otifying the vvindovv vvhen a gadget changes
SIze 257
Shrink vvrapping a gadget vvindovv 257
Accessing vvindovv font 257
Capturing the mouse for a gadget 258
Setting the hint mode 258
Idle action processing 259
Searching through the gadgets 259

Deriving from TGadgetWindovv 259
Painting a gadget vvindovv 259
Size and inner rectangle 260
Layout units 260
Message response functions 261

ObjectWindovvs gadget vvindovv classes 261
Class TControlBar 262
Class TMessageBar 262

Constructing and destroying
TMessageBar 262
Setting message bar text 263
Setting the hint text 263

Class TStatusBar 263
Constructing and destroying TStatusBar .. 263
Inserting gadgets into a status bar 264
Displaying mode indicators 264
Spacing status bar gadgets 264

Class TToolBox 265
Constructing and destroying TToolBox ... 265
Changing tool box dimensions 266

Chapter 12 Printer objects 267
Creating a printer object 267
Creating a printout object 269
Printing vvindovv contents 270
Printing a document 271

Setting print parameters 271
Counting pages 272
Printing each page 272

vi

Indicating further pages 272
Other printout considerations. 273

Choosing a different printer 273

Chapter 13 Graphics objects 275
GDI class organization .. 275
Changes to encapsulated GDI functions 276
Working vvith device contexts 278

TDC class 279
Constructing and destroying TDC 279
Device-context operators 280
Device-context functions 280
Selecting and restoring GDI objects 281
Dravving tool functions 282
Color and palette functions 282
Dravving attribute functions 282
Vievvport and vvindovv mapping
functions .. 283
Coordinate functions 283
Clip and update rectangle and region
functions .. 283
Metafile functions .. 283
Current position functions 283
Font functions 284
Path functions 284
Output functions 284

Object data members and functions 285
TPen class .. 286

Constructing TPen 286
Accessing TPen 287

TBrush class .. 288
Constructing TBrush 288
Accessing TBrush 289

TFont class 290
Constructing TFont .. 290
Accessing TFont 291

TPalette class 291
Constructing TPalette 292
Accessing TPalette 292

Member functions .. 293
Extending TPalette 294

TBitmap class .. 294
Constructing TBitmap 295
Accessing TBitmap. .. 296

Member functions .. 297
Extending TBitmap .. 298

TRegion class .. 298
Constructing and destroying TRegion 298
Accessing TRegion 300

Member functions 301
Operators 302

Tkon class . 304
Constructing Tkon 304
Accessing Tkon 306

TCursor class 306
Constructing TCursor 306
Accessing TCursor 307

TDib class 308
Constructing and destroying TDib 308
Accessing TDib 309

Type conversions 309
Accessing internal structures 310
Clipboard 310
DIB information 310
Working in palette or RGB mode 311
Matching interface colors to system
colors 313

Extending TDib 313

Chapter 14 Validator objects 315
The standard validator classes 315

Validator base class 316
Filter validator class 316
Range validator class 316
Lookup validator class 316
String lookup validator class '" 317
Picture validator class 317

Using data validators 318
Constructing an edit control object 318
Constructing and assigning validator
objects 318

Overriding validator member functions 319
Member function Valid 319
Member function IsValid 319
Member function Is ValidInput 320
Member function Error 320

Chapter 15 Visual Basic control objects 321
Using VBX controls 321
VBX control classes ,. 322

TVbxControl class 322
TVbxControl constructors 323
Implicit and explicit construction 324

TVbxEventHandler class 325
Handling VBX control messages 325

Event response table 325
Interpreting a control event 326
Finding event information 327

vii

Accessing a VBX control 327
VBX control properties. 328

Finding property information. 328
Getting control properties 328
Setting control properties 329

VBX control methods " 330

Chapter 16 ObjectWindows dynamic-link
libraries 333

Writing DLL functions 333
DLL entry and exit functions 334

LibMain 334
WEP 335
DllEntryPoint 335

Exporting DLL functions 335
Importing (calling) DLL functions 336

Writing shared ObjectWindows classes 336
Defining shared classes 336

The TModule object 337
Using ObjectWindows as a DLL 338
Calling an ObjectWindows DLL from a
non-ObjectWindows application 338
Implicit and explicit loading 339
Mixing static and dynamic-linked libraries ... 339

Appendix A Converting ObjectWindows 1.0 code to
ObjectWindows 2.0 341

Converting your code 342
Converting to Borland C++ 4.0 342
OWLCVT conversions 344
OWLCVT command-line syntax. 344
Backing up your old source files 345
How to use OWLCVT from the command
line '" " 345
How to use OWLCVT in the IDE ... '. 346

Conversion checklist. .. 347
Conversion procedures 349

Handling messages and events 349
Removing DDVT functions 350
Adding an event response table
declaration 352
Adding an event response table
definition 352
Adding event response table entries 352
Event response table sample 356

Changing your window objects 356
Converting constructors 357

Calling Windows API functions 358
Changing header files 359

U sing the new header file locations 359
Using the new streamlined ObjectWindows
header files 360

ObjectWindows resources 360
Compiling resources 360
Menu resources 361

Constructing virtual bases 361
Downcasting virtual bases to derived types . 361
Moving from Object-based containers to the
BIDS library 363
Streaming 363

Removed insertion and extraction
operators 363
Implementing streaming 363

MDI classes 364
Making the frame and client 365
Making a child window 366
WB_MDICHILD 366
Relocated functions 367
Replacing ActiveChild with
GetActiveChild 367

Main Window variable 367
Using a dialog as the main window 368
TApplication message processing functions. 368

GetModule function 369
DefXXXProc functions 370

Overriding 370
Using DefWndProc for registered
messages 371

Paint function , 371

viii

CloseWindow, ShutDown Window, and Destroy
functions .. 371
ForEach and FirstThat functions 372
TComboBoxData and TListBoxData classes. 372
TEditWindow and TFileWindow classes ... 373

Using the OLDFILEW example 373
Adding TEditSearchand TEditFile client
windows. .. 374

TSearchDialog and TFileDialog classes 375
ActivationResponse function 375
Dispatch-handling functions 375
DispatchAMessage function 375

General messages 376
The DefProc parameter 376
Command messages. 376

KBHandlerWnd 377
MAXPATH 377
Style conventions 377

Changing WinMain to OwlMain 377
Data types and names 378
Replacing MakeWindow with Create 379
Replacing ExecDialog with Execute. 379
Getting the application and module
instance 379
Defining WIN30, WIN31, and STRICT ... 380

Troubleshooting 380
OWLCVT errors 380
Compiler warnings , 380
Compiler errors 381
Run-time errors .. 381

Index 385

Tables

1.1 Data member inheritance 8
1.2· ObjectWindows-encapsulated device

contexts : 13
1.3 CDI support classes 13
5.1 Command message macros 134
5.2 Message macros 134
5.3 Child ID notification macros 136
6.1 Window creation attributes 141
6.2 Default window attributes 142
6.3 Standard MDI child-window menu

behavior 157
7.1 TMenu constructors for creating menu

objects 159
7.2 TMenu member functions for modifying menu

objects 160
7.3 TMenu member functions for querying menu

objects 161
8.1 ObjectWindows-encapsulated dialog boxes .173
8.2 Common dialog box TData members 174
8.3 Color common dialog box TData data

members 176
8.4 Font common dialog box TData data

members : 177
8.5 File open and save common dialog box TData

data members 178
8.6 Printer common dialog box TData data

membets 182
9.1 Document manager's File menu 189
9.2 Predefined Doc/View event handlers 207
9.3 Doc/View property attributes 210
10.1 Controls and their ObjectWindows

classes : 213

ix

10.2 TListBox member functions for modifying list
boxes ' 219

10.3 TListBox member functions for querying list
boxes 219

10.4 List box notification messages 220
10.5 TCheckBox member functions for modifying

selection boxes 224
10.6 TCheckBox member functions for querying

selection boxes 224
10.7 Notification codes and TScrollBar member

functions 228
10.8 TEdit member functions and Edit menu

commands 230
10.9 TEdit member functions for querying edit

controls 230
10.10 TEdit member functions for modifying edit

controls 231
10.11 Summary of combo box styles 232
10.12 TComboBox member functions for

modifying combo boxes 233
10.13 TComboBox member functions for querying

combo boxes ; 234
10.14. Transfer buffer members for each type of

control 235
10.15 TListBoxData data members 236
10.16 TListBoxData member functions 236
10.17 TComboBoxData data members 236
10.18 TComboBoxData member functions 237
10.19 Transfer flag parameters , 239
11.1 Hint mode flags 258
16.1 Allowable library combinations ~ .340
A.1 Message response member functions and

event response table entries 353

Figures

1.1 TDialog inheritance 7 9.1 Doc/View model diagram 186
4.1 Interface elements vs. interface objects , ... 119

x

Introduction

ObjectWindows 2.0 is the Borland C++ application framework for
Windows 3.1, Win32S, and Windows NT. ObjectWindows lets you build
full-featured Windows applications quickly and easily. ObjectWindows 2.0
provides the follo~ing features;

• Ease of portability between 16- and 32-bit platforms

• Automated message cracking

• Robust exception and error handling

• Allows easy porting to other compilers and environments because it
doesn't use proprietary compiler and language extensions

• Encapsulation of Windows CDI objects

• Doc/View classes for easy data abstraction and display

• Printer and print preview classes

• Support for Visual Basic controls

• Input valida tors

ObjectWindows documentation

Introduction

The ObjectWindows 2.0 documentation set consists of the Object Windows
Programmer's Guide (this manual), the Object Windows Reference Guide, and
sections of the Quick Reference Card.

The Object Windows Reference Guide presents a comprehensive, alphabetical
listing and description of all ObjectWindows classes, their member
functions, data members, and so on. The Object Windows Reference Guide
should be your reference for specific technical data about an
ObjectWindows class or function.

The Quick Reference Card contains capsule descriptions of the
ObjectWindows classes, along with a diagram of the ObjectWindows
hierarchy. The Quick Reference Card can be used to quickly check
relationships among classes.

ObjectWindows
Programmer's
Guide
organization

2

The Object Windows Programmer's Guide presents topics in a task-oriented
fashion, describing how to use functional groups of ObjectWindows classes
to accomplish various tasks. The manual is organized as follows:

This chapter, Introduction, introduces you to ObjectWindows 2.0 and
directs you to other chapters of the book for more information.

Chapter 1: ObjectWindows overview presents a brief, nontechnical
overview of the ObjectWindows hierarchy.

Chapter 2: Learning ObjectWindows contains a 12-step tutorial that
introduces a number of features of ObjectWindows 2.0.

Chapter 3: Application objects describes application objects and the
application class T Application.

Chapter 4: Interface objects discusses the use of interface objects in the
ObjectWindows 2.0 programming model. Interface objects are instances of
classes representing windows, dialog boxes, and controls; these classes are
based on the class TWindow.

Chapter 5: Event handling explains response tables, the ObjectWindows 2.0
method for event handling.

Chapter 6: Window objects describes window objects, including how to use'
frame windows, layout windows, decorate,d frame windows, and MDI
windows.

Chapter 7: Menu objects discusses the use of menu objects and the TMenu
class. .

Chapter 8: Dialog box objects explains how to use dialog box objects (such
as TDialog and TDialog-derived objects) and also Windows common dialog
boxes, which are based on the TCommonDialog class.

Chapter 9: DocNiew objects presents the ObjectWindows 2.0 Doc/View
programming model, which uses the TDocument, TView, and TDocManager
classeS.

Chapter 10: Control objects discusses the use of various controls, such as
buttons., list boxes, edit boxes, and so on.

Chapter 11: Gadget and gadget window objects explains gadgets and
gadget windows, including control bars, status bars, button gadgets, and so
on.

Chapter 12: Printer objects describes how to use the printer and print
preview classes.

OWL Programmers Guide

Chapter 13: Graphics objects presents the classes that encapsulate
Windows GDI.

Chapter 14: Validator objects describes the use of input validators in edit
controls.

Chapter 15: Visual Basic control objects discusses using Visual Basic
controls and the TVbxControl class in your ObjectWindows application.

Chapter 16: ObjectWindows dynamic-link libraries explains the use of
ObjectWindows-encapsulated dynamic-link libraries (DLLs).

Appendix A: Converting ObjectWindows 1.0 code to ObjectWindows 2.0
describes how to convert your ObjectWindows 1.0 applications so they
work properly in ObjectWindows 2.0.

Typefaces and icons used in this book

Boldface Boldface type indicates language keywords (such as char, switch, and
begin) and command-line options (such as -rn).

Italics Italic type indicates program variables and constants that appear in text.
This typeface is also used to emphasize certain words, such as new terms.

Monospace Monospace type represents text as it appears onscreen or in a program. It is
also used for anything you must type literally (such as TD32 to start up the
32-bit Turbo Debugger);

Key 1 This typeface indicates a key on your keyboard. For example, "Press Esc to
exit a menu."

Key1+Key2 Key combinations produced by holding down one or more keys
simultaneously are represented as Key1 +Key2. For example, you can execute
the Program Reset command by holding down the Ctr! key and pressing F2
(which is represented as Ctrl+F2).

MenulCommand This command sequence represents a choice from the men~ bar followed
by a menu choice. For example, the command "File I Open" represents the
Open command on the File menu.

Introduction

... This icon indicates material you should take special notice of.

This manual also uses the following icons to indicate sections that pertain
to specific operating environments:

16-bit Windows 32-bit Windows

3

4 OWL Programmers Guide

c H A p T E R 1

ObjectWindows overview

This chapter presents an overview of the ObjectWindows 2.0 hierarchy. It
also describes the basic groupings of the ObjectWindows 2.0 classes,
explains how each class fits together with the others, and refers you to
specific chapters for more detailed information about how to use each class.

Working with class hierarchies

Using a class

Deriving new
classes

This section describes some of the basic properties of classes, focusing
specifically on ObjectWindows classes. It covers the following topics:

• What you can do with a class

• Inheriting members

• Types of member functions

There are three basic things you can do with a class:

• Derive a new class from it

• Add its behavior to that of another class

• Create an instance of it (instantiate it)

To change or add behavior to a class, you derive a new class from it:

class TNewWindow : public TWindow
{

}i

public:
TNewWindow(...) i

II ...

When you derive a new class, you can do three things:

• Add new data members

• Add new member functions

• Override inherited member functions

Chapter 1, ObjectWindows overview 5

Mixing object
behavior

Instantiating
classes

6

Adding new members lets you add to or change the functionality of the
base class. You can define a new constructor for your derived class to call
the base classes' constructors and initialize any new data members you
might have added.

With ObjectWindows designed using multiple inheritance, you can derive
new classes that inherit the behavior of more than one class. Such "mixed"
behavior is different from the behavior you get from single inheritance
derivation. Instead of inheriting the behavior of the base class and being
able to add to and change it, you're inheriting and combining the behavior of
several classes.

As with single inheritance derivation, you can add new members and
override inherited ones to change the behavior of your new class.

To use a class, you must create an instance of it. There are a number of
ways you can instantiate a class:

• You can use the standard declaration syntax. This is the same syntax you
use to declare any standard variable such as an int or char. In this
example, app is initialized by calling the TMyApplication constructor with
no arguments:

TMyApplication apPi

You can use this syntax only when the class has a default constructor or a
constructor in which all the parameters have default values.

• You can also use the standard declaration syntax along with arguments
to call a particular constructor. In this example, app is initialized by
calling the TMyApplication constructor with a char * argument:

TMyApplication app ("AppName") i

• You can use the new operator to allocate space for and instantiate an
object. For example:

TMyApplication *aPPi
app = new TMyApplicationi

• You can also use the new operator along with arguments. In this
example, app is initialized by calling the TMyApplication constructor with
a char * argument:

TMyApplication* app = new TMyApplication("AppName") i

The constructors call the base class' constructors and initialize any needed
data members. You can only instantiate classes that aren't abstract; that is,
classes that don't contain a pure virtual function.

OWL Programmers Guide

Abstract classes

Inheriting
members

Figure 1.1
TDialog inheritance

Abstract classes, which are classes with pure virtual member functions that
you must override to provide some behavior, serve two main purposes.
They provide a conceptual framework to build other classes on and, on a
practical level, they reduce coding effort.

For example, the ObjectWindows THSlider and TVSlider classes could each
be derived directly from TScrollBar. Although one is vertical and the other
horizontal, they have similar functionality and responses. This
commonality warrants creating an abstract class called TSlider. THSlider
and TVSlider are then derived from TSlider with the addition of a few
specialized member functions to draw the sliders differently.

You can't create an instance of an abstract class. Its pure virtual member
functions must be overridden to make a useful instance. TSlider, for
example, doesn't know how to paint itself or respond directly to mouse
events.

If you wanted to create your own slider (for example, a circular slider), you
might try deriving your slider from TSlider or it might be easier to derive
from THSlider or TVSlider, depending on which best meets your needs. In
any case, you add data members and add or override mein1?er functions to
add the desired functionality. If you wanted to have diagonal sliders going
both northwest-southeast and southwest-northeast, you might want to
create an intermediate abstract class called T AngledSlider.

The following figure shows the inheritance of TlnputDialog. As you can see,
TlnputDialog is derived from TDialog, which is derived from TWindow,
which is in turn derived from TEventHandler and TStreamable. Inheritance
lets you add more specialized behavior as you move further along the
hierarchy.

The following table shows the public data members of each class, including
those inherited from the TDialog and TWindow base classes:

Chapter 1, ObjectWindows overview 7

Table 1.1
Data member

inheritance

Types of member
functions

Virtual functions

Nonvirtual functions

8

TWindow TDialog TlnputDialog

Status Status Status
HWindow HWindow HWindow
Title Title Title
Parent Parent Parent
Aftr Aftr Aftr
DefaultProc DefaultProc DefaultProc
Scroller Scroller Scroller

IsModal IsModal

Prompt
Buffer
BufferSize

TlnputDialog inherits all the data members of TDialog and TWindow and
adds the data members it needs to be an input dialog box.

To fully understand what you can do with TlnputDialog, you have to
understand its inheritance: a TlnputDialog object is both a dialog box
(TDialog) and a window (TWindow). TDialog adds the concept of modality
to the TWindow class. TlnputDialog extends that by adding the ability to
store and retrieve user-input data.

There are four (possibly overlapping) types of ObjectWindows member
functions:
_ Virtual _ Pure virtual

_ Nonvirtual _ Default placeholder

Virtual functions can be overridden in derived classes. They differ, from
pure virtual functions in that they don't have to be overridden in order to
use the class. Virtual functions provide you with polymorphism, which is the
ability to provide a consistent class interface, even When the functionality
of your classes is quite different.

You should not override nonvirtual functions. Therefore, it's important to
make virtual any member function that derived classes might need to
override (an exception is the event-handling functions defined in your
response tables). For example, TWindow::CanClose is virtual because
derived classes should override it to verify whether the window should
close. On the other hand, TWindow::SetCaption is nonvirtual because you
usually don't need to change the way a window's caption is set.

OWL Programmers Guide

Pure virtual
functions

Default placeholder
functions

The problem with overriding nonvirtual functions is that classes that are
derived from your derived class might try to use the overridden function.
Unless the new derived classes are explicitly aware that you have changed
the functionality of the derived function, this can lead to faulty return
values and run-time errors.

You must override pure virtual functions in derived classes. Functions are
marked as pure virtual using the = 0 initializer. For example, here's the
declaration of TSlider::PaintRuler:

virtual void PaintRuler(TDC& de) = OJ

. You must override all of an abstract class' pure virtual functions in a
derived class before you can create an instance of that derived class. In
most cases, when using the standard ObjectWindows classes, you won't
find this to be much of a problem; most of the ObjectWindows' classes you
might need to derive from are not abstract classes. In lieu of pure virtual
functions, many ObjectWindows classes use default placeholder functions.

Unlike pure virtual functions, default placeholder functions don't have to
be overridden. They offer minimal default actions or no actions at all. They
serve as placeholders, where you can place code in your derived classes.
For example, here's the ,definition of TWindow::EvLButtonDbIClk:

inline void
TWindow: : EvLButtonDblClk (UINT modKeys, TPoint &)
{

DefaultProeessing()j

By default, EvLButtonDblClk calls DefaultProcessing to perform the default
message processing for that message. In your own window class, you could
override EvLButtonDblClk by defining'it in your class' response table. Your
version of EvLButtonDblClk can provide some custom behavior you want to
happen when the user clicks the left mouse button. You can also continue
to provide the base class' default processing by calling the base class'
version of the function.

Object typology

The ObjectWindows hierarchy has many different types of classes that you
can use, modify, or add to. You can separate what each class does into the
following groups:

Chapter 1, ObjectWindows overview 9

Window classes

Windows

Frame windows

MDlwindows

Decorated windows

Dialog box
classes

10

• Windows

• Dialog boxes
• Controls

• Graphics

• Printing

• Modules and applications

• Doc/View applications

• Miscellaneous Windows
elements

An important part of any Windows application is, of course, the window.
ObjectWindows provides several different window classes for different
types of windows (not to be confused with the Windows "window class"
registration types):

• Windows

• Frame windows

• MDI windows

• Decorated windows

Chapter 6 describes the window classes in detail.

TWifidow is the base class for all window classes. It rep~esehts the
functionality common to all windows, whether they are dialog boxes,
controls, MDI windows, or so on.

'FFrame Window is .derived from TWindow and adds the functionality of a
frame window·that can hold other client windows.

Multiple Document Interface (MDI) is the Windows standard for managing
multiple documents or windows in a single application. TMDIFrame,
TMDIClient, and TMDIChild provide support for MDI in ObjectWindows
applications.

, Several classes, such as TLayout Window and TLayoutMetrics, work together
to provide support for decoration controls like tool bars, status bars, and
message bars. Using multiple inheritance, decoration supportis added into
frame windows and MDI frame windows in TDecoratedFrame and
TDecoratedMDIFrame.

TDialog is a derived class of TWindow. It's used to create dialog boxes that
handle a variety of user interactions. Dialog boxes typically contain
controls to get user input. Dialog box classes are explained in detail in
Chapter 8.

OWL Programmers Guide

Common dialog
boxes

Other dialog boxes

Control classes

Standard Windows
controls

Widgets

Gadgets

In addition to specialized dialog boxes your own application might use,
ObjectWindows supports Windows' common dialog boxes for:

• Choosing files (TFileOpenDialog, and TFileSaveDialog)

• Choosing fonts (TChooseFontDialog)

• Choosing colors (TChooseColorDialog)

• Choosing printing options (TPrintDialog)

• Searching and replacing text (TFindDialog, and TReplaceDialog)

ObjectWindows also provides additional dialog boxes that aren't based on
the Windows common dialog boxes:

• Inputting text (TlnputDialog)

• Aborting print jobs (TPrinter AbortDlg, used in conjunction with the
TPrinter and TPrintout classes)

TControl is a class derived from TWindow to support behavior common to
all controls. ObjectWindows offers four types of controls:

• Standard Windows controls

• Widgets

• Gadgets

• Decorations

All these controls are discussed in depth in Chapter la, except for gadgets,
which are discussed in Chapter 11.

Standard Windows controls include list boxes, scroll bars, buttons, check
boxes, radio buttons, group boxes, edit controls, static controls, and combo
boxes. Member functions let you manipulate these controls.

Unlike standard Windows controls, ObjectWindows widgets are
specialized controls written entirely in C++. The widgets ObjectWindows
offers include horizontal and vertical sliders (THSlider and TVSlider) and
gauges (TGauge).

Gadgets are similar to standard Windows controls, in that they are used to
gather input from or convey information to the user. But gadgets are
implemented differently from controls. Unlike most other interface

Chapter 1, ObjectWindows overview 11

Decorations

Graphics classes

Dec/asses

12

elements, gadgets are not windows: gadgets don't have window handles,
they don't receive events and messages, and they aren't based on TWindow.

Instead, gadgets must be contained in a gadget window. The gadget
window controls the presentation of the gadget, all message processing,
and so on. The gadget receives its commands and direction from the gadget
window.

Decorations are specialized child windows that let the user choose a
command, provide a place to give the user information, or somehow allow
for specialized communication with the user.

• A control bar (TControlBar) lets you arrange a set of buttons on a bar
attached to a window as shortcuts to using menus (the SpeedBar in the
Borland C++ IDE is an example of this functionality).

• A tool box (TTooIBox) lets you arrange a set of buttons on a floating
palette.

• Message bars (TMessageBar) are bars, usually at the bottom of a window,
where you can display information to the user. For example, the Borland
C++ IDE uses a message bar to give you brief descriptions of what menu
commands and SpeedBar buttons do as you press them.

• Status bars (TStatusBar) are similar to message bars, but have room for
more than one piece of information. The status bar in the Borland C++
IDE shows your position in the edit window, whether you're in insert or
overtype mode, and error messages.

Windows offers a powerful but complex graphics library called the
Graphics Device Interface (GDI). ObjectWindows encapsulates GDI to
make it easier to use device context (DC) classes (TDC) and GDI objects
(TGDIObject).

See Chapter 13 for full details on these classes.

With GDI, instead of drawing directly on a device (like the screen or a
printer), you draw on a bitmap using a device context (DC). A device context
is a collection of tools, settings, and device information regarding a
graphics device and its current drawing state. This allows for a high degree
of device independence when using GDI functions. The following table lists
the different types of DCs that ObjectWindows encapsulates.

OWL Programmers Guide I

Table 1.2
ObjectWindows

encapsulated device
contexts

GD/objects

Table 1.3
GDI support classes

Printing classes

Module and
application
classes

Type of device context

Memory
Metafile
Bitmap
Printer
Window

Desktop
Screen
Client
Paint

ObjectWindows OC class

TMemoryDC
TMetaFileDC
TDibDC
TPrintDC
TWindowDC
TDesktopDC
TSereenDC
TCfientDC
TPaintDC

TGDIObject is a base class for several other classes that represent things you
can use to draw with and to control drawings. The following table lists
these classes and other ObjectWindows GDI support classes.

Type of GOI object

Pens
Brushes
Fonts
Palettes
Bitmaps
Icons
Cursors
Regions
Points
Size
Rectangles
Color specifiers
RGB triple color
RGB quad color
Palette entries
Metafile

ObjectWindows GOI class

TPen
TBrush
TFont
TPa/ette
TBitmap, TDib, TUiBitmap
T/eon
TCursor
TRegion
TPoint
TSize
TReet
TC%r
TRgbTrip/e
TRgbQuad
TPa/etteEntry
TMetafilePict

TPrinter makes printing significantly easier by encapsulating the
communications with printer drivers. TPrintout encapsulates the task of
printing a document. Chapter 12 discusses how to use the printing classes.

A Windows application is responsible for initializing windows and
ensuring that messages Windows sends to it are sent to the proper window.
ObjectWindows encapsulates that behavior in T Application. A DLL's
behavior is encapsulated in TModule. For full details on module and
application objects, see Chapters 16 and 3.

Chapter 1, ObjectWindows overview 13

DocNiew classes

Miscellaneous
classes

Menus

Clipboard

14

The document-viewing classes are a complete abstraction of a generic
document-view model. The base classes of the Doc/View model are
TDocManager, TDocument, and TView. The Doc/View model is a system in
which data is contained in and accessed through a document object, and
displayed and manipulated through a view object. Any number of views
can be associated with a particular document type. You can use this to
display the same data in a number of different ways.

For example, you can display a line both graphically (as a line in a window)
and as sets of numbers indicating the coordinates of the points that make
up the line. This would require one document that contains the data and
two view classes: one view class to display the line onscreen and another
view class to display the coordinates of the points in the line. You can also
modify the data through the views so that, in this case, you could change
the data in the line by either drawing in the graphical display or by typing
in numbers to modify and add coordinates in the numerical display.

The Doc/View model is discussed in depth in Chapter 9.

Since Windows is so varied, not all the classes ObjectWindows provides fall
into neat categories. This section discusses those miscellaneous classes.

Menus can be static or you can modify them or even load whole new
menus. TMenu and its derived classes (TSystemMenu and TPopupMenu) let
you easily manipulate menus. Chapter 7 discusses the menu classes in
more detail.

The Windows Clipboard is one of the main ways users share data between
applications. ObjectWindows' TClipboard object lets you easily provide
Clipboard support in your applications. See Chapter 6 for details.

OWL Programmers Guide

Getting started

'Files in the
tutorial

c H A p T E R 2

Learning ObjectWindows

The,ObjectWindows 2.0 tutorial teaches the fundamentals of programming
for Windows, using the ObjectWindows application framework. The
tutorial is comprised of an application that is developed in twelve
progressively more complicated ObjectWindows steps. Each-step up in the
application represents a step up in the tutorial's lessons. After completing
Step 12, you'll have a full-fledged Windows application, with features' like
menus, dialog boxes, graphical control bar, status bar, MDI windows, and
more.

This tutorial assumes that you're familiar with c++ and have some prior
Windows programming experience. Before beginning, it might be helpful
to read Chapter 1, which presents a brief, nontechnical overview of the
ObjectWindows 2.0 class hierarchy. This should help you become familiar
with the principles behind the structure of the ObjectWindows class library.

The tutorial discusses each new version of the application and the
differences between it and the previous version. Each discussion includes
possible applications of the current lesson in different real-world contexts.
At the end of each lesson, there's a reference section telling you where you
can find more information about the topics discussed in that section.

Before you begin the tutorial, you should make a copy of the
ObjectWindows tutorial files separate from the files in your compiler
installation. Use the copied files when working on the tutorial steps. While
working on the'tutorial, you should try to make the changes in each step on
your own., You can then compare the changes 'you make to the tutorial
program.

The, tutorial is composed of a number of different source files:

• Each step of the tutorial is contained in a file named STEPXX.CPP.

Chapter 2, Learning ObjectWindows 15

• Later steps in the application use multiple C++ source files. The other
files are named STEPXXDV.CPP.

• A number of steps have a header file containing class definitions and the
like. These header files are named STEPXXDV.H.

• A number of steps also have a corresponding resource script file named
STEPXX.RC.

In all these cases, XX is a number from 01 to 12, indicating which step of
the tutorial is in the source file.

Step 1: The basic application

You can find the
source for Step 1 in

the file STEP01.CPP
in the directory

EXAMPLES\OWL \
TUTORIAL.

16

To begin the tutorial, open the file STEP01.CPP, which shows an example of
the most basic useful ObjectWindows application. Because of its brevity,
the entire file is shown here:

II-----~-- ~-----------------------

II ObjectWindows - (C) Copyright 1991, 1993 by Borland International
II Tutorial application -- stepOl.cpp
11-- -------~----------------

#include <owl\applicat.h>
#include <owl\framewin.h>

class TMyApp : public TApplication
{

pUblic:
TMyApp () : TApplication () {}

void InitMainWindow()
{

SetMainWindow(new TFrameWindow(O, "Sample ObjectWindows Program"));

}; .

int OwlMain(int l*argc*I, char* l*argv*1 [])
{

return TMyApp() .Run();

This simple application includes a number of important features:

• This source file includes two header files, owl \applicat.h and owl \
framewin.h. These files are included because the application uses the
T Application and TFrame Window ObjectWindows classes. Whenever you
use an ObjectWindows class you must include the proper header files so
your code compiles properly.

OWL Programmers Guide

Where to find
more information

• The class TMyApp is derived from the ObjectWindows T Application class.
Every ObjectWindows application has a T Application object-or more
usually, a T Application-derived object-generically known as the
application object. If you try to use a T Application object directly, you'll
find that it's difficult to direct the program flow. Overriding T Application
gives you access to the workings of the application object and lets you
override the necessary functions to make the application work the way
you want.

• In addition to an application object, every ObjectWindows application
has an OwlMain function. The application object is actually created in the
OwlMain function with a simple dechiration. OwlMain is the
ObjectWindows equivalent of the WinMain function in a regular Windows
application. You can use OwlMain to check command-line arguments, set
up global data, and anything else you want taken care of before the
application begins execution.

• To start execution of the application, call the application object's Run
function. The Run function first calls the InitApplication function, but only
if this instance of the application is the first instance (the default
TApplication::lnitApplication function does nothing). After the
InitApplication function returns, Run calls the InitInsiance function, which
initializes each instance of an application. The default
T Application::lnitInstance calls the function InitMain Window, which
initializes the application's main window, then creates and displays the
main window.

• TMyApp overrides the InitMain Window function. You can use this
function to design the main window however you want it. The
SetMain Window function sets the application's main window to a
TFrame Window or TFrame Window-derived object passed to the function.
In this case, simply create a new TFrameWindow with no parent (the first
parameter of the TFrame Window is a pointer to the window's parent) and
the title Sample ObjectWindows Program.

This basic application introduces two of the most important concepts in
ObjectWindows programming. As simple as it seems, deriving a class from
T Application and overriding the InitMain Window function gives you quite a
bit of control over application execution. As you'll see in later steps, you
can easily craft a large and complex application from this simple beginning.

Here's a guide to where you can find more information on the topics
introduced in this step:

• Application objects, along with their Init* member functions, are
discussed in Chapter 3.

Chapter 2, Learning ObjectWindows 17

• OwlMain is discussed in Chapter 3 .

• TFrame Window is discussed in Chapter 6.

Step 2: Handling Windows events

You can find the
source for Step 2 in

the file STEP02.CPP
in the directory

EXAMPLES\OWL\
TUTORIAL.

Adding a window
class

Adding a
response table

18

Step 2 introduces response tables, another very important ObjectWindows
feature. Response tables control event and message processing in
ObjectWindows 2.0 applications, dispatching events on to the proper
event-handling functions. Step 2 also adds these functions.

Add the response table to the application using a window class called
TMyWindow. TMyWindow is derived from TWindow, and looks like this:

class TMyWindow : public TWindow
{

} ;

public:
TMyWindow(TWindow* parent = 0);

protected:
II override member function of TWindow
BOOL CanClose();

II message response functions
void EvLButtonDown(UINT, TPoint&);
void EvRButtonDown(UINT, TPoint&);

DECLARE_RESPONSE_TABLE(TMywindow);

The constructor for this class is fairly simple. It takes a single parameter, a
TWindow * that indicates the parent window of the object. The constructor
definition looks like this:

TMyWindow::TMyWindow(TWindow *parent)
{

Init(parent, 0, 0);

The Init function lets you initialize TMy Window's base class. In this case, the
call isn't very complicated. The only thing that might be required for your
purposes is the window's parent, and, as you'll see, even that's taken care of
for you.

The only public member of the TMy Window class is its constructor. But if
the other members are protected, how can you access them? The answer
lies in the response table definition. Notice the last line of the TMyWindow

OWL Programmers Guide

class definition. This declares the response table; that is, it informs your
class that it has a response table, much like a function declaration informs
the class that the function exists, but doesn't define the function's activity.

The response table definition sets up your class to handle Windows events
and to pass each event on to the proper event-handling function. As a
general rule, event-handling functions should be protected; this prevents
classes and functions outside your own class from calling them. Here is the
response table definition for TMy Window:

DEFINE_RESPONSE_TABLE1(TMyWindow, TWindow)
EV_WM_LBUTTONDOWN,
EV_WM_RBUTTONDOWN,

END_RESPONSE_TABLE;

You can put the response table anywhere in your source file.

For now, you can keep the response table fairly simple. Here's a description
of each part of the table. A response table has four important parts:

• The response table declaration in the class declaration.

• The first line of a response table definition is always the
DEFINE_RESPONSE_TABLEX macro. The value of X depends on your
class' inheritance, and is based on the number of immediate base classes
your class has. In this case, TMy Window has only one immediate base
class, TWindow.

• The last line of a response table definition is always the
END_RESPONSE_TABLE macro, which ends the event response table
definition .

• Between the DEFINE_RESPONSE_TABLEXmacro and the
END_RESPONSE_TABLE macro are other macros that associate
particular events with their handling functions.

The two macros in the middle of the response table,
EV _ WM_LBUTTONDOWN and EV _ WM_RBUTTONDOWN, are response
table macros for the standard Windows messages WM_LBUTTONDOWN
and WM_RBUTTONDOWN. All standard Windows messages have
ObjectWindows-defined response table macros. To find the name of a
particular message's macro, preface the message name with EV _. For
example, the macro that handles the WM_P AINT message is
EV _ WM_P AINT, and the macro that handles the WM_LBUTTONDOWN
message is EV _ WM_LBUTTONDOWN.

These predefined macros pass the message on to functions with predefined
names. To determine the function name, substitute Ev for WM-, and
convert the name to lowercase with capital letters at word boundaries. For
example, the WM_P AINT message is passed to a function called EvPaint,

Chapter 2, Learning ObjectWindows 19

Event-handling
functions

20

and the WM_LBUTTONDOWN message is passed to a function called
EvLButtonDown.

As you can see, two of the protected functions in TMy Window are
EvLButtonDown and EvRButtonDown. Because of the macros in the response
table, when TMy Window receives a WM_LBUTTONDOWN or
WM_RBUTTONDOWN event, it passes it on to the appropriate function.

The functions that handle the WM_LBUTTONDOWN or
WM_RBUTTONDOWN events are very simple. Each function pops up a
message box telling you which button you've pressed. The code for these
functions should look something like this:

void TMyWindow: : EvLButtonDown(UINT, TPoint&)
{

MessageBox("You have pressed the left mouse button",
"Message Dispatched", MB_OK);

void TMyWindow: : EvRButtonDown (UINT, TPoint&)
{

MessageBox ("You have pressed the right mouse button",
"Message Dispatched", MB_OK);

This illustrates one of the best features of how ObjectWindows 2.0 handles
standard Windows events. The function that handles each event receives
what might seem to be fairly arbitrary parameter types (all the macros and
their corresponding functions are presented. in Chapter 2 in the
Object Windows Reference Guide). Actually, these parameter types correspond
to the information encoded in the WP ARAM and LP ARAM variables
normally passed along with an event. The event information is
automatically" cracked" for you.

The advantages of this approach are two-fold:

• You no longer have to manually extract information from the WP ARAM
and LP ARAM values.

• The predefined functions allow for compile-time type checking, and
prevent hard-to-track errors that can be caused by confusing the values
encoded in the WP ARAM and LP ARAM values.

For example, both WM_LBUTTONDOWN and WM_RBUTTONDOWN
contain the same type of information in their WP ARAM and LP ARAM
variables:

• WP ARAM contains key flags, which specify whether the user has
pressed one of a number of virtual keys.

OWL Programmers Guide

Encapsulated API
calls

Overriding the
CanClose
function

• The low-order word of the LP ARAM specifies the cursor's x-coordinate .

• The high-order word of LP ARAM specifies the cursor's y-coordinate.

EvLButtonDown and EvRButtonDown also have similar signatures. The
UINT parameter of each function corresponds to the key flags parameter.
The values that are normally encoded in the LP ARAM are instead stored in
a TPoint object.

You might notice that the calls to the MessageBox function look a little odd.
The Windows API function MessageBox takes an HWND for its first
parameter. But the MessageBox function called here is actually a member
function of the TWindow class. There are a large number of functions like
this: they have the same name as the Windows API function, but their
signature is different. The most common differences are the elimination of
handle parameters such as HWND and HINST ANCE, replacement of
Windows data types with ObjectWindows data types, and so on. In this
case, the window class supplies the HWND parameter for you.

Another feature of the TMy Window class is the Can Close function. Before an
application attempts to shut down a window, it calls the window's Can Close
function. The window can then abort the shutdown by returning FALSE, or
let the shutdown proceed by returning TRUE.

From the point of view of the application, this ensures that you don't shut
down a window that is currently being used or that contains unstored data.
From the window's point of view, this warns you when the application tries
to shut down and provides you with an opportunity to make sure that
everything has been cleaned up before closing.

Here is the Can Close function from the TMy Window class:

BOOL TMyWindow::CanClose()
{

return MessageBox("Do you want to save?", "Drawing has changed",
MB_YESNO I MB_ICONQUESTION) == IDNOi

For now, this function merely pops up a message box stating that the
drawing has changed and asking if the user wants to save the drawing.
Because there's no drawing to save, this message is fairly useless right now.
But it'll become useful in Step 7, when you add the ability to save data to a
file.

Chapter 2, Learning ObjectWindows 21

Using
TMyWindow as
the main window

Where to find
more information

22

The last thing to do is to actually create an instance of this new TMy Window
class. You might think you can do this by simply substituting TMy Window
for TFrame Window in the SetMain Window call in the InitMain Window
function:

void InitMainwindow()
{

SetMainWindow(new TMyWindow) ;

This won't work, for a number of reasons, but primarily because
TMy Window isn't based on TFrame Window. For this code to compile
correctly, you'd have to change TMy Window so that it's based on
TFrameWindow instead of TWindow. Although this is fairly easy to do, it
introduces functionality into the TMyWindow class that isn't necessary. As
you'll see in later steps, TMy Window has a unique purpose. Adding frame
capability to TMyWindow would reduce its flexibility.

The second approach is to use a TMy Window object as a client in a
TFrameWindow. This is fairly easy to do: the third parameter of the
TFrameWindow constructor that you're already using lets you specify a
TWindow or TWindow-derived object as a client to the frame. The code
would look something like this:

SetMainWindow(new TFrameWindow(O, "Sample ObjectWindows Program",
new TMyWindow)) ;

With this approach, TFrameWindow administers the frame window, leaving
TMy Window free to take care of its tasks. This makes for more discreet and
modular object design. It also lets you easily change the type of frame
window you use, as you'll see in Step 10.

Notice that the new TMyWindow construction in the TFrameWindow
constructor doesn't specify a parent for the TMy Window object. That's
because there isn't yet anything to be a parent. The TFrameWindow object
that will be the parent hasn't been constructed yet. TFrameWindow
automatically sets the client window's parent to be the TFrame Window once
it has been constructed.

Here's a guide to where you can find more information on the topics
introduced in this step:

• Window classes are discussed in Chapter 6 .

• Interface objects in general, such as windows, dialogs, controls, and so
on, are discussed in Chapter 4.

OWL Programmers Guide

• Response tables are discussed in Chapter 5.

• Main windows are discussed in Chapter 3.

• Predefined response table macros and their corresponding event
handling functions are listed in Chapter 2 in the Object Windows Reference
Guide.

Step 3: Writing in the window

You can find the
source for Step 3 in

the file STEP03.CPP
in the directory

EXAMPLES\OWL \
TUTORIAL.

Constructing a
device context

In Step 3, you'll begin working with the new window that was added to the
application in Step 2. Instead of popping up a message box when the
mouse buttons are pressed, the event-handling functions will get some real
functionality-pressing the left mouse button will cause the coordinates of
the point at which the button was clicked to be printed in the window, and
pressing the right mouse button will cause the window to be cleared.

The code for this new functionality is in the EvLButtonDown function. The
TPoint parameter that's passed to the EvLButtonDown contains the
coordinates at which the mouse button was clicked. You'll need to add a
char string'to the function to hold the text representation of the point. You
can then use the wsprintf function to format the string. Now you have to set
up the window to print the string.

To perform any sort of graphical operation in Windows, you must have a
device context for the window or area you want to work with. The same
holds true in ObjectWindows. ObjectWindows provides a number of
classes that make it easy to set up, use, and dispose of a device context.
Because TMyWindow works as a client in a frame window, you'll use the
TClientDC class. TClientDC is a device context class that provides access to
the client area owned by a window. Like all ObjectWindows device context
classes, TClientDC is based on the TDC class, and is defined in the owl\dc.h
header file.

TClientDC has a single constructor that takes an HWND as its only
parameter. Because you want a device context for your TMy Window object,
you need the handle for that window. As it happens, the TWindow base
class provides an HWND conversion operator. This operator is called
implicitly whenever you use the window object in places that require an
HWND. So the constructor for your TClientDC object looks something like
this:

TClientDC de (*this) i

Chapter 2, Learning ObjectWindows 23

Printing in the
device context

Clearing the
window

24

Notice that the this pointer is dereferenced. The HWNO conversion
operator doesn't work with pointers to window objects.

Once the device context is set up, you have to actually print the string. The
TDC class provides several versions of the TextOut function. Just like the
MessageBox function in Step 2, the TextOut functions contained in the
device context classes looks similar to the Windows API function TextOut.
The first version of TextOut looks exactly the same as the Windows API
version, except that the first HOC parameter is omitted:

virtual BOOL TextOut(int x, int y, const char far* str, int count=-1);

The HOC parameter is filled by the TDC object. The second version of
TextOut omits the HOC parameter and combines the x and y coordinates
into a single TPoint structure:

BOOL TextOut(const TPoint& p, const char far* str, int count=-1);

Because the coordinates are passed into the EvLButtonDown function in a
TPoint object, you can use the second version of TextOut to print the
coordinates in the window. Your completed EvLButtonDown function
should look something like this:

void TMyWindow::EvLButtonDown(UINT, TPoint& point)
{

char s[16] i
TClientDC dc(*this);

wsprintf(s, "(%d,%d)", point.x, point.Y)i
dc.TextOut(point, s, strlen(s))i

You need to include the string.h header file to use the strlen function.

TMy Window's base class, TWindow, provides three different invalidation
functions. Two of these, InvalidateRect and InvalidateRgn, look and function
much like their Windows API versions, but omitting the HWNO
parameters. The third function, Invalidate, invalidates the entire client area
of the window. Invalidate takes a single parameter, a BaaL indicating
whether the invalid area should be erased when it's updated. By default,
this parameter is TRUE.

Therefore, to erase the entire client area of TMyWindow, you need only call
Invalidate, either specifying TRUE or nothing at all for its parameter. To
clear the screen when the user presses the right mouse button, you must
make this call in the EvRButtonDown function. The function would look
something like this:

OWL Programmers Guide

Where to find
more information

void TMyWindow: : EvRButtonDown (UINT, TPoint&)
{

Invalidate() i

Here's a guide to where you can find more information on the topics
introduced in this step:

• Device contexts and the TDC classes are discussed in Chapter 13.

• Window classes are discussed in Chapter 6.

Step 4: Drawing in the window

You can find the
source for Step 4 in

the file STEP04.CPP
in the directory

EXAMPLES\OWL\
TUTORIAL.

Adding new
events

In this step, you'll add the ability to draw a line in the window by pressing
the left mouse button and dragging. To do this, you'll add a two new
events, WM_MOUSEMOVE and WM_LBUTTONUP, to the TMyWindow
response table, along with functions to handle those events. You'll also add
a TClientDC * to the class.

To let the user draw on the window, the application must handle a number
of events:

• To start drawing the line, you have to look for the user to press the left
mouse button. This is already taken care of by handling the
WM_LBUTTONDOWN event.

• Once the user has pressed the left button down, you have to look for
them to move the mouse. At this point, you're drawing the line. To know
when the user is moving the mouse, catch the WM_MOUSEMOVE event.

• You then need to know when the user is finished drawing the line. The
user is finished when the left mouse button is released. You can monitor
for this by catching the WM_LBUTTONUP event.

You need to add two macros to the window class' response table,
EV _ WM_MOUSEMOVE and EV _ WM_LBUTTONUP. The new response
table should look something like this:

DEF INE_RESPONSE_TABLE 1 (TMyWindow, TWindow)
EV_WM_LBUTTONDOWN,
EV_WM_RBUTTONDOWN,
EV_WM_MOUSEMOVE,
EV _WM_LBUTTONUP ,

END_RESPONSE_TABLEi

Chapter 2, Learning ObjectWindows 25

Adding a
TClientDC pointer

You also need to add the EvLButtonUp and EvMouseMove functions to the
TMy Window class.

The scheme used in Step 3 to draw a line isn't very robust:

• In Step 3, you created a TClientDC object in the EvLButtonDown function
that was automatically destroyed when the function returned. But now
you need a valid device context across three different functions,
EvLBu.ttonDown, EvMouseMove, and EvLButtonUp.

• You can catch the WM_MOUSEMOVE event and draw from the current
point to the point passed into the EvMouseMove handling function. But
WM_MOUSEMOVE events are sent out whenever the mouse is moved.
You only want to draw a line when the mouse is moved with the left
button pressed down.

You can take care of both of these problems rather easily by adding a new
protected data member to TMyWindow. This data member is a TDC * called
DragDC. It works this way:

• When the left mouse button is pressed, the EvLButtonDown function is
called. This function creates a new TClientDC and assigns it to DragDC. It
then sets the current point in DragDC to the point at which the mouse
was clicked. The code for this function should look something like this:

void TMyWindow: : EvLButtonDown(UINT, TPoint& point)
{

Invalidate () i

if (! DragDC) {
SetCapture()i
DragDC = new TClientDC(*this) i
DragDC->MoveTo(point) i

• When the left mouse button is released, the EvLButtonUp function is
called. If DragDC is valid (that is, if it represents a valid device context),
EvLButtonUp deletes it, setting it to O. The code for this function should
look something like this: .

void TMyWindow: : EvLButtonUp (UINT, TPoint&)
{

if (DragDC) {
ReleaseCapt~re()i

delete DragDCi

OWL Programmers Guide

Initializing DragDC

Cleaning up after
DragDC

DragDC 0;

• When the mouse is moved, the EvMouseMove function is called. This
function checks whether the left mouse button is pressed by checking
DragDC. If DragDC is 0, either the mouse button has not been pressed at
all or it has been pressed and released. Either way, the user is not
drawing, and the function returns. If DragDC is valid, meaning that the
left mouse button is currently pressed down, the function draws a line
from the current point to the new point using the TWindow::LineTo
function.

void TMyWindow: : EvMouseMove (UINT, TPoint& point)
{

if (DragDC)
DragDC->LineTo(point);

You must make sure that DragDC is set to ° when you construct the
TMy Window object:

TMyWindow::TMyWindow(TWindow *parent)
(

Init(parent, 0, 0);
OragOC = 0;

Because DragDC is a pointer to a TClientDC object, and not an actual
TClientDC object, it isn't automatically destroyed when the TMyWindow
object is destroyed. You need to add a destructor to TMy Window to
properly clean up. The only thing required is to call delete on DragDC.
TMy Window should now look something like this:

class TMyWindow : public TWindow
(

pUblic:
TMyWindow(TWindow *parent = 0);

-TMyWindow() {delete OragDC;}

protected:
TOC *OragDC;

II Override member function of TWindow
BOOL CanClose();

II Message response functions
void EvLButtonOown(UINT, TPoint&);

Chapter 2, Learning ObjectWindows 27

Where to find
more information

};

void EvRButtonDown(UINT, TPoint&);
void EvMouseMove(UINT, TPoint&);
void EvLButtonUp(UINT, TPoint&);

DECLARE_RESPONSE_TABLE(TMyWindow) ;

Note that, because the tutorial application has now become somewhat
useful, the name of the main window has been changed from "Sample
ObjectWindows Program" to "Drawing Pad":

SetMainWindow(new TFrameWindow(O, "Drawing Pad", new TMyWindow));

Here's a guide to where you can find more information on the topics
introduced in this step:

• Device contexts and the TDC elasses are discussed in Chapter 13.

• Event handling is discussed in Chapter 5.

• Predefined response table macros and their corresponding event
handling functions are listed in the Object Windows Reference Guide,
Chapter 2.

Step 5: Changing line thickness

You can find the
source for Step 5 in

the files
STEP05.CPP and
STEP05.RC in the

directory
EXAMPLES\OWL \

TUTORIAL.

Adding a pen

Initializing the pen

28

In this step, you'll make the drawing capability in the application a little
more robust. This step adds the ability to change the thickness of the line.
To support this, you can add to the TMyWindow class a TPen * drawing
object and an int to hold the pen width.

Add the pen to the window class by adding two protected members, Pen (a
TPen *) and PenSize (an int). The most important changes that result from
adding a pen to the window class are implemented in the EvLButtonDown
and EvRButtonDown functions.

The Pen object and Pen Size must be created and initialized before the user
has an opportunity to draw with the pen. The best place to do this is in the
constructor:

TMyWindow: : TMyWindow (TWindow *parent)
{

Init(parent, 0, 0);
DragDC = 0;

OWL Programmers Guide

Selecting the pen
into DragDC

Changing the pen
size

PenSize = 1;
Pen = new TPen(TColor: :Black, PenSize);

The TColor::Black object in the TPen constructor is an enum defined in the
owl \color.h header file. This makes the pen black. Y ou'lliearn more about
this parameter of the TPen constructor later on in Step 9.

To use the new pen object to draw a line, the pen has to be selected into the
device context. The device-context classes have a function called
SelectObject. This function is similar to the Windows API function
Select Object, except that the ObjectWindows version doesn't require a
handle to the device context.

You can use Select Object to select a variety of objects into a device context,
including brushes, fonts, palettes, and pens. You need to call SelectObject
before you begin to draw. Add the call in the EvLButtonDown function
immediately after you create the device context:

void TMyWindow::EvLButtonDown(UINT, TPoint& point)
{

Invalidate() ;

if (!DragDC) {
SetCapture();
DragDC = new TClientDC(*this);
DragDC->SelectObject(*Pen) ;
DragDC->MoveTo(point);

Notice that Pen is dereferenced in the SelectObject call. This is because the
SelectObject function takes a TPen & for its parameter, and Pen is a TPen *.
Dereferencing the pointer makes Pen comply with SelectObject's type
requirements.

Having the ability to change the pen size in the application is of little use
unless the user has'access to that ability. To provide that access, you can
change the meaning of pressing the right mouse button. Instead of clearing
the screen, it now indicates that the user wants to change the width of the
drawing pen. Therefore the process of changing the pen size goes into the
EvRButtonDown function.

Once the user has indicated that he or she wants to change the pen width
by pressing the right mouse button, you need to find some way to let the
user enter the new pen width. For this, you can pop up a TlnputDialog, in
which the user can input the pen size.

Chapter 2, Learning ObjectWindows 29

Constructing an
input dialog box

Executing an input
dialog box

30

The TlnputDialog constructor looks like this:

TlnputDialog(TWindow* parent,

where:

const char far* title,
const char far* prompt,
char far* buffer,
int bufferSize,
TModule* module = 0) i

• parent is a pointer to the parent window of the dialog box. In this case,
the parent is the TMyWindow window. You can simply pass it in using
the this pointer.

• title and prompt are the messages displayed to the user when the dialog
box is opened. In this case, title (which is placed in the title bar of the
dialog box) is "Line Thickness," and prompt (which is placed right above
the input box) is "Input a new thickness:".

• buffer is a string. This string can be initialized before using the
TlnputDialog. If buffer contains a valid string, it is displayed in the
TlnputDialog as the default response. In this case, initialize buffer using
the current pen size contained in Pensize.

• buffer Size is the size of buffer in bytes. The easiest way to do this is to use
either a #define that is used to allocate storage for buffer or to use
sizeof(buffer).

• module isn't used in this example.

To use TlnputDialog, you must make sure its resources and resource
identifiers are included in your source files and resource script files. These
are contained in the file include\owl\inputdia.rc. You should include owl\
inputdia.rc in your resource script files and your C++ source files.

Once you've constructed a TlnputDialog object, you can either call the
TDialog::Execute function to execute the dialog box modally or the
TDialog::Create function to execute the dialog box modelessly. Because
there's no need to execute the dialog box modelessly, you can use the
Execute function.

The Execute function for TlnputDialog can return two important values,
IDOK and IDCANCEL. The value that is returned depends on which
button the user presses. If the user presses the OK button, Execute returns
IDOK. If the user presses the Cancel button, Execute returns IDCANCEL. So
when you execute the input dialog box, you need to make sure that the

OWL Programmers Guide

Calling
SetPenSize

return value is IDOK before changing the pen size. If it's not, then leave the
pen size the same as it is.

If the call to Execute does return IDOK, the new value for PenSize is in the
string passed in for the dialog's buffer. Before this can be used as a pen size,
it must be converted to an int. Then you should make sure that the value
you get from the buffer is a valid pen width., Finally, once you're sure that
the input from the user is acceptable, you can change the pen size.
TMyWindow now has a function called SetPenSize that you can use to
change the pen size. The reason for doing it this way, instead of directly
modifying the pen, is explained in the next section.

The EvRButtonDown function should now look something like this:

void TMyWindow: : EvRButtonDown (UINT, TPoint&)
{

char inputText[6l;

wsprintf (inputText, "%d", PenSize);
if ((TInputDialog(this, "Line Thickness",

"Input a new thickness:",
inputText,
sizeof(inputText))) .Execute() == IDOK) {

int newPenSize = atoi(inputText);

if (newPenSize < 0)
newPenSize = 1;

SetPenSize(newPenSize) i

To change the pen size, use the SetPenSize function. Although the
EvRButtonDown function is a member of TMyWindow, and as such has full
access to the protected data members Pen and PenSize, it is better to
establish a public access function to make the actual changes to the data.
This becomes more important later, when the pen is modified more often.

For TMyWindow, you have the public SetPenSize function. The SetPenSize
function takes one parameter, an int that contains the new width for the
pen. After opening the input dialog box, processing the input, and checking
the validity of the result, all you need to do is call SetPenSize.

SetPenSize is a fairly simple function. To resize the pen, you must first
delete the existing pen object. Then set PenSize to the new size. Finally
construct a new pen object with the new pen size. The function should look
something like this:

Chapter 2, Learning ObjectWindows 31

Cleaning up after
Pen

Where to find
more information

32

void TMyWindow::SetPenSize(int newSize)
{

delete Pen;
PenSize = newSize;
Pen = new TPen(TColor(O,O,O) , PenSize);

Because Pen is a pointer to a TPen object, and not an actual TPen object, it
isn't automatically destroyed when the TMyWindow object is destroyed.
You need to explicitly destroy Pen in the TMyWindow destructor to
properly clean up. The only thing required is to call delete on Pen.
TMy Window should now look something like this:

class TMyWindow : public TWindow
{

public:
TMyWindow(TWindow *parent = 0);

-TMyWindow() {delete DragDC; delete Pen;}

void SetPenSize(int newSize);

protected:
TDC *DragDC;
int PenSize;
TPen *Pen;

II Override member function of TWindow
BOOL CanClose();

II Message response functions
void EvLButtonDown(UINT, TPoint&);
void EvRButtonDown(UINT, TPoint&);
void EvMouseMove(UINT, TPoint&);
void EvLButtonUp(UINT, TPoint&);

DECLARE_RESPONSE_TABLE(TMyWindow) ;

Here's a guide to where you can find more information on the topics
introduced in this step:

• Device contexts and the TDC classes are discussed in Chapter 13.

• The TPen class is discussed in Chapter 13.

• The TlnputDialog class and dialogs in general are discussed in Chapter 8.

OWL Programmers Guide

Step 6: Painting the window and adding menus

You can find the
source for Step 6 in

the files
STEP06.CPP and
STEP06.RC in the

directory
EXAMPLES\OWL \

TUTORIAL.

Repainting the
window

Storing the drawing

There are a few flaws with the application from Step 5. The biggest problem
is that the drawing window doesn't know how paint itself. To see this for
yourself, try drawing a line in the window, minimizing the application,
then restoring it. The line you drew is gone.

Another problem is that the only way the user can access the application is
with the mouse. The user can either press the left button to draw a line or
the right button to change the pen size.

In Step 6, you'll make it possible for the application to remember the
contexts of the window and redraw it. You'll also add some menus to
increase the number of ways the user can access the application.

There are two problems that must be dealt with when you're trying to paint
the window:

• There must be a way to remember what was displayed in the window .

• There must be a way to redraw the window.

In the earlier steps of the tutorial application, the line in the window was
drawn as the user moved the mouse while holding the left mouse button.
This approach is fine for drawing the line, but doesn't store the points in
the line for later use.

Because the line is composed of a number of points in the window, you can
store each point in the ObjectWindows TPoint class. And because each line
is composed of multiple points, you need an array of TPoint objects to store
a line. Instead of attempting to allocate, manage, and update an array of
TPoint objects from scratch, the tutorial application uses the Borland
container class TArray to define a data type called TPoints. It also uses the
Borland container class TArrayIterator to define an iterator called
TPointslterator. The definitions of these two types look like this:

typedef TArray<TPoint> TPoints;
typedef TArraylterator<TPoint> TPointslterator;

The TMy Window class adds a TPoints object in which it can store the points
in the line. It actually uses a TPoints *, a protected member called Line,
which is set to point to a TP6ints array created in the constructor. The
constructor now looks something like this:

Chapter 2, Learning ObjectWindows 33

TPoints

34

TMyWindow::TMyWindow(TWindow *parent)
{

Init(parent, 0, O)i
DragDC = Oi
PenSize = li
Pen = new TPen(TColor::Black, PenSize) i

Line = new TPoints(lO, 0, 10)i

The Borland C++ container class library and the T Array and T ArrayIterator
classes are explained in detail in Chapter 7 of the Borland C++ Programmers
Guide. For now, here's a simple explanation of how the TPoints and
TPointsIterator container classes are used in the tutorial application. To use
the T Array and T ArrayIteratar classes, you must include the header file
classlib \arrays.h.

The T Array constructor takes three parameters, all ints:

• The first parameter represents the upper boundary of the array; that is,
how high the array count can go.

• The second parameter represents the lower boundary of the array; that is,
the number at which the array count begins. This parameter defaults to 0,
matching the C and C++ convention of starting arrays at member O.

• The third parameter represents the array delta. The array delta is the
number of members that are added when the array grows too large to
contain all the members of the array.

Here's the statement that allocates the initial array of points in the
TMy Window constructor:

Line = new TPoints(lO, 0, lO)i

The array of points is created with room for ten members, beginning at O.
Once ten objects are stored in the array, attempting to add another object
adds room for ten new members to the array. This lets you start with a
small conservative array size, but also alleviates one of the main problems
normally associated with static arrays, which is running out of room and
having to reallocate and expand the array.

Once you've created an array, you need to be able to manipulate it. The
TArray class (and, by extension, the TPaints class) provid,es a number of
functions to add members, delete members, clear the array, and the like.
The tutorial application uses only a small number of the functions
provided. Here's a short description of each function:

OWL Programmer's Guide

TPointslterator

• The Add function adds a member to the array. It takes a single parameter,
a reference to an object of the array type. For example, adding a TPoint
object to a TPoints array would look something like this:

II Construct a TPoints array (an array of TPoint objects)
TPoints Points(10, 0, 10);

II Construct a TPoint object
TPoint p(3,4);

II Add the TPoint object p to the array
Points.Add(p) ;

• The Flush function clears all the members of an array and resets the
number of array members back to the initial array size. It takes no
parameters. To clear the array in the sample code above, the function call
would look something like this:

II Clear all members in the Points array
Points. Flush () ;

• The GetItemslnContainer function returns the total number of items in the
container. Note that this number indicates the number of actual objects
added to the container, not the space available. For example, even though
the container may have enough room for 30 objects, it might only contain
23 objects. In this case, GetItemslnContainer would return 23.

Iterators-in this case the TPointsIterator type-let you move through the
array, accessing a single member of the array at a time. An iterator
constructor takes a single parameter, a reference to a TArray of objects (the
type of objects in the array is set up by the definition of the iterator). Here's
what an iterator looks like when it's set up using the Line member of the
TMyWindow class:

TPointslterator i(*Line);

Note that Line is dereferenced because the iterator constructor takes a
TPoints & for its parameter, and Line is a TPoints *. Dereferencing the
pointer makes Line comply with the iterator constructor type requirements.

Once you've created an iterator, you can use it to access each object in the
array, one at a time, starting with the first member. In the tutorial
application, the iterator isn't used very much and you won't learn much
about the possibilities of an iterator from it. But the tutorial does use two
properties of iterators that require a note of explanation:

• You can move through the objects in the array using the ++ operator on
the iterator. This returns a reference to the current object and increments
the iterator to the next object in the array. The order in which it performs
these two actions depends on whether you use the ++ operator as a prefix

Chapter 2, Learning ObjectWindows 35

, Using the array
classes

36

or postfix operator. Using it as a prefix operator (for example, ++i)
increments the iterator to the next object, then returns a reference to that
object. Using it as a postfix operator (for example, i++) returns a reference
to the current object, then increments the iterator to the next object.

When you attempt to increment the iterator past the last member of the
array, the iterator is set to O. You can use this as a test in any boolean
conditional. For example:

TPointsIterator i(*Line);

while (i)
itt;

• You can also access the current object with the Current function. Calling
the current function returns a reference to the current object. You can
then perform operations on the object as if it were a regular instance of
the object. For example, you can test a point accessed by an iterator
against the value of another point:

TPointsIterator i(*Line);

TPoint tmp(5, 6);

if (i.Current() == tmp)
return TRUE;

else
return FALSE;

Once the Line array is created in the TMy Window constructor, it is accessed
in four main places:

• The EvLButtonDown function. The array is flushed at the beginning of the
function before the screen is invalidated. The beginning point of the line
is then inserted towards the end of the function. The EvLButtonDown
function should look something like this:

void TMyWindow::EvLButtonDown(UINT, TPoint& point)
{

Line->Flush();
Invalidate () ;

if (!DragDC) {
SetCapture() ;
DragDC = new TClientDC(*this);
DragDC->SelectObject(*Pen) ;
DragDC->MoveTo(point) ;
Line->Add(point) ;

OWL Programmer's Guide

Paint function

• The EvMouseMove function. Each point in the line is added to the array as
the user draws in the window. The EvMouseMove function should look
something like this:

void TMyWindow::EvMouseMove(UINT, TPoint& point)
{

if (DragDC) {
DragDC->LineTo(point) ;
Line->Add(point);

• The Paint function. This function is described in the next section.

• The CmFileNew function. This function is described on page 41.

In standard C Windows programs, if you need to repaint a window
manually, you catch the WM_P AINT messages and do whatever you need
to do to repaint the screen. This might lead you to think that the proper
way to repaint the window in the TMy Window class is to add the
EV _ WM_P AINT macro to the class' response table and set up a function
called EvPaint.

You can do this if you want. However, a better way is to override the
TWindow function Paint. TMy Window's base class TWindow actually does
quite a bit of work in its EvPaint function. It sets up the BeginPaint and
EndPaint calls, creates a device context for the window, and so on.

Paint is a virtual member of the TWindow class. TWindow's EvPaint calls it in
the middle of its processing. The default Paint function doesn't do
anything. You can use it to provide the special processing required to draw
a line from a TPoints array.

Here is the signature of thePaint function. This is added to the TMy Window
class: .

void Paint (TDC&, BOOL, TRect&);

where:

• The first parameter is the device context set up by the calling function.
This is the device context you should use when working.

• If the second parameter is TRUE, you are supposed to clear the device
context before painting the window. If it's FALSE, you are supposed to
paint over what is already contained in the window.

• The third parameter indicates the invalid area of the device context that
needs to be repainted.

Chapter 2, Learning ObjectWindows 37

Menu commands

38

In the current case, you always want to clear the window. You can also
assume that the entire area of the drawing needs to be repainted. The Paint
function implements this basic algorithm:

• Create an iterator to go through the points in the line.

• Select the pen into the device context passed into the Paint function.

• If this is the first point in the array, set the current point to the
coordinates contained in the current array member.

• While there are still points left in the array, draw lines from the current
point to the point contained in the current array member.

The TMy Window::Paint function now looks something like this:

void TMyWindow::Paint(TDC& dc, BOOL, TRect&)
{

BOOL first = TRUEi

TPointslterator i(*Line)i

dc.SelectObject(*Pen)i

while (i) {
TPoint P = itti

if (! first)
dc.LineTo(p)i

else {
dc.MoveTo(p)i
first = FALSEi

There are a number of steps you need to perform to add a menu choice and
its corresponding event handler to your application:

• Define the event identifier for the menu choice. By convention, this
identifier is all capital letters, and begins with CM_. For example, the
identifier for the File Open menu choice is CM_FILEOPEN.

• Add the appropriate menu resource to your resource file.

• Add an event-handling function for the menu choice to your class. The
ObjectWindows 2.0 convention is to name this function the same name as
the event identifier, except omitting the underscore and using initial
capital letters and lowercase letters for the rest. For example, the function
that handles the CM_FILEOPEN event is named CmFileOpen.

• Add an EV _COMMAND macro to your class' response table, associating
the event identifier with the event-handling function. This macro takes
two parameters; the first is the event identifier and the second is the

OWL Programmers Guide

Adding event
identifiers

Adding menu
resources

name of the event-handling function. For example, the response table
entry for the File Open menu choice looks like this:

EV_COMMAND(CM_FILEOPEN, CrnFileOpen),

• The EV _COMMAND macro requires the signature of the event-handling
functionto take no parameters and return void. So the signature of the
event-handling function for the File Open menu choice looks like this:

void CrnFileOpen() i

You need to add identifiers for each of these menu choices. Here's the
definition of the event identifiers:

#define CM_FILENEW 201
#define CM_FILEOPEN 202
#define CM_FILESAVE 203
#define CM_FILESAVEAS 204
#define CM_ABOUT 205

These identifiers are contained in the file STEP06.RC. The ObjectWindows
style places the definitions of identifiers in the resource script file, instead
of a header file. This cuts down on the number of source files required for a
project, and also makes it easier to maintain the consistency of identifier
values between the resources and the application source code.

The actual resource definitions in the resource file are contained in a block
contained in an #ifndef / #endif block, like so:

#ifdef RC_INVOKED
II Resource definitions here.

#endif

RC_INVOKED is defined by all resource compilers, but not by C++
compilers. The resource information is never seen during C++ compilation.
Identifier definitions should be placed outside this #ifndef / #endif block,
usually at the beginning of the file.

For now, you want to add five menu choices to the application:

• File New

• File Open

• File Save

• File Save As

• About

Chapter 2, Learning ObjectWindows 39

Adding response
table entries

Adding event
handlers

Implementing the
event handlers

40

Each of these menu choices needs to associated with the correct event
identifier; that is, the File Open menu choice should send the
CM_FILEOPEN event.

The menu resource is attached to the application in the InitMainWindow
function. You need to call the main window's AssignMenu function. To get
the main window, you can call the GetMain Window function. The
In itMa in Window function should look like this:

void InitMainwindow()
{

SetMainwindow(new TFrameWindow(O, "Drawing Pad", new TMyWindow));
GetMainWindow() ->AssignMenu ("COMMANDS") ;

Each event identifier needs to be associated with its corresponding handler.
To do this, add the following lines to the response table:

EV_COMMAND(CM_FILENEW, CmFileNew),
EV_COMMAND(CM_FILEOPEN, CmFileOpen),
EV_COMMAND(CM_FILESAVE, CmFileSave),
EV_COMMAND(CM_FILESAVEAS, CmFileSaveAs),
EV_COMMAND(CM_ABOUT, CmAbout),

Now you need to add a function to handle each of the events you've just
added to the response table. Because these functions will eventually grow
rather large, you should declare them in the class declaration and define
them outside the class declaration.

The declarations of these function should look something like this:

void CmFileNew();
void CmFileOpen();
void CmFileSave();
void CmFileSaveAs()i
void CmAbout();

The last step in implementing the event handlers is defining the functions.
For now, leave the implementation of these functions to a bare minimum.
Most of them can just pop up a message box saying that the function has
not yet been implemented. The functions that are set up this way are
CmFileOpen, CmFileSave, CmFileSaveAs, and CmAbout. Here's how these
functions look:

OWL Programmers Guide

Where to find
more information

void TMyWindow: :CmFileOpen()
{

MessageBox (" Feature not implemented" I "File Open" 1MB_OK) i

The only function that's implemented in this step is the CmFileNew
function. That's because it's very easy to set up. All that needs to be done is
to clear the array of points and erase the window. The CmFileNew function
looks like this:

void TMyWindow: :CmFileNew()
{

Line->Flush() i
Invalidate()i

Here's a guide to where you can find more information on the topics
introduced in this step:

• Window classes are discussed in Chapter 6.

• The Borland C++ container class library and the TArray and
T ArrayIterator classes are explained in Chapter 7 of the Borland C++
Programmer's Guide.

• Menus and menu objects are explained in Chapter 7.

• Event handling is discussed in Chapter 5.

Step 7: Using common dialog boxes

You can find the
source for Step 7 in

the files
STEP07.CPP and
STEP07.RC in the

directory
EXAMPLES\OWL \

TUTORIAL.

In this step, you'll implement the event-handling functions you added in
Step 6. The CmFileOpen function, the CmFileSave function, and the
CmFileSaveAs function use the ObjectWindowsclasses- TFileOpenDialog and
TFileSaveDialog. These classes encapsulate the Windows Open and Save
common dialog boxes to prompt the user for file names.

You'll make the CanClose function check whether the drawing in the
window has changed before the drawing is discarded. If the drawing has
changed, the user is given a chance to either save the file, continue without
saving the file, or abort the close operation entirely.

Also, to implement the CmFileOpen function, the CmFileSave function, and
the CmFileSaveAs function, you need to add two more protected functions,
OpenFile and SaveFile, to the window class. These functions are discussed a
little later in this step.

Chapter 2, Learning ObjectWindows 41

Changes to
JMyWindow

FileData

IsDirty

IsNewFile

42

To implement the menu commands, add some new data members to the
TMy Window class: FileData, IsDirty, and IsNewFile.

The FileData member is a pointer to a TOpenSaveDialog::TData object. The
TOpenSaveDialog class is the direct base class of both the TFileOpenDialog
class and the TFileSaveDialog class. Both of these classes use the
TOpenSaveDialog::TData class to contain information about the current file
or file operation, such as the file name, the initial directory to search, file
name filters, and so on.

FileData is initialized in the TMy Window constructor to a newed
TOpenSaveDialog::TData object. Because FileData is a pointer to an object, a
delete statement must be added to the TMy Window destructor to ensure
that the object is removed from memory when the application terminates.

The IsDirty flag indicates whether the current drawing is "dirty," that is,
whether the drawing has been saved since it was last modified by the user.
If the drawing hasn't been modified, or if the user hasn't drawn anything
on an empty window, IsDirty is set to FALSE. Otherwise it is set to TRUE.
IsDirty is set to FALSE in the TMy Window constructor because the drawing
hasn't been modified yet.

Outside of the constructor, the Is Dirty flag is set in a number of functions:

• In the EvLButtonDown function, IsDirty is set to TRUE to reflect the
change made to the drawing.

• In the CmFileNew function, IsDirty is set to FALSE when the window is
cleared.

• In the OpenFile and SaveFile functions, IsDirty is set to FALSE to reflect
that the drawing hasn't been modified since last saved or loaded.

The IsNewFile flag indicates whether the file has a name. A file has a name if
it was loaded from an existing file or has been saved to disk to some file
name. If the file has a name (that is, if it's been saved previously or was
loaded from an existing file), the IsNewFile flag is set to FALSE. IsNewFile is
set to TRUE in the TMy Window constructor because the drawing hasn't yet
been saved with a name.

Outside the constructor, the IsNewFile flag is set in a number of functions:

• In the CmFileNew function, IsNewFile is set to TRUE when the window is
cleared.

OWL Programmer's Guide

Improving
CanClose

• In the OpenFile and SaveFile functions, IsNewFile is set to FALSE to reflect
that the drawing has been saved to disk.

The CanClose function that you've been using since step 2 of this tutorial
has a couple of flaws. First, whenever it's called, it prompts the user to save
the drawing. This isn't necessary if the drawing hasn't been changed since
it was loaded, saved, or the window was cleared. Second, a simple yes or
no answer to this question isn't sufficient. For example, if the user didn't
intend to close the window, the desired response is to cancel the whole
operation.

Checking the IsDirty flag tells the CanClose function whether it's even
necessary to prompt the user for approval of the closing operation. If the
drawing isn't dirty, there's no need to ask whether it's OK to close. The user
can simply reload the file.

If the file is dirty, then the CanClose function pops up a message box. Using
the MB _ YESNOCANCEL flag in the message box call gives the user three
possible choices instead of two:

• Choosing Cancel means the user wants to abort the entire close
operation. In this case, when MessageBox returns IDCANCEL, the
CanClose function returns FALSE, signaling to the calling function that it's
not all right to proceed.

• Choosing Yes means that the user wants to save the file before
proceeding. When MessageBox returns IDYES, the CanClose function calls
the CmFileSave function (CmFileSave is explained later in this section).
After calling CmFileSave, CanClose returns TRUE, signaling to the calling
function that it's all right to proceed.

• Choosing No means that the user doesn't want to save the file before
proceeding. In this case, Can Close takes no further action and returns
TRUE. .

The code for the new Can Close function looks something like this:

, BOOL TMyWindow: :CanClose ()
{

if (IsDirty)
switch(MessageBox("Do you want to save?", "Drawing has changed",

MB_YESNOCANCEL I MB_ICONQUESTION)) {
case IDCANCEL:

II Choosing Cancel means to abort the close -- return FALSE.
return FALSE;

Chapter 2, Learning ObjectWindows 43

CmFileSave
function

CmFileOpen
function

44

case IDYES:
II Choosing Yes means to save the drawing.
CmFileSave()i

return TRUEi

Note that the CmFileNew function is modified in this step to take advantage
of the new CanClose function.

The CmFileSave function is relatively simple. It checks whether the drawing
is new by testing IsNewFile. If IsNewFile is TRUE, CmFileSave calls
CmFileSaveAs, which prompts the user for a file in which to save the
drawing. Otherwise, it calls SaveFile, which does the actual work of saving
the drawing.

The CmFileSave function should look something like this:

void TMyWindow::CmFileSave()
{

if (IsNewFile)
CmFileSaveAs() i

else
SaveFile()i

The CmFileOpen function is also fairly simple. It first checks Can Close to
make sure it's OK to close the current drawing and open a new file. If the
Can Close function returns FALSE, CmFileOpen aborts.

After ensuring that it's OK to proceed, CmFileOpen creates a
TFileOpenDialog object. The TFileOpenDialog constructor can take up to five
parameters, but for this application you need to use only two. The last three
parameters all have default values. The two parameters you need to
provide are a pointer to the parent window and a reference to a
TOpenSaveDialog::TData object. In this case, the pointer to the parent
window is the this pointer. The TOpenSaveDialog::TData object is provided
by FileData.

Once the dialog box object is constructed, it is executed by calling the
TFileOpenDialog::Execute function. There are only two possible return
values for the TFileOpenDialog, IDOK and IDCANCEL. The value that is
,returned depends on whether the user presses the OK or Cancel button in
the File Open dialog box.

If the return value is IDOK, CmFileOpen then calls the OpenFile function,
which does the actual work of opening the file. The Execute function also

OWL Programmers Guide

CmFileSaveAs
function

Opening and
saving drawings

stores the name of the file the user selected into the FileName member of
FileData. If the return value is not IDOK (that is, if the return value is
IDCANCEL), no further action is taken and the function returns.

The CmFileOpen function should look something like this:

void TMyWindow::CmFileOpen()
{

if (CanClose())
if (TFileOpenDialog(this, *FileData) .Execute() == IDOK)

OpenFile();

The CmFileSiweAs function can be used in two ways: to save a new drawing
under a new name and to save an existing drawing under a name different
from its present name.

To determine which of these the user is doing, CmFileSaveAs first checks the
IsNewFile flag. If the file is new, CmFileSaveAs copies a null string into the
FileName member of FileData. If the file is not new, FileName is left as it is.

The distinction between these two is quite important. If FileName contains a
null string, the default name in the File Name box of the File Open dialog
box is set to the name filter found in the FileData object, in this case, *.pts.
But if FileName already contains a name, that name plus its directory path is
inserted in the File Name box.

Once this has been done, TFileSaveDialog is created and executed. This
works exactly the same as TFileOpenDialog does in the CmFileOpen function.
If the Execute function returns IDOK, CmFileSaveAs then calls the SaveFile
function.

The CmFileSaveAs function should look something like this:

void TMyWindow: : CmFileSaveAs ()
{

if (IsNewFile)
strcpy(FileData->FileName, 1111);

if ((new TFileSaveDialog(this, *FileData))->Execute() == IDOK)
SaveFile();

The CmFileOpen, CmFileSave, and CmFileSaveAs functions only provide the
interface to let the user open and save drawings. The actual work of
opening and saving files is done by the OpenFile and SaveFile functions.
This section describes how these functions perform these actions, but it
doesn't provide technical explanations of the entire functions.

Chapter 2, Learning ObjectWindows 45

OpenFile function

SaveFile function

46

The OpenFile function opens the file named in the FileName member of the
FileData object as an ifstream, one of the standard C++ iostreams. If the file
can't be opened for some reason, OpenFile pops up a message box
informing the user that it couldn't open the file and then returns.

Once the file is successfully opened, the Line array is flushed. OpenFile then
reads in the number of points saved in the file, which is the first data item
stored in the file. It then sets up a for loop that reads each point into a
temporary TPoint object. That object is then added to the Line array.

Once all the points have been read in, OpenFile calls Invalidate. This
invalidates the window region, causing a WM_P AINT message to be sent
and the new drawing to be painted in the window.

Lastly, OpenFile sets IsDirty and IsNewFile both to FALSE. The OpenFile
function should look something like this:

void TMyWindow: :OpenFile()
{

ifstream is (FileData->FileName) ;

if (! is)
MessageBox ("Unable to open file", "File Error", MB_OK I MB_ICONEXCLAMATION) i

else {
Line->Flush () ;
unsigned numPoints;
is » numPoints;
while (numPoints--)

TPoint ppint;
is » point;
Line->Add(point);

IsNewFile = IsDirty = FALSE;
Invalidate() ;

The SaveFile function opens the file named in the FileName member of
FileData as an ofstream, one of the standard C++ iostreams. If thefile can't
be opened for some reason, SaveFile pops up a message box informing the
user that it couldn't open the file and then returns.

Once the file has been opened, the function Line->GetItemsInContainer is
called. The result is inserted into the file. This number is read in by the
OpenFile function to determine how many points are stored in the file.

OWL Programmers Guide

CmAbout function

After that, SaveFile sets up an iterator called i from Line. This iterator goes
through all the points contained in the Line array. Each point is then
inserted into the stream until there are no points left.

Lastly, IsNewFile and IsDirty are set to FALSE. Here is how the SaveFile
function should look:

void TMyWindow::SaveFile()
{

of stream os (FileData->FileName) ;

if (!os)
MessageBox("Unable to open file", "File Error",

MB_OK I MB_ICONEXCLAMATION);
else {

os « Line->GetltemslnContainer();
TPointslterator i(*Line);
while (i)

as « itt;

IsNewFile = IsDirty = FALSE;

The CmAbout function demonstrates how easy it is to use custom dialog
boxes in ObjectWindows. This function contains only one line of code. It
uses the TDialog class and the IDD ~BOUT dialog box resource to pop up
an information dialog box.

TDialog can take up to three parameters:

• The first parameter is a pointer to the dialog box's parent window. Just as
with the TFileOpenDialog and TFileSaveDialog constructors, you can use
the this pointer, setting the parent window to the TMy Window object.

• The second parameter is a reference to a TResld object. This should be the
resource identifier of the dialog box resource.

Usually you don't actually pass in a TResld reference. Instead you pass a
resource identifier number or string, just as you would for a dialog box
created using regular Windows API calls. Conversion operators in the
TResld class resolve the parameter into the proper type.

• The third parameter, a TModule *, usually uses its default value.

Once the dialog box object is constructed, all that needs to be done is to call
the Execute function. Once the user closes the dialog box and execution is
complete, CmAbout returns. The temporary TDialog object goes out of scope
and disappears.

The code for CmAbout should look like this:

Chapter 2, Learning ObjectWindows 47

Where to find
more information

void TMyWindow::CrnAbout()
{

TDialog(this, IDD_ABOUT) .Execute();

Here's a guide to where you can find more information on the topics
introduced in this step:

• Dialog boxes, including the TFileOpenDialog and the TFileOpenDialog
classes, are discussed in Chapter 8.

• The Can Close function is discussed in Chapter 3.

Step 8: Adding multiple lines

You can find the
source for Step 8 in

the files
STEP08.CPP and
STEP08.RC in the

directory
EXAMPLES\OWL \

TUTORIAL.

TLine class

48

Step 8 makes a great leap in terms of usefulness. In this step, you'll add a
new class, TLine, that is derived from the TPoints array you've been using to
contain the points in a line. You'll then define another array class, TLines,
that contains an array of TLine objects, enabling us to have multiple lines in
the window. You'll add streaming operators to make it a little easier to save
drawings. Lastly, you'll develop the Paint function further to handle
drawings with multiple lines.

The TLine class is derived from the public base class TPoints. This gives
TLine all the functionality that you've been using with the Line member of
the TMy Window class. This includes the Add, Flush, and GetItemslnContainer
functions that you've been using. In addition, you can continue to use
TPointsIterator with the TLine class in the same way you used it with
TPoints.

But because you're creating your own class now, you can also add any
additional functionality you need. For example, you should add a data
member to contain the size of the pen for each line. Then, to hide the data,
add accessor functions to manipulate the data.

In TLine, the pen size is contained in a protected int called Pensize. Pensize
is accessed by one of two functions, both called QueryPen. Both versions of
QueryPen return an int, which contains the value of Pensize. Here's the
difference between the two functions:

• The first QueryPen function takes no parameters. This function returns
the pen size.

• The second QueryPen function takes a single parameter, an int. This
function sets Pen Size to the value passed in, then returns the neyv value of

OWL Programmers Guide

TLines array

PenSize. You can use the return value to check whether QueryPen actually
set the pen to the value you passed to it. This version of QueryPen checks
the value of the parameter to make sure that it's a legal value for the pen
size.

TLine also contains a definition for the == operator. This operator checks to
see if the two objects are actually the same object. If so, the operator returns
TRUE. Defining an array using the T Array class (which you'll do later when
defining TLines) requires that the object used in TArray have the ==
opera tor defined.

Lastly you should declare two operators, « and », to be friends of the
TLine class. When these operators are implemented later in this section,
they'll provide easy access to stream operations for the SaveFile and
OpenFile functions.

Here is the declaration of the TLine class:

class TLine : public TPoints

};

pUblic:
TLine(int penSize = 1) : TPoints(10, 0, 10) {PenSize = penSize; }

int QueryPen() const { return PenSize; }
int Querypen(int penSize);

II The == operator must be defined for the container class,
II even if unused
BOOL operator ==(const TLine& other) const

{ return &other == this; }
friend ostream& operator «(ostream& os, const TLine& line);
friend istream& operator »(istream& is, TLine& line);

protected:
int PenSize;

Once you've defined the TLine class, you can define the TLines array and
the TLinesIterator array. These containers work the same way as the TPoints
and TPointsIterator container classes that you defined earlier. The only
difference is that, instead of containing an array of TPoint objects like
TPoints, TLines contains an array of TLine objects.

Here are the definitions of TLines and TLinesIterator:

typedef TArray<TLine> TLines;
typedef TArrayIterator<TLine> TLinesIterator;

Chapter 2, Learning ObjectWindows 49

Insertion and
extraction of
TUne objects

Insertion operator
«

Extraction operator
»

50

Most objects that need to be saved to and retrieved from files on a regular
basis are set up to use the insertion and extraction operators «and ». By
declaring these operators as friends of TLine, you need to define the
operators to handle the particular type of data encapsulated in TLine.

Having these operators defined gives you the ability to place an entire
TLine object into a file with a single line of code. You'll see how this is used
when you make the changes to the OpenFile and SaveFile functions.

In essence, the insertion operator takes on the functionality of the SaveFile
function used in Step 7. It doesn't have to open a file (that's handled by
whatever function uses the operator) and it has an extra piece of data to
insert (PenSize). Other than that, it's not much different. Compare the
definition of this function with the SaveFile function from Step 7. Notice the
use of TPointsIterator with the TLine object:

ostream& operator «(ostream& os, const TLine& line)
{

II Write the number of points in the line
os « line.GetItemsInContainer() « '\n';

II Write the pen size
os « ' , « line.PenSize;

II Get an iterator for the array of points
TPointsIterator j (line);

II While the iterator is valid (i.e. it hasn't run out of points)
while(j)

II Write the point from the iterator and increment the array.
os « j++;

os « '\n';

II return the stream object
return os;

Much like the insertion operator, the extraction operator takes on the.
functionality of the OpenFile function in Step 7. It doesn't have to open a file
itself and it has an extra piece of data to extract. Other than that, it's
implemented similarly to the OpenFile function:

istream& operator »(istream& is, TLine& line)
{

unsigned numPoints;

is » numPoints;

OWL Programmers Guide

Extending
TMyWindow

Paint function

is » line.PenSize;

while (numPoints--)
TPoint point;
is » point;
line . Add (point) ;

II return the stream object
return is;

There are a number of changes required in TMy Window to accommodate
the new TLine class. First there are a number of changes in data members:

• PenSize is removed. Each individual line now contains its pen size.

• The Line data member is changed from a TPoints * to a TLine *. The Line
object holds the points in the line currently being drawn.

• The Lines data member, a TLines *, is added. The Lines object contains all
the TLine objects.

There are also a number of functions that are modified or added:

• The SetPenSize function is made protected because changes to the pen
size should be made to the TLine class. SetPenSize should now be used
only by the TMy Window class internally. SetPenSize also sets the pen size
for the current line by calling that line's QueryPen function.

• The GetPenSize function is added. This function implements the
TlnputDialog that was handled in EvRButtonDown. This is because two
functions now use this same dialog box, EvRButtonDown and CmPenSize.

• The EvRButtonDown function now calls GetPenSize to open the input
dialog box.

• The CmPenSize function handles the CM_PENSIZE event. This event
comes from a new menu choice, Pen Size, on a new menu, Tools. This
function is added to give the user another way to change the pen size.

• The OpenFile and SaveFile functions are modified to store an array of
TLine objects instead of an array of TPoint objects. By using the insertion
and extraction operators, these functions change very little from their
prior forms.

In addition, the Paint function is changed quite a bit, as described in the
following section.

The Paint function must now perform two iterations instead one. Instead of
iterating through a single array of points, Paint must now iterate through

Chapter 2, Learning ObjectWindows 51

Where to find
more information

52

an array of lines. For each line, it must set the pen width and then iterate
through the points that compose the line.

Paint does this by first creating an iterator from Lines. This iterator goes
through the array of lines. For each line, Paint queries the pen size of the
current line. It sets the window's Pen to this size and selects this pen into
the device context. It then creates an iterator for the current line and
increments the line array iterator.

The next part of Paint looks like the Paint function from Step 7. That's
because it does basically the same thing as that function-it takes the array
of points and draws the line in the window.

Here is the code for the new Paint function:

void TMyWindow::Paint(TDC& dc, BOOL, TRect&)
{

II Iterates through the array of line objects.
TLinesIterator i(*Lines);

while (i) {
II Set pen for the dc to current line's pen.
TPen pen(TColor::Black, i.Current() .QueryPen());
dc.SelectObject(pen);

II Iterates through the points in the line i.
TPointsIterator j (itt);
BOOL first = TRUE;

while (j) {
TPoint p = j++;

if (!first)
dc. LineTo (p) ;

else {
dc. MoveTo (p) ;
first = FALSE;

. Here's a guide to where you can find more information on the topics
introduced in this step:

• Window classes are discussed in Chapter 6 .

• The Borland container class library and the T Array and T ArrayIterator
classes are explained in Chapter 7 of the Borland C++ Programmer's Guide.

OWL Programmers Guide

Step 9: Changing pens

You can find the
source for Step 9 in

the files
STEP09.CPP and
STEP09.RC in the

directory
EXAMPLES\OWL \

TUTORIAL.

Changes to the
TLine class

In Step 9, you'll add a TColor member to the TLine class, letting the user
draw with lines of different widths and different colors. To change the color
of the line, you'll add the'CmPenColor function. This function handles the
CM_PENCOLOR menu command. CmPenColor uses the TChooseColorDialog
class to let the user change colors. It also adds some helper functions to deal
with changes to the width and color and give external classes access to
information about the line.

Along with adding color to the pen, Step 9 adds functionality to the
streaming operators to deal with the new attributes of the TLine class. It
also adds a Draw function to the TLine class to make the class more self
sufficient and to make the Paint function simpler.

A number of changes to the TLine class declaration are required to
accommodate the new functionality:

• There is a new protected data member, Color (a TColor object). Color and
. PenSize make up the attributes necessary to construct a TPen object.

• The constructor signature has changed from:

TLine(int penSize = 1);

to:

TLine(const TColor &color = (TColor) 0, int penSize = 1);

The constructor itself changes to set PenSize to the constructor's second
parameter and to create a new TPen object and assign it to Pen. If no
parameters are specified and the first parameter takes on its default
value, TColor::Black is used as the pen color.

• The two QueryPen functions are abandoned in favor of three new
functions: QueryPenSize, which returns the pen size as an int, QueryColor,
which returns the pen color as a TColor, and QueryPen, which returns the
pen as a TPen .

.• Instead of using the query functions to set the pen attributes, there are
two new functions called SetPen. One takes a single int parameter and the
other takes a TColor & and two ints. The pen query and set functions are
discussed in the next section.

• A Draw function is added so that the TLine class dictates how it is drawn.
This function is virtual so that it can be easily overridden in a derived
class.

Here's how the new TLine class declaration should look:

Chapter 2, Learning ObjectWindows 53

Pen access
functions

54

class TLine : public TPoints {

};

public:
II Constructor to allow construction from a color and a pen size.
II Also serves as default constructor.
TLine(const TColor &color = TColor(O), int penSize = 1)

: TPoints(10, 0, 10), PenSize(penSize), Color(color) {}

II Functions to modify and query pen attributes.
int QueryPenSize() { return PenSize; }
TColor& QueryColor() { return Color; }
void SetPen(TColor &newColor, int penSize = 0);
void SetPen(int penSize);

II TLine draws itself. Returns TRUE if everything went OK.
virtual BOOL Draw(TDC &) const;

II The == operator must be defined for the container class,
II even if unused
BOOL operator ==(const TLine& other) const

{ return &other == this; }
friend ostream& operator «(ostream& os, const TLine& line);
friend istream& operator »(istream& is, TLine& line);

protected:
int PenSize;
TColor Color;

In Step 8, the QueryPen function could be used both to access the current
size of the pen and to set the size of the pen. The new TLine query
functions-QueryPenSize and QueryColor-can't be used to modify the pen
attributes. These functions only return pen attributes.

To set pen attributes, there are two new functions called SetPen. The first
SetPen sets just the pen size. The other SetPen can be used to set the color,
size, and style of the pen. But by letting the second and third parameters
take on their default values, you can use the second constructor to set just
the color. Here's the code for these functions:

void TLine::SetP~n(int penSize)
{

if (penSize< 1)
PenSize = 1;

else
PenSize = penSize;

OWL Programmers Guide

Draw function

void TLine: :SetPen(TColor &newColor, int penSize)
{

II If penSize isn't the default (0), set PenSize to the new size.
if (penSize)

PenSize = penSize;

Color = newColor;

The Draw function draws the line in the window, taking that functionality
from the window's Paint function. This functionality is moved because the
TLine object can now dictate how it gets painted onscreen. Take a look at
the code for the Draw function below and compare this to the Paint function
from Step 8. From a certain point, the two bits of code are nearly identical:

BOOL TLine::Draw(TDC &dc) const
{

II Set pen for the dc to the values for this line
TPen pen(ColoI, PenSize);
dc.SelectObject(pen) ;

II Iterates through the points in the line i.
TPointsIterator j (*this) ;
BOOL first = TRUE;

while (j) {
TPoint p = jtt;

if (! first)
dc. LineTo (p) ;

else {
dc. MoveTo (p) ;
first = FALSE;

dc.RestorePen();
return TRUE;

After putting all this code into the TLine class, the TMy Window::Paint
function is greatly simplified:

void TMyWindow::Paint(TDC& dc, BOOL, TRect&)
{

II Iterates through the array of line objects.
TLinesIterator i(*Lines);

while (i)
itt. Draw(dc) ;

Chapter 2, Learning ObjectWindows 55

Insertion and
extraction operators

Changes to the
TMyWindow class

CmPenColor
function

56

There also some changes to the insertion and extraction operators that are
necessary to handle the revised TLine class.

The insertion operator is modified to write out the PenSize and Color
member. It then writes out the points just as it did before.

The extraction operator reads in the data and uses the PenSize and Color
data in the SetPen function. Each point is read in from the file and added to
the object.

There are a few fairly minor changes to the TMy Window class to
accommodate the revised TLine class:

• The Pen data member is constructed from the size and color of the
current line.

• The SetPenSize function is removed. The function GetPenSize opens a
TlnputDialog for the user to enter a new pen size in. GetPenSize then calls
the function Line->SetPen to actually set the pen size.

• The CmPenColor function is added to handle the CM_PENCOLOR event.
This event is sent from the new Tools menu choice Pen Color.

The CmPenColor function opens a TChooseColorDialog for the user to select a
color from. Like TFileOpenDialog and TFileSaveDialog, TChooseColorDialog is
an encapsulation of one of the Windows common dialog boxes.

Also like TFileOpenDialog and TFileSaveDialog, the TChooseColorDialog
constructor can take up to five parameters, but in this case you need only
two. The last three all have default values. The two parameters you need to
provide are a pointer to the parent window and a reference to a
TChooseColorDialog::TData object. In this case, the pointer to the parent
window is simply the this pointer. The TChooseColorDialog::TData object is
provided by colors.

Setting the Color member of colors to a particular color makes that color (or
its closest equivalent displayed in the dialog box) the default color in the
dialog box. By setting Color to the color of the current pen, you ensure that
the Color dialog box reflects the current state of the application.

Setting the CustColors member of the colors object to some array of TColor
objects sets those colors in the Custom Colors section of the Color dialog
box. You can use whatever colors you want for the CustColors array. The
values that are used in the tutorial produce a range of monochrome colors
that goes from black to white.

OWL Programmers Guide

Where to find
more information

Creating and executing a TChooseColorDialog works exactly the same as for
a TFileOpenDialog or TFileSaveDialog. Although the Color dialog box has an
extra button (the Define Custom Colors button), that button is handled by
the Windows part of the common dialog box. Therefore there are only two
possible results for the Execute function, IDOK and IDCANCEL. If the user
selects Cancel, you ignore any changes from the dialog box.

On the other hand, if the user selects OK, you need to change the pen color
to the new color chosen by the user. The TChooseColorDialog places the color
chosen by the user into the Color member of the colors object. Color is a
TColor, which fits nicely into the SetPen function of a TLine object.

Here's the code for the CmPenColor function:

void TMyWindow: :CrnPenColor()
{

TChooseColorDialog::TData colors;
static TColor custColors[16l =
{

Ox010101L, OxlO101OL, Ox202020L,
Ox404040L, Ox505050L, Ox606060L,
Ox808080L, Ox909090L, OxAOAOAOL,
OxCOCOCOL, OxDODODOL, OxEOEOEOL,

}i

colors.Flags = CC_RGBINITi

Ox303030L,
Ox707070L,
OxBOBOBOL,
OxFOFOFOL

colors.Color = TColor(Line->QueryColor())i
colors.CustColors = custColorsi
if (TChooseColorDialog(this, colors) .Execute() == IDOK)

Line->SetPen(colors.Color) ;

Here's a guide to where you can find more information on the topics
introduced in this step:

• The TPen and TColor classes are discussed in Chapter 13 .

• Dialog boxes, including the TChooseColorDialog class, are discussed in
Chapter 8.

Step 10: Adding decorations

The only changes in Step 10 are in the InitMain Window function. But these
changes let you make your application more attractive and easier and more
intuitive to use. In this step, you'll add a control bar with bitmap button
gadgets and a status bar that displays the current menu choice.

Chapter 2, Learning ObjectWindows 57

You can find the
source for Step 10 in

the files
STEP10.CPP and
STEP10.RC in the

directory
EXAMPLES\OWL \

TUTORIAL.

Changing the
main window

Creating the
status bar

58

There are four main changes in this step:

• Changing the main window from a TFrame Window to a TDecoratedFrame.

• Creating a status bar and inserting it into the decorated frame window.

• Creating a control bar, along with its button gadgets, and inserting it into
the decorated frame.

• Adding resources, such as a string table (which provides descriptions of
each of the available menu choices) and bitmaps for the button gadgets.

Changing from a TFrame Window to a TDecoratedFrame is quite easy. Because
TDecoratedFrame is based on TFrameWindow, a 'decorated frame can be used
just about anywhere that a regular frame window is used. In this case, just
create a TDecoratedFrame and pass it as the parameter to the SetMain Window
function.

Even the constructors of the TFrame Window and TDecoratedFrame are alike.
The only difference is the fourth parameter, which wasn't being used
anyway. The fourth parameter for TFrame Window is a BOOL that tells the
frame window whether it should shrink to the size of its client window.

The fourth parameter for TDecoratedFrame is also a BOOL. This parameter
indicates whether the decorated frame should track menu selections. Menu
tracking displays a text description of the currently selected menu choice or
button in a message bar or status bar. If you specify TRUE for this
parameter, you must supply a message or status bar for the window. If you
don't, your application will crash the first time it tries to send a message to
the message or status bar.

If you're using a status bar, you must include the resources for it in your
resource file. These resources are contained in the file ST ATUSBA.RC in the
INCLUDE\OWL directory.

The only other difference is that the decorated frame requires some
preparation, such as adding decorations like the control bar and status bar,
before it can become the main window. So instead of constructing and
setting the window in one step, you must construct the window, prepare it,
then set it as the main window.

Status bars are created using the TStatusBar class. TStatusBar is based on the
TMessageBar class, which is itself based on TGadget Window. Both message
bars and status bars display text messages. But status bars have more
options than message bars. For example, you can have multiple text
gadgets, styled borders, and mode indicators (such as Insert or Overwrite
mode) in a status bar.

OWL Programmers Guide

Creating the
control bar

Constructing
TControlBar

The TStatusBar constructor takes five parameters, although you only use
the first two. The rest of the parameters take on their default values:

• The first parameter is a pointer to the status bar's parent window. In this
case, use frame, which is the pointer to the decorated frame window
constructed earlier.

• The second parameter is a TGadget::TBorderstyle enum. It can be one of
None, Plain, Raised, Recessed, or Embossed. This parameter determines the
style of the status 1;>ar. This parameter defaults to Recessed.

• The third parameter is a TModelndicator enum. It determines the
keyboard modes that the status bar should show. These indicators can be
one or more of ExtendSelection, Caps Lock, NumLock, ScrollLock, Over type,
and RecordingMacro. This parameter defaults to 0, meaning to indicate no
keyboard modes.

• The fourth parameter is a TFont *. This contains the font that should be
used in the status bar. This defaults to TGadget WindowFont.

• The fifth parameter is a TModule *. It defaults to O.

Here is the status bar constructor:

TStatusBar* sb = new TStatusBar(frame, TGadget::Recessed) i

Once the status bar is created, it is ready to be inserted into the decorated
frame. This is described on page 62.

Creating the control bar' is more involved than creating the status bar. You
first construct the actual TControlBar object. Then you create the gadgets
that make up the controls on the bar and insert them into the control bar.

The TControlBar constructor takes four parameters, although you need to
use only the first parameter here. The rest of the parameters take on their
default values:

• The first parameter is a pointer to the parent window. As with the status
bar, use frame here to make the decorated frame the control bar's parent.

• The second parameter is a TTileDirection enum. A TTileDirection enum
can have two values, Horizontal and Vertical. This tells the control bar
which way to tile its controls. This parameter defaults to Horizontal.

• The third parameter is a TFont *. This contains the font that should be
used in the status bar. This defaults to TGadgetWindowFont.

• The fourth parameter is a TModule *. It defaults to O.

Here is the control bar constructor:

TControlBar *cb = new TControlBar(frame) i

Chapter 2, Learning ObjectWindows 59

Building button
gadgets

60

Button gadgets are used as control bar buttons. They associate a bitmap
button with an event identifier. When the user presses a button gadget, it
sends that event identifier. You can set this up so that pressing a button on
the control is just like making a choice from a menu. In this section, you'll
see how to set up buttons to replicate each of your current menu choices.

Button gadgets are created using the TButtonGadget class. The
TButtonGadget constructor takes six parameters, of which you need to use
only the first three:

• The first parameter is a reference to a TResld object (see the note on
page 47 regarding the TResld class). This should be the resource
identifier of the bitmap you want on the button. There are no real
restrictions on the size of the bitmap you can use in a button
gadget. There are, however, practical considerations: the control bar
height is based on the size of the objects contained in the control
bar. If your bitmap is excessively large, the control bar will be also.

• The second parameter is the gadget identifier for this button
gadget. Usually the gadget identifier, event identifier, and bitmap
resource identifier are the same. For example, the button gadget for
the File New command uses a bitmap resource called
CM_FILEOPEN, has the gadget identifier CM_FILEOPEN, and
posts the event CM_FILEOPEN.

The bitmap is given the same identifier in the resource file as the
event identifier. This makes it a little easier on you when working
with the code. This is not a rule, however, and you can name the
bitmap and event identifier whatever you like. The only stipulation
is that the event identifier must be defined and have some sort of
processing enabled and the resource identifier must be valid.

You should also notice that there are a number of entries in the
application's string resource table that have the same IDs as the
gadgets and events. When a string exists with the same identifier as
a button gadget, that string is displayed in the status bar when the
gadget is pressed.

• The third parameter is a TType enum. This indicates what type of
button this is. There are three possible button types, Command,
Exclusive, and NonExclusive. In this application, all the buttons are
command buttons. This parameter defaults to Command.

• The fourth parameter is a BOOL indicating whether the button is
enabled. By default this parameter is FALSE.

OWL Programmers Guide

Separator gadgets

Inserting gadgets
into the control bar

• The fifth parameter is a TState enum. This parameter indicates the
initial state of the button, and can be Up, Down, or Indeterminate.
This parameter defaults to Up.

• The sixth parameter is a BaaL that indicates the repeat state of the
button. If the repeat state is TRUE, the button repeats when it is
pressed and held. By default, this parameter is FALSE.

There is another type of gadget commonly used when constructing
control bars, called a separator gadget. Normally gadgets in a control
bar are right next to each other. A separator gadget provides a little
bit of space between two gadgets. This lets you separate gadgets into
groups, place them in predetermined spots on the control bar, and so
on.

Separator gadgets are contained in the TSeparatorGadget class. This is
a simple class that takes a single int parameter. By default the value of
this parameter is 6. This parameter indicates the number of pixels of
space the separator gadget should take up.

Once your gadgets are constructed, you need to insert them into the
control bar. The control bar can take gadgets because it is derived
from the class TGadget Window. TGadget Window provides the basic
functionality that lets you use gadgets in a window. TControlBar
refines that functionality, producing a control bar.

You can insert gadgets into the control bar using the Insert function.
This version of the Insert function is inherited by TControlBar from
TGadget Window (later you'll use another version of this function
contained in TDecoratedFrame). This function takes three parameters,
although you need to use only the first parameter in the tutorial
application:

• The first parameter is a reference to a TGadget or TGadget-derived
object.

• The second parameter is a TPlacement enum, which can have a
value of Before or After. This parameter indicates whether the
gadget should be placed before or after the gadget'S sibling. The
default value is After. This parameter has no effect if there is no
sibling specified.

• The gadget's sibling is specified by the third parameter, which is a
TGadget *. The sibling should have already been inserted into the
control bar. This parameter defaults to O.

Chapter 2, Learning ObjectWindows 61

Inserting objects
into a decorated
frame

62

In the tutorial application, constructing the gadgets and inserting
them into the control bar is accomplished in a single step. Here is the
code where the gadgets are inserted into the control bar:

cb->Insert(*new TButtonGadget(CM_FILENEW, CM]ILENEW,
TButtonGadget::Command))i

cb->Insert(*new TButtonGadget(CM_FILEOPEN, CM_FILEOPEN,
TButtonGadget::Command))i

cb->Insert(*new TButtonGadget(CM_FILESAVE, CM_FILESAVE,
TButtonGadget::Command)) i

cb->Insert(*new TButtonGadget(CM_FILESAVEAS, CM_FILESAVEAS,
TButtonGadget::Command)) i

cb->Insert(*new TSeparatorGadget)i
cb->Insert(*new TButtonGadget(CM_PENSIZE, CM_PENSIZE,

TButtonGadget: :Command)) i

cb->Insert(*new TSeparatorGadget)i
cb->Insert(*new TButtonGadget(CM_ABOUT, CM_ABOUT,

,TButtonGadget::Command)) i

Notice that the button gadgets replicate the menu commands you
already have. This provides an easy way for the user to access
frequently used menu commands. Of course, you aren't restricted to
,using gadgets in a control bar as substitutes or shortcuts for menu
commands. Using the TType parameter, you can set up gadgets on a
control bar to work like radio buttons (by using Exclusive with a
group of gadgets), check boxes (using NonExclusive), and so on.

Now that you've constructed the decorations for your
TDecoratedFrame window, all you need to do is insert the decorations
into the window and make the window the main window.

Inserting decorations into a decorated frame is similar to inserting
gadgets into a control bar. The TDecoratedFrame::lnsert function takes
two parameters:

• The first is a reference to a TWindow or TWindow-derived object.
This TWindow object is the decoration. In this case, the TWindow
derived objects are the TStatusBar object and the TControlBar object.

• The second parameter is a TLocation enum. This parameter can have
one of four values, Top, Bottom, Left, or Right. This indicates where
in the decorated frame the gadget is to be placed.

Here is the code for inserting the decorations into the decorated
frame:

OWL Programmers Guide

Where to find
more information

II Insert the status bar and control bar into the frame
frame->Insert(*sb, TDecoratedFrame: :Bottom)i
frame->Insert(*cb, TDecoratedFrame::Top) i

Once you've inserted the decorations into the frame, the last thing
you have to do is set the main window to frame and set up the menu:

II Set the main window and its menu
SetMainWindow(frame)i
GetMainWindow () ->AssignMenu ("COMMANDS") i

Here's a guide to where you can find more information on the topics
introduced in this step:

• Decorated frames are discussed in Chapter 6.

• Status bars and control bars are discussed in Chapter 6.

• Gadgets are discussed in Chapter 10.

Step 11: Moving to the DocNiew model

You can find the
source for Step 11 in

the files
STEP11.CPP,

STEP11.RC,
STEP11DV.CPP, and
STEP11 DV.RC in the

directory
EXAMPLES\OWL\

TUTORIAL.

Step 11 introduces the Doc/View model of programming, which is
based on the principle of separating data from the interface for that
data. Essentially, the data is encapsulated in a document object, which
is derived from the TDocument class, and displayed on the screen and
manipulated by the user through a view object, which is derived from
the TView"class.

The Doc/View model permits a greater degree of flexibility in how
you present data than does a model that links data encapsulation and
user interface into a single class. Using the Doc/View model, you can
define a document class to contain any type of data, such as a simple
text file, a database file, or in this tutorial, a line drawing. You can
then create a number of different view classes, each one of which
displays the same data in a different manner or lets the user interact
with that data in a different way.

For Step 11, however, you'll simply convert the application from its
current model to the Doc/View model. The code from Step 11 will
look very different from the code fromStep 10, but the running
application for Step 11 will look nearly identical to the application for
Step 10.

Chapter 2, Learning ObjectWindows 63

Organizing the
application
source

DocNiew model

64

The source for Step 11 is divided into four source files:

• STEPll.CPP contains the application object and its member
definitions. It also contains the OwlMain function.

• STEPll.RC contains identifiers for events controlled by the
application object, the resources for the frame window and its
decorations, the About dialog box, and the application menu.

• STEPIIDV.CPP contains the TLine class, the document class
TDrawDocument, the view class TDrawView, and the associated
member function definitions for each of these classes.

• STEPIIDV.RC contains identifiers for events controlled by the view
object and the resources for the view.

You should divide your Doc/View code this way to distinguish the
document and its supporting view from the application code. The
application code provides the support framework for the document
and view classes, but doesn't contribute directly to the functionality
of the Doc/View model. This also demonstrates good design practice
for code reusability.

The Doc/View model is based on three ObjectWindows classes:

• The TDocument class encapsulates and controls access to a set of
data. A document object handles user access to that data through
input from associated view objects. A document object can be
associated with numerous views at the same time (for the sake of
simplicity in this example, the document object is associated with
only a single view object).

• The TView class provides an interface between a document object
and the user interface. A view object controls how data from
document object is displayed on the screen. A view object can be
associated with only a single document object at anyone time.

• The TDocManager class coordinates the associations between a
document object and its view objects. The document manager
provides a default File menu and default handling for each of the
choices on the File menu. It also maintains a list of document
templates, each of which specifies a relationship between a
document class and a view class.

The TDocument and TView classes provide the abstract functionality
for document and view objects. You must provide the specific
functionality for your own document and view classes. You must also

OWL Programmers Guide

TDrawDocument
class

Creating and
destroying
TDrawDocument

Storing line data

Implementing
TDocument virtual
functions

explicitly create the document manager and attach it to the
application object. You must also provide the document templates for
the document manager. These steps are described in the following
sections .

. The TDrawDocument class is derived from the ObjectWindows class
TFileDocument, which is in turn derived from the TDocument class.
TDocument provides a number of input and output functions. These
virtual functions return dummy values and have no real functionality.
TFileDocument provides the basic functionality required to access a
data file in the form of a stream.

TDrawDocument uses the functionality contained in TFileDocument to
access line data stored in a file. It uses a TLines array to contain the
lines, the same as in earlier steps. The array is referenced through a
pointer called Lines.

TDrawDocument's constructor takes a single parameter, a TDocument *,
that is a pointer to the parent document. A document can be a parent
of a number of other documents, treating the data contained in those
documents as if it were part of the parent. The constructor passes the
parent pointer on to TFileDocument. The constructor also initializes
the Lines data member to o.
The destructor for TDrawDocument deletes the TLines object pointed
to by Lines.

The document class you're going to create controls access to the data
contained in a drawing. But you still need some way to store the data.
You've already created the TLine class and the TLines array in
previous steps. Luckily, this code can be recycled. The line data for
each document is stored in a TLines array, and accessed by the
document through a protected TLines * data member called Lines.

The TPoints and TLines arrays, their iterators, and the TLine class are
now defined in the STEPllDV.CPP file. In the Doc/View model,
these classes are an integral part of the document class you're about
to build. The code for these classes doesn't change at all from Step 10.

TDrawDocument needs to implement a few of the virtual functions
inherited from TDocument. These functions provide streaming and the
ability to commit changes to the document or to discard all changes
made to the document since the last save.

Chapter 2, Learning ObjecfWindows 65

Opening and
closing a drawing

66

Although TFileDocument provides the basic functionality required for
stream input and output, it doesn't know how to read the data for a
line. To provide this ability, you need to override the Open and Close
functions.

Here's the signature of the Open function:

BOOL Open(int mode, const char far* path=O);

where:

• mode is the file open mode. In this case, you can ignore the mode
parameter; the file is opened the same way each time, with the
of Read flag.

• path contains the document path. If a path is specified, the
document's current path is changed to that path. If no path is
specified (that is, path takes its default value), the path is left as it is.
The path is used by the document when creating the document's
streams.

The Open function is similar to the OpenFile function used in earlier
steps in the tutorial. There are differences, though:

• The Open function creates the TLines array for the document object.
In earlier steps, this was done in the TMyWindow constructor,
because TMy Window was responsible for containing all the TLine
objects. Now the document is responsible for containing all the
TLine objects, so it needs to create storage space for the data before
it reads it in.

• If path is passed in, Open sets the document path to path with the
SetDocPath function.

• Open checks whether the document has a path. If the document
doesn't have a path, it is a new document, in which case there's no
need to read in data from a file. If the document has a path, Open
calls the InStream function. This function is defined in
TFileDocument and returns a TlnStream *.

TlnStream is the standard input stream class used by Doc/View
classes. TlnStream is derived from TStream and istream. TStream is
an abstract base class that lets documents access standard streams.
TlnStream is essentially a standard istream adapted for use with the
Doc/View model. There's also a corresponding TOutSlream class,
derived from TStream and ostream. You'll use TOutStream when you
create the Commit function.

OWL Programmer's Guide

• After the input stream has been created, the data is read in and
placed in the TLines array pointed to by Lines. When all the data is
read in, the input stream is deleted.

• Open then calls the SetDirty function, passing FALSE as the function
parameter. The Set Dirty function, and its equivalent access function
is Dirty, are the equivalent of the IsDirty flag in earlier steps of the
tutorial. A document is considered to be dirty if it contains any
changes to its data that have not been saved or committed.

• The last thing the Open function needs to do is return. If the
document was successfully opened, Open returns TRUE.

Here's how the code for your Open function might look:

BOOL TDrawDocument: :Open(int /*mode*/, const char far* path)
{

Lines = new TLines(5, 0, 5);
if (path)

SetDocPath(path);
if (GetDocPath()) {

TlnStream* is = InStream(ofRead);
if (! is)

return FALSE;

unsigned numLines;
char fileinfo[lOOl;
*is » numLines;
is->getline(fileinfo, sizeof(fileinfo));
while (numLines--) {

TLine line;
*is » line;
Lines->Add(line);

delete is;

SetDirty (FALSE) ;
NotifyViews(vnRevert, FALSE);
return TRUE;

Closing the drawing is less complicated. The Close function discards
the document's data and cleans up. In this case, it deletes the TLines
array referenced by the Lines data member and returns TRUE. Here's
how the code for your Close function should look:

Chapter 2, Learning ObjectWindows 67

Saving and
discarding changes

68

BaaL TDrawDocument::Close()
{

delete Lines;
Lines = 0;
return TRUE;

Lines is set to 0, both in the constructor and after closing the
document, so that you can easily tell whether the document is open. If
the document is open, Lines points to a TLines array, and is therefore
not O. But setting Lines to 0 makes it easy to check whether the
document is open. The IsOpen function lets you check this from
outside the document object:

BaaL IsOpen() { return Lines != 0; }

TDocument provides two functions for saving and discarding changes
to a document:

• The Commit function commits changes made in the document's
associated views by incorporating the changes into the document,
then saving the data to persistent storage. Commit takes a single
parameter, a BaaL. If this parameter is FALSE, Commit saves the
data only if the document is dirty. If the parameter is TRUE,
Commit does a complete write of the data. The default for this
parameter is FALSE .

• The Revert function discards any changes in the document's views,
then forces the views to load the data contained in the document
and display it. Revert takes a single parameter, a BaaL. If this
parameter is TRUE, the view clears its window and does not reload
the data from the document. The default for this parameter is
FALSE.

For TDrawDocument, the document is updated as each line is drawn
in the view window. The only function of Commit for the
TDrawDocument class is to save the data to a file.

Commit checks to see if the document is dirty. If not, and if the force
parameter is FALSE, Commit returns TRUE, indicating that the
operation was successful.

If the document is dirty, or if the force parameter is TRUE, Commit
saves the data. The procedure to save the data is similar to the
SaveFile function in previous steps, but, as with the Open function,
there are a few differences.

OWL Programmer's Guide

Commit calls the OutStream function to open an output stream. This
function is defined in TFileDocument and returns a TOutStream *.

Commit then writes the data to the output stream. The procedure for
this is almost exactly identical to that used in the old SaveFile function.

After writing the data to the output stream, Commit turns the IsDirty
flag off by calling SetDirty with a FALSE parameter. It then returns
TRUE, indicating that the operation was successful.

Here's how the code for your Commit function might look:

BOOL TDrawDocument::Commit(BOOL force)
{

if (!IsDirty() && !force)
return TRUE;

TOutStream* os = OutStream(ofWrite);
if (!os)

return FALSE;

II Write the number of lines in the figure
*os « Lines->GetItemsInContainer();

II Append a description using a resource string
*os « ' , « string (*GetDocManager () .GetApplication(),IDS_FILEINFO) «

'\n' ;

II Get an iterator for the array of lines
TLinesIterator i(*Lines);

II While the iterator is valid (i.e. you haven't run out of lines)
while (i) {

II Copy the current line from the iterator and increment the array.
*os « itt;

delete os;

SetDirty(FALSE);
return TRUE;

There's only one thing in the Commit function that you haven't seen
before:

II Append a description using a resource string
*os « ' , « string(*GetDocManager() .GetApplication(), IDS_FILEINFO) «
'\n' ;

This uses a special constructor for the ANSI string class:

string(HINSTANCE instance, UINT id, int len = 255);

Chapter 2, Learning ObjectWindows 69

Accessing the
documents data

70

This constructor lets you get' a string resource from any Windows
application. You specify the application by passing an HINST ANCE as the
first parameter of the string constructor. In this case, you can get the current
application's instance through the document manager. The GetDocManager
function returns a pointer to the document's document manager. In turn,
the GetApplication function returns a pointer to the application that contains
the document manager. This is converted implicitly into an HINST ANCE
by a conversion operator in the TModule class. The second parameter of the
string constructor is the resource identifier of a string defined in
STEPI1DV.RC. This string contains version information that can be used to
identify the application that created the document.

The Revert function takes a single parameter, a BOOL indicating whether
the document's views need to refresh their display from the document's
data. Revert calls the TFileDocument version of the Revert function, which in
turn calls the TDocument version of Revert. The base class function calls the
NotifyViews function with the vnRevert event. The second parameter of the
NotifyViews function is set to the parameter passed to the
TDrawDocument::Revert function. TFileDocument::Revert sets IsDirty to
FALSE and returns. If TFileDocument::Revert returns FALSE, the
TDrawDocument should also return FALSE.

If TFileDocument::Revert returns TRUE, the TDrawDocument function should
check the parameter passed to Revert. If it is FALSE (that is, if the view
needs to be refreshed), Revert calls the Open function to open the document
file, reload the data, and display it.

Here's how the code for your Revert function might look:

BOOL TDrawDocument::Revert(BOOL clear)
{

if (lTFileDocument::Revert(clear))
return FALSE;

if (l clear)
Open(O) ;

return TRUE;

There are two main ways to access data in TDrawDocument: adding a line
(such as a new line when the user draws in a view) and getting a reference
to a line in the document (such as getting a reference to each line when
repaintmg the window). You can add two functions, AddLine and GetLine,
to take care of each of these actions.

OWL Programmer's Guide

TDrawView class

The AddLine function adds a new line to the document's TLines array.
The line is passed to the AddLines function as a TLine &. After adding
the line to the array, AddLine sets the Is Dirty flag to TRUE by calling
SetDirty. It then returns the index number of the line it just added.
Here's how the code for your AddLines function might look:

int TDrawDocurnent::AddLine(TLine& line)
{

int index = Lines->GetlternslnContainer();
Lines->Add(line) ;
SetDirty (TRUE) ;
return index;

The GetLine function takes an int parameter. This int is the index of the
desired line. GetLine should first check to see if the document is open.
If not, it can try to open the document. If the document isn't open and
GetLine can't open it, it returns 0, meaning that it couldn't find a valid
document from which to get the line.

Once you know the document is valid, you should also check to make
sure that the index isn't too high. Compare the index to the return
value from the GetItemsInContainer function. As long as the index is
less, you can return a pointer to the TLine object. Here's how the code
for your Get Line function might look:

TLine* TDrawDocurnent::GetLine(int index)
{

if (!IsOpen() && !Open(ofRead I of Write))
return 0;

return index < Lines->GetlternslnContainer() ? &(*Lines) [index] 0;

The TDrawView class is derived from the ObjectWindows
TWindowView class, which is in turn derived from the TView and
TWindow classes. TView doesn't have any inherent windowing
capabilities; a TView-derived class gets these capabilities by either
adding a window member or pointer or by mixing in a window class
with a view class.

TWindowView takes the latter approach, mixing TWiridow and TView
to provide a single class with both basic windowing and viewing
capabilities. By deriving from this general-purpose class, TDrawView
needs to add only the functionality required to work with the
TDraw Document class.

Chapter 2, Learning ObjectWindows 71

TDrawView data
members

Creating the
TDrawView class

72

The TDrawView is similar to the TMyWindow class used in previous
steps. In fact, you'll see that a lot of the functions from TMy Window
are brought directly to TDrawView with little or no modifications.

The TDrawView class has a number of protected data members.

TDC *DragDCi
TPen *Peni
TLine *Linei
TDragDocument *DrawDoCi

Three of these should look familiar to you. DragDC, P"en, and Line
perform the same function in TDrawView as they did in TMyWindow.

Although a document can exist with no associated views, the
opposite isn't true. A view must be associated with an existing
document. TDraw View is attached to its document when it is
constructed. It keeps track of its document through a TDrawDocument
* called DrawDoc. The base class TView has a TDocument * member
called Doc that serves the same basic purpose. In fact, during base
class construction, Doc is set to point at the TDrawDocument object
passed to the TDrawView constructor. DrawDoc is added to force
proper type compliance when the document pointer is accessed.

The TDrawView constructor takes two parameters, a TDrawDocument
& (a reference to the view's associated document) and a TWindow * (a
pointer to the parent window). The parent window defaults to 0 if no
value is supplied. The constructor passes its two parameters to the
TWindowView constructor, and initializes the DrawDoc member to
point at the document passed as the first parameter.

The constructor also sets DragDC to 0 and initializes Line with a new
TLine object.

The last thing the constructor does is set up the view's menu. You can
use the TMenuDescr class to set up a menu descriptor from a menu
resource. Here's the TMenuDescr constructor:

TMenuDescr(TResld id, int fg, int eg, int cg, int og, int wg, int hg) i

where:

• id is the resource identifier of the menu resource.

• fg is the number of menu groups in the File menu.

• eg is the number of menu groups in the Edit menu.

• cg is the number of menu groups in the Container menu.

OWL Programmer's Guide

Naming the class

Protected functions

• og is the number of menu groups in the Object menu.

• wg is the number of menu groups in the Window menu.

• hg is the number of menu groups in the Help menu.

Although the groups have particular names, these names just
represent a common name for the menu group. The menu
represented by each group does not necessarily have that name. The
document manager provides a default File menu, but the other menu
names can be set in the menu resource.

When one of the menu group parameters is 0, that indicates that the
menu resource has no menu for that group. The total number of
menu groups indicated by all the menu group parameters must be
equal to or less than the number of menu groups available in the
menu resource.

In this case, the view supplies a menu resource called
IDM_DRAWVIEW, which is contained in the file STEP11DV.RC. This
menu is called Tools, which has the same choices on it as the Tools
menu in earlier steps: Pen Size and Pen Color; To insert the Tools
menu as the second menu on the menu bar, the eg parameter, the
second menu group parameter, should be 1, while the rest of the
menu group parameters are O.

You can install the menu descriptor as the view menu using the
TView function SetViewMenu function, which takes a single
parameter, a TMenuDescr *. SetViewMenu sets the menu descriptor as
the view's menu. When the view is created, this menu is merged with
the application menu.

Here's how the call to set up the view menu should look:

SetViewMenu(new TMenuDescr(IDM_DRAWVIEW,O,l,O,O,O,O))i

The destructor for the view deletes the device context referenced by
DragDC and the TLine object referenced by Line.

Every view class should define the function StaticName, which takes
no parameters and returns a static const char far *. This function
should return the name of the view class. Here's how the StaticName
function might look:

static const char far* StaticName() {return "Draw View"i}

TDrawView has a couple of protected access functions to provide
functionality for the class.

Chapter 2, Learning ObjectWindows 73

Event handling in
TDrawView

74

The GetPenSize function is identical to the TMy Window function
GetPenSize. This function opens a TlnputDialog, gets a new pen size
from the user, and changes the pen size for the window and calls the
SetPen function of the current line.

The Paint function is a little different from the Paint function in the
TMy Window class, but it does basically the same thing. Instead of
using an iterator to go through the lines in an array, TDraw View::Paint
calls the GetLine function of the view's associated document. The
return from GetLine is assigned to a const TLine * called line. If line is
not 0 (that is, if GetLine returned a valid line), Paintthen calls the line's
Draw function. Remember that the TLine class is unchanged from Step
10. The line draws itself in the window.

Here's how the code for the Paint function might look:

void TDrawView::Paint(TDC& dc, BOOL, TRect&)
{

II Iterates through the array of line objects.
int i = 0;
const TLine* line;
while ((line = DrawDoc->GetLine(itt)) ! = 0)

line->Draw(dc);

The TDrawView class handles many of the events that were
previously handled by the TMyWindow class. Most of the other events
that TMyWindow handled that aren't handled by TDrawView are
handled by the application object and the document manager; this is
discussed later in Step 11.

In addition, TDraw View handles two new messages: VN_ COMMIT
and VN_REVERT. These view notification messages are sent by the
view's document when the document's Commit and Revert functions
are called.

Here's the response table definition for TDrawView:

DEFINE_RESPONSE_TABLE1(TDrawView, TWindowView)
EV_WM_LBUTTONDOWN,
EV_WM_RBUTTONDOWN,
EV_WM_MOUSEMOVE,
EV_WM_LBUTTONUP,
EV_COMMAND(CM_PENSIZE, CmPenSize),
EV_COMMAND(CM_PENCOLOR, CmPenColor),
EV_VN_COMMIT,
EV_VN_REVERT,

END_RESPONSE_TABLE;

OWL Programmers Guide

Defining
document
templates

The following functions are nearly the same in TDrawView as the
corresponding functions in TMyWindow. Any modifications to the
functions are noted in the right column of the table:

Function

EvLButtonDown
EvRButtonDown
EvMouseMove
EvLButtonUp

CmPenSize
Cm Pen C%r

TDrawView version

Does not set /sDirty. This is taken care of in EvLButtonUp.
No change.
No change.
Checks to see if the mouse was moved after the left button press. If so,
calls the documents AddLine function to add the point.
No change.
No change.

The VnCommit function always returns TRUE. In a more complex
application, this function would add any cached data to the
document, but in this application, the data is added to the document
as each line is drawn.

The VnRevert function invalidates the display area, clearing it and
repainting the drawing in the window. It then returns TRUE.

Once you've created a document class and an accompanying view
class, you have to associate them so they can function together. An
association between a document class and a view class is known as a
document template class. The document template class is used by the
document manager to determine what view class should be opened to
display a document.

You can create a document template class using the
DEFINE_DOC_TEMPLATE_CLASS macro, which takes three
parameters. The first parameter is the name of the document class, the
second is the name of the view class, and the third is the name of the
document template class. The macro to create a template class for the
TDrawDocument and TDrawView classes would look like this:

DEFINE_DOC_TEMPLATE_CLASS(TDrawDocument, TDrawView, DrawTemplate)i

Once you've created a document template class, you need to create an
instance of the class. The class type is the name of the document
template class. You also should give the instance a meaningful name.
The constructor for any document template class looks like this:

Chapter 2, Learning ObjectWindows 75

Supporting
DocNiew in the
application

InitMainWindow
function

76

TplNarne narne(const char far* desc,
constchar far* filt,
const char far* dir,
const char far* ext,
long flags = 0);

where:

• TplName is the class name you specified when defining the template
class.

• name is whatever name you want to give this instance.

• desc is a text description of the template, displayed as the file type
in the File Open and Save dialog boxes.

• Jilt is a string that is used to filter file names in the current directory;
this can be any valid DOS regular expression.

• dir is the default directory to check for document files.

• ext is the default extension when saving files with no extension
specified; passing a means no default extension.

• flags is the mode under which the document is to be opened or
created; it can be one or more of the following flags: dtAutoDelete,
dtNoAutoView, dtSingleView, dtAutoOpen, dtConfirm, or dtHidden.
These flags are described in the Object Windows Reference Guide and
Chapter 9 of this manual.

Here's how the template instance for TDrawDocument and TDraw View
classes might look:

DrawTernplate drawTpl ("Point Files (*. PTS) " ,
"*.pts", 0, "PTS",
dtAutoDeleteJdtUpdateDir) ;

STEPll.CPP contains the code for the application object and the
definition of the main window. The application object provides a
framework for the Doc/View classes defined in STEPIIDV.CPP. This
section discusses the changes to the TMyApp class that are required to
support the new Doc/View classes. The OwlMain function remains
unchanged.

The InitMain Window function requires some minor changes to
support the Doc/View model:

• The TDecoratedFrame constructor takes a a in place of the
TMyWindow constructor for the frame's client window. The client
window is set in the EvNewView function.

OWL Programmers Guide

Initlnstance
function

• The AssignMenu call is changed to a SetMenuDescr call. The
SetMenuDescr function, which is inherited from TFrameWindow,
takes a TMenuDescr as its only parameter. The TMenuDescr object
should be built using the COMMANDS menu resource. This call
looks something like this:

GetMainWindow()->SetMenuDescr(TMenuDescr(ICOMMANDS",l,O,O,0,0,1));

• A call to SetDocManager is added. This function sets the DocManager
member of the T Application class. It takes a single parameter, a
TDocManager *.

• The TDocManager constructor takes a single parameter, which
consists of one or more flags ORed together. The only flag that is
required is either dmSDI or dmMDI. These flags set the document
manager to supervise a single-document interface (dmSDI) or a
multiple-document interface (dmMDI) application.

In this case, :rou're creating an SDr application, so you should
specify the dmSDI flag. In addition, you should specify the dmMenu
flag, which instructs the document manager to provide its default
menu.

The call to the SetDocManager function should look like this:

SetDocManager(new TDocManager(dmSDI I dmMenu));

The InitInstance function is overridden because there are a couple of
function calls that need to be made after the main window has been
created. InitInstance should first call the T Application version of
InitInstance. That function calls the In itMa in Window function, which
constructs the main window object, then creates the main window.

After the base class InitInstance function has been called, you need to
call the main window's DragAcceptFiles function, specifying the TRUE
parameter. This enables the main window to accept files that are
dropped in the window. Drag and drop functionality is handled
through the application's response table, as discussed in the next
section.

To enable the user to begin drawing in the window as soon as the
application starts up, you also need to call the CmFileNew function of
the document manager. This creates a new untitled document and
view in.he main window.

The InitInstance function should look something like this:

Chapter 2, Learning ObjectWindows 77

Adding functions to
TMyApp

78

void
TMyApp::lnitlnstance()
{

TApplication::lnitlnstance();
GetMainWindow()->DragAcceptFiles(TRUE);
GetDocManager()->CmFileNew();

The TMyApp class adds a number of new functions. It overrides the
T Application version of InitInstance. It adds a response table and takes
the CmAbout function from the TMy Window class. It adds drag and
drop capability by adding the EV ..,.. WM_DROPFILES macro to the
response table and adding the EvDropFiles function to handle the
event. It also handles a new event, WM_ OWL VIEW, that indicates a
view request message. Two functions handle this message.
EvNew View handles a WM_ OWL VIEW message with the dnCreate
parameter. EvCloseView handles a WM_OWLVIEW message with the
dnClose parameter.

Here's the new declaration of the TMyApp class, along with its
response table definition:

class TMyApp public TApplication
public:

};

TMyApp() TApplication() {}

protected:
II Override methods of, TApplication
void Initlnstance();
void InitMainWindow();

II Event handlers
void EvNewView (TView& view) ;
void EvCloseView(TView& view) i

void EvDropFiles(TDroplnfo droplnfo);
void CtnAbout();

DECLARE_RESPONSE_TABLE(TMyApp);

DEFINE_RESPONSE_TABLE1(TMyApp, TApplication)
EV_OWLVIEW(dnCreate, EvNewView),
EV_OWLVIEW(dnClose, EvCloseView),
EV _WM_DROPFILES,
EV_COMMAND(CM_ABOUT, CtnAbout),

END_RESPONSE_TABLE;

OWL Programmers Guide

CmAbout function

EvDropFiles
function

The CmAbout function is nearly identical to the TMy Window version.
The only difference is that the CmAbout function is no longer
contained in its parent window class. Instead of using the this pointer
as its parent, it substitutes a call to GetMain Window function. The
function should now look like this:

void TMyApp::CrnAbout()
{

TDialog(GetMainWindow() I IDD_~BOUT) .Execute() i

The EvDropFiles function handles the WM_DROPFILES event. This
function gets one parameter, a TDroplnfo object. The TDroplnfo object
contains functions to find the number of files dropped, the names of
the files, where the files were dropped, and so on.

Because this is a single-document interface application, if the humber
of files is greater than one, you need to warn the user that only one
file can be dropped into the application at a time. To find the number
of files dropped in, you can call the TDroplnfo function
DragQueryFileCount, which takes no parameters and returns tpe
number of files dropped. If the file count is greater than one, pop up a
message box to warn the user.

Now you need to get the name of the file dropped in. You can find the
length of the file path string using the TDroplnfo function
DragQueryFileNameLen, which takes a single parameter, the index of
the file about which you're inquiring. Because you know there's only
one file, this parameter should be a o. This function returns the length
of the file path.

Allocate a string of the necessary length, then call the TDroplnfo
function DragQueryFile. This function takes three parameters. The first
is the index of the file. Again, this parameter should be a o. The
second parameter is a char *, the file path. The third parameter is the
length of the file path. This function fills in the file path in the char
array from the second parameter.

Once you've got the file name, you need to get the proper template for
the file type. To do this, call the document manager's MatchTemplate
function. This function searches the document manager's list of
document templates and returns a pointer to the first document
template with a pattern that matches the dropped file. This pointer is
a TDocTemplate *. If the document manager can't find a matching
template, it returns o.

Chapter 2, Learning ObjectWindows 79

EvNewView
function

80

Once you've located a template, you can call the template's CreateDoc
function with the file path as the parameter to the function. This
creates a new document and its corresponding view, and opens the
file into the document.

Once the file has been opened, you must make sure to call the
DragFinish function. This function releases the memory that Windows
allocates during drag and drop operations.

Here's how the EvDropFiles function should look:

void
TMyApp: :EvDropFiles(TDropInfo dropInfo)
{

if (dropInfo.DragQueryFileCount() != 1)
: :MessageBox(O, "Can only drop 1 file in SDI mode" I "Drag/Drop

Error" ,MB_OK) i
else {

int fileLength = dropInfo.DragQueryFileNameLen(O)+li
char* filePath = new char [fileLengthli
dropInfo.DragQueryFile(O, filePath , fileLength) i

TDocTemplate* tpl = GetDocManager()->MatchTemplate(filePath) i

if (tpl)
tpl->CreateDoc(filePath) i

delete filePathi

dropInfo.DragFinish()i

The WM_OWLVIEW event informs the application when a view
related event has happened. All functions that handle
WM_ OWL VIEW events return void and take a single parameter, a
TView &. When the event's parameter is dnCreate, this indicates that a
new view object has been created and requires the application to set
up the view's window.

In this case, you need to set the view's window as the client of the
main window. There are two functions you need to call to do this:
Get Window and SetClient Window.

The Get Window function is member of the view class. It takes no
parameters and returns a TWindow *. This points to the view's
window.

Once you have a pointer to the view's window, you can set that
window as the client window with the main window's
SetClient Window function, which takes a single parameter, a TWindow
*, and sets that window object as the client window. This function

OWL Programmers Guide

EvCloseView
function

returns a TWindow *. This return value is a pointer to the old client
window, if there was one.

Before continuing, you should check that the new client window was
successfully created. TView provides the IsOK function, which returns
FALSE if the window wasn't created successfully. If IsOK returns
FALSE, you should call SetClient Window again, passing a 0 as the
window pointer, and return from the function.

If the window was created successfully, you need to check the view's
menu with the GetViewMenu function. If the view has a menu, use the
MergeMenu function of the main window to merge the view's menu
with the window's menu.

The code for EvNewView should look like this:

void
TMyApp: : EvNewView (TView& view)
{

GetMainWindow()->SetClientWindow(view.GetWindow()) ;
if (!view.IsOK())

GetMainWindow()->SetClientWindow(O) ;
else if (view.GetviewMenu())

GetMainWindow()->MergeMenu(*view.GetViewMenu()) ;

If the parameter for the WM_OWLVIEW event is dnClose, this
indicates that a view has been closed. This is handled by the
EvCloseView parameter. Like the EvNewView function, the EvCloseView
function returns void and takes a TView & parameter.

To close a view, you need to remove the view's window as the client
of the main window. To do this, call the main window's
SetClient Window function, passing a 0 as the window pointer. You can
then restore the menu of the frame window to its former state using
the RestoreMenu function of the main window.

When the EvNewView function creates a new view, the caption of the
frame window is set to the file path of the document. You need to
reset the main window's caption using the SetCaption function.

Here's the code for the EvCloseView function:

void
TMyApp::EvCloseView(TView& /*view*/)
{

GetMainWindow()->SetClientWindow(O);
GetMainWindow()->RestoreMenu();
GetMainWindow () ->SetCaption ("Drawing Pad");

Chapter 2, Learning ObjectWindows 81

Where to find
more information

Here's a guide to where you can find more information on the topics
introduced in this step:

• The Doc/View classes are discussed in Chapter 9.

• Menu and menu descriptor objects are described in Chapter 7 and
the Object Windows Reference Guide.

• The InitMain Window and InitInstance functions are discussed in
Chapter 3.

• The drag and drop functions are discussed in the Object Windows
Reference Guide.

Step 12: Moving to MOl

You can find the
source for Step 12 in

the files
STEP12.CPP,

STEP12.RC,
STEP12DV.CPP, and
STEP12DV.RC in the

directory
EXAMPLES\OWL \

TUTORIAL.

Supporting MOl in
the application

Changing to a
decorated MDI
frame

82

The Doc/View model is much more useful when it is used in a
multiple-document interface (MDI) application. The ability to have
multiple child windows in a frame lets you open more than one view
for a document.

In Step 12, you'll add MDI capability to the application. This requires
new functionality in the TDrawDocument and TDraw View classes. In
addition, you'll add new features such as the ability to delete or
modify an existing line and the ability to undo changes. You'll also
create a new view class called TDrawListView to take advantage of the
ability to display multiple views. TDrawList View shows an alternate
view of the drawing stored in TDrawDocument, displaying it as a list
of line information.

STEPI2.CPP contains the code for the application object and the
definition of the main window. The application object provides a
framework for the Doc/View classes defined in STEPI2DV.CPP. This
section discusses the changes to the TMyApp class that are required to
provide MDI support for your Doc/View application. The OwlMain
function remains unchanged.

To support an MDI application, you need to change the
TDecoratedFrame you've been using to a TDecoratedMDIFrame. Then,
inside the decorated MDI frame, you need to create an MDI client
window with the class TMDIClient. To easily locate the client window
later, add a TMDIClient * to your TMyApp class. Call the pointer

OWL Programmers Guide

Changing the hint
mode

Client. This client window contains the MDI child windows that
display the various views.

The constructor for TDecoratedMDIFrame is different from the
TDecoratedFrame constructor you used in Step 11.
TDecoratedMDIFrame's constructor takes up to five parameters.
Although the last three parameters have defaults, the only parameter
you don't need to supply a value for is the very last parameter.

The TDecoratedMDIFrame constructor looks like this:

TDecoratedMDIFrame(const char far* title,
TResld menuResld,

where:

TMDIClient& clientWnd = *new TMDIClient,
BOOL trackMenuSelection = FALSE,
TModule* module = 0) i

• title is the caption for the frame window.

• menuResld is a menu resource identifier to be used as the window's
menu.

• clientWnd is a reference to a TDMDIClient window object.

• trackMenuSelection specifies whether menu commands should be
tracked.

• module isn't used in this example.

The title for the frame window is "Drawing Pad," just as it's been for
the previous steps. There's no menu resource for this window.
Instead, you'll construct a TMenuDescr, just as you did for Step 11.
You need to create the client window explicitly so that you can assign
it to the Client data member. Lastly, you should turn menu tracking
on. So the window constructor should look like this:

TDecoratedMDIFrame* frame = new TDecoratedMDIFrame("Drawing Pad", 0,
* (Client = new TMDIClient), TRUE) i

You might have noticed in Step 11 that the hint text for control bar
buttons didn't appear until you actually press the button. You can
change the hint mode so that the text shows up when you just run the
mouse over the top of the button.

To make this happen, call the control bar's SetHintMode function with
the TGadget Window::EnterHints parameter:

cb->SetHintMode(TGadgetWindow::EnterHints)i

Chapter 2, Learning ObjectWindows 83

Setting the main
windows menu

Setting the
document manager

Initlnstance
function

Opening a new view

84

This causes hints to be displayed when the cursor is over a button,
even if the button isn't pressed. You can reset the hint mode by
calling SetHintMode with the TGadget Window::PressHints parameter.
You can also turn off menu tracking altogether by calling SetHintMode
with the TGadget Window::NoHints parameter.

You need to change the SetMenuDescr call a little. The COMMANDS
menu resource has been expanded to provide placeholder menus for
the document manager's and views' menu descriptors. Also, the
decorated MOl frame provides window management functions, such
as cascading or tiling child windows, arranging the icons of
minimized child windows, and so on.

The call to the SetMenuDescr function should now look like this:

GetMainWindow()->SetMenuDescr(TMenuDescr("COMMANDS",l,l,O,0,1(1));

You also need to change how you create the document manager in an
MOl application. The only change you need to make in this case is to
change the dmSDI flag to dmMDI. You need to keep the dmMenu flag:

SetDocManager(new TDocManager(drnMDI I drnMenu));

You need to make one change to the InitInstance function: remove the
call to CmFileNew. This makes the frame open with no untitled
documents. In the SOl application, opening the frame with an
untitled document was OK. If the user opened a file, the untitled
document was replaced by the new document. But in an MOl
application, if the user opens an existing document, the untitled
document remains open, requiring the user to close it before it'll go
away.

When you open a new view, you must provide a window for the
view. In Step II, EvNewView used the same client window again and
again for every document and view. In an MOl application, you can
open numerous windows in the EvNewView function. Each window
you open inside the client area should be a TMDIChild. You can place
your view inside the TMDIChild object by calling the view's
Get Window function for the child's client window.

Here's the TMDIChild constructor:

TMDIChild(TMDIClient& parent,
const char far* title = 0,
TWindow* clientWnd = 0,

OWL Programmers Guide

, Modifying drag and
drop

where:

BOOL shrinkToClient = FALSE,
TModule* module = 0) i

• parent is the child window's parent. In this case, the TMyApp
member Client will always be the parent.

• title is the window title~ You don't need to specify anything in this
case, because it's filled in automatically.

• client Wnd specifies the client window for the MDI child. You should
pass a pointer to the view's window.

• shrinkToClient specifies whether the MDI child should shrink to fit
its client window. This parameter isn't used in this example.

• module isn't used in this example.

Once you've created the TMDIChild object, you need to set its menu
descriptor, but only if the view has a menu descriptor itself. After
setting the menu descriptor, call the MDI child's Create function.

The EvNewView f~nction should now look something like this:

void
TMyApp::EvNewView(TView& view)
{

TMDIChild* child = new TMDIChild(*Client, 0, view.GetWindow())i
if (view.GetViewMenu())

child->SetMenuDescr(*view.GetViewMenu()) i

child->Create() i

In the SDI version of the tutorial application, you had to check to
make sure the user didn't drop more than one file into the application
area. But in MDI, if the user drops in more than one file, you can open
them all, with each document in a separate window. Here's how to
implement the ability to open multiple files dropped into your
application:

• Find the number of files dropped into the application. Use the
DragQueryFileCount function. Use a for loop to iterate through the
files.

• For each file, get the length of its path and allocate a char array
with enough room. Call the DragQueryFile function with the file's
index (which you can track using the loop counter), the char array,
and the length of the path.

Chapter2, Learning ObjectWindows 85

Closing a view

Changes to
TDrawDocument
and TDrawView

86

• Once you've got the file name, you can call the document manager's
MatchTemplate function to get the proper template for the file type.
This is done the same way as in Step 11; see page 79.

• Once you've located a template, call the template's CreateDoc
function with the file path as the parameter to the function. This
creates a new document and its corresponding view, and opens the
file into the document.

• Once all the files have been opened, call the DragFinish function.
This function releases the memory that Windows allocates during
drag and drop operations.

Here's how the new EvDropFiles function should look:

void
TMyApp: : EvDropFiles (TDroplnfo droplnfo)
{

int fileCount = droplnfo.DragQueryFileCount();
for (int index = 0; index < fileCount; index++)

int ,fileLength = dropInfo.DragQueryFileNameLen(index)+l;
char* filePath = new char [fileLengthl;
droplnfo.DragQueryFile(index, filePath, fileLength);
TDocTemplate* tpl = GetDocManager()->MatchTemplate(filePath);
if (tpl)

tpl->CreateDoc(filePath) ;
delete filePath;

droplnfo.DragFinish();

In Step 11, when you wanted to close a view, you had to rehlove the
view as a client window, restore the main window's menu, and reset
the main window's caption. You no longer need to do any of this,
because these tasks are handled by the MDI window classes. Here's
how your EvCloseView function should look:

TMyApp: : EvCloseView(TView& l*view*/)
{ II nothing needs to be done here for MDI
}

You need to make the following changes in the TDrawDocument and
TDraw View classes. These changes include defining new events,
adding new event-handling functioris, adding document property
functions, and more.

OWL Programmer's Guide

Defining new events
First you need to define three new events to support the new features
in the TDrawDocument and TDrawView classes. These view
notification events are vnDrawAppend, vnDrawDelete, and
vnDrawModify. These events should be const ints, and defined as
offsets from the predefined value vnCustomBase. Using vnCustomBase
ensures that your new events don't overlap any ObjectWindows
events.

Next, use the NOTIFY_SIC macro to specify the signature of the
event-handling function. The NOTIFY_SIC macro takes two
parameters, the event name (such as vnDrawAppend or vnDrawDelete)
and the parameter type to be passed to the event-handling function.
The size of the parameter type can be no larger than a long; if the
object being passed is larger than a long, you must pass it by pointer.
In this case, the parameter is just an unsigned int to pass the index of
the affected line to the event-handling function. The return value of
the event-handling function is always void.

Lastly, you need to define the response table macro for each of these
events. By convention, the macro name uses the event name, in all
uppercase letters, preceded by EV _ VN_. Use the #define macro to
define the macro name. To define the macro itself, use the
VN_DEFINE macro. Here's the syntax for the VN_DEFINE macro:

VN_DEFINE(eventNarne, functionNarne, pararnSize)

where:

• eventName is the event name.

• functionName is the name of the event-handling function.

• paramSize is the size of the parameter passed to the event-handling
function; this can have four different values:
• void
• int (size of an int parameter depends on the platform)
• long (32-bitinteger or far pointer)
• pointer (size of a pointer parameter depends on the memory

model)

You should specify the value that most closely corresponds to the
event-handling function's parameter type.

The full definition of the new events should look something like this:

const int vnDrawAppend = vnCustornBase+Oi
const int vnDrawDelete = vnCustornBase+li
const int vnDrawModify = vnCustornBase+2i

Chapter 2, Learning ObjectWindows 87

Changes to
TDrawDocument

88

NOTIFY_SIG(vnDrawAppend, unsigned int)
NOTIFY_SIG(vnDrawDelete, unsigned int)
NOTIFY_SIG(vnDrawModify, unsigned int)

#define EV_VN_DRAWAPPEND VN_DEFINE(vnDrawAppend, VnAppend, int)
#define EV_VN_DRAWDELETE VN_DEFINE(vnDrawDelete, VnDelete, int)
#define EV_VN_DRAWMODIFY VN_DEFINE(vnDrawModify, VnModify, int)

TDrawDocument adds some new protected data members:

• UndoLine is a TLine *. It is used to store a line after the original in
the Lines array is modified or deleted.

• UndoState is an int. It indicates the nature of the last user operation,
so that an undo can be performed by reversing the operation. It can
have one of four values:

• UndoNone indicates that no operations have been performed to
undo.

• UndoDelete indicates that a line was deleted from the document.

• UndoAppend indicates that a new line was added to the document.

• UndoModify indicates that a line in the document was modified.

• Undolndex is an int. It contains the index of the last modifiedJine, so
that the modification can be undone.

• Filelnfo is a string. It contains information about the file. This string
is equivalent to the file information stored in the
TDrawDocument::Commit function of Step II.

The TDrawDocument constructor should be modified to initialize
UndoLine to a and UndoState to UndoNone. The TDrawDocument
destructor is modified to delete Undo Line.

You need to modify the Open function slightly to read the file
information string from the document file and use it to initialize the
Filelnfo member. If the document doesn't have a valid document path,
initialize Filelnfousing the string resource IDS_FILEINFO.

Modify the AddLine function to notify any other views when a line
has been added to the drawing. You can use the NotifyViews function
with the vnDrawAppend event. The second parameter to the
NotifyViews call should be the new line's array index. You also needto
~et UndoState to UndoAppend. The AddLine function should now look
like this: .

OWL Programmers Guide

Property functions

int TDrawDocument: : AddLine (TLine& line)
{

int index = Lines->GetItemsInContainer();
Lines->Add(line) ;
SetDirty(TRUE) ;
NotifyViews(vnDrawAppend, index);
UndoState = UndoAppend;
return index;

Every document has a list of properties. Each property has an
associated value, defined as an enum, by which it is identified. The
list of enums for a derived document object should always end with
the value NextProperty. The list of enums for a derived document
object should always start with the value PrevProperty, which should
be set to the NextProperty member of the base class, minus 1.

Each property also has a text string describing the property contained
in an array called PropNames and an int containing implementation
defined flags in an array called PropFlags. The property's enum value
can be used in an array index to locate the property string or flag for a
particular property.

TDrawDocument adds two new properties to its document properties
list: LineCount and Description. The enum definition should look like
this:

enum

};

PrevProperty = TFileDocument::NextProperty-l,
LineCount,
Description,
NextProperty,

By redefining PrevProperty and NextProperty, any class that's derived
from your document class can create new properties without
overwriting the properties you've defined.

TDrawDocument also adds an array of static char strings. This array
contains two strings, each containing a text description of one of the
new properties. The array definition should look like this:

static char* PropNames[] = {
"Line Count",
"Description" ,

};

Chapter 2, Learning ObjectWindows 89

90

Lastly, TDrawDocument adds an array of ints called PropFlags, which
contains the same number of array elements as PropNames. Each array
element contains one or more document property flags ORed
together, and corresponds to the property in PropNames with the same
array index. The PropFlags array definition should look like this:

static int PropFlags[] = {
pfGetBinarylpfGetText, II LineCount
pfGetText, II Description

}i

TDrawDocument overrides a number of the TDocument property
functions to provide access to the new properties. You can find the
total number of properties for the TDrawDocument class by calling the
PropertyCount function. PropertyCount returns the value of the
property enum NextProperty, minus l.

You can find the text name of any document property using the
PropertyName function. PropertyName returns a char *, a string
containing the property name. It takes a single int parameter, which
indicates the index of the parameter for which you want the name. If
the index is less than or equal to the enum PrevProperty, you can call
the TFileDocument function PropertyName. This returns the name of a
property defined in TFileDocument or its base class TDocument. If the
index is greater than or equal to NextProperty, you should return 0;
NextProperty marks the last property in the document class. If the
index has the same or greater value than NextProperty, the index is too
high to be valid. As long as the index is greater than PrevProperty but
less than NextProperty, you should return the string from the
PropNames array corresponding to the index. The code for this
function should look like this:

const char*
TDrawDocurnent::PropertyNarne(int index)
{

if (index <=PrevProperty)
return TFileDocurnent::PropertyNarne(index)i

else if (index < NextProperty)
return PropNarnes[index-PrevProperty-l] i

else
return Oi

The FindProperty function is essentially the opposite of the
PropertyName function. FindProperty takes a single parameter, a const
char *. It tries to match the string passed in with the name of each
document property. If it successfully matches the string with a

OWL Programmers Guide

property name, it returns an int containing the index of the property.
The code for this function should look like this:

int
TDrawDocument::FindProperty(const char far* name)
{

for (int i=O; i < NextProperty-PrevProperty-l; itt)
if (strcmp (PropNames [i] I name) == 0)

return itPrevPropertytl;
return 0;

The PropertyFlags function takes a single int parameter, which
indicates the index of the parameter for which you want the property
flags. These flags are returned as an int. If the index is less than or
equal to the enum PrevProperty, you can call the TFileDocument
function PropertyName. This returns the name of a property defined in
TFileDocument or its base class TDocument. If the index is greater than
or equal to NextProperty, you should return 0; NextProperty marks the
last property in the document class. If the index has the same or
greater value than NextProperty, the index is too high to be valid. As
long as the index is greater than PrevProperty but less than
NextProperty, you should return the member of the PropFlags array
corresponding to the index. The code for this function should look
like this:

int
TDrawDocument: :PropertyFlags(int index)
{

if (index <= PrevProperty)
return TFileDocument::PropertyFlags(index);

else if (index < NextProperty)
return PropFlags[index-PrevProperty-l];

else
return 0 i

The last property function is the GetProperty function, which takes,
three parameters. The first parameter is an int, the index of the
property you want. The second parameter is a void *. This should be a
block of memory that is used to hold the property information. The
third parameter is an int and indicates the size in bytes of the block of
memory.

There are three possibilities the GetProperty function should handle:

• The LineCount property can be requested in two forms, text or
binary. To get the LineCount property in binary form, call the

Chapter 2, Learning ObjectWindows 91

New functions in
TDrawDocument

92

GetProperty function with the third parameter set to O. If you do
this, the second parameter should point to a data object of the
proper type to contain the property data. To get the LineCount
property as text, call the GetProperty function with the second
parameter pointing to a valid block of memory and the third
parameter set to the size of that block.

• The Description property can be requested in text form only. Just
copy the Filelnfo string into the destination array passed in as the
second parameter .

• If the property requested is neither LineCount nor Description, call
the TFileDocument version of GetProperty.

The code for the GetProperty function should look like this:

int
TDrawDocument: :GetProperty(int prop, void far* dest, int textlen)
{

switch(prop)
{

case LineCount:

int count = Lines->GetItemsInContainer();
if (! textlen) {

(int far)dest = count;
return sizeof(int);

return wsprintf((char far*)dest, "%d", count);

case Description:
char* temp = new char [textlenj ; II need local. copy for medium model
int len = FileInfo.copy(temp, textlen);
strcpy((char far*)dest, temp);
return len;

return TFileDocument::GetProperty(prop, dest, textlen);

Step 12 adds a number of new functions to TDrawDocument. These
functions let you modify the document object by deleting lines,
modifying lines, clearing the document, and undoing changes.

The first new function is DeleteLine. As its name implies, the purpose
of this function is to delete a line from the document. DeleteLine takes
a single int parameter, which gives the array index of the line to be
deleted.

OWL Programmers Guide

• Delete should check that the index passed in to it is valid. You can
check this by calling the GetLine funCtion and passing the index to
GetLine. If the index is valid, GetLine returns a pointer to a line
object. Otherwise, it returns o.

• Once you have determined the index is valid, you should set
UndoLine to the line to be deleted and set UndoState to UndoDelete.
This saves the old line in case the user requests an undo of the
deletion.

• You should then detach the line from the document using the
container class Detach function. This function takes a single int
parameter, the array index of the line to be deleted.

• Turn the IsDirty flag on by calling the SetDirty function.

• Lastly, notify the views that the document has changed by calling
the NotifyViews function. Pass the vnDrawDelete event as the first
parameter of the NotifyViews call and the array index of the line as
the second parameter.

The code for the DeleteLine function should look like this:

void
TDrawDocument: :DeleteLine(unsigned int index)
{

const TLine* oldLine = GetLine(index);
if (!oldLine)

return;
delete UndoLine;
UndoLine = new TLine(*oldLine);
Lines->Detach(index) i
SetDirty(TRUE) ;
NotifyViews(vnDrawDelete, index);
UndoState = UndoDelete;

The ModifyLine function takes two parameters, a TLine & and an int.
The int is the array index of the line to be modified. The affected line
is replaced by the TLine &.

• As with the DeleteLine function, you need to set up the undo data
members before replacing the line. Copy the line to be replaced to
UndoLine and set UndoState to UndoModify. You also need to set
Undolndex to the index of the affected line.

• Set the line to the TLine object passed into the function.

• Turn the IsDirty flag on by calling the SetDfrty function.

• Lastly, notify the views that the document has changed by calling
the NotifyViews function. Pass the vnDrawModify event as the first

Chapter 2, Learning ObjectWindows 93

94

parameter of the NotifyViews call and the array index of the line as
the second parameter.

The code for this function should look like this:

void
TDrawDocument: :ModifyLine(TLine& line, unsigned int index)
{

delete UndoLine;
UndoLine = new TLine((*Lines) [index]);
SetDirty(TRUE);
(*Lines) [index] = line;
NotifyViews(vnDrawModify, index);
UndoState = UndoModify;
Undolndex = index;

The Clear function is fairly straightforward. It flushes the TLines array
referenced by Lines, then forces the views to update by calling
NotifyViews with the vnRevert parameter. When the views are
updated, there's no data in the document, causing the views to clear
their windows. The function should look something like this:

void TDrawDocument::Clear()
{

Lines->Flush() i

NotifyViews(vnRevert, TRUE) i

The Undo function has three different types of operations to undo:
append, delete, and modify. It determines which type of operation it
needs to undo by the value of the UndoState variable:

• If UndoState is UndoAppend, Undo needs to delete the last line in the
array.

• If UndoState is UndoDelete~ Undo needs to add the line referenced by
UndoLine to the array.

• If UndoState is UndoModify, Undo needs to restore the line
referenced by UndoLine to the array to the position in the array
indicated by Undolndex.

Here's how the code for the Undo function should look:

void TDrawDocument::Undo()
{

switch (UndoState) {
case UndoAppend:

DeleteLine(Lines->GetltemslnContainer()-l)i
return;

OWL Programmers Guide

Changes to
TDrawView

case UndoDelete:
AddLine(*UndoLine) ;
delete UndoLine;
UndoLine = 0;
return;

case UndoModi fy:
TLine* temp = UndoLine;
UndoLine = 0;
ModifyLine(*temp, Undolndex);
delete temp;

Each operation uses one of these new modification functions. That
way, each undo operation can itself be undone.

TDrawView modifies a number of its functions, including deleting the
GetPenSize function. This function should be moved to the TLine class,
so that thepen size is set in the line itself. You can call the
TLine::GetPenSize function from the CmPenSize function. The same
thing should be done with the CmPenColor function; move the
functionality of this function to the TLine::GetPenColor function. You
can call the TLine::GetPenColor function from the CmPenColor function.

To accommodate the new editing functionality in the TDrawDocument
and TDrawView classes, you need to add menu choices for Undo and
Clear. These choices should post the events CM_CLEAR and
CM_UNDO. The new menu requires a change in the TMenuDescr
constructor parameters in the SetViewMenu call. The new call should
look like this:

SetViewMenu(new TMenuDescr(IDM_DRAWVIEW,O,l,l,O,O,O));

You can redefine the right button behavior by changing the
EvRButtonDown function (there are now two other ways to change the
pen size, the Tools I Pen Size menu command and the Pen Size control
bar button). You can use the right mouse button as a shortcut for an
undo operation. The EvRButtonDown function should look like this:

void TDrawView::EvRButtonDown(UINT, TPoint&)
{

CmUndo() ;

Chapter 2, Learning ObjectWindows 95

New functions in
TDrawView

96

Step 12 adds a number of new functions to TDrawDocument. These
functions implement an interface to access the new functionality in

. TDrawDocument.

You need to override the TView virtual function GetViewName. The
document manager calls this function to determine the type of view.
This function should return a const char * referencing a string
containing the view name. This function should look like this:

const char far* GetViewName() { return StaticName(); }

After adding the new menu items Clear and Undo to the Edit menu,
you need to handle the events CM_CLEAR and CM_UNDO. Add the
following lines to your response table:

EV_COMMAND(CM_CLEAR, CmClear),
EV_COMMAND(CM_UNDO, CmUndo),

You also need functions to handle the CM_CLEAR and CM_UNDO
events. If the view receives a CM_CLEAR message, all it needs to do
is to call the document's Clear function:

void TDrawview::CmClear()
{

DrawDoc->Clear() ;

If the view receives a CM_UNDO message, all it needs to do is to call
the document's Undo function:

void TDrawview: : CmUndo ()
{

DrawDoc->Undo();

The other new events the view has to handle are the view notification
events, vnDrawAppend, vnDrawDelete, and vnDrawModify. You should
add the response table macros for these events to the view's response
table:

DEFINE_RESPONSE_TABLE1(TDrawView, TWindowView)

EV_VN_DRAWAPPEND,
EV_VN_DRAWDELETE,
EV_VN_DRAWMODIFY,

OWL Programmers Guide

TDrawListView

The event-handling functions for these macros are VnAppend,
VnDelete, and VnModify. All three of these functions return a BOOL
and take a single parameter, an int indicating which line in the
document is affected by the event.

The VnAppend function gets notification that a line was appended to
the document. It then draws the new line in the view's window. It
should create a device context, get the line from the document, call
the line's Draw function with the device context object as the
parameter, then return TRUE. The code for this function looks like
this:

BOOL TDrawView::VnAppend(unsigned int index)
{

TClientDC dc(*this);
const TLine* line = DrawDoc->GetLine(index);
line->Draw(dc);
return TRUE;

The VnModify function forces a repaint of the entire window. It might
seem more efficient to just redraw the affected line, but you would
need to paint over the old line, repaint the new line, and restore any
lines that might have crossed or overlapped the affected line. It is
actually more efficient to invalidate and repaint the entire window. So
the code for the VnModify function should look like this:

BOOL TDrawView::VnModify(unsigned int l*index*/)
{

Invalidate(); II force full repaint
return TRUE;

The VnDelete function also forces a repaint of the entire window. This
function faces the same problem as VnModify; simply erasing the line
will probably affect other lines. The code for the VnDelete function
should look like this: .

BOOL TDrawView::VnDelete(unsigned int l*index*/)
{

Invalidate (); .I I force full repaint
return TRUE;

The purpose of the TDrawListView class is to display the data
contained in a TDrawDocument object as a list of lines. Each line will
display the color values for the line, the pen size for the line, and the
number of points that make up the line. TDrawListView will let the

Chapter 2, Learning ObjectWindows 97

Creating the
TDrawListView
class

98

user modify a line by changing the pen size or color. The user can also
delete a line.

TDrawListView is derived from TView and TListBox; TView gives
TDrawListView the standard view capabilities. TListBox provides the
ability to display the information in the document object in a list.

The TDrawListView constructor takes two parameters, a
TDrawDocument & (a reference to the view's associated document)
and a TWindow * (a pointer to the parent window). The parent
window defaults to 0 if no value is supplied. The constructor passes
the first parameter to the TView constructor and initializes the
DrawDoc member to point at the document passed as the first
parameter.

TDrawListView has two data members, one protected TDrawDocument
* called Draw Doc and one public int called Curlndex. Draw Doc serves
the same purpose in TDrawListView as it did in TDrawView, namely to
reference the view's associated document object. Curlndex contains the
array index of the currently selected line in the list box.

The TDrawListView constructor also calls the TListBox constructor. The
first parameter of the TListBoxconstructor is passed the p'arent
window parameter of the TDrawListView constructor. The second
parameter of the TListBox constructor is a call to the TV iew function
GetNextViewld. This function returns a static unsigned that is used as
the list box identifier. The view identifier is set in the TView
constructor. The coordinates and dimensions of the list box are all set
to 0; the dimensions are filled in when the TDrawListView is set as a
client in an MOl child window.

The constructor also sets some window attributes, including the
Attr.Style attribute, which has the WS_BOROER and LBS_SORT
attributes turned off, and the Attr.AccelTable attribute, which is set to
the IOA_ORAWLlSTVlEW accelerator resource defined in
STEP120V.RC.

The constructor also sets up the menu descriptor for TDrawListView.
Because TDrawListView has a different function from TDrawView, it
requires a different menu. Compare the menu resource for
TDrawView and the menu resource for TDrawListView.

Here's the code for the TDrawListView constructor:

OWL Programmers Guide

Naming the class

Overriding TView
and TWindow
virtual functions

TDrawListView: : TDrawListView(TDrawDocument& doc,TWindow *parent)
: TView(doc), TListBox(parent, GetNextViewld(), 0,0,0,0), DrawDoc(&doc)

Attr.Style &= -(WS_BORDER I LBS_SORT) i
Attr.AccelTable = IDA_DRAWLISTVIEWi
SetViewMenu(new TMenuDescr(IDM_DRAWLISTVIEW,O,l,O,O,O,O))i

TDrawListView has no dynamically allocated data members. The
destructor therefore does nothing.

Like the TDrawView class, TDrawListView should define the function
StaticName to return the name of the view class. Here's how the
StaticName function might look:

static const char far* StaticName() {return "DrawList View"i}

The document manager calls the view function GetViewName to
determine the type of view. You need to override this function, which
is declared virtual function in TView. This function should return a
const char * referencing .a string containing the view name. This
function should look like this: .

const char far* GetViewName() { return StaticName() i }

The document manager calls the view function Get Window to get the
window associated with a view. You need to override this function
also/which is declared virtual function in TView. It should return a
TWindow * referencing the view's window. This function should look
like this:

TWindow* Getwindow() { return (TWindow*) thisi }

You also need to supply a version of the CanClose function. This
function should call the TListBox version of CanClose and also call the
document's CanClose function. This function should look like this:

BOOL CanClose() {return TListBox::CanClose() && Doc->CanClose() i}

You also need to provide a version of the Create function. You can call
the TListBox version of Create to actually create the window. But you
also need to load the data from the document into the TDrawListView
object. To do this, call the LoadData function. You'll define the
LoadData function in the next section of this step. The Create function
should look something like this:

Chapter 2, Learning ObjectWindows 99

Loading and
formatting data

100

BOOL TDrawListView::Create()
{

TListBox: :Create();
LoadData();
return TRUE;

You need to provide functions to load data from the document object
to the view document and to format the data for display in the list
box. These functions should be protected so that only the view can
call them.

The first function is LoadData. To load data into the list box, you need
to first clear the list of any items that might already be in it. For this,
you can call the ClearList function, which is from the TListBox base
class. After that, get lines from the document and format each line
until the document runs out of lines. You can tell when there are no
more lines in the document; the GetLine function returns O. Lastly, set
the current selection index to 0 using the·SetSelIndex function. This
causes the first line in the list box to be selected. The code for the
LoadData function looks something like this:

void
TDrawListView::LoadData()
{

ClearList() ;
int i = 0;
const TLine* line;
while ((line = DrawDoc->GetLine(i)) != 0)

FormatData(line, itt);
SetSelIndex(O);

The FormatData function takes two parameters. The first parameter is
a const TLine * that references the line to modified or added to the list.
box. The second parameter contains the index of the line to modified.

The code for FormatData should look something like this:

void TDrawListView: : FormatData (const TLine* line, int unsigned index)
{

char buf[80);
TColor color(line->QueryColor());
wsprintf(buf, "Color = R%d G%d B%d, Size = %d, Points = %d",

color.Red(), color.Green(), color.Blue(),
line->QuerypenSize(), line->GetltemslnContainer());

OWL Programmer's Guide

Event handling in
TDrawListView

DeleteString(index);
InsertString(buf, index);
SetSellndex(index) ;

Here's the response table for TDrawListView:

DEFINE_RESPONSE_TABLE1(TDrawListview, TListBox)
EV_COMMAND(CM_PENSIZE, CmPenSize),
EV_COMMAND(CM_PENCOLOR, CmPenColor),
EV_COMMAND(CM_CLEAR, CmClear),
EV_COMMAND(CM_UNDO, CmUndo),
EV_COMMAND(CM_DELETE, CmDelete),
EV_VN_ISWINDOW,
EV_VN_COMMIT,
EV_VN_REVERT,
EV_VN_DRAWAPPEND,
EV_VN_DRAWDELETE,
EV_VN_DRAWMODIFY,

END_RESPONSE_TABLE;

This response table is similar to TDrawView's response table in some
ways. The two views share some events, such as the CM_PENSIZE
and CM_PENCOLOR events and the vnDrawAppendand
vnDrawModify view notification events.

But each view also handles events that the other view doesn't. This is
because each view has different capabilities. For example, the
TDrawView class handles a number of mouse events, whereas
TDrawListView handles none. That's because it makes no sense in the
context of a list box to handle the mouse events; those events are used
when drawing a line in the TDrawView window.

TDrawListView handles the CM_DELETE event, whereas TDrawView
doesn't. This is because, in the TDrawView window, there's no way for
the user to indicate which line should be deleted. But in the list box,
it's easy: just delete the line that's currently selected in the list box.

TDrawListView also handles the vnIsWindow event. The vnIsWindow
message is a predefined ObjectWindows event, which asks the view if
its window is the same as the window passed with the event.

The CmPenSize function is more complicated in the TDrawListView
class than in the TDrawView class. This is because the TDrawListView
class doesn't maintain a pointer to the current line the way
TDrawView does. Instead, you have to get the index of the line that's
currently selected in the list box'and get that line from the document.
Then, because the GetLine function returns a pointer to a const object,

Chapter 2, Learning ObjectWindows 101

102

you have to make a copy of the line, modify the copy, then call the
document's ModifyLine function. Here's how the code for this function
should look:

void TDrawListView: :CmPenSize()
{

int index = GetSelIndex();
const TLine* line = DrawDoc->GetLine(index);
if (line) {

TLine* newline = new TLine(*line);
if (newline->GetPenSize())

DrawDoc->ModifyLine(*newline, index);
delete newline;

The interesting aspect of this function comes in the ModifyLine call.
When the user changes the pen size using this function, the pen size
in the view isn't changed at,this time. But when the document
changes the line in the ModifyLine call, it posts a vnDrawModify event
to all of its views:

NotifyViews(vnDrawModify, index);

This notifies all the views associated with the document that-a line
has changed. All views then call their VnModify function and update
their displays from the document. This way, any change made in one
view is automatically reflected in other open views. The same holds
true for any other functions that modify the document's data, such as
CmPenColor, CmDelete, CmUndo, and so on.

The CmPenColor function looks nearly same as the CmPenSize
function, except that, instead of calling the line's GetPenSize function,
it calls GetPenColor:

void TDrawListView::CmPenColor()
{

int index = GetSelIndex();
const TLine* line = DrawDoc->GetLine(index);
if (line) {

TLine* newline = new TLine(*line);
if (newline->GetPenColor())

DrawDoc->ModifyLine(*newline, index);
delete newline;

The eM_DELETE event indicates that the user wants to delete the
line that is currently selected in the list box. The view needs to call the

OWL Programmers Guide

document's DeleteLine function, passing it the index of the currently
selected line. This function should look like this:

void TDrawListView: :CmDelete()
{

DrawDoc->DeleteLine(GetSellndex())i

You also need functions to handle the CM_ CLEAR and CM_ UNDO
events for TDrawListView. If the user chooses the Clear menu
command, the view receives a CM_ CLEAR message. All it needs to
do is call the document's Clear function:

void TDrawListView::CmClear()
D~awDoc->Clear()i

If the user chooses the Clear menu command, the view receives a
CM_UNDO message. All it needs to do is call the document's Undo
function:

void TDrawListView::CmUndo()
{

DrawDoc->Undo()i

These functions are identical to the TDrawView versions of the same
functions. That's because these operation rely on TDrawDocument to
actually make the changes to the data.

Like the TDrawView class, TDrawListView's VnCommit function always
returns TRUE. In a more complex application, this function would
add any cached data to the document, but in this application, the data
is added to the document as each line is drawn.

The V nRevert function calls the LoadData function to revert the list box
display to the data contained in the document:

BOOL TDrawListView: :VnRevert (BOOL /*c1ear* /)
{

LoadData() i

return TRUEi

The VnAppend function gets a single unsigned int parameter, which
gives the index number of the appended line. You need to get the
new line from the document by calling the document's GetLine
function. Call the FormatData function with the line and the line index
passed into the function. After formatting the line, set the selection
index to the new line and return. The function should look like this:

Chapter 2, Learning ObjectWindows 103

Where to find
more information

BOOL TDrawListView::VnAppend(unsigned int index)
{

const TLine* line = DrawDoc->GetLine(index);
FormatData(line, index);
SetSellndex(index);
return TRUE;

The VnDelete function takes a single int parameter, the index of the
line to be deleted. To remove the line from the list box, call the
TListBox function DeleteString:

BOOL TDrawListView: :VnDelete(unsigned int index)
{

DeleteString(index) i

HandleMessage(WM_KEYDOWN,VK_DOWN) i II force selection
return TRUE;

The call to HandleMessage ensures that there is an active selection in
the list box after the cur~ently selected string is deleted.

The VnModify function takes a single int parameter, the index of the
line to be modified. You need to get the line from the document using
the GetLine function. Call FormatData with the line and its index:

BOOL TDrawListView: :VnModify(unsigned int index)
{

const TLine* line = DrawDoc->GetLine(index);
FormatData(line, index);
return TRUE;

Here's a guide to where you can find more information on the topics
introduced in this step:

• The MDI window classes are discussed in Chapter 6.

• Menu descriptors are discussed in Chapter 7.

• The Doc/View model and classes are discussed in Chapter 9.

• TListBox is discussed in Chapter 10.

For further study ...

104

As you can see, ObjectWindows 2.0 packs a lot of functionality into its
classes. With this tutorial, you've really only begun to scratch the
surface of the things you can do with ObjectWindows. Here are a

OWL Programmers Guide

number of suggestions for things you can do to expand the tutorial
application even more:

• You can add other Doc/View classes to the application. To do this,
compile the document class, its view classes, and a list of document
templates into an object file. Then add that object file to the
application when you link it. Then, when you open a new
document, you'll see the new document types appear in the File
Open dialog box. Note that this works even though the application
knows nothing about the Doc/View classes you added.

A good source for Doc/View classes is the DOCVIEWX application
in the EXAMPLES\OWL \OWLAPI\ DOCVIEW directory. You can
also try writing your own document and view classes.

• Try adding new GDI objects to the application. For example, you
might try adding the ability to importbitmaps with the TBitmap
class. Or add textured brushes with the TBrush class.

• You could add different drawing operations, such as lines, boxes,
circles, and so on. You can add menu choices for each of these
operations. You can also set up exclusive state button gadgets on
the control bar to let the user change the current operation just by
pressing a button gadget.

• Try converting the control bar into a floating tool box by changing
the TControlBar into a TToolBox in a TFloatingFrame. You can see an
example of how this is done in the PAINT example in the'
EXAMPLES \ OWL \OWLAPPS\P AINT directory.

• Try adding the ability to perform multiple undo operations~ You
can use container classes to hold all the lines that have been
changed.

Chapter 2, Learning ObjectWindows 105

106 OWL Programmer's Guide

c H A p T E R 3

. Application objects

ObjectWindows 2.0 encapsulates Windows applications and DLL modules
using the TApplication and TModule classes, respectively. TModule objects
encapsulate the initialization and closing functions of a Windows DLL. The
TModule object also contains the hlnstance and lpCmdLine parameters, which
are equivalent to the parameters of the same name that are passed to the
WinMain function in a non-ObjectWindows application. Note that both
WinMain and LibMain have these two parameters in common. The TModule
class is discussed in greater detail in Chapter 16.

T Application objects encapsulate the initialization, run-time management,
and closing functions of a Windows application. The T Application object
also contains the values of the hPrevlnstance and nCmdShow parameters,
which are equivalent to the parameters of the same name that are passed to
the WinMain function in a non-ObjectWindows application. And because
TApplication is based on TModule, TApplication also has all the functionality
contained in TModule.

In addition, the T Application object contains functions to easily load and use
the Borland Custom Controls Library and the Microsoft 3-D Controls
Library. There is also a function t~at automatically subclasses standard
controls as Microsoft 3-D controls; see page 117 for more information.

You don't have to provide an explicit WinMain function for your
ObjectWindows 2.0 applications; you can instead use the function
OwlMain. OwlMain lets you use int argc and char **argv parameters and
return an int, just like a traditional C or C++ program with a main function.
See page 110 for more information.

This chapter describes how to use T Application objects. You shouldn't need
to create a TModule object yourself, unless you're working with a DLL. See
Chapter 16 for more information on using DLLs in an ObjectWindows
application.

Chapter 3, Application objects 107

The minimum requirements

Including the
header file

Creating an object

Finding the object

108

To use a TApplication object, you must first:

• Include the right header file

• Create an object

• Find the object

T Application is defined in the header file owl \applicat.h; you must include
this header file to use T Application. Because T Application is derived from
TModule, owl \applicat.h includes owl \module.h.

You can create a T Application object using one of two constructors. The
most commonly used constructor is this:

TApplication(const char far* name);

This version of the T Application constructor takes a string, which becomes·
the application's name. If you don't specify a name, by default the
constructor names it the null string. T Application uses this string as the
application name.

The second version of the T Application constructor lets you specify a
number of parameters corresponding to the parameters normally passed to
the WinMain function:

TApplication(const char far* name,
HINSTANCE instance,
HINSTANCE prevlnstance,
const char far* cmdLine,
int cmdShow);

You can use this constructor to pass command parameters to the
T Application object. This is discussed on page 110.

T Application contains several member functions and data members you
might need to callfrom outside your application objects. To let you access
these, the TWindow class has a member function, GetApplication, that
returns a pointer to the application object. You can then use this pointer to
call T Application member functions and access T Application data members.
The following listing shows a possible use of GetApplication.

OWL Programmers Guide

Creating the
minimum
application

void
TMyWindow::Error()
{

II display message box containing the application name
MessageBox ("An error occurred!",

GetApplication()->Name, MB_OK);

Here's the smallest ObjectWindows application you can create:

#include <owl\applicat.h>

int
OwlMain(int argc, char* argv[])
{

return TApplication ("Wow! ") . Run () ;

This creates a Windows application with a main window with the caption
"Wow!" You can resize, move, minimize, maximize, and close this window.
In a real application, you'd derive a new class for the application to add
more functionality.

Initializing applications

Constructing the
application object

Initializing an ObjectWindows application takes four steps:

• Constructing the application object

• Initializing the application

• Initializing each new instance

• Initializing the main window

When you construct a T Application object, it calls its InitApplication,
InitInstance, and InitMain Window member functions to start the application.
You can override any of those members to customize how your application
initializes. You must override InitMain Window to have a useful application.
To override a function in T Application you need to derive your own
application class from TApplication.

The T Application constructor used here takes the application name as its
only argument; its default value is zero, for no name. The application name
is used for the default main window title and in error messages. Your
application class' constructor should call T Application's constructor. The
following example shows a fragment of a T Application-derived class:

Chapter 3, Application objects 109

Using WinMain and
Ow/Main

110

#include <owl\applicat.h>

class TMyApplication: public TApplication
{ .
public:

~MyApplication(const char far* name = 0) TApplication(name) {}

} i

ObjectWindows 2.0 applications don't require an explicit WinMain
function; the ObjectWindows libraries provide one that performs error
handling and exception handling. You can perform any initialization you
want-in the OwlMain function, which is called by the default WinMain
function.

To construct an application object, create an instance of your application
class in the OwlMain function. The following example shqws a simple
application object's definition and instantiation:

#include <owl\applicat.h>

class TMyApplication: public TApplication
{

public:
TMyApplication(const char far* name = 0): TApplication(name) {}

}i

int
OwlMain(int argc, char* argv[])
{

return TMyApplication("Wow! ") .Run() i

ObjectWindows 2.0 provides a default WinMain function that provides
extensive error checking and exception handling. This WinMain function
sets up the application and calls the OwlMain function.

Although you can use your own WinMain by placing it in a source file,
there's little reason to do ,so. Everything you would otherwise do in
WinMain you can do in OwlMain or in T Application initialization member
functions. The following example shows a typical use of OwlMain in an
application:

#include <owl\applicat.h>
#include <string.h>

OWL Programmers Guide

Initializing the
application

class TMyApplication: public TApplication
{

public:
TMyApplication(const char far* name = 0) TApplication(name) {}

};

int
OwlMain(int argc, char* argv[])
{

char title[30];
if (argc >= 2)

strcpy(title, prgv[l]);
else

strcpy(title, "Wow!");
return TMyApplication(title) .Run();

If you do decide to provide your own WinMilin, T Application supports
passing traditional WinMain function parameters with another constructor.
The following example shows how to use that constructor to pass WinMain
parameters to the T Application object:

#include <owl\applicat.h>

class TMyApplication : public TApplication
{

public:
TMyApplication (const char far* name,

HINSTANCE instance,
HINSTANCE prevInstance,
const char far* cmdLine,
int cmdShow)

TApplication (name, instance, prevInstance, cmdLine, cmdShow);

};

int
PASCAL WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

LPSTR lpszCmdLine, int nCmdShow)

return TMyApplication("MyApp", hInstance, hPrevInstance,
lpszCmdLine, nCmdShow) .Run();

Users can run multiple copies of an application simultaneously. From the
point of view of a 16-bit application, first-instance initialization happens
only when another copy of the application is not currently running. Each
instance initialization happens every time the user runs the application. If a
user starts and closes your application, starts it again, and so on, each
instance is a first instance because the instances don't run at the same time.

Chapter 3, Application objects 111

112

In the case of 32-bit applications, each application runs in its own address
space, with no shared instance data, so that each instance appears as a first
instance. Therefore every time you start a 32-bit application, it performs
both first-instance initialization and each-instance initialization.

If the current instance is a first instance (indicated by the data member
hPrevlnstance being set to zero), InitApplication is called. You can override
InitApplication in your derived application class; the default InitApplication
has no functionality. .

For example, you could use first-instance initialization to make the main
window's caption indicate whether it's the first instance. To do this, add a
data member called Window Title in your derived application class. In the
constructor, set Window Title to" Additional Instance." Override
InitApplication to set Window Title to "First Instance." If your application is
the first instance of the application, InitApplication is called and overwrites
what the constructor set Window Title to. The following example shows how
the code might look:

#include <owl\applicat.h>
#include <owl\framewin.h>
#include <string.h>

class TTestApp : public TApplication
{

public:
TTestApp (): TApplication (" Instance Tester") {

strcpy(WindowTitle, "Additional Instance") i

protected:
char WindowTitle[20]i

void InitApplication()
strcpy(WindowTitle, "First Instance") i

void InitMainWindow()

}

}i

int

SetMainWindow(new TFrameWindow(O, WindowTitle))i

OwlMain(int argc, char* argv[])
{

return TTestApp ("Wow! ") . Run () i

Again, this application doesn't function as you might expect when it's built
as a 32-bit application. Because each instance Qf a 32-bit application

OWL Programmers Guide

Initializing each
new instance

Initializing the
main window

perceives itself to be the first instance of the application, multiple copies
running at the same time would all have the caption "First Instance."

A user can run multiple instances (copies) of an application simultaneously.
You can override T Application::InitInstance to perform any initialization you
need to do for each instance.

InitInstance calls InitMain Window and then creates and shows the main
window you set up in InitMain Window. If you override InitInstance, be sure
your new InitInstance calls TApplication::InitInstance. The following example
shows how to use InitInstance to load an accelerator table.

void
TTestApp::lnitlnstance()
{

TApplication::lnitlnstance() i
HAccTable = LoadAccelerators(MAKEINTRESOURCE(MYACCELS))i

By default, T Application::InitMain Window creates a frame window with the
same name as the application object. This window isn't very useful,
because it can't receive or process any user input. You must override
InitMain Window to create a window object that does process user input.
Normally, your In itMa in Window function creates a TFrameWindow or
TFrame Window-derived object and calls the SetMain Window function.
SetMainWindow takes one parameter, a TFrameWindow *, and returns a
pointer to the old main window (if this is a new applicationthat hasn't yet
set up a main window, the return value is 0). Chapter 6 describes window
classes and objects in detail.

The following example shows a simple application that creates a
TFrame Window object and makes it the main window:

#include <owl\applicat.h>
#include <owl\framewin.h>

class TMyApplication: public TApplication
{

pUblic:
TMyApplication(): TApplication() {}
virtual void InitMainWindow()i

} i

void
TMyApplication: : InitMainWindow()
{

SetMainWindow(new TFrameWindow(O, "My First Main Window")) i

Chapter 3, Application 6bjects 113

Specifying the main
window display
mode

114

int
OwlMain(int argc, char* argv[])
{

return TMyApplication("Wow! ") .Run();

When you run this application, the caption bar is titled "My First Main
Window," and not "Wow!". The application name passed in the
T Application constructor is used only when you do not provide a main
window. Once again, this example doesn't do a lot; there is still no
provision for the frame window to process any user input. But once you
have derived a window class that does interact with the user, you use the
same simple method to display the window.

You can change how your application's main window is displayed by
setting the T Application data member nCmdShow, which corresponds to the
WinMain parameter nCmdShow. You can set this variable as soon as the Run
function begins, up until the time you call T Application::lnitInstance. This
effectively means you can set nCmdShow in either the InitApplication or
InitMain Window function.

For example, suppose you want to display your window maximized
whenever the user runs the application. You could set nCmdShow in your
InitMain Window function:

#include <owl\applicat.h>
#include <owl\framewin.h>

class TMyApplication : public TApplication
public :

TMyApplication(char far *name) : TApplication(name) {}
void InitMainWindow();
};

void TMyApplication::lnitMainWindow()
SetMainWindow(new TFrameWindow(O, "Maximum Window"));
nCmdShow = SW_SHOWMAxIMIZED;
}

int
OwlMain(int argc i char* argv[])
{

return TMyApplication ("Wow!") . Run () ;

nCmdShow can be set to any value appropriate as, a parameter to the
Show Window Windows function or the TWindow:: Show member function,
such as SW _HIDE, SW _SHOWNORMAL, SW _NORMAL, and so on.

OWL Programmers Guide

Changing the main
window

You can use the SetMain Window function to change your main window
during the course of your application. SetMain Window takes one parameter,
a TFrameWindow *, and returns a pointer to the old main window (if this is
a new application that hasn't yet set up a main window, the return value is
0). You can use this pointer to keep the old main window in case you want
to restore it. Alternatively, you can use this pointer to delete the old main
window object.

Application message handling

Extra message
processing

Idle processing

Once your application is initialized, the application object's MessageLoop
starts running. MessageLoop is responsible for processing incoming
messages from Windows. There are two ways you can refine message
processing in an ObjectWindows application:

• Extra message processing, by overriding default message handling
functions

• Idle, processing

T Application has member functions that provide the message-handling
functionality for any ObjectWindows application. These functions are
MessageLoop, IdleAction, PreProcessMenu, and ProcessAppMsg. See the
Object Windows Reference Guide for more information.

Idle processing lets your application take advantage of the idle time when
there are no messages waiting (including user input). If there are no
waiting messages, MessageLoop calls IdleAction.

To perform idle processing, override IdleAction to. perform the actual idle
processing. Remember that idle processing takes place while the user isn't
doing anything. Therefore, idle processing should be short-lasting. If you
need to do anything that takes longer than a few tenths of a second, you
should split it up into several processes.

IdleAction's parameter (idleCount) is a long specifying the number of times
IdleAction was called between messages. You can use idleCount to choose
between low-priority and high-priority idle processing. If idleCount reaches
a high value, you know that a long period without user input has passed,
so it's safe to perform low-priority idle processing.

Return TRUE from IdleAction to call IdleAction back sooner.

Chapter 3, Application objects 115

You should always call the base class IdleAction function in addition to
performing your own processing. If you're writing applications for
Windows NT, you can also use multiple threads for background
processing.

Closing applications

Changing closing
behavior

Closing the
application

116

Users usually close a Windows application by choosing File I Exit or
pressing AIt+F4. It's important, though, that the application be able to
intercept such an attempt, to give the user a chance to save any open files.
T Application lets you do that.

T Application and all window classes have or inherit a member function
CanClose. Whenever an application tries to shut down, it queries the main
window's and document manager's Can Close function. If either of these has
children, it calls the Can Close function for each child. In turn, each child
calls the CanClose function of each of their children if any, and so on.

The Can Close function gives each object a chance to prepare to be shut
down. It also gives the object a chance to abort to the shutdown if
necessary. When the object has completed its clean-up procedure, its
Can Close function should return TRUE.

If any of the CanClose functions called returns FALSE, the shut-down
procedure is aborted.

The CanClose mechanism gives the application object, the main window,
and any other windows a chance to either prepare for closing or prevent
the closing from taking place. In the end, the application object approves
the dosing of the application. The normal closing sequence looks like this:

1. Windows sends a WM_CLOSE message to the main window.

2. The main window object's EvClose member function calls the application
object's Can Close member function.

3. The application object's Can Close member function calls the main
window object's CanClose member function.

4. The main window and document manager objects call Can Close for each
of their child windows. The main window and document manager
objects' CanClose functions return TRUE only if all child windows'
Can Close member functions return TRUE.

OWL Programmers Guide

Modifying CanC/ose

5. If both the main window and document manager objects' CanClose
funCtions return TRUE, the application object's CanClose function
returns TRUE.

6. If the application object's CanClose function returns TRUE, the EvClose
function shuts down the main window and ends the application.

CanClose should rarely return FALSE. Instead, Can Close should perform
any actions necessary to return TRUE. CanClose should return FALSE only
if it's unable to do something necessary for orderly shutdown or if the user
wants to keep the application running.

For example, an editor window's Can Close member function would
probably check to see if the editor text had changed, then prompt the user
to ask whether the text should be saved before closing. A message box with
Yes, No, and Cancel buttons is best. Cancel would indicate that the user
doesn't want to close the application yet, so CanClose would return FALSE.

Using control libraries

Using the Borland
Custom Controls
Library

T Application has functions for loading the Borland Custom Controls Library
(BWCC.DLL for 16-bit applications and BWCC32.DLL for 32-bit
applications) and the Microsoft 3-D Controls Library (CTL3D.DLL). These
DLLs are widely used to provide a standard look-and-feel for many
applications.

You can open and close the Borland Custom Controls Library using the
function T Application::EnableBWCC. EnableBWCC takes one parameter, a
BaaL, and returns a void. When you pass TRUE to EnableBWCC, the
function loads the DLL if it's not already loaded. When you pass FALSE to
EnableBWCC, the function unloads the DLL if it's not already unloaded.

You can find out if the Borland Custom Controls Library DLL is loaded by
calling the function TApplication::BWCCEnabled. BWCCEnabled takes no
parameters. If the DLL is loaded, BWCCEnabled returns TRUE; if not,
BWCCEnabled returns FALSE.

Once the DLL is loaded, you can use all the regular functionality of Borland
Custom Controls Library. EnableBWCC automatically opens the correct
library regardless of whether you have a 16- or a 32-bit application.

Chapter 3, Application objects 117

Using the
Microsoft 3-D
Controls Library

118

You can load and unload the Microsoft 3-D Controls Library using the
function T Application::EnableCtI3d. EnableCtl3d takes one parameter, a
BOOL, and returns a void. When you pass TRUE to EnableCtl3d, the
function loads the DLL if it's not already loaded. When you pass FALSE to
EnableCtl3d, the function unloads the DLL if it's not already unloaded.

You can find out if the Microsoft 3-D Controls Library DLL is loaded by
calling the function T Application::Ctl3dEizabled. Ctl3dEnabled takes no
parameters. If the DLL is loaded, Ctl3dEnabled returns TRUE; if not,
Ctl3dEnabled returns FALSE.

To use the EnableCtl3dAutosubclass function, load the Microsoft 3-D
Controls Library DLL using EnableCtl3d. EnableCtl3dAutosubclass takes one
parameter, a BOOL, and returns a void. When you pass TRUE to
EnableCtl3dAutosubclass, autosubclassing is turned on. When you pass
FALSE to EnableCtl3dAutosubclass, autosubclassing is turned off.

When autosubclassing is on, any non-ObjectWindows dialogs you create
have a 3-D effect. You can turn autosubclassing off immediately after
creating the dialog box; it is not necessary to leave it on when displaying
the dialog box.

OWL Programmers Guide

Figure 4.1
Interface elements

vs. interface objects

c H A p T E R 4

Interface objects

Instances of c++ classes representing windows, dialog boxes, and controls
are called interface objects. This chapter discusses the general requirements
and behavior of interface objects and their relationship with the interface
elements-the actual windows, dialog boxes, and controls that appear
onscreen.

The following figure illustrates the difference between interface objects and
interface elements:

Interface object

OWL Application

Window interface
object

Call to
Windows creates
new HWND

Interface element

= Sample ObjectWindows Program aa

Notice how the interface object is actually inside the application object. The
interface object is an ObjectWindows class that is created and stored on the
application's heap or stack, depending on how the object is allocated. The
interface element, on the other hand, is actually a part of Windows. It is the
actual window displayed on the screen.

The information in this chapter applies to all interface objects. This chapter
also exp~ains the relationships between the different interface objects of an
application, and describes the mechanism that interface objects use to
respond to Windows messages.

Chapter 4, Interface objects 119

Why interface objects?

What do interface
objects do?

One of the greatest difficulties of Windows programming is that controlling
interface elements can be inconsistent and confusing. Sometimes you send
a message to a window; other times you call a Windows API function. The
conventions for similar types of operations often differ when those
operations are performed with different kinds of elements.

ObjectWindows alleviates much of this difficulty by providing objects that
encapsulate the interface elements. This insulates you from having to deal
directly with Windows and provides a more uniform interface for
controlling interface elements.

An interface object provides member functions for creating, initializing,
managing, and destroying its associated interface element. The member
functions manage many of the details of Windows programming for you.

Interface objects also encapsulate the data needed to communicate with the
interface element, such as handles and pointers to child and parent
windows.

The relationship between an interface object and an interface element is
similar to that 'between a file on disk and a c++ stream object. The stream
object only represents an actual file on disk; you manipulate that file by
manipulating the stream object. With ObjectWindows, interface objects
represent the interface elements that Windows itself actually manages. You
work with the object, and Windows takes care of maintaining the Windows
element.

The generiC interface object: TWindow

120

ObjectWindows' interface objects are all derived from TWindow, which
defines behavior common to all window, dialog box, and control objects.
Classes like TFrame Window, TDialog, and TControl are derived from
TWindow and refine TWindow's generic behavior as needed.

As the common base class for all interface objects, TWindow provides
uniform ways to:

• Maintain the relationship between interface objects and interface
elements, including creating and destroying the objects and elements

• Handle'parent-child relationships between interface objects

• Register new Windows window classes

OWL Programmers Guide

Creating interface objects

When is a window
handle valid?

Setting up an interface object with its associated interface elemen~ requires
two steps:

1. Calling one of the interface object constructors, which constructs the
interface object and sets its attributes.

2. Creating the interface element by telling Windows to create the interface
object with a new interface element:

• When creating most interface elements, you call the interface object's
Create member function. Create also indirectly calls Setup Window,
which initializes the interface object by creating an interface element,
such as child windows .

• When creating a modal dialog box, you create the interface element
by calling the interface object's Execute member function. See page 164
for more information on modal dialog boxes.

The association between the interface object and the interface element is
maintained by the interface object's HWindow data member, a handle to a
window. .

Normally under Windows, a newly created interface element receives a
WM_CREATE message from Windows, and responds to it by initializing
itself. ObjectWindows interface objects intercept the WM_ CREATE
message and call Setup Window instead. Setup Window is where you want to
perform your own initialization.

If part of the interface object's initialization requires the interface element's
window handle, you must perform that initialization after you call the base
class' Setup Window. Prior to the time you call the base class' Setup Window,
the window and its child windows haven't been created; HWindow isn't
valid and shouldn't be used. You can easily test the validity of HWindow: if
it hasn't been initialized, it is set to NULL.

Although it might seem odd that you can't perform all initialization in the
interface object's constructor, there's a good reason: once an interface
element is created, you can't change many of its characteristics. Therefore, a
two-stage initialization is required: before and after the interface element is
created.

The interface object's constructor is the place for initialization before the
element is created and Setup Window is the place for initialization after the

Chapter 4, Interface objects 121

Making interface
elements visible

Object properties

122

element is created. You can think of Setup Window as the second part of the
constructor.

Creating an object and its corresponding element doesn't mean that you'll
see something on the screen. When Windows creates the interface element,
Windows checks to see if the element's style includes WS_ VISIBLE. If it
does, Windows displays the interface element; if it doesn't, the element is
created but not displayed onscreen.

TWindow's constructor sets WS_ VISIBLE, so most interface objects are
visible by default. But if your object loads a resource, that resource's style
depends on what is defined in its resource file. If WS_ VISIBLE is turned on
in the resource's style, WS_ VISIBLE is turned on for the object. If
WS_ VISIBLE is not turned on in the resource's style, WS_ VISIBLE is turned
off in the object's style. You can set WS _ VISIBLE and other window styles in
the interface object in the Attr.Style data member.

For example, if you use TDialog to load a dialog resource that doesn't have
WS_ VISIBLE turned on, you must explicitly turn WS_ VISIBLE before
attempting to display the dialog using Create.

You can find out whether an interface object is visible by calling
IsWindowVisible. IsWindowVisible returns TRUE if the object is visible.

At any point after the interface element has been created, you can show or
hide it by calling its Show member function with a value of TRUE or
FALSE, respectively.

In addition to the attributes of its interface element, the interface object
possesses certain attributes as an ObjectWindows object. You can query and
change these properties and characteristics using the following functions:

• SetFlag sets the specified flag for the object

• ClearFlag clears the specified flag for the object

• IsFlagSet returns TRUE if the specified flag is set, FALSE if the specified
flag is not set

You can use the following flags with these functions:

• wfAlias indicates whether the object is an alias; see page 15I.

• wfAutoCreate indicates whether automatic creation is enabled for this
. object.

• wfFromResource indicates whether the interface element is loaded from a
resource.

OWL Programmers Guide

Window
properties

• wfShrinkToClient indicates whether the frame window should shrink to fit
the size of the client window. .

• wfMain Window indicates whether the window is the main window.

• wfPredefinedClass indicates whether the window is a predefined Windows
class.

• wfTransfer indicates whether the window can use the data transfer
mechanism. See Chapter 10 for transfer mechanism information.

TWindow also provides a couple of functions that let you change resources
and properties of the interface element. Because TWindow provides generic
functionality for a large variety of objects, it doesn't provide very specific
functions for resource and property manipulation. High-level objects
provide much more specific functionality .. But that specific functionality
builds on and is in addition to the functionality provided by TWindow:

• SetCaption sets the window caption to the string that you pass as a
parameter.

• Get WindowTextTitle returns a string containing the current window
caption.

• SetCursor sets the cursor of the instance, identified by the TModule
parameter, to the cursor passed as a resource in the second parameter.

• You can set the accelerator table for a window by assigning the resource
ID (which can be a string or an integer) to Attr.AccelTable. For example,
suppose you have an accelerator table resource called MY_ACCELS. You
would assign the resource to Attr.AccelTable like this:

TMyWnd: :TMyWnd(const char* title)
{

Init(O, title);
Attr.AccelTable = MY_ACCELSi / / AccelTable can be assigned

For more specific information on these functions, refer to the Object Windows
Reference Guide.

Destroying interface objects

Destroying interface objects is a two-step process:

• Destroying the interface element

• Deleting the interface object

Chapter 4, Interface objects 123

Destroying the
interface element

Deleting the
interface object

You can destroy the interface element without deleting the interface object,
if you need to create and display the interface element again.

Destroying the interface element is the responsibility of the interface
object's Destroy member function. Destroy destroys the interface elements by
calling the Destroy Window API function. When the in'terface element is
destroyed, the interface object's HWindow data member is set to zero.
Therefore, you can tell if an interface object is still associated with a valid
interface element by checking its HWindow.

When a user closes a window on the screen, the following things happen:

• Windows notifies the window.

• The window goes through the Can Close mechanism to verify that the
window should be closed.

• If Can Close approves the closing of the window, the interface element is
destroyed and the interface object is deleted.

If you destroy an interface element yourself so that you can redisplay the
interface object later, you must make sure that you delete the interface
object when you're done with it. Because an interface object is nothing
more than a regular C++ object, you can delete it using the delete statement
if you've dynamically allocated the object with new.

The following code illustrates how to destroy the interface element and the
interface object.

TWindow *window = new TWindow(O, "My Window");

/ / ...
window->Destroy();
delete window;

Parent and child interface elements

124

In a Windows application, interface elements work together through
parent-child links. A parent window controls its child windows, and
Windows keeps track of the links. ObjectWindows maintains a parallel set
of links between corresponding interface objects.

A child window is an interface element that is managed by another
interface element. For example, list boxes are managed by the window or
dialog box in which they appear. They are displayed only when their

OWL Programmers Guide

Child-window lists

Constructing
child windows

parent windows are displayed. In turn, dialog boxes are child windows
managed by the windows that create them.

When you move or close the parent window, the child windows
automatically close or move with it. The ultimate parent of all child
windows in an application is the main window (there are a couple of
exceptions: you can have windows and dialog boxes without parents and
all main windows are children of the Windows desktop).

When you construct a child-window object, you specify its parent as a
parameter to its constructor. A child-window object keeps track of its
parent through the Parent data member. A parent keeps track of its child
window objects in a private data member called ChildList. Each parent
maintains its list of child windows automatically.

You can access an object's child windows using the window iterator
member functions FirstThat and ForEach. See page 128 for more information
on these functions.

As with all interface objects, child-window objects get created in two steps:
constructing the interface object and creating the interface element. If you
construct child-window objects in the constructor of the parent window,
their interface elements are automatically created when the parent is,
assuming that automatic creation is enabled for the child windows. By
default, automatic creation is enabled for all ObjectWindows objects based
on TWindow, with the exception of TDialog. See page 127 for more
information on automatic creation.

For example, the constructor for a window object derived from TWindow
that contains three button child windows would looklike this:

TTestWindow::TTestWindow(TWindow *parent, const char far *title)
{

Init(parent, title) i
buttonl = new TButton(this, ID_BUTTONl, "Show",

190, 270, 65, 20, FALSE) i

button2 = new TButton(this, ID_BUTTON2, "Hide",
275, 270, 65, 20, FALSE) i

button3 = new TButton(this, ID_BUTTON3, "Transfer",
360, 270, 65, 20, FALSE) i

Note the use of the this pointer to link the child windows with their parent.
Interface object constructors automatically add themselves to their parents'
child window lists. When an instance of TTestWindow is created, the three
buttons are automatically displayed in the window.

Chapter 4, Interface objects 125

Creating child
interface elements

126

If you don't construct child-window objects in their parent window object's
constructor, they won't be automatically created and displayed when the
parent is. You can then create them yourself using Create or, in the case of
modal dialog boxes, Execute. In this context, creating means instantiating an
interface element.

For example, suppose you have two buttons displayed when the main
window is created, one labeled Show and the other labeled Hide. When the
user presses the Show button, you want to display a third button labeled
Transfer. When the user presses the Hide button, you want to remove the
Transfer button:

class TTestWindow : public TFrameWindow

TButton *buttonl, *button2, *button3;
public:

TTestWindow(TWindow *parent, const char far *title);

void
EvButtonl ()
{

if(!button3->HWindow)
button3->Create();

void
EvButton2 ()
{

if (button3->HWindow)
button3->Destroy();

void
EvButton3 ()
{

MessageBeep(-l) ;

DECLARE_RESPONSE_TABLE(TTestWindow) ;
};

DEFINE_RESPONSE_TABLE1(TTestWindow, TFrameWindow)
EV_COMMAND(ID_BUTTON1, EvButtonl),
EV_COMMAND(ID_BUTTON2, EvButton2),
EV_COMMAND(ID_BUTTON3, EvButton3),

END_RESPONSE_TABLE;

TTestWindow: :TTestWindow(TWindow *parent, const char far *title)

OWL Programmers Guide

Destroying
windows

Automatic
creation

Init(parent, title);
buttonl = new TButton (this, ID_BUTTON1, 11 Show" ,

10, 10, 75, 25, FALSE);
button2 = new TButton(this, ID_BUTTON2, "Hide",

95, 10, 75, 25, FALSE);
button3 = new TButton(this, ID_BUTTON3, "Transfer",

180, 10, 75, 25, FALSE);
button3->DisableAutoCreate();

The call to DisableAutoCreate in the constructor prevents the Transfer button
from being displayed when TTestWindow is created. The conditional tests in
the EvButtonl and EvButton2 functions work by testing the validity of the
HWindow data member of the button3 interface object; if the Transfer button
is already being displayed, EvButtonl doesn't try to display it again, and
EvButton2 doesn't try to destroy the Transfer button if it isn't being
displayed.

Destroying a parent window also destroys all of its child windows. You do
not need to explicitly destroy child windows or delete child window
interface objects. The same is true for the CanClose mechanism; CanClose for
a parent window calls Can Close for all its children. The parent's Can Close
returns TRUE only if all its children return TRUE for Can Close.

When you destroy an object's interface element, it enables automatic
creation for all of its children, regardless of whether automatic creation was
on or off before. This way, when you create the parent, all the children are
restored in the state they were in before their parent was destroyed. You
can use this to destroy an interface element, and then re-create it in the
same state it was in when you destroyed it.

To prevent this, you must explicitly turn off automatic creation for any
child objects you don't want to have created automatically.

When automatic creation is enabled for a child interface object before its
parent is created, the child is automatically created at the same time the
parent is created. This is true for all the parent object's children.

To explicitly exclude a child window from the automatic create-and-show
mechanism, call the DisableAutoCreate member function in the child object's
constructor. To explicitly add a child window (such as a dialog box, which
would normally be excluded) to the automatic create-and-show
mechanism, call the EnableAutoCreate member function in the child object's
constructor.

Chapter 4, Interface objects 127

Manipulating child
windows

Operating on al/
children: ForEach

128

By default automatic creation is enabled for all ObjectWindows classes
except for dialog boxes.

TWindow provides two iterator functions, ForEach and FirstThat, that let you
perform operations on either all the children in the parent's child list or a
single child at a time. TWindow also provides a number of other functions
that let you determine the number of children in the child list, move
through them one at a time, or move to the top or bottom of the list.

You might want to perform some operation on each of a parent window's
child windows. The iterator function ForEach takes a pointer to a function.
The function can be either a member function or a stand-alone function.
The function should take a TWindow * and a void * argument. ForEach calls
the function once for each child. The child is passed as the TWindow *. The
void * defaults to o. You can use the void * to pass any arguments you want
to your function.

After ForEach has called your function, you often need to be careful when
dealing with the child object. Although the object is passed as a TWindow *,
it is actually usually a descendant of TWindow. To make sure the child
object is handled correctly, you should use the DYNAMIC_CAST macro to
cast the TWindow * to a TClass *, where TClass is whatever type the child
object is.

For example, suppose you want to check all the check box child windows
in a parent window:

void
CheekTheBox(TWindow* win, void*)
{

TCheekbox *eb = DYNAMIC_CAST (win, TCheekbox);
if (eb)

eb->Cheek() ;

void
TMDIFileWindow::CheekAllBoxes()
{

ForEaeh(CheekTheBox) ;

If the class you're downcasting to (in this case from a TWindow to a
TCheckbox) is virtually derived from its base, you must use the
DYNAMIC_CAST macro to make the assignment. In this case, TCheckbox
isn't virtually derived from TWindow, making the DYNAMIC_CAST macro
superfluous in this case.

OWL Programmers Guide

Finding a specific
child

Working with the
child list

DYNAMIC_CAST returns 0 if the cast could not be performed. This is
useful here, because not all of the children are necessarily of type
TCheckbox. If a child of type TControlBar was encountered, the value of cb
would be 0, thus assuring that you don't try to check a control bar.

You might also want to perform a function only on a specific child window.
For example, if you wanted to find the first check box that's checked in a
parent window with several check boxes, you would use
TWindow: :FirstThat:

BOOL
IsThisBoxChecked(TWindow* cb, void*)
{

return cb ?
(cb->GetCheck == BF_CHECKED)
FALSEi

TCheckBox*
TMDIFileWindow::GetFirstChecked()
{

return FirstThat(IsThisBoxChecked) i

In addition to the iterator functions For Each and FirstThat, TWindow
provides a number of functions that let you locate and manipulate a single
child window:

• NumChildren returns an unsigned. This value indicates the total number
of child windows in the child list.

• GetFirstChild returns a TWindow * that points to the first entry in the child
list.

• GetLastChild returns a TWindow * that points to the last entry in the child
list.

• Next returns a TWindow * that points to the next entry in the child list.

• Previous returns a TWindow * that points to the prior entry in the child
list.

Registering window classes

Whenever you create an interface element from an interface object using
the Create or Execute functions, the object checks to see if another object of
the same type has registered with Windows. If so, the element is created

Chapter 4, Interface objects 129

130

based on the existing Windows registration class. If not, the object
automatically registers itself, then is created based on the class just
registered.

This removes the burden from the programmer of making sure all window
classes are registered before use.

OWL Programmers Guide

c H A p T E R 5

Chapter 5, Event handling

Event handling

This chapter describes how to use ObjectWindows 2.0 response tables.
Response tables are the method you use to handle all events in an
ObjectWindows 2.0 application. There are four main steps to using
ObjectWindows's response tables:

1. Declare the response table.

2. Define the response table.

3. Define the response table entries.

4. Declare and define the response member functions.

To use any of the macros described in this chapter, you must include the
header file owl\eventhan.h. This file is already included by owl\module.h
(which is included by owl \applicat.h) and owl \ window.h, so there is
usually no need to explicitly include this file.

ObjectWindows 2.0 response tables are a major improvement over other
methods of handling Windows events and messages, including switch
statements (such as those in standard C Windows programs) and schemes
used in other types of application frameworks. Unlike other methods of
event handling, ObjectWindows 2.0 response tables provicie:

• Automatic message cracking for predefined command messages, thus
eliminating the need for manual cracking of the WP ARAM and
LP ARAM values

• Compile-time error and type checking, which checks the event-handling
function's return type and parameter types

• Ability to have one function handle multiple messages

• Support for multiple inheritance, enabling each derived class to build on
top of the base class or classes' response tables

• Portability across platforms by not relying on product-specific compiler
extensions

• Easy handling of command, registered, child ID notification,and custom
messages, using the predefined response table macros

131

Declaring response tables

Because the response table is a member of an ObjectWindows class, you
must declare the response table when you define the class. ObjectWindows
provides the DECLARE_RESPONSE_TABLE macro to hide the actual
template syntax that response tables use.

The DECLARE_RESPONSE_TABLE macro takes a single argument, the
name of the class for which the response table is being declared. Add the
macro at the end of your class definition. For example, TMyFrame, derived
from TFrame Window, would be defined like this:

class TMyFrame : public TFrameWindow
{

DECLARE_RESPONSE_TABLE(TMyFrame) ;
};

Defining response tables

132

Once you've declared a response table, you must define it. Response table
definitions must appear outside the class definition.

ObjectWindows provides the DEFINE_RESPONSE_TABLEX macro to help
define response tables. The value of X depends on your class' inheritance,
and is a number equal to the number of immediate base classes your class
has. END _RESPONSE_TABLE ends the event response table definition.

To define your response table,

1. Begin the response table definition for your class using the
DEFINE_RESPONSE_TABLEX macro. DEFINE_RESPONSE_TABLEX
takes X + 1 arguments:

• The name of the class you're defining the response table for

• The name of each immediate base class

2. Fill in the response table entries (see the next section for information on
how to do this step).

3. End the response table definition using the END_RESPONSE_TABLE
macro.

For example, the response table definition for TMyFrame, derived from
TFrame Window, would look like this:

OWL Programmers Guide

DEFINE_RESPONSE_TABLE1(TMyFrame, TFrameWindow)
EV_WM_LBUTTONDOWN,
EV_WM_LBUTTONUP,
EV_WM_MOUSEMOVE,
EV_WM_RBUTTONDOWN,

END_RESPONSE_TABLEi

You must always place a comma after each response table entry and a
semicolon after the END _RESPONSE_TABLE macro.

Defining response table entries

Command
message macros

Response table entries associate a Windows event with a particular
function. When a window or control receives a message, it checks its
response table to see if there is an entry for that message. If there is, it
passes the message on to that function. If not, it passes the message up to
its parent. If the window is the main window, it passes the message on to
the application object. If ~he application object doesn't have a response
entry for that particular message, the message is handled by
ObjectWindows default processing. This process is explained in greater
detail in Chapter 2 in the Object Windows Reference Guide.

ObjectWindows provides a large number of macros for response table
entries. These include:

• Command message macros that let you handle command messages and
route them to a specified function.

• Standard Windows message macros for handling Windows messages.

• Registered messages (messages returned by Register WindowMessage).
• Child ID notification macros that let you handle child ID notification

codes at the child or the parent.

• Control notification macros that handle messages from specialized
controls such as buttons, combo boxes, edit controls, list boxes, and so
on.

• Document manager message macros to notify the application that a
document or view has been created or destroyed and to notify views
about events from the document manager.

• VBX control notifications.

ObjectWindows provides a large number of macros, called command
message macros, that let you assign command messages to any function. The
only requirement is that the signature of the function you specify to handle
a message must match the signature required by the macro for that

Chapter 5, Event handling 133

message. The different types of command message macros are listed in the
following table:

Table 5.1: Command message macros

Macro Prototype Description

EV _COMMAND(CMD, UserName) void UserNameO Calls the member function UserName
when the command message CMD is
received. .

EV _COMMAND_ANDJD(CMD, UserName) void UserName0/VPARAM) Calls the member function UserName
when the command message CMD is
received. Passes the command's ID (the
WPARAM parameter) to the function.

EV _COMMAND_ENABLE(CMD, UserName) void UserName(TCommandEnabler&) Used to automatically enable and disable
command controls such as menu items,
tool bar buttons, and so on.

There are other message macros that let you pass the raw, unprocessed
message on to the event-handling funCtion. These message macros handle
any kind of generic message and registered message.

Table 5.2: Message macros

Macro Prototype Description

EV _MESSAGE(MSG, UserName) LRESULT UserName(WPARAM, LPARAM) Calls the member function User Name
when the user-defined message MSG is
received. MSG is passed to UserName
without modification.

EV_REGISTERED(MSG, UserName) LRESULT UserName(WPARAM, LPARAM) Calls the member function UserName
when the registered message MSG is
received. MSG is passed to User Name
without modification.

134

It is very important that you correctly match the function signature with
the macro that you use in the response table definition. For example,
suppose you have the following code:

class TMyFrame : public TFrameWindow {
public:

void CmAdvise() i

DECLARE_RESPONSE_TABLE(TMyFrame)i
}i

DEFINE_RESPONSE_TABLE(TMyFrame, TFrameWindow)
EV_COMMAND_AND_ID(CM_ADVISE, CmAdvise),

END_RESPONSE_TABLEi

OWL Programmers Guide

Windows
message macros

void TMyFrarne::CmAdvise()

This code produces a compile-time error because the
EV _COMMAND_AND _ID macro requires a function that returns void and
takes a single WP ARAM parameter. In this example, the function correctly
returns a void, but incorrectly takes no parameters. To make this code
compile correctly, change the member declaration and function definition
of TMyFrame::CmAdvise to:

void TMyFrarne::CmAdvise(WPARAM crnd)i

ObjectWindows provides predefined macros for all standard Windows
messages. You can use these macros to handle standard Windows
messages in one of your class' member functions.

To find the name of the macro, preface the message name with EV _. For
example, the macro that handles the WM_P AINT message is
EV _ WM_P AINT. The macro that handles the WM_LBUTTONDOWN
message is EV _ WM_LBUTTONDOWN.

These predefined macros pass the message on to functions with predefined
names. To determine the function name, remove the WM_ from the
message name, add Ev to the remaining part of the message name, and
convert the name to lowercase with capital letters at word boundaries. For
example, the WM_PAINT message is passed to a function called EvPaint.
The WM_LBUTTONDOWN message is passed to a function called
EvLButtonDown.

The advantage to using these Windows message macros is that the
Windows message is automatically II cracked"; that is, the parameters that
are normally encoded in the LP ARAM and WP ARAM parameters are
broken out into their constituent parts and passed to the event-handling
function as individual parameters.

For example, the EV _ WM_ CTLCOLOR macro passes the cracked
parameters to an event-handling function with the following signature:

HBRUSH EvCtlColor(HDC hDCChild, HWND hWndChild, UINT nCtrlType) i

Message cracking provides for strict C++ compile-time type checking, and
helps you catch errors as you compile your code rather than at run time. It
also helps when migrating application from 16-bit to 32-bit and vice versa ..
Chapter 2 in the Object Windows Reference Guide lists each Windows
message, its corresponding response table macro, and the signature of the
corresponding event-handling function.

Chapter 5, Event handling 135

Child 10
notification
message macros

To use a predefined Windows message macro, add the macro to your
response table and add the appropriate member function with the correct
name and signature to your class. For example, suppose you wanted to
perform some operation when your TMyFrame window object received the
WM_ERASEBKGND message. The code would look like this:

class TMyFrame : public TFrameWindow {
public:

BOOL EvEraseBkgnd(HDC);

DECLARE_RESPONSE_TABLE(TMyFrame) ;
};

DEFINE_RESPONSE_TABLE(TMyFrame, TFrameWindow)
EV_WM_ERASEBKGND,

END_RESPONSE_TABLE;

BO~L TMyFrame::EvEraseBkgnd(HDC hdc)

The child ID notification message macros provide a number of different
ways to handle child ID notification messages. You can handle notification
codes from multiple children with a single function, pass all notification
codes from a child to a response window, or handle the notification code at
the child.

You use these macros to facilitate controlling and communicating with
child controls. The different types of child ID notification message macros
are listed in the following table:

Table 5.3: Child ID notification macros

Macro Prototype

EV _CHILD_NOTIFY(lD, Code, UserName) void UserNameO

Description

Dispatches the message and
notification code to the member
function UserName.

EV_CHILD_NOTIFY_AND_CODE(ld, Code, UserName) void UserName(WPARAM code) Dispatches message Idwith the
notification code Code to the

EV _CHILD_NOTIFY _AT _CHILD(Code, UserName)

136

function UserName.
void UserName(WPARAM code) Dispatches message Id to the

function UserName, regardless
of the messages notification
code.

void UserNameO Dispatches the notification code
Code to the child-object member
function UserName.

OWL Programmers Guide

These macros provide different methods for handling child ID notification
codes. If you want child ID notifications to be handled at the child's parent
window, use EV _CHILD_NOTIFY, which passes the notification code as a
parameter and lets multiple child 10 notifications be handled with a single
function. This also prevents having to handle each child's notification
message in separate response tables for each control. Instead, each message
is handled at the parent, enabling, for example, a dialog box to handle all
its controls in its response table.

For example, suppose you have a dialog box called TTestDialog that has
four buttons. The buttons IDs are ID _BUTTON 1 , ID _BUTTON2,
ID _BUTTON3, and 10 _BUTTON4. When the user clicks a button, you want
a single function to handle the event, regardless of which button was
pressed. If the user double-clicks a button, you want a special function to
handle the event. The code would look like this:

class TTestDialog : public TDialog (
pUblic:

TTestDialog(TWindow* parent, TResId resId);

void HandleClick();
void HandleDblClickl();
void HandleDblClick2();
void HandleDblClick3();
void HandleDblClick4();

DECLARE_RESPONSE_TABLE(TTestDialog) ;
};

DEFINE_RESPONSE_TABLE1(TTestDialog, TDialog)
EV_CHILD_NOTIFY(ID_BUTTON1, BN_CLICKED, HandleClick),
EV_CHILD_NOTIFY(ID_BUTTON2, BN_CLICKED, HandleClick),
EV_CHILD_NOTIFY(ID_BUTTON3, BN_CLICKED, HandleClick),
EV_CHILD_NOTIFY(ID_BUTTON4, BN_CLICKED, HandleClick),
EV_CHILD_NOTIFY(ID_BUTTON1, BN_DOUBLECLICKED, HandleDblClickl),
EV_CHILD_NOTIFY(ID_BUTTON2, BN_DOUBLECLICKED, HandleDblClick2),
EV_CHILD_NOTIFY(ID_BUTTON3, BN_DOUBLECLICKED, HandleDblClick3),
EV_CHILD_NOTIFY(ID_BUTTON4, BN_DOUBLECLICKED, HandleDblClick4),

END_RESPONSE_TABLE;

If you want all notification codes from the child to be passed to the parent
window, use EV _CHILD_NOTIFY _ALL_CODES, the generic handler for
child ID notifications. For example, the sample program BUTTONX.CPP
defines this response table:

Chapter 5, Event handling 137

138

DEF INE_RESPONSE_TABLE 1 (TTestWindow, TWindow)
EV_COMMAND(ID_BUTTON, HandleButtonMsg),
EV_COMMAND(ID_CHECKBOX, HandleCheckBoxMsg),
EV_CHILD_NOTIFY_ALL_CODES(ID_GROUPBOX, HandleGroupBoxMsg),

END_RESPONSE_TABLEi

This table handles button, check box, and group box messages. In this case,
the parent window (TTestWindow) gets all notification messages sent by the
child (ID _ GROUPBOX). The EV _CHILD_NOTIFY _ALL_CODES macro
uses the user-defined function HandleGroupBoxMsg to process these
messages. As a result, if the user clicks the mouse on one of the group box
radio buttons, a message box appears that tells the user which button was
selected.

You can use the macro EV _CHILD_NOTIFY_AND_CODE if you want the
parent window to handle more than one message using the same function.
For example:

DEFINE_RESPONSE_TABLE1(TTestwindow, TWindow)
EV_CHILD_NOTIFY_AND_CODE(ID_GROUPBOX, SomeNotifyCode, HandleThisMessage),
EV_CH I LD_NOT I FY_AND_CODE (ID_GROUPBOX, AnotherNotifyCode/ HandleThisMessage),

END_RESPONSE_TABLEi

If your window has several different messages to handle and uses several
different functions to handle these messages, it's better to use
EV _CHILD_NOTIFY_AND_CODE instead of EV _CHILD_NOTIFY
because EV _CHILD _NOTIFY message-handling function receives no
parameters and therefore doesn't know which message it's handling.'

To handle child ID notifications at the child window, use
EV _CHILD_NOTIFY_AT_CHILD. The sample program NOTITEST.CPP
contains the following response table:

DEFINE_RESPONSE_TABLE1(TBeepButton, TButton)
EV_NOTIFY_AT_CHILD(BN_CLICKED, BnClicked),

END_RESPONSE_TABLEi

This response table uses the macro EV _NOTIFY_AT_CHILD to tell the
child window (TBeepButton) to handle the notification code (BN_CLICKED)
using the function, BnClicked.

OWL Programmers Guide

c H A p T E R

Window objects

Window objects are high-level interface objects with facilities to make
dealing with windows and their children and controls easier.
ObjectWindows provides several different types of window objects:

• Layout windows (described starting on page 143)

• Frame windows (described starting on page 150)

• Decorated frame windows (described starting on page 152)

• MDI windows (described starting on page 154)

Another class of window objects, called gadget windows, is discussed in
Chapter 11.

6

Using window objects

Constructing
window objects

This section explains how to create, display, and fill window objects. It
describes how to perform the following tasks:

• Constructing window objects

• Setting creation attributes

• Creating window interface elements

The different types of windows discussed in this chapter-frame windows,
layout windows, decorated frame windows, and MDI windows-are all
examples of window objects. The information in this section applies to all
the different types of window objects.

Window objects represent interface elements. The object is connected to the
element through a handle stored in the object's HWindow data member.
HWindow is inherited from TWindow. When you construct a window object,
its interface element doesn't yet exist. You must create it in a separate step.
TWindow also has a constructor that you can use in a DLL to create a
window object for an interface element that already exists.

Chapter 6, Window objects 139

Setting creation
attributes

140

Several ObjectWindows 2.0 classes use TWindow or TFrame Window as, a
virtual base. These classes are TDialog, TMDIFrame, TTinyCaption,
TMDIChild, TDecoratedFrame, TLayout Window, TClipboardViewer,
TKeyboardModeTracker, and TFrameWindow. In C++, virtual base classes are
constructed first, which means that the derived class' constructor cannot
specify default arguments for the base class constructor. There are two
ways to handle this problem:

• Explicitly construct your immediate base class or classes and any virtual
base classes when you construct your derived class .

• Use the virtual base's default constructor. Both TWindow and
TFrame Window have a default constructor. They also each have an Init
function that lets you specify parameters for the base class; call this Init
function in the constructor of your derived class to set any parameters
you need in the base class.

Here are some examples of how to construct a window object using the
methods described above:

TWindow *myWindowl = new TWindow(this, "A window'S title");
TFrameWindow myWindow2(O, "My window's title", new TMDIClient, TRUE);

class TMyWin : public TFrameWindow
{

public:
TMyWin(TWindow *parent, char *title)

TFrameWindow(parent, title),
TWindow(parent, title) {}

TMyWin *myWin = new TMyWin (GetMainWindow (), "Child window") ;

class TNewWin : virtual public TWindow

public:
TNewWin(TWindow *parent, char *title);

TNewWin::TNewWin(TWindow *parent, char *title)
{

Init(parent, title, IDL_DEFAULT);
};

TNewWin *newWin = new TMyWin(GetMainWindow(), "Child window");

A typical Windows application has many different types of windows:
overlapped or pop-up, bordered, scrollable, and captioned, to name a few.
The different types are selected with style attributes. Style attributes, as well

OWL Programmers Guide

Table 6.1
Window creation

attributes

Overriding default
attributes

Overriding default
attributes in a window

constructor

Child-window
attributes

as a window's title, are set during a window object's initialization and are
used during the interface element's creation.

A window object's creation attributes, such as style and title, are stored in
the object's Attr member, a TWindowAttr structure. The following table
shows TWindowAttr's members.

Member

Style
ExStyle
X
y
W
H
Menu

Id

Param

AeeelTable

Type

DWORD
DWORD
int
int
int
int
TResld

int

char far *

TResld

Description

Style constant.
Extended style constant.
The horizontal screen coordinate of the window's upper-left corner.
The vertical screen coordinate of the window's upper-left corner.
The windows initial width in screen coordinates.
The windows initial height in screen coordinates.
10 of the windows menu resource. You should not try to directly
assign a menu identifier to Attr:Menu! Use the AssignMenu function
instead.
Child window 10 for communicating between a control and its
parent. Id should be unique for all child windows of the same
parent. If the control is defined it") a resource, its Id should be the
same as the resourCe 10. A window should never have both Menu
and Idset.
Used by TMDlClientto hold information about the MOl frame and
child windows.
10 of the windows accelerator table resource.

The table on page 142 lists the default creation attributes. You can override
those defaults in a derived window class' constructor by changing the
values in the Attr structure. For example:

TTestWindow::TTestWindow(TWindow* parent, const char* title)
TFrameWindow (parent , title),

}

TWindow(parent, title)

Attr.Style &= (WS_SYSMENU 1 WS_MAXIMIZEBOX);
Attr.Style 1= WS_MINIMIZEBOX;
Attr.X = 100;
Attr. Y = 100;
Attr. W = 415;
Attr.H = 355;

You can set the attributes of a child window in the child window's
constructor or in the code that creates the child window. When you chang~
the attributes in the parent window object's constructor, you need to use a
pointer to the child window object to get access to its Attr member.

Chapter 6, Window objects 141

Overriding child
window attributes in a

parent window
constructor

Table 6.2
Default window

attributes

A default value of 0
means to use the
Windows default

value.

Creating window
interface elements

142

TTestWindow: : TTestWindow(TWindow* parent, const char* title)
: TWindow(parent, title)

TWindow helpWindow(this, "Help System");

helpWindow.Attr.Stylel= WS_POPUPWINDOW WS_CAPTION;
helpWindow.Attr.X = 100;
helpWindow.Attr.Y = 100;
helpWindow.Attr.W = 300;
helpWindow.Attr.H = 300;
helpWindow.SetCursor(O, IDC_HAND);

The following table shows some default values you might want to override
for Attr members:

Attrmember

Style
ExStyle
X
y
W
H
Menu
Id
Param
AeeelTable

Default value

WS_CHILD I WS_ VISIBLE
o
o
o
o
o
o
o
o
o

Once you've constructed a window object, you need to tell Windows to
create the associated interface element. Do this by calling the object's Create
member function:

window.Create();

Create does the following things:

• Creates the interface element

• Sets HWindow to the handle of the interface element

• Sets members of Attr to the actual state of the interface element (Style,
ExStyle, X, Y, H, W)

• Calls Setup Window

Two C++ exceptions can be thrown while creating a window object's
interface element. You should therefore enclose calls to Create within a
try / catch block to handle any memory or resource problems your
application might encounter. Create throws a TXlnvalidWindow exception

OWL Programmers Guide

when the window can't be created. Setup Window throws
TXlnvalidChildWindow when a child window in the window can't be
created. Both exceptions are usually caused by insufficient memory or other
resources.

An application's main window is automatically created by
TApplication::lnitInstance. You don't need to call Create yourself to create the
main window. See page 113 for more information about main windows.

Layout windows

Layout
constraints

This section discusses layout windows. Layout windows are encapsulated
in the class TLayout Window, which is derived from TWindow. Along with
TFrameWindow, TLayoutWindow provides the basis for decorated frame
windows and their ability to arrange decorations in the frame area.

Layout windows are so named because they can layout child windows in
the layout window's client area. The children's locations are determined
relative to the layout window or another child window (known as a
sibling). The location of a child window depends on that window's layout
metrics, which consist of a number of rules that describe the window's X
and Y coordinates, its height, and its width. These rules are usually based
on a sibling window's coordinates and, ultimately, on the size and
arrangement of the layout window.

Layout metrics for a child window are contained in a class called
TLayoutMetrics. A layout metrics object consists of a number of layout
constraints. Each layout constraint describes a rule for finding a particular
dimension, such as the X coordinate or the width of the window. It takes
four layout constraints to fully describe a layout metrics object. Layout
constraints are contained in a structure named TLayoutConstraints, but you
usually use one of the TLayoutConstraints-derived classes, such as
TEdgeConstraint, TEdgeOr WidthConstraint, or TEdgeOr HeightConstrain t.

Layout constraints specify a relationship between an edge or dimension of
one window and an edge or dimension of a sibling window or the parent
layout window. This relationship can be quite flexible. For example, you
can set the width of a window to be a percentage of the width of the parent
window, so that whenever the parent is resized, the child window is
resized to take up the same relative window area. You can also set the left
edge of a window to be the same as the right edge of another child, so that
when the windows are moved around, they are tied together. You can even

. Chapter 6, Window objects 143

Defining constraints

144

constrain a window to occupy an absolute size and position in the client
area.

The three types of constraints most often used are TEdgeConstraint,
TEdgeOrWidthConstraint, and TEdgeOrHeightConstraint. These structures
constitute the full set of constraints used in the TLayoutMetrics class.
TEdgeOrWidthConstraint and TEdgeOrHeightConstraint are derived from
TEdgeConstraint. From the outside, these three objects look almost the same.
When this section discusses TEdgeConstraint, it is referring to all three
objects-TEdgeConstraint, TEdgeOr WidthConstraint, and
TEdgeOrHeightConstraint-unless the other two classes are explicitly
excluded from the statement.

The most basic way to define a constraining relationship (that is, setting up
a relationship between an edge or size of one window and an edge or size
of another window) is to use the Set function. The Set function is defined in
the TEdgeConstraint class and subsequently inherited by
TEdgeOrWidthConstraint and TEdgeOrHeightConstraint.

Here is the Set function declaration:

void Set (TEdge edge, TRelationship reI,
TWindow* otherWin, TEdge otherEdge,
int value = 0) i

where:

• edgespecifies which part of the window you are constraining. For this,
there is the enum TEdge, which has five possible values:

• ImLeft specifies the left edge of the window.

• ImTop specifies the top edge of the window.

• ImRight specifies the right edge of the window.

• ImBottom specifies the bottom edge of the window.

• ImCenter specifies the center of the window. The object that owns the
constraint, such as TLayoutMetrics, decides whether this means the
vertical center or the horizontal center.

You can also specify the window's width or height as a constraint, but
only with TEdgeOrWidthConstraint and TEdgeOrHeightConstraint. For this,
there is the enum TWidthHeight. TWidthHeight has two possible values:

• 1m Width specifies that the width of the window should be constrained.

• ImHeight specifies that the height of the window should be constrained.

OWL Programmers Guide

Chapter 6, Window objects

• rei specifies the relationship between the two edges:

rei

/mAsls
/mPercentOf

/mAbove

/mLeftOf

/mBe/ow

/mRightOf

/mSameAs
/mAbso/ute

Relationship

This dimension is constrained to its current value.
This dimension is constrained to a percentage of the constraining edge's
size. This is usually used with a constraining width or height.
This dimension is constrained to a certain distance above its constraining
edge.
This dimension is constrained to a certain distance to the left of its
constraining edge.
This dimension is constrained to a certain distance below its constraining
edge.
This dimension is constrained to a certain distance to the right of its
constraining edge.
This dimension is constrained to the same value as its constraining edge.
This dimension is constrained to an absolute coordinate or size.

• other Win specifies the window with which you are constraining your
child window. You must use the value ImParent when specifying the
parent window.

• otherEdge specifies the particular edge of other Win with which you are
constraining your child window. otherEdge can have any of the same
values that are allowed for edge.

• value means different things, depending on the value of rei:

rei

/mAs/s
/mPercentOf

/mAbove

/mLeftOf

/mBe/ow

/mRightOf

/mSameAs
/mAbsolute

Meaning of value

value has no meaning and should be set to O.
value indicates what percent of the constraining measure the constrained
measure should be.
value indicates how many units above the constraining edge the
constrained edge should be.
value indicates how many units to the left of the constraining edge the
constrained edge should be.
value indicates how many units below the constraining edge the
constrained edge should be.
value indicates how many units to the left of the constraining edge the
constrained edge should be.
value has no meaning and should be set to O.
value is the absolute measure for the constrained edge:

When edge is ImLeft, ImRight, or sometimes ImCenter, value is the X
coordinate for the edge.

When edge is 1m Top, ImBottom, or sometimes ImCenter, value is the
Y coordinate for the edge.

145

146

- reI Meaning of value

When edge is ImWidth or ImHeight, edge represents the size of the
constraint.

The owning object determines whether ImCenter represents an X or Y
coordinate. See page 144.

The meaning of value is also dependent on the value of Units. Units is a
TMeasurementUnits member of TLayoutConstraint. TMeasurementUnits is
an enum that describes the type of unit represented by value. Units can be
either ImPixels or ImLayoutUnits. ImPixels indicates that value is meant to
represent an absolute number of physical pixels. ImLayoutUnits indicates
that value is meant to represent a number of logical units. These layout
units are based on the size of the current font of the layout window.

TEdgeConstraint also contains a number of functions that you can use to set
up predefined relationships. These correspond closely to the relationships
you can specify in the Set function. In fact, these functions call Set to define
the constraining relationship. You can use these functions to set up a
majority of the constraint relationships you define.

The following four functions work in a similar way:

void LeftOf(TWindow* sibling, int margin = 0);
void RightOf(TWindow* sibling, int margin = 0);
void Above (TWindow* sibling, int margin = 0);
void Below(TWindow* sibling, int margin = 0);

Each of these functions place the child window in a certain relationship
with the constraining window sibling. The edges are predefined,with the
constrained edge being the opposite of the function name and the
constraining edge being the same as the function name.

For example, the LeftOf function places the child window to the left of
sibling. This means the constrained edge of the child window is ImRight and
the constraining edge of sibling is ImLeft.

You can set an edge of your child window to an absolute value with the
Absolute function:

void Absolute (TEdge edge, int value);

edge indicates which edge you want to constrain, and value has the same
value as when used in Set with the ImAbsolute relationship.

There are two other shortcut functions you can use:

void SameAs(TWindow* otherWin, TEdge edge);
void PercentOf(TWindow* otherWin, TEdge edge, int percent);

OWL Programmers Guide

Defining
constraining
relationships

These two use the same edge for the constrained window and the
constraining window; that is, if you specify 1m Left for edge, the left edge of
your child window is constrained to the left edge of other Win.

A single layout constraint is not enough to layout a window. For example,
specifying that one window must be 10 pixels below another window
doesn't tell you anything about the width or height of the window, the
location of the left or right borders, or the location of the bottom border. It
only tells you that one edge is located 10 pixels below another window.

A combination of layout constraints can define fully a window's location
(there are some exceptions, as discussed on page 148). The class
TLayoutMetrics uses four layout constraint structures-two TEdgeConstraint
objects named X and Y, a TEdgeOrWidthConstraintnamed Width, and a
TEdgeOrHeightConstraint named Height.

TLayoutMetricsis a fairly simple class. The constructor takes no parameters.
The only thing it does is to set up each layout constraint member. For each
layout constraint,

• The constraining window is zeroed out.

• The relationship is set to ImAsIs.

• Units are set to ImLayoutUnits.

• The value is set to o.
The only difference is to MyEdge, which indicates to which edge of the
window this constraint applies. X is set to ImLeft, Y is set to 1m Top, Width is
set to 1m Width, and Height is set to ImHeight.

Once you have constructed a TLayoutMetrics object, you need to set the
layout constraints for the window you want to layout. You can use the
functions described in the preceding section for setting each layout
constraint.

It is important to realize that the labels X, Y, Width, and Height are more
labels of convenience than strict rules on how the constraints should be
used. X can represent the X coordinate of the left edge, the right edge, or
the center. You can combine this with the Width constraint-which can be
one of ImCenter, 1m Right, or 1m Width-to completely define the window's
X-axis location and width. Using all of the edge constraints is easy, and is
useful in situations where tiling is performed.

The simplest way is to assign an X coordinate to X and a width to width.
But you could also set the edge for X to ImCenter and the edge for Width to
ImRight. So Width doesn't really represent a width, but the X-coordinate of

Chapter 6, Window objects 147

Indeterminate
constraints

Using layout
windows

148

the window's right edge. If you know the X-:coordinate of the right edge
and the center, it's easy to calculate the X-coordinate of the left edge.

To better understand how constraints work together to describe a window,
try building and running the example application LAYOUT in the directory
EXAMPLES\OWL \ OWLAPI \ LAYOUT. This application has a number of
child windows in a layout window. A dialog box you can access from the
menu lets yqu change the constraints o{each of the windows and then see
the results as the windows are laid out. Be careful, though. If you specify a
set of layout constraints that doesn't fully describe a window, the
application will probably crash, or, if diagnostics are on, a check will occur.
The reason for this is discussed in the next section.

You must be careful about how you specify your layout constraints. The
constraints available in the TLayoutMetrics class give you the ability to fully
describe a window. But they do not guarantee that the constraints you use
will fully describe a window. In cases where the constraints do not fully
describe a window, the most likely result is an application crash.

Once you've set up layout constraints, you're ready to create a layout
window to lay the children out in. Here's the constructor for
TLayout Window:

TLayoutWindow(TWindow* parent,
const char far* title = 0,
TModule* module = 0);

where:

• parent is the layout window's parent window.

• title is the layout window's title. This parameter defaults to a null string.

• module is passed to the TWindow base class constructor as the TModule
parameter for that constructor. This parameter defaults to o.

After the layout window is constructed and displayed, there are a number
of functions you can call:

• The Layout function returns void and takes no parameters. This function
tells the layout window to look at all its child windows and lay them out
again. You can call this to force the window to recalculate the boundaries
and locations of each child window. You usually want to call Layout after
you've moved a child window, resized the layout window, or anything
else that could affect the constraints of the child windows.

Note that TLayout Window overrides the TWindow version of EvSize to call
Layout automatically whenever a WM_SIZE event is caught. If you

OWL Programmers Guide

override this function yourself, you should be sure either to call the base
class version of the function or call Layout in your derived version.

• SetChildLayoutMetrics returns void and takes a TWindow & and a
TLayoutMetrics & as parameters. Use this function to associate a set of
constraints contained in a TLayoutMetrics object with a child window.
Here is an example of creating a TLayoutMetrics object and associating it
with a child window:

TMyLayoutWindow: : TMyLayoutwindow(TWindow* parent, char far* title)
: TLayoutWindow(parent, title)

TWindow MyChildWindow(this) i

TLayoutMetrics layoutMetrics;

layoutMetrics.X.Absolute(lmLeft, 10);
layoutMetrics.Y.Absolute(lmTop, 10) i

layoutMetrics.Width.PercentOf(lmParent, lmWidth, 60);
layoutMetrics.Height.PercentOf(lmParent, lmHeight, 60);

SetChildLayoutMetrics(MyChildWindow, layoutMetrics);

Notice that the child window doesn't need any special functionality to be
associated with a layout metrics object. The association is handled
entirely by the layout window itself. The child window doesn't have to
know anything about the relationship.

• GetChildLayoutMetrics returns BOOL and takes a TWindow & and a
TLayoutMetrics & as parameters. This looks up the child window that is
represented by the TWindow &. It then places the current layout metrics
associated with that child window into the TLayoutMetrics object passed
in. If GetChildLayoutMetrics doesn't find a child window that equals the
window object passed in, it returns FALSE.

• RemoveChildLayoutMetrics returns BOOL and takes a TWindow & for a
parameter. This looks up the child window that represented by the
TWindow &. It then removes the child window and its associated layout
metrics from the layout window's child list. If RemoveChildLayoutMetrics
doesn't find a child window that equals the window object passed in, it
returns FALSE.

You must provide layout metrics for all child windows of a layout window.
The layout window assumes that all of its children have an associated
layout metrics object. Removing a child window from a layout window, or
deleting the child window object automatically removes the associated
layout metrics object.

Chapter 6, Window objects 149

Frame windows

Constructing
frame window
objects

Constructing a new
frame window

150

Frame windows (objects of class TFrameWindow) are specialized windows
that support a client window. Frame windows are the basis for MDI and SDI
frame windows, MDI child windows, and, along with TLayout Window,
decorated frame windows.

Frame windows have an important role in ObjectWindows development:
frame windows manage application-wide tasks like menus and tool bars.
Client windows within the frame can be specialized to perform a single
task. Changes you make to the frame window (for example, adding tool
bars and status bars) don't affect the client windows.

You can construct a frame window object using one of the two
TFrame Window constructors. These two constructors let you create new
frame window objects along with new interface elements, and let you
connect a new frame window object to an existing interface element.

The first TFrame Window constructor is used to create an entirely new frame
window object:

TFrameWindow(TWindow *parent,

where:

const char far *title = 0,
TWindow *clientWnd = 0,
BOOL shrinkToClient = FALSE,
TModule *module = O)i

• The first parameter is the window's parent window object. Use zero if the
window you're creating is the main window (which doesn't have a
parent window object). Otherwise, use a pointer to the parent window
object. This is the only parameter that you must provide.

• The second parameter is the window title. This is the string that appears
in the caption bar of the window. If you don't specify anything for the
second parameter, no title is displayed in the title bar.

• The third parameter lets you specify a client window for the frame
window. If you don't specify anything for the third parameter, by default
the constructor gets a zero, meaning that there is no client window.
Otherwise, pass a pointer to the client window object.

• The fourth parameter lets you specify whether the frame window should
shrink to fit the client window. If you don't specify anything, by default
the constructor gets FALSE, meaning that it should not fit the frame to
the client window.

OWL Programmers Guide

Constructing a
frame window alias

• The fifth parameter is passed to the base class constructor as the TModule
parameter for that constructor. This parameter defaults to O.

Here are some examples of using this constructor:

void
TMyApplication::lnitMainWindow()
{

II default is for no client window
SetMainwindow(new TFrameWindow(O, "Main Window"));

void
TMyApplication::lnitMainWindow()
{

II client window is TMyClientWindow
SetMainWindow(new TFrameWindow(O, "Main window with client",

new TMyClientWindow, TRUE));

The second TFrame Window constructor is used to connect an existing
interface element to a new TFrame Window object. This object is known as an
alias for the existing window:

TFrameWindow(HWND hWnd, TModule *module);

where:

• The first parameter is the window handle of the existing interface
element. This is the window the TFrameWindow object controls.

• The second parameter is passed to the base class constructor as the
TModule parameter for that constructor. This parameter defaults to o.

The following example shows how to construct a TFrame Window for an
existing interface element and use that window as the main window:

void
TMyApplication: : AddWindow (HWND hWnd)
{

TFrameWindow* frame = new TFrameWindow(hWnd);
TFrameWindow* tmp = SetMainWindow(frame) i

ShowWindow(GetMainWindow()->HWindow, SW_SHOW)i
tmp->ShutDownWindow() i

When you use the second constructor for TFrameWindow, it sets the flag
wfAlias. You can tell whether a window element was constructed from its
window object or whether it's actually an alias by calling the function
IsFlagSet with the wfAlias flag. For example, suppose you don't know

Chapter 6, Window objects 151

Modifying frame
windows

whether the function AddWindow in the last example has executed yet. If
your main window is not an alias, AddWindow hasn't executed. If your main
window is an alias, Add Window has executed:

void
TMyApplication::CheckAddExecute()
{

if(GetMainWindow()->IsFlagSet(wfAlias))
II MainWindow is an alias; AddWindow has executed

else
II MainWindow is not an alias; AddWindow has not executed

See page 122 for more information on windows object attributes.

Many frame window attributes can be set after the object has been
constructed. You can change and query object attributes using the functions
discussed on page 122. You can also use the TWindow functions discussed
on page 123. TFrame Window provides an additional set of functions for
modifying frame windows:

• AssignMenu is typically used to set up a window's menu before the
interface element has been created, such as in the InitMain Window
function or the window object's constructor or Setup Window function.

• SetMenu sets the window's menu handle to the HMENU parameter
passed in.

• SetMenuDescr sets the window's menu description to the TMenuDescr
parameter passed in.

• GetMenuDescr returns the current menu description.

• MergeMenu merges the current menu description with the TMenuDescr
parameter passed in.

• RestoreMenu restores the window's menu from Attr.Menu.
• SetIcon sets the icon in the module passed as the first parameter to the

icon passed as a resource in the second parameter.

For more specific information on these functions, refer to the Object Windows
Reference Guide.

Decorated frame windows

152

This section discusses decorated frame windows. Decorated frame
windows are encapsulated in TDecoratedFrame, which is derived from

OWL Programmers Guide

Constructing
decorated frame
window objects

TFrame Window and TLayout Window. Decorated frame windows provide all
the functionality of frame windows and layout, but in addition provide:

• Support for adding controls (known as decorations) to the frame of the
window

• Automatic adjustment of the child windows to accommodate the
placement of decorations

TDecoratedFrame has only one constructor. Except for the fourth parameter,
this constructor looks nearly identical to the first TFrame Window
constructor described on page 150.

TDecoratedFrame(TWindow *parent,
const char far *title,
TWindow *clientWnd,
BOOL trackMenuSelection = FALSE,
TModule *module = 0);

where:

• The first parameter is the window's parent window object. Use zero if the
window you're creating is the main window (which doesn't have a
parent window object). Otherwise use a pointer to the parent window
object. This is the only parameter that you must provide.

• The second parameter is the window title. This string appears in the
caption bar of the window. If you don't specify anything for the second
parameter, no title is displayed in the title bar.

• The third parameter lets you specify a pointer to a client window for the
frame window. If you don't specify anything for the third parameter, by
default the constructor gets a zero, meaning that there is no client
window.

• The fourth parameter lets you specify whether menu commands should
be tracked. When tracking is on, the window tries to pass a string to the
window's status bar. The string passed has the same resource name as the
currently selected menu choice. You should not turn on menu selection
tracking unless you have a status bar in your window. If you don't
specify anything, by default the constructor gets FALSE, meaning that it
should not track menu commands.

• The fifth parameter is passed to the base class constructor as the TModule
parameter for that constructor. This parameter defaults to o.

Chapter 6, Window objects 153

Adding
decorations to
decorated frame
windows

MOl windows

MOl applications

154

You can use the methods for modifying windows described on pages 152,
122, and 123 to modify the basic attributes of a decorated frame window.
TDecoratedFrame provides the extra ability to add decorations using the
Insert member function.

To use the Insert member function, you must first construct a control to be
inserted. Valid controls include control bars (TControlBar), status bars
(TStatusBar), button gadgets (TButtonGadget), and any other control type
based on TWindow.

Once you have constructed the control, use the Insert function to insert the
control into the decorated frame window. The Insert function takes two
parameters: a reference to the control and a location specifier.
TDecoratedFrame provides the enum TLocation. TLocation has four possible
values: Top, Bottom, Left, and Right.

Suppose you want to construct a status bar to add to the bottom of your
decorated frame window. The code would look something like this:

TStatusBar* sb = new TStatusBar(O, TGadget: :Recessed,
TStatusBar: :CapsLock I
TStatusBar: :NumLock I
TStatusBar: :Overtype)i

TDecoratedFrame* frame = new TDecoratedFrame(O,
"Decorated Frame",
0,
TRUE) i

frame->Insert(*sb, TDecoratedFrame::Bottom) i

Multiple-document interface, or MDI, windows are part of the MDI
interface for managing multiple windows or views associated with a single
application. A document is usually a file-specific task, such as editing a text
file or wor~ing on a spreadsheet file.

Certain components are present in every MDI application. Most evident is
the main window, called the MDI frame window. Within the frame window's
client area is the MDI client window, which holds child windows called MDI
child windows. When using the Doc/View classes, the application can put
views into MDI windows. See Chapter 9 for more information on the
Doc/View classes.

OWL Programmer's Guide

MOl Window menu

MOl child windows

MOlin
ObjectWindows

Building MOl
applications

An MDI application usually has a menu item labeled Window that controls
the MDI child windows. The Window menu usually has items like Tile,
Cascade, Arrange, and Close All. The name of each open MDI child
window is automatically added to the end of this menu, and the currently
selected window is checked.

MDI child windows have some characteristics of an overlapped window.
An MDI child window can be maximized to the full size of its MDI client
window, or minimized to an icon that sits inside the client window. MDI
child windows never appear outside their client or frame windows.
Although MDI child windows can't have menus attached to them, they can
have a TMenuDescr that the frame window uses as a menu when that child
is active. The caption of each MDI child window is often the name of the
file associated with that window; this behavior is optional and under your
control.

ObjectWindows defines classes for each type of MDI window:

.TMDIFrame

• TMDIClient

• TMDIChild

In ObjectWindows, the MDI frame window owns the MDI client window,
and the MDI client window owns each of the MDI child windows.

TMDIFrame's member functions manage the frame window and its menu.
ObjectWindows first passes commands to the focus window and then to its
parent, so the client window can process the frame window's menu
commands. Because TMDIFrame doesn't have much specialized behavior,
you'll rarely have to derive your own MDI frame window class; instead,
just use an instance of TMDIFrame. Since TMDIChild is derived from
TFrameWindow, it can be a frame window with a client window. Therefore,
you can create specialized windows that serve as client windows in a
TMDIChild, or you can create specialized TMDIChild windows. The
preferred style is to use specialized clients with the standard TMDIChild
class. The choice is yours, and depends on your particular application.

Follow these steps to building an MDI application in ObjectWindows:

1. Create an MDI frame window

2. Add behavior to an MDI client window

3. Create MDI child windows

Chapter 6, Window objects 155

Creating an MDI
frame window

Adding behavior to
an MDI client
window

156

ObjectWindows' TMDIXxx classes handle the MOl-specific behavior for
you, so you can concentrate on the application-specific behavior you want.

The MOl frame window is always an application's main window, so you
construct it in the application object's InitMain Window member function.
MOl frame windows differ from other frame windows in the following
ways:

• An MOl frame is always a main window, so it never has a parent.
Therefore, TMDIFrame's constructor doesn't take a pointer to a parent
window object as a parameter .

• An MOl frame must have a menu, so TMDIFrame's constructor takes a
menu resource identifier as a parameter. With non-MDI main frame
windows, you'd call AssignMenu to set the windows menu. TMDIFrame's
constructor makes the call for you. Part of what TMDIFrame::AssignMenu
does is search the menu for the child-window menu, by searching for
certain menu command IDs. If it finds a Window menu, new child
window titles are automatically added to the bottom of the menu.

A typical InitMain Window for an MOl application would look like this:

void
TMDIApp::lnitMainWindow()
{

SetMainWindow (new TMDIFrame ("MDI App" I ID_MENU I *new TMyMDIClient)) ;

The example creates an MOl frame window titled "MOl App" with a menu
from the 10_MENU resource. The 10_MENU menu should have a child
window menu. The MOl client window is created from the TMyMDIClient
class.

Since you usually use an instance of TMDIFrame as your MOl frame
window, you need to add application-wide behavior to your MOl client
window class. The frame window owns menus and tool bars but passes the
commands they generate to the client window and to the application. A
common message-response function would respond to the File I Open
menu command to open another MOl child window.

Manipulating child windows
TMDIClient has several member functions for manipulating MOl child
windows. Commands from an MOl application's child-window menu
control the child windows. TMDIClient automatically responds to those
commands and performs the appropriate action:

OWL Programmers Guide

Table 6.3
Standard MOl child

window menu
behavior

Creating MDI child
windows

Action

Cascade
Tile
Tile Horizontally
Arrange Icons
Close All

Menu command 10

CM_CASCAOECHILOREN
CM_ TILECHILOREN
CM_ TILECHILORENHORIZ
CM_ARRANGEICONS
CM_CLOSECHILOREN

TMDIClient member function

CmCascadeChildren
Cm TileChildren
Cm TileChildrenHoriz
CmArrange/cons
CmC/oseChildren

The header file owl \mdi.h includes owl \mdi.rh for your applications.
owl \mdi.rh is a resource header file that defines the menu command IDs
listed above. When you design your menus in your resource script, be sure
to include owl\mdi.rh to get those IDs.

MDI child windows shouldn't respond to any of the child-window menu
commands. The MDI client window takes care of them.

There are two ways to create MDI child windows: automatically in
TMDIClient::lnitChild or manually elsewhere.

Automatic child window creation
TMDIClient defines the CmCreateChild message response function to
respond to the CM_CREATECHILD message. CmCreateChild is commonly
used to respond to an MDI application's File I New menu command.
CmCreateChild calls CreateChild, which calls InitChild to construct an MDI
child window object, and finally calls that object's Create member function
to create the MDI child window interface element.

If your MDI application uses CM_ CREATECHILD as the command ID to
create new MDI child windows, then you should override InitChild in your
MDI client window class to construct MDI child window objects whenever
the user chooses that command:

TMDIChild*
TMyMDIClient::lnitChild()
{

return new TMDIChild (*this, "MDI child window") i

Since TMDIChild's constructor takes a reference to its parent window object,
and not a pointer, you need to dereference the this pointer.

Chapter 6, Window objects 157

158

Manual child window creation
You don't have to construct MDI child window objects in InitChild. If you
construct them elsewhere, however, you must create their interface element
yourself:

void
TMyMDIClient: :CmFileOpen()
{

new TMDIChild (*this I "") ->Create () ;

OWL Programmer's Guide

See the
ObjectWindows

Reference Guide for
a description of

TMenuDescr.

c H A p T E R 7

Menu objects

For many applications, all you need is a simple menu that you assign to the
main window during its initialization. Other applications might require
more complicated menu handling. ObjectWindows menu objects (the
TMenu, TSystemMenu, and TPopupMenu classes, and the TMenuDescr
structure) give you an easy way to create and manipulate menus.

This chapter discusses the following tasks you can perform with menu
objects:

• Constructing menu objects

• Modifying menu objects

• Querying menu objects

• Using system menu objects

• Using pop-up menu objects

Constructing menu objects

Table 7.1
TMenu constructors

for creating menu
objects

Chapter 7, Menu objects

TMenu has several constructors to create menu objects from existing
windows or from menu resources. After the menu is created, you can add,
delete, or modify it using TMenu member functions. The table below lists
the constructors you can use to create menu objects.

TMenu constructor

TMenu()
TMenu(HWND)
TMenu(HMENU)
TMenu(LPCVOJD*)
TMenu(HINS TA NCE, TResID)

Description

Creates an empty menu.
Creates a menu object representing the window's current menu.
Creates a menu object from an already-loaded menu.
Creates a menu object from a menu template in memory.
Creates a menu object from a resource.

159

Modifying menu objects

After you create a menu object, you can use TMenu member functions to
modify it. The table below lists the member functions you can call to
modify menu objects.

Table 7.2: TMenu member functions for modifying menu objects

TMenu member function

Adding menu items:
AppendMenu(UlNT, UINT, canst char*)
AppendMenu(UlNT, UlNT, canst TBitmap&)

InsertMenu(UlNT, UINT, UlNT, canst char*)

InsertMenu(UlNT, UINT, UINT, canst TBitmap&)

Modifying menu items:
ModifyMenu(UINT, UINT, UINT, const char*)
ModifyMenu(UlNT, UINT, UINT, const TBitmap&)

Enabling and disabling menu items:
EnableMenultem(UlNT, UINT)

Deleting and removing menu items:
DeleteMenu(UlNT, UINT)

RemoveMenu(UINT, UlNT)

Checking menu items:
CheckMenultem(UINT, UINT)
SetMenultemBitmaps(UINT, UINT, canst TBitmap*, canst TBitmap*)

Displaying pop-up menus:
TrackPopupMenu(UlNT, int, int, int, HWND, TRect*)

TrackPopupMenu(UINT, TPoint&, int, HWND, TRect*)

Description

Adds a menu item to the end of the menu.
Adds a bitmap as a menu item at the end of the
menu.
Adds a menu item to the menu after the menu
item of the given 10.
Adds a bitmap as a menu item after the menu
item of the given 10.

Changes the given menu item.
Changes th~ given menu item to a bitmap.

Enables or disables the given menu item.

Removes the menu item from the menu it is
part of. Deletes it if its a pop-up menu.
Removes the menu item from the menu but not
from memory.

Check or unchecks the menu item.
Specifies the bitmap to be displayed when the
given menu item is checked and unchecked.

Displays the menu as a pop-up menu at the
given location
on the specified window.

After modifying the menu object, you should call the window object's
DrawMenuBar member function to update the menu bar with the changes
you've made.

160 OWL Programmers Guide

Querying menu objects

Table 7.3
TMenu member

functions for querying
menu objects

TMenu has a number of member functions and member operators you can
call to find out information about the menu object and its menu. You might
need to call one of the query member functions before you call one of the
modify member functions. For example, you need to call
GetMenuCheckmarkDimensions before calling SetMenuItemBitmaps.

The table below lists the menu-object query member functions:

TMenu member function

Querying the menu object as a whole:
operator UINT() and
operator HMENU()

IsOK()

GetMenultemCount()

GetMenuCheckMarkDimensions(TSize&)

Querying items in the menu:
GetMenultemlD(int)

GetMenuState(UlNT, UINT)

GetMenuString(UINT, char*, int, UINT)

GetSubMenu(int)

Description

Returns the menu's handle.

Checks if the menu is OK (has a valid handle).

Returns the number of items in the menu.

Gets the size of the bitmap used to display the
check mark on checked menu items.

Returns the 10 of the menu item at the specified
position.

Returns the state flags of the specified menu
item.

Gets the text of the given menu item.

Returns the handle of the menu at the given
position.

Using system menu objects

Chapter 7, Menu objects

ObjectWindows' TSystemMenu class lets you modify a window's system
menu. TSystemMenu is derived from TMenu and differs from it only in its
constructor, which takes a window handle and a boolean flag. If the flag is
TRUE, the current system menu is deleted and a menu object representing
the unmodified menu that's put in its place is created. If the flag is FALSE,
the menu object represents the current system menu.

You can use all the member functions inherited from TMenu to manipulate
the system menu.

161

Using pop-up menu objects

You can use TPopupMenu to create a pop-up menu that you can add to an
existing menu structure or use in a window. Like TSystemMenu,
TPopupMenu is derived from TMenu and differs from it only in its
constructor, which creates an empty pop-up menu. You can then add
whatever menu items you like.

Once you've created a pop-up menu, you can use TrackPopupMenu to
display it as a "free-floating" menu.

Adding menu resources to frame windows

162

It was fairly common practice in ObjectWindows 1.0 to assign a menu
resource directly to the Attr.Menu member of a frame window; for example,

Attr.Menu = MENU_li

ObjectWindows 2.0 doesn't permit this type of assignment; you should
instead use the AssignMenu function. AssignMenu is defined in the
TFrame Window class, and is available in any class derived from
TFrame Window, such as TMDIFrame, TMDIChild, TDecoratedFrame, and
TFloatingFrame.

The AssignA1enu function takes a TResld for its only parameter and returns
TRUE if the assignment operation was successful. AssignMenu is declared
virtual, so you can override it in your own TFrame Window-derived classes.
Here's what the previous example looks like when the AssignMenu function
is used:

AssignMenu(MENU_l)i

OWL Programmer's Guide

c H A p T E R 8

Dialog box objects

Dialog box objects are interface objects that encapsulate the behavior of
dialog boxes. The TDialog class supports the initialization, creation, and
execution of all types of dialog boxes. As with window objects derived
from TWindow, you can derive specialized dialog box objects from TDialog
for each dialog box your application uses.

ObjectWindows also supplies classes that encapsulate Windows' common
dialog boxes. Windows provides common dialog boxes as a way tq let users
choose file names, fonts, colors, and so on.

This chapter covers the following topics:

• Using dialog box objects

• Using a dialog box as your main window

• Manipulating controls in dialog boxes

• Associating interface objects with controls

• Using common dialog boxes

Using dialog box objects

Using dialog box objects is a lot like using window objects. For simple
dialog boxes that appear for only a short period of time, you can control the
dialog box in one member function of the parent window. The dialog box
object can be constructed, executed, and destroyed in the member function.

U sing a dialog box object requires the following steps:

• Constructing the object

• Executing the dialog box

• Closing the dialog box

• Destroying the object

Chapter 8, Dialog box objects 163

Constructing a
dialog box object

Calling the
constructor

Executing a
dialog box

Modal dialog boxes

164

Dialog boxes are designed and created using a dialog box resource. You can
use Borland's Resource Workshop or any other resource editor to create
dialog box resources and bind them to your application. The dialog box
resource describes the appearance and location of controls, such as buttons,
list boxes, group boxes, and so on. The dialog box resource isn't responsible
for the behavior of the dialog box; that's the responsibility of the
application.

Each dialog box resource has an identifier that enables a dialog box object
to specify which dialog box resource it uses. The identifier can be either a
string or an integer. You pass this identifier to the dialog box constructor to
specify which resource the object should use.

To construct a dialog box object, create it using a pointer to a parent
window object and a resource identifier (the resource identifier can be
either string or integer based) as the parameters to the constructor:

TDialog dialogl(this, "DIALOG_i");

TDialog dialog2(this, IDD_MY_DIALOG);

The parent window is almost always this, since you normally construct '
dialog box objects in a member function of a window object. If you don't
construct a dialog box object in a window object, use the application's main
window as its parent, because that is the only window object always
present in an ObjectWindows application:

TDialog mySpecialDialog(GetApplication()->GetMainWindow(), IDD_DLG);

The exception to this is when you specify a dialog box object as a client
window in a TFrame Window or TFrame Window-based constructor. The
constructor passes the dialog box object to the TFrame Window::lnit function,
which automatically sets the dialog box's parent. See page 169.

Executing a dialog box is analogous to creating and displaying a window.
However, because dialog boxes are usually displayed for a shorter period
of time, some of the steps can be abbreviated. This depends on whether the
dialog box is a modal or modelessdialog box.

Most dialog boxes are modal. While a modal dialog box is displayed, the
user can't select or use its parent window. The user must use the dialog box
and close it before proceedirig. A modal dialog box, in effect, freezes the
operation of the rest of the application.

OWL Programmer's Guide

Modeless dialog
boxes

Use TDialog::Execute to execute a dialog box modally. When the user closes
the dialog box, Execute returns an integer value indicating how the user
closed the dialog box. The return value is the identifier of the control the
user pressed, such as IDOK for the OK button or IDCANCEL for a Cancel
button. If the dialog box object was dynamically allocated, be sure to delete
the object.

The following example assumes you have a dialog resource
IDD_MY_DIALOG, and that the dialog box has two buttons, an OK button
that sends the identifier value IDOK and a Cancel button that sends some
other value:

if (TMyDialog(this, IDD_MY_DIALOG) .Execute() == IDOK)
II User pressed OK

else
II User pressed Cancel

Only the object is deleted when it goes out of scope, not the dialog box
resource. You can create and delete any number of dialog boxes using only
a single dialog-box resource.

Unlike a modal dialog box, you can continue to use other windows in your
application while a modeless dialog box is open. You can use a modeless
dialog box to let the user continue to perform actions, find information, and
so on, while still using the dialog box.

Use TDialog::Create to execute a dialog box modelessly. When using Create
to execute a dialog box, you must explicitly make the dialog box visible by
either specifying the WS_ VISIBLE flag for the resource style or using the
Show Window function to force the dialog box to display itself.

For example, suppose your resource script file looks something like this:

DIALOG_1 DIALOG 18, 18, 142, 44
STYLE DS_MODALFRAME I WS_POPUP I WS_CAPTION WS_SYSMENU
CAPTION "Dialog 1"
{

PUSHBUTTON "Button", IDOK, 58, 23, 25, 16

Now suppose that you try to create this dialog box modelessly using the
following code:

TDialog dialog1(this, "DIALOG_1");
dialog1.Create() ~

Chapter 8, Dialog box objects 165

166

This dialog box wouldn't appear on your screen. To make it appear, you'd
have to do one of two things:

• Change the style of the dialog box to have the WS_ VISIBLE flag set:

STYLE DS_MODALFRAME I WS_POPUP I WS_CAPTION I WS_SYSMENU I WS_VISIBLE

• Add the Show Window function after the call to Create:

TDialog dialog1(this, "DIALOG_i");
dialogi.Create() ;
dialogi.ShowWindow(SW_SHOW) i

The TDialog::CmOk and TDialog::CmCancel functions close the dialog box
and delete the object. These functions handle the IDOK and IDCANCEL
messages, usually sent by the OK and Cancel buttons, in the TDialog
response table. The CmOk function calls Close Window to close down the
modeless dialog box. The CmCancel function calls Destroy with the
IDCANCEL parameter. Both of these functions close the dialog box. If you
override either CmOk or CmCancel, you need to either call the base class
CmOk or CmCancel function in your overriding function or perform the
closing and cleanup operations yourself.

Alternately, you can create your dialog box object in the dialog box's
parent's constructor. This way, you create the dialog box object just once.
Furthermore, any changes made to the dialog box state, such as its location,
active focus, and so on, are kept the next time you open the dialog box.

Like any other child window, the dialog box object is automatically deleted
when its parent is destroyed. This way, if you close down the dialog box's
parent, the dialog box object is automatically destroyed; you don't need to
explicitly delete the object.

In the following code fragment, a parent window constructor constructs a
dialog box object, and another function actually creates and displays the
dialog box modelessly:

class TParentWindow : public TFrameWindow
{

} ;

public:
TParentWindow(TWindow* parent, const char* title);
void CmDOIT();

protected:
TDialog *dialog;

void

OWL Programmer's Guide

Using autocreation
with dialog boxes

TParentWindow::CmDO_IT()
{

dialog = new TDialog(this, IDD_EMPLOYEE_INFO);
dialog->Create() ;

You can use autocreation to let ObjectWindows do the work of explicitly
creating your child dialog objects for you. By creating the objects in the
constructor of a TWindow-derived class and specifying the this pointer as
the parent, the TWindow-derived class builds a list of child windows. This
also happens when the dialog box object is a data member of the parent
class. Then, when the TWindow-derived class is created, it attempts to
create all the children in its list that have the wfAutoCreate flag turned on.
This results in the children appearing on the screen at the same time as the
parent window.

Turn on the wfAutoCreate flag using the function EnableAutoCreate. Turn off
the wfAutoCreate flag using the function DisableAutoCreate.

TWindow uses Create for autocreating its children. Thus any dialog boxes
created with autocreation are modeless dialog boxes.

Just as with regular modeless dialog boxes, if you're using autocreation to
turn your dialog boxes on, you must make your dialog box visible. But
with autocreation you must tum the WS_ VISIBLE flag on in the resource
file. You can't use the Show Window function to enable autocreation.

The following code shows how to enable autocreation for a dialog box:

class TMyFrame : public TFrameWindow
{

public:
TDialog *dialog;
TMyFrame(TWindow *, const char far *);

}i

TMyFrame: :TMyFrame(TWindow *parent, const char far *title)
{

Init(parent, TRUE);
dialog = new TDialog(this, "MYDIALOG");

II For the next line to work properly, the WS_VISIBLE attribute
II must be specified for the MYDIALOG resource.

dialog->EnableAutoCreate();

When you execute this application, the dialog box is automatically created
for you. See page 127 for more information on autocreation.

Chapter 8, Dialog box objects 167

Managing dialog
boxes

Handling errors
executing dialog
boxes

Closing the dialog
box

168

Dialog boxes differ from other child windows, such as windows and
controls, in that they are often displayed and destroyed many times during
the life of their parent windows but are rarely displayed or destroyed at the
same time as their parents. Usually, an application displays a dialog box in
response to a menu selection, mouse click, error condition, or other event.

Therefore, you must be sure to not repeatedly construct new dialog box
objects without deleting previous ones. Remember that when you construct
a dialog box object in its parent window' object's constructor or include the
dialog box as a data member of the parent window object, the dialog box
object is inserted into the child-window list of the parent and deleted when
the parent is destroyed.

You can retrieve data from a dialog box at any time, as long as the dialog
box object still exists. You'll do this most often in the dialog box object's
CmOK member function, which is called when the user presses the dialog
box's OK button.

Like window objects, a dialog box object's Create and Execute member
functions can throw the C++ exception TXWindow. This exception is
usually thrown when the dialog box can't be created, usually because the
specified resource doesn't exist or because of insufficient memory.

You can rely on the global exception handler that ObjectWindows installs
when your application starts to catch TXWindow, or you can install your
own exception handler. To install your own exception handler, place a
try I catch block around the code you want to protect. For example, if you
want to know if your function DoStuff produces an error, the code would
look something like this:

try {
DoStuff() ;

catch(TWindow::TXWindow& e)
II You cando whatever exception handling you like here.
MessageBox(O, e.why() .c_str(),

"Error", MB_OK);

Every dialog box must have a way for the user to close it. For modal dialog
boxes, this is usually an OK or Cancel button, or both. TDialog has the event
response functions CmOk and CmCancel to respond to those buttons.

OWL Programmers Guide

CmOk calls Close Window, which calls Can Close to see if it's OK to close the
dialog box. If Can Close returns TRUE, Close Window transfers the dialog's
data and closes the dialog box by calling Close Window.

CmCancel calls Destroy, which closes the dialog box. No checking of
CanClose is performed, and no transfer is done.

To verify the input in a dialog box, you can override the dialog box object's
CanClose member function. Also see the description of the TlnputValidator
classes in Chapter 14. If you override Can Close, be sure to call the parent
TWindow::CanClose function, which handles calling CanClose for child
windows.

Using a dialog box as your main window

To use a dialog box as your main window, it's best to make the main
window a frame window that has your dialog box as a client window. To
do this, derive an application class from T Application. Aside from a
constructor, the only function necessary for this purpose is InitMainWindow.
In the InitMain Window function, construct a frame window object,
specifying a dialog box as the client window. In the five-parameter
TFrame Window constructor, pass a pointer to the client window as the third
parameter. Your code should look something like this:

Chapter 8, Dialog box objects

#include <owl\applicat.h>
#include <owl\framewin.h>
#include <owl\dialog.h>

class TMyApp : public TApplication
{

public:
TMyApp(char *title) : TApplication(title) {}
void InitMainWindow() i

}i

void
TMyApp: : InitMainWindow()
{

SetMainWindow(new TFrameWindow(O, "My App",

int
OwlMain(int argc, char* argv[])
{

return TMyApp("My App") .Run() i

new TDialog(O, "MYDIALOG"), TRUE)) i

169

The TFrame Window constructor turns autocreation on for the dialog box
object that you pass as a client, regardless of the state you pass it in. For
more information on autocreation for dialog boxes, see page 167.

You also must make sure the dialog box resource has certain attributes:

• Destroying your dialog object does not destroy the frame. You must
destroy the frame explicitly.

• You can no longer dynamically add resources directly to the dialog,
because it isn't the main window. You must add the resources to the
frame window. For example, suppose you added an icon to your dialog
using the SetIcon function. You now must use the SetIcon function for
your frame window.

• You can't specify the caption for your dialog in the resource itself
anymore. Instead, you must set the caption through the frame window.

• You must set the style of the dialog box as follows:
• Visible (WS_ VISIBLE)
• Child window (WS_ CHILD)
• No Minimize and Maximize buttons, drag bars, system menus, or any

of the other standard frame window attributes

Manipulating controls in dialog boxes

Chapter 10 describes
using controls in

more detail, and also
discusses how to use

controls in windows
instead of dialog

boxes.

Communicating
with controls

170

Almost all dialog boxes have (as child windows) controls such as edit
controls, list boxes, buttons, and so on. Those controls are created from the
dialog box's resource.

There is a two-way communication between a dialog box object and its
controls. In one direction, the dialog box needs to manipulate its controls;
for example, to fill a list box. In the other direction, it needs to process and
respond to the messages the controls generate; for example, when the user
selects an item from a list box. To learn about responding to controls, see
Chapter 4.

Windows defines a set of control messages that are sent from the
application back to Windows. For example, list-box messages include
LB_GETTEXT, LB_GETCURSEL, and LB_ADDSTRING. Control messages

OWL Programmers Guide

Its rarely necessary
to communicate with

controls like this;
ObjectWindows
control classes

provide member
functions to perform

the same actions.
This section

discusses the
mechanisms used to

perform this
communication only

to enhance your
understanding of the

process.

specify the specific control and pass along information in wParam and
IParam arguments. Each control in a dialog resource has an identifier, which
you use to specify the control to receive the message. To send a control
message, you can call SendDlgItemMessage. For example, the following
member function adds the specified string to the list box using the
LB _ADDSTRING message:

void
TTestDialog: :FillListBox(const char far* string)
{

SendDlgltemMessage(ID_LISTBOX, LB_ADDSTRING, 0, (LPARAM) string) i

Although TListBox::AddString does basically the same thing as this function
and is easier to understand, this shows how you can use
SendDlgItemMessage to force actions.

Associating interface objects with controls

Control objects

Because a dialog box is created from its resource, you don't use c++ code
to specify what it looks like or the controls in it. Although this lets you
create the dialog box visually, it makes it harder to manipulate the controls
from your application. ObjectWindows lets you "connect" or associate
controls in a dialog box with interface objects. Associating controls with
control objects lets you do two things:

• Provide specialized responses to messages. For example, you might want
an edit control that allows only digits to be entered, or you might want a
button that changes styles when it's pressed .

• Use member functions and data members to manipulate the control. This
is easier and more object-oriented than using control messages (see
page 170).

To associate a control object with a control element, you can define a
pointer to a control object as a data member and construct a control object
in the dialog box object's constructor. Control classes 'such as TButton have a
constructor that takes a pointer to the parent window object and the
control's resource identifier. In the following example, TTestDialog's
constructor creates a TButton object from the resource ID_BUTTON:

Chapter 8, Dialog box objects 171

Setting up
controls

172

TTestDialog::TTestDialog(TWindow* parent, const char* resID)
TDialog(parent, resID),
TWindow(parent)

new TButton(this, ID_BUTTON);

You can also define your own control class, derived from an existing
control class (if you want to provide specialized behavior). In the following
example, TBeepButton is a specialized TButton that overrides the default
response to the BN_ CLICKED notification code. A TBeepButton object is
associated with the ID _BUTTON button resource.

class TBeepButton : public TButton
{

public:
TBeepButton(TWindow* parent, int resId) TButton(parent, resId) {}

} ;

void BNClicked(); II BN_CLICKED
DECLARE_RESPONSE_TABLE(TBeepButton)i

DEFINE_RESPONSE_TABLE1(TBeepButton, TButton)
EV_NOT I FY_AT_CHI LD (BN_CLICKED, BNClicked),

END_RESPONSE_TABLE;

void
TBeepButton: :BNClicked()
{

MessageBeep(-l) i

TBeepDialog::TBeepDialog(TWindow* parent, const char* name)
: TDialog(parent, name), TWindow(parent)

button = new TBeepButton(this, ID_BUTTON) i

Unlike setting up a window object, which requires two steps (construction
and creation), associating an interface object with an interface element
requires only the construction step. This is because the interface element
already exists: it's loaded from the dialog box resource. You just have to tell
the constructor which control from the resource to use, using its resource
identifier.

You can't manipulate controls by, for example, adding strings to a list box
or setting the font of an edit control until the dialog box object's
Setup Window member function executes. Until TDialog::Setup Window has
called TWindow::Setup Window, the dialog box's controls haven't been

OWL Programmers Guide

associated with the corresponding objects. Once they're associated, the
objects' HWindow data members are valid for the controls.

In this example, the AddString function isn't called until the base class
Setup Window function is called:

class TDerivedDialog : public TDialog
{

public:
TDerivedDialog(TWindow* parent, TResld resld)

: TDialog(parent, resld), TWindow(parent)

listbox = new TListBox(this, IDD_LISTBOX);

protected:

};

void

TListBox* listbox;

TDerivedDialog: :SetupWindow()
{

TDialog: :SetupWindow();
listbox->AddString ("First entry");

Using dialog boxes

Table 8.1
ObjectWindows

encapsulated dialog
boxes

A Windows application often needs to prompt the user for file names,
colors, or fonts. ObjectWindows provides classes that make it easy to use
dialog boxes, including Windows' common dialog boxes. The following
table lists the different types of dialog boxes and the ObjectWindows class
that encapsulates each one.

Type

Color
Font
File open
File save
Find string
Input from user
Printer abort dialog
Printer control
Replace string

ObjectWindows class

TChooseColorDialog
TChooseFontDialog
TFileOpenDialog
TFileSaveDialog
TFindDialog
T/nputDialog
TPrinterAbortDlg
TPrintDialog
TReplaceDialog

Chapter 8, Dialog box objects 173

Using input dialog
boxes

Using common
dialog boxes

Constructing
common dialog
boxes

Table 8.2
Common dialog box

TData members

174

Input dialog boxes are simple dialog boxes that prompt the user for a single
line of text input. You can run input dialog boxes as either modal or
modeless dialog boxes, but you'll usually run them modally. Input dialog
box objects have a dialog box resource associated with them, provided in
the resource script file owl \inputdia.rc. Your application's .Re file must
include owl \inputdia.rc.

When you construct an input dialog box object, you specify a pointer to the
parent window object, caption, prompt, and the text buffer and its size. The
contents of the text buffer is the default input text. When the user chooses
OK or presses Enter, the line of text entered is automatically transferred into
the character array. Here's an example:

char patientName[33] = "";

TInputDialog(this, "Patient name",
"Enter the patient's name:",
patientName, sizeof(patientName)) .Execute();

In this example, patientName is a text buffer that gets filled with the user's
input when the user chooses OK. It's initialized to an empty string for the
default text.

The common dialog boxes encapsulate the functionality of the Windows
common dialog boxes. These dialog boxes let the user choose colors, fonts,
file names, find and replace strings, print options, and more. You construct,
execute, and destroy them similarly. The material in this section describes
the common tasks; the material in the following sections describes the tasks
specific to each type of common dialog box.

Each common dialog box class has a nested class called TData. TData
contains some common housekeeping members and data specific to each
type of common dialog box. For example, TChooseColorDialog::TData has
members for the color being chosen and an array for a set of custom colors.
The following table lists the two members common to all TData nested
classes.

Name Type

Flags DWORD

Description

A set of common dialog box-specific flags that control the appearance
and behavior of the dialog box. For example, CC_SHOWHELP is a flag
that tells the color selection common dialog box to display a Help button
the user can press to get context-sensitive Help. Full information about
the various flags is available in the ObjectWindows Reference Guide.

OWL Programmers Guide

Executing common
dialog boxes

Table 8.2: Common dialog box TData members (continued)

Error DWORD This is an error code if an error occurred while processing a common
dialog box; its zero if no error occurred. Execute returns IDCANCEL
both when the user chose Cancel and when an error occurred, so you
should check Error to determine whether an error actually occurred.

Each common dialog box class has a constructor that takes a pointer to a
. parent window object, a reference to that class' TData nested class, and
optional parameters for a custom dialog box template, title string, and
module pointer.

Here's a sample fragment that constructs a common color selection dialog
box:

TChooseColorDialog::TData colorsi
static TColor custColors[16l =
{

Ox010101L, OxlO101OL, Ox202020L,
Ox404040L, Ox505050L, Ox606060L,
Ox808080L, Ox909090L, OxAOAOAOL,
OxCOCOCOL, OxDODODOL, OxEOEOEOL,

} i

colors.CustColors = custColorsi
colors.Flags = CC_RGBINITi
colors.Color = TColor::Blacki

Ox303030L,
Ox707070L,
OxBOBOBOL,
OxFOFOFOL

if (TChooseColorDialog(this, colors) .Execute() == IDOK)
SetColor(colors.Color) i

Once the user has chosen a new color in the dialog box and pressed OK,
that color is placed in the Color member of the TData object.

Once you've constructed the common dialog box object, you should execute
it (for a modal dialog box) or create it (for a modeless dialog box). The
following table lists whether each type of common dialog box must be
modal or modeless.

Type Modal or modeless Run by calling

Color Modal Execute
Font Modal Execute
File open Modal Execute
File save Modal Execute
Find Modeless Create
Find/replace Modeless Create
Printer Modal Execute

Chapter 8, Dialog box objects 175

Using color
common dialog
boxes

Table 8.3
Color common dialog

box TData data
members

For details about
TData::F/ags in the

TChooseC%rDia/og
class, see the

ObjectWindows
Reference Guide.

176

You must check Execute's return value to see whether the user chose OK or
Cancel, or to determine if an error occurred:

TChooseColorDialog: :TData colors;
TChooseColorDialog colorDlg(this, colors);

if (colorDlg.Execute() == IDOK)
II OK: data.Color == the color the user chose

else if (data.Error)
II error occurredt
MessageBox ("Error in color dialog box!", GetApplication () ->Name,

MB_OK I MB_ICONSTOP);

The color common dialog box lets you choose and create colors for use in
your application. For example, a paint application might use the color
common di~log box to choose the color of a paint bucket.

TChooseColorDialog::TData has several members you must initialize before
constructing the dialog box object:

rData member Type Description

C%r TC%r The selected color. When you execute the dialog box, this specifies
the default color. When the user closes the dialog box, this
specifies the color the user chose.

CustC%rs TC%r* A pointer to an array of sixteen custom colors. On input, it specifies
the default custom colors. On output, it specifies the custom colors
the user chose.

In the following example, a color common dialog box is used to set the
window object's Color member, which is used elsewhere to paint the
window. Note the use of the TWindow::lnvalidate member function to force
the window to be repainted in the new color.

void
TCornmDlgWnd: :CmColor()
{

II use static to keep custom colors around between
II executions of the color cornmon dialog box
static TColor custColors[16];
TChooseColorDialog::TData choose;

choose.Flags = CC_RGBINIT;
choose.Color = Color;
choose.CustColors = custColors;

if (TChooseColorDialog(this, choose) .Execute()
Color = choose.Color;

Invalidate() ;

IDOK)

OWL Programmers Guide

Using font
common dialog
boxes

Table 8.4
Font common dialog

box TData data
members

The font common dialog box lets you choose a font to use in your
application, including its typeface, size, style, and so on. For example, a
word processor might use the font common dialog box to choose the font
for a paragraph.

TChooseFontDialog::TData has several members you must initialize before
constructing the dialog box object:

TData member

DC

LogFont

PointSize

Color

Style
FontType

SizeMin
SizeMax

Type Description

HOC A handle to the device context of the printer whose fonts you
want to select, if you specify CF _PRINTERFONTS in Flags.
Otherwise ignored.

LOGFONT A handle to a LOGFONTthat specifies the fonts appearance.

int

TColor

char far*
WORD

int
int

When you execute the dialog box and specify the flag
CF JNITTOLOGFONTSTRUCT, the dialog box appears with
the specified font (or the closest possible match) as the
default. When the user closes the dialog box, LogFont is filled
with the selections the user made.
The point size of the selected font (in tenths of a point). On
input, it sets the size of the default font. On output, it returns
the size the user selected.
The color of the selected font, if the CF _EFFECTS flag is set.
On input, it sets the color of the default font. On output, it
holds the color the user selected.
Lets you specify the style of the dialog.
A set of flags describing the styles of the selected font. Set
only on output.
Specifies the minimum and maximum
point sizes (in tenths of a point) the user can select, if the
CF _LlMITSIZE flag is set.

In this example, a font common dialog box is used to set the window
object's Font member, which is used elsewhere to paint text in the window.
Note how a new font object is constructed, using TFont.

void
TCommDlgWnd::CmFont()
{

TChooseFontDialog::TData FontDatai

FontData.DC = Oi
FontData.Flags = CF_EFFECTS CF_FORCEFONTEXIST I CF_SCREENFONTSi
FontData.Color = Colori
FontData.Style = Oi
FontData.FontType = SCREEN_FONTTYPEi

Chapter 8, Dialog box objects 177

Using file open
common dialog
boxes

Table 8.5
File open and save
common dialog box

TData data members

178

FontData.SizeMin = 0;
FontData.SizeMax = 0;

if (TChooseFontDialog(this, FontData) .Execute() == IDOK) {
delete Font;
Color = FontData.Color;
Font = new TFont(&FontData.LogFont);

Invalidate () ;

The file-open common dialog box serves as a consistent replacement for the
many different types of dialog boxes applications have used to open files.

TOpenSaveDialog::TData has several members you must initialize before
constructing the dialog box object. You can either initialize them by
assigning values, or you can use TOpenSaveDialog::TData's constructor,
which takes Flags, Filter, CustomFilter, InitialDir, and DefExt (the most
common) as parameters with default arguments of zero.

TData member

FileName

Filter

CustomFilter
Filterlndex

InitialDir

DefExt

Type

char*

char*

char*
int

char*

char*

Description

The selected file name. On input, it specifies the default file
name. On output, it contains the selected file name.
The file name filters and filter patterns. Each filter and filter
pattern is in the form:

filter/filter pattern I .••

where filter is a text string that describes the filter and filter
pattern is a DOS wildcard file name. You can repeat filter and
filter pattern for as many filters as you need. You must
separate them with I characters.
Lets you specify custom filters.
Specifies which of the filters specified in Filter should be
displayed by default.
The directory to be displayed on opening the file dialog box.
Use zero for the. current directory.
Default extension appended to FileName if the user doesn't
type an extension. If DefExt is zero, no extension is
appended.

In this example, a file-open common dialog box prompts the user for a file
name. If an error occurred (Execute returns IDCANCEL and Error returns
nonzero), a message box is displayed.

OWL Programmers Guide

Using file save
common dialog
boxes

void
TCornmDlgWnd::CmFileOpen()
{

TFileOpenDialog: :TData FilenameData
(OFN_FILEMUSTEXIST I OFN_HIDEREADONLY I OFN_PATHMUSTEXIST,
"All Files (*.*) 1*.*IText Files (*.txt) I*.txtl",
a I II II, II * II) i

if (TFileOpenDialog(this, FilenameData) .Execute() != IDOK) {
if (FilenameData.Errval) {

char msg [50 1 i
wsprintf(msg, "GetOpenFileName returned Error #%ld", Errval) i
MessageBox(msg, "WARNING", MB_OK I MB_ICONSTOP) i

The file-save common dialog box serves as a single, consistent replacement
for the many different types of dialog boxes that applications have
previously used to let users choose file names.

TOpenSaveDialog::TData is used by both file-open and file-save common
dialog boxes.

In the following example, a file-save common dialog box prompts the user
for a file name to save under. The default directory is \ WINDOWS and the
default extension is .BMP.

void
TCanvasWindow::CmFileSaveAs()
{

TOpenSaveDialog: :TData data
(OFN_HIDEREADONLY I OFN_OVERWRITEPROMPT,
"Bitmap Files (*.BMP) I*.bmpl ",
0,
" \ \ windows" ,
"BMP") i

if (TFileSaveDialog(this, data) .Execute() == IDOK) {
II save data to file
ifstream is(FileData->FileName)i

if (! is)
MessageBox("Unable to open file", "File Error",

MB_OK I MB_ICONEXCLAMATION)i
else

II Do. file output

Chapter 8, Dialog box objects 179

Using find and
replace common
dialog boxes

Constructing and
creating find and
replace common
dialog boxes

See the
ObjectWindows

Reference Guide for
more details about

Flags.

180

The find and replace common dialog boxes let you search and optionally
replace text in your application's data. These dialog boxes are flexible
enough to be used for documents or even databases. The simplest way to
use the find and replace common dialog boxes is to use the TEd it Search or
TEditFile edit control classes; they implement an edit control that you can
search and replace text in. If your application is text-based, you can also use
the find and replace common dialog boxes manually.

Since the find and replace dialog boxes are modeless, you normally keep a
pointer to them as a data member in your parent window object. This
makes it easy to communicate with them.

The find and replace common dialog boxes are modeless. You should
construct and create them in response to a command (for example, a menu
item Search I Find or Search I Replace). This displays the dialog box and lets
the user enter the search information.

TFindReplaceDialog::TData has the standard Flags members, plus members
for holding the find and replace strings.

The following example shows the pointer to the find dialog box in the
parent window object and shows the command event response function
that constructs and creates the dialog box.

class TDatabaseWindow : public TFrameWindow
{

} i

TFindReplaceDialog: :TData SearchDatai
TFindReplaceDialog* SearchDialogi

void
TDatabaseWindow::CmEditFind()
{

II If the find dialog box isn't already
II constructed, construct and create it now
if (!SearchDialog) {

SearchData.Flags 1= FR_DOWNi II default to searching down
SearchDialog = new TFindDialog(this, SearchData)
SearchDialog->Create() i

OWL Programmers Guide

Processing find
and-replace
messages

Since the find and replace common dialog boxes are modeless, they
communicate with their parent window object by using a registered
message FINDMSGSTRING. You must write an event response function
that responds to FINDMSGSTRING. That event response function takes
two parameters-a WP ARAM and an LP ARAM-and returns an LRESULT.
The LP ARAM parameter contains a pointer that you must pass to the
dialog box object's UpdateData member function.

After calling UpdateData, you must check for the FR_DIALOGTERM flag.
The common dialog box code sets that flag when the user closes the
modeless dialog box. Your event response function should then zero the
dialog box object pointer because it's no longer valid. You must construct
and create the dialog box object again.

As long as the FR_DIALOGTERM flag wasn't set, you can process the
FINDMSGSTRING message by performing the actual search. This can be as
simple as an edit control object's Search member function or as complicated
as triggering a search of a Paradox or dBASE table.

In this example, EvFindMsg is an event response function for a registered
message. EvFindMsg calls UpdateData and then checks the
FR_DIALOGTERM flag. If it wasn't set, EvFindMsg calls another member
function to perform the search.

DEFINE_RESPONSE_TABLE1(TDatabaseWindow, TFrarneWindow)

EV_REGISTERED(FINDMSGSTRING, EvFindMsg),
END_RESPONSE_TABLE;

LRESULT TDatabaseWindow: : EvFindMsg (WPARAM, LPARAM lPararn)
{

if (SearchDialog) {
SearchDialog->UpdateData(lPararn) ;
II is the dialog box closing?
if (SearchData.Flags & FR_DIALOGTERM)

SearchDialog = 0;
SearchCrnd = 0;
else
DoSearch () ;

return 0;

Chapter 8, Dialog box objects 181

Handling a Find
Next command

Using printer
common dialog
boxes

Table 8.6
Printer common

dialog box TData
data members

182

The find and replace common dialog boxes have a Find Next button that
users can use while the dialog boxes are visible. Most applications also
support a Find Next command from the Search menu, so users can find the
next occurrence in one step instead of having to open the find dialog box
and press the Find Next button. TFindDialog and TReplaceDialog make it
easy for you to offer the same functionality.

Setting the FR_FINDNEXT flag has the same effect as pressing the Find
Next button:

void
TDatabaseWindow: :CrnEditFindNext()
{

SearchDialog->UpdateData() i

SearchData.Flags 1= FR_FINDNEXTi
DoSearch() i

There are two printer common dialog boxes. The print job dialog box lets
you choose what to print, where to print it, the print quality, the number of
copies, and so on. The print setup dialog box lets you choose among the
installed printers on the system, the page orientation, and paper size and
source.

TPrintDialog::TData's members let you control the appearance and behavior
of the printer common dialog boxes:

TData member

FromPage

ToPage

MinPage
MaxPage
Copies

Type

int

int

int
int
int

Description

The first page of output, if the PD_PAGENUMS flag is specified.
On input, it specifies the default first page. On output, it specifies
the first page the user chose.
The last page of output, if the PD_PAGENUMS flag is specified.
On input, it specifies the default last page number. On output, it
specifies the last page number the user chose.
The fewest number of pages the user can choose.
The largest number of pages the user can choose.
The number of copies to print. On input, the default number of
copies. On output, the number of copies the user actually chose.

In the following example, CmFilePrint executes a standard print job
common dialog box and uses the information in TPrintDialog::TData to
determine what to print. CmFilePrintSetup adds a flag to bring up the print
setup dialog box automatically.

OWL Programmers Guide

Chapter 8~ Dialog box objects

void
TCanvas: :CmFilePrint()
{

if (TPrintDialog(this, data) .Execute() == IDOK)
II Use TPrinter and TPrintout to print the drawing

void
TCanvas::CmFilePrintSetup()
{

static TPrintDialog::TData data;
data.Flags 1= PD_PRINTSETUP;

if (TPrintDialog(this, data, 0) .Execute()
II Print

IDOK)

183

184 OWL Programmers Guide

c H A p T E R

DocNiew objects

ObjectWindows 2.0 provides a new way to contain and manipulate data:
the Doc/View model. The Doc/View model consists of three parts:

• Document objects, which can contain many different types of data and
provide methods to access that data.

9

• View objects, which form an interface between a document object and the
user interface and control how the data is displayed and how the user
can interact with the data.

• An application-:wide document manager that maintains and coordinates
document objects and the corresponding view objects.

How documents and views work together

This section describes the basic concept of the Doc/View model. If you're
already familiar with these concepts or if you want more technical
information, refer to the programming sections beginning on page 189.

The Doc/View model frees the programmer and the user from worrying
about what type of data a file contains and how that data is presented on
the screen. Doc/View associates data file types with a document class and a
view class. The document manager keeps a list of associations between
document classes and view classes. Each association is called a document
template (note that document templates are not related to C++ templates).

A document class handles data storage and manipulation. It contains the
information that is displayed on the screen. A document object controls
changes to the data and when and how the data is transferred to persistent
storage (such as the hard drive, RAM disk, and so on).

When the user opens a document, whether by creating a new document or
opening an existing document, the document is displayed using an
associated view class. The view class manages how the data is displayed
and how the user interacts with the data onscre~n. In effect, the view forms
an interface between the display window and the document. Some
document types might have only one associated view class; others might

Chapter 9, DocNiew objects 185

186

Figure 9.1
DocNiew model

diagram

have several. Each different view type can be used to let the user interact
with the data in a different way.

The following figure illustrates the interaction between the document
mana,ger, a document class, and the document's associated views:

Property view Dump view

This fig~re shows a file document object from the TFileDocument class,
along with some associated views. The TFileDocument class is shown in the
DOCVIEWX example. This example is in the directory \BC4\EXAMPLES\
OWL \ OWLAPI \ DOCVIEW, where BC4 is the directory in which you
installed Borland C++ 4.0.

OWL Programmers Guide

Documents

Views

The traditional concept of a document and the Doc/View concept of a
document differ in several important ways. The traditional concept of a
document is generally like that of a word-processing file. It consists of text
mixed with the occasional graphic, along with embedded commands to
assist the word-processing program in formatting the document.

A Doc/View document differs quite significantly from the traditional
concept of a document:

• The first distinction is between the contents of the two types of
documents. Whereas the traditional document is mostly text with a few
other bits of data, a Doc/View document can contain literally any type of
data, such as text, graphics, sounds, multimedia files, and even other
documents.

• The next distinction is in terms of presentation. Whereas the format of
the traditional document is usually designed with the document's
presentation in mind, a Doc/View document is completely independent
of how it is displayed.

• The last distinction is that a docu;rnent from a particular word-processing
program is generally dependent on the format demanded by that
program; documents are usually portable between different word
processing programs only after a tedious porting process. The intention
of Doc/View documents is to let data be easily ported between different
applications, even applications whose basic functions are highly
divergent.

The basic functionality for a document object is provided in the
ObjectWindows class TDocument. A more in-depth discussion of TDocument
and how to use it as a basis for your own document classes is presented
later in this chapter on page 196.

View objects enable document objects to present themselves to the world.
Without a view object, you can't see or manipulate the document. But when
you pair a document with a view object into a document template, you've
got a functional piece of data and code that provides a graphic
representation of the data stored in the document and a way to interact
with and change that data.

The separation between the document and view also permits flexibility in
when and how the data in document is modified. Although the data is
manipulated through the view, the view only relays those changes on to
the document. It is then up to the document to determine whether to

Chapter 9, DocNiew objects 187

Associating
document and
view classes

188

change the data in the document (known as committing the changes) or
discarding the changes (known as reverting back to the document).

Another advantage of using view objects instead of some sort of fixed
display method (such as a word-processing program) is that view objects
offer the programmer and the user a number of different ways to display
and manipulate the same document. Although you might need to provide
only one view for a document type, you might also want to provide three
or four views.

For example, suppose you create a document class to store graphic
information, such as a picture or drawing. For a basic product, you might
want to provide only one type of view, such as a view that draws the
picture in a window and then lets the user "paint" and modify the picture.
For a more advanced version, you might want to provide extra views; for
example, the drawing could be displayed as a color separation, as a
hexadecimal file, or even as a series of equations if the drawing was
mathematically generated. To access these other views, users choose the
type of view desired when they open the document. In all these scenarios,
the document itself never changes.

The basic functionality for a view is provided in the ObjectWindows class
TView. A more in-depth discussion of TView and how to use it as a basis for
your own view classes is presented on page 202.

A document class is associated with its view class (or classes) by a
document template. Document templates are created in two steps:

1. Define a template class by associating a document class with a view
class.

2. Instantiate a template from a defined class.

The difference between these two steps is important. After you've defined a
template class, you can create any number of instances of that template
class. Each template associates only a document class and a view class. Each
instance has a name, a default file extension, directory, flags, and file filters.
Thus you could provide a single template class that associates a document
with a view. You could then provide a number of different instances of that
template class, where each instance handles files in a different default
directory, with different extensions, and so on, still using the same
document and view classes.

OWL Programmers Guide

Managing
DocNiew

Table 9.1
Document manager's

File menu

The document manager maintains the list of template instances used in
your application and the list of current documents. Every application that
uses Doc/View documents must have a document manager, but each
application can have only one document manager at a time.

The document manager brings the Doc/View model together: document
classes, view classes, and templates. The document manager provides a
default File menu and default handling for each of the choices on the File
menu:

Menu choice

New
Open ...
Save
As ...
Revert To Saved
Close
Exit

Handling

Creates a new document.
Opens an existing document.
Saves the current document.
Saves the current document with a new name.
Reverts changes to the last document saved.
Closes the current document.
Quits the application, prompts to save documents.

Once you've written your document and view classes, defined any
necessary templates, and made instances of the required templates, all you
still need to do is to create your document manager. When the document
manager is created, it sets up its list of template instances and (if specified
in the constructor) sets up its menu. Then whenever it receives one of the
events that it handles, it performs the command specified for that event.
The example on page 193 shows how to set up a document manager for an
application.

Document templates

Designing
document
template classes

Document templates join together document classes and view classes by
creating a new class. The document manager maintains a list of document
templates that it uses when creating a new Doc/View instance. This section
explains how to create and use document templates.

You create a document template class using the
DEFINE_DOC_TEMPLATE_CLASS macro. This macro takes three
arguments:

• Document class

• View class

Chapter 9, DocNiewobjects 189

Creating template
class instances

190

• Template class name

The document class should be the document class you want to use for data
containment. The view class should be the view class you want to use to
display the data contained in the document class. The template class name
should be indicative of the function of the template. It cannot be a c++
keyword (such as int, switch, and so on) or the name of any other type in
the application.

For example, suppose you've two document classes-one called
TPlotDocument, which contains graphics data, and another called
TDataDocument, which contains numerical data. Now suppose you have
four view classes, two for each document class. For TPlotDocument, you
have TPlotView, which displays the data in a TPlotDocument object as a
drawing, and THexView, which displays the data in a TPlotDocument object
as arrays of hexadecimal numbers. For TDataDocument, you have
TSpreadView, which displays the data in a TDataDocument object much like
a spreadsheet, and TCalcView, which displays the data in a TDataDocument
object after performing a series of calculations on the data.

To associate the document classes with their views, you would use the
DEFINE_DOC_TEMPLATE_CLASS macro. The code would look
something like this:

DEFINE_DOC_TEMPLATE_CLASS(TPlotDocurnent, TPlotView, TPlotTernplate)i
DEFINE_DOC_TEMPLATE_CLASS(TPlotDocurnent, THexView, THexTernplate) i

DEFINE_DOC_TEMPLATE_CLASS(TDataDocurnent, TSpreadView, TSpreadTernplate)i
DEFINE_DOC_TEMPLATE_CLASS(TDataDocurnent, TCalcView, TCalcTernplate)i

As you can see from the first line, the existing document class
TPlotDocument and the existing view class TPlotView are brought together
and associated in a new class called TPlotTemplate. The same thing happens
in all the other lines, so that you have four new classes, TPlotTemplate,
THexTemplate, TSpreadTemplate, and TCalcTemplate. The next section
describes how to use these new classes you've created.

Once you've defined a template class, you can create any number of
instances of that class. You can use template class instances to provide
different descriptions of a template, search for different default file names,
look in different default directories, and so on. You can affect all these
things when calling the template class constructor.

The signature of a template class constructor is always the same:

TplNarne narne(LPCSTR desc, LPCSTR filt, LPCSTR dir, LPCSTR ext, long flags) i

OWL Programmers Guide

where:

• TplName is the class name you specified when defining the template
class.

• name is whatever name you want to give this instance.

• dese is a text description of the template.

• filt is a string that is used to filter file names in the current directo'ry; this
can be one or more valid regular expressions, separated by semicolons.

• dir is the default directory to check for document files.

• ext is the default extension when saving files; passing a means no default
extension.

• flags is the mode under which the document is to be opened or created; it
can be one or more of the following:

Flag

dtAutoDelete
dtNoAuto View
dtSingle View
dtAutoOpen
dtHidden

Function

Close and delete the document object when the last view is closed.
Do not automatically create a default view.
Allow only one view per document.
Open a document upon creation.
Hide template from list of user selections.

For example, suppose you've got the following template class definition:

DEFINE_DOC_TEMPLATE_CLASS(TPlotDocurnent, TPlotView, TPlotTernplate);

Now suppose you want to create three instances of this template class:

• One instance should have the description" Approved plots", for
document files with the extension .PL T and located in the directory C: \
APPROVED. You want to allow only a single view of the document and
to automatically delete the document when the view is closed.

• Another instance should have the description "In progress", for
document files with the extension .PL T and located in the directory C: \
WORK. You want to automatically delete the document when the last
view is closed.

• Another instance should have the description "Proposals", for document
files with the extensions .PLT or .TMP (but with the default extension of
.PLT) and located in the directory C:\ TMP. You want to keep this
template hidden until the user has entered a password, and delete the
document object when the last view is closed.

Chapter 9, DocNiew objects 191

Modifying existing
templates

The code for these instan<;es would look something like this:

TPlotTemplate atpl (" Approved plots",
,,* .PLT",
"C: \APPROVED" ,
"PLT" ,
dtSingleView I dtAutoDelete);

TPlotTemplate btpl("In progress",
,,* .PLT",
"C: \ WORK " ,
"PLT" ,
dtAutoDelete) ;'

TPlotTemplate *ctpl = new TPlotTemplate("Proposals",
" * . PLT; *. TMP" ,
"C:\TMP" ,
"PLT" ,
dtHidden I dtAutoDelete);

Just as in any other class, you can create both static and dynamic instances
of a document template.

Once you've created an instance of a template class, you usually don't need
to modify the template object. However, you might occasionally want to
modify the properties with which you constructed the template. You can
do this using these access functions:

• Use the GetFileFilter and SetFileFilter functions to get and set the string
used to filter file names in the current directory.

• Use the GetDescription and SetDescription functions to get and set the text
description of the template class.

• Use the GetDirectory and SetDirectory functions to get and set the default
directory.

• Use the GetDefaultExt and SetDefaultExt functions to get and set the
default file extension.

• Use the GetFlags, IsFlagSet, SetFlag, and ClearFlag functions to get and set
the flag settings. /

Using the document manager

192

The document manager, an instance of TDocManager or a TDocManager
derived dass, performs a number of tasks:

• Manages the list of current documents and registered templfltes

OWL Programmers Guide

• Handles the standard File menu command events CM_FILENEW,
CM_FILEOPEN, CM_FILESA VE, CM_FILESA VEAS, CM_FILECLOSE,
and optionally CM_FILEREVERT

• Provides the file selection interface

To support the Doc/View model, a document manager must be attached to
the application. This is done by creating an instance of TDocManager and
making it the document manager for your application. The following code
shows an example of how to attach a document manager to your
application:

class TMyApp : public TApplication
{

pUblic:
TMyApp() : TApplication() {}

void InitMainWindow() {

SetDocManager(new TDocManager(dmMDI I dmMenu)) i

} i

You can set the document manager to a new object w~ing the
SetDocManager function. SetDocManager takes a TDocManager & and returns
void.

The document manager's public data and functions can be accessed
through the document's GetDocManager function. GetDocManager takes no
parameters and returns a TDocManager &. The document manager provides
the following functions for creating documents and views:

• CreateAnyDoc presents all the visible templates, whereas the
TDocTempl~te member function CreateDoc presents only its own template.

• CreateAnyView filters the template list for those views that support the
current document and presents a list of the view names, whereas the
TDocTemplate member function CreateView directly constructs the view
specified by the document template class.

Specialized document managers can be used to support other needs. For
example, an OLE 2.0 server needs to support class factories that create
documents and views through interfaces that are not their own. If the
server is invoked with the Embedded command-line flags, it doesn't bring
up its own user interface and can attach a document manager that replaces
the interface with the appropriate OLE support.

Chapter 9, DocNiew objects 193

Constructing the
document
manager

194

The constructor for TDocManager. takes a single parameter that's used to set
the mode of the document manager. You can open the document manager
in one of two modes:

• In single-document interface (SDI) mode, you can have only a single
document open at any time. If you open a new document while another
document is already open, the document manager attempts to close the
first document and replace it with the new document.

• In multiple-document interface (MDI) mode, you can have a numb~r of
documents and views open at the same time. Each view is contained in
its own client window. Furthermore, each document can be a single
document type presented by the same view class, a single document
presented with different views, or even entirely different document
types. .

To open the document manager in SDI mode, call the constructor with the
dmSDI parameter. To open the document manager in MDI mode, call the
constructor with the dmMDI parameter. .

There are three other parameters you can also specify:

• dmMenu specifies that the document manager should install its own File
menu, which provides the standard document manager File menu and
its corresponding commands.

• dmSaveEnabled enables the Save command on the File menu even if the
document has not been modified.

• dmNoRevert disables the Revert command on the File menu.

Once you've constructed the document manager you cannot change the
mode. The following example shows how to open the document manager
in either SDI or MDI mode. It uses command-line arguments to let the user
specify whether the document manager should open in SDI or MDI mode.

class TMyApp : public TApplication
public:

TMyApp() : TApplication() {}
void InitMainWindow();
int" DocMode;
};

void TMyApp::lnitMainWindow()
switch ((_argc > 1&& 3rgv [1] [0] ==' -' ? _argv [1] [1]

: (char) 0) I (' S ' /\ , S '))

case's': DocMode = dmSDI; break; II command line: -s

OWL Programmer's Guide

TDocManager
event handling

} ;

case 'm': DocMode = dmMDI; break; II command line: -m
default: DocMode = dmMDI; break; II no command line

SetDocManager(new TDocManager(DocMode I dmMenu));

Thus, if the user starts the application with the -5 option, the document
manager opens in SDI mode. If the user starts the application with the -m
option or with no option at all, the document manager opens in MDI mode.

If you specify the dmMenu parameter when you construct your
TDocManager object, the document manager handles certain events on
behalf of the documents. It does this by using a response table to process
standard menu commands. These menu commands are provided by the
document manager even when no documents are opened and regardless of
whether you explicitly add the resources to your application. The File
menu is also provided by the document manager.

The events that the document manager handles are

• CM_FILECLOSE • CM_FILESA VE

• CM_FILENEW • CM_FILESA YEAS

• CM_FILEOPEN • CM_ VIEWCREATE

• CM_FILEREVERT

In some instances, you might want to handle these events yourself. Because
the document manager's event table is the last to be searched, you can
handle these events at the view, frame, or application level. Another option
is to construct the document manager without the dmMenu parameter. You
must then provide functions to handle these events, generally through the
application object or your interface object.

You can still call the document manager's functions through the
DocManager member of the application object. For example, suppose you
want to perform some action before opening a file. Providing the function
through your window class TMy Window might look something like this:

class TMyApp : public TApplication {
public:

} ;

TMyApp() : TApplication() {}
void InitMainWindow();
int DocMode;

void TMyApp::InitMainWindow()

};

II Don't specify dmMenu when constructing TDocManager
SetDocManager(new TDocManager(dmMDI));

Chapter 9, DocNiew objects 195

class TMyWindow public TDecoratedMDIFrame {
public:

}i

TMyWindow() i

void CmFileOpen() i

1*

*1

You also need to provide the other event handlers provided by the document
manager.

DECLARE_RESPONSE_TABLE(TMyWindow)i

DEFINE_RESPONSE_TABLE1(TMyWindow, TDecoratedMDIFrame)
EV_COMMAND(CM_FILEOPEN, CmFileOpen),

END_RESPONSE_TABLEi

void TMyWindow: :CmFileOpen()
II Do your extra work here.
GetApplication()->GetDocManager()->CmFileOpen()i

Creating a document class

Constructing
TDocument

Adding
functionality to
documents

196

The primary function of a document class is to provide callbacks for
requested data changes in a view, tlo handle user actions as relayed through
associated views, and to tell associated views when data has been updated.
TDocumenfprovides the framework for this functionality. The programmer
needs only to add the parts needed for a specific application of the
document model.

TDocument is an abstract base class that cannot be directly instantiated.
Therefore you implement document classes by deriving them from
TDocument.

You must call TDocument's constructor when constructing a TDocument
derived dass. The TDocument constructor takes only one parameter, a
TDocument * that points to the parent document of the new document. If
the document has no parent, you can either pass a a or pass no parameters;
the default value for this parameter is O.

As a standard procedure, you should avoid overriding TDocument
functions that aren't declared virtual. The document manager addresses all
TDocument-derived objects as if they were actually TDocument objects. If
you override a nonvirtual function, it isn't called when the document
manager calls that function. Instead, the document manager calls the

OWL Programmers Guide

Data access
functions

Stream access

TDocument version of the function. But if you override a virtual function,
the document manager correctly calls your class' version of the function.

The following functions are declared virtual in TDocument:

-TDocument SetDocPath
InStream SetTitle
OutStream GetProperty
Open IsDirty
Close IsOpen
Commit CanClose
Revert AttachStream
RootDocument DetachStream

You can override these functions to provide your own custom
interpretation of the function. But when you do override a virtual function,
you should be sure to find out what the base class function does. Where the
base class performs some sort of essential function, you should call the base
class version of the function from your own function; the base class
versions of many functions perform a check of the document's hierarchy,
including checking or notifying any child documents, all views, any open
streams, and so on.

TDocument provides a number of functions for data access. You can access
data as a simple serial stream or in whatever way you design into your
derived classes. The following sections describe the helper functions you
can use to control when the document attempts data access operations.

TDocument provides two functions, InStream and OutStream, that return
pointers to a TlnStream and a TOutStream, respectively. The TDocument
versions of these function both return a 0, because the functions actually
perform no actions. To provide stream access for your document class you
must override these functions, construct the appropriate stream class, and
return a pointer to the stream object.

TlnStream and TOutStream are abstract stream classes, derived from
TStream and istream or ostream, respectively. TStream provides a minimal
functionality to connect the stream to a document. istream and ostream are
standard c++ iostreams. You must derive document-specific stream classes
from TlnStream and TOutStream. The TlnStream and TOutStream classes are
documented in the Object Windows Reference Guide. Here, though, is a simple
description of the InStream and OutStream member functions. Both InStream
and OutStream taketwo parameters in their constructors:

XXXStream(int mode, LPCSTR strmld = 0);

Chapter 9, DocNiew objects 197

Stream list

Complex data
access

198

where XXX is either In or Out, mode is a stream opening mode identical to
the open_mode flags used for istream and ostream, and strmId is a pointer to
an existing stream object. Passing a valid pointer to an existing stream
object in strmId causes that stream to be used as the document's stream
object. Otherwise, the object opens a new stream object.

There are also two stream-access functions called AttachStream and
DetachStream. Both of these functions take a reference to an existing (that is,
already constructed and open) TStream-derived object. AttachStream adds
the TStream-derived object to the document's list of stream objects, making
it available for access. DetachStream searches the document's list of stream
objects and deletes the TStream-derived object passed to it. Both of these
functions have protected access and thus can be called only from inside the
document object.

Each document maintains a list of open streams that is updated as streams
are added and deleted. This list is headed by the TDocument data
StreamList. StreamList is a TStream * that points to the first stream in the list.
If there are no streams in the list, StreamList is O. Each TStream object in the
list has a member named NextStream, which points t~ the next stream in the
stream list.

When a new stream is opened in a document object or an existing streain is
attached to the object, it is added to the document's stream list. When an
existing stream is closed in a document object or detached from the object,
it is removed from the document's stream list.

Streams can provide only simple serial access to data. In cases where a
document contains multimedia files, database tables, or other complex
data, you probably want more sophisticated access methods. For this
purpose, TDocument uses two more access functions, Open and Close, which
you can override to define your own opening and closing behavior.

The TDocument version of Open performs no actions; it always returns
TRUE. You can write your own version of Open to work however you
want. There are no restrictions placed on how you define opening a
document. You can make it as simple as you like or as complex as
necessary. Open lets you open a document and keep it open, instead of
opening the document only on demand from one of the document's stream
objects.

The TDocument version of Close provides a little more functionality than
does Open. It checks any existing children of your document and tries to
close them before closing your document. If you provide your own Close,
the first thing you should do in that function is call the TDocument version

OWL Programmer's Guide

Data access he/per
functions

Closing a
document

of Close to ensure that all children have been dosed before you dose the
parent document Other than th_is one restriction, you are free to define the
implementation of the Close function. Just as with Open, Close lets you dose
a document when you want it closed, as opposed to permitting the
document's stream objects to close the document

TDocument also provides a number of functions that you can use to help
protect your data:

IsDirty first checks to see whether the document itself is "dirty" (that is,
modified but not updated) by checking the state of the data member
DirtyFlag. It then checks whether any child documents are dirty, then
whether any views are dirty. IsDirty returns TRUE if any children or views
are dirty.

IsOpen checks to see whether the document is held open or has any streams
in its stream list If the document is not open, IsOpen returns FALSE.
Otherwise, IsOpen returns TRUE.

Commit commits any change$ to your data to storage. Once you've called
Commit, you cannot back out of any changes made. The TDocument version
of this function checks any child documents and commits them to their
changes. If any child document returns FALSE, the Commit is aborted and
returns FALSE. All child documents must return TRUE before the Commit
function commits its own data. After all child documents have returned
TRUE, Commit flushes all the views for operatiQns that might have taken
place since the document last checked the views. Data in the document is
updated according to the changes in the views and then saved. Commit then
returns TRUE.

Revert performs the opposite function from Commit. Instead of updating
changes and saving the data, Revert dears any cranges that have been
made since the last time the data was committed. Revert also polls any child
documents and aborts if any of the children return FALSE. If all operations
are successful, Revert returns TRUE.

Like most other objects, TDocument provides functions that let you safely
close and destroy the object

,.., TDocument does a lot of cleanup. First it destroys its children and closes
all open streams and other resources. Then, in order, it detaches its attached
template, closes all associated views, deletes its stream list, and removes
itselffrom its parent's list of children if the document has a parent or, if it
doesn't have a parent, removes itself from the document manager's
document list

Chapter 9, DocNiew objects 199

Expanding
document
functionality

Working with the
document
manager

Working with
views

200

In addition to a destructor, TDocument also provides a Can Close function to
make sure that it's OK to close. Can Close first checks whether all its children
can close. If any child returns FALSE, CanClose returns FALSE and aborts. If
all child documents return TRUE, Can Close calls the document manager
function FlushDoc, which checks to see if the document is dirty. If the
document is clean, FlushDoc and Can Close return TRUE. If the document is
dirty, FlushDoc opens a message box that prompts the user to either save
the data, discard any changes, or cancel the close operation.

The functions described in this section include most of what you need to
know to make a functioning document class. It is up to you to expand the
functionality of your document class. Your class needs special functions for
manipulating data, understanding and acting on the information obtained
from the user through the document's associated view, and so on. All this
functionality goes into your TDocu men t-derived class.

Because the Doc/View model is so flexible, there are no requirements or
rules as to how you should approach this task. A document can handle
almost any type of data because the Doc/View data-handling mechanism is
a primitive framework, intended to be extended by derived classes. The
base classes provided in ObjectWindows provide the functionality to
support your extensions to the Doc/View model.

TDocument provides two functions for accessing the document manager,
GetIJocManager and SetDocManager. GetDocManager returns a pointer to the
current document manager. You can then use this pointer to access the data
and function members of the document manager. SetDocManager lets you
assign the document to a different document manager. All other document
manager functionality is contained in the document manager itself.

TDocument provides two functions for working with views, NotifyViews
and QueryViews. Both functions take three parameters, an int
corresponding to an event, a long item, and a TView *. The meaning of the
long item is dependent on the event and is essentially a parameter to the
event. The TView * lets you exclude a view from your query or notification
by passing a pointer to that view, to the function. These two functions are
your primary means of communicating information between your
document and its views. _

Both functions call views through the views' response tables. The general
purpose macro used for ObjectWindows notification events is
EV _OWLNOTIFY. The response functions forEV _OWLNOTIFY events
have the following signature:

OWL Programmers Guide

BOOL FnName(long) i

The long item used in the NotifyViews or QueryViews function call is used
for the long parameter for the response function.

You can use NotifyViews to notify your child documents, their associated
views, and the associated views of your root document of a change in data,
an update, or any other event that might need to be reflected onscreen. The
meaning of the event and the accompanying item passed as a parameter to
the event are implementation defined.

NotifyViews first calls all the document's child documents' NotifyViews
functions, which are called with the same parameters. Once all the children
have been called, NotifyViews passes the event and item to all of the
document's associated views. NotifyViews returns a BaaL. If any child
document or associated view returns FALSE, NotifyViews returns FALSE.
Otherwise NotifyViews returns TRUE.

QueryViews sends an event and accompanying parameter just like
NotifyViews. The difference is that, whereas NotifyViews returns TRUE
when any child or view returns TRUE, QueryViews returns a pointer to the
first view that returns TRUE. This lets you find a view that meets some
condition and then perform some action on that view. If no views return
TRUE, QueryViews returns o.
Another difference between NotifyViews and QueryViews is that NotifyViews
always sends the event and its parameter to all children and associated
views, whereas QueryViews stops at the first view that returns TRUE.

For example, suppose you have a document class that contains graphics
data in a bitmap. You want to know which of your associated views is
displaying a certain area of the current bitmap. You can define an event \
such as WM_CHECKRECT. Then you can set up a TRect structure
containing the coordinates of the rectangle you want to check for. The
excerpted code for this would look something like this:

Chapter 9, DocNiew objects

,
DEFINE_RESPONSE_TABLE1(TMyView, TView)

EV_OWLNOTIFY(WM_CHECKREST, EvCheckRest),

void MyDocClass: :Function()
II Set up a TRect * with the coordinates you want to send.
TRect *rect = neW TRect(lOO, 100, 300, 300) i

II QueryViews
TView *view = QueryViews(WM_CHECKRECT, (long) rect) i

20t

II Clear all changes irom the view
if (view)

view->Clear();

II The view response function gets the pointer to the rectangle
II as the long parameter to its response function.
BOOL TMyView: : EvCheckRest (long item) {

TRect *rect = (TRect *) item;

II Check to see if rect is equal to this view's.
if(*rect == this~>rect)

return TRUE;
else

return FALSE;

You can also set up your own event macros to handle view notifications.
See page 205.

Creating a view class

Constructing
TView

202

The user almost never interacts directly with a document. Instead the user
works with an interface object, such as a window, a dialog box, or whatever
type of display is appropriate for the data being presented and the method
in which itis presented. But this interface object doesn't stand on its own. A
window knows nothing about the data it displays, the document that
contains that data, or about how the user can manipulate and change the
data. All this functionality is handled by the view object.

A view forms an interface between an interface object (which can only do
what it's told to do) and a document (which doesn't know how to tell the
interface object what to do). The view's job is to bridge the gap between the
two objects, reading the data from the document object and telling the
interface object how to display that data.

This section discusses how to write a view class to work with your
document classes.

You cannot directly create~n instance of TView. TView contains a number
of pure virtual functions and placeholder functions whose functionality
must be provided in any derived classes. But you must call the TView
constructor when you are constructing your TView-derived object. The
TView constructor takes one parameter, a reference to the view's associated
document. You must provide a valid reference toa TDocument-derived
object.

OWL Programmer's Gui~e

Adding
functionality to
views

TView virtual
functions

Adding a menu

Adding a display
to a view

TView contains some pure virtual functions that you must provide in every
new view class. It also contains a few placeholder functions that have no
base class functionality. You need to provide new versions of these
functions if you plan to use them for anything.

Much like TDocument, you should not override a TView function unless that
function is a virtual. When functions in TDocument call functions in your
view, they address the view object as a TView. If you override a nonvirtual
function and the document calls that function, the document actually calls
the TView version of that function, rendering your function useless in that
context.

The following functions are declared virtual so you can override them to
provide some useful functionality. But most are not declared as pure
virtuals; you are not required to override them to construct a view. Instead,
you need to override these functions only if you plan to view them.

GetViewName returns the static name of the view. This function is declared
as a pure virtual function; you must provide a definition of this function in
your view class.

Get Window returns a TWindow * that should reference the view's associated
interface object if it has one; otherwise, GetWindow returns O.

Set Doc Title sets the view window's caption. It should be set to call the
Set Doc Title function in the interface object.

TView contains the TMenuDescr * data member ViewMenu. You can assign
any existing TMenuDescr object to this member. The menu should normally
be set up in the view's constructor. This menu is then merged with the
frame window's menu when the view is activated.

TView itself makes no provision for displaying data-it has no pointer to a
window, no graphics functions, no text display functions, and no keyboard
handling. You need to provide this functionality in your derived classes;
you can use one of the following methods to do so:

• Add a pointer to an interface object in your derived view class

• Mix in the functionality of an interface object with that of TView when
deriving your new view class

Each of these methods has its advantages and drawbacks, which are
discussed in the following sections. You should weigh the pros and cons of
each approach before deciding how to build your view class.

Chapter 9, DocNiewobjects 203

Adding pointers to
interface objects

Mixing TView with
interface objects

204

To add a pointer to an interface object to your TView-derived class, add the
member to the new class and instantiate the object in the view class'
constructor. Access to the interface object's data and function members is
through the pointer.

The advantage of this method is that it lets you easily attach and detach
different interface objects. It also lets you use different types of interface
objects by making the pointer a pointer to a common base class of the
different objects you might want to use. For example, you can use most
kinds of interface objects by making the pointer a TWindow *.

The disadvantage of this method is that event handling must go through
either the interface object or the application first. This basically forces you
to either use a derived interface object class to add your own event
handling functions that make reference to the view object, or handle the
events through the application object. Either way, you decrease your
flexibility in handling events.

Mixing TView or a TView-derived object with an interface object class gives
you the ability to display data from a document, and makes that ability
integral with handling the flow of data to and from the document object. To
mix a view class with an interface object class is a fairly straightforward
task, but one that must be undertaken with care.

To derive your new class, define the class based on your base view class
CTView or a TView-derived class) and the selected interface object. The new
constructor should call the constructors for both base classes, and initialize
any data that needs to be set up. At a bare minimum, the new class must
define any functions that are declared pure virtual in the base classes. It
should also define functions for whatever specialized screen activities it
needs to perform, and define event-handling functions to communicate
with both the interface element and the document object.

The advantage of this approach is that the resulting view is highly
integrated. Event handling is performed in a central location, reducing the
need for event handling at the application level. Control of the interface
elements does not go through a pointer but is also integrated into the new
view class.

However, if you use this approach, you lose the flexibility you have with a
pointer. You cannot quickly detach and attach new interface objects; the
interface object is an organic part of the whole view object. You also cannot
exchange different types of objects by using a base pointer to a different

OWL Programmers Guide

Closing a view

interface object classes. Your new view class is locked into a single type of
interface element.

Like most other objects, TView provides functions that let you safely close
and destroy the object.

,..., TView does fairly little. It calls its associated document's Detach View
function, thus removing itself from the document's list of views.

TView also provides a Can Close function, which calls its associated
document's CanClose function. Therefore the view's ability to close depends
on the document's ability to close.

DocNiew event handling

DocNiew event
handling in the
application object

You should normally handle Doc/View events through both the
application object and your view's interface element. You can either control
the view's display through a pointer to an interface object or mix the
functionality of the interface object with a view class (see page 203 for
details on constructing an interface element).

You can find more information about event handling and response tables in
an ObjectWindows application in Chapter 5.

The application object generally handles only a few events, indicating when
a document or a view has been created or destroyed. The dnCreate event is
posted whenever a view or document is created. The dnClose event is
posted whenever a view or document is closed.

To set up response table entries for these events, add the
EV _OWLDOCUMENT and EV _OWL VIEW macros to your response table:

• Use the EV _OWLDOCUMENT macro to check for:

• The dnCreate event when a new document object is created. The
standard name used for the handler function is EvNewDocument.
EvNewDocument takes a reference to the new TDocument-derived object
and returns void .

• The dnClose event when a document object is about to be closed. The
standard name used for the handler function is EvCloseDocument.
EvCloseDocument takes a reference to the TDocument-derived object that
is being closed and returns void.

Chapter 9, DocNiew objects 205

DocNiewevent
handling in a view

206

The response table entries and function declarations for these two
macros would look like this:

DEfINE_RESPONSE_TABLE1(MyDVApp, TApplication)

EV_OWLDOCUMENT(dnCreate, EvNewDocument),
~V_OWLDOCUMENT(dnClose, EvCloseDocument),

END_RESPONSE_TABLE;

void EvNewDocument(TDocument& document);
void EvCloseDocument(TDocument& document);

• Use the EV _OWL VIEW macro to check for:

• The dnCreate event when a new view object is constructed. The
standard name used for the handler function is EvNewView.
EvNewView takes a reference to the new TView-derived object and
returns void.

If the view contains a window interface element, either by inheritance
or through a pointer, the interface element typically has not been
created when the view is constructed. You can then modify the
interface element's creation attributes before actually calling the Create
function .

• The dnClose event when a view object is destroyed. The standard name
used for the handler function is EvCloseView. EvCloseView takes a
reference to the TView-derived object that is being destroyed and
returns void.

The response table entries and function declarations for these two
macros would look like this:

DEfINE_RES PONSE_TABLE 1 (MyDVApp, TApplication)

EV_OWLVIEW(dnCreate, EvNewView),
~V_OWLVIEW(dnClose, EvCloseView),

END_RESPONSE_TABLE;

void EvNewView(TView &view) ;
void EvCloseView(TView &view) ;

The header file docview.h provides a number of response table macros for
predefined events, along with the handler function names and type
checking for the function declarations. You can also define your own events
and functions to handle those events using the NOTIFY _SIG and
VN_DEFINE macros.

OWL Programmers Guide

Handling predefined
DocNiewevents

There area number of predefined Doc/View events. Each event has a
corresponding response table macro and handler function signature
defined. Note that the Doc/View model doesn't provide versions of these
functions. Y oumust declare the functions in your view class and provide
the appropriate functionality for each function.

Table 9.2: Predefined DocNiew event handlers

Response table macro

EV _ VN_ VIEWOPENED

EV _ VN_ VIEWCLOSED

EV _ VN_DOCOPENED

EV _ VN_DOCCLOSED

EV_VN_COMMIT

EV_VN_REVERT

EV _ VNJSDIRTY

EV _ VNJSWINDOW

Adding custom view
events

Event name Event handler Event

vnViewOpened Vn ViewOpened(TView *) Indicates that a new view has been constructed.

vn ViewClosed VnViewClosed(TView *) Indicates that a view is about to be destroyed.

vnDocOpened VnDocOpened(int) Indicates that a new document has been opened.
/

vnDocClosed VnDocClosed(int) Indicates that a document has been closed.

vnCommit VnCommi~BOOL) Indicates that changes made to the data in the
view should be committed to the document.

vnRevert VnRevet1(BOOL) Indicates that changes made to the data in the
view should be discarded and the data should be
restored from the document.

vnlsDirty VnlsDirty(void) Should return TRUE if changes have been made
to the data in the view and not yet committed to
the document, otherwise returns FALSE.

vnlsWindow VnlsWindow(HWND) Should return TRUE if the HWND parameter is
the same as that of the views display window.

All the event-handling functions used forthese messages return BOOL.

You can use the VN_DEFINE and NOTIFY _SIG macros to post your own
custom view events and to define corresponding response table macros and
event-handling functions. This section describes how to define an event
and set up the event-handling function and response table macro forthat
event.

First you must define the name of the event you want to handle. By
convention, this name should begin with the letters vn followed by the
event name. A custom view event should be defined as a const int greater
than the value vnCustomBase. You can define your event values as being
vnCustomBase plus some offset value. For example, suppose you are
defining an event called vnPenChange. The code would look something like
this:

Chapter 9, DocNiew objects 207

208

canst int vnPenChange = vnCustornBase + Ii

Next use the NOTIFY_SIC macro to specify the signature of the event
handling function. The NOTIFY_SIC macro takes two parameters, the first
being the event name and the second being the exact parameter type to be
passed to the function. The size of this parameter can be no larger than type
long; if the object being passed is larger than a long, you must pass it by
pointer. For example, suppose for the vnPenChange event, you want to pass
a TPen object to the event-handling function. Because a TPen object is quite
a bit larger than a long, you must pass the object by pointer. The macro
would look something like this:

NOTIFY_SIG(vnPenChange, TPen *)

Now you need to define the response table macro for your event. By
convention, the macro name'uses the event name, in all uppercase letters,
preceded by EV _ VN_. Use the #define macro to define the macro name.
Use the VN_DEFINE macro to define the macro itself. This macro takes
three par~meters:

• Event name

• Event-handling function name (by convention, the same as the event
name preceded by Vn instead of the vn used for the event name)

• Size of the parameter for the event-handling function; this can have four
different values:
• void
• int (size of an int parameter depends on the platform)
• long (32-bit integer or far pointer)
• pointer (size of a pointer parameter depends on the memory model)

You should specify the value that most closely corresponds to the
event-handling function's parameter type.

The definition of the response table macro for the vnPenChange event would
look something like this:

#define EV_VN_PENCHANGE \
VN_DEFINE(vnPenChange, VnPenChange, pointer)

Note that the third parameter of the VN_DEFINE macro in this case is
pointer. This indicates the size of the value passed to the event-handling
function.

OWL Programmers Guide

DocNiew properties

Property values
and names

Every document and view object contains a list of properties, along with
functions you can use to query and change those properties. The properties
contain information about the object and its capabilities. When the
document manager creates or destroys a document or view object, it sends
a notification event to the application. The application can query the object's
properties to determine how to proceed. Views can also access the
properties of their associated document.

TDocument and TView each have some general properties. These properties
are available in any classes derived from TDocument and TView. These
properties are indexed by a list of enumerated values. The first property for

. every TDocument- and TView-derived class should be PrevProperty. The last
value in the property list should be NextProperty. These two values delimit
the property list of every document and view object; they ensure that your
property list starts at the correct value and doesn't overstep another
property's value, and allows derived classes to ensure that their property
lists start at a suitable value. PrevProperty should be set to the value of the
most direct base class' NextProperty -1.

For example, a property list for a class derived from TDocument might look
something like this:

enum {

};

PrevProperty = TDocument::NextProperty-l,
Size,
StorageSize,
Nextproperty,

Note the use of the scope operator (::) when setting PrevProperty. This
ensures that you set PrevProperty to the correct value for NextProperty.

Property names are usually contained in an array of strings, with the
position of each name in the array corresponding to its enumerated
property index. But, when adding properties to a derived class, you can
store and access the strings in whatever style you want. Because you have
to write the functions to access the properties, complicated storage schemes
aren't recommended. A property name should be a simple description of
the property.

Chapter 9, DocN;ew objects 209

Table 9.3
DocNiew property

attributes

Accessing
property
information

210

Property attributes are likewise usually contained in an array, this time an
array on ints. Again, you can handle this however you like. But the usual
'practice is to have the attributes for a property contained in an array
corresponding to the value of its. property index. The attributes indicate
how the property can be accessed:

Attribute

pfGetText
pfGetBinary
pfConstant
pfSettable
pfUnknown
pfHidden

pfUserDef

Function

Property accessible as text format.
Property accessible as native non-text format.
Property cannot be changed once the object is.created.
Property settable, must supply native format.
Property defined but unavailable in this object.
Property should be hidden from normal browse (don't let the user see its
name or value).
Property has been user-defined at run time.

There are a ~umber of functions provided in both TDocument and TView for
accessing Doc/View object property information. All of these functions are
declared virtual. Because the property access functions are virtual, the
function in the most derived class gets called first, and can override
properties defined in a base class. It's the responsibility of each class to
implement property access and to resolve its property names.

You normally access a property by its index number; Use the FindProperty
function with the property name. FindProperty takes a char * parameter and
searches the property list for a property with the same name. It returns an
int, which is used as the property index for succeeding calls.

You can also use the PropertyName function to find the property name frpm
the index. PropertyName takes an int parameter and returns a char *
containing the name of the property.

You can get the attributes of a property using the PropertyFlags function.
This function takes an. int parameter, which should be the index of the
desired property, and returns an int. You can determine whether a flag is
set by using the & operator. For example, to determine whether you can get
a property value in text form, you should check to see whether the
pfGetText flag is set:

if (doc->PropertyFlags() & pfGetText)
II Get property as text

OWL Programmers Guide

Getting and setting
properties

You can use the GetProperty and SetProperty functions to query and modify
the values of a Doc/View object's properties.

The GetProperty function lets you find out the value of a property:

int GetProperty(int index, void far* dest, int textlen = O)i

where:

• index is the property index.

• dest is used by GetProperty to contain the property data.

• textlen indicates the size of the memory array pointed to by dest. If textlen
is 0, the property data is returned in binary form; otherwise the data is
returned in text form. Data can be returned in binary form only if the
pfGetBinary attribute is set; it can be returned in text form only if the
pfGetText attribute is set. To gel or set the binary data of properties, the
data type and the semantics must be known by the caller.

The SetProperty function lets you set the value of a property:

BOOL SetProperty(int index, const void far* src)

where:

• index is the property index.

• sre contains the data to which the property should be set; sre must be in
the correct native format for the property.

A derived class that duplicates property names should provide the same
behavior and data type.

Chapter 9, DocNiew objects 211

212 OWL Programmers Guide

c H A p T E R 10

Control objects

Windows provides a number of controls, which are standard user-interface
elements with specialized behavior. ObjectWindows provides several
custom controls; it also provides interface objects for controls so you can use
them in your applications. Interface objects for controls are called control
objects.

To learn more about This chapter covers the following topics:
interface objects, see

Chapter 4. • Tasks common to all control objects

Control classes

Table 10.1
Controls and their

ObjectWindows
classes

• Constructing and destroying control objects
• Communicating with control objects

• Using each of the different control objects

• Setting and reading control values

The following table lists all the control classes ObjectWindows provides.

Control Class name

Standard Windows controls:
List box TListBox
Scroll bar TScrollBar

Button TButton
Check box TCheckBox

Radio button TRadioButton

Group box TGroupBox
Edit control TEdit
Static control TStatic
Combo box TComboBox

Description

A list of items to choose from.
A scroll bar (like those in scrolling windows and list boxes)
with direction arrows and an elevator thumb.
A button with an associated text label.
A button consisting of a box that can be checked (on) or
unchecked (off), with an associated text label.
A button that can be checked (on) or unchecked (off),
usually in mutually exclusive groups.
A static rectangle with optional text in the upper-left corner.
A field for the user to type text in.
Visible text the user can't change.
A combined list box and edit or static control.

Chapter 10, Control objects 213

What are control
objects?

Table 10.1: Controls and their ObjectWindows classes (continued)

Custom ObjectWindows controls:
Slider THSlider and

TVSlider

Gauge TGauge

Horizontal and vertical controls
that let the user choose from an upper and lower range
(similar to scroll bars).
Static controls that display a range of process completion.

Control object example programs can be found in OWL \ OWLAPI and
OWL \OWLAPPS.

To Windows, controls are just specialized windows. In ObjectWindows,
TControl is derived from TWindow. Control objects and window objects are
similar in how they behave as child windows, and in how you create and
destroy them. Standard controls differ from other windows, however, in
that Windows handles their event messages and is responsible for painting
them. Custom ObjectWindows controls handle these tasks themselves
because the ObjectWindows control classes contain the code needed to
paint the controls and handle events.

In many cases, you can directly use instances of the classes listed in the
previous table. However, sometimes you might need to create derived
classes for specialized behavior. For example, you might derive a
specialized list box class from TListBox called TFontListBox that holds the
names of all the fonts available to your application and automatically
displays them when you create an instance of the class.

Constructing and destroying control objects

Constructing
control objects

Notifications are
described in

Chapter 4.

214

Regardless of the type of control object you're using, there are several tasks
you need to perform for each:

• Constructing the control object

• Showing the control

• Destroying the control

Constructing a control object is no different from constructing any other
child window. Generally, the parent window's constructor calls the
constructors of all its child windows. Controls communicate with parent
windows in special ways (called notifications) in addition to the usual links
between parent and child.

To construct and initialize a control object:

OWL Programmer's Guide

Adding the control
object pointer data
member

Calling control
object constructors

1. Add a control object pointer data member to the parent window.

2. Call the control object's constructor.

3. Change any control attributes.

4. Initialize the control in Setup Window.

Each of these steps is described in the following sections.

Often when you construct a control in a window, you want to keep a
pointer to the control in a window object data member. This is for
convenience in accessing the control's member functions. Here's a fragment
of a parent window object with the declaration for a pointer to a button
control object:

class TMyWindow : public TWindow

TButton *OkButton;

};

Controls that you rarely manipulate, like static text and group boxes, don't
need these pointer data members. The following example constructs a
group box without a data member and a button with a data member
(OkButton):

TMyWindow::TMyWindow(TWindow *parent, const char far *title)
: TWindow (parent , title)

new TGroupBox(this, ID_GROUPBOX, "Group box", 10, 10, 100, 100);
OkButton = new TButton(this, IDOK, "OK", 10,200,50,50, TRUE);

Some control object constructors are passed parameters that specify
characteristics of the control object. These parameters include

• A pointer to the parent window object

• A resource identifier

• The x-coordinate of the upper-left corner

• The y-coordinate of the upper-left corner

• The width

• The height

• Library ID (optional)

Chapter 10, Control objects 215

Changing control
attributes

Initializing the
control

216

For example, one of TListBox's constructors is declared as follows:

TListBox{TWindow *parent, int id,
int x, int y, int w, int h,
TLibld libld = 0) i

There are also constructors for associating a control object with an interface
element (for example a dialog box) created from a resource definition:

TListBox{TWindow* parent, int resourceld, TModule* module = 0) i

All control objects get the default window styles WS_CHILD, WS_ VISIBLE,
WS_GROUP, and WS_TABSTOP. If you w~nt to change a control's style,
you manipulate its Attr.Style, as described in Chapter 6. Each control type
also has other styles that define its particular properties.

Each control object inherits certain window styles from its base classes. You
should rarely assign a value to Attr.Style. Instead, you should use the
bitwise assignment operators (1= and &=) to "mask" in or out the window
style you want. For example:

II mask in the WS_BORDER window style
Attr.Style 1= WS_BORDERi

II mask out the WS_VSCROLL style
Attr.Style &= -WS_VSCROLLi

Using the bitwise assignment operators helps ensure that you don't
inadvertently remove a style.

A control object's interface element is automatically created by the
Setup Window member function inherited by the parent window objeCt.
Make sure that when you derive new window classes, you call the base
class' Setup Window member function before attempting to manipulate its
controls (for example, by calling control object member functions, sending
messages to those controls, and so on).

You must not initialize controls in their parent window object's constructor.
At that time, the controls' interface elements haven't yet been created.

Here's a typical Setup Window:

void TMyWindow::Setupwindow{)
{

TWiqdow: :SetupWindow{)i

listl->AddString ("Item 1") i
listl->AddString (" Item 2") i

II creates child controls

OWL Programmers Guide

Showing controls

Destroying the
control

It's not necessary to call the Windows function Show to display controls.
Controls are child windows, and Windows automatically displays and
repaints them along with the parent window. You can use Show, however,
to hide or reveal controls on demand.

Destroying controls is the parent window's responsibility. The control's
interface element is automatically destroyed along with the parent window
when the user closes the window or application. The parent window's
destructor automatically destroys its' child window objects (including child
control objects).

Communicating with control objects

Manipulating
controls

Responding to
controls

Communication between a window object and its control objects is similar
in some ways to the communication between a dialog box object and its
controls. Like a dialog box, a window needs a mechanism for manipulating
its controls and for responding to control events, such as a list box
selection.

One way dialog boxes manipulate their controls is by sending them
messages using member functions inherited from TWindow (see Chapter 6),
with a control message like LB_ADDSTRING. Control objects greatly
simplify this process by providing member functions that send control
messages for you. TListBox::AddString, for example, takes a string as its
parameter and adds it to the list box by calling the list box object's
HandleMessage member function:

TListBox: :AddString(const char far* str)
{

return (int) HandleMessage (LB_ADDSTRING, 0, (LPARAM)str);

This example shows how you can call the control objects' member
functions via a pointer:

ListBoxl->AddString("Atlantic City"); Ilwhere ListBoxl is a TListBox *

When a user interacts with a control, Windows sends various control
messages. To learn how to respond to control messages, see Chapter 4.

Chapter to, Control objects 217

Making a window
act like a dialog
box

A dialog box lets the user use the Tab key to c;:ycle through all of the dialog
box's controls. It also lets the user use the arrow keys to select radio buttons
in a group box. To emulate this keyboard interface for windows with
controls, call EnableKBHandler in the window object's constructor.

Using particular controls

Using list box
controls

Constructing list
box objects

The default control
styles are

WS_CHILD,
WS_ VISIBLE,

WS_GROUP, and
WS_TABSTOP.

Modifying list boxes

218

Each type of control operates somewhat differently from the others. In this
section, you'll find specific information on how to use the objects for each
of the standard Windows controls and the custom controls supplied with
ObjectWindows.

Using a list box is the simplest way to ask the user to pick something from a
list. The TListBox class encapsulates list boxes. TListBox defines member
functions for four purposes:

• Creating list boxes

• Modifying the l~st of items

• Inquiring about the list of items

• Finding out which item the user selected

One of TListBox's constructors takes seven parameters: a parent window, a
resource identifier, the control's x, y., h, and w dimensions, and an optional
library identifier:

TListBox(TWindow *parent, int resourceld, int x, int y, int w, int h, TLibld
libld = 0).;

TListBox gets the default control styles and adds LBS_ST ANDARD, which
is a combination of LBS_NOTIFY (to receive notification messages),
WS_ VSCROLL (to have a vertical scroll bar), LBS_SORT (to sort the list
items alphabetically), and WS_BORDER (to have a border). If you want a
different list box style, you can modify Attr.Style in the list box object's
constructor or in its parent's constructor. For example, for a list box that
doesn't sort its items, use the following code:

listbox = new TListBox(this, ID_LISTBOX, 20, 20, 340, 100);
listbox->Attr.Style&= -LBS_SORT;

After you create a list box, you need to fill it with l~st items (which must be
strings). Later, you can add, insert, or remove items or clear the list

OWL Programmers Guide

Table 10.2
TListBox member

functions for
modifying list boxes

Querying list boxes

Table 10.3
TListBox member

functions for querying
list boxes

completely. The following table summarizes the member functions you use
to perform these actions.

Member function

C/earList
DirectoryList
AddString
/nsertString
De/eteString
SetSellndex, SetSe/, or
SetSe/String
SetSe/Strings, SetSellndexes, or
SetSelltemRange
SetTop/ndex
SetTabStops
SetHorizonta/Extent

SetCo/umnWidth
SetCaretlndex
SetltemData

SetltemHeight

Description

Delete every item.
, Put file names in the list.

Add an item.
Insert an item.
Delete an item.
Select an item.

Select multiple items.

Scroll the list box so the specified item is visible.
Set tab stops for multicolumn list boxes.
Set number of pixels by which the list box can
scroll horizontally.
Set width of all columns in multicolumn list boxes.
Set index of the currently focused item.
Set a DWORD value to be associated with the
specified index.
Set the height of item at the specified index or
height of all items.

There are several member functions you can call to find out information
about the list box or its item list. The following table summarizes the list
box query member functions.

Member functions

GetCount
FindString or FindExactString
GetTop/ndex
GetCaretlndex
GetHorizonta/Extent
GetltemData
GetltemHeight
GetltemRect
GetSe/Count
GetSellndex or GetSe/
GetSe/String
GetSe/Strings or GetSellndexes
GetString
GetStringLen

Description

Number of items in the list.
Find string index.
Index of the item at the top of the list box.
Index of the currently focused item.
Number of pixels the list box can scroll horizontally.
DWORD data set by SetltemData.
Height, in pixels, of the specified item.
Rectangle used to display the specified item.
Number of selected items.
Indexof the selected item.
Selected item.
Selected items.
Item at a particular index.
Length of a particular item.

Chapter 10, Control objects 219

Responding to list
boxes

Table 10.4
List box notification

messages

Using static
controls '

220

The member functions for modifying and querying list boxes let you set
values or find out the status of the control at any given time. To know what
a user is doing to a list box at run time, however, you have to respond to
notification messages from the control.

There are only a few things a user can do with a list box: scroll through the
list, click an item, and double-click an item. When the user does one of
these things, Windows sends a list box notification message to the list box's
parent window. Normally, you define notification-response member
functions in the parent window object to handle notifications for each of the
parent's controls.

The following table summarizes the most common list box notifications:

Event response table macro Description

EV_LBN_SELCHANGE
EV_LBN_DBLCLK
EV_LBN_SELCANCEL
EV _LBN_SETFOCUS

An item has been selected with a single mouse click.
An item has been selected with a double mouse click.
The user has deselected an item.
The user has given the list box the focus by clicking or
double-clicking an item, or by using Tab. Precedes
LBN_SELCHANGE notification.
The user has removed the focus from the list box by
clicking another control or pressing Tab.

Here's a sample parent window object member function to handle an
LBN_SELCHANGE notification:

DEFINE_RESPONSE_TABLE1(TLBoxWindow, TFrarneWindow)
EV_LBN_SELCHANGE(ID_LISTBOX, EvListBoxSelChange),

END_RESPONSE_TABLE;

void TLBoxwindow::EvListBoxSelChange()
{

int index = ListBox->GetSellndex();
if (ListBox->GetStringLen(index) < 10)

char string[10];
ListBox->GetSelString(string, sizeof(string));
MessageBox (string, "You selected:", MB_OK) i

Static controls are usually unchanging units of text or simple graphics. The
user doesn't interact with static controls, although your application can
change the static control's text.

OWL Programmers Guide

Constructing static
control objects

The default control
styles are

WS_CHILD,
WS_ VISIBLE,

WS_GROUP, and
WS_TABSTOP.

Modifying static
controls

See EXAMPLES \ OWL \ OWLAPI\ STATIC for an example showing static
controls.

Because the user never interacts directly with a static control, the
application doesn't receive control-notification messages from static
controls. Therefore, you can construct most static controls with -1 as the
controlID. However, if you want to use TWindow::SendDlgItemMessage to
manipulate the static control, you need a unique ID.

One of TStatic's constructors is declared as follows:

TStatic(TWindow *parent, int resourceId, const char far *title, int x, int y,
int w, int h, UINT textLen, TLibId libId = 0);

It takes the seven parameters commonly found in this form of a control
object constructor (a parent window, a resource ID, the control's x, y, h, and
w dimensions, and an optional library ID), and two parameters specific to
static controls: the text string the static control displays and its maximum
length (including the terminating NULL). A typical call to construct a static
control looks like this:

new TStatic(this, -1, "Sample &Text" , 170, 20, 200, 24, 0);

If you want to be able to change the static control's text, you need a data
member in the parent window object so you can call the static control
object's member function. If the static control's text doesn't need to change,
you don't need a data member.

TStatic gets the default control styles, adds SS_LEFT (to left-align the text),
and removes the W5_TAB5TOP style (to prevent the user from selecting
the control using Tab). To change the style, modify Attr.Style in the static

, control object's constructor. For example, the following code centers the
control's text:

Attr.Style = (Attr.Style & -SS_LEFT) ISS_CENTER;

To indicate a mnemonic for a nearby control, you can underline one or
more characters in the static control's text string. To do this, insert an
ampersand & in the string immediately preceding the character you want
underlined, For example, to underline the.T in Text, use &Text. If you want
to use an ampersand in the string, use the static style SS_NOPREFIX.

TStatic has two member functions for altering the text of a static control:
SetText sets the text to the passed string, and Clear erases the text. You can't
change the text of ~tatic controls created with the 55_5IMPLE style.

Chapter 10, Control objects 221

Querying static
controls

Using button
controls

Constructing
buttons

Responding to
buttons

222

TStatic::GetTextLen returns the length of the static control's text. To get the
text itself, use TStatic::GetText.

Buttons (sometimes called push buttons or command buttons) perform a
task each time the button is pressed. There are two kinds of buttons: default
buttons and nondefault buttons. A default button, distinguished by the
button style BS_DEFPUSHBUTTON, has a bold border that indicates the
default user response. Nondefault buttons have the button style
BS_PUSHBUTTON.

See EXAMPLES\OWL \ OWLAPI \ BWCC for an example of button
controls.

One of TButton's constructors takes the seven parameters commonly found
in a control object constructor (a parent window, a resource identifier, the
control's x, y, h, and w dimensions, and an optional library identifier), plus a
text string that specifies the button's label, and a BaaL flag that indicates
whether the button should be a default button. Here's the constructor
declaration:

TButton(TWindow *parent, int resourceId, const char far *text, int X, int Y, int
W, int H, BOOL isDefault = FALSE, TLibId libId = 0);

A typical button would be constructed like this:

btn = new TButton(this, ID_BUTTON, "DO_IT!", 38, 48, 316, 24, TRUE);

When the user clicks a button, the button's parent window receives a
notification message. lithe parent window object intercepts the message, it
can respond to these events by displaying a dialog box, saving a file, and
soon.

To! intercept and respond to button messages, define a command response
member function for the button. The following example uses ID
ID _BUTTON to handle the response to the user clicking the button:

DEFINE_RESPONSE_TABLE1(TTestWindow, TFrameWindow)
EV_COMMAND(ID_BUTTON, HandleButtonMsg),

END_RESPONSE_TABLE;

void TTestWindow::HandleButtonMsg()
{

II Button was pressed

OWL Programmers Guide

Using check box
and radio button
controls

Constructing check
boxes and radio
buttons

A check box generally presents the user with a two-state option. The user
can check or uncheck the control, or leave it as is. In a group of check boxes,
any or all might be checked. For example, you might use a check box to
enable or disable the use of sound in your application.

Radio buttons, on the other hand, are used for selecting one of several
mutually exclusive options. For example, you might use radio buttons to
choose between a number of sounds in your application.

TCheckBox is derived from TButton and represents check boxes. Since radio
buttons share some behavior with check boxes, TRadioButton is derived
from TCheckBox.

Check boxes and radio buttons are sometimes collectively referred to as
selection boxes. While displayed on the screen, a selection box is either'
checked or unchecked. When the user clicks a selection box, it's an event,
generating a Windows notification. As with other controls, the selection
box's parent window usually intercepts and acts on these notifications.

See EXAMPLES \ OWL \ OWLAPI\ BUTTON for radio button and check box
control examples.

TCheckBox and TRadioButton each have a constructor that takes the seven
parameters commonly found in a control object constructor (a parent
window, a resource identifier, the control's x, y, h, and w dimensions, and
an optional library identifier). They also take a text string and a pointer to a
group box object that groups the selection boxes. If the group box object
pointer is zero, the selection box isn't part of a group box. Here are one
each of their constructors: .

TCheckBox(TWindow *parent, int resourceld, const char far *title, int x, int y,
int w, int h, TGroupBox.*group, TLibld libld = a)i

TRadioButton(TWindow *parent, int resourceld, const char far *title, int x, int
y, int w, int h, TGroupBox *group, TLibld libld = 0) i

The following listing shows some typical constructor calls for selection
boxes.

CheckBox = new TCheckBox(this, ID_CHECKBOX, "Check Box Text", 158, 12, 150, 26,
0) i

GroupBox = new TGroupBox(this, ID_GROUPBOX, "Group Box", 158, 102, 176, 108) i

Chapter 10, Control objects 223

Modifying selection
boxes

Table 10.5
TCheckBox member

functions for
modifying selection

boxes

Querying selection
boxes

Table 10.6
TCheckBox member

functions for querying
selection boxes

224

RButton1 = new TRadioButton(this, ID_RBUTTON1, "Radio Button 1" ,174, 128, 138,
24, GroupBox) i

RButton2 = new TRadioButton(this, rD_RBUTTON2, "Radio Button 2", 174, 162, 138,
24, GroupBox) i

Check boxes by default have the BS_AUTOCHECKBOX style, which means
that Windows handles a click on the check box by toggling the check box.
Without BS_AUTOCHECKBOX, you'd have to set the check box's state
manually. Radio buttons by default have the BS_AUTORADIOBUTTON
style, which means that Windows handles a click on the radio button by
checking the radio button and unchecking the other radio buttons in the
group. Without BS_AUTORADIOBUTTON, you'd have to intercept the
radio button's notification messages and do this work yourself.

Checking and unchecking a selection box seems like a job for the
application user, not your application. But in some cases, your application
needs control over a selection box's state. For example, if the user opens a
text file, you might want to automatically check a check box labeled "Save
as ANSI text." TCheckBox defines several member functions for modifying a
check box's state:

Member function

Check or SetCheck(BF_CHECKED)
Uncheckor SetCheck(BF_UNCHECKED)
Toggle
SetState
SetStyle

Description

Check
Uncheck
Toggle
Highlight
Change the buttons style

When you use these member functions with radio buttons, ObjectWindows
ensures that only one radio button per group is checked, as long as the
buttons are assigned to a group.

Querying a selection box is one way to find out and respond to its state.
Radio buttons have two states: checked (BF _CHECKED) and unchecked
(BF _UNCHECKED). Check boxes can have an additional (and optional)
third state: grayed (BF _GRAYED). The following table summarizes the
selection-box query member functions.

Member function

GetCheck
GetState

Description

Return the check state.
Return the check, highlight, or focus state.

OWL Programmers Guide

Using group
boxes

Constructing group
boxes

Grouping controls

Responding to
group boxes

Using scroll bars

Constructing scroll
bars

In its simplest form, a group box is a labeled static rectangle that visually
groups other controls.

TGroupBox has a constructor that takes the seven parameters commonly
found in a control object constructor (a parent window, a resource
identifier, the control's x, y, h, and w dimensions, and an optional library
identifier), and also takes a text string parameter to label the group:

TGroupBox(TWindow *parent, int resourceld, const char far *text, int X, int y,

int W, int H, TLibld libld = 0);

Usually a group box visually associates a group of other controls; however,
it can also logically associate a group of selection boxes (check boxes and
radio buttons). This logical group performs the automatic unchecking
(BS_AUTOCHECKBOX, BS_AUTORADIOBUTTON) discussed on
page 224 .

. To add a selection box to a group box,. pass a pointer to the group box
object in the selection box's constructor call.

When an event occurs that might change the group box's selections (for
example, when a user clicks a button or the application calls Check),
Windows sends a notification message to the group box's parent window.
The parent window can intercept the message for the group box as a whole,
rather than responding to the individual selection boxes in the group box.
To find out which control in the group was affected, you can read the
current status of each control.

Scroll bars are the primary mechanism for changing the user's view of an
application window, a list box, or a combo box. However, you might want a
separate scroll bar to perform a specialized task, such as controlling the
temperature on a thermostat or the color in a drawing program. Use
TScrollBar objects when you need a separate, customizable scroll bar.

See EXAMPLES \ OWL \ OWLAPI\ SCROLLER for a scroll bar control
example.

TScrollBar has a constructor that takes the seven parameters commonly
found in a control object constructor (a parent window, a resource
identifier, the control's x, y, h, and w dimensions, and an optional library
identifier), and also takes a BOOL flag parameter that specifies whether the
scroll bar is horizontal. Here's a TScrollBar constructor declaration:

Chapter 10, Control objects 225

Controlling the
scroll bar range

Controlling scroll
amounts

Querying scroll bars

Modifying scroll
bars

226

TScrollBar(TWindow *parent, int resourceld, int x, int y, int w, 'int h, BOOL
isHScrollBar, TLibld libld = 0);

If you specify a height of zero for a horizontal scroll bar or a width of zero
for a vertical scroll bar, Windows gives it a standard height and width. This
code creates a standard-height horizontal scroll bar:

new TScrollBar(this, ID_THERMOMETER, 100, 150, 180, 0, TRUE);

TScrollBar's constructor constructs scroll bars with the style SBS_HORZ for
horizontal scroll bars and SBS_ VERT for vertical scroll bars. You can
specify additional styles, such as SBS_TOPALIGN, by changing the scroll
bar object's Attr.Style.

One attribute of a s(roll bar is its range, which is the set of all possible thumb
positions. The thumb is the scroll bar's sliding box that the user drags or
scrolls. Each position is associated with an integer. The parent window uses
this integer, the position, to set and query the scroll bar. By default, a scroll
bar object's range is 1 to 100.

The thumb's minimum position (at the top of a vertical scroll bar and the
left of a horizontal scroll bar) corresponds to position 1, and the thumb's,
maximum position corresponds to position 100. Use SetRange to set the
range differently.

A scroll bar has two other important attributes: its line magnitude and page
magnitude. The line magnitude, initialized to 1, is the distance, in range
units, the thumb moves when the user clicks the scroll bar's arrows. The
page magnitude, initialized to 10, is the distance, also in range units, the
thumb moves when the user clicks the scrolling area. You can change these
values by changing the TScrollBar data members LineMagnitude and
PageMagnitude.

TScrollBar has two member functions for querying scroll bars:

• GetRange gets the upper and lower ranges~

• GetPosition gets the current thumb position.

Modifying scroll bars is usually done by the user, but your application can
also modify a scroll bar directly:

• SetRange sets the scrolling range.

• SetPosition sets the thumb position.

• DeltaPos moves the thumb position.

OWL Programmers Guide

Responding to
scrol/-bar messages

When the user moves a scroll bar's thumb or clicks the scroll arrows,
Windows sends a scroll bar notification message to the parent window. If
you want your window to respond to scrolling events, respond to the
notification messages.

Scroll bar notification messages are slightly different from other control
notification messages. They're based on the WM_HSCROLL and
WM_ VSCROLL messages, rather than WM_ COMMAND command
messages. Therefore, to respond to scroll bar notification messages, you
need to define EvHScroll or EvVScroll event response functions, depending
on whether the scroll bar is horizontal or vertical:

class TTestWindow : public TFrameWindow {

};

public:
TTestWindow(TWindow* parent, const char* title);
virtual void SetupWindow();

void EvHScroll(DINT code, DINT pos, HWND wnd);

DECLARE_RESPONSE_TABLE(TTestWindow);

DEFINE_RESPONSE_TABLE1(TTestWindow, TFrameWindow)
EV_WM_HSCROLL,

END_RESPONSE_TABLE;

Usually, you respond to all the scroll bar notification messages by
retrieving the current thumb position and taking appropriate action. In that
case, you can ignore the notification code:

void TTestWindow::EvHScroll(UINT code, DINT pos, HWND wnd)
{ ,

TFrameWindow::EvHScroll(); II perform default WM_HSCROLL processing
int newPos = ScrollBar->GetPosition();
II do some processing with newPos

Avoiding thumb tracking messages
You might not want to respond to the scroll bar notification messages while
the user is dragging the scroll bar's thumb, because the user is usually
dragging the thumb quickly, generating many notification messages. It's
more efficient to wait until the user has stopped moving the thumb, and
then respond. To do this, screen out the notification messages that have the
SB_THUMBTRACK code.

Chapter 10, Control objects 227

Table 10.7
Notification. codes

and TScrollBar
member functions

Using sliders and
gauges

228

Specializing scroll bar behavior
You might want a scroll bar object respond to its own notification
messages. TWindow has built-in support for dispatching scroll bar
notification messages back to the scroll bar. TWindow::EvHScroll or
TWindow::EvVScroll execute the appropriate TScrollBar member function
based on the notification code. For example:

class TSpecializedScrollBar : public TScrollBar {
public:

virtual void SBTop();
};

void TSpecializedScrollBar: :SBTop()
TScrollBar::SBTop() ;
: :sndPlaySound("AT-TOP.WAV", SND_ASYNC); II play sound
}

Be sure to call the base member functions first. They correctly update the
scroll bar to its new position. .

The following table associates notification messages with the
corresponding TScrollBar member function:

Notification message

SB_L1NEUP
SB_L1NEDOWN
SB_PAGEUP
SB_PAGEDOWN
SB_ THUMBPOSITION
SB_ THUMBTRACK
SB_TOP
SB_BODOM

TScrollBar member function

SBUnet
SBUneJ,
SBPaget
SBPageJ,
SBThumbPosition
SB Thumb Track
SBTop
SBBottom

Sliders are specialized scrollers. The class TSlider is derived from TScrollBar.
Sliders are used for nonscrolling position information. Two classes derived
from TSlider, THSlider and TVSlider, implement vertical and horizontal
slider versions.

Gauges are controls that display duration or other information about an
ongoing process. Class TGauge implements gauges, and is derived from
class TControl. A parameter to the constructor determines whether you get
a horizontal or vertical gauge. Horizontal gauges are usually used to
display process information, and vertical gauges are usually used to
display analog information.

See EXAMPLES\OWL \ OWLAPI\ SLIDER for slider and gauge control
examples. .

OWL Programmers Guide

Using edit
controls

Constructing edit
controls

Using the Clipboard
and the Edit menu

Edit controls are interactive static controls. They're rectangular areas that
can be filled with text, modified, and cleared by the user or application.
Edit controls are very useful as fields for data entry screens. They support
the following operations:

• User text input

• Dynamic display of text (by the application)

• Cutting, copying, and pasting to the Clipboard

• Multiline editing (good for text editors)

See EXAMPLES \ OWL \OWLAPI\ VALIDATE for an edit controls example.

One of TEdit's constructors takes parameters for an initial text string,
maximum string length (including the terminating NULL), and a BaaL
flag specifying whether or not it's a multiline edit control (in addition to the
parent window, resource identifier, and placement coordinates). This TEdit
constructor is declared as follows:

TEdit(TWindow *parent; int resourceId, const char far *text,int x, int y, int
w, int h, UINT textLen, BOOL multiline = FALSE, TLibId libId = 0);

By default, the edit control has the styles ES_LEFT (for left-aligned text),
ES_AUTOHSCROLL (for automatic horizontal scrolling), and
WS_BORDER (for a visible border surrounding the edit control). Multiline
edit controls get the additional styles ES_MULTILINE (specifies a multiline
edit control), ES_AUTOVSCROLL (automatic vertical scrolling),
WS_ VSCROLL (vertical scroll bar), and WS_HSCROLL (horizontal scroll
bar).

The following are typical edit control constructor calls, one for a single-line
control, the other multiline:

Editl = new TEdit(this, ID_EDITl, "Default Text", 20, 50, 150, 30, MAX_TEXTLEN,
FALSE) ;

Edit2 = new TEdit(this, ID_EDIT2, "",260,50,150,30, MAlCTEXTLEN, TRUE);

You can directly transfer text between an edit control object and the
Windows Clipboard using TEdit member functions. You probably want to
give users access to these member functions by giving your window an
Edit menu.

Edit control objects have built-in responses to menu items like Edit I Copy
and Edit I Undo. TEdit has command response member functions, such as

Chapter 10, Control objects 229

Table 10.8
TEd it member

functions and Edit
menu commands

Querying edit
controls

Table 10.9
TEdit member

functions for querying
edit controls

230

CmEditCopyand CmEditUndo, which ObjectWindows invokes in response
to users choosing items from the parent window's Edit menu.

The table below shows the Clipboard and editing member functions and
the menu commands that invoke them.

Member function

Copy
Cut
Undo
Paste
DeleteSelection
Clear

Menu command

CM_EDITCOPY
CM_EDITCUT
CM_EDITUNDO
CM_EDITPASTE
CM_EDITDELETE
CM_EDITCLEAR

Description

Copy text to Clipboard.
Cut text to Clipboard.
Undo last edit.
Paste text from Clipboard.
Delete selected text.
Clear entire edit control.

To add an editing menu to a window that contains edit control objects,
define a menu resource for the window using the menu commands listed
above. You don't need to write any new member functions.

Often, you want to query an edit control to store the entry for later use.
TEdit has a number of querying member functions. Many of the edit control
query and modification member functions return, or require you to specify,
a line number or a character's position in a line. All of these indexes start at
zero. In other words, the first line is line zero and the first character of a line
is character zero. The following table summarizes TEdit's query member
functions.

Member function

IsModified
GetText
GetLine
GetNumLines
GetLineLength
GetSelection
GetSubText
GetLinelndex
GetLineFromPos
GetRect
GetHandle
GetFirstVisibleLine
GetPasswordChar
Getll'tfJrdBreakProc
Can Undo

Description

Find out if text has changed.
Retrieve all text.
Retrieve a line.
Get number of lines.
Get length of a given line.
Get index of selected text.
Get a range of characters.
Count characters before a line.
Find the line containing an index.
Get formatting rectangle.
Get memory handle.
Get index of first visible line.
Get character used in passwords.
Get word-breaking procedure.
Find out if edit can be undone.

Text that spans lines in a multiline edit control contains two extra
characters for each line break: a carriage return ('\r') and a line feed ('\n').

OWL Programmers Guide

Modifying edit
controls

Table 10.10
TEd it member

functions for
modifying edit

controls

Using combo
boxes

TEd it's member functions retain the text's formatting when they return text
from a multiline edit control. When you insert this text back into an edit
control, paste it from the Clipboard, write it to a file, or print it to a printer,
the line breaks appear as they did in the edit control. When you use query
member functions to get a specified number of characters, be sure to
account for the two extra characters in a line break.

Many uses of edit controls require that your application explicitly
substitute, insert, clear, or select text. TEdit supports those operations, plus
the ability to force the edit control to scroll.

Member function

Clear
DeleteSelection
DeleteSub Text
DeleteLine
Insert
Paste
SetText
SetSelection
Scroll
ClearModify
Search
SetRect or SetRectNP
FormatLines
SetTabStops
SetHandle
SetPasswordChar
SetReadOnly
SetWordBreakProc
EmptyUndoBuffer

Description

Delete all text.
Delete selected text.
Delete a range of characters.
Delete a line of text.
Insert text.
Paste text from Clipboard.
Replace all text.
Select a range of text.
Scroll text.
Clear the modified flag.
Search for text.
Set formatting rectangle.
Turn on or off soft line breaks.
Set tab stops.
Set local memory handle.
Set password character.
Make the edit control read-only.
Set word-breaking procedure.
Empty undo buffer.

A combo box control is a combination of two other controls: a list box and
an edit or static control. It serves the same purpose as a list box-it lets the
user choose one text item from a scrollable list of text items by 'clicking the
item with the mouse. The edit control, grafted to the top of the list box,
provides another selection mechanism, allowing users to type the text of
the desired item. If the list box area of the combo box is displayed, the
desired item is automatically selected. TComboBox is derived from TListBox .
and inherits its member functions for modifying, querying, and selecting
list items. In addition, TComboBox provides member functions for
manipulating the list part of the combo box, which, in some types of combo
boxes, can drop down on request.

See OWLAPPS\OWLCMD for a combo box control example.

Chapter 10, Control objects 231

Varieties of combo
boxes

Table 10.11
Summary of combo

box styles

Choosing combo
box types

232

There are three types of combo boxes: simple, drop down, and drop down
list. All combo boxes show their edit area at all times, but some can show
and hide their list box areas. The following table summarizes the properties
of each type of combo box.

Style

Simple
Drop down
Drop down list

Can hide list?

No
Yes
Yes

Text must match list?

No
No
Yes

From a user's perspective, these are the distinctions between the different
styles of combo boxes:

• A simple combo box cannot hide its list box area. Its edit area behaves
just like an edit control; the user can enter and edit text, and the text
doesn't need to match one of the items in the list. If the text does match,
the corresponding list item is selected.

• A drop down combo box behaves like a simple combo box, with one
exception. In its initial state, its list area isn't displayed. It appears when
the user clicks on the icon to the right of the edit area. When drop down
combo boxes aren't being used, they take up less space·than a simple
combo box or a list box.

• The list area of a drop down list combo box behaves like the list area of a
drop down combo box-it appears only when needed. The two combo
box types differ in the behavior of their edit areas. Whereas drop down
edit areas behave like regular edit controls, drop down list edit areas are
limited to displaying only the text from one of their list items. When the
edit text matches the item text, no more characters can be entered.

Drop down list combo boxes are useful in cases where no other selection is
acceptable besides those listed in the list area. For example, when choosing
a printer, you can only choose a printer accessible from your system.

On the other hand, drop down combo boxes can accept entries other than
those found in the list. A typical use of drop down combo boxes is selecting
disk files for opening or saving. The user can either search through
directories to find the appropriate file in the list, or type the full path name
and file name in the edit area, regardless of whether the file name appears
in the list area.

OWL Programmers Guide

Constructing
combo boxes

Modifying combo
boxes

Table 10.12
TComboBox member

functions for
modifying combo

boxes

Querying combo
boxes

TComboBox has a constructor that takes the seven parameters commonly
found in a control object constructor (a parent window, a resource
identifier, the control's x, y, h, and w dimensions, and an optional library
identifier), and also style and maximum text length parameters.
TComboBox's constructor is declared like this:

TComboBox(TWindow *parent, int id, int x, int y, int w, int h, DWORD style, WORD
textLen, TLibId libId = 0);

All combo boxes have the styles WS_CHILD, WS_ VISIBLE, WS_GROUP,
WS_TABSTOP, CBS_SORT (to sort the list items), CBS_AUTOHSCROLL
(to let the user enter more text than fits in the visible edit area), and
WS_ VSCROLL (vertical scroll bar). The style parameter you supply is one
of the Windows combo box styles CBS_SIMPLE, CBS_DROPDOWN, or
CBS_DROPDOWNLIST. The text length specifies the maximum number of
characters allowed in the edit area.

The following lines show a typical combo box constructor call, constructing
a drop down list combo box with an unsorted list:

Cornbol = new TComboBox(this, ID_COMB01, 190, 30, 150, 100, CBS_SIMPLE, 20);

Combol->Attr.Style &= -CBS_SORT;

TComboBox defines several member functions for modifying a combo box's
list and edit areas. The following table summarizes these member
functions.

Because TComboBox is derived from TListBox, you can also use TListBox
member functions to manipulate a combo box's list area.

Member function

SetText
SetEditSel
Clear
ShowList or ShowLis~TRUE)
HideListor ShowLis~FALSE)
SetExtendedUI

Description

Replace all text in the edit area.
Select text in the edit area.
Delete all text in the edit area.
Show the list area.
Hide the list area.
Set the extended combo box U I.

TComboBox adds several member functions to those inherited from TListBox
for querying the contents of a combo box's edit and list areas. The following
table summarizes these member functions.

Chapter 10, Control objects 233

Table 10.13
TComboBox member
functions for querying

combo boxes

Member function

GetTextLen
GetText
GetEditSel
GetDroppedControlRect
GetDroppedState
GetExtendedUI

Description

Get length of text in edit area.
Retrieve all text in edit area.
Get indexes of selected text in edit area.
Get rectangle of dropped-down list.
Determine if list area is visible.
Determine if combo box has extended UI.

Setting and reading control values

Using transfer
buffers

Associating control
objects with control

interface elements is
described in

Chapter 8.

234

To manage complex dialog boxes or windows with many child-window
controls, you might create a derived class to store and retrieve the state of
the dialog box or window controls. The state of a control includes the text
of an edit control, the position of a scroll bar, and whether a radio button is
checked.

As an alternative to creating a derived class, you can use a structure to
represent the state of the dialog box's or window's controls. This structure is
called a transfer buffer because control states are transferred to the buffer
from the controls and to the controls from the buffer.

For example, your application can bring up a modal dialog box and, after
the user closes if, extract information from the transfer buffer about the
state of each control. Then, if the user brings up the dialog box again, you
can transfer the control states from the transfer buffer. In addition, you can
set the initial state of each control based on the transfer buffer. You can also
explicitly transfer data in either direction at any time, such as to reset the
states of the controls to their previous values. A window or modeless
dialog box with controls can also use the transfer mechanism to set or
retrieve state information at any time. .

The transfer mechanism requires the use of ObjectWindows objects to
represent the controls for which you'd like to transfer data. To use the
transfer mechanism, you have to do three things:

• Define the transfer buffer, with an instance variable for each control for
which you want to transfer data.

• Define the corresponding window or dialog box.

• Transfer the data.

OWL Programmers Guide

Defining the
transfer buffer

The type of the
control determines

the type of member
needed in the transfer

buffer.

Table 10.14
Transfer buffer

members for each
type of control

The transfer buffer is a structure with one member for each control
participating in the transfer. These members are known as instance variables.
A window or dialog box can also have controls with no states to transfer.
For example, by default, buttons, group boxes, and static controls don't
participate in transfer.

To define a transfer buffer, define an instance variable for each participating
control in the dialog box or window. It isn't necessary to define an instance
variable for every control, only for those controls you want to transfer
values to and from. The transfer buffer stores one of each type of control,
except buttons, group boxes, and static controls. For example:

struct TSampleTransferStruct
{

};

char editCtl[sizeOfEditCtlj;
WORD checkBox;
WORD radioButton;
TListBoxData *listBox;
TComboBoxData *comboBox;
TScrollBarData *scrollBar;

II edit control
II check box
II radio button
II list box
II combo box
II scroll bar

Each type of control has different information to store. The following table
explains the transfer buffer for each of ObjectWindows' controls.

Control type

Static

Edit

List box

Combo box

Check box
Radio button

Type

char array

char array

TListBoxData*

Description

A character array up to the maximum length of text
allowed, plus the terminating NULL. By default, static
controls don't participate in transfer, but you can explicitly
enable them.

A character array up to the maximum length of text
allowed, plus the terminating NULL.

A pointer to an instance of the TListBoxData class;
TListBoxData has several members for holding the list box
strings, item data, and the selected indexes.

TComboBoxData * A pointer to an instance of the TComboBoxData class;
TComboBoxData has several members for holding the
combo box list area strings, item data, the selection index,
and the contents of the edit area.

WORD BF_CHECKED,BF_UNCHECKED,
BF _GRAYED indicating the selection box state.

Chapter 10, Control objects 235

List box transfer

Table 10.15
TListBoxData data

members

Table 10.16
TListBoxData

member functions

Combo box transfer

236

Table 10.17
TComboBoxData

data members

Table 10.14: Transfer buffer members for each type of control (continued)

Scroll bar TScrollBarData* A pointer to an instance of TScrollBarData;
TScrollBarData has three int members: LowValue to hold
the minimum range; High Value to hold the maximum
range; and Position to hold the current thumb position.

Because list boxes need to transfer several pieces of information (strings,
item data, and selection indexes), the transfer buffer uses a class called
TListBoxData. TListBoxData has several data members to hold the list box
information:

Data member

ItemDatas

Sellndices

Strings

Type Description

TDwordArray* Contains the item data DWORD for each item in the list
box.

TlntArray* Contains the indexes of each selected string (in a
multiple-selection list box).

TStringArray* Contains all the strings in the list box.

TListBoxData also has member functions to manipulate the list box data:

Member function

AddltemData
AddString
AddStringltem

GetSelString
GetSelStringLength
ResetSelections
Select
SelectString ,

Description

Adds item data to the ltemDatas array.
Adds a string to the Strings array, and optionally selects it.
Adds a string to the Strings array, optionally selects it, and adds item
data to the ltemDatas array.
Get the selected string at the given index.
Returns the length of the selected string at the given index.
Removes all selections from the Sellndices array.
Selects the string at the given index.
Selects the given string.

Combo boxes need to transfer several pieces of information (strings, item
9.ata, selected item, and the index of the selected item). The transfer buffer
for combo boxes is a class called TComboBoxData. TComboBoxData has
several data members to hold the combo box information:

Data member

ltemDatas

Selection
Strings

Type

TDwordArray*

char*
TStringArray*

Description

Contains the item data DWORD for each item in the list
box.
Contains the selected string.
Contains all the strings in the list box.

OWL Programmer's Guide

Table 10.18
TComboBoxData
member functions

Defining the
corresponding
window or dialog
box

Using transfer with
a dialog box

Using transfer with
a window

TComboBoxData also has several member functions to manipulate the
combo box information:

Member function

A ddltemData
AddString
AddStringltem

Description

Adds item data to the ltemDatas array.
Adds a string to the Strings array, and optionally selects it.
Adds a string to the Strings array, optionally selects it, and adds item
data to the ItemDatas array.

A window or dialog box that uses the transfer mechanism must construct
its participating control objects in the exact order in which the
corresponding transfer buffer members are defined. To enable transfer for a
window or dialog box object, call SetTransferBuffer and pass a pointer to the
transfer buffer.

Because dialog boxes get their definitions and the definitions of their
controls from resources, you should construct control objects using the
constructors that take resource IDs. For example:

struct TTransferBuffer {
char edit[30l;
TListBoxData *listBox;
TScrollBarData *scrollBar;

TTransferDialog::TTransferDialog(TWindow* parent, int resId)
TDialog(parent, resId),
TWindow(parent)

new TEdit(this, ID_EDIT, 30);
new TListBox(this, ID_LISTBOX);
new TScrollBar(this, ID_SCROLLBAR);

SetTransferBuffer(&TTransferBuffer) ;

Control objects you construct like this automatically have transfer enabled
(except for button, group box, and static control objects). To explicitly
exclude a control from the transfer mechanism, call its DisableTransfer
member function after constructing it.

Controls constructed in a window have transfer disabled by default. To
enable transfer, call the control object's EnableTransfer member function:

ListBox = new TListBox(this, ID_LISTBOX, 20, 20, 340, 100);
ListBox->EnableTransfer();

Chapter 10, Control objects 237

Transferring the
data

Transferring data to
a window

Transferring data
from a dialog box

Transferring data
from a window

Supporting transfer
for customized
controls

238

In most cases, transferring data to or from a window is automatic, but you
can also explicitly transfer data at any time.

Transfer to a window happens automatically when you construct a
window object. The constructor calls Setup Window to create an interface
element to represent the window object; it then calls TransferData to load
any data from the transfer buffer. The window object's Setup Window calls
Setup Window for each of its child windows as well, so each of the child
windows has a chance to transfer its data .. Because the parent window sets
up its child windows in the order it constructed them, the data in the
transfer buffer must appear in that same order.

When a modal dialog box receives a command message with a control ID
of IDOK, it automatically transfers data from the controls into the transfer
buffer. Usually this message indicates that the user chose OK to close the
dialog box, so the dialog box automatically updates its transfer buffer.
Then, if you execute the dialog box again, it transfers from the transfer
buffer to the controls.

You can explicitly transfer data in either direction at any time. For example,
you might want to transfer data out of controls in a window or modeless
dialog box. Or you might want to reset the state of the controls using the
data in the transfer buffer in response to the user clicking a Reset or Revert
button.

Use the TransferData member function in either case, passing the tdSetData
enumeration to transfer from the transfer buffer to the controls or tdGetData
to transfer from the controls to the transfer buffer. For example, you might
want to call Transfer Data in the Close Window member function of a window
object:

void TMyWindow: :CloseWindow()
{

TransferData(tdGetData);
Twindow: : CloseWindow () ;

You might want to modify the way a particular control transfers its data, or
to include a new control you define in the transfer mechanism. In either
case, all you need to do is to write a Transfer member function foryour
control object. See the following table to interpret the meaning of the
transfer flag parameter.

OWL Programmers Guide

Table 10.19
Transfer flag
parameters

Chapter 10, Control objects

Transfer flag parameter

tdGetData

tdSetData

tdSizeData

Description

Copy data from the control to the location specified by the
supplied pointer. Return the number of bytes transferred.
Copy the data from the transfer buffer at the supplied pointer
to the control. Return the number of bytes transferred.
Return the number of bytes that would be transferred.

239

240 OWL Programmers Guide

Gadgets

Class TGadget

Constructing and
destroying TGadget

c H A p T E R 11

Gadget and gadget window objects

This chapter discusses the use of gadgets and gadget windows. In function,
gadgets are similar to controls, in that they are used to gather input from or
convey information to the user. But gadgets are implemented differently
from controls. Unlike most other interface elements, gadgets are not
windows: gadgets don't have window handles, they don't receive events
and messages, and they aren't based on TWindow.

Instead, gadgets must be contained in a gadget window that controls the
presentation of the gadget, all message processing, and so on. The gadget
receives its commands and direction from the gadget window.

This chapter discusses the various kinds of gadgets implemented in
ObjectWindows 2.0. It then describes the different kinds of gadget
windows available for use with the gadgets.

This section discusses a number of gadgets. It begins with a discussion of
TGadget, the base class for ObjectWindows gadgets. It then discusses the
other gadget classes, TSeparatorGadget, TBitmapGadget, TControlGadget,
TTextGadget, and TButtonGadget.

All gadgets are based on the TGadget class. The TGadget class contains the
basic functionality required by all gadgets, including controlling the
gadget's borders and border style, setting the size of the gadget, enabling
and disabling the gadget, and so on.

Here is the TGadget constructor:

TGadget(int id = 0, TBorderStyle style = None);

where:

Chapter 11, Gadget and gadget window objects 241

Identifying a gadget

242

• id is an arbitrary value. as the ID number for the gadget. You can use the
ID to identify a particular gadget in a gadget window. Other uses for the
gadget ID are discussed in the next section.

• style is an enum TBorderStyle. There are five possible values for style:

• None makes the gadget with no border style; that is, it has no visible
borders. .

• Plain makes the gadget borders visible as lines, much like the border of
a window frame.

• Raised makes the gadget look as if it is raised up from the gadget
window.

• Recessed makes the gadget look as if it is recessed into the gadget
window.

• Embossed makes the gadget border look as if it has an embossed ridge as
a border.

The TGadget destructor is declared virtual. The only thing it does is to
remove the gadget from its gadget window if that window is still valid.

You can identify a gadget by using the GetId function to access its identifier.
GetId takes no parameters and returns an int that is the gadget identifier.
The identifier comes from the value passed in as the first parameter of the
TGadget constructor.

There are a number of uses for the gadget identifier:

• You can use the identifier to identify a particular gadget. If you have a
large number of gadgets in a gadget window, the easiest way to
determine which gadget is which is to use the gadget identifier.

• You can set the identifier to the desired event identifier when the gadget
is used to generate a command. For example, a button gadget used to
open a file usually has the identifier CM_FILEOPEN.

• You can set the identifier to a string identifier if you want display a text
string in a message bar or status bar when the gadget is/pressed. For
example, suppose you have a string identifier named IDS_MYSTRING
that describes your gadget. You can set the gadget identifier to
IDS_MYSTRING. Then, assuming your window has a message or status
bar and you've turned menu tracking on, the string IDS_MYSTRING is
displayed in the message or status bar whenever you press the gadget
IDS_MYSTRING.

The last two techniques are often combined. Suppose you have a, command
identifier CM_FILEOPEN for the File Open menu command. You can also
give the gadget the identifier CM_FILEOPEN. Then when you press the
gadget, the gadget window posts the CM_FILEOPEN event. Then if you
have a string with the resource identifier CM_FILEOPEN, that string is

OWL Programmers Guide

Modifying and
accessing gadget
appearance

Bounding the
gadget

displayed in the message or status bar when you press the gadget. You can
see an illustration of this technique in Step 10 of Chapter 2 (see page 60).

You can modify and check the margin width, border width, and border
style of a gadget using the following functions:

void SetBorders(TBorders& borders);
TBorders &GetBorders();
void SetMargins(TMargins& margins);
TMargins &GetMargins();
void SetBorderStyle(TBorderStyle style);
TBorderStyle GetBorderStyle();

The border is the outermost boundary of a gadget. The TBorders structure
used with the SetBorders and GetBorders functions has four data members.
These unsigned data members, Left, Right, Top, and Bottom, contain the
width of the respective borders of the gadget.

The margin is the area between the border of the gadget and the inner
rectangle of the gadget. The TMargins structure used with the SetMargins
and GetMargins functions has four data members. These int data members,
Left, Right, Top, and Bottom, contain the width of the respective margins of
the gadget.

The TBorderStyle enum used with the SetBorderStyle and GetBorderStyle
functions is the same one used with the TGadget constructor. The various
border style effects are achieved by painting the sides of the gadget borders
and margins differently for each style.

The gadget's bounding rectangle is the entire area occupied by a gadget. It
is contained in a TRect structure and is composed of the relative X and Y
coordinates of the upper-left and lower-right corners of the gadget in the
gadget window. The gadget window uses the bounding rectangle of the
gadget to place the gadget. The gadget'S bounding rectangle is also
important in determining when the user has clicked the gadget.

To find and set the bounding rectangle of a gadget, use the following,
functions:

TRect &GetBounds();
virtual void SetBounds(TRect& rect);

Note that SetBounds is declared virtual. The default SetBounds updates only
the bounding rectangle data. A derived class can override SetBounds to
monitor changes and update the gadget'S internal state.

Chapter 11, Gadget and gadget window objects 243

Shrink wrapping a
gadget

Setting gadget size

Matching gadget
colors to system
colors

244

You can use the Set Shrink Wrap function to specify whether you want the
gadget window to "shrink wrap" a gadget. When shrink wrapping is on for
an axis, the overall size required for the gadget is calculated automatically
based on the border size, margin size, and inner rectangle. This saves you
from having to calculate the bounds size of the gadget manually.

You can turn shrink wrapping on and off independently for·the width and
height of the gadget:

void SetShrinkWrap(BOOL shrinkWrapWidth, BOOL shrinkWrapHeight);

where:

• shrink Wrap Width turns horizontal shrink wrapping on or off, depending
on whether TRUE or FALSE is passed in .

• shrink WrapHeight turns vertical shrink wrapping on or off, depending on
whether TRUE or FALSE is passed in.

The gadget's size is the size of the bounding rectangle of the gadget. The
size differs from the bounding rectangle in that it is independent of the
position of the gadget.· Thus, you can adjust the size of the gadget without
changing the location of the gadget.

You can set the desired size of a gadget using the setsize function:

void SetSize(TSize& size);

You can get use the GetDesiredsize function to get the size the gadget would
like to be:

virtual void GetDesiredSize(TSize& size);

Even if you've set the desired size of the gadget with the setsize function,
you should still call the GetDesiredsize function to get the gadget's desired
size. Gadget windows can change the desired size of a gadget during the
layout process.

To make your interface consistent with your application user's system, you
should implement the sysColorChange function. The gadget window calls
the sysColorChange function of each gadget contained in the window when
the window receives a WM_SYSCOLORCHANGE message, which has this
syntax:

virtual void SysColorChange();

The default version of sysColorChange does nothing. If you want your
gadgets to follow changes in system colors, you should implement this

OWL Programmers Guide

TGadget public data
members

Enabling and
disabling a gadget

function. You should make sure to delete and reallocate any resources that
are dependent on system color settings.

There are two public data members in TGadget; both are BOaLs:

BOOL Clip;
BOOL WideAsPossible;

The value of Clip indicates whether a clipping rectangle should be applied
before painting the gadget.

The value of WideAsPossible indicates whether the gadget should be
expanded to fit the available room in the window. This is useful for such
things as a text gadget in a message bar.

You can enable and disable a gadget using the following functions:

virtual void SetEnabled(BOOL);
BOOL GetEnabled();

Changing the state of a gadget using the default SetEnabled function causes
the gadget's bounding rectangle to be invalidated, but not erased. A
derived class can override SetEnabled to modify this behavior.

If your gadget generates a command, you should implement the
CommandEnable function:

virtual void CommandEnable();

The default version of CommandEnable does nothing. A derived class can
override this function to provide command enabling. The gadget should
send a WM_COMMAND_ENABLE message to the gadget window's parent
with a command-enabler object representing the gadget.

For example, here's how the CommandEnable function might be
implemented:

void
TMyGadget: :CommandEnable()
{

Window->Parent->HandleMessage(
WM_COMMAND_ENABLE,
0,
(LPARAM) &TMyGadgetEnabler(*Window->Parent, this));

Chapter 11, Gadget and gadget window objects 245

Deriving from
TGadget

Initializing and
cleaning up

Painting the gadget

246

TGadget provides a number of protected access functions that you can use
when deriving a gadget class from TGadget.

TGadget provides a couple virtual functions that give a gadget a chance to
initialize or clean up:

virtual void Inserted();
virtual void Removed();

Inserted is called after inserting a gadget into a gadget window. Removed is
called before removing the gadget from its gadget window. The default
versions of these function do nothing.

The TGadget class provides two different paint functions: PaintBorder and
Paint.

The' PaintBorder function paints the border of the gadget. This virtual
function takes a single parameter, a TDC &, and returns void. PaintBorder
implements the standard border styles. If you want to create a new border
style, you need to override this function and provide the functionality for
the new style. If you want to continue to provide the standard border
styles, you should also call the TGadget version of this function. PaintBorder
is called by the Paint function.

The Paint function is similar to the TWindow function Paint. This function
takes a single parameter, a TDC &, and returns void. Paint is declared
virtual. TGadget's PaintGadgets function' calls each gadget's Paint function
when painting the gadget window. The default Paint function only calls the
PaintBorder function. To paint the inner rectangle of the gadget's bounding
rectangle, you should override this function to provide the necessary
functionality.

If you're painting the gadget yourself in the Paint function, you often need
to find the area inside the borders and margins of the gadget. This area is
called the inner rectangle. You can find the inner rectangle, using the
GetInnerRect function:

void GetInnerRect(TRect& rect) i

GetInnerRect places the coordinates of the inner rectangle into the TRect
reference passed into it. '

OWL Programmers Guide

Invalidating and
updating the gadget

Mouse events in a
gadget

Just like a window, a gadget can be invalidated. TGadget provides two
functions to invalidate the gadget:

void Invalidate(BOOL erase = TRUE);
void InvalidateRect(const TRect& rect, BOOL erase = TRUE);

These functions are similar to the TWindow functions InvalidateRect and
Invalidate. InvalidateRect looks and functions much like its Windows API
version, except that it omits its HWND parameters. Invalidate invalidates
the entire bounding rectangle of the gadget. Invalidate takes a single
parameter, a BOOL indicating whether the invalid area should be erased
when it's updated. By default, this parameter is TRUE. So to erase the entire
area of your gadget, you need only call Invalidate, either specifying TRUE or
nothing at all for its parameter.

A related function is the Update function, which attempts to force an
immediate update of the gadget. It is similar to the Windows API
Update Window function.

void Update();

You can track mouse events that happen inside and outside of a gadget.
This happens through a number of "pseudo-event handlers" in the TGadget
class. These functions look much like standard ObjectWindows event
handling functions, except that the names of the functions are not prefixed
with Ev.

Gadgets don't have response tables like other ObjectWindows classes. This
is because a gadget is not actually a window. All of a gadget's
communication with the outside is handled through the gadget window.
When a mouse event takes place in the gadget window, the window tries to
determine which gadget is affected by the event. To find out if an event
took place inside ~ particular gadget, you can call the PtIn function:

virtual BOOL PtIn(TPoint& point) ;

The default behavior for this function is to return TRUE if point is within
the gadget's bounding rectangle. You could override this function if you
were designing an oddly shaped gadget.

When the mouse enters the bounding rectangle of a gadget, the gadget
window calls the function MouseEnter. This function looks like this:

virtual void MouseEnter(UINT rnodKeys, TPoint& point);

modKeys contains virtual key information identical to that passed-in in the
standard ObjectWindows EvMouseMove function. This indicates whether

Chapter 11, Gadget and gadget window objects 247

various virtual keys are pressed. This parameter can be any combination of
the following values: MK_ CONTROL, MK_LBUTTON, MK_MBUTTON,
MK_RBUTTON, or MK_SHIFT. See the Object Windows Reference Guide for a
full explanation of these flags. point tells the gadget where the mouse
entered the gadget.

Once the gadget window calls the gadget's MouseEnter function to inform
the gadget that the mouse has entered the gadget's area, the gadget
captures mouse movements by calling the gadget window's
GadgetSetCapture to guarantee that the gadget's MouseLeave function is
called.

Once the mouse leaves the gadget bounds, the gadget window calls
MouseLeave. This function looks like this:

virtual void MouseLeave(UINT rnodKeys, TPoint& point);

There are also a couple of functions to detect left mouse button clicks,
LButtonDown and LButtonUp. The default behavior for LButtonDown is to
capture the mouse if the BOOL flag TrackMouse is set. The default behavior
for LButtonDown is to release the mouse if the BOOL flag TrackMouse is set.
By default TrackMouse is not set.

virtual void LButtonDown(UINT rnodKeys, TPoint& point) ;
virtual void LButtonUp(UINT rnodKeys, TPoint& point);

When the mouse is moved inside the bounding rectangle of a gadget while
mouse movements are being captured by the gadget window, the window
calls the gadget'S MouseMove function. This function looks like this:

virtual void MouseMove(UINT rnodKeys, TPoint& point);

Like with MouseEnter, modKeys contains virtual key information. point tells
the gadget where the mouse stopped moving.

ObjectWindows gadget classes

248

ObjectWindows provides a number of classes derived from TGadget. These
gadgets provide versatile and easy-to-use decorations and new ways to
communicate with the user of your application. The gadget classes
included in ObjectWindows are:

• TSeparatorGadget

• TTextGadget

• TButtonGadget

OWL Programmers Guide

Class
TSeparatorGadget

Class
TIextGadget

Constructing and
destroying
TTextGadget

• TControlGadget

• TBitmapGadget

These gadgets are discussed in the following sections.

TSeparatorGadget is a very simple gadget. Its only function is to take up
space in a gadget window. You can use it when laying other gadgets out in
a window to provide a margin of space between gadgets that would
otherwise be placed border-to-border in the window.

The TSeparatorGadget constructor looks like this:

TSeparatorGadget(int size = 6);

The separator disables itself and turns off shrink wrapping. The size
parameter is used for both the width and the height of the gadget. This lets
you use the separator gadget for both vertical and horizontal spacing.

TTextGadget is used to display text information in a gadget window. You
can specify the number of characters you want to be able to display in the
gadget. You can also specify how the text should be aligned in the text
gadget.

Here is the constructor for TTextGadget:

TTextGadget(int id = 0,

where:

TBorderStyle style = Recessed,
TAlign alignment = Left,
DINT numChars = 10,
const char* text = 0);

• id is the gadget identifier.

• style is the gadget border style.

• align specifies how text should be aligned in the gadget. There are three
possible values for the enum T Align: Left, Center, and Right.

• numChars specifies the number of characters to be displayed in the
gadget. This parameter determines the width of the gadget. The gadget
calculates the required gadget width by multiplying the number of
characters by the maximum character width of the current font. The
height of the gadget is based on the maximum character height of the
current font;. plus space for the margin and border.

• text is a default message to be displayed in the gadget.

,..., TTextGadget automatically deletes the storage for the gadget's text string.

Chapter 11, Gadget and gadget window objects 249

Accessing the
gadget text

Class
TBitmapGadget

Constructing and
destroying
TBitmapGadget

Selecting a new
image

250

You can get and set the text in the gadget using the GetText and SetText
functions.

GetText takes no parameters and returns a const char *. You shouldn't
attempt to modify the gadget text through the use of the returned pointer.

, The SetText function takes a const char * and returns void. The gadget
makes a copy of the text and stores it internally.

TBitmapGadget is a simple gadget that can display an array of bitmap
images, one at a time. You should store the bitmaps as an array. To do this,
the bitmaps should be drawn side by side in a single bitmap resource. The
bitmaps should each be the same width.

Here is the constructor for TBitmapGadget:

TBitmapGadget(TResld bmpResld,
int id,
TBorderStyle style,
int numlmages,
int startImage);

where:

• bmResld is the resource identifier for the bitmap resource.

• id is the gadget identifier.

• style is the gadget border style.

• numlmages is the total number of images contained in the bitmap. The
gadget figures the width of each single bitmap in the resource by
dividing the width of the resource bitmap by numlmages.

For example, suppose you pass a bitmap resource to the TBitmapGadget
constructor that is 400 pixels wide by 200 pixels high, and you specify
numlmages as 4. The constructor would divide the bitmap resource into
four separate bitmaps, each one 100 pixels wide by 200 pixels high.

• startImage specifies which bitmap in the array should be initially
displayed in the gadget.

- TBitmapGadget deletes the storage for the bitmap images.

You can change the image being displayed in the gadget with the
SelectImage function:

int Selectlmage(int imageNum, BOOL immediate);

OWL Programmers Guide

Setting the system
colors

Class
TButtonGadget

Constructing and
destroying
TButtonGadget

The imageNum parameter is the array index of the image you want
displayed in the gadget. Specifying TRUE for immediate causes the gadget
to update the display immediately. Otherwise, the area is invalidated and
updated when the next WM_P AINT message is received.

TBitmapGadget implements the SysColorChange function so that the bitmaps
track the system colors. It deletes the bitmap array, calls the MapUIColors
function on the bitmap resource, then re-creates the array. For more
information 9n the MapUIColors function, see page 313.

Button gadgets are the only type of gadget included in ObjectWindows that
the user interacts with directly. Control gadgets, which are discussed in the
next section, also provide a gadget that receives input from the user, but it
does so through a control class. The gadget in that case only acts as an
intermediary between the control and gadget window.

There are three normal button gadget states: up, down, and indeterminate.
In addition the button can be highlighted when pressed in all three states.

There are two basic type of button gadgets, command gadgets and setting
gadgets. Setting gadgets can be exclusive (like a radio button) or non
exclusive (like a check box). Commands can only be in the "up" state.
Settings can be in all three states.

A button gadget is pressed when the left mouse button is pressed while the
cursor position is inside the gadget's bounding rectangle. The gadget is
highlighted when pressed.

Once the gadget has been pressed, it then captures Jhe mouse's movements.
When the mouse moves outside of the gadget's bounding rectangle without
the left mouse button being released, highlighting is canceled but mouse
movements are still captured by the gadget. The gadget is highlighted
again when the mouse comes back into the gadget's bounding rectangle
without the left mouse button being released.

When the left mouse button is released, mouse movements are no longer
captured. If the cursor position is inside the bounding rectangle when the
button is released, the gadget identifier is posted as a command message by
the gadget window.

Here is the TButtonGadget constructor:

TButtonGadget(TResId brnpResId,
int id,
TType type = Command,
BOOL enabled = FALSE,

. Chapter 11, Gadget and gadget window objects 251

Accessing button
gadget information

252

where:

TState state = Up,
BOOL repeat = FALSE);

• bmpResId is the resource identifier for the bitmap to be displayed in the
button. The size of the bitmap determines the size of the gadget, because
shrink wrapping is turned on.

• id is the gadget identifier. This is also the command that is posted when
the gadget is pressed.

• type specifies the type of the gadget. The TTypeenum has three possible
values:

• Command specifies that the gadget is a command,

• Exclusive specifies that the gadget is an exclusive setting button.
Exclusive button gadgets that are adjacent to each other work together.
You can set up exclusive groups by inserting other gadgets, such as
separator gadgets or text gadgets, on either side of the group.

• NonExclusive specifies that the gadget is a nonexclusive setting button.

• enabled specifies whether the button gadget is enabled or not when it is
first created. If the corresponding command is enabled when the gadget
is created, the button is automatically enabled.

• state is the default state of the button gadget. The enum TState can have
three values: Up, Down, or Indeterminate.

• repeat indicates whether the button repeats when held down. If repeat is
TRUE, the button repeats when it is clicked and held.

The ~ TButtonGadget function deletes the bitmap resources and, if the
resource information is contained in a string, deletes the storage for the
string.

There are a humber of functions you can use to access a button gadget.
These functions let you set the state of the gadget~to any valid TState value,
get the state of the button gadget, and get the button gadget type.

You can set the button gadget'S state with the SetButtonState function:

void SetButtonState(TState);

You can find the button gadget's current state using the GetButtonState
function:

TState GetButtonState();

You can find out what type of button a gadget is using the GetButtonType
function:

OWL Programmers Guide

Setting button
gadget style

Command enabling

Setting the system
colors

Class
TControlGadget

Constructing and
destroying
TControlGadget

TType GetButtonType();

You can modify the appearance of a button gadget using the following
functions:

• You can turn corner notching on and off using the SetNotchCorners
function:

void SetNotchCorners(BOOL notchCorners=TRUE);

• You can turn antialiasing of the button bevels on and off using the
SetAntialiasEdges function:

void SetAntialiasEdges(BOOL anti=TRUE);

• You can change the style of the button shadow using the SetShadowStyle
function. There are two options for the shadow style, using the enum
TShadowStyle: SingleShadow and DoubleShadow:

void SetShadowStyle(TShadowStyle style=DoubleShadow);

TButtonGadget overrides the TGadget function CommandEnable. It is
implemented to initiate a WM_COMMAND_ENABLE message for the
gadget.

Here is the signature of the TButtonGadget::CommandEnable function:

void CommandEnable();

TButtonGadget implements the SysColorChange function so that the gadget's
bitmaps track the system colors. It rebuilds the gadget using the system
colors. If the system colors have changed, these changes are reflected in the
new button gadget. This is not set up to automatically track the system
colors; that is, it is not necessarily call in response to a
WM_SYSCOLORCHANGE event.

The TControlGadget is a fairly simple class that serves as an interface
between a regular Windows control (such as a button, edit box, list box,
and so on) and a gadget window. This lets you use a standard Windows
control in a gadget window, like a control bar, status bar, and so on.

Here's the constructor for TControlGadget:

TControlGadget(TWindow& cbntrol, TBorderStyle style = None);

where:

Chapter 11, Gadget and gadget window objects 253

• control is a reference to an ObjectWindows window object. This object
should be a valid constructed control object.

• style is the gadget border style.

The ~ TControlGadget function destroys the control interface element, then
deletes the storage for the control object.

Gadget windows

Constructing and
destroying
TGadgetWindow

254

Gadget windows are based on the class TGadget Window, which is derived
from TWindow. Gadget windows are designed to hold a number of gadgets,
lay them out, and display them in another window.

Gadget window provide a great deal of the functionality of the gadgets
they contain. Because gadgets are not actually windows, they can't post or
receive events, or directly interact with windows, or call Windows function
for themselves. Anything that a gadget needs to be done must be done
through the gadget window.

A gadget has little or no control over where it is laid out in the gadget
window. The gadget window is responsible for placing and laying out all
the gadgets it contains. Gadgets are generally laid in a line, either vertically
or horizontally.

Gadget windows generally do not stand on their own, but instead are
usually contained in another window. The most common parent window
for a gadget window is a decorated frame window, such as
TDecoratedFrame or TDecoratedMDIFrame, although the class TToolBox
usually uses a TFloatingFrame.

Here is the constructor for TGadget Window:

TGadgetwindow(TWindow* parent = 0,

where:

TTileDirection direction = Horizontal,
TFont* font = new TGadgetWindowFont,
TModule* module = 0);

• parent is a pointer to the parent window object.

• direction is an enum TTileDirection. There are two possible-values for
direction: Horizontal or Vertical.

• font is a pointer to a TFont object. This contains the font for the gadget
window. By default, this is set to TGadgetWindowFont, which is a
variable-width sans-serif font, usually Helvetica.

OWL Programmer's Guide

Creating a gadget
window

Inserting a gadget
into a gadget
window

• module is passed as the TModule parameter for the TWindow base
constructor. This parameter defaults to O.

The,..., TGadget Window function deletes each of the gadgets contained in the
gadget window. It then deletes the font object.

TGadget Window overrides the default TWindow member function Create.
The TGadget Window version of this function chooses the initial size based
on a number of criteria:

• Whether shrink wrapping was requested by any of the gadgets in the
window

• The size of the gadgets contained in the window

• The direction of tiling in the gadget window

• Whether the gadget window has a border, and the size of that border

The Create function determines the proper size of the window based on
these factors, sets the window size attributes, then calls the base
TWindow::Create to actually create the window interface element.

For a gadget window to be useful, it needs to contain some gadgets. To
place a gadget into the gadget window, use the Insert function:

virtual, void Insert(TGadget& gadget,

where:

TPlacement placement = After,
TGadget* sibling = 0);

• gadget is a reference to the gadget to be inserted into the gadget window.

• placement indicates where the gadget should be inserted. The enum
TPlacement can have two values, Before and After. If a sibling gadget is
specified by the sibling parameter, the gadget is inserted Before or After
the sibling, depending on the value of placement. If sibling is 0, the gadget
is placed at the beginning of the gadgets in the window if placement is
Before, and at the end of the gadgets if placement is After.

• sibling is a pointer to a sibling gadget.

If the gadget window has already been created, you need to call
LayoutSession after calling Insert. Any gadget you insert will not appear in
the window until the window has been laid out.

Chapter 11, Gadget and gadget window objects 255

Removing a gadget
from a gadget
window

Setting window
margins and /ayolJt
direction

Laying out the
gadgets

256

To remove a gadget from your gadget window, use the Remove function:

virtual TGadget* Remove(TGadget& gadget);

where gadget is a reference to the gadget you want to remove from the
window.

This function removes gadget from the gadget window. The gadget is
returned as a TGadget *. The gadget object is not deleted. Remove returns 0 if
the gadget is not in the window.

As with the Insert function, if the gadget window has already been created,
you need to call LayoutSession after calling Remove. Any gadget you remove
will not disappe~r from the window until the window has been laid out.

You can change the margins and the layout directior:t either before the
window is created or afterwards. To do this, use the SetMargins and
SetDirection functions:

void SetMargins(TMargins& margins);
virtual void SetDirection(TTileDirection direction);

Both of these functions set the appropriate data members, then call the
function LayoutSession, which is described in the next section.

You can find out in which direction the gadgets are laid out by calling the
GetDirection function:

TTileDirection GetDir~ction() const;

To layout a gadget window, call the LayoutSession function.

virtual void LayoutSession();

The default behavior of the LayoutSession function is to check to see if the
window interface element is already created. If not, the function returns
without taking any further action; the window is laid out automatically
when the window element is created. But if the window element has
already been created, LayoutSession tiles the gadgets and then invalidates
the modified area of the gadget window.

A layout session is typically initiated by a change in margins, inserting or
removing gadgets, or a gadget or gadget window changing size.

The actual work of tiling the gadgets is left to the function TileGadgets:

virtual TRect TileGadgets();

OWL Programmer's Guide

Notifying the
window when a
gadget changes
size

Shrink wrapping a
gadget window

Accessing window
font

TileGadgets determines the space needed for each gadget and lays each
gadget out in turn. It returns a TRect containing the area of the gadget
window that was modified by laying out the gadgets.

TileGadgets calls the function PositionGadget. This lets derived classes adjust
the spacing between gadgets to help in implementing a custom layout
scheme.

virtual void PositionGadget(TGadget* previous, TGadget* next, TPoint& point);

This function takes the gadgets pointed to by previous and next, figures the
required spacing between the gadgets, then fills in point. If you're tiling
horizontally, then the relevant measure is contained in point.x. If you're
tiling vertically, then the relevant measure is contained in point.y.

When a gadget changes size, it should call the GadgetChangedSize functign
for its gadget window. Here's the signature for this function:

void GadgetChangedSize(TGadget& gadget);

gadget is a reference to the gadget that changed size. The default version of
this function simply initiates a layout session.

You can specify whether you want the gadget window to II shrink wrap" a
gadget using the SetShrinkWrap function. Shrink wrapping for a gadget
window has a slightly different meaning than for a gadget. When a gadget
window is shrink wrapped for an axis, the axis' size is calculated
automatically based on the desired sizes of the gadgets laid out on that
axis.

You can turn shrink wrapping on and off independently for the width and
height of the gadget window:

void SetShrinkWrap(BOOL shrinkWrapWidth, BOOL shrinkWrapHeight);

where:

• shrink Wrap Width turns horizontal shrink wrapping on or off, depending
on whether TRUE or FALSE is passed in .

• shrink WrapHeight turns vertical shrink wrapping on or off, depending on
whether TRUE or FALSE is passed in.

You can find out the current font and font size using the GetFont and
GetFontHeight functions:

TFont& GetFont();
UINT GetFontHeight() const;

Chapter 11, Gadget and gadget window objects 257

Capturing the
mouse for a gadget

Setting the hint
mode

258

Table 11.1
Hint mode flags

A gadget is always notified when the left mouse button is pressed down
within its bounding rectangle. After the button is pressed, you need to
capture the mouse if you want to send notification of mouse movements.
You can do this using the GadgetSetCapture and GadgetReleaseCapture
functions:

BOOL GadgetSetCapture(TGadget& gadget);
void GadgetReleaseCapture(TGadget& gadget);

The gadget parameter for both functions indicates for which gadget the
window should set or release the capture. The BOOL returned by
GadgetSetCapture indicates whether the capture was successful.

These functions are usually called by a gadget in the window through the
gadget's Window pointer to its gadget window.

The hint mode of a gadget dictates when hints about the gadget are
displayed by the gadget window's parent. You can set the hint mode for a
gadget using the SetHintMode function:

void SetHintMode(THintMode hintMode);

The enum THintMode has three possible values:

hintMode Hint displayed

Hints are not displayed. NoHints
PressHints
EnterHints

Hints are displayed when the gadget is pressed until the button is released.
Hints are displayed when the mouse passes over the gadget; that is, when the
m-ouse enters the gadget.

You can find the current hint mode using the GetHintMode function:

THintMode GetHintMode();

Another function, the SetHintCommand function, determines when a hint is
displayed:

void SetHintCommand(int id);

This function is usually called by a gadget through the gadget's Window
pointer to its gadget window, but the gadget window could also call it.
Essentially, SetHintCommand simulates a menu choice, making pressing the
gadget the equivalent of selecting a menu choice.

For SetHintCommand to work properly with the standard ObjectWindows
classes, a number of things must be in place:

OWL Programmer's Guide

Idle action
processing

Searching through
the gadgets

Deriving from
TGadgetWindow

Painting a gadget
window

• The decorated frame window parent of the gadget window must have a
message or status bar.

• Hints must be on in the frame window.

• There must be a string resource with the same identifier as the gadget;
that is, if the gadget identifier is CM_MYGADGET, you must also have a
string resource defined as CM_MYGADGET.

Gadget windows have default idle action processing. The IdleAction
function attempts to enable each gadget contained in the window by calling
each gadget's CommandEnable function. The function then returns FALSE.

BOOL IdleAction(long idleCount);

Use one of the following functions to search through the gadgets contained
in a gadget window:

TGadget* FirstGadget() const;
TGadget* NextGadget(TGadget&gadget) const;
TGadget* GadgetFromPoint(TPoint& point) const;
TGadget* GadgetWithld(int id) const;

• FirstGadget returns a pointer to the first gadget in the window's gadget
list.

.'NextGadget returns a pointer to the next gadget in the window's gadget
list. If the current gadget is the last gadget in the window, NextGadget
returns o.

• GadgetFromPoint returns a pointer to the gadget that the point point is in.
If point is not in a gadget, GadgetFromPoint returns o.

• GadgetWithld returns a pointer to the gadget with the gadget identifier id.
If no gadget in the window has that gadget identifier, Gadget Withld
returns O.

You can derive from TGadget Window to make your own specialized gadget
window. TGadgetWindow provides a number of protected access functions
that you can use when d~riving a gadget class from TGadget Window.

Just as with regular windows, TGadget Window implements the Paint
function: '

void Paint (TDC& dc, BOOL erase, TRect& rect);

This implementation of the Paint function selects the window's font into the
device context and calls the function PaintGadgets:

Chapter 11, Gadget and gadget window objects 259

Size and inner
rectangle

Layout units

260

virtual void PaintGadgets(TDC& dc, BOOL erase,TRect& rect);

PaintGadgets iterates through the gadgets in the window and asks each one
to draw itself. Override PaintGadgets to implement a custom look for your
window, such as separator lines, a raised look, and so on.

Use the GetDesiredSize and GetInnerRect functions to find the overall desired
size (that is, the size needed to accommodate the borders, margins, and the
widest or highest gadget) and the size and location of the window's inner
rectangle.

virtual void GetDesiredSize(TSize& size);

If shrink wrapping was requested for the window, GetDesiredSize calculates
the size the window needs to be to accommodate the borders, margins, and
the widest or highest gadget. If shrink wrapping was not requested,
GetDesiredSize uses the current width and height. The results are then
placed into size.

virtual void GetlnnerRect(TRect& rectI;

GetInnerRect calculates the area inside the borders and margins of the
window. The results are then placed into recto

You can override GetDesiredSize and GetInnerRect to leave extra room for a
custom look for your window. If you override either one of these functi~ns,
you probably also need to override the other.

You can use three different units of measurement in a gadget window:

• Pixels, which are based on a single screen pixel

• Layout units, which are logical units defined by dividing the window
font" em" into 8 vertical and 8 horizontal segments.

• Border units are based on the thickness of a window frame. This is
usually equivalent to one pixel, but it could be greater at higher screen
resolutions.

It is usually better to use layout units; because they are based on the font
size, you don't have to worry about scaling your measures when you
change window size or system metrics.

If you need to convert layout units to pixels, use the LayoutUnitsToPixels
function:

int LayoutUnitsToPixels(int units);

where units is the layout unit measure you want to convert to pixels.
LayoutUnitsToPixels returns the pixel equivalent of units.

OWL Programmers Guide

Message response
functions

You can also convert a TMargins object to actual pixel measurements using
the GetMargins function:

void GetMargins(TMargins& margins,
int& left,
int& right,
int& top,
int& bottom) ;

where:

• margins is the object containing the measurements you want to convert.
The measurements contained in margins can be in pixels, layout units, or
border units .

• left, right, top, and bottom are the results of the c01;lVersion are placed.

TGadget Window catches the following events:

.WM_CTLCOLOR

• WM_LBUTTONDOWN

• WM_LBUTTONUP

• WM_MOUSEMOVE
.WM_SIZE

• WM_SYSCOLORCHANGE

It also implements the corresponding event-handling functions.

ObjectWindows gadget window classes

ObjectWindows provides a number of classes derived from
TGadget Window. These windows provide a number of ways to display and
layout gadgets. The gadget window classes included in ObjectWindows
are:

• TControlBar
• TMessageBar

• TStatusBar

• TToolBox

These classes are discussed in the following sections.

Chapter 11, Gadget and gadget window objects 261

Class TControlBar

Class
TMessageBar

Constructing and
destroying
TMessage8ar

262

The class TControlBar implements a control bar similarto the "tool bar" or
"control bar" found along the top of the window of many popular
applications. You can place any type of gadget in a control bar.

Here's the constructor for TControIBar:,

TControlBar(TWindow* parent = 0,

where:

, TTileDirection direction = Horizontal,
TFont* font = new TGadgetWindowFont,
TModule* module = 0) i

• parent is a pointer to the control bar's parent window.

• direction is an enum TTileDirection. There are two possible values for
direction: Horizontal or Vertical.

• font is a pointer to a TFont object. This contains the font for the gadget
window. By default, this is set to TGadgetWindowFont, which is a
variable~width sans-serif font, usually Helvetica.

• module is passed as the TModule parameter for the TWindow base
constructor. This parameter defaults to o.

The TMessageBar class implements a message bar with no border and one
text gadget as wide as the window. It positions itself horizontally across the
bottom of its parent window.

Here's the constructor for TMessageBar:

TMessageBar(TWindow* parent = 0,
TFont* font = new TGadgetWindowFont,
TModule* module = 0) i

where:

• parent is a pointer to the control bar's parent window.

• font is a pointer to a TFont object. This contains the font for the gadget
window. By default, this is set to TGadget WindowFont, which is a
variable-width sans-serif font, usually Helvetica.

• module is passed as the TModule parameter for the TWindow base
constructor. This parameter defaults to o.

The ~ TMessageBar function deletes the object's text storage.

OWL Programmer's Guide

Setting message
bar text

Use the SetText function to set the text for the message bar text gadget:

void SetText(const char* text);

This function causes the string text to be displayed in the message bar.

Use the SetHintText function to set the menu or command item hint text to
Setting the hint text be displayed in a raised field over the message bar:

Class TStatusBar

Constructing and
destroying
TStatusBar

virtual void SetHintText(const char* text);

If you pass text as 0, the hint text is cleared.

TStatusBar is similar to TMessageBar. The difference is that status bars have
more options than a plain message bar, such as multiple text gadgets and
reserved space for keyboard mode indicators such as Caps Lock, Insert or
Overwrite, and so on.

Here's the constructor for TStatusBar:

TStatusBar(TWindow* parent = 0,

where:

TGadget::TBorderStyle borderStyle = TGadget::Recessed,
UINT modeIndicators = 0,
TFont* font = new TGadgetWindowFont,
TModule* module = 0);

• parent is a pointer to the parent window object.

• style is an enum TBorderStyle.
• modelndicators indicates which keyboard modes can be displayed in the

status bar. A defined enum type called TModelndicator provides the
following valid values for this parameter:

• ExtendSelection
.CapsLock
• NumLock
• ScrollLock
.Overtype
• RecordingMacro
These values can be ORed together to indicate multiple keyboard mode
indicators.

Chapter 11, Gadget and gadget window objects 263

Inserting gadgets
into a status bar

Displaying mode
indicators

Spacing status bar
gadgets

264

• font is a pointer to a TFont object that contains the font for the gadget
, window.

• module is passed as the TModule parameter for the TWindow base
constructor.-This parameter defaults to o.

TStatusBar overrides the default Insert function. By default, the TStatusBar
version adds the new gadget after the existing text gadgets but before the
mode indicator gc;ldgets.

You can place a gadget next to an existing gadget in the status bar by
passing a pointer to the existing gadget in the Insert function as the new
gadget's sibling. You can't insert a gadget beyond the mode indicators,
however.

For a particular mode indicator to appear on the status bar, you must have
specified the mode when the status bar was constructed. But once the mode
indicator is on the status bar, it is up to you to make any changes in the
indicator. TStatusBar provides a number of functions to modify the mode
indicators.

You can change the status of a mode indicator to any valid arbitrary state
with the SetModeIndicator function:

void SetModeIndicator(TModeIndicator indicator, BOOL state);

where:

• indicator is the mode indicator you want to set. This can be any value
from the enum TModelndicator used in the constructor.

• state is the state to which you want to set the mode indicator.

You can also toggle a mode indicator with the ToggleModeIndicator function:

void ToggleModeIndicator(TModeIndicator indicator);

where indicator is the mode indicator you want to toggle. This can be any
value from the enum TModelndicator used in the constructor.

You can vary the spacing between mode indicator gadgets on the status bar
using the SetSpacing function:

void SetSpacing(TSpacing& spacing) i

where spacing is a reference to a TSpacing object. TSpacing is a struct defined
in the TStatusBar class. It has two data members, a TMargins::TUnits
member named Units and an int named Value. The TSpacing constructor
sets Units to TMargins::LayoutUnits and Value to o.

OWL Programmers Guide

Class TToolBox

Constructing and
destroying
TToo/Box

The TSpacing struct lets you specify a unit of measurement and a number
of units in a single object. When you pass this object into the SetSpacing
command, the spacing between mode indicator gadgets is set to Value
Units. You need to layout the status bar before any changes take effect.

TToolBox differs from the other ObjectWindows gadget window classes
discussed so far in that it doesn't arrange its gadgets in a single line.
Instead, it arranges them in a matrix. The columns of the matrix are all the
same width (as wide as the widest gadget) and the rows of the matrix are
all the same height (as high as the highest gadget). The gadgets are
arranged so that the borders overlap and are hidden under the tool box's
border.

TToolBox can be created as a client window in a TFloatingFrame to produce a
palette-type tool box. For an example of this, see the PAINT example in the
directory EXAMPLES \OWL \OWLAPPS\P AINT.

Here's the constructor for TToolBox:

TToolBox(TWindow* parent,
int numColumns = 2,

where:

int numRows = AS_MANY_AS_NEEDED,
TTileDirection direction = Horizontal,
TModule* module = 0);

• parent is a pointer to the parent window object.

• numColumns is the number -of columns in the tool box.

• numRows is the number of rows in the tool box.

• direction is an enum TTileDirection. There are two possible values for
direction: Horizontal or Vertical. If direction is Horizontal, the gadgets are
tiled starting at the upper left corner and moving from left to right, going
down one row as each row is filled. If direction is Vertical, the gadgets are
tiled starting at the upper left corner and moving down, going right one
colurnn as each column is filled.

• module is passed as the TModule parameter for the TWindow base
constructor. This parameter defaults to O.

You can specify the constant AS_MANY_AS_NEEDED for either
numColumns or numRows, but not both. When you specify
AS_MANY_AS_NEEDED for either parameter, the toolbox figures out how
many divisions are needed based on the opposite dimension. For example,
if you have 20 gadgets and you requested 4 columns, you would get 5
rows.

Chapter 11, Gadget and gadget window objects 265

Changing tool box
dimensions

266

You can switch the dimensions of your tool box using the SetDirection
function:

virtual void SetDirection(TTileDirection direction);

where direction is an enum TTileDirection. There are two possible values for
direction: Horizontal or Vertical.

If direction is not equal to the current direction for the tool box, the tool box
switches its rows and columns count .. ,For example, suppose you have a tool
box that has three columns and five rows, and is laid out vertically. If you
call SetDirection and set direction to Horizontal, the tool box switches rows
and columns, giving it five columns and three rows.

OWL Programmers Guide

See the online file
OWLDOC.WRI for
information on the

print preview classes.

c H A p T E R 12

Printer objects

This chapter describes ObjectWindows classes that help you complete the
following printing tasks:

• Creating a printer object

• Creating a printout object

• Printing window contents

• Printing a document

• Choosing and configuring, a printer

Two ObjectWindows classes make these tasks easier:

• TPrinter encapsulates printer behavior and access to the printer drivers. It
brings up a dialog box that lets the user select the desired printer and set
the current settings for printing.

• TPrintout encapsulates the actual printout. Its relationship to the printer
is similar to TWindow's relationship to the screen. Drawing on the screen
happens in the Paint member function of the TWindow object, whereas
writing to the printer happens in the PrintPage member function of the
TPrintout object. To print something on the printer, the application passes
an instance of TPrintout to an instance of TPrinter's Print member
function.

- Creating a printer object

The easiest way to create a printer object is to declare a TPrinter* within
your window object that other objects in the program can use for their
printing needs.

Chapter 12, Printer objects

class MyWindow: public,TFrameWindow {
TPrinter* Printer;

/ / ...
};

267

268

To make the printer available, make Printer point to an instance of TPrinter.
This can be done in the constructor:

MyWindow::MyWindow(TWindow* parent, char *title){

/ / ...
Printer = new TPrinter;
}

You should also eliminate the printer object in the destructor:

MyWindow: : -MyWindow ()

/ / ...
delete Printer;

Here's how it's done in the PRINTING.CPP example from directory
OWLAPI \ PRINTING:

class TRulerWin : public TFrameWindow {
TPrinter* Printer;

/ / ...

TRulerWin::TRulerWin(TWindow* parent, const char* title, TModule* module)
TFrameWindow(parent, title, 0, FALSE, module),
TWindow(parent, title, module)

/ / ...
printer = new TPrinter;

For most applications, this is sufficient. The application's main window
initializes a printer object that uses the default printer specified inWIN.INI.
In some cases, however, you might have applications that use different
printers from different windows simultaneously. In that case, construct a
printer object in the constructors of each of the appropriate windows, then
change the printer device for one or more of the printers. If the program
uses different printers but not at the same time, it's probably best to use the
same printer object and select different printers as needed.

Although you might be tempted to override the TPrinter constructor to use
a printer other than the system default, the recommended procedure is to
always use the default constructor, then change the device associated with
the object (see page 273).

OWL Programmer's Guide

Creating a printout object .

Windows graphics
functions are
explained in
Chapter 13.

See the
ObjectWindows

Reference Guide for
a description of the

TPrintout class.

Creating a printout object is similar to writing a Paint member function for
a window object: you use Windows' graphics functions to generate the
image you want on a device context. The window object's display context
manages interactions with the screen device; the printout object's device
context insulates you from the printer device in much the same way.

To create a printout object,

• Derive a new object type frorp. TPrintout that overrides the PrintPage
member function. In very simple cases, that's all you need to do. '

• If the document has more than one page, you must also override the
HasPage member function. It must return non-zero while there is another
page to be printed. The current page number is passed as a parameter to
PrintPage.

The printout object has fields that hold the size of the page and a device
context that is already initialized to render to the printer. The printer object
sets those values by calling the printout object's SetPrintParams member
function. You should use the printout object's device context in any calls to
Windows graphIcs functions.

Here is the class TWindowPrintout, derived from TPrintout, from the
example program PRINTING.CPP:

class TWindowPrintout : public TPrintout
public:

};

TWindowPrintout(const char* title, TWindow* window);

void GetDialoglnfo(int& minPage, int& maxPage,
int& selFromPage, int& selToPage);

void PrintPage(int page, TRect& rect, unsigned flags);
void SetBanding(BOOL b) {Banding = b;}
BOOL HasPage(int pageNumber) {return pageNumber.== 1;}

protected:
TWindow* Window;
BOOL Scale;

GetDialoglnfo retrieves page-range information from a dialog box if page
selection is possible. Since there is only one page, GetDialoglnfo for
TWindowPrintout looks like this:

TWindowPrintout: :GetDialoglnfo(int& minPage, int& maxPage,
int& selFromPage, int& selToPage)

Chapter 12, Printer objects 269

min Page = 0;
maxPage = 0;
selFromPage = selToPage ~ 0;

PrintPage must be overridden to print the contents of each page, band (if
banding is enabled), or window. PrintPage for TWindowPrintout looks like
this:

void TWindowPrintout::PrintPage(int, TRect& rect, unsigned)
{

II Conditionally scale the DC to the window so the printout II will resemble
the window

II
int prevMode;
TSize oldVExt, oldWExt;
if (Scale) {

prevMode = DC->SetMapMode(MM_ISOTROPIC);
TRect windowSize = Window->GetClientRect();
DC->SetViewportExt(PageSize, &oldVExt);
DC->SetwindowExt(windowSize.Size(), &oldWExt);
DC->IntersectClipRect(windowSize) ;
DC->DPtoLP(rect, 2);

II Call the window to paint itself
Window->Paint(*DC, FALSE, rect);

II Restore changes made to the DC
if (Scale) {

DC->SetWindowExt(oldWExt) ;
DC->SetViewportExt(oldVExt);
DC->SetMapMode(prevMode);

Set Banding is called with banding enabled:
printout.SetBanding(TRUE) ;

HasPage is called after every page is printed, and by default returns FALSE,
which means only one page will be printed. This function must be
overridden to return TRUE while pages remain in multipage documents.

Printing window contents

270

The simplest kind of printout to generate is a copy of a window, because
windows don't have multiple pages, and window objects already know
how to draw themselves on a device context.

OWL Programmers Guide

To create a window printout object, construct a window printout object and
pass it a title string and a pointer to the window you want printed:

TWindowPrintout printout ("Ruler Test", this);

Often, you'll want a window to create a printout of itself in response to a
menu command. Here is the message response member function that
responds to the'print command in PRINTING.CPP:

void TRulerWin::CmFilePrint()
{

if (Printer) {

II Execute File:Print command

TWindowPrintout printout ("Ruler Test", this);
printout.SetBanding(TRUE);
Printer->Print(this, printout, TRUE);

This member function calls the printer object's Print member function,
which passes a pointer to the parent window and a pointer to the printout
object, and specifies whether or not a printer dialog box should be
displayed.

TWindowPrintout prints itself by calling your window object's Paint member
function (within TWindowPrintout::PrintPage), but with a printer device
context instead of a display context.

Printing a document

Setting print
parameters

Windows sees a printout as a series of pages, so your printout object must
turn a document into a series of page images for. Windows to print. Just as
you use window objects to paint images for Windows to display on the
screen, you use printout objects to paint images on the printer.

Your printout object needs to be able to do these things:

• Set print parameters

• Calculate the total number of pages

• Draw each page on a device context

• Indicate if there are more pages

To enable the document to paginate itself, the printer object (derived from
flass TPrinter) calls two of the printout object's member functioris:
SetPrintParams and then GetDialoglnfo.

Chapter 12, Printer objects 271

Counting pages

Printing each
page

Indicating further
pages

272

The SetPrintParams function initializes page-size and device-context
variables in the printout object. It can also calculate any information needed
to produce an efficient printout of individual pages. For example,
SetPrintParams can calculate how many lines of text in the selected font can
fit within the print area (using Windows API GetTextMetrics). If you
override SetPrintParams, be sure to call the inherited member function,
which sets the printout object's page-size and device-context defaults.

After calling SetPrintParams, the printer object calls GetDialoglnfo, which
retrieves user page-range information from the printer dialog box. It can
also be used to calculate the total number of pages based on page-size
information calculated by SetPrintParams.

After the printer object has given the document a chance to paginate itself,
it calls the printout object's PrintPage member function for each page to be
printed. The process of printing out just the part of the document that
belongs on the given page is similar to deciding which portion gets drawn
on a scrolling window.

When you write PrintPage member functions, keep these two issues in
mind:

• Device independence. Make sure your code doesn't make assumptions
about scale, aspect ratio, or colors. Those properties can vary between
different video and printing devices, so you should remove any device
dependencies from your code .

• Device capabilities. Although most video devices support all CDI
operations, some printers do not. For example, many print devices, such
as plotters, do not accept bitmaps at all. Others support only certain
operations. When performing complex output tasks, your code should
call the Windows API function GetDeviceCaps, which returns important
information about the capabilities of a given output device.

Printout objects have one last duty: to indicate to the printer object whether
there are printable pages beyond a given page. The HasPage member
function takes a page number as a parameter and returns a Boolean value
indicating whether further pages exist. By default, HasPage returns TRUE
for the first page only. To print multiple pages, your printout object needs
to override HasPage to return TRUE if the document has more pages to
print and FALSE if the parameter passed is the last page.

Be sure that HasPage returns FALSE at some point. If HasPage always
returns TRUE, printing goes into an endless loop.

OWL Programmers Guide

Other printout
considerations

Printout objects have several other member functions you can override as
needed. BeginPrinting and EndPrinting are called before and after any
documents are printed, respectively. If you need special setup code, you
can put it in BeginPrinting and undo it in EndPrinting.

Printing of pages takes place sequentially. That is, the printer calls
PrintPage for each page in sequence. Before the first call to PrintPage,
however, the printer object calls BeginDocument, passing the numbers of the
first and last pages it prints. If your document needs to prepare to begin
printing at a page other than the first, you should override BeginDocument.
The corresponding member function, EndDocument, is called after the last
page prints.

If multiple copies are printed, the multiple BeginDocument / EndDocument
pairs can be called between BeginPrinting and EndPrinting.

Choosing a different printer

You can associate the printer objects in your applications with any printer
device installed in Windows. By default, TPrinter uses the Windows default
printer, as specified in the [devices] section of the WIN.INI file.

There are two ways to specify an alternate printer: directly (in code) and
t1;lrough a user dialog box.

By far the most common way to assign a different printer is to bring up a
dialog box that lets you choose from a list of installed printer devices.
TPrinter does this automatically when you call its Setup member function.
Setup displays a dialog box based on TPrinterDialog.

One of the buttons in the printer dialog box lets the user change the
printer's configuration. The Setup button brings up a configuration dialog
box defined in the printer's device driver. Your application has no control
over the appearance or function of the driver's configuration dialog box.

In some cases, you might want to assign a specific printer device to your
printer object, without user input. TPrinter has a SetPrinter member
function that does just that. SetPrinter takes three strings as parameters: a
device name, a driver name, and a port name.

Chapter 12, Printer objects 273

274 OWL Programmers Guide

c H A p T E R 13

Graphics objects

This chapter discusses the ObjectWindows 2.0 encapsulation of the
Windows GDI. ObjectWindows 2.0 makes it easier to use GDI graphics
objects and functions because it simplifies how you create and manipulate
GDI objects. From simple objects such as pens and brushes to more
complex objects such as fonts and bitmaps, the GDI encapsulation of the
ObjectWindows library provides a simple, consistent model for graphical
programming in Windows.

GOI class organization

There are a number of ObjectWindows classes used to encapsulate GDI
functionality. Most are derived from the TGdiObject class. TGdiObject
provides the common functionality for all ObjectWindows GDI classes.

TGdiObject is the abstract base class for ObjectWindows GDI objects. It
provides a base destructor, an HGDIOBJ conversion operator, and the base
GetObject function. It also provides orphan control for true GDI objects (that
is, objects derived from TGdiObject; other GDI objects, such as TRegion,
Tlcon, and TDib, which are derived from TGdiBase, are known as pseudo
GDlobjects).

The other classes in the ObjectWindows GDI encapsulation are:

• TDC is the root class for encapsulating ObjectWindows GDI device
contexts. You can create a TDC object directly or-for more specialized
behavior-you can use derived classes.

• TPen contains the functionality of Windows pen objects. You can
construct a pen object from scratch or from an existing pen handle, pen
object, or logical pen (LOGPEN) structure.

• TBrush contains the functionality of Windows brush objects. You can
construct a custom brush, creating a solid, styled, or patterned brush, or
you can use an existing brush handle, brush object, or logical brush
(LOGBRUSH) structure.

Chapter 13, Graphics objects 275

• TFont lets you easily use Windows fonts. You can construct a font with
custom specifications, or from an existing font handle, font object, or
logical font (LOGFONT) structure.

• TPalette encapsulates a GDI palette. You can construct a new palette or
use existing palettes from various color table types that are used by DIBs.

• TBitmap contains Windows bitmaps. You can construct a bitmap from
many sources, including files, bitmap handles, application resources, and
more.

• TRegion defines a region in a window. You can construct a region in
numerous shapes, including rectangles, ellipses, and polygons. TRegion is
a pseudo-GDI object; it isn't derived from TGdiObject.

• Tlcon encapsulates Windows icons. You can construct an icon from a
resource or explicit information. Tlcon is a pseudo-GDI object.

• TCursor encapsulates the Windows cursor. you can construct a cursor
from a resource or explicit information.

• TDib encapsulates the device-independent bitmap (DIB) class. DIBs have
no Windows handle; instead they are just a structure containing format
and palette information and a collection of bits (pixels). This class
provides a convenient way to work with DIBs like any other GDI object.
A DIB is what is really inside a .BMP file, in bitmap resources, and what
is put on the Clipboard as a DIE. TDib is a pseudo-GDI object.

Changes to encapsulated GOI functions

Many of the functions in the ObjectWindows GDI classes might look
familiar to you; this is because many of them have the same names and
very nearly, if not exactly, the same function signature as regular Windows
API functions. Because the ObjectWindows GDI classes replicate the
functionality of so many Windows objects, there was no need to alter the
existing terminology. Therefore, function names and signatures have been
deliberateiy kept as close as possible to what you are used to in the
standard Windows GDI functions.

Some·improvements, however, have been made to the functions. These
improvements, many of which are discussed in this section, include such
things as cracking packed return values and using ObjectWindows objects
in place of Windows-defined structures.

.. None of these changes are hard and fast rules; just because a function can
somehow be converted doesn't mean it necessarily has been. But if you see
an ObjectWindows function with the same name as a Windows API

276 OWL Programmers Guide

function that looks a little different, one of the following reasons should
exp lain the change to you:

• API functions that take an object handle as a parameter often omit the
handle in the ObjectWindows version. The TGdiObject base object
maintains a handle to each object. TheObjectWindows version then uses
that handle when passing the call on to Windows. For example, when
selecting an object in a device context, you would normally use the
Select Object API function, as shown here:

void SelectPen(HDC& hdc, HPEN& hpen)
HPEN hpenOldi
hpenOld = SelectObject(hdc, hpen) i

II Do something with the new pen.

II Now select the old pen again.
SelectObject(hdc, hpenOld)i
}

The ObjectWindows version of this function is encapsulated in the TDC
class, which is derived from TGdiObject. The following example shows
how the previous function would appear in a member function of a
TDC-derived class. Notice the difference between the two calls to
selectObject:

void SelectPen(TDC& dc, TPEN& pen)
dc. SelectObj ect (pen) i'

II Do something with the new pen.

II Now select the old pen again.
dc.RestorePen()i
}

• ObjectWindows CDI functions usually substitute an ObjectWindows
type in place of a Windows type:

• Windows API functions use individual parameters to specify x and y
coordinate values; ObjectWindows CDI functions use TPoint objects.

• Windows API functions use RECT structures to specify a rectangular
area; ObjectWindows CDI functions use TRect objects.

• Windows API functions use RCN structures to specify a region;
ObjectWindows CDI functions use TRegion objects.

• Windows API functions take HLOCAL or HCLOBAL parameters to
pass an object that doesn't have a predefined Windows structure;
ObjectWindows CDI functions use references to ObjectWindows
objects.

Chapter 13, Graphics objects 277

• Some Windows functions return a DWORD with data encoded in it. The
DWORD must then must be cracked to get the data from it. The
ObjectWindows versions of these functions take a reference to some
appropriate object as a parameter. The function then places the data into
the object, relieving the programmer from the responsibility of cracking
the value. These functions usually return a BOOL, indicating whether the
function call was successful.

For example, the Windows version of SetViewportOrg returns a DWORD,
with the old value for the viewport origin contained in it. The
ObjectWindows version of SetViewportOrg takes a TPoint reference in
place of the two ints the Windows version takes as parameters. It also
takes a second parameter, a TPoint *, in which the old viewport origins
are placed.

Working with device contexts

278

When working with the Windows CDI, you use a device context to ac:cess all
devices, from windows to printers to plotters. The device context is a
structure maintained by CDI that contains essential information about the
device with which you are working, such as the default foreground and
background colors, font, palette, and so on. ObjectWindows 2.0
encapsulates device-context information in a number of device context
classes, all of which are based on the TDC class.

TDC contains most of the device-context functionality you might require.
The other DC-related classes are derived from TDC or TDC-derived classes.
These derived classes only specialize the functionality of the TDC class and
apply it to a discrete set of operations. Here is a description of each of the
device-context classes:

• TDC is the root class for all CDI device contexts for ObjectWindows 2.0;
it can be instantiated itself or specialized subclasses can be used to get
specific behavior.

• TWindowDC provides access to the entire area owned by a window; this
is the base for any device context class that releases its handle when
done.

• TScreenDC provides direct access to the screen bitmap using a device
context for window handle 0, which is for the whole screen with no
clipping.

• TDesktopDC provides access to the desktop window's client area, which is
the screen behind all other windows.

• TClientDC provides access to the client area owned by a window.

OWL Programmers Guide

TOC class

Constructing and
destroying TDC

• TPaintDC wraps BeginPaint and EndPaint calls for use in an WM_P AINT
response function.

• TMetaFileDC provides a device context with a metafile loaded for use.

• TCreatedDC lets you create a device context for a specified device.

• TIC lets you create an information context for a specified device.

• TMemoryDC provides access to a memory device context.

• TDibDC provides access to DIBs using the DIB.DRV driver.

• TPrintDC provides access to a printer device context.

Although the specialized device-context classes provide extra functionality
tailored to each class' specific purpose, the TDC class provides most of each
class' functionality. This section discusses this base functionality.

Because of the large number of functions contained in TDC, this section
doesn't discuss every function in detail. Instead, areas of functionality
contained in the TDC class are described, with ObjectWindows-specific
functions and the most important API-like functions discussed in detail; the
other functions are described in the Object Windows Reference Guide. In
particular, many of the TDCfunctions look much like Windows API
functions and are therefore described only briefly in this section. You can
find general information on the difference between the Windows API
functions and the ObjectWindows versions of those functions on page 276.

TDC provides one public constructor and one public destructor. The public "
constructor takes an HDC, a handle to a device context. Essentially this
means that you must have an existing device context before constructing a
TDC object. Usually you don't construct a TDC directly, even though you
can. Instead you usually use a TDC object when passing some device
context as a function parameter or a pointer to a TDC to point to some
device context contained in either a TDC or TDC-derived object.

~ TDC restores all the default objects in the device context and discards the
objects.

TDC also provides two protected constructors for use by derived classes.
The first is a default constructor so that derived classes don't have to
explicitly call TDC's constructor. The second takes an HDC and a
T AutoDelete flag. T AutoDelete is an enum that can be NoAutoDelete or
AutoDelete. The T AutoDelete parameter is used to initialize the ShouldDelete
member, which is inherited from TGdiObject (the public TDC constructor
initializes this to NoAutoDelete).

Chapter 13, Graphics objects 279

Device-context
operators

Device-context
functions

280

TDC provides one conversion operator, HDC, that lets you return the
handle to the device context of your particular TDC or TDC-derived object.
This operator is most often invoked implicitly. When you use a TDC object
where you would normally use an HDC, such as in a function callor the
like, the compiler tries to find a way to cast the object to the required type.
Thus it uses the HDC conversion operator even though it is not explicitly
called.

For example, suppose you want to create a device context in memory that is
compatible with the device associated with a TDC object. You can use the
CreateCompatibleDC Windows API function to create the new device context

. from your existing TDC object:

HDC GetCompatDC(TDC& dc, TWindow& window)
{

HDC compatDC;

if(! (compatDC = CreateCompatibleDC(dc)))
{

window.MessageBox("Couldn't create compatible device context!", "Failure",
MB_OK I MB_ICONEXCLAMATION);

return NULL;

else return compatDC;

Notice that CreateCompatibleDC takes a single parameter, an HDC. Thus the
function parameter de is implicitly cast to an HDC in the
CreateCompatibleDC call.

The functions in this section are used to access information about the
device context itself. They are equivalent to the Windows API functions of
the same names.

You can save and restore a device context much like normal using the
functions SaveDC and RestoreDC. The following code sample shows how
these functions might be used. Notice that RestoreDC's single parameter
uses a default value instead of specifying the int parameter:

void
TMyDC: :SomeFunc(TDC& dc, int xl, int yl, int x2, int y2)
{

dc.SaveDC();
dc.SetMapMode(MM_LOENGLISH) ;

dc.Rectangle(xl, -yl, x2, -y2)i

OWL Programmers Guide

Selecting and
restoring GDI
objects

dc.RestoreDC() ;

You can also reset a device context to the settings contained in a
DEVMODE structure using the'ResetDC function. The only parameter
ResetDC takes is a reference to a DEVMODE structure.

You can use the GetDeviceCaps function to retrieve device-specific
information about a given display device. This function takes one
parameter, an int index to the type of information to retrieve from the
device context. The possible values for this parameter are the same as for
the Windows API function.

You can use the GetDCOrg function to locate the current device context's
logical coordinates within the display device's absolute physical
coordinates. This function takes a reference to a TPoint structure and
returns a BOOL. The BOOL indicates whether the function call was
successful, and the TPoint object contains the coordinates of the device
context's translation origin.

You can use the SelectObject function to place a GDI object into a device
context. There are four versions of the SelectObject function; all of them
return void, but each takes different parameters. The version you should
use depends on the type of object you are selecting into the device context.
The different versions are:

SelectObject(const TBrush& brush);
SelectObject(const TPen& pen);
Sel'ectObject(const TFont& font);
SelectObject(const TPalette& palette, BOOL forceBG=FALSE);

In addition, TMemoryDC lets you select a bitmap.

Graphics objects that you can select into a device context normally exist as
logical objects, which contain the information required for the creation of
the object. The graphics objects are connected to the logical objects through
a Windows handle. When the graphics object is selected into the device
context, a physical tool (created using the attributes contained in the logical
pen) is created inside the device context.

You can also select a stock object using the function SelectStockObject.
SelectStockObject takes one parameter, an int that is equivalent to the
parameter used to call the API function GetStockObject. Essentially the
SelectStockObjectfunction takes the place of two calls: a call to
GetStockObject to actually get a stock object, then a call to SelectObject to
place the stock object into the device context.

Chapter 13, Graphics objects 281

Drawing tool
functions

Color and palette
functions

Drawing attribute
functions

282

TDC provides functions to restore original objects in a device context. There
are normally four versions of this function, RestoreBrush, RestorePen,
RestoreFont, and RestorePalette. A fifth, RestoreTextBrush, exists only for 32-
bit applications. The RestoreObjects function calls all four functions (or five,
under 32 bits), and restores all original objects in the device context. All of
these functions return vOid and take no parameters.

GetBrushOrg takes one parameter, a reference to a TPoint object. It places
the coordinates of the brush origin into the TPoint object. GetBrushOrg
returns TRUE if the operation was successful.

SetBrushOrg takes two parameters, a reference to a TPoint object and a
TPoint *. This sets the device context's brush origin to the x and y values in
the first TPoint object. If you don't specify a value for the second parameter,
it defaults to o. If you do pass a pointer to a TPoint object as the second
parameter, TDC::SetBrushOrg places the old values for the brush origin into
the x and y members of the object. The return value indicates whether the
operation was successful.

TDC provides a number of functions you can use to manipulate the colors
and palette of a device context.

GetNearestColor
GetSystemPaletteEntries
GetSystemPaletteUs

RealizePalette
SetSystemPaletteUse
UpdateColorse

Use drawing attribute functions to set the device context's drawing mode.
All of these functions are analogous to the API functions of the same
names, except that the HDC parameter is omitted in each.

GetBkColor
GetBkMode
GetPolyFillMode
GetROP2
GetStretchBltMode
Get Text Color

SetBkColor
SetBkMode
SetPolyFillMode
SetROP2
SetStretchBltMode
Set Text Color

Another function, SetMiterLimit, is available only for 32-bit applications.

OWL Programmers Guide

Viewport and
window mapping
functions

Coordinate
functions

Clip and update
rectangle and
region functions

Metafile functions

Current position
functions

Use these functions to set the viewport and window mapping modes:

GetMapMode
GetViewportExt
GetViewportOrg
GetViewportOrg
GetWindowExt
GetWindowExt
GetWindowOrg
GetWindowOrg
OffsetViewportOrg

GetViewportExt
OffsetWindowOrg
ScaleViewportExt
ScaleWindowExt
SetMapMode
SetViewportExt
SetViewportOrg
SetWindowExt
SetWindowOrg

The following viewport and window mapping functions are available only
for 32-bit applications:

Modi fyWorldTrans form SetWorldTransform

Coordinate functions convert logical coordinates to physical coordinates
and vice versa:

DPtoLP LPtoDP

Use clip and update rectangle and region functions to set up and retrieve
simple or complex areas in a device context's clipping region:

Exc1udeClipRect
ExcludeUpdateRgn
GetBoundsRect
GetClipBox
GetClipRgn
IntersectClipRect

OffsetClipRgn
ptVisible
RectVisible
SelectClipRgn
SetBoundsRect

Use the metafile functions to access metafiles:

EnumMetaFile
PlayMetaFile

PlayMetaFileRecord

Use these functions to move to the current point in the device cont.ext.
Three versions of MoveTo are provided:

• MoveTo(int x, int y) moves the pen to the point x, y.
• MoveTo(TPoint &point) moves the pen to the point point.x, point.y.

• MoveTo(TPoint &point, TPoint &oldPoint) moves the pen to the point
point.x, point.y and places the old location of the pen into oldPoint.

Chapter 13, Graphics objects 283

Font functions

Path functions

Output functions

284

GetCurrentPosition takes a reference to a TPoint object. It places the
coordinates of the current position into the TPoint object and returns TRUE
if the function call was successful.

Use TDC's font functions to access and manipulate fonts:

EnumFontFamilies
EnumFonts
GetAspectRatioFilter
GetCharABCwidths

GetCharWidth
GetFontData
SetMapperFlags

Path functions are available only to 32-bit applications. The TDC path
functions are the same as the Win32 versions, with the exception that the
TDC versions don't take a HDC parameter.

BeginPath
CloseFigure
EndPath
FillPath
FlattenPath

PathToRegion
SelectClipPath
StrokeAndFillPath
StrokePath
WidenPath

TDC provides a great variety of output functions for all different kinds of
objects that a standard device context can handle, induding:

• Icons • Shapes

• Rectangles • Bitmaps

• Regions • Text

Nearly all of these functions provide a number of versions: one version that
provides functionality nearly identical to that of the corresponding API
function (with the exception of omitting the HDC parameter) and alternate
versions that use TPoint, TRect, TRegion, and other ObjectWindows data
encapsulations to make the calls more concise and easier to understand.
These functions are discussed in further detail in the Object Windows
Reference Guide.

• Current position
GetCurrentPosition

• Icons
Drawlcon

• Rectangles
DrawFocusRect
FrameRect
InvertRect

MoveTo

FillRect
TextRect

OWL Programmers Guide

Object data
members and
functions

• Regions
FillRgn
FrameRgn

• Shapes
Arc
Chord
Ellipse
LineDDA
LineTo
Pie

• Bitmaps and blitting
BitBlt
ExtFloodFill
FloodFill
GetDIBits
GeUixel
PatBlt

• Text
DrawText
Ext Text Out
GrayString

InvertRgn
PaintRgn

Polygon
Polyline
PolyPolygon
Rectangle
RoundRect

ScrollDC
SetDIBits
SetDIBitsToDevice
SetPixel
StretchBlt
StretchDIBits

TabbedTextOut
TextOut

The following functions are available for 32-bit applications only:

• Shapes
AngleArc
PolyBezier
PolyBezierTo

• Bitmaps and blitting

MaskBlt

PolyDraw
PolylineTo
PolyPolyline

PlgBlt

These data members and functions are used to administer the device
context object itself. The functions and data members discussed in this
section are protected and can be accessed only by a TOe-derived class.

• ShouldOelete indicates whether the object should delete its handle to the
device context when the destructor is invoked.

• Handle contains the actual handle of the device context.

• OrgBrush, OrgPen, OrgFont, and OrgPalette are the handles to the original
objects when the device context was created; OrgTextBrush is also present
in 32-bit applications.

• CheckValid throws an exception if the device context object is not valid.

• Init sets the OrgBrush, OrgPen, OrgFont, and OrgPalette when the object is
created; If you're creating a TOC-derived class without explicitly calling a
TOC constructor, you should call the TOC::Init first in your constructor.

Chapter 13, Graphics objects 285

TPen class

Constructing
TPen

286

• GetHDC returns an HDC using Handle .

• GetAttributeHDC, like GetHDC, returns an HDC using Handle; if you're
creating an object with more than one device context, you ~hould
override this function and not GetHDC to provide the proper return.
OWLFastWindowFrame draws a frame that is often used for window
borders. This function uses the undocumented Windows API function
Fast WindowFrame if available, or PatBlt if not.

The TPen class encapsulates a logical pen. It contains a color for the pen's
"ink" (encapsulated in a TColor object), a pen width, and the pen style.

You can construct a TPen either directly, specifying the color, width, and
style of the pen, orindirectly, by specifying a TPen & or pointer to a
LOGPEN structure. Directly constructing a pen creates a new object with
the specified attributes. Here is the constructor for directly constructing a
pen:

TPen(TColor color, int width=l, int style=PS_SOLID) i

The style parameter can be one of the following values:PS_SOLID,
PS_DASH, PS_DOT, PS_DASHDOT, PS_DASHDOTDOT, PS_NULL, or
PS_INSIDEFRAME. These values are discussed in the Object Windows
Reference Guide.

Indirectly creating a pen creates a new object, but copies the attributes of
the object passed to it into the new pen object. Here are the constructors for
indirectly creating a pen:

TPen(const LOGPEN far* logPen)i
TPen(const TPen&) i

You can also create a new TPen object from an existing HPEN handle:

TPen(HPEN handle, TAutoDelete autoDelete = NoAutoDelete) i

This constructor is used to obtain an ObjectWindows object as an alias to a
regular Windows handle received in a message.

Two other constructors are available only for 32-bit applications. You can
use these constructors to create cosmetic or geometric pens:

TPen(DWORDpenStyle,
DWORD width,
const TBrush& brush,

OWL Programmers Guide

Accessing TPen

DWORD styleCount,
LPDWORD style) i

TPen(DWORD penStyle,
DWORD width,

where:

const LOGBRUSH& logBrush,
DWORD styleCount,
LPDWORD style) i

• penStyle is a combination of type, style, end cap, and join of the pen,
where:

• Type is either PS_GEOMETRIC or PS_COSMETIC.

• Style can be anyone of the following values:
PS_ALTERNATE

PS_DASH

PS_DASHDOT

PS_DASHDOTDOT

PS_DOT

PS_INSIDEFRAME

PS_NULL

PS_SOLID

PS_USERSTYLE

• End cap is specified only for geometric pens, and can be one of the
following values:

PS_ENDCAP_FLAT

PS_ENDCAP_ROUND

• Join is specified only for geometric pens, and can be one of the
following values:

PS30IN_BEVEL

PS_JOIN_MITER

• width is the pen width.

• brush or logBrush is a reference to an existing TBrush or LOGBRUSH
object.

• styleCount is the size (in DWORDs) of the style array; styleCount should be
o unless the pen style is PS_USERSTYLE.

• style is a pointer to an array of DWORDs that specifies the pattern of the
pen; style should be NULL unless the pen style is PS_USERSTYLE.

You can access TPen through an HPEN or as a LOGPEN structure. To get
an HPEN from a TPen object, use the HPEN operator with the TPen object
as the parameter. The HPEN operator is almost never explicitly invoked:

HPEN GetHPen(TPen& pen)
{

Chapter 13, Graphics objects 287

TBrush class

Constructing
TBrush

288

return pen;

This code automatically invokes the HPEN conversion operator to cast the
TPen object to the correct type.

To convert a TPenobject to a L<?GPEN structure, use the GetObject function:

BOOL
GetLogPen(LOGPEN far& logPen)
{

TPen pen(TColor::LtMagenta, 10) i

return pen.GetObject(logPen);

The following example shows how to use a pen with a TDC to draw a line:

void
TPenDerno::DrawLine(TDC& dc, const TPoint& point, TColor& color)
{

TPen BrushPen(color, PenSize);
dc.SelectObject(BrushPen) ;
dc.LineTo(point);

The TBrush class encapsulates cit logical brush. It contains a color for the
brush's ink (encapsulated in a TColor object), a brush width, and, depending
on how the brush is constructed, the brush style, pattern, or bitmap.

You can construct a TBrush either directly, specifying the color, width, and
style of the brush, or indirectly, by specifying a TBrush & or pointer to a
LOGBRUSH structure. Directly constructing a brush creates a new object
with the specified attributes. Here are the constructors for directly
constructing a brush:

TBrush(TColor color) i
TBrush(TColor color, int style);
TBrush(const TBitrnap& pattern) i
TBrush(const TDib& pattern);

The first constructor creates a solid brush with the color contained n color.

The second constructor creates a hatched brush with the color contained in
color and the hatch style contained in style. style can be one of the following
values:

OWL Programmers Guide

Accessing TBrush

HS_BDIAGONAL

HS_CROSS

HS_DIAGCROSS

HS_FDIAGONAL

HS_HORIZONTAL

HS3ERTICAL

The third and fourth constructors create a brush from the bitmap or DIB
passed as a parameter. The width of the brush depends on the size of the
bitmap or DIB.

Indirectly creating a brush creates a new object, but copies the attributes of
the object passed to it into the new brush object. Here are the constructors
for indirectly creating a brush:

TBrush{const LOGBRUSH far* logBrush);
TBrush{const TBrush& SIC);

You can also create a new TBrush object from an existing HBRUSH handle:

TBrush{HBRUSH handle, TAutoDelete autoDelete = NoAutoDelete) ;

This constructor is used to obtain an ObjectWindows object as an alias to a
regular Windows handle received in a message.

You can access TBrush through an HBRUSH or as a LOGBRUSH structure.
To get an HBRUSH from a TBrush object, use the HBRUSH operator with
the TBrush object as the parameter. The HBRUSH operator is almost never
explicitly invoked:

HBRUSH GetHBrush{TBrush& brush)
{

return brush;

This code automatically invokes the HBRUSH conversion operator to cast
the TBrush object to the correct type.

To convert a TBrush object to a LOGBRUSH structure, use the GetObject
function:

BOOL GetLogBrush{LOGBRUSH far& logBrush)
{

TBrush brush{TColor: :LtCyan, HS_DIAGCROSS);
return brush. GetObj ect (logBrush) ;

To reset the origin of a brush object, use the UnrealizeObject function.
UnrealizeObject resets the brush's origin and returns nonzero if successful.

The following code shows how to use a brush to paint a rectangle in a
window:

Chapter 13, Graphics objects 289

TFont class

Constructing
TFont

290

void
TMyWindow::PaintRect(TDC& dc, TPoint& p, TSize& size)
{

TBrush brush(TColor(5,5,5));
dc.SelectObject(brush);
dc.Rectangle(p, size);
dc.RestoreBrush();

The TFont class lets you easily create and use Windows fonts in your
applications. The TFont class encapsulates all attributes of a logical font.

.. You can construct a TFont either directly, specifying all the attributes of the
font in the constructor, or indirectly, by specifying a TFont & or pointer to a
LOGFONT structure. Directly constructing a pen creates a new object with
the specified attributes. Here are the constructors for directly constructing a
font:

TFont(const char far* facename=O,
intrheight=O, int width=O, int escapement=O,
int orientation=O,int.weight=FW_NORMAL,
BYTE pitchAndFamily=DEFAULT_PITCHIFF_DONTCARE i

BYTE italic=FALSE, BYTE underline=FALSE,
BYTE strikeout=FALSE,
BYTE charSet=l,
BYTE outputPrecision=OUT_DEFAULT_PRECIS,
BYTE clipPrecision=CLIP_DEFAULT_PRECIS,
BYTE quality=DEFAULT_QUALITY) ;

TFont(int height, int width, int escapement=O,
int orientation=O,
int we ight= FW_NORMAL,
BYTE italic=FALSE, BYTE underline=FALSE,
BYTE strikeout=FALSE,
BYTE charSet=l,
BYTE outputPrecision=OUT_DEFAULT_PRECIS,
BYTE clipPrecision=CLIP_DEFAULT~PRECIS,
BYTE quality=DEFAULT_QUALITY,
BYTE pitchAndFamily=DEFAULT_PITCHIFF_DONTCARE,
const char far* facename=O);

The first constructor lets you conveniently plug in the most commonly used
attributes for a font (such as name, height, width, and so on) and let the
other attributes (which generally have the same value time after time) take

OWL Programmers Guide

Accessing TFont

TPalette class

their default values. The second constructor has the parameters in the same
order as the CreateFont Windows API call so you can easily cut and paste
from existing Windows code. .

Indirectly creating a font creates a new object, but copies the attributes of
the object passed to it into the new font object. Here are the constructors for
indirectly creating a font:

TFont(const LOGFONT far* logFont);
TFont(const TFont&);

You can also create a new TFont object from an existing HFONT handle:

TFont(HFONT handle, TAutoDelete autoDelete = NoAutoDelete);

This constructor is used to obtain an ObjectWindows object as an alias to a
regular Windows handle received in a message.

You can access TFont through an HFONT or as a LOG FONT structure. To
get an HFONT from a TFont object, use the HFONT operator with the TFont
object as the parameter. The HFONT operator is almost never explicitly
invoked:

HFONT GetHFont(TFont& font)
{

return font;

This code automatically invokes the HFONT conversion operator to cast
the TFont object to the correct type.

To convert a TFont object to a LOGFONT structure, use the GetObject
function:

BOOL GetLogFont(LOGFONT far& logFont)
{

, }

TFont font (" Times Roman ", 20, 8);
return font.GetObject(logFont);

The TPalette class encapsulates a Windows color palette that can be used
with bitmaps and DIBs. TPalette lets you adjust the color table, match
individual colors, move a palette to the Clipboard, and more.

Chapter 13, Graphics objects 291

Constructing
. TPalette

Accessing
TPalette

292

You can construct a TPalette object either directly, passing an array of color
values to the constructor, or indirectly, by specifying a TPalette &, a pointer
to a LOGP ALETTE structure, a pointer to a bitmap header, and so on.
Directly constructing a palette creates a new object with the specified
attributes. Here is the constructor for directly constructing a palette:

TPalette(const PALETTE ENTRY far* entries, int count);

entries is an array of P ALETTEENTRY objects. Each P ALETTEENTRY
object contains a color value specified by three separate values, one each of
red, green, and blue, plus a flags variable for the entry. count specifies the
number of values contained in the entries array.

Indirectly creating a palette creates a new object, but copies the attributes of
the object passed to it into the new palette object. Here are the constructors
for indirectly creating a palette:

TPalette(const TClipboard&);
TPalette(const TPalette& palette);
TPalette(const LOGPALETTE far* logPalette);
TPalette(const BITMAPINFO far* info, UINT flags=O);
TPalette(const BITMAPCOREINFO far* core, UINT flags=O);
TPalette(const TDib& dib, UINT flags=O);

Each of these constructors copies the color values contained in the object
passed into the constructor into the new object. The objects passed to the
constructor are not necessarily palettes themselves; many of them are
objects that use palettes and contain a palette themselves. In these cases, the
TPalette constructor extracts the palette from the object and copies it into
the new palette object.

You can also create a new TPalette object from an existing HP ALETTE
handle:

TPalette(HPALETTE handle, TAutoDelete autoDelete = NoAutoDelete);

This constructor is used to obtain an ObjectWindows object as an alias to a
regular Windows handle received in a message.

You can access TPalette through an HP ALETTE or as a LOGP ALETTE
structure. To get an HPALETTE from a TPalette object, use the HP ALETTE
operator with the TPalette object as the parameter. The HP ALETTE operator
is almost never explicitly invoked:

HPALETTE GetHPalette(TPalette& palette)
{

OWL Programmers Buide

Member functions

return palette;

This code automatically invokes the HP ALETTE conversion operator to
cast the TPalette object to the correct type.

The GetObject function for TPalette functions the same way the Windows
API call GetObject does when passed a handle to a palette: it places the
number of entries in the color table into the WORD reference passed to it as
a parameter. TPalette::GetObject returns TRUE if successful.

TPalette also encapsulates a number of standard API calls for manipulating
palettes:

• You can match a color with an entry in a palette using the
GetNearestPalettelndex function. This function takes a single parameter (a
TColor object) and returns the index number of the closest match in the
palette's color table.

• GetNumEntries takes no parameters and returns the number of entries in
the palette's color table.

• You can get the values for a range of entries in the palette's color table
using the GetPaletteEntries function. TPalette::GetPaletteEntries functions
just like the Windows API call GetPaletteEntries, except that
TPalette::GetPaletteEntries omits the HP ALETTE parameter.

• You can set the values for a range of entries in the palette's color table
using the SetPaletteEntries function. TPalette::SetPaletteEntries functions
just like the Windows API call SetPaletteEntries, except that
TPalette::SetPaletteEntries omits the HPALETTE parameter.

• The GetPaletteEntry and SetPaletteEntry functions work much like
GetPaletteEntries and SetPaletteEntries, except that they work on a single
palette entry at a time. Both functions take two parameters, the index
number of a palette entry and a reference to a P ALETTEENTRY object.
GetPaletteEntry places the color value of the desired palette entry into the
P ALETTEENTRY object. SetPaletteEntry sets the palette entry indicated
by the index to the value of the P ALETTEENTRY object.

• You can use the ResizePalette function to resize a palette. ResizePalette
takes a UINT parameter, which specifies the number of entries in the
resized palette. ResizePalette functions exactly like the Windows API
ResizePalette call.

• The AnimatePalette function lets you replace entries in the palette's color
table. AnimatePalette takes three parameters, two UINTs and a pointer to
an array of P ALETTEENTRY objects. The first UINT specifies the first
entry in the palette to be replaced. The second UINT specifies the number

Chapter 13, Graphics objects 293

Extending
TPalette

TBitmap class

294

of entries to be replaced. The entries indicated by these two DINTs are
replaced by the values contained in the array of P ALETTEENTRYs .

• You can also use the UnrealizeObject function for your palette objects.
UnrealizeObject matches the palette to the current system palette.
UnrealizeObject takes no parameters and functions just like the Windows
API call .

• You can move a palette to the Clipboard using the ToClipboard function.
ToClipboard takes a reference to a TClipboard object as a parameter.
Because the ToClipboard function actually removes the object from your
application, you should usually use a TPalette constructor to create a
temporary object:

TClipboard clipBoard;
TPalette (tmpPalette) .ToClipboard(clipBoard);

TPalette contains two protected-access functions, both called Create. The
two functions differ in that one takes BITMAPINFO * as its first parameter
and the other takes a BITMAPCOREINFO * as its first parameter. These
functions are called from the TPalette constructors that take a
BITMAPINFO *, a BITMAPCOREINFO *, or a TDib &. The BITMAPINFO *
and BITMAPCOREINFO * constructors call the corresponding Create
functions. The TDib & constructor extracts a BITMAPCOREINFO * or a
BITMAPINFO * from its TDib object and calls the appropriate Create
function.

Both Create functions take a DINT for their second parameter. This
parameter is equivalent to the peFlags member of the P ALETTEENTRY
structure and should be passed either as a 0 or with values compatible with
peFlags: PC_EXPLICIT, PC_NOCOLLAPSE, and PC_RESERVED. A palette
entry must have the PC_RESERVED flag set to use that entry with the
AnimatePalette function.

The Create functions create a LOGP ALETTE using the color table from the
bitmap header passed as its parameter. You can use Create for 2-,16-, and
256-color bitmaps. It fails for all other types, including 24-bit DIBs. It then
uses the LOGPALETTE to create the HPALETTE.

The TBitmap class encapsulates a Windows device-dependent bitmap,
providing a number of different constructors, plus member functions to
manipulate and access the bitmap. _

OWL Programmer's Guide

Constructing
TBitmap

You can construct a TBitmap object either directly or indirectly. Using direct
construction, you can specify the bitmap's width, height, and so on. Using
indirect construction, you can specify an existing bitmap object, pointer to a
BITMAP structure, a metafile, a TDC device context; and more.

Here is the constructor for directly constructing a bitmap object:

TBitmap(int width, int height, BYTE planes=l, BYTE count=l, void* bits=O);

width and height specify the width and height in pixels of the bitmap. planes
specifies the number of color planes in the bitmap. count specifies the
number of bits per pixel. Either plane or count must be 1. bits is an array
containing the bits to be copied into the bitmap. bits can be 0, in which case
the bitmap is left uninitialized. '

You can create bitmap objects from existing bitmaps, either encapsulated in
a TBitmap object or contained in a BITMAP structure.

TBitmap(const TBitmap& bitmap);
TBitmap(const BITMAP far* bitmap);

TBitmap provides two constructors you can use to create bitmap objects that
are compatible with a given device context. The first constructor creates an
uninitialized bitmap of the size height by width. Specifying TRUE for the
discardable parameter makes the bitmap discardable. A bitmap should never
be discarded if it is the currently selected object in a device context.

TBitmap(const TDC& Dc, int width, int height, BOOL discardable = FALSE);

The second constructor creates a bitmap compatible with the device
represented by the device context from a DIB. The usage parameter should
be CBM_INIT for 16-bit applications. CBM_INIT indicates that the bitmap
should be initialized with the bits contained in the DIB object. If you don't
specify CBM_INIT, the bitmap is created, but is left empty. CBM_INIT is
the default.

32-bit applications can also specify CBM_CREATEDIB. The
CBM_CREATEDIB flag indicates that the color format of the new bitmap
should be compatible with the color format contained in the DIB's
BITMAPINFO structure. If the CBM_CREATEDIB flag isn't specified, the
bitmap is assumed to be compatible with the given device context.

TBitmap(const TDC& Dc, const TDib& dib, DWORD usage);

You can also create bitmaps from the Windows Clipboard, from a metafile,
or from a DIB object. To create a bitmap from the Clipboard, you only need
to pass a reference to a TClipboard object to the constructor. The constructor

Chapter 13, Graphics objects 295

Accessing
TBitmap

296

gets the handle of the bitmap in the Clipboard and constructs a bitmap
object from the handle:

TBitmap(const'TClipboard& clipboard);

To create a bitmap from a metafile, you need to pass a TMetaFilePict &, a
TPalette &, and a TSize &. The constructor initializes a device-compatible
bitmap (based on the palette) and plays the metafile into the bitmap:

TBitmap(const TMetaFilePict& metaFile, TPalette& palette, constTSize& size) i

To create a bitmap from a device-independent bitmap, you need to pass a
TDib & to the constructor. You can also specify an optional palette. The
constructor creates a device context and renders the DIB into a device
compatible bitmap:

TBitmap(const TDib& dib, const TPalette*palette = 0) i

You can create a bitmap object by loading it from a module. This
constructor takes two parameters, first the HINST ANCE of the module
containing the bitmap and second the resource ID of the bitmap you want
to load:

TBitmap(HINSTANCE, TResld) i

You can also create a new TBitmap object from an existing HBITMAP
handle:

TBitmap()1BITMAP handle, TAutoDelete autoDelete = NoAutoDelete) i

This constructor is used to obtain an ObjectWindows object as an alias to a
regular Windows handle received in a message.

You can access TBitmap through an HBITMAP or as a BITMAP structure.
To get an HBITMAP from a TBitmap object, use the HBITMAP operator
with the TBitmap object as the parameter. The HBITMAP operator is almost
never explicitly invoked:

HBITMAP GetHBitmap(TBitmap &bitmap)
{

return bitmap;

This code automatically invokes the HBITMAP conversion operator to cast
the TBitmap object to the correct type.

To convert a TBitmap object to a BITMAP structure, use the GetObject
function: '

OWL Programmers Guide

Member functions

BOOL GetBitmap(BITMAP far& dest)
{

TBitmap bitmap(200, 100) i
return bitmap. GetObject (dest) i

The GetObject function fills out only the width, height, and color format
information of the BITMAP structure. You can get the actual bitmap bits
with the GetBitmapBits function.

TBitmap also encapsulates a number of standard API calls for manipulating
palettes:

• You can get the same information as you get from GetObject, except one
item at a time, using the following functions. Each function returns a
characteristic of the bitmap object:

int Width()i BYTE Planes()i
int Height () i BYTE BitsPixel () i

• The GetBitmapDimension and SetBitmapDimension functions let you find
out and change the dimensions of the bitmap. GetBitmapDimension,
which takes a reference to a TSize object as its only parameter, places the
size of the bitmap into the TSize object. SetBitmapDimension can take two
parameters, the first a reference to a TSize object containing the new size
for the bitmap and a pointer to a TSize, in which the function places the
old size of the bitmap. You don't have to pass the second parameter to
SetBitmapDimension. Both functions return TRUE if the operation was
successful.

The GetBitmapDimension and S'etBitmapDimension functions don't actually
affect the size of the bitmap in pixels. Instead they modify only the
physical size of the bitmap, which is often used by programs when
printing or displaying bitmaps. This lets you adjust the size of the bitmap
depending on the size of the physical screen.

• The GetBitmapBits and SetBitmapBits functions let you query and change
the bits in a bitmap. Both functions take two parameters: a DWORD and
a void *. The DWORD specifies the size of the array in bytes, and the void
* points to an array. GetBitmapBits fills the array with bits from the
,bitmap, up to the number of bytes specified by the DWORD parameter.
SetBitmapBits copies the array into the bitmap, copying over the number
of bytes specified in the DWORD parameter.

• You can move a bitmap to the Clipboard using the ToClipboard function.
To Clip board takes a reference to a TClipboard object as a parameter.
Because the ToClipboard function actually removes the object from your
application, you should usually use a TBitmap constructor to create a
temporary object:

Chapter 13, Graphics objects 297

Extending
TBitmap

TRegion class

Constructing and
destroying
TRegion

298

TClipboard clipBoard;
TBitmap (tmpBitmap) .ToClipboard(clipBoard);

TBitmap has three functions that have protected access: a constructor and
two functions called Create.

The constructor is a default constructor. You can use it when constructing a
derived class to prevent having to explicitly call the base class constructor.
If you use the default constructor, you need to initialize the bitmap
properly in your own constructor.

The first Create function takes a reference to a TBitmap object as a parameter.
Essentially, this function copies the passed TBitmap object over to itself.

The second Create function takes references to a TDib object and to a
TPalette object. Create creates a device context compatible with the TPalette
and renders the DIB into a device-compatible bitmap.

Use the TRegion class to define a region in a device context. You can
perform a number of operations on a device context, such as painting,
filling, inverting, and so on, using the region as a stencil. You can also use
the TRegion class to define a region for your own custom operations.

Regions come in many shapes and sizes, from simple rectangles and
rectangles with rounded corners to elaborate polygonal shapes. You can
determine the shape of your region by the constructor used. You can also
indirectly construct a region from a handle to a region or an existing
TRegion object.

TRegion provides a default constructor that produces an empty rectangular
region. You can use the function SetRectRgn to initialize an empty TRegion
object. For example, suppose you derive a class from TRegion. In the
constructor for your derived' class, call SetRectRgn to initialize the region.
This prevents you from having to call TRegion's constructor explicitly:

class TMyRegion : public TRegion
{

public:
TMyRegion(TRect& rect);

};

TMyRegion::TMyRegion(TRect& rect)

OWL Programmer's Guide

II Initialize the TRegion base with recto
SetRectRgn(rect);

You can directly create a TRegion from a number of different sources. To
create a simple rectangular region, use the following constructor:

TRegion(const TRect& rect);

This creates a rectangular region from the logical coordinates in the TRect
object.

To create a rectangular region with rounded corners, use the following
constructor:

TRegion(const TRect& rect, const TSize& corner);

This creates a rectangular region from the logical coordinates in the TRect
object, then rounds the corners into an ellipse. The height and width of the
ellipse used is defined by the values in the TSize object.

To create an elliptical region, use the following constructor:

TRegion(const TRect& e, TEllipse);

This creates an elliptical region bounded by the logical coordinates
contained in the TRect structure. TEllipse is an enumerated value with only
one possible value, Ellipse. A call to this constructor looks something like
this:

TRect rect(20, 20, 80, 60);
TRegion rgn(rect, TRegion::Ellipse);

To create regions with an irregular polygonal shape, use the following
constructor:

TRegion(const TPoint* points, int count, int fillMode);

points is an array of TPoint objects. Each TPoint contains the logical
coordinates of a vertex of the polygon. count indicates the number of points
in the points array. fillMode indicates how the region should be filled; this
can be either ALTERNATE or WINDING. There is another constructor that
you can use to create regions consisting of multiple irregular polygonal
shapes:

TRegion(const TPoint* points, const int* polyCounts, int count,
int fillMode);

As in the other polygonal region constructor, points is an array of TPoint
objects. But for this constructor, points contains the vertex points of a

Chapter 13, Graphics objects 299

Accessing
TRegion

300

number of polygons. polyCounts indicates the number of points in the points
array for each polygon. count indicates the total number of polygons in the
region and the number of members in the polyCount array. fillMode
indicates how the region should be filled; this can be either ALTERNATE
or WINDING.

For example, suppose you're constructing a region that encompasses two
triangular areas. Each triangle would consist of three points. Therefore
points would have six members, three for each triangle. polyPoints would
have two members, one for each triangle. Each member of polyPoints would
have the value three, indicating the number of points in the points array
that belongs to each polygon. count would have the value two, indicating
that the region consists of two polygons.

You can create a TRegion from an existing HRGN:

TRegion(HRGN handle, TAutoDelete autoDelete = NoAutoDelete)i

This constructor is used to obtain an ObjectWindows object as an alias to a
regular Windows handle received in a message. '

You can also create a new TRegion object from an existing TRegion object:

TRegion(const TRegion& region)i

- TRegion deletes the region and its storage space.

You can access and modify TRegion objects directly through an HRGN
handle or through a number of member functions and operators. To get an
HRGN from a TRegion object, use the HRGN operator with the TRegion
object as the parameter. The HRGN operator is almost never explicitly
invoked:

HRGN
TMyBi trnap: : GetHRgn ()
{

return *thisi

This code automatically invokes the HRGN conversion operator to cast the
TRegion object to the correct type.

OWL Programmers Guide

Member functions
TRegion provides a number of member functions to get information from
the TRegion object, including whether a pointis contained in or touches the
region:

• You can use the SetRectRgn function to reset the object's region to a
rectangular region:

void SetReetRgn(eonst TReet& reet);

This sets the TRegion's area to the logical coordinates contained in the
TRect object passed as a parameter to the SetRectRgn function. The region
is set to a rectangular region regardless of the shape that it previously
had.

• You can use the Contains function to find out whether a point is
contained in a region:

BOOL Contains(eonst TPoint& point);

point contains the coordinates of the point in question. Contains returns
TRUE if point is within the region and FALSE if not.

• You can use the Touches function to find out whether any part of a
rectangle is contained in a region:

BOOL Touehes(eonst TReet& reet);

rect contains the coordinates of the rectangle in question. Touches returns
TRUE if any part of rect is within the region and FALSE if not.

• You can use the GetRgnBox functions to get the coordinates of the
bounding rectangle of a region: '

int GetRgnBox(TReet& box);
TReet GetRgnBox();

The bounding rectangle is the smallest possible rectangle that encloses all
of the area contained in the region. The first version of this function takes
a reference to a TRect object as a parameter. The function places the
coordinates of the bounding rectangle in the TRect object. The return
value indicates the complexity of the region, and can be either
SIMPLEREGION (region has no overlapping borders),
COMPLEXREGION (region has overlapping borders), or NULLREGION
(region is empty). If the function fails, the return value is ERROR.

The second version of GetRgnBox takes no parameters and returns a
TRect, which contains the coordinates of the bounding rectangle. The
second version of this function doesn't indicate the complexity of the
region.

Chapter 13, Graphics objects 301

Operators

302

TRegion has a large number of operators. These operators can be used to
query and modify the values of a region. They aren't necessarily restricted
to working with other regions; many of them let you add and subtract
rectangles and other units to and from the region.

TRegion provides two Boolean test operators, == and !=. These operators
work to compare two regions. If two regions are equivalent, the ==
operator returns TRUE, and the != operator returns FALSE. If two regions
aren't equivalent, the == operator returns FALSE, and the != operator
returns TRUE. You can use these operators much as you do their
equivalents for ints, chars, and so on.

For example, suppose you want to test whether two regions are identical,
and, if they're not, perform an operation on them. The code would look
something like this:

TRegion rgnl;
TRegion rgn2;

II Initialize regions ...

if(rgnl != rgn2)
{

II Perform your operations here

TRegion also provides a number of assignment operators that you can use
to change the region:

• The = operator lets you assign one region to another. For example, the
statement rgnl = rgn2 sets the contents of rgnl to the contents of rgn2,
regardless of the contexts of rgnl prior to the assignment.

• The += operator lets you move a region by an offset contained in a TSize
object. This operation is analogous to numerical addition: just add the
offset to each point in the region. The region retains all of its properties,
except that the coordinates defining the region are shifted by the values
contained in the ex and ey members of the TSize object:

• If ex is positive, the region is shifted ex pixels to the right.

• If ex is negative, the region is shifted ex pixels to the left.

• If ey is positive, the region is shifted ey pixels down.

• If ey is negative, the region is shifted ey pixels up.

For example, suppose you want to move a region to the right 50 pixels
and up 20 pixels. The code would look something like this:

OWL Programmers Guide

TRegion rgn;

II Initialize region ...

TSize size(50, -20);
rgn += size;

II Continue working with new region.

• The -= operator, when used with a TSize object, does essentially the
opposite of the += operator; that is, it subtracts the offset from each point
in the region. For example, suppose you have the same code as in the
previous example, except that instead of using the += operator, it uses
the -= operator. This would offset the region in exactly the opposite way
from the += operator, 50 pixels to the left and down 20 pixels.

• The -= operator, when used with a TRegion object, behaves differently
from when it is used with a TSize object. To demonstrate how the -=
operator works when used with TRegion, consider the following code:

TRegion rgnl, rgn2;

rgnl -= rgn2;

After execution of this code, rgnl contains all the area it contained
originally, minus any parts of that area shared by rgn2. Thus any point
that is contained in rgn2 is not contained in rgnl after this code has
executed. This is analogous to subtraction: subtract the area defined by
rgn2 from rgnl.

• The &= operator can be used with both TRegion objects and TRectobjects
(before any operations are performed, the TRect is converted to a TRegion
using the constructor TRegion::TRegion(TRect&)). To demonstrate how
the &= operator works, consider the following code:

TRegion rgnl, rgn2;

rgnl &= rgn2;

After execution of this code, rgnl contains all the area it originally shared
with rgn2; that is, areas that were common to both regions before the
execution of the &= statement. This is a logical AND operation: only the
areas that are part of both rgnl AND rgn2 become part of the new region.

• The I = opera tor can be used with both TRegion objects and TRect objects
(before any operations are performed, the TRect is converted to a TRegion
using the constructor TRegion::TRegion(TRect &)); To derIlonstrate how
the I = operator works, consider the following code:

TRegion rgnl, rgn2;

rgnl 1= rgn2;

Afterexecution of this code, rgnl contains all the area it originally
contained, plus all the area contained in rgn2; that is, it contains all of

Chapter 13, Graphics objects 303

Tlcon class

Constructing
Tlcon

304

both regions. This is a logical OR operation: areas that are part of either
rgnl OR rgn2 become part of the new region .

• The 1\= operator can be used with both TRegion objects and TReet objects
(before any operations are performed, the TReet is converted to a TRegion
using the constructor TRegion::TRegion(TReet &)). To demonstrate how
the 1\= operator works, consider the following code:

TRegion rgnl, rgn2;

rgnl A= rgn2;

After execution of this code, rgnl contains only that area it originally
contained but did not share with rgn2, plus all the area originally
contained in rgn2 that was not shared with rgnl. This operator combines
both areas and removes the overlapping sections. This is a logical XOR
(exclusive OR) operation: areas that are part of either rgnl OR rgn2 but
not of both become part of the new region.

The TIeon class encapsulates an icon handle and constructors for
instantiating the TIeon object. You can use the TIeon class to construct an
icon from a resource or explicit info.

You can construct a TIeon in a number of ways: from an existing TIeon
object, from a resource in the current application, from a resource in
another module, or explicitly from size and data information.

You can create icon objects from an existing icon encapsulated in a TIeon
object:

TIcon(HINSTANCE instance, const TIcon& icon);

instance can be any module instance. For example, you could get the
instance of aDLL and get an icon from that instance:

TModule iconLib ("MYICONS. DLL") ;
TIcon icon(iconLib, "MYICON");

Note the implicit conversion of the TModule icon Lib into an HINST ANCE in
the call to the TIcon constructor.

You can create a TIcon object from an icon resource in any module:

TIcon(HINSTANCE instance, TResId resId);

In this case, instance should be the HINSTANCE of the module from which
you want to get the icon, and resId is the resource ID of the particular icon

OWL Programmers Guide

you want to get. Passing in 0 for instance gives you access to built-in
Windows icons.

You can also load an icon from a file:

Tlcon(HINSTANCE instance, char far* filename, int index) i

In this case, instance should be the instance of the current module, filename
is the name of the file containing the icon, and index is the index of the icon
to be retrieved.

You can also create a new icon:

Tlcon(HINSTANCE instance, TSize& size, int planes, int bitsPixel,
void far* andBits, void far* xorBits) i

In this case, instance should be the instance of the current module, size
indicates the size of the icon, planes indicates the number of color planes,
bitsPixel indicates the number of bits per pixel, andBits points to an array
containing the AND mask of the icon, and xorBits points to an array
containing the XOR mask of the icon. The andBits array must specify a
monochrome mask. The xorBits array can be a monochrome or device
dependent color bitmap.

You can also create a new Tlcon object from an existing BrCON handle:

Tlcon(HICON handle, TAutoDelete autoDelete = NoAutoDelete) ;

This constructor is used to obtain an ObjectWindows object as an alias to a
regular Windows handle received in a message.

There are two other constructors that are available only for 32-bit
applications:

Tlcon(const void* resBits, DWORD resSize);
Tlcon(const ICONINFO* iconlnfo);

The first constructor takes two parameters: resBits is a pointer to a buffer
containing the icon data bits (usually obtained from a call to
LookuplconldFromDirectory or LoadResource functions) and res Size indicates
the number of bits in the resBits buffer.

The second constructor takes a single parameter, an ICONINFO structure.
The constructor creates an icon from the information in the ICONINFO
structure. The fIcon member of the ICONINFO structure must be TRUE,
indicating that the ICONINFO structure contains an icon.

,.., Tlcon deletes the icon and its storage space.

Chapter 13, Graphics objects 305

Accessing Tlcon

TCursor class

Constructing
TCursor

306

You can access TIeon through an BICON. To get an BICON from a TIcon
object, use the BICON operator with the TIcon object as the parameter. The
RICON operator is almost never explicitly invoked:

HICON
TMyIeon::GetHIcon()
{

return *thisi

This code automatically invokes the BICON conversion operator to cast the
TIeon object to the correct type.

The other access function in TIeon; called GetIeonInfo, is available for 32-bit
applications only. GetIeonInfo takes as its only parameter a pointer to a
ICONINFO. structure. The function fills out the ICONINFO structure and
returns TRUE if the operation was successful. For example, suppose you
create an icon object, then want to extract the icon data into an ICONINFO
structure. The code would look something like this:

ICONINFO iconInfoi

II Load stock icon - Exclamation
TIeon icon(O, IDI_EXCLAMATION)i

icon.GetIconInfo(&iconInfo)i

The TCursor class encapsulates a cursor handle and constructors for
instantiating the TCursor object. You can use the TCursor class to construct a
cursor from a resource or explicit information.

You can construct a TCursor in a number of ways: from an existing TCursor
object, from a resource in the current application, from a resource in
another application, or explicitly from size and data information.

You can create cursor objects from an existing cursor encapsulated in a .
TCursor object:

TCursor(HINSTANCE instance, const TCursor& cursor)i

instance in this case should be the instance of the current application.
TCursor does not encapsulate the application instance because TCursors
know nothing about application objects. It is usually easiest to access the
current application instance in a window or other interface object.

OWL Programmers Guide

Accessing
TCursor

TCursor(HINSTANCE instance, TResld resld) i

TCursor(HINSTANCE instance, const TPoint& hotSpot,
TSize& size, void far* andBits, void far* xorBits)i

You can also create a new TCursor object from an existing HCURSOR
handle:

TCursor(HCURSOR handle, TAutoDelete autoDelete = NoAutoDelete);

This constructor is used to obtain an ObjectWindows object as an alias to a
regular Windows handle received in a message.

There are two other constructors that are available only for 32-bit
applications:

TCursor(const void* resBits, DWORD resSize) i

TCursor(const ICONINFO* iconlnfo)i

The first constructor takes two parameters: resBits is a pointer to a buffer
containing the cursor data bits (usually obtained from a call to
LookuplconldFromDirectory or LoadResource functions) and res Size indicates
the number of bits in the resBits buffer.

The second constructor takes a single parameter, an ICONINFO structure.
The constructor creates an icon from the information in the ICONINFO
structure. The fIcon member of the ICONINFO structure must be FALSE,
indicating that the ICONINFO structure contains an cursor.

~ TCursor deletes the cursor. If the deletion fails, the destructor throws an
exception.

You can access TCursor through an HCURSOR. To get an HCURSOR from
a TCursor object, use the HCURSOR operator with the TCursor object as the
parameter. The HCURSOR operator is almost never explicitly invoked:

HCURSOR
TMyCursor: : GetHCursor ()
{

return *thisi

This code automatically invokes the HCURSOR conversion operator to cast
the TCursor object to the correct type.

The other access function in TCursor, called GetIconlnfo, is available for 32-
bit applications only. GetIconlnfo takes as its only parameter a pointer to a
ICONINFO structure. The function fills out the ICONINFO structure and
returns TRUE if the operation was successful. For example, suppose you

Chapter 13, Graphics objects 307

TDib class

Constructing and
destroying TDib

308

create an cursor object, then want to extract the cursor data into an
ICONINFO structure. The code would look something like this:

ICONINFO cursorInfo;

II Load stock cursor - slashed circle
TCursor cursor (NULL, IDC_NO);

cursor.GetIconInfo(&cursorInfo) ;

A device-independent bitmap, or DIB, has no GDI handle like a regular
bitmap, although it does have a global handle. Instead, it is just a structure
containing format and palette information and a collection of bits (pixels).
The TDib class provides a convenient way to work with DIBs like any other
GDI object. The memory for the DIB is in one chunk allocated with the
Windows GlobalAlloc functions, so that it can be passed to the Clipboard, an
OLE server or client, and others outside of its instantiating application.

You can construct a TDib object either directly or indirectly. Using direct
construction, you can specify the bitmap's width, height, and so on. Using
indirect construction, you can specify an existing bitmap object, pointer to a
BITMAP structure, a metafile, a TDC device context, and more.

Here is the constructor for directly constructing a TDib object:

TDib(int width, int height, int nColors, WORD mode=DIB_RGB_COLORS);

width and height specify the width and height in pixels of the DIB. nColors
specifies the. number of colors actually used in the DIB. mode can be either
DIB_RGB_ COLORS or DIB_P AL_ COLORS. DIB_RGB _COLORS indicates
that the color table consists of literal RGB values. DIB _P AL_ COLORS
indicates that the color table consists of anarray of 16-bit indices into the
currently realized logical palette.

You can create a TDib object by loading it from an executable application
module. This constructor takes two parameters: the first is the
HINSTANCE of the module containing the bitmap and the second is the
resource ID of the bitmap you want to load:

TDib(HINSTANCE instance, TResId resId);

To create a TDib object from the Clipboard, pass a reference to a TClipboard
object to the constructor. The constructor gets the handle of the bitmap in
the Clipboard and constructs a bitmap object from the handle.

OWL Programmers Guide

Accessing TDib

Type conversions

TDib(const TClipboard& clipboard);

You can load a DIB from a file (typically a .BMP file) into a TDib object by
specifying the name as the only parameter of the constructor:

TDib(const char* name);

You can also construct a TDib object given a TBitmap object and a TPalette
object. If no palette is give, this constructor uses the focus Window's
currently realized palette.

TDib(const TBitmap& bitmap, const TPalette* pal = 0);

You can create a DIB object from an existing DIB object:

TDib(const TDib& dib);

You can also create a new, TDib object from an existing HGLOBAL handle:

TDib(HGLOBAL handle, TAutoDelete autoDelete = NoAutoDelete);

This constructor is used to obtain an ObjectWindows object as an alias to a
regular Windows handle received in a message. Because an HGLOBAL
handle can point to many different kinds of objects, you must ensure that
the HGLOBAL you use in this constructor is actually the handle to a
device-independent bitmap. If you pass a handle to another type of object,
the constructor throws an exception.

If ShouldDelete is TRUE, '" TDib frees the resource and unlocks and frees the
chunk of global memory as needed.

TDib provides a number of different types of functions for accessing the
encapsulated DIB.

The type conversion functions for TDib let you access TDib in the most
convenient manner for the operation you want to perform.

You can use the HANDLE conversion operator to access TDib through a
HANDLE. To get a HANDLE from a TDib object, use the HANDLE
operator with the TDib object as the parameter. The HANDLE operator is
almost never explicitly invoked:

HANDLE
TMyDib: :GetHandle()
{

return *this;

This code automatically invokes the HANDLE conversion operator to cast
the TDib object to the correct type.

Chapter 13, Graphics objects 309

Accessing internal
structures

Clipboard

DIS information

310

You can also convert a TDib object to three other bitmap types. You can use
the following operators to convert a TDib to anyone of three types:
BITMAPINFO *, BITMAPINFOHEADER *, or TRgbQuad *. You can use the
result wherever that type is normally used:

operator BITMAPINFO far*();
operator BITMAPINFOHEADER far*();
operator TRgbQuad far*();

The functions in this section give you access to the DIB's internal data
structures. These three functions return the DIB's equivalent bitmap types
as pointers to BITMAPINFO, BITMAPINFOHEADER, and TRgbQuad
objects:

BITMAPINFO far* Getlnfo();
BITMAPINFOHEADER far* GetlnfoHeader();
TRgbQuad far* GetColors();

The following function returns a pointer to an array of WORDs containing
the color indices for the DIB:

WORD far* Getlndices();

-This function returns a pointer to an array containing the bits that make up
the actual DIB image:

void HUGE* GetBits();

You can move a DIB to the Clipboard using the ToClipboard function.
ToClipboard takes a reference to a TClipboard object as a parameter. Because
the ToClipboard function actually removes the object from your application,
you should usually use a TDib constructor to create a temporary object:

TClipboard clipBoard;
TDib(ID_BITMAP) . ToClipboard (clipBoard) ;

The TDib class provides a number of accessor functions that you can use to
query a TDib object and get information about the DIB contained in the
object:

• To find out whether the object is valid, call the IsOK function. The IsOK
takes no parameters. It returns TRUE if the object is valid and FALSE if
not .

• The IsPM function takes no parameters. This function returns TRUE
when the DIB is a Presentation Manager-compatible bitmap.

OWL Programmers Guide

Working in palette
orRGBmode

• The Width and Height functions return the bitmap's width and height
respectively, in pixel units.

• The Size function returns the bitmap's width and height in pixel units, but
contained in a TSize object.

• The NumColors function returns the number of colors used in the bitmap.

• StartScan is provided for compatibility with older code. This function
always returns O.

• NumScans is provided for compatibility with older code. This functions
returns the height of the DIB in pixels.

• The Usage function indicates what mode the DIB is in. This value is either
DIB_RGB_COLORS or DIB_PAL_COLORS. .

• The WriteFile function writes the DIB object to disk. This function takes a
single parameter, a const char*. This should point to the name of the file
in which you want to save the bitmap.

A DIB can hold color values in two ways. In palette mode, the DIB's color
table contains indices into a palette. The color values don't themselves
indicate any particular color. The indices must be cross-referenced to the
corresponding palette entry in the currently realized palette. In RGB mode,
each entry in the DIB's color table represents an actual RGB color value.

You can switch from RGB to palette mode using these functions:

BaaL ChangeModeToPal(const TPalette& pal);
BaaL ChangeModeToRGB(const TPalette& pal);

When you switch to palette mode using ChangeModetoPal, the TPalette &
parameter is used as the DIB's palette. Each color used in the DIB is
mapped to the palette and converted to a palette index. When you switch
to RGB mode using ChangeModetoRGB, the TPalette & parameter is used to
convert the current palette indices to their RGB equivalents contained in
the palette.

If you're working in RGB mode, you can use the following functions to
access and modify the DIB's color table:

• Retrieve any entry in the DIB's color table using the GetColor function.
This function takes a single parameter, an int indicating the index of the
color table entry. GetColor returns a TColor object.

• Change any entry in the DIB's color table using the SetColor function. This
function takes two parameters, an int indicating the index of the color
table entry you want to change and a TColor containing the value to
which you want to change the entry.

Chapter 13, Graphics objects 311

312

• Match a TColor object to a color table entry by using the FindColor
function. FindColor takes a single parameter, a TColor object. FindColor
searches through the DIB's color table until it finds an exact matcr. for the
TColor object. If it fails to find a match, FindColor returns -l.

• Substitute one color for a color that currently exists in the DIB's color
table using the MapColor function. This function takes three parameters, a
TColor object containing the color to be replaced, a TColor object
containing the new color to be placed in the color table, and a BaaL that
indicates whether all occurrences of the second color should be replaced.
If the third parameter is TRUE, all color table entries that are equal to the
first parameter are replaced by the second. If the third parameter is
FALSE, only the first color table entry that is equal to the first parameter
is replaced. By default, the third parameter is FALSE. The return value of
this function indicates the total number of palette entries that were
replaced.

For example, suppose you wanted to replace all occurrences of white in
your DIB with light gray. The code would look something like this:

myDib->MapColor(TColor::LtGray, TColor::White, TRUE);

If you're working in palette mode, you can use the following functions to
access and modify the DIB's color table:

• Retrieve the palette index of any color table entry using the GetIndex
function. This function takes a single parameter, an int indicating the
index of the color table entry. GetIndex returns a WORD containing the
palette index.

• Change any entry in the DIB's color table using the SetIndex function.
This function takes two parameters, an int indicating the index of the
color table entry you want to change and a WORD containing the palette
index to which you want to change the entry.

• Match a palette index to a color table entry by using the Findlndex
function. Findlndex takes a single parameter, a WORD. Findlndex searches
through the DIB's color table until it finds a match for the WORD. If it
fails to find a match, Findlndex returns -1.

• Substitute one color for a color that currently exists in the DIB's color
table using the Maplndex function. This function takes three parameters, a
WORD indicating the index to be replaced, a WORD indicating the new
palette index to be placed in the color table, and a BaaL that indicates
whether all occurrences of the second color should be replaced. If the
third parameter is TRUE, all color table entries that are equal to the first
parameter are replaced by the second. If the third parameter is FALSE,
only the first color table entry that is equal to the first parameter is
replaced. By default, the third parameter is FALSE. The return value of

OWL Programmer's Guide

Matching interface
colors to system
colors

Extending TDib

this function indicates the total number of palette entries that were
replaced. .

DIBs are often used to enhance and decorate a user interface. To make your
interface consistent with your application user's system, you should use the
MapUIColors function, which replaces standard interface colors with the
user's own system colors. Here is the syntax for MapUIColors:

void MapUIColors(UINT mapColors, TColor*, bkColor = 0) i

The mapColors parameter should be an OR' ed combination of five flags:
TDib::MapFace, TDib::MapText, TDib::MapShadow, TDib::MapHighlight, and
TDib::MapFrame. Each of these values causes a different color substitution
to take place:

This flag

TDib::MapText
TDib::MapFace
TDib::MapFace
TDib::MapFace
TDib::MapFrame

Replaces ...

TC%r: :B/ack
TC%r: :UGray
TC%r::Gray
TC%r::White
TC%r: :LtMagenta

With ...

COLOR_BTNTEXT
COLOR_BTNFACE
COLOR_BTNSHADOW
COLOR_BTNHIGHLIGHT
COLOR_WINDOWFRAME

The bkColor parameter, if specified, causes the color TColor::LtYellow to be
replaced by the color bkColor.

Because MapUIColors searches for and replaces TColor table entries, this
function is useful only with a DIB in RGB mode. Furthermore, because it
replaces particular colors, you must design your interface using the
standard system colors; for example, your button text should be black
(TColor::Black), button faces should be light gray (TColor::LtGray), and so on.
This should be fairly simple, since these are specifically designed so that
they are equivalent to the standard default colors for each interface
element.

You should also call the MapUIColors function before you modify any of the
colors modified by MapUIColors. If you don't do this, MapUIColors won't be
able to find the attribute color for which it is searching, and that part of the
interface won't match the system colors.

TDib provides a number of protected functions that are accessible only
from within TDib and TDib-derived classes. You can also access TDib's
control data:

• Info is a pointer to a BITMAPINFO or BITMAPCOREINFO structure,
which contains the attributes, color table, and other information about
the DIB.

Chapter 13, Graphics objects 313

314

• Bits is a void pointer that points to an area of memory containing the
actual graphical data for the DIB.

• NumClrs is a long containing the actual number of colors used in the DIB;
note that this isn't the number of colors possible, but the number actually
used.

• W is an int indicating the width of the DIB in pixels.

• H is anint indicating the height of the DIB in pixels.

• Mode is a WORD indicating whether the DIB is in RGB mode
(DIB_RGB_COLORS) or palette mode (DIB_PAL_COLORS).

• IsCore is a BOOL; it is TRUE if the Info pointer points to a
BITMAPCOREINFO structure and FALSE if it doesn't.

• IsResHandle indicates whether the DIB was loaded as a resource and
therefore whether Handle is a resource handle.

You can use the InfoFromHandle function to fill out the structure pointed to
by Info. InfoFromHandle extracts information from Handle and fills out the
attributes of the Info structure. InfoFromHandle takes no parameters and has
no return value.

The Read function reads a Windows 3.0- or Presentation Manager
compatible DIB from a file referenced by a TFile object. When loading, Read
checks the DIB's header, attributes, palette, and bitmap. Presentation
Manager-compatible DIBs are converted to Windows DIBs on the fly. This
function returns TRUE if the DIB was read in correctly.

You can use the LoadResource function to load a DIB from an application or
DLL module. This function takes two parameters, an HINSTANCE
indicating the application or DLL module from which you want to load the
DIB and a TResId indicating the particular resource within that module you
want to retrieve. LoadResource returns TRUE if the operation was· successful.

You can use the LoadFile function to load a DIB from a file. This function
takes one parameter, a char * that points to a string containing the name of
the file containing the DIB. LoadFile returns TRUE if the operation was
successful.

OWL Programmers Guide

c H A p T E R 14

Validator objects

ObjectWindows provides several ways you can associate valida tor objects
with the edit control objects to validate the information a user types into an
edit controL Using validator objects makes it easy to add data validation to
existing ObjectWindows applications or to change the way a field validates
its data.

This chapter discusses three topics related to data validation:

• Using the standard validator classes

• Using data validator objects

• Writing your own valida tor objects

At any time, you can validate the contents of any edit control by calling
that object's CanClose member function, which in tum calls the appropriate
valida tor object. ObjectWindows validator classes also interact at the
keystroke and gain/lose focus leveL

The standard validator classes

The ObjectWindows standard valida tor classes automate data validation.
ObjectWindows defines six validator classes in validate.h:

• TValidator, a base class from which all other validator classes are derived.

• TFilterValidator, a filter validator class.

• TRangeValidator, a numeric-range validator class based on
TFilterValidator.

• TLookup Valida tor, a lookup validator base class.

• TStringLookup Valida tor, a string lookup valida tor class based on
TLookup Valida tor.

• TPXPicture Validator, a picture valida tor class that validates a string based
on a given pattern or "picture."

The following sections briefly describe each of the standard valida tor
classes.

Chapter 14, Validator objects 315

Validator base
class

Filter validator
class

TCharSet is defined
in bitset.h.

Range validator
class

Lookup validator
class

316

The abstract class TValidator is the base class from which all validator
classes are derived. TValidator is a valida tor for which all input is valid:
member functions Is Valid and Is ValidInput always return TRUE, and Error
does nothing. Derived classes should override IsValid, IsValidInput, and
Error to define which values are valid and when errors should be reported.
Use TValidator as a starting point for your own validator classes if none of
the other valida tor classes are appropriate starting points.

TFilterValidator is a simple validator that checks input as the user enters it.
The filter validator constructor takes one parameter, a set of valid
characters:

TFilterValidator(const TCharSet& validCharS)i

TFilterValidator overrides IsValidInput to return TRUE only if all characters
in the current input string are contained in the set of characters passed to
the constructor. The edit control inserts characters only if Is ValidInput
returns TRUE, so there is no need to override IsValid: because the
characters made it through the input filter, the complete string is valid by
definition. Descendants of TFilterValidator, such as TRangeValidator, can
combine filtering of input with other checks on the completed string.

TRringeValidator is a range valida tor derived from TFilterValidator. It accepts
only numbers and adds range checking on the final result. The constructor
takes two parameters that define the minimum and maximum valid values:

TRangeValidator(long min, long max) i

The range validator constructs itself as a filter valida tor that accepts only
the digits 0 through 9 and the plus and minus characters. The inherited
IsValidInput, therefore, ensures that only numbers' filter through.
TRange Va lida tor then overrides Is Valid to return TRUE only if the entered
numbers are a valid integer within the range defined in the constructor. The
Error member function displays a message box indicating that the entered
value is out of range.

TLookup Valida tor is an abstract class that compares entered values with a
list of acceptable values to determine validity. TLookupValidator introduces
the virtual member function Lookup. By default, Lookup returns TRUE.
Derived classes should override Lookup to compare the parameter with a
list of items, returning TRUE if a match is found.

TLookupValidator overrides Is Valid to return TRUE only if Lookup returns
TRUE. In derived classes you should not override Is Valid; you should

OWL Programmers Guide

String lookup
validator class

Picture validator
class

instead override Lookup. TStringLookupValidator class is an instance class
based on TLookupValidator.

TStringLookupValidator is a working example of a lookup validator; it
compares the string passed from the edit con~rol with the items in a string
list. If the passed-in string occurs in the list, IsValid returns TRUE. The
constructor takes only one parameter, the list of valid strings:

TStringLookupValidator(TSortedStringArray* strings) i

TSortedStringArray is defined as

typedef TSArrayAsVector<string> TSortedStringArraYi

To use a different string list after constructing the string lookup validator,
use member function NewStringList, which disposes of the old list and
installs the new list.

TStringLookupValidator overrides Lookup and Error. Lookup returns TRUE if
the passed-in string is in the list. Error displays a message box indicating
that the string is not in the list.

Picture validators compare the string entered by the user with a "picture"
or template that describes the format of valid input. The pictures used are
compatible with those used by Borland's Paradox relational.database to
control user input. Constructing a picture validator requires two
parameters: a string holding the template image and a Boolean value
indicating whether to automatically fill-in the picture with literal
characters:

TPxpictureValidator(const char far* pic, BOOL autoFill=FALSE) i

TPXPictureValidator overrides Error, IsValid, and IsValidInput, and adds a
new member function, Picture. Error displays a message box indicating
what format the string should have. IsValid returns TRUE only if the
function Picture returns TRUE; thus you can derive new kinds of picture
validators by overriding only the Picture member function. Is Validlnput
checks characters as the user enters them, allowing only those characters
permitted by the picture format, and optionally filling in literal characters
from the picture format.

Here is an example of a picture validator that is being constructed to accept
social security numbers:

edit->SetValidator(new TPxpictureValidator(I###-##-####"))i

Picture syntax is fully described under TPXPictureValidator member
function Picture in the Object Windows Reference Guide.

Chapter 14, Valida tor objects 317

The Picture member function tries to format the given input string
according to the picture format and returns a value indicating the degree of
its success. The following code lists those return values:

II
II TPXPictureValidator result type
II
enum TPicResult

prComplete,
prlncomplete,
prEmpty,
prError,
prSyntax,
prAmbiguous,
prlncompNoFill

} ;

Using data validators

Constructing an
edit control object

Constructing and
assigning
validator objects

318

To use data valida tor objects, you must first construct an edit control object
and then construct a valida tor object and assign it to the edit control. From
this point on, you don't need to interact with the validator object directly.
The edit control knows when to call valida tor member functions at the
appropriate times.

Edit controls objects are instances of the TEdit class. Here is an example of
how to construct an edit control:

TEdit* edit;
edit = new TEdit(this, 101, sizeof(transfer.NameEdit));

For more information on TEdit and using edit controls, see Chapter 10.

Because validator objects aren't interface. objects, their constructors require
only enough information to establish the validation criteria. For example, a
numeric-range valida tor object requires only two parameters: the minimum
and maximum values in the valid range.

Every edit control object has a data member that can point to a valida tor
object. This pointer's declaration looks like this:

TValidator *Validator

If Validator doesn't point to a valida tor object, the edit control behaves as
described in Chapter 10. You assign a validator by calling the edit control
object's SetValidator member function. The edit control automatically checks

OWL Programmers Guide

with the validator object when processing key events and when called on to
validate itself.

The following code shows the construction of a validator and its
assignment to an edit controL In this case, a filter validator that allows only
alphabetic characters is used.

edit->SetValidator(new TFilterValidator("A-Za-z. ")) i

A complete example showing the use of the standard valida tors can be
found in OWLAPI\ VALIDATE.

Overriding validator member functions

Member function
Valid

Member function
IsValid

Although the standard valida tor objects should satisfy most of your data
validation needs, you can also modify the standard validators or write your
own validation objects. If you decide to do this, you should be familiar with
the following list of member functions inherited from the base class
TValidator; in addition to understanding the function of each member
function, you should also know how edit controls use them and how to
override them if necessary .

• Valid

• Is Valid

• IsValidInput

• Error

Member function Valid is called by the associated edit-control obje~t to
verify that the data entered is valid. Much like the CanClose member
functions of interface objects, Valid is a Boolean function that returns TRUE
only if the string passed to it is valid data. One responsibility of an edit
control's Can Close member function is calling the valida tor object's Valid
member function, passing the edit control's current text.

When using validators with edit controls, you shouldn't need to call or
override the validator's Valid member function; the inherited version of
Valid will suffice. By default, Valid returns TRUE if the member function
IsValid returns TRUE; otherwise, it calls Error to notify the user of the error
and then returns FALSE.

The virtual member function IsValid is called by Valid, which passes IsValid
the text string to be validated. Is Valid returns TRUE if the string represents

Chapter 14, Validator objects 319

Member function
IsValidlnput

Member function
Error

320

valid data. IsValid does the actual data validation, so if you create your own
valida tor objects, you'll probably override IsValid.

Note that you don't call IsValid directly. Use Valid to call IsValid, because
Valid calls Error to alert the user if Is Valid returns FALSE. This separates the
validation role from the error-reporting role. ..

When an edit control object recognizes a keystroke event intended for it, it
calls its validator's IsValidInput member function to ensure that the entered
character is a valid entry. By default, IsValidInput member functions always
return TRUE, meaning that-all keystrokes are acceptable, but some derived
validators override IsValidInput to filter out unwanted keystrokes.

For example, range validators, which are used for numeric input, return
TRUE from Is ValidInput only for numeric digits and the characters' +'
and '-'.

Is ValidInput takes two parameters:

virtual BaaL IsValidlnput(char far* str, BaaL suppressFill);

The first parameter, str, points to the current input text being validated. The
second parameter is a Boolean value indicating whether the validator
should apply filling or padding to the input string before attempting to
validate it. TPXPicture Valida tor is the only standard validator object that
uses the second parameter.

Virtual member function Error alerts the user that the contents of the edit
control don't pass the validation check. The standard validator objects
generally present a simple message box notifying the user that the contents
of the input are invalid and describing what proper input would be.

For example, the Error member function for a range validator object creates
a message box indicating that the value in the edit control is not between
the indicated minimum and maximum values.

Although most descendant validator objects override Error, you should
never call it directly. Valid calls Error for you if IsValid returns FALSE,
which is the only time Error needs to be called.

OWL Programmers Guide

c H A p T E R 15

Visual Basic control objects

ObjectWindows lets you use Visual Basic (VBX) l.O-compatible controls in
your Windows applications as easily as you use standard Windows or
ObjectWindows controls.

VBX controls offer a wide range of functionality that is not provided in
standard Windows controls. There are numerous public domain and
commercial packages of VBX controls that can be used to provide a more
polished and useful user interface.

This chapter describes how to design an application that uses VBX controls,
describes the TVbxControl and TVbxEventHandler classes, explains how to
receive messages from a VBX control, and shows how to get and set the
properties of a control.

Using vex controls

To use VBX controls in your ObjectWindows application, follow this
process:

• In your OwlMain function, call the function VBXlnit before you call the
Run function of your application object. Call the function VBXTerm after
you call the Run function of your application object. VBXlnit takes the
application instance as a parameter. VBXTerm takes no parameters. Your
OwlMain function might look something like this:

int OwlMain(int argc, char* argv[]) {
VBXlnit(_hlnstance) ;

return TApplication ("Wow! ") . Run () ;

VBXTerm() ;

These functions initialize and close each instance's host environment
necessary for using VBX controls .

• Derive a class mixing your base interface class with TVbxEventHandler.
Your base interface class is whatever class you want to display the

Chapter 15, Visual Basic control objects 321

control in. If you're using the control in a dialog box, you need to mix in
TDialog. The code would look something like this:

class MyVbxDialog : public TDialog, public TVbxEventHandler
{

}i

pUblic:
MyVbxDialog(TWindow *parent, char *name)

: TDialog(parent, name),
TWindow (parent , name) {}

DECLARE_RESPONSE_TABLE(MyvbxDialog)i

• Build a response table for the parent, including all relevant events from
your control. Use the EV _ VBXEVENTNAME macro to set up the
response for each control event. Response tables are described in greater
detail in Chapter 5.

• Create the control's parent. You can either construct the control when
you create the parent or allow the parent to construct the control itself,
depending on how the control is being used. This is discussed in further
detail on page 324.

vex control classes

TVbxControl class

322

ObjectWindows provides two classes for use in designing an interface for
VBX controls. These classes are TVbxControl and TVbxEventHandler.

TVbxControl provides the actual interface to the control by letting you:

• Construct a VBX control object

• Get and change control properties

• Find the number of control properties and convert property names to
and from property indices

• Find the number of control events and convert event names to and from
event indices

• Call the Visual Basic 1.0 standard control methods Addltem, Move,
Refresh, and RemoveItem

• Get the handle to the control element using the TVbxControl member
function GetHCTL

TVbxControl is derived from the class TControl, which is derived from
TWindow. Thus, TVbxControl acts much the same as any other interface
element based on TWindow.

OWL Prowammers Guide

TVbxContro/
constructors

TVbxControl has two constructors. The first constructor lets you
dynamically construct a VBX control by specifying a VBX control file name
(for example, SWITCH.VBX), control ID, control class, control title,
location, and size: ·

TVbxControl{TWindow *parent,

where:

int id,
const char far *FileName,
const char far *ClassName,
const char far *title,
int x, int y,
int w, int h,
TModule *module)i

• parent is a pointer to the control's parent.

• id is the control's ID, which is used when defining the parent's response
table; this usually looks much like a resource ID.

• FileName is the name of the file that contains the VBX control, including a
path name if necessary.

• ClassName is the class name of the control; a given VBX control file might
contain a number of separate controls, each of which is identified by a
unique class name (usually found in the control reference guide of third
party VBX control libraries).

• title is the control's title or caption.

• x and yare the coordinates within the parent object at which you want
the control placed.

• wand h are the control's width and the height.

• module is passed to the TControl base constructor as the TModule
parameter for that constructor; it defaults to O.

The second constructor lets you set a TVbxControl object using a VBX
control that has been defined in the application's resource file:

TVbxControl{TWindow *parent,
int resld,
TModule *module) i

where:

• parent is a pointer to the control's parent.

• resId is the resource ID of the VBX control in the resource file.

Chapter 15, Visual Basic control objects 323

Implicit and explicit
construction

324

• module is passed to the TControl base constructor as the TModule
parameter for that constructor; it defaults to o.

You can construct VBX controls either explicitly or implicitly. You explicitly
construct an object when you call one of the constructors. You implicitly
construct an object when you do not call one of the constructors and allow
the control to be instantiated and created by its parent.

Explicit construction involves calling either constructor of a VBX control
object. This is normally done in the parent's constructor so that the VBX
control is constructed and ready when the parent window is created. You
can also wait to construct the control until it's needed; for example, you
might want to do this if you had room for only one control. In this case,
you could let the user choose a menu choice or press a button. Then,
depending what the user does, you would instantiate an object and display
it in an existing interface element.

The following code demonstrates explicit construction using both of the
TVbxControl constructors in the constructor of a dialog box object:

class TTestDialog : public TDialog, public TVbxEventHandler
{

}i

public:
TTestDialog(TWindow *parent, char *name)

: TDialog(parent, name), TWindow (parent , name)

new TVbxControl(this, IDCONTROL1) i

new TVbxControl(this, IDCONTROL2,
"SWITCH.VBX" , "BiSwitch",
"&Program VBX Control",
16, 70, 200, 50) i

DECLARE_RESPONSE_TABLE(TTestDialog)i

Implicit construction takes place when you design your interface element
outside of your application source code, such as in Resource Workshop.
You can use Resource Workshop to add VBX controls to dialog boxes and
other interface elements. Then when you instantiate the parent object, the
children, such as edit boxes, list boxes, buttons, and VBX controls, are
automatically created along with the parent. The following code
demonstrates how the code for this might look. It's important to note,
however, that what you don't see in the following code isa VBX control.
Instead, the VBX control is included in the dialog resource DIALOG_l.
When DIALOG_l is loaded and created, theVBX control is automatically
created.

OWL Programmers Guide

TVbxEventHandler
class

class TTestDialog : public TDialog, public TVbxEventHandler
{

pUblic:
TTestDialog(TWindow *parent, char *name)

: TDialog(parent, name), TWindow(parent, name) {}
DECLARE_RESPONSE_TABLE(TTestDialog) i

}i

void TTestWindow::CmAbout() {
TTestDialog(this, "DIALOG_l") . Execute ,() i

}

The TVbxEventHandler class is quite small and, for the most part, of little
interest to most programmers. What it does is very important, though.
Without the functionality contained in TVbxEventHandler, you could not
communicate with your VBX controls. The event-handling programming
model is described in greater detail in the following sections; this section
explains only the part that TVbxEventHandler plays in the process.

TVbxEventHandler consists of a single function and a one-message response
table. The function is called Ev VbxDispatch, and it is the event-handling

. routine for a message called WM_ VBXFIREEVENT. EvVbxDispatch receives
the WM_ VBXFIREEVENT message, converts the uncracked message to a
VBXEVENT structure, and dispatches a new message, which is handled by
the control's parent. Because the parent object is necessarily derived from
TVbxEventHandler, this means that the parent calls back to itself with a
different message. The new message is much easier to handle and
understand. This is the message that is handled by the
WM_ VBXEVENTNAME macro described in the next section.

Handling vex control messages

Event response
table

You must handle VBX control messages through the control's parent object.
For the parent object to be able to handle these messages, it must be
derived from the class TVbxEventHandler. To accomplish this, youcan mix
whatever interface object class you want to use to contain the VBX control
(for example, TDialog, TFrameWindow, or classes you might have derived
from ObjectWindows interface classes) with the TVbxEventHandler class.

Once you've derived your new class, you need to build a response table for
it. The response table for this class looks like a normal response table; you
still need to handle all the regular command messages and events you
normally do. The only addition is the EV _ VBXEVENTNAME macro to
handle the new class of messages from your VBX controls.

Chapter 15, Visual Basic control objects 325

Interpreting a
control event

326

The EV _ VBXEVENTNAME macro takes three parameters:

EV_VBXEVENTNAME(ID, Event, EvHandler)

where:

.ID is the control IO. You can find this IO either as the second parameter
to both constructors or as the resource IO in the resource file.

• Event is a string identifying the event name. This is dependent on the
control and can be one of the standard VBX event names or a custom
event name. You can find this event name by looking in the control
reference guide if the control is from a third-party VBX control library .

• EvHandler is the handler function for this event and control. The
EvHandler function has the signature:

void EvHandler(VBXEVENT FAR *event);

When a message is received from a VBX control by its parent, it dispatches
the message to the handler function that corresponds to the correct control
and event. When it calls the function, it passes it a pointer to a VBXEVENT
structure. This structure is discussed in more detail in the next section.

Once a VBX control event has taken place and the event-handling function
has been called, the function needs to deal with the VBXEVENT structure
received as a parameter. This structure looks like this:

struct VBXEVENT {
HCTL hCtl;
HWND hWnd;
int nID;
int iEvent;
LPCSTR IpszEvent;
int
LPVOID
};

where:

cParams;
IpParams;

• hetl is the handle of the sending VBX control (not a window handle).

• h Wnd is the handle of the control window.

• nID is the IO of the VBX control.

• iEvent is the event index.

• IpszEvent is the event name.

• cParams is the number of parameters for this event.

.lpParams is a pointer to an array fontaining pointers to the parameter
values for this event.

OWL Programmer's Guide

Finding event
information

To understand this structure, you need to understand how a VBX control
event works. The first three members are straightforward: they let you
identify the sending control. The next two members are also fairly simple;
each event that a VBX control can send has both an event index,
represented here by iEvent, and an event name, represented here by
IpszEvent.

The next two members, which store the parameters passed with the event,
are more complex. cPa rams contains the total number of parameters
available for this event. IpParams is an array of pointers to the event's
parameters (like any other array, IpParam is indexed from 0 to cParams -1).
These two members are more complicated than the previous members
because there is no inherent indication of the type or meaning of each
parameter. If the control is from a third-party VBXcontrollibrary, you can
look in the control reference guide to find this information. Otherwise,
you'll need to get the information from the designer of the control (or to
have designed the control yourself).

The standard way to interpret the information returned by an event is to
refer to the documentation for the VBX control. Failing that, TVbxControl
provides a number of methods for obtaining information about an event.

You can find the total number of events that a control can send by using the
TVbxControl member function GetNumEvents. This returns an int that gives·
the total number of events. These events are indexed from 0 to the return
value of GetNumEvents - l.

You can find the name of any event in this range by calling the TVbxControl
member function GetEventName. GetEventName takes one parameter, an int
index number, and returns a string containing the name of the event.

Conversely, you can find the index of an event by calling the TVbxControl
member function GetEventIndex. GetEventIndex takes one parameter, a
string containing the event name, and returns the corresponding int event
index.

Accessing a VBX control

There are two ways you can directly access a VBX control. The first way is
to get and set the properties of the control. A control has a fixed number of
properties you can set to affect the look or behavior of the control. The
other way is to call the control's methods. A control's methods are similar to
member functions in a class and are actually accessed through member

Chapter 15, Visual Basic control objects 327

VBX control
properties

Finding property
information

Getting control
properties

328

functions in the TVbxControl class. You can use these methods to call into
the object and cause an action to take place.

Every VBX control has a number of properties. Control properties affect the
look and behavior of the control; for example, the colors used in various
parts of the control, the size and location of the control, the control's
caption, and so on. Changing these properties is usually your main way to
manipulate a VBX control.

Each control's properties should be fully documented in the control
reference guide of third-party VBX control libraries. If the control is not a
third-party control or part of a commercial control package, then you need
to consult the control's designer for any limits or special meanings to the
control's properties. Many properties often function only as an index to a
property. An example of this might be background patterns: 0 could mean
plain, 1 could mean cross-hatched, 2 could mean black, and so on. Without
the proper documentation or information, it can be quite difficult to use a
control's properties.

The standard way to get information about a control's properties is to refer
to the documentation for the VBX control. Failing that, TVbxControl
provides a number of methods for obtaining information about a control's
properties.

You can find the total number of properties for a control by calling the
TVbxControl member function GetNumProps, which returns an int that gives
the total number of properties. These properties are indexed from 0 to the
return value of GetNumProps-l.

You can find the name of any property in this range by calling the
TVbxControl member function GetPropName. GetPropName takes one
parameter, an int index number, and returns a string containing the name
of the property.

Conversely, you can find the index of an property by calling the
TVbxControl member function GetProplndex. GetProplndex takes one
parameter, a string containing the property name, and returns the
corresponding int property index.

You can get the value of a control property using either its name or its
index number. Although using the index is somewhat more efficient
(because there's no need to look up a string), using the property name is
usually more intuitive. You can use either method, depending on your
preference.

OWL Programmers Guide

Setting control
properties

TVbxControl provides the function GetProp to get the properties of a control.
GetProp is overloaded to allow getting properties using the index or name
of the property. Each of these versions is further overloaded to allow
getting a number of different types of properties:

II get properties by index
BOQL GetProp(int propIndex, int& value, int arrayIndex = -1);
BOOL GetProp(int propIndex, long& value, int arrayIndex = -1);
BOOL GetProp(int propIndex, HPIC& value, int array Index = -1);
BOOL GetProp(int propIndex, float& value, int arrayIndex = -1);
BOOL GetProp(int propIndex, string& value, int arrayIndex = -1);

II get properties by name
BOOL GetProp(constchar far* name, int& value, int arrayIndex = -1);
BoaL GetProp(const char far* name, long& value, int array Index = -1);
BaaL GetProp(const char far* name, HPIC& value, int array Index = -1);
BoaL Getprop(const char far* name, float& value, int array Index = -1);
BoaL GetProp(const char far* name, string& value, int arrayIndex = -1);

In the versions where the first parameter is an int, you specify the property
by passing in the property index. In the versions where the first parameter
is a char *, you specify the property by passing in the property name.

Instead of returning the value property as the return value of the GetProp
function, the second parameter of the function is a reference to the
property's data type. Create an object of the same type as the property and
pass a reference to the object in the GetProp function. When GetProp returns,
the object contains the current value of the property.

The third parameter is the index of an array property, which you should
supply if required by your control. You can find whether you need to
supply this parameter and the required values by consulting the
documentation for your VBX control. The function ignores this parameter if
it is-1.

As when you get control properties, you set the value of control property
using either their name or their index number. Although using the index is
somewhat more efficient (because there's no need to look up a string), using
the property name is usually more intuitive. You can use either method,
depending on your preference.

TVbxControl provides the function SetProp to set the properties of a control.
SetProp is overloaded to allow setting properties using the index or name of
the property. Each of these versions is further overloaded to allow setting a
number of different types of properties:

II set properties by index
BaaL SetProp(int propIndex, int value, int arrayIndex = -1);

Chapter 15, Visual Basic control objects 329

VBX control
methods

330

BOOL Setprop(int propIndex, long value, int arrayIndex = -1);
BOOL SetProp(int propIndex, HPIC value, int arrayIndex = -1);
BOOL SetProp(int propIndex, float value, int arrayIndex = -1);
BOOL SetProp(int prop Index , const string& value, int array Index = -1);
BOOL SetProp(int prop Index , const char far* value, int arrayIndex = -1);

II set properties by name
BOOL SetProp(const char far* name, int value, int array Index = -1);
BOOL SetProp(const char far* name, long value, int arrayIndex = -1);
BOOL SetProp(const char far* name, HPIC value, int array Index = -1);
BOOL Setprop(const char far* name, float value, int array Index = -1);
BOOL SetProp(const char far* name, const string& value, int array Index = -1);
BOOL SetProp(const char far* name, const char far* value, int arrayIndex = -1);

In the versions where the first parameter is an int, you specify the property
by passing in the property index. In the versions where the first parameter
is a char *, you specify the property by passing in the property name.

The second parameter is the value to which the property should be set.

The third parameter isthe index of an array property, which you should
supply if required by your control. You can find whether you need to
supply this parameter and the required values by consulting the
documentation for your VBX control. The function ignores this parameter if
it is-l.

Although there are five different data types you can pass in to GetProp,
SetProp provides for six different data types. This is because the last two
versions use both a char * and the ANSI string class to represent a string.
This provides you with more flexibility when you're passing a character
string into a control. In the GetProp version, casting is provided to allow a
char * to function effectively as a string object.

Methods are functions contained in each VBX control that you can use to
call into the control and cause an action to take place. TVbxControl provides
compatibility with the methods contained in Visual Basic I.O-compatible
controls:

Move(int x, int y, int w, int h);

Refresh() ;

AddItem(int index, const char far *item);

RemoveItem(int index) i

The Move function moves the control to the coordinates x, y and resizes the
control to w pixels wide by h pixels high.

The Refresh function refreshes the control's display area.

ObjecfWindows 2.0 Reference Guide

The AddItem function adds the item item to the control's list of items and
gives the new item the index number index.

The RemoveItem function removes the item with the index number index.

Chapter 15, Visual Basic control objects 331

332 OWL Programmers Guide

c H A p T E R

ObjectWi ndows dynam ic-I ink
libraries

16

A dynamic-link library (DLL) is a library of functions, data, and resources
whose references are resolved at run time rather than at compile time.

Applications that use code from static-linked libraries attach copies of that
code at link time. Applications that use code from DLLs share that code
with all other applications using the DLL, therefore reducing application
size. For example, you might want to define complex windowing behavior,
shared by a group of your applications, in an ObjectWindows DLL.

This chapter describes how to write and use ObjectWindows DLLs.

Writing DLL functions

When you write DLL functions that will be called from an application, keep
these things in mind:

• Calls to 16-bit DLL functions should be made far calls. Similarly, pointers
that are specified as parameters and return values should be made far
pointers. You need to do this because a 16-bit DLL has different code and
data segments than the calling application. (This isn't necessary for 32-bit
DLLs.) Use the _FAR macro to make your code portable between
platforms .

• Static data defined in a 16-bit DLL is global to all calling applications
because 16-bit DLLs have one data segment that all 16-bit DLL instances
share. Global data set by one caller can be accessed by another. If you
need data to be private for a given caller of a 16-bit DLL, you need to
dynamically allocate and manage the data yourself on a per-task basis.
For 32-bit DLLs, static data is private for each process.

Chapter 16, ObjectWindows dynamic-link libraries 333

DLL entry and exit
functions

LibMain

UbMain,
HINSTANCE,

WORD, and LPSTR
are defined in

windows.h.

334

Windows requires that two functions be defined in every DLL: an entry
function and an exit function. 'For 16-bit DLLs, the entry function is called
LibMain and the exit function is called WEP (Windows Exit Procedure).
LibMain is called by Windows for the first application that calls the DLL,
and WEP is called by Windows for the last application that uses the DLL.

For 32-bit DLLs, DllEntryPoint serves as both the entry and exit functions.
DllEntryPoint is called each time the DLL is loaded or unloaded, each time
a process attaches to or detaches from the DLL, and each time a thread
within a process is created or destroyed.

Windows calls the entry procedure (LibMain or DllEntryPoint) once, when
the library is first loaded. The entry procedure initializes the DLL; this
initialization depends almost entirely on the particular DLL's function, but
might include the following tasks:

• Unlocking the data segment with UnlockData, if it has been declared as
MOVEABLE

• Setting up global variables for the DLL, if it uses any

There is no need to initialize the ht}ap because the DLL startup code
(CODx.OBJ) initializes the local heap automatically. The following sections
describe the DLL entry and exit functions for 16- and 32-bit applications.

The 16-bit DLL entry procedure, LibMain, is defined as follows:

int FAR PASCAL LibMain(HINSTANCE hlnstance, WORD wDataSeg, WORD cbHeapSize,
LPSTR lpCmdLine)

The parameters are described as follows:

• hlnstance is the instance handle of the DLL.

• wDataSeg is the value of the data segment (DS) register.

• cbHeapSize is the size of the local heap specified in the module definition
file for the DLL.

• IpCmdLine is a far pointer to the command line specified when the DLL
was loaded. This is almost always null, because typically DLLs are
loaded automatically without parameters. It is possible, however, to
supply a command line to a DLL when it is loaded explicitly.

The return value for LibMain is either 1 (successful initialization) or 0
(unsuccessful initialization). Windows unloads the DLL from memory if 0
is returned.

OWL Programmers Guide

WEP

DIIEntryPoint

WEP is the exit procedure of a DLL. Windows calls it prior to unloading the
DLL. This function isn't necessary in a DLL (because the Borland C++ run
time libraries provide a default one), but can be supplied by the DLL writer
to perform any cleanup before the DLL is unloaded from memory. Often
the application has terminated by the time WEP is called, so valid options
are limited.

Under Borland C++, WEP doesn't need to be exported. Here is the WEP
prototype:

int FAR PASCAL WEP (int nParameter)

nParameter is either WEP _SYSTEMEXIT, which means Windows is shutting
down, or WEP _FREE_DLL, which means just this DLL is unloading. WEP
returns 1 to indicate success. Windows currently doesn't use this return
value.

The 32-bit DLL entry point, DllEntryPoint, is defined as follows:

BOOL WINAPI DllEntryPoint(HINSTANCE hinstDll, DWORD fdwReason, LPVOID
lpvReserved)

The parameters are described as follows:
DIIEntryPoint is

defined in winbase.h. - hinstDll is the DLL instance handle.

Exporting Dll
functions

_ fdwReason is a flag that describes why the DLL is being called (either a
process or thread). The flags can take the following values:

• DLL_PROCESS_ATTACH

• DLL_THREAD_ATTACH

• DLL_THREAD_DETACH

• DLL_PROCESS_DETACH

_ZpvReserved specifies further aspects of the DLL initialization and cleanup
based on the value of fdwReason.

After writing your DLL functions, you must export the functions that you
want to be available to a calling application. There are tw~ steps involved:
compiling your DLL functions as exportable functions and exporting them.
You can do this in the following ways:

_ If you flag a function with the _export keyword, it's compiled as
exportable and is then exported.

_ If you add the _export keyword to a class declaration, the entire class
(data and function members) is compiled as exportable and is exported.

Chapter 16, ObjectWindows dynamic-link libraries 335

Importing (calling)
DLL functions

• If you don't flag a function with _export, use the appropriate compiler
switch or IDE setting to compile functions as exportable. Then list the
function in the module definition (.DEF) file EXPORTS section.

You call a DLL function from an application just as you would call a
function defined in the application itself. However, you must import the
DLL functions that your application calls.

To import a DLL function, you can

• Add an IMPORTS section to the calling application's module definition
(.DEF) file and list the DLL function as an import.

• Link an import library that contains import information for the DLL
function to the calling application. (Use IMPLIB to make the import
library).

• Explicitly load the DLL using LoadLibrary and obtain function addresses
using GetProcAddress.

When your application executes, the files for the called DLLs must be in the
current directory, on the path, or in the Windows or Windows system
directory; otherwise your application won't be able to find the DLL files
and won't load.

Writing shared ObjectWindows classes

Defining shared
classes

336

A class instance in aDLL can be shared among multiple applications. For
example, you can share code that defines a dialog box by defining a shared
dialog class in a DLL. To share a class, you need to export the class from the
DLL and import the class into your application.

To define shared classes, you need to

• Conditionally declare your class as either _export or _import.

• Pass a TModule* parameter to the window constructors (in some
situations).

If you declare a shared class in an include file that is included by both the
DLL and an application using the DLL, the class must be declared _export
when compiling the DLL and _import when compiling the application. You
can do this by defining a group of macros, one of which is conditionally set
to _export when building the DLL and to _import when using the DLL. For
example,

#if defined (BUILDEXAMPLEDLL)

OWL Programmers Guide

#define _EXAMPLECLASS __ export
#elif defined (USEEXAMPLEDLL)

#define _EXAMPLECLASS __ import
#else

#define _EXAMPLECLASS
#endif

class _EXAMPLECLASS TColorControl public TControl {
public:

li

By defining BUILDEXAMPLEDLL (on the command line, for example)
when you are building the DLL, you cause _EXAMPLECLASS to expand to
_export. This causes the class to be exported and shared by applications
using the DLL. '

By defining USEEXAMPLEDLL when you're building the application that
will use the DLL, you cause _EXAMPLECLASS to expand to _import. The
application will know what type of object it will import.

The TModule object

See the
ObjectWindows

Reference Guide for
a complete TModule

class description.

An instance of the TModule class serves as the object-oriented interface for
an ObjectWindows DLL. TModule member functions provide support for
window and memory management, and process errors.

The following code example shows the declaration and initialization of a
TModule object. This example is conditionalized so that either 16-bit
(LibMain) or 32-bit (DllEntryPoint) DLLs can use the same source file.

static TModule *ResModi

#if defined (__ WIN32 __)

BOOL WINAPI
DllEntryPoint(HINSTANCE instance, DWORD I*flag*f, LPVOID)

#else II !defined(__ WIN32 __)

int
FAR PASCAL
LibMain(HINSTANCE instance,

WORD l*wDataSeg*I,
WORD l*cbHeapSize*I,
char far* l*cmdLine*/)

#endif

Chapter 16, ObjectWindows dynamic-link libraries 337

II We're using the DLL and want to use the DLL's resources
II
if (!ResMod)

ResMod = new TModule(O,instance)i
return TRUEi

Within the entry point function, the TModule object ResMod is initialized
with the instance handle of the DLL. If the module isn't loaded an
exception is thrown.

If your DLL requires additional initialization and cleanup, you can perform
this processing in your LibMain, DllEntryPoint, or WEP functions. A better
method, though, is to derive a TModule class, define data members for data
global to your DLL within the class, and perform the required initialization
and cleanup in its constructor and destructor.

After you've compiled and linked your DLL, use IMPLIB to generate an
import library for your DLL. This import library will list all exported
member functions from your shared classes as well as any ordinary
functions you've exported.

Using ObjectWindows as a DLL

To enable your ObjectWindows applications to share a single copy of the
ObjectWindows library, you can dynamically link them to the
ObjectWindows DLL. To do this, you'll need to be sure of the following:

• When compiling, define the macro _ OWLDLL on the compiler command
line or in the IDE.

• Instead of specifying the static link ObjectWindows library when linking
(that is, OWLWS.LIB, OWLWM.LIB, OWLWL.LIB, or OWLWF.LIB),
specify the ObjectWindows DLL import library (OWLWLLIB for 16-bit
applications, or OWLWFLLIB for 32-bit applications).

Calling an ObjectWindows DLL from a non-ObjectWindows application

338

When a child window is created in an ObjectWindows DLL, and the parent
window is created in an ObjectWindows application, the ObjectWindows
support framework for communication between the parent and child
windows is in place. But you can also prepare your DLL for use by
non-ObjectWindows applications.

OWL Programmers Guide

When a child window is created in an ObjectWindows DLL and the parent
window is created by a non-ObjectWindows application, the parent-child
relationship must be simulated in the ObjectWindows DLL. This is done by
constructing an alias window object in the ObjectWindows DLL that is
associated with the parent window whose handle is specified on a DLL call.

In the following code, the exported function CreateDLL Window is in an
ObjectWindows DLL. The function will work for both ObjectWindows and
non-ObjectWindows applications.

BOOL far _export
CreateDLLWindow(HWND parentHWnd)
{

TWindow* parentAlias = GetWindowPtr(parentHWnd); II check if an OWL window
if (!parentAlias)

parentAlias = new TWindow(parentHWnd); II if not, make an alias
TWindow* window = new TWindow(parentAlias, "Hello from a DLL!");
window->Attr.Style 1= WS_POPUPWINDOW 1 WS_CAPTION 1 WS~THICKFRAME

1 WS_MINIMIZEBOX 1 WS_MAXIMIZEBOX;
window->Attr.X = 100; window->Attr.Y = 100;
window->Attr.W = 300; window->Attr.H = 300;
return window->Create();

CreateDLL Window determines if it has been passed a non-ObjectWindows
window handle by the call to Get WindowPtr, which returns a when passed
a non-ObjectWindows window handle. If it is a non-ObjectWindows
window handle, an alias parent TWindow object is constructed to serve as
the parent window.

Implicit and explicit loading

Implicit loading is done when you use a .DEF or import library to link your
application. The DLL is loaded by Windows when the application using the
DLL is loaded.

Explicit loading is used to load DLLs at run time, and requires the use of
the Windows API functions LoadLibrary to load the DLL and GetProcAddress
to return DLL function addresses.

Mixing static and dynamic-linked libraries

The ObjectWindows libraries are built using the BIDS (container class)
libraries, which in turn are built using the C run-time library.

Chapter 16, ObjectWindows dynamic-link libraries 339

340

Table 16.1
Allowable library

combinations

If you link with the DLL version of the ObjectWindows libraries, you must
link with the DLL version of the BIDS and run-time libraries. You do this
by defining the _OWLDLL macro. This isn't the only combination of static
and dynamic-linked libraries you can use: each line in the table below lists
an allowable combination of static and dynamic-linked libraries.

Static libraries

OWL, BIDS, RTL

OWL, BIDS

OWL

(none)

Dynamically linked libraries

(none)

RTL

BIDS, RTL

OWL, BIDS, RTL

OWL Programmer's Guide

A p p E N D x

Converting ObjectWindows 1.0
code to ObjectWindows 2.0

ObjectWindows 2.0 is a powerful new implementation of the
ObjectWindows class library. This version delivers many of the features
requested by ObjectWindows 1.0 users:

• Greater type safety

• ANSI C++ compliance
• Support for multiple inheritance·

• Automated message cracking

A

• Broader encapsulations of the Windows API, including support for GDI

• Several new high-level objects, including encapsulations of toolbar and
status line functionality

• Transparent targeting of 16-bit and 32-bit applications for Windows NT,
Win32s, and Windows 3.1 from a single source code base

To facilitate these new features, there have been several changes to the
ObjectWindows class hierarchy. If you have developed applications using
ObjectWindows 1.0, this chapter helps you easily convert your existing
code base over to ObjectWindows 2.0 so that you can take advantage of the
new functionality. In addition, we have provided a utility called OWLCVT
that automates the most common changes you may have to make. You can
use OWLCVT from the command-line for makefile-based development or
from within the IDE if you use project files.

-.. The t~rm ObjectWindows 1.0 refers to the LOx version of the
ObjectWindows class library, which was provided with the Borland C++ 3.1
and Application Frameworks package and Turbo C++ for Windows 3.1.

The number of changes your code requires depends on which
ObjectWindows 1.0 features you've used in your particular application.
Although there are some changes that must be made to any ObjectWindows
1.0 program, most changes need to be made only if you've used a particular
feature. Use the checklist provided in the "Conversion checklist" section of
this chapter to quickly determine which areas of your code are affected.

Appendix A, Converting ObjectWindows 1.0 code to ObjectWindows 2.0 341

This chapter is arganized into' faur parts:

• The "Canverting yaur cade" sectian explains the use af the OWLCVT
taal, including cammand-line syntax, haw to, use it fram the IDE, and
haw OWLCVT madifies your cade.

• The "Canversian checklist" sectian describes all the changes yau might
have to, make to, yaur applicatians. Alang with each descriptian is a page

,reference telling yau what page to, turn to, far mare infarmatian abaut the
requi!ed change. This lets yau read abaut anly thase changes yau need to,
make, and ignare thase cha,nges that dan't apply to, yaur applicatian.

• The "Canversian pracedures" sectian cantains detailed technical
descriptians af all the changes yau might have to, make to, yaur
applicatians.

• The "Traubleshaating" sectian lists a number af camman prablems yau
might encaunter while canverting yaur cade fram ObjectWindaws 1.0 to,
ObjectWindaws 2.0.

Converting your code

Converting to
Borland C++ 4.0

342

There are several main steps yau must gO, thraugh to, part yaur
ObjectWindaws 1.0 cade to, wark with the ObjectWindaws 2.0 class library:

1. Make sure yaur cade campiles praperly with Barland C++ 4.0. Yau
dan't need to, be able to, link ar execute yaur cade; yau just need to, be
able to, campile withaut errars ar warnings.·

2. Canvert yaur cade using the OWLCVT utility.

3. Make any manual canversians needed.

This sectian discusses these steps and the taals required to, do' them.

Befareattempting to, canvert your cade,yau must make sure it campiles
carrectly with the Barland C++ 4.0 campiler. Changes to, the draft ANSI
C++ standard, including the additian af three distinct char types and a new
syntax far using the new and delete aperatars to, allacate arrays af abjects,
cauld cause yaur cade nat to, campile. These language changes, and haw to,
fix the prablems assaciated with them, are discussed in the README.TXT
file in the sectian titled "C/C++ Language Changes."

Yau must also' make yaur cade STRICT campliant. Windaws 3.1 intraduced
suppart in WINDOWS.H far defining STRICT. This enables strict campiler
errar checking. Cade written with STRICT defined is easier to, part acrass
platfarms and fram 16- to, 32-bit Windaws. Yau can find mare infarmatian

OWL Programmers Guide

on making your code STRICT compliant in Chapter 8 of the Borland C++
Programmer's Guide.

You can use your existing project files, makefiles, configuration files,
response files, and so on, for the compiling process. Configuration files are
files containing a number of command-line compiler options. Response files
are files containing both command-line compiler options and file names.
Configuration files and response files are discussed in detail in Chapter 3 in
the User's Guide. The only changes you need to make to your files for this
purpose are:

• Change the header file include paths. To properly define ObjectWindows
l.0 classes and ObjectWindows 1.0-compatible container classes, you
need to make the following changes:

• Change C: \BC31 \OWL \ INCLUDE to C: \ BC4 \ INCLUDE \OWLCVT

• Change C:\BC31 \ CLASSLIB \ INCLUDE to C:\BC4\INCLUDE\
CLASSLIB \ OBSOLETE

• Change C: \BC31 \ INCLUDE to C: \BC4 \ INCLUDE

This assumes-the existing paths in your ObjectWindows l.O-compatible
files use the directory C:\BC31 as the root directory of your old Borland
C++ installation, and that you've installed Borland C++ 4.0 in the
directory C:\BC4. Change these names to reflect the actual directories in
which you have your compilers installed.

• Your include paths should be in this order:

• C: \ BC4\INCLUDE \ OWLCVT

• C: \ BC4 \ INCLUDE \ CLASSLIB \ OBSOLETE

• C: \ BC4 \ INCLUDE

• Because you only need to make sure your code compiles with Borland
C++ 4.0, you should remove all linking commands from your makefile or
script:

• If you have explicit linking commands you can either delete them,
comment them out, or, if you're using MAKE, specify the appropriate
.OB} files as targets on the MAKE command line.

• If you're using the compiler to automatically invoke the linker for you,
add the -c option (to suppress automatically invoking the linker) to
your compiler commands.

-.. If you are using the IDE, select the CPP nodes of your application in the
Project window and select Build node from the Project window's
SpeedMenu.

Appendix A, Converting ObjectWindows 1.0 code to ObjectWindows 2.0 343

OWLCVT
conversions

OWLCVT
command-line
syntax

344

If you get any compiler errors or warning messages when you compile
your code, correct the problems and recompile. Once your cod.e compiles
cleanly, you are ready to move on to converting your code to
ObjectWindows 2.0.

OWLCVT is a command-line tool you can use to convert your existing
ObjectWindows 1.0 code to use the new ObjectWindows 2.0 class libraries.
It performs a number of conversions on your ObjectWindows 1.0-
compatible source and header files:

• Makes backup copies of any original source or header files that are
modified by OWLCVT. See the section "Backing up your old source
files./I

• Changes the event-handling mechanism from DDVTs to event response
tables. See page 349.

• Changes calls to the TWindowsObject /TWindow hierarchy to calls to the
TWindow / TFrame Window hierarchy. See page 356.

• Preserves calls to native Windows API functions. See page 358.

• Includes the appropriate header files for ObjectWindows 2.0 resources.
See page 360.

• Includes the appropriate header files for ObjectWindows 2.0 source. See
page 359.

• Replaces calls to DefWndProc, DefCommandProc, DefChildProc, and
DefNotificationProc with a call to the function DefaultProcessing. See
page 370.

OWLCVT also inserts comments in your code when it encounters a
questionable construct that you might need to modify. You should look for
these messages in your converted source files.

The command-line syntax for OWLCVT is:

OWLCVT [options] filel [file2 [file3 [...]]]

where filen is one or more ObjectWindows 1.0 source code files and options
is one or more command-line compiler options. OWLCVT accepts all
regular command-line compiler (BCC.EXE) options. This lets you use any
of your old command scripts, makefiles, configuration files, and so on
when converting. Only a few of these options have any functional effect on
OWLCVT itself, but some options cause macros to be defined in the
Borland C++ header files, so you should continue to use the same option
sets for converting your files that you used to compile them.

OWL Programmers Guide

Backing up your
old source files

How to use
OWLCVT from the
command line

Warning!

When you run OWLCVT, it makes a directory called OWLBACK in your
current directory. It then makes a copy of your original source file and any
local headers and places these in the OWLBACK directory. When
OWLCVT has finished converting your files, the modified source files are
in your current directory. If, for some reason, the converted files don't
function correctly, are corrupted, or are otherwise unsatisfactory, you can
easily restore your original files by copying them from the OWLBACK
directory. If you run OWLCVT again, and it finds a copy of a file already in
the OWLBACK directory, it leaves the copy that's already in the directory
and does not overwrite it.

To convert your code from the command line using OWLCVT, follow these
steps:

1. Copy the file that contains the compiler options you used for your
ObjectWindows 1.0 compilations, such as your make file, configuration
file, response file, and so on, to a new file.

2. Make the following changes to the new file:

• If you haven't already changed the header-file include paths when
converting to Borland C++ 4.0, change the include path as follows:

• Change C:\BC31\OWL\INCLUDE to C:\BC4\INCLUDE\
OWLCVT (for ObjectWindows La-compatible header files)

• Change C: \BC31 \ CLASSLIB \ INCLUDE to C: \ BC4 \ INCLUDE \
CLASSLIB\OBSOLETE (for Object-based container class header
files)

• Change C:\BC31 \ INCLUDE to C:\BC4\INCLUDE (for standard
header files)

This assumes the existing paths in your ObjectWindows 1.0-
compatible files use the directory C: \BC31 as the root directory of
your old Borland C++ installation, and that you have installed
Borland C++ 4.0 in the directory C:\BC4. Change these names to
reflect the actual directories in which you have your compilers
installed.

If you use any header files that duplicate the names of Borland header
files, you must place the directory containing these files in your
header file include path before the Borland include directories. You
must do this even if the files are in the current directory and you use
the #include "filename.h" syntax to include these files .

• If you/reusing a makefile, batch file, or any type of command script:

Appendix A, Converting ObjectWindows 1.0 code to ObjectWindows 2.0 345

How to use
OWLCVT in the
IDE

346

• Remove all commands except for C++ compilations, including
linking, resource compiling and binding, and so on. For example,
suppose you have the following batch file:

Bce -ws -e -rnl -w MYAPP.CPP
RC -r -iC:\BC31\OWL\INCLUDE -iC:\BC31\INCLUDE MYAPP.RC
TLINK ITw Ie IC eOWL MYAPP, MYAPP, , @MAKEOOOO.$$$, MYAPP.DEF

This assumes that your existing files refer to a compiler in the
directory C: \BC31. Change this to reflect the actual directory in
which you have your old compiler installed. After removing all
commands except for C++ compilations, this file would look like
this:

Bce -ws -e -rnl -w MYAPP.CPP

• Convert the compilation commands into OWLCVT commands. For
example, suppose you had converted the batch file in the previous
step. After converting the compilation command into an OWLCVT
command, this file would look like this:

OWLCVT -ws -e -rnl -w MYAPP.CPP

3. Run the appropriate command-line tool. For example, if you're using a
batch file, run the batch file; if you're using a make file, run MAKE, and
so on. If you're using a configuration file or response file from the
command line, run OWLCVT just like you would the compiler. For
example, if you had the file configuration file MYCONVRT.CFG, and
you wanted to convert the file MYFILE.CPP, the OWLCVT command
line would look like this:

OWLCVT +MYCONVRT.CFG MYFILE.CPP

4. Once all your files have been processed by OWLCVT, you should check
whether any further modifications are necessary. These changes are
discussed in the next section.

5. Once you have made any manual changes necessary, build your project
using the Borland C++ 4.0 tools. You also need to restore resource
compilation commands in your makefile. Note that RC.EXE has been
replaced in Borland C++ 4.0 with BRC.EXE, the Borland Resource
Compiler. Explicit calls to TLINK also need to be restored and updated
to use new startup code and libraries supplied by Borland C++ 4.0.

To convert your code from the IDE using OWLCVT, follow these steps:

1. Load your project file into the IDE by using Project I Open project. The
IDE will automatically make the necessary library changes in
TargetExpert for your conversion to OWL 2.0.

OWL Programmers Guide

2. If you haven't already changed the header-file include paths when
converting to Borland C++ 4.0, make the following changes under
Options I Project I Directories:

• Change C:\BC3l \ OWL \ INCLUDE to C:\BC4\INCLUDE\OWLCVT
(for ObjectWindows 1.0-compatible header files)

• Change C: \BC3l \ CLASSLIB \ INCLUPE to C: \BC4\INCLUDE\
CLASSLIB\OBSOLETE (for Object-based container class header files)

• Change C: \BC3l \ INCLUDE to C: \ BC4\INCLUDE (for standard
header files)

This assumes the existing paths in your ObjectWindows l.O-compatible
files use the directory C:\BC3l as the "root directory of your old Borland
C++ installation, and that you have installed Borland C++ 4.0 in the
directory C: \BC4. Change these names to reflect the actual directories in
which you have your compilers installed.

If you use any header files that duplicate the names of Borland header
Warning! files, you must place the directory containing these files in your header

file include path before the Borland include directories. You must do this
even if the files are in the current directory and you use the #include
"filename.h" syntax to include these files.

3 .. Select the CPP nodes of your application in the Project window, click
your right mouse button, and select Special I OWL Convert from the
Project window's SpeedMenu. The IDE automatically passes the
command-line options from your project to OWLCVT along with the
file names of your selected nodes. If OWL Convert does not appear
under Special on the Project window's SpeedMenu, you must install it
underOptions I Tools.

4. Once all your files have been processed by OWLCVT, you should check
whether any further modifications are necessary. These changes are
discussed in the next section.

5. Once you have made any manual changes necessary, build your project
using the Borland C++ 4.0 tools.

Conversion checklist

This section presents a number of conversions that you might need to make
to your existing ObjectWindows 1.0 code after running OWLCVT. Most of
these conversions are necessary only if you use a particular feature of
ObjectWindows 1.0. OWLCVT also performs a number of conversions
automatically (see page 344). The following conversions need to be done
manually, but only if you use that particular feature or class: .

Appendix A, Converting ObjectWindows 1.0 code to ObjectWindows 2.0 347

348

• Constructing virtual bases
A number of classes have been modified in ObjectWindows 2.0 to use
virtual base classes. See page 139. '

• Downcasting virtual bases to derived types
To downcast a virtual base class pointer to a derived class (for example,
passing a TWindow * in place of a TFrameWindow *), use the
DYNAMIC_CAST macro. See page 36l.

• Moving from Object-based containers to the BIDS library
The Object-based container class library isn't used in ObjectWindows 2.0.
See page 363 .

• Streaming
There have been a number of changes to the streams library. See
page 363.

• MDI classes
There are a number of changes you need to make when using the
TMDIFrame and TMDIClient classes. See page 364.

• MainWindow variable
You should no longer set the variable T Application::Main Window. Instead
you should use the SetMain Window function. See page 367.

• Using a dialog as the main window
There are a number of changes you need to make if you're using a dialog
as your main window. See page 368.

• TApplication message processing functions
The ProcessDlgMsg, ProcessAccels, and ProcessMDIAccels functions have
been removed from the T Application class. See page 368.

• Paint function
The declaration for the TWindow member function Paint has changed. See
page 371.

• CloseWindow, ShutDownWindow, and Destroy functions
The declarations for these·TWindow member functions has changed. See
page 371.

• ForEach and FirstThat functions
The declarations for the TWindow member functions ForEach and
FirstThat have changed. See page 372.

• TComboBoxData and TListBoxData classes
Some data members of TListBoxData and TComboBoxData classes have
changed type. See page 372.

• TEditWindow and TFileWindow classes
TEdit Window and TFile Window have been replaced by TEditSearch and
TEditFile. See page 373.

OWL Programmers Guide

• TSearchDialog and TFileDialog classes
The TSearchDialog and TFileDialog classes have been replaced by the
TReplaceDialog or TFindDialog and the TFileOpenDialog classes. See
page 374.

• ActivationResponse function
The ActivationResponse function has been removed from the TWindow and
TWindowsObject classes. Examples of how to attain the same functionality
in ObjectWindows 2.0 are given on page 375.

• BeforeDispatchHandler and AfterDispatchHandler functions
The BeforeDispatchHandler and AfterDispatchHandler functions have been
removed from ObjectWindows. Examples of how to attain the same
functionality in ObjectWindows 2.0 are given on page 375.

• DispatchAMessage function
The DispatchAMessage function has been removed from ObjectWindows.
See page 375.

• KBHandlerWnd data member
The KBHandlerWnd data member has been removed from the
TApplication class. See page 377 .

• MAXPATH
MAXP ATH is no longer defined in any ObjectWindows header files. It is
now defined only in the header file dir.h. See page 377.

• Style conventions
ObjectWindows 2.0 uses somewhat different style conventions from
ObjectWindows 1.0. Although your application should compile fine
without these stylistic changes, you should make these changes anyway
to ensure easy compatibility with your future ObjectWindows 2.0 code.
See page 377.

Conversion procedures

Handling
messages and
events

This section contains detailed technical. descriptions of the procedures
outlined in the two previous sections.

DDVTs (dynamic dispatch virtual tables), which ObjectWindows 1.0 uses
to handle application events, have some limitations, especially with
multiple inheritance and 32-bit environments. ObjectWindows 2.0 replaces
DDVTs with event response tables, which offer the following advantages over
DDVTs:

• Full support for multiple inheritance of window classes

• Automated message cracking

Appendix A, Converting ObjectWindows 1.0 code to ObjectWindows 2.0 349

• Compile-time type checking of all event-handling functions and cracked
message parameters

• Compatibility between 16-bit and 32-bit environments

• Easier use of user-defined and run-time-defined messages

• Ability to dispatch two or more messages to a single event-handling
function

• Full compliance with the draft ANSI C++ standard

OWLCVT automatically converts your existing DDVTs into
ObjectWindows 2.0 response tables. OWLCVT does not maintain your
symbolic constants, and instead converts them to their numeric values. For
example, suppose you have the following DDVT declaration:

virtual void CMTest(TMessage& Msg) = (CM]IRST + CM_TESTli

When OWLCVT converts this, it uses the numeric value of the defined
CM_TEST:

DEFINE_RESPONSE_TABLE1(TMyWindow, TFrameWindow)
EV_COMMAND(lOl, CMTest),

END_RESPONSE_TABLEi

The following sections describe how to convert DDVTs to response tables
manually. However, it is not recommended that you try to do this task
manually, especially for a large application.

.. The following sections only describe how to convert your existing
ObjectWindows DDVTs. Response tables offer more features you'll
probably want to take advantage of. For complete details about event
response tables, see Chapter 5.

Creating event response tables consists of four steps, which the following
sections describe:

1. Removing DDVT functions

2. Adding an event response table declaration

3. Adding an event response table definition

4. Adding event response table entries

Removing DDVT
functions

You should first remove the DDVT function declarations from your
window class definition. You need to remove the DDVT dispatch index (for
example, CM_FIRST + CM_SENDTEXT), since the member function
definition doesn't use it. The second part of the dispatch index is used
when you define your response table. You can also remove the virtual.

350 OWL Programmers Guide

keyword because event response tables don't require event response
functions to be virtuaL

Here are some DDVT function declarations and their event response table
equivalents:

ObjectWindows 1.0: ObjectWindows 2.0:
virtual void CMSendText(TMessage &Msg)

[CM_FIRST + CM_SENDTEXT] i

virtual void CMErnpInput(TMessage &Msg)
[CM_FIRST + CM_EMPINPUT]i

virtual void HandleListBoxMsg(TMessage &Msg)
[ID_FIRST + ID_LISTBOX]i

virtual void WMIn~tMenu(RTMessage) =
[WM_FIRST + WM_INITMENU] i

virtual void BNClicked(RTMessage Msg)
[NF_FIRST + BN_CLICKED] i

void CrnSendText() i

void CrnErnpInput() i

void HandleListBoxMsg(UINT) i

void EvInitMenu(WPARAM) i

void BNClicked() i

Each predefined Windows message has a specific message-handling
function associated with it. In addition, each function has a specific
signature that you must use when writing your own code for handling
these messages. The Windows messages and their corresponding function
names and signatures are listed in Chapter 2 of the Object Windows Reference
Guide.

If you use custom Windows messages, the function name is up to you. You
specify the function name using one of the response table macros described
in the table on page 352. The function signature depends on which macro
you use. See the Object Windows Reference Guide for more information.

Naming conventions
You should name ObjectWindows 2.0 event-handling functions by
prefixing the name of the function with two letters taken from the message
type (such WM, EV, CM, and so on). The first letter should be uppercase
and the second letter should be lowercase; don't use two uppercase letters.
For example, CMCommand becomes CmCommand. The predefined
ObjectWindows message-handling functions are all named according to
this style.

OWLCVT converts ObjectWindows-l.O style function names to the
ObjectWindows 2.0 style. If you make a call to the base class version of a
function, however, OWLCVT does not convert that call. You need to
convert these calls manually. For example, suppose your ObjectWindows
1.0 application has a class called TMyWindow that has a function WMSize
that calls the TWindowsObject:: WMSize function. OWLCVT converts the
TMyWindow::WMSize function name to TMyWindow::EvSize and the base
class name from TWindowsObject to TWindow, but it doesn't convert the call

Appendix A, Converting ObjectWindows 1.0 code to ObjectWindows 2.0 351

Adding an event
response table
declaration

Adding an event
response table
definition

Adding event
response table
entries

352

to the base class WMSize function. You need to convert this name to EvSize
manually.

The next step is to add an event response table declaration after the last
declaration in your window class. For example:

class TMyWindow: public TFrameWindow {

DECLARE_RESPONSE_TABLE(TMyWindow) ;
};

DECLARE_RESPONSE_TABLE is a macro that takes the name of the class
as its parameter. See Chapter 5 for more details about event response table
declarations.

In conjunction with the DECLARE_RESPONSE_TABLE macro, you need to
add an event response table definition in the source file (not a header file)
where you define the members of your window class. You also need to add
event response table entries, which the following sections discuss. Here's a
sample event response table definition:

II NOTE: Response tables should be defined in global scope.
DEFINE_RESPONSE_TABLE1(TMyWindow, TFrameWindow)

II event response table entries

DEFINE_RESPONSE_TABLEX is a macro that takes the name of the
window class and its immediate base classes as its parameters. The X is
based on the number of base classes your class has.
END_RESPONSE_TABLE is a macro that ends the event response table
definition. See Chapter 5 for more information about defining event
response tables.

In ObjectWindows 1.0, the dispatch index you used in a message response
member function's declaration determined what kind of message the
function responded to. For example, the CM_FIRST constant identified
command response member functions.

ObjectWindows 2.0's event response tables offer all of ObjectWindows 1.0's
dispatch types and several more. The following table lists the
ObjectWindows 1.0 dispatch types and their ObjectWindows 2.0 event
response table equivalents. See the following sections for information
specific to each dispatch type.

OWL Programmers Guide

Table A.1: Message response member functions and event response table entries

Type of message Version 2.0
response member function

Version 1.0
dispatch constant event response table entry

Command message
Child ID-based message
Notify-based message
Windows messages

CM_FIRST
ID_FIRST
NF_FIRST
WM_FIRST

Responding to command messages

EV_COMMAND
EV _CHILD_NOTIFY _ALL_CODES
EV _NOTIFY _AT_CHILD
EV_MESSAGE and EV_WM_XXX

Command messages are those for which Windows sends a
WM_COMMAND message from a menu or accelerator. In ObjectWindows
1.0, you'd declare a member function using the sum of CM_FIRST and the
menu or accelerator resource ID; ObjectWindows intercepted the
WM_COMMAND message and called the message response member
function with the matching ID.

In ObjectWindows 2.0, you do the same thing, but you use event response
tables instead of DDVTs. Here's an example:

II Objectwindows 1.0 member function declaration
virtual void CMSendText(TMessage &Msg)

[CM_FIRST + CM_SENDTEXT]i

II 2.0 event response table entry
EV_COMMAND(CM_SENDTEXT, CmSendText)
void CmSendText() i

Responding to child ID·based messages
Child ID-based message response member functions handle all the
messages coming from a control that ObjectWindows passed along to the
control's parent window. In ObjectWindows 1.0, the control notification
code was passed in the TMessage.LP.Hi member, which the message
response member function had to check for, usually with a switch
statement.

ObjectWindows 2.0 supports the same kind of dispatching with the
EV _CHILD_NOTIFY_ALL_CODES event response table entry; all the
notification codes are passed to a single member function. Here's an
example:

II ObjectWindows 1.0 member function declaration
virtual void HandleListBoxMsg(TMessage &Msg) =

[ID_FIRST + ID_LISTBOX]

II ObjectWindows 2.0 event response table entry and function definition

Appendix A, Converting ObjectWindows 1.0 code to ObjectWindows 2.0 353

354

EV_CHILD_NOTIFY_ALL_CODES(ID_LISTBOX, HandleListBoxMsg)
void HandleListBoxMsg(UINT)i

ObjectWindows 2.0 also supports dispatching specific notification codes to
specific member functions, something ObjectWindows 1.0 doesn't support.
Use the EV _CHILD_NOTIFY event response table entry for such
dispatching. Here's an example:

EV_CHILD_NOTIFY(ID_BUTTON, HandleButtonClick, BN_CLICKED)
void HandleButtonClick() i

Since you often need to respond to Windows control notification codes,
ObjectWindows defines macros to more easily handle button, combo box,
edit control, and list box notification codes. Here's an example that
simplifies the LBN_DBLCLK notification code:

EV_LBN_DBLCLK(ID_LISTBOX, HandleListBoxMsg)
void HandleListBoxMsg(UINT);

.. Child ID-based messages are actually command messages that include a
notification code. For command buttons, the notification code is zero,
which makes it look like a menu command message. The recommended
way of responding to button presses is with.command message response
functions rather than child ID-based message response functions. For
example, an OK button is usually a child window to a dialog box. When the
user clicks it, the button passes a message that can be handled like a
command message. You can handle the button message like this:

EV_COMMAND(IDOK, CmOk)

Responding to notification messages
Notification messages are like child ID-based messages but instead of being
handled by the parent window, they're handled by the control itself.
Notification messages are best for creating specialized control classes.

ObjectWindows 1.0 and 2.0 both dispatch notification messages to specific
member functions, as this example shows: '

II ObjectWindows 1.0 member function declaration
virtual void ENChange(TMessage &Msg) = [NF_FIRST + EN_CHANGE]

II Objectwindows 2.0 event response table entry and function definition
EV_NOTIFY_AT_CHILD(EN_CHANGE, ENChange)
void FNameChange();

OWL Programmers Guide

See Chapter 5 for
more details about

the predefined
message macros.

Responding to general messages
You can also respond to messages that aren't command messages, child
ID-based messages, or notification messages.

ObjectWindows 1.0 and. 2.0 dispatch Windows mes~ages to specific
member functions. Notice that the ObjectWindows 2.0 naming convention
for Windows messages is to use the prefix Ev with a mixed-case version of
the Windows message constant:

II Objectwindows 1.0 member function declaration
virtual void WMCtlColor(TMessage &Msg) = [WM_FIRST + WM_CTLCOLOR]

II ObjectWindows 2.0 event response table entry
EV_MESSAGE(WM_CTLCOLOR, EvCtlColor)

As with child ID-based messages, ObjectWindows defines macros to make
it easy to respond to Windows messages. Here's an example that uses the
predefined macro for the WM_CTLCOLOR message:

II Objectwindows 2.0 event response table entry
EV_WM_CTLCOLOR

Using the predefined macros assumes you name your event response
function using the Ev naming convention.

Another good reason to use the predefined macros is that ObjectWindows
automatically "cracks" the parameters that are normally passed in the
LP ARAM and WP ARAM parameters.

For example,using EV _WM_CTLCOLOR assumes that you have an event
response member function declared like this:

HBRUSH EvCtlColor(HDC hDCChild, HWND hWndChild, UINT nCtrlType)i

Message cracking provides for strict C++ compile-time type checking,
which helps you catch errors as you compile your code rather than at run
time.

Appendix A, Converting ObjectWindows 1.0 code to ObjectWindows 2.0 355

Event response
table sample

Here are several ObjectWindows 1.0 window class declarations and their
ObjectWindows 2.0 equivalents:

ObjectWindows 1.0:
class TMyWindow: public TWindow

};

virtual void WMCtlColor(TMessage &Msg)
[WM_FIRST + WM_CTLCOLOR];

virtual void WMPaint(TMessage &Msg) =
[WM_FIRST + WM_PAINT];

virtual void CMSendText(TMessage &Msg)
[CM_FIRST + CM_SENDTEXT]i

virtual void CMEmpInput(TMessage &Msg)
[CM_FIRST + CM_EMPINPUT] i

class TMyDialog: public TDialog {

virtual void HandleListBoxMsg(TMessage &Msg)

};

class TMyButton: public TButton {

};

virtual void BNClicked(TMessage &Msg)
[NF_FIRST + BN_CLICKED]i

ObjectWindows 2.0:
class TMyWindow: public TFrameWindow {

};

LPARAM EvMyMessage(WPARAM, LPARAM);
void EvPaint() i

void CmSendText() i
void CmEmpInput();

DECLARE_RESPONSE_TABLE(TMyWindow) ;

DEFINE_RESPONSE_TABLE1(TMyWindow,TFrameWindow)
EV_MESSAGE(WM_MYMESSAGE, EvMyMessage),
EV_WM_PAINT,
EV_COMMAND(CM_SENDTEXT,CmSendText) ,
EV_COMMAND(CM_EMPINPUT, CmEmpInput),

END_RESPONSE_TABLE;

class TMyDialog: public TDialog

'void HandleListBoxMsg(UINT);

DECLARE_RESPONSE_TABLE(TMyDialog) i
};

DEFINE_RESPONSE_TABLE (TMyDialog, TDialog)
EV~CHILD_NOTIFY_ALL_CODES(ID_LISTBOX,

HandleListBoxMsg),
END_RESPONSE_TABLE;

class TMyButton: public TButton

void BNClicked ();

DECLARE_RESPONSE_TABLE(TMyButton)i
}i

DEFINE_RESPONSE_TABLE(TMyButton, TButton)
EV_NOTIFY_AT_CHILD(BN_CLICKED, BNClicked),

END_RESPONSE_TABLE;

Changing your
window objects

ObjectWindows 1.0 had two classes for "generic" windows:

356

TWindowsObject and TWindow. TWindowsObject was an abstract class; it
provided the basic behavior for all windows, dialog boxes, and other
interface elements, but an instance of TWindowsObject wasn't very useful by
itself. TWindow, on the other hand, served as the class you used for all types

OWL Programmers Guide

Converting
constructors

of windows. Unfortunately, that meant that even simple child TWindow
objects had functionality and code they didn't use.

ObjectWindows 2.0 offers two new classes: TWindow and TFrame Window.
TWindow is similar to TWindowsObject in ObjectWindows 1.0, except that
it's not abstract. You can use instances of TWindow in ObjectWindows 2.0
for child windows. TFrame Window objects serve as overlapped or popup
main windows; they maintain a client window, and are inherited by
TMDIFrame for MDI support and TDecoratedFrarne for decoration support
(like tool bars and status bars).

OWLCVT performs a search and replace operation on your source files,
replacing all occurrences of TWindow with TFrameWindow, and all
occurrences of TWindowsObject with TWindow. However, this modification
isn't sufficient because the TFrameWindow constructor does not always take
the same parameters as the old TWindow constructor. There were two
constructors for the ObjectWindows 1.0 TWindow class:

TWindow(PTWindowsObject, LPSTR, PTModule = NULL) ;
Twindow(HWND, PTModule = NULL) ;

OWLCVT converts the TWindow name to TFrame Window. But after this
conversion, neither of these constructors corresponds directly to the
available TFrame Window constructors:

TFrameWindow(TWindow *parent,
const char far *title = 0,
TWindow *clientWnd = 0,
BOOL shrinkToClient = FALSE,
TModule *module = 0);

TFrameWindow(HWND hWnd, TModule *module = 0);

However, the two most common usages of the TWindow constructor in
ObjectWindows 1.0 were as follows:

II First TWindow constructor, PTModule parameter set to its default value.
TWindow(AParent, "Title");

II Second TWindow constructor, PTModule parameter set to its default value.
TWindow(AParent) ;

OWLCVT converts these calls to:

TFrameWindow(parent, "Title");
TFrameWindow(parent);

These calls compile correctly. The first call sets the last three parameters of
the five-parameter TFrame Window constructor to their respective defaults.
The second call sets the second parameter of the two-parameter

Appendix A, Converting ObjectWindows 1.0 code to ObjectWindows 2.0 357

Calling Windows
API functions

358

TFrame Window constructor to its default. You shouldn't have to make any
further changes unless you determine you need to specify a value for any
of the other parameters.

If your ObjectWindows 1.0 code specifies a value for the PTModule
parameter, the conversion of your constructor as done by OWLCVT might
not correspond to a valid TFrame Window constructor. For example, the
TWindow constructors might look something like this:

TWindow(AParent, ptModule) i

TWindow(AParent, "Title", ptModule) i

The converted code would look like this:

TFrameWindow(parent, ptModule) i

TFrameWindow (parent , "Title", ptModule) i

The second call compiles and functions correctly. To make the first call
compile correctly, you can remove the ptModule variable entirely, as shown
here:

TFrameWindow(parent, "Title");

This way, the final three parameters of the five-parameter constructor take
on their default values. You can also fill in default values for the third and
fourth parameters:

I

TFrameWindow(parent, "Title", 0, FALSE, ptModule);

Refer to the Object Windows Reference Guide section on the TFrameWindow
class to learn more about the TFrame Window constructors and their
parameters.

ObjectWindows 2.0 encapsulates much more of the Windows API than
ObjectWindows 1.0. The advantage of this is that ObjectWindows takes
care of passing common parameters, such as window handles, to the API
functions. But because some ObjectWindows 2.0 member functions have
the same names as Windows API functions, you might get compile-tim~
errors like this:

Extra parameter in call to TClass::MessageBox(const char far *, const char far
*, unsigned int)

The easiest way to get your code to work is to use the :: scope resolution
operator. For example, suppose you made the following call to the
Windows API function MessageBox in your ObjectWindows 1.0 application:

void TMyWindow::CMAddRecord() {
MessageBox(HWindow, "All fields must be filled in", "Input Error", MB_OK);

OWL Programmers Guide

I,
I,

I,

,

Changing header
files

Using the new
header file locations

You can force this function to call the Windows API function with
ObjectWindows 2.0 by adding the :: scope resolution operator:

void TMyWindow::CMAddRecord() {
: :MessageBox(HWindow, "All fields must be filled in", "Input Error", MB_OK) i

You can also use the encapsulated API function TWindow::MessageBox:

void TMyWindow: :CMAddRecord() {
MessageBox("All fields must be filled in", "Input Error", MB_OK);

The advantage of using the encapsulated ObjectWindows equivalent is that
you do not have to pass window parameters explicitly. These are handled
by the TWindow member functions inherited by the class you're using to
make the call. OWLCVT automaticCllly prefixes any calls to Windows API
functions with the :: scope resolution operator.

You need to make these two changes to the way you include some header
files in your code:

• Use the new header file locations

• Use the new streamlined ObjectWindows header files

Borland C++ 4.0 places all header files under the INCLUDE directory.
ObjectWindows header files are now in the INCLUDE \ OWL directory. The
header files for· the container class library and run-time library are also
under the INCLUDE directory.

In versions of Borland C++ prior to 4.0, you might have set your include
directories path to something like C: \BORLANDC\INCLUDEi

C: \ BORLANDC \OWL\ INCLUDE i C: \BORLANDC\CLASSLIB\INCLUDE. In 4.0, aU you need
is C: \ BORLANDC \ INCLUDE. In your code, instead of including header files with
directives like #include <applicat.h>, you now include ObjectWindows or
class library header files like #include <owl \applicat. h> or #include
<classlib\arrays.h>. All of the ObjectWindows source code and sample
applications use this approach.

You can also include resource script files and resource header files this way.
For example, to include the resource header and resource script files for
TPrinter, the #include statement would look like this:

#include <owl\printer.rh>
#include <owl\printer.rc>

Appendix A, Converting ObjectWindows 1.0 code to ObjectWindows 2.0 359

Using the new
streamlined
ObjectWindows
header files

ObjectWindows
resources

Compiling
resources

360

ObjectWindows 2.0 header files contain fewer class declarations than their
ObjectWindows 1.0 counterparts. Since fewer classes are declared in each
file, you probably have to explicitly include more header files. For example,
in ObjectWindows 1.0, including owl.h caused several classes to be defined,
including TWindowsObject, TWindow, TMDIFrame, TMDIClient, and TDialog.
The functionality of including owl.h can be achieved by including
applicat.h, framewin.h, dialog.h, mdi.h, scroller.h, and dc.h.

The header file owlall.h includes all the ObjectWindows header files, which
can be useful for creating an ObjectWindows precompiled header file. For
example, the following fragment creates a precompiled header file using
owlall.h:

#pragma hdrfile "OWLALL.CSM"
#include <owl\owlall.h>
#pragma hdrstop

The advantage of using precompiled header files is that they provide a
great increase in compilation speed, reducing the time it takes to process
header files by up to 90%. For more information on precompiled headers,
see Chapter 3 in the Borland C++ User's Guide.

ObjectWindows 1.0 combined the resources and identifiers used by several
classes into only a few files. If your application used the resources of one
class, you also got the resources for a number of other classes, regardless of
whether you used them. ObjectWindows 2.0 provides one resource script
file and one resource header file per class (a resource header file contains all
the identifiers for the resources defined in the resource script file) for each
class that requires resources.

This prevents including resources or header files unnecessarily. The names
of the resource script and header files parallel the corresponding header file
names. For example, the TPrinter class is defined in the header file printer.h.
The resource IDs for the TPrinter class are contained in the file printer.rh.
The resources used by the TPrinter class are contained in the file
PRINTER.RC.

When compiling your resources, you should be sure you modify the header
file include path for the resource compiler. The ObjectWindows 1.0 header
file include path usually included the directories C: \BC31 \ INCLUDE, C: \
BC31\OWL \ INCLUDE, and C:\BC31 \ CLASSLIB \ INCLUDE. For Borland
C++ 4.0, this path should be changed to search C: \BC4\INCLUDE and
OWL \ prefixed on the file name, as shown on page 359.

OWL Programmer's Guide

Menu resources

Constructing
virtual bases

Downcasting
virtual bases to
derived types

This assumes the existing paths in your ObjectWindows l.O-compatible
files use the directory C:\BC31 as the root directory of your old Borland
C++ installation, and that you have installed Borland C++ 4.0 in the
directory C:\BC4. Change these names to reflect the actual directories in
which you have your compilers installed.

To bring in the resources for an ObjectWindows class, just include the
appropriate resource file from your own resource script file. For example,
to add the resources for the TPrinter class, you would add the following
line to your own .RC file:

#include <owl\printer.rc>

When using menu resources in your code, you might need to change the
way menus are assigned to your frame window objects. ObjectWindows 1.0
let you directly assign a menu to a frame window object by setting the
Menu member of the object's Attr structure equal to a particular resource
ID. For example:

Attr.Menu = MENU_l;

ObjectWindows 2.0 doesn't permit this type of assignment. Instead, you
should use the TFrameWindow::AssignMenu function. The previous line of
code looks like this using the AssignMenu function:

AssignMenu(MENU_l) ;

A number of classes that took nonvirtual base classes in ObjectWindows 1.0
are derived from virtual base classes in ObjectWindows 2.0. For the
purposes of porting, the classes that are affected by this are classes that use
TWindow and TFrame Window as virtual bases: TDialog, TMDIFrame,
TFrame Window, TMDIChild, TDecoratedFrame, TLayout Window,
TClipboardViewer, TKeyboardModeTracker, and TTinyCaption. In C++, virtual
base classes are constructed first, which means that the derived class'
constructor cannot specify default arguments for the base class constructor.
Page 139 describes methods to deal with construct your virtual bases.

A fairly common practice in ObjectWindows 1.0 code is to cast a
TWindowsObject pointer to a derived type. The TWindow base class (the
ObjectWindows 2.0 equivalent of TWindowsObject; see page 356) is a virtual
base in many of the standard ObjectWindows 2.0 classes; however the C++
language doesn't let you downcast a virtual base class pointer to a derived
class. To convert this type of construct to ObjectWindows 2.0, you must use
the DYNAMIC_CAST macro. The DYNAMIC_CAST macro takes two

Appendix A, Converting ObjectWindows 1.0 code to ObjectWindows 2.0 361

362

parameters. The first parameter is the data type you want to downcast to.
The second parameter is the class instance you want to downcast.

For example, the following code downcasts the TWindowsObject object
pointer Parent to a TWindow:

TMyChildWindow: :MyFunc() {

II Parent is actually a TWindowsObject object.
((TWindow *) Parent) ->AssignMenu (INewMenu") ;

You might try to convert this code like this, simply converting the TWindow
class to a TFrameWindow class:

TMyC~ildWindow::MyFunc() { II error on next line

II Parent is actually a TWindow object.
((TFramewindow *) Parent) ->AssignMenu (INewMenu");

However, in ObjectWindows 2.0, Parent's type is a TWindow * (it was a
TWindowsObject *), which is a virtual base of TFrame Window. Attempting to
downcast this results in a compile-time error. The correct way to convert
this using the DYNAMIC_CAST macro is shown here:

TMyChildWindow: :MyFunc() {

DYNAMICCAST(TFrameWindow*,Parent)->AssignMenu(INewMenu") ;

Here's the syntax for the DYNAMIC_CAST macro:

type DYNAMIC_CAST(type, object)

where:

• type is the data type to which you want to cast the object .

• object is the object you want to cast.

If the conversion is successful, DYNAMIC_CAST returns object as a type
data object. If the conversion fails, the result of the DYNAMIC_CAST
macro is O. You should perform error checking when using the
DYNAMIC_CAST macro.

OWL Programmer's Guide

Moving from
Object-based
containers to the
BIDS library

Streaming

Removed insertion
and extraction
operators

Implementing
streaming

In ObjectWindows 1.0, the TWindowsObject class was derived from the class
Object from the container class library. In ObjectWindows 2.0, the
templatized BIDS container class library is used in place of the Object-based
container class library. The BIDS library provides quicker execution times
and much greater code flexibility. The BIDS templatized container classes
are described in Chapter 7 of the Borland C++ Programmer's Guide. This
change affects code that places the TWindow class (the ObjectWindows 2.0
equivalent of TWindowsObject; see page 356) in Object-based containers and
code that calls Object member functions such as IsA, NameOf, and the isXXX
member functions such as isEmpty, isFull, isSortable, and so on.

Code that places the TWindow class in Object-based containers should be
converted to use the BIDS templatized container classes. Otherwise, to put
your own TWindow classes into Object-based containers, you would have
to:

• Multiply derive your class from Object as well as its ObjectWindows base
class.

• Implement castability for your class; see the README. TXT file for
information on this procedure.

• If implementing castability (which is strongly recommended), use the
DYNAMIC_CAST macro to downcast the Objects from the container back
to your TWindow-derived class.

There have been some minor changes to the stream class library. There
have also been substantial changes in how streaming is implemented for
ObjectWindows 2.0 classes, although existing code should continue to work
correctly with only minor modifications.

These operators no longer exist:

opstream &operator «(opstream &, TStreamable *);
ipstream &operator »(ipstream &, void * &);

If you were calling this « operator, you can use the following call instead:

opstream.WriteObjectPtr((TStreamable *) p);

This » operator was removed because it had no real functionality.

The Borland C++ 4.0 container class library dramatically simplifies the
process of setting up your classes for streaming. The process uses the
macros DECLARE_STREAMABLE and IMPLEMENT_STREAMABLEX.

Appendix A, Converting ObjectWindows 1.0code to ObjectWindows 2.0 363

MOl classes

364

The DECLARE_STREAMABLE macro can be used in a class derived from
TStreamable (as most of the ObjectWindows classes are). It takes two
parameters: the class name and a version number. For example:

class TMyClass : public TStreamable
DECLARE_STREAMABLE(TMyClass, 1);

The version number you use is up to you. Some streaming functions emit
the version number during certain operations. You must put the
DECLARE_STREAMABLE macro in your class definition in order to use
streaming functionality with your ObjectWindows classes.

After declaring your class streamable with the DECLARE_STREAMABLE
macro, you need to specify the IMPLEMENT_STREAMABLEX macro. This
macro performs a number of steps that let you stream your class, including
creating an extraction operator for your class:

ipstream & operator »(ipstream &, TMyClass * &);

For the IMPLEMENT_STREAMABLEX macro, you must determine X to
figure out which macro you should use. To do this, count the number of
immediate base classes for your class plus the number of virtual base
classes you want to stream. This number determines which macro you use.
For example, suppose the class TMyClass is derived from TFrameWindow,
which inherits TWindow virtually. In that case, you would use the
IMPLEMENT _STREAMABLE2 macro.

You also need to provide Read and Write functions for your class. For
example:

void MyClass::write(opstream &) {
II Whatever funclionality you require ...

void * MyClass::Read(ipstream &, unsigned long)
II Whatever functionality you require ...

For more information on the DECLARE_STREAMABLE and
IMPLEMENT_STREAMABLEX macros, and on streaming classes in
general, see Chapter 6 in the Borland C++ Programmer's Guide.

TWindow in ObjectWindows 1.0 contained all the necessary support
required to be an MDI child. This made it easy to create MDI applications,
but caused MDI support code to be included even when your application
didn't use it. ObjectWindows 2.0 provides three distinct MDI classes:

OWL Programmers Guide

Making the frame
and client

TMDIFrame, TMDIClient, and TMDIChild. Now your application includes
MDI support code only when using MDI classes.

In ObjectWindows 1.0, a typical MDI application worked like this:

• An instance of a specialized TMDIFrame class served as the application's
main window.

• Instances of specialized TWindow classes, inserted into the frame
window, served as MDI child windows.

ObjectWindows 2.0 is similar:

• An instance of a TMDIFrame class serves as the application's main
window.

• An instance of TMDIClient serves as the MDI client window.

• Instances of the TMDIChild class, inserted into the client window, serve
as MDI child windows.

There are a couple of examples that use the MDI features, named
MFILEAPP and MDITEST. These examples are located in the EXAMPLES\
OWL \MFILEAPP and EXAMPLES \ OWL \MDITEST directories of your
Borland C++ installation, respectively.

In ObjectWindows 1.0, a typical way to use TMDIFrame was deriving a
class from TMDIFrame, and instantiating an instance of that class in
TApplication::lnitMainWindow. In ObjectWindows 2.0, you can simply
assign a stock TMDIFrame to be the main window. The default
TMDIClient& parameter for the TMDIFrame constructor creates a default
TMDIClient object. If you need some type of specialized TMDIClient, you
can create the TMDIClient and pass it to the TMDIFrame constructor
yourself. Using a class derived from MDIFrame is fine for porting your
code, but your new ObjectWindows 2.0 applications shouldn't need to use
a specialized TMDIFrame.

The following code shows how MDI clients and children were typically
handled in ObjectWindows 1.0:

class TMyMDIFrame : public TMDIFrame {
pUblic:

TMyMDIFrame(LPSTR title, LPSTR menuName);

void TMyApp: : InitMainWindow() {
SetMainWindow (new TMyMDIFrame ("Main Window", "MENU_l"));·

Appendix A, ConvertingObjectWindows 1.0 code to ObjectWindows 2.0 365

Making a child
window

366

In ObjectWindows 2.0, this code would look like this:

void TMyApp::lnitMainWindow() {
SetMainWindow(new TMDIFrame("Main Window", "MENU_l"));

If you wanted to specify a custom MDI client window, you would only
have to modify the code slightly:

class TMyMDIClient : public TMDIClient {
pUblic:

TMyMDIClient() ;
};

void TMyApp::lnitMainWindow()
SetMainWindow(new TMDIFrarne ("Main Window", "MENU_l",

*new TMyMDICl'ient)) ;

The reason the TMDIFrame constructor takes a reference to a TMDIClient
instead of a pointer is to prevent you from constructing a TMDIFrame with
a 0 pointer to an MDIClient. Using a'reference parameter provides greater
safety because it requires you to provide an actual object.

In -ObjectWindows 1.0, a child window was typically created as follows:

void TMyMDIFrarne::MakeNewChild() {
PTWindow * newMDIChild = new TMyChild(this, "new child");
GetApplication()->MakeWindow(newMDIChild) ;

In ObjectWindows 2.0, this function should be a member of the
TMDIClient-based class:

void TMyMDIClient: :MakeNewChild() {
(new TMyMDIChild(*this, "new child")) ->Create ();

You must use TMDIChild or a TMDIChild-derived class for MDI children.
Notice the *this passed as the first parameter to the TMDIChild constructor.
Again, MDI children must have a TMDIClient as a parent, so their
constructors take a reference to TMDIClient instead of a pointer.

The WB _MDICHILD flag is no longer defined. It was used to tell if a
TWindow class was really an MDI child, and for a TMDIFrame to tell which
of its children were really MDI children, and which were not (for example,
a toolbar would not be implemented as an MDI child). In ObjectWindows
2.0, there is a TMDIChild class, a,nd its parent is always a TMDIClient.
Because all MDI children are derived from TMDIChild and are children of

OWL Programmers Guide

I

I

I

I

I'

Relocated functions

Replacing
ActiveChiid with
GetActiveChiid

MainWindow
variable

the TMDIClient, and toolbars and the like are children of a
TDecoratedMDIFrame, there is no need for this flag anymore.

The following child-handling functions of the TMDIFrame class have been
moved to the TMDIClient class:

Arrangelcons
CascadeChildren
CloseChildren
CMArrangelcons
CMCascadeChildren
CMCloseChildren

CMCreateChild
CMlnitChild
CMTileChildren
CreateChild
InitChild
TileChildren

Code that used or overrode these functions should be changed to reference
the TMDIClient instance, or be moved to a descendent of the TMDIClient
class.

The names of the menu command handlers use the ObjectWindows 2.0
style, that is, CMlnitChild is now CmlnitChild.

In ObjectWindows 1.0, you could find the active MDI child by using the
PTWindow data member, ActiveChild, of the TMDIFrame object. In
ObjectWindows 2.0, you should use the GetActiveChild member function.in
the TMDIClient class. '

You should no longer set the variable T Application::Main Window. Instead
you should use the SetMain Window function. SetMain Window takes one
parameter, a TFrameWindow *, and returns a pointer to the old main
window. If this is a new application, that is, one that has not set up a main
window yet, the return value is O.

Suppose your existing code looks something like this:

void InitMainwindow()
{

MainWindow = new TFrarneWindow (0 I "This window" I new TWindow) i

MainWindow->AssignMenu("COMMANDS") i

In ObjectWindows 1.0, this was a fairly common way of setting up your
main window at the beginning of your application's execution. In
ObjectWindows 2.0, class data members are either protected or private,
preventing you from directly setting the value of the data members. The
previous code would look something like this:

Appendix A, Converting ObjectWindows1.0 code to ObjectWindows 2.0 367

Using a dialog as
the main window

368

void InitMainWindow()
{

SetMainWindow(new TFrameWindow(O, "This window", new TWindow));
MainWindow->AssignMenu("COMMANDS");

Because the SetMain Window function expects a TFrame Window * as a
parameter, it is no longer possible to directly pass a TDialog or TDialog
derived object as the main window. To use a TDialog object as the main
window, make a dialog window a client in a TFrame Window. Then pass that
TFrameWindow as the parameter to SetMainWindow. The CALC example, in
the EXAMPLES\OWL \CALC directory of your Borland C++ installation,
illustrates how to use a TDialog-derived class as a client window in a
TFrame Window object.

For example, suppose you had constructed a class derived from TDialog
called TMyDialog, and wanted to use it as the main window. The code
would look something like this:

SetMainWindow(new TFrameWindow(O, "My MainWindow", new TMyDialog, TRUE));

There are a number of other changes you need to make if you're using a
dialog as your main window:

• Destroying your dialog object does not destroy the frame. You must
destroy the frame explicitly.

• You can no longer dynamically add resources directly to the dialog,
because it isn't the main window. You must add the resources to the
frame window. For example, suppose you added an icon to your dialog
using the SetIcon function. You now must use the SetIcon function for
your frame window.

• You can't just specify the caption for your dialog in the resource itself
anymore. Instead you must set the caption through the frame window.

• You must set the style of the dialog box as follows:

• Visible (WS_ VISIBLE)

• Child window (WS_CHILD)

• It shouldn't have Minimize and Maximize buttons, drag bars, system
menus, or any of the other standard frame window attributes

See page 169 for more information.

OWL Programmer's Guide

I

I

I

I

Ii'
I

TApplication
message
processing
functions

GetModule function

The ProcessDlgMsg, ProcessAccels, and ProcessMDIAccels functions have
been removed from the T Application class. Message processing is now done
by calling T Application's virtual ProcessAppMsg function, which calls the
virtual TWindow::PreProcessMsg function of the window receiving the
message (and up the chain of parents) until someone preprocesses the
message, or until there are no more parents. At that point, it checks the
applications accelerator table, and finally, if the message has not been
handled, dispatches it to the window. This change greatly simplifies and
automates the message processing procedure.

You might have ObjectWindows 1.0 code in which ProcessAppMsg is
overridden to change the order in which it called the other processing
functions. For example, the ObjectWindows 1.0 CALC example did this.
This code isn't likely to be necessary in ObjectWindows 2.0; if you need to,
however, you can override PreProcessMsg of the TWindow object or one of
its parent windows.

You might also have ObjectWindows 1.0 code that extends ProcessAccels to
process across multiple accelerator tables for different windows. This is
best modified by assigning an accelerator table to each window, so that the
window processes it automatically. You can also have each TWindow or
TWindow-derived class override its PreProcessMsg function to handle its
own accelerator table.

The GetModule function has been removed from the TWindowsObject class.
In most cases, you can simply replace a call to GetModule with a call to get
GetApplication. For example, suppose you have the following code in your
ObjectWindows 1.0 application:

GetModule()->ExecDialog(new TDialog(this, "DIALOG_I"));

You can convert this to ObjectWindows 2.0 by changing GetModule to
GetApplication:

GetApplication()->ExecDialog(new TDialog(this, "DIALOG_I"));

Although ObjectWindows 2.0 provides ExecDialog for compatibility
reasons, the recommended method of doing this would be to use the
Execute command directly from the instantiated class. So the code above
would become:

TDialog(this, "DIALOG_I") .Execute();

This change is discussed in more detail on page 379.

Appendix A, Converting ObjectWindows 1.0 code to ObjectWindows 2.0 369

DefXXXProc
functions

Overriding

370

The exception to this is when the TWindow descendent doesn't have a
T Application or T Application-derived object defined for it (such as a DLL that
isn't being used by an ObjectWindows application) and you need to use a
member function of TModule. In this case, use the module object you
construct for the DLL in your LibMain function. For example:

II Declare a global TModule pointer.
TModule *dllModule;

int FAR PASCAL LibMain(...) {

II Assign a value to dllModule here.
dllModule = new TModule("My module", instance, cmdLine);

void MyFunc ()
TWindow *parentAlias;

II Use the GetParentObject function with dllModule.
parentAlias = dllModule->GetParentObject(HWnd);

See DLLHELLO.CPP, located in the EXAMPLES\OWL \MISC directory of
your Borland C++ installation, for a detailed example.

The TWindowsObject member functions DefCommandProc, DefChildProc,
DefNotificationProc, and DefWndProc have been removed from TWindow (the
ObjectWindows 2.0 equivalent of TWindowsObject; see page 356) and
effectively replaced with the single function DefaultProcessing. This greatly
simplifies message processing. To invoke default processing, just call your
base class version of the event handler you are overriding, or call
DefaultProcessing.

In general, it's best to handle one command or child ID notification per
function. But sometimes it can be useful to handle multiple messages with
one function. If you were overriding DefCommandProc or DefChildProc for
this purpose, there are two main ways to port this code:

• Override the EvCommand function and do the message handling there.
The CALC example, in the EXAMPLES\OWL\CALC directory of your
Borland C++ installation, illustrates how to do this. This isn't technically
default processing because EvCommand is called before a event handler is
looked for ..

• Override DefWindowProc and catch the commands fhere. DefWindowProc
is called if an event handler was not found.

OWL Programmers Guide

Using DefWndProc
for registered
messages

Paint function

. CloseWindow,
ShutDownWindow,
and Destroy
functions

Code that overrides DefWndProe also overrides DefWindowProe. Code
that overrides DefNotifieationProe must be ported to handle each
notification at the child with a separate member function, using the
EV _NOTIFY_AT_CHILD macro.

If you were overriding DefWndProe to handle registered Windows
messages (messages returned by RegisterWindowMessage), you don't need to
do that in ObjectWihdows 2.0. See the description of the EV _REGISTERED
macro on page 134.

The declaration for the TWindow member function Paint has changed from:

virtual void Paint (HDC, PAINTSTRUCT _FAR &) i

to:

virtual void Paint (TDC&, BOOL, TRect &) i

TDC is part of the ObjectWindows 2.0 GDI encapsulation of the Windows
API. You can use the TDC parameter in the same way that you used HDC.
There is an operator HDCO defined forthe TDC class that converts a TDC
to an HDC. The BOOL and TRect& correspond directly to the fErase and
rePaint members of the P AINTSTRUCT type. The data members are
initialized in the TWindow::EvPaint function, which is called by the default
processing functions when a WMYAINT message is received. The EvPaint
function in turn calls the Paint function.

For example, suppose your ObjectWindows 1.0 code contained the
following function declaration:

void TWindow: : Paint (HDC hdc, PAINTSTRUCT& ps) {
II Much code here ...

You would change this in ObjectWindows 2.0 like this:

void Paint (TDC& tdc, BOOL erase, TRect& rect) {
II Much code here ...

The declarations for these TWindow member functions have changed. The
versions of these functions that took no parameters have been modified to
an int. However, these functions also provide a default value for the int
parameter, so your existing code should compile and run without
modification.

Appendix A, Converting ObjectWindows 1.0 code to ObjectWindows 2.0 371

ForEach and
FirstThat
functions

The ForEach and FirstThat functions are used to iterate through the children
of a window object. To use them, you pass a pointer to an iterator function
as the first parameter of the ForEach and FirstThat function. This iterator
function can be a normal function or a class member function. In
ObjectWindows 1.0, the ForEach and FirstThat functions passed the iterator
functions a void * for their first parameter. The iterator functions then had
to cast this void * to a TWindow *. Although this works if the correct
parameter type is passed, it doesn't provide for type checking. In
ObjectWindows 2.0, these functions take a TWindow * directly:

Sample iterator functions for the ForEach function:

ObjectWindows 1.0 ObjectWindows 2.0
void MyIterator(TWindow *, void *) void MyIterator (void *, void *)

void TMyClass: :MyIterator(void *, void *) void TMyClass::MyIterator(TWindow *, void *)

Sample iterator functions for the FirstThat function:

ObjectWindows 1.0 ObjectWindows 2.0
BOOL MyIterator(TWindow *, void *) BOOL MyIterator(void *, void *)

BOOL TMyClass::MyIterator(void *, void *) BOOL TMyClass::MyIterator(TWindow *, void *)

TComboBoxData
and TListBoxData
classes

372

The functions are still used in the same way:

void TMyWindow::SomeMyFunc() {
ForEach(MyIterator , 0);
ForEach(&TMyClass::MyIterator , 0);

In ObjectWindows 1.0, the TListBoxData class, the transfer structure for
TListBox, had the following two data members:

PArray Strings;
PArraySelStrings;

These members were pointers to Object-based Arrays, and held instances of
the Object-based String class. These instances were the strings in the list box
and the selected strings (mostly used for multi-select listboxes). Because of
the move from the Object-based class library to the template-based BIDS
libraries, and the introduction of a string class by the ANSI committee, the
implementation of these data members has been changed for
ObjectWindows 2.0 to the following:

TStringArray *Strings;
TStringArray *SelStrings;

OWL Programmers Guide

TEditWindow and
TFileWindow
classes

TStringArray uses a BIDS array class to hold an array of string objects.

A similar change exists with TComboBoxData: the Strings data member is a
TStringArray pointer instead of an Array pointer.

Though the new ANSI string class provides many new operators and
functions, it doesn't provide a const char * operator like the Object-based
class did. It instead has a c_str member function that must be used to get
the data out of the class. This requires modifications to code that relied on
the const char * operator of the Object-based String class. You must also use
a TStringArray where you were previously using an Object-based Array
class to get data out of a TListBoxData structure.

For example, using ObjectWindows 1.0, suppose you have just done a
transfer and are getting a const char * to the first selected string. Assume
DialogTransfer is a pointer to the transfer buffer and ListBoxData is a pointer
to a TListBoxData inside of it.

Array& selStrings = * (DialogTransfer->ListBoxData->SelStrings) ;

const char *sel = (const char *) (String &) selStrings [0];

In ObjectWindbws 2.0 this becomes:

TStringArray& selStrings = *(DialogTransfer->ListBoxData->SelStrings);

const char *sel = selStrings[O] .c_str();

The ObjectWindows 1.0 TEdit Window and TFile Window classes have been
removed from ObjectWindows and functionally replaced by TEditSearch
and TEditFile, which are derived from the TEdit control class. The
TEditSearch and TEditFile classes aren't full frame windows with menus like
the previous classes, but instead are used to add editor functionality to
TFrame Window or TMDIChild windows.

There are two methods you 'cap use to replace instances of TFile Window or
TEdit Window in your code: using the TFile Window and TEdit Window classes
defined in the OLDFILEW example program or adding TEditSearch and
TEditFile classes as client windows in TFrame Window or TMDIChild
windows.

The TEdit Window and TFile Window classes have been implemented in the
Using the example programs EDITWND and FILEWND. You can find these examples
OLDFILEWexample, in the EXAMPLES \ OWL \OLDFILEW directory of your Borland C++

installation. The TEdit Window and TFile Window classes defined in these
examples can be used in much the same way as the original
ObjectWindows 1.0 TEditWindow and TFileWindow classes. To add these
classes'to your programs, copy the source to your source directory for your

Appendix A, Converting ObjectWindows 1.0 code to ObjectWindows 2.0 373

Adding TEditSearch
and TEditFile client
windows

374

application. If you're using just the TEdit Window class, you only need the
files EDITWND.CPP and EDITWND.H.Because the TFileWindow class is
based on the TEdit Window class, you also need the files FILEWND.CPP and
FILEWND.H if you're using the TFileWindow class. Your source files that
reference these classes need to include the appropriate header files.

Although this method works for converting your code, it's recommended
that you write new code using the ObjectWindows 2.0 method of using
TEditSearch and TEditFile client windows in TFrame Window or TMDIChild
windows.

You can attain the functionality of the TEdit Window and TFile Window
classes by instantiating a TFrameWindow or TMDIChild and specifying a
TEditFile or TEditSearch object as a client window. Both the TFrameWindow
and TMDIChild classes have a constructor that takes a TWindow pointer as
its third parameter. It then uses the TWindow or TWindow-derived objecfas
a client window. To specify a T12ditFile or TEditSearch object as a client to
one of these classes, construct the TEditFile or TEditSearch object and pass a
pointer to the object to the constructor.

The following lines of code are from the FILEAPP example, located in the
EXAMPLES\OWL \FILEAPP directory of your Borland C++ installation.
They illustrate how to open a TEditFile client window in a TFrame Window
window.

void TFileApp::lnitMainWindow() {

SetMainWindow(new TFrameWindow(O, Name, new TEditFile));

The following lines of code are from the MFILEAPP example, located in the
EXAMPLES \ OWL \MFILEAPP directory of your Borland C++ installation ..
They illustrate how to open a TEditFile client window in a TFrame Window
window.

void TMDIFileApp::CmFileNew() {

TMDIChild child(*Client, 1111, new TEditFile(O, 0, 0));

OWL Programmers Guide

TSearchDialog
and TFileDialog
classes

Activation Response
function

Dispatch-handling
functions

The TSearchDialog and TFileDialog classes have been removed from
ObjectWindows. Use the TReplaceDialog or TFindDialog class in place, of
TSearchDialog and the TFileOpenDialog class in place of the TFileDialog class.
These new classes are based on the class TCommonDialog, which
encapsulates the base functionality of the Windows common dialogs.

The ActivationResponse function has been removed from the TWinddw and
TWindowsObject classes. Determining when a window has been activated
can be done by catching the appropriate message, like
WM_MDIACTIVATE, WM_ACTIVATE, or WM_SETFOCUS as
appropriate. You can find an example of using WM_ACTIVATE to
determine when a window is active in the SCRNSA VE example, which is
located in the EXAMPLES \ OWL \SCRNSA VE directory of your Borland
C++ installation. You can find an example of using WM_SETFOCUS in the
BSCRLAPP example, which is located in theEXAMPLES\OWL \
BSCRLAPP directory of your Borland C++ installation.

The BeforeDispatchHandler and AfterDispatchHandler functions have been
removed from ObjectWindows. You can obtain similar functionality by
overriding WindowProc for a TWindow-derived class. The procedure for
doing this is:

1. Overload the WindowProc function in your derived class.

2. In your WindowProc function, do some processing before calling the
default TBaseClass:: WindowProc.

3. Call TBaseClass:: WindowProc.

4. Save the return value from TBaseClass:: WindowProc.

5. Do some processing after TBaseClass:: WindowProc has executed.

6. Return the saved return value when you exit your WindowProc.

For example:

LRESULT TMyWindow: :WindowProc(UINT rnsg, WPARAM wPararn, LPARAM lPararn) {
II Do whatever 'before' processing you want here.
BeforeHandling() ;

LRESULT ret = TFrarneWindow::WindowProc(rnessage, wPararn, lPararn);

II Do whatever 'after' processing you want here.
AfterHandling() ;

return ret;

Appendix A, Converting ObjectWindows 1.0 code to ObjectWindows 2.0 375

DispatchAMessage
function

General messages

The DefProc
parameter

Command
messages

376

DispatchAMessage has been removed fromObjectWindows. Messages
should be sent to the Windows API with the ObjectWindows 2.0
SendMessage encapsulation.

For sending general window messages (anything other than messages that
are part of WM_COMMAND, such as WM_FIRST + XXX messages), code
would be converted as follows:

II Before
DispatchAMessage(WM_MESSAGE, ATMessage, &TWindow: : DefWndProc)
I I After
SendMessage(WM_MESSAGE, ATMessage.WParam, ATMessage.LParam) i

II Before
SomeOtherWindow->DispatchAMessage(WM_FIRST + WM_MESSAGE, ATMessage,

&TWindow: : DefWndProc)
I I After
SomeOtherWindow->SendMessage(WM_MESSAGE, ATMessage.WParam,

ATMessage.LParam)i

DispatchAMessage took a pointer to a function as its last parameter.
DispatchAMessage called this function if a DDVT entry was not found for
the message. When an ObjectWindows 2.0 window receives a message and
doesn't find a handler for it, it automatically invokes the proper default
handling. See page 370 for more information on default message handling.

There are a number of different kinds of command messages you might
need to convert. Menu command messages of the form CM_FIRST + XXX
are converted as follows:

II Before
OtherWin->DispatchAMessage(CM_FIRST + CM_MENUID,ATMessage,

&TWindow: : DefCommandProc) i
II After
OtherWin->SendMessage(WM_COMMAND, CM_MENUID, ATMessage.LParam) i

In ObjectWindows 2.0, command messages sent this way go directly to the
specified window, not to the focus window.

Child ID notifications of the form ID_FIRST + XXX are converted as
follows:

II Before
OtherWin->DispatchAMessage(ID_FIRST + ID_CHILDID,ATMessage,

&TWindow::DefChildProc) ;

OWL Programmers Guide

)

I

I

I

I

I

KBHandlerWnd

MAXPATH

Style conventions

Changing WinMain
to Ow/Main

II After
Otherwin->SendMessage(WM_COMMAND, ID_CHILID, ATMessage.LParam) i

The KBHandler Wnd data member has been removed from the T Application
class. Keyboard handling is implemented through the virtual TWindow
member function PreProcessMsg.

In ObjectWindows 1.0, MAXPATH was defined in the header file filewnd.h.
In ObjectWindows 2.0, it no longer is. MAXPATH is defined in the header
file dir.h, so if you use the MAXP ATH define you should now include the
standard header file dir.h.

ObjectWindows 2.0 uses somewhat different style conventions from
ObjectWindows 1.0. Although your application should compile fine
without these stylistic changes, you should make these changes anyway to
ensure easy compatibility. with your future ObjectWindows code.

In ObjectWindows 1.0, you used the WinMain function to create an instance
of a T Application class and call its Run member function. In ObjectWindows
2.0, you do this in the function OwlMain. ObjectWindows 2.0 provides a
default WinMain that performs error handling and exception handling. The
default WinMain function calls the OwlMain function. If you were doing
any initialization in WinMain, you should move it to OwlMain and remove
your WinMain function.

OwlMain differs from WinMain in its signature. Whereas WinMain takes a
number of Windows-specific arguments, OwlMain takes an int and a char **
and returns an int-just like the main function in a traditional C or C++
program.

You still need to derive your own application class from T Application to
override InitMain Window and InitInstance. T Application's constructor no
longer requires you to specify the instance handles, command line, and
main window show flag; the hidden WinMain function provides those
values (you can optionally specify the name).

Here's an example of using the OwlMain function:

class TMyApp: public TApplication {
pUblic:

}i

TMyApp(char far *name): TApplication(name) {}
void InitMainWindow() i

void TMyApp: : Ini tMainWindow ()

Appendix A, Converting ObjectWindows 1.0 code to ObjectWindows 2.0 377

Data types and
names

378

int OwlMain(int argc, char*argv[])
return TMyApp("Wowl ") .Run();

ObjectWindows 2.0 functions use Windows-style names, such as LPSTR,
PWORD, and HANDLE, only when there is a direct connection between
that member and something in the Windows API. An example is the
connection between a event-handling function and the Windows message it
handles. ObjectWindows 2.0 also avoids using Windows-style types such
as PTWindowsObject and RTMessage wherever possible, and instead uses
C++ type names, such as char far *, unsigned short *, and const void *. This
helps to abstract the ObjectWindows conventions from the Windows API,
and ease porting problems to other platforms in the future.

Also, function parameters in ObjectWindows 1.0 were usually named
ASomething; that is, the name was prefixed with a capital A, the first letter
of the name was capitalized, and the rest of the name was in lowercase.
ObjectWindows 2.0 uses a lowercase name without the capital-A prefix.

For example, the ObjectWindows 1.0 TWindow constructor looked like this:

TWindow(PTWindowsObject AParent, LPSTR ATitle, .,.);

The ObjectWindows 2.0 TFrame Window constructor (the equivalent of the
ObjectWindows 1.0 TWindow constructor; see page 356) looks like this:

TFrameWindow(TWindow *parent, const char *title, ...);

Notice that the types PTWindowsObject and LPSTR have been changed to
TWindow * and const char *, and the parameter names AParent and ATitle
have been changed to parent and title.

OWLCVT performs these conversions for you. But unless you're careful,
this can cause problems, because the conversion affects only the first
instance of a variable declared on a line. For example, suppose you have
the following declaration:

PTEdit ptEditl, ptEdit2, ptEdit3, ptEdit4;

After conversion, this line would look like this:

TEdit]AR * ptEditl, ptEdit2, ptEdit3, ptEdit4;

Thus, instead of being pointers to TEdit controls, ptEdit2, ptEdit3, and
ptEdit4 are actual TEdit instances. Y oucan correct this problem by changing
the line so that each instance of the pointer type occurs on a separate line:

OWL Programmers Guide I

Replacing
MakeWindow with
Create

Replacing
ExecDialog with
Execute

Getting the
application and
module instance

PTEdit ptEditli
PTEdit ptEdit2i
PTEdit ptEdit3i
PTEdit ptEdit4i

Alternatively, you can correct the line after OWLCVT has run, adding the *
operator to each variable name:

TEdit _FAR * ptEditl, * ptEdit2, * ptEdit3, * ptEdit4i

ObjectWindows 2.0 uses the TWindow::Create function to create a window
instead of the TModule::Make Window function used in ObjectWindows 1.0.
Although the Create function existed in ObjectWindows 1.0, MakeWindow
provided a safer way to create a window, because it performed a certain
amount of error checking before calling Create that calling Create alone did
not. But ObjectWindows 2.0 makes use of C++ exceptions to catch such
errors without using the explicit error-handling code that Make Window
contains. You are not required to use Create in place of Make Window;
Make Window still exists and can be used as before without changing code,
but it is considered obsolete, and will probably be removed from future
versions of the ObjectWindows class library.

ObjectWindows 2.0 uses the TDialog::Execute function instead of the
TModule::ExecDialog function commonly used in ObjectWindows 1.0, for
the same reasons given for using Create instead of Make Window in the .
previous section. As with TModule::MakeWindow, TModule::ExecDialog still
exists and can be used as before, but is considered obsolete, and will
probably be removed from future versions of the ObjectWindows class
library. For example:

(new TDialog (MainWindow, "DIALOG_l ")) ->Execute () i

The application and module instance has been encapsulated in the
ObjectWindows 2.0 library manager. This allows the easy manipulation of
Borland- and user-defined DLLs. To facilitate this change, you should
replace calls to the GetApplicationO->hlnstance function with a call to
GetLiblnstance. For example, suppose you have the following code:

Cursor = LoadCursor(GetApplication()->hlnstance, "ThisCursor")i

You can convert this like this:

Cursor = LoadCursor(GetLiblnstance(IDL_APPLICATION), "ThisCursor") i

Appendix A, Converting ObjectWindows 1.0 code to ObjectWindows 2.0 379

Defining WIN30,
WIN31, and STRICT

You do not need to define WIN30, WIN31, or STRICT as long as you
include owldefs.h (or a file that includes owldefs.h, such as owl.h) before
you include windows.h. The owldefs.h header file defines STRICT and
includes windows.h for you. But if you include windows.h before
including owldefs.h, you need to define STRICT. Also, you can only target
Windows 3.1 or above with ObjectWindows 2.0.

Troubleshooting

OWLCVT errors

Compiler
warnings

380

This section lists a number of common problems you might encounter
while converting your code from ObjectWindows 1.0 to
ObjectWindows 2.0.

This section describes some common warning and error messages you
might encounter when running OWLCVT on your ObjectWindows 1.0
code. Some of these messages are displayed onscreen as OWLCVT
processes your code, and others are placed as comments in your
converted files.

• Unrecognized DDVT value
OWLCVT doesn't have a specific translation for some DDVT value. In
this case, it inserts a generic value that you can search for and replace
manually.

• Cannot create backup file
OWLCVT creates backup copies of all the source and header files that it
modifies and places them in the directory OWLBACK. When you get this
warning, OWLCYT could not create the backup files for some reason.

• Redeclaration of var
This is equivalent to a compiler error telling you that you have
redeclared the data item var.

Here are some common. warnings you might encounter when running your
converted ObjectWindows 1.0 code through the Borland C++ 4.0 compiler:

• Paint hides function

• ShutDownWindow hides function

• CloseWindow hides function

• DestroyWindow hides function

• IdleAction hides function

OWL Programmers Guide

Compiler errors

Run-time errors

For each of these functions, you might get a warning similar to this:

Paint (HDC, PAINTSTRUCT &) hides virtual Paint(void *, void *)

This can be ignored: the (void *, void *) functions were part of the Borland
mechanism for providing compatibility between Windows 3.0 and 3.1.
These functions were never used.

Here are some common errors you might encounter when running your
converted ObjectWindows 1.0 code through the Borland C++ 4.0 compiler:

• Type LPSTR or type X must be a struct or class name:: GetClassName
OWLCVT converts calls to the Windows API by preceding the call with a
:: operator. If you use the name of an API function in some context other
than calling a Windows API function, like overriding the GetClassName
member function of TWindow, OWLCVT might add a :: operator there as
well (though there are some cases it knows to ignore). This might cause
the compiler to generate an error. You can fix this error by removing the
:: operator that was added by OWLCVT.

• Cannot convert 'TWindow *' to 'TClass *'
. This is caused because TWindow is used in ObjectWindows 2.0 as a

virtual base. You cannot directly downcast a TWindow or TWindow
pointer to a class that is virtually derived from TWindow. To fix this error,
use the DYNAMIC_CAST macro. For more information, see page 361.

• Cannot cast from 'Base *' to 'Derived *'
Use the DYNAMIC_CAST macro to cast the Base pointer to a Derived
pointer. This is essentially the same error as the previous one. For more
information, see page 361.

• Cannot convert 'int *' to 'TScrolierBase *'
You need to include the scroller.h header file. In ObjectWindows 1.0, this
was done by owl.h, but the header file directories and layout have
changed for ObjectWindows 2.0. This is discussed on page 359.

Here are some common errors you might encounter when running an
application compiled from converted ObjectWindows 1.0 code:

• Paint not getting called
The declaration for the Paint function has changed. You need to change
your Paint function to match the TWindow member function Paint. See
page 371.

• BeforeDispatchHandler, AfterDispatchHandler not being called
See page 375.

Appendix A, ConvertingObjectWindows 1.0 code to ObjectWindows 2.0 381

382

• FirstThat or ForEach not working
It is important to stay typesafe when using multiple inheritence and
virtual base class, as ObjectWindows 2.0 does. When multiple and virtual
inheritence are used, the address of contained objects is not always the
same as that of the objects they are inside. For example, in
ObjectWindows 1.0, suppose you have a pointer to a TDialog, and you
want to get a pointer to its base class, TWindowsObject. The following
code would work in ObjectWindows 1.0, although it isn't typesafe
because the conversion was done through a void pointer:

TDialog . *dialogJ)oint'er;
void *voidJ)ointer;
WindowsObject *winObjJ)ointer;

voidJ)ointer = (void *) dialogJ)ointer;
winObjJ)ointer = (TWindowsObject*) voidJ)ointer;

In ObjectWindows 2.0, this wouldn't work. You would have to make the
conversion type safe:

TWindow * windowJ)ointer = (TWindow *) dialogJ)ointer;

When the compiler knows it is converting a TDialog pointer to point to a
virtual base, it adjusts the value of the pointer appropriately. This kind of
unsafe typecasting might exist in ObjectWindows 1.0 code without
breaking the code. Here is an example of this, in which IsChild
determines if a void * passed in is currently a child window by using
FirstThat:

BOOL TMyWindow::IsChild(void * child)
if (FirstThat(Test, child))

return TRUE;
else return FALSE;

where the Test function is:

BOOL Test(void * winChild, void * child)
return winChild == child; '.

Assuming IsChild wa~ called with a pointer to a TDialog object, this code
wouldn't compile correctly. After changing to passing a TWindow *,
things work fine. When you convert this to ObjectWindows 2.0, the Test
function takes a TWindow *, not a void *. This fails because when IsChild
was called with a pointer to a TDialog, it was converted to a void *. The
test function then compares this to TWindow * in a unsafe way. But the
function won't work because when it was called, it was passed a TDialog
*. Even though the TDialog was a child, its pointer value didn't match any
of the TWindow pointers in the child list.

OWL Programmers Guide

• MOl application does not have any menu items enabled
Make sure that you use the ObjectWindows 2.0 mdi.rh include file. This
file contains the constants for standard items in the MDI menu, such as
CM_CASCADECHILDREN. In particular, don't use the definitions from
the ObjectWindows 1.0 owlrc.h include file.

Appendix A, Converting ObjectWindows 1.0 code to ObjectWindows 2.0 . 383

384 OWL Programmer's Guide

Index

== (TLine) operator 49
!= (TRegion) operator 302
&= (TRegion) operator 303
+= (TRegion) operator 302
-= (TRegion) operator 303
== (TRegion) operator 302
A= (TRegion) operator 304
1= (TRegion) operator 303
«operator 50
»operator 50
= (TRegion) operator 302

A
Above (TEdgeConstraint) function 146
Absolute (TEdgeConstraint) function 146
abstract classes 7
accelerator tables 98
accessing

button gadget information 252
document and view properties 89, 210
document object data 70
gadget appearance 243
gadget windows' font 257
internal TDib structures 310
TBitmap 296
TBrush289
TCursor 307
TFont 291
TIcon 306
TPalette 292
TPen287
TRegion 300
VBX controls 327

ActivationResponse (TWindowsObject) function
375

ActiveChild (TMDIFrame) function 367
Add (TArray) function 35
adding

behavior to MDI client windows 156
custom view events 207
displays to views 203
event-handling functions 40

Index

event identifiers 39
event response table declarations 352
event response table definitions 352
event response table entries 352
functionality to documents 196
functionality to views 203
menu resources 39
menus 33
menus to views 203
pens 28
response table entries 40
response tables 18, 74
TEditFile client windows 374
TEditSearch client windows 374

AddItem (TVbxControl) function 331
AddLine (TDrawDocument) function 71
AddLine (TLine) function 88
AddStream (TDocument) function 198
AddString (TListBox) function 171,217
AddWindow (TFrameWindow) function 152
After (TPlacement) enum 61,255
AfterDispatchHandler (TWindowsObject) function

375
AngleArc (TDC) function 285
AnimatePalette (TPalette) function 294
ANSI C++ standard, changes to 342
application

closing 107
initialization 107
run-time management 107

application classes 13
application instance, getting 69, 379
application message handling 115

extra message processing 115
application objects 17, 107

constructing in the WinMain function 111
getting application instance 69
supporting Doc/View 76
supporting MDI 82

Arc (TDC) function 285
argc parameter 107
argv parameter 107
arrays 34

385

classes 36
creating 34
deriving from 48
itera tors 35, 47

crea ting 35, 49
TLines 49

AS_MANY _AS_NEEDED macro 265
AssignMenu (TDecoratedFrame) function 63
AssignMenu (TFrameWindow) function 40, 152,

162,361
associating

identifiers with event-handling functions 39
interface objects with controls 171

Attr (TFrameWindow) data member 162,361
Attr (TWindow) data.member 141
Attr.AccelTable 98·
Attr.style 98, 122
autocreation, dialog boxes 167
automatic MDI child window creation 157

8
backing up your old source files 345
base class, initializing 18
Before (TPlacement) enum 61,255
BeforeDispatchHandler (TWindowsObject)

function 375
BeginDocument (TPrintout) function 273 .
BeginPath (TOC) function 284
BeginPrinting (TPrintout) function 273
Below (TEdgeConstraint) function 146
BitBlt (TDC) function 285
BITMAP structure, convert TBitmap class to 296
BITMAPINFO (TDib) operator 310
BITMAPINFOHEADER (TDib) operator 310
BitsPixel (TBitmap) function 297
Borderstyle (TGadget) enum 59
Borland Custom Controls Library 117
Bottom (TLocation) enum 62, 154
bounding a gadget 243
brush origin

getting 282
setting 282

building
button gadgets 60
MDI applications 155

button gadgets
bitmaps 60

386

building 60
event identifier 60
gadget identifier 60
resource identifier 60

BWCCEnabied (TApplication) func~ion 117

C
CanClose (TAp plication) function 116, 117
CanClose (TDocument) function 99
CanClose (TListBox) function 99
CanClose (TWindow) function 21,43, 169

return values 43
CapsLock (TModelndicator) enum 59,263
capturing mouse movements 258
castability 363
ChangeModeToPal (TDib) function 311
ChangeModeToRGB (TOib) function 311
changes to encapsulated GOI functions 276
changing

closing behavior 116
header files 359
hint mode 83

CheckValid (TOC) function 285
child ID-based messages 354

responding to 353
child ID notification macros 136
child windows

attributes 141
lists 125

Child List interface object data member 125
Choose Color common dialog boxes 56
Chord (TOC) function 285
class hierarchies 5
classes

ifstream 46
MOl 364
of stream 46
shared 336
string 69, 373
TApplication 16, 107, 193
TArray 33, 34, 48
TArrayIterator 33, 35, 47
TBitmap 294
TBitmapGadget 250
TBrush288
TButtonGadget 60,251
TChooseColorDialog 56

OWL Programmers Guide
I ~
1'1

TChooseColorDialog::TData 56
TClientDC 23, 278
TColor 53
TControl 322
TControlBar 59, 262
TControlGadget 253
TCreatedDC 279
TCursor 306
TDC23,278
TDecoratedFrame 58, 76, 152
TDesktopDC 278
TDialog 47, 79
TDib 308
TDibDC 279
TDocManager 64, 77, 192
TDocument 64
TDrawDocument 65
TDrawView 71
TDropInfo 79
TEdgeConstraint 144
TEdgeOrHeightConstraint 144
TEdgeOrWidthConstraint 144
TEditFile 180, 373
TEditSearch 180, 373
TEditWindow 373
TFileDialog 374
TFileOpenDialog 44, 374
TFileSaveDialog 45
TFileWindow 373
TFindDialog 182, 374
TFloatingFrame 265
TFont290
TFrameWindow 16, 150
TGadget241
TGadgetWindow 61,254
TGadgetWindowFont 59
TGdiObject 275
TIC 279
Tkon 304
TInputDialog 30, 174
TInputValidator 169
TInStream 66
TLayoutConstraints 144
TLayoutMetrics 143, 147
TLayoutWindow 143
TLine 48
TMDIChild 84, 155, 365

Index

TMDIClient 365
TMDIFrame 155,365
TMemoryDC 279
TMenuDescr 72, 77,84,85,95,98
TMessageBar 262
TMetaFileDC 279
TModule 107, 336, 337
TOpenSaveDialog::TData 42
TOutStream 69
TPaintDC 278
TPalette 291
TPen 28, 29, 53, 286
TPrintDC 279
TRegion298
TReplaceDialog 182,374
TResId 47, 60
TScreenDC 278
TSearchDialog 374
TSeparatorGadget 61,249
TStatusBar 58, 263
TTextGadget 249
TToolBox 265
TVbxControl322
TVbxEventHandler 321, 325
TView 64, 71, 202
TWindow 71
TWindowDC 278
TWindowView 71
types of member functions 8
VBX control 322

Clear (TDrawDocument) function 94
clearing a window 24
ClearList (TListBox) function 100
Clip (TGadget) data member 245
clip rectangle functions 283
clip region functions 283
Clipboard 14
Close (TDocument) function 198
Close (TDrawDocument) function 67
CloseFigure (TDe) function 284
CloseWindow (TDialog) function 166, 169
CloseWindow (TWindow) function 371
closing

applications 116
dialog boxes 168
documents 199
drawings 66

387

views 81, 86, 205
CM_ CLEAR message 96, 103
CM_ CREATECHILD message 157
CM_DELETE message 102
CM_PENSIZE macro 51
CM_ UNDO message 96, 103
CmAbout (TMyApp) function 79
CmAbout (TMyWindow) function 47
CmCancel (TDialog) function 166, 169
CmClear (TDrawListView) function 103
CmClear (TDrawView) function 96
CmCreateChild (TMDIClient) function 157
CmDelete (TDrawListView) function 102
CmdShow parameter 114
CmFileNew (TDocManager) function 77
CmFileNew (TMyWindow) function 37, 41
CmFileOpen (TMyWindow) function 44
CmFileSave (TMyWindow) function 44
CmFileSaveAs (TMyWindow) function 45
CmOk (TDialog) function 166, 169
CmPenColor (TDrawListView) function 102
CmPenColor (TDrawView) function 75,95
CmPenColor (TMyWindow) function 56
CmPenSize (TDrawListView) function 101
CmPenSize (TDrawView) function 75,95
CmPenSize (TMyWindow) function 51
CmUndo (TDrawListView) function 103
CmUndo (TDrawView) function 96
color common dialog boxes 56, 176

TData members 176
colors, replacing

gadget colors with system colors 244, 251, 253
standard interface colors with system colors 313

combo boxes 231
Command (TType) enum 60
command message macros 133
command messages 376

responding to 353
CommandEnable (TButtonGadget) function 253
CommandEnable (TGadget) function 245
CommandEnable (TGadgetWindow) function 259
commands, handling Find Next 182
Commit (TDocument) function 68, 70
common dialog boxes 11, 41

Choose Color 56
constructing 174
executing 175

388

File Open 44
File Save 45
modality 175
TData members 174

communicating with controls 170
compiler errors 381
compiler warnings 380
configuration files, conversion and 343, 345
constructing

application objects 109, 110
common dialog boxes 174
decorated frame window objects 153
device context objects 279
device contexts 23, 26
dialog boxes 164
document managers 194
frame window aliases 151
frame window objects 150
TApplication 108, 109, 110
TBitmap 295
TBrush288
TButtonGadget 60
TClientDC 23
TControlBar 59, 262
TCursor 306
TDC279
TDib 308
TDocManager 194
TDocument 196
TDrawDocument 65
TFont290
TFrameWindow 22, 140, 150, 151, 169
TGadget241
TGadgetWindow 254
TIcon 304
TMessageBar 262
TPalette 292
TPen286
TRegion298
TStatusBar 58, 263
TToolBox 265
TVbxControl 323
TView 202
TWindow 140
virtual bases 361
window objects 139

container class T Array 33

OWL Programmers Guide

constructing 34
deriving from 48

container class TArrayIterator 33
constructing 35

containers, moving from Object-based to BIDS library
363

Contains (TRegion) function 301 .
control bars 262

button gadgets 60
creating 59
inserting gadgets into 61
separator gadgets 61
size 60
TControlBar class 59

control classes 11
names 213

control objects 171,213
control values 234
controls 213

as gadgets 253
associating with interface objects 171
buttons 222

constructing 222
responding to 222

changing attributes 216
check boxes 223

constructing 223
modifying 224
querying 224

class names 213
combo boxes 231, 233

choosing 232
constructing 233
querying 233
varieties of 232

communicating with 217
constructing 214
constructor parameters 215
destroying 217
dialog bo~es and 218
edit controls 229

Clipboard 229
constructing 229
edit menu 229
modifying 231
querying 230

gauges 228

Index

group boxes 225
. constructing 225
responding to 225

grouping 225
initializing 214, 216
instance variables 234, 235

defining 235
list boxes 218

constructing 218
modifying 218
querying 219
responding to 220

manipulating 217
pointer to 215
radio buttons 223

constructing 223
scroll bars 225

constructing 225
controlling 226
modifying 226
querying 226
range 226
responding to 227
thumb tracking 227

sending messages to 170
s~tting up 172
showing 217
sliders 228
static 220

constructing 221
modifying 221
querying 222

talking to 170
transfer buffers 234

combo boxes 236
defining 235
dialog boxes 237
list boxes 236
windows and 237

transfer mechanism 234
TransferData 238
values, setting and reading 234

conventions, style 377
conversion

checklist 347
configuration files 343, 345
makefiles 343, 345

389

operators 287, 289, 291, 292, 296,300; 306, 307,
309
procedures 349
response files 343, 345

converting
backing up your old source files 345
DefChildProc 370
DefCommandProc 370
DefNotificationProc 370

, DefWndProc 370
from DDVTs to event response tables 349
MDI classes 364
Object-based containers to BIDS library 363
ObjectWindows 1.0 code to ObjectWindows 2.0
341
OWLCVT344
replacing

ActiveChild with GetActiveChild 367
ExecDialog with Execute 379
MakeWindow with Create 379

STRICT define and 342
to Borland C++ 4.0342
TWindowsObject to TWindow 356
using OWLCVT from the IDE 346
window constructors 357
Windows API functions 358
Windows code to STRICT 342
WinMain to OwlMain 377

coordinate functions 283
Create (TBitmap) function 298
Create (TDialog) function 165, 167
Create (TGadgetWindow) function 255
Create (TListBox) function 99
Create (TPalette) function 294
Create (TWindow) function 85, 142,255,379
Create interface object function 121
CreateAnyDoc (TDocManager) function 193
CreateAnyView (TDocManager) function 193
CreateDoc (TDocTemplate) function 79,86
creating

child interface elements 126
control bars 59
document classes 196
interface objects 121
MDIchild windows 157
MDI frame windows 156
status bars 58

390

template class instances 75, 190
view classes 202
window classes 18
window interface elements 142

Ctl3dEnabied (TApplication) function 118
Current (TArrayIterator) function 36
current position functions 283
custom controls 213

o
data member inheritance 8
data validation 315-320
DDVTs, converting 349
DECLARE_RESPONSE_TABLE macro 132
DECLARE_STREAMABLE macro 363
declaring a response table 18
decorated frame windows 152

adding a menu descriptor 77
constructing 58, 76,153
decorating 154
inserting objects into 62
menu tracking 58

decorated MDI frame windows
changing hint mode 83
constructing 83
menu tracking 83
setting client windows 83

decorated windows 10
decorations 12
default placeholder functions 9
DefChildProc function, converting 370
DefCommandProc function, converting 370
DEFINE_DOC_TEMPLATE_CLASS macro 75, 189
DEFINE_RESPONSE_TABLE macros 19, 74, 132
defining

new events 87
new view events with vnCustomBase 87
regions in device contexts 298
response tables 19, 40, 74
view event-handling function signatures 87
view event response table macros 87

DefNotificationProc function, converting 370
DefWndProc function, converting 370
DeleteLine (TDrawDocument) function 92, 103
DeleteString (TListBox) function ·104
deleting interface objects 124

OWL Programmers Guide

deriving
from TApplication 17
from TGadgetWindow 259
from TListBox 98
from TView 98
new classes 5

designing document template classes 75, 189
Destroy, (TDialog) function 166, 169
Destroy (TWindow) function 371
destroying

device context objects 279
interface elements 124
interface objects 123
TDib 308
TDrawDocument 65
TGadget242
TGadgetWindow 255
TMessageBar 262
TRegion298
windows 127

Detach (TArray) function 93
DetachStream (TDocument) function 198
device contexts 278

brush origin
getting 282
setting 282

classes 12
color functions 282
constructing 23, 26, 279
coordinate functions 283
current position functions 283
destroying 27, 279
drawing attribute functions 282
font functions 284
functions 280
metafile functions 283
object data members and functions 285
operators 280
output functions 284
palette functions 282
path functions 284
printing in 24
resetting 281
restoring 280
retrieving information about 281
saving 280
selecting graphics objects into 29

Index

TClientDC class 278
TCreatedDC class 279
TDC class 278
TDesktopDC class 278
TDibDC class 279
TIC class 279
TMemoryDC class 279
TMetaFileDC class 279
TPaintDC class 278
TPrintDC class 279
TScreenDC class 278
TWindowDC class 278
viewport mapping functions 283
window mapping functions 283

dialog boxes 163
as client windows 164
as the main window 169, 368
autocreation 167
classes 10
closing 168
color common 56, 176
common 41, 174

Choose Color 56
constructing 174
executing 175
File Open 44
File Save 45
modality 175

constructing 164
error handling 168
exceptions, TXWindow 168
executing 164
File Open common 178
File Save common 179
Find and Replace common 180
Font common 177
input .174
managing 168
manipulating controls in 170
modal 164
modeless 165
ObjectWindows-encapsulated 173
parent window 164
Printer cOmlnon 182
resource identifiers 164
subclassing as 3-D controls 118

DIB information 310

391

DisableAutoCreate (TWindow) function 167
disabling a gadget 245
DispatchAMessage (TWindowsObject) function

375
displays, adding menus to views 203
DllEntryPoint function 334, 335
DLLs 333

32-bit entry function 334
classes and 336
DllEntryPoint 334, 335
entry and exit functions 334
_export keyword 335
export macros 336
exporting functions .335
function calls and 333
_import keyword 336
import macros 336
importing functions 336
UbMain 334
loading 339
mixing with static libraries 339
non-ObjectWindows applications 338
ObjectWindows libraries 338
_OWLDLL macro 338
shared classes and 336
start-up code 334
static data and 333
TModule and 336, 337
WEP335
writing 333

Doc/View model 64
supporting in applications 76

Doc/View objects 185
property attributes 89

Doc/View property attributes 210
document classes

adding functionality 196
crea ting 196
data access functions 197
stream access 197

document manager 189, 192
complex data access 198
constructing 77, 84, 194
File menu 189
finding 69
getting view name 96, 99
matching document templates 79, 86

392

MDlmode 194
SDlmode 194
working with the document manager 200
working with views 200

document objects 187
accessing property information 89, 210
closing 199
Doc/View property attributes 89,210
expanding document functionality 200
getting Doc /View properties 89
notifying views of changes 70, 88, 93, 102
properties 89, 209
setting Doc/View properties 89

document properties
flags 89, 210
functions 89
names 89
NextProperty 89, 209
Prev Property 89, 209
Prop Flags 89
PropNames 89

document templates 188
creating a document from 79, 86
creating template class instances 75, 190
designing document template classes 75, 189
matching 79, 86
modifying existing templates 192
template class flags 76, 191

document-viewing classes 14
DoubleShadow (TShadowStyle) enum 253
Down (TState) enum 60
downcasting virtual bases to derived types 361
DPtoLP (TDC) function 283
drag and drop

enabling 77
getting dropped file information 79, 85
releasing Windows memory 80, 86

DragAcceptFiles (TWindow) function 77
DragFinish (TDroplnfo) function 80, 86
DragQueryFile (TDropInfo) function 79,85
DragQueryFileCount (TDropInfo) function 79, 85
DragQueryFileNameLen (TDropInfo) function 79
Draw (TUne) function 53, 55,74,97
DrawFocusRect (TDC) function 284
DrawIcon (TDC) function 284
drawing

attribute functions 282

OWL Programmers Guide i

"

in windows 25, 29
tool functions 282

DrawMenuBar (TWindow) function 160
DrawText (TDC) function 285
dynamic-link libraries See DLLs

E
edit controls 229, 318

linking to validators 318
Ellipse (TDC) function 285
Embossed, TBorderstyle (TGadget) enum 59
EnableAutoCreate (TWindow) function 167
EnableBWCC (TApplication) function 117
EnableCt13d (TApplication) function 118
EnableCt13dAutosubclass (TApplication) function

118
enabling a gadget 245
encapsulated API calls 21
encapsulated GDI functions

changes to 276
encapsulation

application 107
DLL 107
hInstance 107
hPrevInstance 107
lpCmdLine 107
nCmdShow 107

END RESPONSE_TABLE macros 132
EndDocument (TPrintout) function 273
EndPath (TDC) function 284
EndPrinting (TPrintout) function 273
EnterHints (THintMode) enum 258
EnumFontFamilies (TDC) function 284
EnumFonts (TDC) function 284
EnumMetaFile (TDC) function 283
Error (TValidator) function 320
,error handling, dialog boxes 168
errors

compiler 381
OWLCVT380
run-time 381

EV COMMAND_AND_ID macro 133
EV - COMMAND _ENABLE macro 133
EV - COMMAND macro 38, 40, 96, 133
EV - LBN DBLCLK macro 354
EV - MESSAGE macro 134
EV =OWLNOTIFY macro 200

Index

EV REGISTERED macro 134
EV - VBXEVENTNAME macro 322, 326
EV-VN COMMIT macro 74
EV - VN - DRA WAPPEND macro 96
EV - VN-DRA WDELETE macro 96
EV-VN-DRAWMODIFYmacro 96
EV - VN -REVERT macro 74
EV - WM DROPFILES macro 78 '
EV - WM - LBUTTONDOWN macro 19, 25
EV - WM - LBUTTONUP macro 25
EV - WM-MOUSEMOVE macro 25
EV - WM - RBUTTONDOWN macro 19, 25
EvClose View (TMy App) function 81, 86
EvDropFiles (TMy App) fUIiction 79, 86
event handling 74, 205
event-handling functions 20

adding 40
associating with event identifiers 39
menu commands 38, 39
message cracking 20
TDocManager 195

event identifiers
adding 39
associating with event-handling functions 39
menu commands 38, 39

event response tables 349
events 131

adding custom view events 207
handling 349

in application objects 205
in views 74,205,207

events handlers 131
EvLButtonDown (TDrawView) function 75
EvLButtonDown (TMyWindow) function 36
EvLButtonUp (TDrawView) function 75
EvMouseMove (TDrawView) function 75
EvMouseMove (TMyWindow) function 37
EvNewView (TMy App) function 80, 85
EvPaint (TWindow) function 37
EvRButtonDown (TDrawView) function 75,95
EvSize (TLayoutWindow) function 148
EvVbxDispatch (TVbxEventHandler) function 325
exceptions, TXWindow 168 ,
ExcludeClipRect (TDC) function 283
ExcludeUpdateRgn (TDC) function 283
Exclusive (TType) enum 60
'Exec Dialog (TDialog) function 379

393

Execute (TChooseColorDialog) function 57
Execute (TDialog) function 30, 47, 79, 164, 175,

379
Execute (TFileOpenDialog) function 44
Execute (TFileSaveDialog) function 45
Execute interface object function 121
executing

common dialog boxes 175
dialog boxs 164
input dialog boxes 30

_export keyword 335
export macros 336
exporting functions 335
extending TBitmap 298
extending TPalette 294
ExtendSelection (TModelndicator) enum 59, 263
ExtFloodFill (TDC) function 285
extra message processing 115
extraction operators 363
ExtTextOut (TDC) function 285

F
File menu, ,document manager 189
File Open common dialog boxes 44, 178

TData members 178
File Save common dialog boxes 45, 179

TData members 178, 179 '.
FillPath (TDC) function 284
FillRect (TDC) function 284
FillRgn (TDC) function 285
Find and Replace common dialog boxes 180

TData members 180
FindColor (TDib) function 312
Findlndex (TDib) function 312
finding an application object 108
FindProperty (TDocument) function 90
first-instance initialization 112
FirstGadget (TGadgetWindow) function 259
FirstThat (TWindowsObject) function 372
FirstThat interface object function 125, 128
flags

document properties 89,210
WB_MDICHILD 366
wfAlias 151
WS_VISIBLE 167

FlattenPath (TDC) function 284
FloodFill (TDC) function 285

394

Flush (TArray) function 35, 41
Font common dialog boxes 177

TData members 177
font functions 284
ForEach (TWindowsObject) function 372
ForEach interface object function 125, 128
FormatData (TDrawListView) function 100, 103,

104
frame windows 10, 150

merging client menus 81
modifying 152
removing client windows 81
restoring frame menu 81
setting client windows 80
setting window caption 81
specifying client window 150, 153
specifying shrink to fit 150

FrameRect (TDC) function 284
FrameRgn (TDC) function 285

. functions
ActivationResponse 375
AfterDispatchHandler 375
BeforeDispatchHandler 375
Clear 94
Close 67
CloseWindow 371
CmAbout 47, 79
CmClear 96, 103
CmDelete 102
CmFileNew 37, 41
CmFileOpen 44
CmFileSave 44
CmFileSaveAs 45
CmPenColor 56, 95, 102
CmPenSize 51,95, 101
CmUndo 96, 103
Create 379
DeleteLine 92, 103
Destroy 371
DispatchAMessage 375
DllEntryPoint 334, 335
Draw 53,55, 74,97
EvClose View 81, 86
EvDropFiles 79, 86
event-handling 20

message cracking 20
EvLButtonDown 21, 23, 29,36

OWL Programmers Guide
i

I.
I··

G

EvLButtonUp 26
EvMouseMove 26,37
EvNewView 80, 85
EvRButtonDown 21,29,95
ExecDialog 379
Execute 379
FirstThat 372
ForEach 372
FormatData 100, 103, 104
GetItemslnContainer 71
GetLine 71, 74,93,.100, 102, 104
GetModule 369
GetPenSize 51, 95
InitMain Window 76
LibMain 107, 334
LoadData 100
MakeWindow 379
MessageBox 21,43
ModifyLine·93, 102
Open 66, 88
OpenFile 46, 51
OwlMain 17, 76, 107, 110
Paint 37, 51, 55, 74,371
QueryColor 53
QueryPen48
Query PenSize 53
SaveFile 46, 51
SetPen54
ShutDown Window 371
TApplication message processing 368
Undo 94
VBXInit 321
VBXTerm321
VnAppend 97, 103
VnCommit 75, 103
VnDelete 97, 104
VnModify 97, 104
VnRevert 75,103
WEP334
WinMain 107, 110

gadget windows 254, See also gadgets
accessing font 257
capturing mouse movements for gadgets 258
classes 261
constructing 254

Index

control bars 262
converting 260
creating 255
deriving from TGadgetWindow 259
desired size 260
displaying mode indicators 264
idle action processing 259
inner rectangle 260
inserting gadgets 255
laying out gadgets 256
layout units

border 260
layout 260
pixels 260

message bars 262
message response functions 261
notifying when gadgets change size 257
objects 241
painting 259
positioning gadgets 257
removing gadgets 256
searching through gadgets 259
setting

hint mode 258
layout direction 256
window margins 256

shrink wrapping 257
status bars 263
tiling gadgets 256
tool boxes 265

GadgetChangedSize (TGadgetWindow) function
257

GadgetFromPoint (TGadgetWindow) function 259
GadgetReleaseCapture (TGadgetWindow)

function 258
gadgets 11, See also gadget windows

accessing
appearance 243
button gadget information 252

associating
events 242
strings 242

border style 243
border width 243
bounding rectangle 243
button gadgets 60
button state 251

395

capturing mouse movements 258
classes 248
cleaning up 246
clipping rectangle 245
command buttons 251
command enabling 253
controls as gadgets 253
corner notching 253
creating button gadgets 251
deriving from TGadget 246
disabling 245
displaying

bitmaps 250
text 249

enabling 245
expand to fit available room 245
identifiers

event 242
gadget 242
string 242

identifying 242
initializing 246
inserting

into gadget windows 255
into status bars 264

invalidating 247
laying out in gadget windows 256
margin width 243
matching colors to system colors 244, 251,253
modifying appearance 243
mouse events 247
painting 246

in gadget windows 259
pressing button gadgets 251
removing from gadget windows 256
searching in gadget windows 259
separating gadgets in a window 249
separator gadgets 61
setting

border style 243
border widths 243
button gadget style 253
buttons 251
margins 243

shrink wrapping 244
sizing 244
TGadget base class 241

396

tiling 256
updating 247

GadgetSetCapture (TGadget) function 248
GadgetSetCapture (TGadgetWindow) function 258
GadgetWithld (TGadgetWindow) function 259
GDI objects 13
. base class 275

device contexts 278
restoring 281
selecting 281
selecting stock objects 281
support classes 13

general messages 376
responding to 355

generic message macros 134
get DC logical coordinates as absolute. physical

coordinates 281
GetActiveChild (TMDIFrame) function 367
GetApplication (TApplication) function 69
GetApplication (TDocManager) function 369
GetApplication (TWindow) function 369
GetAspectRatioFilter (TDC) function 284
GetAttributeHDC (TDC) function 286
GetBitmapBits (TBitmap) function 297
GetBitmapDimension (TBitmap) fundi on 297
GetBits (TDib) function 310
GetBkColor (TDC) function 282
GetBkMode (TDC) function 282
GetBorders (TGadget) function 243
GetBorderStyle (TGadget) function 243
GetBounds (TGadget) function 243
GetBoundsRect (TDC) function 283
GetButtonState (TButtonGadget) function 252
GetButtonType (TButtonGadget) function 252
GetCharABCWidths (TDC) function 284
GetCharWidth (TDC) function 284
GetChildLayoutMetrics (TLayoutWindow)

function 149·
GetClip Box (TDC) function 283
GetClipRgn (TDC) function 283
GetColor (TDib) function 311
GetColors (TDib) function 310
GetCurrentPosition (TDC) function 284
GetDCOrg (TDC) function 281
GetDesiredSize (TGadget) function 244
GetDesiredSize (TGadgetWindow) function 260
GetDeviceCaps (TDC) function 281

OWL Programmers Guide

GetDialogInfo (TPrintout) function 272
GetDIBits (TDC) function 285
GetDirection (TGadgetWindow) function 256
GetDocManager (TApplication) function 69
GetDocManager (TDocument) function 193,200
GetEnabled (TGadget) function 245
GetEventIndex (TVbxControl) function 327
GetEventName (TVbxControl) function 327
GetFont (TGadgetWindow) function 257
GetFontData (TDC) function 284
GetFontHeight (TGadgetWindow) function 257
GetHDC (TDC) function 286
GetHintMode (TGadgetWindow) function 258
GetIconInfo (TCursor) function 308
GetIconInfo (TIcon) function 306
GetId (TGadget) function 242
GetIndex (TDib) function 312
GetIndices ,(TDib) function 310
GetInfo (TDib) function 310
GetInfoHeader (TDib) function 310
GetInnerRect (TGadget) function 246
GetInnerRect (TGadgetWindow) function 260
GetItemsInContainer (TArray) function 35, 46, 71
GetLine (TDrawDocument) function 71, 74,93,

100, 102, 104
GetMainWindow (TApplication) function 40,63,

77,79
GetMapMode (TDC) function 283
GetMargins (TGadget) function 243
GetMargins (TGadgetWindow) function 261
GetMenuDescr (TFrameWindow) function 152
GetModule (TWindowsObject) function 369
GetNearestColor (TDC) function 282
GetNearestPaletteIndex (TPalette) function 293
GetNumEntries (TPalette) function 293
GetNumEvents (TVbxControl) function 327
GetNumProps (TVbxControl) function 328
GetObject (TBitmap) function 296, 297
GetObject (TBrush) function 289
GetObject (TFont) function 291
GetObject (TPalette) function 293
GetObject (TPen) function 288
GetPaletteEntries (TPalette) function 293
GetPaletteEntry (TPalette) function 293
GetPenSize (TDrawView) function 95
GetPenSize (TMyWindow) function 51
GetPixel (TDC) function 285

Index

GetPolyFillMode (TDC) function 282
GetProcAddress function 336
GetProp (TVbxControl) function 329
GetProperty (TDocument) function 91
GetPropIndex (TVbxControl) function 328
GetPropName (TVbxControl) function 328
GetRgnBox (TRegion) function 301
GetROP2 (TDC) function 282
GetStretchBltMode (TDC) function 282
GetSystemPaletteEntries (TDC) function 282
GetSystemPaletteUse (TDC) function 282
GetText (TTextGadget) function 250
GetTextColor (TDC) function 282
getting

application instance 379
brush origin 282
module instance 379

GetViewMenu (TView) function 81
GetViewName (TView) function 96, 99
GetViewportExt (TDC) function 283
GetViewportOrg (TDC) function 283
GetWindow (TView) function 80, 84, 99
GetWindowExt (TDC) function 283
GetWindowOrg (TDC) function 283
graphics objects

base class 275
classes 12

GrayString (TDC) function 285

H
Handle (TDC) data member 285
HANDLE (TDib) operator 309
HandleMessage (TWindow) function 104
handling

Find Next commands 182
_messages and events 349
VBX control messages 325
Windows events 18

HasNextPage (TPrintout) function 269
HasPage (TPrintout) function 272
HBITMAP (TBitmap) operator 296
HBRUSH (TBrush) operator 289
HCURSOR (TCursor) operator 307
HDC (TDC) device-context operator 280
header files

applicat.h 108
directories 359

397

ObjectWindows 360
, owl\module.h 108

Height (TBitmap) function 297
Height (TDib) function 311
HFONT (TFont) operator 291
HICON (Tkon) operator 306
hInstance parameter 107
Horizontal (TTileDirection) enum 59, 254, 265
HP ALETTE (TPalette) operator 292
HPEN (TPen) operator 287
hPrevInstance parameter 107, 112
HRGN (TRegion) operator 300
HWindow (TDialog) data member 173
HWindow interface object data member 121

ICONINFO
convert TCursor object to 308
convert TIc on object to 306

IDCANCEL 30
identifiers

IDCANCEL 30
IDOK 30

identifying a gadget 242
idle processing 115 ,
IdleAction (TApplication) function 115
IdleAction (TGadgetWindow) function 259
IDOK 30 I

ifstream class 46
IMPLEMENT_STREAMABLEmacro 363
implementing streaming 363
implementing TDocument virtual functions 65
import macros 336
importing functions 336
include path, conversions 343,'345, 347, 359
Indeterminate (TState) enum 60
inheriting members 7
Init (TDC) function 285
Init (TFrameWindow) function 140, 164
Init (TWindow) function 18, 140
InitAppJication (TApplication) function 17, 109,
111'

InitChild (TMDIClient) function 157
initializing

application instances 113
application objects 109, 111

16-bit 112

398

32-bit 112
base classes 18
main windows 17, 113
pens 28

InitInstance (TApplication) function 17, 77, 84,
1'09, 113

InitMain Window (TApplication) function 17, 40,
57, 76, 77, 109, 156, 169

input, filtering 320
input dialog boxes 174
input validators 315
Insert (TControlBar) function 61
Insert (TDecoratedFrame) function 62, 154
Insert (TGadgetWindow) function 255
Insert (TStatusBar) function 264
Inserted (TGadget) function 246
inserting

gadgets into control bars 61
gadgets into gadget windows 255
gadgets into status bars 264
objects into decorated frame windows 62

insertion operators 363
instance variable 234, 235
instantiating classes 6
InStream (TDocument) function 197
interface elements

associating with window objects 139
destroying 124
making visible 122
parent and child 124

interface objects 119, 120
associating with controls ·171
creating 121
deleting 124
destroying 123
members

ChildList 125
Create 121
Execute 121
FirstThat 125, 128
ForEach 125, 128
HWindow 121
IsWindowVisible 122
Parent 125
Setup Window 121
Show 122

properties 122

OWL Programmers Guide

, IntersectClipRect (TDC) function 283
Invalidate (TGadget) function 247
Invalidate (TWindow) function 24,41,46,97, 176
InvalidateRect (TGadget) function 247
InvalidateRect (TWindow) function 24
InvalidateRgn (TWindow) function 24
invalidating

gadgets 247
windows 24

InvertRect (TDC) function 284
InvertRgn (TDC) function 285
IsFlagSet (TFrameWindow) function 152
IsOK (TDib) function 310
IsOK (TView) function 81
IsPM (TDib) function 310
IsValid (TValidator) function 319
IsValidInput (TValidator) function 320
IsWindowVisible interface object function 122

K
KBHandlerWnd (TApplication) data member 377
keystrokes, validating 320

L
laying out gadgets 256
Layout (TLayoutWindow) function 148
layout constraints 143, 144
layout direction 256
layout metrics 143, 147
layout units

border 260
converting 260
layout 260
pixels 260

layout windows 143
creating 148
defining constraining relationships 147
defining constraints 144
indeterminate constraints 148
layout constraints 143
layout metrics 143, 147

LayoutSession (TGadgetWindow)' function 255,
256

LayoutUnitsToPixels (TGadgetWindow) function
260

LButtonDown (TGadget) function 248

Index

LButtonUp (TGadget) function 248
Left (TLocation) enum 62, 154
LeftOf (TEdgeConstraint) function 146
LibMain function 107,334
LineDDA (TDC) function 285
LineTo (TDC) function 285
LineTo (TWindow) function 27
ImBottom (TEdge) enum 144
ImCenter (TEdge) enum 144
ImHeight (TWidthHeight) enum 144
ImLayoutUnits (TMeasurementUnits) enum 146
ImLeft (TEdge) enum 144
ImPixels (TMeasurementUnits) enum 146
ImRight (TEdge) enum 144
ImTop (TEdge) enum 144
lmWidth (TWidthHeight) enl:lm 144
LoadData (TDrawListView) function 100
LoadLibrary function 336
LOGBRUSH structure, convert TBrush class to 289
LOGFONT structure, convertTFont class to 291
logical coordinates, get as absolute physical coordinates

281
LOGPEN structure, convert TPen class to 288
LP ARAM parameter 355
LPARAM variable 20
IpCmdLine parameter 107
LPtoDP (TDC) function 283

M
macros

AS_MANY_AS_NEEDED 265
child ID notification 136
CM_PENSIZE 51
command message 133
DEFINE_DOC_TEMPLATE_CLASS 75, 189
DEFINE_RESPONSE_TABLE 19, 74
EV _COMMAND 38, 40, 96, 133
EV _COMMAND_AND _ID 133
EV_COMMAND_ENABLE 133
EV _MESSAGE 134
EV _OWLNOTIFY 200
EV _REGISTERED 134
EV _ VBXEVENTNAME 322, 326
EV_VN_COMMIT 74
EV _ VN_DRA WAPPEND 96
EV _ VN_DRA WDELETE 96
EV_VN_DRAWMODIFY 96

399

EV _ VN_REVERT 74
EV _ WM_DROPFILES 78
EV _ WM_LBUTTONDOWN 19, 25
EV_WM_LBUTTONUP 25
EV _ WM_MOUSEMOVE 25
EV _ WM_RBUTTONDOWN 19, 25
export 336
generic message 134
import 336
MB_YESNOCANCEL 43
NOTIFY_SIG 87,207
_OWLDLL338
RC_INVOKED 39
registered message 134
VN_DEFINE 87~ 207
Windows message 135
WM_ VBXFIREEVENT 325

main window
dialog boxes as 169, 368
display mode 114

changing 115
Main Window variable 367
makefiles, conversion and 343, 345
MakeWindow (TWindow) function 379
making interface elements visible 122
making the frame and client 365
managing dialog boxes 168
manipulating

child windows 128
controls in dialog boxes 170
MDI child windows 156

manual MDI child window creation 158
MapColor (TDib) function 312
MapIndex (TDib) function 313
MapUIColors (TBitmapGadget) function 251
MapUIColors (TDib) function 313
MaskBlt (TDC) function 285
matching gadget colors to system colors 244, 251,

253
MatchTemplate (TDocManager) function 79,86
MAXPATH macro 377
MB_YESNOCANCEL macro 43
MDI

applications 154
building MDI applications 155
child windows 155
classes 364

400

constructing MDI frame windows 83
creating document managers 84
creating MDI child windows 85
creating MDI frame windows 156
document manager mode 194
menu tracking 83
opening view objects 84
setting client windows 83
Window menu 155
windows 10, 154

adding behavior to MDI client windows 156
automatic MDI child window creation 157
creating child windows 157
creating MDI frame windows 156
manipulating MDI child windows 156
manual MDI child window creation 158

menu commands 38
associating event identifiers with event-handling
functions 39
event-handling functions 38, 39
event identifiers 38
resources 38, 98

menu descriptors
adding to decorated frame windows 77
adding to decorated MDI frame windows 84
adding to views 72, 85, 95, 98
constructing 72, 77, 84, 85, 95, 98

menu objects 159
constructing 159
modifying 160
pop-ups 162
querying 161
system 161

menu resources 38, 40, 98, 361
adding 39

menu tracking 58
menus 14

adding menus to views 203
adding to a window 33, 40
assigning to a frame window 162,361

MergeMenu (TFrameWindow) function 81, 152
message bars 262
message-processing functions 368
MessageBox (TWindow) function 21

return values 43
MessageLoop (TApplication) function 115

OWL Programmers Guide

messages
child ID-based 353, 354
CM_ CLEAR 96, 103
CM_CREATECHILD 157
CM_DELETE 102
CM_UNDO 96, 103
command 353, 376
control notification codes 354
general 355, 376
handling 349
notification 354
processing find-and-replace messages 181
specialized responses 171
using DefWndProc for registered 371
WM_COMMAND_ENABLE 253
WM_DROPFILES 79
WM_LBUTTONDOWN 19,25
WM_LBUTTONUP 25
WM_MOUSEMOVE 25
WM_OWLVIEW 78,80,81,86
WM_P AINT 37, 46, 74
WM_RBUTTONDOWN 19
WM_SIZE 149
WM_SYSCOLORCHANGE 253

metafile functions 283
Microsoft 3-D Controls Library 117

subclassing 118
mixing object behavior 6
mixing TView with interface objects 204
modal dialog boxes 164
modeless dialog boxes 165
modifying

CanClose 117
existing templates 192
frame windows 152
gadget appearance 243 .
pens 29

ModifyLine (TDrawDocument) function 93, 102
ModifyWorldTransform (TDC) function 283
module classes 13
module instance, getting 379
mouse events in a gadget 247
MouseEnter (TGadget) function 247
MouseLeave (TGadget) function 248
MouseMove (TGadget) function 248
Move (TVbxControl) function 330
MoveTo (TDC) function 283, 284

Index

moving from Object-based containers to BIDS
library 363

multiple-document interface applications See MDI

N
nCmdShow (TApplication) data member 114
nCmdShow parameter 107
NextGadget (TGadgetWindow) function 259
NoHints (THintMode) enum 258
None, TBorderstyle (TGadget) enum 59
NonExclusive (TType) enum 60
nonvirtual functions 8
notification messages, responding to 354
NOTIFY _SIG macro 87, 207
notifying gadgets window when gadgets change

size 257
NotifyViews (TDocument) function 70, 88, 93, 102,

200
NumColors (TDib) function 311
NumLock (TModeIndicator) enum 59, 263
NumScans (TDib) function 311

o
object data members and functions 285
object handle 277
object typology 9
ObjectWindows-encapsulated device contexts 13
ObjectWindows-encapsulated dialog boxes 173
ObjectWindows header files 360
ObjectWindows resources 360
OffsetClipRgn (TDC) function 283
OffsetViewportOrg (TDC) function 283
OffsetWindowOrg (TDC) function 283
of stream class 46
Open (TDocument) function 198
Open (TDrawDocument) function 66, 88
OpenFile (TMyWindow) function 46, 51
opening

document files 66
drawings 45, 66
predefined DLLs 117
views 84

operators
«50
» 50
== (TLine) 49

401

!= (TRegion) 302
&= (TRegion) 303
+= (TRegion) 302
-= (TRegion) 303
== (TRegion) 302
A= (TRegion) 304
I = (TRegion) 303
= (TRegion) 302
HRGN (TRegion) 300

OrgBrush (TDC) data member 285
OrgFont (TDC) data member 285
OrgPalette (TDC) data member 285
OrgPen (TDC) data member 285
OrgTextBrush (TDC) data member 285
output functions 284
OutStream (TDocument) function 197
overriding default window attributes 141
overriding the CanClose function 21, 43
Over type (TModeIndicator) enum 59, 263
OWLCVT

command-line syntax 344
conversion procedure 344

from the command line 345
from the IDE 346

errors 380
Cannot create backup file 380
redeclaration of var 380
unrecognized DDVT value 380

_OWLDLL macro 338
OWLFastWindowFrame (TDC) function 286
OwlMain function 17, 76, 107, 110

p
paginating printout 272
Paint (TDrawView) function 74
Paint (TGadget), function 246
Paint (TGadgetWindow) function 259
Paint (TMyWindow) function 37,51,55
Paint (TWindow) function 37, 52, 55,74,371

printing windows and 271
PrintPage vs. 267

PaintBorder (TGadget) function 246
PaintGadgets (TGadgetWindow) function 259
painting

gadget windows 259
gadgets 246
windows 33

402

PaintRgn (TDC) function 285
palette mode 311

.. !t

parent and child interface elements .124
Parent interface object data member 125
PatBlt (TDC) function 285
path functions 284
PathToRegion (TDC) function 284
pens

constructing 28
destroying 32
modifying 29
selecting into a device context 29
TPen class 28

PercentOf (TEdgeConstraint) function 146
performing graphical operations 23, 26
physical coordinates, get logical coordinates as 281
Pie (TDC) function 285
Plain, TBorderstyle (TGadget) enum 59
Planes (TBitmap) function 297
PlayMetaFile (TDC) function 283
PlayMetaFileRecord (TDC) function 283
PlgBlt (TDC) function 285
PolyBezier (TDC) function 285
PolyBezierTo (TDC) function 285
Poly Draw (TDC) function 285
Polygon (TDC) function 285
Polyline (TDC) function 285
PolylineTo (TDC) function 285
PolyPolygon (TDC) function 285
PolyPolyline (TDC) function 285
PositionGadget (TGadgetWindow) function 257
predefined Doc/View event handlers 207
PressHints (THintMode) enum 258
Print (TPrinter) function 271
Printer common dialog boxes 182

TData members 182
printer devices

selecting 273
specific 273

printer objects 267-268
constructing 267

example 268
overriding 268

default printer 268
multiple, constructing 268
overview 267
selecting printer devices 273

OWL Programmers Guide

specifying printer qevices 273
printers
. configuring 273

multiple 268
selecting 268

printing 267-273
classes 13
in device contexts 24
with ObjectWindows 267

printout objects
constructing 269
indicating further pages 272
overview 267
paginating 272
printing 271, 272
summary 271
window contents 270

constructing 271
Paint and 271

PrintPage (TPrintout) function 269, 272
Paint vs. 267

processing
find-and-replace messages 181
WM_P AINT in TWindow 37, 55, 74

project files, conversion and 346
properties, Doc/View attributes 89,210
PropertyFlags (TDocument) function 91
PropertyName (TDocument) function 90
pseudo-GDI objects 275
PtIn (TGadget) function 247
PtVisible (TDC) function 283
pure virtual functions 9

Q
QueryColor (TLine) function 53
QueryPen (TLine) function 48
QueryPenSize (TLine) function 53
QueryViews (TDocument) function 200

R
Raised, TBorderstyle (TGadget) enum 59
RC_INVOKED macro 39
RealizePalette (TDC) function 282
Recessed, TBorderstyle (TGadget) enum 59
RecordingMacro (TModeIndicator) enum 59, 263
Rectangle (TDC) function 285

Index

RectVisible (TDC) function 283
Refresh (TVbxControl) function 330
registered messages

macros 134
using DefWndProc for 371

Remove (TGadgetWindow) function 256
RemoveChildLayoutMetrics (TLayoutWindow)

function 149
Removed (TGadget) function 246
RemoveItem (TVbxControl) function 331
removing gadgets from gadget windows 256
replace standard interface colors with system

colors 244, 251, 253, 313
reset a device context 281
reset origin of a brush object 289
ResetDC (TDC) function 281
ResizePalette (TPalette) function 293
resource identifiers 164
resources, ObjectWindows 360
responding to

child ID-based messages 353
command messages 35:3
general messages 355
notification messages 354

response files, conversion and 343, 345
response tables 131

adding 18, 74
declaring 18, 132
defining 19, 40, 74, 132
entries 40, 133
example 132
macros

child ID notification 136
command message 133
DECLARE_RESPONSE_TABLE 132
DEFINE_RESPONSE_TABLE 132
END_RESPONSE_TABLE 132
EV_COMMAND 133
EV _COMMAND_AND_ID 133
EV_COMMAND_ENABLE 133
EV _MESSAGE 134
EV _REGISTERED 134
generic message 134
message cracking and 135
registered message 134
Windows message 135

restore a device context 280

403

RestoreBrush (TDC) function 282
RestoreDC (TDC) function 280
RestoreFont (TDC) function 282
RestoreMenu (TFrameWindow) function 81, 152
RestoreObjects (TDC) function 282
RestorePalette (TDC) function 282
RestorePen (TDC) function 282
RestoreTextBrush (TDC) function 282
restoring GDI objects 281
retrieve information about a device context 281
Revert (TDocument) function 68,70
RGB mode 311
Right (TLocation) enum 62, 154
RightOf (TEdgeConstraint) function 146
RoundRect (TDC) function 285
Run (TApplication) function 17
run-time errors 381

S
SameAs (TEdgeConstraint) function 146
save a device context 280
SaveDC (TDC) function 280
SaveFile (TMyWindow) function 46, 51
saving and discarding changes 68
saving drawings 45
Scale ViewportExt (TDC) function 283
ScaleWindowExt (TDC) function 283
scope resolution operator (::) 359
scroll bars 225
ScrollDC (TDC) function 285
ScrollLock (TModeIndicator) enum 59, 263.
SDI, document manager mode 194
searching through gadgets in gadget windows 259
SelectClipPath (TDC) function 284
SelectClipRgn (TDC) function 283
SelectImage (TBitmapGadget) function 250
selecting

GDI objects 281
graphics objects into a device context 29
stock objects 281

SelectObject (TDC) function 29, 281
SelectStockObject (TDC) function 281
SendDlgItemMessage (TWindow) function 171
separator gadgets 61 _
Set (TEdgeConstraint) f\ll1ction ·144, 146
SetAntialiasEdges (TButtonGadget) function 253
SetBitmapBits (TBitmap) function 297

404

SetBitmapDimension (TBitmap) function 297
SetBkColor (TDC) function 282
SetBkMode (TDC) function 282
SetBorders (TGadget) function 243
SetBorderStyle (TGadget) function 243
SetBounds (TGadget) function 243
SetBoundsRect (TDC) function 283
SetButtonState (TButtonGadget) function 252
SetCaption (TFrameWindow) function 81
SetChildLayoutMetrics (TLayoutWindow)

function 149
SetClientWindow (TFrameWindow) function 80,

81
. SetColor (TDib) function 311
SetDIBits (TDC) function 285
SetDIBitsToDevice (TDC) function 285
SetDirection (TGadgetWindow) function 256
SetDirection (TToolBox) function 266
SetDirty (TDocument) function 93
SetDocManager (TApplication) function 77, 193
SetDocManager (TDocument) function 200
SetDocPath (TDocument) function 66
SetEnabled (TGadget) function 245
SetHintCommand (TGadgetWindow) function 258
SetHintMode (TGadgetWindow) function 83, 258
SetHintText (TMessageBar) function 263
SetIcon (TFrameWindow) function 152
SetIndex (TDib) function 312
SetMainWindow (TApplication) function 17,22,

28,63, 113, 115
SetMapMode (TDC) function 283
SetMapperFlags (TDC) function 284
SetMargins (TGadget) function 243
SetMargins (TGadgetWindow) function 256
SetMenu (TFrameWindow) function 152
SetMenuDescr (TFrameWindow) function 77,84,

152
SetMiterLimit (TDC) function 282

. SetModeIndicator (TStatusBar) function 264
SetNotchCorners (TButtonGadget) function 253
SetPaletteEntries (TPalette) function 293
SetPaletteEntry (TPalette) function 293
SetPen (TLine) function 54
SetPenSize (TMyWindow) function 31

. SetPixel (TDC) function 285
SetPolyFillMode (TDC) function 282
SetPrinter (TPrinter) function 273

OWL Programmers Guide

SetPrintParams (TPrintout) function 271
SetProp (TVbxControl) function 329
SetRectRgn (TRegion) function 301
SetROP2 (TDC) function 282
SetSellndex (TListBox) function 100
SetShadowStyle (TButtonGadget) function 253
SetShrinkWrap (TGadget) function 244
SetShrinkWrap (TGadgetWindow) function 257
SetSize (TGadget) function 244
SetSpacing (TStatusBar) function 264
SetStretchBltMode (TDC) function 282
SetSystemPaletteUse (TDC) function 282
SetText (TMessageBar) function 263
SetText (TTextGadget) function 250
SetTextColor (TDC) function 282
setting

accelerator tables 98
brush origin 282
document managers 84
hint mode 258
hint text 263
layout direction 256
message bar text 263
up controls 172
window creation attributes 140
window margins 256

Setup (TPrinter) function 273
Setup Window (TDialog) function 173
SetupWindow (TWindow) function 215, 216
SetupWindow interface object function 121
SetValidator (TEdit) function 318
SetViewMenu (TView) function 73,95,98
SetViewportExt (TDC) function 283
SetViewportOrg (TDC) function 283
SetWindowExt (TDC) function 283
SetWindowOrg (TDC) function 283
SetWorldTransform (TDC) function 283
shared classes 336
ShouldDelete (TDC) data member 285
Show, interface object function 122
ShowWindow (TWindow) function 165, 167
shrink wrapping a gadget 244
shrink wrapping gadget windows 257
shut down a window 21
ShutDown Window (TWindow) function 371
SingleShadow (TShadowStyle) enum 253
Size (TDib) function 311

Index

sizing a gadget 244
spacing status bar gadgets 264
standard Windows controls 11
StartScan (TDib) function 311
StaticName (TView) function 73, 99
status bars 263

creating 58
resources 58
TStatusBar 58

stock objects, selecting 281
stream class library 363
streaming 363

implementing 363
StretchBlt (TDC) function 285
StretchDIBits (TDC) function 2fJ5
STRICT, defining 342, 380
string class 373

constructing 69
StrokeAndFillPath (TDC) function 284
StrokePath (TDC) function 284
structures

TRect 201
VBXEVENT 325, 326

style conventions 377
supporting Doc/View in applications 76
supporting MDI in an application 82
switching to

palette mode 311
RGBmode 311

SysColorChange (TBitmapGadget) function 251
SysColorChange (TButtonGadget) function 253
SysColorChange (TGadget) function 244

T
TabbedTextOut (TDC) function 285
TApplication

members
KBHandlerWnd 377

TApplication class 16, 107, 193
closing 116
closing procedure 116
constructing 109
constructors 108, 109, 110

passing WinMain parameters 111
creating an MDI application 156
creating the main window 143
deriving from 17

405

finding the object 108
getting the application instance 69, 379
header file 108
initializing 109, 111
members

BWCCEnabied 117
CanClose 116, 117
Ctl3dEnabied 118
EnableBWCC 117
EnabieCtl3d 118
EnabieCtl3dAutosubclass118
GetApplication 69, 108
GetDocManager 69
GetMainWindow 40,63,77,79
IdleAction 115
InitApplication 17, 109, 111
InitInstance 17, 77, 84, 109, 113
InitMain Window 17, 40, 57, 76, 77, 109, 156,
169
MessageLoop 115
nCmdShow 114
Run 17, 110
SetDocManager 77, 193
SetMain Window 17, 22, 28, 63, 113, 115

message processing functions 368
overriding 17
passing command parameters to 108
requirements 108
supporting Doc/View 76

TArray class 33
constructing 34
deriving from 48
members

Add 35
Detach 93
Flush 35, 41
GetItemsInContainer 35, 46, 71

TArrayIterator class 33
constructing 35, 47
members

Current 36
TBitmap class 294

accessing 296
constructing 295
convert to BITMAP 296
extending 298

406

members
BitsPixel 297
Create 298
GetBitmapBits 297
GetBitmapDimension 297
GetObject 296, 297
HBITMAP operator 296
Height 297
Planes 297
SetBitmapBits 297
SetBitmapDimension 297
ToClipboard 297
Width 297

TBitmapGadget class 250
constructing 250
destroying 250
members

MapUIColors 251
SelectImage 250
SysColorChange 251

selecting a new image 250
TBorders structure 243
TBorderStyle enum 243
TBrush class 288

accessing 289
constructing 288
convert to LOG BRUSH structure 289
members

GetObject 289
HBRUSH operator 289
UnrealizeObject 289

reset origin of brush object 289
TButton class 223
TButtonGadget class 60, 154,251

accessing button gadget information 252
command enabling 253
constructing 60, 251
corner notching 253
destroying 252
members

CommandEnable 253
GetButtonState 252
GetButtonType 252
SetAntialiasEdges 253
SetButtonState 252
SetN otchCorners 253
SetShadowStyle 253

OWL Programmers Guide

SysColorChange 253
setting button gadget style 253

TCheckBox class 223
TChooseColorDialog::TData class 56
TChooseColorDialog class 56

members
Execute 57

TClientDC class 23, 278
TColor class 53
TComboBox class 231
TControl class 214, 322
TControlBar class 59, 154, 262

constructing 59, 262
members

Insert 61
TControlGadget class 253

constructing 253
destroying 254

TCreatedDC class 279
TCursor class 306

accessing 307
constructing 306
convert to ICONINFO 308
members

GetIconInfo 308
HCURSOR operator 307

TData class
color common dialog box 176
common dialog boxes 174
File Open common dialog box 178
File Save common dialog box 178, 179
Find and Replace common dialog box 180
Font common dialog box 177
Printer common dialog box 182

TDC class 23, 278
constructors 279
destructor 279
members

Index

AngleArc 285
Arc 285
BeginPath 284
BitBlt 285
Check Valid 285
Chord 285
CloseFigure 284
DPtoLP 283
DrawFocusRect 284

DrawIcon 284
DrawText 285
Ellipse 285
EndPath284
EnumFontFamilies 284
EnumFonts 284
EnumMetaFile 283
ExcludeClipRect 283
ExcludeUpdateRgn 283
ExtFloodFill 285
ExtTextOut 285
FillPath 284
FillRect 284
FillRgn285
FlattenPath 284
FloodFill 285
FrameRect 284
FrameRgn 285
GetAspectRatioFilter 284
GetAttributeHDC 286
GetBkColor 282
GetBkMode 282
GetBoundsRect 283
GetCharABCWidths 284
GetCharWidth 284
GetClipBox 283
GetClipRgn 283
GetCurrentPosition 284
GetDCOrg 281
GetDeviceCaps 281
GetDIBits 285
GetFontData 284
GetHDC286
GetMapMode 283
GetNearestColor 282
GetPixe1285
GetPolyFillMode 282
GetROP2282
GetStretchBltMode 282
GetSystemPaletteEntries 282
GetSystemPaletteUse 282
GetTextColor 282
GetViewportExt 283
GetViewportOrg 283
GetWindowExt 283
GetWindowOrg 283
GrayString 285

407

408

Handle 285
HDC operator 280
Init 285
IntersectClipRect 283
InvertRect 284
InvertRgn 285
LineDDA285
LineTo 285
LPtoDP 283
MaskBlt285
ModifyWorldTransform 283
MoveTo 283, 284
OffsetClipRgn 283
OffsetViewportOrg 283
OffsetWindowOrg 283
OrgBrush 285
OrgFont 285
OrgPalette 285
OrgPen285
OrgTextBrush 285
OWLFastWindowFrame 286
PaintRgn 285
PatBlt 285
PathToRegion 284
Pie 285
PlayMetaFile 283
PlayMetaFileRecord 283
PlgBlt 285
PolyBezier 285
PolyBezierTo 285
PolyDraw 285
Polygon 285
Polyline 285
PolylineTo 285
PolyPolygon 285
PolyPolyline 285
PtVisible 283
RealizePalette 282
Rectangle 285
RectVisible 283
ResetDC 281
RestoreBrush 282
RestoreDC 280
RestoreFont 282
RestoreObjects 282
RestorePalette 282
RestorePen 282

RestoreTextBrush 282
RoundRect 285
SaveDC 280
Scale ViewportExt 283
ScaleWindowExt 283
ScrollDC 285
SelectClipPath 284
SelectClipRgn 283
SelectObject 29, 281
SelectStockObject 281
SetBkColor 282
SetBkMode 282
SetBoundsRect 283
SetDIBits 285
SetDIBitsToDevice 285
SetMapMode 283
SetMapperFlags 284
SetMiterLimit 282
SetPixel 285
SetPolyFillMode 282
SetROP2282
SetStretchBltMode 282
SetSystemPaletteUse 282
SetTextColor 282
SetViewportExt 283
SetViewportOrg 283
SetWindowExt 283
SetWindowOrg 283
SetWorldTransform 283
ShouldDelete 285
StretchBlt 285
StretchDIBits 285
StrokeAndFillPath 284
StrokePath 284
TabbedTextOut 285
TextOut 24, 285
TextRect 284
UpdateColors 282
WidenPath 284

TDecoratedFrame class 152 .
constructing 58, 76, 153
decorating 154
members

AssignMenu 63
Insert 62, 154

menu tracking 58

OWL Programmers Guide

TDecoratedMDIFrame class
changing hint mode 83
menu tracking 83
setting client windows 83

TDesktopDC class 278
TDialog class 47, 79

constructing 47, 79
members

CloseWindow 166, 169
CmCancel 166, 169
CmOk 166, 169
Create 165, 167
Destroy 166, 169
ExecDialog 379
Execute 30, 47, 79, 164, 175,379
HWindow 173
SetupWindow 173
UpdateData 181

TDib class 308
accessing internal structures 310
constructing 308
destroying 308
DIB information 310
members

BITMAPINFO operator 310
BITMAPINFOHEADER operator 310
ChangeModeTqPal 311
ChangeModeToRGB 311
FindColor 312
Findlndex 312
GetBits 310
GetColor 311
GetColors 310
GetIndex 312
GetIndices 310
GetInfo 310
GetInfoHeader 310
HANDLE operator 309
Height 311
IsOK 310
IsPM 310
MapColor 312
MapIndex 313
MapUIColors 313
NumColors 311
NumScans 311
SetColor 311

Index

SetIndex 312
Size 311
StartScan 311
ToClipboard 310
TRgbQuad * operator 310
Usage 311
Width 311
WriteFile 311

type conversions 309
TDibDC class 279
TDocManager class 64, 77, 192

constructors 194
event handling 195
members

CmFileNew 77
CreateAnyDoc 193
CreateAnyView 193
GetApplication 369
MatchTemplate 79, 86

TDocTemplate class
members

CreateDoc 79,86
TDocument class 64

constructors 196
data access helper functions 199
implementing virtual functions 65
members

AddStream 198
CanClose 99
Close 198
Commit 68, 70
DetachStream 198
FindProperty 90
GetDocManager 193, 200
GetProperty 91
InStream 197
NotifyViews 70, 88, 93, 102, 200
Open 198
OutStream 197
PropertyFlags 91
PropertyName 90
QueryViews 200
Revert 68, 70
SetDirty 93
SetDocManager 200
SetDocPath 66

opening a document file 66

409

TDrawDocument class 65
members

AddLine 71
Clear 94
Close 67
DeleteLine 92, 103
GetLine 71, 74, 93, 100, 102, 104
ModifyLine 93, 102
Open 66, 88
Undo 94
VnRevert 75

TDrawListView class
members

CmClear 103
CmDelete 102
CmPenColor 102
CmPenSize 101
CmUndo 103
FormatData 100, 103, 104
LoadData 100
VnAppend 103
VnCommit 103
VnDelete 104
VnModify 104
VnRevert 103

TDrawView class 71
members

CmClear 96
CmPenColor 75, 95
CmPenSize 75, 95
CmUndo 96
EvLButtonDown 75
EvLButtonUp 75
EvMouseMove 75
EvRButtonDown 75, 95
GetPenSize 95
Paint 74
VnAppend 97
VnCommit 75
VnDelete 97
VnModify 97

TDropInfo class 79
members

410

DragFinish 80, 86
DragQueryFile 79,85
DragQueryFileCount 79,85
DragQueryFileNameLen 79

TEdge enum 144
TEdgeConstraint class 144

members
Above 146
Absolute 146
Below 146
LeftOf 146
PercentOf 146
RightOf 146
SameAs 146
Set 144, 146

TEdgeOrHeightConstraint class 144
TEdgeOrWidthConstraint class 144
TEdit class

members
SetValidator 318

TEditFile class 180, 373
adding client windows 374

TEditSearch class 180,373
adding client windows 374

TEditWindow class 373
template class flags 76, 191
TextOut (TDC) function 24, 285
TextRect (TDC) function 284
TFileDialog class 374
TFileOpenDialog class 44, 374

members
Execute 44

TFileSaveDialog class 45
members

Execute 45
TFileWindow class 373
TFindDialog class 182, 374
TFloatingFrame class 265
TFont class 290

accessing 291
constructing 290
convert to LOGFONT structure 291
members

GetObject 291
HFONToperator 291 .

TFontListBox class 214
TFrame Window class 16, 150, 357

constructing 140, 150, 151
constructors 169
members

AddWindow 152

OWL Programmers Guide

AssignMenu 40, 152, 162, 361
Attr 162,361
constructor 22
GetMenuDescr 152
!nit 140, 164
IsFlagSet 152
MergeMenu 81, 152
RestoreMenu 81, 152
SetCaption 81
SetClientWindow 80, 81
SetIcon 152
SetMenu 152
SetMenuDescr 77, 84, 152

modifying frame windows 152
setting the window caption 28

TGadget class 241
cleaning up 246
constructing 241
derived classes 248
deriving from 246
destroying 242
initializing 246
members

Index

Borderstyle 59
Clip 245
CommandEnable 245
GadgetSetCapture 248
GetBorders 243
GetBorderStyle 243
GetBounds 243
GetDesiredSize 244
GetEnabled 245
Getld 242
GetInnerRect 246
GetMargins 243
Inserted 246
Invalidate 247
InvalidateRect 247
LButtonDown 248
LButtonUp 248
MouseEnter 247
MouseLeave 248
MouseMove 248
Paint 246
PaintBorder 246
Ptln247
Removed 246

SetBorders 243
SetBorderStyle 243
SetBounds 243
SetEnabled 245
SetMargins 243
SetShrinkWrap 244
SetSize 244
SysColorChange 244
TrackMouse 248
Update 247
WideAsPossible 245

mouse events 247
painting 246
TBorders structure 243
TMargins structure 243

TGadgetWindow class 61, 254
capturing mouse movements for gadgets 258
constructing 254
converting 260
creating 255
derived classes 261
deriving from 259
destroying 255
determining size 255
idle action processing 259
layout units

border 260
layout 260
pixels 260

members
CommandEnable 259
Create 255
FirstGadget 259
GadgetChangedSize 257
GadgetFromPoint 259
GadgetReleaseCapture 258
GadgetSetCapture 258
GadgetWithId 259
GetDesiredSize 260
GetDirection 256
GetFont 257
GetFontHeight 257
GetHintMode 258
GetInnerRect 260
GetMargins 261
IdleAction 259
Insert 255

411

LayoutSession 255, 256
LayoutUnitsToPixels 260
NextGadget 259
Paint 259
PaintGadgets 259
PositionGadget 257
Remove 256
SetDirection 256
SetHintCommand 258
SetHintMode 83, 258
SetMargins 256
SetShrinkWrap 257
TileGadgets 256

message response functions 261
painting 259
shrink wrapping 257

TGadgetWindowFont class 59
TGauge class 228
TGdiObject class 275
THintMode enum 258
THSlider class 228
TIC class 279
TIcon class 304

accessing 306
constructing 304
convert to ICONINFO 306
members

GetIconInfo 306
HICON operator 306

TileGadgets (TGadgetWindow) function 256
TInputDialog class 30, 174

executing 30
resources 30

TInputValidator class 169
TInStream class 66
TLayoutConstraints class 144
TLayoutMetrics class 143

constructing 147
TLayoutWindow class 143

constructing 148
defining constraining relationships 147
defining layout constraints 144
indeterminate constraints 148
members

412

EvSize 148
GetChildLayoutMetrics 149
Layout 148

RemoveChildLayoutMetrics 149
SetChildLayoutMetrics 149

TLine class 48
members

AddLine 88
Draw 53, 55, 74, 97
QueryColor 53
QueryPen 48
QueryPenSize 53
SetPen 54

TLines array 49
TListBox class 214, 216

deriving from 98
members

AddString 171,217
CanClose 99
Clear List 100
Create 99
DeleteString 104
SetSelIndex 100

TListBoxData class 236
TLocation enum 62, 154
TLookupValidator class 316
TMargins structure 243
TMDIChild class 155, 365

constructing 84, 158
TMDIClient class 365

automatic MDI child window creation 157
creating MDI child windows 157
manipulating MDI child windows 156
manual MDI child window creation 158
members

CmCreateChild 157
InitChild 157

TMDIFrame class 155, 365
members

ActiveChild 367
GetActiveChild 367

TMeasurementUnits enum 146
TMemoryDC class 279
TMenu class 159
TMenuDescr class 159

constructing 72, 77, 84, 85, 95, 98
TMessageBar class 262

constructing 262
destroying 262

OWL Programmers Guide

members
SetHintText 263
SetText 263

setting
hint text 263
message bar text 263

TMetaFileDC class 279
TModeIndicator enum 59, 263
TModule class 107,336,337

getting the module instance 379
TMyApp class

members
CmAbout 79
EvClose View 81, 86
EvDropFiles 79,86
EvNewView 80, 85

TMyWindow class
members

CmAbout47
CmFileNew 37, 41
CmFileOpen 44
CmFileSave 44
CmFileSaveAs 45
CmPenColor 56
CmPenSize 51
EvLButtonDown 36
EvMouseMove 37
GetPenSize 51
OpenFile 46, 51
Paint 37, 51, 55
SaveFile 46, 51
SetPenSize 31

ToClipboard (TBitmap) function 297
ToClipboard (TDib) function 310
ToClipboard (TPalette) function 294
ToggleModelndicator (TStatusBar) function 264
tool boxes 265
Top (TLocation) enum 62, 154
TOpenSaveDialog::TData class 42
Touches (TRegion) function 301
TOutStream class 69
TPaintDC class 278
TPalette class 291

accessing 292
constructing 292
extending 294
extract number of table entries 293

Index

members
AnimatePalette 294
Create 294
GetNearestPaletteIndex 293
GetNumEntries 293
GetObject 293
GetPaletteEntries 293
GetPaletteEntry 293
HP ALETTE operator 292
ResizePalette 293
SetPaletteEntries 293
SetPaletteEntry 293
ToClipboard 294
UnrealizeObject 294

TPen class 28, 53, 286
accessing 287
constructing 28, 286
convert to LOGPEN structure 288
destroying 32
members

GetObject 288
HPEN operator 287

modifying 29
TPlacement enum 61,255
TPopUpMenu class 159
TPrintDC class 279
TPrinter class 267-273

members
Print 271
SetPrinter 273
Setup 273

overview 267
TPrinterDialog class 273
TPrintout class 269

members
BeginDocument 273
BeginPrinting 273
EndDocument 273
EndPrinting 273
GetDialoglnfo 272
HasNextPage 269
HasPage 272
PrintPage 267, 269, 272
SetPrintParams 271

overview 267
TPXPictureValidator class 317
TrackMouse (TGadget) data member 248

413

TRangeValidator class 316
transfer buffers 234
TransferData class 238
translating

logical coordinates to physical coordinates 283
physical coordinates to logical coordinates 283

TRect structure 201
TRegion class 298

accessing 300
constructing 298
destroying 298
members

!= operator 302
&= operator 303
+= operator 302
-= operator 303
== operator 302
"= operator 304
I = operator 303
= operator 302
Contains 301
GetRgnBox 301
HRGN operator 300
SetRectRgn 301
Touches 301

TReplaceDialog class 182,374
TResld class 47, 60
TRgbQuad * (TDib) operator 310
troubleshooting 380
TScreenDC class 278
TSearchDialog class 374
TSeparatorGadget class 61,249
TShadowStyle enum 253
TSlider class 228
TSpacing structure 264
TState enum 60
TSta tic class 221
TStatusBar class 154,263

constructing 58, 263
displaying mode indicators 264
inserting gadgets 264
members

Insert 264
SetModelndicator 264
SetSpacing 264
ToggleModelndicator 264

spacing gadgets 264

414

TStringLookupValidator class 317
TSystemMenu class 159
TTextGadget class 249

accessing text 250
constructing 249
destroying 249
members

GetText 250
SetText 250

TTileDirection enum 59, 254, 265
TToolBar class

changing tool box dimensions 266
TToolBox class 265

constructing 265
members

SetDirection 266
TType enum 60
tutorial

adding decorations 57
adding multiple lines 48
basic application 16
changing line thickness 28
changi,ng pens 53
common dialog boxes 41
drawing in the window 25
files 15

STEPOl.CPP 16
STEP02.CPP 18
STEP03.CPP 23
STEP04.CPP 25
STEP05.CPP 28
STEP06.CPP 33
STEP07.CPP 41
STEP08.CPP 48
STEP09.CPP 53
STEPlO.CPP 57
STEPll.CPP 63
STEP12.CPP 82
STEP05.RC 28
STEP06.RC 33
STEP07.RC 41
STEP08.RC 48
STEP09.RC 53
STEPIO.RC 57
STEPll.RC 63
STEP12.RC 82
STEPllDV.CPP 63

OWL Programmers Guide

STEP12DV.CPP 82
STEPllDV.RC 63
STEP12DV.RC 82

for further study 104
handling Windows events 18
moving to MDI 82
moving to the Doc/View model 63
painting windows and adding menus 33
writing in a window 23

TV alidator class 316
members

Error 320
IsValid 319
IsValidlnput 320
Valid 319

TVbxControl class 322
constructors 323
members

AddItem 331
GetEventIndex 327
GetEventName 327
GetNumEvents 327
GetNumProps 328
GetProp 329
GetPropIndex 328
GetPropName 328
Move 330
Refresh 330
RemoveItem 331
SetProp 329

TVbxEventHandler class 321, 325
members

EvVbxDispatch 325
mixing with interface classes 321

TView class 64
adding

displays to views 203
functionality 203
menus to views 203
pointers to interface objects 204

closing 205
constructing 202
deriving from 71, 98
event handling 74, 205
members

Index

GetViewMenu 81
GetViewName 96, 99

GetWindow 80, 84, 99
IsOK 81
SetViewMenu 73,95,98
StaticName 73,99

mixing with interface objects 204
virtual functions 203

TVSlider class 228
TWidthHeight enum 144
TWindow class 214,357

as the generic interface object 120
child-window attributes 141
constructing 140
converting from TWindowsObject 356
creating interface elements 142
creating the main window 143
deriving from 71
members

Attr 141
CanClose 21, 43, 169

return values 43
CloseWindow 371
Create 85, 142,255,379
Destroy 371
DisableAutoCreate 167
DragAcceptFiles 77
DrawMenuBar 160
EnableAutoCreate 167
EvPaint 37
GetApplication 369
HandleMessage 104
Init 18, 140
Invalidate 24, 41, 46, 97, 176
InvalidateRect 24
InvalidateRgn 24
LineTo 27
MakeWindow 379
MessageBox 21

return values 43
Paint 37, 52, 55, 74,371
SendDlgItemMessage 171
Setup Window 215, 216
ShowWindow 165, 167
ShutDown Window 371

overriding default attributes 141
processing WM_PAINT 37,55

TWindow Attr structure 141
TWindowDC class 278

415

TWindowsObject class
converting to TWindow 356
members

AfterDispatchHandler 375
BeforeDispatchHandler 375
DispatchAMessage 375
FirstThat 372
ForEa'ch 372
GetModule 369

TWindowView class 71
type substitution

ObjectWindows class replacing Windows type
277

typographic conventions 3

u
Undo (TDrawDocument) function 94
UnrealizeObject (TBrush) function 289
UnrealizeObject (TPalette) function 294
Up (TState) enum 60
Update (TGadget) function 247
update rectangle functions 283
update region functions 283
UpdateColors (TDC) function 282
UpdateData (TDialog) function 181
updating a gadget 247
Usage (TDib) function 311

V
Valid (TValidator) function 319
validators 315, 318

abstract 316
. constructing 318
error handling 320
filter 316
linking to edit controls 318
lookup 316
overriding member functions 319
picture 317
range 316
standard 315
string lookup 317
TFilterValidator 316
TLookupValidator class 316
TPXPicture Validator class 317
TRange Valida tor class 316

416

TStringLookup Valida tor class 317
TValidator class 316
using 315-320

variables, Main Window 367
VBX controls 321

accessing 327
classes 322
control methods 330
event handling 322
event response table 325
finding event information 327
finding property information 328
getting control properties 328
handling messages 325
implicit and explicit construction 324
interpreting a control event 326
properties 328

VBXEVENT structure 325, 326
VBXInit function 321
VBXTerm function 321
Vertical (TTileDirection) enum 59, 254, 265
view objects 187-188
viewport mapping functions 283
views

accessing property information 210
adding

custom view events 207
menu descriptors 72, 85, 95, 98
pointers to interface objects 204

attaching to a document 72
closing 81, 86, 205
creating view classes 202
defining

new event-handling function signatures 87
. new event response table macros 87
new events with vnCustomBase 87

Doc/View property attributes 210
event handling 74, 205, 207
finding associated window 80, 84, 99
formatting data 100
getting

Doc/View properties 211
menus 81
view name 96, 99

loading data 100
mixing with interface objects 204
notifying of changes in document 70, 88, 93, 102

OWL Programmers Guide

opening new view 84
properties 209
setting Doc/View properties 211
working with 200

virtual bases
constructing 361
downcasting to derived types 361

virtual functions 8
Visual Basic control objects 321
VN_DEFINE macro 87, 207
VnAppend (TDrawListView) function 103
VnAppend (TDrawView) function 97
VnCommit (TDrawListView) function 103
VnCommit (TDrawView) function 75
vnCustomBase, defining new view events 87
VnDelete (TDrawListView) function 104
VnDelete (TDrawView) function 97
VnModify (TDrawListView) function 104
VnModify (TDrawView) function 97
VnRevert (TDrawDocument) function 75
VnRevert (TDrawListView) function 103

w
warnings, compiler 380
WB....MDICHILD flag 366
WEP function 334
wfAlias flags 151
WideAsPossible (TGadget) data member 245
WidenPath (TDC) function 284
widgets 11
Width (TBitmap) function 297
Width (TDib) function 311
WIN30, defining 380
WIN31, defining 380
window classes. 10

creating 18
window constructors, converting 357
window handle, validity 121
window mapping functions 283
window margins 256
window objects 139

adding behavior to MDI client windows 156
associating with interface elements 139
automatic MDI child window creation 157
based on TWindow 139
child-window attributes 141
constructing 139

Index

decorated frames 153
frame window aliases 151
frame windows 150

Create function 142
creating

interface elements 142
main windows 143
MDI child windows 157
MDI frame windows 156

decorated frame windows 152
decorating decorated frames 154
defining constraining relationships 147
defining layout constraints 144
frame windows 150
layout constraints 143
layout metrics 143, 147
layout windows 143
manipulating MDI child windows 156
manual MDI child window creation 158
MDI windows 154
modifying frame windows 152
naming 28
overriding default attributes 141
setting creation attributes 140
style attributes 141

window properties 123
windows 10

as clients 22
clearing 24
decorated frame

adding a menu descriptor 77
constructing 58, 76
inserting objects into 62
menu tracking 58

decorated MDI frame
changing hint mode 83
constructing 83
menu tracking 83
setting client windows 83

destroying 127
drawing in 25, 29
invalidating 24
painting 33
performing graphical operations 23, 26
printing 270

Paint member functions and 271
shutting down 21

417

writing in 23
Windows API calls, object handle 277
Windows API functions 21, 358
Windows message macros 135
WinMain function 107, 110

constructing application objects 111
WM_COMMAND_ENABLE message 253
WM_DROPFILES message 79
WM_LBUTTONDOWN message 19,25
WM_LBUTTONUP message 25
WM_MOUSEMOVE message 25
WM_OWLVIEW message 78,80,81,86
WM_P AINT message 37, 46, 74

418

WM_RBUTTONDOWN message 19
WM_SIZE message 149
WM_SYSCOLORCHANGE message 253
WM_ VBXFIREEVENT macro 325
working with class hierarchies 5
working with device contexts 278
working with views 200
WP ARAM parameter 355
WP ARAM variable 20
WriteFile (TDib) function 311
writing in a window 23
WS_ VISIBLE flag 167
WS_ VISIBLE style 122

OWL Programmers Guide

Borland
Corporate Headquarters: I DO Borland Way, Scotts Valley, CA 95066-3249, (408) 431-lODO. Offices in: Australia, Belgium, Canada,
Denmark, France, Germany, ·Hong Kong, Italy, Japan, Korea, Latin America, Malaysia; Netherlands, New Zealand, Singapore, Spain,
Sweden, Taiwan, and United IGngdom • Part # BCP 1240WW2 I 774 • BOR 6274

