SYSTEM SERVICES GUIDE
VOLUME 2 OF :

SYSTEM SERVICES GUIDE
VOLUME 2 OF 2

Order Code: 6AN9010-1XA00-0BA2

LIMITED DISTRIBUTION MANUAL

This manual Is for customers who receive preliminary ver-
sions of this product. it may contain material subject to
change.

BIN™:.
2111 NE 25th Ave.
Hillsboro, OR 97124

© 1988, BIIN™

PRELIMINARY

REV. REVISION HISTORY ' DATE

-001 Preliminary Edition 7/88

BiiN™ MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE.

BiiN™ assumes no responsibility for any errors that may appear in this document. BiiN™ makes no commitment to update nor to keep current the
information contained in this document.

No part of this document may be copied or reproduced in any form or by any means without written consent of BiiN™.
BiiN™ retains the right to make changes to these specifications at any time, without notice.
The following are trademarks of BiiN™: BiiN, BiiN/OS, BiiN/UX, BiiN Series 20, BiiN Series 40, BiiN Series 60, BiiN Series 80.

Apple and MacTerminal are trademarks of Apple Computer, Inc. UNIX is a trademark of AT&T Bell Laboratories. Torx is a trademark of Camcar
Screw and Mfg. Adais a certification mark of the Department of Defense, Ada Joint Program Office. DEC, VT102, and VAX are trademarks of
Digital Equipment Corporation. Smartmodenn is a trademark of Hayes Corporation. IBM is a trademark of Intemational Business Machines, Inc.
MULTIBUS is a registered trademark of Intel Corporation. Macintosh is a trademark of McIntosh Laboratory. Inc. Microsoft ig a registered
trademark of Microsoft Corporation. Mirror is a registered trademark of SoftKlone Distributing Corporation. WYSE is a registered trademark of
Wyse Technology. WY-60 and WY-50 are trademarks of Wyse Technology.

Additional copies of this or any other BiiN™ manuals are available from:

BiiN™ Corporate Literature Dept.
2111 NE 25th Ave.
Hillsboro, OR 97124

ii

PRELIMINARY

Part VI

Program Services

This part of the BiiN"/0S Guide discusses program execution, concurrent programming, and
scheduling.

The chapters in this part are:

Understanding Program Execution
Explains the static and dynamic structure of programs, including jobs,
processes, interprocess communication, and semaphores.

Building Concurrent Programs
Shows you how to build concurrent programs, programs with multiple
processes executing concurrently.

Scheduling Explains how the system schedules processors, physical memory, and I/O
devices.

Program Services contains the following services and packages:

concurrent programming service:
Event_Admin
Event_Mgt
Job_Admin
Job_Mgt
Job_Types
Pipe Mgt
Process_Admin
Process_Mgt
Process_Mgt_Types
Semaphore_ Mgt
Session_Admin
Session_Mgt
Session_Types

scheduling service:
$SO_Admin
SSO_Types

timing service:
Clock_Mgt
Protection Key Mgt
Time_Zone_Map
Timed Requests Mgt
Timing_ Admin
Timing Conversions
Timing String Conversions
Timing Utilities

resource service:
Resource_Mgt
Resource_Mgt AM
Resource_Types
Resource Utilities

program building service:
Control_Types
Debug_Support

" Domain Mgt

Part VI Overview

PRELIMINARY

Execution_Support
Link_ By Call
Program_Mgt
RTS_Support

monitor service:

Monitor Defs
Monitor Mgt

Part VI Overview

PRELIMINARY

UNDERSTANDING
PROGRAM EXECUTION

Contents
Definitionof aProgramttt i i it i e VI-1-2
Program StruCtUIE ittt ittt ittt ettt ee e ettt e VI-1-2
The Program Objectoivtiiitniieiinneretoesenensnesonnsaasnannns VI-1-3
The Domain Objectottt it iiitenneinnennnens VI-1-4
The Static Data Objectcvitiiiiiiiii it itiiereerenennennonnanns VI-1-5
The Instruction Objectoiuiiitiiii ettt inrreneerneennonnnnns VI-1-6
The Stack ObjJectottt it i i i it e e et taenrnenennnns VI-1-6
The Public Data ObJectviiiiiit ittt et aeetenneneeannnns VI-1-6
The Debug Objectooiuiiiiiii it i ittt ieerennnrennnnenns VI-1-7
The Handler ObJectouuiitniititiieiietiiinerenennneeaneennnnn VI-1-8
Invoking a Programiiuiiniunttiinenrneoenenneeecnnanasnoenenan VI-1-8
Program EXeCUtiOnc.ittiitiii ittt i ittt e ettt e et VI-1-9
Sessions, Jobs, and ProCessSesoviiiiiiirnneirreennnenennanas VI-1-9
Process Globalscoiiiiiiiiiiiii i i it VI-1-10
Interprocess CommuNICationc.oiiuiiniuiinirnneinrineneeneennas VI-1-12
EVemtS .ottt i i e e e e et e, VI-1-12
PIPS i e e e et e VI-1-14
PIpeS VS. EVENLS ... ittt i i it i e e e VI-1-15
Process Controlttt i i ettt e VI-1-15
g 0T N ¥ 11O VI-1-15
Local Event CluSterivittiieeetiinrneeenernenonenananonnnns VI-1-16
SemMAPNOTES ... e i et i VI-1-17
Use Of MUltiple PrOCESSES .. oovvvvtieen ittt iieeeeneanaennennnns VI-1-19
Ry 1) 411 VoSO VI-1-21

Understanding Program Execution VI-1-1

PRELIMINARY

This chapter discusses what a program is and how it executes. It discusses the definition of a
program, program structure, how a program is invoked, and how a program executes, including
discussions of jobs, processes, the execution environment of processes, interprocess com-
munication, process control, and the use of semaphores for mutual exclusion.

VI-1.1 Definition of a Program

As explained in the Program_Mgt package , there are four program types: executable
programs, executable image modules, non-executable image modules, and views. As used in
this chapter, the term program refers to an executable program or executable image module.

An executable program is the end product of the compiler/linker translation process. The
compiler translates source code into object modules, and the linker then links the object
modules into an executable program. In other words, an executable program is a program in
the conventional sense of the word.

Like an executable program, an executable image module is the end product of the
compiler/linker process. But unlike an executable program, it is an independently linked,
protected, and potentially shareable module that provides the runtime environment of a
program (for example, the language runtime system or the operating system). An executable
image module contains data structures and subroutines that initialize the data structures.

Before execution, a program has a static structure; that is, it is a collection of static, passivated
objects that define the elements in a program : a program object, a global debug table, an
outside environment object, and one or more domain objects (which reference other objects).
Sections VI-1.2 through VI-1.2.8 (Pages VI-1-2 through VI-1-8) discuss the static structure of
programs.

During execution, a program has a dynamic structure; that is, it is a collection of dynamic,
active objects that define the course of execution: a job, one or more processes, and one or
more stacks. Sections VI-1.4 through VI-1.7 (Pages VI-1-9 through VI-1-17) discuss the
dynamic structure of programs.

VI-1.2 Program Structure

VI-1-2

This section discusses the static structure of programs.

A program is a neiwork of objects rooted in a program object. A program object is created by
the linker and referenced by a program AD. After creating a program, the linker passivates the
objects and stores the program AD in a directory . A program comnsists of:

¢ A program object (Required)

o A global debug table (Required)

® An outside environment object (Required)

® One or more domain objects (required), each referencing:
— A static data object (Required)
— An instruction object (Required)

— A stack object (Created at run time, referenced by a subsystem ID)

Understanding Program Execution

PRELIMINARY

— A public data object (Optional)

— A debug object (Optional)

— A handler object (Required only for BiiN™ Ada programs)

Figure VI-1-1 shows the static structure of a program. (The stack object is referenced via a

subsystem ID, indicated by dashed lines).

Program
Object

GDT

OEO

Public Data|¢

Object

Handler <

Object

Debug <

Ob ject

Domain
Object

Static Data

\

Instruction

Object

P _):— Stack

L Object

Figure VI-1-1. Static Structure of a Program

fom—-3 Command Definitions
—> Message File

3 QOther Domains

Object ——3 Public Data

Ob jects

The following sections provide a brief introduction to these objects. For more detailed infor-

mation, see:

® The packages Program_Mgt, Domain_Mgt,Debug_Support, RTS_Support, and

Execution_Support.

e The BiiN™ Systems Compiler Interface Guide.

e The BiiN™ Application Debugger Guide.
e The BiiN™ Systems Linker Guide.

VI-1.2.1 The Program Object

The program object is created by the linker each time object modules are linked together. It
serves as the root object of the program and contains:

® The program name and version number.

® The main entry point of the program. This consists of the domain AD and procedure
number where execution is to begin; generally this procedure is a startup routine in the

language’s runtime system.

Understanding Program Execution

VI-1-3

PRELIMINARY

® An AD to the Global Debug Table (GDT). The GDT lists the compilation units that were

linked to form the program. For each compilation unit, there is a reference to the debug
object containing the debug information for that unit.

® An AD to the Outside Environment Object (OEO). The OEO references the command

definitions and messages associated with the program. These are used by the command
language executive (CLEX).

® A domain AD list. This is a list of the domains that make up the program.

Figure VI-1-2 shows the structure of a program object.

Program Name and
Program Version Number

Main Entry Point

AD to Global Debug Table

AD to Outside
Environment Object

Domain AD
List

Figure VI-1-2. Program Object

VI-1.2.2 The Domain Object

Domain objects are created by the linker from object modules. Every program has one or more
domains. Each domain contains:

VI-1-4

An AD to a static data object. The static data object contains ADs to external domains and
public data objects so that code in this domain can call procedures and reference data in
other domains. The static data object usually contains an AD to the public data object of its
own domain.

An AD to an instruction object. The instruction object contains the code for this domain.
A subsystem ID. The ID is used to allocate and reference a stack object at runtime.

An AD to a public data object. The public data object defines the data in this domain that is
visible to other domains.

An AD to a handler object. The handler object contains the locations of handlers that
should be invoked if a fault or exception occurs.

An AD to a debug object. The debug object contains information needed to debug the code
in this domain.

Understanding Program Execution

PRELIMINARY

® A procedure table. The procedure table lists the addresses and types of the procedures in
this domain that can be called from other domains.

Figure VI-1-3 shows the structure of a domain object.

Static Data AD

Instruction Object AD

Subsystem ID

Not Used

Handler Object AD

Debug Object AD

Public Data Object AD

Reserved

Reserved

Reserved

Reserved

Reserved

Procedure Table

12

20

24

28
32
36
40
44
48

Figure VI-1-3. Domain Object

VI-1.2.3 The Static Data Object

The static data object contains data that cannot be referenced outside the current domain. If a
program has only one domain, the static data object contains all variables having a global
lifetime. If a program has several domains, variables referenced from another domain (for

example, C foreign variables and Ada variables defined in packages with pragma

external) must be allocated in the public data object.

The static data object also contains ADs to domains whose external procedures can be called

from this domain, as well as ADs to objects containing data accessible from this domain.

The static data object can also contain a heap area. Heap allocation routines in the language

run-time system (RTS) can resize the static data object during execution.

Figure VI-1-4 shows the structure of a static data object.

Understanding Program Execution

VI-1-5

PRELIMINARY

AD to Domain X Code for Frame for
AD to Public Data X Function P Function P
AD to Domain Y
AD to Public Data Y
M Code for Frame for
° Function Q Function Q
Variable A
[] []
. *
L] *
Variable B
Variable C
L]
L]
*
HEAP AREA

STATIC DATA OBJECT INSTRUCTION OBJECT STACK OBJECT .
Figure VI-1-4. Static Data, Instruction, and Stack Objects

VI-1.2.4 The Instruction Object

The instruction object contains the code for all subprograms defined in this domain. It can also
be used to store constant data (but not access descriptors).

Figure VI-1-4 shows the structure of an instruction object.

VI-1.2.5 The Stack Object

The stack object contains the frames used during subprogram call and return. Each frame
contains the parameters, local variables, and housekeeping information related to a call.

All domains in the same subsystem and executing in the same process share a single stack
object. Domains in different non-null subsystems use different stack objects.

The OS allocates the stack object when program execution begins and resizes it dynamically
during execution. See Page VI-1-9 for further information.

Figure VI-1-4 shows the structure of a stack object.

VI-1.2.6 The Public Data Object

The public data object contains data that can be referenced from other domains (which have an
AD to the public data object in their static data objects.)

VI-1-6 Understanding Program Execution

PRELIMINARY

Figure VI-1-5 shows the structure of a public data object.

Variable |

Variable J

Variable K

PUBLIC DATA OBUJECT
Figure VI-1-5. Public Data Object

VI-1.2.7 The Debug Object

The debug object contains compiler-generated debug information about the subprograms in the
domain’s instruction object.

For each subprogram, the debug object has a debug unit that contains information about the
blocks, variables, constants, types, and statements in the subprogram.

Figure VI-1-6 shows the structure of a debug object.

Understanding Program Execution VI-1-7

PRELIMINARY

Debug Information
for Program Unit P1

Debug Information
for Program Unit P2

DEBUG OBJECT
Figure VI-1-6. Debug Object

VI-1.2.8 The Handler Object

Communication between procedures typically occurs by executing explicit call/return instruc-
tion sequences. However, another mechanism is required during fault handling and exception
propagation. A domain’s handler object identifies the language-defined runtime system (RTS)
associated with each procedure in the domain. Each RTS has a trace fault handler, a nontrace
fault handler, and a number of exception handlers.

The OS handles all faults initially and handles some of them by itself. Upon encountering a
fault it cannot handle, the OS needs to transfer control to the RTS fault handler corresponding
to the procedure in which the fault occurred. However, the OS cannot identify the procedure’s
language and therefore cannot directly call the fault handler. Instead, it calls an RTS invoker
routine which searches the handler object to locate the RTS’s fault handler. The RTS invoker
routine is defined by the linker.

When an RTS needs to propagate an exception to another subsystem, the RTS calls the OS.
As with a fault, the OS then calls the RTS invoker, which searches the handler object to locate
the RTS’s exception handler. (If the exception needs to be propagated to another procedure in
the same subsystem, the RTS, not the OS, searches the handler object to locate the exception
handler.)

See the BiiN™ Systems Compiler Interface Guide for more detailed information about the
handler object.

Vi-1.3 invoking a Program

After creating a program, the linker passivates it. Some time later, at a user’s request, the
BiiN™ Command Language Executive (CLEX) invokes the program in the following way:

VI-1-8 Understanding Program Execution

PRELIMINARY

e A user requests execution of a program by typing the program’s name on a terminal.
e CLEXcallsDirectory Mgt.Retrieve to obtain the program AD.

e CLEX uses the program’s outside environment object (OEQ) to validate the command line
parameters.

e If the parameters are valid, CLEX sets up the job’s environment variables and calls
Job_Mgt . Invoke job to create the job and its initial process.

¢ A CLEX-supplied initial procedure—running in the new job’s initial process—calls
Program_ Mgt .Run (or Program_ Mgt .Debug) with the program AD. Run (or
Debug) then calls the program’s main entry point. This activates the program, and causes
the job’s initial process to start executing the program’s initial procedure. (This is usually a
start-up routine in the language runtime system, from which control transfers to a procedure
defined in one of the program’s domains.)

e The program executes. After execution, control returns to CLEX (regardless of whether the
program terminates normally or abnormally), and CLEX informs the user of the outcome
(for example, printing any error messages).

VI-1.4 Program Execution
This section discusses the dynamic structure of programs.

A program is executed by a job. The job’s initial process begins execution in one domain,
obtaining instructions from the instruction object and referencing local data and procedures
through the static data object.

At any time, the process may switch domains by making an interdomain call (a machine
instruction) to a procedure in another domain. When this occurs, the new domain’s subsystem
ID is used to identify the new domain’s stack object. (If the new domain is in the same
subsystem as the current domain, the same stack is used). A frame is pushed on the target
stack and execution continues in the new domain. A retum to the original domain is ac-
complished by executing a retumn instruction using the caller’s frame.

During execution, the debug object and Global Debug Table are used by the debugger to debug
the program (if the debugger was invoked). Also, the handler object is used by the RTS
invoker routine to identify RTS fault and exception handlers, as described earlier. (See the
BiiN™ Application Debugger Guide and the BiiN™ Systems Compiler Interface Guide for more
detailed information.)

During execution, a process may spawn other processes which execute concurrently. The
following sections describe process behavior in greater detail.

VI-1.4.1 Sessions, Jobs, and Processes

A session is the collection of jobs executed during a user’s interaction with the system. A
session is usually an interactive logon/logoff period, and it typically contains several jobs.

A job represents an executing program. Each job has its own address space, memory resource,
and processing resource. Scheduling, resource control, and resource reclamation are done on a
per-job basis. A job can contain multiple processes executing concurrently and sharing data
and resources.

Understanding Program Execution VI-1-9

PRELIMINARY

A process is one thread of execution within a job. Processes share the job’s resources and
cooperate to perform the job’s computational task. A job begins with an initial process, which
can spawn other processes. See Figure VI-1-7,

Job

Initial Process

Process Process Process

[][][]

Figure VI-1-7. Job and Processes

VI-1.4.2 Process Globals

A process executes in an environment defined by its process globals, a list of ADs associated
with the process. The entries in a process’s globals are named by the
Process_Mgt_Types.process_globals_entry enumeration type.

Most process globals entries can be modified and assigned arbitrary ADs. Your application
controls the correctness of modified entries: that they are not null, have needed access rights,
and reference objects of the correct type. Often your application will not need to modify the
process globals entries at all; values inherited from the command interpreter or the parent
process will suffice.

Table VI-1-1 describes all the process globals entries. The "Inherited?" column indicates
whether an entry is inherited when a process is spawned (designated by PS), a job is created
(designated by JC), or both (designated by PS/JC).

The "Modifiable?" column indicates whether a process globals entry can be modified. An
entry can be modified when a process or job is created or by calling
Process_Mgt.Set_process_globals_entry. Inthe "Modifiable?" column:

VI-1-10 Understanding Program Execution

PRELIMINARY

"Admin-only" Indicates that an entry can only be modified using the Process_Admin
or Job_Admin packages.

"Process-only" Indicates that an entry can only be modified using Process_Mgt or
Process_Admin and cannot be modified using Job_Mgt or
Job_Admin.

"Process_Admin-only"
Indicates that an entry can only be modified using the Process_Admin

package.
"Yes" Indicates that an entry can be modified using any of the four packages
(Process_Mgt,Process_Admin, Job_Mgt or Job_Admin).
"No" Indicates that an entry can NOT be modified using any of the four
packages (Process_Mgt, Process_Admin, Job_Mgt or
Job_Admin).
Table VI-1-1. Process Globals Entries
Entry Description Inherited? Modifiable?
home_dir Process’s home directory PSAC Admin-only
current_dir Process’s current directory PS/C Yes
authority list Default authority list for objects | PS/JIC Yes
- with master ADs stored by this
process
id list IDs for which process is granted | PS/IC Admin-only
- access. FirstIB in list is owner
ID and is default owner for ob-
jects with master ADs stored by
this process. Second ID in list1s
group ID for BiiN"/UX
processes.
cmd_name_space Command name space used for | PS/JC Yes
xetnev::f command programs
specified with relative pathnames
standard_input Standard input opened device PS/IC Yes
standard_output Standard output opened device PS/C Yes
standard_message | Standard opened device for writ- | PS/IC Yes
ing information, waming, and er-
TOT Messages
user_dialog Controlling terminal. Used for PS/AC Yes
operations on /dev/tty
ux_environ Used for BiiN™/UX processes; No Process_Admin-only
null in other processes
lang_environ Used by language run-time sys- | PS only Process_Admin-only
tem
site_environ Can be used by system ad- No Process_Admin-only
- ministrator for site-specific pur-
poses
transaction_stack | Stack of active transactions. If No Process_Admin-only

the stack is not empty, the
entry is the defanh%nsaati%%

creator Process that created this process, | No No
with control rights. Null if this
process is a job’s initial process.

process AD to this process, with control | No No
rights.
job Job that contains this process, Inherited when a No

with list rights and control rights. g;ocess is spawned
t not when a new
job is invoked

Understanding Program Execution VI-1-11

PRELIMINARY

Table VI-1-1: Process Globals Entries (cont.)
Entry Description Inherited? Modifiable?
session Session that contains this Inherited whena { No,butcanbe
process, with list rights and con- | process is spawned | implicitly modified if
trol rights. and norm: iwhen a job is invoked using
a job is invoked, Job_Admin and
but not if a job specifying a different
is invoked usin session.
Job _lgt‘imln an
s ing a
dgfefgtem §ession.
name Optional AD to text record con- | No Process-only
taining readable name for this
process.
CLI_environ For use(l:)zExCommnd Line Inter- | PS only Process-only
- preter (, for example).
program For use by the OS. PS only Process-only
sms For use by the Software Manage- | No Process-only
ment System.

VI-1.5 Interprocess Communication

This section discusses events and pipes, two basic methods of interprocess communication.

Vi-1.5.1 Events

Events are a mechanism for interprocess communication with these characteristics:

Events can be used as software interrupts, invoking event handler procedures and then
continuing the interrupted processes.

Events can be used to send interprocess messages. Processes can wait for events to be
received. If a process is not waiting, events can be queued until the process elects to
receive the events.

Events can carry information between processes, either two words of immediate infor-
mation or a pointer to a larger data structure.

Events signalled to a job are signalled to every process in the job.

Event clusters can be created to define additional event values or to define different process
groupings:

— Anevent cluster is specified by a process AD, job AD, or explicit cluster AD.

— [Each process has a predefined local event cluster; signalling an event using a process
AD signals the local event cluster of that process.

— A job has no cluster; signalling an event using a job AD signals the event to the local
event cluster of every process in the job.

— Anexplicit cluster is a global event cluster. Processes can associate and disassociate
with global event clusters. Signalling an event using a global event cluster (AD) signals
every process currently associated with the cluster.

— The local event cluster is used for process control. See Page VI-1-16.

Events can be signalled to remote processes or jobs.

Events are grouped in event clusters, each with 32 event values. To signal an event , you call
Event_Mgt.Signal withan action_record that specifies:

VI-1-12

Understanding Program Execution

PRELIMINARY

event An event value (1 to 32).
message A two-word virtual address. Can be used to send immediate data or a
virtual address to the data.

destination One of:

1. Process with control rights. Event is signaled to the process’s local
event cluster.

2. Job with control rights. Event is signalled to the local event clusters of
all processes in the job.

3. Global event cluster with signal rights. Event is signalled to all
processes associated with the cluster.

The action record specified to Event_Mgt . Signal is passed to any event handler or
returned from any Event Mgt .Wait__ call that receives the event.

Each process controls how it will handle events with a particular event value by assigning the
event_status record for that value:

handler Handler to establish for event. If System.null_subprogram, default
handler (if any) is reestablished. Otherwise, handler must be in a domain
with a nonnull subsystem ID.

state New event state. One of:

enabled If the event has a handler, the handler is called for each
event received. Otherwise, events are queued and can
be dequeued using the Event Mgt .Wait__ calls.

disabled Received events are discarded. If an event value’s
state is changed to disabled, any previously queued
events for that value are discarded, emptying the
queue.

handler_disabled
If the event has a handler, the handler is disabled.
Received events are queued and can be dequeued using
the Event_Mgt .Wait_ calls. If the event value’s
state is then changed to enabled and the event has a
handler, then the handler is called for each queued
event, emptying the queue.

interrupt_system call
Flag indicating whether the handler can interrupt a blocked system call if
the process is inthe allow_system call interrupt mode. (See
the Typemgr_Support package and
process_special conditions
.allow_system call interrupt inthe Process_Mgt_Types
package for further information.)

Figure VI-1-8 shows how received events are processed.

Understanding Program Execution VI-1-13

PRELIMINARY

(Receive an Event ’

Process’s
Stote for the
Event

Disobled Handler_Disabied

Enabled

Is there
a handler for
the event

Y

(Discard Event)
(Call Hondler)

Figure VI-1-8. Events can be Handled, Queued, or Discarded.

Y

(Queue Event)

VI-1.5.2 Pipes

VI-1-14

A pipe is an object that supports one-way 1/O transfers between processes.

Figure VI-1-9 shows a pipe used for interprocess communication. One process has the pipe
open for output and writes data to the pipe. A second process has the pipe open for input and
reads the data written by the first process. The pipe contains a fixed-size buffer used to hold
data written by the first process but not yet read by the second process.

Opened Opened
Device Device
(For OQutput) (For Input)
Writing Reading
Process Process

Pipe

Figure VI-1-9. Pipe I/O

If a process writes to a pipe and there is not enough space in the buffer, then it can block,
waiting for space to be freed by the reading process. If a process reads from a pipe but there is
no data in the buffer, then it can block, waiting for data to be written by the writing process.

Understanding Program Execution

PRELIMINARY

Pipes are one type of OS device. Pipes are implemented entirely in software; there are no
underlying physical devices, such as terminals or disk drives, that correspond to pipes. Be-
cause pipes are software devices, they can be freely created by executing programs, limited
only by the amount of virtual memory available to the process.

Pipes are useful because they eliminate the need for intermediate files by allowing the output
of one program to be connected to the input of another program. This makes it easier to
construct complex programs from smaller existing programs. Both the Command Language
and the BiiN"/UX "shell" define an operator for piping, which takes two program invocations
and connects them via a pipe. This chapter covers the procedural interface to pipes.

Pipes support the Byte Stream Access Method and the Record Access Method. These I/O
access methods provide calls to open pipes for I/O, perform I/O transfers, and close opened
pipes. The Pipe_ Mgt package provides calls to create pipes, check whether pipes are open
for input or output, and check whether an arbitrary object is a pipe. The Pipe Mgt package
description also describes the pipe implementation of the I/O access methods.

Once created, a pipe exists until no jobs reference it or until it is deallocated by calling
Pipe Mgt .Destroy.

VI-1.5.3 Pipes vs. Events

Both pipes and events provide distributed interprocess or interjob communication. Some com-
parisons will help you decide which mechanism to use for your application:

¢ In an application that uses pipes, a subprogram can be given an opened device and use the
same code to read or write it whether the opened device is connected to a pipe, a file, or an
interactive user.

e An application can send ADs and virtual addresses using events but not using pipes.

o If a message larger than two words is sent with an event, then additional message buffer
space must be allocated and managed. Pipes can handle transfers of any size, even trans-
fers larger than the pipe’s buffer.

e A pipe keeps the writing process from writing too much unread data, blocking the process
(or optionally raising an exception) when the pipe buffer is full. A process signalling an
event never blocks and queues of pending events can grow without limit.

e Handlers can be established for both events and for pipe input (using the
Enable_input_notification I/O access method call).

VI-1.6 Process Control

This section discusses the creation and control of processes.

VI-1.6.1 Process States

A program creates a new process within its job by calling
Process_Mgt.Spawn_process.

Processes are controlled using local events, as described on Page VI-1-16. By sending an
event to a process, you can:

Understanding Program Execution VI-1-15

PRELIMINARY

Kill it immediately

Terminate it "gracefully”, giving the process a chance to handle its own termination

Suspend its execution until a matching re sume event is received

e Resume its execution if it is suspended.

After a process has terminated, you can deallocate all storage used by the process by calling
Process_Mgt.Deallocate.

Figure VI-1-10 shows major process states and the transitions between them.

Deallocate

TERMINATED)W_‘)

SUSPENDED

Spawn_process
call

—>» (EXECUTING

local event

Figure VI-1-10. Major Process States

VI-1.6.2 Local Event Cluster

To kill, terminate, interrupt, suspend, or resume a process or job, signal the appropriate local
event. Table VI-1-2 describes all local event values.

VI-1-16

Table VI-1-2. Local Event Values

Value Description Maodifiable? Awaitable? Default
user_1 Available for user. Yes Yes Enabled. No default
user_2 Not used by OS. handler.
user_3
user_4
kill Kills process im- No No Enabled. Default

mediately, even if handler kills process.
handling another
event,
debug Requests debugging. | Event_admin- only | No, unless enabled Disabled.
Can interrupt any using Event_Admin
other event but kill.
termination | Requests process ter- | Yes Yes if handler dis- Enabled. Default
mination. abled. handler kills process.
interrupt Requests abort of cur- | Yes Yes if handler dis- Enabled. Default
rent operation. abled. handler kills process.
suspend Requests suspension | Yes Yes if handler dis- Enabled. Default
of process. abled. dler increments
suspend/resume
count. If count is now
one, suspends
process.
resume Resumes process. No No Enabled. Default
handler decrements
suspend/resume
count. If count is now
Zero, resumes process.

Understanding Program Execution

PRELIMINARY

Table VI-1-2: Local Event Values (cont.)
Value Description Modifiable? Awaitable? Default

hangup A dialup line con- Yes Yes if handler dis- Enabled. Default
nected to one oé'd the abled. handler kills process.
process’s open
devices h:spgeen hung
up.

io_complete | Available to indicate | Yes Yes Enabled. No default
completion of an handler.
asynchronous [/O
operation.

local_xm Available to si%nal Yes Yes Enabled. No default
resolution of a local handler.
transaction.

geol Signalled each time a | Yes No Enabled. Default
local GCOL run handler shrinks stacks
begins in the if unused portions ex-
process’s job. ist.

event_15t0 | Reserved by OS. No No Disabled.

event_32

VI-1.7 Semaphores

Processes can share data. But many operations on shared data will only execute correctly if
executed by one process at a time. Other processes can be excluded during such an operation
by associating a semaphore with the shared data structure.

A semaphore is a system object that contains a count and, if the count is zero, a pointer to zero
or more processes blocked at the semaphore.

The basic operations on semaphores are P and V. If a semaphore’s count is greater than zero,
P indivisibly decrements it. Otherwise, P blocks the calling process in the semaphore’s
prioritized process queue. If processes are blocked at a semaphore, V unblocks and dispatches
the highest-priority process. Otherwise, V indivisibly increments the semaphore’s count.

A third operation, Conditional_P, indivisibly decrements a ssmaphore’s count if the count
is greater than zero, returning true. If the semaphore’s count is equal to zero,
Conditional_P does nothing and returns false. A process uses Conditional_ P totry
to acquire a lock, without blocking if the lock is not available.

A semaphore can be used to lock a data structure by interpreting a / count to mean that the
data structure is available and a 0 count to mean that the data structure is in use. Before
accessing the data structure, a process calls P. If the data structure is available, the process
continues and the semaphore’s count becomes zero, indicating that the data structure is in use.
If the data structure is being used by another process, the process calling P blocks in the
semaphore’s queue. After accessing the data structure, a process calls V. If another process is
waiting, V dequeues the highest priority waiting process, leaving the count at zero, indicating
that the data structure is still in use by the just dequeued process. If no processes are waiting,
V increments the semaphore’s count to one, indicating that the data structure is available.

A semaphore used to lock a data structure is called a binary semaphore. Figure VI-1-11 shows
binary semaphores.

| Understanding Program Execution VI-1-17

VI-1-18

PRELIMINARY

Binary Semaphore
Indicating Available
Data Structure

Indicating Busy
Data Structure

Binary Semaphore

Zero or more

1 0 blocked processes
. yrm—————— 7
/ /
Empty Queue Queue S /I ,41___,
bmmmpmmmd] J
/ !
’ i
| A)

Figure VI-1-11. Binary Semaphores

A semaphore’s count can also be used to count units of some resource. For example, a pack-
age that manages a buffer pool can use a semaphore’s count to indicate the number of free
buffers in the pool. P decrements the count and is called when a buffer is allocated; V incre-
ments the count and is called when a buffer is released. The semaphore that counts buffers can
also be used to block processes that need a buffer when no buffer is available, and then to
unblock a process when a buffer is released. In an implementation of the buffer pool package,
a second semaphore is needed as a lock on the buffer pool data structure. A semaphore used to
count units of some resource is called a counting semaphore.

Semaphores are supported directly by the CPU. Semaphore objects are embedded directly in
their object descriptors and require no additional active memory. The P, V, and
Conditional_P operations are implemented as single machine instructions and execute
very quickly.

Semaphores are not distributed. A process can only use semaphores within its own job or
within global objects on its node.

Semaphores used as locks should be held for as short a time as possible, so that other processes
are blocked less often and for a shorter time. You can use the Typemgr_Support package
to defer event handling while the process is holding a lock (only for trusted type managers).

A simple but serious bug occurs if a process uses a semaphore as a lock but never releases it
for use by other processes. This could occur, for example, if the process executes a return,
goto, exit, or raise statement without first calling Vv, or if an exception is propagated to
the procedure in which the process is executing (preventing the process from calling V).

This bug causes all subsequent processes that call P on the lock to block indefinitely, halting
all or part of an application. The section "Locking Shared Data Structures” in Chapter VI-2
shows how to write code that ensures that an acquired lock is always released.

Killing or terminating a process that uses semaphores and shared data structures can leave data
structures inconsistent and leave binary semaphores with zero counts, preventing other
processes from using the data structures. Because semaphores and shared data structures are
normally local to a job, this problem can be avoided by killing/terminating an entire job and
not just a process within a job.

Understanding Program Execution

PRELIMINARY

If an application must acquire multiple locks before executing certain operations, then the
locks should always be acquired in the same order. Consider two processes executing an ap-
plication. Process A acquires semaphore C first and is blocked waiting for semaphore

D. Process B acquires semaphore D first and is blocked waiting for semaphore C. Neither
process can execute; each waits for resources held by the other. This is a deadlock or "deadly
embrace" bug that can halt all or part of an application. The bug is avoided if the semaphores
are always acquired in the same order, such as <C, D>.

VI-1.8 Use of Multiple Processes

This section describes three general ways to use multiple processes:

e Processes that do different tasks on data that flows from one process to the next.
¢ Processes that do identical tasks on different parts of a large data structure.

e Processes that have a client/server relationship in which the client sends a request to the
server which sends a reply when the request has been processed.

Some operations on a stream of data can be broken into different sub-operations that can be
done by different processes. The entire concurrent program resembles an assembly line where
the units of work (or packets of data) flow from one worker to the next, with each doing a
special part of the entire operation.

Figure VI-1-12 shows a compiler divided into separate processes to handle parsing and code
generation. Data flows through a pipe between the two processes, which can access the pipe
using standard I/O access methods.

Code
Parsing Generation
Process Process

‘ Pipe
Source) Machine
File Code File

Figure VI-1-12. Processes Connected by a Pipe Speed Up a Compiler.

Some applications that can use a piped design are:
e Compilers
e Text formatters

¢ Format converters.

Some computations involve repeatedly doing simple transformations to large arrays of data.
Figure VI-1-13 shows how such a computation can be speeded up by dividing it among mul-
tiple processes that each perform the identical calculation on a portion of the array.

Understanding Program Execution VI-1-19

VI-1-20

PRELIMINARY

Process 1 Process 2 Process 3
A A A
- Y Y ' M
Array A: [
Array B: | HERE
Compute A (1. 300_000) = A (1. 300_000) *B (1. 300_000):

Figure VI-1-13. Multiple Processes Speed Up a Large Array Calculation.

Some applications that can use such a design are:

Image processing

Advanced computer graphics

Weather models

Models of air flow, fluid flow, heat flow, and other engineering properties
Linear programming

Monte Carlo simulations

Programs that examine many possible solutions, such as a chess-playing program or
programs that optimize VLSI chip designs.

Breaking an application into client and server processes can be useful when the application
both requires interactive or realtime response and requires lengthy computations. Tasks that
require lengthy processing are relegated to separate server processes. The interactive applica-
tion sends requests to such server processes and can continue handling user input while the
request is being processed. The server process sends a reply to its client when the request has
been processed. Figure VI-1-14 shows such a design, used for a word processor with a concur-
rent spelling checker that checks each word entered by the user.

User
Terminal

Word Spelling
Processor £ ¢ Checker

Process ven Process

- /—\
1/0
e\ g Sfrent ~

Figure VI-1-14. A Separate Spelling Checker Process Preserves Word
Processor Responsiveness.

Understanding Program Execution

PRELIMINARY

Server processes can be useful for applications such as:

Concurrent spelling checking, grammar checking, or style checking.
Incremental compilation of entered source code.

Background generation of reports. For example, a process controlling a welding robot may
spawn a server process that runs each hour to send operation statistics to a central com-
puter.

Concurrent language translation: As text is entered in one window in one language, it is
translated and displayed in another window in another language. The human translator can
edit either window to correct errors in text input or the computer’s draft translation.

VI-1.9 Summary

The term program refers to an executable program or executable image module.

A program is a network of objects rooted in a program object created by the linker. It
consists of a program object, a global debug table, an outside environment object, and one
or more domain objects. Each domain object references a static data object, an instruction
object, a stack object (referenced by a subsystem ID), a public data object, a handler
object, and a debug object.

A program is invoked by CLEX upon user request.
A session is the collection of jobs executed during a user’s interaction with the system.

A program executes as a job. Each job has its own address space, memory resource, and
processing resource. Jobs are grouped into sessions.

A process is one thread of execution within a job. A job can contain multiple processes
running concurrently and sharing data and resources.

Each process has an execution environment defined by its process globals.
Events provide flexible interprocess communication.

Events are used to control processes.

Pipes support one-way I/O transfers between processes or jobs.
Semaphores are used to synchronize access to shared data.

Concurrent processes can improve performance or responsiveness for a variety of applica-
tions.

Understanding Program Execution VI-1-21

PRELIMINARY

VI-1-22 Understanding Program Execution

PRELIMINARY

BUILDING CONCURRENT PROGRAMS

Contents
Getting a Process GIobals Entryoiiiiitiiiiin i iiiinanenennnns VI-24
SettingaProcess Globals Entryciieiiiiiiiiiiniinnennnennnn VI-24
Creating @ PrOCESS ... cvviiitit it iet ettt e eeeteeeeenerenseconaennens VI-2-5
Getting Process Informationcciiiiiiiii ittt ittt VI-2-7
Suspending and Resuming a Processc..viiieiiiinenenenenennenenenss VI-2-7
Terminating @ PrOCESSvvvvrrnrunnnnnenennnoneeeeeeeeeeeeennnnnnneenns VI-2-8
Signaling an Eventttt it ittt et et VI1-2-9
EstablishinganEventHandler it iiiiiiiiiiiiiinnnnnn. VI-2-10
Waiting for Eventsottt ittt ittt e iernanananaan VI-2-11
Connecting Processes withaPipeciiiiiiiiiiiniinninnnnnnnn. VI-2-12
Locking Shared Data StruCtUresccuviiiinneninneeneenennennannnns VI-2-13

Building Concurrent Programs VI-2-1

PRELIMINARY

A concurrent program is one which has multiple processes executing simultaneously within a
single job. Concurrent programs are suitable for a wide range of applications and can improve
program performance dramatically.

A process is one thread of execution within a job. Processes share the job’s resources and
cooperate to perform the job’s computational task. A job begins with an initial process, which
can spawn other processes. See figure VI-2-1.

Job

Initial Process

Process Process Process

[][][]

Figure VI-2-1. Job and Processes

This chapter shows you some specific techniques for building concurrent programs. You
should read chapter VI-1 before this one to understand the concepts underlying programs,
processes, and interprocess communication (events, pipes, and semaphores).

VI-2-2 Building Concurrent Programs

PRELIMINARY

Packages Used:

Event_Mgt Manages event clusters. Event clusters provide distributed communica-
tions and software interrupts for processes.

Pipe Mgt Manages pipes. A pipe is a one-way interprocess or interjob I/O channel.

Pipes support byte stream 1/0 and record I/O.
Process_Mgt Provides public operations on processes.

Process_Mgt_Types
Declares types and type rights for processes.

Semaphore_ Mgt
Manages semaphores. Semaphores can be used to synchronize concurrent
access to shared data structures or resources.

This chapter shows you how to:

® Get a process globals entry

e Set a process globals entry

¢ Create a process

® Get process information

® Suspend and resume a process
e Terminate a process

e Signal an event

e Establish an event handler

e Wait for events

e Connect processes with a pipe
e Lock shared data structures.

Excerpts from the following examples in Appendix X-A are used:

Compiler Ex Shows how a compiler can be implemented by dividing parsing and code
generation between two processes connected by a pipe.

Process_Globals_Support_ Ex
Provides calls to get and set commonly used process globals entries for the
calling process.

Symbol_Table_ Ex
Shows how a compiler’s symbol table manager can synchronize concurrent
access using semaphores.

Word_Processor_Ex
Shows how a word processor with a concurrent spelling checker can be
implemented using processes and events.

Appendix X-A contains complete listings for these examples.

Building Concurrent Programs VI-2-3

PRELIMINARY

VI-2.1 Getting a Process Globals Entry

Calls Used:

Process_Mgt .Get_process_globals_entry
Gets a process globals entry.

To get a process globals entry, call Get_process_globals_entry with the desired
entry’s name. Entry names are defined by the
Process_Mgt_Types.process_globals_entry enumeration type.

The following code is excerpted from the Process_Globals_Support_Ex package

body:
45 stdin: Device_Defs.opened device;
46 stdin_untyped: System.untyped word;
47 FOR stdin_untyped USE AT stdin’address;
48 begin
49 stdin_untyped := Process_Mgt.
50 Get_process_globals_entry(
51 Process_Mgt_Types.standard input):
62 RETURN stdin;

Get_process_globals_entry always retums a value of type
System.untyped word.

An optional second parameter to Get_process_globals_entry allows a caller to
retrieve an entry from another process’s globals, if the caller has control rights to the other
process.

VI-2.2 Setting a Process Globals Entry

Calls Used:

Process_Mgt.Set_process_globals_entry
Assigns a value to a process globals entry.

To assign a process globals entry, call Set_process_globals_entry with the desired
entry’s name and its new value. Entry names are defined by the
Process_Mgt_Types.process_globals_entry enumeration type.

The following code is excerpted from the Process_Globals_Support_Ex package
body:

VI-24 Building Concurrent Programs

PRELIMINARY

69 opened_dev: Device_Defs.opened_device)

79 stdin_untyped: System.untyped_word;

80 FOR stdin_untyped USE AT opened_dev’address;

81 begin

82 if not Byte_Stream AM.Ops.Is_open{(opened_dev) then
83 RAISE Device_Defs.device_not_open;

84

85 elsif not Access_Mgt.Permits(

86 AD => stdin_untyped,

87 rights => Device_ Defs.read_rights) then

88 RAISE System Exceptions.insufficient_type rights;
89

90 else Process_Mgt.Set_process_globals_entry(

91 slot => Process_Mgt Types.standard input,

92 value => stdin_untyped):

93 end if;

A value assigned to a process globals entry must have type System.untyped word.

VI-2.3 Creating a Process

Calls Used:

Process_Mgt.Spawn_process
Creates a new process in the caller’s job.

Creating a new process has two parts:
1. The program must define the initial procedure of the process in a specific way.

2. The program then creates one or more processes that execute that initial procedure.

This section’s examples are excerpted from the Compiler_Ex package body. The first ex-
cerpt shows how a process’s initial procedure is defined:

44 procedure Parse(

45 param_buffer: System.address;

46 —-— Address of connection record.

47 param_length: System.ordinal)

48 —- Not used in this procedure, but required for
49 -—- process’s initial procedure.

50 -=

51 -- Logic:

52 - Do Pascal parsing using the I/0 connections

53 - specified in the "conn_rec" parameter record.
54 is

55 conn_rec: connection record; -- Record containing
56 —— parameters.

57 FOR conn_rec USE AT param_buffer;

58 Dbegin

63 end Parse;
64 pragma subprogram value (Process_Mgt.Initial proc, Parse);

The initial procedure must have the two parameters shown, param _buffer and
param_length, whether the parameters are used or not. The subprogram_value
pragma informs the compiler that Parse is an instance of the subprogram type
Process Mgt.Initial_proc, the type used for a process’s initial procedure.

Building Concurrent Programs VI-2-5

PRELIMINARY

Parameters can be passed between parent and child processes by defining a record type,
connection_record inthis example, that contains the parameters as its fields. The parent
process creates a connection record, fills in its fields, and passes its virtual address to the child
process. The child process uses the FOR ... USE AT ... declaration to specify that its view of
the connection record is at the virtual address specified by the parent.

[wARNING]

If a parameter buffer specified to a child process is allocated as a local variable (that is,
on the stack) of the parent process, then the parent process should not terminate, or retum
from the call that the buffer is local to, until after the child process terminates (otherwise
the buffer would be inaccessible to the child).

There are four different ways to pass information to a child process:

1. Use a parameter buffer local to the parent process. This technique is fine if the parent
process does not terminate or return from the call that allocates the buffer until after the
child process terminates.

2. Use a parameter buffer allocated as a separate object from the job’s heap. The parent
process can terminate and the buffer will continue to exist. Such a buffer can be allocated
by defining an access type to whatever type is used for the buffer, and then using the Ada
new operator to create the buffer.

3. Use a parameter buffer allocated in a package’s static data area. This technique is un-
desirable because the buffer cannot be used by concurrent parent processes that each need
to communicate with their individual children. If such a parameter buffer is used by con-
current parent processes, serious and hard-to-find bugs can result. If this technique is used,
access to the parameter buffer should be guarded with a semaphore.

4. Communicate via changes in the child’s process globals. Such changes can be specified
when the child is spawned. For example, consider a child process that reads its standard
input and counts lines, writing the count to its standard output. The child does not need an
explicit parameter buffer; it only needs to have its standard input and standard output con-
nected to the desired opened devices. Changes in the child’s process globals can be used
alone or in combination with a parameter buffer.

The second code excerpt shows how a process is created to execute a particular procedure:

146 parse_process: Process_Mgt Types.process_AD;
147 -- Process executing "Parse".

176 parse_process := Process_Mgt.Spawn_process(
177 init_proc => Parse’subprogram_value,
178 param_buffer => conn_rec’address,

179 term action => (

180 event => Event Mgt.user_ 1,

181 message => System.null address,
182 destination => this_process_untyped)):;

The initial procedure to be executed is specified using the * subprogram_value attribute.
The address of the parameter record is specified using the * address attribute.

The term_act ion parameter is optional; it indicates the action to signal when the process
terminates.

VI-2-6 Building Concurrent Programs

PRELIMINARY

VI-2.4 Getting Process Information

Calls Used:

Process_Mgt.Get_process_state
Gets a process’s state.

Get_process_state produces detailed state information for a process. The process state
information is contained in a record of type

Process_Mgt_ Types.process_state_ rec. Seethe Process_ Mgt Types pack-
age description for more detailed information.

The state information is a snapshot and can change at the same time that the information is
being retrieved. For example, Get_process_state may indicate that a process is execut-
ing even though it blocked while its state information was being retrieved.

VI-2.5 Suspending and Resuming a Process

Calls Used:

Event Mgt.Signal
Signals an event.

Process_Mgt.Suspend caller
Suspends the calling process. Is normally the last statement in a handler
for the suspend local event.

An application can suspend a process by signaling the Event_Mgt . suspend local event to
the process.

An application can resume a suspended process by signaling the resume local event to the
process.

A suspend or resume event can be signalled to all processes in a job by signaling the cor-
responding event to the job.

Signaling either event to a process or a job requires control rights.

Each process has a suspend/resume count. A positive count is the number of suspend events
received without a matching resume event. A negative count indicates the number of resume
events that have been received without matching suspend events. Each suspend event received
by a process increments the count, and each resume event received decrements the count. The
suspend/resume count is zero when a process is created. The process is suspended whenever
the count is greater than zero. Note that the resume event that matches a suspend event may be
received before the suspend event.

A process can control its response to suspend events, disabling them or establishing a handler
for them. A handler for suspend events can simply do whatever cleanup is needed before the
process suspends itself, and then call Process_Mgt . Suspend_caller to suspend itself.

Building Concurrent Programs : VI-2-7

PRELIMINARY

VI-2.6 Terminating a Process

VI-2-8

Calls Used:

Event_Mgt.Signal
Signals an event.

Process_Mgt.Terminate_caller
Terminates the calling process.

Process_Mgt.Deallocate
Deallocates the storage used by a process, including the process object and
process stacks.

A process can terminate itself by:
e Returning from its initial procedure
e Raising an exception that is not handled within the process

e (Calling Terminate_caller.

A process can terminate another process or a job by signaling the terminationorkill
local event to the process or job. (Recall that control rights are required to signal any event to
a process or job.) The difference between the two events is that processes can control their
response to terminat ion events but not to kill events,

A process may establish a handler for the terminat ion event that does some cleanup and
then calls Terminate_caller.

A process cannot modify or establish a handler for ki11 events, which terminate a process as
soon as they are received; kill events can interrupt other event handlers.

When a process terminates, it may be desirable to free the memory that it used, by calling
Process_Mgt.Deallocate. There is no way for a process that terminates itself to deal-
locate itself, so deallocation is usually handled by the parent process. If a terminated process is
not deallocated, its memory can still be reclaimed by garbage collection or at job termination.

When a process creates a child process, it can specify an event to be signalled when the child
terminates. The parent process can wait for that event or establish a handler for it. When the
child terminates, the parent receives the termination event and deallocates the child’s storage.

The following excerpt from the Word_Processor_Ex package body shows how the word
processor signals a concurrent spelling checker process to terminate, waits for the termination
event, and then deallocates the spelling checker process.

306 Event Mgt.Signal (Event_Mgt.action_record’ (

307 event => Event_Mgt.termination,

308 message => System.null_ address,

309 —— No message.)

310 destination => Conversion_Support Ex.

311 Untyped from process(
312 spelling checker_process)));
313 Event_Mgt.Wait_ for_any(

314 events => (

315 child termination_event_value => true,
316 others => false),

317 action => child_termination_event):

318 Process Mgt.Deallocate(spelling checker_process);

Building Concurrent Programs

PRELIMINARY

VI-2.7 Signaling an Event

Calls Used:

Event_Mgt.Signal
Signals an event.

To signal an event, call Signal with an action record that describes the event.

The destination and event fields specify which event to signal. The message field
can be used to send a message with an event, formatted as a virtual address.

The following excerpt is from the Word Processor_Ex package body. A spelling checker
process has received the location of a word to check via a "word" event. If the word is
misspelled, the spelling checker signals a "spelling error” event to the client process.

162 if word mispelled then

163 Event_Mgt.Signal (Event_Mgt.action_record’ (

164 event => spelling_error_event_value,
165 message =>

166 offset => word_event.message.offset,
167 AD => System.null_word),

168 destination => word_event .message.AD)):
169 end if;

The message.of f£set field of a spelling error event contains the word location, exactly as
received earlier from the client process. The message . AD field is not used. The
destination field is an AD to the client process being signalled. The "word" event
received earlier from the client process contained this AD in its message . AD field.

A BiiN™ Ada representation specification can be used to pack several fields into the
message.offset field. Anexcerpt from the Word Processor_Ex package body il-
lustrates this technique:

Building Concurrent Programs VI-2-9

PRELIMINARY

84 type word_record is record

85 -- This type encodes a word location into 32 bits,
86 ~- allowing a word location to be transmitted

87 -- using the "message.offset”™ field when an event
88 -- is signalled. The word processor and spelling
89 —- checker are presumed to share a two-dimensional
90 —- array containing the text being edited. Words
91 -- are presumed to not break across lines of the
92 —-- array. A word location can thus be specified
93 —-- as a line number, a starting column number, and
94 —-- an ending column number. The encoding limits
95 -- line numbers to the range 0 65_535 and

96 —-- column numbers to the range 0 .. 255,

97 line: System.short_ordinal;

98 start_col: System.byte_ordinal;

29 end col: System.byte_ordinal;

100 end record;

101

102 FOR word_record USE

103 record at mod 32;

104 line at 0 range 0 15:

105 start_col at 0 range 16 .. 23;

106 end_col at 0 range 24 .. 31;

107 end record;

143 word_event: Event_Mgt.action_record;

144 -- Receives each word to be checked.

145 current_word: word_record;

148 FOR current_word USE AT word_event.

147 message.offset’address;

148 —-- Overlay used to extract word location.,

VI-2.8 Establishing an Event Handler

VI-2-10

Calls Used:

Event_Mgt.Establish_event_handler

Assigns handler and state for an event. Returns previous handler and state.

Establishing an event handler has two parts:

1. The program must define the handler procedure in a specific way.

2. The program must call Establish_event_handler to connect the handler to the

event.

This section’s examples are excerpted from the Word_Processor_Ex package body. The
first excerpt shows how a handler procedure is defined:

Building Concurrent Programs

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

PRELIMINARY

procedure Spelling error handler(
action: Event_Mgt.action_record)
—- Operation:
- Handler invoked for each ’spelling error’
- event.
is
misspelled word: word record;
FOR misspelled word
USE AT action.message.offset’address:;
—= Overlay used to extract word location.
begin
-- Code to handle misspelled word goes here. For
—-- example, this code could highlight the
-- misspelled word on the display and ring the
~- terminal’s bell,

null;
end Spelling error handler:
pragma subprogram_value (
Event_Mgt.Event_handler,
Spelling_error_handler):;

A handler procedure must have the act ion parameter shown, which is the event that invokes
the handler. The subprogram_value pragma informs the compiler that
Spelling_error_handler is aninstance of the subprogram type
Event_Mgt.Event_handler, the type used for all event handlers.

The second excerpt shows how the word processor process establishes this handler:

250
251
252
253
271
272
273
274
275
276
277
278
279

old_event_status: Event_Mgt.event_status;
-- Saves previous event status for the
-- spelling _error local event, so the previous
—-- status can be restored before exit.

old_event_status := Event_Mgt.
Establish_event_handler(
event => spelling error event_ value,
status => (-
handler =>
Spelling error_ handler’
subprogram value,
state => Event_Mgt.enabled,
interrupt_system call => false));

When a subprogram establishes an event handler, and the subprogram is not the initial proce-
dure or final procedure for its process, then it is good manners for the subprogram to restore
the previous event status before returning to its caller:

320
321
322
323
324
325

old_event_status := Event Mgt.
Establish_event handler(
event => spelling error_event_value,
status => old_event_status); ‘
—— Reestablish previous event status.
—— Value returned is never used.

VI-2.9 Waiting for Events

Building Concurrent Programs

VI-2-11

PRELIMINARY

Calls Used:

Event Mgt.Wait_for all
Wait for all of a set of events within a cluster.

Event Mgt .Wait_for_any
Wait for any of a set of events within a cluster.

Wait_for_any is used to wait until any of a set of events within a cluster is received. The
first event in the set that is received is assigned to an action record output parameter. The
following excerpt from the Word_Processor_Ex package body shows the spelling checker
process waiting for a word to be checked.

143 word_event: Event Mgt.action_record;
144 -~ Receives each word to be checked.

145 current_word: word_record;

146 FOR current_word USE AT word event.

147 message.offset’address;

148 -~ Overlay used to extract word location.,
152 Event_Mgt.Wait_for_ any(

153 events => (word_event_value => true,
154 others => false),

155 action => word_event):;

Wait_for_all is used to wait until all of a set of events within a cluster have been received.
The received events are assigned to an array of action records. The following excerpt from the
Compiler_Ex package body shows a parent process waiting for two child processes to ter-

minate.
152 term events: Event Mgt.action_record list(2);
183 —- Array that receives termination events cf the
154 -~ two child processes.
192 Event_Mgt.Wait_for_all(
193 events =>
194 (Event_Mgt.user_1 .. Event_Mgt.user_2 =>
195 ' true,
196 others => false),
197 action_list => term events);

VI-2.10 Connecting Processes with a Pipe

Calls Used:

Pipe Mgt.Create_pipe
Creates a pipe.

Byte_Stream AM.Ops.Open
Opens a device.

The following excerpt from the Compiler Ex package body shows how a pipe is created
and opened.

VI-2-12 Building Concurrent Programs

PRELIMINARY

134 compiler pipe: Pipe Mgt.pipe_ AD;
135 -~ Pipe that connects "Parse" and "Code_gen"
136 —-—- processes.

157 compiler pipe := Pipe Mgt.Create pipe:;

158

159 conn_rec := (

160 source code => source_code,

161 machine code => machine_code,

162 listing => listing,

163 parse_out => Byte_Stream AM.Ops.Open (
164 Pipe _Mgt.Convert_pipe_ to _device (

165 compiler pipe),

166 Device Defs.output),

167 code_gen__ in => Byte_Stream_AM.Ops.Open{
168 Pipe Mgt. Convert_pipe to dev1ce(

169 compller pipe),

170 Device Defs.input)):

The opened device ADs for the two open ends are stored in a "connection record” that is
passed by address to each child process. Each child process can read the connection record
and use the opened devices in it.

The Parse process writes the results of its parsing to the conn_rec.parse_out opened
device, the output end of the pipe. The Code_gen process reads the same parse results from
the conn_rec.code_gen_in opened device, the input end of the pipe.

VI-2.11 Locking Shared Data Structures

Calls Used:

Semaphore_ Mgt .Create_semaphore
Creates a semaphore.

Semaphore Mgt.P
Enters/locks/waits at a semaphore. If the semaphore’s current count is
greater than zero, indivisibly decrements it. Otherwise, blocks the caller in
the semaphore’s prioritized process queue.

Semaphore Mgt.V
Unlocks/leaves/signals a semaphore. If processes are blocked at the

semaphore, unblocks and dispatches the highest-priority process. Other-
wise, indivisibly increments the semaphore’s current count.

A data structure shared by multiple processes can be locked by locking an associated
semaphore. To ensure that all processes observe the locking protocol, the data structure can be
managed by a BiiN™ Ada package that handles all access to it. The Symbol Table Ex
package manages a symbol table using such a locking protocol.

The package body creates the symbol table at package initialization; the associated semaphore
is created in the same code block:

Building Concurrent Programs VI-2-13

PRELIMINARY

58 lock: Semaphore_Mgt.semaphore_ AD;
59 -— Used to lock symbol table while a process
60 ~— is accessing it.
221. - PACKAGE INITIALIZATION
222 begin
229 symbol table.lock := Semaphore_ Mgt.
230 Create_semaphore;
231 -- Lock initially indicates table is available.
232 -- First "P" on lock will succeed.

Each operation provided by the Symbol _Table_ Ex package locks the semaphore at the
beginning of the operation and unlocks the semaphore on all return and exception paths. The
following excerpt is from the Read_symbol_data implementation in the package body.
Note that the semaphore is locked once, but unlocked at each of several different exit paths.

184 begin

185

186 Semaphore_Mgt.P (symbol table.lock);

194 for i in 1 .. symbol_table.length loop
195 if symbol_table.value(i).name =

196 fixed_width_name then

197 Semaphore Mgt .V(symbol table.lock):
198 RETURN symbol table.value(i).data;
199

200 end if;

201 end loop:

202 RAISE no_such_symbol:;

203

204 end if;

205

206 —— This call to "V" is never reached in the
207 -- current implementation. The call is included
208 -- as a safeguard in case code changes make it
209 -~ reachable,

210 Semaphore_ Mgt .V(symbol table.lock):

211

212 exception

213 when others => ‘

214 Semaphore_Mgt.V(symbol table.lock):

215 RAISE; -- Reraise exception

216 -- that entered handler.

217

218 end Read_symbol_data:

VI-2-14 Building Concurrent Programs

PRELIMINARY

SCHEDULING

Contents
Whatthe Scheduler ISiiiitiiiri it i it it tentenrnneeronnsnsonnese VI-3-2
The Scheduler’'s ObjJeCtiVESvvetirnieeren it iirentetneenenenenenennns VI-3-2
The Scheduler’s Taskovtiiirinteneeeierenneeenroanaenenenannneaans VI-3-2
CPU Schedulingcvviiitiir ittt i iatitetenneensensasanencnenens VI-3-3
CPU Scheduling Modelcoiiiriinninirinnneenneennansencnnnns VI-3-3
Scheduling Service Objects (SSOS) ..o vvv ittt it ittt et VI-3-6
Resource-Driven PHOmMtiESiititiiiiiiet ittt it iineneennnennn VI-3-7
Memory Schedulingcuiuniriiiiiiir it ittt iirieanenanansnsas VI-3-9
O SChedulingcvvniiiieiiiiiiiiieretentreeooeenoencensonsonensans VI-3-9
SUMIIATY ...t ittt it teneererneneoenenonsesemessnensnoenensnsoesnenans VI-3-9
Scheduling VI-3-1

PRELIMINARY

This chapter explains how jobs and processes are scheduled. It discusses the scheduler’s
objectives and tasks, scheduling service objects (§SOs), CPU scheduling, memory scheduling,
and I/O scheduling.

VI-3.1 What the Scheduler Is

The scheduler is a collection of hardware and software entities whose purpose is to schedule
the execution of jobs (and thus processes).

The scheduler is designed for multi-user systems, provides support for real-time applications,
and withholds explicit control of scheduling from the user.

The scheduler is not intended to be replaceable; instead, the system administrator can tailor a
Jjob’s scheduling parameters to suit specific requirements.

VI-3.2 The Scheduler’s Objectives

The scheduler’s general objective is efficient use of the system’s resources. Specifically, it
seeks to:

¢ Maximize resource utilization

® Maximize system throughput

e Minimize response time for interactive users
¢ Avoid starvation of jobs

e Degrade gracefully under load

e Minimize thrashing.

To accomplish these objectives, the scheduler is designed to favor:
e Interactive jobs

¢]/O-bound jobs '

e Jobs with small working sets

¢ Short jobs.

and to handicap:

e Noninteractive jobs
¢ CPU-bound jobs
® Jobs with large working sets.

VI-3.3 The Scheduler’'s Task

A job needs three resources to execute: physical memory, processor time, and I/O devices.
The scheduler attempts to balance the job’s need for these resources against their availability
and maximize resource utilization for all jobs in the system.

VI-3-2 Scheduling

PRELIMINARY

Thus, the scheduler’s task is threefold: CPU scheduling, memory scheduling, and I/O schedul-
ing. These are discussed in the following sections.

VI-3.4 CPU Scheduling

This section discusses CPU scheduling.

VI-3.4.1 CPU Scheduling Model

When a job is invoked (see Chapter VI-1), it is enqueued on a scheduling port served by a
scheduling daemon. Thereafter, scheduling occurs at three different levels:

® High-level scheduling schedules jobs.
® Medium-level scheduling assigns priorities to processes.

o Low-level scheduling dispatches processes for execution on a processor.

VI-3.4.1.1 High Level Scheduling

When the scheduling daemon is activated, it removes a job from the scheduling port and
schedules it by enqueueing the job’s initial process at the end of one of the queuesina
dispatching port. The port has 32 queues, ordered in priority from 0 (lowest) to 31 (highest).
(Note: Priorities 16-31 are reserved by the OS and never used by user processes.) A process
enqueued in this manner is said to be in the mix. Putting a process in the mix is called
high-level scheduling. See Figure VI-3-1.

Dispatching Port

Priority 31 Queue >] Process > Process
Priority 30 Queue
Priority 29 Queue »1 Process »| Process »! Process

[]
L
L]

Process p= == =%, Process
L J

Y

Priority m Queue

~
. o Scheduling Port
. ~
. N (Job Queue)
Priority O Queue > Process Scheduling daemon

schedules job.

Figure VI-3-1. High-level Scheduling

Scheduling VI-3-3

PRELIMINARY

VI-3.4.1.2 Low Level Scheduling

Each processor has a pointer to the dispatching port. When a processor is available to execute
a process, it dequeues the first process from the highest numbered, non-empty queue in the
port, and executes it. This is called low-level scheduling or dispatching; it is done by
microcode, not software. See Figure VI-3-2.

Processor

/— Processor dispatches highest—priority
process for execution.

Dispatching Port

Priority 31 Queue > Process > Process
Priority 30 Queue
Priority 29 Queue »] Process >} Process »1 Process
[]
°
[]
Priority n Queue »| Process > Process
[]
[4
[]
Priority O Queue »| Process

Figure VI-3-2. Low-level Scheduling

VI-3.4.1.3 Processor Preemption

It is possible for a running process to be preempted (forced to relinquish the processor) by a
process waiting in the dispatching port. Whether this occurs depends on the processes’ relative
priorities and the system’s preemptive threshold. Currently the threshold is &: if an interrupt
handler or a process with a priority greater than or equal to 8 is ready to run, it will preempt a
handler or process running with a lower priority.

Note that the preemptive threshold may change.
See Pages VI-3-6 and VI-3-7 for further information about process priorities.

Vi-3.4.1.4 Classes and Priorities

Each job has a scheduling service object (SSO) that determines the type of scheduling service
the job receives. Among other things, the SSO defines the job’s service class and priority.

VI-34 Scheduling

PRELIMINARY

There are four service classes: real-time, time-critical, interactive, and batch. All the
processes in a job have the job’s service class; a job’s service class never changes.

There are 32 priorities, corresponding to the priorities in the dispatching port.

See Page VI-3-6 for further information about service classes, priorities, and SSOs .

VI-3.4.1.5 Processor Claim and Job Time Limit

Each job has a processor claim that defines the number of time slices available to the job’s
processes in a scheduling cycle and a time limit that defines the total processing time available
to the job (and its descendant jobs).

All jobs have the same processor claim, but the length of the time slice given to a process is
determined by the process’s priority.

A job’s time limit is determined by by the time_1imit parameter in the
Job_Mgt . Invoke_job function. The exact interpretation of time_limit is subtle; see
Invoke_ job for further information.

When a time slice occurs, a time-slice fault-handler checks the processor claim:

e Ifit is nonnegative, the time-slice fault-handler reduces it by one and gives the process
another time slice by putting it at the tail of its priority queue in the dispatching port.

e Ifit is negative, the time-slice fault-handler triggers a resource-exhaustion fault-handler,
which checks the job’s time limit. If the limit has been exceeded, the job is terminated; if
not, the resource-exhaustion fault-handler replenishes the processor claim (charging it
against the job’s Resource Control Object (RC0)), and continues job execution.

VI-3.4.1.6 Medium Level Scheduling

Scheduling

The scheduling daemon puts real-time, time-critical, and interactive jobs into the mix im-
mediately, but puts batch jobs in a waiting queue until system load allows them to be put in the
mix. Once a process is in the miXx, its scheduling depends on its priority, service class, and
dynamic behavior. This is called medium-level scheduling, and is performed by hardware and
the time-slice fault-handler. The following summarizes medium-level scheduling after a job
has been put in the mix:

¢ Real-time processes:

— A real-time process is not subject to time slice faults; that is, it executes until it ter-
minates or blocks for I/O.

~ If it blocks for I/O, hardware retums it to the front of its priority queue in the dispatch-
ing port when the I/O completes.

— Itisup to the software designer to ensure that a real-time process does not starve other
real-time processes and keep them from executing for too long a period.

¢ Time-critical processes:

— A time-critical process is subject to time slice faults. When a time slice fault occurs, it
is handled as described in Section VI-3.4.1.5 on Page VI-3-5.

— If a time-critical process blocks for I/O, it is treated like a real-time process.

¢ Interactive and batch processes:

VI-3-5

PRELIMINARY

— Aninteractive or batch process is subject to time slice faults like a time-critical process
and is treated in the same way, with one exception: if it receives an additional time
slice, the time-slice fault-handler lowers the process’s priority and places it at the tail of
its new (lower) priority queue in the dispatching port.

— If an interactive or batch process blocks for I/O, the time-slice fault-handler raises the
process’s priority to the priority of the requested 1/O device, and places it at the tail of
its new (higher) priority queue in the dispatching port when the I/O completes. This
allows the process to issue several I/O requests for the device at the higher priority.

— Note that the scheduling discipline for real-time and time-critical jobs is based on fixed
priorities, but the scheduling discipline for interactive and batch jobs is based on
dynamic, resource-driven priorities. See Page VI-3-7 for further information.

VI-3.4.2 Scheduling Service Objects (SSOs)

A Scheduling Service Object (SSO) is associated with a job when the job is invoked. The SSO
determines the type of scheduling the job receives.

The system administrator is responsible for creating different types of SSOs and controlling
access to them, thus controlling the type of service granted to different jobs (see the
SSO_Admin package).

The SSO determines the job’s service class, SSO priority, time slice, memory type, initial age,
and age factor.

VI-3.4.2.1 Service Classes

Service class denotes the general class of service a job is to receive. Four service classes are
defined: realtime, time-critical, interactive, and batch.

Real-time jobs are executed in real time. They have very high priority and an infinite time
limit. They run in frozen memory, and are not subject to the scheduling process. They are
preemptive (given the current preemptive threshold) and always in the mix. If they block for
I/O, the hardware reschedules them as soon as the I/O completes.

Time-critical jobs have less stringent time constraints than real-time jobs. They have the
same priority as real-time jobs, but a finite time limit (when a time slice expires, they are
rescheduled or terminated). They need not run in frozen memory, since their time constraints
can tolerate page faults. Like real-time jobs, they are preemptive (given the current preemptive
threshold) and always in the mix.

Interactive jobs involve interaction between a user and a job (an editing session, for example).
Interactive jobs run in normal memory, have a finite time limit, and have a lower priority than
real-time and time-critical jobs.

Batch jobs are background jobs with no attached user. Like interactive jobs, they run in
normal memory, have a finite time limit, and have a lower priority than real-time and time-
critical jobs.

VI1-3.4.2,2 SSO Priority

SSO Priority is the job’s SSO priority. SSO priorities are defined as follows (higher values
indicate higher priority):

VI-3-6 Scheduling

PRELIMINARY

16 - 31 Reserved for interrupt handlers; not available for program execution.
15 Timing daemon.

12-14 Real-time and time-critical jobs.

11 Scheduler and other well-behaved system jobs.

0-10 Interactive and batch jobs.

As noted earlier, a handler or process with a priority greater than or equal to the preemptive
threshold will preempt a processor from a handler or process running at a lower priority. A
handler or process with a priority lower than the preemptive threshold cannot preempt a
processor. The current preemptive threshold is &; it may change in the future.

VI-3.4.2.3 Time Slice

Time slice is the amount of processing time assigned to each process in the job in each dis-
patching cycle. (It does not include time spent on such incidents as interrupts, processor
preemption, or waiting at a port or semaphore).

When a process exhausts its time slice, it is handled as described in Section VI-3.4.1.5 on Page
VI-3-5.

For additional information about how time slices are interpreted for different classes of jobs,
see time_slice_enabled,time_slice_reschedule,and time_slicein
SSO_Types.SSO_Object.

VI-3.4.2.4 Memory Type

Memory type is the type of memory in which the associated job should run. There are two
types of memory: frozen and normal. Frozen memory is nonswappable, nonrelocatable
memory; it is used for jobs that cannot tolerate page faults (real-time jobs, for example). Nor-
mal memory is swappable and relocatable.

VI-3.4.2.5 Initial Age

Initial age is a job’s age when it first enters the scheduler’s waiting queue of swapped-out jobs
(see page VI-3-9). Larger values indicate older jobs. The job at the head of the queue is the
oldest job and will be scheduled next. Giving a job a large initial age helps move it to the head
of the queue more rapidly.

VI1-3.4.2.6 Age Factor

Age factor is the rate at which a job ages in the scheduler’s waiting queue. On every scan of
the waiting queue, the age factor is added to the job’s age to determine a new age. The larger
the aging factor, the faster a job ages, and the sooner it rises to the front of the waiting queue.

Note that care should be used before assigning an age factor of O to a job. Such a job will
never age, and may therefore starve in a busy system.

VI-3.4.3 Resource-Driven Priorities

A single, fixed priority (SSO priority) is used to schedule real-time and time-critical jobs, and
their priority is unaffected by resource usage. In contrast, scheduling for interactive and batch
jobs uses several priorities and is dynamically driven by resource usage.

Scheduling VI-3-7

PRELIMINARY

VI-3.4.3.1 Priorities Used

The priorities used in scheduling interactive and batch jobs are:
SSO priority The priority defined in the job’s SSO.
Base priority The lowest priority a process can have.

A process’s base priority is set when the process is created. The base
priority of an initial process in a job is the job’s SSO priority. The base
priority of a spawned process is the base priority of its parent process.
The System Administrator can change a process’s base priority to any
value; a user can change it to a value less than or equal to the job’s SSO
priority.

Changing a job’s base priority is accomplished by changing the base
priorities of all the job’s processes.

Resource priority The priority assigned to a particular resource.

When a process blocks on a resource, its priority is raised to the resource
priority (unless its priority is already higher, in which case its priority
remains unchanged).

After using a resource, a process must return to its base priority. Each
resource class specifies the amount of time in which this must occur. The
process’s priority is decreased linearly from the resource priority to the
base priority in the specified amount of time.

Running priority The priority at which an interactive or batch process is currently running,
Running priority is determined by the other priorities.

VI1-3.4.3.2 An Example

VI-3-8

Consider I/O resources as a example (but note that the discussion is applicable to any resource
managed by the scheduler).

I/0 resources are divided into different classes and each class is assigned a priority; for ex-
ample, terminals might have priority 10, disks priority 9, and communication lines priority 8.
(To keep process priorities less than or equal to 70, all resources have priorities less than or
equal to 10).

A process begins executing at its base priority (say, 5) and stays there until it blocks on an I/O
resource (say, disks). While blocked, its priority is raised to the disk’s priority (9). After the
I/0, its priority is decreased linearly (by the same amount at each time slice) until it returns to
its base priority (5).

As the process alternates between CPU usage and I/O requests, its priority fluctuates between
its base priority and the priority of the I/O resources it requests (these may be different
resources with different priorities). The process terminates at some priority level between its
base priority and the priority of the I/O resource it last requested.

The presumption behind raising a process’s priority to the resource’s priority is that if the
process issues one request for the resource, it is likely to issue another soon. The overall effect
of the model is to favor I/O-bound jobs and penalize CPU-bound jobs, thus maximizing the use
of system resources. '

Scheduling

PRELIMINARY

VI-3.5 Memory Scheduling

This section discusses memory scheduling.

Before a process can compete for CPU time, some of its instructions and data must be present
in physical memory. (Invoking a job causes a series of faults that bring the program object,
domain object, and other objects into primary memory; see Chapter VI-1). Thus, physical
memory is as important a resource as the CPU, and memory scheduling is an important part of
the scheduler.

The major goal of memory scheduling is to implement the working set model of memory
management. The working set of a job is dynamically defined as the set of primary memory
pages referenced by the job in the last time quantum, T, measuring backwards from a given
time ¢. These are the pages which the job used most recently; identifying them and keeping
them in memory reduces page fault rates and contributes to system efficiency. (See any stan-
dard operating system text for more information about the working set model).

Memory scheduling uses the following model:

e The system maintains a pool of free pages of primary memory.

e As long as there are enough pages in the pool, all the jobs in the mix are allowed to remain
there and new jobs are allowed to enter the mix.

¢ To guard against the depletion of the pool, the scheduler periodically examines memory
usage by all the jobs in the mix and transfers back to the pool any pages that are not in the
working set of some job. This is done by examining each job’s Storage Resource Object
(SRO). The SRO references a list of the pages each job has in primary memory. Any page
that has not been accessed or modified in the last time quantum, T, can be retumned to the
pool. This is known as SRO page replacement.

e When the number of free pages in the pool falls below a low water mark, the scheduler tries
to get more free pages by triggering SRO page replacement more often. If that doesn’t
succeed, the scheduler then pulls jobs out of the mix and releases their pages. The pages
are given to the pool, and the jobs are swapped out to secondary memory. The scheduler
keeps a waiting queue of swapped-out jobs.

¢ Inorder to achieve fair treatment for all jobs, the scheduler periodically examines the wait-
ing queue and puts the job at the head of the queue in the mix. This ensures that no job
starves while waiting for memory. The aging parameters in a job’s SSO (initial_age
and age_factor) determine the job’s position in the waiting queue.

o The scheduler also periodically triggers global SRO page replacement, which attempts to
free pages from the normal global SRO (pages in the frozen global SRO are not replaced).

VI-3.6 /O Scheduling

/O scheduling is done implicitly through the mechanism of resource-driven priorities, as
described above.

VI-3.7 Summary

e The scheduler is a collection of hardware and software entities whose purpose is to
schedule the execution of jobs (and thus processes).

Scheduling VI-3-9

VI-3-10

PRELIMINARY

The scheduler’s general objective is efficient use of system resources.

The scheduler’s task is to perform CPU scheduling, memory scheduling, and I/O schedul-
ing.

The type of CPU scheduling a job receives is determined by the SSO associated with the
job when it is invoked. The SSO determines the job’s service class, priority, time slice,
memory type, initial age, and age factor.

The scheduling daemon puts real-time, time-critical, and interactive jobs into the mix im-
mediately, but puts batch jobs in a waiting queue until system load allows them to be put in
the mix. Once a process is in the mix, its scheduling depends on several factors.

The scheduling discipline for real-time and time-critical jobs is based on a fixed priority,
but the scheduling discipline for interactive and batch jobs is based on dynamic, resource-
driven priorities.

The major goal of memory scheduling is to implement the working set model of memory
management.

1/O scheduling is done implicitly through the mechanism of resource-driven priorities.

Scheduling

PRELIMINARY

Part Vil

Type Manager Services

This part of the BiiN™/OS Guide shows you how to build type managers, software modules
that implement new object types and their attributes.

The chapters in this part are:

Understanding Objects
Explains objects and their characteristics.

Understanding Memory Management
Explains how the OS manages memory.

Building a Type Manager
Shows you how to design and implement a simple type manager.

Using Type Attributes
Shows you how to define and implement type-specific attributes, packages
or data structures supported by multiple object types.

Managing Active Memory
Shows you how to control object allocation and deallocation, and control
object reclamation via garbage collection.

Building Type Managers for Stored Objects
Shows you how to design and implement type managers for objects stored
on disk.

Understanding System Configuration

Explains how a BiiN™ node is configured as a collection of type managers
that have configuration requirements. Each such type manager implements
the configuration attribute.

Type Manager Services contains the following services and packages:

TM object service:
Countable_Object Mgt
Global_SRO_Defs
Lifetime_Control
PSM Trusted_Attributes
SRO_Mgt
Unsafe_Object Mgt

TM transaction service:
Local_Transaction Defs
Local_Transaction Mgt
TM_Transaction_ Mgt

TM concurrent programming service:
Job_Resource Reclamation
Port Mgt ’
Typemgr_Support
Unsafe_Port Mgt
Unsafe_Semaphore_ Mgt

configuration service:
Configuration

Part VII Overview

PRELIMINARY

custom naming service:
Customized_Name Mgt
Link_ Mgt
Standalone_Directory Mgt

backup service:
Backup_Support notimplemented in this release
Trusted_Log_ Mgt not implemented in this release

Part VII Qverview

PRELIMINARY

UNDERSTANDING OBJECTS

Contents
Why Use ObjJeCtS? ...ttt ittt ittt ieeienereeenennasesoaennnsns VII-1-2
Data AbStraCtioniviititiieenint i iiieerneennereenanennan VII-1-2
Memory Protectioniiiniiinitninerereneernrneannersanenannns VII-1-3
Secure and Dynamic Memory Managementcoevitennnnnn. VII-1-4
Support for Complex and Extensible Applicationsccccevunen.. VII-14
Uniform Storage Model for Permanent and Volatile Memory VIiI-1-4
Distributed Storage Modelcoiiiiiii i i i i e VII-1-5
How Objects Work it i i ittt i e i ieieenanannnn VII-1-5
L0 o] 1T A A AP VII-1-5
00 5,2 T O PN VII-1-5
ObjeCt Protectionitiuiiitiinee ettt iitinnereneennrennanonnens VII-1-6
AT DUIES ... it it i i i e ettt e a e VII-1-6
The Inside View of anObjectciiiiiiiiiiieinennnenennnnnns VII-1-8
Address Space ProteCtioncovuiiunirnneinernereeneeneenansonnaonnnns VII-1-10
ACCESS DeSCIIPIOrS ... ivit ittt ittt ie et e tnerneetaeeennanaens VII-1-12
TYPe Managersuuiiiiiiiiitteeeneenetonrnsaneenneenoenesnennns VII-1-13
DOMaAINS ...ttt ittt it e et e i VII-1-14
Passive ObJeCtSivtritiiiit ittt it et i it i e VII-1-15
ACHVE MeIMOTY .. itiiiit ittt iie i iiin e eeenreneaneneennannenenns VII-1-16
Passive STOTettt i e e e e VII-1-16
Passive ADS ... e e e e VII-1-17
Passive Store Protection -- Authority Listscccciieienn.... VII-1-18
IS o i e e e e e e e ittt e e e VII-1-19
Updating Stored Objectscoviiiitieeinnninneenenennnennnnnn VII-1-20
SUMIMIAIY ittt ittt ittt ietee i iee e eeertetaneeanaeennannnns VII-1-20

Understanding Objects VII-1-1

PRELIMINARY

This chapter explains concepts related to objects and access descriptors. You can find most of
this information elsewhere in the BiiN™ document set, but you would have to look in many
different places. This chapter is the place where all pieces are brought together, so that you can
understand the building blocks of the BiiN™" architecture.

The BiiN™ system has an object-oriented architecture; objects are the building blocks of the
system. This is not the first system based on object-oriented programming. The difference
between the BiiN" system and other systems is the rigor with which object-orientation is
implemented.

VIl-1.1 Why Use Objects?

Objects are used in the BiiN™ system for the following reasons:
e Data abstraction

¢ Memory protection

e Secure and dynamic memory management

¢ Support for complex and extensible applications

¢ Uniform storage model for permanent and volatile memory
e Distributed storage model.

Each point above will be briefly explained in the following sections.

Vil-1.1.1 Data Abstraction

VII-1-2

In most cases your program will not be concerned with the inner workings of objects. An
object appears like a black box to the programmer. The box has ‘‘jacks’’ and ‘‘buttons’’. As
you press certain buttons the box takes things from the input jacks and sends something to its
output jacks. Or the box performs some other operation. The two important points in the anal-
ogy are:

® The box’s buttons do certain things and those things only.

¢ How the box performs its operations or how it looks on the inside is unknown. (See Figure
VII-1-1)

Understanding Objects

PRELIMINARY

"Black Box” Inside the
Object Object

IHERRANERENI
:: Y

Figure VII-1-1. An Object as a Black Box

Objects present a well defined outside view. That means that their functionality is defined ‘‘on
their front panel’’. How the object works is hidden from view. Data abstraction of this type has
two advantages:

e A programmer can use an object without having to know what goes on inside just as you
may use a television set without having studied the intricacies of electromagnetism.

e The inside of an object may be altered without affecting programs that depend on the
outside of the object.

You can compare objects to Ada packages. The outside view of an object corresponds to the
specification of the package. The representation of the object corresponds to the body of the
package.

VIl-1.1.2 Memory Protection

Objects are the unit of protection in a BiiN™ system. The memory of a BiiN™ system should
not be viewed as an array of bytes but as a network of objects. The way the objects are
connected can change at any time as the system runs. Each connection consists of a pointer
called the object index and a list of access rights. These connections are called access
descriptors (AD). The both provide and limit access. Connections can be made based on a
strict ‘‘need to know’’ basis. Connections can only be made (ADs created) by the BiiN™
Operating System. The BiiN™ Operating System uses special hardware instructions to manipu-
late ADs. Every access to memory involves checking

e that an AD presented is a valid AD,
¢ that an AD has proper access rights,
¢ that the reference falls entirely within the referenced object.

While objects are protected by ADs, ADs are protected by the hardware. Special instructions
are required to create and copy ADs. Nobody, not even the operating system, can circumvent
this protection mechanism.

Understanding Objects VII-1-3

PRELIMINARY

VII-1.1.3 Secure and Dynamic Memory Management

Objects are dynamic. They can be of any size from zero to four Giga bytes. They can be
dynamically created, resized, and destroyed. Unneeded objects are automatically removed. For
example you can create an object, change its size as many times as you want over the lifetime
of the object and then simply abandon it. The operating system will pick up after you. Long
running or very large programs can also explicitly control garbage collection. This relieves the
operating system considerably.

Vii-1.1.4 Support for Complex and Extensible Applications

Complex programs can never be entirely free of bugs. In a complex system a constant concem
is that one program module not corrupt another. This problem is particularly hard to handle in
conventional architectures: The instructions or data that have been corrupted may not even be
related to the corrupting module.

This is a particularly acute problem when you want to extend important, sensitive, and com-
plex applications, or maybe the OS itself. The traditional solution to the problem is to adopt a
two-view scheme. In a two-view scheme the address space is divided into two levels, one level
reserved for the operating system, and one level for the user. The interaction between the two
levels is severely limited. The two-view scheme restricts functionality.

If address space is shared between user and operating system one risks major breakdowns of
the combined system.

In the object-oriented architecture of a BiiN™ system addressing errors are confined to their
origin: A wrong address will also always be an invalid address. This is done with a multiple-
view scheme. Every application program, every system routine, in fact, ever job runs in its
own protected address space. All jobs execute at the same level. The important ingredient in
the multiple-view scheme is an efficient call/return mechanism that allows communication
between protected address spaces.

For example, extensions to the OS run at the same level as the OS and are therefore able to use
its full functionality. The same applies to applications. Any program can be easily extended
without compromising reliability of the original program.

ViI-1.1.5 Uniform Storage Model for Permanent and Volatile Memory

VII-1-4

The BiiN™ system extends its model of protection and its object-oriented architecture to per-
manent storage. Objects in permanent memory (such as magnetic disks) are called passive
objects. Objects in volatile memory are termed active objects. Permanent memory is termed
passive store. There can be multiple active versions of an object but only one passive version
at any time. In order to read the contents of an object or to write an object, the object has to be
activated first. When a change to an object should become permanent, the object will be
passivated. That means that either a new passive object will be created, or an existing passive
version of the object will be updated. When multiple active versions of an object are present,
the BiiN™ Operating System ensures that obsolete active versions cannot corrupt the passive
object.

Understanding Objecis

PRELIMINARY

VII-1.1.6 Distributed Storage Model

Passive store is distributed -- spread over multiple BiiN™" nodes and transparently accessible
from any node. One can view passive store as the glue that holds a distributed BiiN™ system
together. Passive store is divided into volume sets. Passive objects are stored on volume sets.
Along with each passive object, a master AD is stored on the same volume set. That passive
AD contains a unique identifier (UID), unique for all times and on all BiiN™ nodes. Evenifa
disk is moved to another BiiN™ node or BiiN™ system, the passive objects stored on that disk
will still be uniquely identified.

Vil-1.2 How Objects Work

In the previous section you have learned what objects are, namely typed and protected memory
segments. In this section you will learn how objects function in the BiiN™ architecture.

An object is characterized by a number of properties such as size, lifetime, type and a list of
attributes. Objects can also be active or passive. In the following sections you will learn about
these properties in more detail.

Vil-1.2.1 Object Sizes

Objects can have sizes ranging from zero to four Giga bytes. Object sizes are rounded. (How
object sizes are rounded is explained in chapter VII-5.) Objects can be created resized and
destroyed at runtime (see Figure VII-1-2).

0

bytes

192 T 056

bytes
320 bytes
bytes

Figure VII-1-2. An Object Can be Resized

VIl-1.2.2 Types

You probably know what typing is from programming languages such as Ada or Pascal. In one
sense object types in a BiiN™ system are no different than data types in Ada. Since most of the
BiiN™ Operating System is written in BiiN™ Ada, object types are implemented to a certain
degree as Ada types. In another sense object types are very different from Ada types. Data in
Ada is typed only at compile-time while objects are also typed at runtime. Whenever a
software module attempts an operation on an object in a BiiN™ system, the OS first checks
whether the operation is allowed for the object. While you can get around compile-time typing
by using conversion functions or type overlays, there is no way to circumvent runtime typing

Understanding Objects VII-1-5

PRELIMINARY

There are a number of predefined system types such as disk, file, job , or program. (For a
complete list of system types refer to the Appendix of the BiiN" /OS Reference Manual.) On
top, there is one peculiar type of objects called generic objects. Generic objects are untyped
although, strictly speaking, they have a defined type, the so-called generic type.

You are not limited to the system types. Just as in Ada, you can define your own types and
implement them on the system.

Object typing is complete and pervasive, more so than typing in programming languages.
There are no backdoors that let you bypass the typing mechanisms.

VIii-1.2.3 Object Protection

Typing protects an object from operations that are not defined for the object. There is another
mechanism that protects the contents of the entire address space. This protection is provided by
protected pointers called access descriptors (AD). As the name indicates, ADs provide access
to objects. At the same time ADs limit access. Protection by ADs is complete. No object can
be accessed without an AD. You can go so far as to identify an AD with the object.

Figure VII-1-3 illustrates the relationship between an object and an AD in a simplified way.

Access Descriptor
Pointer Rights

Cbject

Figure VII-1-3. Object and Access Descriptor

Vii-1.2.4 Attributes

VII-1-6

While typing of objects serves two functions, namely protection and data abstraction, the same
applies to attributes. Attributes are the means by which the prime capability of objects is
realized; objects describe the operations that can be performed on them. An attribute is itself an
object that acts as a label. The label typically describes an operation such as
Byte_Stream AM.ops.Read. All objects that allow Byte_Stream AM.ops.Read
carry a reference to this attribute. The mechanism works like this:

Objects have an attribute list that consists of <attrib-ID,attrib-value> pairs. The attribute-ID
part references the attribute while the attribute value is typically an AD to a routine that imple-
ments the operation for the type. .

Understanding Objects

PRELIMINARY

All attributes contained in a particular object’s attribute list apply to that object. In addition to
these attributes an object inherits all attributes defined for its type. Those type-specific at-
tributes are defined in the object’s TDO.

For an example and an illustration of these dependencies see Figure VII-1-4,

Print_MgtPrint (okject, . .

Print_Mgt
package
— %
Document — Spreadsheet
Document Spreadsheet
Y 1O Y TDO
Print
. Attribute ID
,/ -
| \ [

Print_Document Print_Spreadsheet
Y package package

=1/ 27

Figure VII-1-4. How Attributes Work

In Figure VII-1-4 there are two objects, a spreadsheet object and a document object. Both have
inherited the attribute "printable™ from their respective TDOs: The attribute lists of the
two TDOs contain a reference to the same attribute "printable". The attribute values
however are different: The document TDO has an AD to a package that implements printing
of documents (named Print_Document) while the spreadsheet TDOhasanADtoa
package that is capable of printing spreadsheets (named Print_Spreadsheet).

Before concluding this section on attributes we shall briefly touch upon the general protocol of
how attributes are implemented in a BiiN™ system.

Understanding Objects VII-1-7

PRELIMINARY

Generally an implementor will establish a 1:1 correspondence between Ada attribute packages
and attributes. There will be one attribute package for each attribute. The attribute package
only contains subprograms and no other declarations. However, an attribute package can be
nested inside another package that provides data declarations and subprograms common to all
types. An attribute package must also have the Ada package_type pragma. This marks the
package as an attribute package and binds it to the attribute ID, which is identified by its
pathname. The body of an attribute package is empty.

As the next step, the implementor of an attribute will define various instances of the attribute
package. These instances are the type- or object-specific implementations of the attribute pack-
age. In Figure VII-1-44 Print_Spreadsheet and Print_Document are such instances
of one attribute package Print.

Instances have their own package specifications which all match the specification of the at-
tribute package. The instances are bound to the attribute package by the package_value
Ada pragma. Every instance has its own specific body and runs in its own domain. Instances
cannot be merged into one domain with other packages.

VII-1.2.5 The Inside View of an Object

VII-1-8

After having learned about the characteristics of an object, we proceed to explore how these
concepts are implemented in the memory of a BiiN™ system. Figure VII-1-5 illustrates the
inside view of an object. We have already learned about objects and ADs. Here we see that
there are some more details to the picture:

Understanding Objects

PRELIMINARY

Access Descriptor
Object Index Rights

Object
\ Table

0D

Object Descriptor
TDO AD |Base Address
Size Status

v Object

Type
Definition
Object

<

Y

Figure VII-1-5. Objects Are Typed and Protected

An object consists of two parts, the object descriptor (OD) and the object’s representation.
When we talk of the size of an object, we refer to the size of its representation. The represen-
tation holds the contents of the object. The object descriptor on the other hand holds important
information about the object, such as the physical address of its representation and its size. As
Figure VII-1-5 indicates, an AD to an object points to the object descriptor not the object’s
representation. All object descriptors on one BiiN™ node are held in a one place, the object
table. An object’s representation may be moved around in memory by the BiiN™ Operating
System but the object descriptor always stays in the same place.

The object’s type is defined in the object descriptor by an AD stored there that points to a type
definition object (TDO). There is one TDO for each distinct type. That means that two objects
have the same type if their object descriptors reference the same TDO.

This model of objects with its two parts, object descriptor and object representation allows for
a peculiar object, an object of length zero. Such an object has no representation and therefore
really has zero length. This means that all information that pertains to the object is contained in
the object descriptor. Objects of length zero are very useful as unforgeable identifiers. They

Understanding Objects VII-1-9

PRELIMINARY

can be compared to license plate numbers. The significance of a license plate number is not the
information contained in it but the fact that it is different from all other license plate numbers.

VII-1.3 Address Space Protection

VII-1-10

As software grows more and more complex, bugs become impossible to eradicate. No software
engineer, nor any company can guarantee that their software products will not fail under any
circumstances. Such software failures can have disastrous results as processors pervade our
daily lives. It has therefore become imperative that failures be detected at their origins and that
their influence be confined.

The most dangerous types of errors are addressing mistakes. By making such a mistake, a
routine can corrupt data or programs anywhere in a computer’s memory. Such a mistake may
go unnoticed for a while until the corrupted data or programs are used. When the fault is
finally discovered, it is almost impossible to locate its origins and prevent it from happening
again.

Address space protection should not be monolithic as different programs require different
levels of protection. A well tested routine running as a separate process would only suffer in
performance if it had to drag along the same protection mechanisms that are needed for a
recently implemented extension to the operating system.

The BiiN™ architecture provides a flexible and efficient protection scheme that addresses this
problem. The unit of protection in a BiiN™ system is the object. An object is protected on three
levels. (For an illustration, see Figure VII-1-6.)

Understanding Objects

PRELIMINARY

All objecls in a system.

C

LIMITED ACCESS:

Object accessible to the current
subprogram call.

=

TYPE CHECKING:

Accessible abjects with the
correct type for the operation.

Accessible objects with the
correct type and accessed
with the correct rights for the
operation.

-

Figure VII-1-6. Threefold object protection

The entire memory of a BiiN™ system is organized in terms of objects. Objects can only be
accessed by protected pointers, the access descriptors. An AD contains the information where
the object it references is stored. But the AD limits the access to the object by way of access
rights that are stored in it. Access descriptors are manipulated in controlled ways by the
hardware. If a routine attempts to manipulate an AD, such as changing the address or tamper-
ing with the rights, the AD will automatically be invalidated. This is the basic protection that
applies to all objects in a system.

ADs are given out on a strict ‘‘need to know’’ basis. Any subroutine therefore has access only
to the objects that it needs to reference. Thus the set of objects accessible to any one call is
strictly controlled. In Figure VII-1-6, this set is represented by the second outermost circle.

Objects are further protected by typing. Operations are tied to object types; an implementor
defines what operations are permissible. This level of protection is represented in Figure
VII-1-6 by the third outermost circle.

Finally the strictest protection is provided by the type manager model. A type manager is a
routine that implements all operations on a certain type. Any routine that wants to perform an
operation on the object protected by a type manager has to do so using a call to the object’s

Understanding Objects VII-1-11

PRELIMINARY

type manager. This mechanism strongly confines any error that may occur in an operation on
an object: Only the type manager can physically get to its objects. And only it is responsible
for the objects’ integrity. This level of protection is represented in Figure VII-1-6 by the inner-
most circle.

In a BiiN™ system not all levels of protection have to be used at all times. Trusted routines can
trade in protection for performance.

VII-1.3.1 Access Descriptors

VII-1-12

Previously, we have characterized the memory of a BiiN™ system as a network of objects and
access desscriptors as connections in the network. Access descriptor are protected pointers;
pointers, because they contain a physical address; protected, because only the BiiN™ Operating
System can create ADs. You may even identify an AD with the object because there is no way
to get to the object except by AD.

Words on a BiiN™ system are 33 bits long. The 33™ bit of every word is a tag bit. If the tag bit
is set, the hardware recognizes the word to be an AD. The information in an AD, address and
rights together is 32 bits long. Figure VII-1-7 shows an AD.

Access Descriptor
TyITI TyF|F

l— Read Rep

—— Write Rep

} Representation Rights

Use

Modify Type Rights

Control

Object

A

Figure VII-1-7. An Access Descriptor

The first 26 bits contain the object index, then a local bit follows, and the next 5 bits are the
rights. (There can be 226 different objects on one BiiN™ node at any time.)

There are five rights, three type rights and two representation rights. Type rights, as their name
indicates are specific to object types. Their names may vary with the types they apply to.
However, there is a naming convention for those three rights: They are called use, modify and
control. In the case of a device, they may be renamed to read, write and control and in the case
of a directory to List, and Store. There are no control rights in the case of directories.

Understanding Objects

PRELIMINARY

Type rights give access to an object’s logical structure. For example, if you have modify rights
to a file you may write to this file record by record. Representation rights are different. There
are read and write representation rights. They give access to an object’s physical layout in
memory. In the type manager model no routines are granted representation rights except the
type manager. (See Figure VII-1-8)

AD with no rep rights

"Black Box”
00 Type Manager
Interface
Operation
Operation
Operation
"Black Box”
Object

Figure VII-1-8. A Type Manager Makes the Object Appear as a Black Box

It is important to understand the difference between type rights and representation rights. For
example, take read rights and read representation rights for a file. A file may have a very
complicated layout in memory. It may sometimes be moved around by the operating system
and it does not even have to be stored in a contiguous way. Having read rights you would
never be aware of the way the file exists in memory. You could read the logical content of the
file, however, and you could copy it. Having read representation rights to the file, on the other
hand, you could read it bit by bit and find out precisely how it is stored in memory. Here we
can go back to our black box analogy; type rights give you access to a black box’s front panel.
Representation rights are like a mechanic’s license. They allow you to take a screwdriver, open
up the box, and dig around inside.

Vil-1.3.2 Type Managers
Type Managers provide the strongest protection in a BiiN™ system.

That protection is provided by the following mechanism: Any operation on an object protected
by a type manager is a call to the object’s type manager. The type manager is the only routine
that operates directly on objects of its type: Only the type manager can create new instances of
its type and only the type manager can remove those instances.

To use an analogy: In rare book libraries, users are not allowed into the stacks. Type managers
act like librarians in such a library. Users of the library fill out request cards, and the librarians
bring the books out of the stacks.

Type managers implement two paradigms of the BiiN™" architecture:

e Error confinement

Understanding Objects VII-1-13

PRELIMINARY

¢ Independence of implementation details.

A well defined functionality is associated with objects of a given type. This functionality is
provided by one module, the type manager. The type manager concept hides implementation
details in the the type manager module and confines all errors to that same module.

As a new type is created, the system returns an AD for the type’s TDO. That AD has amplify
and create rights. It will be confined to the new type’s type manager. A routine may now call
the type manager and pass an AD with certain type rights to it. The type manager will use its
AD to the TDO as a key and add representation rights to the passed AD. After performing the
requested operation, the type manager strips off the representation rights and returns the AD to
the calling program. By definition any routine that holds an AD with Create and Amplify
rights to a TDO is a type manager for that type. ADs with representation rights should never be
passed outside a type manager. There is is one exception to this rule; the rule does not apply to
generic objects.

Generic objects are untyped in the sense that there is no type manager for generic objects. The
operating system functions as the type manager for generic objects and gives out ADs with
representation rights. Generic objects, however, are the only objects for which there are ADs
with representation rights outside a type manager.

Generic objects are used whenever an untyped memory segment is needed. Representation
rights are needed to write an untyped memory segment.

Vil-1.3.3 Domains

Domains provide protected address space for program execution. A domain is represented by
an object of type domain. How a program is split up over different domains is specified at
link-time. The modules that make up a program may be linked into separate domains or some
or all may be merged into one single domain. When calling a routine in a different domain
address space is switched to the called routine’s domain. Upon return, address space is
switched back to the calling domain. The inter-domain calling mechnanism mutually protects
caller and callee.

A separate stack may be associated with any set of domains. A set of domains that share one
stack is called a subsystem. Subsystems are completely isolated from one another. The address
space of a subsystem looks very much like an independent computer all by itself.

Figure VII-1-9 illustrates the details of a domain object.

VII-1-14 Understanding Objects

PRELIMINARY

Linear Address

Space Domain
——— e Static Data

T

~— — — — __ _ Instructions

A

Procedure

T e

—§~‘~ Stack

T

—_——— e Reserved for OS

| T

Figure VII-1-9. Linear Address Space and Domain

A
J
T

A domain holds ADs to the static data object, the instruction object, a subsystem ID, and an
object reserved for use by the BiiN™" Operating System.

The static data object contains data that cannot be referenced outside the current domain. If a
program has only one domain, the static data object contains all variables with global lifetime.
The static data object also contains ADs to other domains whose external procedures can be
called from this domain.

The instruction object contains the code for all subprograms defined in this domain.

The subsystem ID references a local stack object that contains parameters, local variables and
housekeeping information used in subprogram calls. All domains in one subsystem and one job
share a stack object. If you want to have a process executing with its own stack you have to put
the process in its own subsystem.

There is a performance penalty attached to inter-domain calls. Only those modules that need
the added protection should therefore be linked into separate domains.

Vil-1.4 Passive Objects

We have mentioned before that there can be active and passive versions of an object. Most of
our previous discussion applied to active objects. Although passive objects are very similar to
active objects, there are a number of differences that you will need to understand. This section
explains how objects act as the building blocks of passive store, a BiiN™ system’s permanent
memory.

Understanding Objects VII-1-15

PRELIMINARY

Vil-1.4.1 Active Memory

Active memory is the collection of objects in virtual memory on a particular BiiN™" node. An
object can have versions in both active memory and passive store (Figure VII-1-10).

Passive Version

PASSIVE
STORE

Active Version

ACTIVE
MEMORY

Figure VII-1-10. An Object’s Active and Passive Version

Only active versions can be directly read or written. Reading or writing an object with no
active version causes the object to be activated. Objects are activated on demand, trans-
parently, just as pages of virtual memory are swapped in when needed. Both operations are
invisible to your application. Changing an object’s active version does not change the object’s
passive version. An explicit update call is needed to copy an object’s active version to its
passive version.

VII-1.4.2 Passive Store

While active memory is entirely part of one BiiN™ node, passive store is completely dis-
tributed in a BiiN™ system. Passive store is the glue that holds a distributed BiiN™ system
together. (See Figure VII-1-11)

VII-1-16 Understanding Objects

PRELIMINARY

NODE

SK

DIS ASKIVE7S TOR

NODE

Z

DIS

NODE NODE

Figure VII-1-11. Passive Store Unifies All Nodes in a BiiN™ System.

Passive store wraps around an indefinite number of disks in a distributed BiiN™ system. Logi-
cally it is divided up into volume sets. Volume sets are associated with individual nodes.
However, that association is transparent to the user.

VII-1.4.3 Passive ADs

When an object is first stored, passive store créates a passive AD for the object. A passive AD
is a much bigger entity than an active AD. The reason is that a passive AD is a unique refer-
ence on an entire distributed system, while an active AD is valid only on a particular BiiN™
node.

Whenever an AD crosses the boundary between active and passive store or between different
nodes of a distributed system, it has to be converted from its active to its passive form.

Just as there can be multiple active ADs 10 one object, there may be more than one passive AD
to an object. (There may also be active ADs to passive objects.) One of the passive ADs is the
master AD. All other passive ADs are called alias ADs. The master AD plays a crucial role.
An object cannot be stored until a master AD exists. If there is no longer any master AD for an
object that object will be removed. There are the following exceptions to that rule:

e If the master AD is stored in a directory and other directory entries on the same volume set
reference the object. One of these alias ADs then becomes the new master AD.

e If the master AD is stored in another object and other ADs in that object reference the
object. One of those alias ADs then becomes the new master AD.

Understanding Objects VII-1-17

PRELIMINARY

VII-1.4.4 Passive Store Protection -- Authority Lists

Naming of and references to passive objects are slightly different than for active objects. The
reason for this is simple: An AD once given out is irrevocable. That means that rights once
granted by giving out an appropriate AD cannot be taken back. Generally this poses no
problem in active memory since usually active objects only exist for short time periods. Ob-
jects on disk, however, exist indefinitely.

The model for protecting objects in passive store is different from the address space protection
provided by ADs in active memory. Protection requirements are different for passive objects
than for active objects.

In active memory a program should execute as much as possible in a secluded cell. Thus the
segment of memory that can be affected by an erring program is kept to a minimum size.

This protection philosophy is inadequate for passive store for two reasons.

e Passive store is distributed. The view that any one job has of passive store should as wide
as possible without opening up protection holes.

® Objects in passive store exist indefinitely. Information of who may access an object stays
with the object. This allows the owner of the object to alter access over the lifetime of the
object. (The philosophy behind active memory protection is to attach the information of
who may access an object not to the object but to the requesting job. In this model it is
difficult to revoke access once it has been granted.)

The difference explained in the second point above can be likened to the difference between a
key lock and a combination lock. A key will always open the key lock just as an AD will
always grant access to its object. But a combination can be made invalid when the lock is reset.

The protection provided for stored objects is based on the concept of an authority list. An
authority list consists of <ID, Type Rights> pairs. When an object is first stored, an authority
list can be specified by the storing process. If no authority list is given, the object will receive
the default authority list of the directory in which it is stored. If there is no default authority list
for the directory, the object receives the storing process’s default authority list defined in the
process globals. A passive object may also have no authority list.

An authority list is a vehicle for granting access to different users, user groups and programs.
The owner can grant or revoke access at any time by specifying a new authority list. (Figure
VII-1-12 shows how authority lists fit into the organization of passive store.)

VII-1-18 Understanding Objects

PRELIMINARY

Directory

Entry
Name

Master
AD

Passive Object Descriptor

D0

A

Passive Version

=

Qwner

Optional
Authority
List

Y

Type

1D

Rights

Type

1D Y

3

’_]

Rights

Figure VII-1-12. A Stored Object

Authority lists define access in two operations and for both in slightly different ways: Firstly,
when a passive object is explicitly retrieved, the retrieving job’s list of IDs is compared to the
authority list and an AD is retumned with the combined rights of all matching IDs. Secondly,
when an AD is transparently activated, the activating process’s ID list is checked against the
authority list of the container and against the authority list associated with the AD proper. This
ensures that stored ADs cannot be activated unless their rights are current. Should rights have
been revoked since the AD was given out, the AD will loose those rights when it is activated.
Note that an object’s owner always has access to the object even if his ID does not appear in
the authority list. For more details, see Chapter III-3.

Vil-1.4.5 IDs

As you have seen in the previous section IDs are central to the protection concept used for
passive store. It is therefore necessary to tell some more details about IDs.

IDs are maintained centrally in a a BiiN™ system, namely in the Clearinghouse. To get back to
our previous example of the two different locks: Each ID is like the combination for a com-
bination lock. (The analogy is a little bit weak at this point since combination locks usually
only have one combination. Let’s however disregard this for the moment and assume that there
are combination locks that open by more than one combination.)

As IDs are the keys to stored objects, they in turn have to be protected. This is achieved by
way of protection sets and passwords. Protection sets are similar to authority lists. They consist
of <ID, Rights> pairs. The two rights defined for IDs are portray and control. The portray
right grants the holder permission to add this ID to an ID list. Control rights allow the holder

Understanding Objects

VII-1-19

PRELIMINARY

to alter the password on an ID. By specifying the proper password, one can obtain an AD to an
ID with portray rights.

VII-1.4.6 Updating Stored Objects

Most calls to passive store are transaction-oriented. In particular, updates on stored objects
can be included in a transaction. (A transaction ensures that all the operations included in it are
executed as a unit: Either all the operations inside a transaction will be executed or none of
them.) With the help of a transaction, you can prevent incomplete updates. Including calls to
passive store in a transaction also prevents clashes between multiple jobs attempting an opera-
tion on the object. While the older of two transactions executes, it reserves the object. The
younger transaction simply waits until the older one finishes.

Another problem arises when multiple active versions of an object exist. An obsolete active
version could be used to update the passive version. Two situations can arise:

Multiple Activation Model:
There are multiple active versions of a passive object. Passive store keeps
track of all active versions and refuses updates from obsolete versions.

Single Activation Model.
A single activation object is only activated in one home job. Other jobs
that activate the object receive a token active version of the object called
homomorph. Jobs that want to update the object have to communicate with
the home job. For all operations on the object the job communicates with
the home job of the object.

Both models are supported by the BiiN™ system. Depending on the needs of an application, the
programmer can decide which one to use. In this context it is only important to note how
updates are handled in these two models.

Vil-1.5 Summary

VII-1-20

After having read this chapter you should understand the following concepts:

e All information in a BiiN™ system is contained in objects.
® Objects are typed and protected memory segments.
e Objects are the unit of protection.

e Access descriptors are protected pointers. Objects can only be accessed with access
descriptors.

e Objects can be dynamically allocated, resized, and destroyed.

e Objects may ‘‘know’’ what operations can be performed on them and how.
e Objects can have passive and active versions.

e Objects can be local to a job or global to a particular node.

e Passive objects are uniquely identified on all BiiN™ nodes and for all time.

e Access descriptors can pass freely between the nodes of a BiiN™ system.

If you understand all these concepts, you can go on to the next chapter which explains memory
management.

Understanding Objects

PRELIMINARY

UNDERSTANDING
MEMORY MANAGEMENT

Contents
Physical Memory Organizationcciiieeenneneenennnneenannnnns VII-2-2
Virtual Memory Organizationoveieenvneneneenenenrnrnennenenenns VII-2-5
The ObjectTableciiuiriiiiiiiiiriiiiinrnenenennannnnnnn VII-2-5
Object-Based Address Translationccciiiiiinerennnennnennn. VII-2-7
Storage Resource Objectoiiiininnininrnernenennnennennnns VII-2-7
Object REpresentationsoveuietienenneneeeneneenenonnaeneennens VII-2-8
Frozen and Normal Memory Typescviiiiiiiinnnnierenenneensenns VII-2-9
Different Allocation POLCIESccuiitiiniiinennineetnenenenaenennnns VII-2-9
Object Lifetimesutiuntiiniiineetiiinerennonuneenronseonnannnnnas VII-2-9
Object Deallocation Strategiescovtverinneneennenennenenneenaennnn VII-2-10
Controlling and Accounting for Memory Resourcescceevuvennenn.. VII-2-12
Object ACHVALIONttt ittt iieeiinteeeenneneenennnnenns VII-2-12
Virtual Memory Pagingiieriiinninnrierneeneneenennnnnnnns VII-2-12
Global Garbage ColleCtionc.coviiiininnernneennennneenneenns VII-2-13
L0074 1Yo o1 1 o+ N AP VII-2-13
Optimized Handling of Instruction Objectscovviveuereeneeen.. VII-2-13
User-Transparent Memory Management Functions VII-2-12
N V10111 F: Vo VII-2-13

Understanding Memory Management VII-2-1

" PRELIMINARY

Objects are abstract constructs. Just as you cannot understand the concept of an automobile by
studying metallurgy, you cannot understand objects by looking at their representation in
memory. However, if you want to design a car, you will probably have to understand some
metallurgy. Similarly, you will have to understand how memory is managed in a BiiN™ node if
you are going to do some system programming, because objects are ‘‘made out of memory’’.

This chapter describes how a BiiN™ node manages its memory. It covers the underlying con-
cepts of virtual memory and of the allocation and deallocation of objects. It discusses how
objects are laid out in memory, when they can be moved around by the system and when not.
And finally, it shows the forms of addresses in a a BiiN™" system and how they are resolved.
This chapter does not give a detailed description of passive store. However, where passive
store concepts are relevant to active memory management, they will be explained briefly. This
chapter builds on the previous chapter (Chapter VII-1). You should either read that chapter or
have a good understanding of objects and how they function in the BiiN™ architecture, before
reading this chapter.

ViI-2.1 Physical Memory Organization

Physical memory consists of a node’s RAM and all disks that are mounted on the node. Physi-
cal memory is divided into active memory and passive store. Figure VII-2-1 shows how
memory is organized in a BiiN™ system.

VII-2-2 Understanding Memory Management

PRELIMINARY

Active Memory Active Memory

-~ ~ -~ ~
7 N 7 N

/ \ / \
/ \

\ /
| I |

\ Node |~ N Node /
AN

Passive /
Store

\ /
\

L <

(T |

\J >

~—— /
Active Memory

Figure VII-2-i. The Organization of Memory in a BiiN™ syiem

Active memory, as its name indicates, is the immediate ‘‘working space’’ of the processor.
Active memory is also volatile. Its contents are lost whenever the system is turned off. Passive
store on the other hand is permanent storage. Its contents cannot be lost unless a disk is
damaged. (See Figure VII-2-2.)

Understanding Memory Management VII-2-3

VII-2-4

PRELIMINARY

Passive - "Stable Store” + Filing
Store (Battery—Backed—Up Volume Sets
RAM Memory) on Disk
[4 L
° [} ° [
Blocks Read
poooooo] <——
gooooon

Blocks changed
and pushed out
of stable store

Figure VII-2-2. Passive Store

The memory pool on all disks of a node is partitioned into volume sets. Volume sets in turn
consist of from 1 to 254 volumes. A volume set can span multiple disks. A single volume
always resides on one particular disk. However, there can be more than one volume on a single
disk. A volume set can be either a swapping volume set in which case it is part of the active
memory, or a filing volume set and part of passive store. Swapping volume sets are invisible to
the user. They appear as part of active memory, and from a user’s point of view, the memory in
a swapping volume set looks identical to the RAM.

The physical memory that underlies all other memory is partitioned into 4K byte page frames.
Each page frame is uniquely identified by a page number. (See Figure VII-2-3.) A page frame
is simply an empty page. A page is the unit of abstraction of memory management. The
smallest unit that memory management recognizes is 64 bytes.

Physical Memory

0 1 2 3 4

4K 4K 4K 4K 4K

Figure VII-2-3. Physical Memory is Divided into Pages

Private to memory management is a central page frame table (PFT) where information about
the contents of all page frames is stored. Since a single page frame may contain different
information as time progresses, the contents of the page frame table entry will change as well.
(There is a parallel here between physical and logical memory organization: Object table and
page frame table and object descriptor (object table entry) and page frame table entry play
similar roles. An important difference between the two is that the object table is recognized by
the hardware, while the page frame table is purely a software concept.)

Understanding Memory Management

PRELIMINARY

VII-2.2 Virtual Memory Organization

Active memory is organized according to the virtual memory concept. This means, the part of
memory that is directly accessible to the node may span parts or all of the node’s RAM and
mass storage devices such as disk drives as well. The processor’s total physical address space
is 232 bytes. (That is about 4G bytes.) (See Figure VII-2-4.) The total virtual address space
permissible is 258bytes, consisting of 226 objects and 232bytes per object. The virtual memory
concept frees the system from the limitations imposed by relativley scarce primary memory.

Active - Volatile + Swapping
Memory RAM Memory Volume Sets
on Disk

oooooon|
nnnununLgl<iJﬂﬂi—:>
0oooooo

Figure VII-2-4. Active Memory Uses Both RAM and Disk.

Virtual memory management takes advantage of the fact that the entire address space of the
node is not used simultaneously at all times. The processor can only directly address pages that
are available in RAM. This part of memory is called primary memory. Memory management
moves pages in and out of primary memory in such a way that the user has the illusion that all
the information is contained in primary memory. Pages are swapped in as they are referenced
and swapped out when they are no longer needed. A page is either accessible or not. If the
page is accessible, it means, the page resides in primary memory and the process can get to it
directly. If the page is not accessible, memory management retrieves it from its location in
secondary memory (on disk, in the swapping volume set) and places it in primary memory.

There is a common page pool that is a list of free pages in primary memory. When a job
requests space in RAM, pages from the common page pool are allocated to it. When a page
that is not altered is returned to the common page pool, then, if a process references the page, it
can be reclaimed from the pool, thereby avoiding a swap-in. In essence, the common page pool
represents a cache of pages in the swapping volume set If a page is not available in the com-
mon page pool, it is swapped in from disk. That means, its contents is copied into a newly
allocated page frame.

VII-2.2.1 The Object Table

Physical memory is organized in terms of pages. On the other hand logical organization of
memory is in terms of objects. The page frame table (PFT) centralizes important information
about pages. Analogous to the PFT in the organization of physical memory is the object table
in the logical organization of memory. (The object table is a hardware defined and hardware
recognized data structure, while the page frame table is a purely software defined data
structure.) The PFT consists of page frame table entries, and the object table consists of object
descriptors. (See Figure VII-2-6.)

Understanding Memory Management VII-2-5

VII-2-6

PRELIMINARY

Current
Registers

Virtuaol Offset
Address
AD

Access Descriptor

Object Index Rights

Object
Table

.
I

0D

Object Descriptor
TDO AD |Bose Address——

Size Status
Referenced
T 7 Ob ject
ype Y
Definition r A
Object vy
Y
Referenced
Field
Yy

Figure VII-2-5. The Object Table and Object Based Adress Translation

Objects can only be referenced by access descriptors (ADs). There can be a multitude of ADs
to any single object. It is necessary to have one single place where important information about
the object is stored, such as its physical address. Otherwise all ADs to the object would have to
be updated if some of the information changes. For this reason, there is exactly one object table
per node.

Understanding Memory Management

PRELIMINARY

VII-2.2.2 Object-Based Address Translation

Figure VII-2-5 also illustrates the addressing mechanism. The BiiN™ system recognizes two
types of addresses, linear and virtual addresses. Linear addressing is faster than virtual ad-
dressing, but is restricted to a single domain. Linear addresses are used for programs that
execute entirely inside a linear address space. This would typically be the case with
FORTRAN and Pascal programs. In order to access arbitrary objects in the system you have to
use virtual addresses. Figure VII-2-6 shows a valid virtual address.

< Word
Byte Offset 0 Boundary

Valid AD to object | 4

Figure VII-2-6. A Valid Virtual Address

Virtual addressing is an object-based addressing scheme. Figure VII-2-5 illustrates the virtual
addressing scheme. A virtual address consists of two parts, an AD to the object that contains

the field that you want to access, and an offset into the object that specifies where the field is

located inside the object. A linear address is an offset by itself, witout an AD.

As mentioned previously, the AD does not reference the object directly but rather it refers to
the object descriptor in the object table. The object descriptor holds the physical address of the
object.

VII-2.2.3 Storage Resource Object

There is one storage resource object (SRO) associated with each job. It represents a pool of
storage local to the job and all its processes. When an SRO is first created, a certain storage
claim is assigned to it. As storage is allocated from the SRO the storage claim is debited, and if
storage that had been allocated from the SRO is deallocated, the claim is credited with the
proper amount. A job’s local SRO is a global object which is removed once its controlling job
terminates. In addition to local SROs there are two global SROs for each BiiN™ node, one
controlling normal memory allocation and the other one controlling frozen memory allocation.
Global SROs can only be referenced by administrative users and trusted type managers.
Global SROs have unlimited storage claims. SROs are active-only objects: That means that
SRQCs cannot be passivated. (For a discussion of normal and frozen memory, see section
VII-2.2.5.) Figure VII-2-7 illustrates SROs in a node’s virtual memory.

Understanding Memory Management VII-2-7

PRELIMINARY

Node
Global Address Space

Job B's
Address
Space

Job A's
Address
Space

Local SRO's
Figure VII-2-7. Active Virtual Memory, Jobs, Nodes and SROs

Vil-2.2.4 Object Representations

VII-2-8

An object’s representation is an area in virtual memory that holds the contents of the object.
An object’s representation has a certain size that can range from 0 to 232 bytes. However,
object sizes are rounded depending on the size of the object:

1. If size = 0 bytes, or if the object is a semaphore, then the object’s representation is
entirely contained within the object descriptor. These objects are called embedded objects.

2. If 0 < size <= 4K bytes, then size is rounded up to the next multiple of 64 bytes.
These objects are called simple objects.

3. If 4K < size <= 4M bytes, then size is rounded up to the next multiple of 4K bytes.
These objects are called paged objects.

4. If 4M < size <= 4G bytes, then size is rounded up to the next multiple of 4M bytes.
These objects are called bipaged objects.

The reason for the rounding outlined above stems from the paged structure of the underlying
physical memory. The following paragraph outlines the mechanism. For more details refer to
BiiN™ Systems CPU Architecture Reference Manual.

Simple objects can share a page frame with other simple objects. If an object’s size is equal to
4K bytes, it will occupy a page all by itself. In the case of a paged object the object descriptor
references a page table (PT). A page table is simply a list of all pages that are part of the
object’s representation. The page table is located on a page frame itself, possibly together with
other object’s page tables. If a paged object’s size is equal to 4M bytes, the page table will
occupy an entire page by itself. The object descriptor of a bipaged object references a page
table directory (PTD). This is a list of page tables which in turn are lists of page frames.
Instead of having one very long page table there are two levels of page tables (hence the name
bipaged objects) -- many 4K page tables, and one level up, a table of those page tables. In the
extreme case of an object occupying 4G bytes, the page table directory itself occupies an entire

page.

Understanding Memory Management

PRELIMINARY

The object table is a paged or bipaged object. It is handed out in units of single pages which
can contain up to 256 object descriptors. Whenever possible, the object table is kept down to a
paged object to keep down address translation times. Only when necessary will the object table
become bipaged.

Vil-2.2.5 Frozen and Normal Memory Types

In certain cases, such as real-time or time-critical applications the virtual memory mechanism
of swapping pages in and out of primary memory may cost too much time. Upon request, a job
can run in frozen memory. The job’s SRO will then allocate objects that will not be moved
between primary and secondary memory but will reside entirely within primary memory. A
local SRO that has a frozen memory type has an infinite storage claim. The designer of the
application will have to take care that there is sufficient primary memory to run the program.
Furthermore, in order for all pages to be allocated before the program runs, the user must have
allocate-on-creation rights for the SRO.

Most other programs will run in normal memory. They have an SRO with a normal memory
type. The SRO than has a given fixed storage claim.

ViI-2.3 Different Allocation Policies

Two policies are used when paged objects are allocated in primary memory. The standard
policy for SROs with a normal memory type is allocate-on-reference: First, only the page table
directory is allocated for a bipaged object and the page table of a simply paged object. Second
level page tables of bipaged objects and pages of paged objects are physically allocated in
memory only when they are directly referenced.

The second policy, called allocate-on-creation, is reserved for SROs with frozen memory type.
The SRO also needs to have allocate-on-creation-rights. Allocate-on-creation can be explicitly
enabled and disabled for such an SRO. If an SRO with allocate-on-creation enabled allocates
an object, the entire representation of the object will be allocated. This technique is useful for
time-critical and real-time applications.

Vil-2.4 Object Lifetimes

There are local and global objects in the BiiN™ system. Local objects are local to a particular
job. That means that the active version of a local object is removed when the controlling job
finishes.

A local object can however be passivated, and the passive version will survive when the con-
trolling job finishes. When the passive version is again activated, its active version will again
be alocal object and will automatically disappear, once the job that activated the object
finishes. A local object that has never been passivated will disappear completely once its
controlling job finishes. Global objects exist outside any particular jobs. There are two types
of global objects, unbounded global objects and countable global objects.

An unbounded global object’s active version can exist indefinitely, or more precisely, until it is
explicitly removed by global garbage collection. Global objects can also be passivated and
thus survive system crashes and explicit garbage collection.

Understanding Memory Management VII-2-9

PRELIMINARY

Countable global objects behave very much like unbounded global objects. However, un-
bounded global objects have one distinct disadvantage that countable global objects avoid:
Unbounded global objects can only be removed by global garbage collection. Global garbage
collection is a very expensive process because it may involve extensive disk traffic. It is
desirable that it not be used too often. Countable global objects can be deallocated without
global garbage collection. This is done with the following technique.

For countable global objects, there is a mechanism that keeps track of all references to a
particular object. Whenever an AD is given out to a job for the first time, the reference count is
incremented by one. Also, whenever a job terminates that held an AD to the countable global
object, the reference count is decremented by one. If the reference count equals zero, object
management is notified and then removes the object. Note that the reference count keeps track
of how many jobs hold references to the object, not how many ADs have been given out. A
job can also logically delete its AD to an object. The job then continues to run but forfeits its
access to the particular object. This causes the count of logically deleted references to be
incremented. When the count of logically deleted references is equal to the reference count,
deletion of the object also results. The BiiN™ Operating System and the hardware work
together to prevent lifetime violations.

AD:s can also be local and global. On the simplest level, this means, ADs to a local object will
always be local ADs. If this were not so, global ADs to a local object could outlive the object.
For that same reason local ADs are confined to one job. Global objects can have local and
global ADs. Countable global objects, however, have only local ADs. This ensures that all
ADs that belong to one job will disappear once the job terminates.

VII-2.5 Object Deallocation Strategies

VII-2-10

There are various ways of removing, or deallocating, objects that are no longer needed. This is
an important task. Without it, memory would be exhausted in a very short time period. The
way objects are deallocated depends on the object and on the needs of the job that uses them.
In particular, there are these methods for deallocating objects:

¢ Explicit Deallocation

e Local Garbage Collection

¢ Global Garbage Collection

e Reference Counting

¢ Deallocating Passive Versions.

o Job Termination

Explicit deallocation (using Object_Mgt .Deallocate) is the simplest, most direct
method to remove an object. It is used whenever a job ‘‘knows’’ that an object that it has
created is no longer needed. Note, however, that such deallocation removes only the object’s
active representation. The object descriptor will still be there. If an AD is used to access an
object whose representation has been deallocated and which has no passive version, the excep-
tion System Exceptions.object_has_no_representation is raised. If there ex-
ists a passive version of the object, it is transparently activated. Note, however, that when you
deallocate an object’s representation, the object’s passive version is not updated automatically.
If you want to save any changes on the object, you have to specifically update the passive
version.

Understanding Memory Management

——

PRELIMINARY

There is an operation available to trusted routines called
Unsafe_Object_Mgt.Unsafe_deallocate. This operation removes not only the
object’s representation but the object descriptor as well. This operation is unsafe because if
there are any ADs to the object after the object has been completely removed from the system,
a use of this AD will result in a dangling reference. A routine that uses
Unsafe_deallocate has to ensure that there are no ADs left to the object outside the
routine itself. Failure to do so can cause fatal system behavior.

Local objects for which there are no more ADs can be reclaimed by local garbage collection.
The purpose of local garbage collection is to enable long-running jobs to periodically clean up
their address spaces. Garbage collection can be started and then runs as a daecmon. When run as
a daemon it will wake up periodically whenever the storage claim of the job falls below a
certain adjustable percentage. A minimum delay between runs of the garbage collector
(GCOL) can also be specified. This is to prevent GCOL from running permanently when a
job’s storage claim becomes low.

GCOL Daemon

5

Unreferenced Object

Figure VII-2-8. Garbage Collector

GCOL finds each object with no reference and labels it as garbage. It then starts to remove
these objects. Differently from an explicit Deallocate, GCOL also removes an object’s
object descriptor. It can do so because it has previously made sure that no ADs to the object
exist.

When a job finishes all objects local to the job are removed completely, representation, local
ADs, and object descriptors.

Besides the local garbage collection, there is also a global garbage collection mechanism.
Global garbage collection works for global objects the same way local garbage collection
works for local objects. Global garbage collection is invoked periodically by the system and
removes all unreferenced objects. Global garbage collection is an expensive process: It may
involve a lot of disk traffic. Therefore, global garbage collection should run as infrequently as
possible.

As mentioned previously, countable global objects can be removed without the overhead of
garbage collection.

Understanding Memory Management VII-2-11

PRELIMINARY

VII-2.6 Controlling and Accounting for Memory Resources

Jobs are dispatched to the processor by a scheduler. The scheduler recognizes four different
classes of jobs: batch, interactive, time-critical and real-time. What class a particular job
belongs to, depends on what SRO the user specifies when the job is started. (A user has to have
the necessary rights to an SRO in order to run a job from it.) Depending on the type of the job,
a storage claim of a certain size is defined in the job’s SRO by the scheduler.

When an object is allocated from an SRO, the job’s storage claim is charged. Accounting is
done for the number of object descriptors allocated from the SRO and for the size of the
representation of the object. If a local SRO gets to the bottom of its claim, local garbage
collection is automatically invoked. In most cases this will result in enough memory space
being reclaimed to be able to satisfy the job’s allocation request. However, if the garbage
collection cannot reclaim enough space to handle the job’s allocation request, the job is ter-
minated with a message that states that resources have been exhausted. Accounting is done on
a per job and per node basis.

In addition, the class of a job has a more subtle influence on memory allocation than just
setting upper limits on the allowed space. In particular, it specifies whether a job is subject to
virtual memory paging or not. In the extreme case, a job can run in frozen memory. That
means, all of its virtual memory is primary memory. Thus all the job’s objects are im-
mediately accessible without swapping pages. This increases performance considerably.

VII-2.7 User-Transparent Memory Management Functions

Most of the functions of memory management are executed transparently to the user. In par-
ticular this includes the following:

e Object Activation

e Virtual Memory Paging

o Global Garbage Collection

e Compaction

¢ Optimized Handling of Instruction Objects.

ViI-2.7.1 Object Activation

This section describes the mechanism behind transparent object activation. Typically, an
object’s representation is deallocated and a process holds an AD to the object. When the
process touches the object, the BiiN™ Operating System finds that the object has no represen-
tation. At that point it attempts to find the object in passive store. If it succeeds, the passive
version is copied into active memory and becomes directly available to the requesting process.
Otherwise, activation fails.

VII-2.7.2 Virtual Memory Paging

VII-2-12

The virtual memory concept solves the problem that primary memory is scarce. A large part of
virtual memory is secondary memory; that is disk. When a process touches a page that is
presently held in secondary memory it will be swapped into primary memory. Secondary
memory that is part of virtual memory is called swapping memory. Swapping memory is
devided into volume sets, just as passive store. Swapping pages between swapping volume sets

Understanding Memory Management

’
{
i
i

PRELIMINARY

and primary memory is invisible to the requesting processes. Extensive page swapping,
however, slows down program execution. For that reason real-time jobs have all their memory
requirements satisfied in primary memory. (In this case the programmer has to make sure that
there is enough primary memory available to satisfy the job’s demands.)

VII-2.7.3 Global Garbage Collection

The system periodically invokes a global garbage collector daemon. The daemon is responsible
for cleaning up a node’s global memory. It removes all global objects for which no AD exists
on that node. Garbage collection runs in the background and is invisible to the user. Global
garbage collection involves a great amount of overhead. This is because the objects that gar-
bage collection is looking for are unreferenced objects. Objects that have not been referenced
in a while tend to move to secondary memory. Finding all those objects and removing them
involves a lot of disk traffic. Remember also that garbage collection has to search all objects on
a node for references.

Vii-2.7.4 Compaction

The representation of a simple object usually takes up less than one page of of memory (4K
bytes). When pages are swapped out, compaction is transparently invoked. Compaction takes
simple objects and optimizes memory use by placing multiple simple objects on one memory
page. Swapping always happens page by page. When a user requests a simple object that is
presently on a swapping volume set and shares a page with other simple objects, the entire
page that holds the object is swapped in.

ViI-2.7.5 Optimized Handling of Instruction Objects

As their name indicates instruction objects hold processor instructions and constants necessary
for program execution. Program execution is optimized in three ways:

e Pages of instruction objects are directly paged in from the file. You do not need to ex-
plicitly activate (or load) the instruction object.

¢ The representation of a (local multiple activation) instruction object is physically shared by
all jobs using it whenever possible. This avoids having multiple identical copies in active
memory.

e When a job terminates, pages of the instruction object may remain reclaimable for some
time. That means, another job that runs later and uses the same instructions can reclaim
those pages without having to copy them from disk.

Vil-2.8 Summary

After having read this chapter you should now have a basic understanding of how active
memory is managed in a BiiN™" node. In particular, you should have grasped the following
concepts:

e Physical memory organization
e Virtual memory

‘® The object table

e Storage resource object

Understanding Memory Management VII-2-13

PRELIMINARY

e Objects representation

e Granularity of object sizes

e Memory types

® Object allocation

e Object lifetimes

® Object deallocation

e Control of memory resources
¢ Transparent memory functions
e Addressing

VII-2-14 Understanding Memory Management

PRELIMINARY

BUILDING A TYPE MANAGER

Contents
L @003 4 1o o VII-3-2
The Type Manager Defines All Calls fora Typeof Object VII-3-2
Type Managers Hide Data Representationc.coiuiiiveieiennneans VII-3-3
Only the Type Manager Has the Key to Access the Type’s Objects VII-3-3
One Module Can Manage Multiple Types coiiiiiiiininienenenns VII-3-3
TeChNIQUES ..ottt i i i i i i i i i it i i i VII-3-3
Defining the PUbic TypPec.oiuniiininiiiin it iiiiiniiiaenn VII-34
Defining Type Rightscoiiiiiiiiiiiiiiiiiiiiieenenrncennnas VII-3-5
Defining EXCEPHONSvvitiniinnreinineeneeeneeeeneeenacocansnsnens VII-3-6
Defining the Type’s Callsovtviirinrnreninntieneeneoneennnceneens VII-3-6
Defining the Private TYPES ... coviiiii ittt ittt iiniiin e VII-3-7
Defining Needed BiiN™ Ada Type Overlayscceeeeneneennnn. VII-3-7
Creating the TDOttt ittt inrieeeneseeneananns VII-3-8
Bindingto aStored TDOciiiiriiii it iieiieeneeesnrnnenns VII-3-8
Implementing the Is_account Call iiiiiiiin.n, VII-3-8
Implementing the Create_account Call, VII-3-9
Implementing the Create_stored_account Call VII-3-9
Implementing Calls that Require TypeRightscovunen. VII-3-10
Implementing Calls that Do not Require Type Rights VII-3-11
Implementingthe Destroy Callciiritiireiinnenennnennn. VII-3-11
Making Operations AtOMICccoveuuneereneeeeneenneenenosneeans VII-3-12
Initializing the Type Managerc.ciiiiinenneneennenonrennnenans VII-3-13
Protecting the Type Manager from Other Servicesccuun... VII-3-14
111 111 11 VII-3-15

Building a Type Manager VII-3-1

PRELIMINARY

A type manager is a program module that defines a particular object type and all calls for
objects of that type. This chapter shows you how to build a type manager.

Packages Used:

Access_Mgt Interface for checking or changing rights.
Object Mgt Provides basic calls for objects.

The example for this chapter, Account_Mgt_Ex, is a simple, general-purpose type manager
written as a Ada package. The complete listing of this example can be found in Appendix X-A.

VII-3.1 Concepts

A type manager provides both data abstraction and protection for the objects of its type. It does
so by defining all calls for its objects. No operations but the ones defined by the type manager
are possible on the objects protected by it. It is therefore important that you provide all neces-
sary calls when building your type manager.

The type manager holds a key that allows it to create objects of its type and to add represen-
tation rights to ADs that are handed to it by calling programs. The key is an AD to the TDO
with amplify and create rights. It is given out when the TDO is first created.

ViI-3.1.1 The Type Manager Defines All Calls for a Type of Object

VII-3-2

A type manager defines all basic calls for an object type. For example, the
Account_Mgt_Ex type manager defines calls for account objects:

Is_account Checks whether an AD references an account.

Create_account
Creates an account with an initial balance.

Create_stored_account
Creates and stores an account.

Get_balance Retums an account’s balance.

Change_balance
Changes an account’s balance.

Transfer Moves an amount between accounts.

Destroy account
Destroys an account.

Callers must use the type manager Account_Mgt_Ex to do any of the above calls on an
account. More complex calls must be composed from the type manager’s basic calls. Again, it
is important that the list of basic operations be complete, or else there is no way to do the
operation on an account. For example, if you forgot the Destroy_account call, there
would be no way to eliminate unneeded accounts.

Building a Type Manager

PRELIMINARY

VII-3.1.2 Type Managers Hide Data Representation

Type managers provide data abstraction, concealing the representation of data from callers.
For example, Account Mgt _Ex provides the calls Create_account and
Change_balance that affect the data in an account. To other services, an account is an
abstract data type; the caller doesn’t need to know or care how data in the account is
represented.

Data abstraction makes software more:

reliable Only the type manager accesses the representation of a particular type of
data. If the type manager is correct, then no outside program error can
corrupt data of the type.

maintainable Data representation can be changed as long as the correctness of the basic
calls is preserved.

extensible Changes in functionality can easily be implemented as long as they are

compatible with the existing interface. In our example, operations on ac-
counts could be realized using transactions without any other program but
the type manager having to be changed.

VIiI-3.1.3 Only the Type Manager Has the Key to Access the Type’s Objects

The type of an object is uniquely defined by the object’s TDO. A TDO for a new type of
object can be created with Object_Mgt .Create_TDO. Object_Mgt.Create_TDO
returns an AD to the new TDO. This AD has create and amplify rights. Those are necessary to
create new instances of the managed object, and to add access rights to ADs of managed
objects. Any module that has a TDO with create rights and amplify rights is by definition a
type manager for that type.

In order to protect a newly created type, the AD to the TDO that has create and amplify rights
should be confined to your type manager.

VII-3.1.4 One Module Can Manage Multiple Types

The type manager model provides a flexible way of protecting objects. In particular, one
module can manage as many types as you choose. However, it is obvious that the number of
types that a type manager manages should be strongly limited. Otherwise the concept defeats
itself. For example, it is common that one type manager manages closely related objects such
as files and opened files.

VII-3.2 Techniques

This section shows you each step in building a type manager. After reading this section, you
will be able to:

e Define the Public Type
e Define Type Rights

¢ Define Exceptions

e Define the Type’s Calls
e Define the Private Types

Building a Type Manager VII-3-3

PRELIMINARY

® Define Needed Type Overlays

e Create the TDO

¢ Bind to a Stored TDO

e Implement the Is Call

¢ Implement the Create Call

¢ Implement Calls that Require Type Rights

e Implement Calls that Don’t Require Type Rights
e Implement the Destroy Call

e Make Operations Atomic

e Initialize the Type Manager

e Protect the Type Manager from Other Services.

The first four techniques describe the type manager’s package specification, the public inter-
face used by outside callers.

The next eleven techniques describe the type manager’s package body, the package implemen-
tation, which is hidden from outside callers.

The last technique describes how to use BiiN™ Ada pragmas and the BiiN™ Systems Linker to
completely protect your type manager from other services.

The Account_Mgt_Ex example is a type manager for accounts, each containing a long
integer balance. It is a general-purpose type manager and could be used for inventory ac-
counts, bank accounts, or other accounting applications. Appendix X-A contains complete
listings for the Account_Mgt_Ex package. Various implementations of this type manager
are described in this chapter and in Chapters VII-6 and VIII-2. The implementation described
in this chapter is the simplest and supports active-only accounts.

VII-3.2.1 Defining the Public Type

VII-3-4

The type manager’s package specification defines the public type, the type used by outside
callers to reference an account. The account_AD access type is the public type for accounts.
It references a private type account_ob ject that is defined as a null record.

The package specification for Account_Mgt_Ex defines the public type:

114 type account_object is limited private;
115

116 type account_ AD is access account_object;
117 pragma access_kind(account_AD, AD);

118 —- User view of an account.

The null record is defined in the private part of the specification:

Building a Type Manager

PRELIMINARY

295 private

296

297 type account_object is

298 -- Empty dummy record. The real object
299 —— format is defined in the package body.
300 record

301 null;

302 end record;

303

304 end Account_Mgt_Ex;

A dummy record format is defined because the BiiN™" Ada compiler requires a record layout in
the package specification, but it is still desirable to conceal the actual object representation in
the package body. The account_obJject type is never actually used, because account ADs
lack rep rights and cannot be used to read or write account objects. Actual reading and writing
is done within the package body with types defined there.

VII-3.2.2 Defining Type Rights

Type rights allow a type manager to differentiate between users. The implementer of the type
manager can require certain type rights for certain calls. It may also permit certain calls with-
out any type rights. In the example presented here, the Is_account call is an example of a
call that requires no type rights. (For more details, see Section VII-3.2.9.)

Declarations Used:

Object_Mgt.rights_mask
Access rights type.

Object_Mgt .modify rights
Modify type right.

Object_Mgt.control rights
Control type right.

The type manager’s package specification typically gives type-specific names to the type rights
that it uses. The type manager’s calls can check for needed rights before performing the call.
A type manager does not always have to define all three rights. By convention, unused type
rights should always be left turned on; otherwise a higher level routine will not be able to use
them.

Account_Mgt_Ex defines two type rights:

121 change_rights: constant

122 Object_Mgt.rights_mask :=

123 Object_Mgt.modify rights;

124 —-- Required to change an account’s balance.
125

126 destroy_rights: constant

127 Object_Mgt.rights_mask :=

128 Object Mgt.control rights;

129 —- Required to destroy an account.

If an account call is made without needed rights, then
System Exceptions.insufficient type rights is raised.

Building a Type Manager » VII-3-5

PRELIMINARY

VII-3.2.3 Defining Exceptions

The type manager’s package specification defines any type-specific exceptions raised by its
calls. Account_Mgt_Ex defines these exceptions:

100
101
102
103
104

insufficient_balance: exception;
pragma exception value(insufficient_balance,
insufficient_balance_code’address):;
—- An operation failed because it would
-- cause a negative account balance.

balance_not_zero: exception;
pragma exception_value(balance_not_zero,
balance_not_zero_code’address);
—~~ "Destroy account" was called on an account
-~ with a nonzero balance.

Text messages to be displayed by CLEX when an exception occurs can be bound to these
exceptions at compile-time. These messages can be displayed on a terminal, for example.

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

insufficient_balance_code:
constant Incident_Defs.incident_code :=
(0, 1, Incident Defs.error, System.null_word);

--*D* manage.messages

-=-*D* store :module=0 :number=1 \

--*D* :msg_name=insufficient_balance_code \
-=*D* :short= \

-=-*D* "An account operation failed because it\
--~*D* would create a negative balance."

balance_not_zero_code:
constant Incident_Defs.incident_code :=
(0, 2, Incident_Defs.error, System.null word):

-=-*D* store :module=0 :number=2 \

-~*D* :short= \

—-—*D* "An account cannot be destroyed because\
~--*D* it has a non-zero balance."

—-=*D* exit

VII-3.2.4 Defining the Type’s Calls
The type manager’s package specification defines all calls available to outside callers of the

VII-3-6

type.

Calls typically provided for a type T are:

Is_T Checks whether an object is of type 7. Only the type manager can refer-
ence T's TDO and make this check.

Create_ T Creates a T object. Only the type manager can create and initialize T
objects.

xxx T Any calls that need to read or write T objects. Only the type manager can
read from or write to the object’s representation.

Destroy T Destroys a T object. Only the type manager can explicitly deallocate T

objects.

Account_Mgt_Ex defines all the typical calls:

Building a Type Manager

PRELIMINARY

Is_account
Create_account
Create_stored_account
Get_balance
Change_balance
Transfer

Destroy_account

It might appear at first glance that the Transfer call is not necessary since it can be com-
posed of two calls to Change_balance. The problem with this solution is that it could
happen that the calling program fails before it completes the transfer. Thus an amount may be
deducted from the source account and not be deposited in the target account. The Transfer
call is set up to be an atomic operation. It can only succeed as a unit and not partially. This
concludes the type manager’s package specification. The following techniques are done in the
first body of Account_Mgt_Ex.

VII-3.2.5 Defining the Private Types

The type manager’s package body defines the private types used inside the type manager to
reference the accounts. The account_rep_object type defines the object’s represen-
tation. The account_rep_AD type is used for ADs with rep rights, allowing the type
manager to read and write the representation:

38 type account_rep object is

39 record

40 balance: Long_Integer Defs.long integer;

41 —- Current balance.

42 end record;

43

44 type account_rep AD is access account_rep_object:;
45 pragma access klnd(account _rep_AD, AD):

46 -—- Private view of an account.

VII-3.2.6 Defining Needed BiiN™ Ada Type Overlays

The Account_Mgt_Ex package body requires three different BiiN™ Ada types to represent
the AD to one of its objects:

account_AD Public AD without rep rights.

System.untyped word
Type required for Access_Mgt and Object Mgt calls.

account_rep AD
Private AD with rep rights.

Instead of instantiating unche cked conversions type overlays are used here to the same
goal. This is done using a BiiN™ Ada address clause. (Refer to the BiiN™ Ada Language
Reference Manual for more details.)

Building a Type Manager VII-3-7

PRELIMINARY

180 account_rep: account_rep_ AD:

181 FOR account_rep USE AT account’address;

182 account_untyped: System.untyped_word;

183 FOR account_untyped USE AT account’address;

Note that this technique has no runtime cost.

VII-3.2.7 Creating the TDO

The package body described in this chapter is an active-objects-only package body, so every
time the package initializes it creates a TDO. This poses no problems as long as objects of the
type are not passivated or do not outlive their TDO or type manager. (This is explicitly
enforced -- refer to Section VII-3.2.16 in this chapter for more details.)

48 account_TDO: constant Object Mgt.TDO_AD :=
49 Object_Mgt.Create_TDO;

A stored object should use a stored TDO as its type, as described in the next section.

VIi-3.2.8 Binding to a Stored TDO

If objects of the type can outlive a particular job, then the TDO should be a stored object,
created once by the system administrator.

The type manager’s package body then uses the BiiN™ Ada bind pragma to obtain the needed
TDO AD with all type rights. The following example is excerpted from the second body of
Account_Mgt_Ex package body in Appendix X-A. In this example, the account_TDO is
first assigned a null value, then used in the pragma bind:

52 account_TDO: constant Object_Mgt.TDO_AD := null;

53 -- This is a constant AD but not really null; its
54 -— filled in with an AD retrieved by the linker.
55 pragma bind(account_TDO,

56 "account");

57 -- Bind to TDO for accounts.

This technique declares a BiiN" Ada access type variable which is initialized with null at
compile-time. The BiiN™ Ada pragma bind is an instruction to the BiiN™ Systems Linker
to retrieve an AD from the directory entry that is named by the second argument of pragma
bind. (For more details on BiiN™ Ada pragmas refer to the BiiN™ Ada Language Reference
Manual.) The linker reinitializes the variable with the activated AD.

VII-3.2.9 Implementing the Is_account Call

The Is call checks whether an object has the type managed by the type manager.

Calls Used:

Object_Mgt.Retrieve TDO
Retrieves object’s TDO.

Is_account retums true if obj’s type equals account_TDO, false if obj is null or has

another type:
70 begin
71 return obj /= System,null word and then
72 Object Mgt.Retrieve TDO(obj)} = account_TDO;
73 end Is_account;

VII-3-8 _ Building a Type Manager

PRELIMINARY

Vii-3.2.10 Implementing the Create_account Call
The Create call allocates an object of the right size and type, initializes the representation,
and returns an AD with no rep rights.

Calls Used:

Object Mgt.Allocate
Allocates an object with specified size and type.

Access_Mgt .Remove
Removes rights.

The Create_account call creates an account with a specified starting_balance:

94 begin
95 if starting_balance < Long Integer Defs.zero then
96 RAISE insufficient_balance;
97
98 else
99 account_untyped := Object_Mgt.Allocate(
100 size => Object Mgt.object_size(
101 (account_rep object’size + 31)/32),
102 -—- Expression computes number of words
103 -- required to hold the number of bits
104 -- in an account.
105 tdo => account_TDO);
106
107 account_rep.all := account_rep object’ (
108 balance => starting_balance);
109
110 account_untyped := Access_Mgt.Remove (
111 AD => account_untyped,
112 rights => Object Mgt.read write_rights):
113 RETURN account;
114
115 end if;
116 end Create_account;

The BiiN™ Ada new operator cannot be used here to allocate the object, because new by
default allocates a generic object instead of an object with the desired type account.
However, if we had made use of the Ada pragma allocate_with we could have specified
a TDO to be used with the new operator. Thus we would obtain objects of the proper type
when using new. ‘

The size specified to Allocate is the number of 32-bit words. The BiiN™ Ada attribute
size yields the number of bits required for the object’s representation. The expression
(account_rep object’size + 31) /32 yields the smallest number of 32-bit words
with at least the required number of bits.

VII-3.2.11 Implementing the Create_stored_account Call

Our particular example provides two Create calls, one that simply creates an object and
returns an AD, and another that also stores the object with a pathname. The implementation
discussed in this chapter does not support stored objects, however. For this reason the the
Create_stored_account function simply raises the
System_exception.operation_not_supported exception as shown in the follow-
ing excerpt from this implementation:

Building a Type Manager VII-3-9

PRELIMINARY

119 function Create_stored account(

120 starting_balance:

121 Long_Integer Defs.long integer :=

122 Long_Integer_Defs.zero;

123 master: System Defs.text;

124 authority:

125 Authority List_Mgt.authority list AD := null)
126 return account_AD

127 -

128 -- Logic:

129 —-— This call is not supported by this implementation.
130 -

131 is

132 begin

133 RAISE System Exceptions.operation_not_supported;
134 RETURN null;

135

136 end Create_stored_account;

Vil-3.2.12 Implementing Calls that Require Type Rights

VII-3-10

For calls that require type rights, the type manager checks the rights on the caller’s AD before
performing the requested operation. The usual way to do this is with

Access_Mgt . Import, which checks type rights before adding rep rights. Import raises
System_Exceptions.insufficient_type rights if needed rights are not present.

Calls Used:

Access_Mgt.Import
Checks for rights and adds rep rights.

Declarations Used:

‘System _Exceptions.insufficient_type rights

Raised when the AD does not have the type rights needed for the call.

In Account_Mgt_Ex, the call Change_balance requires that the caller have change
rights on the passed AD:

Building a Type Manager

PRELIMINARY

190 begin

191 account_untyped := Access_Mgt.Import (

192 AD => account_untyped,

193 rights => change_rights,

194 tdo => account_TDO):

195

196 new_balance := account_rep.balance + amount:
197

198 if new_balance < Long_Integer_Defs.zero then
199 RAISE insufficient_balance;

200

201 else

202 begin

203 old balance := account_rep.balance:;

204 account_rep.balance := new_balance;

205 RETURN new_balance:

206 exception

207 -—- An exception in this inner block means
208 -- that something has gone wrong with the
209 -— update. The old balance is restored.
210 when others =>

211 account_rep.balance := old balance:;
212 RAISE;

213 end;

214

215 end if;

216 end Change_balance;

The call Access_Mgt . Import checks the AD for change rights before adding rep rights.

VII-3.2.13 Implementing Calls that Do not Require Type Rights

Calls that don’t require type rights don’t need to check the type rights before performing the
call. As a result, the type manager can use Access_Mgt . Amplify, which adds rights
without doing a check for type rights.

Calls Used:

Access Mgt .Amplify

Adds rights without checking type rights.

An example of a call that doesn’t require type rights is Account_Mgt .Get_balance. In
this case, read rep rights are amplified:

151 begin

152 account_untyped := Access_Mgt.Amplify(
153 AD => account_untyped,

154 rights => Object_Mgt.read_rights,
155 tdo => account_TDO);

156 return account_rep.balance;

157 end Get_balance;

ViI-3.2.14 Implementing the Destroy Call

A type manager’s Destroy call usually checks type rights for this destructive act, then deal-

locates the object’s representation.

Building a Type Manager

VII-3-11

PRELIMINARY

Calls Used:

Access_Mgt.Import
Checks for rights and adds rep rights.

Object Mgt.Deallocate
Deallocates the object’s representation.

In the following example from Account_Mgt_EX, the call Object_ Mgt . Import checks
for the appropriate type rights, then adds rep rights to the AD in order to be able to check the
balance. If the balance in the account is zero, the account will be deallocated using
Object_Mgt.Deallocate:

326 begin

327 account_untyped := Access_Mgt. Import (
328 AD => account_untyped,

329 rights => destroy_rights,

330 tdo => account_TDO):

331

332 if account_rep.balance /= Long_Integer Defs.zero then
333 RAISE balance_not_zero:;

334

335 else

336 Object_Mgt.Deallocate (account_untyped):
337

338 end if;

339 end Destroy_account;

VII-3.2.15 Making Operations Atomic

Although the transfer call can in principle be composed of two successive calls to
Change_balance there is a considerable disadvantage to this method; the process that per-
forms the two calls could encounter an exception after performing the first call and before the
second. If that happened, one account would be charged (or credited) but not the other one.

Calls Used:

Access_Mgt.Import
Checks for rights and adds rep rights.

VII-3-12 Building a Type Manager

PRELIMINARY

265 begin

266 source_untyped := Access_Mgt.Import {

267 AD => source_untyped,

268 rights => change_rights,

269 tdo => account_TDO);

270 dest_untyped := Access_Mgt. Import (

271 AD => dest_untyped,

272 rights => change_rights,

273 tdo => account_TDO);

274

275 new_source_bal := source_rep.balance - amount;
276 new dest bal := dest_rep.balance + amount;
277

278 if new_source_bal < Long_Integer Defs.zero
279 or else

280 new_dest_bal < Long_Integer Defs,zero then
281 RAISE insufficient balance,

282

283 else

284 old_source_bal := source_rep.balance;

285 old_dest bal := dest_rep.balance;

286 -- 0ld balances are recorded here

287 -- in case the update will have to be

288 -- rolled back.

289 begin

290 source_rep.balance := new_source_bal;
291 dest_rep.balance := new_dest_bal;

292 exception

293 —-— An exception in this inner block means
294 -- that something has gone wrong with
295 -- the update. Restore the old balances to make
296 -- this operation atomic, then

297 —-- reraise the exception.

298 when others =>

299 source_rep.balance := old_source_bal;
300 dest_rep.balance := old_dest_bal:

301 RAISE;

302

303 end;

304 RETURN;

305

306 end if;

307 end Transfer;

The new balances of both the source and the destination account are computed. If either one is
less than zero, the insufficient_balance exception is raised. Before the balances in the
accounts are physically changed, they are stored. Any exception that is raised while the new
balances are assigned causes the update to be rolled back and the original balances to be
restored.

Vii-3.2.16 initializing the Type Manager

The example that we discuss in this chapter manages accounts that cannot be passivated. In
order to make sure that accounts cannot be passivated, the account TDO must contain the
passive store attribute, bound to an instance that refuses requests for passive store operations.

Calls Used:

Passive_Store Mgt.Set_refuse_filters
Sets a type manager’s passive store attributes object to refuse all outside
requests for passive store operations.

Attribute_Mgt.Store_attribute_for_ type
Stores an attribute entry in a TDO.

Building a Type Manager VII-3-13

PRELIMINARY

350 begin

351 Passive_Store Mgt .Set_refuse filters(

352 passive_store_impl):

353 Attribute Mgt .Store_attribute_for_type(

354 tdo => account_TDO,

355 attr_ ID => Passive_Store Mgt.PSM attributes_ID,
356 attr_impl => passive_store_ impl_ untyped):

357 end;

Note that this piece of code is executed every time this package is initialized. Also, a new TDO
is created at that time. The TDO and all the objects of the type manager are deallocated when
the job that uses this package finishes.

A more general package body would be able to handle objects that can be passivated. In this
case the TDO should only be created once and stored. This can be done by the system ad-
ministrator using the create . TDO command in the configure utility. (For more details
see the BiiN™ Systems Administrator’s Guide.) You could also write a program that will ex-
ecute only once, create a TDO and store it. The Stored_Account_TDO_Init_Ex proce-
dure in Appendix X-A is an example of such a program.

VII-3.2.17 Protecting the Type Manager from Other Services

Finally, a type manager may want to protect its address space from other services so that it and
its objects are safe from accidental destruction or modification. Protecting the type manager’s
address space involves:

1. Creating a distinct address space with the BiiN™ Systems Linker.

2. Protecting the type managers address space from calling services via pragma
protected return.

The idea is to link the type manager into its own separate domain. In addition it might be
desirable to put the type manager into its own subsystem. That means that the type manager
will not share stacks with other services.

Refer to the BiiN™ Systems Linker Guide for information on how to create the type manager’s
own address space at link time. You will need to create a distinct domain and a distinct
subsystem ID.

The BiiN™ Ada pragma protect ed_return ensures that all global registers will be cleared
before control is returned to the calling process. This is to protect ADs that may have been left
in the global registers by the call. Refer to the BiiN™ Systems Linker Guide for more infor-
mation on these topics. (Pragma protected_call is similar to protected return;
however it protects the calling routine from the routines it calls. Account_Mgt_Ex only
calls OS routines. Therefore protected call could be used here but is not really
necessary.)

There is a performance penalty involved when you create a protected address space for a type
manager. You will use extra memory for the type manager’s distinct stack. There is also a
time penalty when performing calls to a distinct domain.

VII-3-14 Building a Type Manager

PRELIMINARY

VII-3.3 Summary

® A type manager defines an object type and all basic calls for the type.
¢ Only the type manager can read from or write to the type’s objects.
e A type is represented by a TDO.

e Type managers provide data abstraction, enhancing software reliability and main-
tainability.

Building a Type Manager VII-3-15

PRELIMINARY

VII-3-16 Building a Type Manager

PRELIMINARY

USING ATTRIBUTES

Contents
@00 o 1ol o £ VI-4-3
00141 13T VII-4-5
Defining a New AHIDULEivtitininieenrieneernreeensonaenannns VII-4-5
Defining an Attribute InStancecovivnenrenenrerneeennnanaans VII-4-6
Initializing the Type’sTDO ... ittt iieriertnernnneannonas VII-4-7
Initializing an Objects Attribute List ittt VII-4-8
Y1) 141141 o O VII-4-8

Using Attributes VII4-1

ViI-4-2

PRELIMINARY

An attribute is a package or data structure that can be defined for multiple objects or object
types. Such packages or structures can be used independent of an object’s type and without
calling its type manager.

An attribute usually defines a set of operations that is supported by multiple objects, or object
types, such as an I/O access method.

Packages Used:

Attribute Mgt Manages attribute IDs and provides calls to store and retrieve attribute
instances.

Object_ Mgt Provides basic calls on objects.

An attribute can be defined either for an object or for an object type. In case of type attributes,
an attribute list is contained in the Type Definition Object (TDO). In the case of object at-
tributes, an attribute list is attached to the object proper. Whether in the TDO or attached to an
individual object, an attribute list contains one or more <attribute ID, attribute instance> pairs.
The attribute ID in the pair identifies the attribute (for example, the Byte Stream Access
Method). The attribute instance in the pair references the object- or type-specific attribute
value (for example, the type-specific implementation of the access method for the particular
device type). An example of an object-specific attribute is execute. An executable object
can be a CLEX script, a BiiN"™/UX script, or an executable program. The attribute instances in
this case specify how the object is to be executed.

Figure VII-4-1 shows the attribute data structure for a type-specific attribute.

D0

° o
attribute ID Y l attribute instance

Figure VII-4-1. Attribute Structure

In this chapter you will find an example of how to use type-specific attribuies. Using object-
specific attributes is very similar to what is shown in the example. In addition, in each section
you will find information on how to achieve the particular step for an object-specific attribute.

In a later release we may have an example of an object-specific attribute.

Using Attributes

PRELIMINARY

VII-4.1 Concepts

The attributes described in this chapter should not be confused with BiiN™ Ada attributes, used
to indicate properties of declared entities in that language.

Even though using an attribute is independent of the object or its type, defining the attribute
instances supported by an object or a type is specific to an object or a type. In the case of a
type attribute, only the type manager can store attributes in the TDO, normally at system or
program initialization when the TDO is created. In the case of an object attribute, anyone with
control rights can store an attribute. But type-specific attributes cannot be overridden by
object-specific attributes.

Though in most cases an attribute value is an AD to a package, an attribute value can be any
System.untyped_woxrd, either an AD to an object or a 32-bit data value. The attribute
value can reference any object, not just a package. An example of an attribute value that does
not reference a package is Passive_Store Mgt .PSM_attributes_object where
the attribute value is an AD to a record.

If an attribute is a package, invoking the attribute package’s calls uses a fast artribute call
mechanism supported by the OS and BiiN™ Ada. This mechanism uses the object type of the
first parameter 10 a call to choose the appropriate type-specific instance of the package. This
mechanism is used by many OS attributes, including all I/O access methods. If an attribute
call is made on an object that does not support the attribute, then the
Standard.constraint_error exception is raised. The opinions vary on what excep-
tion will actually be raised. Also in the running are

System_Exceptions.bad parameter and

System Exceptions.operation_not_supported.

Figure VII-4-2 shows an OS attribute, the Byte Stream Access Method, defined by the
Byte_Stream_AM package, that is supported by different object types, such as opened files
and opened pipes. Each object type has a type-specific implementation of the access method
but applications need only call Byte_Stream_AM and their call is efficiently switched to the
right implementation by the attribute call mechanism.

Using Attributes VII4-3

VII-4-4

PRELIMINARY

Byte_Stream_AM0Ops.Write (opened_dev, buffer_VA, . . %

Byte_Stream_AM0Ops

package
N
7/

——— QOpened - Opened
File Pipe
Opened Opened
File Pipe
Y_TDo Attribute 1D Yy 10
for byte stream 1/0
/[\
| |

Byte_Stream_AM0Ops Byte_Stream_AMlps
yfor opened files for opened pipes

N I N\ 3
y 7
|

Figure VII-4-2. An OS Attribute

The OS defines many attributes used by type managers to customize System Services for their
particular types. Every OS attribute appears to an application as another System Service. At
the same time, implementers of new services can define type-specific instances of these OS
attributes, without modifying, recompiling, or relinking the OS. You can use attributes to
extend and customize the OS -- without accessing its internals in any way.

The "OS Attributes” appendix in the BiiN""/OS Reference Manual summarizes all OS at-
tributes. Some commonly used OS attributes are:

e Byte stream I/O, specified by the Byte_Stream AM.Ops package.

e Record I/O and record keyed I/O, specified by the Record AM.Ops and
Record AM.Keyed Ops packages.

e Character display I/O, specified by the Character Display_ AM.Ops package.

Using Attributes

PRELIMINARY

e Passive store, specified by the Passive_Store_Mgt.PSM_attributes_object
record type.

e The execute attribute, specified by Execution_Support .Ops, an example of an at-
tribute that can be object-specific.

Vil-4.2 Techniques

There are three techniques in using attributes:

e Defining a new attribute
¢ Defining a type-specific attribute instance for a type
e Initializing the type’s TDO to refer to the attribute and instance.

Because attributes are most often packages, this section uses a simple package attribute for all
three examples. This attribute contains a single call, which retumns a type-specific type name.
For example, for account objects, the type-specific instance will return the string "account".
This example is not as useful as many attributes, such as I/O access methods, but its simplicity
allows you to easily understand programming with attributes.

Vil-4.2.1 Defining a New Attribute

You will more often define attribute instances than define new attributes. We begin with
defining an attribute because the example attribute is used by the subsequent techniques.

Calls Used:

Attribute Mgt.Create_attribute_ ID
Creates a new attribute ID.

You create a new attribute by calling Attribute_Mgt.Create_attribute_ID. Inthis
call you can specify whether the new attribute is type-specific or not. Type-specific attributes
can only be stored in a TDO and not in an object’s attribute list. The newly created attribute ID
should be stored in the aid directory in the node’s root directory.

The Type_Name_Attribute_ Ex example package assumes that the attribute has already
been created and stored. It binds the previously created ID to an attribute package using the

BiiN™ Ada pragma bind.
7 type_name_attr_ID: constant
8 Attribute_Mgt.attribute_ ID_AD := null;
9 pragma bind(type name_attr_ ID,
10 "typnamattr®) ;
11 -—- Attribute ID is retrieved at link time using the
12 —— specified pathname. Should have store rights.

The attribute package Type_Name_ Attribute_ Ex defines two functions: one to get the
attribute ID and one to return a type’s name.

The Get_type_name_attr_ID function returns the new attribute’s ID, required to store
an instance of the type-name attribute:

Using Attributes VII4-5

PRELIMINARY

14 function Get_type_name_attr_ ID

15 return Attribute Mgt.attribute_ ID AD:

16 -—- Type name attribute ID, with type rights.

17 -

18 —- Function:

19 - Returns the type name attribute’s attribute ID.

The nested Ops package contains the calls to be defined by each type-specific instance. Only
subprograms can be declared in such a package. The package_type pragma declares the
nested Ops package to be a package type.

23 package Ops is

24 pragma package_type ("typnamattr"):;

25 -

26 -- Function:

27 -—- Provide "Type name" attribute call.

28

29

30 function Type_name(

31 obj: System.untyped_word)

32 -- Any object that supports

33 -- the type name attribute.

34 return string; -~ Name of the object’s type.
35 pragma interface(value, Type_name);

36 -

37 -- Function:

38 - Returns a printable name for an object’s type.
39

40

41 end Ops;

Calls to any operations declared in the Ops package are switched to the proper instance, using
the the first parameter to the call to select the instance.

The Ops. Type_name function body is empty. An empty subroutine body is allowed here
due to the package_type pragma:
23 package body Ops is

24

25 ~~ Logic: _

26 -- Attribute packages have null bodies.
27

28

29 end Ops;

Defining the attribute is done no differently for an object-specific attribute. In fact, an attribute
that is not labeled as type-specific can be added to the attribute list of an object.

ViI-4.2.2 Defining an Attribute Instance

An attribute instance is simply a package that matches ("conforms to") the attribute’s Ops
package template and that is bound to that template using the package_value pragma:

VII-4-6 Using Attributes

PRELIMINARY

with System,
Type_Name_ Attribute_ Ex:;

1
2
3
4 package Account_Type Name_ Ex is

5 pragma package_value (Type_ Name Attribute Ex.Ops):
6

7

8

-- Function: .
- Defines the type name attribute for accounts.
9 -
10 -- A type that supports this attribute has a
11 - printable name. For example, a directory
12 -- listing utility could use this attribute to
13 - print the types of the objects in a
14 - directory.
15
16
17 function Type_name (
18 obj: System.untyped_word)
19 return string;
20 -—- Name of the "account" object type.
21 -
22 —- Function:
23 - Returns the type name for account objects.
24
25
26 pragma external;
27

28 end Account_Type_ Name_Ex;

Note that the instance does not contain a nested Ops package. It corresponds to the attribute’s
nested Ops package and it will be called whenever one of the general Ops routines is called
with a first parameter that is an object to which the attribute applies. Note that pragmas
package_value and package_type occur paired. They can be compared to a type
definition and a variable declaration in BiiN™ Ada.

The Account_Type_Name package body simply returns the name "account™ when its
Type_name function is called:

1 with System:

2

3 package body Account_Type_Name Ex is
4

5

6 function Type_ name(

7 obj: System.untyped weord)
8 return string

9 is
10 begin
11 return "account™;
12 end Type_name;
13
14

15 end Account_Type Name Ex;

Vii-4.2.3 Initializing the Type’s TDO

Calls Used:

Attribute Mgt.Store attribute for_ type
Stores attribute ID and instance in TDO.

The implementation of the type-name attribute for accounts must be stored in the account TDO
to be useful. The following excerpt is from the Stored_Account_Init_Ex example
package body:

Using Attributes VII4-7

PRELIMINARY

60 type_name_impl: System.untyped word;

61 -- Implementation of type name attribute

62 -- for accounts.

107 type_name_impl := Account_Type Name_ Ex’package_value;
108

109 Attribute_Mgt.Store_attribute_for_type(

110 tdo => account_TDO,

111 attr ID => Type_ Name Attribute Ex.

112 Get_type_name_attr_ ID,

113 attr_impl => type_ name_impl);

The ‘' package_value BiiN™ Ada attribute (not to be confused with an OS attribute) is used
to obtain an AD for the type-specific Account_Type_Name_Ex package, an AD which is
then stored in the TDO.

Handling TDOs and attributes that are stored objects is described in Chapter II-3.

Vii-4.2.4 Initializing an Objects Attribute List

Calls Used:

Attribute Mgt.Retrieve_ attribute list
Get’s an object’s attribute list. If none exists, creates one.

Attribute Mgt.Store_attribute for_ object
Stores attribute ID and instance in TDO.

Before you can use an object-specific attribute you have to store it in the object’s attribute list.
To do so, ou have to retrieve the attribute list with

Attribute Mgt.Retrieve_attribute_list. This retums an AD to the object’s at-
tribute list. If none exists, a new attribute list is created. Finally, you can store the attribute
using Attribute Mgt.Store attribute_for_object.

VII-4.3 Summary

VII-4-8

e An auribute is a package or data structure that can be defined for multiple objects or types.
o Explicitly type-specific attributes can only be associated with a type, not any object.

® An attribute instance is an attribute’s value for a particular object or type.

e Attributes are identified by attribute ID objects.

® A type manager stores type_specific attribute instances of attributes that it supports in its
TDO.

e Anyone with control rights to an object and store rights to an attribute can store that at-
tribute in the object’s attribute list.

Using Attributes

FKELLIVILINAK X

MANAGING ACTIVE MEMORY

Contents
A Brief Overview of How Memory Is Allocatedccoieveiiinnnennnns VII-5-2
Collecting Garbage Objects - GCOLciiiiiiniiiiernereneeenannannn VII-5-3
Local GCOL iiiiiitiiiiieeeeecaaeanenaaceaaeonasonnaennnns . VII-5-3
Global GCOL iiiiiiiii it ieeereeneensesasscancaassoeaeaannnns VII-5-4
TeChnIQUES .. iivitieiteiietiiteeeneoesossnssaanosassasssacnconaansnsan VII-5-5
Trimming the Caller’s Stackcciiiiiiiiiiiiiiiiiiiiiiiiiiienns VII-5-5
Starting Local Garbage Collectionccivuiernnenrreccsianncanns VII-5-5
Setting/Changing Local GCOL Parametersccceveieinecenannaanas VII-S-5
Stopping Local Garbage Collectioncoitiiiitinnrneennnenneannn VII-5-6
Getting Information Abouta Job’s Local Memorycocevevennenens VII-5-6
Ry 01414 F: 1o AP VII-5-6

Managing Active Memory VII-5-1

A ANAYRJAIVARLNIAIN L

This chapter points out how you can use certain tools to manage active memory. This chapter
does not explain underlying concepts and models of memory management in a BiiN™ system.
Refer to Chapter VII-2 for a conceptual explanation of active memory.

For the most part, memory is managed automatically by the OS. You will want to read this
chapter if you want to use optional calls to monitor and control your program’s memory use.

Packages Used:

Object_Mgt Provides basic calls on objects. Includes a call to shrink the calling
process’s stack.

SRO_Mgt Provides calls to get memory information and control local garbage collec-
tion.

VII-5.1 A Brief Overview of How Memory Is Allocated

VII-5-2

Virtual address space in active memory is managed on a per-job and per-node basis. Each job
has a special type of object associated with it that represents memory and objects local to the
job and shared by all its processes. This object is known as a local storage resource object
(SRO).

A local SRO provides a job with its own local address space, a subset of the node’s virtual
address space. Objects in the address space can be reclaimed by starting a local garbage
collection daemon. The daemon is basically a memory optimization technique used for long-
running jobs. It deallocates unreferenced objects (that is, objects with no ADs). See the
SRO_Mgt.Start_GCOL call.

NOTE

Local garbage collection should be started in long-running jobs that need to respond
quickly to events, terminal input, or other stimuli. Iflocal garbage collection is not
started by the job itself, then local garbage collection is done synchronously whenever the
job reaches one of its memory limits. Synchronous local GCOL suspends all other
processes in a job until it completes.

NOTE

Memory resources can be consumed by system calls other than those that explicitly al-
locate memory. For example, every time a transaction is started, the transaction counts
against the job’s "countable object” limit, even after the transaction is committed or
aborted. Local GCOL will detect that the job is not using the transaction any longer and
will decrement the job’s "countable object count" accordingly.

Some more information about the local SRO:

e The local SRO is shared by all processes in the job, and only by the processes in the job.
e All processes in a job have implicit access to their job’s local SRO.

e Most object allocation operations require an SRO as a parameter. This parameter defaults
to the local SRO of the job to which the calling process belongs.

Managing Active Memory

FRELLVIINAKYX

SROs have a number of properties that indicate how the objects allocated from an SRO are
treated by various memory management functions. These properties are:

relative lifetime Determines when objects can be deleted (that is, deallocation of both the
object’s representation and its unique object descriptor) and constrains the
storing of ADs in objects.

memory type Determines whether or not parts of an address space can be relocated.

memory priority Determines the frequency with which unused pages are swapped out of
active memory; also determines when small segments are compacted onto
a single page.

allocation limits Determines the amount of virtual storage allowed for all objects allocated.

Each one of these properties is discussed in more detail in Chapter VII-2.

VIiI-5.2 Collecting Garbage Objects -- GCOL

Unreferenced objects in active memory (that is, objects with no active ADs) are periodically
collected and deleted. This garbage collection (GCOL) is generally done automatically by the
system, although it can be configured to clean up local objects for long-running jobs.

VII-5.2.1 Local GCOL

Local garbage collection is executed by a special daemon process in a particular job. The
daemon is only present if a process in the running job requests it and can be deleted at times
when no garbage collection is needed.

It is useful to configure local GCOL for long-running jobs. When local garbage collection is
configured for a job, it can be triggered in one of two ways:

e Automatically, whenever one of the remaining claim values becomes smaller than a per-
centage of the original claim set by the programmer.

e Manually, by calling SRO_Mgt .Start_GCOL with all parameters defaulted.

The effect of a SRO_Mgt . Start_GCOL depends on the values of the parameters. Table
VII-5-1 summarizes the key parameters. Selected parameter combinations are used to start the
daemon manually and then to stop GCOL by deleting the daemon. See "Techniques” in this
chapter.

Table VII-5-1. Key GCOL Parameters

Parameter Description

storage_claim_percent | Threshold value at which GCOL daemon
- wakes up. A percentage of the original
number of words of virtual that
the specified SRO is allowed to allocate.

OTP_claim_percent Threshold value at which GCOL daemon
wakes up. A percentage of the o%inal
number of obdlect table pagses 60)
assigned for the specified SRO.

minimum_delay Minimum time between runs of the GCOL
daemon.

This can have the effect of starting up the daemon. To prevent the daemon from running too
often, a minimum delay can be specified as one of the trigger parameters. Garbage collection
will not be triggered automatically if the elapsed time since it started its previous run is smaller
than the minimum delay. Table VII-5-2 lists the special parameter values and their effect.

Managing Active Memory VII-5-3

A KNASRJRIVEALNSAAN K

Table VII-5-2. GCOL Parameters to Start and Stop Special GCOL

Effect Stop GCOL Start GCOL
storage_claim percent 0 100
OTP_claim percent 0 100
minimum delay max_int null time

Themax_int and null_time constants are defined in the Long_Integer_Defs and
System_Defs packages under "Support Services."

The garbage collection algorithm has these properties:
¢ Only objects that are garbage at the time the algorithm starts will be collected.
e Garbage objects are deleted during the final phase of the algorithm.

SRO_Mgt .Read_SRO_information retumns garbage collection related information.

Figure VII-5-1 shows the algorithm used by the system to determine when global garbage
collection is performed:

% remaining_storage_claim < storage_claim_percent
/
OR
/7 \\
/ % remaining OTP_claim < OTP_claim_percent
AND . »
\\

start_time + minimum delay < current_time

Figure VII-5-1. Algorithm That Controls Garbage Collection

SRO_Mgt .Start_GCOL parameters specify when the GCOL daemon should begin running.
When either of the claims granted to the job’s local SRO drops below the trigger values and
the minimum delay condition is met, the daemon starts running.

VII-5.2.2 Global GCOL

Global garbage collection runs periodically and collects garbage objects allocated from both
global SROs. Since global ADs may be stored in any object, all objects (local and global) on
the node are checked. As with local garbage collection, objects and their associated space are
only deleted during the final phase of the algorithm. Internally, the system minimizes the need
for global garbage collection by minimizing the generation of global garbage.

VII-5-4 Managing Active Memory

PKELIMINAKY

VII-5.3 Techniques
After reading this section, you will be able to:
e Trim the caller’s stack
e Start local garbage collection
¢ Stop local garbage collection
e Get information about a job’s local memory.

All techniques are taken from the Memory_ex example in Appendix X-A.

VII-5.3.1 Trimming the Caller's Stack

A process can use an event handler to trim its stack in response to the Event_Mgt .gcol
local event which is signalled to each process in a job whenever a local GCOL daemon is
triggered.

Calls Used: Object Mgt .Trim stack
Shrinks the calling process’s stack.

Basically, Trim_stack looks at the process’s current call stack pointer and then resizes the
stack.

29 Object Mgt.Trim_stack;

Trimming the stack frees memory and reduces the number of ADs that the local GCOL
daemon must scan, thus speeding up garbage collection.

VII-5.3.2 Starting Local Garbage Collection
To trigger local GCOL to start immediately in the calling job, you can use default parameters.

Calls Used:

SRO_Mgt .Start_GCOL
Controls the local GCOL daemon.

For example:
35 SRO_Mgt .Start_GCOL;

This will trigger the GCOL daemon to begin reclaiming space allocated from the job’s local
SRO.

VIiI-5.3.3 Setting/Changing Local GCOL Parameters

Local GCOL parameters can be configured to trigger the local GCOL daemon. The daemon is
triggered only when the conditions specified in the configuration are met.

Managing Active Memory VII-5-5

A ANAYRGAIVARLNZAAN R

Calls Used:

SRO_Mgt.Start_GCOL
Controls the local GCOL daemon.

For example, you might want to configure a local garbage collection daemon to run in the
calling job when it has used 50% of its storage claim or 50% of its object table page claim, and
at least 5 minutes has elapsed since a previous local GCOL run in the job.

45 SRO_Mgt.Start_GCOL(

46 storage_claim_percent => 50,

47 OTP_claim percent => 50,

48 minimum_delay =>

49 Long_Integer_ Defs."*"(

50 Long_Integer_ Defs.long_integer’ (0, 5),
51 System Defs.stu_per_min)):

VII-5.3.4 Stopping Local Garbage Collection
A local GCOL daemon, once started, can be stopped using a Start_GCOL call.

Calls Used:
SRO_Mgt.Start_ GCOL

Controls local GCOL.
For example:

58 SRO_Mgt.Start_GCOL(0, 0, Long Integer Defs.max int);

This will kill any local garbage collection daemon in the calling job. It does nothing if there is
no daemon.

VII-5.3.5 Getting Information About a Job’s Local Memory

To obtain information about the current status of a job’s local memory, call
SRO_Mgt.Read SRO_information.

Vil-5.4 Summary

e Active memory consists of primary memory and swap space.

¢ A node’s active memory contains objects used by executing programs.
* A one-to-one mapping exists between local SROs and jobs.

e Most active objects are allocated from local SROs.

¢ Global memory is allocated from global SROs.

e There are two types of global SROs: frozen global SROs and normal global SROs that
indicate whether reclamation and compaction is allowed in global memory.

e Garbage collection can be configured for objects allocated from local SROs; it has certain
trigger values that initiate a daemon process used to reclaim space.

VII-5-6 Managing Active Memory

FRELIMINAKY

BUILDING TYPE MANAGERS
FOR STORED OBJECTS

Contents
8004 T o) U VII-6-2
Storing and Retrieving ObjectsinPassive Storecccivvieene.. VII-6-2
Lifetime Requirementsc.ccitiintienrnnnencneanananaannans VII-6-3
Storing Objects Requires Three Stepscoviiiiiieiinnrnenerncennnans VII-6-3
Object Trees inPassive StOreciiiiniiiiiinrieeeeerocesncaannnans VII-6-3
The Type Manager Can Customize Passive Store Operations VII-6-3
Synchronizing Access to Objects -- Transactions and Semaphores VII-6-4
TeChIMIQUES .. iviitttttiiiiiiietiiiiietieeieieeeeraennaseenanaenseennnns VII-6-4
Defining the Type’sCallsviiiiiiiiiienieneeencaneneacenanans VII-6-5
Implementing the Create_accountcalloioiiiinane, VII-6-6
Implementing the Create_stored _account Call VII-6-7
Starting, Commiting, and Aborting a Transactioncceveevenenn.. VII-6-8
Storingthe Master ADcciiiiiivninenennnns P VII-6-9
Updating the Objectvviiiitiiiiieeieeneneeneeeaeneeanneannannnn VII-6-9
Implementing the Change_balanceCallcoiviiiiinnnnnn. VII-6-9
Implementing the Transfer Callciiiiiieenrnnnrnrnenennns VII-6-11
Implementing the Destroy_account Call VII-6-12
Initializing the Type Manageroiiiiiriiirnnenennreonesnas VII-6-13
Protecting the TYPe Managerccvveueiienrenenneroecnncnaeanannns VII-6-16
UMY .ttt it ittt iietniaaneeoneearoceoneneenesaeenneoneennns VII-6-18

Building Type Managers for Stored Objects VII-6-1

FIKELLVAINAKX

This chapter describes how to build a type manager for stored objects. The type manager has
the following characteristics:

e Objects can be passivated.

e Transactions ensure the consistency of passive versions.

The multiple activation model is used.
\

Objects should not be used by concurrent processes in one job.

The techniques necessary are illustrated by way of an implementation of the
Account_Mgt_Ex example introduced in Chapter VII-3. The example used in this chapter
has an interface identical to the one previously discussed. This is reflected by the fact that the
Ada specification is identical for both packages. In addition to the packages described here,
there is another implementation of Account_Mgt_Ex provided in Appendix X-A. That im-
plementation is slightly simpler and does not provide transaction-oriented calls. The
transaction-oriented implementation for stored accounts will be referred to simply as the im-
plementation of Account_Mgt_Ex. If any other implementation is referred to, that fact will
be explicitly stated. (All example packages used in this chapter can be found in in Appendix
X-A.)

This chapter is self-contained. It explains all techniques necessary for building a type manager
for stored objects. It does not, however, discuss the fundamentals of the type manager model.
If you do not know or understand the type manager model of protection, please read Chapters
VII-1 and VII-3 before reading this chapter.

VII-6.1 Concepts

Active memory is the immediate working space of the processors in one node. Active memory
is (relatively) small, volatile, and local to a node. Passive store is not limited in size, per-
manent, and global to a distributed system. Objects that should survive shutdowns or system
crashes, or that should pass between node boundaries, have to be passivated. A type manager
that stores its objects is distributed by virtue of the distributed nature of passive store.

VII-6.1.1 Storing and Retrieving Objects in Passive Store

VII-6-2

All objects are created as active objects. Local active objects disappear when the creating job
finishes. Global active objects survive as long as the system is up. Objects have to be pas-
sivated explicitly. Objects that have been passivated pass transparently between passive store
and active memory.

Objects can be labeled active-only. Active-only objects cannot be passivated.

A job retrieves a stored object either transparently by supplying an AD or explicitly through a
directory pathname. A job can also explicitly request that its current active version be updated
from the passive version.

To remove an object that has been passivated, both the active version and the passive version
have to be removed. Passive versions have always to be removed explicitly. Deallocating an
object’s active version has no effect on any existing passive version.

Building Type Managers for Stored Objects

FRELLVIINAK X

VII-6.1.1.1 Lifetime Requirements

Objects have a type defined by a Type Definition Object (TDO). The TDO acts as a label for
the type and it holds information specific to the type. An object may also have an atzribute list.
The lifetimes of TDO and attribute list should be at least as long as the object’s own lifetime.
For this reason TDO and attribute list have to be passivated before any object is passivated.

An object that has not explicitly been assigned a TDO or whose TDO has been removed is
assigned the generic TDO by default. This may have certain undesirable consequences. For
more details refer to Section VII-6.1.2.

VII-6.1.1.2 Storing Objects Requires Three Steps

Storing an object for the first time requires three steps:

e TDO and attribute list is stored. If the TDO already exists this step is omitted.

e An AD is stored on the volume set where the object is to be stored. This AD can be stored
in a directory or in another object. It will become the stored object’s master AD. Master
ADs cannot reference across volume sets.

e The object’s representation is stored.

Once an object has a passive version, only its representation has to be updated if changes to the
active version have been made. Note, that changes to an active version do not become per-
manent until the passive version has been updated.

VI1I-6.1.1.3 Object Trees in Passive Store

Master ADs can be stored inside other objects. Thus hierarchical trees of passive objects can
be created where one object holds master ADs for objects one level below. Object trees can be
copied, and updated as one unit. Activating the root object of an object tree does not activate
all the objects in the tree. Only the root object will be activated and all its ADs converted from
passive to active form.

VIl-6.1.2 The Type Manager Can Customize Passive Store Operations

A type manager can supply its own routines for certain passive store operations thus customiz-
ing passive store. The mechanism behind this feature is an attribute call. For more details on
attribute calls, refer to Chapter VII-4.

Passive store provides pairs of calls, operation and Request_operation calls. Direct calls,
such as Update, require representation rights, while Request_operation calls, such as
Request_Update, generally require only type rights. One exception are generic objects
which require read representation rights for Request_operation calls. (The BiiN™
Operating System acts as a type manager for these objects.)

If upon invoking any Request_operation call you receive the

System Exceptions.insufficient_rep_ rights exception, this is an indication
that something has gone wrong with your TDO. It probably means that either the TDO could
not be retrieved because you had insufficient rights to it or that it has been deleted altogether.
Remember though that the type manager has total control over what actually happens when
Request_operation is called. (The type manager could conceivably require rep rights for
these operations.)

Building Type Managers for Stored Objects VII-6-3

K INGEGALVARINAN L

If a type manager does not exlicitly provide an implementation for a Request_operation call,
the call is mapped by passive store to the direct call. This makes the direct call accessible with
only type rights. Therefore, if any particular passive store operation should be disabled, an
implementation of the corresponding Request_ operation operation that refuses the opera-
tion, by raising an exception, for example, has to be provided. Otherwise the operation will be
available to anyone with type rights.

VII-6.1.3 Synchronizing Access to Objects -- Transactions and Semaphores

The use of transactions in passive store operations ensures that the stored data is consistent
even in the event of system failures. Transactions also coordinate between different jobs
accessing an object in passive store. Passive store operations either participate in a caller’s
default transaction, or a transaction is started for the duration of the call to passive store.
Transactions have a built-in blocking protocol that avoids circular blocking of transactions.

Semaphores coordinate access to active objects, typically between processes inside one job. If
in the object layout a locking area has been provided, passive store transparently creates a
semaphore upon activation. A process can also explicitly create a semaphore. This is necessary
if the object has never been passivated or is active-only. Semaphore locking is not used in the
example described in this chapter. For more details on semaphore locking refer to Chapters
VI-1, VI-2, and VIII-1.

It is important to note the conceptual difference between transaction locking and semaphore
locking. Transaction locking directly locks an object. While a transaction holds its lock it
blocks all others that request access. Sempahore locking relies on voluntary compliance by all
participating processes. Semaphore locking is therefore used primarily to coordinate between
related processes, for example inside one job.

VIiI-6.2 Techniques

Building Type Managers for Stored Objects

FRKELLVIINAKYX

Packages Used:

Access_Mgt Interface for checking and changing rights in access descriptors.

Attribute_ Mgt Provides a way to define general-purpose operations supported by multiple
object types or objects, with different type-specific or object-specific im-
plementations.

Authority List_ Mgt
Provides Calls to manage authority lists and to evaluate a caller’s access
rights to objects protected by authority lists.

Directory_ Mgt Manages directories and directory entries.

Identification_Mgt :
Provides operations to manage IDs and ID lists.

Object Mgt Provides basic calls for object allocation, typing, and storage management.
Defines access rights in ADs.

Passive_Store Mgt
Provides a distributed object filing system.

Transaction_ Mgt
Provides transactions used to group a series of related changes to objects
so that either all the changes succeed or all are rolled back.

User_ Mgt Provides calls to manage a user’s protection set and user profile.

This section describes the techniques necessary for a complete implementation of a type
manager. The example described in this chapter and the example described in Chapter VII-3
share the same specification. Therefore, please refer to Chapter VII-3 for the following tech-
niques:

e Defining the public type

¢ Defining type rights

¢ Defining exceptions

e Defining the private types

¢ Binding to a stored TDO.

VII-6.2.1 Defining the Type’s Calls

The implementation described in this chapter provides the same calls as the one discussed in
Chapter VII-3. Some calls work a little differently, though:

Is_account Checks whether an AD references an account.

Create_account
Creates an account. Caller is responsible for storing the account.

Create_stored_account

Creates and stores an account. Caller supplies a pathname that is not al-
ready in use.

Get_balance Retumns an account’s current balance.

Change_balance
Adds or substracts an amount from the account’s current balance.

Building Type Managers for Stored Objects VII-6-5

FISDLAIVALIINAKK

Transfer Transfers amounts between accounts. Transfer either completes or fails as
a unit.
Destroy_account :

Removes an account’s active and passive versions. May leave a master
AD behind.

The implementation of the Is_type call will not be discussed here as it is identical to the one
discussed in Chapter VII-3. For details, refer to that chapter.

VII-6.2.2 Implementing the Create_account call

VII-6-6

The Create_account call allocates an object of the right size and type, initializes the
representation and returns an AD with no rep rights.

Calls Used:
Object_Mgt.Allocate
Allocates an object of specified size and type.

Object_ Mgt .Deallocate
Removes an objects active version.

Access_Mgt .Remove
Removes rights on an AD.

The following excerpt from the implementation of Account_Mgt_Ex shows all the steps in
the Create_account call:

Building Type Managers for Stored Objects

107
108
109
110
111
112
113
114

142
143
144
145

PRELIMINARY

begin
-=- 1. Check the initial balance:
if starting_balance < Long_Integer Defs.zero then
RAISE insufficient_balance;

else
-- 2. Allocate and initialize the account object:
account_rep_untyped := Object Mgt.Allocate(
size => (account_rep object’size + 31)/32,
tdo => account_TDO);
begin
-- Inside this block it is guaranteed
-~ that the object has been allocated.
account_rep.all := account_rep_object’ (
balance => starting_balance):

-— 3. Remove rep rights for the exported AD:
account_untyped := Access_Mgt.Remove(

AD => account_rep_untyped,

rights => Object_Mgt.read_write_rights):

exception
-- 4, If any exception occurs, abort any local
- transaction, deallocate the account,
- and reraise the exception:
when others =>
Object Mgt.Deallocate(account_untyped):
RAISE;

end;
RETURN account;

end if;
end Create_account;

Object_Mgt.Allocate is used to allocate an object of the right size and type. This call
can be substituted by the Ada new function if the BiiN™ Adaallocat e_with pragma is
specified with the private object type.

As can be seen from the above example, the Create_object call does not passivate the new
object. It is the caller’s responsibility to store the object. Note also, that if an exception occurs
during the call after the account has been allocated, it will be deallocated and the exception

reraised.

Vii-6.2.3 Impiementing the Create_stored_account Call

The Create_stored_account call allocates an object of the right size and type, stores a
master AD under a pathname provided by the caller, updates the passive version, and returns
an AD with all type rights and no rep rights. This call illustrates all steps necessary in storing
an object. In addition, you will learn how to employ transactions to protect passive store opera-

tions.

Building Type Managers for Stored Objects A VII-6-7.

A ANAJEAJRIVEALNLAAN &

Calls Used:

Object_Mgt.Allocate
Allocates an object of the right type and size.

Access_Mgt .Remove
Removes rights.

Transaction_Mgt.Get default_transaction
Gets the caller’s default transaction.

Transaction_Mgt.Start_transaction
Starts a local transaction.

Transaction_Mgt.Abort_transaction
Aborts a transaction. Rolls back any changes done by transaction oriented
calls within the transaction.

Transaction Mgt.Commit_transaction
Commits a transaction. Finalizes changes made within the transaction.

Directory Mgt.Store
Stores an AD with a pathname.

Passive_Store Mgt.Update
Updates a passive version.

The Create_stored_account call allocates an object and removes rights on the exported
AD the same way the Create_account call does.

VII-6.2.3.1 Starting, Commiting, and Aborting a Transaction

All passive store operations in this call are enclosed in a transaction, either a caller’s default
transaction, or a local transaction. The following excerpt from the implementation of
Account_Mgt_Ex illustrates the use of a local transaction.

219 -- 4, Start a local transaction if there is not
220 - a transaction on the stack:

221 -

222 if Transaction Mgt.Get_default_transaction =
223 null then

224 Transaction_Mgt.Start transaction:;

225 trans := true;

226 end if;

227 begin

241 if trans then

242 Transaction_Mgt.Commit_transaction:

243 end if;

244 exception

245 -- 8. If any exception occurs, abort any local
246 - transaction, deallocate the account,
247 - and reraise the exception:

248 -

249 when others =>

250 if trans then

251 Transaction_Mgt.Abort transaction;

252 end if;

253 Object_Mgt.Deallocate(account_untyped):
254 RAISE;

255

256 end;

This technique avoids starting a local transaction if the caller already supplied a default trans-
action. Subtransactions should be avoided, unless specifically needed.

VII-6-8 Building Type Managers for Stored Objects

FRKELLVIINAKYX

The above example also indicates the use of a program block to control the scope of the
exception handler. Within this block one can assume that, if t rans is true, a local transaction
has indeed been started.

VII-6.2.3.2 Storing the Master AD

The next step in storing the object is to store the master AD. The following excerpt from the
implementation illustrates the call to Directory_Mgt.

230 Directory Mgt.Store (

231 name => master,

232 object => account_untyped,
233 aut => authority);

master is a text record that contains the pathname to store the account. The pathname must
reference an existing directory and not be in use. If the caller did not specify an authority list,
authority is null, and the target directory’s default authority list will be used, if one exists.
Otherwise the caller’s default authority list will be used. If no default authority list is found,
the exception Directory_Mgt.no_default authority list israised.

VII-6.2.3.3 Updating the Object
In the last step the object’s representation is stored by calling
Passive_Store Mgt.Update:
237 Passive_Store_Mgt .Update(account_rep untyped):

Note, that storing the AD does not passivate the object’s representation. If you omit this last
step, a later attempt to retrieve the object will result in the
System_Exceptions.object_has_no_representation exception being raised.

VII-6.2.4 Implementing the Change_balance Call

This call is a typical example of a type-specific operation. It illustrates the use of transactions
to coordinate access to the passive version of an object between different jobs.

Calls Used:

Access_Mgt.Import
Checks and amplifies rights on an AD in one step.

Transaction Mgt.Get_default_transaction
Retums the caller’s default transaction.

Transaction Mgt.Start_transaction
Starts a local transaction.

Transaction_Mgt.Abort_transaction
Aborts a transaction.

Transaction Mgt.Commit_transaction
Commits a transaction.

Passive_Store_Mgt.Reserve
Reserves a passive version of an object on behalf of a transaction.

Passive_Store_Mgt.Update
Updates an object’s passive version.

Building Type Managers for Stored Objects VII-6-9

VII-6-10

KIS LAIVALINANE

Two steps are necessary before any operations can be performed on the object; the type rights
have to be checked on the AD supplied by the caller, and representation rights have to be
amplified. The following excerpt from the implementation illustrates the

Access_Mgt . Import call that performs these two steps together:

400 account_untyped := Access_Mgt.Import {
401 AD => account_untyped,
402 rights => change_rights,

403 tdo => account_TDO);

If the AD’s type rights are insufficient, this call will result in the :
System_Exceptions.insufficient_type rights exception being raised.

Before checking for a sufficient balance in the account, the technique described in the previous
section is used to ensure that there is a default transaction. Next, the call reserves the passive
version on behalf of the transaction:

412 Passive_Store_Mgt.Reserve (account_untyped):

The Passive_Store_Mgt.Reserve call may have three different outcomes:

¢ The object is available. The call succeeds and locks the object on behalf of the default
transaction.

e The object is locked by another transaction. The blocking protocol permits blocking. The
call blocks until the object becomes available.

* The object is locked by another transaction. The blocking protocol does not allow blocking.
The call retums with the
System exceptions.transaction_timestamp_conflict exception.

You have to be prepared to handle this exception. The technique used here is illustrated by the
following excerpt from the implementation:

405 loop

406 if Transaction_Mgt.Get_default_transaction =
407 null then

408 Transaction_Mgt.Start_transaction;

409 trans := true;

410 end if;

426 exception

427 when System_Exceptions.

428 transaction_timestamp_conflict =>
429 if trans then

430 Transaction_Mgt.Abort_transaction;
431 else

432 RAISE;

440 end;

441 end loop:;

The Passive_Store_Mgt.Reserve operation is enclosed in a program block that has an
exception handler for the transaction_timestamp_ conflict exception. The block in
tumn is enclosed in a loop that repeats the Reserve call until it succeed in either blocking or
reserving the object.

You can avoid the Reserve call. In that case, if the object had been updated by another job
while your call was holding it, passive store would raise the

Passive_ Store Mgt.outdated object_version exception. You would handle the
exception, request a fresh active version, by calling

Passive Store_Mgt.Reset_active_version, redo the changes, and try another up-

Building Type Managers for Stored Objects

FKELLVIINAKY

date. This technique is not acceptable for our example, since it might result in the decision,
whether the balance be changed, being based on an outdated balance.

VII-6.2.5 Implementing the Trans£fexr Call

The Transfer call is similar in nature to other type-specific calls. It is discussed in more
detail here, since it gives another example of how transactions can be used to keep data in
passive store consistent.

Calls Used:

Access_Mgt.Import
Checks and amplifies rights on an AD in one step.

Transaction_Mgt.Get_default_transaction
Returns the caller’s default transaction.

Transaction_ Mgt.Start_transaction
Starts a local transaction.

Transaction_Mgt .Abort transaction
Aborts a transaction.

Transaction Mgt.Commit_transaction
Commits a transaction.

Passive_Store Mgt.Reserve
Reserves a passive version of an object on behalf of a transaction.

Passive_Store Mgt.Update
Updates an object’s passive version.

You might think that the Transfer call is superfluous, since two successive calls to
Change_balance would achieve the same outcome. This is only partly true, as the
Transfer call, as described here, enforces atomicity of the transfer. This means, transactions
ensure the call cannot charge one account and not credit the other.

First, both ADs, for the source and the destination account, are checked and amplified using
the one-step Access_Mgt . Import call:

494

495 source_untyped := Access_Mgt.Import (
496 AD => source_untyped,

497 rights => change_rights,

498 tdo => account_TDO)

499 dest_untyped := Access_Mgt.Import (
500 AD => dest_untyped,

501 rights => change_rights,

502 tdo => account_TDO);

Next, the call makes sure that there is a default transaction. Note, that if the caller already
started a transaction, no further transaction is needed.

The call reserves both objects. Time stamp conflicts are handled the same way as described in
the previous section, with a program block with exception handler inside a loop. The following
excerpt illustrates the two Reserve calls.

511 Passive_Store_ Mgt .Reserve (source_untyped):;
512 Passive_Store_Mgt.Reserve (dest_untyped);

Building Type Managers for Stored Objects VII-6-11

IINDAAIVIAINAKR L

Note that if the first Reserve succeeds but the second one fails, Reserve will be called
again on both objects. At that point the Resexve call on the first object simply results in no
operation. ’ ‘

After both objects have been reserved, the balances are checked. As the following excerpt
shows, an insufficient balance in either account will will cause the
insufficient_balance exception to be raised.

513 if source_rep.balance - amount < zero
514 or else

515 dest_rep.balance + amount < zero

516 then

517 RAISE insufficient_balance;

518

519 else

520 source_rep.balance :=

521 source_rep.balance - amount;

522 dest_rep.balance 1=

523 dest_rep.balance + amount;

524 Passive_Store_Mgt .Update(source_untyped);
525 Passive_Store_Mgt .Update(dest_untyped):
526 if trans then

527 Transaction_ Mgt .Commit_transaction;
528 end if;

529 RETURN;

530

531 end if;

The last step in a successful completion of the call, as shown in the example above, is to
update both objects. The new balances do not become permanent until both objects have been
successfully updated and the default transaction committed. Note, that even though the vari-
ables source_rep_balance and dest_rep_balance have been assigned the new
balances, this has no effect on the passive versions of the objects unless they are updated from
the active versions.

VII-6.2.6 Implementing the Destroy_account Call

VII-6-12

The Destroy_account call destroys an account’s passive version, and removes the master
AD if it is stored with a pathname.

Calls Used:
Access_Mgt .Import
Checks type rights and amplifies rep rights in one step.

Transaction_Mgt.Get_default_ transaction
Returns the caller’s default transaction.

Transaction Mgt.Start_transaction
Starts a local transaction.

Transaction Mgt.Abort_transaction
Aborts a transaction.

Transaction Mgt.Commit_transaction
Commit a transaction.

Directory Mgt.Get_ name
Returns the pathname of an object’s master AD.

Directory Mgt.Delete
Deletes a directory entry.

Building Type Managers for Stored Objects

PFKELLVIINAKYX

Destroy_account uses the same techniques described in the previous sections to amplify
rights on ADs and keep data in passive store consistent. The following example illustrates that
after reserving the object’s passive version, then if the balance in the account is zero, it calls
Passive_Store_Mgt.Destroy to remove the object’s passive version. If the object has
no passive version, then the Passive_Store_Mgt.no_master_AD exception is raised.

621 Passive_Store_Mgt.Reserve (account_untyped):
622 if account_rep.balance /=

623 Long_Integer Defs.,zero then

624 RAISE balance_not_zero;

625

626 end if;

627 Passive_Store_Mgt .Destroy(account_untyped):

Finally the call attempts to remove the object’s master AD. The following excerpt illustrates

how:
629 loop
630 declare
631 path_text: System Defs.text (path_length):
632 begin
633 Directory Mgt.Get_name (
634 obj => account_untyped,
635 name => path text); -- out.
636 if path_text.length >
637 path_text.max length then
638 —-- Text was lost. Retry:
639 path_length := path_text.length;
640 else
641 Directory_ Mgt.Delete(path_text);
642 EXIT;
643
644 end if;
645 exception
646 when Directory_ Mgt.no_name =>
647 EXIT;
648
649 end;
650 end loop:

If the master AD is (1) not stored in a directory, or (2) is stored in a standalone directory that
does not have an associated name mapper, or (3) is stored in a standalone directory whose
associated name mapper does not support Get__name, the call to

- Directory_ Mgt.Get_name may fail and return with the Directory Mgt.no_name
exception.

Note that pathlength has an initial value of 60. In the event that the pathname is longer
than 60 characters, the loop body will be executed again, and this time around the
path_text text record is declared with the actual length of the pathname.

In the last step the master AD will be deleted by calling Directory Mgt.Delete. A
master AD for the object may remain if other directory entries on the same volume set
references the object. One of these alias AD will then become a new master AD.

VII-6.2.7 Initializing the Type Manager

In Section VII-6.1.1.1 we have discussed the need of the TDO to outlive any of its objects. For
this reason the TDO has to be created and stored before the first call to this implementation of
Account_Mgt_Ex. The TDO can be created either by the system administrator using the
configure utility at node initialization time or by a separate procedure. In this chapter we
shall discuss the second alternative. For more details on the first alternative, refer to the BiiN™
Systems Administrator’s Guide.

Building Type Managers for Stored Objects VII-6-13

KELLVIINAKYX

Calls Used:

Object_Mgt.Create_TDO
Establishes a new type by creating a new type definition object (TDO).

Attribute_Mgt.Store_attribute_ for_ type
Stores an attribute with a TDO.

Transaction_Mgt.Get_default_transaction
Retumns the caller’s default transaction.

Transaction_Mgt.Start_ transaction
Starts a local transaction.

Transaction_ Mgt.Abort_transaction
Aborts a transaction.

Transaction_ Mgt.Commit_transaction
Commit a transaction.

Directory Mgt.Store
Stores an AD with a pathname.

Passive_Store_Mgt.Request_update
Requests an update of a passive version. No rep rights required.

The example described in this section is the Stored_Account_TDO_Init_Ex procedure.
(The complete code of this procedure can be found in Appendix X-A.) This procedure has to
be executed before Account_Mgt_Ex can be linked. Note also, that a TDO uniquely iden-
tifies its type. Calling the initialization procedure creates a new TDO that defines a new dis-
tinct type. You have to make sure that at any time there is only one passive version of the TDO
on the system and that all instances of Account_Mgt_Ex refer to the same TDO, otherwise
these instances will not be compatible.

The following excerpt from the Stored_Account_TDO_Init_Ex procedure shows how
to declare the TDO and an instance of the ; passive store attribute.

52 account_TDO: Object Mgt.TDO_AD:;

53 -- TDO for accounts.

54

55 passive_store_impl:

56 Passive_Store_Mgt.PSM_attributes AD;

57 -- Implementation of passive store attribute
58 -- for accounts.

The next step is to create the TDO, to dynamically allocate an instance of the passive store
attribute, to initialize the instance, and to store it with the type:

VII-6-14 Building Type Managers for Stored Objects

KELLVIINAKY

93 passive_store_impl := new

94 Passive_Store_Mgt.PSM _attributes_object;

95

96 passive_store_impl.reset :=

97 Refuse_reset_active_version Ex.

98 Refuse_reset_active_version’subprogram value;
99

100 passive_store_impl.copy permitted := false;

101

102 Attribute Mgt.Store_attribute_for_type(

103 tdo => account_TDO,

104 attr_ID => Passive Store Mgt.PSM attributes_ID,
105 attr_impl => Untyped from PSM attributes(

106 passive_store_impl));

107 type_name_impl := Account Type Name Ex’package_value;
108

109 Attribute_Mgt.Store_attribute_for_ type(

110 tdo => account_TDO,

111 attr_ID => Type_Name_ Attribute_ Ex.

112 Get_type_name_attr_ID,

113 attr_impl => type_name_impl);

Note that the passive_store_impl.reset variable is initialized with a pointer to a
subprogram that executes when

Passive_Store Mgt.Request_reset_active_ version is called. The following
excerpt from the Refuse_reset_active_version_Ex package in Appendix X-A

shows this procedure:
11 procedure Refuse reset_actlve_version(
12 obj: System.untyped word)
13 is
14 -
15 —— Function:
16 - Handles requests to reset an account’s active
17 —— version by refusing such requests.
18 -
19
20 begin
21
22 RAISE System Exceptions.operation_not_supported;
23 .
24 end Refuse_reset_active_version;

Note, that this procedure simply raises the
System Exceptions.operation_not_supported exception.

In addition, the copy_permitted boolean is set to false. This prevents a caller to duplicate
accounts. The Attribute Mgt.Store attribute_for_type links the instance of
the passive store attribute to the TDO. This operation does not, however, passivate the attribute
instance. The next excerpt from the initialization procedure shows how the TDO and the at-
tribute instance are explicitly stored:

Building Type Managers for Stored Objects VII-6-15

PKELIMINAKY

122 if Transaction Mgt.Get_default_transaction =
123 null then

124 Transaction_Mgt.Start_transaction;

125 trans := true;

126 end if;

127

128 begin

129 Directory_ Mgt.Store(

130 name => account_text,

131 object => Untyped_from TDO(account_TDO),
132 aut => authority);

133 Passive_Store_Mgt.Request_update(

134 Untyped_from_ TDO (account_TDO))
135 Passive_Store_Mgt.Request_update(

136 Untyped_from_PSM attributes(

137 passive_store_impl));

138 Passive_Store_Mgt.Request_update(

139 type_name_impl):

140

141 if trans then

142 Transaction_Mgt.Commit_transaction:
143 end if;

144 exception

145 when Directory Mgt.entry exists =>
146 if trans then

147 Transaction_Mgt.Abort_transaction;
148 end if;

149

150 when others =>

151 if trans then

152 Transaction_Mgt.Abort_transaction;
153 end if;

154 RAISE;

155

156 end;

Note again the use of transactions to ensure consistency of passive store.

Vii-6.2.8 Protecting the Type Manager
Recall for a moment two premises of the type manager model:
e A type manager protects objects of its type.
e A type manager provides black box type functionality.

In order for your type manager to accomplish these requirements you have to properly protect
it from other programs. There are two aspects to protecting the type manager, namely

- e protecting the type manager inside a running program,
e protecting the type manager’s private ADs,

Calls Used:

Authority_ List Mgt.Create_authority
Creates an authority list.

Identification_Mgt.Get_user_ ID
Retumns caller’s user ID.

Protecting the type manager inside a running program is equivalent to protecting its address
space. The BiiN™ Systems Linker provides special support for linking modules so that each

VII-6-16 Building Type Managers for Stored Ohjects

A ANAJAJALIVARL VSRR A

one executes in its own protected address space, called domain. Besides creating an executable
program, you can also create an image module with the linker. Image modules are pre-linked
pieces of software that are not linked to a user’s program until runtime and that can be shared
by several users. An image module always executes in its own domain. For more details on
domains and image modules, in particular on how to build domains and image modules with
the linker, refer to the BiiN™ Systems Linker Guide.

Depending on how your type manager is to be used, you can choose to either link it in the
standard way to an interactive interface, or to link it into an image module, thus making it
available to be called by user programs. If the type manager consists of small routines that are
not going to be called very often, the savings of shared code will not outweigh the overhead of
creating an image module. For large programs used frequently, howeyver, using image modules
could result in substantial savings.

The second aspect of protecting the type manager is to protect its private ADs. It is necessary
for the protection mechanism here that the linking not be left to the user for the following
reason: As mentioned above, you need to create and store the TDO before invoking the type
manager for the first time. The TDO is created by an initialization routine that stores it with a
pathname. This directory entry is protected by an authority list. The following excerpt from
Stored_Account_TDO_Init_Ex is an example where the authority list includes only the

caller.
64 owner_only: User_Mgt.protection_set(l):
65 -—- Protection set that includes only one ID, namely
66 -- the type manager’s owner.
67 '
68 authority: Authority List_ Mgt.authority list AD;
69 -- Authority list that contains only one ID, namely
70 -- the type manager’s owner.
115) owner_only.length := 1;
116 owner_only.entries(l).rights := User_Mgt.access_rights’ (
117 true, true, true});
118 owner_only.entries(l).id := Identification_Mgt.Get_user_ id;
119
120 authority := Authority List Mgt.Create_authority(owner_only);
129 Directory Mgt.Store(
130 name => account_text,
131 . object => Untyped_from TDO(account_TDO),
132 aut => authority):;

The TDO is retrieved at link-time using the Ada pragma bind. At that time rights are
evaluated against the ID list of the calling process. The following excerpt from the implemen-

tation shows this:
52 account_TDO: constant Object_Mgt.TDO_AD := null;
53 —-- This is a constant AD but not really null; its
54 —— filled in with an AD retrieved by the linker.
55 pragma bind({account_TDO,
56 "account") ;
57 -— Bind to TDO for accounts.

With the TDO thus protected, only people who are included in the TDOs authority list can link
the program since noone else has access to the TDO. In the above example this is only you.
(You could also create a separate ID just to protect the type manager.)

After the program is linked, it can execute with any ID.

Building Type Managers for Stored Objects ‘ VII-6-17

KINDEAIVIMNARNL

Vil-6.3 Summary

In this chapter you have learned the techniques necessary to build a type manager for stored
objects. In particular, you have learned that

VII-6-18

before the first object can be stored, a TDO has to be created and stored together with a list
of attributes.

storing an object requires two steps, namely storing the AD and updating the object’s
representation.

the use of transactions keeps passive store consistent even in the event of a system failure.
transactions can be used to synchronize access to passive objects.

removing an object that has been passivated requires three steps, namely, deallocating the
active version, destroying the passive representation, and deleting the master AD.

special features of the linker and pragma bind can be used to protect the type manager.

NOTE

Please keep in mind that the example described in this chapter permits processes in dif-
ferent jobs to concurrently use the objects of one type. There is no provision in the
example for processes within one job to concurrently access one object. For details on
how to achieve that, see Chapter VIII-1.

Building Type Managers for Stored Objects

FROLAIVIANAR L

UNDERSTANDING
SYSTEM CONFIGURATION

Contents
Creating a Node’s Configurationccoiieeneinnerenreesannsnsananns VII-7-3
Defining a Node’s Configurationc.ciieiieenneneneeeeaannaaaenann VII-74
Configuration Attribute Callsci it iiiiiiiitirnreeenraoencnnnn VII-74
Creating Configurable ObJectScvviiiiiiieiereierreresraarosasasaansns VII-7-5
Attaching Objects to Configurable Objectsccoiviiiiirierinrnnecnnnnns VII-7-6
Starting Configurable Objectscoiiiieiiiirnineeneeneneenansasanans VII-7-7
System SCOs and User SCOS ... iviitiiiiiirierierveeeaneeernscacsesnsnnsas VII-7-8
The configure UILYovvinnreineeeereennneeeeennneeennneeennnns VI-7-9
Configuring Software ServiCescviiiiiieeieennreernnennecnaannnns VI-7-6
SUMMAIY ...ttt it iiieteerensoaeoeeoesnonsosasoasassansoocssnasnnsns VII-7-9

Understanding System Configuration VII-7-1

K ANESRLRIVAALNAARN L

A configuration is an arrangement of objects representing the hardware and software resources
of a particular BiiN™ node. System administrators routinely manage node configuration using
the configure utility as described in the BiiN™ Systems Administrator’ s Guide. Two
classes of programmers also need to understand system configuration:

¢ Programmers adding hardware devices to BiiN™ systems
e Programmers adding software services with unique initialization requirements.

A BiiN™ system provides a variety of predefined system configurations describing systems
covering the most common customer characteristics of hardware configuration: number of
users, interactive or batch workload, or computational or I/O emphasis. Any of these
predefined configurations may be used for generating a tested and balanced BiiN™ Operating
System configuration, or may be modified to accommodate site-specific requirements.

Packages Used:

Configuration Provides operations for creating and modifying a system configuration.

Configuring a system includes creating conﬁgurablé objects to represent hardware and
software system components, then attaching and starting the objects to build a running system.

VII-7-2 A . Understanding System Configuration

A ANAYRJALVAALNIAAN &

System Configuration Object Configurable Objects Hardware

1

I CcpP l CcP

l_ _l A

Channel
Processor (CP)

[

I SCSi_bus l SCSlI_bus

I

SCSI Bus

1

I SCSli_cont ' SCSi_cont

SCSI Controller

|—>]

I I

1

SCSI_disk I SCSI_disk

=
l
L

SCSI Disk

Figure VII-7-1. System Configuration

VII-7.1 Creating a Node’s Configuration

A node’s configuration is created when the node is booted (see Figure VII-7-2). Booting a
node begins with all hardware connections made, power on, and needed boot images but no
software active in the system. Booting ends with a functioning, active system ready to respond
to commands. The boot process must search for and initialize hardware and software modules
and create the complex network of objects on which a running node depends.

Understanding System Configuration VII-7-3

FICLLAIVIANAIKR X

System
@ Volume
Set
Boot Tape:
OS Kernel
Device Drivers
Services
Utilities

CLEX>

Figure VII-7-2. Booting a Node

Certain information must be available when a node is configured:

e What objects are part of the configuration. For example, there may be objects that
represent physical I/O devices, device controllers, logical devices such as volume sets, and
software units such as the OS kernel.

¢ One-time operations to be performed. For example, a hard disk may need to be formatted.

e The sequence in which operations should be performed. For example, a volume set cannot
be created on a hard disk until after the disk controller is started and the disk is formatted.

VII-7.2 Defining a Node’s Configuration

A node’s configuration is defined by a System Configuration Object (SCO). An SCO provides
information needed to create the configuration: the objects involved, the operations involved,
and the required sequence of operations.

An SCO is a list of operations to perform, along with parameters for each operation. Only
those operations defined by the Configuration.Ops attribute package are allowed in an
SCO. If an object type needs to actively participate in the configuration process, that type
must support the configuration attribute. Such objects are configurable.

VII-7.3 Configuration Attribute Calls

The configuration attribute provides calls for:

e Attaching objects to configurable objects
¢ Starting configurable objects.

VII-74 Understanding System Configuration

FILAIVILNAKX

These calls are normally used within an SCO. Other configuration attribute calls, for
detaching objects from configurable objects and stopping configurable objects, are normally
not used within an SCO. '

VII-7.4 Creating Configurable Objects

System configuration is the specification of environmental hardware and software operating
parameters of the components to be supported by a BiiN™ Operating System kemel image.
System components include hardware modules (disk, controller, bus, etc.) and software
modules (loadable, non-resident subsystems and optional support services).

A configurable object (CO) is a representation of a hardware or software module that must be
configured at node initialization, or can be dynamically added to a running node. A
configuration attribute supports the configuration of objects other than software services, par-
ticularly hardware components. A service configuration attribute supports the configuration of
software services that have configuration and initialization dependencies in common. (An
object is configurable only if its TDO contains the configuration or service configuration
attribute.)

A configurable object must be created for each system component to be included in a system
configuration. After it is created, it is not yet functional, but may be attached to other con-
figurable objects. Attachment binds the configurable objects so they can be started and placed
in a usable state.

When the configurable objects are no longer required to provide their function, they can be
stopped. When they are no longer needed in the configuration, they are detached from other
configurable objects to which they may have been attached.

Figure VII-7-3 illustrates the process of creating a configurable object.

- Command
Configuration Definition
Attribute
A
TDO Interactive
cmd > :-_D Form
y— o
| C——
L
r-~ ——
Configurabie | Command
Object | Parameter < —
: Record a—

-

Figure VII-7-3. Creating Configurable Objects

Understanding System Configuration VII-7-5

FRKDLDLLVIANAKY

An object to be made configurable must have a TDO which contains a configuration attribute.
The TDO contains a command definition that defines the type of information required by a
configurable object of the TDO’s type. This command definition is displayed in an interactive
form through which a user enters parameter data. The data collected by the interactive form is
extracted from the command definition format and is used to create a configurable object.

VII-7.5 Attaching Objects to Configurable Objects

Attach and Detach operations bind and unbind configurable objects. These configurable
objects are considered head or tail objects depending on their relationship in the binding.

A head object is the initiating member of a pair of configurable objects associated with each
other. A head object is characterized by its ability to function normally without being attached
to another configurable object.

A tail object is the dependent member of a pair of objects associated with each other. A tail
object is characterized by the requirement to be bound to a configurable object before it can
become functional. Rights that may be needed on tail objects should be specified by the type
manager supporting the Attach and Detach configuration calls on the tail objects. Tail
objects don’t have to be configurable when the attachment is unidirectional (tail object at-
tached to head object but head object not attached to the tail object).

An attachment normally indicates that the tail object depends on the head object to function.
For example, a volume set must be attached to a disk in order to function. A type manager’s
implementation of At tach normally checks the validity of the attachment by checking the
type, rights, and state of the tail object and the rights and state of the head object.

An implementation of Attach can be bidirectional, making the attachment in the reverse
direction as well. A bidirectional implementation is used when configurable objects are
mutually dependent. For example, a CP (channel processor) and a SCSI (Small Computer
System Interface) bus must communicate with each other in both directions and therefore
require a bidirectional implementation of Attach.

VII-7.6 Configuring Software Services

VII-7-6

A configurable object is an object whose TDO contains an instance of a configuration attribute.
Kernel, loadable, and application services require an attribute that can deal with the interdepen-
dencies inherent between them. For example, the object service uses the distribution service
which in turn uses the clearinghouse service. An attribute is provided by configuration that,
for example, enables the distribution service to ensure that the object service is started only
after the Clearinghouse is started.

The mechanism used to support this binding of services is the service configuration attribute.
This attribute allows a service to link itself with all the necessary and optional services that it
uses. This attribute is extensible in that it allows a service to support the initialization of
services that use it, and allows a service’s initialization to itself to depend on other services.
This attribute registers a distribution service-dependent initialization procedure. These
procedures are called by the BiiN™ Operating System after the system SCO has been
processed when a node is present in a distributed system.

Understanding System Configuration

KRN ARIVELINAN L

VII-7.7 Starting Configurable Objects

All configurable objects provide Start and Stop implementations (which can be null).
Start places a configurable object into a usable state by performing local initialization.
Start is called by OS initialization as specified in a System Configuration Object (SCO).
Start can also be called to start a component in a running system. Starting a configurable
object should not start any attached tail objects. However, Start may require that tail objects

be already started.

When the object to be started is a configurable object (CO) or a software service (SS) that
neither is dependent on another software service nor is depended on by another software ser-
vice, Start places it into a usable state by performing local initialization.

CO/SS

INIT
Start

Figure VII-7-4. Simple Attach

‘When the object to be started is a software service that is dependent on another software
service, Start performs local node initialization and attaches the first software service to the
service on which it is dependent.

SS SS

Attach
| EEEAMAL SIS

Start INIT

Figure VII-7-5. Attaching to a Dependent Software Service

When the object to be started is a software service that another service depends on, Start
performs back attaches, that is, attaches the dependent service to the service that it depends on.

Understanding System Configuration viI-7-7

FINDAAIVIAINAINL

SS SS

Attach

Start INFT

Figure VII-7-6. Back Attachment of a Dependent Software Service

When the object to be started is a software service (A) that is both dependent on another
software service (B) and another service (C) depends on it, Start first attaches A to B on
which it is dependent, and then performs back attaches from A to C.

B
A
Attach
EEE——
INIT c
Start
a9, _ Attach

Figure VII-7-7. Compound Attachment

The order of attaches caused by starting a software service is implementation-dependent.

VIl-7.8 System SCOs and User SCOs

A System Configuration Object (SCO) is composed of a sequence of commands that attach
COs together and start COs. The system administrator specifies a system SCO and a user SCO
to use during OS initialization. A system SCO references hardware and software components
of the configuration that are required to complete the node’s initialization of the BiiN™" Operat-
ing System. A user SCO references components of the configuration that are not required to
complete initialization of the OS, such as starting login services, database systems, specific
application programs, and other activities that depend on disk write access or distributed sys-
tem services.

VII-7-8 Understanding System Configuration

FIKDLAWVIEINAK X

Figure VII-7-8 illustrates system and user SCOs:

system SCO

/sys/scos/system_sco >

attach CP scsi_bus

attach scsi_bus scsi_cntir

attoch scsi__centir scsi_disk
e & o

start CP

start scsi_bus

start scsi_cntlr

start scsi_disk
e e e

user SCO

/sys/scos/user_sco >

start login
start dbms
o e @

Figure VII-7-8. System Configuration Objects

The order of initialization of configurable objects is defined by the sequence of Start calls in
the SCOs. The sequence for other configurable objects started after system initialization is
determined by their type managers. For example, a set of configurable objects that is part of a
CP (Channel Processor) subsystem can be started by starting the configurable object that
represents the CP. Conversely, various network services require a separate start for each ser-
vice specified in the configuration.

All system and user SCOs on a node are contained on the system volume set in the directory
/sys/scos.

VII-7.9 The configure Utility

Additional system configuration can be performed dynamically when the system is up and
running, or at the next boot by updating or creating new SCOs.

The configure utility provides runtime commands to dynamically attach, detach, start and
stop COs, and to create COs and SCOs for use at a future system initialization. See the BiiN™
Systems Administrator’s Guide for information about the configure utility.

VII-7.10 Summary

¢ Hardware components and system software modules are defined to represent a working
system.

® A running system can be modified with the configure utility to build a site-specific
system.

Understanding System Configuration VII-7-9

VII-7-10

ERNDEAIVIAINNAKR X

System configuration is the specification of environmental hardware and software operating
parameters of the components to be supported by a BiiN™ Operating System kernel image.

System configuration is the process which brings a nonfunctional system to the point that it
can execute a common application.

System components include hardware modules (disk, controller, bus, etc.), and software
modules (loadable, nonresident subsystems, and optional support services).

A configurable object (CO) is a representation of a hardware or software module that must
be configured at node initialization or can be dynamically added to a running node.

A System Configuration Object (SCO) is composed of a sequence of commands that attach
COs together and starts COs. '

When a system is up and running, additional system configuration can be performed
dynamically, or at the next boot by using the configure utility.

A service configuration attribute enables a service to link itself with all the necessary and
optional services that it uses.

Understanding System Configuration

PFKELILVIINAKY

Part Vi

Distribution Services

This part of the BiiN™/OS Guide describes OS support for distributed services.

The chapters in this part are:

Understanding Distribution
Explains basic concepts of distribution and distributed services.

Building a Distributed Type Manager
Explains how to build a local single-activation distributed type manager,
using remote procedure calls.

Distribution Services contains the following services and packages:

clearinghouse service:
CH_Admin
CH_Client
CH_Support
Node_ID_ Mapping

RPC service:
RPC_Admin
RPC_Call_Support
RPC_Mgt

transport service:
Comm Defs
Datagram_ AM
DG_Filter Mgt
Distributed_Service_Admin
Distributed_Service Mgt
ISO_Adr_Defs
ISO_Config Defs
ISO_TM Admin
TM Comm_Defs
VC_Filter Mgt
Virtual_Circuit_AM

Part VIII Overview

FIELAWVILNAK X

Part VIII Overview

PRELIMINAKY

UNDERSTANDING DISTRIBUTION

Contents

INtroductioncoiiuniiiiniiiiiierrettteceetncootttocacnttattcantans VII-1-2
What a Distributed System Can Dociiiiiiiiiiiiiintiiencnenanns VIII-14
Naming ..ottt ittt e ittt teeeeenrananecaasatsncasosoassssvsnas VII-1-5
The Clearinghousecovvveviveeescceccocncosseasssssnessasis. VII-1-6
ComMMUNICAONS .. viviinteeentteeeeenaeeeenansaseaenesnsssesnnnnnnnns VIII-1-8
Review of the Computational Modelcoiiviiiiiiiiniieierrnnnnnn VIII-1-10
Processes, Jobs-and Sessions et tececisetasetenaertacans VIII-1-10
Active and Passive ADSviiiiiniiieerirerensenroctscnssncacns VIII-1-10

Single and Multiple ActivationModelciiiiiiiiiiinnrinaans viI-1-11

Single Activation Distributed Servicesciiiiiiiiiiiiiiiiieeeaa, VIII-1-13

~ Protectionin a Distributed Systemcciiiiiiiiiiiiinirittnrencaanns VIII-1-13
Transparently Distributed SErvicesciveiiiiiiiiiniienrnrnneneans VIII-1-14
Passive SIOTE ... itiiiiiiiiiieierienetenncceennsacaasoanassnnanas VIII-1-14

8 (T2 o) o (PP VIII-1-14

DD i e et ittt VIII-1-15

FAleS ..ottt i it ittt ttettaeaa et VIII-1-16

Data Integrity, Synchronization, and Transactionscoveeevunn. VIII-1-16
SUMMIAIY ...ttt iiiieitttietesraeroesossncsosossassesassanasas VIII-1-16

Understanding Distribution : VII-1-1

FKELILVIINAKYX

VIill-1.1 Introduction

VII-1.2

The BiiN" Operating System supports distributed computing. A distributed system, capable
of distributed computing, spans a number of BiiN" nodes connected by communication
network. The network may contain several subnetworks. In this context a subnetwork is a
homogeneous network such as ethernet or HDLC. It is important to note that the network
connecting a distributed system need not be homogeneous. Two distributed system may also
share a homogeneous subnetwork, such as a LAN (local area network), for example. Distribu-
tion is a high level concept independent of the communication media and associated com-
munication protocols. Although distribution is independent of the communication media, it is
optimized for high speed LAN applications.

A distributed system may appear as a ‘‘single machine’’ to the casual user. On the other hand a
user can use his/her knowledge of the structure of the system, and work with individual or
defined collection of components (nodes, I/O devices, and so on).

Figure VIII-1-1 shows an example of a network of BiiN™ nodes.

Understanding Distribution

£ DNILALLIVARINVAARNN L

Gemini

Node
}ﬁ Gemini
HDLC Node)
based
Mesh HOLC
Subnet based

Switched
Subnet

X.25
based
Subnet

Gemini
LAN 802
Node based Ethernet
Subnet based
Subnet

/

Figure VIII-1-1. A Network of BiiN™ Nodes

This particular network contains two bus-based LANs connected via a public packet switched
network. Two additional subnetworks are shown, one based on a set of dedicated point to point
communication lines and the second based on a circuit switched network. Circles indicate the
boundaries of distributed systems.

Distributed computing lies in between multiprocessing and networking. Table VIII-1-1 lists
important points in which the three concepts differ.

Understanding Distribution VIII-1-3

FKELIVIINARY

Table VIII-1-1. Distribution vs. Multiprocessing vs. Networking

Multiprocessing Distributed Computing Networking
Close Cooperation Cooperation Mutual Suspicion
Complete Trust Aweg;m%?n wols No Trust
Single Administrator Cooperating Administrators | Independent Administrators
Completely Shared Resources Shannc‘gmot;’oll{lgoume No Shared Resources
*‘Single Machine’’ Homogeneous Heterogeneous

On one hand distribution extends the concepts of multiprocessing beyond the limits of one
shared memory, and on the other hand distribution takes the ideas of networking one step
further.

This chapter explains the concepts of distribution. It does not explain specific techniques or
point out the details of implementing a distributed service. This information is contained in
chapter VIII-2.

The next section gives examples of what a distributed system can do and what it cannot do.
The following sections discuss the most important aspects of distribution in more detail, in
particular the following topics:

¢ Communications

e Naming

e Review of the computational model
¢ Single activation distributed services
¢ Protection in a distributed system

e Transparently distributed services.

Communications and naming are the two building blocks of the distributed architecture. For
this reason special attention will be given to these two areas.

VIiI-1.2 What a Distributed System Can Do

VIII-14

Distributed computing makes it possible to build computer systems of any size from a single
node up to a conglomerate of as many nodes as you choose. (There is no limit to the size of a
distributed system.) Even though only a conglomerate of individual machines, the system acts
in many ways as if it were one single machine, provided, of course, that the communication
media is fast enough. '

In most cases the user need not be aware of the physical organization of the distributed system;
although nodes are individual machines that can operate by themselves, they appear to the
casual user to be one unit. For instance, disks are mounted on individual nodes, but they
appear to be mounted on all nodes at once. A user can also choose to run a job on a selected
node or to store an object on a particular disk drive of his/her choice.

Jobs are the computational unit in a distributed system. Jobs run on single nodes but they
communicate with other jobs, on the same node or on other nodes in the system. The interface
for job communication on different nodes and the same node is identical, but there is an ef-
ficient implementation of intra-node communications,

Understanding Distribution

PRELIMINARY

By the means of interjob communication, independent jobs may exchange messages or related
jobs may be coupled together. A service, such as the filing service, may contain jobs that run
concurrently on all nodes of the system. The service is thus available on all nodes. All jobs
belonging to the service communicate constantly and create a homogeneous environment of
file access and usage across the entire system: Any file on the system is uniquely identified
and stored in one place; this avoids a considerable amount of duplication. Files are available
from any node: Requests to access a file are forwarded to the file’s home node and executed
there.

The filing service is a universal service. Universal services are decentralized; filing requests
are serviced on the node where the requested file is stored. Since files can be stored at any
node, filing services requests on all nodes of the system. (Diskless nodes are currently not
supported.)

Services can also be regional. A regional service is centralized; requests can be issued on
many nodes but only a few nodes (or even a single node) service requests. Universal services
are ‘‘symmetric’’; on all nodes there is an agent that accepts and distributes requests and a
server that receives requests from an agent and executes them. A regional service is
‘‘asymmetric’’; there are many agents and only a few servers.

Compare a universal service to the postal service: Every town has its own post office that
receives mail from other towns, distributes it to the addressees, and collects and processes
outgoing mail. A regional services resembles more an insurance company. Insurance agents
sell policies for a company that underwrites the policies. The agent interacts with the clients
on the one side and with the insurance company on the other. The insurance agent does not
underwrite policies himself.

As an example of a regional service imagine an airline reservation system. All booking infor-
mation is kept in a few locations. Agents in branch offices make reservations on their local
nodes; the requests are transparently forwarded to one of the nodes where booking information
is kept.

Distributed systems provide parallel processing. A session may span several nodes and contain
jobs on all those nodes. If a task can be partitioned, processes in these jobs can work on parts
of the task asynchronously.

Currently, load balancing is not implemented. The architecture does not discourage this
functionality, however. An application implemented as a distributed service can decide based
on the load in the system, how it routes requests to its servers. An example is a distributed
batch utility that submits batch jobs to the node with the lowest load in the system.

The following two sections discuss the most important elements in a distributed system,
namely how entities are named, and how nodes in the system communicate.

VIII-1.3 Naming

One of the two building blocks of a distributed architecture is a location-independent naming
mechanism. Here is an example of the merit of location-indepent naming: A volume set is
identified on the machine level by a unique volume set ID. The volume set ID reflects where
the volume set is currently mounted in the system. The symbolic name of the volume set on the
other hand has nothing to do with the location of the volume set. More importantly, the sym-
bolic name does not change when the volume set is moved to another node. You can refer to
the volume set without having to know where it is currently located.

Understanding Distribution VIII-1-5

FKELIVIINAKY

Naming extends to stored objects, users, nodes, and volume sets. The map from machine level
identifiers to symbolic names is maintained the clearinghouse.

The clearinghouse centralizes network information in a few locations. Thus network infor-
mation can be updated quickly and easily. Volume sets can be moved from one node to
another, a node may be added, or a node may be disconnected: Those changes have to be
recorded in only a few places, namely where copies of the clearinghouse are kept.

VIII-1 .3.1 The Clearinghouse

VIII-1-6

The clearinghouse is decentralized and replicated. Instead of one global clearinghouse server
there are many local servers each storing a copy of a portion of the global information. Some
information in the clearinghouse is cached locally by other services. This allows to bypass the
clearinghouse for efficiency and when access to a clearinghouse server is not possible due to a
communication failure.

User ids, for example, are available at all nodes. This is necessary in order to allow users to
log on to a local node even if that node is disconnected from the rest of the system. The same
applies to locally mounted volume sets.

The organization of the clearinghouse is hierarchical. Names of clearinghouse entries consist
of four parts representing the four level hierarchy. The names of the four parts are
organization, domain, environment, and local. Clearinghouse names are specified with single,
double and triple slashes between the level names. A full clearinghouse name is always of the
following form:

///org/dom/env/local

Organization and domain together reference a naming domain. A large distributed system
is typically split up into multiple naming domains. Thus name evaluation does not become
hopelessly slow when the system becomes very large. Every node in the system belongs to
exactly one naming domain. The clearinghouse is partitioned on the naming domain level. This
means that one clearinghouse server stores all entries of the form

///organization/domain/anything/anything

A name starting with two slashes reference an entry in the callers organization:
//dom/env/local

A clearinghouse name starting with one single slash refers to the local naming domain:
/env/local

Figure VIII-1-2 illustrates the hierarchical structure of the clearinghouse.

Understanding Distribution

A ANASERLRLYAELNLSRAS A

(Oregon_sites) ORGANIZATION

CDeveIopment) (Documentqtion) C Testing) DOMAIN

| Vs I id lnodel lds_idl ENVIRONMENT

Tom
LOCAL

Figure VIII-1-2, The Hierarchical Structure of the Clearinghouse

The information in figure VIII-1-2 is shown together in one place. In areal system it is
partitioned, replicated, and stored in different locations. The figure is very much simplified and
shows entries for only one naming domain. This is done for convenience and ease of under-
standing.

There is one special naming domain per distributed system, called the figurehead naming
domain. This domain covers the entire system. More specifically, it references all other entries
in the clearing house. In fact, the figurehead naming domain defines the distributed system. It
is used whenever the naming domain of an object is not known. This can happen when a
passive object is activated: Passive_Store_Mgt has a unigue identifier (UID) for the ob-
ject which contains the ID of the volume set where the object is stored. With the help of the
figurehead naming domain, Passive_Store_Mgt maps the volume set ID to the network
address of the node where the volume set is mounted.

The clearinghouse is maintained by the clients, BiiN™ Operating System services or applica-
tions that use the clearinghouse. Clients maintain clearinghouse environments. In an environ-
ment the clients store names and properties associated with those names. The naming service,
for example, maintains the vs environment. It uses this environment to map volume sets to
node addresses, indicating where the volume set is mounted. Another example is the protection
service. It maintains the id environment that maps user IDs to user profiles (and thus to
symbolic user names). This information is used by the logon utility. The distributed OS ser-
vices use a total of four environments in the clearinghouse, namely vs, id, node, and
ds_id. From the point of view of the clearinghouse there is no difference between those
environments and other environments. The clearinghouse simply provides the mechanisms for
binding symbolic names to properties in one networkwide location. It is entirely up to the
client to attribute meaning to the clearinghouse entries.

Most applications will use the clearinghouse indirectly through the OS services. However, if
the need arises, an application may use the clearinghouse directly, either through the above
mentioned environments or even by setting up its own environment.

A request to the clearinghouse to bind a name to a set of properties may originate anywhere in
a distributed system. The request will be directed to a clearinghouse agent. The agent knows

Understanding Distribution VIII-1-7

PRKELIVIINAKY

the address of at least one clearinghouse server. The server will either handle the request
directly or, if it does not store the required information, forward the request further to a server
that stores the information. This entire process happens invisibly to the client.

In summary the clearinghouse provides the basic tools needed for a high level naming
mechanism. But the function of the clearinghouse goes beyond this task. Any type of infor-
mation may be bound to a name; an internetwork address, in the case of a node, or a telephone
number, in the case of a user. Services can use the clearinghouse to whatever purpose they
require. The merit of the clearinghouse is that it centralizes all this information and makes it
available to everyone. One of the most important uses of the clearinghouse is to provide loca-
tion independent naming.

Vill-1.4 Communications

VIII-1-8

If distribution is compared to a brick wall, then naming corresponds to the bricks and com-
munications to the mortar; either one without the other would be useless. And just as mortar
and bricks become invisible once plaster has been applied, so should the details of naming and
communications be invisible in a distributed system. However, nobody can build a wall with-
out mortar, and nobody can build a distributed system without communication between nodes.
In order to understand distribution, we have to have some understanding of how nodes com-
municate.

One of the guiding principles in the BiiN™ architecture is that logical structures hide physical
structures. This principle also pertains to communications: The system supports a variety of
different communication protocols, such as Ethernet, IEEE 802.3, HDLC and X.25. Transport
services hide the details of these various subnetworks. Through the interfaces provided by
transport services a distributed service can use two different high level communication
protocols, a connection oriented and a connectionless protocol. We refer to the connection-
oriented protocol as a virtual circuit and to the connection-less protocol as a datagram.

Datagrams are short one-way messages sent from one job to another. They are similar to letters
sent through the mail: There is no guarantee that a datagram sent will be received by the
addressee or that a number of messages sent will be received in the order that they were sent.
Transport services only guarantee that if a message is received, it will be intact. On the
positive side datagrams are inexpensive (just as letters), fast, and require little overhead.

Virtual circuits provide a full duplex connection between the connected parties. A virtual cir-
cuit is a bidirectional ordered flow of bytes similar to a telephone connection. Receipt of a
message is acknowledged and messages sent in a certain order arrive at the addressee in that
same order. Setting up, maintaining, and tearing down a virtual circuit presents considerable
overhead.

There is a third way for processes to communicate. This method is called a remote prbcedure
call. Remote procedure calls are built on top of datagrams and share some of the advantages of
datagrams. They provide the following additional services:

A simple call interface
Making an RPC involves no more than making an ordinary procedure call.

Authentication and security
Messages are authenticated to insure that they are intended for that server
and that they have not been modified in transit.

Understanding Distribution

A ANRSAJALYALL VIRAAN &

Converting ADs ADs are converted to their passive form.
Locating Given an AD to the server, RPC locates the server.

RPCs are message/reply pairs. They force the caller to wait until the call has completed. A
series of RPCs made by one process is strictly ordered, since the calling process cannot make
another RPC before the previous one has completed. RPCs are used within distributed services
to communicate between instances of the service. (RPCs made by different processes in a
certain order do not necessarily retain that order.)

It is important to note the conceptual difference between RPCs on one side and datagrams and
virtual circuits on the other. RPCs use datagrams as means of communication, they provide
additional services as mentioned above, and they are not as flexible as datagrams. RPCs are
taylored specifically to the needs of distributed services. Datagrams and virtual circuits are
basic means of communication and not taylored to any specific application. They provide no
locating services, no authentication, and their interface is more complicated than RPCs. In
exchange they can be used for any type of communication between jobs, not just between
instances of a distributed service.

Whether an application uses RPCs, datagrams or virtual circuits depends on its particular.
needs. An application set up as a distributed service will find RPCs the easiest to use. For other
uses datagrams or virtual circuits provide the necessary flexibility. In particular datagrams are
good for sending brief messages, and virtual circuits for reliably transmitting large amounts of
data.

Figure VIII-1-3 gives a simplified picture of the differences between datagrams, virtual cir- -
cuits, and RPCs. :

A — T 5

Datagrams: one—way, one—shot

A bt | J<— L]|] |] B
L__1—1] —> |] —
Virtual circuits: two—way, continuing exchange
Parameters
/ L"\
A Results / B

RPC: two—way, one—shot, like a procedure call

Figure VIII-1-3. Three Different Communication Methods

Both datagrams and virtual circuits link two jobs. To be more precise, datagrams are sent from
one transport service access point (TSAP) to another. A TSAP represents a binding between

Understanding Distribution VIII-1-9

FKELAVIINAKYX

the user of a transport service and the transport service itself. A TSAP object represents a
TSAP. In the case of datagrams the TSAP object also serves as a repository for information
relating to the TSAP that it represents. This includes buffers and state information. TSAPs are
specific to either datagrams or virtual circuits.

In the case of a virtual circuit there is an additional, dynamic level of association between
communicating processes, the connection. A transport connection point (TCP) represents an
endpoint of the connection. In this case the TSAP represents only the static binding between
user and transport service and is used to create and destroy TCPs which represent the dynamic
binding. Multiple TCPs can be associated with one TSAP (but only one TSAP with any TCP).

TSAPs are bound to a TSAP address. A TSAP address uniquely identifies a TSAP over the
entire network. A user who wants to send data through his TSAP to another TSAP must know
the TSAP address of the destination TSAP. The remote user can receive the data on his TSAP
along with the sender’s TSAP address.

TSAP addresses are composed of two parts, a network part which uniquely identifies an in-
stance of the transport services, typically associated with one node, and a transport service end
point. The network part is known as an NSAP. An NSAP is the point at which an instance of
the transport services is bound to the network level services. Inside the realm of an NSAP an
end point uniquely identifies a TSAP.

It is convenient for some system-wide services to reserve certain fixed values of end points.
Those end points are called well known endpoints. Other endpoints are dynamically allocated
by the transport services.

Summarizing, the BiiN™" architecture provides high level interfaces for communications be-
tween nodes in a distributed system. Depending on the needs of an application communication
services can be used at different levels. However, at all those levels an application does not
have to be concerned with the details of the communication protocol.

VIII-1.5 Review of the Computational Model

In the previous two sections we have outlined naming and communications in a distributed
system. Those are the building blocks for a distributed architecture. In this section we shall
review the BiiN™ computational model briefly and put it in perspective in a distributed system.

VIII-1.5.1 Processes, Jobs and Sessions

Processes represent linear threads of computation. Multiple processes may be part of one job.
Jobs are the unit of program execution in the BiiN™ system. Jobs, and therefore processes, are
confined to a single node. A session may contain many jobs on different nodes. The jobs in the
session can communicate with each other or with jobs outside their session. In many ways a
job acts like a virtual computer.

VIiI-1.5.2 Active and Passive ADs

VII-1-10

Active access descriptors (active ADs) are represented by 33bit words where the 33rd bit, the
tag bit, is set. Active ADs are valid inside a node’s active memory only. Before an AD can
cross node boundaries in a distributed system, it has to be converted to its passive version. A
passive AD is a much larger eniity than an active AD (about 40bytes). A passive ADisa
unique reference on all BiiN™ systems at all times. In order for an object to have a passive AD
an AD {0 the object has to have been stored previously.

Understanding Distribution

A AnAsasmivanivimaw s

VIiI-1.5.3 Single and Multiple Activation Model

The system supports two different models of activating passive objects (copying passive ob-
jects into active memory). In the multiple activation model any job activating an object
receives an independent active copy of the object. A job can work on its copy and update the
passive version from the active version. The multiple activation model is easy to use except for
one problem; passive store refuses updates from outdated versions. A job whose update has
been refused can handle this situation by requesting a fresh active version, redoing its changes,
and attempting another update.

The single activation model avoids the updating problem by allowing only one copy of an
object in active memory. One job, the home job, receives the active version and all other jobs
receive stand-ins, called homomorphs, when activating an object. Those jobs who have
homomorphs communicate with the home job in order to effect changes on the object. The
single activation model is useful for large objects that are used by many jobs simultaneously.

There is an important difference between how global and local objects are treated in both the
single and the multiple activation models. Independent of whether in the single or multiple
activation model there is always a maximum of one active version per of node of a global
object. All jobs accessing the global object share this one active version. In the single activa-
tion model there is one active version of an object per distributed system, in the multiple
activation model there is one active version per node of a global object, and one active version
per job of alocal object. Independent of the activation model processes within one job always
share an active version

Figure VIII-1-4 illustrates the difference between single and multiple activation model. Note
that what is shown as active memory in the figure may span several nodes. :

Understanding Distribution ' VIII-1-11

FILAIVIANAKX

Active
Version

Job 1

Active
> Version

Job 2

Active
Version

Job 3

Passive Store Active Memory

Multiple Activation Model

7

//7

Ob ject

ArlHomomorphI

L

y

Active
Version

Job 3

Passive Store Active Memory

Single Activation Model
Figure VIII-1-4. Single and Multiple Activation Model

Distributed services can be built along the lines of either activation model. Very little
knowledge of distribution is needed in order to build a multiple activation distributed service.
BiiN™ Operating System distributed services take care of the distribution part transparently in
this case. Building a distributed service along the lines of the single activation model is more
complicated and requires knowledge of the mechanisms of distribution and interjob com-

VII-1-12 Underétanding Distribution

A ACAYBJALVARL VARAN A

munication. In the following section we shall present the model of a single activation dis-
tributed service.

VIlI-1.6 Single Activation Distributed Services

There are two ways a distributed service can be set up, as a regional or as a universal dis-
tributed service. In both cases the service contains agents and servers. Requests to the service
are directed to an agent. The agent forwards the request to a server which executes it and
returns the results to the agent. A universal service has servers and agents on every node of the
system. An example of a universal service is the filing service. A regional service has an agent
on every node but servers on only a few or even a single node. An example of a regional
service is a print service with a printer that is mounted on one particular node, but accepts print
jobs on any node.

In a regional service an agent knows the address of at least one server. It does not have to
know the address of the server that will actually execute the request; if it directs the request to
another server the request will be forwarded until it reaches its destination.

A distributed type manager is also a distributed service. The difference between a type
manager and a distributed service in general is that the type manager has representation rights
to its objects. It can therefore distinguish between homomorphs and real active versions. This
simplifies the model somewhat: There is no need for a strict two level implementation accord-
ing to the client/server model. In one job the same code can act as the client, in another as the
server. The code decides what role it assumes depending on whether it was handed a
homomorph or the real active version. If it is handed a homomorph it recognizes that it ex-
ecutes outside the home job. In this case it will act as an agent and forward the request to the
server. If it is handed the real active version, that means that it executes inside the home job. In
that case it assumes the role of the server and executes the requests directly.

VIII-1.7 Protection in a Distributed System

Security issues constitute a considerable problem in an open network architecture. In some
sense, communications over such a network are similar to radio broadcasts; it is impossible to
prevent somebody from broadcasting or from listening to certain broadcasts. If you want to
protect broadcasted messages you will have to encrypt them.

The only security mechanisms in effect at the transport level are those that protect TSAPs.
Three rights are defined for TSAPs: Receive, Send and Control. Receive rights are necessary
to receive messages through a TSAP. Send rights are required to send messages through a
TSAP. Control rights are needed to destroy or configure a TSAP.

This protection mechanism does not prevent you from using either datagrams or virtual circuits
to send messages to a TSAP on another node or even on your node if you have the TSAP’s
address. Validation of messages and authentication of the sender is entirely a a high level
concem. There are two sides to this problem; on one side data in transit should be protected
from unauthorized use. On the other side a distributed service’s private ADs have to be
protected from unauthorized use but at the same time be available to all instances of the ser-
vice.

Encryption protects data in transit. An application that transmits sensitive data should therefore
encrypt that data. There are two solutions to the problem of protecting private ADs.

Understanding Distribution VIII-1-13

FRKILAIVILIINAK X

(Encrypting the data to be transmitted but not protecting private ADs would be like locking the
door to one’s house but leaving the keys in the lock.) A distributed service can set up its own
ID (identical to a user ID). Private ADs can then be stored under well-known pathnames but
with an authority list that excludes all IDs but the service’s ID. Another solution to the
problem is to store the private ADs inside the code of the service, more specifically inside the
service’s static data object. This simple solution has the disadvantage that all instances of the
service have to communicate when one of the private ADs changes.

Remote procedure calls provide authentication and validation services. They also protect data
in transit and convert active ADs to their passive version. (An AD still has to be passivated
before being transmitted in an RPC -- using an AD on another node if that AD has not been
passivated before may have unexpected results.)

When using datagrams or virtual circuits the user has to provide those services himself.

Vliil-1.8 Transparently Distributed Services

The BiiN™ Operating System provides a number of transparently distributed services. With
the help of these services a user can take full advantage of a distributed system. They can also
be used as tools to build distributed applications. Examples of these services are the filing
service, the object service, the concurrent programming service, and the transaction service.

All of the BiiN™ Operating System’s distributed services provide transparent access to an
entire distributed system’s resources. The programmer need not be aware of any of the physi-
cal peculiarities of the system.

In the following we shall list some of the most important distributed services:

VIii-1.8.1 Passive Store

Passive_Store_ Mgt maintains a system-wide permanent storage. Objects may be stored
on volume sets anywhere in the system and can be retrieved from anywhere. Passive store also
maintains unique names for all its stored objects. Those names are called unique identifiers
(UIDs). UIDs are unique not only on one distributed system but on all distributed BiiN™
systems for all times. A volume set may thus be taken from one node in a system to another or
even from one distributed system to another. Objects stored on the volume set are always
uniquely identified.

VIiI-1.8.2 Directories

VII-1-14

Directory_ Mgt maintains a system-wide directory structure. Directories implement sym-
bolic naming for stored and for active objects. Often Directory Mgt and
Passive_Store_ Mgt will cooperate closely, the former providing the naming mechanism
and the latter the actual storing of objects.

However, Directory_ Mgt may stand on its own: Directory entries can reference any ob-
ject, active objects as well as passive objects. And while most directories are stored, there are
also active-only directories.

The directory structure on each node replicates to a certain extent the entire naming domain the
node belongs to. (Certain local aliases may exist on one node, so the directory trees on itwo
nodes are not identical, but their structure is very similar.) The directory structure is not a

Understanding Distribution

FKELLVIINAKX

simple tree structure: Branches are interconnected and entries may reference backwards in the
tree. Thus many different pathames may reference the same object.

Figure VIII-1-5. Partial View of a Node’s Directory Structure

Figure VIII-1-5 shows a partial view of a node’s directory structure. (Solid boxes are master
entries and dashed boxes represent alias entries.) In particular it illustrates that more than one
pathname may reference the same object. For example, /node/Castor/sys/sam,
/home/sam, and /vs/vsl/sam all reference Sam’s home directory. By the same token
/home/don references Don’s home directory which lives on a different node. This shows
that objects with two similar pathnames (/home /sam and /home/don) do not have to be
physically close to each other.

Vill-1.8.3IDs

IDs are associated with users. User IDs control access to stored objects and facilitate setting up
individualized user environments. A user can be granted access to a distributed system by the
system administrator, At that time the system administrator will create a user ID. A user ID
grants access to an entire distributed system, not a particular node. Privileges, such as store
rights for directories, are granted on a per naming domain basis.

Every process that a user starts and every object that the user stores carries the user ID. IDs are
maintained in the clearinghouse’s id environment.

Very similar to user IDs are subsystem IDs A subsystem ID identifies a subsystem which
comprises a collection of domains that share the same stack.

Understanding Distribution VIII-1-15

FKELIVIINAKY

There are other IDs, namely node IDs, volume set IDs, and distributed service IDs. All these
IDs play important roles in a distributed system. Node IDs are derived from a hardware
module inside a node. They are used in the node environment to map nodes to network
addresses.

Volume set IDs uniquely identify volume sets. Together with a time stamp they are incor-
porated into unique identifiers for objects (passive ADs). Volume set IDs of volume sets
mounted locally are cached to allow access to locally stored objects when there is no direct
access to the clearing house.

In summary IDs are used whenever certain entities such as users or nodes are to be uniquely
identified within a distributed system.

VIil-1.8.4 Files

Files are among the most important data structures in the BiiN™ architecture. Filing is a dis-
tributed service. This means that any file in the system is available anywhere in the system.

Files are global single activation objects; files are activated in only one place, namely at their
home node. All jobs that use a particular file communicate with the home node when updating
the file or reading from the file. Commonly files are large objects. Therefore it makes sense to
bring the operation to the data as opposed to bringing the data to the operation.

VIII-1.8.5 Data Integrity, Synchronization, and Transactions

Data integrity and synchronization across job and node boundaries can be ensured by using
transactions. Transactions make operations atomic thus preventing partial completion of opera-
tions: Operations included in a transaction either complete successfully or have no effect. Not
all operations can be included in a transaction; certain operations are simply irrevocable. Print-
ing is an example: once a page is printed it cannot be made to disappear.

Transactions extend across node boundaries whenever transaction-oriented, distributed BiiN™
Operating System service calls are included in a transaction. Transactions also serve to
synchronize access to stored objects; a transaction can reserve an object on its behalf. Then no
other transaction can reserve or access the object until the first transaction releases it. Trans-
actions also have a built-in blocking protocol: One transaction can wait for another transaction
only if the other transaction is older. (This ordering prevents a circular deadlock situation.)

Vill-1.9 Summary

VIII-1-16

Reading this chapter, you have learned that

e distribution makes a collection of BiiN™ nodes connected together, appear as one machine. |

e adistributed system is a flexible structure; nodes may be added and removed as the system
runs. In particular, distributed services do not depend on the structure of the network that
connects the nodes in the system.

e logical organization hides physical organization.
¢ nodes share a common pool of resources, such as I/O devices, and permanent storage.
e distribution is transparent from the casual user’s point of view.

Understanding Distribution

A ANAJEJALYARL VIRAR A

BUILDING A
DISTRIBUTED TYPE MANAGER

Contents
COMICEPES « i vttt eeeeeteeacetoensasnoaesssstonoeesesososasasssosnsanss VIII-2-2
Homomorphs and ACtive VErsionscovveerereennroocansanonnsens VII-2-3
TheRemote Callciiiiuiiieinrnnrereeeeeronsonsrocensansanens VIII-2-3
SyNChronizing ACCESSvvurrernrerererrasasssssnrnssernssssannes VIII-24
=T 1101 a2 VIII-2-4
Defining The Representationof The Objectciiiiiiininennnnn. VIII-2-5
Defining the Homomorph Templatecciiiiiiiiieiiinnnnnnn. VIII-2-6
Setting the Passive Store Attribute coiuiiiienieroriennsnsans VIII-2-6
Defining Buffers for Remote Procedure Callscciviiinne. VII-2-7
The Is_Call ...ttt ittt teiieetsnannnanans VIII-2-7
TheCreate_Callscoiuiuiiiiiiiiiiiiiiiiiiiiiiiiiiiie. VIII-2-8
Implementing Calls that Require Remote Calls VII-2-9
Recognizingthe Home Jobcoiiiiiiniiiiiiiiiieennnennannn VIII-2-10
Making the Remote Procedure Callc.cciiiiiinineecennennnns VIII-2-10
TheServerStubcovviiiiiiiinieienennennns et e ettt VIII-2-11
Synchronizing with Transactions and Semaphores VIII-2-12
Initializationccoiiiiiiiii it it i i e VIII-2-12
Private ADs are Hidden in the Static DataObject.cccvivunn.. VIII-2-13
Creating and Registeringthe Servicecoiiiiiiiiiinernennnnnnn. VIII-2-14
Creating the SeIVeriiiiiiiiiiiiereeeennenneeeasoneenananennns VIII-2-13
Setting Upthe HOme JObiiiiiiiiiiiiiiiiiiiereeeeannannnnns VIII-2-14
1111101 b AU PP VIII-2-15

Building a Distributed Type Manager VIII-2-1

PRELIMINARY

This chapter describes how to build a distributed type manager. It focuses on the peculiarities
of the regional service model. Other features needed for the program, such as transactions,
passivating objects, and synchronization are described in chapter VII-6. The basic concepts of
the type manager model are treated in chapter VII-3.

Three packages and two initialization procedures are described in this chapter,
Account_Mgt_Ex,Distr_Acct_Call_Stub_Ex,

Distr_ Acct_Server_Stub_Ex,Distr_acct_init_ex, and
Distr_acct_home_job_ex. These packages will be refered to briefly as core, call stub,
server stub, initialization, and home job initialization. All packages and the initialization
procedures can be found in Appendix X-A.

VIII-2.1 Concepts

VIH-2-2

The type manager described here manages local objects on a distributed system that may
consist of any number of nodes grouped into any number of naming domains. Active versions
of local objects are confined to a single job, and each job activating the object receives its own
active version (Some of the active versions may be ‘‘ersatz’’ versions). All processes of one
job share the job’s active version. (Global objects have only one active version per node shared
by all jobs on that node.)

According to the single activation model, the object’s representation is activated in one home
Job. All operations and all synchronization are handled by the home job. Other jobs receive
token active versions called homomorph and do not operate on the object directly -- they
forward all requests to the home job.

As an alternative, a type manager may use the multiple activation model: In the multiple ac-
tivation model every job receives an active version. The multiple activation model is usually
simpler to implement, but updating the passive version from multiple active versions has to be
carefully coordinated. One can say that the multiple activation model brings the object to the
operation, while the single activation model brings the operation to the object: For large ob-
jects, such as files for example, the single activation model is more efficient.

The node where the objects are managed is called the home node. Any node can be the home
node.

The example described manages simple accounts that contain a long__integer balance.
Accounts can be stored in directories or inside other objects anywhere on the system. When
creating an account the application supplies a pathname or an object where the account is to be
stored. In order to minimize network traffic it is advisable to store accounts on volume sets
mounted at the home node -- the type manager does not enforce this, however. Independently
of where accounts are stored they are accessible from any node of the system.

Communications between the home job and any other jobs are implemented by means of
remote procedure calls. For more details on the general principle of distribution and RPCs refer
to chapter VIII-1.

The type manager provides the following calls:

Is_account Checks whether an AD references an account.

Create_account
Creates an account and stores it inside an object supplied by the caller.

Building a Distributed Type Manager

Create_stored account
Creates an account and stores it with a pathname supplied by the caller.

Get_balance Retumns an account’s balance.

Change_balance
Changes an accounts balance and returns the new balance.

Transfer Transfers an amount between accounts.

Destroy_ account.
Destroys an account.

VIil-2.1.1 Homomorphs and Active Versions

The type manager creates a template that is activated in place of the active version in all jobs
but the home job. The template does not have to have the same type as the object it will stand
for. The template merely represents a bit pattern that is copied into active memory and become
the homomorph. Only the type manager using the representation rights can distinguish be-
tween homomorph and active version. The type manager can use the homomorph to store
information related to a calling job. Such information can be statistical, for example frequency
of calls, or use of resources.

ViiI-2.1.2 The Remote Call

A call to the type manager involves two jobs, the calling job and the type manager’s server
Jjob. The server job is also the home job. The two jobs may live on a single node orontwo
separate nodes.

Figure VIII-2-1 illustrates the general model of a distributed service implemented with RPCs.

(Foo]
THomomorph
| \E'_‘__,g'—
» RPC — <
Application Local Foo_Mgt Foo_Mgt Local
Foo._Mgt Call Server Foo_Mgt
Stub Stub
Application Job Server Job
Node Home Node of "Foo” Object

(not home node of "Foo”)

Figure VIII-2-1. General Model of Communication Using RPCs

Building a Distributed Type Manager VIII-2-3

PRELIMINARY

A user program in the calling job holds an AD to the object called FOO. The calling job is not
the home job of FOO objects and the AD points to a homomorph. The user program calls the
local instance of FOO_Mgt, the type manager for FOO objects. FOO_Mgt recognizes from the
homomorph that the job is not the home job and forwards the call to its call stub. The call stub
packs the parameters into a message buffer and issues an RPC to the server. The initial
program in the server is FOO_Mgt’s server stub which calls the local instance of FOO_Mgt.
FOO_Mgt performs the requested operation and the result is returned.

This is how the general model maps to the special case described here: Account_Mgt_Ex
acts as the type manager’s front end. It corresponds to Local Foo_Mgt in the picture. Ap-
plications that want to use the type manager call this package. Thus the distributed implemen-
tation looks identical from the outside to the other implementations of the account manager
described in Chapters VII-3 and VII-6. All communication between different instances of the
type manager on different nodes happens behind the scenes, namely in the call stub,
Distr_Acct_Call_Stub_Ex, and the server stub, Distr_Acct_Server_Stub_Ex.

The actual work of the type manager is done by Account_Mgt_Ex in the home job. This
package distinguishes between objects and their homomorphs. When it encounters a real object
its operations are identical to the ones of the package described in Chapter VII-6 except for the
semaphore synchronization mechanism. (This happens in the home job.) When it encounters a
homomorph it hands off the call to the call stub that takes care of the remote calling
mechanism. (This happens in an application job.) Thus the remote calling syntax is not part of
the type manager’s core and can be easily changed without affecting the type manager.

ViI-2.1.3 Synchronizing Access

The single activation model centralizes synchronization in the home job. Multiple simul-
taneous requests may be serviced by concurrent processes inside the home job. Processes in the
home job share the active version of an account. Access to the active version is synchronized
by semaphores. Semaphore locking relies on voluntary compliance of all processes. Processes
that operate on an object have to call P before touching the object. This will block the calling
process if another process has locked the semaphore previously. However, nothing prevents a
process from circumyventing the semaphore mechanism altogether.

No provisions are made to synchronize access to passive versions since according to the model
of this distributed service there is never more than one active version from which the passive
version can be updated.

As with all locking mechanisms there is a problem of circular waiting. Transaction come with
a built-in blocking protocol that avoids this. For semaphores the problem can be solved by
enclosing all semaphores within transactions to use the transaction timeout to break any cir-
cular waiting pattern.

VIlI-2.2 Techniques

VI-2-4 Building a Distributed Type Manager

Packages Used:

Access_Mgt Interface for checking and changing rights in access descriptors.

Attribute_ Mgt Provides a way to define general-purpose operations supported by multiple
object types or objects, with different type-specific or object-specific im-
plementations.

Authority List_Mgt
Provides Calls to manage authority lists and to evaluate a caller’s access
rights to objects protected by authority lists.

Directory_Mgt Manages directories and directory entries.

Identification_ Mgt
Provides operations to manage IDs and ID lists.

Object_ Mgt Provides basic calls for object allocation, typing, and storage management.
Defines access rights in ADs.

Passive_ Store Mgt
Provides a distributed object filing system.

RPC_Call_ Support.Remote_call
Calls a service that may be at another node.

Semaphore_Mgt.P
Enters / locks / waits at a semaphore.

Semaphore Mgt.V
Unlocks / leaves / signals a semaphore.

Transaction_Mgt
Provides transactions used to group a series of related changes to objects
so that either all the changes succeed or all are rolled back.

User_Mgt Provides calls to manage a user’s protection set and user profile,

VIII-2.2.1 Defining The Representation of The Object

In addition to other contents the type manager’s objects hold two fields: A locking area and an
is_homomorph boolean. The locking area is needed for semaphore locking and the
is_homomorph field allows the type manager to distinguish homomorphs from active ver-
sions. The example from the core shows the account layout which contains the
long_integer balance plus those two fields:

96 type account_rep_object is

97 -- Representation of an account.

98 record

99 lock: Semaphore Mgt.semaphore AD;
100 -- Locking area

101 is_homomorph: boolean;

102 -- If false identifies the object
103 -~ as the active version; if true
104 -- as a homomorph.

105 balance: Long Integer Defs.long_integer;
106 —-- Starting balance.
107 end record;

The locking area is null in the passive version but is ﬁ]led in with an AD to a sesmaphore when
the object is activated.

The object layout is specified with an address clause. This is necessary since the type manager
relies on the layout of the object in memory: Record layout in memory may vary from com-
piler version to compiler version.

-Building a Distributed Type Manager VIII-2-5

FEKELLVILNAKX

108 FOR account_rep object USE

109 record AT mod 32;

110 lock at 0 range 0 .. 31;
111 is_homomorph at 4 range 0 .. 7;
112 balance at 8 range 0 .. 63;
113 end record;

VIiil-2.2.2 Defining the Homomorph Template

The homomorph template acts as a bit pattern that is copied into active memory in place of an
active version. In the simplest case the template is defined with is_homomorph set to true
while in the active version is_homomorph is false. Other information can be stored in the
template. In particular, the type manager can use the template to store resource or statistical
information pertaining to the calling job. The following example is from the initialization
procedure Distr_acct_init_ex. (This procedure can be found in its entirety in Appendix
X-A. In our example only the is_homomorph field is used. The other fields are initialized

to null.
90 type template is
91 record .
92 dummy_word0O: System.untyped_word:
93 is_homomorph: boolean;
94 dummy_ wordl: System.untyped_word;
95 dummy_word2: System.untyped_word;
96 end record;
97
98 FOR template USE
929 record AT mod 32;
100 dummy_word0 at 0 range 0 .. 31;
101 is_homomorph at 4 range 0 .. 7;
102 dummy_wordl at 8 range O .. 31;
103 dummy_word2 at 12 range 0 .. 31:
104 end record;
105
106 type homomorph AD is access template;
107 pragma access_kind(homomorph_AD, AD);
108
109 homomorph: homomorph AD;
149 -— 2. Allocate and initialize homomorph template:
150 -—
151 homomorph := new template’ (
152 dummy word0 => System.null_word,
153 is_homomorph => true,
154 dummy_ wordl => System.null word,
155 dummy_word2 => System.null_word);

Note that template does not even have the same type as the object proper.

ViiI-2.2.3 Setting the Passive Store Attribute

In order for Passive_Store_Mgt to transparently substitute a homomorph for active ver-
sions in all jobs but the home job, the homomorph field in the PSM_attributes_object
has to be non-null. If the field is not null Passive_Store_Mgt uses the AD contained in
that field as a reference to a template to substitute for the object. The following excerpt from
the initialization shows how the passive store attribute defined and how it is initialized:

VII-2-6 Building a Distributed Type Manager

73 passive_store_ impl:

74 Passive_Store_Mgt.PSM_attributes AD;

75 -- Implementation of passive store attribute

76 -- for accounts.

145 -—- 1. Allocate new passive store attribute implementation:
146 -

147 passive_store_impl := new

148 Passive_ Store_Mgt.PSM attributes object;

156

157 -— 3, Initialize passive store attribute implementation:
158 --

159 passive_store_impl.homomorph := Untyped from_ homomorph (homomorph) :
160

16l passive_store_impl.reset :=

162 Refuse_reset_active_version Ex.

163 Refuse_reset_active_version’subprogram value;
164

165 passive_store_impl.copy permitted := false;

166

167 passive_store_impl.locking_area_start := 0;

168 passive_store_impl.locking_ area_end := 0;

169 —— Area in account where semaphore AD will be

170 -- stored when account is activated.

The PSM_attributes_object also specifies where the locking area is and that accounts
cannot be copied.

Vlii-2.2.4 Defining Buffers for Remote Procedure Calls

Buffers are necessary for both parameters and results in remote procedure calls. The following
example from the server stub defines one buffer type for both parameters and results.

14 type buffer is

15 —-— Buffer used for remote calls.

16 record

17 first_word: System.untyped_word;

18 second_word: System.untyped_word;

19 amount: Long_Integer Defs.long integer;
20 end record;

The buffer has room for two ADs and one long_integer. This is the maximum trans-
mitted in one single call. (Transfer). Note again that an address clause is used to fix the

layout of the buffer in memory:
23 FOR buffer USE
24 record AT mod 32;
25 first_word at 0 range O .. 31;
26 second word at 4 range O .. 31;
27 amount at 8 range 0 .. 63;
28 end record;

VIII-2.2.5 The 1s__ Call

Calls Used:

Object_Mgt .Retrieve TDO
Returns an object’s type.

No inter-job communication is necessary for the Is call: The object itself is not involved in
the call at all: The type manager only retrieves a TDO and compares it to its own TDO. For
this reason the the core does the work directly as can be seen in the following example:

Building a Distributed Type Manager ViI-2-7

PKELIVMINAKY

139 return obj /= System.null_word
140 and then
141 Object_Mgt.Retrieve_TDO(obj) = account_TDO:

VIII-2.2.6 The The Create_ Calls

Calls Used:

Transaction Mgt.Get_default_transaction
Returns the transaction on top of the transaction stack.

Transaction_Mgt.Start_transaction
Starts a transaction and pushes is it on the stack.

Transaction_Mgt.Commit_transaction
Commits a transaction.

Transaction_Mgt.Abort_transaction
Aborts a transaction.

The type manager uses the is_homomorph field to distinguish between the home job and
any other job. This method fails with the Create__ calls since there is neither a homomorph
nor an active version to check before the object has been created. (Remember that
is_homomorph is false in the home job and true in all other jobs.) ’

For this reason any job can create objects. This means that in both Create__ calls the core
does the operation directly. In order to prevent multiple active versions the new object is
deallocated as soon as it has been created and passivated. The three steps, Allocate, Passivate
and Deallocate are enclosed in a transaction. Thus the Create__ calls cannot succede par-
tially leaving unwanted active versions.

The following excerpt from the core shows these essential part of the Create_account
call:

VIII-2-8 Building a Distributed Type Manager

341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368

if Transaction_Mgt.Get_default_transaction =
null then
Transaction_Mgt.Start_transaction;
trans := true;
end if;

begin
-- This block controls the scope of
-- the exception handler.

-- 5. Create the master AD:

Directory Mgt.Store(

name => master,
object => account_untyped,
aut => authority):;

-- 6. Passivate the representation of the account:

Passive_Store_Mgt.Update (account_rep_untyped);

-- 7. Deallocate the active version of the
— account:

Object_Mgt.Deallocate (account_rep untyped):

-- 8. Commit any local transaction,

if trans then
Transaction_Mgt.Commit_ transaction;
end if;

exception

-- 9. If an exception occurs, abort any local
- transaction, deallocate the account and

- reraise the exception:

when others =>
if trans then
Transaction_Mgt .Abort_transaction;
end if;

Object_Mgt.Deallocate (account_rep untyped);

RAISE;

end;

The type manager provides a second Create_ call named Create_stored_account.
While the Create_account call simply allocates a new account, the
Create_ stored account also stores the account with a pathname supplied by the caller.
The callmg mechanism is identical to the Create_account call and the operation proper in
the core is identical to the one described in Chapter VII-6.

ViiI-2.2.7 Implementing Calls that Require Remote Calls

Except for the three calls discussed in the previous sections, namely Is_account,

Create_account, and Create_stored_account, all calls of the type manager require
remote calls. The remote call has the same calling syntax for jobs on one node and for jobs on
different nodes. When a remote call is needed the core hands it off to the call stub that takes

care of it.

Building a Distributed Type Manager

VIII-2-9

FKELIMINAKYX

VIII-2.2.7.1 Recognizing the Home Job

The is_homomorph field is used to recognize the home job. In the home job the type
manager will see is_homomorph as false, in any other job as true:

458 if account_rep.is_homomorph then

459

460 -- 2. We have a homomorph:
461 -

4%8 else

469

470 -— 3. We are in the home job for accounts:
471 -

SéO.) end 1if;

When is_homomorph is true a remote procedure call has to be made and the core hands the
call off to the call stub. When is_homomozxph is false the operation can be done directly.

VIII-2.2.7.2 Making the Remote Procedure Call

VIII-2-10

Calls Used:

RPC_Call_Support.Remote_Call
Makes an RPC to an RPC service.

A remote procedure call is a means of communication between two jobs. All information
passed between the jobs is contained in buffers.

Both the caller and the callee have to agree on the format of the buffers. Once transmitted to
another job a buffer is no more than a pattern of bits that has to be interpreted correctly. Two
buffers are required, one for parameters and one for results. This is shown in the following
example from the call stub:

72 parameters, results: Distr Acct_Server_Stub Ex.buffer:;

For the type declaration of buf fer refer to section VIII-2.2.4. Before the call the calling job
packs parameters into the buffer and after the call results are unpacked from the results buffer:

82 parameters := Distr Acct_Server Stub_Ex.buffer’ (
83 first_word => account_untyped,
84 second_word => System.null word,
85 -~ irrelevant
86 amount => Long_Integer Defs.zero):
87 -~ irrelevant
~101 current_balance := results.amount:

The layout of the buffer is designed for maximum required size. Not all slots are needed in all
calls.

When making a remote call the calling job specifies the service to be called. This directs the
call to a server job where the service is currently registered. Optionally a node ID can be
specified in the call. This will direct the call to the server on the specified node. This option
can be used when multiple servers exist and one in particular is to be chosen.

The calling job also specifies an ordinal value called target proc. The main package’s
calls are assigned an ordinal value and depending on the value of traget_proc in the call
the associated procedure or function in the main package is called.

Building a Distributed Type Manager

A ENBUYALALVALALNZAKN L

In the case of our example the assignments are as follows:

Used to initialize the server job.
Get_balance.
Change_balance.
Transfer.

aWN=O

Destroy_account.

. Note that Is_account, Create_account, and Create_named acount are not as-
signed an ordinal value. These functions are always performed locally and do not require a
remote call.

The addresses and sizes of the buffers are also specified, and a boolean parameter is used to
indicate that ADs are being transmitted. ADs have to be converted in a remote call. Indicating
that no ADs are present speeds up the call.

The following example shows the syntax of the remote call:

91 length := RPC_Call Support.Remote_call(
92 service => service,

93 target_proc = 1,

94 param_buf => parameters’address,
95 param_length => parameters’size,

96 ADs_present => true,

97 results_buf => results’address,

98 results_length => results’size);

As you can see from the above assignments this remote call will result in Get_balance
being called by the server. The variable length contains the actual length of the results
buffer. This is useful when the result buffer’s length varies. The variable is not used here since
the results buffer in this example has a fixed length. In order to see where service comes
from refer to section VIII-2.2.9.3.

VIII-2.2.7.3 The Server Stub

Calls Used:

RPC_Mgt.Server_stub
Template for a stub procedure to be called by the server.

When the server is called it executes an initial procedure called the server stub. The procedure
declaration of the server stub matches a template, namely RPC_Mgt . Server_stub. The
type manager provides the implementation of the template. The declaration looks like this:

21 procedure server_stub(

22 target_proc: System.short_ordinal;
23 version: System.ordinal;

24 param_buf: System.address;

25 param_length: System.ordinal;

26 results_buf: System.address;

27 results_length: in out System.ordinal;

28 ADs_returned; out boolean)

Depending on the value of target_proc the server stub interprets the parameter buffer and
makes the requested call. In the example the server stub is coded with a case statement:

Building a Distributed Type Manager VII-2-11

PRELIMINARY

59 case target_proc is

77 when 2 => account_one_untyped := parameters.first_word;
78 amount :=

79 Account_Mgt_Ex.Change_ balance(

80 account =>

81 account_one,

82 amount =>

83 parameters.amount) ;

84 results := buffer’ (

85 first_word => System.null word,

86 —— irrelevant.

87 second_word => System.null_word,

88 -~ irrelevant.

89 amount => amount);

90 ADs_returned := false;

117 when others =>

118 RAISE System Exceptions.operation_not_supported;
119 end case;

Note that the server stub calls the core. This does not result in an infinite loop by triggering
another remote call since this call takes place inside the home job. The core performs the
requested operation and returns the result.

VIII-2.2.8 Synchronizing with Transactions and Semaphores

Access to account objects is centrally synchronized in the home job. In the home job multiple
concurrent processes may access an account. Concurrent processes in the home job use
semaphore locking 1o reserve the active version of an account. More details on synchronization
and semaphore locking can be found in Chapters VI-1 and VI-2.

® Access to the passive version of an account is not synchronized since no more than one
active version of an account exists. Here lies one of the advantages of the single activation
model.

¢ Transactions are used to prevent semaphore deadlock and to protect passive versions from
incomplete updates. Please note that the transaction timeout period is set when the system
is configured.

¢ Outside the home job no synchronization is required since object representations are never
touched outside the home job.

VIIl-2.2.9 Initialization

VIII-2-12

This type manager is a distributed service and spans at least two jobs. Two procedures are
needed to initialize the type manager, Distr_acct_init_ex, and
Distr_acct_home_job_ex. Both procedures can be found in Appendix X-A.

The following three points should be considered when the service is initialized:

¢ Depending on how the service is set up it may or may not create a lot of network traffic.
The worst possible situation arises when the type manager’s image module is stored on one
node, the stub on another, the home node is still another node, and accounts are stored all
over the network. Objects should be stored close to the home node, ideally on the home
node itself.

¢ The type manager model of protection can only be fully realized if the code is linked into
its own separate domain. In particular, the type manager’s private ADs are hidden in the
static data object with the help of the BiiN™ Ada pragma bind at link-time. Therefore the
static data ohject should not be accessible to any other module but the type manager.

Building a Distributed Type Manager

FRELLIVUNAKYX

e As part of the initialization the server is created and installed. When installing the server the
caller can specify an SSO from which the server is scheduled and a cpu time limit. If those
parameters are not explicitly specified (as in our example) the server is allocated from the
caller’s SSO and inherits the caller’s time limit. For this reason the type manager should be
installed from a privileged ID. Otherwise the server may experience resource exhaustion at
some unexpected time.

VIII-2.2.9.1 Private ADs are Hidden in the Static Data Object.

The ADs for the TDO and the service are stored in the type manager’s module, more precisely
the static data object. This is necessary since these objects are created by the
Distr_acct_init_ex procedure and stored with an authority list that includes only the
developer thus making them inaccessible to the user of the type manager. They are retrieved
when then type manager is linked. For this reason linking has to be done with the developer’s
ID. A third AD, the one for the homomorph, is stored by the Distr_acct_init_ex
procedure in the passive store attribute.

The objects referenced by these ADs should only be created once. For example: One type is
identified by exactly one TDO. There cannot be two TDOs referencing the same type. By
definition two objects referencing different TDOs have different type. (If a TDO is destroyed it
can of course be replaced by a new one.) By the same token there is only one distributed
service, and one homomorph template. For this reason Distxr_acct_init_ex should only
be executed once on a distributed system, prior to linking the type manager. Then, after the
type manager has been linked, Distr_acct_home_job_ex should be executed to initial-
ize the server. '

After these steps have been executed the main package can be called by an application. The
following sections explain the steps in the initialization:

VIII-2.2.9.2 Creating the Server

Calls Used:

RPC_Mgt.Create RPC_server
Creates an RPC server.

RPC_Mgt.Install server
Installs an RPC server and retumns an AD to the server job.

The following call creates a server on the local node:

61 server: constant RPC_Mgt.RPC_server AD :=
62 RPC_Mgt .Create_RPC_server;

63 —— Server for accounts.

64

65 server_ job: Job_Types.job AD;

66 —- Installed server job.

193 -= 7. Install server:

194 -

195 server_job := RPC_Mgt.Install RPC_server(
196 server => server):

Four optional parameters can be specified with the call (default values are given in
parentheses): A maximum (2) and a minimum (2) number of processes for the server, a
maximum number of services (1) that can be registered with the server, and a naming domain

Building a Distributed Type Manager VIII-2-13

PRELIMINARY

with which the server will associate. (naming domain of the creating node). Note that two
steps have to be taken to create the server, first it has to be created, second it has to be
installed. Installing the server creates the server job. This example package should first be
called by a job with unlimited resources, or an unlimited SSO should be specified in this call.

VIII-2.2.9.3 Creating and Registering the Service

Calls Used:

RPC_Mgt.Create RPC_service
Creates an RPC service and returns an AD to the service.

RPC_Mgt .Register RPC_service
Registers a service with a server. More than one service can be registered
with one server.

An RPC service is transparently accessible. That means that the caller does not have to know
the physical address of the server, but can specify the service and the call will be routed
transparently. The service is not automatically associated with a server. In order to bind a
service to a server the service has to be registered with the server. Multiple services can be
registered with one service. Exactly how many is determined by the max_services
parameter in the RPC_Mgt .Create_ RPC_Server call. The following excerpt from the
initialization shows these two calls:

198 -—- 8, Create the service:

199 -

200 service := RPC_Mgt.Create RPC_service(
201 server => server);

202

When registering a service the caller specifies a stub procedure. That stub procedure matches
the RPC_Mgt .Server_stub template. The server executes the stub procedure registered
with one service when it receives a remote call from that service.

VIII-2.2.9.4 Setting Up the Home Job

Calls Used:

Passive_Store_ Mgt.Set_home_job
Establishes the calling job as home job for objects of one type. Undoes the
effect of any previous call by another job.

Before the service can be called the server has to become the home job for account objects.
This is achieved by executing the Distr_acct_home_job_ex procedure. The following
excerpt shows this procedure in its entirety:

VIII-2-14 Building a Distributed Type Manager

s

PRELIMINARY

27 begin

28 -—- Set up server as home job

29 - by calling procedure ‘‘'07':

30 -

31 parameters := Distr Acct_Server_ Stub_Ex.buffer’ (
32 first_word => account_TDO_untyped,

33 —— account TDO

34 second_word => System.null word, -- Irrelevant.
35 amount => Long_Integer_ Defs.zero);

36 —— Irrelevant.

37

38 length := RPC_Call_Support.Remote_call(

39 service => service,

40 target_proc => 0,

41 -- Server will call Passive_Store Mgt.Set_home_job.
42 param_buf => parameters’address,

43 param_length => parameters’size,

44 ADs_present => true,

45 results buf => results’address,

46 results_length => results’size);

47

48 end Distr Acct_Home_Job_ Ex;

This procedure makes a remote call specifying 0 as the target procedure. In tum, the server
stub which is running in the server job calls Passive Store_ Mgt.Set_home_job when
0 is specified as the target procedure:

59 case target_proc is

60 when 0 => account_TDO untyped := parameters.first word;
61 Passive_Store Mgt.Set_ home_job (

62 tdo => account_TDO);

63 ADs_returned := false;

119 end case;

Note that the Passive_Store_Mgt.Set_home_job procedure has to call and cannot
call Set_home_ job directly since only the server executes exclusively in the server job.

VIII-2.3 Summary

From this chapter you should have learned how to build a distributed type manager. The ex-
ample described has the following properties.

¢ The type manager acts as a distributed service.

® Objects are managed in one home job.

Local instances of the service communicate with the home job by remote procedure calls.

More specifically you should have leamed how to

set up the object’s representation including a locking area and an is_homomorph field.
initialize the passive store attribute to implement the single activation model.

define a template that is activated instead of the object’s active version in all jobs but the
home job.

define buffers for remote calls.
create and install the server.

create and register the service.

Building a Distributed Type Manager VIII-2-15

VII-2-16

EKINDAGLIVRRINAINE

define the call stub.
recognize a homomorph.
pack and unpack buffers.

make remote calls.

Building a Distributed Type Manager

PanaN

PRELIMINARY

Part 1X

Device Services

This part of the BiiN™/OS Guide provides information about device drivers and device
managers. This part contains one chapter:

Understanding Device Managers and Device Drivers
Describes the low-level I/O model and general architecture of device
managers and drivers.

Device Services contains the following services and packages:

Device driver service:
CP_IO Defs
CP_Mgt
CP_Resources
DD_Support
Handling_ Support
Interrupt_Handling_ Support
I0_Messages_Defs
IO _Messages_Ops
Region_3 Support
SCSI_Bus_Dependent_Defs
SCSI_Record_Defs

shared queue service:
Cluster_Service
IO0_Shared_Queues

asynchronous communication service:
Async_Defs

mass storage service:
Bus_Independent_Disk Defs
Bus_Independent_Streamer Defs
Bus_Independent_Tape Defs
Mass_Store_Reply Codes
MS_Configuration Defs

SCSI service:
CP_SCSI_Defs
CP_SCSI_Mgt
SCSI_Bus_Dependent_Defs

subnet service:
Carrier Mgt
Subnet CL_AM
Subnet_CO_AM
Subnet Defs
Trace_Defs
Trace_Support

HDLC service:
HDLC_ Mgt

LAN service:
CSMA_CD_Defs
Ethernet LAN Mgt
IEEE8023_LAN Mgt

Part IX Overview

PKELIMINARY

Part IX Overview

PRELIMINARY

UNDERSTANDING DEVICE MANAGERS
AND DEVICE DRIVERS

Contents
03107 o IX-1-3
70 1Y, (o T L) O P IX-1-3
Access Methodsiiviiiiiiiiiiiiiiiiiieeeteanesnasssonacssanans IX-14
DeviCE ManageIS .. .cvviierieneenereonssonceossecssesasanenanssnnss IX-14
DeVICE DIIVEIS .. .ioiiiiteeiienieeronnonsencossnssotaneossacasannaas IX-14
DevIiCE Classes . ..ivviieiueeneuneertonoesnoasssassasasocscsassonnnan IX-14
J/JOMeChaniSmsccciiuiiuieneennenneneeeroeenraeacessacenennas IX-14
The I/O Messages Mechanismc.coevvvvevrnnennns et eereteaeaes IX-1-5
Data Transfer Via the I/O Messages Mechanismccciiiiiiiiinnnns IX-1-6
J/JORECOVEIY AZENt ..\ vviitietiienierronsnennerneesssosasssanssnasnss IX-1-8
Data Transfer Via the Shared Queues Mechanismcciiiiiiennnnnn. IX-1-8
Clusters and CluSter SEIVEISiitieituereenernnnenraneeaenneeanenns IX-1-9
Administrative Interface ittt ittt it it et IX-1-9
Device Driver EXampleiiiitiiiinenninnentneenenenenenecnnnnens IX-1-9
SUMMIATY .. ittt iiiiiet ittt teneenaneeeeenaenennesnannnnnnens IX-1-13

Understanding Device Managers and Device Drivers IX-1-1

PRELIMINARY

This chapter describes device manager and device driver architectures.

Packages Used:
IO_Messages_Defs

Defines the I/O messages mechanism interface.
IO_Messages_Ops

Provides driver-independent I/O message calls for device drivers.

Cluster_Service
Manages cluster servers.

IO_Shared Queues
Defines the shared queues I/O mechanism.

Port_Mgt Provides fast interprocess communication within a job.

CP_Mgt This package defines the types used in communicating with a Channel
Processor (CP). This includes the format of various data structures used
by a Channel Processor. Furthermore, the Send_to_CP operation is
defined here. It forwards an I/O message to a Channel Processor for ser-
vice, :

DD_Support Supports device drivers.

Interrupt_Handling_ Support
Manages interrupt handlers.

Handling Support
Provides calls to save and restore global registers.

Region_3_ Support
Provides a call for installing macrocode in Region 3.

Unsafe_Object_ Mgt
Provides special object allocation and deallocation calls.

Countable Object_Mgt
Supports type managers of countable global objects.

The relationship between an application, a device manager, device driver and a device is
shown in Figure IX-1-1.

1X-1-2 Understanding Device Managers and Device Drivers

/ Application /

Low-speed Applications | High-speed Applications
- |
v
Character Terminal Filing
Print/Spool | Device Manager | Volume Sets
Basic Disk/Tape/Streamer
~ HDLC
| LAN
- v
Async SCsI
HDLC | Device Driver | IPI
LAN
~ HDLC
!
v
Low-speed High-speed
CP application | (0424 | CP application
|
v
terminal disk
printer | Device } tape
pipe communications network

Fighre IX-1-1. Device Environment

IX-1.1 Concepts

This section introduces methods, concepts and terminology necessary for understanding the
role of device managers and device drivers in communicating with devices.

A typical 1/O process involves the following actions:

e A device object is opened by an application using an Open access method call prior to
sending data to a device.

¢ An /O data transfer mechanism combined with a device class forms an I/O interface
through which the device manager can communicate with a device driver, a CP (Channel
Processor), and ultimately a device.

This chapter describes two I/O data transfer mechanisms which may be used to form an I/O
interface, and describes the roles of device managers and device drivers.

IX-1.2 1/0 Model

The primary elements of the I/O model are device objects, device managers and opened device
objects. A device object is a typed object that represents a device. A single device object is
associated with each device in the system. A device manager is a type manager that controls
access to a device. Devices include files, magnetic tapes, terminals, and pipes. An opened
device object is a typed object that represents a input/output connection between a device
manager and a device. Zero, one or more opened device objects may exist for the same device.
Opened device objects are analogous to I/O channels on other systems.

Understanding Device Managers and Device Drivers IX-1-3

PRELIMINARY

IX-1.2.1 Access Methods

Applications interact with device managers via access methods. An access method is a collec-
tion of procedures which provide a device-independent interface to perform I/O. A device
object has associated with it the implementations of the access methods supported by that
device. An access method is a type attribute of device objects and opened device objects.

To perform device operations, an application selects an access method and passes a device
object to its Open operation. Open retums an opened device object representing an opened
device channel. The opened device object is passes as a parameter when making access
method calls.

A device can be simultaneously accessed by more than one access method. This is convenient,
for example, when a call is made to a library function that intemally uses a different access
method.

IX-1.2.2 Device Managers

A device manager is a type manager of a specific type of device which provides a high-level
interface through which an application can communicate with a device. -

IX-1.2.3 Device Drivers

A device driver provides a device manager with access to a physical device. In the BiiN™
Series 60/80, a device driver is connected to its device through a CP. Device drivers are
simplified by being connected to a CP since drivers do not need to provide such functions as
handling interrupts and issuing device commands.

IX-1.2.4 Device Classes

A device class is a specification which defines the device-specific details necessary to access a
class of device using an I/O mechanism. Device classes are used by device managers and
implemented by device drivers. Device class specifications provide opening parameters
(initial values for the IO_Shared Queues.device_state_rep), command codes used
in the Common Part of the I/O message
(I0_Messages_Defs.IO_message.command_code), and reply codes used in the
Common Part of the I/O message
(I0_Messages_Defs.IO_message.reply_record). A device class specification
used with an I/O mechanism forms a device-specific I/O interface through which device
managers and device drivers may communicate on behalf of devices of the device class.

1X-1.2.5 I/0 Mechanisms

IX-14

The BiiN™ Operating System defines two I/O mechanisms available to device drivers:

¢ I/O messages

e Shared queues.

I/O messages supports high-speed, block-oriented data transfer. shared queues supports low-
speed, character-oriented data transfer. These design characteristics make the I/O messages

mechanism more suitable for disk I/O and network communications, and ihe shared queues
mechanism more suitable for I/O to terminals.

Understanding Device Managers and Device Drivers

A memsmemivmma vemmm

Although these mechanisms are designed to provide communications between device
managers and device drivers, they may also be used for device managers to communicate with
other components such as other device managers. For example, a terminal might be connected
to a system via a terminal concentrator on a network. The terminal device manager could use
the shared queues mechanism to talk to a software component that converts the shared queues
protocol to subnet message-based requests.

These mechanisms provide data transfer. The I/O messages mechanism is also used in an
administrative interface.

I1X-1.2.6 The I/O Messages Mechanism

The I/O messages mechanism consists of operations that device managers can call to support
data transfer, including administrative functions, with high-speed, block-oriented devices such
as disks, tapes and high-speed communications.

The I/O Message
An I/O message is an object consisting of four parts:

e Common part

e Device Driver part

e Device Manager part

e Buffer Description part.

The Common part of the I/O message has fields at fixed offsets that are visible to device
managers, device drivers and CPs. It contains information about an I/O request including the
type of request, the device involved and the number of buffers associated with the message.

The Common part contains pointers, offsets and IDs for locating the reply mechanism, the
physical device, the CP, the beginning of the buffer description array and the Common part
itself. Other fields identify the type of reply mechanism used, usage information about the
buffer descriptions, request and reply priorities, error ID, command code and any device-
specific parameters.

The Device Driver part follows the Common part, is variable in size depending on the device
class, and is reserved for use by device drivers and CPs.

The Device Manager part follows the Device Driver part, is variable in size depending on the
device class and is reserved for use by the Device Manager.

The Buffer Description part contains an array of buffer descriptions. Each buffer description
contains the size and address of its buffer and use indicators. Since this array does not begin at
a fixed location within the message, the Common part contains an offset field with which
device drivers and device managers can locate the beginning of the array of buffer descrip-
tions.

I/O messages may have several buffers. The buffers must be allocated in frozen memory. A
device manager must not modify the buffers between the time a request is issued and the time
the I/O message is returned to the device manager.

The contents of a buffer depend on the type of request and the device class associated with the
I/0 message. (The semantics assigned to each request are described in the device class
specification/package.) Some I/O messages might not reference any buffers at all, such as a

Understanding Device Managers and Device Drivers IX-1-5

PRELIMINARY

device-specific reset request. Other requests such as a Read normally require at least one
buffer. .

Reply Mechanism

The device manager decides the reply mechanism, interrupt reply procedure or reply port from
which it will receive its returned I/O messages. The selected mechanism is specified by the
values in reply_port_or_proc and type_of_reply.

The interrupt reply procedure is called by an interrupt handler, and performs post-processing
of the serviced I/O message such as setting error_id and total_returned_length.
A template for this procedure is provided via
IO_Messages_Defs.Process_IO_message. The reply port mechanism is an inter-
process communications mechanism on which 1/0 messages can be enqueued.

The interrupt reply procedure has the advantage of not causing a context switch, but does
execute an interrupt handler. Thus the implementation of an interrupt reply procedure must
comply with all constraints placed on interrupt handlers (see

Interrupt_Handling Support for a list of interrupt handler constraints). Most BiiN™
Operating System device managers use the I/O reply port mechanism.

IX-1.3 Data Transfer Via the /0O Messages Mechanism

Most systems will employ CP-connected devices because I/O via CPs is available and efficient
for the more common protocols (see BiiN™/0S Reference Manual for a list of supported
devices). Using a CP also greatly simplifies the tasks which must be performed by a device
driver.

| Device Manager |

!
|
v

| Device | I/0O Messages |
| Class } Mechanism |

|
I
\4

] Channel Processor |

A

|
A4
device

. Figure IX-1-2. Device Driver using the I/O messages Mechanism

Data transfer to a CP-connected device using the I/O messages mechanism can be done via the
following steps:

1. The application calls an access method Open to create an opened device.

IX-1-6 Understanding Device Managers and Device Drivers

2. The device manager allocates the data buffers and buffer descriptions (optionally using
DD_Support.Set_buffer_ description), and fills in the following fields:

® queuing_space

® reply port_or_proc

® total_request_length
e type of reply

® reply priority

® io msg

¢ used buffers, optional
® max buffers

e command_ code

® buffer descr offset
® device_specific_params

The device manager may optionally allocate a pool of I/O messages by repeatedly creating
I/O messages and calling DD_ Support .Register_ IO_message. A pool of I/O mes-
sages may be shared by several devices.

3. The device manager calls IO_Messages_Ops.Ops.Issue_request to forward the
I/O message to a device for service.

4. Any time after the I/O message has been sent to the device (Step 2), the device manager
calls Port_Mgt .Receive or Port_Mgt.Conditional_receive to receive the
message from the reply port, if a reply port was selected as the reply mechanism. If the
selected reply mechanism is an interrupt reply procedure the message receipt method is be
defined by the procedure.

5. The device driver gets access to the I/O message, and fills in the following fields of the
Common part of the I/O message: ‘

® phys_dev

® request_priority, optional
® cp_id

® device_id

The device driver also fills in the following fields defined in the Device Driver part of the
I/O message required by the CP:

¢ interrupt g addr
® phys _buf desc_addr

interrupt_ g addr is the physical address of an interrupt queue head. It identifies the
return path from a CP to a CPU after the message has been serviced.
phys_buf_ desc_addr is the physical address of the buffer description array.

The device driver can call an access method’s Get _device_info call to acquire infor-
mation for some of these fields. It can also place other information in the undefined section
of the Device Driver part for its own use.

Understanding Device Managers and Device Drivers IX-1-7

PRELIMINARY

The device driver must set these fields because a device manager will generally use one
pool of I/O messages to issue requests for all the devices it manages. Since a device
manager may manage some devices that are connected to the system by CPs and others that
are directly connected, several different device drivers may service a single device
manager’s I/O requests. They may use the Device Driver part of the I/O messages dif-
ferently. Therefore, a device driver must set all the fields in an I/O message that specify
device information.

6. The device driver issues an I/O request to the CP by calling CP_Mgt .Send_to_CP.

7. After the CP has finished servicing the I/O request, it writes the following results in the I/O
message:

® error_id, if an error occurred.
® total_returned_length
® reply record

8. The CP sends the I/O message to the interrupt queue specified by interrupt_q_addr
and generates an interrupt.

9. The CPU interrupt handler which processes CP-generated interrupts, returns the I/O mes-
sage to the reply mechanism specified in the I/O message (Port_Mgt . Send for a reply

port).

10. The device manager may continue issuing requests for service, calling receive operations
and logging any errors.

11. When the device manager completes and needs no further access to the device, it waits for
pending I/O requests to complete (or cancels them and calls an access method’s Close to
close the opened device.

12. After the device manager has received the I/O messages from the reply mechanism (Step
3), and closed all the devices that it manages, it may optionally deregister the pool of I/O
messages with the recovery agent via DD_Support .Deregister_ IO_message.

IX-1.3.1 /O Recovery Agent

A recovery agent is provided on each node by the BiiN™ Operating System. This agent detects
1/O processor failures and maintains a table of existing I/O messages. Device managers keep
this list current by calling DD_Support .Register_ IO _message each time they create
an I/O message, and by calling DD_Support .Deregister_IO_message before they
deallocate an I/O message.

IX-1.4 Data Transfer Via the Shared Queues Mechanism

IX-1-8

The shared queues I/O mechanism is designed to handle low-speed, character-oriented com-
munications for such devices as terminals and printers. This design minimizes context
switches and interrupts while maintaining satisfactory response time.

The shared queues mechanism is comprised of a cluster servers which services one or more
clusters which contain up to eight pairs of input and output queues (circular buffers). This
mechanism employs an input and output queue for each device. These queues are grouped into
clusters. A cluster is a group of queues that are serviced together. A cluster represents a group
of devices, typically those serviced by the same channel processor (CP) task. See Figure
IX-1-3.

Understanding Device Managers and Device Drivers

IX-1.5 Clusters and Cluster Servers

Clusters are configurable objects (CO) and are typically created and attached to devices during
system initialization. A cluster may contain shared queues for up to eight devices. Cluster
servers may service any number of clusters.

Cluster Server

. s e

Cluster 1 Cluster 2 Cluster n
| | |
] | |
Device 1 Device 2 - Device 8
| | | | | |
in out in out in out
queues queues queues

Figure IX-1-3. Cluster Server, Clusters and shared queues

The devices of each cluster must be of the same device class.

IX-1.5.1 Administrative Interface

The shared queues I/O mechanism is a data transfer mechanism. Each device class that uses
this mechanism must also specify an administrative interface. An administrative interface
contains operations which initialize queues, set device parameters, etc.

When the I/O messages mechanism is used as an administrative interface, for example, the
device class specification defines device-specific command codes and reply records and is
used to initialize the clusters.

IX-1.5.2 Device Driver Example

Figures IX-1-4 and IX-1-5 show how shared queues work with CPs and their relationship with
an administrative interface.

Understanding Device Managers and Device Drivers X-1-9

PRELIMINARY

| Device Manager |

|Administrative Interfacel \ Cluster Server \
| |
| Device | shared queues | | leool
| Class | Mechanism | e e e e
| Cluster |

| [

! ~

\'4 \'4

| Channel Processor]

A

|
v

device

Figure IX-1-4. Device Driver with the Shared Queues Mechanism

IX-1.5.3 /0 Shared Queues Data Transfer Mechanism

An input and an output queue are used to support data transfer between a device manager and a
low-speed device via a CP/device driver. Each queue has a read pointer and a write pointer
which indicate where the next character will be read or written, flags to indicate queues need-
ing service and semaphores to block writers when queues are full. The data transfer process
consists of four distinct activities:

¢ Data Transfer From the Device Manager to the Output Queue
The device manager writes data to the output queue.
e Data Transfer From the Output Queue to the Device

The CP/device driver polls its devices’ output queues, and transfers any characters to those
devices.

¢ Data Transfer From the Device to the Input Queue

The device interrupts the CP/device driver when it has characters to be returned to the
device manager. The CP/device driver transfers the data to the input queue.

¢ Data Transfer From the Input Queue to the Device Manager

The cluster server polls its clusters and calls an input handler for any input queue contain-
ing characters.

These activities are described in more detail following Figure IX-1-5.

IX-1-10 Understanding Device Managers and Device Drivers

Output Queue [N | B

| | \ Cluster\
R W \ Server \

Input Queue [T [

| CP/Device Driver |

~

|
v
Device

Figure IX-1-5. 1/O shared queues Data Transfer Mechanism

1. A device manager transfers characters from an application’s buffer to the output shared
queue associated with the device.

2. When each write completes, the cluster_object.new_output_flags flag cor-
respondmg to the output queue associated with the device is set to show that this output
queue is active (contains characters to be transferred to the device).

3. If the output queue fills before the device manager completes a write,
cluster_object.new_input_flags is still set to active, and the writer blocks on
device_state_rep.block_user. The device manager sets the boolean
device_state_rep.writer_blockedtotrue.

4. The cluster server periodically checks the state of the output queue, and unblocks the writer
when the contents of the output queue reach a low enough number of characters that more
characters can be accepted.

5. When the number of characters remaining in the output queue is less than a
low_water_mark (device_state_rep.low_water_mark), the cluster server
unblocks the writer (calls Semaphore_ Mgt .V), sets
device_state_rep.block_user to false and calls
dev:Lce state_rep.input__ _handler. This optimization technique prevents exces-
sive blocking and context switching.

device_state_ rep.output_write ptr and
device_state_rep.output_read ptr are pointers for the output queue that indicate
where to write and where to begin reading the next character. The device manager writes

Understanding Device Managers and Device Drivers IX-1-11

FKELINVMINAKY

characters beginning at the location indicated by the write pointer, and increments the pointer
by the number of characters written. Likewise, the device manager reads characters beginning
at the location indicated by the read pointer and increments the pointer by the number of
characters read.

The queue is empty when the read pointer is equal to the write pointer. The queue is full when
the read pointer is one more than the write pointer mod the queue size.

Data Transfer From the Output Queue to the Device

1. A CP/device driver periodically reads clust er_object .new_output_flagsto
determine if any of its device’s output queues needs to be serviced.

2. For each active device, it sets the device’s output flag in
cluster_object.new_output_flags to false and sends a character to the device
starting an interrupt-driven transfer loop.

The interrupt-driven loop is initiated by the CP/device driver when it polls the output queue
and finds the new output flag set. The interrupt routine sets the new output flag to false and
sends a character from the output queue to the device. (The flag must be reset before the
character is sent.) When the device interrupts the CP/device driver to acknowledge receipt of
the character, the loop checks the output queue again for another character to be sent. This
loop continues until there are no more characters in the output queue.

NOTE

Occasionally, an output queue is marked active for which the interrupt-driven output
transfer loop is in progress. The CP can detect this situation because it maintains an
internal flag for each device that indicates whether or not a send is in progress. If a send
is in progress, the CP marks the queue as inactive and moves on to the next active output
queue.

Data Transfer From the Device to the Input Queue

1. The device sends an interrupt to the CP/device driver when it has a character to send. The
CP/device driver calls an interrupt handler which places the character in the input queue,
and sets the new input flag to true. (The character must be sent before the flag is reset.)

2. Ifthe CP/device driver is unable to put a character in an input queue because the queue is
full, it discards the character and sets the queue’s overflow boolean, input_1lost.

The use of the pointers in the input queue is similar to the use with the output queues except
that the CP/device driver writes the characters using the write pointer and the device manager
reads the character using the read pointer. A CP/device driver updates the read pointer of the
output queue when removing characters. A CP/device driver reads the characters at the read
pointer and increments the read pointer.

Data Transfer From the Input Queue to the Device Manager

1. The cluster server periodically checks the new input flags. If an input flag is set, the cluster
server calls the input handler for the device (device_state_rep.input_handler).:

IX-1-12 Understanding Device Managers and Device Drivers

IX-1.6 Summary

A device object is a typed object that represents a device.
A device manager is a type manager that controls access to a device.

An opened device object is a typed object that represents an input/output connection be-
tween a device manager and a device.

A device class is a specification that defines the device-specific details necessary to access
a member of a class of devices using an I/O mechanism.

An access method is a collection of procedures that provide a device-independent interface
to perform I/O.

The I/O messages data transfer mechanism supports high-speed, block-oriented data trans-
fer.

The shared queues data transfer mechanism supports low-speed, character-oriented data
transfer.

An I/O message is an object consisting of four parts: common part, device driver part,
device manager part and buffer description part.

A recovery agent detects I/O processor failures and maintains a table of existing I/O mes-
sages.

Understanding Device Managers and Device Drivers IX-1-13

PRELIMINARY

IX-1-14 ‘ Undersianding Device Managers and Device Drivers

» AwmsmemivEA: ViAW A

Part X
Appendixes

The appendixes are:

Ada Examples Contains complete listings of all examples used in this guide.
Glossary Defines terms used in this guide.

Part X Overview

PRELIMINARY

Part X Overview

K RNELAIVILINARNL

ADA EXAMPLES

Contents |

SUPPOIL SeIVICES .. iiviteiineetreersrosenonossesncnerossssoaossncassosass X-A-4
Example_ Messages Package Specificationcciviiiin.... X-A-5
Long_ Integer_Ex Package Specificationcoiiiiiinnt.. X-A-7
Long_Integer ExPackageBodyc.cciiiiiiiiiiiii, X-A-8
Make menu_group DDef_exProcedurecciiiiiiian.. X-A-12
Manage application_environment exProcedure X-A-20
String list _exProcedureciiiiiiiiiiiiiiiiiiiii X-A-23

DITECIOTY SeIVICES ..t iviitinieteeenoeneracasnnssnsocsnsassnsossasassasan X-A-23
Create_directory_cmd exProcedure, X-A-24
Create_name_space_cmd _exProcedureccovvvinnn.. X-A-26
List_current_directory cmd exProcedure X-A-31
Make object public _exProcedureciiiiiin., X-A-33
Show_current_directory_cmd exProcedure X-A-35

O B o X-A-36
DBMS_Support_Ex Package Specificationooiiiiiii. X-A-37
DBMS_Support_ExPackageBodyciiiiiiiiiiiiiiiiin.. X-A-38
Employee Filing Ex Package Specificationcccevivnn.. X-A-42
Employee Filing ExPackageBodycciiiiiiiiennnnen. X-A-46
Hello_ada_exProcedurecciiiiiiiiiiiniiiiiiiiiiniiennns, X-A-54
Hello OS_exProcedurecoiiiiieiininiinnennninnneeennns X-A-55
Join_File_Ex Package Specificationcoiiiiiiiiiininnn.. X-A-56
Join_File ExPackageBodycooiiiiiiiiiiiiiiiiii... X-A-57
Record_Locking_Ex Package Specificationcocvu.... X-A-61
Record_Locking ExPackageBodyc.coiiiiiiiiiiiininnnns, X-A-62
Output_bytes _exProcedure, X-A-64
Output_records_exProcedureo, X-A-65
Print_cmd exProcedurel X-A-67
Print_Cmd MessagesPackagecciiiiiiiiiiiiain., X-A-70
Record_AM Ex Package Specificationcciiiiiiiiiennne. X-A-71
Record AM ExPackageBodycciiiiiiiiiiiiiiiiiinnninnnn X-A-75
Simple_editor_cmd exProcedureol X-A-84
Simple_Editor_Ex Package Specificationo, X-A-85
Simple_ Editor_ExPackageBodyiiiiiiiiii., X-A-89

Human Interface SErviCescoiiiiniiiiiiiiiiiiiiiiiiniennnnnnnnnn X-A-104
Inventory mainProcedureol X-A-105
Inventory Files Package Specificationccoivvvinn... X-A-108
Inventory FilesPackageBodycoiiiiiiiiiiiieinnnn, X-A-115
Inventory_ Forms Package Specificationcovviiiiennn.n. X-A-121
Inventory FormsPackageBodycoiiiiiiiiiiii X-A-126
Inventory_Menus Package Specification0oivennn. X-A-137
Inventory MenusPackageBodyo, X-A-140

Ada Examples ‘ . X-A-1

X-A-2

PRELIMINARY

Inventory_Reports Package Specification0. X-A-144
Inventory ReportsPackageBodycciiiiiiiiiia.. X-A-146
Inventory_ Windows Package Specification X-A-152
Inventory WindowsPackageBodyccooiiiiiiiiiiiiine, X-A-154
Inventory_ Messages Package Specificationc0vuunnn X-A-156
Program SeIVICESvviiieuresrocnssnsesoseoncssessansncssnscnssnos X-A-156
At_cmd exProcedurec.coiiiiiiiiiiiiiiiii it X-A-157
At_Support_Ex Package Specificationciiiiiiiiiiia., X-A-160
At_Support_ExPackageBodyccciiiiiiiiiiiinn, cesenss X-A-162
Compiler_ Ex Package Specificationccoiviiiieniiennnnennn. X-A-168
Compiler ExPackageBodycovviiiiiiiiiiiiieiiiieeennnnns X-A-169
Conversion_Support_Ex Package Specification X-A-172
Memory exProcedurec.coiiiiiiiiiiiiiiiiiiiiiiiiiiiiie X-A-176
Process_Globals_Support_Ex Package Specification X-A-177
Process_Globals_Support_ ExPackageBody X-A-182
Stream file_ exProcedureoiiiiiiiiiiiiiiiiiiiiiin., X-A-103
Symbol_Table_ Ex Package Specificationcoviviiniininn, X-A-191
Symbol_ Table ExPackageBodycciiiiiiiviiiiiii.., X-A-193
Word_Processor_Ex Package Specification X-A-197
Word_Processor_ExPackageBodyooiiiit e X-A-198
View_device _mainProcedurel X-A-203
VD_Defs Package Specification, X-A-206
VD_Commands Package Specification e eeseeacerecaaaaeneaeaes X-A-208
VD_Commands Package Bodycooiiiiiiiiiiiiiiiiiiiiiiinn, X-A-209
VD_Devices Package Specificationcoo it X-A-213
VD_DevicesPackage Bodycoiiiiiiiiiiiiiiiiiiiiiiiinnn, X-A-215
TyPE Manager SeIVICES ... viviintiieeetnetneneeeaaeeneensnenacaneannenns X-A-218
Acct_main exProcedure i, X-A-219
Acct_Visual Package Specificationcooiiiiiiiiiiiiiiie., X-A-236
Acct_VisualPackageBodyccoiviiiiiiiiiiiiiiiiiiiiinn, X-A-238
Account ManagerCommandFileccivtiininiinennnnn. X-A-244
Account_Types_Ex Package Specificationc00uue.. X-A-250
Account_Mgt_Ex Package Specificationccciiiiiiiiina.. X-A-251
Account_Mgt_ Ex (Active Only) PackageBody X-A-256
Account_Mgt_Ex (Stored, Non-transaction-oriented) Package Body X-A-261
Account_Mgt_Ex (Stored, Transaction-oriented) Package Body X-A-267
Stored Account_ TDO_Init ExProcedure X-A-276
Account_Type_ Name Ex Package Specification X-A-279
Account_Type Name ExPackageBodyco0voe... X-A-280
Type_Name_ Attr_ Ex Package Specification X-A-281
Type_Name_ Attr ExPackageBodycoiiiiiien. X-A-282
Type Name_ Attribute_Init ExProcedure X-A-283
Refuse_Reset_ Active_Version_Ex Package Specification X-A-284
Refuse_Reset_ Active_Version ExPackageBody X-A-285
Account_Mgt_Ex (Distributed) Package Body X-A-286
Distr_ Acct_Call_Stub_Ex Package Specification X-A-298
Distr Acct_Call_Stub_ExPackageBody X-A-300
Distr_Acct_Server_Stub_Ex Package Specification X-A-304
Distr_ Acct_Server_Stub_ExPackageBody X-A-306
Distr Acct_InitProcedureccoiiiiiiiiiiiiiiiiinnn.. X-A-308
Distr_Acct_Home_Job_ExProcedurecciviviiinnnnn. X-A-312
= e 0 X-A-313

Ada Examples

Ada Examples

- m—mem—matAas vaman .

Named_copy_ex Procedure
Older_than_ex Function

oo

ooo

X-A-3

PRELIMINARY

X-A.1 Introduction

This appendix contains full listings of all the examples in the BiiN"/OS Guide grouped by
service area.

All examples were compiled using Version V1.00.02 of the BiiN™ Ada compiler, and all
compiled successfully (except where noted). Most examples are not yet tested, however.

X-A.2 Support Services

X-A-4 Ada Examples

A AREYEJRIVARL VIRAR &

X-A.2.1 Example_Messages Package Specification

Ada Examples

with Incident_Defs,

System,
System_Defs;

package Example Messages is

-- Function:
- Define messages used by example programs.

- A single message file is used. All messages
- defined use a module ID of O. .

msg_file_pathname: constant System Defs.text AD :=
new System Defs.text’ (
30,30, "/examples/msg/example_messages");
-~ AD to pathname of message file, bound to
-- "msg_obj", following.

-— *This will go away when "pragma bind" changes.*

msg_obj: constant System.untyped word :=
System.null_word;
pragma bind(msg_obj,
"example_messages.msg_file_pathname™);
-- Message object for incident codes in
-- example programs, bound to above "message_file_pathname™.

-- *When the resident compiler and linker are*

-- *ready, this pragma will become:*

-- | pragma bind(msg_obj,

== "/examples/msg/example messages");

not_directory_code:
constant Incident_Defs.incident_code :=
(0, 1, Incident_Defs.error, msg_obj);

-~*M* store :module=0 :number=1 \

——*M* :msg_name=not_directory_code \
—=*M* :short = \
——kM* "$pl<pathname> is not a directory.”

not_exist_or_no_access_code:
constant Incident_Defs.incident_code :=
(0, 2, Incident Defs.error, msg_obj);

--*M* store :module=0 :number=2 \

—=*M* :msg_name=not_exist_or_no_access_code \
- %M :short = \
——%M* "$pl<pathname> does not exist or does\

--*M* not allow you access."

no_access_code:
constant Incident_Defs.incident_code :=
(0, 3, Incident_Defs.error, msg_obj);

--*M* store :module=0 :number=3 \

——¥M* :msg_name=no_access_code \
-k M* :short = \
——*M* "$pl<pathname> does not allow\

--*M* you access."

overwrite_query code:
constant Incident_Defs.incident_code :=
(0, 4, Incident_Defs.information, msg_obj);

~-*M* store :module=0 :number=4 \

—=*M* :msg_name=overwrite_query_code \
——*M* sshort =\
—— kM "$pl<pathname> exists. Overwrite it2"

not_overwritten_code:
constant Incident_Defs.incident_code :=
(0, 5, Incident Defs.error, msg_obj);

X-A-5

PRELIMINARY

75 --*M* store :module=0 :number=5 \

76 ——*M* :msg_name=not_overwritten code \

77 —=kM* :short = \

78 -k M* "$pl<pathname> not overwritten.®

79

80 create_name_space_aborted_code:

81 constant Incident_Defs.incident_code :=
82 (0, 6, Incident_Defs.information, msg_obj);
83 -

84 --*M* store :module=0 :number=6 \

85 ——*M* :msg_name= \

86 —~*M* create_name_space_aborted_code \

87 -k Mk :short = "Operation aborted.\

88 --*M* No name space was created."

89

90 name_space_created_code:

91 constant Incident Defs.incident_code :=
92 (0, 7, Incident_Defs.information, msg_obj):
93 -

94 --*M* store :module=0 :number=7 \

95 ——*M* tmsg_name=name_space_created code \
96 el ; sshort =\

97 ——*M* "Name space $pl<pathname> created.”
98

99 end Example Messages;

X-A-6 g Ada Examples

X-A.2.2 L.ong_Integer_ Ex Package Specification

Ada Examples

1

with Long_Integer Defs;

package Long_Integer Ex is

-- Function:

-- Provide examples of using long integers.
- See the package body for detailed comments.

function Long_integer_value(
image: string)
return Long_Integer Defs.long_integer;

function Get_long_integer
return Long_Integer Defs.long_integer;

function Multiply divide(
a: integer;
b: integer;
c: integer)
return integer;

procedure Use_it;

pragma external;

end Long_Integer Ex;

X-A-7

PRELIMINARY

X-A.2.3 Long_Integer_ Ex Package Body

1 with Byte_Stream AM,

2 Device_Defs,
3 Long_Integer_Defs,
4 Process_Mgt,
5 Process_Mgt_Types,
6 System,
7 System_Exceptions;
8
9 package body Long_Integer Ex is
10 -
11 -- Function:
12 -- Provide examples of using long integers.
13 -
14 -~ History:
15 - 12-02-87 Martin L. Buchanan Initial version.
16
17
18 function Long_integer value(
19 image: string)
20 return Long_Integer_ Defs.long_integer
21 -
22 -- Function:
23 - Converts a string image to a long integer.
24 -
25 - The image must have the following syntax:
26 - |
27 - | image ::= {space} [sign] digit { [_] digit }
28 - | {space}
29 - | space ::= "' !
30 - | sign ::i= +|=-
31 - | digit ::= 011121314151617181{9
32 -
33 - After leading and trailing spaces are stripped
34 - off, the remaining part of the image cannot
35 -- be longer than 31 characters.
36 -
37 -- Notes:
38 -- Unlike "Long_Integer_ Defs.Long_integer_value”,
39 - this function handles strings of varying length
40 - and strings that contain trailing spaces.
41 - '
42 -= Exceptions:
43 -- System Exceptions.bad_parameter -
44 - "image™ has incorrect syntax, contains a
45 - number longer than 31 characters, or contains
46 - a number that cannot be represented as a long
47 - integer.
48 is
49 li_string: Long_Integer Defs.string_integer;
50 -- Fixed-length string required by
51 -- "Long_Integer_ Defs.long_integer_value”
52 -~ when converting to a long integer.
53 i: 1integer;
54 -~ Will be index of right-most non-space character
55 -- in "image".
56 j: integer;
57 -=- Will be index of left-most non-space character
58 -- in "image”.
59 k: integer;
60 -- Will be index of left-most character in
61 -- ®1li_string” that is copied from "image(j..i}".
62 li: Long_Integer_Defs.long_integer;
63 -- The resulting long integer to return.
64 Dbegin
65 -- Make "i" the index of the right-most
66 -- non-space character in "image":
67 -
68 i := image’last;
69 loop
70 if i < image’first then
71
72 -- "image™ contains all spaces, or is a
73 -- null string:
74 -

X-A-8 ‘ Ada Examples

FELLVILIINAKX

15 RAISE System Exceptions.bad parameter;
76
17 else
78 EXIT when image(i) /="' ’;
79 i:=1i-1;
80 end if;
81 end loop;
82
83 ~- Make "j" the index of the left-most
84 -- non-space character in "image". No check
85 -- is needed for "image" being null or all
86 -- spaces, as those conditions are checked
87 -—- above.
88 -—
89 j := image’first;
90 loop
91 exit when image(j) /="' ’;
92 3 =3+ 1;
93 end loop;
94
95 if (1 - j + 1) > 1li_string’length then
96
97 -- The number is longer than 31 characters
98 -~ after stripping off spaces:
99 -
100 RAISE System Exceptions.bad parameter;
101
102 else
103
104 -~ "k" is the index within "1li_string"” of the
105 ~- leftmost character copied from "image"”. "k" is
106 -- computed to satisfy the following predicate:
107 -- | i -3 =1i_string’last - k
108 ~- This predicate simply specifies that the number
109 -- of source characters copied equals the number
110 -- of destination characters.
111 -
112 k := 1li_string’last + j - i;
113
114 -- Copy the significant characters from "image" to
115 -- be right-justified within "li_ string":
116 -
117 li_string(k .. li_string’last) :=
118 image(j .. 1);
119
120 ~- Fill any remaining left-hand characters in
121 -- "li string” with spaces:
122 -
123 for m in 1li_string’first .. k-1 loop
124 li_string(m) := ' ’;
125 end loop;
126
127 -- Compute and return the long integer value:
128 -
129 Long_Integer Defs.Long_integer_ value(
130 image => li_string,
131 number => 1i); -- out.
132 RETURN 1i;
133

134 end if;
135 end Long_integer_value;

136

137

138 function Get_long integer

139 return Long_Integer_ Defs.long_integer

140 -

141 —-- Function:

142 -- Gets a long integer on a single line

143 - from the calling process’s standard input.
144 -

145 -- Notes:

146 -- See "Long_integer_value" in this package
147 - for a description of the required long
148 - integer syntax and of what happens if

149 -- the syntax is violated.

150 -

151 - There is no check for a line that’s too long.

Ada Examples X-A-9

X-A-10

152
153
154
155
156
157
158
159
160
161
162
163
le4
165
166
167
le8
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
2117
218
219
220
221
222
223
224
225
226
227
228

PRELIMINARY

LINE_SIZE: constant integer := 80;
-~ A line read from the standard input must
-- be <= 80 characters.
line: string(l .. LINE_SIZE);
-- Line buffer.
length: integer;
~— Number of characters actually read.

begin

~=- Read the line:
length := integer (Byte_Stream AM.Ops.Read(
Device_Defs.opened_device(
Process_Mgt.Get_process globals_entry(
Process_Mgt_Types.standard input)),
line’address,
System.ordinal (LINE_SIZE)));

-- Strip any linefeed at the end:

if line(length) = ASCII.LF then
length := length - 1;

end if;

-~ Convert to.a long integer and return:

return Long_integer_value(line(l..length));

end Get_long_integer;

function Multiply divide(

a: integer;
b: integer;
c: integer)
return integer
-- (a*b) /c

-- Function:

- Computes and returns the product of two

- integers divided by a third integer, using
- a long integer for the intermediate result
- to avoid overflow.

- This function is useful for scaling and

- unit conversions, to avoid overflow within
-- the calculation when the result after the
- division step can still be represented as
- an integer.

-- Exceptions:
- System Exceptions.bad parameter -
- Overflow or division by zero.

-— Convert all parameters to long integers:

a_long: Long_Integer_Defs.long_integer :=
Long_Integer Defs.Convert_to_long_integer(a);

b_long: Long Integer_Defs.long integer :=
Long_Integer Defs.Convert_to_long_integer(b);

c¢_long: Long_Integer Defs.long integer :=
Long_Integer_ Defs.Convert_to_long_integer(c);

-- Import long integer operators:

use Long_Integer Defs;

begin

return Convert_to_integer((a_long * b long) / c_long

end Multiply divide;

procedure Use_it

-- Function:
- Show some computations with long integers.

-- Notes:

)

Ada Examples

Ada Examples

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266

A ANAYAJALVARINSARN R

-- This procedure is not yet testable as it
- is not a command and its variables are not
- yet displayed.

-- Import long integer operators and the
-- "long_integer” type:

use Long_Integer Defs;
-~ Some variables to play with:

a: long_integer;
b: long_integer;
i: integer;

-- Declaring a negative long integer constant,
-- the easy way and the hard way:
negative_twenty: constant long_integer :=

- long_integer’ (0, 20);

another_negative_twenty: constant long_integer :=
(Le#ffff fEffd, 16#ffff ffecd);
-~ Use the hard way when you want a declaration
-~ elaborated at compile-time instead of
-- at run-time.
begin
-~ Add one to a long integer:

a := a + Long_Integer_Defs.cne;

-- Add a positive integer "i" to a long integer:

b := b + long_integer’ (0, System.ordinal(i));
end Use_it;

end Long Integer_ Ex;

X-A-11

PRELIMINARY

X-A.2.4 Make_menu_group_DDef_ex Procedure

X-A-12

N

wi

pr

is

be

th Data_Definition_Mgt,
Directory_Mgt,
Passive_Store_Mgt,
System,
System Defs,
Text_Mgt;

ocedure Make_menu_group_DDef_ex

-- Function:

-~ Creates and stores a menu group DDef,

- containing two menus and five menu items:

-1 Menu 1 Menu 2

- ' —————————————— v o o o o

-] Menu Item 1 Menu Item 1

bl | Menu Item 2 Menu Item 2

- - ——— Menu Item 3

D —

use Data_Definition_Mgt: -~ to import enumeration types
ddf: Data_Definition Mgt .DDef AD;

untyped_ddf: System.untyped_word;
FOR untyped_ddf USE AT ddf’address;

group_node: Data_Definition_Mgt.node_reference;
menu_list_node: Data_Definition_Mgt.node reference;
menu_node: Data_Definition_Mgt.node_reference;
item list_node: Data Definition_Mgt.node_reference;
item_node: Data_Definition_Mgt.node_reference;
dont_care_node: Data_Definition_Mgt.node_reference;
name: System_Defs.text (100);

prop_value: Data_Definition_Mgt.property_value(100);
gin

ddf := Data_Definition Mgt.Create_DDef;
-~ Create menu group

Text_Mgt.Set (name, "group node”);

group_node := Data_Definition_Mgt.Create_node(
DDef => ddf,
node_name => name,
root => private_root_node);

prop_value.simple pv := (pv_boolean, true);
Data_Definition Mgt.Add property value(
node_ref => group_node,
property => pi_derive_all,
value => prop_value);

prop_value.simple pv := (pv_boolean, true);
Data_Definition Mgt.Add property value(
node_ref => group_node,
property => pi_import,
value => prop_value);

prop_value.simple_pv := (pv_type => pv_string):
Text_Mgt.Set (prop value.text value, "menu_group_t");
Data_Definition Mgt.Add property value(

node_ref => group_node,

property => pi_DDef name,

value => prop_value);

Text_Mgt.Set (prop_value.text_value, "/ddefs/menu_DDef");
Data Definition_Mgt.Add_property_value(.
node_ref => group_node,
property => pi_DDef_name,

Ada Examples

Ada Examples

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
i33
134
135
136
137
138
139
140
14
142
143
144
145
146
147
148
149
150
151

A AVAYERJRIVAKLNSRAN &

value => prop_value);

Text_Mgt.Set (name, "menu_list");
menu_list_node := Data_Definition Mgt.Create_field(
record_node => group_node,

node_name => name,
property => pi_has_value,
value => (pv_node_reference, menu_node));

-~ Create the first menu ("Menu 1"):

Text_Mgt.Set (name, "menu_node");
menu_node := Data_Definition_Mgt.Create_node(

DDef => ddf,
node_name => name,
root => private_root_node);

prop_value.simple_pv := (pv_boolean, true);
Data_Definition_Mgt.Add_property_value(
node_ref => menu_node,
property => pi_derive_all,
value => prop_value);

prop_value.simple_pv := (pv_boclean, true):;
Data_Definition_Mgt.Add property value(
node_ref => menu node,
property => pi_import,
value => prop_value);

prop_value.simple_pv := (pv_type => pv_string);
Text_Mgt.Set (prop_value.text_value, "menu_ t");
Data_Definition_Mgt.Add property value(

node_ref => menu_ncde,

property => pi_DDef name,

value => prop value);

Text_Mgt.Set (prop_value.text value, "/ddefs/menu_DDef");
Data_Definition_Mgt.Add property_ value(

node_ref => menu_node,

property => pi_DDef name,

value => prop_value);

Text_Mgt.Set (name, "menu_id");
dont_care_node := Data Definition_Mgt.Create_field(
record node => menu_node,
node_name => name,
property => pi_has_value,
value => (pv_int4, 1));

prop_value.simple pv := (pv_type => pv_string):
Text_Mgt.Set (prop_value.text_value, "Menu 1");
Text_Mgt.Set (name, "menu_title");

dont_care_node := Data Definition_Mgt.Create_field(

record_node => menu_node,

node_name => name,

property => pi_has_value,

value => prop_value.simple_pv);

Text_Mgt.Set (name, "item list");

item_list_node := Data_Definition Mgt.Create_field(
record node => menu_node,
node_name => name);

-- Now create the menu items for menu 1:

-- Create menu item 1:

Text_Mgt.Set (name, "item node");

item node := Data Definition_Mgt.Create_ node(
DDef => ddf,
node_name => name,
root => private_root_node);

prop_value.simple_pv := (pv_boolean, true);

X-A-13

X-A-14

152
153
154
155
156
157
158
159
160
161
162
163
le4
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

- 215

216
217
218
219
220
221
222
223
224
225
226
227
228

PRELIMINARY

Data_Definition_Mgt.Add_property_value(
node_ref => item node,
property => pi_derive_all,
value => prop_value);

prop_value.simple_pv := (pv_boolean, true);
Data_Definition_Mgt.Add_property value(
node_ref => item node,
property => pi_import,
value => prop_value);

prop value.simple pv := (pv_type => pv_string);
Text_Mgt.Set (prop_value.text_value, "menu_item t");
Data_Definition Mgt.Add property value(

node_ref => item node,

property => pi_DDef name,

value => prop_value);

Text_Mgt.Set (prop_value.text_value, "/ddefs/menu_DDef");
Data_Definition Mgt.Add_property value({

node_ref => item node,

property => pi_DDef_name,

value => prop_value);

Text_Mgt.Set(name, "item id");
dont_care_node := Data_Definition_Mgt.Create_field(
record_node => item_node,

node_name => name,
property => pi_has_value,
value => (pv_int4, 1});

Text Mgt.Set (name, “checked");
dont_care_node := Data_Definition_Mgt.Create_field(
record_node => item_node,
node_name => name,
property => pi_has_value,
value => (pv_boolean, true));

Text_Mgt.Set (name, "enabled");
dont_care_node := Data_Definition_Mgt.Create_field(
record_node => item_ node,

node_name => name,
property => pi_has_value,
value => (pv_boolean, true));

prop_value.simple_pv := (pv_type => pv_string);

Text_Mgt.Set (prop_value.text_value, "Menu Item 1");

Text_Mgt.Set (name, "text");

dont_care_node := Data_Definition_Mgt.Create_field(
record_node => item_node,

node_name => name,
property => pi_has_value,
value => prop_value.simple_pv);

-- Add menu item 1 to menu 1:
prop_value.simple pv := (pv_node_reference, item_node);
Data_Definition Mgt.Add property_value(

node_ref => item list_node,

property => pi_has_value,

value => prop_value);

-- Create menu item 2 for menu 1:
Text_Mgt.Set (name, "item node");
item node := Data_Definition_Mgt.Create_node(

DDef => ddf,
node_name => name,
root => private_root_node);

prop_value.simple_pv := (pv_boolean, true);
Data_Definition Mgt.Add property value(
node_ref => item node,
property => pi_ derive_all,
value => prop_value);

Ada Examples

Ada Examples

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
2417
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
298
300
301
302
303
304
305

FIDLAIVIAINAIR X

prop_value.simple_pv := (pv_boolean, true);
Data_Definition_Mgt.Add property_value (
node_ref => item node,
property => pi_import,
value => prop_value);

prop_value.simple_pv := (pv_type => pv_string):
Text_Mgt.Set (prop_value.text_value, "menu_item t"):
Data_Definition_Mgt.Add property_value(

node_ref => item node,

property => pi_DDef_ name,

value => prop_value);

Text_Mgt.Set (prop_value.text_value, "/ddefs/menu_ DDef");

Data Definition_Mgt.Add property_value(
node_ref => item node,
property => pi_DDef name,
value => prop_value):

Text_Mgt.Set (name, "item id");
dont_care_node := Data | Definition _Mgt.Create_field(
record_node => item_node,

node_name => name,
property => pi_has_value,
value => (pv intd, 2));

Text_Mgt.Set (name, "checked");
dont_care_node := Data_Definition_Mgt.Create_field(
record_node => item node,

node_name => name,
property => pi_has_value,
value => (pv_boolean, false));

Text_Mgt.Set (name, "enabled");

dont_care_node := Data Definition_Mgt.Create_field(
record node => item node,
node_name => name,
property => pi_has_value,
value => (pv_boolean, false));

prop_value.simple pv := (pv_type => pv_string);
Text_Mgt.Set (prop_value.text_value, "Menu Item 2%);
Text_Mgt.Set (name, "text");

dont_care_node := Data Definition_Mgt.Create_field(
record_node => item node,
node_name => name,
property => pi_has_value,
value => prop_value.simple_pv);

~- Add menu item 2 to menu 1:
prop_value.simple pv := (pv_node_reference, item node);
Data_Definition_ Mgt. Add_property value (

node_ref => item list_node,

property => pi_has_value,

value => prop_value);

—-— Add menu 1 to the menu group:
prop_value.simple pv := (pv_node_ reference, menu_node);
Data_Definition_Mgt.Add property value(

node_ref => menu_list_node,

property => pi_has_value,

value => prop_value);

-- Create menu 2:

Text_Mgt.Set (name, "menu_node”);

menu_node := Data_Definition_ Mgt.Create_node(
DDef => ddf,
node_name => name,
root => private_root_node);

prop_value.simple_pv := (pv_boolean, true);
Data_| _Definition _Mgt.Add_property_ value(

X-A-15

X-A-16

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
317
378
379
380
381
382

PRELIMINARY

node_ref => menu_ncde,
property => pi_derive_all,
value => prop_value);

prop_value.simple pv := (pv_boolean, true);
Data_Definition Mgt.Add property value(
node_ref => menu_ncde,
property => pi_import,
value => prop_value);

prop_value.simple pv := (pv_type => pv_string):;
Text_Mgt.Set (prop_value.text_value, "menu t");
Data_Definition Mgt.Add property value(

node_ref => menu_node,

property => pi_DDef name,

value => prop_value);

Text_Mgt.Set (prop_value.text_value, "/ddefs/menu_DDef");
Data_Definition Mgt.Add_property value(

node_ref => menu_node,

property => pi_DDef name,

value => prop_value);

Text_Mgt.Set (name, "menu_id");
dont_care_node := Data_Definition_Mgt.Create_field(
record_node => menu_node,

node_name => name,
property => pi_has_value,
value => (pv_int4, 2));

prop_value.simple_pv := (pv_type => pv_string);

Text_Mgt.Set (prop_value.text_value, "Menu 2");

Text_Mgt. Set(name, "menu title“)

dont_care_node := Data Definition _Mgt.Create_field(
record_node => menu_node,

node_name => name,
property => pi_has_value,
value => prop_value.simple pv);

Text _Mgt.Set (name, "item_list");

item list_node := Data_Definition Mgt.Create_field(
record_node => menu_node,
node_name => name);

-- Now create menu items for menu 2:

-- Create menu item 1 for menu 2:
Text_Mgt.Set (name, “item node”);
item_node := Data_Definition Mgt.Create_node(

DDef => ddf,
node_name => name,
root => private_root_node);

prop_value.simple pv := (pv_boolean, true);
Data_Definition Mgt.Add property_value(
node_ref => item node,
property => pi_derive_all,
value => prop_value);

prop_value.simple pv := (pv_boolean, true);
Data_Definition Mgt. Add_property value (
node_ref => item node,
property => pi_import,
value => prop_value);

prop_value.simple_pv := (pv_type => pv_string);
Text_Mgt.Set (prop_value.text value, "menu_item t");
Data_Definition Mgt.Add property value(

node_ref => item node,

property => pi_DDef name,

value => prop_value);

Text_Mgt.Set (prop_value.text value, "/ddefs/menu DDef");
Data_Definition Mgt.Add property_value({

node_ref => item_node,

property => pi_ DDef name,

Ada Examples

FKELLVIINAKY

383 value => prop_value);

384

385 Text_Mgt.Set (name, "item_id");

386 dont_care_node := Data_ Definition Mgt .Create_field(

387 record_node => item node,

388 node_name => name,

389 property => pi_has_value,
390 value => (pv_int4, 1));
391

392 Text_Mgt.Set (name, "“checked");
393 dont_care node := Data Definition Mgt.Create_field(

394 record_node => item node,

395 node_name => name,

396 property => pi_has_value,

397 value => (pv_] boolean, true));
398

399 Text_Mgt.Set (name, "enabled");
400 dont_care_node := Data Definition_Mgt.Create_field(

401 record node => item node,

402 node_name => name,

403 property => pi_has_value,

404 value => (pv_boolean, true));
405

406 prop_value.simple_pv := (pv_type => pv_string);

407 Text_Mgt.Set (prop_value.text_value, "Menu Item 1");
408 Text_Mgt.Set (name, "text");

409 dont_care_node := Data_Definition_Mgt.Create_field(

410 _ record_node => item_node,

411 node_name => name,

412 property => pi_has_value,

413 value => prop_value.simple pv);
414

415

416 -- Add menu item 1 to menu 2:

417 -

418 prop_value.simple pv := (pv_node_reference, item node);
419 Data _Definition_Mgt. Add_property value (
420 node _ref => item_list_node,

421 property => pl_has_value,

422 value => prop_value);

423

424

425 -~ Create menu item 2 for menu 2:

426 -

427 Text_Mgt.Set (name, "item_node");
428 item_node := Data_| Definition _Mgt.Create_node(

429 DDef => ddf,

430 node_name => name,

431 root => private_root_node);

432

433 prop_value.simple pv := (pv_boolean, true);
434 Data_Definition Mgt.Add _property_value(

435 node_ref => item_ node,

436 property => pi_derive all,

437 value => prop_value);

438

439 prop_value.simple pv := (pv_boolean, true);
440 Data_Definition_Mgt.Add_property value(

441 node_ref => item node,

442 property => pi_import,

443 value => prop_value);

444

445 prop_value.simple_pv := (pv_type => pv_string);
446 Text_Mgt.Set (prop_value.text_value, "menu_item t");
447 Data_Definition Mgt.Add property value(

448 node_ref => item_ node,

449 property => pi_ DDef_ name,

450 value => prop_value);

451

452 Text_Mgt.Set (prop_value.text value, "/ddefs/menu_DDef"):;
453 Data_Definition_Mgt.Add property value(

454 node ref => item_node,
455 property => pl_DDef_name,
456 value => prop_value);
457

458 Text_Mgt.Set (name, "item id");
459 dont_care_node := Data_Definition_Mgt.Create_field(

Ada Examples X-A-17

X-A-18

460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536

PRELIMINARY

record_node => item_node,
node_name => name,

property => pi_has_value,
value => (pv_int4, 2));

Text_Mgt.Set (name, "checked");
dont_care_node := Data_Definition_ Mgt.Create_field(
record_node => item node,
node_name => name,
property => pi_has_value,
value => (pv_boolean, true));

Text_Mgt.Set (name, "enabled");
dont_care_node := Data_Definition_Mgt.Create_ field(
record node => item_ node,

node_name => name,
property => pi_has_value,
value => (pv_boolean, true));

prop_value.simple pv := (pv_type => pv_string);
Text_Mgt.Set (prop_value.text_value, "Menu Item 2");
Text_Mgt.Set (name, "text"™);
dont_care_node := Data_Definition_ Mgt.Create_field(
record_node => item node,
node_name => name,
property => pi_has_value,
value => prop_value.simple_ pv);

-- Add menu item 2 to menu 2:
prop_value.simple_pv := (pv_node_reference, item node);
Data Definition Mgt.Add property_value(

node_ref => item_list_node,

property => pi_has_value,

value => prop_value);

-- Create menu item 3 for menu 2:

Text_Mgt.Set (name, "item node™);

item node := Data_Definition_Mgt.Create_node (
DDef => ddf,
node_name => name,
root => private_root_node);

prop_value.simple_pv := (pv_boolean, true):
Data Definition Mgt.Add_property_value(
node_ref => item node,
property => pi_derive_all,
value => prop_value);

prop value.simple pv := (pv_boolean, true);
Data_Definition_Mgt.Add property value(
node_ref => item node,
property => pi_import,
value => prop_value);

prop_value.simple_pv := (pv_type => pv_string);
Text_Mgt.Set (prop_value.text_value, "menu item t"):;
Data_Definition Mgt.Add property value(

node_ref => item node,

property => pi_DDef name,

value => prop_value);

Text_Mgt.Set (prop_value.text value, "/ddefs/menu_DDef"):
Data_Definition_Mgt.Add_property_ value(

node_ref => item node,

property => pi_ DDef name,

value => prop_value);

Text_Mgt.Set (name, "item_id");
dont_care_node := Data_Definition_Mgt.Create_field({
record node => item node,

_node_name => name,
property => pi_has_value,
value => (pv_int4, 3));

Ada Examples

S

Ada Examples

537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606

PRELIMINARY

Text_Mgt.Set (name, "checked");
dont_care_node := Data_Definition Mgt.Create_field(
record node => item node,
node_name => name,
property => pi_has_value,
value => (pv_boolean, true));

Text_Mgt.Set (name, "enabled");
dont_care_node := Data_Definition_Mgt.Create_field(
record_node => item node,
node_name => name,
property => pi_has_value,
value => (pv_boolean, false));

prop_value.simple pv := (pv_type => pv_string);

Text_Mgt.Set (prop_value.text_value, "Menu Item 3");

Text_Mgt.Set (name, “text");

dont_care_node := Data_ Definition_Mgt.Create_field(
record node => item node,

node_name => name,
property => pi_has_value,
value => prop value.simple pv);

~- Add menu item 3 to menu 2:
prop_value.simple pv := (pv_node reference, item_node);
Data_Definition Mgt.Add property value(

node_ref => item list_node,

property => pi_has_value,

value => prop_value);

-- Add menu 2 to the menu group:
prop_value.simple pv := (pv_node reference, menu_node);
Data_ Definition_Mgt.Add property value(

node_ref => menu_list_node,

property => pi_has_value,

value => prop value);

-- Complete and close the menu group:

prop_value.simple_pv := (pv_type => pv_string);

Text_Mgt.Set (prop_value.text_value, "/tdo/menu_group_tdo");

Data_Definition_ Mgt.Add property_value(
node_ref => group_node,
property => pi_kind,
value => prop value);

-- Close the definition (DDef):

Data_Definition_Mgt.Close(
DDef => ddf):

-~ Store the DDef:

Text_Mgt.Set (name, "///pathname/menu group_DDef™);
Directory_Mgt.Store(name, untyped ddf);

-- Request update of stored DDef:
Passive_Store_Mgt.Request_update(
obj => untyped_ddf):;

end Make_menu_group_DDef_ex;

X-A-19

X-A.2.5 Manage_application_environment_ex Procedure

X-A-20

1

PRELIMINARY

with CL_Defs,
Environment_ Mgt,
String List_Mgt,
System,
System Defs,
Text_IO,
Text Mgt;

procedure Manage Application_Environment Ex

-- Function:
- Example program showing use of environment
-- variables.

-- History:
- 06~-26-87, William Anton Rohm: Written.
- 12-02-87, WAR: Revised.

is
package Int_IO is new Text_IO.Integer_IO(integer);
-- Variables:

variable name: System Defs.text(
CL_Defs.max_name_sz);

variable_type: CL_Defs.var_type:

variable_mode: CL_Defs.var_mode;

variable_name_list: System Defs.string list(1000);

integer_value: integer;

ASCII_value: System Defs.text (1000);

answer: character;

use CL_Defs; =-- to import "=" for CL_Defs.var_mode

use System; -- to import "+" for System.ordinal
begin

-- Create a new local integer variable named
-- "new_integer":
Text_Mgt.Set (

dest => variable_name,

source => "new_integer");

Environment_Mgt.Set_integer(
var_name => variable_name,
value => 0,
mode => CL_Defs.read write,
global => false);

-- Display all local variable names:

Environment Mgt.Get_all_names(
group_name => System Defs.null text,
list => variable_name_list,
global => false);

Text_IO.Put_line("List of local variables:");
for i in 1 .. variable_name_list.count loop
String_List_Mgt.Get_element (
from => variable_name_list,
el pos => i,
element => variable_name);

Text_IO.Put_line(variable_name.value);

end loop;

Ada Examples

Ada Examples

15
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
11
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

PRELIMINARY

~- Read type and mode of given variable:

- If integer and read-write, add one to variable;
- otherwise, read and display ASCII
- representation of value:

Text_IO.Put ("Enter a variable name:" });
Text_IO.Get (variable_name.value);

variable_type := Environment_ Mgt.Get_var_type(
var_name => variable_name);

variable_mode := Environment_Mgt.Get_var_mode (
var_name => variable_name);

if variable_type = CL_Defs.integer_type then

integer_value := Environment_Mgt.Get_integer(
var_name => variable_name);

Text_IO.Put ("Original value of ");
Text_IO0.Put (variable_name.value);
Text_IO.Put (" integer variable is:");
Int_IO.Put{(integer_value);
Text_IO.Put_line(™ ");

if variable _mode = CL_Defs.read write then
integer_value := integer_value + 1;

Environment Mgt.Set_integer(
var_name => variable_name,
value => integer_value);

Text_IO.Put ("New value of ");
Text_IO.Put (variable name.value);
Text_TO.Put (" integer variable is:%);
Int_IO.Put (integer_value);
Text_IO.Put_line(™ ");

else .

Text_IO.Put ("Mode of ");

Text_IO.Put (variable_name.value);

Text_IO.Put_line(" integer variable is ‘read-only’.")

end if; -- if "read write"
else -- not "integer_type"
Environment_Mgt.Convert_and_get (
var_name => variable_name,
value => ASCII value);
Text_IO.Put ("Value of ");
Text_IO.Put (variable name.value);
Text_IO.Put (" variable is:");
Text_I0.Put_line(ASCII_value.value);
if variable_mode = CL_Defs.read_write then
Text_ IO.Put ("Change value?");

Text_IO.Get (answer);

if answer = 'y’ or
answer = 'Y’ then

Text_IO.Put ("Enter new value:");
Text_IO.Get (ASCII_value.value);

Environment_Mgt.Convert_and_set(
var_name => variable name,
value => ASCII_value,
var_type => variable_type);

end if; -- if answer = ‘y’

-
’

X-A-21

X-A-22

152
153
154
155
156
157
158
159
160
16l
162
163
164
165
166
167
168
169
170
171
172
173
174

PRELIMINARY

else
Text_IO.Put ("Mode of ");
Text_IO.Put (variable_name.value);
Text_IO.Put_line("™ variable is ‘read-only’."):;

end if; -- if mode = read write

end if; -- if "integer_type"

-- Remove new variable:
Text_Mgt.Set (
dest => variable_name,
source => "nevw_integer");

Environment_ Mgt .Remove (
var_name => variable_name,
quiet => true,
global => false);

end Manage_Application_Environment_ Ex;

Ada Examples

PRELIMINARY

X-A.2.6 string list_ex Procedure

1 with String List_Mgt,

2 System Defs;
3
4 procedure String list_ex
5 -
6 -- Function:
7 -- Create string list with following entries:
8 - 1. "ux_group"”
9 - 2. "world"
10 is
11 string list: System Defs.string list(255);
12 begin
13
14 -- 1) "ux_group”
15 String List_Mgt.Set (string_list,
16 System Defs.text’ (8, 8, ™ux_group")):;
17
18 -- 2) "world"
19 String List_Mgt.Append(string list,
20 System Defs.text’ (5, 5, "world")):
21

22 end String list_ex;

X-A.3 Directory Services

Ada Examples X-A-23

PRELIMINARY

X-A.3.1 Create_directory_cmd_ex Procedure

1 with Command_ Handler,

X-A-24

2 Device_Defs,
3 Directory_Mgt,
4 System Defs;
5
6 procedure Create_directory_cmd ex
7 -
8 -- Function:
9 - Creates a named subdirectory in the
10 - caller’s current directory.
11 -
12 -~ Command Definition:
13 - The command has the form:
14 —-— create.directory t:name=<string>
15 -
16 - Create the command definition by entering:
17 -] clex -> manage.program :tagged_ source=create.dir.sb
18 -—
1¢ -~*D* set.program create.directory
20 ~=*Dx
21 -=-*D* manage.commands
22 ~=%D%
23 --*D* create.invocation_command
24 -=kDp* define.argument name :type = string
25 -=*D* set.lexical_class symbolic_name
26 ~~*D¥ set .maximum_length 252
27 -=kD¥* set.mandatory
28 —-=*D¥* set.description :text = "
29 -=%D¥ -~ Name of directory to be created.
30 -——kD% w
31 —-—%D¥ end
32 —=*D¥* set.description :text ="
33 -—%*D* -- Creates a directory in the
34 —=*D* -- current directory.
35 —=*D* "
36 —=*D¥ end
37 —-=—*D¥ exit -- manage.commands
38 ~--*D* exit -- manage.program
39 - g
40 is
41
42 opened_command: Device_Defs.opened device;
43 -- Opened invocation command input device.
44
45 dir_name: System Defs.text (252);
46 -~ Name of the directory to be created.
47
48 dir AD: Directory Mgt.directory AD;
49 -- Newly created directory’s AD; returned
50 -- but not used by "create.directory®.
51 begin
52
53 -~ Open invocation command input device:
54 -
55 opened_command := Command_Handler.
56 Open_invocation command_processing;
57
58 -— Get "“:name"™ parameter:
59 -
60 Command_Handler.Get_string(
61 cmd_odo => opened_command,
62 arg_number => 1,
63 arg_value => dir_ name);
64
65 -- Close invocation command input device:
66 -

67 Command_Ha

69

70 -- Create

71 -

72 dir AD :=

73 name =
74

ndler.Close (opened command) ;

new named directory:

Directory Mgt.Create_directory(
> dir_name);

Ada Examples

P

PRELIMINARY

75 end Create_directory_cmd_ex;
76

Ada Examples ‘ X-A-25

PRELIMINARY

X-A.3.2 Create_name_space_cmd_ex Procedure

X-A-26

with CL_Defs,
Command_Handler,
Device_Defs,
Directory_ Mgt,
Environment_ Mgt,
Example_Messages, -- Example package.
Incident_Defs,
Message_Services,
Name_Space_Mgt,
Passive_Store_Mgt,
String List_Mgt,
System,
System Defs,
System_Exceptions,
Transaction Mgt;

procedure Create_name_space_cmd_ex
-- Function:
- Defines a command to create a name space,
—— along with the code that executes the command.
-~ Command Definition:
- The command has the form:

- create.name_space

- :name=<string>

- :directory_list=<string_list>
- [:force=<boolean>:=false]

- Pathnames in the directory list must name
- directories.

- If "force" is omitted or false then the "name"
-- pathname must not be in use. If "force" is

- true and the "name" pathname is in use, then
- the environment variable "user.confirm" is

- consulted. If "user.confirm" is true (or does
- not exist), then the user is queried before

- deleting the existing use of the pathname.

--*C* set.message_file \

—=*C* :file = /examples/msg/example_messages
—-——*C%

--*C* create.command \

~=*C* scmd_def = create.n_s.inv_cmd \
——*C* :cmd_name = create.name_space
-—kO%

~—*C¥* define.argument name \

—-—kCx itype = string

-—%Cx set.lexical class symbolic_name
~-*C* set.maximum_length 252

—-=*C¥ set .mandatory

-—*C* end

-——kC*

—=*C* define.argument directory_list \
—-——%C* :type = string_list

—==%*C* set.lexical_class symbolic_name
—=*C* set.maximum_length 508

——kC¥ end

—-———k Ok

—-=*C* define.argument force \

——*C* :type = boolean

——*C* set.value_default false

—=*C¥* end

-=*C* end

—-——%C%

-=*C* run “store.command_definitions \\
—=*C* sexec_unit = create.n_s \\

—=*C¥ :invocation_cmd = create.n_s.inv_cmd"
—-——%C*

--*C* run "store.default_message file \\
—=*C* create.n_s \\

~—*C* /examples/msg/example_messages

Ada Examples

Ada Examples

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
l46
147
148
149
150
151

PRELIMINARY

opened cmd: Device_Defs.opened_device;
-- Opened command input device.

name: System Defs.text (Incident_Defs.txt_length);
-- Pathname of new name space.

directory list: System Defs.string list(508);
-- String list containing pathnames of the
-- directories in the new name space.

force: boolean;
-- Whether the new name space’s pathname should
-- overwrite an existing entry.

i: natural; ’
-- Index into “"directory_list".

directory_path: System Defs.text (Incident_Defs.txt_length);

~-- Text containing each successive pathname from
-- "directory list".

valid: boolean := true;
-- True if "directory list"™ is valid. Assigned
-- false if it is invalid. :

name_space: Name_Space_Mgt.name_space AD;
-- The new name space.

name space_untyped: System.untyped_word;
FOR name_space_untyped USE AT name_space’address;
-- The new name space as an untyped word.

user_confirm name: constant System Defs.text (
12) := (12, 12, "user.confirm"):;
-- Text record of an environment variable’s name.

user_confirm var_exists: boolean;
~- Whether a user variable named
-=- "user.confirm"™ exists.

user_confirm var: boolean;
-- Value of "user.confirm" variable, if it exists
=~ ("user_confirm var_exists" is true).

overwrite: boolean;
-- Whether the created name space can overwrite an
-- existing entry with the same pathname.

begin

-- Get command arguments:

opened_cmd := Command_Handler.
Open_invocation_command_processing;

-- Get first argument (name of new name space):

Command_Handler.Get_string(opened_cmd, 1,
arg_value => name);

-- Get second argument (list of directories):

Command_Handler.Get_string list (opened_cmd, 2,
arg value => directory list);

-- Get third argument (force overwrite):

force := Command_Handler.Get_boolean{opened_cmd, 3);

Command_Handler.Close (opened_cmd) ;

X-A-27

X-A-28

PRELIMINARY

-- Check each pathname in the directory list:

i=1;
loop

String_List_Mgt.Get_element by _index(
from => directory_list,
list_index => i,
element => directory_path);

-- Exit after last string:

EXIT when i = 0;

-~ Check if pathname exists, and is a directory:
begin
if not Directory Mgt.Is_directory(
Directory_Mgt.Retrieve(directory_path)) then

valid := false;

Message_Services.Write_msg(
Example_Messages.not_directory_code,
Incident_Defs.message_parameter (

typ => Incident_Defs.txt,
len => directory_path.length)’ (

typ => Incident_Defs.txt,
len => directory_path.length,
txt_val => directory_ path));
end if;
exception

when Directory Mgt.no_access =>
valid := false;

Message Services.Write_msg(
Example Messages.no_access_code,
Incident_Defs.message_parameter (
- typ => Incident_Defs.txt,
len => directory path.length)’ (

typ => Incident_Defs.txt,
len => directory path.length,
txt_val => directory_path));
end;
end loop;

if not valid then
Message_Services.Write_msg(
Example Messages.
create_name_space_aborted_code);
else
name_space := Name_Space_Mgt.Create_name_space({
directory list):

-- Store new name space as a directory entry:

loop
begin

-~ Start a transaction to store new name space:

Transaction_Mgt.Start_transaction;
Directory Mgt.Store(name, name_space_untyped);

-- Exit if no exception raised:

EXIT;

exception

Ada Examples

N

PN

Ada Examples

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299

301
302
303
304
305

PRELIMINARY

when System Exceptions.
transaction_timestamp conflict =>

Transaction_Mgt.Abort_transaction;

when Directory Mgt.entry_exists =>
Transaction_Mgt.Abort_transaction;
if force then

begin

user_confirm var := Environment_Mgt.Get_boolean(

user_confirm name);
user_confirm var_exists := true;

exception
when CL Defs.non_existent |
CL Defs.invalid_type |
CL_Defs.no_value =>
user_confirm var_exists := false;
end;

if user_confirm var_exists and then
(not user_confirm var) then
-- No confirmation necessary:

overwrite := true;

else
-- Confirm overwrite:
overwrite :=
Message_ Services.Acknowledge_msg(
Example Messages.
overwrite_query_ code,
Incident_Defs.
message_parameter (
typ => Incident_Defs.txt,
len => name.max_length)’ (

typ =>
Incident_Defs.txt,
len =>

name.max_length,
txt_val => name));
end if;

else
-- "force" false:
overwrite := false;
end if;

if overwrite then
begin
Directory Mgt.Delete (name);

exception
when Directory Mgt.no_access =>
null;
end;

else
Message_Services.Write_msg(
Example_Messages.not_overwritten_code,
Incident_Defs.message_parameter |
typ => Incident_Defs.txt,
len => name.max_length)’ (
typ => Incident_Defs.txt,
len => name.max_length,
txt_val => name));

Message_Services.Write_msg(
Example_Messages.
create_name_space_aborted_code);

X-A-29

X-A-30

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359

PRELIMINARY

end if;
when Directory Mgt.no_access =>
Transaction_Mgt.Abort_transaction;

Message_Services.Write_msg(
Example_ Messages.no_access_code,
Incident_Defs.message parameter (
typ => Incident Defs.txt,
len => name.max_length)’ (
typ => Incident_Defs.txt,
len => name.max_length,
txt_val => name));

Message_Services.Write_msg(
Example Messages.
create_name_space_aborted_code);

when others =>
Transaction_Mgt.Abort_transaction;
RAISE;
end;
end loop;

-- Update passive version:
Passive_Store_Mgt.Request_update(
name_space_untyped) ;

-- Commit the "store new name space” transaction:

Transaction_Mgt.Commit_transaction;

-- Inform user of succesful creation of new name
-~ space:
Message_Services.Write_msg(
Example Messages.name_space_created_code,
Incident_Defs.message_parameter (
typ => Incident_Defs.txt,
len => name.length)’ (
typ => Incident_Defs.txt,
len => name.length,
txt_val => name));
end if; -- if all directories in path are
-- valid

end Create_name_space_cmd_ex;

Ada Examples

PRELIMINARY

X-A.3.3 List_current_directory_cmd ex Procedure

1 with Byte_Stream AM,

2 Command_Handler,

3 Device_Defs,

4 Directory_Mgt,

5 Process_Mgt,

6 Process_Mgt_Types,

7 System,

8 System_Defs,

9 Unchecked_Conversion;
10
11 procedure List_current_directory_cmd_ex
12 -
13 -- Function:
14 - Lists names of entries in user’s current
15 - directory.
16 -
17 - Each entry name is written to the user’s
18 - standard output, on a separate line.
19 -
20 -- Command Definition:
21 - The command has the form:
22 - list.current_directory [:pattern=<string>]
23 -
24 ~--*D* manage.commands
25 —-=*D* create.invocation_command
26 —=*D%
27 -=*D% define.argument pattern \
28 —-=*D* ttype = string
29 —=*D¥ set.lexical_class symbolic name

30 —-=*D¥* set.maximum_length 252

31 -=*D* set.value_default "*"

32 —=*D* end

33 -=*D* end

34 —=*D*
35 -

36 -

37 1is

38
39 -~ Generic function:

40 -

41 function Directory AD_from untyped word is

42 new Unchecked conversion(

43 source => System.untyped_word,

44 target => Directory Mgt.directory AD);
45

46

47 -- Variables:

48 -

49 odo: Device_Defs.opened_device :=

50 Command_Handler.
51 Open_invocation_command_processing;

52 -- Opened invocation command input device.
53

54 pattern: System Defs.text (252) := (252, 252, (others => ' '});
55 -- Optional ":pattern® used to select entries
56 -~ matching the pattern, such as "abc?" or
57 -~ "m*device”. Default is "!.*", meaning all
58 -- entries NOT beginning with a "." (period).
59

60 opened_dir: Device Defs.opened device;

61 -~ Opened device for reading stream of names
62 -- from user’s current directory.

63

64 standard output: Device Defs.opened device :=
65 Device Defs.opened_device(
66 Process_Mgt.Get_process_globals_entry(
67 Process_Mgt_Types.standard output));
68 -- User’s standard output.

69
70 name_buffer: array(l .. 250) of character;
71 -~ BEach entry name is read into this buffer
72 -- and then written from it.
73

74 length: System.ordinal;

Ada Examples X-A-31

X-A-32

75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

PRELIMINARY

-- Length in bytes (characters) of last
-- entry name read.

use System; -- for ™ ’size/8 ™ arithmetic

begin
-- Get ":pattern®, if any:

Command_Handler.Get_string(
cmd_odo => odo,
arg_number => 1,
arg_value => pattern);

-- Close invocation command input device:

Command_Handler.Close (odo);

-- Open directory for reading, filtered by
-=- ":pattern™:

opened _dir := Directory Mgt.Open_directory(
dir => Directory_AD_from untyped word(
Process_Mgt.Get_process_globals_entry(

Process_Mgt_Types.current_dir)),

pattern => pattern);

-- Get and write each entry name:
loop
length := Byte_Stream_ AM.Ops.Read(
opened_dev => opened_dir,
buffer VA => name_buffer’address,
length => name_buffer’size/8);
Byte Stream AM.Ops.Write(
opened_dev => standard_output,
buffer VA => name_buffer’address,
length => length);
end loop;
exception
when Device_Defs.end of_ file =>
Byte_Stream AM.Ops.Close (opened dir);
RETURN;

end List_current_directory_cmd_ex;

Ada Examiples

PRELIMINARY

X-A.3.4 Make_object_public_ex Procedure

Ada Examples

1

WooJdabhdsawhN

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

69
70
71
72
73
74

with Authority List_Mgt,

Directory_Mgt,
Identification Mgt,
Passive_Store_ Mgt,
System,

System Defs,
Transaction_Mgt,
User Mgt;

procedure Make_object_public ex(

obij: System.untyped word;
-— Object to be made public.
aut_list_path: System Defs.text)
-- Pathname under which to store the new
-- authority 1list.

-=- Function:

- Makes an object "public" by giving it an
- authority list that grants all type rights
- to the "world" ID.

-- Logic:

- 1. Get an AD to the world ID.

-- 2. Define a protection set that grants all
- type rights to the world ID.

- 3. Create an authority list with that

- protection set.

- 4. Enclose steps (5) and (6) in a transaction.
- 5. Store the authority list under the pathname

- given as the "aut_list_path" parameter.
- 6. Passivate the authority list, so that it
- will endure in passive store along with
- the object that it protects.

- 7. Assign the authority list as the object’s
- authority list.

-—- Exceptions:

- Authority List_Mgt.set_authority refused -
- The object’s master AD was stored with
- no authority list protecting the object,

- and an authority list cannot now be assigned.
is

-- Get the world ID AD

" world name: constant System Defs.text (9) :=

(9, 9, "/id/world™):

world_untyped: constant System.untyped word :=
Directory_Mgt.Retrieve (world_name);

world id: Identification_Mgt.ID AD;

FOR world id USE AT world untyped’address;

-- Define the protection set
entries: constant User_ Mgt.protection_set (1) :=
size => 1, length => 1,

(

entries => (1 => (rights => (true, true, true),

id => world_id))):

-~ Create the authority list
aut_list: constant
Authority List Mgt.authority list_AD :=
Authority List_Mgt.Create_authority(entries);
aut_untyped: System.untyped word;
FOR aut_untyped USE AT aut_list’address;

begin

Transaction Mgt.Start_transaction;
begin
Directory_Mgt.Store(aut_list_path, aut_untyped);
Passive_Store_Mgt.Request update (aut_untyped);
Transaction_Mgt.Commit_transaction;
exception
when others =>
Transaction_Mgt.Abort_transaction;
RAISE;

X-A-33

X-A-34

75
76
77
78

PRELIMINARY

end;
Authority List_Mgt.Set_object_authority(
obj, aut_list);
end Make_object_public ex;

Ada Examples

PRELIMINARY

X-A.3.5 show_current_directory_cmd_ex Procedure

Ada Examples

SN

wi

th Byte_Stream AM,
Device Defs,
Directory Mgt,
Process_Mgt,
Process_Mgt_Types,
System,
System Defs,
Text_Mgt;

procedure Show_current_directory_cmd ex

is

be

en

-- Function:
- Gets and displays the pathname of the
- current directory.

-- Command Definition:
- The command has the form:
- show.current_directory

--*C* create.command \

——*C* :cmd_def = show.cur_dir.inv_cmd \

——%C* :cmd_name = show.current_directory
--*C* end

———kC*

--*C* run "store.command definitions \\

——*C* texec_unit = show.cur dir \\

——*C¥ :invocation_cmd = show.cur_dir.inv_cmd"

standard_output: Device_ Defs.opened device :=
Device Defs.opened device(
Process_Mgt.Get_process_globals_entry(
Process_Mgt_Types.standard output));
-- User’s standard output.

current_dir: Directory Mgt.directory AD :=
Directory Mgt.directory_ AD({
Process_Mgt.Get_process_globals_entry(
Process_Mgt_Types.current_dir));
-=- Current directory’s AD.

current_dir_ untyped: System.untyped_word;
FOR current_dir untyped USE AT
current_dir’address;
-— Current directory’s AD as an untyped word.

dir name: System Defs.text (252);
-- Current directory’s name.

gin

~- Get current directory’s pathname:
Directory Mgt.Get_ name(
obj => current_dir_untyped,
name => dir_ name);

—-- Add a line-feed to pathname for displaying:
Text Mgt .Append (

dest => dir_name,

source => Standard.ASCII.LF);

-~ Display pathname:
Byte_Stream AM.Ops.Write(
opened_dev => standard_output,
buffer VA => dir name.value’address,
length => System.ordinal (
dir_name.length));

d Show_current_directory_cmd_ex;

X-A-35

- PRELIMINARY

X-A.4 1/0O Services

X-A-36 Ada Examples

PRELIMINARY

X-A.4.1 DBMS_Support_Ex Package Specification

1 ‘with Device Defs,

2 System,
3 System Defs;
4
5 package DBMS_Support_EX is
6 -
7 -- Function:
8 - Shows how to use the record processing and
9 - DBMS support operations in applications.
10 -
11 -- History:
12 - 08-15-87, Paul Schwabe: initial version.
13 - 12-01-87, Paul Schwabe: reorganized.
14 -
15 pragma external;
16
17 procedure Selection(
18 opened_file: Device_Defs.opened_device;
19 read_procedure: System.subprogram type):
20 -~ An opened device, opened for input on an
21 ~- employee file.
22 -
23 -- Function:
24 - Do a Record AM.Keyed Ops.Set_key range using
25 - the Dept index. Do a
26 - Record_Processing_Support.Set_oriented_read.
27 - Returns a set of records for the range of
28 - departments indicated.
29
30
31 procedure Projection(
32 opened_file: Device Defs.opened_device;
33 projection DDef name: System Defs.text);
34 -~ An opened device, opened for input on an
35 -- employee file.
36
37 -- Functien:
38 - Grabs only certain fields for each record
39 - that is read from the employee file. Set
40 - the filter up using the following call:
41 .
42
43 procedure Sort_records(
44 inventory_file: Device_Defs.opened device;
45 inventory DDef name: System Defs.text);
46 - An opened device, opened for input on an
47 - inventory file. Uses
48 -
49 -- Function:
50 -- Sort_Merge_Interface.Sort to sort records
51 - from an inventory file (writes to standard
52 - out) .
53
54
55 procedure Merge_and_sort_records(
56 inventory file: Device Defs.opened_device;
57 employee_file: Device_Defs.opened_device;
58 sort_DDef name: System Defs.text):;
59 -~ Two opened devices, opened for input on an
60 -- inventory file and employee file.
61 -
62 -~ Function:
63 == Uses Sort_Merge_Interface.Sort_merge to merge
64 - and sort records from two (the inventory and
65 - the employee) files (writes to standard out).
66
67
68
69 end DBMS_Support EX;
70

Ada Examples X-A-37

PRELIMINARY

X-A.4.2 DBMS_Support_Ex Package Body

1 with Employee Filing Ex,
2 Data_Definition Mgt,
3 Device_Defs,
4 Process_Globals_Support_Ex,
5 Record_AM,
6 Record Processing_Support,
7 Sort_Merge_Interface,
8 Trusted_Record Processing_Support,
9 System,
10 . System_Defs,
11 Unchecked_conversion;
12
13 use System;
14
15 package body DBMS_ Support_Ex is
16 --
17 -- Logic:
18 -~ Shows how to do record processing
19 -- support operations.
20 --
21
22
23 procedure Selection(
24 opened file: Device_Defs.opened_device;
25 read_procedure: System.subprogram_type)
26 -- An opened device, opened for input on an
27 -- employee file.
28 -~ Logic:
29 - Do a Record AM.Keyed Ops.Set_key_range using
30 - the Dept index. Do a
31 -- Record Processing_Support.Set_oriented_read.
32 - Returns a set of records for the range of
33 - departments indicated.
34 is
35 start_key_value: constant
36 Employee_Filing Ex.dept_key_buffer := (
37 dept => 100);
38 -- Lowest dept for ascending key field.
39
40 start_key_descr: constant
41 Record AM.key_value_descr := (
42 start_key_value’address,
43 start_key_value’size / 8);
44
45 stop_key_value: constant
46 Employee_Filing Ex.dept_key buffer := (
47 dept => 305);
48 -- Highest dept value
49 -- for ascending key field.
50
51 stop_key descr: constant
52 Record_AM.key_ value_descr := (
53 stop_key_value’address,
54 stop_key value’size / 8);
55
56 begin
57 Trusted_Record Processing_ Support.Associate_read_procedure (
58 opened_dev => opened_file,
59 user_info => System.null_address,
60 read_procedure => read_procedure);
61 :
62
63 Record AM.Keyed Ops.Set_key_range (
64 opened_dev => opened file,
65 index =>
66 Employee Filing Ex.dept_index_name,
67 select_range => (
68 start_comparison => Record AM.inclusive,
69 start_value => start_key_descr,
70 stop_comparison => Record AM.inclusive,
71 stop_value => stop_key_descr));
72)
13 Record_Processing_Support.Set_oriented_read(
74 opened_dev => opened file,

X-A-38 i Ada Examples

Ada Examples

75
76
77
78

80

81

82

83

84

85

86

87

88

89

20

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

PRELIMINARY

modifier => Record_AM.next,
output_device => Process_Globals_Support_ Ex.
Get_standard_output,
-- Normally defaulted.

alt_output => System.null_word,
no_record_lock => false,

lock => Record_AM.read lock,
unlock => Record_AM.no_unlock,
timeout => Record AM.wait_forever);

-- DO ANY NEEDED PROCESSING HERE.

exception
when Device_Defs.end_of file =>
null;

end Selection;

procedure Projection(
opened_file: Device_Defs.opened_device;
projection DDef name: System Defs.text)
-- An opened device, opened for input on an
-- employee file.
-- Logic:
- Grabs only certain fields for each record
- that is read from the employee file.

is
projection_DDef ref: Data_Definition Mgt.
node_reference;

buffer: string(l .. integer (Employee Filing Ex.max_rec_size));

-- Buffer is large enough to hold any employee
-- record.

current_record addr: constant
System.address := buffer’address;
current_record VA: constant
Employee_Filing Ex.employee_ record VA :=
Employee Filing Ex.
Employee_record VA_from VA(
current_record_addr);

bytes_read: System.ordinal;
-- Number of bytes in current record.

begin

-- Open projection data definition.

projection_DDef_ref :=
Record_AM.Ops.Get_DDef (
opened_dev => Record AM.Open_by name (

name => projection_DDef name,
input_output => Device_Defs.input,
allow => Device_Defs.readers,
block => true));

-- Filters out all fields except those specified
-- in the DDef.
Record Processing_Support.
Associate primary_ data_projection(
opened_dev => opened_file,
record ID output => false,
primary fields => projection_DDef ref);

loop

-- Only reads the fields specified in

-- the DDef.

bytes_read := Record_AM.Ops.Read(
opened_dev => opened_file,
modifier => Record_AM.next,

-~ Normally defaulted.

buffer VA => current_record_addr,
length => System.ordinal (

X-A-39

X-A-40

152
153
154
155
156
157
158
159
160
16l
162
163
le4
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

PRELIMINARY

Employee_Filing Ex.max_rec_size));
-- DO ANY NEEDED PROCESSING HERE.

end loop;
exception
when Device_Defs.end of_ file =>
null;

end Projection;

procedure Sort_records(
inventory_file: Device_Defs.opened_device;
inventory DDef name: System Defs.text)
-- An opened device, opened for input on an
-- inventory file.
-- Logic:
-- Uses Sort_Merge_Interface.Sort to sort
- records from an inventory file (writes to
-- standard out).

is
opened_inventory ddef: Device_Defs.opened_device;
inventory_ddef ref: Data_Definition Mgt.
node_reference;
begin

-- Open inventory definition.
opened_inventory DDef :=
Record AM.Open_by_name (

name => inventory_DDef name,
input_output => Device_Defs.input,
allow => Device Defs.readers,
block => true);

inventory DDef ref :=
Record_AM.Ops.Get_DDef (
opened_dev => opened_inventory_DDef);

Sort_Merge_Interface.Sort (
input_device => inventory file,
DDef => inventory_ DDef_ ref,
output_device => Process_Globals_Support_Ex.
Get_standard_output,
stable_sort => true,
tuning_opts => Sort_Merge_Interface.
no_tuning);
-- Close inventory file.
Record_AM.Ops.Close
opened_dev => opened_inventory DDef);

end Sort_records;

procedure Merge_and_sort_records(
inventory_file: Device_Defs.opened_device;
employee_file: Device Defs.opened_device;
sort_DDef name: System Defs.text)
-- Two opened devices, opened for input on an
-- inventory file and employee file. Uses
-- Logic:
-- Sort_Merge_Interface.Sort_merge to merge
- and sort records from two (the inventory
- and the employee) files (writes to
- standard out).
is
opened_sort_DDef: Device_Defs.opened device;
sort_DDef_ ref: Data_Definition Mgt.
node_reference;
sort_input_array: Sort_Merge Interface.
sort_merge_input_array(l .. 2) :=
(1 => (input_device => inventory_file,
presorted => false,

Ada Examples

Ada Examples

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267

PRELIMINARY

sorted_by index => false),

2 => (input_device => employee_file,

presorted => false,

sorted_by_index => false));

begin

-- Open sort data definition.
opened_sort DDef :=
Record_AM.Open_by_ name (
name => sort_DDef_name,
input_output => Device_Defs.input,

allow => Device_Defs.readers,

block " => true);

sort_DDef ref :=
Record_AM.Ops.Get_DDef(
opened_dev => opened_sort_DDef);

-- Perform the sort-merge.

Sort_Merge Interface.Sort_merge(
input_devices => sort_input_array,
DDef => sort_DDef_ref,

output_device => Process_Globals_Support_ EX.

Get_standard output,
stable_sort => true,

tuning_opts => Sort_Merge_Interface.

no_tuning);

-- Close inventory file.

Record AM.Ops.Close(
opened_dev => opened_sort_DDef);

end Merge_and_sort_records;

end DBMS_Support_ EX;

X-A-41

PRELIMINARY

X-A.4.3 Employee Filing Ex Package Specification

X-A-42

woOoJoaUndWwN K

o
wWNH o

o
[ZR'S

WWNHNNONONOMNONNDNDNDDE R
POWOJdAUBWNHFOWO®-N

w W
w N

w W
(S0

B s B D D D DB WW W W
XAV BWNEFEOW®E-JRN

[S, 05 -
O

ot n
CWRNIaABWN

o\ OV OV OV Y
s WwN

66

with Data_Definition_Mgt,

File_Defs,

System,

System_Defs,
Unchecked_conversion;

use System;

package Employe