
SYSTEM SERVICE"S GUID
VOLUME ~ OF

,,-,

TM

SYSTEM SERVICES GUIDE
VOLUME 2 OF2

"l~,~

Order Code: 6AN901D-1XAOO-OBA2

LIMITED DISTRIBUTION MANUAL
This manual Is for customers who receive preliminary ver­
sions of this product. It may contain material subject to
change.

BiiNTM i,
2111 NE 25th Ave.

Hillsboro, OR 97,124

© 1988, BIINTM

PRELIMINARY

REV. REVISION HISTORY DATE

-001 Preliminary Edition 7/88

BiiNTM MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE.

BliNN assumes no responsibility for any errors that may appear in this documenL Bmr makes no commitment to update nor to keep current the
infonnation contained in this documenL

No part of this document may be copied or reproduced in any fann or by any means without written consent of BliNN.

BliNN retains the right to make changes to these specifications at any time, without notice.

The following are trademarks of BliNN: BliN, BliNJOS, BliN/UX, BiiN Series 20, BiiN Series 40, BiiN Series 60, BliN Series SO.

Apple and MacTenninal are trademarks of Apple Computer, Inc. UNIX is a trademark of AT&T Bell Laboratories. Ton is a trademark of Camcar
Screw and Mfg. Ada is a certification mark of the Department of Defense, Ada Joint Program Office. DEC, VT100, and V AX are trademarks of
Digital Equipment Corporation. Smartmodem is a trademark of Hayes Corporation. mM is a trademark of International Business Machines, Inc.
MUL TIB US is a registered trademark of Intel Corporation. Macintosh is a trademark of McIntosh Laboratory, Inc. Microsoft is a registered
trademark of Microsoft CotpOration. Mirror is a registered trademl!!'k of SoftKlone Distributing Corporation. WYSE is a registered trademaik. of
Wyse Technology. WY-60 and WY-50 are trademarks ofWyse Technology.

Additional copies of this or any other BliNN manuals are available from:

ii

BliN
nl

Corporate Literature DepL
2111 NE 25th Ave.
Hillsboro, OR 97124

\

"

PRELIMINARY

Part VI
Program Services

This part of the BiiNTM/OS Guide discusses program execution, concurrent programming, and
scheduling.

The chapters in this part are:

Understanding Program Execution
Explains the static and dynamic structure of programs, including jobs,
processes, interprocess communication, and semaphores.

Building Concurrent Programs
Shows you how to build concurrent programs, programs with multiple
processes executing concurrently.

Scheduling Explains how the system schedules processors, physical memory, and I/O
devices.

Program Services contains the following services and packages:

concurrent programming service:
Event Admin
Event-Mgt
Job Admin
Job-Mgt
Job-Types
Pipe Mgt
Process Admin
Process-Mgt
Process-Mgt Types
Semaphore Mgt
Session Admin
Session-Mgt
Session=Types

scheduling service:
sse Admin
SSO=Types

timing service:
Clock Mgt
Protection Key Mgt
Time Zone Map -
Timed Requests Mgt
Timing Admin -
Timing-Conversions
Timing-String Conversions
Timing=UtilitIes

resource service:
Resource Mgt
Resource=Mgt_AM
Resource Types
Resource-Utilities

program building service:

Part VI Overview

Control Types
Debug Support
Domain_Mgt

Execution Support
Link By Call
Program-Mgt
RTS_Support

monitor service:
Monitor Defs
Monitor}1gt

PRELIMINARY

Part VI Overview

Contents

PRELIMINARY

UNDERSTANDING 1
PROGRAM EXECUTION

DeflIlition of a Program .. VI -1-2
Progrrun Structure .. VI-I-2

The Program Object ... VI-I-3
The Domain Object ... VI -1-4
The Static Data Object ... VI-I-5
The Instruction Object ... VI -1-6
The Stack Object ... VI -1-6
The Public Data Object .. VI -1-6
The Debug Object .. VI-I-7
The Handler Object ... VI -1-8

Invoking a Progrrun ... VI -1-8
Program Execution .. VI -1-9

Sessions, Jobs, and Processes ... VI -1-9
Process Globals ... VI-I-10

Interprocess Communication ... VI-I-12
Events ... VI-I-12
Pipes· .. VI-I-14
Pi)?es vs. Events ... VI-I-15

Process Control ... VI -1-15
Process States ... VI-I-15
Local Event Cluster .. VI-I-16

Semaphores .. VI -1-17
Use of Multiple Processes ... VI-I-19
Summary .. VI-I-21

Understanding Program Execution VI-l-l

PRELIMINARY

This chapter discusses what a program is and how it executes. It discusses the definition of a
program, program structure, how a program is invoked, and how a program executes, including
discussions of jobs, processes, the execution environment of processes, interprocess com­
munication, process control, and the use of semaphores for mutual exclusion.

VI-1.1 Definition of a Program
As explained in the Program_Mgt package, there are four program types: executable
programs, executable image modules, non-executable image modules, and views. As used in
this chapter, the tenn program refers to an executable program or executable image module.

An executable program is the end product of the compiler/linker translation process. The
compiler translates source code into object modules, and the linker then links the object
modules into an executable program. In other words, an executable program is a program in
the conventional sense of the word.

Like an executable program, an executable image module is the end product of the
compiler/linker process. But unlike an executable program, it is an independently linked,
protected, and potentially shareable module that provides the runtime environment of a
program (for example, the language runtime system or the operating system). An executable
image module contains data structures and subroutines that initialize the data structures.

Before execution, a program has a static structure; that is, it is a collection of static, passivated
objects that define the elements in a program : a program object, a global debug table, an
outside environment object, and one or more domain objects (which reference other objects).
Sections VI-I.2 through VI-I.2.S (pages VI-I-2 through VI-I-S) discuss the static structure of
programs.

During execution, a program has a dynamic structure; that is, it is a collection of dynamic,
active objects that define the course of execution: ajob, one or more processes, and one or
more stacks. Sections VI-I.4 through VI-1.7 (pages VI-I-9 through VI-I-17) discuss the
dynamic structure of programs.

VI ... 1.2 Program Structure

VI-1-2

This section discusses the static structure of programs.

A program is a network of objects rooted in a program object. A program object is created by
the linker and referenced by a program AD. After creating a program, the linker passivates the
objects and stores the program AD in a directory. A program consists of:

• A program object (Required)

• A global debug table (Required)

• An outside environment object (Required)

• One or more domain objects (required), each referencing:

- A static data object (Required)

- An instruction object (Required)

- A stack object (Created at run time, referenced by a subsystem ID)

Understanding Program Execution

PRELIMINARY

A public data object (Optional)

- A debug object (Optional)

- A handler object (Required only for BiiNTM Ada programs)

Figure VI -1-1 shows the static structure of a program. (The stack object is referenced via a
subsystem 10, indicated by dashed lines).

Program
Object Command Definitions

Message File

Public Data I~----t
Ob ject

Handler
Object

Debug
Object

Domain
Object

• • •

1--+-_ Static Data
Ob ject

1--+-_ Instruction
Object

r----' __ +I Stack I
L_Obj~~...J

Figure VI-I-I. Static Structure of a Program

Other Domains

Public Data
Objects

The following sections provide a brief introduction to these objects. For more detailed infor­
mation, see:

• The packages Program_Mgt, Domain_Mgt, Debug_Support, RTS_Support, and
Execution_Support.

• The BiiNTM Systems Compiler Interface Guide.

• The BiiNTM Application Debugger Guide.

• The BiiNTM Systems Linker Guide.

VI-1.2.1 The Program Object

The program object is created by the linker each time object modules are linked together. It
serves as the root object of the program and contains:

• The program name and version number.

• The main entry point of the program. This consists of the domain AD and procedure
number where execution is to begin; generally this procedure is a startup routine in the
language's runtime system.

Understanding Program Execution VI-I-3

PRELIMINARY

• An AD to the Global Debug Table (GDT). The GOT lists the compilation units that were
linked to fonn the program. For each compilation unit, there is a reference to the debug
object containing the debug infonnation for that unit.

• An AD to the Outside Environment Object (OEO J. The OEO references the command
definitions and messages associated with the program. These are used by the command
language executive (CLEX).

• A domain AD list. This is a list of the domains that make up the program.

Figure VI-1-2 shows the structure of a program object.

Program Name and
Program Version Number

Main Entry Point

AD to Global Debug Table

AD to Outside
Environment Object

Domain AD
List

• • •

Figure VI·l·2. Program Object

VI-1.2.2 The Domain Object

VI-l-4

Domain objects are created by the linker from object modules. Every program has one or more
domains. Each domain contains:

• An AD to a static data object. The static data object contains ADs to external domains and
public data objects so that code in this domain can call procedures and reference data in
other domains. The static data object usually contains an AD to the public data object of its
own domain.

• An AD to an instruction object. The instruction object contains the code for this domain.

• A subsystem ID. The ID is used to allocate and reference a stack object at runtime.

• An AD to a public data object. The public data object defmes the data in this domain that is
visible to other domains.

• An AD to a handler object. The handler object contains the locations of handlers that
should be invoked if a fault or exception occurs.

• An AD to a debug object. The debug object contains infonnation needed to debug the code
in this domain.

Understanding Program Execution

PRELIMINARY

• A procedure table. The procedure table lists the addresses and types of the procedures in
this domain that can be called from other domains.

Figure VI-1-3 shows the structure of a domain object.

Static Data AD

Instruction Object AD

Subsystem 10

Not Used

Handler Object AD

Debug Object AD

Public Data Object AD

Reserved

Reserved

Reserved

Reserved

Reserved

Procedure Table
• • •

o

4

8

12

16

20

24

28

32

36

40

44

48

Figure VI-1-3. Domain Object

VI-1.2.3 The Static Data Object

The static data object contains data that cannot be referenced outside the current domain. If a
program has only one domain, the static data object contains all variables having a global
lifetime. If a program has several domains, variables referenced from another domain (for
example, C foreign variables and Ada variables defined in packages with pragma
external) must be allocated in the public data object

The static data object also contains ADs to domains whose external procedures can be called
from this domain, as well as ADs to objects containing data accessible from this domain.

The static data object can also contain a heap area. Heap allocation routines in the language
run-time system (RTS) can resize the static data object during execution.

Figure VI-l-4 shows the structure of a static data object.

Understanding Program Execution VI-1-5

PRELIMINARY

AD to Domain X Code for Frame for
AD to Public Data X Function P Function P
AD to Domain Y
AD to Public Data Y

• • Code for Frame for
• Function Q Function Q

Variable A

• •
• •
• •

Variable B

Variable C

•
•
•

HEAP AREA

STA~C DATA OBJECT INSTRUCTION OBJECT STACK OBJECT .

Figure VI-1-4. Static Data, Instruction, and Stack Objects

VI-1.2.4 The Instruction Object

The instruction object contains the code for all subprograms defined in this domain. It can also
be used to store constant data (but not access descriptors).

Figure VI -1-4 shows the structure of an instruction object.

VI-1.2.5 The Stack Object

The stack object contains the frames used during subprogram call and return. Each frame
contains the parameters, local variables, and housekeeping infonnation related to a call.

All domains in the same subsystem and executing in the same process share a single stack
object. Domains in different non-null subsystems use different stack objects.

The OS allocates the stack object when program execution begins and resizes it dynamically
during execution. See Page VI-1-9 for further infonnation.

Figure VI-l-4 shows the structure of a stack object.

VI-1.2.6 The Public Data Object

VI-1-6

The public data object contains data that can be referenced from other domains (which have an
AD to the public data object in their static data objects.)

Understanding Program Execution

PRELIMINARY

Figure VI-1-5 shows the structure of a public data object.

VI-1.2.7 The Debug Object

Variable I

Variable J

Variable K

•
•
•

PUBLIC DATA OBJECT

Figure VI-I-S. Public Data Object

The debug object contains compiler-generated debug infonnation about the subprograms in the
domain's instruction object.

For each subprogram, the debug object has a debug unit that contains infonnation about the
blocks, variables, constants, types, and statements in the subprogram.

Figure VI -1-6 shows the structure of a debug object.

Understanding Program Execution VI-1-7

PRELIMINARY

Debug Information
for Program Unit P1

Debug Information
for Program Unit P2

•
•
•

DEBUG OBJECT
Figure VI-1-6. Debug Object

VI-1.2.8 The Handler Object

Communication between procedures typically occurs by executing explicit calVretum instruc­
tion sequences. However, another mechanism is required during fault handling and exception
propagation. A domain's handler object identifies the language-defined runtime system (RTS)
associated with each procedure in the domain. Each RTS has a trace fault handler, a nontrace
fault handler, and a number of exception handlers.

The OS handles all faults initially and handles some of them by itself. Upon encountering a
fault it cannot handle, the as needs to transfer control to the RTS fault handler corresponding
to the procedure in which the fault occurred. However, the as cannot identify the procedure's
language and therefore cannot directly call the fault handler. Instead, it calls an RTS invoker
routine which searches the handler object to locate the RTS's fawt handler. The RTS invoker
routine is defined by the linker.

When an RTS needs to propagate an exception to another subsystem, the RTS calls the OS.
As with a fault, the OS then calls the RTS invoker, which searches the handler object to locate
the RTS's exception handler. (If the exception needs to be propagated to another procedure in
the same subsystem, the RTS, not the as, searches the handler object to locate the exception
handler.)

See the BiiNTM Systems Compiler Interface Guide for more detailed information about the
handler object.

VI-1.3 Invoking a Program

VI-1-8

After creating a program, the linker passivates it. Some time later, at a user's request, the
BiiNTM Command Language Executive (CLEX) invokes the program in the following way:

Understanding Program Execution

PRELIMINARY

• A user requests execution of a program by typing the program's name on a terminal.

• CLEX calls Directory_Mgt. Retrieve to obtain the program AD.

• CLEX uses the program's outside environment object (OEO) to validate the command line
parameters.

• If the parameters are valid, CLEX sets up the job's environment variables and calls
Job_Mgt. Invoke_job to create the job and its initial process.

• A CLEX -supplied initial procedure-running in the new job's initial proces~alls
Program_Mgt .Run (or Program_Mgt . Debug) with the program AD. Run (or
Debug) then calls the program's main entry point. This activates the program, and causes
the job's initial process to start executing the program's initial procedure. (This is usually a
start-up routine in the language runtime system, from which control transfers to a procedure
defined in one of the program's domains.)

• The program executes. After execution, control returns to CLEX (regardless of whether the
program tenninates normally or abnonnally), and CLEX infonns the user of the outcome
(for example, printing any error messages).

VI-1.4 Program Execution
This section discusses the dynamic structure of programs.

A program is executed by a job. The job's initial process begins execution in one domain,
obtaining instructions from the instruction object and referencing local data and procedures
through the static data object.

At any time, the process may switch domains by making an interdomain call (a machine
instruction) to a procedure in another domain. When this occurs, the new domain's subsystem
ID is used to identify the new domain's stack object (If the new domain is in the same
subsystem as the current domain, the same stack is used). A frame is pushed on the target
stack and execution continues in the new domain. A return to the original domain is ac­
complished by executing a return instruction using the caller's frame.

During execution, the debug object and Global Debug Table are used by the debugger to debug
the program (if the debugger was invoked). Also, the handler object is used by the RTS
invoker routine to identify RTS fault and exception handlers, as described earlier. (See the
BiiNTM Application Debugger Guide and the BiiNTM Systems Compiler Interface Guide for more
detailed information.)

During execution, a process may spawn other processes which execute concurrently. The
following sections describe process behavior in greater detail.

VI-1.4.1 Sessions, Jobs, and Processes

A session is the collection of jobs executed during a user's interaction with the system. A
session is usually an interactive logon/logoff period, and it typically contains several jobs.

A job represents an executing program. Each job has its own address space, memory resource,
and processing resource. Scheduling, resource control, and resource reclamation are done on a
per-job basis. A job can contain multiple processes executing concurrently and sharing data
and resources.

Understanding Program Execution VI-1-9

PRELIMINARY

A process is one thread of execution within a job. Processes share the job's resources and
cooperate to perform the job's computational task. A job begins with an initial process, which
can spawn other processes. See Figure VI -1-7.

Job

Initial Process

Process Process Process

000

Figure VI-l-7. Job and Processes

VI-1.4.2 Process Globals

VI-I-IO

A process executes in an environment defined by its process globals, a list of ADs associated
with the process. The entries in a process's globals are named by the
Process_Mgt_Types.process_globals_entryenumerntiontype.

Most process globals entries can be modified and assigned arbitrnry ADs. Your application
controls the correctness of modified entries: that they are not null, have needed access rights,
and reference objects of the correct type. Often your application will not need to modify the
process globals entries at all; values inherited from the command interpreter or the parent
process will suffice.

Table VI-1-1 describes all the process globals entries. The "Inherited?" column indicates
whether an entry is inherited when a process is spawned (designated by PS), a job is created
(designated by JC), or both (designated by PSIJC).

The "Modifiable?" column indicates whether a process globals entry can be modified. An
entry can be modified when a process or job is created or by calling
Process_Mgt. Setyrocess_globals_entry. In the "Modifiable?" column:

Understanding Program Execution

PRELIMINARY

"Admin-only" Indicates that an entry can only be modified using the Process Admin
or Job Admin packages. -

"Process-only" Indicates that an entry can only be modified using Process Mgt or
Process_Admin and cannot be modified using Job_Mgt or
Job Admin.

"Proces s _Admin-only"

"Yes"

"No"

Indicates that an entry can only be modified using the Process_Admin
package.

Indicates that an entry can be modified using any of the four packages
(Process_Mgt, Process_Admin, Job_Mgt or Job_Admin).

Indicates that an entry can NOT be modified using any of the four
packages (Process Mgt, Process Admin, Job Mgt or
Job_Admin)~ - - -

Table VI-I-I. Process Globals Entries

Entry Description Inherited? Modifiable?

horne dir Process's home directory PSflC Admin-only

current_dir Process's current directory PSflC Yes

authority_list Default authority list for objects PSflC Yes
with master ADs stored by ibis
process

id list IDs for whichcl)rocess is granted PSflC Admin-only
access. First in list is owner
ID and is default owner for ob-
jects with master ADs stored by
this process. Second ID in list IS

group ID for BUNni lUX
processes.

cmd_name_space Command name space used for PSflC Yes
retriev~ command programs
specifi with relative patbnames

standard_input Standard input opened device PSflC Yes

standard_output Standard output opened device PSflC Yes

standard_message Standard opened device for writ- PSflC Yes
ing infonnation, warning, and er-
ror messages

user_dialog Controlling tenninal. Used for PSflC Yes
operations on /dev /tty

ux_environ Used for BUNni lUX processes; No Process _ Admin-only
null in other processes

lang_environ Used by language run-time sys- PS only Process _ Admin-on1y
tern

site environ Can be used by ~stem ad- No Process _ Admin-only
ministrator for site-specific pur-
poses

transaction_stack Stack of active transactions. If No Process _ Admln-only
the stack is not empty, the top
entry is the default transaction.

creator Process that created this process, No No
with control riGhts. Null if this
process is a jo 's initial process.

process AD to this process, with control No No
rights.

job Job that contains this process, Inherited when a No
with list rights and control rights. ~ocessisspawned

t not when a new
job is invoked

Understanding Program Execution VI-I-U

PRELIMINARY

Table VI·I·I: Process Globals Entries (cont.)

Entry Description Inherited? Modifiable?

session Session that contains this Inherited when a No. but can be
~ss. with list rights and con- ~ss is rvwned implicitly modified if
trol rights. and nonn ~ when a jOb is invoked using

a job is invo edt Job Admin and
bUt not if a job spe~g a different
is invoked using sessIon.
Job Admin ana
~c1fyinga

ferent session.

name Optional AD to text record con- No Process-only
taming readable name for this
process.

eLI environ For use b~and Line Inter- PSonly Process-only
preter (C • for example).

program For use by the OS. PSonly Process-only

sms For use by the Software Manage- No Process-only
ment System.

VI-1.5 Interprocess Communication
This section discusses events and pipes, two basic methods of interprocess communication.

VI-1.S.1 Events

VI-1-12

Events are a mechanism for interprocess communication with these characteristics:

• Events can be used as software interrupts, invoking event handler procedures and then
continuing the interrupted processes.

• Events can be used to send interprocess messages. Processes can wait for events to be
received. If a process is not waiting, events can be queued until the process elects to
receive the events.

• Events can carry infonnation between processes, either two words of immediate infor­
mation or a pointer to a larger data structure.

• Events signalled to a job are signalled to every process in the job.

• Event clusters can be created to define additional event values or to define different process
groupings:

An event cluster is specified by a process AD, job AD, or explicit cluster AD.

Each process has a predefined local event cluster, signalling an event using a process
AD signals the local event cluster of that process.

A job has no cluster; signalling an event using a job AD signals the event to the local
event cluster of every process in the job.

An explicit cluster is a global event cluster. Processes can associate and disassociate
with global event clusters. Signalling an event using a global event cluster (AD) signals
every process currently associated with the cluster.

The local event cluster is used for process control. See Page VI -1-16.

• Events can be signalled to remote processes or jobs.

Events are grouped in event clusters, each with 32 event values. To signal an event, you call
Event_Mgt. Signal with an action_record that specifies:

Understanding Program Execution

PRELIMINARY

event An event value (1 to 32).

message A two-word virtual address. Can be used to send immediate data or a
virtual address to the data.

destination One of:

1. Process with control rights. Event is signaled to the process's local
event cluster.

2. Job with control rights. Event is signalled to the local event clusters of
all processes in the job.

3. Global event cluster with signal rights. Event is signalled to all
processes associated with the cluster.

The action record specified to Even t _Mgt. Signal is passed to any event handler or
returned from any Event_Mgt. Wait_ call that receives the event.

Each process controls how it will handle events with a particular event value by assigning the
event status record for that value:

handler

state

Handler to establish for event. If System. null subprogram, default
handler (if any) is reestablished. Otherwise, handler must be in a domain
with a nonnull subsystem ID.

New event state. One of:

enabled

disabled

If the event has a handler, the handler is called for each
event received. Otherwise, events are queued and can
be dequeued using the Event _Mgt. Wai t _ calls.

Received events are discarded. If an event value's
state is changed to disabled, any previously queued
events for that value are discarded, emptying the
queue.

handler disabled
- If the event has a handler, the handler is disabled.

Received events are queued and can be dequeued using
the Event Mgt. Wait calls. If the event value's
state is thenchanged to enabled and the event has a
handler, then the handler is called for each queued
event, emptying the queue.

interrupt system call
- Flag-indicating whether the handler can interrupt a blocked system call if

the process is in the allow system call interrupt mode. (See
the Typemgr_Support package and -
process special conditions
. allow system call interrupt in the Process Mgt Types
package for further Tnfonnatlon.) - -

Figure VI-1-8 shows how received events are processed.

Understanding Program Execution VI-1-13

PRELIMINARY

Receive an Event

Disabled Handler _Disabled

No

(Discard Event

Figure VI -1-8. Events can be Handled, Queued, or Discarded.

VI-1.S.2 Pipes

VI-1-14

A pipe is an object that supports one-way I/O transfers between processes.

Figure VI-l-9 shows a pipe used for intetprocess communication. One process has the pipe
open for output and writes data to the pipe. A second process has the pipe open for input and
reads the data written by the first process. The pipe contains a fixed-size buffer used to hold
data written by the first process but not yet read by the second process.

Writing
Process

Opened
Device

(For Output)

Pipe

Opened
Device

(For Input)

Figure VI-I-9. Pipe I/O

Reading
Process

If a process writes to a pipe and there is not enough space in the buffer, then it can block,
waiting for space to be freed by the reading process. If a process reads from a pipe but there is
no data in the buffer, then it can block, waiting for data to be written by the writing process.

Understanding Program Execution

PRELIMINARY

Pipes are one type of OS device. Pipes are implemented entirely in software; there are no
underlying physical devices, such as tenninals or disk drives, that correspond to pipes. Be­
cause pipes are software devices, they can be freely created by executing programs, limited
only by the amount of virtual memory available to the process.

Pipes are useful because they eliminate the need for intennediate files by allowing the output
of one program to be connected to the input of another program. This makes it easier to
construct complex programs from smaller existing programs. Both the Command Language
and the BiiNTM lUX "shell" define an operator for piping, which takes two program invocations
and connects them via a pipe. This chapter covers the procedural interface to pipes.

Pipes support the Byte Stream Access Method and the Record Access Method. These I/O
access methods provide calls to open pipes for I/O, perfonn I/O transfers, and close opened
pipes. The Pipe_Mgt package provides calls to create pipes, check whether pipes are open
for input or output, and check whether an arbitrary object is a pipe. The Pipe_Mgt package
description also describes the pipe implementation of the I/O access methods.

Once created, a pipe exists until no jobs reference it or until it is deallocated by calling
Pipe_Mgt.Destroy.

VI-1.S.3 Pipes vs. Events

Both pipes and events provide distributed interprocess or interjob communication. Some com­
parisons will help you decide which mechanism to use for your application:

• In an application that uses pipes, a subprogram can be given an opened device and use the
same code to read or write it whether the opened device is connected to a pipe, a file, or an
interactive user.

• An application can send ADs and virtual addresses using events but not using pipes.

• If a message larger than two words is sent with an event, then additional message buffer
space must be allocated and managed. Pipes can handle transfers of any size, even trans­
fers larger than the pipe's buffer.

• A pipe keeps the writing process from writing too much unread data, blocking the process
(or optionally raising an exception) when the pipe buffer is full. A process signalling an
event never blocks and queues of pending events can grow without limit.

• Handlers can be established for both events and for pipe input (using the
Enable_input_notification I/O access method call).

VI-1.6 Process Control
This section discusses the creation and control of processes.

VI-1.6.1 Process States

A program creates a new process within its job by calling
Process_Mgt.Spawn~rocess.

Processes are controlled using local events, as described on Page VI-1-16. By sending an
event to a process, you can:

Understanding Program Execution VI-I-I5

PRELIMINARY

• Kill it immediately

• Tenninate it "gracefully", giving the process a chance to handle its own tennination

• Suspend its execution until a matching re sume event is received

• Resume its execution if it is suspended.

After a process has tenninated, you can deallocate all storage used by the process by calling
Process_Mgt.Deallocate.

Figure VI-t-tO shows major process states and the transitions between them.

SUSPENDED

Spawn_process
call Deallocate

call

Figure VI-t-tO. Major Process States

VI-1.6.2 Local Event Cluster

VI-1-16

To kill, tenninate, interrupt, suspend, or resume a process or job, signal the appropriate local
event. Table VI-1-2 describes all local event values.

Table VI-t-2. Local Event Values

Value Desa-Iptlon Modifiable? Awaltable? Default

user_l Available for user. Yes Yes Enabled. No default
user_2 Not used by OS. handler.
user_3
user_4

kill Kills process im- No No Enabled. Default
mediately. even if handler kills process.
handling another
evenL

debug Requests debugging. Event_admin- only No. unless enabled Disabled.
CaD interru~ any using Event_Admin
other event ut kill.

tennination Rc:quc:sts process ter- Yes Yes if handler dis- Enabled. Default
mmaUon. abled. handler kills process.

interrupt Requests abort of cur- Yes Yes if handler dis- Enabled. Default
rent operation. abled. handler kills process.

suspend Requests suspension Yes Yes if handler dis- Enabled. Default
of process. abled. handler increments

suspend/resume
counL IT count is now
one. suspends
process.

resume Resumes process. No No Enabled. Default
handler decrements
suspend/resume
counL IT count is now
zero. resumes process.

Understanding Program Execution

PRELIMINARY

Table VI·l·2: Local Event Values (cont.)

Value Description Modifiable? Awaltable? Default

hangup A dialup line con- Yes Yes if handler dis- Enabled. Default
nected to one of the abled. handler kills process.
process' s opened
aevices has been hung
up.

io_complete Available to indicate Yes Yes Enabled. No default
completion of an handler.
async~ronous JJO
operallon.

10caCxm Available to si~al Yes Yes Enabled. No default
resolution of a oca1 handler.
transaction.

gcol Signalled each time a Yes No Enabled. Default
loCal GCOL run handler shrinks stacks
begins in the
process' s job.

if unused portions ex-
ist.

evenc15to Reserved by OS. No No Disabled.
event_32

VI-1.7 Semaphores
Processes can share data. But many operations on shared data will only execute correctly if
executed by one process at a time. Other processes can be excluded during such an operation
by associating a semaphore with the shared data structure.

A semaphore is a system object that contains a count and, if the count is zero, a pointer to zero
or more processes blocked at the semaphore.

The basic operations on semaphores are P and v. If a semaphore's count is greater than zero,
P indivisibly decrements it. Otherwise, P blocks the calling process in the semaphore's
prioritized process queue. If processes are blocked at a semaphore, V unblocks and dispatches
the highest-priority process. OthelWise, V indivisibly increments the semaphore's count.

A third operation, Conditional_P, indivisibly decrements a semaphore's count if the count
is greater than zero, returning true. If the semaphore's count is equal to zero,
Conditional_P does nothing and returns false. A process uses Conditional_P to try
to acquire a lock, without blocking if the lock is not available.

A semaphore can be used to lock a data structure by interpreting a 1 count to mean that the
data structure is available and a 0 count to mean that the data structure is in use. Before
accessing the data structure, a process calls P. If the data structure is available, the process
continues and the semaphore's count becomes zero, indicating that the data structure is in use.
If the data structure is being used by another process, the process calling P blocks in the
semaphore's queue. After accessing the data structure, a process calls V. If another process is
waiting, V de queues the highest priority waiting process, leaving the count at zero, indicating
that the data structure is still in use by the just dequeued process. If no processes are waiting,
V increments the semaphore's count to one, indicating that the data structure is available.

A semaphore used to lock a data structure is called a binary semaphore. Figure VI-t-tt shows
binary semaphores.

Understanding Program Execution VI-I-I7

VI-I-I8

Binary Semaphore
Indicating Available

Data Structure

Empty Queue

PRELIMINARY

Binary Semaphore
Indicating Busy
Data Structure

o
Zero or more

blocked processes
�--------,

I I
Queue ---- ----~" .,

I j---" "---r---.1 /
I I

I I ,, _______ .1

•
•

Figure VI-I-II. Binary Semaphores

A semaphore's count can also be used to count units of some resource. For example, a pack­
age that manages a buffer pool can use a semaphore's count to indicate the number of free
buffers in the pool. P decrements the count and is called when a buffer is allocated; V incre­
ments the count and is called when a buffer is released. The semaphore that counts buffers can
also be used to block processes that need a buffer when no buffer is available, and then to
unblock a process when a buffer is released. In an implementation of the buffer pool package,
a second semaphore is needed as a lock on the buffer pool data structure. A semaphore used to
count units of some resource is called a counting semaphore.

Semaphores are supported directly by the CPU. Semaphore objects are embedded directly in
their object descriptors and require no additional active memory. The P, V, and
Conditional_P operations are implemented as single machine instructions and execute
very quickly.

Semaphores are not distributed. A process can only use semaphores within its own job or
within global objects on its node.

Semaphores used as locks should be held for as short a time as possible i so that other processes
are blocked less often and for a shorter time. You can use the Typemgr_Support package
to defer event handling while the process is holding a lock (only for trusted type managers).

A simple but serious bug occurs if a process uses a semaphore as a lock but never releases it
for use by other processes. This could occur, for example, if the process executes a ret urn,
goto, exit, or raise statement without first calling V, or if an exception is propagated to
the procedure in which the process is executing (preventing the process from calling V).

This bug causes all subsequent processes that call P on the lock to block indefinitely, halting
all or part of an application. The section "Locking Shared Data Structures" in Chapter VI-2
shows how to write code that ensures that an acquired lock is always released.

Killing or tenninating a process that uses semaphores and shared data structures can leave data
structures inconsistent and leave binary semaphores with zero counts, preventing other
processes from using the data structures. Because semaphores and shared data structures are
nonnally local to a job, this problem can be avoided by killing/tenninating an entire job and
not just a process within a job.

Understanding Program Execution

PRELIMINARY

If an application must acquire multiple locks before executing certain operations, then the
locks should always be acquired in the same order. Consider two processes executing an ap­
plication. Process A acquires semaphore C first and is blocked waiting for semaphore
D. Process B acquires semaphore D first and is blocked waiting for semaphore C. Neither
process can execute; each waits for resources held by the other. This is a deadlock or "deadly
embrace" bug that can halt all or part of an application. The bug is avoided if the semaphores
are always acquired in the same order, such as <C, D>.

VI-1.8 Use of Multiple Processes
This section describes three general ways to use multiple processes:

• Processes that do different tasks on data that flows from one process to the next.

• Processes that do identical tasks on different parts of a large data structure.

• Processes that have a client/server relationship in which the client sends a request to the
server which sends a reply when the request has been processed.

Some operations on a stream of data can be broken into different sub-operations that can be
done by different processes. The entire concurrent program resembles an assembly line where
the units of work (or packets of data) flow from one worker to the next, with each doing a
special part of the entire operation

Figure VI-1-12 shows a compiler divided into separate processes to handle parsing and code
generation Data flows through a pipe between the two processes, which can access the pipe
using standard I/O access methods.

Code
Parsing Generotion
Process Process

l .. I /=fJ Pipe
)hI 7

_IMachine J I Source) r File t I Code File

Figure VI-1-12. Processes Connected by a Pipe Speed Up a Compiler.

Some applications that can use a piped design are:

• Compilers

• Text formatters

• Format converters.

Some computations involve repeatedly doing simple transformations to large arrays of data.
Figure VI-1-13 shows how such a computation can be speeded up by dividing it among mul­
tiple processes that each perform the identical calculation on a portion of the array.

Understanding Program Execution VI-1-19

VI-1-20

PRELIMINARY

Process 1 Process 2 Process 3

000
-------~------- -------~------- -------~-------(-y- -y- ")

Array A: I~ ______ ~ ____ ~ __ ~ __ ~~~ __ ~ __________ ~ ______ ~ __ ___

Array B: 1 ____ """'-__ _ """'-""""-______ _____ _-.. __ __

Compute A (1 .. 300_000 """' A (., 300_000) * B (1 .. 300_000);

Figure VI-I-13. Multiple Processes Speed Up a Large Array Calculation.

Some applications that can use such a design are:

• Image processing

• Advanced computer graphics

• Weather models

• Models of air flow, fluid flow, heat flow, and other engineering properties

• Linear programming

• Monte Carlo simulations

• Programs that examine many possible solutions, such as a chess-playing program or
programs that optimize VLSI chip designs.

Breaking an application into client and server processes can be useful when the application
both requires interactive or realtime response and requires lengthy computations. Tasks that
require lengthy processing are relegated to separate server processes. The interactive applica­
tion sends requests to such server processes and can continue handling user input while the
request is being processed. The server process sends a reply to its client when the request has
been processed. Figure VI -1-14 shows such a design, used for a word processor with a concur­
rent spelling checker that checks each word entered by the user.

User
Terminal

Word Spelling

Process Event Process O
Processor Checker

;:L~~~", _II{_I_/O--+> 0::::::0
Figure VI-I-14. A Se~arate Spelling Checker Process Preserves Word

Processor Responsiveness.

Understanding Program Execution

PRELIMINARY

Server processes can be useful for applications such as:

• Concurrent spelling checking, grammar checking, or style checking.

• Incremental compilation of entered source code.

• Background generation of reports. For example, a process controlling a welding robot may
spawn a server process that runs each hour to send operation statistics to a central com­
puter.

• Concurrent language translation: As text is entered in one window in one language, it is
translated and displayed in another window in another language. The human translator can
edit either window to correct errors in text input or the computer's draft translation.

VI-1.9 Summary
• The tenn program refers to an executable program or executable image module.

• A program is a network of objects rooted in a program object created by the linker. It
consists of a program object, a global debug table, an outside environment object, and one
or more domain objects. Each domain object references a static data object, an instruction
object, a stack object (referenced by a subsystem 10), a public data object, a handler
object, and a debug object.

• A program is invoked by CLEX upon user request.

• A session is the collection of jobs executed during a user's interaction with the system.

• A program executes as a job. Each job has its own address space, memory resource, and
processing resource. Jobs are grouped into sessions.

• A process is one thread of execution within a job. A job can contain multiple processes
running concurrently and sharing data and resources.

• Each process has an execution environment defined by its process globals.

• Events provide flexible interprocess communication.

• Events are used to control processes.

• Pipes support one-way I/O transfers between processes or jobs.

• Semaphores are used to synchronize access to shared data.

• Concurrent processes can improve perfonnance or responsiveness for a variety of applica­
tions.

Understanding Program Execution VI-1-21

PRELIMINARY

VI-1-22 Understanding Program Execution

PRELIMINARY

BUILDING CONCURRENT PROGRAMS 2
Contents

Getting a Process Globals Entry ... VI-2-4
Setting a Process Globals Entry .. VI-2-4
Creating a Process .. VI-2-5
Getting Process Infonnation .. VI-2-7
Suspending and Resuming a Process .. VI -2-7
Tenninating a Process ... VI-2-8
Signaling an Event .. VI-2-9
Establishing an Event Handler .. VI-2-I0
Waiting for Events ... VI-2-ll
Connecting Processes with a Pipe ... VI-2-12
Locking Shared Data Structures .. VI-2-13

Building Concurrent Programs VI-2-1

VI-2-2

PRELIMINARY

A concurrent program is one which has multiple processes executing simultaneously within a
single job. Concurrent programs are suitable for a wide range of applications and can improve
program performance dramatically.

A process is one thread of execution within a job. Processes share the job·s resources and
cooperate to perform the job·s computational task. A job begins with an initial process. which
can spawn other processes. See figure VI-2-1.

Job

Initial Process

Process Process Process

000

Figure VI-2-1. Job and Processes

This chapter shows you some specific techniques for building concurrent programs. You
should read chapter VI -1 before this one to understand the concepts underlying programs.
processes, and interprocess communication (events, pipes. and semaphores).

Building Concurrent Programs

PRELIMINARY

Packages Used:

Event_Mgt Manages event clusters. Event clusters provide distributed communica­
tions and software interrupts for processes.

Manages pipes. A pipe is a one-way interprocess or inteIjob I/O channel.
Pipes support byte stream I/O and record I/O.

Process_Mgt Provides public operations on processes.

Process Mgt Types
- - Declares types and type rights for processes.

Semaphore Mgt
- Manages semaphores. Semaphores can be used to synchronize concurrent

access to shared data structures or resources.

This chapter shows you how to:

• Get a process globals entry

• Set a process globals entry

• Create a process

• Get process infonnation

• Suspend and resume a process

• Tenninate a process

• Signal an event

• Establish an event handler

• Wait for events

• Connect processes with a pipe

• Lock shared data structures.

Excerpts from the following examples in Appendix X-A are used:

Compiler _Ex Shows how a compiler can be implemented by dividing parsing and code
generation between two processes connected by a pipe.

Process Globals Support Ex
- Provides calls to get and set commonly used process globals entries for the

calling process.
Symbol Table Ex

- - Shows how a compiler's symbol table manager can synchronize concurrent
access using semaphores.

Word Processor Ex
- Shows how a word processor with a concurrent spelling checker can be

implemented using processes and events.

Appendix X-A contains complete listings for these examples.

Building Concurrent Programs VI-2-3

PRELIMINARY

VI-2.1 Getting a Process Globals Entry

Calls Used:

Process_Mgt.Get-process_globals_entry
Gets a process globals entry.

To get a process globals entry, call Get-process_globals_entry with the desired
entry's name. Entry names are defined by the
Process_Mgt_Types .process_globals_entry enumeration type.

The following code is excerpted from the Process_Globals_Support_Ex package
body:

45 stdin: Device Defs.opened device;
46 stdin untyped: System~untyped word;
47 FOR-stdin untyped USE AT stdIn'address;
48 begin -
49 stdin untyped := Process Mgt.
50 Get-process_globals_entry(
51 Process_Mgt_Types.standard_input);

62 RETURN stdin;

Get-process_globals_entry always returns a value of type
System. untyped_word.

An optional second parameter to Get-process_globals_entry allows a caller to
retrieve an entry from another process's globals, if the caller has control rights to the other
process.

VI-2.2 Setting a Process Globals Entry

VI-24

Calls Used:

Process_Mgt.Set-process_globals_entry
Assigns a value to a process globals entry.

To assign a process globals entry, call Setyrocess_globals_ entry with the desired
entry's name and its new value. Entry names are defined by the
Process_Mgt_Types .process_globals_entry enumeration type.

The following code is excerpted from the Process_Globals_Support_Ex package
body:

Building Concurrent Programs

PRELIMINARY

69 opened_dey: Device_Defs.opened_device}

79 stdin untyped: System. untyped word;
80 FOR-stdin untyped USE AT opened dev'address;
81 begin - -
82 if not Byte Stream AM.Ops.ls open(opened dey} then
83 RAISE DevIce_Defs.device_not_open; -
84
85 elsif not Access Mgt.Permits(
86 AD => stdin untyped,
87 rights => Device Defs.read rights} then
88 RAISE system_ExceptIons.insufficient_type_rights;
89
90 else Process Mgt.Set process globals entry(
91 slot =>- Process Mgt Types.standard input,
92 value => stdin_untyped} ; -
93 end if;

A value assigned to a process globals entry must have type System. untyped_word.

VI-2.3 Creating a Process

Calls Used:

Process_Mgt.Spawn-process
Creates a new process in the caller's job.

Creating a new process has two parts:

1. The program must define the initial procedure of the process in a specific way.

2. The program then creates one or more processes that execute that initial procedure.

This section's examples are excerpted from the Compiler_Ex package body. The first ex­
cerpt shows how a process's initial procedure is defined:

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

63
64

procedure Parse(

is

param buffer: System.address;
-- Address of connection record.

param length: System. ordinal)
-- Not used in this procedure, but required for
-- process's initial procedure.

Logic:
Do Pascal parsing using the I/O connections
specified in the "conn_rec" parameter record.

conn rec: connection_record; Record containing
parameters.

FOR conn rec USE AT param_buffer;
begin -

end Parse;
pragma subprogram~value(Process_Mgt.lnitial_proc, Parse};

The initial procedure must have the two parameters shown, par am _ buf fer and
para~ length, whether the parameters are used or not. The subprogr am_val ue
pragma infonns the compiler that Par s e is an instance of the subprogram type
Process_Mgt. Initialyroc, the type used for a process's initial procedure.

Building Concurrent Programs VI-2-5

VI-2=6

PRELIMINARY

Parameters can be passed between parent and child processes by defining a record type,
connection_record in this example, that contains the parameters as its fields. The parent
process creates a connection record, fills in its fields, and passes its virtual address to the child
process. The child process uses the FOR ... USE AT ... declaration to specify that its view of
the connection record is at the virtual address specified by the parent.

, WARNING I
If a parameter buffer specified to a child process is allocated as a local variable (that is,
on the stack) of the parent process, then the parent process should not tenninate, or return
from the call that the buffer is local to, until after the child process tenninates (otherwise
the buffer would be inaccessible to the child).

There are four different ways to pass infonnation to a child process:

1. Use a parameter buffer local to the parent process. This technique is fine if the parent
process does not tenninate or return from the call that allocates the buffer until after the
child process tenninates.

2. Use a parameter buffer allocated as a separate object from the job's heap. The parent
process can terminate and the buffer will continue to exist. Such a buffer can be allocated
by defining an access type to whatever type is used for the buffer, and then using the Ada
new operator to create the buffer.

3. Use a parameter buffer allocated in a package's static data area. This technique is un­
desirable because the buffer cannot be used by concurrent parent processes that each need
to communicate with their individual children. If such a parameter buffer is used by con­
current parent processes, serious and hard -to-find bugs can result. If this technique is used,
access to the parameter buffer should be guarded with a semaphore.

4. Communicate via changes in the child's process globals. Such changes can be specified
when the child is spawned. For example, consider a child process that reads its standard
input and counts lines, writing the count to its standard output. The child does not need an
explicit parameter buffer; it only needs to have its standard input and standard output con­
nected to the desired opened devices. Changes in the child's process globals can be used
alone or in combination with a parameter buffer.

The second code excerpt shows how a process is created to execute a particular procedure:
146 parse-process: Process_Mgt_Types.process_AD;
147 -- Process executing "Parse".

176 parse process := Process Mgt.Spawn process(
177 init proc => Parse' subprogram value,
178 param buffer => conn rec'address;
179 term action => (-
180 event => Event Mgt.user 1,
181 message => System. null address,
182 destination => this_process_untyped»;

The initial procedure to be executed is specified using the ' subprogram_value attribute.

The address of the parameter record is specified using the ' address attribute.

The term_action parameter is optional; it indicates the action to signal when the process
tenninates.

Building Concurrent Programs

PRELIMINARY

VI-2.4 Getting Process Information

Calls Used:

Process_Mgt.Get-process_state
Gets a process's state.

Get-process_state produces detailed state information for a process. The process state
information is contained in a record of type
Process_Mgt_Types .process_state_rec. See the Process_Mgt_Types pack­
age description for more detailed information.

The state information is a snapshot and can change at the same time that the information is
being retrieved. For example, Get-process_state may indicate that a process is execut­
ing even though it blocked while its state information was being retrieved.

VI-2.5 Suspending and Resuming a Process

Calls Used:

Event Mgt.Signal
- Signals an event.

Process Mgt.Suspend caller
- Suspends the calling process. Is normally the last statement in a handler

for the suspend local event.

An application can suspend a process by signaling the Event_Mgt. suspend local event to
the process.

An application can resume a suspended process by signaling the resume local event to the
process.

A suspend or resume event can be signalled to all processes in a job by signaling the cor­
responding event to the job.

Signaling either event to a process or a job requires control rights.

Each process has a suspend/resume count. A positive count is the number of suspend events
received without a matching resume event. A negative count indicates the number of resume
events that have been received without matching suspend events. Each suspend event received
by a process increments the count, and each resume event received decrements the count. The
suspend/resume count is zero when a process is created. The process is suspended whenever
the count is greater than zero. Note that the resume event that matches a suspend event may be
received before the suspend event.

A process can control its response to suspend events, disabling them or establishing a handler
for them. A handler for suspend events can simply do whatever cleanup is needed before the
process suspends itself, and then call Process_Mgt. Suspend_caller to suspend itself.

Building Concurrent Programs VI-2-7

PRELIMINARY

VI-2.6 Terminating a Process

VI=2=8

Calls Used:

Event Mgt.Signal
- Signals an event.

Process Mgt.Terminate caller
- Tenninates the calling process.

Process Mgt.Deallocate
- Deallocates the storage used by a process, including the process object and

process stacks.

A process can tenninate itself by:

• Returning from its initial procedure

• Raising an exception that is not handled within the process

• Calling Terminate_caller.

A process can tenninate another process or ajob by signaling the termination or kill
local event to the process or job. (Recall that control rights are required to signal any event to
a process or job.) The difference between the two events is that processes can control their
response to termination events but not to kill events.

A process may establish a handler for the terminat ion event that does some cleanup and
then calls Terminate caller.

A process cannot modify or establish a handler for kill events, which tenninate a process as
soon as they are received; kill events can interrupt other event handlers.

When a process tenninates, it may be desirable to free the memory that it used, by calling
Process_Mgt .Deallocate. There is no way for a process that tenninates itself to deal­
locate itself, so deallocation is usually handled by the parent process. If a tenninated process is
not deallocated, its memory can still be reclaimed by garbage collection or at job tennination.

When a process creates a child process, it can specify an event to be signalled when the child
tenninates. The parent process can wait for that event or establish a handler for it. When the
child tenninates, the parent receives the tennination event and deallocates the child's storage.

The following excerpt from the Word_Processor_Ex package body shows how the word
processor signals a concurrent spelling checker process to tenninate, waits for the termination
event, and then deallocates the spelling checker process.

306
307
308
309
310
311
312
313
314
315
316
317
318

Event Mgt.Signal(Event Mgt.action record' (
event => Event Mgt.termInation,
message => System.null address,

-- No messag~.· -
destination => Conversion Support Ex.

Untyped_from-process(
spelling checker process»);

Event Mgt.Wait for any(- -
events =>"(-

child termination event value => true,
others => false),- -

action => child termination event);
Process_Mgt.Deallocate(spelling_checker_process);

Building Concurrent Programs

PRELIMINARY

VI-2.7 Signaling an Event

Calls Used:

Event Mgt.Signal
- Signals an event.

To signal an event, call Signal with an action record that describes the event.

The destination and event fields specify which event to signal. The message field
can be used to send a message with an event, formatted as a virtual address.

The following excerpt is from the Word_Processor_Ex package body. A spelling checker
process has received the location of a word to check via a "word" event. If the word is
misspelled, the spelling checker signals a "spelling error" event to the client process.

162 if word mispelled then
163 Event-Mgt.Signal(Event Mgt.action record' (
164 event => spelling error-event value,
165 message => (- - -
166 offset => word event.message.offset,
167 AD => System.null word),
168 destination => word event~message.AD»:
169 end if: -

The message. offset field of a spelling error event contains the word location, exactly as
received earlier from the client process. The message. AD field is not used. The
destination field is an AD to the client process being signalled. The "word" event
received earlier from the client process contained this AD in its mes sage. AD field.

A BiiNTM Ada representation specification can be used to pack several fields into the
message. offset field. An excerpt from the Word_Processor_Ex package body il­
lustrates this technique:

Building Concurrent Programs VI-2-9

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107

143
144
145
146
147
148

PRELIMINARY

type word record is record
This-type encodes a word location into 32 bits,
allowing a word location to be transmitted
using the "message.offset" field when an event
is signalled. The word processor and spelling
checker are presumed to share a two-dimensional
array containing the text being edited. Words
are presumed to not break across lines of the
array. A word location can thus be specified
as a line number, a starting column number, and
an ending column number. The encoding limits
line numbers to the range 0 .. 65 535 and
column numbers to the range 0 .. 255.

line: System. short ordinal;
start col: System.byte ordinal;
end col: System.byte-ordinal;

end record; -

FOR word record USE
record-at mod 32;

line at 0 range 0 15;
start col at 0 range 16 23;
end col at 0 range 24 31;

end record;

word event: Event Mgt.action record;
---Receives each word to be checked.

current word: word record;
FOR current word USE AT word event.

message~offset'address; -
-- Overlay used to extract word location.,

VI-2.8 Establishing an Event Handler

VI-2-10

Calls Used:

Event Mgt.Establish event handler
- Assigns handler and state for an event. Returns previous handler and state.

Establishing an event handler has two parts:

1. The program must define the handler procedure in a specific way.

2. The program must call Establish_event_handler to connect the handler to the
event.

This section's examples are excerpted from the Word_Processor_Ex package body. The
first excerpt shows how a handler procedure is defined:

Building Concurrent Programs

PRELIMINARY

178 procedure Spelling error handler(
179 action: Event=Mgt.action_record)
180
181 Operation:
182 Handler invoked for each 'spelling error'
183 event.
184 is
185 misspelled word: word record;
186 FOR misspelled word
187 USE AT actIon.message.offset'address;
188 -- Overlay used to extract word location.
189 begin
190 Code to handle misspelled word goes here. For
191 example, this code could highlight the
192 -- misspelled word on the display and ring the
193 -- terminal's bell.
194
195 null;
196 end Spelling error handler;
197 pragma subprogram value (
198 Event Mgt.Event handler,
199 SpellIng_error_handler);

A handler procedure must have the action parameter shown, which is the event that invokes
the handler. The subprogram_value pragma infonns the compiler that
Spelling_error_handler is an instance of the subprogram type
Event_Mgt. Event_handler, the type used for all event handlers.

The second excerpt shows how the word processor process establishes this handler:
250 old event status: Event Mgt.event status;
251 - Saves previous event status for the
252 -- spelling error local event, so the previous
253 -- status can be restored before exit.

271 old event status := Event Mgt.
272 -Establish event handler(
273 event- => spelling error event value,
274 status => (- - -
275 handler =>
276 Spelling error handler'
277 subprogram-value,
278 state => Event Mgt.enabled,
279 interrupt_system=call => false»;

When a subprogram establishes an event handler, and the subprogram is not the initial proce­
dure or final procedure for its process, then it is good manners for the subprogram to restore
the previous event status before returning to its caller:

320 old event status := Event Mgt.
321 -Establish event handler(
322 event- => spelling error event value,
323 status => old event status); -
324 Reestablish prevIous event status.
325 Value returned is never used.

VI-2.9 Waiting for Events

Building Concurrent Programs VJ-2-11

PRELIMINARY

Calls Used:

Event Mgt.Wait for all
- Wait for all of a set of events within a cluster.

Event Mgt.Wait for any
- Wait for any of a set of events within a cluster.

Wait_for_any is used to wait until any of a set of events within a cluster is received. The
first event in the set that is received is assigned to an action record output parameter. The
following excetpt from the Word_Processor_Ex package body shows the spelling checker
process waiting for a word to be checked.

143 word event: Event Mgt.action record;
144 ---Receives each word to be checked.
145 current word: word record;
146 FOR current word USE AT word event.
147 message~offset'address; -
148 -- Overlay used to extract word location.,

152 Event Mgt.Wait for any(
153 events => (word event value => true,
154 others => false), -
155 action => word_event);

Wai t f or_all is used to wait until all of a set of events within a cluster have been received.
The received events are assigned to an array of action records. The following excerpt from the
Compiler_Ex package body shows a parent process waiting for two child processes to ter­
minate.

152 term events: Event Mgt.action record list(2);
153 ---Array that rcccive~ termination evcnt$ of tho
154 -- two child processes.

192 Event_Mgt.Wait_for_all(
193 events =>
194 (Event_Mgt.user_1 .. Event_Mgt.user_2 =>
195 true,
196 others => false),
197 action list => term_events);

VI-2.10 Connecting Processes with a Pipe

VI-2-12

Calls Used:

Pipe_Mgt.Create-pipe
Creates a pipe.

Byte Stream AM.Ops.Open
- - Opens a device.

The following excerpt from the Compiler_Ex package body shows how a pipe is created
and opened.

Building Concurrent Programs

PRELIMINARY

134 compiler pipe: Pipe Mgt.pipe AD;
135 -- Pipe that connects "Parse" and "Code_gen"
136 -- processes.

157 compiler_pipe:= Pipe_Mgt.Create_pipe:
158
159 conn rec := (
160 source code => source code,
161 machine code => machine code,
162 listing- => listing~
163 parse out => Byte Stream AM.Ops.Open(
164 PIpe Mgt.Convert-pipe to device (
165 compiler pipe), - -
166 Device Defs.output),
167 code gen in => Byte Stream AM.Ops.Open(
168 Pipe=Mgt.Convert~ipe_to=device(
169 compiler pipe),
170 Device_Defs.Input»;

The opened device ADs for the two open ends are stored in a "connection record" that is
passed by address to each child process. Each child process can read the connection record
and use the opened devices in it.

The Parse process writes the results of its parsing to the conn_rec . parse_out opened
device, the output end of the pipe. The Code_gen process reads the same parse results from
the conn_rec. code_gen_in opened device, the input end of the pipe.

VI-2.11 Locking Shared Data Structures

Calls Used:

Semaphore Mgt.Create semaphore
- Creates a semaphore.

Semaphore_Mgt.P
Enters/locks/waits at a semaphore. If the semaphore's current count is
greater than zero, indivisibly decrements it. Otherwise, blocks the caller in
the semaphore's prioritized process queue.

Semaphore Mgt.V
- Unlocks/leaves/signals a semaphore. If processes are blocked at the

semaphore, unblocks and dispatches the highest-priority process. Other­
wise, indivisibly increments the semaphore's current count.

A data structure shared by multiple processes can be locked by locking an associated
semaphore. To ensure that all processes obselVe the locking protocol, the data structure can be
managed by a BiiNTM Ada package that handles all access to it. The Symbol_Table_Ex
package manages a symbol table using such a locking protocol.

The package body creates the symbol table at package initialization; the associated semaphore
is created in the same code block:

Building Concurrent Programs VI-2-13

VI-2-14

PRELIMINARY

58 lock: Semaphore Mgt.semaphore AD;
59 -- Used to lock symbol table-while a process
60 -- is accessing it.

221 PACKAGE INITIALIZATION
222 begin

229 symbol table. lock := Semaphore Mgt.
230 Create semaphore; -
231 -- Lock Initially indicates table is available.
232 -- First "PH on lock will succeed.

Each operation provided by the S ymbo 1_ T able_Ex package locks the semaphore at the
beginning of the operation and unlocks the semaphore on all return and exception paths. The
following excerpt is from the Read_symbol_data implementation in the package body.
Note that the semaphore is locked once, but unlocked at each of several different exit paths.

184
185
186

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

begin

Semaphore_Mgt.P(symbol_table.lock);

for i in 1 .. symbol table.length loop
if symbol table.value(i) . name =

fixed-width name then
Semaphore Mgt~V(symbol table.lock);
RETURN symbol_table.value(i) .data:

end if;
end loop;

RAISE no_such_symbol;

end if;

This call to "V" is never reached in the
-- current implementation. The call is included
-- as a safeguard in case code changes make it
-- reachable.
Semaphore_Mgt.V(symbol_table.lock);

exception
when others =>

Semaphore Mgt.V(symbol table.lock);
RAISE; -= Reraise exception

-- that entered handler.

Building Concurrent Programs

PRELIMINARY

SCHEDULING 3
Contents

What tlle Scheduler Is ... VI-3-2
The Scheduler's Objectives ... VI-3-2
The Scheduler's Task .. VI -3-2
CPU Scheduling .. VI -3-3

CPU Scheduling Model .. VI -3-3
Scheduling Service Objects (SSOs) VI-3-6
Resource-Driven Priorities ... VI-3-7

Memory Scheduling ... VI-3-9
I/O Scheduling ... VI -3-9
Summary ... VI -3-9

Scheduling VI-3-1

PRELIMINARY

This chapter explains how jobs and processes are scheduled. It discusses the scheduler's
objectives and tasks, scheduling service objects (SSOs), CPU scheduling, memory scheduling,
and I/O scheduling.

VI-3.1 What the Scheduler Is
The scheduler is a collection of hardware and software entities whose purpose is to schedule
the execution of jobs (and thus processes).

The scheduler is designed for multi-user systems, provides support for real-time applications,
and withholds explicit control of scheduling from the user.

The scheduler is not intended to be replaceable; instead, the system administrator can tailor a
job's scheduling parameters to suit specific requirements.

VI-3.2 The Scheduler's Objectives
The scheduler's general objective is efficient use of the system's resources. Specifically, it
seeks to:

• Maximize resource utilization

• Maximize system throughput

• Minimize response time for interactive users

• Avoid starvation of jobs

• Degrade gracefully under load

• Minimize thrashing.

To accomplish these objectives, the scheduler is designed to favor:

• Interactive jobs

• I/O-bound jobs

• Jobs with small working sets

• Short jobs.

and to handicap:

• Noninteractive jobs

• CPU-bound jobs

• Jobs with large working sets.

VI-3.3 The Scheduler's Task

VI-3-2

A job needs three resources to execute: physical memory, processor time, and I/O devices.
The scheduler attempts to balance the job's need for these resources against their availability
and maximize resource utilization for all jobs in the system.

Scheduling

PRELIMINARY

Thus, the scheduler's task is threefold: CPU scheduling, memory scheduling, and I/O schedul­
ing. These are discussed in the following sections.

VI-3.4 CPU Scheduling
This section discusses CPU scheduling.

VI-3.4.1 CPU Scheduling Model
When a job is invoked (see Chapter VI-I), it is enqueued on a scheduling port served by a
scheduling daemon. Thereafter, scheduling occurs at three different levels:

• High-level scheduling schedules jobs.

• Medium-level scheduling assigns priorities to processes.

• Low-level scheduling dispatches processes for execution on a processor.

VI -3.4.1.1 High Level Scheduling

Scheduling

When the scheduling daemon is activated, it removes a job from the scheduling port and
schedules it by enqueueing the job's initial process at the end of one of the queues in a
dispatching port. The port has 32 queues, ordered in priority from 0 (lowest) to 31 (highest).
(Note: Priorities 16-31 are reserved by the OS and never used by user processes.) A process
enqueued in this manner is said to be in the mix. Putting a process in the mix is called
high-level scheduling. See Figure VI-3-1.

Dispatching Port

Priority 31 Queue

Priority 30 Queue

Priority 29 Queue

•
•
•

Priority n Queue

•
•
•

Priority 0 Queue

I I
,. I Process I

... J P I ,. I rocess I

... J P ,. I rocess

:; .: Process I

,.: Process I

... 1 P I ,. I rocess I :::: Process I

r---,
- "L ~o~e.:..s J

" " " " Scheduli ng Port

eue) ('i (Job Qu

Scheduling daemon
schedules Job.

Figure VI-3-1. High-level Scheduling

VI-3-3

PRELIMINARY

VI-3.4.1.2 Low Level Scheduling

Each processor has a pointer to the dispatching port. When a processor is available to execute
a process, it dequeues the first process from the highest numbered, non-empty queue in the
port, and executes it. This is called low-level scheduling or dispatching; it is done by
microcode, not software. See Figure VI-3-2.

Processor

Dispatching Port

Priority 31 Queue

Priority 30 Queue

.~ Processor dispatches highest-priority
~ process for execution.

Priority 29 Queue 1---....

•
•
•

Priority n Queue

•
•
•

Priority 0 Queue

'----....

Figure VI-3-2. Low-level Scheduling

VI-3.4.1.3 Processor Preemption

It is possible for a running process to be preempted (forced to relinquish the processor) by a
process waiting in the dispatching port. Whether this occurs depends on the processes' relative
priorities and the system's preemptive threshold. Currently the threshold is 8: if an interrupt
handler or a process with a priority greater than or equal to 8 is ready to run, it will preempt a
handler or process running with a lower priority.

Note that the preemptive threshold may change.

See Pages VI-3-6 and VI-3-7 for further infonnation about process priorities.

VI-3.4.1.4 Classes and Priorities

VI-3-4

Each job has a scheduling service object (SSO) that detennines the type of scheduling service
the job receives. Among other things, the SSO defines the job's service class and priority.

Scheduling

PRELIMINARY

There are four selVice classes: real-time, time-critical, interactive, and batch. All the
processes in a job have the job's selVice class; a job's service class never changes.

There are 32 priorities, corresponding to the priorities in the dispatching port.

See Page VI-3-6 for further infonnation about selVice classes, priorities, and SSOs .

VI-3.4.1.S Processor Claim and Job Time Limit

Each job has a processor claim that defmes the number of time slices available to the job's
processes in a scheduling cycle and a time limit that defines the total processing time available
to the job (and its descendant jobs).

All jobs have the same processor claim, but the length of the time slice given to a process is
determined by the process's priority.

A job's time limit is detennined by by the time _1 imi t parameter in the
Job_Mgt. Invoke_job function. The exact interpretation of time_limit is subtle; see
In vo ke _j ob for further information.

When a time slice OCCUI'S, a time-slice fault-handler checks the processor claim:

• If it is nonnegative, the time-slice fault-handler reduces it by one and gives the process
another time slice by putting it at the tail of its priority queue in the dispatching port.

• Ifit is negative, the time-slice fault-handler triggers a resource-exhaustionfault-handler,
which checks the job's time limit. If the limit has been exceeded, the job is terminated; if
not, the resource-exhaustion fault-handler replenishes the processor claim (charging it
against the job's Resource Control Object (RCO), and continues job execution.

VI -3.4.1.6 Medium Level Scheduling

Scheduling

The scheduling daemon puts real-time, time-critical, and interactive jobs into the mix im­
mediately, but puts batch jobs in a waiting queue until system load allows them to be put in the
mix. Once a process is in the mix, its scheduling depends on its priority, service class, and
dynamic behavior. This is called medium-level scheduling, and is performed by hardware and
the time-slice fault-handler. The following summarizes medium-level scheduling after ajob
has been put in the mix:

• Real-time processes:

- A real-time process is not subject to time slice faults; that is, it executes until it ter­
minates or blocks for I/O.

- If it blocks for I/O, hardware returns it to the front of its priority queue in the dispatch­
ing port when the I/O completes.

- It is up to the software designer to ensure that a real-time process does not starve other
real-time processes and keep them from executing for too long a period.

• Time-critical processes:

- A time-critical process is subject to time slice faults. When a time slice fault OCCUI'S, it
is handled as described in Section VI-3.4.l.S on Page VI-3-S.

- If a time-critical process blocks for I/O, it is treated like a real-time process.

• Interactive and batch processes:

VJ-3-5

PRELIMINARY

- An interactive or batch process is subject to time slice faults like a time-critical process
and is treated in the same way, with one exception: if it receives an additional time
slice, the time-slice fault-handler lowers the process's priority and places it at the tail of
its new (lower) priority queue in the dispatching port.

- If an interactive or batch process blocks for I/O, the time-slice fault-handler raises the
process's priority to the priority of the requested I/O device, and places it at the tail of
its new (higher) priority queue in the dispatching port when the I/O completes. This
allows the process to issue several I/O requests for the device at the higher priority.

- Note that the scheduling diSCipline for real-time and time-critical jobs is based on fixed
priorities, but the scheduling discipline for interactive and batch jobs is based on
dynamic, resource-driven priorities. See Page VI-3-7 for further information.

VI-3.4.2 Scheduling Service Objects (SSOs)

A Scheduling Service Object (SSO) is associated with a job when the job is invoked. The SSO
determines the type of scheduling the job receives.

The system administrator is responsible for creating different types of SSOs and controlling
access to them, thus controlling the type of service granted to different jobs (see the
SSO _Admin package).

The SSO determines the job's service class, SSO priority, time slice, memory type, initial age,
and age factor.

VI -3.4.2.1 Service Classes

Service class denotes the general class of service a job is to receive. Four service classes are
defined: realtime, time-critical, interactive, and batch.

Real-time jobs are executed in real time. They have very high priority and an infinite time
limit. They run in frozen memory, and are not subject to the scheduling process. They are
preemptive (given the current preemptive threshold) and always in the mix. If they block for
I/O, the hardware reschedules them as soon as the I/O completes.

Time-critical jobs have less stringent time constraints than real-time jobs. They have the
same priority as real-time jobs, but a fmite time limit (when a time slice expires, they are
rescheduled or tellIlinated). They need not run in frozen memory, since their time constraints
can tolerate page faults. Like real-time jobs, they are preemptive (given the current preemptive
threshold) and always in the mix.

Interactive jobs involve interaction between a user and a job (an editing session, for example).
Interactive jobs run in normal memory, have a finite time limit, and have a lower priority than
real-time and time-critical jobs.

Batch jobs are background jobs with no attached user. Like interactive jobs, they run in
normal memory, have a finite time limit, and have a lower priority than real-time and time­
critical jobs.

VI-3.4.2.2 SSO Priority

SSO Priority is the job's SSO priority. SSO priorities are defined as follows (higher values
indicate higher priority):

Scheduling

16 - 31

15

12 -14

11

0-10

PRELIMINARY

Reserved for interrupt handlers; not available for program execution.

Timing daemon.

Real-time and time-critical jobs.

Scheduler and other well-behaved system jobs.

Interactive and batch jobs.

As noted earlier, a handler or process with a priority greater than or equal to the preemptive
threshold will preempt a processor from a handler or process running at a lower priority. A
handler or process with a priority lower than the preemptive threshold cannot preempt a
processor. The current preemptive threshold is 8; it may change in the future.

VI -3.4.2.3 Time Slice

Time slice is the amount of processing time assigned to each process in the job in each dis­
patching cycle. (It does not include time spent on such incidents as interrupts, processor
preemption, or waiting at a port or semaphore).

When a process exhausts its time slice, it is handled as described in Section VI-3.4.1.5 on Page
VI-3-5.

For additional infonnation about how time slices are interpreted for different classes of jobs,
seetirne_slice_enabled,tirne_slice_reschedule,andtirne_slicein
SSO_Types.SSO_Object.

VI-3.4.2.4 Memory Type

Memory type is the type of memory in which the associated job should run. There are two
types of memory: frozen and normal. Frozen memory is nonswappable, nonrelocatable
memory; it is used for jobs that cannot tolerate page faults (real-time jobs, for example). Nor­
mal memory is swappable and relocatable.

VI -3.4.2.5 Initial Age

Initial age is ajob's age when it first enters the scheduler's waiting queue of swapped-outjobs
(see page VI-3-9). Larger values indicate older jobs. The job at the head of the queue is the
oldest job and will be scheduled next. Giving a job a large initial age helps move it to the head
of the queue more rapidly.

VI -3.4.2.6 Age Factor

Age/actor is the rate at which ajob ages in the scheduler's waiting queue. On every scan of
the waiting queue, the age factor is added to the job's age to detennine a new age. The larger
the aging factor, the faster ajob ages, and the sooner it rises to the front of the waiting queue.

Note that care should be used before assigning an age factor of 0 to a job. Such a job will
never age, and may therefore starve in a busy system.

VI-3.4.3 Resource-Driven Priorities

Scheduling

A single, fixed priority (SSO priority) is used to schedule real-time and time-critical jobs, and
their priority is unaffected by resource usage. In contrast, scheduling for interactive and batch
jobs uses several priorities and is dynamically driven by resource usage.

VI-3-7

PRELIMINARY

VI-3.4.3.1 Priorities Used

The priorities used in scheduling interactive and batch jobs are:

SSO priority The priority defined in the job's SSO.

Base priority The lowest priority a process can have.

A process's base priority is set when the process is created. The base
priority of an initial process in a job is the job's SSO priority. The base
priority of a spawned process is the base priority of its parent process.

The System Administrator can change a process's base priority to any
value; a user can change it to a value less than or equal to the job's SSO
priority.

Changing ajob's base priority is accomplished by changing the base
priorities of all the job's processes.

Resource priority The priority assigned to a particular resource.

When a process blocks on a resource, its priority is raised to the resource
priority (unless its priority is already higher, in which case its priority
remains unchanged).

After using a resource, a process must return to its base priority. Each
resource class specifies the amount of time in which this must occur. The
process's priority is decreased linearly from the resource priority to the
base priority in the specified amount of time.

Running priority The priority at which an interactive or batch process is currently running.

Running priority is determined by the other priorities.

VI -3.4.3.2 An Example

VI-3-8

Consider I/O resources as a example (but note that the discussion is applicable to any resource
managed by the scheduler).

I/O resources are divided into different classes and each class is assigned a priority; for ex­
ample, terminals might have priority 10, disks priority 9, and communication lines priority 8.
(To keep process priorities less than or equal to 10, all resources have priorities less than or
equal to 10).

A process begins executing at its base priority (say, 5) and stays there until it blocks on an I/O
resource (say, disks). While blocked, its priority is raised to the disk's priority (9). After the
I/O, its priority is decreased linearly (by the same amount at each time slice) until it returns to
its base priority (5).

As the process alternates between CPU usage and I/O requests, its priority fluctuates between
its base priority and the priority of the I/O resources it requests (these may be different
resources with different priorities). The process terminates at some priority level between its
base priority and the priority of the I/O resource it last requested.

The presumption behind raising a process's priority to the resource's priority is that if the
process issues one request for the resource, it is likely to issue another soon. The overall effect
of the model is to favor I/O-bound jobs and penalize CPU-bound jobs, thus maximizing the use
of system resources.

Scbeduling

PRELIMINARY

VI-3.S Memory Scheduling
This section discusses memory scheduling.

Before a process can compete for CPU time, some of its instructions and data must be present
in physical memory. (Invoking a job causes a series of faults that bring the program object,
domain object, and other objects into primary memory; see Chapter VI -1). Thus, physical
memory is as important a resource as the CPU, and memory scheduling is an important part of
the scheduler.

The major goal of memory scheduling is to implement the working set model of memory
management. The working set of a job is dynamically defined as the set of primary memory
pages referenced by the job in the last time quantum, T, measuring backwards from a given
time t. These are the pages which the job used most recently; identifying them and keeping
them in memory reduces page fault rates and contributes to system efficiency. (See any stan­
dard operating system text for more infonnation about the working set model).

Memory scheduling uses the following model:

• The system maintains a pool of free pages of primary memory.

• As long as there are enough pages in the pool, all the jobs in the mix are allowed to remain
there and new jobs are allowed to enter the mix.

• To guard against the depletion of the pool, the scheduler periodically examines memory
usage by all the jobs in the mix and transfers back to the pool any pages that are not in the
working set of some job. This is done by examining each job's Storage Resource Object
(SRO). The SRO references a list of the pages each job has in primary memory. Any page
that has not been accessed or modified in the last time quantum, T, can be returned to the
pool. This is known as SRO page replacement.

• When the number of free pages in the pool falls below a low water mark, the scheduler tries
to get more free pages by triggering SRO page replacement more often If that doesn't
succeed,. the scheduler then pulls jobs out of the mix and releases their pages. The pages
are given to the pool, and the jobs are swapped out to secondary memory. The scheduler
keeps a waiting queue of swapped-out jobs.

• In order to achieve fair treatment for all jobs, the scheduler periodically examines the wait­
ing queue and puts the job at the head of the queue in the mix. This ensures that no job
starves while waiting for memory. The aging parameters in ajob's SSO (initial_age
and ageJactor) detennine the job's position in the waiting queue.

• The scheduler also periodically triggers global SRO page replacement, which attempts to
free pages from the nonnal global SRO (pages in the frozen global SRO are not replaced).

VI-3.6 1/0 Scheduling
I/O scheduling is done implicitly through the mechanism of resource-driven priorities, as
described above.

VI-3.7 Summary

Scheduling

• The scheduler is a collection of hardware and software entities whose purpose is to
schedule the execution of jobs (and thus processes).

VI-3-9

VI-3-10

PRELIMINARY

• The scheduler's general objective is efficient use of system resources.

• The scheduler's task is to perform CPU scheduling, memory scheduling, and I/O schedul­
ing.

• The type of CPU scheduling a job receives is determined by the SSO associated with the
job when it is invoked. The SSO determines the job's service class, priority, time slice,
memory type, initial age, and age factor.

• The scheduling daemon puts real-time, time-critical, and interactive jobs into the mix im­
mediately, but puts batch jobs in a waiting queue until system load allows them to be put in
the mix. Once a process is in the mix, its scheduling depends on several factors.

• The scheduling discipline for real-time and time-critical jobs is based on a fixed priority,
but the scheduling discipline for interactive and batch jobs is based on dynamic, resource­
driven priorities.

• The major goal of memory scheduling is to implement the working set model of memory
management.

• I/O scheduling is done implicitly through the mechanism of resource-driven priorities.

Scheduling

PRELIMINARY

Part VII
Type Manager Services

This part of the BiiNTM/OS Guide shows you how to build type managers, software modules
that implement new object types and their attributes.

The chapters in this part are:

Understanding Objects
Explains objects and their characteristics.

Understanding Memory Management
Explains how the OS manages memory.

Building a Type Manager
Shows you how to design and implement a simple type manager.

Using Type Attributes
Shows you how to defme and implement type-specific attributes, packages
or data structures supported by multiple object types.

Managing Active Memory
Shows you how to control object allocation and deallocation, and control
object reclamation via garbage collection.

Building Type Managers for Stored Objects
Shows you how to design and implement type managers for objects stored
on disk.

Understanding System Configuration
Explains how a BiiNTM node is configured as a collection of type managers
that have configuration requirements. Each such type manager implements
the configuration attribute.

Type Manager Services contains the following services and packages:
TM object service:

Countable Object Mgt
Global SRO Defs -
Lifetime Control
PSM Trusted Attributes
SRO-Mgt -
Unsafe_abject_Mgt

TM transaction service:
Local Transaction Defs
Local-Transaction-Mgt
TM_Transaction_Mgt

TM concurrent programming service:
Job Resource Reclamation
Port Mgt -.
Typemgr Support
Unsafe Port Mgt
Unsafe=Semaphore_Mgt

configuration service:
Configuration

Part vn Overview

PRELIMINARY

custom naming service:
Customized Name Mgt
Link Mgt - -
Standalone_DirectorY_Mgt

backup service:
Backup Support not implemented in this release
Trusted_Log_Mgt not implemented in this release

Part vn Overview

PRELIMINARY

UNDERSTANDING OBJECTS 1
Contents

Why Use Objects? .. VII-1-2
Data Abstraction ... VII-1-2
Memory Protection ... VII-I-3
Secure and Dynamic Memory Management VII -1-4
Support for Complex and Extensible Applications VII-I-4
Uniform Storage Model for Penn anent and Volatile Memory VII-l-4
Distributed Storage Model .. VII -1-5

How Objects Work ~ ... VII-1-5
Object Sizes ... VII -1-5
Types .. VII-1-5
Object Protection ... VII -1-6
Attributes ... VII -1-6
The Inside View of an Object ... VII -1-8

Address Space Protection .. VII-I-IO
Access Descriptors ... VII-1-12
Type Managers ... VII-1-13
Domains ... VII-1-14

Passive Objects ... VII-1-15
Active Memory ... VII-1-16
Passive Store ... VII-1-16
Passive ADs .. VII-1-17
Passive Store Protection -- Authority Lists VII-1-18
IDs ... VII-1-19
Updating Stored Objects .. VII-1-20

Summary .. VII-1-20

Understanding Objects VII-l-l

PRELIMINARY

This chapter explains concepts related to objects and access descriptors. You can find most of
this information elsewhere in the BiiNTM document set, but you would have to look in many
different places. This chapter is the place where all pieces are brought together, so that you can
understand the building blocks of the BiiNTM architecture.

The BiiNTM system has an object-oriented architecture; objects are the building blocks of the
system. This is not the first system based on object-oriented programming. The difference
between the BiiNTM system and other systems is the rigor with which object-orientation is
implemented.

VII-1.1 Why Use Objects?
Objects are used in the BiiNTM system for the following reasons:

• Data abstraction

• Memory protection

• Secure and dynamic memory management

• Support for complex and extensible applications

• Uniform storage model for permanent and volatile memory

• Distributed storage model.

Each point above will be briefly explained in the following sections.

VII-1.1.1 Data Abstraction

VII-1-2

In most cases your program will not be concerned with the inner workings of objects. An
object appears like a black box to the programmer. The box has "jacks" and "buttons". As
you press certain buttons the box takes things from the input jacks and sends something to its
output jacks. Or the box performs some other operation. The two important points in the anal­
ogy are:

• The box's buttons do certain things and those things only.

• How the box performs its operations or how it looks on the inside is unknown. (See Figure
VII-I-I)

Understanding Objects

"Black Box"
Object

PRELIMINARY

->
,~

Inside the
Object
I I

11111111111

I
Figure Vll-l-l. An Object as a Black Box

,

Objects present a well defined outside view. That means that their functionality is defined "on
their front panel". How the object works is hidden from view. Data abstraction of this type has
two advantages:

• A programmer can use an object without having to know what goes on inside just as you
may use a television set without having studied the intricacies of electromagnetism.

• The inside of an object may be altered without affecting programs that depend on the
outside of the object

You can compare objects to Ada packages. The outside view of an object corresponds to the
specification of the package. The representation of the object corresponds to the body of the
package.

VII-1.1.2 Memory Protection

Objects are the unit of protection in a BiiNTM system. The memory of a BiiNTM system should
not be viewed as an array of bytes but as a network of objects. The way the objects are
connected can change at any time as the system runs. Each connection consists of a pointer
called the object index and a list of access rights. These connections are called access
descriptors (AD). The both provide and limit access. Connections can be made based on a
strict "need to know" basis. Connections can only be made (ADs created) by the BiiNTM
Operating System. The BiiNTM Operating System uses special hardware instructions to manipu­
late ADs. Every access to memory involves checking

• that an AD presented is a valid AD,

• that an AD has proper access rights,

• that the reference falls entirely within the referenced object.

While objects are protected by ADs, ADs are protected by the hardware. Special instructions
are required to create and copy ADs. Nobody, not even the operating system, can circumvent
this protection mechanism.

Understanding Objects VII-1-3

PRELIMINARY

VII-1.1.3 Secure and Dynamic Memory Management

Objects are dynamic. They can be of any size from zero to four Giga bytes. They can be
dynamically created, resized, and destroyed. Unneeded objects are automatically removed. For
example you can create an object, change its size as many times as you want over the lifetime
of the object and then simply abandon it. The operating system will pick up after you. Long
running or very large programs can also explicitly control garbage collection. This relieves the
operating system considerably.

VII-1.1.4 Support for Complex and Extensi ble Applications

Complex programs can never be entirely free of bugs. In a complex system a constant concern
is that one program module not corrupt another. This problem is particularly hard to handle in
conventional architectures: The instructions or data that have been corrupted may not even be
related to the corrupting module.

This is a particularly acute problem when you want to extend important, sensitive, and com­
plex applications, or maybe the OS itself. The traditional solution to the problem is to adopt a
two-view scheme. In a two-view scheme the address space is divided into two levels, one level
reselVed for the operating system, and one level for the user. The interaction between the two
levels is severely limited. The two-view scheme restricts functionality.

If address space is shared between user and operating system one risks major breakdowns of
the combined system.

In the object-oriented architecture of a BiiNTM system addressing errors are confmed to their
origin: A wrong address will also always be an invalid address. This is done with a multiple­
view scheme. Every application program, every system routine, in fact, ever job runs in its
own protected address space. All jobs execute at the same level. The important ingredient in
the multiple-view scheme is an efficient call/return mechanism that allows communication
between protected address spaces.

For example, extensions to the as run at the same level as the OS and are therefore able to use
its full functionality. The same applies to applications. Any program can be easily extended
without compromising reliability of the original program.

VII-1.1.S Uniform Storage Model for Permanent and Volatile Memory

VII-l-4

The BiiNTM system extends its model of protection and its object-oriented architecture to per­
manent storage. Objects in permanent memory (such as magnetic disks) are called passive
objects. Objects in volatile memory are termed active objects. Penn anent memory is termed
passive store. There can be multiple active versions of an object but only one passive version
at any time. In order to read the contents of an object or to write an object, the object has to be
activated first. When a change to an object should become permanent, the object will be
passivated. That means that either a new passive object will be created, or an existing passive
version of the object will be updated. When multiple active versions of an object are present,
the BiiNTM Operating System ensures that obsolete active versions cannot corrupt the passive
object.

Understanding Objects

PRELIMINARY

VII-1.1.6 Distributed Storage Model

Passive store is distributed -- spread over multiple BiiNTM nodes and transparently accessible
from any node. One can view passive store as the glue that holds a distributed BiiNTM system
together. Passive store is divided into volume sets. Passive objects are stored on volume sets.
Along with each passive object, a master AD is stored on the same volume set. That passive
AD contains a unique identifier (UID), unique for all times and on all BiiNTM nodes. Even if a
disk is moved to another BiiNTM node or BiiNTM system, the passive objects stored on that disk
will still be uniquely identified.

VII-1.2 How Objects Work
In the previous section you have learned what objects are, namely typed and protected memory
segments. In this section you will learn how objects function in the BiiNTM architecture.

An object is characterized by a number of properties such as size, lifetime, type and a list of
attributes. Objects can also be active or passive. In the following sections you will learn about
these properties in more detail.

VII-1.2.1 Object Sizes

Objects can have sizes ranging from zero to four Giga bytes. Object sizes are rounded. (How
object sizes are rounded is explained in chapter VII-5.) Objects can be created resized and
destroyed at runtime (see Figure VII-1-2).

T
.320

______ --'I OT
192 IS t T

256

..... ___ TS

bytes

Figure VII-1-2. An Object Can be Resized

VII-1.2.2 Types

You probably know what typing is from programming languages such as Ada or Pascal. In one
sense object types in a BiiNTM system are no different than data types in Ada. Since most of the
BiiNTM Operating System is written in BiiNTM Ada, object types are implemented to a certain
degree as Ada types. In another sense object types are very different from Ada types. Data in
Ada is typed only at compile-time while objects are also typed at runtime. Whenever a
software module attempts an operation on an object in a BiiNTM system, the OS first checks
whether the operation is allowed for the object. While you can get around compile-time typing
by using conversion functions or type overlays, there is no way to circumvent runtime typin~

Understanding Objects VII-1-5

PRELIMINARY

There are a number of predefmed system types such as disk,jile,job , or program. (For a
complete list of system types refer to the Appendix of the BiiNTM lOS Reference Manual.) On
top, there is one peculiar type of objects called generic objects. Generic objects are untyped
although, strictly speaking, they have a defmed type, the so-called generic type.

You are not limited to the system types. Just as in Ada, you can define your own types and
implement them on the system.

Object typing is complete and pelVasive, more so than typing in programming languages.
There are no backdoors that let you bypass the typing mechanisms.

VII-1.2.3 Object Protection

Typing protects an object from operations that are not defmed for the object. There is another
mechanism that protects the contents of the entire address space. This protection is provided by
protected pointers called access descriptors (AD). As the name indicates, ADs provide access
to objects. At the same time ADs limit access. Protection by ADs is complete. No object can
be accessed without an AD. You can go so far as to identify an AD with the object.

Figure VII-1-3 illustrates the relationship between an object and an AD in a simplified way.

Access Descriptor

I Pointer I Righ ts I

Object

Figure Vll-1-3. Object and Access Descriptor

VII-1.2.4 Attributes

VII-1-6

While typing of objects selVes two functions, namely protection and data abstraction, the same
applies to attributes. Attributes are the means by which the prime capability of objects is
realized; objects describe the operations that can be performed on them. An attribute is itself an
object that acts as a label. The label typically describes an operation such as
Byte_Stream_AM. ops. Read. All objects that allow Byte_Stream_AM. ops. Read
carry a reference to this attribute. The mechanism works like this:

Objects have an attribute list that consists of <attrib-ID,attrib-value> pairs. The attribute-ID
part references the attribute while the attribute value is typically an AD to a routine that imple­
ments the operation for the type.

Understanding Objects

PRELIMINARY

All attributes contained in a particular object's attribute list apply to that object. In addition to
these attributes an object inherits all attributes defmed for its type. Those type-specific at­
tributes are defined in the object's TOO.

For an example and an illustration of these dependencies see Figure VII-l-4.

Document
TOO

Pr i n t_Mgt,Pr i n t (obj ect, ' , ,)j

Pr i nt_Mgt
package

Print
Attribute 10

/' / \

Spreadsheet

D

Print_DocUMent Print_Spreadsheet

package ~ package

Figure Vll-1-4. How Attributes Work

In Figure VII-l-4 there are two objects, a spreadsheet object and a document object. Both have
inherited the attribute "printable" from their respective TOOs: The attribute lists of the
two TOOs contain a reference to the same attribute "p r i n tab 1 e ". The attribute values
however are different: The document TDO has an AD to a package that implements printing
of documents (named Print_Document) while the spreadsheet TDO has an AD to a
package that is capable of printing spreadsheets (named Print_Spreadsheet).

Before concluding this section on attributes we shall briefly touch upon the general protocol of
how attributes are implemented in a BiiNTM system.

Understanding Objects VII-I-7

PRELIMINARY

Generally an implementor will establish a 1: 1 correspondence between Ada attribute packages
and attributes. There will be one attribute package for each attribute. The attribute package
only contains subprograms and no other declarations. However, an attribute package can be
nested inside another package that provides data declarations and subprograms common to all
types. An attribute package must also have the Ada package_type pragma. This marks the
package as an attribute package and binds it to the attribute 10, which is identified by its
pathname. The body of an attribute package is empty.

As the next step, the implementor of an attribute will define various instances of the attribute
package. These instances are the type- or object-specific implementations of the attribute pack­
age. In Figure VII-l-4 Print_Spreadsheet and Print_Document are such instances
of one attribute package Pr into

Instances have their own package specifications which all match the specification of the at­
tribute package. The instances are bound to the attribute package by the package_value
Ada pragma. Every instance has its own specific body and runs in its own domain. Instances
cannot be merged into one domain with other packages.

VII-1.2.5 The Inside View of an Object

VU-1-8

After having learned about the characteristics of an object, we proceed to explore how these
concepts are implemented in the memory of a BiiNTM system. Figure VII-1-5 illustrates the
inside view of an object. We have already learned about objects and ADs. Here we see that
there are some more details to the picture:

Understanding Objects

Access Descriptor

Ob ject Index

Type
Definition

Ob ject

PRELIMINARY

Ob ject
Table

OD

Ob ject Descriptor

TDO AD Base Address

Size Status

\

-r--
I'

f
-:....-

Figure Vll-l-S. Objects Are Typed and Protected

Object

An object consists of two parts, the object descriptor (00) and the object's representation.
When we talk of the size of an object, we refer to the size of its representation. The represen­
tation holds the contents of the object. The object descriptor on the other hand holds important
infonnation about the object, such as the physical address of its representation and its size. As
Figure VII-1-5 indicates, an AD to an object points to the object descriptor not the object's
representation. All object descriptors on one BiiNTM node are held in a one place, the object
table. An object's representation may be moved around in memory by the BiiNTM Operating
System but the object descriptor always stays in the same place.

The object's type is defined in the object descriptor by an AD stored there that points to a type
definition object (TOO). There is one TDO for each distinct type. That means that two objects
have the same type if their object descriptors reference the same TDO.

This model of objects with its two parts, object descriptor and object representation allows for
a peculiar object, an object of length zero. Such an object has no representation and therefore
really has zero length. This means that all infonnation that pertains to the object is contained in
the object descriptor. Objects of length zero are very useful as unforgeable identifiers. They

Understanding Objects VII-1-9

PRELIMINARY

can be compared to license plate numbers. The significance of a license plate number is not the
infonnation contained in it but the fact that it is different from all other license plate numbers.

VII-1.3 Address Space Protection

VII-I-lO

As software grows more and more complex, bugs become impossible to eradicate. No software
engineer, nor any company can guarantee that their software products will not fail under any
circumstances. Such software failures can have disastrous results as processors pervade our
daily lives. It has therefore become imperative that failures be detected at their origins and that
their influence be confmed.

The most dangerous types of errors are addressing mistakes. By making such a mistake, a
routine can corrupt data or programs anywhere in a computer's memory. Such a mistake may
go unnoticed for a while until the corrupted data or programs are used. When the fault is
finally discovered, it is almost impossible to locate its origins and prevent it from happening
again.

Address space protection should not be monolithic as different programs require different
levels of protection. A well tested routine running as a separate process would only suffer in
perfonnance if it had to drag along the same protection mechanisms that are needed for a
recently implemented extension to the operating system.

The BiiNTM architecture provides a flexible and efficient protection scheme that addresses this
problem. The unit of protection in a BiiNTM system is the object An object is protected on three
levels. (For an illustration, see Figure VII-1-6.)

Understanding Objects

o

PREUMINARY

All objects in a system.

Object accessible to the current
subprogram call.

o

Figure VII-1-6. Threefold object protection

The entire memory of a BiiNTM system is organized in terms of objects. Objects can only be
accessed by protected pointers, the access descriptors. An AD contains the information where
the object it references is stored. But the AD limits the access to the object by way of access
rights that are stored in it. Access descriptors are manipulated in controlled ways by the
hardware. If a routine attempts to manipulate an AD, such as changing the address or tamper­
ing with the rights, the AD will automatically be invalidated. This is the basic protection that
applies to all objects in a system.

ADs are given out on a strict "need to know" basis. Any subroutine therefore has access only
to the objects that it needs to reference. Thus the set of objects accessible to anyone call is
strictly controlled. In Figure VII-1-6, this set is represented by the second outermost circle.

Objects are further protected by typing. Operations are tied to object types; an implementor
defines what operations are permissible. This level of protection is represented in Figure
VII -1-6 by the third outennost circle.

Finally the strictest protection is provided by the type manager model. A type manager is a
routine that implements all operations on a certain type. Any routine that wants to perfonn an
operation on the object protected by a type manager has to do so using a call to the object's

Understanding Objects VII-l-ll

PRELIMINARY

type manager. This mechanism strongly confines any error that may occur in an operation on
an object: Only the type manager can physically get to its objects. And only it is responsible
for the objects' integrity. This level of protection is represented in Figure VII-1-6 by the inner­
most circle.

In a BiiNTM system not all levels of protection have to be used at all times. Trusted routines can
trade in protection for perfonnance.

VII-1.3.1 Access Descriptors

VII-1-12

Previously, we have characterized the memory of a BiiNTM system as a network of objects and
access desscriptors as connections in the network. Access descriptor are protected pointers;
pointers, because they contain a physical address; protected, because only the BiiNTM Operating
System can create ADs. You may even identify an AD with the object because there is no way
to get to the object except by AD.

Words on a BiiNTM system are 33 bits long. The 33rd bit of every word is a tag bit. If the tag bit
is set, the hardware recognizes the word to be an AD. The infonnation in an AD, address and
rights together is 32 bits long. Figure VII -1-7 shows an AD.

Access Descriptor

I
L Read Rep} Representation

"--- Write Rep
Rights

Use }
Modify Type Rights

Control

Object

Figure VII-I-7. An Access Descriptor

The first 26 bits contain the object index, then a local bit follows, and the next 5 bits are the
rights. (There can be 226 different objects on one BiiNTM node at any time.)

There are five rights, three type rights and two representation rights. Type rights, as their name
indicates are specific to object types. Their names may vary with the types they apply to.
However, there is a naming convention for those three rights: They are called use, modify and
control. In the case of a device, they may be renamed to read, write and control and in the case
of a directory to List, and Store. There are no control rights in the case of directories.

Understanding Objects

PRELIMINARY

Type rights give access to an object's logical structure. For example, if you have modify rights
to a file you may write to this fue record by record. Representation rights are different. There
are read and write representation rights. They give access to an object's physical layout in
memory. In the type manager model no routines are granted representation rights except the
type manager. (See Figure VII -1-8)

AD with no rep rights

00

"Black Box"
Object

Operation

Operation

Operation

"Black Box"
Type Manager

Interface

Figure Vll-l-S. A Type Manager Makes the Object Appear as a Black Box

It is important to understand the difference between type rights and representation rights. For
example, take read rights and read representation rights for a file. A rue may have a very
complicated layout in memory. It may sometimes be moved around by the operating system
and it does not even have to be stored in a contiguous way. Having read rights you would
never be aware of the way the file exists in memory. You could read the logical content of the
file, however, and you could copy it. Having read representation rights to the file, on the other
hand, you could read it bit by bit and fmd out precisely how it is stored in memory. Here we
can go back to our black box analogy; type rights give you access to a black box's front panel.
Representation rights are like a mechanic's license. They allow you to take a screwdriver, open
up the box, and dig around inside.

VII-1.3.2 Type Managers

Type Managers provide the strongest protection in a BiiNTM system.

That protection is provided by the following mechanism: Any operation on an object protected
by a type manager is a call to the object's type manager. The type manager is the only routine
that operates directly on objects of its type: Only the type manager can create new instances of
its type and only the type manager can remove those instances.

To use an analogy: In rare book libraries, users are not allowed into the stacks. Type managers
act like librarians in such a library. Users of the library fill out request cards, and the librarians
bring the books out of the stacks.

Type managers implement two paradigms of the BiiNTM architecture:

• Error confinement

Understanding Objects VII-I-13

PRELIMINARY

• Independence of implementation details.

A well defined functionality is associated with objects of a given type. This functionality is
provided by one module, the type manager. The type manager concept hides implementation
details in the the type manager module and confines all errors to that same module.

As a new type is created, the system returns an AD for the type's TOO. That AD has amplify
and create rights. It will be confined to the new type's type manager. A routine may now call
the type manager and pass an AD with certain type rights to it. The type manager will use its
AD to the TOO as a key and add representation rights to the passed AD. After performing the
requested operation, the type manager strips off the representation rights and returns the AD to
the calling program. By definition any routine that holds an AD with Create and Amplify
rights to a TOO is a type manager for that type. ADs with representation rights should never be
passed outside a type manager. There is is one exception to this rule; the rule does not apply to
generic objects.

Generic objects are untyped in the sense that there is no type manager for generic objects. The
operating system functions as the type manager for generic objects and gives out ADs with
representation rights. Generic objects, however, are the only objects for which there are ADs
with representation rights outside a type manager.

Generic objects are used whenever an untyped memory segment is needed. Representation
rights are needed to write an untyped memory segment.

VII-1.3.3 Domains

VU-I-14

Domains provide protected address space for program execution. A domain is represented by
an object of type domain. How a program is split up over different domains is specified at
link-time. The modules that make up a program may be linked into separate domains or some
or all may be merged into one single domain. When calling a routine in a different domain
address space is switched to the called routine's domain. Upon return, address space is
switched back to the calling domain. The inter-domain calling mechnanism mutually protects
caller and callee.

A separate stack may be associated with any set of domains. A set of domains that share one
stack is called a subsystem. Subsystems are completely isolated from one another. The address
space of a subsystem looks very much like an independent computer all by itself.

Figure VII -1-9 illustrates the details of a domain object.

Understanding Objects

Linear Address
Space

PRELIMINARY

--- -

....... - ----

St r D t a IC a a

1 r
Instructions .i

1 r
Stack

"""'..,..,.,.,..,..,..,.,.,..,~,.,..,.I--= = = = = =_ 1 ____ ...

+-\

..,..,..,..,..,..,..,.,.,..,.,..,..,.,..,.,..,..1--= = = = =] Reserved

for OS

Figure Vll-1-9. Linear Address Space and Domain

Domain

Procedure
Table

A domain holds ADs to the static data object, the instruction object, a subsystem 10, and an
object reselVed for use by the BiiNTM Operating System.

The static data object contains data that cannot be referenced outside the current domain. If a
program has only one domain, the static data object contains all variables with globalllfetime.
The static data object also contains ADs to other domains whose external procedures can be
called from this domain.

The instruction object contains the code for all subprograms defined in this domain.

The subsystem ID references a local stack object that contains parameters, local variables and
housekeeping information used in subprogram calls. All domains in one subsystem and one job
share a stack object. If you want to have a process executing with its own stack you have to put
the process in its own subsystem.

There is a performance penalty attached to inter-domain calls. Only those modules that need
the added protection should therefore be linked into separate domains.

VII-1.4 Passive Objects
We have mentioned before that there can be active and passive versions of an object. Most of
our previous discussion applied to active objects. Although passive objects are very similar to
active objects, there are a number of differences that you will need to understand. This section
explains how objects act as the building blocks of passive store, a BiiNTM system's permanent
memory.

Understanding Objects VII-I-IS

PRELIMINARY

VII-1.4.1 Active Memory

Active memory is the collection of objects in virtual memory on a particular BiiNTM node. An
object can have versions in both active memory and passive store (Figure VII-t-tO).

PASSIVE
STORE

ACTIVE
MEMORY

Passive Version

Active Version

Figure Vll-I-IO. An Object's Active and Passive Version

Only active versions can be directly read or written. Reading or writing an object with no
active version causes the object to be activated. Objects are activated on demand, trans­
parently, just as pages of virtual memory are swapped in when needed. Both operations are
invisible to your application. Changing an object's active version does not change the object's
passive version. An explicit update call is needed to copy an object's active version to its
passive version.

VII-1.4.2 Passive Store

VII-1-16

While active memory is entirely part of one BiiNTM node, passive store is completely dis­
tributed in a BiiNTM system. Passive store is the glue that holds a distributed BiiNTM system
together. (See Figure VII-t-tt)

Understanding Objects

PRELIMINARY

Figure VII-l-ll. Passive Store Unifies All Nodes in a BiiNTM System.

Passive store wraps around an indefinite number of disks in a distributed BiiNTM system. Logi­
cally it is divided up into volume sets. Volume sets are associated with individual nodes.
However, that association is transparent to the user.

VII-1.4.3 Passive ADs

When an object is first stored, passive store creates a passive AD for the object. A passive AD
is a much bigger entity than an active AD. The reason is that a passive AD is a unique refer­
ence on an entire distributed system, while an active AD is valid only on a particular BiiNTM
node.

Whenever an AD crosses the boundary between active and passive store or between different
nodes of a distributed system, it has to be converted from its active to its passive fonn.

Just as there can be multiple active ADs to one object, there may be more than one passive AD
to an object. (There may also be active ADs to passive objects.) One of the passive ADs is the
master AD. All other passive ADs are called alias ADs. The master AD plays a crucial role.
An object cannot be stored until a master AD exists. If there is no longer any master AD for an
object that object will be removed. There are the following exceptions to that rule:

• If the master AD is stored in a directory and other directory entries on the same volume set
reference the object. One of these alias ADs then becomes the new master AD.

• If the master AD is stored in another object and other ADs in that object reference the
object One of those alias ADs then becomes the new master AD.

Understanding Objects VII-1-17

PRELIMINARY

VII-1.4.4 Passive Store Protection -- Authority Lists

VII-I-18

Naming of and references to passive objects are slightly different than for active objects. The
reason for this is simple: An AD once given out is irrevocable. That means that rights once
granted by giving out an appropriate AD cannot be taken back. Generally this poses no
problem in active memory since usually active objects only exist for short time periods. Ob­
jects on disk, however, exist indefinitely.

The model for protecting objects in passive store is different from the address space protection
provided by ADs in active memory. Protection requirements are different for passive objects
than for active objects.

In active memory a program should execute as much as possible in a secluded cell. Thus the
segment of memory that can be affected by an erring program is kept to a minimum size.

This protection philosophy is inadequate for passive store for two reasons.

• Passive store is distributed. The view that anyone job has of passive store should as wide
as possible without opening up protection holes.

• Objects in passive store exist indefinitely. Infonnation of who may access an object stays
with the object. This allows the owner of the object to alter access over the lifetime of the
object. (The philosophy behind active memory protection is to attach the infonnation of
who may access an object not to the object but to the requesting job. In this model it is
difficult to revoke access once it has been granted.)

The difference explained in the second point above can be likened to the difference between a
key lock and a combination lock. A key will always open the key lock just as an AD will
always grant access to its object. But a combination can be made invalid when the lock is reset.

The protection provided for stored objects is based on the concept of an authority list. An
authority list consists of <lD, Type Rights> pairs. When an object is first stored, an authority
list can be specified by the storing process. If no authority list is given, the object will receive
the default authority list of the directory in which it is stored. If there is no default authority list
for the directory, the object receives the storing process's default authority list defined in the
process globals. A passive object may also have no authority list.

An authority list is a vehicle for granting access to different users, user groups and programs.
The owner can grant or revoke access at any time by specifying a new authority list. (Figure
VII-1-12 shows how authority lists fit into the organization of passive store.)

Understanding Objects

PRELIMINARY

Directory

Entry IMaster
Name AD

Passive Ob ject Descriptor

-I 1

Owner

"Passive Version -
TDO

Optional
Authority

... List
Type

ID1

Rights
Type

I ID~
Riqhts

I
I

Figure Vll-1-12. A Stored Object

Authority lists defme access in two operations and for both in slightly different ways: Firstly,
when a passive object is explicitly retrieved, the retrieving job's list of IDs is compared to the
authority list and an AD is returned with the combined rights of all matching IDs. Secondly,
when an AD is transparently activated, the activating process's ID list is checked against the
authority list of the container and against the authority list associated with the AD proper. This
ensures that stored ADs cannot be activated unless their rights are current. Should rights have
been revoked since the AD was given out, the AD will loose those rights when it is activated.
Note that an object's owner always has access to the object even if his ID does not appear in
the authority list For more details, see Chapter III-3.

VII-1.4.5 IDs

As you have seen in the previous section IDs are central to the protection concept used for
passive store. It is therefore necessary to tell some more details about IDs.

IDs are maintained centrally in a a BiiNTU system, namely in the Clearinghouse. To get back to
our previous example of the two different locks: Each ID is like the combination for a com­
bination lock. (The analogy is a little bit weak at this point since combination locks usually
only have one combination. Let's however disregard this for the moment and assume that there
are combination locks that open by more than one combination.)

As IDs are, the keys to stored objects, they in tum have to be protected. This is achieved by
way of protection sets and passwords. Protection sets are similar to authority lists. They consist
of <ID, Rights> pairs. The two rights defined for IDs are portray and control. The portray
right grants the holder pennission to add this ID to an ID list. Control rights allow the holder

Understanding Objects VII-1-19

PRELIMINARY

to alter the password on an 10. By specifying the proper password, one can obtain an AD to an
10 with portray rights.

VII-1.4.6 Updating Stored Objects

Most calls to passive store are transaction-oriented. In particular, updates on stored objects
can be included in a transaction. (A transaction ensures that all the operations included in it are
executed as a unit: Either all the operations inside a transaction will be executed or none of
them.) With the help of a transaction, you can prevent incomplete updates. Including calls to
passive store in a transaction also prevents clashes between multiple jobs attempting an opera­
tion on the object. While the older of two transactions executes, it reselVes the object. The
younger transaction simply waits until the older one finishes.

Another problem arises when multiple active versions of an object exist. An obsolete active
version could be used to update the passive version. Two situations can arise:

Multiple Activation Model:
There are multiple active versions of a passive object. Passive store keeps
track of all active versions and refuses updates from obsolete versions.

Single Activation Model:
A single activation object is only activated in one home job. Other jobs
that activate the object receive a token active version of the object called
homomorph. Jobs that want to update the object have to communicate with
the home job. For all operations on the object the job communicates with
the home job of the object.

Both models are supported by the BiiN"" system. Depending on the needs of an application, the
programmer can decide which one to use. In this context it is only important to note how
updates are handled in these two models.

VII-1.5 Summary

VII-1-20

After having read this chapter you should understand the following concepts:

• All infonnation in a BiiNTM system is contained in objects.

• Objects are typed and protected memory segments.

• Objects are the unit of protection.

• Access descriptors are protected pointers. Objects can only be accessed with access
descriptors.

• Objects can be dynamically allocated, resized, and destroyed.

• Objects may "know" what operations can be perfonned on them and how.

• Objects can have passive and active versions.

• Objects can be local to a job or global to a particular node.

• Passive objects are uniquely identified on all BiiNTY nodes and for all time.

• Access descriptors can pass freely between the nodes of a BiiNTM system.

If you understand all these concepts, you can go on to the next chapter which explains memory
management.

Understanding Objects

Contents

PRELIMINARY

UNDERSTANDING 2
MEMORY MANAGEMENT

Physical Memory Organization .. VTI-2-2
Virtual Memory Organization ... VII-2-S

The Object Table 0 • 0 • 0 • 0 • 0 0 • 0 0 ••• 0 0 0 0 0 0 0 0 0 • 0 •• 0 0 • 0 • 0 • 0 0 • 0 VII-2-S
Object-Based Address Translation .. 0 ••• 0 0 0 0 0 0 ••• 0 0 • 0 0 ••• 0 ••• 000 0 0 •• 0 • 0 VII-2-7
Storage Resource Object 00 0 0 0 • 0 • 0 0 0 0 000 0 • 0 0 0 0 0 0 0 • 0 0 •• 0 0 0 0 0 0 0 0 • 0 0 • 0 • 0 • VII-2-7
Object Representations 00 0 ••• 0 ••• 0 0 0 • o ... 0 0 0 0 0 0 •••• 0 • 0 • 0 • 0 0 0 00 ••• 0 0 0 0 VII-2-8
Frozen and Nonnal Memory Types ... 0 0 0 0 •••• 0 • 0 0 • 0 0 •• 0 0 • 0 0 0 •• 0 0 • 0 •• 0 •• VII-2-9

Different Allocation Policies 0 0 0 0 •••••• 0 • 0 0 •••• 0 • 0 0 0 0 0 ••• 0 0 0 0 0 •••••••• VII -2-9
Object Lifetimes 0 ••• 0 •••• 0 •• 0 0 •• 0 0 0 0 0 0 •••••••• 0 0 0 • o. 0 0 •• 0 0 0 • 0 •••• 0 0 • 0 0 •• VII-2-9
Object Deallocation Strategies . 0 • 0 •• 0 • 0 0 00' 0 • 0 0 •• 0 ••• 0 •••• 0 0 • 0 0 •••• 0 0 0 0 0 0 • VII-2-10
Controlling and Accounting for Memory Resources 0 0 • 0 •• 0 •• 0 •• 0 0 0 0 0 0 0 ••••• 0 0 0 VII -2-12

Object Activation . 0 • 0 • 0 •• 0 0 ••• 0 0 0 0 0 0 0 ••• 0 0 0 • 0 •••• 0 0 0 0 0 0 0 ••• 0 • 0 0 0 ••• VII-2-12
Virtual Memory Paging 0 0 •• 0 0 • 0 • 0 ••• 0 0 • 0 • 0 0 0 0 0 • 0 0 • 0 0 0 • 0 • 0 0 •• 0 ••• 0 0 •• VII-2-12
Global Garbage Collection . 0 0 • 0 •• 0 0 • 0 • 0 • 0 • 0 0 0 • 0 • 0 0 •••••• 0 •• 0 0 •• 0 0 0 0 0 VII-2-13
Compaction .. 0 ••• 0 • 0 0 0 0 0 0 •• 0 • 0 0 0 • 0 0 0 0 ••• 0 • 0 0 0 0 •••••• 0 0 • 0 0 0 0 • 0 0 0 0 0 VII-2-13
Optimized Handling of Instruction Objects 0 0 00' 0 •••• 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 ••• 0 VII-2-13

User-Transparent Memory Management Functions 0 0 0 0 0 0 0 0 0 0 0 0 •• 0 0 • 0 • 0 0 0 0 0 0 • 0 VII-2-12
Summary .0000000000000. 0 0 000000000. 0.0.0000000000 •• 0 0000000. 0 0 0 0 0 0 • oVII-2-13

Understanding Memory Management VII-2-1

" PRELIMINARY

Objects are abstract constructs. Just as you cannot understand the concept of an automobile by
studying metallurgy, you cannot understand objects by looking at their representation in
memory. However, if you want to design a car, you will probably have to understand some
metallurgy. Similarly, you will have to understand how memory is managed in a BiiNTM node if
you are going to do some system programming, because objects are "made out of memory" .

This chapter describes how a BiiNTM node manages its memory. It covers the underlying con­
cepts of virtual memory and of the allocation and de allocation of objects. It discusses how
objects are laid out in memory, when they can be moved around by the system and when not.
And fmally, it shows the fonns of addresses in a a BiiNTM system and how they are resolved.
This chapter does not give a detailed description of passive store. IJowever, where passive
store concepts are relevant to active memory management, they will be explained briefly. This
chapter builds on the previous chapter (Chapter VII -1). You should either read that chapter or
have a good understanding of objects and how they function in the BiiNTM architecture, before
reading this chapter.

VII-2.1 Physica"1 Memory Organization

VII-2-2

Physical memory consists of a node's RAM and all disks that are mounted on the node. Physi­
cal memory is divided into active memory and passive store. Figure VII-2-1 shows how
memory is organized in a BiiNTM system.

Understanding Memory Management

Active Memory /----,

PRELIMINARY

Active Memory /----,
/ " / " / , / ,

I \ I \
) r J--_I

\ Node / "'" Node I
/

/
\-..,....,./

\ / " -"'"

" '/

(

I

(
\

Passive
Store

\
\
;>,

I -

\

}
I

/
/

/ /'" - \
I

\ ! " / '''-----~
Active Memory

Figure Vll·l·i. The Organization of Memory in a BiiNTM sytem

Active memory, as its name indicates, is the immediate' 'working space" of the processor.
Active memory is also volatile. Its contents are lost whenever the system is turned off. Passive
store on the other hand is pennanent storage. Its contents cannot be lost unless a disk is
damaged. (See Figure VII-2-2.)

Understanding Memory Management VU-2-3

VII-2-4

Passive
Store

PRELIMINARY

"Stable Store"
(Battery-Backed- U p

RAM Memory)

•
• •

+

0000000
0000000

< Blocks Reod

-> Blocks changed
and pushed out
of stobie store

Figure VII-2-2. Passive Store

Filing
Volume Sets

on Disk

•
• •

c:Y
The memory pool on all disks of a node is partitioned into volume sets. Volume sets in tum
consist of from 1 to 254 volumes. A volume set can span multiple disks. A single volume
always resides on one particular disk. However, there can be more than one volume on a single
disk. A volume set can be either a swapping volume set in which case it is part of the active
memory, or afiling volume set and part of passive store. Swapping volume sets are invisible to
the user. They appear as part of active memory, and from a user's point of view, the memory in
a swapping volume set looks identical to the RAM.

The physical memory that underlies all other memory is partitioned into 4K byte page frames.
Each page frame is uniquely identified by a page number. (See Figure VII-2-3.) A page frame
is simply an empty page. A page is the unit of abstraction of memory management. The
smallest unit that memory management recognizes is 64 bytes.

Ph ysical Memory

a 1 2 3 4

DDDDD • • •
4K 4K 4K 4K 4K

Figure Vll-2-3. Physical Memory is Divided into Pages

Private to memory management is a central page frame table (PFf) where information about
the contents of all page frames is stored. Since a single page frame may contain different
information as time progresses, the contents of the page frame table entry will change as well.
(There is a parallel here between physical and logical memory organization: Object table and
page frame table and object descriptor (object table entry) and page frame table entry play
similar roles. An important difference between the two is that the object table is recognized by
the hardware, while the page frame table is purely a software concept.)

Understanding Memory Management

PRELIMINARY

VII-2.2 Virtual Memory Organization
Active memory is organized according to the virtual memory concept. This means, the part of
memory that is directly accessible to the node may span parts or all of the node's RAM and
mass storage devices such as disk drives as well. The processor's total physical address space
is 232 bytes. (TIlat is about 4G bytes.) (See Figure VII-2-4.) The total virtual address space
pennissible is 258bytes, consisting of 226 objects and 232bytes per object The virtual memory
concept frees the system from the limitations imposed by relativley scarce primary memory.

Active Volatile + Swapping
Memory RAM Memory Volume Sets

on Disk

• • • • • •
J 0000000 < >~ 0000000 0 !5c9in9

-0000000

Figure Vll-2-4. Active Memory Uses Both RAM and Disk.

Virtual memory management takes advantage of the fact that the entire address space of the
node is not used simultaneously at all times. The processor can only directly address pages that
are available in RAM. This part of memory is called primary memory. Memory management
moves pages in and out of primary memory in such a way that the user has the illusion that all
the information is contained in primary memory. Pages are swapped in as they are referenced
and swapped out when they are no longer needed. A page is either accessible or not. If the
page is accessible, it means, the page resides in primary memory and the process can get to it
directly. If the page is not accessible, memory management retrieves it from its location in
secondary memory (on disk, in the swapping volume set) and places it in primary memory.

There is a common page pool that is a list of free pages in primary memory. When a job
requests space in RAM, pages from the common page pool are allocated to it When a page
that is not altered is returned to the common page pool, then, if a process references the page, it
can be reclaimed from the pool, thereby avoiding a swap-in. In essence, the common page pool
represents a cache of pages in the swapping volume set If a page is not available in the com­
mon page pool, it is swapped in from disk. That means, its contents is copied into a newly
allocated page frame.

VII-2.2.1 The Object Table

Physical memory is organized in terms of pages. On the other hand logical organization of
memory is in terms of objects. The page frame table (PFf) centralizes important infonnation
about pages. Analogous to the PFr in the organization of physical memory is the object table
in the logical organization of memory. (TIle object table is a hardware defined and hardware
recognized data structure, while the page frame table is a purely software defined data
structure.) The PFr consists of page frame table entries, and the object table consists of object
descriptors. (See Figure VII-2-6.)

Understanding Memory Management VII-2-5

VII-2-6

Current
Registers

Offset

Object Index

Type
Definition

Object

PRELIMINARY

Object
Table

aD

fbi.ct oescriPt\
TDO AD Base Address

Size Status
Referenced

Object

Referenced
Field

Figure Vll-2-S. The Object Table and Object Based Adress Translation

Objects can only be referenced by access descriptors (ADs). There can be a multitude of ADs
to any single object. It is necessary to have one single place where important infonnation about
the object is stored, such as its physical address. Otherwise all ADs to the object would have to
be updated if some of the infonnation changese For this reason~ there is exactly one object table
per node.

Understanding Memory Management

PREUMINARY

VII-2.2.2 Object-Based Address Translation

Figure VII-2-5 also illustrates the addressing mechanism. The BiiN
TU

system recognizes two
types of addresses, linear and virtual addresses. Linear addressing is faster than virtual ad­
dressing, but is restricted to a single domain. Linear addresses are used for programs that
execute entirely inside a linear address space. This would typically be the case with
FORTRAN and Pascal programs. In order to access arbitrary objects in the system you have to
use virtual addresses. Figure VII-2-6 shows a valid virtual address.

Byte Offset o

Val id AD to ob ject 4

Word
Boundary

Figure Vll-2-6. A Valid Virtual Address

Virtual addressing is an object-based addressing scheme. Figure VII-2-5 illustrates the virtual
addressing scheme. A virtual address consists of two parts, an AD to the object that contains
the field that you want to access, and an offset into the object that specifies where the field is
located inside the object. A linear address is an offset by itself, witout an AD.

As mentioned previously, the AD does not reference the object directly but rather it refers to
the object descriptor in the object table. The object descriptor holds the physical address of the
object.

VII-2.2.3 Storage Resource Object

There is one storage resource object (SRO) associated with each job. It represents a pool of
storage local to the job and all its processes. When an SRO is first created, a certain storage
claim is assigned to it. As storage is allocated from the SRO the storage claim is debited, and if
storage that had been allocated from the SRO is deallocated, the claim is credited with the
proper amount. Ajob's local SRO is a global object which is removed once its controlling job
tenninates. In addition to local SROs there are two global SROs for each BiiN

TU
node, one

controlling normal memory allocation and the other one controllingjrozen memory allocation.
Global SROs can only be referenced by administrative users and trusted type managers.
Global SROs have unlimited storage claims. SROs are active-only objects: That means that
SROs cannot be passivated. (For a discussion of nonnal and frozen memory, see section
VII-2.2.5.) Figure VII-2-7 illustrates SROs in a node's virtual memory.

Understanding Memory Management VII-2-7

PRELIMINARY

Node

Global Address Space

Local SRO's

Figure Vll-2-7. Active Virtual Memory, Jobs, Nodes and SROs

VII-2.2.4 Object Representations

VII-2-8

An object's representation is an area in virtual memory that holds the contents of the object.
An object's representation has a certain size that can range from 0 to 232 bytes. However,
object sizes are rounded depending on the size of the object:

1. If size = 0 bytes, or if the object is a semaphore, then the object's representation is
entirely contained within the object descriptor. These objects are called embedded objects.

2. If 0 < s i z e <= 4 K bytes, then s i z e is rounded up to the next multiple of 64 bytes.
These objects are called simple objects.

3. If 4K < size <= 4M bytes, then size is rounded up to the next multiple of 4K bytes.
These objects are called paged objects.

4. If 4M < size <= 4G bytes, then size is rounded up to the next multiple of 4M bytes.
These objects are called bipaged objects.

The reason for the rounding outlined above stems from the paged structure of the underlying
physical memory. The following paragraph outlines the mechanism. For more details refer to
BiiNTM Systems CPU Architecture Reference Manual.

Simple objects can share a page frame with other simple objects. If an object's size is equal to
4K bytes, it will occupy a page all by itself. In the case of a paged object the object descriptor
references a page table (PT). A page table is simply a list of all pages that are part of the
object's representation. The page table is located on a page frame itself, possibly together with
other object's page tables. If a paged object's size is equal to 4M bytes, the page table will
occupy an entire page by itself. The object descriptor of a bipaged object references a page
table directory (PfD). This is a list of page tables which in turn are lists of page frames.
Instead of having one very long page table there are two levels of page tables (hence the name
bipaged objects) -- many 4K page tables, and one level up, a table of those page tables. In the
extreme case of an object occupying 4 G bytes, the page table directory itself occupies an entire
page.

Understanding Memory Management

PRELIMINARY

The object table is a paged or bipaged object. It is handed out in units of single pages which
can contain up to 256 object descriptors. Whenever possible, the object table is kept down to a
paged object to keep down address translation times. Only when necessary will the object table
become bipaged.

VII-2.2.5 Frozen and Normal Memory Types
In certain cases, such as real-time or time-critical applications the virtual memory mechanism
of swapping pages in and out of primary memory may cost too much time. Upon request, a job
can run infrozen memory. The job's SRO will then allocate objects that will not be moved
between primary and secondary memory but will reside entirely within primary memory. A
local SRO that has afrozen memory type has an infInite storage claim. The designer of the
application will have to take care that there is sufficient primary memory to run the program.
Furthennore, in order for all pages to be allocated before the program runs, the user must have
allocate-on-creation rights for the SRO.

Most other programs will run in normal memory. They have an SRO with a normal memory
type. The SRO than has a given fixed storage claim.

VII-2.3 Different Allocation Policies
Two policies are used when paged objects are allocated in primary memory. The standard
policy for SROs with a nonnal memory type is allocate-on-reference: First, only the page table
directory is allocated for a bipaged object and the page table of a simply paged object. Second
level page tables of bipaged objects and pages of paged objects are physically allocated in
memory only when they are directly referenced.

The second policy, called allocate-on-creation, is reserved for SROs with frozen memory type.
The SRO also needs to have allocate-on-creation-rights. Allocate-on-creation can be explicitly
enabled and disabled for such an SRO. If an SRO with allocate-on-creation enabled allocates
an object, the entire representation of the object will be allocated. This technique is useful for
time-critical and real-time applications.

VII-2.4 Object Lifetimes
There are local and global objects in the BiiNTM system. Local objects are local to a particular
job. That means that the active version of a local object is removed when the controlling job
finishes.

A local object can however be passivated, and the passive version will survive when the con­
trolling job fInishes. When the passive version is again activated, its active version will again
be a local object and will automatically disappear, once the job that activated the object
finishes. A local object that has never been passivated will disappear completely once its
controlling job finishes. Global objects exist outside any particular jobs. There are two types
of global objects, unbounded global objects and countable global objects.

An unbounded global object's active version can exist indefinitely, or more precisely, until it is
explicitly removed by global garbage collection. Global objects can also be passivated and
thus survive system crashes and explicit garbage collection.

Understanding Memory Management VTI-2-9

PRELIMINARY

Countable global objects behave very much like unbounded global objects. However, un­
bounded global objects have one distinct disadvantage that countable global objects avoid:
Unbounded global objects can only be removed by global garbage collection. Global garbage
collection is a very expensive process because it may involve extensive disk traffic. It is
desirable that it not be used too often. Countable global objects can be deallocated without
global garbage collection. This is done with the following technique.

For countable global objects, there is a mechanism that keeps track of all references to a
particular object. Whenever an AD is given out to a job for the first time, the reference count is
incremented by one. Also, whenever a job tenninates that held an AD to the countable global
object, the reference count is decremented by one. If the reference count equals zero, object
management is notified and then removes the object. Note that the reference count keeps track
of how many jobs hold references to the object, not how many ADs have been given out A
job can also logically delete its AD to an object The job then continues to run but forfeits its
access to the particular object This causes the count of logically deleted references to be
incremented. When the count of logically deleted references is equal to the reference count,
deletion of the object also results. The BiiNTM Operating System and the hardware work
together to prevent lifetime violations.

ADs can also be local and global. On the simplest level, this means, ADs to a local object will
always be local ADs. If this were not so, global ADs to a local object could outlive the object
For that same reason local ADs are confined to one job. Global objects can have local and
global ADs. Countable global objects, however, have only local ADs. This ensures that all
ADs that belong to one job will disappear once the job tenninates.

VII-2.5 Object Deallocation Strategies

VII-2-10

There are various ways of removing, or deallocating, objects that are no longer needed. This is
an important task. Without it, memory would be exhausted in a very short time period. The
way objects are deallocated depends on the object and on the needs of the job that uses them.
In particular, there are these methods for de allocating objects:

• Explicit Deallocation

• Local Garbage Collection

• Global Garbage Collection

• Reference Counting

• Deallocating Passive Versions.

• Job Tennination

Explicit de allocation (using Object Mgt. Deallocate) is the simplest, most direct
method to remove an object. It is used whenever a job "knows" that an object that it has
created is no longer needed. Note, however, that such deallocation removes only the object's
active representation. The object descriptor will still be there. If an AD is used to access an
object whose representation has been deallocated and which has no passive version, the excep­
tion System_Exceptions. object_has_no_representation is raised. If there ex­
ists a passive version of the object, it is transparently activated. Note, however, that when you
deallocate an object's representation, the object's passive version is not updated automatically.
If you want to save any changes on the object, you have to specifically update the passive
version.

Understanding Memory Management

PRELIMINARY

There is an operation available to trusted routines called
Unsafe_Object_Mgt. Unsafe_deallocate. This operation removes not only the
object's representation but the object descriptor as well. This operation is unsafe because if
there are any ADs to the object after the object has been completely removed from the system,
a use of this AD will result in a dangling reference. A routine that uses
Unsafe_deallocate has to ensure that there are no ADs left to the object outside the
routine itself. Failure to do so can cause fatal system behavior.

Local objects for which there are no more ADs can be reclaimed by local garbage collection.
The purpose of local garbage collection is to enable long-running jobs to periodically clean up
their address spaces. Garbage collection can be started and then runs as a daemon. When run as
a daemon it will wake up periodically whenever the storage claim of the job falls below a
certain adjustable percentage. A minimum delay between runs of the garbage collector
(GCOL) can also be specified. This is to prevent GCOL from running permanently when a
job's storage claim becomes low.

GCOL Daemon

C5
Un referen ced Ob ject

Figure Vll-2-S. Garbage Collector

GCOL finds each object with no reference and labels it as garbage. It then starts to remove
these objects. Differently from an explicit Deallocate, GCOL also removes an object's
object descriptor. It can do so because it has previously made sure that no ADs to the object
exist.

When a job finishes all objects local to the job are removed completely, representation, local
ADs, and object descriptors.

Besides the local garbage collection, there is also a global garbage collection mechanism.
Global garbage collection works for global objects the same way local garbage collection
works for local objects. Global garbage collection is invoked periodically by the system and
removes all unreferenced objects. Global garbage collection is an expensive process: It may
involve a lot of disk traffic. Therefore, global garbage collection should run as infrequently as
possible.

As mentioned previously, countable global objects can be removed without the overhead of
garbage collection.

Understanding Memory Management VII-2-11

PRELIMINARY

VII-2.6 Controlling and Accounting for Memory Resources
Jobs are dispatched to the processor by a scheduler. The scheduler recognizes four different
classes of jobs: batch, interactive, time-critical and real-time. What class a particular job
belongs to, depends on what SRO the user specifies when the job is started. (A user has to have
the necessary rights to an SRO in order to run a job from it.) Depending on the type of the job,
a storage claim of a certain size is defined in the job's SRO by the scheduler.

When an object is allocated from an SRO, the job's storage claim is charged. Accounting is
done for the number of object descriptors allocated from the SRO and for the size of the
representation of the object. If a local SRO gets to the bottom of its claim, local garbage
collection is automatically invoked. In most cases this will result in enough memory space
being reclaimed to be able to satisfy the job's allocation request. However, if the garbage
collection cannot reclaim enough space to handle the job's allocation request, the job is ter­
minated with a message that states that resources have been exhausted. Accounting is done on
a per job and per node basis.

In addition, the class of a job has a more subtle influence on memory allocation than just
setting upper limits on the allowed space. In particular, it specifies whether a job is subject to
virtual memory paging or not. In the extreme case, a job can run in frozen memory. That
means, all of its virtual memory is primary memory. Thus all the job's objects are im­
mediately accessible without swapping pages. This increases perfonnance considerably.

VII-2.7 User-Transparent Memory Management Functions
Most of the functions of memory management are executed transparently to the user. In par­
ticular this includes the following:

• Object Activation

• Virtual Memory Paging

• Global Garbage Collection

• Compaction

• Optimized Handling of Instruction Objects.

VII-2. 7.1 Object Activation

This section describes the mechanism behind transparent object activation. Typically, an
object's representation is deallocated and a process holds an AD to the object. When the
process touches the object, the BiiNTM Operating System fmds that the object has no represen­
tation. At that point it attempts to fmd the object in passive store. If it succeeds, the passive
version is copied into active memory and becomes directly available to the requesting process.
Otherwise, activation fails.

VII-2.7.2 Virtual Memory Paging

VII-2-12

The virtual memory concept solves the problem that primary memory is scarce. A large part of
virtual memory is secondary memory; that is disk. When a process touches a page that is
presently held in secondary memory it will be swapped into primary memory. Secondary
memory that is part of virtual memory is called swapping memory. Swapping memory is
devided into volume sets, just as passive store. Swapping pages between swapping volume sets

Understanding Memory Management

PRELIMINARY

and primary memory is invisible to the requesting processes. Extensive page swapping,
however, slows down program execution. For that reason real-time jobs have all their memory
requirements satisfied in primary memory. (In this case the programmer has to make sure that
there is enough primary memory available to satisfy the job's demands.)

VII-2.7.3 Global Garbage Collection

The system periodically invokes a global garbage collector daemon. The daemon is responsible
for cleaning up a node's global memory. It removes all global objects for which no AD exists
on that node. Garbage collection runs in the background and is invisible to the user. Global
garbage collection involves a great amount of overhead. This is because the objects that gar­
bage collection is looking for are unreferenced objects. Objects that have not been referenced
in a while tend to move to secondary memory. Finding all those objects and removing them
involves a lot of disk traffic. Remember also that garbage collection has to search all objects on
a node for references.

VII-2.7.4 Compaction

The representation of a simple object usually takes up less than one page of of memory (4 K
bytes). When pages are swapped out, compaction is transparently invoked. Compaction takes
simple objects and optimizes memory use by placing multiple simple objects on one memory
page. Swapping always happens page by page. When a user requests a simple object that is
presently on a swapping volume set and shares a page with other simple objects, the entire
page that holds the object is swapped in.

VII-2.7.5 Optimized Handling of Instruction Objects

As their name indicates instruction objects hold processor instructions and constants necessary
for program execution. Program execution is optimized in three ways:

• Pages of instruction objects are directly paged in from the file. You do not need to ex­
plicitly activate (or load) the instruction object

• The representation of a (local multiple activation) instruction object is physically shared by
all jobs using it whenever possible. This avoids having multiple identical copies in active
memory.

• When a job terminates, pages of the instruction object may remain reclaimable for some
time. That means, another job that runs later and uses the same instructions can reclaim
those pages without having to copy them from disk.

VII-2.8 Summary
After having read this chapter you should now have a basic understanding of how active
memory is managed in a BiiNTM node. In particular, you should have grasped the following
concepts:

• Physical memory organization

• Virtual memory

• The object table

• Storage resource object

Understanding Memory Management VII-2-13

PRELIMINARY

• Objects representation

• Granularity of object sizes

• Memory types

• Object allocation

• Object lifetimes

• Objectdeallocation

• Control of memory resources

• Transparent memory functions

• Addressing

VII-2-14 Understanding Memory Management

PRELIMINARY

BUILDING A TYPE MANAGER 3
Contents

Concepts .. VII-3-2
The Type Manager Defines All Calls for a Type of Object VII-3-2
Type Managers Hide Data Representation VII-3-3
Only the Type Manager Has the Key to Access the Type's Objects VTI-3-3
One Module Can Manage Multiple Types VTI-3-3

Techniques .. VII-3-3
Defining the Public Type ... VII-3-4
Defining Type Rights .. VII-3-5
Defining Exceptions .. VII -3-6
Defining the Type's Calls .. VTI -3-6
Defining the Private Types ... VII-3-7
Defining Needed BiiNTM Ada Type Overlays VII-3-7
Creating the TOO ... VII -3-8
Binding to a Stored TOO ... VTI-3-8
Implementing the Is_account Call VTI-3-8
Implementing the Create_account Call VTI-3-9
Implementing the Create_stored_account Call VTI-3-9
Implementing Calls that Require Type Rights VII-3-1 0
Implementing Calls that Do not Require Type Rights VII-3-11
Implementing the Destroy Call VII -3-11
Making Operations Atomic .. VII-3-12
Initializing the Type Manager .. VII-3-13
Protecting the Type Manager from Other Services VII-3-14

Summary .. VII-3-15

Building a Type Manager VII-3-1

PRELIMINARY

A type manager is a program module that defines a particular object type and all calls for
objects of that type. This chapter shows you how to build a type manager.

Packages Used:

Access_Mgt

Object_Mgt

Interface for checking or changing rights.

Provides basic calls for objects.

The example for this chapter, Account_Mgt_Ex, is a simple, general-purpose type manager
written as a Ada package. The complete listing of this example can be found in Appendix X-A.

VII-3.1 Concepts
A type manager provides both data abstraction and protection for the objects of its type. It does
so by defining all calls for its objects. No operations but the ones defmed by the type manager
are possible on the objects protected by it. It is therefore important that you provide all neces­
sary calls when building your type manager.

The type manager holds a key that allows it to create objects of its type and to add represen­
tation rights to ADs that are handed to it by calling programs. The key is an AD to the TOO
with amplify and create rights. It is given out when the TOO is first created.

VII-3.1.1 The Type Manager Defines All Calls for a Type of Object

A type manager defmes all basic calls for an object type. For example, the
Account_Mgt_Ex type manager defmes calls for account objects:

VII-3-2

Is account Checks whether an AD references an account

Create account
- Creates an account with an initial balance.

Create stored account
- Creates and stores an account.

Get balance Returns an account's balance.

Change balance
- Changes an account's balance.

Transfer Moves an amount between accounts.

Destroy account
- Destroys an account

Callers must use the type manager Account _Mgt _Ex to do any of the above calls on an
account More complex calls must be composed from the type manager's basic calls. Again, it
is important that the list of basic operations be complete, or else there is no way to do the
operation on an account. For example, if you forgot the Destroy_account call, there
would be no way to eliminate unneeded accounts.

Building a Type Manager

PRELIMINARY

VII-3.1 .2 Type Managers Hide Data Representation

Type managers provide data abstraction, concealing the representation of data from callers.
For example, Account_Mgt_Ex provides the calls Create_account and
Change _ balan ce that affect the data in an account. To other services, an account is an
abstract data type; the caller doesn't need to know or care how data in the account is
represented.

Data abstraction makes software more:

reliable

maintainable

extensible

Only the type manager accesses the representation of a particular type of
data. If the type manager is correct, then no outside program error can
corrupt data of the type.

Data representation can be changed as long as the correctness of the basic
calls is preserved.

Changes in functionality can easily be implemented as long as they are
compatible with the existing interface. In our example, operations on ac­
counts could be realized using transactions without any other program but
the type manager having to be changed.

VII-3.1.3 Only the Type Manager Has the Key to Access the Type's Objects

The type of an object is uniquely defined by the object's TOO. A TOO for a new type of
object can be created with Object_Mgt. Create_TOO. Object_Mgt. Create_TOO
returns an AD to the new TOO. This AD has create and amplify rights. Those are necessary to
create new instances of the managed object, and to add access rights to ADs of managed
objects. Any module that has a TDO with create rights and amplify rights is by defInition a
type manager for that type.

In order to protect a newly created type, the AD to the TDO that has create and amplify rights
should be confined to your type manager.

VII-3.1.4 One Module Can Manage Multiple Types

The type manager model provides a flexible way of protecting objects. In particular, one
module can manage as many types as you choose. However, it is obvious that the number of
types that a type manager manages should be strongly limited. Otherwise the concept defeats
itself. For example, it is common that one type manager manages closely related objects such
as files and opened files.

VII-3.2 Techniques
This section shows you each step in building a type manager. After reading this section, you
will be able to:

• Define the Public Type

• Define Type Rights

• Define Exceptions

• Define the Type's Calls

• Define the Private Types

Building a Type Manager VII-3-3

PRELIMINARY

• Define Needed Type Overlays

• Create the TOO

• Bind to a Stored TOO

• Implement the Is Call

• Implement the Create Call

• Implement Calls that Require Type Rights

• Implement Calls that Don't Require Type Rights

• Implement the Destroy Call

• Make Operations Atomic

• Initialize the Type Manager

• Protect the Type Manager from Other Services.

The first four techniques describe the type manager's package specification, the public inter­
face used by outside callers.

The next eleven techniques describe the type manager's package body, the package implemen­
tation, which is hidden from outside callers.

The last technique describes how to use BiiNTM Ada pragmas and the BiiNTM Systems Linker to
completely protect your type manager from other services.

The Account_Mgt_Ex example is a type manager for accounts, each containing a long
integer balance. It is a general-purpose type manager and could be used for inventory ac­
counts, bank accounts, or other accounting applications. Appendix X-A contains complete
listings for the Account_Mgt_Ex package. Various implementations of this type manager
are described in this chapter and in Chapters VII-6 and VIII-2. The implementation described
in this chapter is the simplest and supports active-only accounts.

VII-3.2.1 Defining the Public Type

VII-3-4

The type manager's package specification defines the public type, the type used by outside
callers to reference an account The account_AD access type is the public type for accounts.
It references a private type account_object that is defined as a null record.

The package specification for Account_Mgt _Ex defmes the public type:
114 type account_object is limited private;
115
116 type account AD is access account object;
117 pragma access kind(account AD, AD);
118 -- User view of an account~

The null record is defmed in the private part of the specification:

Building a Type Manager

295 private
296

PRELIMINARY

297 type account object is
298 -- Empty dummy record. The real object
299 -- format is defined in the package body.
300 record
301 null;
302 end record:
303
304 end Account_Mgt_Ex:

A dummy record fonnat is defmed because the BiiNTM Ada compiler requires a record layout in
the package specification, but it is still desirable to conceal the actual object representation in
the package body. The account_object type is never actually used, because account ADs
lack rep rights and cannot be used to read or write account objects. Actual reading and writing
is done within the package body with types defined there.

VII-3.2.2 Defining Type Rights

Type rights allow a type manager to differentiate between users. The implementer of the type
manager can require certain type rights for certain calls. It may also permit certain calls with­
out any type rights. In the example presented here, the Is_account call is an example of a
call that requires no type rights. (For more details, see Section VII-3.2.9.)

Declarations Used:

Object Mgt.rights mask
- Access rights type.

Object Mgt.modify rights
- ModifY type right.

Object_Mgt.control_rights
Control type right.

The type manager's package specification typically gives type-specific names to the type rights
that it uses. The type manager's calls can check for needed rights before perfonning the call.
A type manager does not always have to define all three rights. By convention, unused type
rights should always be left turned on; otherwise a higher level routine will not be able to use
them.

Account_Mgt_Ex defines two type rights:

121 change rights: constant
122 Object Mgt.rights mask :=
123 Object-Mgt.modify-rights;
124 -- Required to change an account's balance.
125
126 destroy rights: constant
127 Object Mgt.rights mask :=
128 Object-Mgt.controI rights;
129 -- Required to destroy an account.

If an account call is made without needed rights, then
System_Exceptions.insufficient_type_rightsisraised.

Building a Type Manager VII-3-5

PRELIMINARY

VII-3.2.3 Defining Exceptions

The type manager's package specification defines any type-specific exceptions raised by its
calls. Account _Mgt _Ex defines these exceptions:

94 insufficient balance: exception;
95 pragma exception value(insufficient balance,
96 insufficient-balance code' address);
97 -- An operation failed because it would
98 -- cause a negative account balance.
99

100 balance not zero: exception;
101 pragma exception value(balance not zero,
102 balance not zero code' address);
103 -- "Destroy-account"-was called on an account
104 -- with a nonzero balance.

Text messages to be displayed by CLEX when an exception occurs can be bound to these
exceptions at compile-time. These messages can be displayed on a tenninal, for example.

71 insufficient balance code:
72 constant-Incident Defs.incident code :=
73 (0, 1, Incident_Defs.error, System.null_word);
74
75 --*0* manage.messages
76 --*0* store :module=O :number=l \
77 --*0* :msg name=insufficient balance code \
78 --*0* :short= \ --
79 --*0* "An account operation failed because it\
80 --*0* would create a negative balance."
81
82 balance not zero code:
83 constant IncIdent Defs.incident code :=
84 (0, 2, Incident_Defs.error, System.null_word);
85
86 --*0* store :module=O :number=2 \
87 --*0* :short= \
88 --*0* "An account cannot be destroyed because\
89 --*0* it has a non-zero balance."
90 --*0* exit

VII-3.2.4 Defining the Type's Calls

VII-3-6

The type manager's package specification defines all calls available to outside callers of the
type.

Calls typically provided for a type Tare:

Is T

Create T

xxx T

Checks whether an object is of type T. Only the type manager can refer­
ence Ts TOO and make this check.

Creates a T object Only the type manager can create and initialize T
objects.

Any calls that need to read or write T objects. Only the type manager can
read from or write to the object's representation.

Destroys a T object. Only the type manager can explicitly deallocate T
objects.

Account_Mgt_Ex defines all the typical calls:

Building a Type Manager

PRELIMINARY

Is account

Create account

Create stored account - -
Get balance

Change_balance

Transfer

Destroy_account

It might appear at first glance that the Transfer call is not necessary since it can be com­
posed of two calls to Change_balance. The problem with this solution is that it could
happen that the calling program fails before it completes the transfer. Thus an amount may be
deducted from the source account and not be deposited in the target account The Transfer
call is set up to be an atomic operation. It can only succeed as a unit and not partially. This
concludes the type manager's package specification. The following techniques are done in the
first body of Account_Mgt_Ex.

VII-3.2.S Defining the Private Types

The type manager's package body defmes the private types used inside the type manager to
reference the accounts. The account_rep_object type defines the objecCs represen­
tation. The account_rep_AD type is used for ADs with rep rights, allowing the type
manager to read and write the representation:

38 type account rep object is
39 record - -
40 balance: Long Integer Defs.long integer;
41 -- Current balance. - -
42 end record;
43
44 type account rep AD is access account rep object;
45 pragma access kind(account rep AD, AD);-
46 -- Private view of an account.-

VII-3.2.6 Defining Needed BiiNTM Ada Type Overlays

The Account_Mgt_Ex package body requires three different BiiNTM Ada types to represent
the AD to one of its objects:

account AD Public AD without rep rights.

System. untyped word
TyPe required for Access_Mgt and Object_Mgt calls.

account rep AD
- - Private AD with rep rights.

Instead of instantiating unchecked conversions type overlays are used here to the same
goal. This is done using a BiiNTM Ada-address clause. (Refer to the BUN™ Ada Language
Reference Manual for more details.)

Building a Type Manager VII-3-7

PRELIMINARY

180 account rep: account rep AO;
181 FOR account rep USE AT account' address;
182 account untyped: System. untyped word:
183 FOR account_untyped USE AT account' address;

Note that this technique has no runtime cost.

VII-3.2.7 Creating the TOO

The package body described in this chapter is an active-objects-only package body, so every
time the package initializes it creates a TDO. This poses no problems as long as objects of the
type are not passivated or do not outlive their TDO or type manager. (This is explicitly
enforced -- refer to Section VII -3.2.16 in this chapter for more details.)

48
49

account_TOO: constant Object Mgt.TOO AO :=
Object:Mgt.Create_TOO:

A stored object should use a stored TOO as its type, as described in the next section.

VII-3.2.8 Binding to a Stored TOO

If objects of the type can outlive a particular job, then the TOO should be a stored object,
created once by the system administrator.

The type manager's package body then uses the BiiNTM Ada bind pragma to obtain the needed
TOO AD with all type rights. The following example is excetpted from the second body of
Account_Mgt_Ex package body in Appendix X-A. In this example, the account_TDO is
first assigned a null value, then used in the pragma bind:

52 account TOO: constant Object Mgt.TOO AO := null;
53 -- This is a constant AO but not really null; its
54 -- filled in with an AO retrieved by the linker.
55 pragma bind(account TOO,
56 "account");
57 -- Bind to TOO for accounts.

This technique declares a BiiNTM Ada access type variable which is initialized with null at
compile-time. The BiiNTM Ada pragma bind is an instruction to the BiiNTM Systems Linker
to retrieve an AD from the directory entry that is named by the second argument ofpragma
bind. (For more details on BiiNTM Ada pragmas refer to the BiiNTM Ada Language Reference
Manual.) The linker reinitializes the variable with the activated AD.

VII-3.2.9 Implementing the Is_account Call

VII-3-8

The I s call checks whether an object has the type managed by the type manager.

Calls Used:

Object Mgt.Retrieve TDO
- Retrieves object's TOO.

Is_account returns true if obj 's type equals account_TDO, false if obj is null or has
another type:

70
71
72
73

begin
return obj /= System. null word and then

Object_Mgt.Retrieve_TOO(obj) account_TOO:
end Is_account:

Building a Type Manager

PRELIMINARY

VII-3.2.10 Implementing the Create account Call

The Create call allocates an object of the right size and type, initializes the representation,
and returns an AD with no rep rights.

Calls Used:

Object Mgt.Allocate
- Allocates an object with specified size and type.

Access Mgt.Remove
- Removes rights.

The Create_account call creates an account with a specified starting_balance:
94 begin
95 if starting balance < Long Integer Oefs.zero then
96 RAISE insufficient_balance; -
97
98 else
99 account untyped := Object Mgt.Allocate(

100 size => Object Mgt.obJect size(
101 (account rep object'size + 31)/32),
102 Expression computes number of words
103 required to hold the number of bits
104 in an account.
105 tdo => account_TOO);
106
107 account rep.all := account rep object' (
108 balance => starting_balance);
109
110 account untyped := Access Mgt.Remove(
111 AO - => account untyped,
112 rights => Object Mgt.read write rights);
113 RETURN account; - --
114
115 end if;
116 end Create_account;

The BiiNTM Ada new operator cannot be used here to allocate the object, because new by
default allocates a generic object instead of an object with the desired type account.
However, if we had made use of the Ada pragma allocate_with we could have specified
a TOO to be used with the new operator. Thus we would obtain objects of the proper type
when using new.

The size specified to Allocate is the number of 32-bit words. The BiiNTM Ada attribute
size yields the number of bits required for the object's representation. The expression
(account_rep_object'size + 31) /32 yields the smallest number of 32-bit words
with at least the required number of bits.

VII-3.2.11 Implementing the Create_stored _account Call

Our particular example provides two Create calls, one that simply creates an object and
returns an AD, and another that also stores the object with a pathname. The implementation
discussed in this chapter does not support stored objects, however. For this reason the the
Create_stored_account function simply raises the
System_exception. operation_not_supported exception as shown in the follow­
ing excerpt from this implementation:

Building a Type Manager VII-3-9

PRELIMINARY

119 function Create stored account(
120 starting balance: -
121 Long-Integer Defs.long integer :=
122 Long-Integer-Defs.zero;
123 master: -System Defs.text;
124 authority:-
125 Authority List Mgt.authority list AD := null)
126 return account AD - --
127
128 Logic:
129 This call is not supported by this implementation.
130
131 is
132 begin
133 RAISE System Exceptions.operation not supported;
134 RETURN null;- - -
135
136 end Create_stored_account;

VII-3.2.12 Implementing Calls that Require Type Rights

VII-3-10

For calls that require type rights, the type manager checks the rights on the caller's AD before
perfonning the requested operation. The usual way to do this is with
Access_Mgt. Import, which checks type rights before adding rep rights. Import raises
System_Exceptions. insufficient_type_rights if needed rights are not present.

Calls Used:

Access_Mgt.Import
Checks for rights and adds rep rights.

Declarations Used:

System_Exceptions.insufficient_type_rights
Raised when the AD does not have the type rights needed for the call.

In Account_Mgt_Ex, the call Change_balance requires that the caller have change
rights on the passed AD:

Building a Type Manager

PRELIMINARY

190 begin
191 account untyped := Access Mgt. Import (
192 AD - => account untyped,
193 rights => change rights,
194 tdo => account_TDO);
195
196 new_balance := account_rep.balance + amount:
197
198 if new balance < Long Integer Defs.zero then
199 RAISE insufficient_balance;-
200
201 else
202 begin
203 old balance := account rep.balance;
204 account rep.balance :=-new balance:
205 RETURN new balance; -
206 exception-
207 -- An exception in this inner block means
208 -- that something has gone wrong with the
209 -- update. The old balance is restored.
210 when others =>
211 account rep.balance := old_balance;
212 RAISE;-
213 end;
214
215 end if;
216 end Change_balance;

The call Access_Mgt. Import checks the AD for change rights before adding rep rights.

VII-3.2.13 Implementing Calls that Do not Require Type Rights

Calls that don't require type rights don't need to check the type rights before perfonning the
call. As a result, the type manager can use Access Mgt. Amplify, which adds rights
without doing a check for type rights. -

Calls Used:

Access Mgt.Amplify
- Adds rights without checking type rights.

An example of a call that doesn't require type rights is Account Mgt. Get balance. In
this case, read rep rights are amplified: --

151 begin
152 account untyped := Access Mgt.Amplify(
153 AD - => account untyped,
154 rights => Object Mgt.read rights,
155 tdo => account TDO}; -
156 return account rep.balance;
157 end Get_balance;-

VII-3.2.14 Implementing the Destroy Call

A type manager's Destroy call usually checks type rights for this destructive act, then deal­
locates the object's representation.

Building a Type Manager VII-3-11

PRELIMINARY

Calls Used:

Access Mgt.Import
- Checks for rights and adds rep rights.

Object Mgt.Deallocate
- Deallocates the object's representation.

In the following example from Account_Mgt_Ex. the call Object_Mgt" Import checks
for the appropriate type rights, then adds rep rights to the AD in order to be able to check the
balance. If the balance in the account is zero, the account will be deallocated using
Object_Mgt.Deallocate:

326 begin
327 account untyped := Access_Mgt. Irnport(
328 AD => account untyped,
329 rights => destroy-rights,
330 tdo => account=TDO);
331
332 if account rep.balance /= Long Integer Defs.zero then
333 RAISE balance_not_zero; - -
334
335 else
336 Object_Mgt.Deallocate(account_untyped);
337
338 end if;
339 end Destroy_account;

VII-3.2.15 Making Operations Atomic

VII-3-12

Although the transfer call can in principle be composed of two successive calls to
Change_balance there is a considerable disadvantage to this method; the process that per­
fonns the two calls could encounter an exception after perfonning the first call and before the
second. If that happened, one account would be charged (or credited) but not the other one.

Calls Used:

Access Mgt.Import
- Checks for rights and adds rep rights.

Building a Type Manager

PRELIMINARY

265 begin
266 source untyped := Access Mgt. Import (
267 AO- => source untyped,
268 rights => change-rights,
269 tdo => account TOO);
270 dest untyped := Access Mgt. Import (
271 AO => dest untyped,
272 rights => change rights,
273 tdo => account_TDO>;
274
275 new source bal := source rep. balance - amount;
276 new=dest_bal := dest_rep~balance + amount;
277
278 if new source bal < Long Integer Defs.zero
279 or else - - -
280 new dest bal < Long Integer Defs.zero then
281 RAISE insufficient_balance; -
282
283 else
284 old source bal := source rep.balance;
285 old-dest bal := dest rep~balance;
286 -- Old balances are recorded here
287 -- in case the update will have to be
288 -- rolled back.
289 begin
290 source rep.balance := new source bal;
291 dest rep.balance := new dest bal:
292 exceptIon - -
293 -- An exception in this inner block means
294 that something has gone wrong with
295 -- the update. Restore the old balances to make
296 -- this operation atomic, then
297 -- reraise the exception.
298 when others =>
299 source rep.balance := old source bal;
300 dest rep.balance := old dest bal:
301 RAISE; - -
302
303 end;
304 RETURN;
305
306 end if;
307 end Transfer;

The new balances of both the source and the destination account are computed. If either one is
less than zero, the insufficient_balance exception is raised. Before the balances in the
accounts are physically changed, they are stored. Any exception that is raised while the new
balances are assigned causes the update to be rolled back and the original balances to be
restored.

VU-3.2.16 Initializing the Type Manager

The example that we discuss in this chapter manages accounts that cannot be passivated. In
order to make sure that accounts cannot be passivated, the account TDO must contain the
passive store attribute, bound to an instance that refuses requests for passive store operations.

Calls Used:

Passive Store Mgt.Set refuse filters
- Sets a type manager's passive store attributes object to refuse all outside

requests for passive store operations.

Attribute Mgt.Store attribute for type
- Stores anattribute entryln a IDa.

Building a Type Manager VII-3-13

PRELIMINARY

350 begin
351 Passive Store Mgt.Set refuse filters (
352 passive store impI); -
353 Attribute Mgt.Store attribute for type(
354 tdo - => account TDO,- -
355 attr ID => Passive-Store Mgt.PSM attributes ID,
356 attr=impl => passive=store=impl_untyped); -
357 end;

Note that this piece of code is executed every time this package is initialized. Also, a new TOO
is created at that time. The TOO and all the objects of the type manager are deallocated when
the job that uses this package fInishes.

A more general package body would be able to handle objects that can be passivated. In this
case the TOO should only be created once and stored. This can be done by the system ad­
ministrator using the create. TDO command in the configure utility. (For more details
see the BiiNTU Systems Administrator's Guide.) You could also write a program that will ex­
ecute only once, create a TOO and store it. The Stored_Account_TDO_Init_Ex proce­
dure in Appendix X-A is an example of such a program.

VII-3.2.17 Protecting the Type Manager from Other Services

VII-3-14

Finally, a type manager may want to protect its address space from other services so that it and
its objects are safe from accidental destruction or modification. Protecting the type manager's
address space involves:

1. Creating a distinct address space with the BiiNTU Systems Linker.

2. Protecting the type managers address space from calling services via pragma
protected_return.

The idea is to link the type manager into its own separate domain. In addition it might be
desirable to put the type manager into its own subsystem. That means that the type manager
will not share stacks with other services.

Refer to the BiiNTM Systems Linker Guide for infonnation on how to create the type manager's
own address space at link. time. You will need to create a distinct domain and a distinct
subsystem 10.

The BiiNTU Ada pragma protected_return ensures that all global registers will be cleared
before control is returned to the calling process. This is to protect ADs that may have been left
in the global registers by the call. Refer to the BiiN

TU
Systems Linker Guide for more infor­

mation on these topics. (Pragma protected_call is similar to protected_return;
however it protects the calling routine from the routines it calls. Account _Mgt _Ex only
calls OS routines. Therefore protected_call could be used here but is not really
necessary .)

There is a perfonnance penalty involved when you create a protected address space for a type
manager. You will use extra memory for the type manager's distinct stack. There is also a
time penalty when perfonning calls to a distinct domain.

Building a Type Manager

PRELIMINARY

VII-3.3 Summary
• A type manager defmes an object type and all basic calls for the type.

• Only the type manager can read from or write to the type's objects.

• A type is represented by a TOO.

• Type managers provide data abstraction, enhancing software reliability and main­
tainability .

Building a Type Manager VII-3-15

PRELIMINARY

VII-3-16 Building a Type Manager

PRELIMINARY

USING ATTRIBUTES 4
Contents

Concepts .. vn -4-3
Techniques .. vn -4-5

Defining a New Attribute .. vn -4-5
Defining an Attribute Instance ... Vn-4-6
Initializing the Type's TOO ... vn -4-7
Initializing an Objects Attribute List vn -4-8

Summary ... VII -4-8

Using Attributes VII-4-1

VII-4-2

PRELIMINARY

An attribute is a package or data structure that can be defined for multiple objects or object
types. Such packages or structures can be used independent of an object's type and without
calling its type manager.

An attribute usually defines a set of operations that is supported by multiple objects, or object
types, such as an I/O access method.

Packages Used:

Attribute_Mgt Manages attribute IDs and provides calls to store and retrieve attribute
instances.

Ob j e ct _Mgt Provides basic calls on objects.

An attribute can be defined either for an object or for an object type. In case of type attributes,
an attribute list is contained in the Type Definition Object (TOO). In the case of object at­
tributes, an attribute list is attached to the object proper. Whether in the TOO or attached to an
individual object, an attribute list contains one or more <attribute ID, attribute instance> pairs.
The attribute 10 in the pair identifies the attribute (for example, the Byte Stream Access
Method). The attribute instance in the pair references the object- or type-specific attribute
value (for example, the type-specific implementation of the access method for the particular
device type). An example of an object-specific attribute is execute. An executable object
can be a CLEX script, a BiiNTM lUX script, or an executable program. The attribute instances in
this case specify how the object is to be executed.

Figure VII -4-1 shows the attribute data structure for a type-specific attribute.

TOO

- J --

attribute 10 ,~ 'f attribute instanc e

Figure vn -4-1. Attribute Structure

In this chapter you will find an example of how to use type-specific attributes. Using object­
specific attributes is very similar to what is shown in the example. In addition, in each section
you will find infonnation on how to achieve the particular step for an object-specific attribute.

In a later release we may have an example of an object-specific attribute.

Using Attributes

PRELIMINARY

VII-4.1 Concepts
The attributes described in this chapter should not be confused with BiiNTM Ada attributes, used
to indicate properties of declared entities in that language.

Even though using an attribute is independent of the object or its type, defining the attribute
instances supported by an object or a type is specific to an object or a type. In the case of a
type attribute, only the type manager can store attributes in the TOO, normally at system or
program initialization when the TDO is created. In the case of an object attribute, anyone with
control rights can store an attribute. But type-specific attributes cannot be overridden by
object-specific attributes.

Though in most cases an attribute value is an AD to a package, an attribute value can be any
System. untyped_word, either an AD to an object or a 32-bit data value. The attribute
value can reference any object, not just a package. An example of an attribute value that does
not reference a package is Passive_Store_Mgt .PSM_attributes_object where
the attribute value is an AD to a record.

If an attribute is a package, invoking the attribute package's calls uses a fast attribute call
mechanism supported by the OS and BiiNTM Ada. This mechanism uses the object type of the
first parameter to a call to choose the appropriate type-specific instance of the package. This
mechanism is used by many OS attributes, including all I/O access methods. If an attribute
call is made on an object that does not support the attribute, then the
Standard . constraint_error exception is raised. The opinions vary on what excep­
tion will actually be raised. Also in the running are
System_Exceptions.bad~arameterand

System_Exceptions.operation_not_supporte~

Figure Vll-4-2 shows an OS attribute, the Byte Stream Access Method, defined by the
Byt e _Stream_AM package, that is supported by different object types, such as opened files
and opened pipes. Each object type has a type-specific implementation of the access method
but applications need only call Byte_Stream_AM and their call is efficiently switched to the
right implementation by the attribute call mechanism.

Using Attributes VII-4-3

VII-4-4

Opened
File

D
Opened

File
TOO

,
/

PRELIMINARY

Figure Vll-4-2. An OS Attribute

Opened
Pipe

D
Opened

Pipe
TOO

The OS defines many attributes used by type managers to customize System Services for their
particular types. Every OS attribute appears to an application as another System Service. At
the same time, implementers of new services can defme type-specific instances of these OS
attributes, without modifying, recompiling, or relinking the OS. You can use attributes to
extend and customize the OS -- without accessing its internals in any way.

The "OS Attributes" appendix in the BiiNTM/OS Reference Manual summarizes all as at­
tributes. Some commonly used OS attributes are:

• Byte stream I/O, specified by the Byte_Stream_AM. Ops package.

• Record I/O and record keyed I/O, specified by the Record_AM. Ops and
Record_AM. Keyed_Ops packages .

• Character display I/O, specified by the Character_Display_AM.Ops package.

Using Attributes

PRELIMINARY

• Passive store, specified by the Passive_Store_Mgt. PSM_attributes_object
record type.

• The execute attribute, specified by Execution Support. Ops, an example of an at-
tribute that can be object-specific. -

VII-4.2 Techniques
There are three techniques in using attributes:

• Defining a new attribute

• Defining a type-specific attribute instance for a type

• Initializing the type's TOO to refer to the attribute and instance.

Because attributes are most often packages, this section uses a simple package attribute for all
three examples. This attribute contains a single call, which returns a type-specific type name.
For example, for account objects, the type-specific instance will return the string" account".
This example is not as useful as many attributes, such as I/O access methods, but its simplicity
allows you to easily understand programming with attributes.

VII-4.2.1 Defining a New Attribute

You will more often define attribute instances than define new attributes. We begin with
defining an attribute because the example attribute is used by the subsequent techniques.

Calls Used:

Attribute Mgt.Create attribute ID
- Creates a new attribute lo.

You create a new attribute by calling Attribute_Mgt. Create_attribute_ID. In this
call you can specify whether the new attribute is type-specific or not. Type-specific attributes
can only be stored in a TOO and not in an object's attribute list. The newly created attribute 10
should be stored in the aid directory in the node's root directory.

The Type_Name_Attribute_Ex example package assumes that the attribute has already
been created and stored. It binds the previously created ID to an attribute package using the
RiiNTY Ada pragrna bind.

7 type name attr ID: constant
8 Attribute Mgt.attribute ID AD := null;
9 pragma bind(type name attr IO,

10 "typnamattr rt
);-

11 -- Attribute ID is retrieved at link time using the
12 -- specified pathname. Should have store rights.

The attribute package Type_Name_Attribute_Ex defines two functions: one to get the
attribute 10 and one to return a type's name.

The Get_type_name_attr_ID function returns the new attribute's 10, required to store
an instance of the type-name attribute:

Using Attributes Vll-4-5

PRELIMINARY

14 function Get type name attr ID
15 return Attribute Mgt:attrIbute ID AD;
16 -- Type name attribute ID, wIth-type rights.
17
18 -- Function:
19 Returns the type name attribute's attribute ID.

The nested Ops package contains the calls to be defined by each type-specific instance. Only
subprograms can be declared in such a package. The package_type pragma declares the
nested Ops package to be a package type.

package Ops is
pragma package_type("typnamattr");

Function:
Provide "Type_name" attribute call.

function
obj:

return
pragma

Type name(
System. untyped word)

Any object that-supports
the type name attribute.
string; -- Name of the object's
interface (value, Type_name):

Function:

type.

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

Returns a printable name for an object's type.

end Ops;

Calls to any operations declared in the Op s package are switched to the proper instance, using
the the first parameter to the call to select the instance.

The Ops. Type_name function body is empty. An empty subroutine body is allowed here
due to the package _type pragma:

23 package body Ops is
24
25 Logic:
26 Attribute packages have null bodies.
27
28
29 end Ops;

DefIning the attribute is done no differently for an object-specific attribute. In fact, an attribute
that is not labeled as type-specific can be added to the attribute list of an object

VII-4.2.2 Defining an Attribute Instance

VII-4-6

An attribute instance is simply a package that matches ("confonns to") the attribute's Ops
package template and that is bound to that template using the package_value pragma:

Using Attributes

PRELIMINARY

1 with System,
2 Type_Name_Attribute_Ex;
3
4 package Account Type Name Ex is
5 pragma package_value(Type_Name_Attribute_Ex.Ops);
6
7 Function:
8 Defines the type name attribute for accounts.
9

10 A type that supports this attribute has a
11 printable name. For example, a directory
12 listing utility could use this attribute to
13 print the types of the objects in a
14 directory.
15
16
17 function Type name(
18 obj: System.untyped word)
19 return string: -
20 -- Name of the "account" object type.
21
22 Function:
23 Returns the type name for account objects.
24
25
26 pragma external;
27
28 end Account_Type_Name_Ex;

Note that the instance does not contain a nested Ops package. It corresponds to the attribute's
nested Ops package and it will be called whenever one of the general Ops routines is called
with a first parameter that is an object to which the attribute applies. Note that pragmas
package value and package type occur paired. They can be compared to a type
definition aftd a variable declaratio~ in BiiNTM Ada.

The Account_Type_Name package body simply returns the name "account" when its
Type_name function is called:

1 with System;
2
3 package body Account_Type_Name_Ex is
4
5
6 function Type name(
7 obj: System.untyped word)
8 return string -
9 is

10 begin
11 return "account";
12 end Type_name:
13
14
15 end Account_Type_Name_Ex;

VII-4.2.3 Initializing the Type's TOO

Calls Used:

Attribute Mgt.Store attribute for type
- Stores attribute 10 and Instance in TOO.

The implementation of the type-name attribute for accounts must be stored in the account TOO
to be useful. The following excetpt is from the Stored_Account_Init_Ex example
package body:

Using Attributes VII-4-7

PRELIMINARY

60 type name impl: System. untyped word;
61 ---Implementation of type name attribute
62 -- for accounts.

107 type_name_impl:= Account_Type_Name_Ex'package_value;
108
109 Attribute Mgt.Store attribute for type(
110 tdo - => account TOO,- -
111 attr IO => Type Name Attribute Ex.
112 - Get type name attr 10,
113 attr_impl => type_name_impI); -

The ' package_value BiiNTM Ada attribute (not to be confused with an OS attribute) is used
to obtain an AD for the type-specific Account_Type_Name_Ex package, an AD which is
then stored in the TOO.

Handling TOOs and attributes that are stored objects is described in Chapter 11-3.

VII-4.2.4 Initializing an Objects Attribute List

Calls Used:

Attribute Mgt.Retrieve attribute list
- Get's an object's attribute liSt. If none exists, creates one.

Attribute Mgt.Store attribute for object
- Stores attribute ID and Instance in TOO.

Before you can use an object-specific attribute you have to store it in the object's attribute list.
To do so, ou have to retrieve the attribute list with
Attribute_Mgt. Retrieve_attribute_list. This returns an AD to the object's at­
tribute list. If none exists, a new attribute list is created. Finally, you can store the attribute
usingAttribute_Mgt.Store_attribute_for_object.

VII-4.3 Summary

VIIA-8

• An attribute is a package or data structure that can be defined for multiple objects or types.

• Explicitly type-specific attributes can only be associated with a type, not any object.

• An attribute instance is an attribute's value for a particular object or type.

• Attributes are identified by attribute ID objects.

• A type manager stores type_specific attribute instances of attributes that it supports in its
TDO.

• Anyone with control rights to an object and store rights to an attribute can store that at­
tribute in the object's attribute list.

Using Attributes

r~L.lJ.VW"laKI

MANAGING ACTIVE MEMORY 5
Contents

A Brief OvelView of How Memory Is Allocated Vll -5-2
Collecting Garbage Objects -- GCOL Vll-5-3

Local GCOL ... -. Vll-5-3
Global GCOL .. Vll -5-4

Techniques .. Vll -5-5
Trimming th.e Caller's Stack .. Vll-5-5
Starting Local Garbage Collection Vll -5-5
Setting/Changing Local GCOL Parameters _ Vll -5-5
Stopping Local Garbage Collection Vll -5-6
Getting Infonnation About a Job's Local Memory Vll-5-6

Summary ... Vll -5-6

Managing Active Memory Vll-5-1

This chapter points out how you can use certain tools to manage active memory. This chapter
does not explain underlying concepts and models of memory management in a BiiNTM system.
Refer to Chapter Vll-2 for a conceptual explanation of active memory.

For the most part, memory is managed automatically by the OS. You will want to read this
chapter if you want to use optional calls to monitor and control your program's memory use.

Packages Used:

Object_Mgt Provides basic calls on objects. Includes a call to shrink the calling
process's stack.

Provides calls to get memory infonnation and control local garbage collec­
tion.

VII-5.1 A Brief Overview of How Memory Is Allocated

Vll-5-2

Virtual address space in active memory is managed on a per-job and per-node basis. Eachjob
has a special type of object associated with it that represents memory and objects local to the
job and shared by all its processes. This object is known as a local storage resource object
(SRO).

A local SRO provides a job with its own local address space, a subset of the node's virtual
address space. Objects in the address space can be reclaimed by starting a local garbage
collection daemon. The daemon is basically a memory optimization technique used for long­
running jobs. It de allocates unreferenced objects (that is, objects with no ADs). See the
SRO_Mgt. Start_GCOL call.

NOTE

Local garbage collection should be started in longerunning jobs that need to respond
quickly to events, tenninal input, or other stimuli. If local garbage collection is not
started by the job itself, then local garbage collection is done synchronously whenever the
job reaches one of its memory limits. Synchronous local GCOL suspends all other
processes in a job until it completes.

NOTE

Memory resources can be consumed by system calls other than those that explicitly al­
locate memory. For example, every time a transaction is started, the transaction counts
against the job's "countable object" limit, even after the transaction is committed or
aborted. Local GCOL will detect that the job is not using the transaction any longer and
will decrement the job's "countable object count" accordingly.

Some more infonnation about the local SRO:

• The local SRO is shared by all processes in the job, and only by the processes in the job.

• All processes in ajob have implicit access to their job's local SRO.

• Most object allocation operations require an SRO as a parameter. This parameter defaults
to the local SRO of the job to which the calling process belongs.

Managing Active Memory

SROs have a number of properties that indicate how the objects allocated from an SRO are
treated by various memory management functions. These properties are:

relative lifetime Detennines when objects can be deleted (that is, deallocation of both the
object's representation and its unique object descriptor) and constrains the
storing of ADs in objects.

memory type Detennines whether or not parts of an address space can be relocated.

memory priority Detennines the frequency with which unused pages are swapped out of
active memory; also detennines when small segments are compacted onto
a single page.

allocation limits Detennines the amount of virtual storage allowed for all objects allocated.

Each one of these properties is discussed in more detail in Chapter VII-2.

VII-S.2 Collecting Garbage Objects -- GCOL
Unreferenced objects in active memory (that is, objects with no active ADs) are periodically
collected and deleted. This garbage collection (GCOL) is generally done automatically by the
system, although it can be configured to clean up local objects for long-running jobs.

VII-S.2.1 Local GCOL

Local garbage collection is executed by a special dae~on process in a particular job. The
daemon is only present if a process in the running job requests it and can be deleted at times
when no garbage collection is needed.

It is useful to configure local GCOL for long-running jobs. When local garbage collection is
configured for a job, it can be triggered in one of two ways:

• Automatically, whenever one of the remaining claim values becomes smaller than a per-
centage of the original claim set by the programmer.

• Manually, by calling SRO_Mgt. Start_GCOL with all parameters defaulted.

The effect of a SRO_Mgt. Start_GCOL depends on the values of the parameters. Table
VII -5-1 summarizes the key parameters. Selected parameter combinations are used to start the
daemon manually and then to stop GCOL by deleting the daemon. See "Techniques" in this
chapter.

Table Vll-S-l. Key GCOL Parameters

Parameter Description

storage_claim-percent Threshold value at which GCOL daemon
wakes up. A percentage of the original
number of words of VlrtualJ'ace fhat
the specified SRO is allow to allocate.

OTP_claim-percent Threshold value at which GCOL daemon
wakes up. A percentage of the o~inal
number of oDiCl table ~~s bO)
assigned for e specified R •

minimum_delay Minimum time between runs of the GCOL
daemon.

This can have the effect of starting up the daemon. To prevent the daemon from running too
often, a minimum delay can be specified as one of the trigger parameters. Garbage collection
will not be triggered automaticatIy if the elapsed time since it started its previous run is smaller
than the minimum delay. Table Vll-5-2lists the special parameter values and their effect.

Managing Active Memory VII-5-3

Table Vll-S-2. GCOL Parameters to Start and Stop Special GCOL

Effect Stop GCOL StartGCOL

storage_claim-percent 0 100

OTP_claim_percent 0 100

minimum_delay max_int null_time

The max_int and null_time constants are defined in the Long_Integer_Defs and
Sy st em _ Def s packages under "Support Services."

The garbage collection algorithm has these properties:

• Only objects that are garbage at the time the algorithm starts will be collected.

• Garbage objects are deleted during the final phase of the algorithm.

SRO _Mgt. Read _ SRO _ inf orma tion returns garbage collection related infonnation.

Figure vn -5-1 shows the algorithm used by the system to detennine when global garbage
collection is perfonned:

OR

% remaining_ storage'_ claim < storage_claim yercent
/

/ \\
/ % remaining_OTP_claim < OTP_claim-percent

AND '
\\

start_time + minimum_delay < current_time

Figure Vll-S-l. Algorithm That Controls Garbage Collection

SRO_Mgt. Start_GCOL parameters specify when the GCOL daemon should begin running.
When either of the claims granted to the job's local SRO drops below the trigger values and
the minimum delay condition is met, the daemon starts running.

VII-S.2.2 Global GCOL

VII-5-4

Global garbage collection runs periodically and coll~cts garbage objects allocated from both
global SROs. Since global ADs may be stored in any object, all objects (local and global) on
the node are checked. As with local garbage collection, objects and their associated space are
only deleted during the final phase of the algorithm. Internally, the system minimizes the need
for global garbage collection by minimizing the generation of global garbage.

Managing Active Memory

.t"KELlM1NAKY

VII-5.3 Techniques
After reading this section, you will be able to:

• Trim the caller's stack

• Start local garbage collection

• Stop local garbage collection

• Get infonnation about a job's local memory.

All techniques are taken from the Memory_ex example in Appendix X-A.

VII-S.3.1 Trimming the Caller's Stack

A process can use an event handler to trim its stack in response to the Event_Mgt. gcol
local event which is signalled to each process in a job whenever a local GCOL daemon is
triggered.

Calls Used: Object Mgt. Trim stack
SMnks the callmg process's stack.

Basically, Trim_stack looks at the process's current call stack pointer and then resizes the
stack.

Trimming the stack frees memory and reduces the number of ADs that the local GCOL
daemon must scan, thus speeding up garbage collection.

VII-S.3.2 Starting Local Garbage Collection

To trigger local GCOL to start immediately in the calling job, you can use default parameters.

Calls Used:

SRO Mgt.Start GCOL
- Controls the local GCOL daemon.

For example:

35 SRO_Mgt.Start_GCOL;

This will trigger the GCOL daemon to begin reclaiming space allocated from the job's local
SRO.

VII-S.3.3 Setting/Changing Local GCOL Parameters

Local GCOL parameters can be configured to trigger the local GCOL daemon. The daemon is
triggered only when the conditions specified in the configuration are met.

Managing Active Memory Vll-5-5

Calls Used:

SRO Mgt.Start GCOL
- Controls the local GCOL daemon.

For example, you might want to configure a local garbage collection daemon to run in the
calling job when it has used 50% of its storage claim or 50% of its object table page claim, and
at least 5 minutes has elapsed since a previous local GCOL run in the job.

45 SRO Mgt.Start GCOL(
46 -storage_claim-percent => 50,
47 OTP_claim-percent => 50,
48 minimum delay =>
49 Loni Integer Defs."*"(
50 Long-Integer-Defs.long integer' (0, 5),
51 System_Defs.stu-per_min»;

VII-S.3.4 Stopping Local Garbage Collection

A local GCOL daemon, once started, can be stopped using a Start_GCOL call.

Calls Used:

SRO Mgt.Start GCOL
- Controls local GCOL.

For example:

58 SRO_Mgt.Start_GCOL(O, 0, Long_Integer_Defs.max_int);

This will kill any local garbage collection daemon in the calling job. It does nothing if there is
no daemon.

VII-S.3.S Getting Information About a Job's Local Memory

To obtain infonnation about the current status of a job's local memory, call
SRO_Mgt.Read_SRO_information.

VII-5.4 Summary

Vll-5-6

• Active memory consists of primary memory and swap space.

• Anode's active memory contains objects used by executing programs.

• A one-to-one mapping exists between local SROs and jobs.

• Most active objects are allocated from local SROs.

• Global memory is allocated from global SROs.

• There are two types of global SROs: frozen global SROs and normal global SROs that
indicate whether reclamation and compaction is allowed in global memory.

• Garbage collection can be configured for objects allocated from local SROs; it has certain
trigger values that initiate a daemon process used to reclaim space.

Managing Active Memory

Contents

I"K~L1M1NAK r

BUILDING TYPE MANAGERS 6
FOR STORED OBJECTS

Concepts ...•.•................ Vll -6-2
Storing and Retrieving Objects in Passive Store V11-6-2
Lifetime Requirements .. Vll -6-3
Storing Objects Requires Three Steps•.................. Vll -6-3
Object Trees in Passive Store•..... V11-6-3
The Type Manager Can Customize Passive Store Operations•........... V11-6-3
Synchronizing Access to Objects -- Transactions and Semaphores Vll -6-4

Techniques•... Vll -6-4
Defining tlle Type's Calls•................. V11-6-5
Implementing the Create_account call VII-6-6
Implementing the Create _ stored_account Call V11-6-7
Starting, Commiting, and Aborting a Transaction vn -6-8
Storing the Master AD -. Vll -6-9
Updating the Object ... Vll -6-9
Implementing the Change_balance Call V11-6-9
Implementing the Transfer Call VII-6-11
Implementing the Destroy_account Call VII-6-12
Initializing the Type Manager .. VII -6-13
Protecting the Type Manager ... VII-6-16

Summary .. VII -6-18

Building Type Managers for Stored Objects Vll-6-1

r K~L.ll"llJ."'IAK I

This chapter describes how to build a type manager for stored objects. The type manager has
the following characteristics:

• Objects can be passivated.

• Transactions ensure the consistency of passive versions.

• The multiple activation model is used.
\

• Objects should not be used by concurrent processes in one job.

The techniques necessary are illustrated by way of an implementation of the
Account_Mgt_Ex example introduced in ChapterVII-3. The example used in this chapter
has an interface identical to the one previously discussed. This is reflected by the fact that the
Ada specification is identical for both packages. In addition to the packages described here,
there is another implementation of Account_Mgt_Ex provided in Appendix X-A. That im­
plementation is slightly simpler and does not provide transaction-oriented calls. The
transaction-oriented implementation for stored accounts will be referred to simply as the im­
plementation of Account_Mgt _Ex. If any other implementation is referred to, that fact will
be explicitly stated. (All example packages used in this chapter can be found in in Appendix
X-A.) .

This chapter is self-contained. It explains all techniques necessary for building a type manager
for stored objects. It does not, however, discuss the fundamentals of the type manager model.
If you do not know or understand the type manager model of protection, please read Chapters
VII -1 and VII -3 before reading this chapter.

VII-S.1 Concepts
Active memory is the immediate working space of the processors in one node. Active memory
is (relatively) small, volatile, and local to a node. Passive store is not limited in size, per­
manent, and global to a distributed system. Objects that should survive shutdowns or system
crashes, or that should pass between node boundaries, have to be passivated. A type manager
that stores its objects is distributed by virtue of the distributed nature of passive store.

VII-6.1.1 Storing and Retrieving Objects in Passive Store

VII-6-2

All objects are created as active objects. Local active objects disappear when the creating job
finishes. Global active objects survive as long as the system is up. Objects have to be pas­
sivated explicitly_ Objects that have been passivated pass transparently between passive store
and active memory.

Objects can be labeled active-only. Active-only objects cannot be passivated.

A job retrieves a stored object either transparently by supplying an AD or explicitly through a
directory pathname. A job can also explicitly request that its current active version be updated
from the passive version.

To remove an object that has been passivated, both the active version and the passive version
have to be removed. Passive versions have always to be removed explicitly. Deallocating an
object's active version has no effect on any existing passive version.

BuDding Type Managers for Stored Objects

rK~LJ.1Vlll"'1AK I

vn-6.1.1.1 Lifetime Requirements

Objects have a type defined by a Type Definition Object (TOO). The TOO acts as a label for
the type and it holds infolUlation specific to the type. An object may also have an attribute list.
The lifetimes ofTDO and attribute list should be at least as long as the object's own lifetime.
For this reason TOO and attribute list have to be passivated before any object is passivated.

An object that has not explicitly been assigned a TOO or whose TOO has been removed is
assigned the generic TDO by default This may have certain undesirable consequences. For
more details refer to Section VIT-6.1.2.

vn-6.1.1.2 Storing Objects Requires Three Steps

Storing an object for the first time requires three steps:

• TOO and attribute list is stored. If the TOO already exists this step is omitted.

• An AD is stored on the volume set where the object is to be stored. This AD can be stored
in a directory or in another object. It will become the stored object's master AD. Master
ADs cannot reference across volume sets.

• The object's representation is stored.

Once an object has a passive version, only its representation has to be updated if changes to the
active version have been made. Note, that changes to an active version do not become per­
manent until the passive version has been updated.

vn-6.1.1.3 Object Trees in Passive Store

Master ADs can be stored inside other objects. Thus hierarchical trees of passive objects can
be created where one object holds master ADs for objects one level below. Object trees can be
copied, and updated as one unit. Activating the root object of an object tree does not activate
all the objects in the tree. Only the root object will be activated and all its ADs converted from
passive to active folUl.

VII-S.1.2 The Type Manager Can Customize Passive Store Operations

A type manager can supply its own routines for certain passive store operations thus customiz­
ing passive store. The mechanism behind this feature is an attribute call. For more details on
attribute calls, refer to Chapter VIT-4.

Passive store provides pairs of calls, operation and Request_operation calls. Direct calls,
such as Update, require representation rights, while Request_operation calls, such as
Request_Update, generally require only type rights. One exception are generic objects
which require read representation rights for Request_operation calls. (The BiiNTM
Operating System acts as a type manager for these objects.)

If upon invoking any Request_operation call you receive the
System_Exceptions. insufficient_rep_rights exception, this is an indication
that something has gone wrong with your TOO. It probably means that either the TOO could
not be retrieved because you had insufficient rights to it or that it has been deleted altogether.
Remember though that the type manager has total control over what actually happens when
Request_operation is called. (The type manager could conceivably require rep rights for
these operations.)

Building Type Managers for Stored Objects VII-6-3

If a type manager does not exlicitly provide an implementation for a Request_operation call,
the call is mapped by passive store to the direct call. This makes the direct call accessible with
only type rights. Therefore, if any particular passive store operation should be disabled, an
implementation of the corresponding Reques t _operation operation that refuses the opera­
tion, by raising an exception, for example, has to be provided. Otherwise the operation will be
available to anyone with type rights.

VII-6.1.3 Synchronizing Access to Objects - Transactions and Semaphores

The use of transactions in passive store operations ensures that the stored data is consistent
even in the event of system failures. Transactions also coordinate between different jobs
accessing an object in passive store. Passive store operations either participate in a caller's
default transaction, or a transaction is started for the duration of the call to passive store.
Transactions have a built-in blocking protocol that avoids circular blocking of transactions.

Semaphores coordinate access to active objects, typically between processes inside one job. If
in the object layout a locking area has been provided, passive store transparently creates a
semaphore upon activation. A process can also explicitly create a semaphore. This is necessary
if the object has never been passivated or is active-only. Semaphore locking is not used in the
example described in this chapter. For more details on semaphore locking refer to Chapters
VI-I, VI-2, and Vill-l.

It is important to note the conceptual difference between transaction locking and semaphore
locking. Transaction locking directly locks an object. While a transaction holds its lock it
blocks all others that request access. Sempahore locking relies on voluntary compliance by all
participating processes. Semaphore locking is therefore used primarily to coordinate between
related processes, for example inside one job.

VII-S.2 Techniques

V11-6-4 Building Type Managers for Stored Objects

rK~L.11Vu.~AK I

Packages Used:

Access_Mgt Interface for checking and changing rights in access descriptors.

Attribute Mgt Provides a way to define general-purpose operations supported by multiple
- object types or objects, with different type-specific or object-specific im­

plementations.

Authority List Mgt
- Provides Calls to manage authority lists and to evaluate a caller's access

rights to objects protected by authority lists.

Directory_Mgt Manages directories and directory entries.

Identification Mgt
Provides operations to manage IDs and ID lists.

Object_Mgt Provides basic calls for object allocation, typing, and storage management
Defines access rights in ADs.

Passive Store Mgt
- Provides a distributed object fuing system.

Transaction Mgt
- Provides transactions used to group a series of related changes to objects

so that either all the changes succeed or all are rolled back.

Provides calls to manage a user's protection set and user profile.

This section describes the techniques necessary for a complete implementation of a type
manager. The example described in this chapter and the example described in Chapter Vll-3
share the same specification. Therefore, please refer to Chapter VII-3 for the following tech­
niques:

• Defining the public type

• Defining type rights

• Defining exceptions

• Defining the private types

• Binding to a stored TDO.

VII-6.2.1 Defining the Type's Calls

The implementation described in this chapter provides the same calls as the one discussed in
Chapter Vll-3. Some calls work a little differently, though:

Is account Checks whether an AD references an account

Create account
- Creates an account. Caller is responsible for storing the account.

Create stored account
- Creates and stores an account. Caller supplies a pathname that is not al-

ready in use.

Get balance Returns an account's current balance.

Change balance
- Adds or substracts an amount from the account's current balance.

Building Type Managers for Stored Objects Vll-6-5

Transfer Transfers amounts between accounts. Transfer either completes or fails as
a unit.

Destroy account
- Removes an account's active and passive versions. May leave a master

AD behind.

The implementation of the Is_type call will not be discussed here as it is identical to the one
discussed in Chapter Vll-3. For details, refer to that chapter.

VII-6.2.2Implementing the create_account call

VII-6-6

The Create_account call allocates an object of the right size and type, initializes the
representation and returns an AD with no rep rights.

Calls Used:

Object Mgt.Allocate
- Allocates an object of specified size and type.

Object Mgt.Deallocate
- Removes an objects active version.

Access Mgt.Remove
- Removes rights on an AD.

The following excerpt from the implementation of Account _Mgt _Ex shows all the steps in
the Create account call:

Building Type Managers ror Stored Objects

PRELIMINARY

107 begin
108 -- 1. Check the initial balance:
109
110 if starting balance < Long Integer Oefs.zero then
111 RAISE insufficient_balance; -
112
113 else
114 -- 2. Allocate and initialize the account object:
115
116 account rep untyped := Object Mgt.Allocate(
117 size =>-(account rep object' size + 31)/32,
118 tdo => account TOO);
119 begin -
120 -- Inside this block it is guaranteed
121 -- that the object has been allocated.
122 account rep.all := account rep object' (
123 balance => starting_balance);
124
125 -- 3. Remove rep rights for the exported AD:
126
127 account untyped := Access Mgt.Remove(
128 AD - => account rep-untyped,
129 rights => Object_Mgt.read_write_rights);
130
131 exception
132 4. If any exception occurs, abort any local
133 transaction, deallocate the account,
134 and reraise the exception:
135
136 when others =>
137 Object Mgt.Oeallocate(account untyped);
138 RAISE;- -
139
140 end;
141
142 RETURN account;
143
144 end if;
145 end Create_account;

Object_Mgt .Allocate is used to allocate an object of the right size and type. This call
can be substituted by the Ada new function if the BiiNTM Ada allocate with pragma is
specified with the private object type.

As can be seen from the above example, the Create_object call does not passivate the new
object. It is the caller's responsibility to store the object Note also, that if an exception occurs
during the call after the account has been allocated, it will be deallocated and the exception
reraised.

VII-6.2.3Implementlng the Create_stored_account Call
The Create_stored_account call allocates an object of the right size and type, stores a
master AD under a pathname provided by the caller, updates the passive version, and returns
an AD with all type rights and no rep rights. This call illustrates all steps necessary in storing
an object. In addition, you willieam how to employ transactions to protect passive store opera­
tions.

Building Type Managers for Stored Objects VII-6-7-

Calls Used:

Object_Mgt.Allocate
Allocates an object of the right type and size.

Access Mgt.Remove
- Removes rights.

Transaction_Mgt.Get_default_transaction
Gets the caller's default transaction.

Transaction Mgt.Start transaction
- Starts a local transaction.

Transaction Mgt.Abort transaction
- Aborts a traDsaction. Rolls back any changes done by transaction oriented

calls within the transaction.
Transaction Mgt.Commit transaction

- Commits a transaction. Finalizes changes made within the transaction.

Directory Mgt.Store
- Stores an AD with a pathname.

Passive Store Mgt.Update
- Updates a passive version.

The Create_stored_account call allocates an object and removes rights on the exported
AD the same way the Create_account call does.

vn -6.2.3.1 Starting, Commiting, and Aborting a Transaction

VII-6-8

All passive store operations in this call are enclosed in a transaction, either a caller's default
transaction, or a local transaction. The following excerpt from the implementation of
Ac coun t _Mgt_Ex illustrates the use of a local transaction.

219 4. Start a local transaction if there is not
220 a transaction on the stack:
221
222 if Transaction Mgt.Get default transaction
223 null then - - -
224 Transaction Mgt.Start transaction;
225 trans := true; -
226 end if;
227 begin

241 if trans then
242 Transaction Mgt.Commit transaction;
243 end if; - -
244 exception
245 8. If any exception occurs, abort any local
246 transaction, deallocate the account,
247 and reraise the exception:
248
249 when others =>
250 if trans then
251 Transaction Mgt.Abort transaction;
252 end if; - -
253 Object Mgt.Deallocate(account untyped);
254 RAISE; - -
255
256 end;

This technique avoids starting a local transaction if the caller already supplied a default trans­
action. Subtransactions should be avoided, unless specifically needed.

BuDding Type Managers for Stored Objects

rKr..LJ.IVW~AKI

The above example also indicates the use of a program block to control the scope of the
exception handler. Within this block one can assume that, if t r an s is true, a local transaction
has indeed been started.

Vll-6.2.3.2 Storing the Master AD

The next step in storing the object is to store the master AD. The following excerpt from the
implementation illustrates the call to Directory_Mgt.

230
231
232
233

Directory_Mgt.Store(
name => master,
object => account untyped,
aut => authority);

master is a text record that contains the pathname to store the account. The pathname must
reference an existing directory and not be in use. If the caller .did not specify an authority list,
author it y is null, and the target directory's default authority list will be used, if one exists.
Otherwise the caller's default authority list will be used. If no default authority list is found,
the exception Directory_Mgt. no_default_authority_list is raised.

Vll-6.2.3.3 Updating the Object

In the last step the object t s representation is stored by calling
Passive_Store_Mgt.Update:

237

Note, that storing the AD does not passivate the object's representation. If you omit this last
step, a later attempt to retrieve the object will result in the
Syste~Exceptions. object_has_no_representation exception being raised.

VII-6.2.4 Implementing the Chanqe _balance Call

This call is a typical example of a type-specific operation. It illustrates the use of transactions
to coordinate access to the passive version of an object between different jobs.

Calls Used:

Access Mgt.Import
- Checks and amplifies rights on an AD in one step.

Transaction Mgt.Get default transaction
- Returns the caller's default transaction.

Transaction Mgt.Start transaction
- Starts a 10caI transaction.

Transaction Mgt.Abort transaction
- Aborts a trw action.

Transaction Mgt.Commit transaction
- Commits a niitsaction.

Passive Store Mgt.Reserve
- ReselVes a passive version of an object on behalf of a transaction.

Passive Store Mgt.Update
- Updates an object's passive version.

Building Type Managers for Stored Objects VII-6-9

Vll-6-10

Two steps are necessary before any operations can be performed on the object; the type rights
have to be checked on the AD supplied by the caller, and representation rights have to be
amplified. The following excerpt from the implementation illustrates the
Ac ce s s _Mgt. Import call that performs these two steps together:

400 account untyped := Access Mgt.Import{
401 -AD => account-untyped,
402 rights => change rights,
403 tdo => account_TOO);

If the AD's type rights are insufficient, this call will result in the
System_Exceptions. insufficient_type_rights exception being raised.

Before checking for a sufficient balance in the account, the technique described in the previous
section is used to ensure that there is a default transaction. Next, the call reserves the passive
version on behalf of the transaction:

412 Passive_Store_Mgt.Reserve{account_untyped);

The Passive_Store_Mgt. Reserve call may have three different outcomes:

• The object is available. The call succeeds and locks the object on behalf of the default
transaction.

• The object is locked by another transaction. The blocking protocol permits blocking. The
call blocks until the object becomes available.

• The object is locked by another transaction. The blocking protocol does not allow blocking.
The call returns with the
System_exceptions.transaction_timestamp_conflictexception.

You have to be prepared to handle this exception. The technique used here is illustrated by the
following excerpt from the implementation:

405 loop
406 if Transaction Mgt.Get default transaction
407 null then - - -
408 Transaction Mgt.Start transaction;
409 trans := true: -
410 end if;

426 exception
427 when System Exceptions.
428 transaction timestamp conflict =>
429 if trans then - -
430 Transaction Mgt.Abort transaction;
431 else - -
432 RAISE;

440 end;
441 end loop:

The Passive_Store_Mgt. Reserve operation is enclosed in a program block that has an
exception handler for the transaction_timestamp_conflict exception. The block in
tum is enclosed in a loop that repeats the Re serve call until it succeed in either blocking or
reserving the object

You can avoid the Re serve call. In that case, if the object had been updated by another job
while your call was holding it, passive store would raise the
Passive_Store_Mgt. outdated_object_version exception. You would handle the
exception, request a fresh active version, by calling
Passive_Store_Mgt • Reset_active_version, redo the changes, and try another up-

Building Type Managers for Stored Objects

rK~LJ.N~AKr

date. This technique is not acceptable for our example, since it might result in the decision,
whether the balance be changed, being based on an outdated balance.

VII-S.2.5 Implementing the Transfer Call

The Tr an s f er call is similar in nature to other type-specific calls. It is discussed in more
detail here, since it gives another example of how transactions can be used to keep data in
passive store consistent.

Calls Used:

Access Mgt.Import
- Checks and amplifies rights on an AD in one step.

Transaction Mgt.Get default transaction
- Returns the caller's default transaction.

Transaction Mgt.Start transaction
- Starts a local transaction.

Transaction Mgt.Abort transaction
- Aborts a transaction.

Transaction Mgt.Commit transaction
- Commits a transaction.

Passive Store Mgt.Reserve'
- Reserves a passive version of an object on behalf of a transaction.

Passive Store Mgt.Update
- Updates an object's passive version.

You might think that the Transfer call is superfluous, since two successive calls to
Change_balance would achieve the same outcome. This is only partly true, as the
Transfer call, as described here, enforces atomicity of the transfer. This means, transactions
ensure the call cannot charge one account and not credit the other.

First, both ADs, for the source and the destination account, are checked and amplified using
the one-step Acces s _Mgt. Import call:

494
495 source untyped := Access Mgt.lmport(
496 AD- => source untyped,
497 rights => change-rights,
498 tdo => account TDO);
499 dest untyped :=. Access Mgt. Import (
500 AD => dest untyped,
501 rights => change rights,
502 tdo => account_TDO);

Next, the call makes sure that there is a default transaction. Note, that if the caller already
started a transaction, no further transaction is needed.

The call reserves both objects. Time stamp conflicts are handled the same way as described in
the previous section, with a program block with exception handler inside a loop. The following
excetpt illustrates the two Reserve calls.

511
512

Passive Store Mgt.Reserve(source untyped);
Passive=Store=Mgt.Reserve(dest_untyped);

Building Type Managers for Stored Objects VII-6-11

Note that if the first Reserve succeeds but the second one fails, Reserve will be called
again on both objects. At that point the Re serve call on the first object simply results in no
operation.

After both objects have been reselVed, the balances are checked. As the following excerpt -
shows, an insufficient balance in either account will will cause the
insufficient_balance exception to be raised.

513 if source rep.balance - amount < zero
514 or else
515 dest rep.balance + amount < zero
516 then-
517 RAISE insufficient_balance;
518
519
520
521
522
523
524
525
526
527
528
529
530
531

else
source rep.balance :=

source_rep.balance - amount;"
dest rep.balance :=

dest rep.balance + amount;
Passive Store Mgt.Update(source untyped);
Passive-Store-Mgt.Update(dest untyped);
if trans then - -

Transaction Mgt.Commit transaction;
end if; - -
RETURN;

end if;

The last step in a successful completion of the call, as shown in the example above, is to
update both objects. The new balances do not become petmanent until both objects have been
successfully updated and the default transaction committed. Note, that even though the vari­
ables source_rep_balance and dest_rep_balance have been assigned the new
balances, this has no effect on the passive versions of the objects unless they are updated from
the active versions.

VII-6.2.6 Implementing the Destroy_account Call

VII-6-12

The Destroy_account call destroys an account's passive version, and removes the master
AD if it is stored with a pathname.

Calls Used:

Access Mgt.Import
- Checks type rights and amplifies rep rights in one step.

Transaction Mgt.Get default transaction
- Returns iiie caller's default transaction.

Transaction Mgt.Start transaction
- Starts a local transaction.

Transaction Mgt.Abort transaction
- Aborts a traIisaction.

Transaction Mgt.Commit transaction
- Commit a traDsaction.

Directory Mgt.Get name
. - Returns the patbname of an object's master AD.

Directory Mgt.Delete
- Deletes a directory entry.

BuDding Type Managers for Stored Objects

rK~L.11Vlll"1AK I

Destroy account uses the same techniques described in the previous sections to amplify
rights on ADs and keep data in passive store consistent The following example illustrates that
after reserving the object's passive version, then if the balance in the account is zero, it calls
Passive Store Mgt. Destroy to remove the object's passive version. If the object has
no passive version, then the Passi ve_Store_Mgt. no_master_AD exception is raised.

621
622
623
624
625
626
627

Passive Store Mgt.Reserve(account untyped);
if account rep.balance /= -

Long Integer Defs.zero then
RAISE balance_not_zero;

end if;
Passive_Store_Mgt.Destroy(account_untyped);

Finally the call attempts to remove the object's master AD. The following excerpt illustrates
how:

629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650

loop
declare

path text: System_Defs.text(path_length);
begin -

Directory Mgt.Get name(
obj => account untyped,
name => path text); -- out.

if path text.length >
path-text.max length then

-- Text was lost. Retry:
path length := path text. length;

else - -
Directory Mgt.Delete(path text);
EXIT; - -

end if;
exception

when Directory Mgt.no name =>
EXIT; - -

end;
end loop;

If the master AD is (1) not stored in a directory, or (2) is stored in a standalone directory that
does not have an associated name mapper, or (3) is stored in a standalone directory whose
associated name mapper does not support Get_name, the call to
Directory_Mgt. Get_name may' fail and return with the Directory_Mgt. no_name
exception.

Note that pathlength has an initial value of 60. In the event that the pathname is longer
than 60 characters, the loop body will be executed again, and this time around the
path_text text record is declared with the actual length of the pathname.

In the last step the master AD will be deleted by calling Directory_Mgt. Delete. A
master AD for the object may remain if other directory entries on the same volume set
references the object. One of these alias AD will then become a new master AD.

VIl-6.2.7 Initializing the Type Manager

In Section VTI-6.1.1.1 we have discussed the need of the IDO to outlive any of its objects. For
this reason the IDO has to be created and stored before the first call to this implementation of
Ac coun t _Mgt_Ex. The IDO can be created either by the system administrator using the
co nf igur e utility at node initialization time or by a separate procedure. In this chapter we
shall discuss the second alternative. For more details on the first alternative, refer to the BiiNTM
Systems Administrator's Guide.

Building Type Managers for Stored Objects VII-6-13

VTI-6-14

rK~L1M1NAKr

Calls Used:

Object Mgt.Create TDO
- Establishes a new type by creating a new type definition object (TOO).

Attribute_Mgt.Store_attribute_for_type
Stores an attribute with a IDO.

Transaction Mgt.Get default transaction
- Returns die caller's default transaction.

Transaction Mgt.Start transaction
- Starts a local transaction.

Transaction Mgt.Ahort transaction
- Aborts a transaction.

Transaction Mgt.Commit transaction
- Commit a traiisaction.

Directory Mgt.Store
- Stores an AD with a pathname.

Passive Store Mgt.Request update
~ Requests an update of a passive version. No rep rights required.

The example described in this section is the Stored_Account_TDO_Init_Ex procedure.
(The complete code of this procedure can be found in Appendix X-A.) This procedure has to
be executed before Account _Mgt _Ex can be linked. Note also, that a IDO uniquely iden­
tifies its type. Calling the initialization procedure creates a new TDO that defines a new dis­
tinct type. You have to make sure that at any time there is only one passive version of the IDO
on the system and that all instances of Account_Mgt_Ex refer to the same IDO, otherwise
these instances will not be compatible.

The following excerpt from the Stored.:.,.. Account _ TDO _ Ini t _Ex procedure shows how
to declare the TOO and an instance of the passive store attribute.

52 account TOO: Object Mgt.TOO AD;
53 -- TOO for accounts. -
54
55 passive store impl:
56 Passive Store Mgt.PSM attributes AD;
57 -- Implementation of passive store-attribute
58 -- for accounts.

The next step is to create the IDO, to dynamically allocate an instance of the passive store
attribute, to initialize the instance, and to store it with the type:

Building Type Managers for Stored Objects

I'J.<.ELlNll1'lAK X

93 passive store impl := new
94 Passive_Store_Mgt.PSM_attributes_object;
95
96 passive store impl.reset :=
97 Refuse reset active version Ex.
98 Refuse_reset_active_version'subprogram_value;
99

100 passive_store_impl.copy-permitted:= false;
101
102 Attribute Mgt.Store attribute for type(
103 tdo - => account TOO,- -
104 attr IO => Passive-Store Mgt.PSM attributes IO,
105 attr-impl => Untyped-from PSM attrIbutes (-
106 - passive store impl»;
107 type_name_impl:= Account_Type_Name_Ex'package_value;
108
109 Attribute Mgt.Store attribute for type(
110 tdo - => account TOO,- -
111 attr IO => Type Name Attribute Ex.
112 - Get type name attr 10,
113 attr_impl => type_name_impI); -

Note that the passive_store_impl. reset variable is initialized with a pointer to a
subprogram that executes when
Passive_Store_Mgt . Request_reset_active_version is called. The following
excerpt from the Refuse_reset_active_version_Ex package in Appendix X-A
shows this procedure:

11 procedure Refuse reset active version(
12 obj: System~untyped_word)
13 is
14
15 Function:
16 Handles requests to reset an account's active
17 version by refusing such requests.
18
19
20 begin
21
22 RAISE System_Exceptions.operation_not_supported;
23
24 end Refuse_reset_active_version;

Note, that this procedure simply raises the
System_Exceptions. operation_not_supported exception.

In addition, the copy yermi t ted boolean is set to false. This prevents a caller to duplicate
accounts. The Attribute_Mgt. Store_attribute_for_type links the instance of
the passive store attribute to the TOO. This operation does not, however, passivate the attribute
instance. The next excerpt from the initialization procedure shows how the TOO and the at­
tribute instance are explicitly stored:

Building Type Managers for Stored Objects VII-6-15

I"KELlMlNAK r

122 if Transaction Mgt.Get default transaction
123 null then - - -
124 Transaction_Mgt.Start_transaction;
125 trans := true;
126 end if;
127
128 begin
129 Directory Mgt.Store(
130 name - => account text,
131 object => Untyped-from TOO(account TOO),
132 aut => authority); - -
133 Passive Store Mgt.Request update(
134 Untyped from TOO(account TOO»;
135 Passive Store Mgt.Request update(
136 Untyped from PSM attrlbutes(
137 passive store impl»;
138 Passive Store Mgt.Request update(
139 type_name:impl);-
140
141 if trans then
142 Transaction Mgt.Commit transaction;
143 end if; - -
144 exception
145 when Directory Mgt.entry exists =>
146 if trans then -
147 Transaction Mgt.Abort transaction;
148 end if; - -
149
150 when others =>
151 if trans then
152 Transaction Mgt.Abort transaction;
153 end if; - -
154 RAISE;
155
156 end;

Note again the use of transactions to ensure consistency of passive store.

VII-S.2.8 Protecting the Type Manager

VII-6-16

Recall for a moment two premises of the type manager model:

• A type manager protects objects of its type.

• A type manager provides black box type functionality.

In order for your type manager to accomplish these requirements you have to properly protect
it from other programs. There are two aspects to protecting the type manager, namely

• protecting the type manager inside a running program,

• protecting the type manager's private ADs,

Calls Used:

Authority List Mgt.Create authority
- Creates an authority list

Identification Mgt.Get user ID
Returns calle? s userlD.

Protecting the type manager inside a running program is equivalent to protecting its address
space. The BiiNTM Systems Linker provides special support for linking modules so that each

Building Type Managers for Stored Objects

one executes in its own protected address space, called domain. Besides creating an executable
program, you can also create an image module with the linker. Image modules ate pre-linked
pieces of software that are not linked to a user's program until runtime and that can be shared
by several users. An image module always executes in its own domain. For more details on
domains and image modules, in particular on how to build domains and image modules with
the linker, refer to the BiiNTM Systems Linker Guide.

Depending on how your type manager is to be used, you can choose to either link it in the
standard way to an interactive interface, or to link it into an image module, thus making it
available to be called by user programs. If the type manager consists of small routines that are
not going to be called very often, the savings of shared code will not outweigh the overhead of
creating an image module. For large programs used frequently, however, using image modules
could result in substantial savings.

The second aspect of protecting the type manager is to protect its private ADs. It is necessary
for the protection mechanism here that the linking not be left to the user for the following
reason: As mentioned above, you need to create and store the TDO before invoking the type
manager for the first time. The TDO is created by an initialization routine that stores it with a
pathname. This directory entry is protected by an authority list. The following excetpt from
Stored_Account_TDO_Init_Ex is an example where the authority list includes only the
caller.

64 owner only: User Mgt.protection set(l);
65 -- Protection set that includes only one 10, namely
66 -- the type manager's owner.
67
68 authority: Authority List Mgt.authority list AO:
69 -- Authority list that contains only one IO~ namely
70 -- the type manager's owner.

115 owner only.length := 1:
116 owner-only.entries(l).rights := User Mgt.access rights' (
117 true, true, true): - -
118 owner_only.entries(1).id := Identification_Mgt.Get_user_id;
119
120 authority := Authority_List_Mgt.Create_authority(owner_only);

129 Oirectory_Mgt.Store(
130 name => account text,
131 object => Untyped-from TOO(account TDO),
132 aut => authority); - -

The TDO is retrieved at link-time using the Ada pragma bind. At that time rights are
evaluated against the ID list of the calling process. The following excetpt from the implemen­
tation shows this:

52 account TOO: constant Object Mgt.TOO AO := null;
53 -- This is a constant AO but not really null: its
54 -- filled in with an AD retrieved by the linker.
55 pragma bind(account TDO,
56 "account"):
57 -- Bind to TOO for accounts.

With the TDO thus protected, only people who are included in the TDOs authority list can link
the program since noone else has access to the TDO. In the above example this is only you.
(You could also create a separate ID just to protect the type manager.)

After the program is linked, it can execute with any ID.

Building Type Managers for Stored Objects VII-6-17

VII-6.3 Summary

VII-6-18

In this chapter you have learned the techniques necessary to build a type manager for stored
objects. In particular, you have learned that

• before the first object can be stored, a TDO has to be created and stored together with a list
of attributes.

• storing an object requires two steps, namely storing the AD and updating the object's
representation.

• the use of transactions keeps passive store consistent even in the event of a system failure.

• transactions can be used to synchronize access to passive objects.

• removing an object that has been passivated requires three steps, namely, deallocating the
active version, destroying the passive representation, and deleting the master AD.

• special features of the linker and pragma bind can be used to protect the type manager.

NOTE
Please keep in mind that the example described in this chapter permits processes in dif­
ferent jobs to concurrently use the objects of one type. There is no provision in the
example for processes within one job to concurrently access one object For details on
how to achieve that, see Chapter VITI-I.

Building Type Managers for Stored Objects

Contents

UNDERSTANDING 7·
SYSTEM CONFIGURATION

Creating a Node's Configuration ... VII-7 -3
perming a Node's Configuration ... VII-7-4
Configuration Attribute Calls .. VII -7-4
Creating Configurable Objects ... VII-7-5
Attaching Objects to Configurable Objects VII-7-6
Starting Configurable Objects•.............•..•................... VII-7-7
System SCOs and User SCOs•..................•................. VII-7-8
The configure Utility ... VII-7-9
Configuring Software Services .. VII -7-6
Summary ... VII-7-9

Understanding System Configuration Vll-7-1

VII-7-2

A configuration is an arrangement of objects representing the hardware and software resources
of a particular BiiNTM node. System administrators routinely manage node configuration using
the configure utility as described in the BiiNTM Systems Administrator's Guide. Two
classes of programmers also need to understand system configuration:

• Programmers adding hardware devices to BiiNTM systems

• Programmers adding software services with unique initialization requirements.

A BiiNTM system provides a variety of predefined system configurations describing systems
covering the most common customer characteristics of hardware configuration: number of
users, interactive or batch workload, or computational or I/O emphasis. Any of these
predefined configurations may be used for generating a tested and balanced BiiNTM Operating
System configuration, or may be modified to accommodate site-specific requirements.

Packages Used:

Configuration Provides operations for creating and modifying a system configuration.

Configuring a system includes creating configurable objects to represent hardware and
software system components, then attaching and starting the objects to build a running system.

Understanding System Configuration

System Configuration Object Con figurcble Objects

I-I
I CP I

Lf-.J
I-I
I SCSI_bus I

Lf-.J
I-I
I SCSI_cent I

Lf-.J
I-I
I SCSLdisk I
L_--1

I SCSUus I

Figure VII·'·1. System Configuration

VII-7.1 Creating a Node's Configuration

Hardware

Channel
Processor (CP)

SCSI Bus

SCSI Controller

SCSI Disk

A node's configuration is created when the node is booted (see Figure Vll-7-2). Booting a
node begins with all hardware connections made, power on, and needed boot images but no
software active in the system. Booting ends with a functioning, active system ready to respond
to commands. The boot process must search for and initialize hardware and software modules
and create the complex network of objects on which a running node depends.

Understanding System Configuration Vll-7-3

Boot Tape:

OS Kernel
Device Drivers
Services
Utilities

A System
U Volume

Set

Figure VII-7-2. Booting a Node

Certain infonnation must be available when a node is configured:

• What objects are part of the configuration. For example, there may be objects that
represent physical I/O devices, device controllers, logical devices such as volume sets, and
software units such as the OS kernel.

• One-time operations to be perfonned. For example, a hard disk may need to be fonnatted.

• The sequence in which operations should be perfonned. For example, a volume set cannot
be created on a hard disk until after the disk controller is started and the disk is fonnatted.

VII-7.2 Defining a Node's Configuration
A node's configuration is defined by a System Configuration Object (SCO). An SCO provides
infonnation needed to create the configuration: the objects involved, the operations involved,
and the required sequence of operations.

An SCO is a list of operations to perfonn, along with parameters for each operation. Only
those operations defined by the Configuration. Ops attribute package are allowed in an
SCO. If an object type needs to actively participate in the configuration process, that type
must support the configuration attribute. Such objects are configurable.

VII-7.3 Configuration Attribute Calls
The configuration attribute provides calls for:

• Attaching objects to configurable objects

• Starting configurable objects.

VII-7-4 Understanding System Configuration

These calls are normally used within an seo. Other configuration attribute calls, for
detaching objects from configurable objects and stopping configurable objects, are nonnally
not used within an seo.

VII-7.4 Creating Configurable Objects
System configuration is the specification of environmental hardware and software operating
parameters of the components to be supported by a BiiN"" Operating System kernel image.
System components include hardware modules (disk, controller, bus, etc.) and software
modules (loadable, non-resident subsystems and optional support selVices).

A configurable object (eO) is a representation of a hardware or software module that must be
configured at node initialization, or can be dynamically added to a running node. A
configuration attribute supports the configuration of objects other than software selVices, par­
ticularly hardware components. A service configuration attribute supports the configuration of
software selVices that have configuration and initialization dependencies in common. (An
object is configurable only if its TOO contains the configuration or service configuration
attribute.)

A configurable object must be created for each system component to be included in a system
configuration. After it is created, it is not yet functional, but may be attached to other con­
figurable objects. Attachment binds the configurable objects so they can be started and placed
in a usable state.

When the configurable objects are no longer required to provide their function, they can be
stopped. When they are no longer needed in the configuration, they are detached from other
configurable objects to which they may have been attached.

Figure VII-7-3 illustrates the process of creating a configurable object

Command
Con figuration Definition

Attribute
J~

TOO

~ t>
Interactive

'cmd Form
def t::=J t:::I +

I I I __ L __ -,

I Configurable I Command

~ I Object I Parameter t:::::J

I I Record I I
I
I I
I I
I I
I I L _____ ..J

Figure VII-7-3. Creating Configurable Objects

Understanding System Configuration Vll-7-5

An object to be made configurable must have a TDO which contains a configuration attribute.
The TDO contains a command definition that defines the type of infonnation required by a
configurable object of the TDO's type. This command definition is displayed in an interactive
fonn through which a user enters parameter data. The data collected by the interactive fonn is
extracted from the command definition fonnat and is used to create a configurable object.

VII-7.5 Attaching Objects to Configurable Objects
Attach and Detach operations bind and unbind configurable objects. These configurable
objects are considered head or tail objects depending on their relationship in the binding.

A head object is the initiating member of a pair of configurable objects associated with each
other. A head object is characterized by its ability to function nonnally without being attached
to another configurable object.

A tail object is the dependent member of a pair of objects associated with each other. A tail
object is characterized by the requirement to be bound to a configurable object before it can
become functional. Rights that may be needed on tail objects should be specified by the type
manager supporting the Attach and Detach configuration calls on the tail objects. Tail
objects don't have to be configurable when the attachment is unidirectional (tail object at­
tached to head object but head object not attached to the tail object).

An attachment nonnally indicates that the tail object depends on the head object to function.
For example, a volume set must be attached to a disk. in order to function. A type manager's
implementation of At tach nonnally checks the validity of the attachment by checking the
type, rights, and state of the tail object and the rights and state of the. head object.

An implementation of Attach can be bidirectional, making the attachment in the reverse
direction as well. A bidirectional implementation is used when configurable objects are
mutually dependent. For example, a CP (channel processor) and a SCSI (Small Computer
System Interface) bus must communicate with each other in both directions and therefore
require a bidirectional implementation of At tach.

VII-7.6 Configuring Software Services

Vll-7-6

A configurable object is an object whose TDO contains an instance of a configuration attribute.
Kernel, load able, and application selVices require an attribute that can deal with the interdepen­
dencies inherent between them. For example, the object selVice uses the distribution selVice
which in tum uses the clearinghouse selVice. An attribute is provided by configuration that,
for example, enables the distribution selVice to ensure that the object selVice is started only
after the Clearinghouse is started.

The mechanism used to support this binding of selVices is the service configuration attribute.
This attribute allows a service to link itself with all the necessary and optional selVices that it
uses. This attribute is extensible in that it allows a selVice to support the initialization of
selVices that use it, and allows a selVice' s initialization to itself to depend on other selVices.
This attribute registers a distribution selVice-dependent initialization procedure. These
procedures are called by the BiiNTM Operating System after the system SCO has been
processed when a node is present in a distributed system.

Understanding System Configuration

f
\

VII-7.7 Starting Configurable Objects
All configurable objects provide Start and Stop implementations (which can be null).
Start places a configurable object into a usable state by perfonning local initialization.
Start is called by OS initialization as specified in a System Configuration Object (SCO).
Start can also be called to start a component in a running system. Starting a configurable
object should not start any attached tail objects. However, Start may require that tail objects
be already started.

When the object to be started is a configurable object (CO) or a software service (SS) that
neither is dependent on another software service nor is depended on by another software ser­
vice, Start places it into a usable state by perfonning local initialization.

CO/SS

INIT
Start ...

,.

Figure Vll-7-4. Simple Attach

When the object to be started is a software service that is dependent on another software
service, Start perfonns local node initialization and attaches the first software service to the
service on which it is dependent

SS SS

Attach ... ,..

Start
INIT

,.

Figure Vll-7-S. Attaching to a Dependent Software Service

When the object to be started is a software service that another service depends on, Start
perfonns back attaches, that is, attaches the dependent service to the service that it depends on.

Understanding System Configuration VTI-7-7

SS SS

- Attach
"'

Start ...
INIT

,.

Figure VU·' ·6. Back Attachment of a Dependent Software Service

When the object to be started is a software selVice (A) that is both dependent on another
software service (B) and another selVice (C) depends on it, Start first attaches A to B on
which it is dependent, and then performs back attaches from A to C.

8

A

Attach ... ,.

Start ...
INIT C

,
'"

Attach -

Figure VU·'·'. Compound Attachment

The order of attaches caused by starting a software service is implementation-dependent.

VII-7.8 System seos and User seos

VIJ-7-8

A System Configuration Object (SCO) is composed of a sequence of commands that attach
COs together and start COs. The system administrator specifies a system SCO and a user SCO
to use during OS initialization. A system SCD references hardware and software components
of the configuration that are required to complete the node's initialization of the BiiNTM Operat­
ing System. A user SCD references components of the configuration that are not required to
complete initialization of the as, such as starting login services, database systems, specific
application programs, and other activities that depend on disk write access or distributed sys­
tem services.

Understanding System Configuration

Figure VII -7 -8 illustrates system and user seos:

system SCQ
/ sys / scos /system _sco --4.~ .. ---...;.-----------.

/sys/scos/user_sco

attach CP scsi_bus
attach scsi_bus scsi_cntlr
attach scsi_cntlr scsi_disk

• • •
start CP
start scsi_bus
start scsi_cntlr
start scsi_disk

• • •

user SCQ

• • •
start login
start dbms

• • •

Figure Vll-7-S. System Configuration Objects

The order of initialization of configurable objects is defined by the sequence of Start calls in
the seos. The sequence for other configurable objects started after system initialization is
determined by their type managers. For example, a set of configurable objects that is part of a
CP (Channel Processor) subsystem can be started by starting the configurable object that
represents the CP. Conversely, various network services require a separate start for each ser­
vice specified in the configuration.

All system and user seos on a node are contained on the system volume set in the directory
/sys/scos.

VII-7.9 The configure Utility
Additional system configuration can be performed dynamically when the system is up and
running, or at the next boot by updating or creating new seos.

The configure utility provides runtime commands to dynamically attach, detach, start and
stop COs, and to create COs and seos for use at a future system initialization. See the BiiNTM
Systems Administrator's Guide for information about the configure utility.

VII-7.10 Summary
• Hardware components and system software modules are defined to represent a working

system.

• A running system can be modified with the conf igure utility to build a site-specific
system.

Understanding System Configuration Vll-7-9

V11-7-10

• System configuration is the specification of environmental hardware and software operating
parameters of the components to be supported by a BiiNTM Operating System kernel image.

• System configuration is the process which brings a nonfunctional system to the point that it
can execute a common application.

• System components include hardware modules (disk, controller, bus, etc.), and software
modules (loadable, nonresident subsystems, and optional support selVices).

• A configurable object (CO) is a representation of a hardware or software module that must
be configured at node initialization or can be dynamically added to a running node.

• A System Configuration Object (SCO) is composed of a sequence of commands that attach
COs together and starts COs.

• When a system is up and running, additional system configuration can be perfonned
dynamically, or at the next boot by using the configure utility.

• A service configuration attribute enables a selVice to link itself with all the necessary and
optional selVices that it uses.

Understanding System Configuration

•

rK~L1NllNAK r

Part VIII
Distribution Services

This part of the BiiNTM IDS Guide describes OS support for distributed selVices.

The chapters in this part are:

Understanding Distribution
Explains basic concepts of distribution and distributed selVices.

Building a Distributed Type Manager
Explains how to build a local single-activation distributed type manager,
using remote procedure calls.

Distribution SelVices contains the following selVices and packages:
clearinghouse service:

CH Admin
CH-Client
CH-Support
Node_ID_Mapping

RPC service:
RPC Admin
RPC-Call Support
RPC=Mgt -

tr~ortservice:

Part WI Overview

Comm Defs
Datagram AM
DG Filter Mgt
Distributed Service Admin
Distributed-Service-Mgt
ISO Adr Defs -
ISO-Config Defs
ISO-TM AdmIn
TM Comm Defs
VC-Filter Mgt
Virtual_circuit_AM

rK.r...LJ.1Vll.l~~ I

Part VIII Overview

P~LlMlNAKY

UNDERSTANDING DISTRIBUTION 1
Contents

mtroduction .•....................•....................•.............. VllI -1-2
What a Distributed System Can Do .. vm -1-4
Naming .. VllI-l-S

The Clearinghouse ..;... vm -1-6
Communications .. VllI-I-8
Review of the Computational Model VITI -1-10

Processes, Jobs'and Sessions ' .•.......................... VITI-I-I0
Active and Passive ADs .. VITI-I-I0
Single and Multiple Activation Model•.......................... VITI-I-II

Single Activation Distributed SelVices VITI -1-13
Protection in a Distributed System .. VITI-I-13
Transparently Distributed SelVices VITI-I-14

Passive Store VITI -1-14
Directories ... VITI -1-14
IDs .. VITI-I-IS
Files ... VITI-1-16
Data Integrity, Synchronization, and Transactions VITI-I-16

Summary ... VITI-I-16

Understanding Distribution vm-l-l

r.l<ELllVllNAK I

VIII-1.1 Introduction
The BiiNTM Operating System supports distributed computing. A distributed system, capable
of distributed computing, spans a number of BiiNTM nodes connected bY'a communication
network. The network may contain several subnetworks. In this context a subnetwork is a
homogeneous network such as ethemet or HOLe. It is important to note that the network
connecting a distributed system need not be homogeneous. Two distributed system may also
share a homogeneous subnetwork, such as a LAN (local area network), for example. Distribu­
tion is a high level concept independent of the communication media and associated com­
munication protocols. Although distribution is independent of the communication media, it is
optimized for high speed LAN applications.

A distributed system may appear as a "single machine" to the casual user. On the other hand a
user can use his/her knowledge of the structure of the system, and work with individual or
defined collection of components (nodes, I/O devices, and so on).

Figure VllI-l-l shows an example of a network of BiiNTM nodes.

Understanding Distribution

~_---1 Gemini
Node

LAN 802
based
Subnet

HOLe)
based

Switched
Subnet

Figure VIII-I-I. A Network of BiiNTM Nodes

Ethernet
based
Subnet

/

This particular network. contains two bus-based LANs connected via a public packet switched
network.. Two additional subnetworks are shown, one based on a set of dedicated point to point
communication lines and the second based on a circuit switched network. Circles indicate the
boundaries of distributed systems.

Distributed computing lies in between multiprocessing and networking. Table VIn-I-llists
important points in which the three concepts differ.

Understanding Distribution VIll-1-3

.I'K.t;L1MlNAK Y

Table vm-l-l. Distribution vs. Multiprocessing vs. Networking

Multiprocessing Distributed Computing Networking

Close Cooperation Cooperation Mutual Suspicion

Complete Trust Tempered Trust No Trust
Access/Resource Controls

Single Administrator Cooperating Administrators Independent Administrators

Completely Sbared·Resources Controlled No Shared Resources
Sharing of Resource

"Single Machine" Homogeneous Heterogeneous

On one hand distribution extends the concepts of multiprocessing beyond the limits of one
shared memory, and on the other hand distribution takes the ideas of networking one step
further.

This chapter explains the concepts of distribution. It does not explain specific techniques or
point out the details of implementing a distributed selVice. This infonnation is contained in
chapter VIll-2.

The next section gives examples of what a distributed system can do and what it cannot do.
The following sections discuss the most important aspects of distribution in more detail, in
particular the following topics:

• Conununications

• Naming

• Review of the computational model

• Single activation distributed selVices

• Protection in a distributed system

• Transparently distributed selVices.

Communications and naming are the two building blocks of the distributed architecture. For
this reason special attention will be given to these two areas.

VIII-1.2 What a Distributed System Can Do

VllI-14

Distributed computing makes it possible to build computer systems of any size from a single
node up to a conglomerate of as many nodes as you choose. (There is no limit to the size of a
distributed system.) Even though only a conglomerate of individual machines, the system acts
in many ways as if it were one single machine, provided, of course, that the communication
media is fast enough.

In most cases the user need not be aware of the physical organization of the distributed system;
although nodes are individual machines that can operate by themselves, they appear to the
casual user to be one unit. For instance, disks are mounted on individual nodes, but they
appear to be mounted on all nodes at once. A user can also choose to run a job on a selected
node or to store an object on a particular disk drive of his/her choice.

Jobs are the computational unit in a distributed system. Jobs run on single nodes but they
communicate with other jobs, on the same node or on other nodes in the system. The interface
for job communication on different nodes and the same node is identical, but there is an ef­
ficient implementation of 1...'1tra-node commurJcatioDS.

Understanding Distribution

YK~LIMlNAKY

By the means of interjob communication, independent jobs may exchange messages or related
jobs may be coupled together. A service, such as the filing service, may containjobs that run
concurrently on all nodes of the system. The service is thus available on all nodes. All jobs
belonging to the service communicate constantly and create a homogeneous environment of
file access and usage across the entire system: Any file on the system is uniquely identified
and stored in one place; this avoids a considerable amount of duplication. Files are available
from any node: Requests to access a file are forwarded to the file's home node and executed
there.

The filing service is a universal service. Universal services are decentralized; fuing requests
are serviced on the node where the requested file is stored. Since files can be stored at any
node, filing services requests on all nodes of the system. (Diskless nodes are currently not
supported.)

Services can also be regional. A regional service is centralized; requests can be issued on
many nodes but only a few nodes (or even a single node) service requests. Universal services
are "symmetric' '; on all nodes there is an agent that accepts and distributes requests and a
server that receives requests from an agent and executes them. A regional service is
"asymmetric"; there are many agents·and only a few servers.

Compare a universal service to the postal service: Every town has its own post office that
receives mail from other towns, distributes it to the addressees, and collects and processes
outgoing mail. A regional services resembles more an insurance company. Insurance agents
sell policies for a company that underwrites the policies. The agent interacts with the clients
on the one side and with the insurance company on the other. The insurance agent does not
underwrite policies himself.

As an example of a regional selVice imagine an airline reservation system. All booking infor­
mation is kept in a few locations. Agents in branch offices make'reservations on their local
nodes; the requests are transparently forwarded to one of the nodes where booking information
is kept.

Distributed systems provide parallel processing. A session may span several nodes and contain
jobs on all those nodes. If a task can be partitioned, processes in these jobs can work on parts
of the task asynchronously.

Currently, load balancing is not implemented. The architecture does not discourage this
functionality, however. An application implemented as a distributed service can decide based
on the load in the system, how it routes requests to its servers. An example is a distributed
batch utility that submits batch jobs to the node with the lowest load in the system.

The following two sections discuss the most important elements in a distributed system,
namely how entities are named, and how nodes in the system communicate.

VIII-1.3 Naming
One of the two building blocks of a distributed architecture is a location-independent naming
mechanism. Here is an example of the merit of location-in de pent naming: A volume set is
identified on the machine level by a unique volume set ID. The volume set 10 reflects where
the volume set is currently mounted in the system. The symbolic name of the volume set on the
other hand has nothing to do with the location of the volume set. More importantly, the sym­
bolic name does not change when the volume set is moved to another node. You can refer to
the volume set without having to know where it is currently located.

Understanding Distribution VllI-1-5

rK~LllVllNAK y

Naming extends to stored objects, users, nodes, and volume sets. The map from machine level
identifiers to symbolic names is maintained the clearinghouse.

The clearinghouse centralizes network information in a few locations. Thus network infor­
mation can be updated quickly and easily. Volume sets can be moved from one node to
another, a node may be added, or a node may be disconnected: Those changes have to be
recorded in only a few places, namely where copies of the clearinghouse are kept.

VIII-1.3.1 The Clearinghouse

VIll-1-6

The clearinghouse is decentralized and replicated. Instead of one global clearinghouse seIVer
there are many local servers each storing a copy of a portion of the global information. Some
information in the clearinghouse is cached locally by other services. This allows to bypass the
clearinghouse for efficiency and when access to a clearinghouse server is not possible due to a
communication failure.

User ids, for example, are available at all nodes. This is necessary in order to allow users to
log on to a local node even if that node is disconnected from the rest of the system. The same
applies to locally mounted volume sets.

The organization of the clearinghouse is hierarchical. Names of clearinghouse entries consist
of four parts representing the four level hierarchy. The names of the four parts are
organization, domain, environment, and local. Qearinghouse names are specified with single,
double and triple slashes between the level names. A full clearinghouse name is always of the
following form:

///org/dorn/env/local

Organization and domain together reference a naming domain. A large distributed system
is typically split up into multiple naming domains. Thus name evaluation does not become
hopelessly slow when the system becomes very large. Every node in the system belongs to
exactly one naming domain. The clearinghouse is partitioned on the naming domain level. This
means that one clearinghouse seIVer stores all entries of the form

///organization/domain/anything/anything

A name starting with two slashes reference an entry in the callers organization:
//dom/env/local

A clearinghouse name starting with one single slash refers to the local naming domain:
/env/local

Figure VIII-1-2 illustrates the hierarchical structure of the clearinghouse.

Understanding Distribution

ORGANIZATION

DOMAIN

ENVIRONMENT

LOCAL

Figure vm-1-2. The Hierarchical Structure of the Clearinghouse

The infonnation in figure vm-1-2 is shown together in one place. In a real system it is
partitioned, replicated, and stored in different locations. The figure is very much simplified and
shows entries for only one naming domain. This is done for convenience and ease of under­
standing.

There is one special naming domain per distributed system, called the figurehead naming
domain. This domain covers the entire system. More specifically, it references all other entries
in the clearing house. In fact, the figurehead naming domain defines the distributed system. It
is used whenever the naming domain of an object is not known. This can happen when a
passive object is activated: Passi ve_Store_Mgt has a unique identifier (UID) for the ob­
ject which contains the ID of the volume set where the object is stored. With the help of the
figurehead naming domain, Passive_Store_Mgt maps the volume set ID to the network
address of the node where the volume set is mounted.

The clearinghouse is maintained by the clients, BiiNTM Operating System services or applica­
tions that use the clearinghouse. Clients maintain clearinghouse environments. In an environ­
ment the clients store names and properties associated with those names. The naming service,
for example, maintains the v s environment It uses this environment to map volume sets to
node addresses, indicating where the volume set is mounted. Another example is the protection
service. It maintains the id environment that maps user IDs to user profiles (and thus to
symbolic user names). This information is used by the logon utility. The distributed OS ser­
vices use a total of four environments in the clearinghouse, namely vs, id, node, and
ds _ id From the point of view of the clearinghouse there is no difference between those
environments and other environments. The clearinghouse simply provides the mechanisms for
binding symbolic names to properties in one networkwide location. It is entirely up to the
client to attribute meaning to the clearinghouse entries.

Most applications will use the clearinghouse indirectly through the OS services. However, if
the need arises, an application may use the clearinghouse directly, either through the above
mentioned environments or even by setting up its own environment.

A request to the clearinghouse to bind a name to a set of properties may originate anywhere in
a distributed system. The request will be directed to a clearinghouse agent. The agent knows

Understanding Distribution VIII-!-7

YKHLIMlNAKX

the address of at least one clearinghouse server. The selVer will either handle the request
directly or, if it does not store the required information, forward the request further to a selVer
that stores the infonnation This entire process happens invisibly to the client.

In summary the clearinghouse provides the basic tools needed for a high level naming
mechanism. But the function of the clearinghouse goes beyond this task. Any type of infor­
mation may be bound to a name; an internetwork address, in the case of a node, or a telephone
number, in the case of a user. SelVices can use the clearinghouse to whatever purpose they
require. The merit of the clearinghouse is that it centralizes all this infonnation and makes it
available to everyone. One of the most important uses of the clearinghouse is to provide loca­
tion independent naming.

VIII-1.4 Communications

VlII-l=8

If distribution is compared to a brick wall, then naming corresponds to the bricks and com­
munications to the mortar; either one without the other would be useless. And just as mortar
and bricks become invisible once plaster has been applied, so should the details of naming and
communications be invisible in a distributed system. However, nobody can build a wall with­
out mortar, and nobody can build a distributed system without communication between nodes.
In order to understand distribution, we have to have some understanding of how nodes com­
municate.

One of the guiding principles in the BiiNTM architecture is that logical structures hide physical
structures. This principle also pertains to communications: The system supports a variety of
different communication protocols, such as Ethernet, IEEE 802.3, HDLC and X.2S. Transport
services hide the details of these various subnetworks. Through the interfaces provided by
transport selVices a distributed selVice can use two different high level communication
protocols, a connection oriented and a connectionless protocol. We refer to the connection­
oriented protocol as a virtual circuit and to the connection-less protocol as a datagram.

Datagrams are short one-way messages sent from one job to another. They are similar to letters
sent through the mail: There is no guarantee that a datagram sent will be received by the
addressee or that a number of messages sent will be received in the order that they were sent.
Transport selVices only guarantee that if a message is received, it will be intact. On the
positive side datagrams are inexpensive Gust as letters), fast, and require little overhead.

Virtual circuits provide a full duplex connection between the connected parties. A virtual cir­
cuit is a bidirectional ordered flow of bytes similar to a telephone connection. Receipt of a
message is acknowledged and messages sent in a certain order arrive at the addressee in that
same order. Setting up, maintaining, and tearing down a virtual circuit presents considerable
overhead.

There is a third way for processes to communicate. This method is called a remote procedure
call. Remote procedure calls are built on top of datagrams and share some of the advantages of
datagrams. They provide the following additional selVices:

A simple call interface
Making an RPC involves no more than making an ordinary procedure call.

Authentication and security
Messages are authenticated to insure that they are intended for that selVer
and that they have not been modified in transit.

Understanding Distribution

Converting ADs ADs are converted to their passive form.

Locating Given an AD to the server, RPC locates the server.

RPCs are message/reply pairs. They force the caller to wait until the call has completed. A
series of RPCs made by one process is strictly ordered, since the calling process cannot make
another RPC before the previous one has completed. RPCs are used within distributed services
to communicate between instances of the service. (RPCs made by different processes in a
certain order do not necessarily retain that order.)

It is important to note the conceptual difference between RPCs on one side and datagrams and
virtual circuits on the other. RPCs use datagrams as means of communication, they provide
additional services as mentioned above, and they are not as flexible as datagrams. RPCs are
taylored specifically to the needs of distributed services. Datagrams and virtual circuits are
basic means of communication and not taylored to any specific application. They provide no
locating services, no authentication, and their interface is more complicated than RPCs. In
exchange they can be used for any type of communication between jobs, not just between
instances of a distributed service.

Whether an application uses RPCs, datagrams or virtual circuits depends on its particular
needs. An application set up as a distributed service will find RPCs the easiest to use. For other
uses datagrams or virtual circuits provide the necessary flexibility. In particular datagrams are
good for sending brief messages, and virtual circuits for reliably transmitting large amounts of
data.

Figure VllI-1-3 gives a simplified picture of the differences between datagrams, virtual cir­
cuits, and RPCs.

A B

Datagrams: one-way, one-shot

Virtual circuits: two-way, continuing exchange

Parameters

A Results B

RPC: two-way, one-shot, like a procedure call

Figure VIII -1-3. Three Different Communication Methods

Both datagrams and virtual circuits link two jobs. To be more precise, datagrams are sent from
one transport service access point (TSAP) to another. A TSAP represents a binding between

Understanding Distribution

the user of a transport service and the transport service itself. A TSAP object represents a
TSAP. In the case of datagrams the TSAP object also serves as a repository for information
relating to the TSAP that it represents. This includes buffers and state information. TSAPs are
specific to either datagrams or virtual circuits.

In the case of a virtual circuit there is an additional, dynamic level of association between
communicating processes, the connection. A transport connection point (TCP) represents an
endpoint of the connection. In this case the TSAP represents only the static binding between
user and transport service and is used to create and destroy TCPs which represent the dynamic
binding. Multiple TCPs can be associated with one TSAP (but only one TSAP with any TCP).

TSAPs are bound to a TSAP address. A TSAP address uniquely identifies a TSAP over the
entire network. A user who wants to send data through his TSAP to another TSAP must know
the TSAP address of the destination TSAP. The remote user can receive the data on his TSAP
along with the sender's TSAP address.

TSAP addresses are composed of two parts, a network part which uniquely identifies an in­
stance of the transport services, typically associated with one node, and a transpon service end
point. The network part is known as an NSAP. An NSAP is the point at which an instance of
the transport services is bound to the network level services. Inside the realm of an NSAP an
end point uniquely identifies a TSAP.

It is convenient for some system-wide services to reserve certain fIXed values of end points.
Those end points are called well known endpoints. Other endpoints are dynamically allocated
by the transport services.

Summarizing, the BiiNTM architecture provides high level interfaces for communications be­
tween nodes in a distributed system. Depending on the needs of an application communication
services can be used at different levels. However, at all those levels an application does not
have to be concerned with the details of the communication protocol.

VIII-1.5 Review of the Computational Model
In the previous two sections we have outlined naming and communications in a distributed
system. Those are the building blocks for a distributed architecture. In this section we shall
review the BiiNTM computational model briefly and put it in perspective in a distributed system.

VIII-1.S.1 Processes, Jobs and Sessions

Processes represent linear threads of computation. Multiple processes may be part of one job.
Jobs are the unit of program execution in the BiiNTM system. Jobs, and therefore processes, are
confined to a single node. A session may contain many jobs on different nodes. The jobs in the
session can communicate with each other or with jobs outside their session. In many ways a
job acts like a virtual computer.

VIII-1.S.2 Active and Passive ADs

VIII-I-iO

Active access descriptors (active ADs) are represented by 33bit words where the 33rd bit, the
tag bit, is set. Active ADs are valid inside a node's active memory only. Before an AD can
cross node boundaries in a distributed system, it has to be converted to its passive version. A
passive AD is a much larger entity than an active AD (about 4Obytes). A passive AD is a
unique reference on all BiiNTM systems at all times. In order for an object to have a passive AD
an AD to L;,e object has to have been stored previously.

Understanding Distribution

VIII-1.S.3 Single and Multiple Activation Model

The system supports two different models of activating passive objects (copying passive ob­
jects into active memory). In the multiple activation model any job activating an object
receives an independent active copy of the object. A job can work on its copy and update the
passive version from the active version. The multiple activation model is easy to use except for
one problem; passive store refuses updates from outdated versions. A job whose update has
been refused can handle this situation by requesting a fresh active version, redoing its changes,
and attempting another update.

The single activation model avoids the updating problem by allowing only one copy of an
object in active memory. One job, the home job, receives the active version and all other jobs
receive stand-ins, called homomorphs, when activating an object. Those jobs who have
homomorphs communicate with the home job in order to effect changes on .the object. The
single activation model is useful for large objects that are used by many jobs simultaneously.

There is an important difference between how global and local objects are treated in both the
single and the multiple activation models. Independent of whether in the single or multiple
activation model there is always a maximum of one active version per of node of a global
object. All jobs accessing the global object share this one active version. In the single activa­
tion model there is one active version of an object per distributed system, in the multiple
activation model there is one active version per node of a global object, and one active version
per job of a local object. Independent of the activation model processes within one job always
share an active version

Figure VllI-l-4 illustrates the difference between single and multiple activation model. Note
that what is shown as active memory in the figure may span several nodes.

Understanding Distribution VIII-I-II

VllI-1-12

rK~LJ.IVlll~AK I

Passive Store Active Memory

Multiple Activation Model

Passive Store Active Memory

Single Activation Model

Figure vm-1-4. Single and Multiple Activation Model

Distributed services can be built along the lines of either activation model. Very little
knowledge of distribution is needed in order to build a multiple activation distributed service.
BliNTM Operating System distributed services take care of the distribution part transparently in
this case. Building a distributed service along the lines of the single activation model is more
complicated and requires knowledge of the mechanisms of distribution and intetjob com-

Understanding Distribution

munication. In the following section we shall present the model of a single activation dis­
tributed service.

VIII-1.6 Single Activation Distributed Services
There are two ways a distributed service can be set up, as a regional or as a universal dis­
tributed service. In both cases the service contains agents and servers. Requests to the service
are directed to an agent. The agent forwards the request to a server which executes it and
returns the ,results to the agent. A universal service has servers and agents on every node of the
system. An example of a universal service is the filing service. A regional service has an agent
on every node but servers on only a few or even a single node. An example of a regional
service is a print service with a printer that is mounted on one particular node, but accepts print
jobs on any node.

In a regional service an agent knows the address of at least one server. It does not have to
know the address of the server that will actually execute the request; if it directs the request to
another server the request will be forwarded until it reaches its destination.

A distributed type manager is also a distributed service. The difference between a type
manager and a distributed service in general is that the type manager has representation rights
to its objects. It can therefore distinguish between homomoIphs and real active versions. This
simplifies the model somewhat: There is no need for a strict two level implementation accord­
ing to the client/server model. In one job the same code can act as the client, in another as the
server. The code decides what role it assumes depending on whether it was handed a
homomoIph or the real active version. If it is handed a homomoIph it recognizes that it ex­
ecutes outside the home job. In this case it will act as an agent and forward the request to the
server. If it is handed the real active version, that means that it executes inside the home job. In
that case it assumes the role of the server and executes the requests directly.

VIII-1.7 Protection in a Distributed System
Security issues constitute a considerable problem in an open network architecture. In some
sense, communications over such a network are similar to radio broadcasts; it is impossible to
prevent somebody from broadcasting or from listening to certain broadcasts. If you want to
protect broadcasted messages you will have to encrypt them.

The only security mechanisms in effect at the transport level are those that protect TSAPs.
Three rights are defined for TSAPs: Receive, Send and Control. Receive rights are necessary
to receive messages through a TSAP. Send rights are required to send messages through a
TSAP. Control rights are needed to destroy or configure a TSAP.

This protection mechanism does not prevent you from using either datagrams or virtual circuits
to send messages to a TSAP on another node or even on your node if you have the TSAP's
address. Validation of messages and authentication of the sender is entirely a a high level
concern. There are two sides to this problem; on one side data in transit should be protected
from unauthorized use. On the other side a distributed service's private ADs have to be
protected from unauthorized use but at the same time be available to all instances of the ser­
vice.

Encryption protects data in transit. An application that transmits sensitive data should therefore
encrypt that data. There are two solutions to the problem of protecting private ADs.

Understanding Distribution vm-I-13

rK.r..LJ.IVlll~A.K I

(Encrypting the data to be transmitted but not protecting private ADs would be like locking the
door to one's house but leaving the keys in the lock.) A distributed service can set up its own
ID (identical to a user ID). Private ADs can then be stored under well-known patbnames but
with an authority list that excludes all IDs but the service's ID. Another solution to the
problem is to store the private ADs inside the code of the service, more specifically inside the
service's static data object This simple solution has the disadvantage that all instances of the
service have to communicate when one of the private ADs changes.

Remote procedure calls provide authentication and validation services. They also protect data
in transit and convert active ADs to their passive version. (An AD still has to be passivated
before being transmitted in an RPC -- using an AD on another node if that AD has not been
passivated before may have unexpected results.)

When using datagrams or virtual circuits the user has to provide those services himself.

VIII-1.8 Transparently Distributed Services
The BiiNTM Operating System provides a number of transparently distributed services. With
the help of these services a user can take full advantage of a distributed system. They can also
be used as tools to build distributed applications. Examples of these services are the filing
service, the object service, the concurrent programming service, and the transaction service.

All of the BiiNTM Operating System's distributed services provide transparent access to an
entire distributed system's resources. The programmer need not be aware of any of the physi­
cal peculiarities of the system.

In the following we shall list some of the most important distributed services:

VIII-1.8.1 Passive Store

Passive_Store~gt maintains a system-wide pe11llanent storage. Objects may be stored
on volume sets anywhere in the system and can be retrieved from anywhere. Passive store also
maintains unique names for all its stored objects. Those names are called unique identifiers
(UlDs). UIDs are unique not only on one distributed system but on all distributed BiiNTM
systems for all times. A volume set may thus be taken from one node in a system to another or
even from one distributed system to another. Objects stored on the volume set are always
uniquely identified.

VIII-1.8.2 Directories

Directory_Mgt maintains a system-wide directory structure. Directories implement sym­
bolic naming for stored and for active objects. Often Directory_Mgt and
Passive_Store_Mgt will cooperate closely, the fonnerprovidingthe naming mechanism
and the latter the actual storing of objects.

However, Directory_Mgt may stand on its own: Directory entries can reference anyob­
ject, active objects as well as passive objects. And while most directories are stored, there are
also active-only directories.

The directory structure on each node replicates to a certain extent the entire naming domain the
node belongs to. (Certain local aliases may exist on one node, so the directory trees on two
nodes are not identical, but their structure is very similar.) The directory structure is not a

Understanding Distribution

rK~L1N~AKI

simple tree structure: Branches are intercolUlected and entries may reference backwards in the
tree. Thus many different pathames may reference the same object

r-------------------

r -,
L~o~J

I
~ ________ J :

~ -------------~

•
•
•

Figure VIII-I-S. Partial View ora Node's Directory Structure

Figure VllI-l-S shows a partial view of a node's directory structure. (Solid boxes are master
entries and dashed boxes represent alias entries.) In particular it illustrates that more than one
pathname may reference the same object. For example, /node/Castor/ sys/ sam,
/home / sam, and / v s / vs 1 i sam all reference Sam's home directory. By the same token
/home/ don references Don's home directory which lives on a different node. This shows
that objects with two similar patbnames (/home/ sam and /home/ don) do not have to be
physically close to each other.

v~n~1.8.3 IDs

IDs are associated with users. User IDs control access to stored objects and facilitate setting up
individualized user environments. A user can be granted access to a distributed system by the
system administrator. At that time the system administrator will create a user ID. A user ID
grants access to an entire distributed system, not a particular node. Privileges, such as store
rights for directories, are granted on a per naming domain basis.

Every process that a user starts and every object that the user stores carries the user ID. IDs are
maintained in the clearinghouse's id environment.

Very similar to user IDs are subsystem IDs A subsystem ID identifies a subsystem which
comprises a collection of domains that share the same stack.

Understanding Distribution VllI-1-15

rKELlMl.NAK I

There are other IDs, namely node IDs, volume set IDs, and distributed service IDs. All these
IDs play important roles in a distributed system. Node IDs are derived from a hardware
module inside a node. They are used in the node environment to map nodes to network
addresses.

Volume set IDs uniquely identify volume sets. Together with a time stamp they are incor­
porated into unique identifiers for objects (passive ADs). Volume set IDs of volume sets
mounted locally are cached to allow access to locally stored objects when there is no direct
access to the clearing house.

In summary IDs are used whenever certain entities such as users or nodes are to be uniquely
identified within a distributed system. .

VIII-1.8.4 Files

Files are among the most important data structures in the BiiNTM architecture. Filing is a dis­
tributed selVice. This means that any file in the system is available anywhere in the system.

Files are global single activation objects; files are activated in only one place, namely at their
home node. All jobs that use a particular file communicate with the home node when updating
the fue or reading from the file. Commonly files are large objects. Therefore it makes sense to
bring the operation to the data as opposed to bringing the data to the operation.

VIII-1.8.5 Data Integrity, Synchronization, and Transactions

Data integrity and synchronization across job and node boundaries can be ensured by using
transactions. Transactions make operations atomic thus preventing partial completion of opera­
tions: Operations included in a transaction either complete successfully or have no effect. Not
all operations can be included in a transaction; certain operations are simply irrevocable. Print­
ing is an example: once a page is printed it cannot be made to disappear.

Transactions extend across node boundaries whenever transaction-oriented, distributed BiiNTM
Operating System service calls are included in a transaction. Transactions also serve to
synchronize access to stored objects; a transaction can reserve an object on its behalf. Then no
other transaction can reselVe or access the object until the first transaction releases it. Trans­
actions also have a built-in blocking protocol: One transaction can wait for another transaction
only if the other transaction is older. (This ordering prevents a circular deadlock situation.)

VIII-1.9 Summary

VIII-1-16

Reading this chapter, you have learned that

• distribution makes a collection of BiiNTM nodes connected together, appear as one machine ..

• a distributed system is a flexible structure; nodes may be added and removed as the system
runs. In particular, distributed selVices do not depend on the structure of the network that
connects the nodes in the system.

• logical organization hides physical organization.

• nodes share a common pool of resources, such as I/O devices, and penn anent storage.

• distribution is transparent from the casual user's point of view.

Understanding Distribution

Contents

BUILDING A 2
DISTRIBUTED TYPE MANAGER

Concepts ... vm-2-2
Homomorphs and Active Versions vm-2-3
The Remote Call .. vm-2-3
Synchronizing Access .. vm-2-4

Techniques ... vm-2-4
Defining The Representation of The Object vm-2-5
Defining the Homomorph Template vm-2-6
Setting the Passive Store Attribute vm -2-6
Defining Buffers for Remote Procedure Calls vm-2-7
The Is_ Call ... vm-2-7
The Create Calls ... vm-2-8
Implementing Calls that Require Remote Calls vm-2-9
Recognizing the Home Job ... VIII-2-10
Making the Remote Procedure Call VIII-2-10
The Server Stub ... VIII -2-11
Synchronizing with Transactions and Semaphores VIII-2-12
Initialization ... VIII-2-12
Private ADs are Hidden in the Static Data Object. VIII-2-13
Creating and Registering the Service VIII-2-14
Creating the Server ... VIII -2-13
Setting Up the Home Job ... VIII-2-14

Summary ... VIII-2-15

BuDding a Distributed Type Manager VIII-2-1

PRELIMINARY

This chapter describes how to build a distributed type manager. It focuses on the peculiarities
of the regional service model. Other features needed for the program, such as transactions,
passivating objects, and synchronization are described in chapter VII-6. The basic concepts of
the type manager model are treated in chapter VII-3.

Three packages and two initialization procedures are described in this chapter,
Account_Mgt_Ex, Distr_Acct_Call_Stub_Ex,
Distr_Acct_Server_Stub_Ex,Distr_acct_init_ex,and
Distr_acct_home_job_exo These packages will be refered to briefly as core, call stub,
server stub, initialization, and home job initialization. All packages and the initialization
procedures can be found in Appendix X-A.

VIII-2.1 Concepts

VIII-2-2

The type manager described here manages local objects on a distributed system that may
consist of any number of nodes grouped into any number of naming domains. Active versions
of local objects are confined to a single job, and each job activating the object receives its own
active version (Some of the active versions may be "ersatz" versions). All processes of one .
job share the job's active version. (Global objects have only one active version per node shared
by all jobs on that node.)

According to the single activation model, the object's representation is activated in one home
job. All operations and all synchronization are handled by the home job. Other jobs receive
token active versions called homomorph and do not operate on the object directly -- they
forward all requests to the home job.

As an alternative, a type manager may use the multiple activation model: In the multiple ac­
tivation model every job receives an active version. The multiple activation model is usually
simpler to implement, but updating the passive version from multiple active versions has to be
carefully coordinated. One can say that the multiple activation model brings the object to the
operation, while the single activation model brings the operation to the object: For large ob­
jects, such as files for example, the single activation model is more efficient.

The node where the objects are managed is called the home node. Any node can be the home
node.

The example described manages simple accounts that contain a long_integer balance.
Accounts can be stoted in directories or inside other objects anywhere on the system. When
creating an account the application supplies a pathname or an object where the account is to be
stored. In order to minimize network traffic it is advisable to store accounts on volume sets
mounted at the home node -- the type manager does not enforce this, however. Independently
of where accounts are stored they are accessible from any node of the system.

Communications between the home job and any other jobs are implemented by means of
remote procedure calls. For more details on the general principle of distribution and RPCs refer
to chapterVill-l.

The type manager provides the following calls:

Is account Checks whether an AD references an account.

Create account
Creates an account and stores it inside an object supplied by the caller.

Building a Distributed Type Manager

Create stored account
- Creates an account and stores it with a patbname supplied by the caller.

Get balance Returns an account's balance.

Change balance
- Changes an accounts balance and returns the new balance.

Transfer Transfers an amount between accounts.

Destroy account.
- Destroys an account

VIII-2.1.1 Homomorphs and Active Versions

The type manager creates a template that is activated in place of the active version in all jobs
but the home job. The template does not have to have the same type as the object it will stand
for. The template merely represents a bit pattern that is copied into active memory and become
the homomorph. Only the type manager using the representation rights can distinguish be­
tween homomorph and active version. The type manager can use the homomorph to store
infonnation related to a calling job. Such infonnation can be statistical, for example frequency
of calls, or use of resources.

VIII-2.1.2 The Remote Call

A call to the type manager involves two jobs, the calling job and the type manager's server
job. The server job is also the home job. The two jobs may live on a single node or on two
separate nodes.

Figure VlII-2-1 illustrates the general model of a distributed service implemented with RPCs.

Application Job

Node
(not home node of "Foo")

Foo_Mgt
Server
Stub

Server Job

Home Node of "Foo" Object

Figure VIII-2-1. General Model of Communication Using RPCs

Building a Distributed Type Manager VllI-2-3

PRELIMINARY

A user program in the calling job holds an AD to the object called FOO. The calling job is not
the home job of FOO objects and the AD points to a homomorph. The user program calls the
local instance of FOO _Mgt, the type manager for FOO objects. FOO _Mgt recognizes from the
homomorph that the job is not the home job and fOlWards the call to its call stub. The call stub
packs the parameters into a message buffer and issues an RPC to the selVer. The initial
program in the selVer is FOO _Mgt's selVer stub which calls the local instance of FOO _Mgt.
FOO _Mgt perfonns the requested operation and the result is returned.

This is how the general model maps to the special case described here: Account _Mgt _Ex
acts as the type manager's front end. It corresponds to Local Foo_Mgt in the picture. Ap­
plications that want to use the type manager call this package. Thus the distributed implemen­
tation looks identical from the outside to the other implementations of the account manager
described in Chapters VII-3 and Vll-6. All communication between different instances of the
type manager on different nodes happens behind the scenes, namely in the call stub,
Distr_Acct_Call_Stub_Ex, and the selVer stub, Distr_Acct_Server_Stub_Ex.

The actual work of the type manager is done by Ac coun t _Mgt_Ex in the home job. This
package distinguishes between objects and their homomorphs. When it encounters a real object
its operations are identical to the ones of the package described in Chapter VII-6 except for the
semaphore synchronization mechanism. (This happens in the home job.) When it encounters a
homomorph it hands off the call to the call stub that takes care of the remote calling
mechanism. (This happens in an application job.) Thus the remote calling syntax is not part of
the type manager's core and can be easily changed without affecting the type manager.

VIII-2.1.3 Synchronizing Access
The single activation model centralizes synchronization in the home job. Multiple simul­
taneous requests may be selViced by concurrent processes inside the home job. Processes in the
home job share the active version of an account. Access to the active version is synchronized
by semaphores. Semaphore locking relies on voluntary compliance of all processes. Processes
that operate on an object have to call p before touching the object. This will block the calling
process if another process has locked the semaphore previously. However, nothing prevents a
process from circumventing the semaphore mechanism altogether.

No provisions are made to synchronize access to passive versions since according to the model
of this distributed selVice there is never more than one active version from which the passive
version can be updated.

As with all locking mechanisms there is a problem of circular waiting. Transaction come with
a built-in blocking protocol that avoids this. For semaphores the problem can be solved by
enclosing all semaphores within transactions to use the transaction timeout to break any cir­
cular waiting pattern.

VIII-2.2 Techniques

VIll-2-4 Building a Distributed Type Manager

Packages Used:

Ac ce s s _Mgt Interface for checking and changing rights in access descriptors.

Attribute_Mgt Provides a way to define general-putpOse operations supported by multiple
object types or objects, with different type-specific or object-specific im­
plementations.

Authority List Mgt
- Provides Calls to manage authority lists and to evaluate a caller's access

rights to objects protected by authority lists.

Directory_Mgt Manages directories and directory entries.

Identification Mgt
Provides operations to manage IDs and ID lists.

Provides basic calls for object allocation, typing, and storage management
Defines access rights in ADs.

Passive Store Mgt
- Provides a distributed object filing system.

RPC Call Support.Remote call
- - Calls a service that may be at another node.

Semaphore Mgt.P
- Enters / locks / waits at a semaphore.

Semaphore Mgt.V
- Unlocks / leaves / signals a semaphore.

Transaction Mgt
- Provides transactions used to group a series of related changes to objects

so that either all the changes succeed or all are rolled back.
User_Mgt Provides calls to manage a user's protection set and user profile.

VIII-2.2.1 Defining The Representation of The Object

In addition to other contents the type manager's objects hold two fields: A locking area and an
is _ homomorph boolean. The locking area is needed for semaphore locking and the
is_homomorph field allows the type manager to distinguishhomomoIphs from active ver­
sions. The example from the core shows the account layout which contains the
long_integer balance plus those two fields:

96 type account rep object is
97 -- RepresentatIon of an account.
98 record
99 lock: Semaphore Mgt.semaphore AD;

100 -- Locking area -
101 is homomorph: boolean;
102 =- If false identifies the object
103 -- as the active version; if true
104 -- as a homomorph.
105 balance: Long Integer Defs.long integer;
106 -- Starting-balance: -
107 end record;

The locking area is null in the passive version but is filled in with an AD to a semaphore when
the object is activated.

The object layout is specified with an address clause. This is necessary since the type manager
relies on the layout of the object in memory: Record layout in memory may vary from com­
piler version to compiler version.

,Building a Distributed Type Manager VIll-2-5

108
109
110
111
112
113

rK~LJ.LYu.l~AK I

FOR account rep object USE
record AT mod 32;

lock at 0 range 0
is homomorph at 4 range 0
balance at 8 range 0

end record;

31;
7;

63;

VIII-2.2.2 Defining the Homomorph Template

The homomorph template acts as a bit pattern that is copied into active memory in place of an
active version. In the simplest case the template is defmed with is_homomorph set to true
while in the active version is_homomorph is false. Other infonnation can be stored in the
template. In particular, the type manager can use the template to store resource or statistical
infonnation pertaining to the calling job. The following example is from the initialization
procedure Distr_acct_init_ex. (This procedure can be found in its entirety in Appendix
X-A. In our example only the is_homomorph field is used. The other fields are initialized
to null.

90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109

149
150
151
152
153
154
155

type template is
record

dummy wordO:
is homomorph:
dummy word1:
dummy-word2:

System. untyped word;
boolean; -

end record;

System. untyped word;
System.untyped=word;

FOR template USE
record AT mod 32;

dummy wordO at 0 range 0 31;
is_homomorph at 4 range 0 7;
dummy_word1 at 8 range 0 31;
dummy_word2 at 12 range 0 31;

end record;

type homomorph AD is access template;
pragma access_kind(homomorph_AD, AD);

homomorph: homomorph_AD;

-- 2. Allocate and initialize homomorph template:

homomorph := new template' (
dummy wordO => System. null word,
is homomorph => true, -
dummy word1 => System. null word,
dummy=word2 => System.null=word);

Note that template does not even have the same type as the object proper.

VIII-2.2.3 Setting the Passive Store Attribute

VllI-2-6

In order for Passive_Store_Mgt to transparently substitute ahomomorph for active ver­
sions in all jobs but the home job, the homomorph field in the PSM_attributes_object
has to be non-null. If the field is not null Passi ve_Store_Mgt uses the AD contained in
that field as a reference to a template to substitute for the object. The following excerpt from
the initialization shows how the passive store attribute defined and how it is initialized:

BuDding a Distributed Type Manager

73 passive store impl:
74 Passive Store Mgt.PSM attributes AD;
75 -- Implementation of passive store-attribute
76 -- for accounts.

145 -- 1. Allocate new passive store attribute implementation:
146
147 passive store impl := new
148 Passive_Store_Mgt.PSM_attributes_object;

156
157 3. Initialize passive store attribute implementation:
158
159 passive_store_impl.homomorph:= Untyped_from_homomorph(homomorph):
160
161 passive store impl.reset :=
162 Refuse reset active version Ex.
163 Refuse_reset_active_version'subprogram_value;
164
165 passive_store_impl.copy-permitted:= false;
166
167 passive store impl.locking area start := 0;
168 passive-store-impl.locking-area-end:= 0;
169 -- Area in account where-semaphore AD will be
170 -- stored when account is activated.

The PSM_attributes_object also specifies where the locking area is and that accounts
cannot be copied.

VIII-2.2.4 Defining Buffers for Remote Procedure Calls

Buffers are necessary for both parameters and results in remote procedure calls. The following
example from the server stub defmes one buffer type for both parameters and results.

14
15
16
17
18
19
20

type buffer is
-- Buffer used
record

first word:
second_word:
amount:

end record;

for remote calls.

System. untyped word;
System. untyped-word;
Long_Integer_Defs.long_integer;

The buffer has room for two ADs and one long_integer. This is the maximum trans­
mitted in one single call. (Transfer). Note again that an address clause is used to fIX the
layout of the buffer in memory:

23 FOR buffer USE
24 record AT mod 32;
25 first word at 0 range
26 second word at 4 range
27 amount at 8 range
28 end record;

VIII-2.2.5 The Is Call

Calls Used:

Object Mgt.Retrieve TDO
- Returns an objecf s type.

0
0
0

31:
31:
63;

No inter-job communication is necessary for the Is cau: The object itself is not involved in
the call at all: The type manager only retrieves a TOO and compares it to its own TOO. For
this reason the the core does the work directly as can be seen in the following example:

Building a Distributed Type Manager VIll-2-7

I"KELlM1NAK Y

139 return obj /= System. null word
140 and then -
141 Object_Mgt.Retrieve_TOO(obj} = account_TOO;

VIII-2.2.6 The The Create Calls

VIII-2-8

Calls Used:

Transaction_Mgt.Get_default_transaction
Returns the transaction on top of the transaction stack.

Transaction Mgt.Start transaction
- Starts a tranSaction and pushes is it on the stack.

Transaction Mgt.Commit transaction
- Commits a transaction.

Transaction Mgt.Abort transaction
- Aborts a traIisaction.

The type manager uses the is_homomorph field to distinguish between the home job and
any other job. This method fails with the Create_calls since there is neither a homomorph
nor an active version to check before the object has been created. (Remember that
is_homomorph is false in the home job and true in all other jobs.)

For this reason any job can create objects. This means that in both Create_calls the core
does the operation directly. In order to prevent multiple active versions the new object is
deallocated as soon as it has been created and passivated. The three steps, Allocate, Passivate
and Deallocate are enclosed in a transaction. Thus the Create_ calls cannot succede par­
tially leaving unwanted active versions.

The following excerpt from the core shows these essential part of the Create_account
call:

Building a Distributed Type Manager

(

341 if Transaction Mgt.Get default transaction
342 null then - - -
343 Transaction_Mgt.Start_transaction;
344 trans := true;
345 end if;
346
347
348 begin
349 This block controls the scope of
350 the exception handler.
351
352 5. Create the master AD:
353
354 Directory Mgt.Store(
355 name - => master,
356 object => account untyped,
357 aut => authority);
358
359 6. Passivate the representation of the account:
360
361 Passive_Store_Mgt.Update(account_rep_untyped);
362
363 -- 7. Deallocate the active version of the
364 account:
365
366 Object_Mgt.Deallocate(account_rep_untyped);
367
368 -- 8. Commit any local transaction.
369
370 if trans then
371 Transaction Mgt.Commit transaction;
372 end if; - -
373
374 exception
375
376 9. If an exception occurs, abort any local
377 transaction, deallocate the account and
378 reraise the exception:
379
380 when others =>
381 if trans then
382 Transaction Mgt.Abort transaction;
383 end if; - -
384 Object Mgt.Deallocate(account rep untyped);
385 RAISE; - - -
386
387 end;

The type manager provides a second Create_ call named Create_stored_account.
While the Create_account call simply allocates a new account, the
Create_stored_account also stores the account with a patbname supplied by the caller.
The calling mechanism is identical to the Create_account call and the operation proper in
the core is identical to the one described in Chapter VIT-6.

VIU-2.2.7Implementing Calls that Require Remote Calls

Except for the three calls discussed in the previous sections, namely Is_account,
Create_account, and Create_stored_account, all calls of the type manager require
remote calls. The remote call has the same calling syntax for jobs on one node and for jobs on
different nodes. When a remote call is needed the core hands it off to the call stub that takes
care of it.

Building a Distributed Type Manager VIII-2-9

I"KEL1M1~AK I

vm-2.2.7.1 Recognizing the Home Job

The is _ homomorph field is used to recognize the home job. In the home job the type
manager will.see is _ homomorph as false, in any other job as true:

458 if account_rep.is_hornornorph then
459
460 2. We have a hornornorph:
461

468 else
469
470 3. We are in the home job for accounts:
471

530 end if;

When is_homomorph is true a remote procedure call has to be made and the core hands the
call off to the call stub. When is_homomorph is false the operation can be done directly.

vm-2.2.7.2 Making the Remote Procedure Call

VIII-2-10

Calls Used:

RPC Call Support.Remote Call
- - Makes an RPCto an RPC service.

A remote procedure call is a means of communication between two jobs. All information
passed between the jobs is contained in buffers.

Both the caller and the callee have to agree on the format of the buffers. Once transmitted to
another job a buffe, is no more than a pattern of bits that has to be interpreted correctly. Two
buffers are required, one for parameters and one for results. This is shown in the following
example from the call stub:

72 parameters, results: Distr_Acct_Server_Stub_Ex.buffer;

For the type declaration of buffer refer to section VIII-2.2.4. Before the call the calling job
packs parameters into the buffer and after the call results are unpacked from the results buffer:

82 parameters := Distr Acct Server Stub Ex.buffer' (
83 first word => account untyped, -
84 second word => System.null word,
85 -- irrelevant -
86 amount => Long Integer Defs.zero);
87 -- irrelevant - -

·101 current_balance := results.amount;

The layout of the buffer is designed for maximum required size. Not all slots are needed in all
calls.

When making a remote call the calling job specifies the service to be called. This directs the
call to a server job where the service is currently registered. Optionally a node ID can be
specified in the call. This will direct the call to the server on the specified node. This option
can be used when multiple servers exist and one in particular is to be chosen.

The calling job also specifies an ordinal value called targetJ'roc. The main package's
calls are assigned an ordinal value and depending on the value oftragetyroc in the call
the associated procedure or function in the main package is called.

Building a Distributed Type Manager

In the case of our example the assignments are as follows:

o Used to initialize the selVer job.

1

2

3

4

Get balance.

Change_balance.

Transfer.

Destroy_account .

. Note that Is_account, Create_account, and Create_named acount are not as­
signed an ordinal value. These functions are always perfOllIled locally and do not require a
remote call.

The addresses and sizes of the buffers are also specified, and a boolean parameter is used to
indicate that ADs are being transmitted. ADs have to be converted in a remote call. Indicating
that no ADs are present speeds up the call.

The following example shows the syntax of the remote call:

91 length := RPC Call Support.Remote call(
92 service - -=> service, -
93 target-proc => 1,
94 param buf => parameters' address,
95 param-length => parameters' size,
96 ADs-present => true,
97 results buf => results' address,
98 results:length => results'size);

As you can see from the above assignments this remote call will result in Get_balance
being called by the selVer. The variable length contains the actual length of the results
buffer. This is useful when the result buffer's length varies. The variable is not used here since
the results buffer in this example has a fixed length. In order to see where service comes
from refer to section Vill-2.2.9.3.

vrn-2.2.7.3 The Server Stub

Calls Used:

RPC Mgt.Server stub
- Template for a stub procedure to be called by the selVer.

When the selVer is called it executes an initial procedure called the server stub. The procedure
declaration of the server stub matches a template, namely RPC_Mgt. Server_stub. The
type manager provides the implementation of the template. The declaration looks like this:

21
22
23
24
25
26
27
28

procedure server stub(
target-proc:-
version:
param buf:
param-length:
results buf:
results-length: in out
ADs_returned~ out

System. short ordinal;
System. ordinal;
System. address;
System. ordinal;
System. address;
System. ordinal;
boolean)

Depending on the value of target yroc the selVer stub interprets the parameter buffer and
makes the requested call. In the example the selVer stub is coded with a case statement:

Building a Distributed Type Manager VllI-2-11

PREUMINARY

59 case target-proc is

77 when 2 => account_one_untyped := parameters. first_word;
78 amount :=
79 Account_Mgt_Ex.Change_balance(
80 account =>
81 account_one,
82 amount =>
83 parameters. amount) ;
84 results := buffer' (
85 first word => System. null word,
86 -- Irrelevant. -
87 second word => System. null word,
88 -- irrelevant. -
89 amount => amount);
90 ADs_returned := false;

117 when others =>
118 RAISE System Exceptions.operation not supported;
119 end case; - - -

Note that the server stub calls the core. This does not result in an infInite loop by triggering
another remote call since this call ~es place inside the home job. The core perfonns the
requested operation and returns the result

VIII-2.2.8 Synchronizing with Transactions and Semaphores

Access to account objects is centrally synchronized in the home job. In the home job multiple
concurrent processes may access an account. Concurrent processes in the home job use
semaphore locking to reselVe the active version of an account More details on synchronization
and semaphore locking can be found in Chapters VI -1 and VI-2.

• Access to the passive version of an account is not synchronized since no more than one
active version of an account exists. Here lies one of the advantages of the single activation
model.

• Transactions are used to prevent semaphore deadlock and to protect passive versions from
incomplete updates. Please note that the transaction timeout period is set when the system
is configured.

• Outside the home job no synchronization is required since object representations are never
touched outside the home job.

VIII-2.2.9 Initialization

This type manager is a distributed selVice and spans at least two jobs. Two procedures are
needed to initialize the type manager, Distr_acct_init_ex, and
Distr_acct_home_job_ex. Both procedures can be found in Appendix X-A.

The following three points should be considered when the service is initialized:

• Depending on how the selVice is set up it mayor may not create a lot of network traffic.
The worst possible situation arises when the type manager's image module is stored on one
node, the stub on another, the home node is still another node, and accounts are stored all
over the network. Objects should be stored close to the home node, ideally on the home
node itself.

• The type manager model of protection can only be fully realized if the code is linked into
its own separate domain. In particular, the type manager's private ADs are hidden in the
static data object with the help of the BiiNTM Ada pragma bind at link-time. Therefore the
static data object shoilld not be accessible to any other module but the type manager.

Building a Distributed Type Manager

• As part of the initialization the server is created and installed. When installing the server the
caller can specify an SSO from which the server is scheduled and a cpu time limit. If those
parameters are not explicitly specified (as in our example) the server is allocated from the
caller's SSO and inherits the caller's time limit. For this reason the type manager should be
installed from a privileged ID. Otherwise the server may experience resource exhaustion at
some unexpected time.

VIII-2.2.9.1 Private ADs are Hidden in the Static Data Object.

The ADs for the TOO and the service are stored in the type manager's module, more precisely
the static data object. This is necessary since these objects are created by the
Distr_acct_init_ex procedure and stored with an authority list that includes only the
developer thus making them inaccessible to the user of the type manager. They are retrieved
when then type manager is linked. For this reason linking has to be done with the developer's
ID. A third AD, the one for the homomorph, is stored by the Distr_acct_init_ex
procedure in the passive store attribute.

The objects referenced by these ADs should only be created once. For example: One type is
identified by exactly one TOO. There cannot be two mos referencing the same type. By
definition two objects referencing different TDOs have different type. (If a TOO is destroyed it
can of course be replaced by a new one.) By the same token there is only one distributed
service, and one homomorph template. For this reason Distr_acct_init_ex should only
be executed once on a distributed system, prior to linking the type manager. Then, after the
type manager has been linked, Distr_acct_home_job_ex should be executed to initial­
ize the server.

After these steps have been executed the main package can be called by an application. The
following sections explain the steps in the initialization:

vrn-2.2.9.2 Creating the Server

Calls Used:

RPC Mgt.Create RPC server
- Createsan RPC server.

RPC Mgt.Install server
- Instans an RPC server and returns an AD to the server job.

The following call creates a server on the local node:
61 server: constant RPC Mgt.RPC server AD :=
62 RPC Mgt.Create RPC-server;- -
63 -- Server for accounts.
64
65 server job: Job Types. job AD;
66 -- Installed server job.-

193 -- 7. Install server:
194
195 server job := RPC Mgt.Install RPC server(
196 server => server); --

Four optional parameters can be specified with the call (default values are given in
parentheses): A maximum (2) and a minimum (2) number of processes for the server, a
maximum number of services (1) that can be registered with the server, and a naming domain

Building a Distributed Type Manager VIII-2-13

PRELIMINARY

with which the server will associate. (naming domain of the creating node). Note that two
steps have to be taken to create the server, first it has to be created, second it has to be
installed. Installing the server creates the server job. This example package should first be
called by a job with unlimited resources, or an unlimited SSO should be specified in this call.

VIII-2.2.9.3 Creating and Registering the Service

Calls Used:

RPC Mgt.Create RPC service
- Creates-an RPC selVice and returns an AD to the service.

RPC_Mgt.Register_RPC_service
Registers a selVice with a server. More than one service can be registered
with one server.

An RPC selVice is transparently accessible. That means that the caller does not have to know
the physical address of the seIVer, but can specify the selVice and the call will be routed
transparently. The service is not automatically associated with a server. In order to bind a
service to a server the selVice has to be registered with the server. Multiple services can be
registered with one selVice. Exactly how many is detennined by the max_services
parameter in the RPC_Mgt . Create_RPC_Server call. The following excerpt from the
initialization shows these two calls:

198 -- 8. Create the service:
199
200 service:- RPC Mgt.Create RPC service(
201 server -> server}; - -
202

When registering a service the caller specifies a stub procedure. That stub procedure matches
the RPC _Mgt. Server _ st ub template. The selVer executes the stub procedure registered
with one service when it receives a remote call from that selVice.

VIII-2.2.9.4 Setting Up the Home Job

Vill-2-14

Calls Used:

Passive Store Mgt.Set home job
- Establishes the calling job as home job for objects of one type. Undoes the

effect of any previous call by another job.

Before the service can be called the selVer has to become the home job for account objects.
This is achieved by executing the Distr_acct_home_job_ex procedure. The following
excerpt shows this procedure in its entirety:

Building a Distributed Type Manager

PRELIMINARY

27 begin
28 -- Set up server as home job
29 by calling procedure "0":
30
31 parameters := Oistr Acct Server Stub Ex.buffer' (
32 first word => account TOO untyped, -
33 -- account TOO --
34 second word => System.null word, -- Irrelevant.
35 amount => Long Integer Oefs.zero);
36 -- Irrelevant. - -
37
38 length := RPC Call Support.Remote call(
39 service - -=> service, -
40 target-proc => 0,
41 -- Server will call Passive Store Mgt.Set home job.
42 param buf => parameters' address, --
43 param-Iength => parameters' size,
44 ADs-present => true,
45 results buf => results' address,
46 results=length => results' size};
47
48 end Oistr_Acct_Home_Job_Ex;

This procedure makes a remote call specifying 0 as the target procedure. In tum, the server
stub which is running in the server job calls Passive_Store_Mgt. Set_horne_job when
o is specified as the target procedure:

59 case target-proc is
60 when 0 => account TOO untyped := parameters. first word;
61 Passive-Store Mgt. Set home job (-
62 tdo -=> account TOO); -
63 ADs_returned := false;

119 end case;

Note that the Passive_Store_Mgt. Set_horne_job procedure has to call and cannot
call Set_home _j ob directly since only the server executes exclusively in the server job.

VIII-2.3 Summary
From this chapter you should have learned how to build a distributed type manager. The ex­
ample described has the following properties.

• The type manager acts as a distributed service.

• Objects are managed in one home job.

• Local instances of the service communicate with the home job by remote procedure calls.

More specifically you should have learned how to

• set up the object's representation including a locking area and an is_homomorph field.

• initialize the passive store attribute to implement the single activation model.

• define a template that is activated instead of the object's active version in all jobs but the
home job.

• define buffers for remote calls.

• create and install the server.

• create and register the service.

Building a Distributed Type Manager VIII-2-15

• define the call stub.

• recognize a homomorph.

• pack and unpack buffers.

• make remote calls.

VIII-2-16 Building a Distributed Type Manager

PRELIMINARY

Part IX
Device Services

This part of the BiiNTM/OS Guide provides infonnation about device drivers and device
managers. This part contains one chapter:

Understanding Device Managers and Device Drivers
Describes the low-level 110 model and general architecture of device
managers and drivers.

Device Services contains the following services and packages:
Device driver service:

CP 10 Defs
CP-Mgt
CP-Resources
DD-Support
Handling Support
Interrupt Handling Support
10 Messages Defs -
IO-Messages-Ops
Region 3 Support
SCSI Bus-Dependent Defs
SCSI-Record Defs -- -

shared queue service:
Cluster Service
IO_Shared_Queues

asynchronous communication service:
Async_Defs

mass storage service:
Bus Independent Disk Defs
Bus-Independent-Streamer Defs
Bus-Independent-Tape Defs
Mass Store Reply Codes
MS_Configuration:Defs

SCSI service:
CP SCSI Defs
CP-SCSI-Mgt
SCSI_Bus_Dependent_Defs

subnet service:
Carrier Mgt
Subnet CL AM
Subnet-CO-AM
Subnet-Defs
Trace Defs
Trace:Support

HDLC service:
HDLC_Mgt

LAN service:

Part IX Overview

CSMA CD Defs
Ethernet LAN Mgt
IEEE8023=LAN=Mgt

Part IX Overview

PRELIMINARY

UNDERSTANDING DEVICE MANAGERS 1
AND DEVICE DRIVERS

Contents
Concepts .. IX -1-3
I/O Model .. IX-1-3

Access Metllods .. IX -1-4
Device Managers ... IX -1-4
Device Drivers ... IX -1-4
Device Oasses ... IX -1-4
I/O Mechanisms•...................... IX -1-4
The I/O Messages Mechanism ~ IX-1-S

Data Transfer Via the I/O Messages Mechanism .. IX -1-6
I/O Recovery Agent ... IX -1-8

Data Transfer Via the Shared Queues Mechanism IX-1-8
Clusters and Ouster Servers .. IX -1-9
Administrative Interface ... IX -1-9
Device Driver Example .. IX-1-9

Summary .. IX-1-13

Understanding Device Managers and Device Drivers IX-l-l

PREUMINARY

This chapter describes device manager and device driver architectures.

Packages Used:

IO Messages Defs
- - Defines the I/O messages mechanism interface.

IO Messages Ops
- - Provides driver-independent I/O message calls for device drivers.

Cluster Service
- Manages cluster selVers.

IO Shared Queues
- - Defines the shared queues I/O mechanism.

Port_Mgt

CP_Mgt

Provides fast interprocess communication within a job.

This package defmes the types used in communicating with a Channel
Processor (CP). This includes the fonnat of various data structures used
by a Channel Processor. Furthennore, the Send_to_CP operation is
defined here. It forwards an I/O message to a Channel Processor for ser­
vice.

Supports device drivers.

Interrupt Handling Support
- Manages interrupt handlers.

Handling Support
- Provides calls to save and restore global registers.

Region 3 Support
- - Provides a call for installing macrocode in Region 3.

Unsafe Object Mgt
- Provides special object allocation and de allocation calls.

Countable Object Mgt
- SupPOrts type managers of countable global objects.

The relationship between an application, a device manager, device driver and a device is
shown in Figure IX-I-I.

Understanding Device Managers and Device Driver§

/ Application /

Low-speed Applications I
I
V

Character Terminal
Print/Spool

Async
HDLC

Low-speed
CP application

terminal
printer
pipe

I Device Manager I

I
V

I Device Driver

I
V

CP

I
V

Device

High-speed Applications

Filing
Volume Sets
Basic Disk/Tape/Streamer
HOLC
LAN

SCSI
IPI
LAN
HDLC

High-speed
CP application

disk
tape
communications network

Figure IX·I·I. Device Environment

IX-1.1 Concepts
This section introduces methods, concepts and tenninology necessary for understanding the
role of device managers and device drivers in communicating with devices.

A typical I/O process involves the following actions:

• A device object is opened by an application using an Open access method call prior to
sending data to a device.

• An I/O data transfer mechanism combined with a device class forms an I/O interface
through which the device manager can communicate with a device driver, a CP (Channel
Processor), and ultimately a device.

This chapter describes two I/O data transfer mechanisms which may be used to form an I/O
interface, and describes the roles of device managers and device drivers.

IX-1.2 I/O Model
The primary elements of the I/O model are device objects, device managers and opened device
objects. A device object is a typed object that represents a device. A single device object is
associated with each device in the system. A device manager is a type manager that controls
access to a device. Devices include files, magnetic tapes, terminals, and pipes. An opened
device object is a typed object that represents a input/output connection between a device
manager and a device. Zero, one or more opened device objects may exist for the same device.
Opened device objects are analogous to I/O channels on other systems.

Understanding Device Managers and Device Drivers IX-I-3

PREUMINARY

IX-1.2.1 Access Methods
Applications interact with device managers via access methods. An access method is a collec­
tion of procedures which provide a device-independent interface to perfonn I/O. A device
object has associated with it the implementations of the access methods supported by that
device. An access method is a type attribute of device objects and opened device objects.

To perfonn device operations, an application selects an access method and passes a device
object to its Open operation. Open returns an opened device object representing an opened
device channel. The opened device object is passes as a parameter when making access
method calls.

A device can be simultaneously accessed by more than one access method. This is convenient,
for example, when a call is made to a library function that internally uses a different access
method.

IX-1.2.2 Device Managers
A device manager is a type manager of a specific type of device which provides a high-level
interface through which an application can communicate with a device.

IX-1.2.3 Device Drivers

A device driver provides a device manager with access to a physical device. In the BiiNTM
Series 60/80, a device driver is connected to its device through a CP. Device drivers are
simplified by being connected to a CP since drivers do not need to provide such functions as
handling interrupts and issuing device commands.

IX-1.2.4 Device Classes
A device class is a specification which defmes the device-specific details necessary to access a
class of device using an I/O mechanism. Device classes are used by device managers and
implemented by device drivers. Device class specifications provide opening parameters
(initial values for the IO_Shared_Queues . device_state_rep), command codes used
in the Common Part of the I/O message
(IO_Messages_Defs. IO_message. command_code), and reply codes used in the
Common Part of the I/O message
(IO_Messages_Defs. IO_message. reply_record). A device class specification
used with an I/O mechanism fonns a device-specific I/O interface through which device
managers and device drivers may communicate on behalf of devices of the device class.

IX-1.2.5 I/O Mechanisms

IX-l-4

The BiiNTM Operating System defines two I/O mechanisms available to device drivers:

• I/O messages

• Shared queues.

I/O messages supports high-speed, block-oriented data transfer. shared queues supports low­
speed, character-oriented data transfer. These design characteristics make the I/O messages
mechanism more suitable for disk I/O and network. communications, and the shared queues
mechanism more suitable for I/O to tenninals.

Understanding Device Managers and Device Drivers

Although these mechanisms are designed to provide communications between device
managers and device drivers, they may also be used for device managers to communicate with
other components such as other device managers. For example, a tenninal might be connected
to a system via a tenninal concentrator on a network. The tenninal device manager could use
the shared queues mechanism to talk to a software component that converts the shared queues
protocol to subnet message-based requests.

These mechanisms provide data transfer. The 1/0 messages mechanism is also used in an
administrative interface.

IX-1.2.6 The I/O Messages Mechanism

The I/O messages mechanism consists of operations that device managers can call to support
data transfer, including administrative functions, with high-speed, block-oriented devices such
as disks, tapes and high-speed communications.

The I/O Message

An 110 message is an object consisting of four parts:

• Common part

• Device Driver part

• Device Manager part

• Buffer Description part.

The Common part of the I/O message has fields at fixed offsets that are visible to device
managers, device drivers and CPs. It contains infonnation about an I/O request including the
type of request, th~ device involved and the number of buffers associated with the message.

The Common part contains pointers, offsets and IDs for locating the reply mechanism, the
physical device, the CP, the beginning of the buffer description array and the Common part
itself. Other fields identify the type of reply mechanism used, usage infonnation about the
buffer descriptions, request and reply priorities, error ID, command code and any device­
specific parameters.

The Device Driver part follows the Common part, is variable in size depending on the device
class, and is reserved for use by device drivers and CPs.

The Device Manager part follows the Device Driver part, is variable in size depending on the
device class and is reserved for use by the Device Manager.

The Buffer Description part contains an array of buffer descriptions. Each buffer description
contains the size and address of its buffer and use indicators. Since this array does not begin at
a fixed location within the message, the Common part contains an offset field with which
device drivers and device managers can locate the beginning of the array of buffer descrip­
tions.

I/O messages may have several buffers. The buffers must be allocated in frozen memory. A
device manager must not modify the buffers between the time a request is issued and the time
the 1/0 message is returned to the device manager.

The contents of a buffer depend on the type of request and the device class associated with the
I/O message. (The semantics assigned to each request are described in the device class
specification/package.) Some I/O messages might not reference any buffers at all, such as a

Understanding Device Managers and Device Drivers IX-1-5

PREUMINARY

device-specific reset request. Other requests such as a Read normally require at least one
buffer.

Reply Mechanism

The device manager decides the reply mechanism, interrupt reply procedure or reply port from
which it will receive its returned I/O messages. The selected mechanism is specified by the
values in replyyort_oryroc and type_of_reply.

The interrupt reply procedure is called by an interrupt handler, and performs post-processing
of the serviced I/O message such as setting error_id and total_returned_length.
A template for this procedure is provided via
IO_Messages_Defs .Process_IO_message. The reply port mechanism is an inter­
process communications mechanism on which I/O messages can be enqueued.

The interrupt reply procedure has the advantage of not causing a context switch, but does
execute an interrupt handler. Thus the implementation of an interrupt reply procedure must
comply with all constraints placed on interrupt handlers (see
Interrupt_Handling_Support for a list of interrupt handler constraints). Most BiiN

TU

Operating System device managers use the I/O reply port mechanism.

IX-1.3 Data Transfer Via the 1/0 Messages Mechanism

IX-l-6

Most systems will employ CP-connected devices because I/O via CPs is available and efficient
for the more common protocols (see BiiNTU lOS Reference Manual for a list of supported
devices). Using a CP also greatly simplifies the tasks which must be performed by a device
driver.

I Device Manager I

I
I
V

I Device I I/O Messages I
I Class I Mechanism I

I
I
V

Channel Processor

I
V

device

. Figure IX-1-2. Device Driver using the 110 messages Mechanism

Data transfer to a CP-connected device using the I/O messages mechanism can be done via the
following steps:

1. The application calls an access method Open to create an opened device.

Understanding Device Managers and Device Drivers

2. The device manager allocates the data buffers and buffer descriptions (optionally using
DD_Support. Set_buffer_description), and fills in the following fields:

• queuing_space

• reply-port_or-proc

• total_request_length

• type_of_reply

• reply-priority

• io_msg

• used_buffers, optional

• max buffers

• command code

• buffer descr offset

• device_specific-params

The device manager may optionally allocate a pool of I/O messages by repeatedly creating
I/O messages and calling DD_Support. Register_IO_message. A pool of I/O mes­
sages may be shared by several devices.

3. The device manager calls IO Messages Ops .Ops. Issue request to forward the
I/O message to a device for service. - -

4. Any time after the I/O message has been sent to the device (Step 2), the device manager
calls Port Mgt. Recei ve or Port Mgt. Condi tional receive to receive the
message from the reply port, if a reply port was selected as the reply mechanism. If the
selected reply mechanism is an interrupt reply procedure the message receipt method is be
defined by the procedure.

5. The device driver gets access to the I/O message, and fills in the following fields of the
Common part of the I/O message:

• phys_dev

• request-priority, optional

• cp_id

• device id

The device driver also fills in the following fields defined in the Device Driver part of the
I/O message required by the CP:

• interrupt_<L-addr

• phys_buf_desc_addr

interrupt_<L-addr is the physical address of an interrupt queue head. It identifies the
return path from a CP to a CPU after the message has been serviced.
phys_buf_desc_addr is the physical address of the buffer description array.

The device driver can call an access method's Get device info call to acquire infor­
mation for some of these fields. It can also place other infomlation in the undefined section
of the Device Driver part for its own use.

Understanding Device Managers and Device Drivers IX-I-7

PRELIMINARY

The device driver must set these fields because a device manager will generally use one
pool of I/O messages to issue requests for all the devices it manages. Since a device
manager may manage some devices that are connected to the system by CPs and others that
are directly connected, several different device drivers may selVice a single device
manager's I/O requests. They may use the Device Driver part of the I/O messages dif­
ferently. Therefore, a device driver must set all the fields in an I/O message that specify
device information.

6. The device driver issues an I/O request to the CP by calling CP _Mgt. Send_to _ CP.

7. After the CP has finished servicing the I/O request, it writes the following results in the I/O
message:

• error_id, if an error occurred.

• total_returned_length

• reply_record

8. The CP sends the I/O message to the interrupt queue specified by interrupt_CLaddr
and generates an interrupt.

9. The CPU interrupt handler which processes CP-generated interrupts, returns the I/O mes­
sage to the reply mechanism specified in the I/O message (Port_Mgt. Send for a reply
port).

10. The device manager may continue issuing requests for selVice, calling receive operations
and logging any errors.

11. When the device manager completes and needs no further access to the device, it waits for
pending I/O requests to complete (or cancels them and calls an access method's Close to
close the opened device.

12. After the device manager has received the I/O messages from the reply mechanism (Step
3), and closed all the devices that it manages, it may optionally deregister the pool of I/O
messages with the recovery agent via DO_Support. Deregister_IO_message.

IX-1.3.1 I/O Recovery Agent

A recovery agent is provided on each node by the BiiNTM Operating System. This agent detects
I/O processor failures and maintains a table of existing I/O messages. Device managers keep
this list current by calling OD _Support. Register_IO_message each time they create
an I/O message, and by calling DD_Support. Oeregister_IO_message before they
deallocate an I/O message.

IX-1.4 Data Transfer Via the Shared Queues Mechanism

IX-1-8

The shared queues I/O mechanism is designed to handle low-speed, character-oriented com­
munications for such devices as terminals and printers. This design minimizes context
switches and interrupts while maintaining satisfactory response time.

The shared queues mechanism is comprised of a cluster servers which selVices one or more
clusters which contain up to eight pairs of input and output queues (circular buffers). This
mechanism employs an input and output queue for each device. These queues are grouped into
clusters. A cluster is a group of queues that are selViced together. A cluster represents a group
of devices, typically those selViced by the same channel processor (CP) task. See Figure
IX-I-3.

Understanding Device Managers and Device Drivers

IX-1.5 Clusters and Cluster Servers
Ousters are configurable objects (CO) and are typically created and attached to devices during
system initialization. A cluster may contain shared queues for up to eight devices. Ouster
selVers may selVice any number of clusters.

I
Cluster 1

I

I
Device 1

I I
in out
queues

Cluster Server
I

I
Cluster 2

I

I
Device 2

I I
in out
queues

I
Device 8

I I
in out
queues

I
Cluster n

I

Figure IX-I-3. Cluster Server, Clusters and shared queues

The devices of each cluster must be of the same device class.

IX-1.S.1 Administrative Interface

The shared queues I/O mechanism is a data transfer mechanism. Each device class that uses·
this mechanism must also specify an administrative interface. An administrative interface
contains operations which initialize queues, set device parameters, etc.

When the I/O messages mechanism is used as an administrative interface, for example, the
device class specification defines device-specific command codes and reply records and is
used to initialize the clusters.

IX-1.S.2 Device Driver Example

Figures IX-1-4 and IX-1-5 show how shared queues work with CPs and their relationship with
an administrative interface.

Understanding Device Managers and Device Drivers IX-1-9

PRELIMINARY

1 Device Manager 1

1
1 1
V V

IAdministrative Interface 1 \ Cluster Server \
1------------------------1 ---------------
1 Device 1 shared queues 1 1 •.• 1
1 Class 1 Mechanism 1 ---------
------------------------ 1 Cluster 1

1 ---------
1
V V

Channel Processor

1
V

device

Figure IX-1-4. Device Driver with the Shared Queues Mechanism

IX-1.5.3 1/0 Shared Queues Data Transfer Mechanism

IX-I-lO

An input and an output queue are used to support data transfer between a device manager and a
low-speed device via a CP/device driver. Each queue has a read pointer and a write pointer
which indicate where the next character will be read or written, flags to indicate queues need­
ing service and semaphores to block writers when queues are full. The data transfer process
consists of four distinct activities:

• Data Transfer From the Device Manager to the Output Queue

The device manager writes data to the output queue.

• Data Transfer From the Output Queue to the Device

The CP/device driver polls its devices' output queues, and transfers any characters to those
devices.

• Data Transfer From the Device to the Input Queue

The device interrupts the CP/device driver when it has characters to be returned to the
device manager. The CP/device driver transfers the data to the input queue.

• Data Transfer From the Input Queue to the Device Manager

The cluster server polls its clusters and calls an input handler for any input queue contain­
ing characters.

These activities are described in more detail following Figure IX-I-5.

Understanding Device Managers and Device Drivers

\ application \

1

V

1 buffer 1<-->1 Device Manager 1

Output Queue

Input Queue

1 CP/Device Driver 1

1
V

Device

1

R

,. ,.
1 1
W R

1 \ Cluster\
W \ Server \

Figure IX-l-S. 110 shared queues Data Transfer Mechanism

1. A device manager transfers characters from an application's buffer to the output shared
queue associated with the device.

2. When each write completes, the cluster_object. new_output_flags flag cor­
responding to the output queue associated with the device is set to show that this output
queue is active (contains characters to be transferred to the device).

3. If the output queue fills before the device manager completes a write,
cluster object. new input flags is still set to active, and the writer blocks on
device_stat e_rep . block_user. The device manager sets the boolean
device_state_rep. writer_blocked to true.

4. The cluster server periodically checks the state of the output queue, and unblocks the writer
when the contents of the output queue reach a low enough number of characters that more
characters can be accepted.

5. When the number of characters remaining in the output queue is less than a
low water mark (device state rep. low water mark), the cluster server
unblocks the writer (calls Semaphore Mgt. V), sets -
device state rep. block userto false and calls
device=state=rep. input=handler. This optimization technique prevents exces­
sive blocking and context switching.

device_state_rep. output_writ eyt r and
device_state _rep. output_read ytr are pointers for the output queue that indicate
where to write and where to begin reading the next character. The device manager writes

Understanding Device Managers and Device Drivers IX-I-II

rK~L1~AKr

characters beginning at the location indicated by the write pointer, and increments the pointer
by the number of characters written. Likewise, the device manager reads characters beginning
at the location indicated by the read pointer and increments the pointer by the number of
characters read.

The queue is empty when the read pointer is equal to the write pointer. The queue is full when
the read pointer is one more than the write pointer mod the queue size.

Data Transfer From the Output Queue to the Device

1. A CP/device driver periodically reads cluster_object. new_output_flags to
detennine if any of its device's output queues needs to be serviced.

2. For each active device, it sets the device's output flag in
cluster object. new output flags to false and sends a character to the device
starting an interrupt-driven transfer loop.

The interrupt-driven loop is initiated by the CP/device driver when it polls the output queue
and finds the new output flag set The interrupt routine sets the new output flag to false and
sends a character from the output queue to the device. (The flag must be reset before the
character is sent.) When the device interrupts the CP/device driver to acknowledge receipt of
the character, the loop checks the output queue again for another character to be sent This
loop continues until there are no more characters in the output queue.

NOTE

Occasionally, an output queue is marked active for which the interrupt-driven output
transfer loop is in progress. The CP can detect this situation because it maintains an
internal flag for each device that indicates whether or not a send is in progress. If a send
is in progress, the CP marks the queue as inactive and moves on to the next active output
queue.

Data Transfer From the Device to the Input Queue

1. The device sends an interrupt to the CP/device driver when it has a character to send. The
CP/device driver calls an interrupt handler which places the character in the input queue,
and sets the new input flag to true. (The character must be sent before the flag is reset.)

2. If the CP/device driver is unable to put a character in an input queue because the queue is
full, it discards the character and sets the queue's overflow boolean, input_lost.

The use of the pointers in the input queue is similar to the use with the output queues except
that the CP/device driver writes the characters using the write pointer and the device manager
reads the character using the read pointer. A CP/device driver updates the read pointer of the
output queue when removing characters. A CP/device driver reads the characters at the read
pointer and increments the read pointer.

Data Transfer From the Input Queue to the Device Manager

IX-1-12

1. The cluster server periodically checks the new input flags. If an input flag is set, the cluster
server calls the input handler for the device (device_state_rep. input_handler).

Understanding Device Managers and Device Drivers

IX-1.6 Summary
• A device object is a typed object that represents a device.

• A device manager is a type manager that controls access to a device.

• An opened device object is a typed object that represents an input/output connection be­
tween a device manager and a device.

• A device class is a specification that defines the device-specific details necessary to access
a member of a class of devices using an I/O mechanism.

• An access method is a collection of procedures that provide a device-independent interface
to perfonn I/O.

• The I/O messages data transfer mechanism supports high-speed, block-oriented data trans­
fer.

• The shared queues data transfer mechanism supports low-speed, character-oriented data
transfer.

• An I/O message is an object consisting of four parts: common part, device driver part,
device manager part and buffer description part.

• A recovery agent detects I/O processor failures and maintains a table of existing I/O mes­
sages.

Understanding Device Managers and Device Drivers IX-1-13

PREUMINARY

IX-1-14 Understanding Device Managers and Device Drivers

The appendixes are:

Part X
Appendixes

Ada Examples Contains complete listings of all examples used in this guide.

Glossary Defines tenns used in this guide.

Part X Overview

PRELIMINARY

Part X Overview

ADA EXAMPLES A
Contents

Support Services•....••.............•............................ X-A-4
Example_Messages Package Specification X-A-5
Long_Integer_Ex Package Specification .•............................ X-A-7
Long_ Integer_Ex Package Body X-A-8
Make_menu_group_DDef_ex Procedure X-A-12
Manage_application_environment_ex Procedure X-A-20
String_list_ex Procedure•........................... X-A-23

Directory Services•...................................... X-A-23
Create_directory_cmd_ex Procedure X-A-24
Create_name_space_cmd_ex Procedure X-A-26
List_current_directory_cmd_ex Procedure X-A-31
Make_objectyublic_ex Procedure X-A-33
Show_current_directory_cmd_ex Procedure X-A-35

I/O Services ... X-A-36
DBMS_Support_Ex Package Specification X-A-37
DBMS--:.Support_Ex Package Body X-A-38
Employee_Filing_Ex Package Specification X-A-42
Employee _F iling_Ex Package Body X-A-46
Hello ada ex Procedure .. X-A-54 - -
Hello OS ex Procedure ... X-A-55
Join_File_Ex Package SpeCification X-A-56
Join_File_Ex Package Body X-A-57
Record_Locking_Ex Package Specification X-A-61
Record_Locking_Ex Package Body X-A-62
Output_bytes_ex Procedure X-A-64
Output_records_ex Procedure X-A-65
Print cmd ex Procedure .. X-A-67 - -
Print_Cmd_Messages Package X-A-70
Record_AM_Ex Package Specification X-A-71
Record_AM_Ex Package Body X-A-75
Simple_editor_cmd_ex Procedure X-A-84
Simple_Editor_Ex Package Specification X-A-85
Simple_Editor_Ex Package Body X-A-89

Human Interface Services ... X-A-I04
Inventory_main Procedure•............ X-A-I05
Inventory_Files Package Specification X-A-108
Inventory_Files Package Body X-A-115
Inventory_Forms Package Specification X-A-121
Inventory_Forms Package Body X-A-126
Inventory_Menus Package Specification X-A-137
Inventory_Menus Package Body X-A-140

Ada Examples X-A-!

X-A-2

PREUMINARY

Inventory_Reports Package Specification X-A-l44
Inventory_Reports Package Body•......................... X-A-l46
Inventory_Windows Package Specification•................. X-A-lS2
Inventory_Windows Package Body X-A-lS4
Inventory_Messages Package Specification•........... X-A-lS6

Program Services•.. X-A-lS6
At cmd ex Procedure ... X-A-lS7 - -
At_Support_Ex Package Specification X-A-l60
At_Support_Ex Package Body X-A-l62
Compiler_Ex Package Specification•...•........•............. X-A-l68
Compiler_Ex Package Body•...•............. X-A-l69
Conversion_Support_Ex Package Specification•........ X-A-172
Memory_ex Procedure ...•..•......... 0 •••••••••••••••••••••••••••• X-A-l76
Process_Globals_Support_Ex Package Specification X-A-l77
Process_Globals_Support_Ex Package Body X-A-182
Stream_file_ex Procedure X-A-103
Symbol_Table_Ex Package Specification•................. X-A-l9l
Symbol_Table_Ex Package Body X-A-l93
Word_Processor_Ex Package Specification X-A-197
Word_Processor_Ex Package Body '.0 '0 0 0 •• X-A-l98
View device main Procedure 0 0 0 0 •• 0 0 • 0 0 •• 0 0 000 • 0 ••••••••••••••• oX-A-203 - -
VD_Defs Package Specification 0 ••••• 0 ••••• 0 ••• X-A-206
VD _Commands Package Specification 0 0 0 • 0 0 • 0 •••• 0 •• 0 •• 0 •• oX-A-208
VD _Commands Package Body 0 •••••••• 0 0 • 0 .X-A-209
VD_Devices Package Specification 000. 0 • 0 0 0 0 0 0 0000 ••• 0 •• 0 0 ••• 0 • 0 0 0 •• X-A-213
VD_Devices Package Body 0 •• 0.0.0 ••••••••••••••••••••••••••• • X-A-21S

Type Manager SelVices 0 0 ••••••••••• X-A-218
Acct_main_ex Procedure ... X-A-219
Acct _ Vi sual Package Specification 0 0 0 0 0 • oX-A-236
Acct _ Vi sual Package Body . 0 0 •• 0 ••••••• 0 •••••••• 0 • 0 • 0 0 0 0 0 0 0 •••••• X-A-238
Account Manager Command File 0 • 0 • 0 .X-A-244
Account_Types _Ex Package Specification 0 • 0 0 ••• 0 0 0 0 0 • 0 • 0 0 • 0 • 0 .X-A-2S0
Account_Mgt_Ex Package Specification . 0 •••••••••• 0 .0. 0 0 0 0 .0 0 •• 0 • o.X-A-2Sl
Account_Mgt _Ex (Active Only) Package Body .. 0 •••• 0 • 0 0 0 • 0 • 0 • 0 •• 0 •• • X-A-2S6
Account _Mgt_Ex (Stored, Non-transaction-oriented) Package Body 0 0 ••• 0 oX-A-26l
Account_Mgt _Ex (Stored, Transaction-oriented) Package Body o. 0 •••••• oX-A-267
Stored_Account_TDO_Init_Ex Procedure 00.0 •••••••••••• 000 0 0 ••• X-A-276
Account_Type _Name _Ex Package Specification 0 •• 0 • 0 • 0 •• 0 •••• oX-A-279
Account_Type_Name_Ex Package Body 0 •• 00.0000 •• 0 0 ••••• 0 ••• 0.00 .X-A-280
Type_Name_Attr_Ex Package Specification 0 •••••••••• 000.0 0 0 0 •• 0 0 0 .X-A-28l
Type_Name_Attr_Ex Package Body .. o 0. 0 0 0 ••• 0.0 ••• 0 ••• 0 •••• ooX-A-282
Type_Name_Attribute_Init_Ex Procedure . 00 •• 0 ••••• 0 0 •••••• 0 ••• X-A-283
Refuse_Reset_Acti ve_ Version_Ex Package Specification 0 •• 0 •••• 0 oX-A-284
Refuse_Reset_Active_Version_Ex Package Body .0.0 •• 0 •••••••• • X-A-28S
Account _Mgt _Ex (Distributed) Package Body 0 •• 0 0 0 0 •••••••••• 0 • 0 ••• oX-A-286
Distr_Acct_Call_Stub_Ex Package Specification 0. 0 •••••••••• X-A-298
Distr_Acct_Call_Stub_Ex Package Body X-A-300
Distr_Acct_Server_Stub_Ex Package Specification 0 ••••••• X-A-304
Distr_Acct_Server_Stub_Ex Package Body X-A-306
Distr_Acct_Init Procedure 0 ••••••••••••••••••••••••••••• X-A-308
Distr_Acct_Home_Job_Ex Procedure X-A-312
Makef ile .. X-A-313

Ada Examples

Named_copy_ex Procedure X-A-31S
Older than ex Function ... X-A-317 - -

Ada Examples X-A-3

PRELIMINARY

X-A.1 Introduction
This appendix contains full listings of all the examples in the BiiNTM lOS Guide grouped by
service area.

All examples were compiled using Version Vl.OO.02 of the BiiNTM Ada compiler, and all
compiled successfully (except where noted). Most examples are not yet tested, however.

X-A.2 Support Services

Ada Examples

X-A.2.1 Example_Messages Package Specification
1 with Incident Defs,
2 System, -
3 System_Defs; .
4
5 package Example_Messages is
6
7 Function:
8 Define messages used by example programs.
9

10 A single message file is used. All messages
11 defined use a module ID of O.
12
13 msg_file-pathname: constant System_Defs.text_AD :=
14 new System Defs.text' (
15 30,30,"/examples/msg/example messages");
16 AD to pathname of message file,-bound to
17 "msg_obj", following.
18
19 *This will go away when "pragrna bind" changes.*
20
21 msg obj: constant System. untyped word :=
22 -System. null word; -
23 pragrna bind(msg obj,
24 "example messages.msg file pathname");
25 Message object for incident codes in
26 example programs, bound to above "message_file-pathname".
27
28 *When the resident compiler and linker are*
29 *ready, this pragma will become:*
30 I pragrna bind(msg obj,
31 I "/examples/msg/example_messages");
32
33
34 not directory code:
35 -constant Incident Defs.incident code :=
36 (0, 1, Incident_Defs.error, msg=obj)i
37
38 --*M* store :module=O :nurnber=1 \
39 --*M* :msg name=not directory code \
40 --*M* :short = \ - -
41 --*M* "$p1<pathname> is not a directory."
42
43 not exist or no access code:
44 -constant-Incident Defs.incident code :=
45 (0, 2, Incident_Defs.error, msg=obj);
46
47 --*M* store :module=O :nurnber=2 \
48 --*M* :msg name=not exist or no access code \
49 --*M* : short = \ - - - - -
50 --*M* "$p1<pathname> does not exist or does\
51 --*M* not allow you access."
S2
S3 no access code:
54 constant Incident Defs.incident code :=
55 (0, 3, Incident_Defs.error, msg=obj);
56
57 --*M* store :module=O :number=3 \
58 --*M* :msg name=no access code \
59 --*M* :short = \ - -
60 --*M* "$p1<pathname> does not allow\
61 --*M* you access."
62
63 overwrite query code:
64 constant Incident Defs.incident code :=
65 (0, 4, Incident_Defs.information, msg_obj);
66
67 --*M* store :module=O :number=4 \
68 --*M* :msg name=overwrite query code \
69 --*M* :short = \ --
70 --*M* "$p1<pathname> exists. Overwrite it?"
71 not overwritten code:
72 -constant Incident Defs.incident code :=
73 (0, 5, Incident_Defs.error, msg=obj);
74

Ada Examples X-A-5

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

PRELIMINARY

--*M* store :module=O :number=5 \
--*M* :msg name=not overwritten code \
--*M* : short = \ - -
--*M* "$p1<pathname> not overwritten."

create name space aborted code:
constant Incident Defs.incident code :=
(0, 6, Incident_Defs.information, msg_obj);

--*M* store :module=O :number=6 \
--*M* :msg name= \
--*M* create name space aborted code \
--*M* :short-= "Operation aborted.\
--*M* No name space was created."

name space created code:
constant Incident Defs.incident code :=
(0, 7, Incident_Oafs. information, msg_obj);

--*M* store :module=O :number=7 \
--*M* :msg name=name space created code \
--*M* :short = \ - - -
--*M* "Name space $p1<pathname> created."

end Example_Messages;

Ada Examples

X-A.2.2 Lonq_Inteqer_Ex Package Specification
1 with Long_Integer_Defs;
2
3 package Long_Integer_Ex is
4
5 Function:
6 Provide examples of using long integers.
7 See the package body for detailed comments.
8
9

10 function Long integer value (
11 image: string) -
12 return Long_Integer_Defs.long_integer;
13
14
15 function Get long integer
16 return Long_Integer_Defs.long_integer;
17
18
19 function Multiply divide(
20 a: integer;-
21 b: integer;
22 c: integer)
23 return integer;
24
25
26 procedure Use_it:
27
28
29 pragrna external:
30
31 end Long_Integer_Ex:

Ada Examples X-A-7

PREUMINARY

X-A.2.3 Long_Integer _Ex Package Body
1 with Byte Stream AM,
2 Device Defs;
3 Long Integer Defs,
4 Process Mgt,-
5 Process-Mgt Types,
6 System,--
7 System_Exceptions;
8
9 package body Long_Integer_Ex is

10
11 Function:
12 Provide examples of using long integers.
13
14 History:
15 12-02-87 Martin L. Buchanan Initial version.
16
17
18 function Long integer va1ue(
19 image: string) -
20 return Long_Integer_Defs.long_integer
21
22 Function:
23 Converts a string image to a long integer.
24
25 The image must have the following syntax:
26 1

27 1 image ::= {space} [sign] digit [_] digit
28 1 {space}
2 9 1 space: : = , ,
30 1 sign ::= +1-
31 1 digit ::= 0111213141516171819
32
33 After leading and trailing spaces are stripped
34 off, the remaining part of the image cannot
35 be longer than 31 characters.
36
37 Notes:
38 Unlike "Long Integer Defs.Long int;eger value",
39 this function handles strings of varying length
40 and strings that contain trailing spaces.
41
42 Exceptions:
43 System Exceptions.bad parameter -
44 "image" has incorrect syntax, contains a
45 number longer than 31 characters, or contains
46 a number that cannot be represented as a long
47 integer.
48 is
49 li string: Long Integer Defs.string integer;
50 =- Fixed-length string-required by-
51 -- "Long Integer Defs.long integer value"
52 -- when converting to a long integer.
53 i: integer;
54 -- Will be index of right-most non-space character
55 -- in "image".
56 j: integer;
57 -- Will be index of left-most non-space character
58 -- in "image".
59 k: integer;
60 Will be index of left-most character in
61 "Ii string" that is copied from "image (j • • i)".
62 Ii: Long Integer Defs.long integer;
63 The resulting long integer to return.
64 begin
65 Make "i" the index of the right-most
66 -- non-space character in "image":
67
68 i:= image' last;
69 loop
70 if i < image' first then
71
72 "image" contains all spaces, or is a
73 null string:
74

X-A-8 Ada Examples

Ada Examples

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

r K~J..d.lVll.l"'1AK I

RAISE System_Exceptions.had_parameter;

else
EXIT when image(i) /= , ';
i := i - 1;

end if;
end loop;

Make "j" the index of the left-most
non-space character in "image". No check
is needed for "image" being null or all
spaces, as those conditions are checked
above.

j := image' first;
loop

exit when image(j) /= , ';
j := j + 1;

end loop;

if (i - j + 1) > Ii_string' length then

The number is longer than 31 characters
after stripping off spaces:

RAISE System_Exceptions.bad-parameter;

else

"k" is the index within "Ii string" of the
leftmost character copied from "image". "k" is
computed to satisfy the following predicate:
I i - j = Ii string' last - k
This predicate simply specifies that the number
of source characters copied equals the number
of destination characters.

k := li_string'last + j - i;

Copy the significant characters from "image" to
he right-justified within "Ii_string":

Ii string (k •• Ii string' last) : =
- image(j •• i);

Fill any remaining left-hand characters in
"Ii_string" with spaces:

for m in Ii string' first
Ii string 1m) := , ';

end loop;

k-1 loop

-- Compute and return the long integer value:

Long Integer Defs.Long integer value(
Image => Ii string, -
number => Ii); -- out.

RETURN Ii;

end if;
end Long_integer_value;

function Get long integer
return Long_Integer_Defs.long_integer

Function:
Gets a long integer on a single line
from the calling process's standard input.

Notes:
See "Long integer value" in this package
for a description-of the required long
integer syntax and of what happens if
the syntax is violated.

There is no check for a line that's too long.

X-A-9

X-A-IO

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

PRELIMINARY

is
LINE SIZE: constant integer := 80;

---A line read from the standard input must
-- be <= 80 characters.

line: string (1 LINE SIZE);
-- Line buffer. -

length: integer;
-- Number of characters actually read.

begin
-- Read the line:

length := integer(Byte Stream AM.Ops.Read(
Device Defs.opened-device(

Process Mgt.Get process globals entry(
Process Mgt-Types.standard Input»,

line' address, - - -
System. ordinal (LINE_SIZE»);

Strip any linefeed at the end:

if line(length) = ASCII.LF then
length := length - 1;

end if;

-- Convert to a long integer and return:

return Long integer value(line(l •• length»;
end Get_long_Integer;-

function Multiply divide(
a: integer;-

is

b: integer;
c: integer)

return integer
-- (a * b) / c

Function:
Computes and returns the product of two
integers divided by a third integer, using
a long integer for the intermediate result
to avoid overflow.

This function is useful for scaling and
unit conversions, to avoid overflow within
the calculation when the result after the
division step can still be represented as
an integer.

Exceptions:
System Exceptions.bad parameter -

Overflow or division by zero.

Convert all parameters to long integers:

a long: Long Integer Defs.long integer :=
- Long Integer Defs.Convert to long integer(a);

b long: Long Integer Defs.long integer :=
- Long Integer Defs.Convert to long integer(b);

c long: Long Integer Defs.long integer :=
- Long_Integer_Defs.Convert_to_long_integer(c);

Import long integer operators:

begin
return Convert to integer((a_long * b_long) / c_long);

end Multiply_divIde;

procedure Use_it

Function:
Show some computations with long integers.

Notes:

Ada Examples

229 This procedure is not yet testable as it
230 is not a command and its variables are not
231 yet displayed.
232 is
233 Import long integer operators and the
234 "long_integer" type:
235
236 use Long_Integer_Defs;
237
238 Some variables to play with:
239
240 a: long integer;
241 b: long-integer;
242 i: integer;
243
244 Declaring a negative long integer constant,
245 the easy way and the hard way:
246
247 negative twenty: constant long integer :=
248 - long_integer' (0, 20); -
249
250 another negative twenty: constant long integer :=
251 (16fffff fffft, 161ffff ffect); -
252 Use the-hard way when you want a declaration
253 elaborated at compile-time instead of
254 at run-time.
255 begin
256 -- Add one to a long integer:
257
258 a:= a + Long_Integer_Defs.one;
259
260 -- Add a positive integer "i" to a long integer:
261
262 b:= b + long integer' (0, System.ordinal(i»;
263 end Use_it; -
264
265
266 end Long_Integer_Ex;

Ada Examples X-A-11

X-A-12

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

PREUMINARY

with Data Definition Mgt,
Directory Mgt, -
Passive Store Mgt,
System,- -

is

System Defs,
Text_Mgt;

Function:
Creates and stores a menu group DDef,
containing two menus and five menu items:

--I
--I Menu 1 Menu 2
--I
--I
--I

Menu Item 1
Menu Item 2

Menu Item 1
Menu Item 2
Menu Item 3 --I

--I

-- to import enumeration types

ddf: Data Definition Mgt.DDef AD;
untyped ddf: System. untyped word; -

FOR untyped_ddf USE AT ddfTaddress;

group node:
menu list node:
menu-node:
item-list node:
item-node:
dont=:care_node:
name:
prop_value:

Data Definition Mgt.node reference;
Data-Definition-Mgt.node-reference;
Data-Definition-Mgt.node-reference;
Data-Definition-Mgt.node-reference;
Data-Definition-Mgt.node-reference;
Data-Definition-Mgt.node-reference;
System Defs.text(100); -
Data_Definition_Mgt.property_value(100);

begin

-- Create menu group

Text Mgt. Set (name, "group node");
group node := Data Definition Mgt.Create node(

DDef ~> ddf, - -
node name
root-

=> name,
=> private_root_node);

prop value. simple pv := (pv boolean, true);
Data-Definition Mgt.Add property value(

node ref =>-group node, -
property => pi derive all,
value => prop_value);

prop value.simple pv := (pv boolean, true);
Data=:Definition_Mgt.Add-property_value(

node ref => group node,
property => pi import,
value => prop_value);

prop_value.simple-pv := (pv_type => pv_string);
Text Mgt.Set(prop value.text value, "menu group t");
Data=:Definition_Mgt • Add-property_value (- -

node ref => group node,
property => pi DDef name,
value => prop_value);

Text Mgt. Set (prop value.text value, "/ddefs/menu DDef");
Data-Definition Mgt.Add property value(-

node ref =>-group node, -
property => pi_DDef_name,

Ada Examples

Ada Examples

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

value => prop_value);

Text Mgt.Set(name, "menu list");
menu-list node :- Data Definition Mgt.Create field(

record node => group node, - -
node name => name,-
property => pi has value,
value => (pv_node_reference, menu_node»;

-- Create the first menu ("Menu 1"):

Text Mgt.Set(name, "menu node");
menu-node := Data Definition Mgt.Create node(

ODef => ddf, - -
node_name => name,
root => private_root_node);

prop_value.simple-pv := (pv_boolean, true);
Data_Definition_Mgt.Add-property_value(

node ref => menu node,
property => pi derive all,
value => prop_value);

prop_value.simple-pv := (pv_boolean, true);
Data_Definition_Mgt.Add-property_value(

node ref => menu node,
property => pi import,
value => prop_value);

prop_value.simple-pv := (pv_type => pv_string):
Text Mgt.Set(prop value.text value, "menu ttl);
Data-Definition Mgt.Add property value(-

node ref =>-menu node, -
property => pi DOef name,
value => prop_value);

Text Mgt.Set(prop value.text value, "Jddefs/menu DDef");
Data-Definition Mgt.Add property value(-

node ref =>-menu node, -
property => pi DOef name,
value => prop_value);

Text Mgt. Set (name, "menu id");
dont-care node := Data Definition Mgt.Create field(

record node => menu node, - -
node name => name;
property => pi has value,
value => (pv_int4, 1»:

prop value.simple pv := (pv type => pv string);
Text-Mgt. Set (prop-value. text value, "Menu 1");
Text-Mgt. Set (name; "menu title");
dont-care node := Data Definition Mgt.Create field(

record node => menu node, - -
node name => name;
property => pi has value,
value => prop_value.simple-pv);

Text Mgt. Set (name, "item list");
item-list node := Data Definition Mgt.Create field(

record node => menu node, - -
node_name => name);

Now create the menu items for menu 1:

Create menu item 1:

Text Mgt.Set(name, "item node");
item-node := Data Definition Mgt.Create node(

DDef => ddf, - -
node_name => name,
root => private_root_node);

prop_value.simple-pv := (pv_boolean, true);

X-A-13

X-A-14

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

PRELIMINARY

Data Definition Mgt.Add property value (
node ref =>-item node, -
property => pi derive all,
value => prop_value):

prop value.simple pv := (pv boolean, true):
Data=Definition_Mgt.Add-property_value(

node ref => item node,
property => pi import,
value => prop_value):

prop value.simple pv := (pv type => pv string);
Text-Mgt.Set(prop-value.text value, "menu item t");
Data=Definition_Mgt.Add-property_value (- -

node ref => item node,
property => pi DOef name,
value' => prop_value);

Text Mgt. Set (prop value.text value, "/ddefs/menu DDef");
Data=Definition_Mgt.Add-property_value(-

node ref => item node,
property => pi DOef name,
value => prop_value);

Text Mgt.Set(name, "item id");
dont-care node := Data Definition Mgt.Create field(

record node => item node, - -
node name => name;
property => pi has value,
value => (pv_int4, 1»;

Text Mgt.Set(name, "checked");
dont-care node := Data Definition Mgt.Create field(

record node => item node, - -
node name => name;
property => pi has value,
value => (pv_boolean, true»;

Text Mgt. Set (name, "enabled");
do nt-care node := Data Definition Mgt.Create field(

record node => item node, - -
node_name => name;
property => pi has value,
value => (pv_boolean, true»:

prop value.simple pv := (pv type => pv string);
Text-Mgt.Set(prop-value.text value, "Menu Item 1");
Text-Mgt.Set(name; "text"): -
dont-care node := Data Definition Mgt.Create field(

record node => item node, - -
node_name => name;
property => pi has value,
value => prop_value.simple-pv);

Add menu item 1 to menu 1:

prop value.simple pv := (pv node reference, item_node);
Data=Definition_Mgt.Add-property=value(

node ref => item list node,
property => pi has value,
value => prop_value);

-- Create menu item 2 for menu 1:

Text Mgt.Set(name, "item node");
item-node := Data Definition Mgt.Create node(

DDef => ddf, - -
node_name => name,
root => private_root_node);

prop value. simple pv := (pv boolean, true):
Data-Definition Mgt.Add property value(

node ref =>-item node, -
property => pi derive all,
value => prop_value);

Ada Examples

Ada Examples

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305

prop_value.simple_pv := (pv_boolean, true):
Data Definition Mgt.Add property value(

node ref =>-item node, -
property => pi import,
value => prop_value):

prop_value.simple-pv := (pv_type => pv_string):
Text Mgt.Set(prop value.text value, "menu item t"):
Data::=Definition_Mgt • Add-property_value (- -

node ref => item node,
property => pi DOef name,
value => prop_value):

Text Mgt.Set(prop value.text value, "/ddefs/menu DDef"):
Data-Definition Mgt.Add property value(-

node ref =>-item node, -
property => pi DOef name,
value => prop_value);

Text Mgt.Set(name, "item id");
dont-care node := Data Definition Mgt.Create field(

record node => item node, - -
node_name => name;
property => pi has value,
value => (pv_int4, 2»:

Text Mgt.Set(name, "checked"):
dont-care node := Data Definition Mgt.Create field(

record node => item node, - -
node name => name;
property => pi has value,
value => (pv_boolean, false»:

Text Mgt.Set(name, "enabled"):
dont-care node := Data Definition Mgt.Create field(

record node => item node, - -
node name => name;
property => pi has value,
value => (pv_boolean, false»:

prop value.simple pv := (pv type => pv string):
Text-Mgt. Set (prop-value. text value, "Menu Item 2"):
Text-Mgt. Set (name; "text"): -
dont-care node := Data Definition Mgt.Create field(

record node => item node, - -
node_name => name;
property => pi has value,
value => prop_value.simple_pv);

-- Add menu item 2 to menu 1:

prop value.simple pv := (pv node reference, item_node);
Data=Definition_Mgt.Add-property::=value(

node ref => item list node,
property => pi has value,
value => prop_value);

-- Add menu 1 to the menu group:

prop_value.simple-pv := (pv_node_reference, menu_node);
Data_Definition_Mgt.Add-property_value(

node ref => menu list node,
property => pi has value,
value => prop_value);

Create menu 2:

Text Mgt.Set(name, "menu node");
menu-node := Data Definition Mgt.Create node(

ODef => ddf, - -
node_name => name,
root => private_root_node)i

prop_value.simple-pv := (pv_boolean, true):
Data_Definition_Mgt.Add-property_value(

X-A-lS

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382

PREUMINARY

node ref -> menu node,
property => pi derive all,
value => prop_value):

prop value.simple pv := (pv boolean, true);
Data-Definition Mgt.Add property value(

node ref =>-menu node, -
property => pi import,
value => prop_value):

prop value.simple pv := (pv type => pv string);
Text-Mgt.Set(prop-value.text value, "menu til):
Data:Definition_Mgt.AddJ>roperty_value (-

node ref => menu node,
property => pi DOef name,
value => prop_value):

Text Mgt. Set (prop value.text value, "/ddefs/menu DDef");
Data:Definition_Mgt.AddJ>roperty_value(-

node ref => menu node,
property => pi DOef name.
value => prop_value):

Text Mgt. Set (name, "menu id");
dont-care node := Data Definition Mgt.Create field(

record node => menu node, - -
node name => name;
property => pi has value,
value => (pv_int4, 2»;

prop_value.simpleJ>v := (pv_type => pv string);
Text Mgt. Set (prop value.text value, "Menu 2");
Text-Mgt. Set (name; "menu title");
dont-care node := Data Definition Mgt.Create field(

record node => menu node, - -
node_name => name;
property => pi has value,
value => prop_value.simpleJ>v);

Text Mgt.Set(name, "item list");
item-list node := Data Definition Mgt.Create field(

record node => menu node, - -
node_name => name);

Now create menu items for menu 2:

Create menu item 1 for menu 2:

Text Mgt.Set(name, "item node");
item-node := Data Definition Mgt.Create node(

DDef => ddf, - -
node name => name,
root- => private_root_node);

prop_value.simpleJ>v := (pv_boolean, true);
Data_Definition_Mgt.AddJ>roperty_value(

node ref => item node,
property => pi derive all,
value => prop_value):

prop value.simple pv := (pv boolean, true);
Data:Definition_Mgt.AddJ>roperty_value(

node ref => item node,
property => pi import,
value => prop_value);

prop_value.simpleJ>v := (pv_type => pv_string);
Text Mgt. Set (prop value.text value, "menu item tIt);
Data -Defini tion Mgt • Add property value (- -

node ref =>-item node, -
property => pi DOef name,
value => prop_value):

Text Mgt.Set(prop value.text value~ "/ddefs/menu DDef");
Data-Definition Mgt.Add property value(-

node ref =>-item node, -
property => pi_DOef_name,

Ada Examples

Ada Examples

383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459

rK~L11VllNAK y

value => prop_value);

Text Mgt.Set(name, "item ida);
dont-care node := Data Definition Mgt.Create field(

record node => item node, - -
node name => name;
property => pi has value,
value => (pv_int4, 1»;

Text Mgt.Set(name, "checked");
dont-care node := Data Definition Mgt.Create field(

record node => item node, - -
node name => name;
property => pi has value,
value => (pv_boolean, true»;

Text Mgt.Set(name, "enabled"):
dont-care node := Data Definition Mgt.Create field(

record node => item node, - -
node name => name;
property => pi has value,
value -> (pv_boolean, true»:

prop_value.simple-pv := (pv_type => pv_string):
Text Mgt.Set(prop value.text value, "Menu Item 1");
Text-Mgt.Set(name; "text"): -
dont-care node := Data Definition Mgt.Create field(

record node => item node, - -
- node name => name;
property => pi has value,
value => prop_value.simple-yv);

-- Add menu item 1 to menu 2:

prop_value.simple-pv := (pv_node_reference, item_node);
Data_Definition_Mgt.Add-property_value(
. node ref => item list node,

property => pi has value,
value => prop_value);

-- Create menu item 2 for menu 2:

Text Mgt.Set(name, "item node");
item-node := Data Definition Mgt.Create node(

DDef => ddf, - -
node name => name,
root- => private_root_node):

prop value.simple pv := (pv boolean, true):
Data-Definition Mgt.Add property value(

node ref =>-item node, -
property => pi derive all,
value => prop_value):

prop_value.simple-pv := (pv_boolean, true);
Data Definition Mgt.Add property value(

node ref =>-item node, -
property => pi import,
value => prop_value):

prop_value.simple-pv := (pv_type => pv_string):
Text Mgt.Set(prop value.text value, "menu item til);
Data-Definition Mgt.Add property value(- -

node ref =>-item node, -
property => pi DOef name,
value => prop_value);

Text Mgt. Set (prop value.text value, "/ddefs/menu DDef");
Data-Definition Mgt.Add property value(-

node ref =>-item node, -
property => pi DOef name,
value => prop_value);

Text Mgt.Set(name, "item id");
dont:care_node := Data_Definition_Mgt.Create_field(

X-A-17

X-A-18

460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536

PREUMINARY

record node => item_node,
node name => name,
property => pi has value,
value => (pv_int4, 2»:

Text Mgt. Set (name, "checked"):
dont-care node := Data Definition Mgt.Create field(

record node => item node, - -
node name => name;
property => pi has value,
value => (pv_boolean, true»:

Text Mgt.Set(name, "enabled"):
dont-care node := Data Definition Mgt.Create field(

record node => item node, - -
node name => name;
property => pi has value,
value => (pv_boolean, true»:

prop_value.simple-pv := (pv_type => pv_string):
Text Mgt. Set (prop value.text value, "Menu Item 2");
Text-Mgt. Set (name; "text"); -
dont-care node := Data Definition Mgt.Create field(

record node => item node, - -
node name => name;
property => pi has value,
value => prop_value.simple-pv):

-- Add menu item 2 to menu 2:

prop_value.simple-pv := (pv_node_reference, item_node):
Data Definition Mgt.Add property value(

node ref =>-item list node, -
property => pi has value,
value => prop_value):

-- Create menu item 3 for menu 2:

Text Mgt.Set(name, "item node");
item-node := Data Definition Mgt.Create node(

DDef => ddf, - -
node name => name,
root- => private_root_node);

prop_value.simple-pv := (pv_boolean, true);
Data_Definition_Mgt.Add-property_value(

node ref => item node,
property => pi derive all,
value => prop_value);

prop_value.simple-pv := (pv_boolean, true);
Data Definition Mgt.Add property value(

node ref =>-item node, -
property => pi import,
value => prop_value);

prop_value.simple-pv := (pv_type => pv_string);
Text Mgt. Set (prop value.text value, "menu item ttl);
Data-Definition Mgt.Add property value(- -

node ref =>-item node, -
property => pi DDef name,
value => prop_value);

Text Mgt. Set (prop value.text value, "/ddefs/menu DDef");
Data-Definition Mgt.Add property value(

node ref =>-item node, -
property => pi DDef name,
value => prop_value);

Text Mgt.Set(name, "item id");
dont-care node := Data Definition Mgt.Create field(

record node => item node. - -
node name => name;
property => pi has value,
value => (pv_int4, 3»;

Ada Examples

Ada Examples

537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606

PRELIMINARY

Text Mgt.Set(name, ncheckedn);
dont-care node := Data Definitiori Mgt.Create field(

record node -> item node, - -
node name => name;
property => pi has value,
value => (pv_boolean, true»:

Text Mgt.Set(name, "enabled"):
dont-care node := Data Definition Mgt.Create field(

record node => item node, - -
node_name => name;
property => pi has value,
value => (pv_boolean, false»:

prop value.simple pv := (pv type => pv string):
Text-Mgt.Set(prop-value.text value, "Menu Item 3"):
Text-Mgt.Set(name; "text"): -
dont-care node := Data Definition Mgt.Create field (

record node => item node, - -
node name => name;
property => pi has value,
value => prop_value.simple-pv);

-- Add menu item 3 to menu 2:

prop_value.simple-pv := (pv_node_reference, item_node):
Data_Definition_Mgt.Add~roperty_value(

node ref => item list node,
property => pi has value,
value => prop_value);

-- Add menu 2 to the menu group:

prop value.simple pv := (pv node reference, menu_node);
Data-Definition Mgt.Add property-value (

node ref =>-menu list node, -
property => pi has value,
value => prop_value);

-- Complete and close the menu group:

prop value.simple pv := (pv type => pv string);
Text-Mgt. Set (prop-value. text value, "/tdo/menu group tdo");
Data=Definition_Mgt.Add~roperty_value(- -

node ref => group node,
property => pi kind,
value => prop_value);

-- Close the definition (DDef):

Data Definition Mgt.Close(
DDef => ddf);

-- Store the DDef:

Text Mgt.Set(name, n///pathname/menu group DDefn):
Directory_Mgt. Store (name, untyped_ddt); -

-- Request update of stored DDef:

Passive Store Mgt.Request update(
obj-=> untyped_ddf); -

X-A-19

PRELIMINARY

X-A.2.S Manage_application _environment_ex Procedure

X-A-20

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

with CL Defs,
Environment Mgt,
String List-Mgt,
System; -
System Defs,
Text lO,
Text:Mgt:

procedure Manage_Application_Environment_Ex

is

Function:
Example program showing use of environment
variables.

History:
06-26-87, William Anton Rohm: Written.
12-02-87, WAR: Revised.

package lnt_lO is new Text_lO.lnteger_lO(integer);

-- Variables:

variable_name: System Defs.text(
CL Defs.max name sz):

variable type: -CL Defs.var type:
variable:mode: CL:Defs.var:mode:

integer value:
ASCII_value:
answer:

use CL Defs:
use System:

integer:
System Defs.text(1000):
character;

to import "=" for CL Defs.var mode
to import "+,, for System. ordinal

begin

Create a new local integer variable named
"new_integer":

Text Mgt.Set(
dest => variable name,
source => "new_integer"):

Environment Mgt.Set integer (
var name => varIable name,
value => 0, -
mode => CL Defs.read write,
global => false): -

-- Display all local variable names:

Environment Mgt.Get all names(
group name => System Defs.null text,
list - => variable name list,
global => false): - -

Text lO.Put_line("List of local variables:"):

for i in 1 •• variable_name_list.count loop

String List Mgt.Get element(
from -=> variable name list,
el-pos => i, --
element => variable_name):

end loop:

Ada Examples

Ada Examples

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

PREUMINARY

Read type and mode of given variable:
If integer and read-write, add one to variable;
otherwise, read and display ASCII
representation of value:

Text_IO.Put("Enter a variable name:"):

Text IO.Get(variable_name.value):

variable type := Environment Mgt.Get var type(
var_name => variable_name): --

variable mode := Environment Mgt.Get var mode (
var_name => variable_name): --

if variable_type = CL_Defs.integer_type then

integer value := Environment Mgt.Get integer (
var:name => variable_name); -

Text IO.Put("Original value of ");
Text-IO.Put(variable name.value):
Text-IO.Put(" integer variable is:""):
Int IO.Put(integer value);
Text_IO.put_line("-");

if variable mode - CL Defs.read write then
integer_value := integer_value + 1:

Environment Mgt.Set integer(
var name => varIable name,
value => integer_value);

Text IO.Put("New value of ");
Text-IO.Put(variable name.value):
Text-IO.Put(" integer variable is:");
Int IO.put(integer value):
Text_Io.Put_line ("-"):

else
Text IO.Put("Mode of "):
Text-IO.Put(variable name.value);
Text:IO.Put_line(" integer variable is 'read-only'."):

end if; if "read_write"

else not "integer_type"

Environment Mgt.Convert and get (
var name => variable name,
value => ASCII_value);

Text IO.Put("Value of "):
Text-IO.Put(variable name.value):
Text-IO.Put(" variable is:");
Text:IO.Put_line(ASCII_value.value);

if variable_mode = CL_Defs.read_write then

Text_IO.Put("Change value?"):

Text_IO.Get(answer):

if answer
answer

'y' or
'Y' then

Text IO.Put("Enter new value:"):
Text:IO.Get(ASCII_value.value):

Environment Mgt.Convert and set (
var name => variable name,
value => ASCII value,
var_type => variable_type):

end if: -- if answer = 'y'

X-A-21

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

PRELIMINARY

else
Text rO.Put(nMode of ");
Text-rO.Put(variable name.value);
Text=rO.put_line(n variable is 'read-only,.n);

end if;

end if;

-- Remove new variable:

Text Mgt. Set (
dest => variable name,
source => nnew_integer"):

Environment Mgt.Remove(
var name => variable name,
quiet => true, -
global => false);

if mode = read_write

if ninteger_typen

Ada Examples

PRELIMINARY

X-A.2.6 Strinq_list_ex Procedure
1
2
3

with String List Mgt,
System=Oefs;

4 procedure String_list_ex
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Function:
Create string list with following entries:

1. "ux group"
2. "world"

is
string list:

begin -
System_Oefs.string_list(255):

-- 1) "ux group"
String List Mgt.Set(string list,

SystemJ>efs.text' (8, 8:- "ux_group"»:

-- 2) "world"
String List Mgt.Append(string list,

systemJ>efs.text' (5, 5, "world"»:

X-A.3 Directory Services

Ada Examples X-A-23

PRELIMINARY

X-A.3.1 Create_directory_cmd_ex Procedure

X-A-24

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

with Command Handler,
Device Defs,
Directory Mgt,
system_DeIs;

is

Function:
Creates a named subdirectory in the
caller's current directory.

Command Definition:
The command has the form:

create.directory :name=<string>

Create the command definition by entering:
--I clex -> manage.program :tagged_source=create.dir.sb

--*D* set.program create.directory
--*D*
--*D* manage.commands
--*D*
--*D*
--*0*
--*D*
--*D*
--*D*
--*D*
--*D*
--*D*
--*D*
--*D*
--*D*
--*D*
--*D*

create. invocation command
define. argument-name :type = string

set.lexical class symbolic name
set.maximum-Iength 252 -
set.mandatory
set.description :text = n

-- Name of directory to be created.

end
set.description :text = "

Creates a directory in the
current directory.

--*D* end
--*D* exit
--*D* exit

-- manage. commands
manage. program

opened command: Device Defs.opened device;
-- Opened invocation command input device.

dir name: System Defs.text(252); -= Name of the directory to be created.

dir AD: Directory Mgt.directory AD;
Newly created-directory's AD: returned
but not used by "create.directory".

begin

-- Open invocation command input device:

opened command := Command Handler.
Open_invocat ion_command_proces sing:

Get ":name" parameter:

Command Handler.Get string(
cmd odo => opened command,
arg-number => 1, -
arg=value => dir_name):

Close invocation command input device:

Command_Handler.Close(opened_command):

-- Create new named directory:

dir AD := Directory Mgt.Create directory(
-name => dir_name); -

Ada Examples

Ada Examples

PREUMINARY

75 end Create_directory_cmd_ex;
76

X-A-25

X-A-26

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

PRELIMINARY

with CL Defs,
Command Handler,
Device Defs,
Directory Mgt,
Environment Mgt,
Example Messages, -- Example package.
Incident Defs,
Message Services,
Name Space Mgt,
Passive Store Mgt,
String List Mgt,
System; -
System Defs,
System-Exceptions,
Transaction_Mgt;

Function~
Defines a command to create a name space,
along with the code that executes the command.

Command Definition:
The command has the form:

create. name space
:name=<string>
:directory list=<string list>
:force=<boolean>:=false]

Pathnames in the directory list must name
directories.

If "force" is omitted or false then the "name"
pathname must not be in use. If "force" is
true and the "name" pathname is in use, then
the environment variable "user. confirm" is
consulted. If "user. confirm" is true (or does
not exist), then the user is queried before
deleting the existing use of the pathname.

--*C* set.message file \
--*C* :file =-/examples/msg/example_messages
--*C*
--*C* create. command \
--*C* :cmd def = create.n s.inv cmd \
--*C* :cmd:name = create. name_space
--*C*
--*C*
--*C*
--*C*
--*C*
--*C*
--*C*
--*C*
--*C*
--*C*
--*C*
--*C*
--*C*
--*C*
--*C*
--*C*
--*C*
--*C*

define.argument name \
:type = string
set. lexical class symbolic name
set.maximum-Iength 252 -
set.mandatory

end

define. argument directory list \
:type = string list -
set.lexical class symbolic name
set.maximum-Iength 508 -

end -

define. argument force \
:type = boolean
set.value default false

end -
--*C* end
--*C*
--*C* run "store.command definitions \\
--*C* :exec unit = create.n s \\
--*C* :invocation_cmd = create.n_s.inv_cmd"
--*C*
--*C* run "store.default message file \\
--*C* create.n s \\- -
--*C* lexamples/msg/example_messages

Ada Examples

Ada Examples

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

PRELIMINARY

is

opened cmd: Device Defs.opened device;
-- Opened command-input device.

name: System Defs.text(Incident Defs.txt length);
-- Pathname-of new name space.- -

directory list: System Defs.string list(508);
-- String list containing pathnames of the
-- directories in the new name space.

force: boolean;
Whether the new name space's pathname should

-- overwrite an existing entry.

i: natural;
-- Index into "directory_list".

directory-path: System_Defs.text(Incident_Defs.txt_Iength);
-- Text containing each successive pathname from
-- "directory_list".

valid: boolean:= true;
True if "directory list" is valid. Assigned

-- false if it is invalid.

name space: Name_Space_Mgt.name_space_AD;
---The new name space.

name space untyped: System. untyped word;
FOR name space untyped USE AT name space' address;

-- The-new name space as an untyped word.

user confirm name: constant System Defs.text(
12) := (12, 12, "user.confirm");-

-- Text record of an environment variable's name.

user confirm var exists: boolean;
-Whether-a user variable named

-- "user.confirm" exists.

user confirm var: boolean;
-Value of "user.confirm" variable, if it exists

-- ("user_confirm_var_exists" is true).

overwrite: boolean;
Whether the created name space can overwrite an

-- existing entry with the same pathname.

begin

-- Get command arguments:

opened cmd := Command Handler.
Open_invocation_command-processing;

Get first argument (name of new name space):

Command Handler.Get string(opened cmd, 1,
arg=value => name); -

Get second argument (list of directories):

Command Handler.Get string list (opened cmd, 2,
arg=value => directory=list); -

Get third argument (force overwrite):

force := Command_Handler.Get_boolean(opened_cmd, 3);

Command_Handler.Close(opened_cmd):

X-A-27

X-A-28

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

PRELIMINARY

-- Check each pathname in the directory list:

i := 1:

loop

String List Mgt.Get element by index(
from - => dIrectory-list,
list index => i, -
element => directory-path):

Exit after last string:

EXIT when i 0;

-- Check if pathname exists, and is a directory:

begin
if not Directory Mgt.Is directory(

Directory_Mgt.Retrieve(directory-path» then

valid := false;

Message Services.Write msg(
Example Messages.not directory code,
Incident_Defs.message-parameter(

typ => Incident Defs.txt,
len => directorY-path.length)' (

typ => Incident Defs.txt,
len => directory path. length,
txt_val => directory~ath»;

end if;

exception
when Directory_Mgt.no_access =>

valid := false;

Message Services.Write msg(
Example Messages.no access code,
Incident Defs.message parameter(

typ => Incident Defs.txt,
len => directory path.length)' (

typ => Incident Defs.txt,
len => directory path. length,
txt_val => directory:path»:

end;

end loop;

if not valid then
Message Services.Write msg(

Example Messages. -
create_name_space_aborted_code):

else
name space := Name Space Mgt.Create name space(

directory_list): - --

-- Store new name space as a directory entry:

loop
begin

-- Start a transaction to store new name space:

Transaction Mgt.Start transaction:
Directory_Mgt.Store(name, name_space_untyped):

-- Exit if no exception raised:

EXIT;

exception

\

Ada Examples

Ada Examples

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305

PRELIMINARY

when System Exceptions.
transaction_timestamp_conflict =>

Transaction_Mgt.Abort_transaction;

when Directory_Mgt.entry_exists =>

Transaction_Mgt.Abort_transaction;

if force then

begin
user confirm var := Environment Mgt.Get boolean(

user_confirm_name); - -

exception
when CL Defs.non existent

CL-Defs.invalid type
CL-Defs.no value =>

user_confirm_var_exists := false;
end;

if user confirm var exists and then
(not user confirm var) then

-- No confirmation necessary:

overwrite := true;

else
Confirm overwrite:

overwrite :=
Message Services.Acknowledge msg(

Example Messages. -
overwrite query code,

Incident Defs. -
message parameter (
typ => Incident Defs.txt,
len => name.max-length)' (

typ =>-
Incident_Defs.txt,

len =>
name.max length,

txt_val => name»;
end if;

else
"force" false:

overwrite := false;
end if;

if overwrite then
begin

Directory_Mgt.Delete(name);

exception
when Directory Mgt.no access =>

null; - -
end;

else
Message Services. Write msg(

Example Messages.not overwritten code,
Incident Defs.message parameter(-

typ => Incident Defs.txt,
len => name.max-Iength)' (

typ => Incident Defs.txt,
len => name.max-Iength,
txt_val => name»; -

Message Services.Write msg(
Example Messages. -

create_name_space_aborted_code);

X-A-29

X-A-30

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359

PRELIMINARY

end if:

when Directory_Mgt.no_access =>

Transaction_Mgt.Abort_transaction:

Message Services.Write msg(
Example Messages.no access code,
Incident_Defs.message-parameter(

typ => Incident Defs.txt,
len => name.max-length)' (

typ => Incident Defs.txt,
len => name.max-length,
txt_val => name»: -

Message Services.Write msg(
Example Messages. -

create_name_space_aborted_code):

when others =>

Transaction_Mgt.Abort_transaction;

RAISE:

end:

end loop;

-- Update passive version:

Passive Store Mgt.Request update(
name_space_untyped): -

Commit the "store new name space" transaction:

Transaction_Mgt.Commit_transaction:

Inform user of succesful creation of new name
space:

Message Services.Write msg(
Example Messages.name space created code,
Incident_Defs.message~arameter(-

typ => Incident Defs.txt,
len => name.length)' (

typ => Incident Defs.txt,
len => name. length,
txt val => name»;

end if; If all directories in path are
-- valid

Ada Examples

PRELIMINARY

X-A.3.3 List_current_directory_cmd_ex Procedure

Ada Examples

1 with Byte Stream AM,
2 Command Handler,
3 Device Defs,
4 Directory Mgt,
5 Process Mgt,
6 Process-Mgt Types,
7 System,--
8 System Defs,
9 Unchecked_Conversion;

10
11 procedure List_current_directory_cmd_ex
12
13 Function:
14 Lists names of entries in user's current
15 directory.
16
17 Each entry name is written to the user's
18 standard output, on a separate line.
19
20 Command Definition:
21 The command has the form:
22 list. current_directory [:pattern=<string>]
23
24 --*0* manage. commands
25 --*0* create. invocation_command
26 --*0*
27 --*0* define. argument pattern \
28 --*0* :type = string
29 --*0* set. lexical class symbolic name
30 --*0* set.maximum-Iength 252 -
31 --*0* set.value default "*"
32 --*0* end -
33 --*0* end
34 --*0*
35
36
37 is
38
39 Generic function:
40
41 function Directory AD from untyped word is
42 new Unchecked conversion(-
43 source =>-System.untyped word,
44 target => Directory_Mgt.directory_AD);
45
46
47 -- Variables:
48
49 odo: Device Defs.opened device :=
50 Command Handler. -
51 open_invocation_command-processing;
52 -- Opened invocation command input device.
53
54 pattern: System Defs.text(252) := (252, 252, (others => ' '));
55 Optional ":pattern" used to select entries
56 matching the pattern, such as "abc?" or
57 "m*device". Default is "!.*", meaning all
58 entries NOT beginning with a "." (period).
59
60 opened_dir: Device Defs.opened device;
61 Opened device for reading stream of names
62 -- from user's current directory.
63
64 standard output: Device Defs.opened device :=
65 Device Defs.opened device(-
66 Process Mgt.Get process globals entry(
67 Process Mgt-Types.standard output));
68 User's standard output. -
69
70 name buffer: array(1 .• 250) of character;
71 -Each entry name is read into this buffer
72 -- and then written from it.
73
74 length: System. ordinal;

X-A-31

PRELIMINARY

75 -- Length in bytes (characters) of last
76 -- entry name read.
77 use System; -- for" 'size/8 " arithmetic
78
79 begin
80
81 -- Get ":pattern", if any:
82
83 Command Handler.Get string(
84 cmd odo => odo,
85 arg-number => 1,
86 arg=value => pattern);
87
88 Close invocation command input device:
89
90 Command_Handler.Close(odo);
91
92 -- Open directory for reading, filtered by
93 -- ":pattern":
94
95 opened dir :~ Directory Mgt.Open directory(
96 dir => Directory AD from-untyped word(
97 Process_Mgt.Get~rocess_globals_entry(
98 Process Mgt Types.current dir»,
99. pattern => pattern) -; -

100
101
102 -- Get and write each entry name:
103
104 loop
105
106 length := Byte Stream AM.Ops.Read(
107 opened dev-=> opened dir,
108 buffer-VA => name buffer' address,
109 length- => name=buffer'size/8);
110
111 Byte Stream AM.Ops.Write(
112 opened dev => standard output,
113 buffer-VA => name buffer' address,
114 length- => length);
115
116 end loop;
117
118 exception
119
120 when Device_Defs.end_of_file =>
121
122 Byte_Stream_AM.Ops.Close(opened_dir);
123
124 RETURN;
125
126 end List_current_directory_cmd_ex;
127

X-A-32 Ada Examples

PREUMINARY

X-A.3.4 Make_objectyublic_ex Procedure
1 with Authority List Mgt,
2 Directory-Mgt,-
3 Identification Mgt,
4 Passive Store Mgt,
5 System,- -
6 System Defs,
7 Transaction Mgt,
8 User_Mgt:-
9

10 procedure Make object public ex(
11 obj: - System. untyped word;
12 -- Object to be made public.-
13 aut_list~ath: System_Defs.text)
14 Pathname under which to store the new
15 -- authority list.
16
17 Function:
18 Makes an object "public" by giving it an
19 authority list that grants all type rights
20 to the "world" ID.
21
22 Logic:
23 1. Get an AD to the world ID.
24 2. Define a protection set that grants all
25 type rights to the world ID.
26 3. Create an authority list with that
27 protection set.
28 4. Enclose steps (5) and (6) in a transaction.
29 5. Store the authority list under the pathname
30 given as the "aut list path" parameter.
31 6. Passivate the authority list, so that it
32 will endure in passive store along with
33 the object that it protects.
34 7. Assign the authority list as the object's
35 authority list.
36
37 Exceptions:
38 Authority List Mgt.set authority refused -
39 The object's-master AD was stored with
40 no authority list protecting the object,
41 and an authority list cannot now be assigned.
42 is
43 Get the world ID AD
44 world name: constant System Defs.text(9) :=
45 (9, 9, "/id/world"): -
46 world untyped: constant System. untyped word :=
47 Directory Mgt.Retrieve(world name):-
48 world id: Identification Mgt.ID-AD:
49 FOR world_id USE AT world=untyped'address:
50
51 -- Define the protection set
52 entries: constant User Mgt.protection set(1) := (
53 size => 1, length => 1, -
54 entries => (1 => (rights => (true, true, true),
55 io => world_id»);
56
57 -- Create the authority list
58 aut list: constant
59 -Authority List Mgt.authority list AD :=
60 Authority-List-Mgt.Create authority(entries);
61 aut untyped: -System. untyped word;
62 FOR-aut_untyped USE AT aut_list' address:
63
64 begin
65 Transaction Mgt.Start transaction;
66 begin - -
67 Directory Mgt.Store(aut list path, aut untyped);
68 Passive store Mgt.Request update(aut untyped):
69 Transaction Mgt.Commit transaction; -
70 exception - -
71 when others =>
72 Transaction Mgt.Abort transaction:
73 RAISE: - -
74

Ada Examples X-A-33

PRELIMINARY

75 end;
76 Authority List Mgt.Set object authority(
77 obj, aut lIst); - -
78 end Make_object_public_ex;

X-A-34 Ada Examples

PREUMINARY

X-A.3.5 Show_current _directory _ cmd _ ex Procedure
1 with Byte Stream AM,
2 Device Defs;
3 Directory Mgt,
4 Process Mgt,
5 Process-Mgt Types,
6 System,--
7 System Defs,
8 Text_Mgt:
9

10 procedure Show_current_directory_cmd_ex
11
12 Function:
13 Gets and displays the pathname of the
14 current directory.
15
16 Command Definition:
17 The command has the form:
18 show. current_directory
19
20 --*C* create. command \
21 --*C* :cmd def = show.cur dir.inv cmd \
22 --*C* :cmd=name = show. current_directory
23 --*C* end
24 --*C*
25 --*C* run "store.command definitions \\
26 --*C* :exec unit = show.cur dir \\
27 --*C* :invocation_cmd show. cur_dir. inv_cmd"
28
29 is
30
31 standard output: Device Defs.opened device :=
32 Device Defs.opened device (-
33 Process Mgt.Get process globals entry(
34 Process Mgt-Types.standard output»:
35 User's standard output. -
36
37 current dir: Directory Mgt.directory AD :=
38 Directory Mgt.directory AD(-
39 Process Mgt.Get process globals entry(
40 Process Mgt-Types.current dIr»;
41 -- Current directory's AD. -
42
43 current dir untyped: System. untyped word:
44 FOR current dir untyped USE AT -
45 current-dir'address:
46 -- Current directory's AD as an untyped word.
47
48 dir_name: System Defs.text(252):
49 Current directory's name.
50
51 begin
52
53 -- Get current directory's pathname:
54
55 Directory Mgt.Get name(
56 obj => current dir untyped,
57 name => dir_name): -
58
59 Add a line-feed to pathname for displaying:
60
61 Text Mgt.Append(
62 dest => dir name,
63 source => Standard.ASCII.LF):
64
65 Display pathname:
66
67 Byte Stream AM.Ops.Write(
68 opened dev => standard output,
69 buffer-VA => dir name:value'address,
70 length- => System. ordinal (
71 dir_name.length»:
72
73 end Show_current_directory_cmd_ex:
74

Ada Examples X-A-35

PRELIMINARY

X-A.4 1/0 Services

Ada Examples

PREUMINARY

X-A.4.1 DBMS_Support_Ex Package Specification
1 with Device Defs,
2 System;
3 System_Defs;
4
5 package DBMS_Support_EX is
6
7 Function:
8 Shows how to use the record processing and
9 DBMS support operations in applications.

10
11 History:
12 08-15-87, Paul Schwabe: initial version.
13 12-01-87, Paul Schwabe: reorganized.
14
15 pragma external;
16
17 procedure Selection(
18 opened file: Device Defs.opened device;
19 read-procedure: system.subprograM_type);
20 -- An opened device, opened for input on an
21 -- employee file.
22
23 Function:
24 Do a Record AM.Keyed Ops.Set key range using
25 the Dept index. Do a- --
26 Record Processing Support.Set oriented read.
27 Returns a set of records for the range-of
28 departments indicated.
29
30
31 procedure Projection(
32 opened file: Device Defs.opened device;
33 projection DDef name: System Defs.text);
34 An opened device, opened for input on an
35 -- employee file.
36
37 Function:
38 Grabs only certain fields for each record
39 that is read from the employee file. Set
40 the filter up using the following call:
41
42
43 procedure Sort records(
44 inventory file: Device Defs.opened device;
45 inventory-DDef name: System Defs.text);
46 An-opened device, opened for input on an
47 inventory file. Uses
48
49 Function:
50 Sort Merge Interface.Sort to sort records
51 from-an inventory file (writes to standard
52 out).
53
54
55 procedure Merge and sort records(
56 inventory fIle:- DevIce Defs.opened device;
57 employee file: Device-Defs.opened-device;
58 sort DDef name: System Defs.text); -
59 ---Two opened devices, opened for input on an
60 -- inventory file and employee file.
61
62 Function:
63 Uses Sort Merge Interface.Sort merge to merge
64 and sort records from two (the-inventory and
65 the employee) files (writes to standard out).
66
67
68
69 end DBMS_Support_EX;
70

Ada Examples X-A-37

PREUMINARY

X-A.4.2 DBMS_Support_Ex Package Body

X-A-38

1 with Employee Filing Ex,
2 Data DefInition-Mgt,
3 Device Defs, -
4 Process Globals Support Ex,
5 Record AM, - -
6 Record-Processing Support,
7 Sort Merge Interface,
8 Trusted_Record_Processing_Support,
9 System,

10 System Defs,
11 Unchecked_conversion;
12
13 use System;
14
15 package body DBMS_Support_Ex is
16
17 Logic:
18 Shows how to do record processing
19 support operations.
20
21
22
23 procedure Selection(
24 opened file: Device Defs.opened device;
25 read-procedure: system:subprogram_type)
26 -- An opened device, opened for input on an
27 -- employee file.
28 Logic:
29 Do a Record AM.Keyed Ops.Set key range using
30 the Dept index. Do a- --
31 Record Processing Support.Set oriented read.
32 Returns a set of records for the range-of
33 departments indicated.
34 is
35 start key value: constant
36 Employee Filing Ex.dept key buffer := (
37 dept - => 100): - -
38 -- Lowest dept for ascending key field.
39
40 start key descr: constant
41 Record AM.key value descr := (
42 start key-value' address,
43 start:key:value'size / 8):
44
45 stop key value: constant
46 Employee Filing Ex.dept key buffer :=
47 dept-=> 305); --
48 Highest dept value
49 -- for ascending key field.
50
51 stop key descr: constant
52 Record AM.key value descr := (
53 stop key value' address,
54 stop:key:value'size / 8);
55
56 begin
57 Trusted Record Processing Support.Associate read procedure (
58 opened dev- =>-opened file, - -
59 user info => System:null address,
60 read:procedure => read-procedure);
61
62
63 Record AM.Keyed Ops.Set key range(
64 opened dev - => opened file,
65 index - => -
66 Employee Filing Ex.dept index name,
67 select range - => (- - -
68 start comparison => Record AM.inclusive,
69 start-value => start key descr,
70 stop comparison => Record AM:inclusive,
71 stop:value => stop_key_descr»:
72
73 Record Processing Support. Set oriented read(
74 opened_dev - => open~d_file, -

(

Ada Examples

Ada Examples

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

PRELIMINARY

modifier => Record_AM.next,
output device -> Process Globals Support Ex.

Get standard output, - - -
-- Normally defaulted.

alt output => System. null word,
no record lock => false, -
lock - => Record AM.read lock,
unlock => Record-AM.no unlock,
timeout => Record-AM.walt forever);

-- DO ANY NEEDED PROCESSING HERE. -

exception
when Device Defs.end of file =>

null; -

end Selection;

procedure Projection(
opened file: Device Defs.opened device;
projection DDef name: System Defs.text)
-- An opened device, opened-for input on an
-- employee file.
Logic:

Grabs only certain fields for each record
that is read from the employee file.

is
projection_DDef_ref: Data Definition Mgt.

node_reference;

buffer: string(l •• integer(Employee Filing Ex.max rec size»;
Buffer is large enough to hold any employee - -

-- record.

current record addr: constant
System.address := buffer' address;

current record VA: constant
Employee FIling Ex.employee record VA :=

Employee FilIng Ex. - -
Employee record VA from VA(

current_record_addr);

bytes read: System. ordinal;
Number of bytes in current record.

begin

Open projection data definition.

projection DDef ref :=
Record-AM.Ops.Get DDef(

opened dev =>-Record AM.Open by name(
name => projection DDef name,
input output => Device Oefs.input,
allow- => Device-Oefs.readers,
block => true»;

-- Filters out all fields except those specified
-- in the DDef.
Record Processing Support.

Associate_primary_data-projection(

loop

opened dev => opened file,
record-ID output => false,­
primary_fIelds => projection_DDef_ref);

Only reads the fields specified in
the DDef.

bytes read := Record AM.Ops.Read(
opened dev => opened file,
modifier => Record-AM.next,

-- Normally defaulted.
buffer VA => current record addr,
length- => System.ordinal(

X-A-39

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

PREUMINARY

DO ANY NEEDED PROCESSING HERE.

end loop;
exception

when Device Defs.end of file =>
null; -

end Projection;

procedure Sort records(
inventory file: Device_Defs.opened_device;

is

inventory-DDef name: System Defs.text)
-- An opened-device, opened for input on an
-- inventory file.

Logic:
Uses Sort Merge Interface.Sort to sort
records from an-inventory file (writes to
standard out).

opened inventory ddef: Device Defs.opened device;
inventorY_ddef_ref: Data Definition Mgt.

node_reference;
begin

-- Open inventory definition.

opened inventory DDef :=
Record AM.Open by name(

name - => inventory DDef name,
input output => Device Defs.input,
allow- => Device-Defs.readers,
block => true);-

inventory DDef ref :=
Record-AM.Ops.Get DDef(

opened_dev =>-opened_inventory_DDef);

Sort Merge Interface.Sort(
Input device => inventory file,
DDef - => inventory-DDef ref,
output device => Process Globals Support Ex.

Get standard output,- - -
stable sort =>-true,
tuning-opts => Sort Merge Interface.

no=tuning); - -

Close inventory file.

Record AM.Ops.Close(
opened_dev => opened_inventory_DDef);

end Sort_records;

procedure Merge and sort records (
inventory fIle:-Device Defs.opened device;
employee file: Device-Defs.opened-device;
sort DDef name: System-Defs.text) -

is

-- Two opened devices; opened for input on an
-- inventory file and employee file. Uses
Logic:

Sort Merge Interface.Sort merge to merge
and sort records from two-(the inventory
and the employee) files (writes to
standard out).

opened sort DDef: Device Defs.opened device;
sort_DOef_ref: Data Definition Mgt.

node reference;
sort input array: Sort Merge Interface.

sort merge input array(l-•• 2) :=
(I => (input-device => inventory file,

presorted => false, -

Ada Examples

PRELIMINARY

229 sorted by index => false),
230 2 => (input devIce a> employee file,
231 presorted => false, -
232 sorted_by_index => false»;
233 begin
234
235 -- Open sort data definition.
236
237 opened sort DDef :=
238 Record AM.Open by name(
239 name - => sort DDef name,
240 input output => Device Defs.input,
241 allow => Device Defs.readers,
242 block => true);-
243
244 sort DDef ref :=
245 Record-AM.Ops.Get DDef(
246 opened_dev =>-opened_sort_DDef);
247
248 Perform the sort-merge.
249 Sort Merge Interface.Sort merge(
250 Input devices => sort-input array,
251 DDef - => sort-DDef ref,
252 output device => Process Globals Support EX.
253 Get standard output,- - -
254 stable sort =>-true,
255 tuning-opts => Sort Merge Interface.
256 no=tuning); - -
257
258
259 Close inventory file.
260
261 Record AM.Ops.Close(
262 opened_dev => opened_sort_DDef);
263
264 end Merge_and_sort_records;
265
266
267 end DBMS_Support_EX;

Ada Examples X-A-41

PRELIMINARY

X-A.4.3 Employee_Filing_Ex Package Specification

X-A-42

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

with Data Definition Mgt,
File-Defs, -
System,
System Defs,
Unchecked_conversion;

use System;

package Employee_Filing_Ex is

Function:
Defines an employee file structure.

Contains declarations for employee records and
indexes. Contains subprograms for creating
needed DDefs and for creating an employee file
with indexes.

The nemployee recordn type defines the record
format. -

An employee file has two indexes:

nDept indexn - A b-tree index sorted by salary
ascending department. Allows duplicates.

nDept-salaryn index A b-tree index
sorted by ascending department and descending
salary. Allows duplicates.

pragma external;

CONSTANTS

max text length: constant:= 25;
- The maximum length for a person's

name.
max job desc length: constant

- The maxImum length of a
-- string.

-- FIELD SUBTYPES OR TYPES

:= 200;
job description

subtype department number is
System. ordinal-range 0 •• 1000;

-- A work group within the company.

subtype person name is
System_Defs:text(max_text_Iength);

Format is: last-name, first-name middle-name
[suffix] This format is used so that records
can be ordered alphabetically on last name then
first name.

subtype job description length is
integer range 0 •• max job desc length;

-- String length allowed-for a job
-- description.

subtype monthly salary is float;
-- The monthly salary for an employee.

-- RECORD DECLARATIONS

type employee record (
length: job description length) is

record - -
dept: department_number;

Ada Examples

Ada Examples

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

name:
job descr:
salary:

end record:

PRELIMINARY

person name:
string(1 •• length):
monthly_salary:

This specific representation assures the
record is correctly represented for the
DDef. The fields must be word aligned.

FOR employee_record USE
record

dept at 0 range 0 31:
name at 4 range 0 231:
salary at 36 range 0 63:

end record:

max rec size: constant System. ordinal := 241:
- Maximum number of bytes in the employee record.

Used to determine the buffer size when
reading an employee record.

type employee record VA is access employee record:
pragma access-kind(employee record VA, virtual):

-- Type contains virtual pointers to employee
-- records.

employee DDef: Data Definition Mgt.node reference:
Data definition-for the employee record.

DECLARATIONS FOR INDEXES
A simple index declaration.

dept_index_DDef: Data Definition Mgt.
-node_reference;

dept index name: constant
FIle Defs.index name :=

(max length ~> File Defs.index name length,
length => 14, - --
value => "Dept_Index_DDef n):

type dept key buffer is
record - -

dept: department_number:
end record:

-- A composite index declaration.
dept salary index DDef:

Data_Definition=Mgt.node_reference;

dept salary index name: constant
FIle Defs.index name :=

(max length ~> File Defs.index name length,
length => 21, - --
value => nDept_Salary_Index_DDef

type dept salary key buffer is
record - --

dept: department number:
salary: monthly_salary:

end record:
This specific representation assures the

-- buffer is correctly represented for the
-- DDef. There is no padding between fields.
FOR dept salary key buffer USE

record- --
dept
salary

end record:

CALLS

at
at

Orange
4 range

o
o

31:
63:

") ;

X-A-43

X-A-44

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212,
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

PRELIMINARY

Unchecked conversion(
source => System. address,
target => employee_record_VA);

function VA from employee record VA is new
Unchecked-conversion (- -

source => employee record VA,
target => System.address);

procedure Create_employee_DDef;

Function:
Creates DDefs for the employee record and all
indexes.

The DDefs are in a single DDef object, which
is passivated with the specified pathname.

nCreate employee DDefs n assigns all the
nddef" variables-in this package.

Notes:
"Create employee DDefs" is normally called
only once in the-lifetime of a system.

The same DDefs can be used by multiple
employee files.

procedure Create_dept_DDef;

Function:
Sets up an index key DDef for an employee
file by deriving fields from an existing
record DDef.

The index key DDef requires the properties
indicated by the following pseudo-DDef
language:

define "Dept"
record Import from (

"Employee Data",
"Employee-DDef"),

Derive all is false;
Maps to "Dept",

This simple index key is set up by mapping
DDef nodes from "Employee DDef" to a new
record DDef called "Index-2 DDef"
that consists of one field:-

* "Dept" in ascending order.

Function:
Sets up an index key DDef for an employee
file by deriving fields from an existing
record DDef.

The index key DDef requires the properties
indicated by the following pseudo-DDef
language:

define "Dept-Salary"
record Import from

"Employee Datan,
"Employee-DDef"),

Derive all is false;
Maps to "Dept",
Maps to "Salary",

descending is true;

This composite index key is set up by mapping
DDef nodes from "Employee_DDef" to a new

Ada Examples

PRELIMINARY

229 record DDef called "Dept-Salary"
230 that consists of two fields:
231 * "Dept" in ascending order.
232 * "Salary" in descending order.
233
234
235 procedure Create file and indexes(
236 file name: - System Defs.text;
237 org Index name: System-Defs.text);
238 -= New file's pathname.
239
240 Function:
241 Creates an employee file with all needed
242 indexes. The employee file is a clustered
243 organization.
244
245 The new file is initially empty.
246
247 "Create employee DDefs" must have been called
248 *before* any call to "Create_employee_file".
249
250 Note:
251 The index is built after the file is created.
252
253 The file uses DDefs defined in the
254 Employee_Filing_Ex package.
255
256
257 end Employee_Filing_Ex;
258

Ada Examples X-A-45

PRELIMINARY

X-A.4.4 Employee_Filin9'_Ex Package Body
1 with Data Definition Mgt,
2 Directory Mgt, -
3 File Admin,
4 File-Defs,
5 PassIve Store Mgt,
6 System,- -
7 System Defs,
8 Text_Mgt;
9

10 package body Employee_Filing_Ex is
11
12 max employee count: System. ordinal := 1 000:
13 - A new employee file is limited to this many
14 -- employees.
15
16
17 procedure Store DDef(
18 DDef: Data Definition Mgt.DDef AD;
19 name: system_Defs.text) -
20 is
21 Logic:
22 Stores a DDef and updates its passive
23 version.
24
25 untyped DDef: untyped word;
26 FOR untyped_DDef USE AT DDef'addressi
27
28 begin
29 begin
30 Directory Mgt.Delete(name);
31 exception-
32 when Directory Mgt.no access =>
33 null; - -
34
35 when others =>
36 RAISE;
37 end;
38 Directory_Mgt.Store(name, untyped_DDef);
39
40 Passive_Store_Mgt.Request_update(untyped_DDef);
41
42 end Store_DDef;
43
44 procedure Create employee DDef
45 -- New DDef object's pathname.
46
47 Logic:
48 Sets up a self-contained record DDef. This
49 DDef requires the properties indicated by
50 the following pseudo-DDef language:
51
52 define Employee Data
53 record-
54 Dept: Type is ord 2,
55 lower bound-is 100,
56 upper-bound is 999;
57 Name: Type Is string,
58 (System Defs.text)
59 Header for max length is true,
60 Varying is-true,
61 length is 25;
62 Job_Desc: Type is string,
63 length is 200;
64 Salary: Type is real4,
65 default~value is 0;
66 end record;
67
68 This structure is equivalent to the following
69 Ada record declaration:
70
71 subtype Job Desc length is
72 integer range 0 .. 200;
73
74 Employee_Data (

X-A-46 Ada Examples

Ada Examples

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

is

PREUMINARY

length: Job_Desc_length) is
record

dept: short ordinal range 100 •• 999;
name: System Defs.text(25);
job Desc: string(l •• length);
salary: float;

end record;

"Data Definition Mgt" assigns layout
properties to the record that correspond to
the following Ada rep spec (note that the
holes in the record allow fields to be placed
on natural boundaries):

for Employee Data use
record -

dept at 0 range 0 •• 15;
name at 4 range 0 ••

8* (max text length+4)-1;
length at 40-range 0 •• 15;
job desc at 42 range 0 ••

-8* (job desc length)-l;
salary at 36-range 0 •• 31;

end record;

dd: Data Definition Mgt.DDef AD;
name: System Defs.text(40); -
rec_node: Data Definition Mgt.node reference;
field node: Data-Definition-Mgt.node-reference;
pv: Data_DefinitIon_Mgt.property_value(100);

begin

dd := Data Definition Mgt.Create DDef;
Create a new DDef object. -

Text Mgt.Set(name,"Employee Data");
rec no~e := Data Definition-Mgt.Create node(-= Create a DDef node for-the record-layout.

dd,
-- AD to a DDef object

Data Definition Mgt.mt record,
---Record metatype and property value for
-- the "node_name" property 10.

name,
Data Definition Mgt.public root node);

-Property value for the "root value"
-- property 10. -

Text_Mgt.Set (name,"Dept");

-- Create a simple metatype node with
-- "root value" set to "non root node" for the
-- "Dept" field. -
field node := Data Definition Mgt.

Create simple field (-
ree node,-

- DDef object open for definition.
Data Definition Mgt.t ord2,

---Property value for "pi type" property
-- 10 (short ordinal of type "type til).

name); -
Property value for the "node_name"
property 10.

pv.simple pv := (
pv type => Data Definition Mgt.pv int4,
int4 value => 100); - -

-Set "pi lower bounds" (type integer) to
-- 100. - -

Add "pi lower bounds" and its value to the
"Dept" node. -

Data Definition Mgt.Add property value(
field node,- - -
Data_Definition_Mgt.pi_lower_bounds,

X-A-47

X-A-48

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

PREUMINARY

pv) ;

pv.simple pv.int4 value := 999;
-- Set "upper_bounds" property value.

Data Definition Mgt.Add property value(
---Add "pi upper bounds" and its value to the
-- node. - -

field node,
Data Definition Mgt.pi upper bounds,
pv);- - - -

Text_Mgt.Set (name,"Name");

-- Create a simple metatype node with
-- "root value" set to "non root node" for the
-- "Name" field. -
field node := Data Definition Mgt.

Create_simple_field_with-prop(
rec node, -= DDef object that is open for

-- definition.
Data Definition Mgt.t string,

---Value for "pi type" (uses byte-string
-- for "type_t"):

name,
Value for "node name".

Data Definition Mgt. -
pi header for max length,

(Data DefinitIon Mgt.pv boolean,true»;
True if strIng is represented in

-- SIL 'text' type.

pv.simple~v := (
pv type => Data Definition Mgt.pv int4,
int4 value => is); - -

---Property value (type integer) is set to
-- 25.

Data Definition Mgt.Add property value (
- field node, - -

---Node within an open DDef object.
Data Definition Mgt.pi length,
pv);- --

Sets "pi length" (maximum length of string in
bytes). Because "pi header for max length"
requires "pi varying" to be-false, "name" is
a fixed-size-field.

-- Create a simple metatype node with
-- "root value" set to "non root node".
field node := Data Definition Mgt.

Create simple field with prop(
rec node; - -

- DDef object that is open for
definition.

Data Definition Mgt.t string,
- Value for-Api type" (uses

-- byte-string for "type_t").
name,

-- Value for "pi node name".
Data Definition Mgt:pi varying,

(Data DefinItion Mgt.pv boolean,
true»; - -

-- Varying-length string.

pv.simple pv := (
pv type => Data Definition Mgt.pv int4,

- Sets property value for "pi length"
-- (maximum length of string in bytes) to
-- 200.

int4_value => 200);

Ada Examples

Ada Examples

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305

is

PRELIMINARY

Data_Definition_Mgt.Add-property_value(
Adds "pi length" and its value.

field-node,
-- Node within an open DDef object.

Data Definition Mgt.pi length,
pv);- --

Text Mgt.Set (name,"Salary");
field node := Data Definition Mgt.

Create simple field with prop(
Create a-simple metatype node with

-- "root value" set to "non root node"
-- (defaults to 0). --

rec node, -= DDef object that is open for
-- definition.

Data Definition Mgt.t real8,
---Value for "pi type"
-- (uses real for "type_t").

name,
-- Value for "pi node name".

Data Definition Mgt.pi default value,
(Data_Definition_Mgt.pV_rea18,O.0»;

Data Definition Mgt.Close(dd);
---Close and bind DDef object.

-- Save created DDef as "Employee DDef".
Text Mgt.Set(name,"Employee DDef");
Store_DDef(DDef => dd, name-=> name);

Logic:
Sets up an index key DDef for an employee
file by deriving fields from an existing
record DDef.

dd: Data Definition Mgt.DDef AD;
name: System Defs.text(40); -
rec node: Data Definition Mgt.node reference;
field node: Data-Definition-Mgt.node-referenee;
pv: - Data-Definition-Mgt. -

property_value(100);
begin

Create AD to a DDef object
dd := Data Definition Mgt.Create DDef;
-- Create node for Index 2 DDef record
Text Mgt.Set(name,"Index-2-DDefn);

ree node := Data Definition Mgt.Create node(
-dd, - - -

AD to a DDef object
Data Definition Mgt.mt record,

- meta_type of 'record'
name,

-- value for the node name
-- property

Data Definition Mgt.private root node);
-can be referenced from- -

-- other DDef objects

Set DDef name property
pv.simple pv := (

pv_type-=> Data_Definition_Mgt.pv_string);

Text_Mgt.Set (pv.text_value, "Employee_Data");

Data Definition Mgt.Add property value(
rec node, - - -

- -- node within an open DDef
Data Definition Mgt.pi DDef name,

- -- requested property-

X-A-49

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382

is

PRELIMINARY

pv);
-- value to be assigned

Text Mgt.Set (pv.text value, "Employee DDef");
Data:Definition_Mgt.Add-property_value(

rec node, -= node within an open DDef
Data Definition Mgt.pi DDef name,

-requested property -
pv) ;

value to be assigned

-- Set derive all property; false: all fields not
-- referred to'.
pv.simple-pv := (

pv type => Data Definition Mgt.pv boolean, =- property value has type boolean
boolean value => false);

Data_Definition_Mgt.Add-property_value(
rec node, =- node within an open DDef
Data Definition Mgt.pi derive all~

- requested-property -
pv);

value to be assigned

Create node for key field "Dept"
field_node := Data Definition Mgt.

Create_field(rec_node);
-- first key.

-- Set maps to property
pv.simple pv := (

pv type => Data Definition Mgt.pv string);
Text Mgt.Set (pv.text value, "Dept DDef");
Data-Definition Mgt.Add property value (

field node,- - -
-- node within an open DDef

Data Definition Mgt.pi maps to,
-requested property -

pv) ;
value to be assigned
Descending defaults to false;
it needn't be set.

close and bind DDef
Data_Definition_Mgt.Close(dd);

-- Save created DDef under the symbolic name
-- "Index 2 DDef"
Text Mgt.Set(name,"Dept Index DDef");
Store_DDef(DDef => dd, name => name);

Logic:
Sets up an index key DDef for an employee
file by deriving fields from an existing
record DDef.

dd: Data Definition Mgt.DDef AD:
name: System Defs.text(40); -

New DDef object's pathname.
rec node: Data Definition Mgt.node reference;
field node: Data-Definition-Mgt.node-reference:
pv: - Data-Definition-Mgt.property value(100):

begin - - -
Create AD to a DDef object

dd ~= Data_Definition_Mgt.Create_DDef;

-- Create node for Employee DDef record
Text_Mgt. Set (name, "Employee:DDef"):

Ada Examples

Ada Examples

383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459

PRELIMINARY

rec node :- Data_Definition_Mgt.Create_node(
-dd,

AD to a DDef object
Data Definition Mgt.mt record,

- meta_type-= record
name,

-- Value for the node name property
Data Definition Mgt.private root node);

---Can be referenced from-other DDef objects.

Set DDef name property
pv.simple pv := (

pv type => Data Definition Mgt.pv string);
Text Mgt.Set (pv.text value, "Employee Data");
Data=Definition_Mgt.Add-property_value(

rec node, -= Node within an open DDef.
Data Definition Mgt.pi DDef name,

---Requested property. -
pv) ;

-- Value to be assigned.
Text Mgt.Set (pv.text value, "Employee DDef");
Data-Definition Mgt.Add property value(

rec node, - - -
-= Node within an open DDef.

Data Definition Mgt.pi DDef name,
-Requested property. -

pv);
Value to be assigned.

Set derive all property; false: all fields not
referred to.

pv.simple pv := (
pv type-=> Data Definition Mgt.pv boolean, =- property value has type boolean
boolean value => false);

Data Definition Mgt.Add property value (
rec node, - - -

=- node within an open DDef
Data Definition Mgt.pi derive all,

- requested-property -
pv) ;

value to be assigned

Create node for key field "Dept"
field_node := Data Definition Mgt.

create_field(rec_node);
-- first key.

-- Set maps to property
pv.simple pv := (

pv type => Data Definition Mgt.pv string);
Text Mgt.Set (pv.text value, "Dept");­
Data-Definition Mgt.Add property value (

field node,- - -
-- node within an open DDef

Data Definition Mgt.pi maps to,
-requested property -

pv) ;
value to be assigned
Descending defaults to false;
it needn't be set.

Create node for key field "Salary"
field node := Data Definition Mgt.Create field(

- rec_node); - -

Set maps to property
pv.simple pv := (

pv type => Data Definition Mgt.pv string);
Text Mgt.Set (pv.text value, "Salary");
Data-Definition Mgt.Add property value(

field node,- - -
--- node within an open DDef

Data Definition Mgt.pi maps to,
- -- requested property-

pv) ;

X-A-51

460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536

PRELIMINARY

-- value to be assigned

-- Set descending property; true: order is
-- descending
pv.simple-pv := (

pv type => Data Definition Mgt.pv boolean, =- property value has type boolean
boolean value => true);

Data Definition Mgt.Add property value(
field node,- - -

-- node within an open DDef
Data Definition Mgt.pi descending,

-requested property
pv) ;

value to be assigned

close and bind DDef
Data_Definition_Mgt.Close(dd);

Text Mgt. Set (name, "Dept Salary Index DDef");
Store DDef(DDef => dd~ name =>-name);

Save created DDef under the symbolic name
"Index_DDef"

procedure create file and indexes(
file name: - System Defs.text;

is

---New file's pathname.
org index name: System Defs.text) -= Organization index's name.

Logic:
Define descriptors for the file, the organization index,
and the alternate index. Create the file, build the
organization index, and build the alternate index.

Note:
You build the organization index built after creating
the file, and the alternate index after creating the
organiztion index.

new file: File_Defs.file_AD;
begin-

-- Create the file first.
new_file := File Admin. Create_file (

name => file name,
logical file descr => (

-- Set the-file's logical
-- file descriptor.

file org => File Defs.unordered.
DDef-specified => true;
term-char => File Defs.term char,
record DDef => employee_DDef,-
record-layout => (

DDef specified => true),
lock escalation count => 0,
xm locking - => true, =- Required for any record locking,

-- including transaction locking.
short term logging => true,

-- Required for transaction support.
long_term_logging => false,
max rec num =>

-max-employee count,
bytes-per_bucket- => 4096,
fill factor =>

File Admin.fill factor dont care,
org_index - => org_index_name»;

-- Build the organization index for the file.
File Admin.Build index(

file => new file,
logical_index_descr => (

Ada Examples

PRELIMINARY

537 -- Set the index descriptor for Department.
538 name => dept index name,
539 active -> true; -
540 index org =>
541 FIle Defs.btree index,
542 duplicates allowed => false,
543 duplicate order =>
544 File nefs.by increasing record ID,
545 null attribute - => File nefs.none,
546 DDef- => dept-index DDef,
547 phantom protected => false, -
548 utilization maintenance => true,
549 bytes-per_bucket =>
550 File_Defs.page_size»;
551
552 -- Build an alternate index for the file.
553 File Admin.Build index(
554 file => new file,
555 logical-index descr => (
556 name - =>
557 dept salary index name,
558 active - - - => true,
559 index org =>
560 FIle Defs.btree index,
561 -- A unordered org index with
562 -- a b-tree index.
563 duplicates allowed => false,
564 duplicate order =>
565 File nefs.bY increasing record ID,
566 null attribute - => - -
567 File Defs.none,
568 DDef - =>
569 dept salary index DDef,
570 phantom protected - => true,
571 -- Uses bucket-level locking.
572 utilization maintenance => true,
573 bytes per bucket =>
574 FIle_nefs.page_size»;
575
576 end Create file_and_indexes;
577
578 end Employee_Filing_Ex;
579

Ada Examples X-A-53

PRELIMINARY

X-A.4.5 Hello ada ex Procedure
1 with Text_IO;
2
3 procedure Hello_ada_ex is
4
5 -- Function:
6 Write "Hello, world!" on a separate line to the
7 standard output, using Ada's "Text_IO" package.
S begin
9 Text IO.Put line(IIHello, world!");

10 end HeIlo_ada=ex;

X=A=54 Ada Examples

X-A.4.6 Hello OS ex Procedure
1 with Byte Stream AM,
2 Device Defs;
3 Process Mgt,
4 Process-Mgt Types,
5 System;--
6
7 procedure Hello_OS_ex is
8
9 Function:

10 Write "Hello, world!" on a separate line to the
11 standard output, using OS packages.
12
13 hello: constant string := "Hello, world!" & ASCII.LF;
14 stdout: constant Device Defs.opened device :=
15 process_Mgt.Get-process_globals_entry(
16 Process_Mgt_Types.standard_output);
17 begin
18 Byte Stream AM.Ops.Write(
19 opened dev => stdout,
20 buffer-VA => hello(l)'address,
21 length- => System.ordinal(hello'length»;
22 end Hello_OS_ex;

Ada Examples X-A-55

PRELIMINARY

X-A.4.7 Join_File_Ex Package Specification
1 with Join Interface,
2 System;
3 package Join_File_Ex is
4
5 Function:
6 This package provides examples using
7 the DBMS support operations.
8
9 History:

10 08-10-87, Paul Schwabe: initial revision.
11 11-30-87, Paul Schwabe: update.
12
13 pragma external;
14
15 -- Define some user buffer.
16
17 type stuff buffer type is
18 array(l ~. 256)-of character;
19
20 -- Define local data structures.
21
22 type some other type is
23 array(l-•• 256) of character;
24
25 type user info type is
26 record - -
27 first call: boolean:= true;
28 -- This is reset by the user join procedure
29 -- during the first call.
30 comm block: Join Interface.communication block VA;
31 ---This is returned by the user join - -
32 -- procedure.
33 user specific: some other type;
34 ---Needed for the-user'; join algorithm.
35 end record;
36
37 function Join ex(
38 buffers available: System. ordinal;
39 -- Number of 4kbyte file buffers reserved
40 -- for this join.
41 user info: System. address;
42 ---Object for user process specific storage.
43 records: Join Interface.record_lists_AD)
44 The list of record locatIons for each
45 input device. Those are null the first time
46 this routine is called.
47 return Join Interface.communication block VA;
48 ---Contains the 'next block listT and the
49 -- output buffers.
50 pragrna subprogram_value(Join_Interface.Block_join, Join_ex);
51
52 Function:
53 The function Join ex (subprogram type
54 Join Interface.Block join) will be called
55 from-inside the Join-Interface.Join. (After
56 having locked all the participating input
57 devices on file level, we call the Join).
58
59
60 procedure Join call(
61 num input-devices: System. short ordinal);
62 -= Number of participating devices.
63 Function:
64 Calls the Join procedure.
65
66
67 end Join_File_Ex;
68
69
70

X-A-56 Ada Examples

PREUMINARY

X-A.4.8 JoinJile_Ex Package Body

Ada Examples

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

with Device Defs,
Join Interface,
System,
Unchecked Conversion;

package body Join_File_Ex is

Logic:
This package body contains the implementations
for the examples using the DBMS support
operations.

UNCHECKED CONVERSIONS

function Convert comm block VA to address is
new Unchecked-Conversion(- -

source => Join Interface.
communicatIon block VA,

target => System.address);

function Convert address to comm block VA is
new Unchecked-ConversIon(- -

source => System. address,
target => Join Interface.

communication_block VA);

function Convert address to next block VA is
new Unchecked-ConversIon(

source => System. address,
target => Join Interface.

next_block_list_VA);

function Convert next block VA to address is
new Unchecked-Conversion(- -

source => Join Interface.
next block list VA,

target => System. address); -

BODY FOR THE SUBPROGRAM TYPE BLOCK_JOIN

function Join ex(

is

buffers available: System. ordinal;
-- Number of 4kbyte file buffers reserved
-- for this join.

user info: System. address;
---Object for user specific storage.

records: Join Interface.record lists AD)
The list of record locations for each
input device. Those are null the first time
this routine is called.

return Join Interface.communication block VA
Contains the 'next block list' and-the
output buffers.

Operation:

u info: user_info_type;
-FOR u info USE AT user info;

-- Retypes the address to user_info_type.

comm block: Join Interface.communication block;
FOR comm block USE AT -

Convert comm block VA to address(
u info.comm block); -

-- Just-a rename.-

System. short ordinal :=
records.num_devices;

X-A-57

X-A-58

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

begin

PRELIMINARY

-- Number of input devices for this Join.

First distribute the 'buffers available' among
the input devices in some manner. Make sure the
number of buffers requested at a time does not
exceed the numbers of buffers available.

lets say 2 buckets per block per input
file is the result.

if u info. first call then
-This is the first time this function is
called. (This can also be recognized by
checking the ADs in 'records', which are null
at this time).

for i in 1 •• num devices loop
Set up the communication block to condition

-- Join for the next call.

comm block.position blocks.next blocks(i).
block size := 2; -

-- Two buckets per block.

comm block.position blocks.next blocks(i).
position := Join Interface.next;

We want to trace through the files from
the beginning to the end. The Join will
call this function the next time with
record locations of those records
contained in the first two buckets of the
input file i. "Current" would deliver
empty record location arrays at this
stage. "Previous" would start with the
last two buckets in the file.

end loop;

else
This is not the first call to this function.

Here is where a join algorithm takes place.

If i counts the devices from 1 ••
num devices, and if j counts the number of
entries in one record location array (1
num records), then the necessary data for the
join algorithm can be retrieved
via the following paths:

num records := records.rec list array(i).
num-entries; - -

-- Number of records per record location array.

One record can be found in:

records.rec list array(i).rec loc array(j).
record VA - - -

records.ree list array(i).rec loc array(j).
record length - -

records.ree list array(i).rec loc array(j).
record_IO - - -

If the buckets scanned do not contain any
records then the "number of entries" will be
O. It will be - -
"Join Interface.null num entries" when the
end of the file has been-exceeded.

Now, join the records into the
'buffer_with_stuff' ••••

Set up the comm block with respect to the
output buffers.-

Ada Examples

Ada Examples

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

PREUMINARY

comm block.out buffers. output length :=
some-value; - -

--The-length of the buffer contents
-- in bytes. A non zero value provides for
-- flushing the buffer to the output device.

Set up the communication block with
positioning information for the
subsequent call:

comm block.position blocks(i).block size := 2;
-- Two buckets per block. -

comm block.position blocks(i).position :=
Join Interface.next;

Makes the Join call this
function the next time with record locations
of those records contained in the next two
buckets of the input file i.

null;

end if;

THE CALL

The function Join ex (subprogram type
Join Interface.Block join) will be called from
inside the Join_Interface. Join.

(After having locked all the participating input
devices on file level, we call the Join).

procedure Join call (
num input-devices: System. short ordinal) -= Number of participating devIces.

is

Operation:
Calls the Join procedure.

join devices: Join Interface.join device list(
- num input devices); -

-- Input devices for the Join.

out file: Device Oefs.opened device; -= Output rec_ID_stream device.

buffer reservation: Join Interface.
- buffer reservation block;

Block which determines the number of buffers
needed.

u info: user_info_type;
- Global storage for the Block join procedure.
-- Will be passed to Block_join~

comm block: Join Interface.communication block;
-Instantiates the communication block.

-- Contains the next_block list.

buffer with stuff: stuff buffer type;
-- User records that will be copied to the output.

length of one stuff record: constant
System. ordinal := 8;
Constant size of the "stuff records".

-- the output buffers;

next_blocks: Join_Interface.next_block list(

X-A-59

X-A-60

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304

PRELIMINARY

num entries => num input devices);
The list that specifies which blocks-to use
for the next call.

begin

-- Hook the comm_block into user info.

u info.comm block :=
- Convert-add~ess to comm block VA(

cOmID_block'address);

Initialize the comm_b10ck.

comm block.position blocks :=
Convert address-to next block VA(

next blocksTaddressf; -
-- Unchecked conversion; see Ada-G.

-- Set up the communication block with respect to
-- the output buffers.

comm block. out buffers.output buffer :=
buffer with stuff' address;

comm block:out buffers. record size :=
length of one stuff record;

comm block:out buffers.alt output buffer :=
System. null address; - -

comm_block. out_buffers. alt_record_size := 0;

Here, the descriptors for the output buffers
have to be set to make sure the buffers don't
get flushed, since they do not contain any
interesting data.

comm block. out buffers. output length := 0;
comm:block.out:buffers.alt_output_length := 0;

Get the ODOs for the input devices from somewhere.

join_devices := (. .);

Calculate how much buffers should be reserved
by the Join at a time. Determine how many you
need as a minimum; what's the optimal number?
Do yo.u want to wait until the buffers are
available?

buffer_reservation := (•••);

Create and/or Open the output device

out_file := ••••

Initialize the user info.

u info

And off we go:

Join Interface.Join(
-participating devices => join devices,
buffers to reserve => buffer reservation,
user info - => u_infoTaddress,
join:procedure =>

Join ex' subprogram value,
join output => out file,
alternate_output => system.null_word);

end Join_call;

Ada Examples

PRELIMINARY

X-A.4.9 Record_Locking_Ex Package Specification
1 with Device Defs,
2 System-Defs;
3 package Record_Locking_Ex is
4
5 Function:
6 This package contains the examples for
7 using the record locking in your
8 applications.
9

10 History:
11 01-07-88, Paul Schwabe: initial version.
12
13 pragma external;
14
15 procedure Level 3 update(
16 file_name: System_Defs.text);
17
18 Function:
19 This example is designed to illustrate level
20 3 consistency. It reads the employee records
21 in a key range and updates the salaries.
22
23 Does an index-sequential read of an
24 unordered file using a single b-tree alternate
25 index. The read call uses a nwrite" lock mode
26 because the record will be updated after the read.
27
28
29 end Record_Locking_Ex;
30

Ada Examples X-A-61

PRELIMINARY

X-A.4.10 Record_Lockinq_Ex Package Body
1 with Device Defs,
2 Employee Filing Ex,
3 File AdmIn, -
4 File-Defs,
5 Record AM,
6 System;
7 System Defs,
8 Text Mgt,
9 Transaction_Mgt~

10
11 use System:
12
13 package body Record_Locking_Ex is
14
15 Logic:
16 This package body contains the
17 the implementations for the record
18 locking examples.
19
20 buffer: string(l •• integer (
21 Employee Filing Ex.max rec size»:
22 Buffer is large enough to hold any employee
23 -- record.
24
25 current record addr: constant
26 System.address := buffer' address:
27 current record VA: constant
28 Employee FIling Ex.employee record VA :=
29 Employee-Filing-Ex.Employee-record-VA from VA(
30 current_record_addr); - - - -
31
32 bytes read: System. ordinal:
33 -- Number of bytes in current record.
34
35
36 procedure Level 3 update(
37 file name: System Defs.text)
38 ---An opened device for transaction Tl, opened
39 -- for input on an employee file.
40
41 Operation:
42 Reads all records in a relative file and
43 totals the salaries.
44
45 Does an index-sequential read of an
46 unordered file using a single b-tree alternate
47 index. Transaction Tl (a reader) reads
48 employee records using the write lock lock
49 mode, locking the file from other readers and
50 writers.
51
52 is
53 opened_file: Device_Defs.opened_device;
54
55 total salary: Employee Filing Ex.monthly salary
56 :;; 0.00; - - -
57
58 start key value: constant Employee Filing Ex.
59 dept salary key buffer := (- -
60 dept - => 100,
61 -- Lowest department, ascending.
62 salary => 10 000.00);
63 --Highest salary, descending.
64
65 stop key value: constant Employee Filing Ex.
66 dept-salary key buffer := (
67 dept - => 500,
68 -- Highest department, ascending.
69 salary => 1 000.00):
70 -- Lowest salary, descending.
71
72 level 3 mode~ Record AM.open mode value (Record AM.level 3) :=
73 (mode id => Record AM.level 3; --
74 value => true):- -

X-A-62 Ada Examples

75
76 begin
77 Transaction Mgt.Start transaction;
78 Started on behalf of transaction T1,
79 the level 3 reader.
80 Any updates, deletes or inserts
81 (not shown) within this transaction
82 can be rolled back if
83 the transaction aborts.
84
85 opened file := Record AM.Open by name(
86 name => file name, -
87 input output => Device Defs.inout,
88 allow- => Device:Defs.anything);
89
90 Record AM.Ops.Set open mode(
91 opened dev =>-opened file,
92 mode value => level 3 mode);
93 -- Sets level 3 consistency.
94
95 Record AM.Keyed Ops.Set key range(
96 opened file,- --
97 index => Employee Filing Ex.
98 dept salary index name,
99 select range =>-(-

100 start comparison =>
101 Record AM.inclusive,
102 start value => (
103 start key value' address,
104 start-key-value'size I 8),
105 stop comparison =>
106 Record AM.inclusive,
107 stop value- => (
108 stop key value' address,
109 stop:key:value'size I 8»);
110
111 loop
112 bytes read := Record AM.Ops.Read(
113 opened dev => opened file,
114 buffer-VA => current record addr,
115 length- => Employee_Filing_Ex.
116 max rec size,
117 lock - => Record AM.write lock,
118 unlock => Record-AM.no unlock);
119 Another caller cannot-read or update
120 the same record at any time.
121
122 if current record VA. salary = 3 000.00 then
123 current-record-VA.salary := -
124 current_record_VA.salary + 300.00;
125
126 Record AM.Ops.Update(
127 opened dev => opened file,
128 modifier => Record-AM.current,
129 buffer VA => current record addr,
130 length- => Employee Filing Ex.
131 max rec size, - -
132 timeout- => Record AM.wait forever.
133 status => null);- -
134 end if;
135 end loop;
136
137 exception
138 when Device Defs.end of file =>
139 Transaction Mgt.Commit transaction;
140 -- EverthIng's OK. -
141
142 when others =>
143 -- Something's bad.
144 null;
145 end Level_3_update:
146
147 end Record_Locking_Ex;

Ada Examples X-A-63

rK~LINll~AK I

X-A.4.11 Output_bytes _ex Procedure

X-A-64 ,

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

with Byte Stream AM,
Device Defs;
Process Mgt,
Process-Mgt Types,
System,- -
System Defs,
Unchecked_conversion;

procedure Output bytes ext
name: System Defs:text)

-- Input device to read.

is

Function:
Opens the named input device and
copies bytes from it to the caller's
standard output, until end-of-file.

source opened device: Device_Defs.opened_device;
dest opened device: Device Defsoopened device;
function Opened device from untyped is new

Unchecked conversion (-
source => System. untyped word,
target => Device Defs.opened device):

BUFSIZE: constant System.ordinal-:= 4 096:
buffer: array(1 •• BUFSIZE) of -

System. byte ordinal;
bytes read:

begin -
System. ordinal:

source opened device :=
Byte_Stream_AM.open_by_name(

name => name,
input output => Device Defs.input,
allow- => Device-Defs.readers);

dest opened device := Opened device from untyped(
Process-Mgt.Get process globals-entry(

Process_Mgt:Types.standard_output»;

loop
bytes read := Byte Stream AM.Ops.Read(

source opened device,­
bufferTaddress,
BUFSIZE):

Byte Stream AM.Ops.Write(
dest opened device,
buffer' address,
bytes read);

end loop: -
exception

when Device Defs.end of file =>
Byte Stream AM.Ops:Close(

source opened device);
end Output_bytes=ex; -

Ada Examples

PRELIMINARY

X-A.4.12 Output_records _ex Procedure
1 with Device Defs,
2 Object-Mgt,
3 Process Mgt,
4 Process-Mgt Types,
5 Record AM, -
6 system;
7 System Defs,
8 Unchecked_conversion;
9

10 procedure Output_records_ex(
11 name: System Defs.text)
12 Pathname-of device. Caller must have
13 -- read rights.
14
15 Operation:
16 Opens a named device, reads a stream
17 of records, and writes the records to
18 the caller's standard output, until
19 end-of-file.
20
21 Notes:
22 The record buffer is dynamically sized
23 so that records of any length can be
24 handled. Recovery from buffer overflow
25 uses the "rest of current" rather than
26 "current" read-option, because some
27 devices, such as pipes, do not support
28 the "current" option.
29
30 Exceptions:
31 Device Defs.device in use -
32 The device is beIng-used by
33 an application that does not
34 allow concurrent readers.
35 Device Defs.open mode conflict -
36 The named object does not
37 allow opens for input.
38 Device Defs.device inconsistent
39 Device-Defs.device-offline
40 Device-Defs.device-inoperative
41 Device-Defs.transfer error
42 Directory Mgt.no access -
43 There is no such pathname
44 or the caller does not have
45 access to the named device.
46 Directory Mgt.name too long -
47 The pathname or some-part of it
48 exceeds an OS size limit.
49 File Defs.volume space exhausted
50 Record AM.XXX - - -
51 Many-"Record AM" exceptions
52 can be raised. See "Read" and
53 "Insert" in "Record_AM.Ops".
54 is
55 use System; -- Import ordinal operators.
56 source opened device: Device Defs.opened device;
57 dest opened device: Device-Defs.opened-device;
58 buffer size: System. ordinal := 256; -
59 buffer-AD: System. untyped word :=
60 Object Mgt.Allocate(buffer size/4);
61 64 words (256 bytes) is the initial buffer
62 size. Buffer size is increased as needed.
63 The buffer. is in a separate object for easy
64 resizing.
65 bytes read: System. ordinal := 0;
66 -- If record requires multiple "Read" calls,
67 -- then this variable tracks bytes read so far.
68 read status VA: Record AM.operation status VA :=
69 new Record AM.operation status record; -
70 read position:- Record AM.position modifier :=
71 Record AM.next; - -
72 If record requires multiple "Read" calls,
73 then this variable is assigned
74 "Record_AM.rest_of_current" for the

Ada Examples X-A-65

75 -- 2nd through Nth reads.
76 function Opened device from untyped is new
77 Unchecked conversion (-
78 source => System. untyped word,
79 target => Device_Defs.opened_device);
80 begin
81 source_opened_device:= Record_AM.Open_by_name(
82 name => name,
83 input output => Device Defs.input,
84 allow- => Device-Defs.readers);
85 dest opened device := Opened device from untyped(
86 Process:Mgt.Get-process_globals:entry(
87 Process_Mgt_Types.standard_output»;
88
89 loop
90
91 loop
92 begin
93 bytes read := bytes read +
94 Record AM.Ops.Read(
95 source opened device,
96 read-position;
97 System. address' (
98 bytes read,
99 buffer AD),

100 buffer size - bytes read,
101 status-=> read_status_VA);
102
103 When control reaches this point, "Read"
104 succeeded without a length error and
105 this loop can be exited.
106 EXIT;
107
108 exception
109 when Device Defs.length error =>
110 buffer size := read status VA.rec length;
111 if buffer size = - - -
112 Record AM.unknown length then
113 buffer sIze := 2 * 4 *
114 Object Mgt.Get object size(buffer AD);
115 -- Double the buffer size if an exact
116 -- new size is not available.
117 end if:
118 Object Mgt.Resize(
119 buffer AD,
120 (buffer size+3)/4);
121 -- May make object even bigger than
122 -- requested, but that's OK.
123 read-position := Record_AM.rest_of_current:
124 end:
125 end loop:
126
127 Record AM.Ops.Insert(
128 dest opened device,
129 System. address' (0, buffer AD),
130 bytes_read): -
131
132 Reset variables to read the next record
133 into the beginning of the buffer:
134
135 bytes read := 0:
136 read position := Record_AM.next:
137 end loop:
138
139 exception
140 when Device Defs.end of file =>
141 Record AM:Ops.Close(source opened device);
142 end Output:records_ex: - -

X-A-66 Ada Examples

X-A.4.13 Print cmd ex Procedure

Ada Examples

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

with Byte Stream AM,
CL Defs, -
Command Handler,
Device Defs,
Directory Mgt,
Print Cmd-Messages, -- Message package.
Incident Defs,

is

Message_Services,
Process Mgt,
Process-Mgt Types,
Spool Defs,-
Spool-Device Mgt,
String List Mgt,
System:- -
System Defs,
Text_Mgt;

Function:
Defines a command to print from a file or other
byte stream source

Command Definition:
The command has the form:

print
[source=<pathname>]
[on=<pathname>]

The on argument can either be a spool queue or a
printer (for direct printing). The default is a
system standard spooling device. The source
argument will default to standard input.

--*C* set.message file :file = \
--*C* /examples/msg/example_messages
--*C*
--*C* create.command :cmd def = print.inv_cmd \
--*C* :cmd_name = print
--*C*
--*C*
--*C*
--*C*
--*C*
--*C*
--*C*
--*C*
--*C*
--*C*
--*C*
--*C*
--*C*
--*C*

define. argument source
:type = string
set. lexical class symbolic name
set.maximum-length 252 -
set.value default n"

end -

define. argument on
:type = string
set.lexical class symbolic name
set.maximum-Iength 80 -
set. value default ""

end -
--*C* end
--*C*
--*C* run "store. command definitions \
--*C* :program = print \
--*C* :invocation_cmd = print.inv_cmd"
--*C*
--*C* run "store.default message file \
--*C* print \ - -
--*C* print.msg"

use System;

opened_cmd: Device Defs.opened device;
-- Opened command input device.

-- source variables
source: System_Defs.text(252);

X-A-67

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

rK~L.l1Vll1~AK I

Pathname of file or device
print from

open_source: Device_Defs.opened_device;

-- "on" variables
on_device: System Defs.text(Incident Defs.txt length);

-- Pathname of spool queue or -
-- printer

on_untyped: System. untyped_word;

Device_Defs.device;

print_device: Device_Defs.device;

no_print_device: exception;

sheet size:
(132,66) ;

constant Spool_Defsosize_t :=

openyrint: Device_Defs.opened_device;

-- buffer variables
buffer size: constant System. ordinal := 4_096;
buffer: array(l •• buffer size) of

System. byte ordinal; -
bytes_read: - System. ordinal;

begin

-- Get command arguments:

opened cmd :=
Command Handler.
Open invocation command processing;

Command Handler. Get-string (opened cmd, 1,
arg-value => source); -

Command-Handler.Get string(opened cmd, 2,
arg-value => on-device); -

Command=Handler.Close(opened_cmd);

assign defaults if parameter was not specified

if source. length = 0 then
open source :=

Process_Mgt.Get-process_globals_entry(
Process Mgt Types.standard input);

-- standard Input from termInal
else

open_source := Byte_Stream_AM.Open_by_name(
name => source,
input output => Device_Defs.input);

end if; -

if on device.length = 0 then
Text Mgt.Set(on device,"/dev/lpq");
-- Correct name-of default system spool queue is
-- TBD

end if;

check the "on device" for spooled or direct
printing, else error

on untyped := Directory Mgt.Retrieve(on device);
if-Spool Defs.Is spool queue(on untyped) then

print device := - -
Spool Device Mgt.Create print device(

spool queue => spool queue,
pixel-units => false;
print=area => sheet_size);

elsif Spool Defs.Is print device (on untyped) then
print devIce := - - -

Spool Device Mgt.Create print device(
spool queue => spool queue,
pixel=units => false;

Ada Examples

Ada Examples

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

rK~LlNllNAK x

print area => sheet size,
print-mode => Spoo1-Defs.page wise);

-- direct printing- -

else
RAISE no-print_device;

end if;

while not

:= Byte stream AM.Ops.Open(
- print device,

Device_Defs.output);

Byte Stream AM.Ops.At end of file(open source)
loop- - - - - -

bytes read := Byte Stream AM.Ops.Read(
opened dev => open source,
buffer-VA => buffer' address,
length- => buffer_size);

Byte Stream AM.Ops.Write(
opened_dev => open-print,
buffer VA => buffer' address,
length- => bytes read);

end loop; -

Byte Stream AM.Ops.Close(open source);
Byte=Stream=AM.Ops.Close(open=print);

exception
when no print device =>

Message Services.Write msg(
Print_Cmd_Messages:no-print_device_code,
Incident_Defs.message-parameter(

typ => Incident Defs.txt,
len => on device.max length)' (
typ => Incident Defs:txt,
len => on device.max length,
txt_val => on_device);

when Spool Device Mgt.units not supported =>
Message-Services.Write msg(-

PrInt Cmd Messages
.units not supported code,
Incident_Defs.message-parameter(

typ => Incident Defs.txt,
len => on device.max length)' (
typ => Incident Defs:txt,
len => on device.max length,
txt_val => on_device);

end Print_cmd_ex;

X-A-69

I'KKLlM1NAK Y

X-A.4.14 Print_Cmd_Messaqes Package
1 with Incident Defs,
2 System, -
3 System_Defs;
4
5 package Print_Cmd_Messages is
6
7 Function:
8 Define messages used by Print cmd ex
9 All messages defined use a module-ID of o.

10
11 print_msg-pathname: constant System_Defs.text_AD :=
12 new System Defs.text' (
13 32,32,"/examples/msg/print cmd messages");
14 AD to pathname of message file., bound to
15 "msg obj", following.
16 *This will go away when "pragma bind" changes.*
17
18 msg obj: constant System.untyped word :=
19 -System. null word; -
20 pragma bind(msg obj,
21 "example_messages.print_msg-pathname");
22 Message object for incident codes in
23 example programs, bound to above
24 "message_file-pathname".
25
26 *When the resident compiler and linker are*
27 *ready, this pragma will become:*
28 I pragma bind(msg obj,
29 I "/examples/msg/print_cmd_messages");
30
31
32 no-print_device_code:
33 constant Incident Defs.incident code :=
34 (0, 1, Incident_Defs.information, msg_obj);
35
36 --*M* store :module=O :number=l \
37 --*M* :msg name=name space created code \
38 --*M* :short = \ - - -
39 --*M* "Print Device $p1<on> does not exist."
40
41 units not supported code:
42 constant Incident Defs.incident code :=
43 (0, 2, Incident_Defs.information, msg_obj);
44
45 --*M* store :module=O :number=2 \
46 --*M* :msg name=units not supported code \
47 --*M* :short = \ - - -
48 --*M* "Unit $p1<on> not supported."
49
50 end Print_Cmd_Messages;

X-A-70 Ada Examples

X-A.4.15 Record_AM_Ex Package Specification
1 with Device Defs,
2 Employee Filing Ex,
3 Record AM, -
4 System:-
5 System_Defs;
6
7 package Record_AM_Ex is
8
9 Function:

10 This package contains the example subprograms
11 for using the Record_AM package.
12
13 History:
14 08-10-87, Paul Schwabe: initial version.
15 11-23-87, Paul Schwabe: revision.
16
17 praqma external;
18
19 function Get record ID(
20 opened file: Device Defs.opened device)
21 An opened device, opened for input on an
22 employee file.
23 return Record_AM.record_ID;
24
25 Operation:
26 Returns a record 10 from the operation status
27 information. The record 10 can be used in
28 subsequent retrieval operations to maximize
29 access time to the specified record.
30
31
32 function Get record number(
33 opened fIle: Device Defs.opened device)
34 An opened device, opened for input on an
35 employee file.
36 return System. ordinal;
37
38 Operation:
39 Returns a record number from the operation
40 status information. The record number can be
41 used in subsequent retrieval operations for
42 relative files.
43
44
45 procedure Insert record (
46 opened file:-Device Defs.opened device);
47 An-opened device, opened for input on an
48 -- employee file.
49
50 Function:
51 Inserts a record into a structured file.
52
53 Applicable for any file organization.
54 Position of the inserted record in the file
55 is determined by the system. The new record
56 is automatically assigned a record 10.
57
58
59 procedure Read random by record ID(
60 opened file: DevIce-Defs.opened device;
61 rec id: Record-AM.record 10);
62 -= An opened device, opened for input on an
63 -- employee file.
64
65 Function:
66 Reads a record randomly using a previously
67 retrieved record 10 from the operation status
68 information. This is the fastest possible
69 random access to a record using any
70 structured file organization.
71
72
73 procedure Read random by record number(
74 opened_file: DevIce:=De·fs. opened_device;

Ada Examples X-A-71

X-A-72

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

r~L1lVllNAK •

rec number: System.ordinal); -= An opened device, opened for input on an
-- employee file.

Function:
Reads a record randomly from a relative file
using a previously retrieved record ID from
the operation status information. Record
numbers are only applicable for relative
files.

procedure Read next simple index(
opened file: Device Defs.opened device);

An opened device, opened for input on an employee
-- file.

Function:
Reads a range of records in the "Dept" index.

Positions to the beginning of the range and
reads successive records until the end. The
start value is to the left of the index.
This composite index is read by ascending key
values starting at the lowest key value in
the range.

Dept (asc) A B X Y
---> EOF

The position_modifier value is Record_AM.next

Notes:
This function replaces any previous key range
and changes the file's record pointer.

The "Dept" index is ascending on department.
Returns all employee records for the
departments in the specified range.

procedure Read-prior_simple_index(
opened file: Device Defs.opened device);

-An opened devIce, opened for input on an
employee file.

Function:
Reads a range of records in the "Dept" index.

Positions to the end of the range and reads
successive records until the beginning. The
start value is to the right of the index.
This composite index is read by ascending key
values starting at the lowest key value in
the range.

Dept (asc) A B X Y
EOF <---

The position modifier value is
Record_AM. prIor

Notes:
This function replaces any previous key range
and changes the file's record pointer.

The "Dept" index is ascending on department.
Returns all employee records for the
departments in the specified range.

procedure Read duplicates(
opened file: Device Defs.opened device);

-An opened devIce, opened for input on an

Ada Examples

Ada Examples

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

employee file.

Function:
Reads a duplicate records in the specified
"Dept" index.

Positions to the specified record and reads
all duplicates until the end.

Dept (asc) A A A A
---> EOF

The position_modifier value is Record_AM.next

Notes:
This function replaces any previous key range
and changes the file's record pointer.

The "Dept" index is ascending on department.
Returns all employee records for the
departments in the specified range.

The range contains employees in "Accounting"
through "Marketing".

If the "Dept" index were specified as
non-unique, returns duplicate recores for a

. particular "Dept" key value. For example,
one record might contain fields on
management, cost control, and history. A
second record might simply hold text.

procedure Delete records sequential(
opened file:- Device-Defs.opened device);

-An opened devIce, opened for input on an
employee file.

Function:
Deletes a range of records using the
department name as a key. This example shows
that a Read or Set~osition is not required
to preface each Delete. The current record
pointer advances after each Delete.

procedure Read and update by key(
opened file: Device Defs.opened device);

-An opened devIce, opened for input on an
employee file.

Function:
Updates a record within a range of records.
This example shows that the current record
pointer does NOT advance after the
Update_by_key.

procedure Read records reverse sequential(
opened file: Device Defs.opened device);

-An opened devIce, opened for input on an
employee file.

Function:
Reads all records in a reverse sequence.
Shows Shows physical-sequential access.

Positions to the end of the sequence and
reads successive records until the beginning.
After each read, the current record pointer
is positioned to the prior record.

procedure Read records sequential(
opened file: Device Defs.opened device);

-An opened devIce, opened for input on an
employee file.

X-A-73

X-A-74

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

Function:
Reads all records in a sequence. Shows
physical-sequential access.

Positions to the start of the sequence and
reads successive records until the end.

Notes:
Advances the file's current record pointer
forward after each read.

procedure Read and delete records(
opened file: Device Defs.opened device);

-An opened devIce, opened for input on an
employee file.

Function:
Reads and deletes selected records in a
sequence.

positions to the beginning of the sequence
and reads successive records until the end.
After each read, a record is checked and then
deleted if it satisfies the specified
conditions. The current record pointer is
positioned to the next record after the
deleted record.

procedure Read and update records(
opened file: Device Defs.opened device);

-An opened devIce, opened for input on an
employee file.

Function:
Reads and updates records in a sequence.

Positions to the beginning of the sequence
and reads successive records until the end.
After each read, the current record pointer
is positioned to the next record.

procedure Update salary example(
T2 opened file: Device Defs.opened device);

- An-opened device-for transaction T1,
opened for input on an employee file.

Function:
Does an index-random update of a record in an
indexed relative file.

The Update salary example procedure starts
transaction T2 to-double an employee's
salary. If transaction T2 aborts, then the
update is rolled back.

Notes:
The example relative file is created with the
following parameters:

xm locking => true
short term logging => true

The example index (with a key built on
"employee IO") is built with
phantom_protected => false.

end Record_AM Ex;

Ada Examples

X-A.4.16 Record _ ~ Ex Package Body
1 with Device Defs,
2 Employee Filing Ex,
3 File Admin, -
4 File-Defs,
5 Record AM,
6 . System:-
7 System Defs,
8 Transaction_Mgt;
9

10 For Importing operations.
11 use Employee Filing Ex,
12 System, - -
13 System_Defs;
14
15 package body Record_AM_Ex is
16
17 Logic:
18 Provides the implementation code for the
19 Record_AM examples.
20
21
22
23 CONSTANT AND VARIABLE DECLARATIONS
24
25
26 buffer: string(l •• integer(Employee Filing EX.max rec size»;
27 Buffer is large enough to hold any employee - -
28 -- record.
29
30 current record addr: constant System. address :=
31 buffer' address;
32 current record VA: constant Employee Filing EX.
33 employee record VA := Employee Filing EX~
34 Employee record VA from VA(-
35 current_record=addr);
36
37 pay_raise: constant float := 2.0;
38
39 bytes read: System. ordinal;
40 -- Number of bytes in current record.
41
42 read status VA: Record AM.operation status VA :=
43 new Record AM.operation status record; -
44 -- Virtual address of status record.
45
46 -- Employee name constant.
47 employee: constant Employee Filing EX.person name :=
48 (Employee Filing EX.max text length, -
49 10, - - --
50 "Einstein, Albert H);
51
52
53 SUBPROGRAM DECLARATIONS
54
55
56 function Get record ID(
57 opened file: Device Defs.opened device)
58 -- An opened device, opened for input on an
59 -- employee file.
60 return Record AM. record ID
61 Note: - -
62 Records in any structured file can have
63 record IDs, but only records in relative
64 files can have record numbers!
65 is
66 begin
67 Record AM.Ops.Set position(
68 opened dev =>-opened file,
69 where => Record-AM.record specifier(
70 type of specifier => Record AM.first)' (
71 type_of_specifier => Record_AM.first»;
72 loop
73 bytes read := Record AM.Ops.Read(
74 opened_dev => opened_file,

Ada Examples X-A-75

X-A-76

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

buffer VA => buffer' address,
length- => buffer' length,
status => read status VA):

if current record VA. name = employee then
RETURN read_status_VA.rec_ID:

end if:
end loop:

exception
when Device Defs.end of file =>

RETURN Record_AM.null:record_ID:

function Get_record number (
opened file: Device Defs.opened device)

is

An opened device, opened for input on an
employee file.

return System. ordinal

begin
Record_AM.Ops.Set-position(

opened dev => opened file,
where => Record-AM.record specifier(

type of specifier => Record AM.first)' (
- type_of_specifier => Record_AM.first»;

loop
bytes read := Record AM.Ops.Read(

opened dev => opened file,
buffer-VA => buffer'address,
length- => buffer' length,
status => read status VA);

if current record VA. name = employee then
RETURN read_status_VA.rec_num;

end if;
end loop:

exception
when Device Defs.end of file =>

RETURN 0:-

end Get record_number;

procedure Insert record (
opened file:-Device Defs.opened device)

An-opened device, opened for input on an
-- employee file.

is
begin

Obtain the new record from
somewhere (form or file)
and load the record buffer.

Record AM.Ops.Insert(
opened dev => opened file,
buffer-VA => buffer'address,
length- => System.ordinal(

Employee_Filing_EX.max_rec_size»;

end Insert_record:

procedure Read random by record ID(
opened file: DevIce-Defs.opened device:
rec ID: Record-AM.record IO)

- An opened device, opened for input on an
-- employee file.

is
begin

Record_AM.Ops.Set_position(

Ada Examples

Ada Examples

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

opened file,
where => Record AM.record specifier(

type of specifier => Record AM.id)' (
type_of_specifier => Record_AM.id,
rec_id => rec_ID»;

bytes read := Record AM.Ops.Read(
opened dev => opened file,
buffer-VA => buffer'address,
length- => buffer'length);

procedure Read random by record number(
opened file: DevIce-Defs.opened device;
rec number: System~ordinal) -

- An opened device, opened for input on an
employee file.

is
begin

Record AM.Ops.Set position(
opened file, -
where => Record AM.record specifier(

type of specifier => Record AM.number)' (
type of specifier => Record AM.number,
rec num- => rec number»;

bytes read := Record AM.Ops.Read (-
opened dev => opened file,
buffer-VA => buffer'address,
length- => buffer'length);

procedure Read next simple index(
opened file: Device Defs.opened device)

is

An opened device, opened for input on an
-- employee file.

start key value: constant Employee Filing EX.
dept key buffer := (dept => 100); -
-- Lowest deptartment for
-- ascending key field.

start key descr: constant
Record AM.key value descr :=

start key value' address,·
start=key=value'size / 8);

stop key value: constant Employee Filing EX.
dept key buffer := (dept => 500); -
-- High-end for ascending key field.

stop key descr: constant
Record-AM.key value descr :=

stop-key value' address,
stop=key=valueisize I 8);

begin
Record AM.Keyed Ops.Set key range(

opened dev - => opened file,
index - => -

Employee Filing EX.dept index name,
select range => (- - -

start comparison => Record AM.exclusive,
start-value => start key descr,
stop comparison => Record AM~inclusive,
stop=value => stop_key_descr»;

loop
bytes read := Record AM.Ops.Read(

opened dev => opened file,
modifier => Record-AM.next,

-- Next is normally defaulted.
buffer VA => buffer' address,
length- => buffer' length);

X-A-77

X-A-78

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305

-- DO ANY NEEDED PROCESSING HERE.

end loop;

exception
when Device Defs.end of file =>

null; -
end Read_next_simple_index;

procedure Read-prior_simple_index(

is

opened file: Device Defs.opened device)
An opened device, opened for input on an

-- employee file.

start key value: constant Employee Filing EX.
dept key buffer := (dept => 500); -
-- High-end for ascending key field.

start key descr: constant
Record AM:key value descr :=

start key value' address,
start:key:value'size / 8);

stop key value: constant Employee Filing EX.
dept-key buffer := (dept => 100); -
-- Lowest department for
-- ascending key field.

stop key descr: constant
Record-AM.key value descr :=

stop-key value' address,
stop:key:value'size / 8);

begin
Record AM.Keyed Ops.Set key range(

opened dev => opened file,
index - => -

Employee Filing EX.dept index name,
select range => (- - -

start comparison => Record AM.exclusive,
start-value => start key descr,
stop comparison => Record AM:inclusive,
stop:value => stop_key_descr»;

loop
bytes read := Record AM.Ops.Read(

opened dev => opened file,
modifier => Record-AM.prior,

-- Sets read modifier to prior.
buffer VA => buffer' address,
length- => buffer' length);

DO ANY NEEDED PROCESSING HERE.

end loop;
exception

when Device Defs.end of file =>
null; -

end Read_prior_simple_index;

procedure Read duplicates(
opened file: Device Defs.opened device)

-- An opened device, opened for input on an
-- employee file.

is
start key value: constant Employee Filing EX.

dept key buffer := (dept => 305); -
- Start value for duplicate

-- key field.

start_key_descr: constant Record AM.

Ada Examples

Ada Examples

306
307
308
309
310
311
312
313
314
315
316
317 '
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382

key value descr :~ (
-start-key value' address,

start:key:value'size I 8);

stop_key_value: constant Employee_Filing_EX.
dept key buffer :- (dept => 305);

- Stop value for duplicate
key field.

stop key descr: constant Record AM.
key value descr := (-

-stop key value' address,
stop_key_value'size I 8);

begin
Record AM.Keyed Ops.Set key range(

opened dev - => opened file,
index - -> Employee Filing EX.

loop

dept index name, - -
select range => (

start comparison
start-value
stop comparison
stop:value

=> Record AM.inclusive,
=> start key descr,
=> Record AM:inclusive,
=> stop_key_descr»:

bytes read := Record AM.Ops.Read(
opened dev => opened file,
modifier => Record-AM.next,

-- Normally defaulted.
buffer VA => buffer' address,
length- => buffer' length);

DO ANY PROCESSING HERE

end loop:
exception

when Device Defs.end of file =>
null: -

end Read_duplicates;

procedure Delete records sequential(
opened file:- Device-Defs~opened device)

is

-- An opened device, opened for input on an
-- employee file.

Logic:
Do a Set key range for a range of departments
to delete. Set up a loop for the deletes with
the position modifer = current. (Key point: a
Read or Set position is not required to
preface each Delete in the loop. The current
record pointer advances after each Delete)

start key value: constant Employee Filing EX.
dept key buffer := (dept => 150); , --= Low end for ascending key field.

start key descr: constant Record AM.
key value descr := (-

-start-key value' address,
start:key:value'size I 8);

stop key value: constant Employee Filing EX.
dept-key buffer := (dept => 200); -

-High end for ascending
-- key field.

stop key descr: constant Record AM.
key value descr := (

-stop key value' address,
stop:key:value'size I 8);

begin
Record AM.Keyed Ops.Set key range(

opened dev - => opened file,
index - => Employee Filing EX.

dept_index_name, - -

X-A-79

X-A-80

383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459

loop

select range => (
start comparison
start-value
stop comparison
stop=:value

=> Record AM.inclusive,
=> start key descr,
=> Record AM:inclusive,
=> stop_key_descr»;

eRP is updated after each delete
(no read is necessary to preface
the Delete).

Record AM.Ops.Delete(
opened dev => opened file,
modifier => Record-AM.current,

-- Normally defaulted.
timeout => Record AM.wait forever,
status => null):- -

end loop:

exception
when Device Defs.end of file =>

null; -

end Delete_records_sequential;

procedure Read and update by key(
opened file: Device Defs.opened device)

is

-- An opened device. opened for input on an
-- employee file.

Logic:
Do a Set key range for a range of departments
to update. Set up a read loop using
position modifier = next. Do a comparison
to trap a record to update. When rec in =
record of interest, do an Update by key.
(Key point: the current record pointer does

NOT advance after the Update_by_key.)

start key value: constant Employee Filing EX.
dept key buffer := (dept => 100): --= Lowest dept for ascending key field:

start key descr: constant Record AM.
key value descr := (

-start-key value' address,
start=:key=:value'size / 8):

stop key value: constant Employee Filing EX.
dept-key buffer := (dept => 200); -

-High end for ascending
-- key field.

stop key descr: constant Record_AM.
key value descr := (

-stop key value' address,
stop=:key=:value'size / 8);

begin
Record AM.Keyed Ops.Set key range(

opened dey - => opened file,
index - => Employee Filing EX.dept index name,
select range => (- - - -

start comparison => Record AM.inclusive,
start-value => start key descr,
stop comparison => Record AM:inclusive,
stop=value => stop_key_descr»;

loop
bytes read := Record AM.Ops.Read(

opened dev => opened file,
modifier => Record-AM.next,
buffer VA => buffer'address,
length- => buffer' length):

if current record VA.dept = 175 then
eRP does not-advance to next record
after the Update by key (it advances on
next read). --

Ada Examples

Ada Examples

460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536

Record AM.Keyed Ops.Update by key(
opened dev => opened fIle;
buffer-VA => bufferTaddress,
length- => buffer' length,
index => Employee Filing EX.

dept index name); - -
-- Employee 10 index (hashed).

end if;
end loop;

exception
when Device Defs.end of file =>

null; -
end Read_and_update_by_key;

procedure Read records reverse sequential(
opened file: Device Defs.opened device)

An opened device, opened for input on an
-- employee file.

is
begin

Record_AM.Ops.Setyosition (
opened dev => opened file,
where - => Record-AM.record specifier(

loop

type of specifier => Record AM.last)' (
type of specifier => Record AM.last»;

-- Positions current record pointer
-- to last record in file.

bytes read := Record AM.Ops.Read(
opened dev => opened file,
modifier => Record-AM.prior,
buffer VA => bufferTaddress,
length- => buffer'length);

DO ANY NEEDED PROCESSING HERE.

end loop;

exception
when Device Defs.end of file =>

null; -
end Read_records_reverse_sequential;

procedure Read records sequential(
opened file: Device Defs.opened device)

is
begin

An opened device, opened for input on an
-- employee file.

Record AM.Ops.Set position(
opened dev =>-opened file,
where - => Record-AM.record specifier(

loop

type of specifier => Record AM.first)' (
type_of_specifier => Record_AM.first»;

bytes read := Record AM.Ops.Read(
opened dev => opened file,
buffer-VA => bufferTaddress,
length- => buffer' length);

DO ANY NEEDED PROCESSING HERE.

end loop;

exception
when Device Defs.end of file =>

null; -

end Read_records_sequential;

X-A-81

X-A=82

537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613

opened file: Device Defs.opened device)
An opened device, opened for input on an

-- employee file.
is
begin

Record AM.Ops.Set position(
opened dev =>-opened file,
where => Record-AM.record specifier(

loop

type of specifier => Record AM.first)' (
type_of_specifier => Record_AM.first»;

bytes read := Record AM.Ops.Read(
opened dev => opened file,
buffer-VA => buffer'address,
length- => buffer' length);

if current record VA.dept - 175 then
Record AM.Keyed-Ops.Delete by key(

opened dev => opened file,-
index - => Employee Filing Ex.

dept_index_naroe); - -

end if;

end loop;

exception

when Device_Defs.end_of_file =>
null;

procedure Read and update records (
opened file: Device Defs.opened device)

is
begin

An opened device, opened for input on an
-- employee file.

Record AM.Ops.Set position(opened file,
where => -Record AM.record specifier(

loop

type of specifier => Record AM.first)' (
type_of_specifier => Record_AM.first»;

bytes read := Record AM.Ops.Read(
opened dev => opened file,
buffer-VA => buffer' address,
length- => buffer' length);

current record VA. salary :=
pay=raise * current_record_VA.salary;

Record AM.Ops.Update(
opened dev => opened file,
buffer-VA => buffer'address,
length- => buffer' length);

end loop;

exception
when Device Defs.end of file =>

null; -
end Read_and_update_records;

procedure Update salary example (
T2 opened file: Device Defs.opened device)

is
begin

- An opened device for transaction T1, opened
-- for input on an employee file.

Transaction Mgt.Start transaction;
Started on behalf of transaction T2, the

-- updater.

Ada Examples

614
615 The record must have been positioned to by a
616 previous read, otherwise a
617 Record AM.key value descr must be specified.
618 No key-range Is necessary. The current record
619 pointer is not affected.
620
621 current record VA. salary :=
622 pay=raise * current_record_VA.salary;
623
624 Default is the current record.
625 Record AM.Keyed Ops.Update by key(
626 opened dev-=> T2 opened file,
627 buffer-VA => buffer' address,
628 length- => buffer' length,
629 index => Employee Filing EX.
630 dept salary index name); -
631 Employee 10 index.
632
633 exception
634 when Device Defs.end of file =>
635 Transaction_Mgt.Commit_transaction;
636
637 when others =>
638 Transaction_Mgt.Abort_transaction;
639
640 end Update_salary_example;
641
642
643 end Record_AM_Ex;

Ada Examples X-A-83

X-A-84

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

with Command Handler,
Device Defs,
Simple:Editor_Ex;

is

SIMPLE EDITOR

Function:
This procedure implements a simple text
editor for the purpose of demonstrating certain
aspects of the Character Display Access Method.

Command Definition:
The command has the form:

--*D*
--*0* manage. commands
--*D* create. invocation_command
--*D*
--*D*
--*D*
--*D*
--*D*
--*0*
--*D*
--*D*

define. argument name \
:type = string
set.lexical class symbolic name
set.maximum-length 80 -
set.mandatory

end
end

--*D* exit

End of Header

begin

-- Get command arguments:

opened cmd := Command Handler.
Open_invocation_command_processing;

Command Handler.Get string (
cmd-odo => opened cmd,
arg-number => 1, -
arg:value => Simple_Editor_Ex.file name);

Command_Handler.Close(opened_cmd);

NOTE: allocation is done here rather than at the
declaration due to the exception
"Object has no representation" being raised
if the Get object size is called before the object
is accessed -

Simple Editor Ex.edit buffer :=
new-Simple-Editor Ex.edit buffer object' (

max lines =>-Simple Editor Ex.resize lines,
num-lines => 0, - - -
lines => (others => (others => ASCII.NUL»);

Ada Examples

X-A.4.18 Simple_Editor_Ex Package Specification

Ada Examples

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

wit~ Incident Defs,
System Defs,
System;
Terminal_Defs;

Function:
This package implements procedures to support a
simple text editor for the purpose of demonstrating
certain aspects of the Character Display Access Method.

The editor has the following attributes:

1. The file is read into an array of lines of characters.
Each line in 80 characters (screen width)

2. If the file does not exist it will be created.

3. The array will expand to any size file.

4. The array is null-filled before the
file is read in. (Character Display AM
will ignore the nulls) - -

4. Each line in the file is read into
one row in the array. Long lines (>80) will be
preserved but they cannot be altered by the editor.

5. The frame buffer is 24 by 80 (screen size).

6. If changes have been made since the last save
it will prompt the user if ok to exit.

7. The bell will ring for illegal commands.

The operations available in the editor are:

* Move forward
* Move backward
* Move up
* Move down
* Page up
* Page down
* Delete forward
* Delete backward
* Insert text
* Save file
* Quit editor

History:
11/1?/86, G. Taylor
12/1?/87, E. Sassone
12/19/87, G. Taylor
06/15/88, E. Sassone

Exception Codes:

(Control F)
(Control B)
(Control P)
(Control N)
(Control U)
(Control V)
(Control D)
(Control H)

(Control W)
(Control C)

Initial version
Revised version
Added tagged comments
working version

new file code: constant Incident Defs.incident code :=
-module

number
severity
message_object

=> 0, - -
=> 1,
=> Incident Defs.information,
=> System.null_word);

not saved code:
-module

constant Incident_Defs.incident_code :=
=> 0,

number
severity
message_object

=> 2,
=> Incident Defs.warning,
=> System.null_word);

no long lines code: constant Incident Defs.incident code :=
- module - => 0, - -

number => 3,
severity => Incident_Defs.information,

X-A-85

X-A-86

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

message_object => System.null_word);

editor error code:
module -
number
severity
message_object

constant Incident_Defs.incident_code :=
=> 0,

Exceptions:

=> 4,
=> Incident Defs.error,
=> system.null_word);

--*D* manage.messages

no access: exception;
--*D* store :module=O :number=l \
--*D* :msg name=new file code \
--*D* :short = \ - -
--*D* "$p1<pathname> is a new file."

--*D* store :module=O :number=2 \
--*D* :msg name=not saved code \
--*D* :short = \ - -
--*D* ~Changes have not been saved. Exit anyway? W

--*D* store :module=O :number=3 \
--*D* :msg name=no long lines code \
--*D* :short = \ - - -
--*D* "Changes to long lines NYI"

editor error: exception;
--*D* store :module=O :number=4 \
--*D* :msg name=editor error code \
--*D* :short = \ - -
--*D* "Editor_error - please save your file and quit"

-- End of Header

CONSTANTS

origin: constant Terminal_Defs.point_info :=
-- frame buffer origin

first - row: constant integer

first column: constant integer
last column: constant integer -
frame - rows: constant integer

-- screen size

preferred window rows: constant integer
-- initIal window size

linear buf size: constant := 4_096;
-- sIze of read/write buffer

resize lines: constant := 100;

:= 1;

:= 1;
:= 80;

:= 24;

:= 10;

number of lines to add for resizing edit buffer
-- object

TYPES

subtype row delta is integer range -1 •• 1;
subtype row-range is positive;
subtype column_range is integer range 1 •• last_column;

-- position in edit buffer
type cursor location is

record -
row: row range;
column: column range;

end record; -

-- edit buffer
type line
type edit_array

is array (column range) of character;
is array (integer range <» of line;

(1, 1);

Ada Examples

Ada Examples

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

type edit buffer object(
max lInes: integer) is

record
num lines: integer := 0;
lines: edit_array (first_row

end record;

type edit buffer AD is access edit buffer object;
pragma access_kind(edit_buffer_AD~ AD); -

-- for input of command and insertions chars
type char array is array (1 •. 120) of character;
type char-array AD is access char array;

pragma access:kind(char_array_AD,-AD);

VARIABLES

file name: System Defs.text(Incident Defs.txt length);
edit:buffer: edit_buffer_AD; - -

PROCEDURES

function'Move-page(
direction: row delta)

return boolean; -

Function:

operation successful

Move up or down by the size of the view

function Move up
return boolean;

Function:

-- operation successful

Moves the cursor up one line, but not
beyond the beginning of the file.

function Move down
return boolean;

Function:

operation successful

Moves the cursor down one line, but not
beyond the end of the file.

function Move forward
return boolean;

Function:

-- operation successful

Moves the cursor forward one character
but not beyond the end of the line.

function Move back
return boolean;

Function:

-- operation successful

Moves the cursor backward one character, but not
beyond the beginning of the line.

function Delete forward
return boolean;

Function:

operation successful

Deletes the character at the cursor's current
position. Cursor position in unchanged.

X-A-87

X-A-88

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296

function Delete backward
return boolean;

Function:

operation successful

Deletes the character to the left of the cursor,
but not beyond the beginning of the line.

function Insert (
insert char: character)

return boolean; operation successful

Function:
Insert printable characters to the left of the
cursor.

procedure Save_file;

Function:
Writes the file from the edit buffer.

procedure Quit_editor;

Function:
Exits the editor If changes have been made
since the last save it will ask the user
whether the unsaved changes should be saved or
not. Returns cursor to old window.

procedure Read_file;

Function:
Reads the sections of the input file into the
edit buffer.

procedure Make_window;

Function:
Creates a new window for editing.

procedure Handle_input;

Function:
Loops waiting for editor keyboard and menu input.

procedure Key input(
key: character);

Function:
Calls the appropriate procedure based on the
key input.

Ada Examples

X-A.4.19 Simple_Editor_Ex Package Body

Ada Examples

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

with Byte Stream AM,
Character DIsplay AM,
Device Defs, -
Directory Mgt,
File Defs:­
Incident Defs,
Long Integer Defs,
Message servIces,
Object Mgt,
Process Mgt,
Process-Mgt Types,
Simple File-Admin,
System:- -
System Defs,
Terminal Defs,
Text Mgt:­
Window_Services;

package body Simple_Editor_Ex is

VARIABLES

-- position of frame buffer in edit buffer
frame begin: row range := first-row;
frame=end: row=range := frame:rows;

cursor_location := (first_row, first_column);

old window: Device Defs.device; -= window editor was invoked from
edit window: Device Defs.device;
open=edit_window: Device-Defs.opened device;
saved: boolean := true; -

-~ true if current version has been saved

LAST CHAR IN ROW

function Last char in row (row: row_range)
return column_range-

is

Logic:
Starts from the last column of the given row and works
toward the start of the line to detect the first non-null
character.

column:

begin

while edit buffer. lines (row) (column)
loop -

if column first_column then
EXIT;

else
column := column - 1;

end if;
end loop;
return (column);

end Last_char_in_row;

MOVE FRAME

procedure Move_frame(direction: integer)

Logic:

ASCII.NUL

Move frame in edit buffer and rewrite frame buffer.
Reposition cursor appropriately

is

X-A-89

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

column: column range := edit buf pos.column;
-- holds cursor position in previous row

begin
frame begin := frame begin + direction;
frame-end := frame end + direction;
edit_buf-pos.row := edit_buf-pos.row + direction;

Character_Display_AM.Ops.Clear(open_edit_window);

-- Rewrite frame buffer
-- NOTE: cursor will be at the end of the frame buffer
Character Display AM.Ops.Write(

opened dev =>-open edit window,
buffer-VA => - -

edIt buffer.lines(frame begin) (first column)'address,
length - => System.ordinal«last column * (frame rows - 1» +

Last_char_in_row(frame_end) - I»; -

if direction > 0 then
down:

-- position at the first column of the last line
if column> Last char in row (frame end) then

column := Last=char=in=row(frame=end);
end if;
Character Display AM.Ops.Move cursor absolute(

opened dev =>-open edit wIndow, -
new-pos => TermInal_Defs.point_info'

(column, integer(frame_rows»);
end if;
if direction < 0 then

up:
after write, cursor will be at last char written
for upward movement we want it at the first char in
the frame buffer

if column> Last char in row (frame begin) then
column := Last-char-in-row(frame-begin);

end if; - - - -
Character Display AM.Ops.Move cursor absolute(

opened dev =>-open edit wIndow, -
new pos => (column, first row»;

end if; - -
end Move_frame;

MOVE PAGE

function Move page(direction: row delta)
return boolean -

is
window status: Window Services.window status :=

Window Services.Ops.Get window status(
window => edit-window;
pixel units => false);

displacement:-integer :=
window status.window dimensions. vert * direction;

cursor pos: Terminal Defs.point info :=
Character_Display_AM.Ops.Get_cursor_position(open_edit_window);

begin
if direction > 0 then

-- if too close to the bottom move by less than window size
if frame end + displacement > edit buffer.max lines then

displacement := edit' buffer.max lines - frame end;
end if; - - -

end if;
if direction < 0 then

-- if too close to the top move by less than window size
if frame begin + displacement < first row then

displacement := first row - frame begin;
end if; - -

end if;

Move frame(displacement);
Character Display AM.Ops.Move cursor absolute(

opened dev =>-open edit wIndow, -
new-pos => cursor-pos);

edit_buf-pos.row := frame_begin + (cursor-pos.vert - 1);

Ada Examples

Ada Examples

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

if displacement = 0 then
return false;

else
return true;

end if;
end MoveJ>age:

MOVE CURSOR

procedure Move_cursor(direction: row_delta)
is

used for current cursor position
cursorJ>os: Terminal_Defs.point_info :=

Character_Display_AM.Ops.Get_cursorJ>0sition(open_edit_window):
-- last column of row where cursor will be
last col: column range := Last char in row (edit buf pos.row +

direction): - - - - --

begin

if cursorJ>os.horiz <= last_col then
-- Move cursor in frame buffer straight up or down
Character Display AM.Ops.Move cursor relative(

opened dev =>-open edit wIndow, -
delta col => 0, - -
delta=row => direction):

else
-- Move cursor to end of line

Character Display AM.Ops.Move cursor absolute(
opened dev =>-open edit wIndow, -
newJ>os => (last_col; edit_buf_pos.row»:

edit buf pos.column := last col;
end if; - -

end Move_cursor:

MOVE UP

function Move up
return boolean

is
success: boolean := true;

begin
if edit buf pas. row <= first row then

success := false;
elsif edit buf pos.row <= frame_begin then

Move frame (-I);
else -

Move cursor(-1):
end if;
return success;

end Move_up;

MOVE DOWN

function Move down
return boolean

is
success: boolean := true:

begin

if edit buf pos.row >= edit_buffer.num_lines then
success := false:

elsif edit buf pos.row >= frame_end then
Move frame (+1) ;

else -
Move_cursor(+1);

X-A-91

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305

end if;
return success;

end Move_down;

MOVE FORWARD

function Move forward
return boolean

is

Logic:
If cursor is at end of row then move cursor to
first column of next row; else move cursor
forward one column. If cursor is at the end of
of the buffer return false.

current-pos: Terminal_Defs.point_info;
success: boolean := true;

begin

if edit_buf-pos.column = Last_char_in_row(edit_buf-pos.row) then
if edit_buf-pos.row edit_buffer.num_lines then

success := false; at the end of buffer
else

-- Move cursor to next row in frame and
frame buffer

success := Move down;
if not success then return success; end if;
-- Move cursor to beginning of row in frame
-- and frame buffer
current-pos := Character_Display_AM.Ops.

Get cursor position(open edit window);
current~os.horiz := first_column;
Character Display AM.Ops.Move cursor absolute(

opened dev =>-open edit wIndow, -
new pos => current pos);

edit bUf pos.column := first column;
end if; - -

else
-- move cursor to next column
edit buf pos.column := edit buf pos.column + 1;
Character Display AM.Ops.Move cursor relative(

opened dev =>-open edit wIndow, -
delta col => 1, - -
delta:row => 0)';

end if;
return success;

end Move_forward;

MOVE BACK

function Move back
return boolean

is

Logic:
If cursor is at beginning of row then move cursor
to last column of previous row; else move cursor
back one column. If cursor is at the beginning of
the file then return false.

current-pos: Terminal Defs.point info;
success: boolean := true; -

begin

if edit buf pos.column = first column then
if edIt buf pos.row = first row then

Character-Display AM.Ops.Ring bell (
open edit window); -

success :=-false;
else

Move cursor to previous row in frame and
frame buffer

Ada Examples

f
\

Ada Examples

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382

success := Move up;
if not success then return success; end if;
-- Move cursor to end of row
edit_buf-pos.column := last_char_in_row(edit_buf-pos.row);
current pos := Character Display AM.Ops.

Get=cursor-position(epen_edit_window);
current-pos.horiz := edit_buf-pos.column;
Character Display AM.Ops.Move cursor absolute(

opened dev =>-open edit wIndow, -
new pos => current pes);

end if; - -
else

-- move cursor to previous column
edit_buf-pos.column := edit_buf_pos.column - 1;
Character Display AM.Ops.Move cursor relative(

opened dev =>-open edit wIndow, -
delta col => -1, - -
delta-row => 0);

end if; -
return success;

end Move_back;

DELETE FORWARD

function Delete forward
return boolean

is

Logic:
Procedure will not delete characters from long
lines. It then determines if the the character
to be deleted is a line feed or not. If not it
simple deletes the character and shifts
characters beyond it one position to the left.
If the character is a line feed it determines if
the line is empty or not. If so if deletes the
line. If not it joins the current line with the
next line. In both cases lines beyond the
current line are shifted up by one row.

place holders for line joins
cursor-pos: Terminal_Defs.point_info :=

Character_Display_AM.Ops.Get_cursor-position(open_edit_window);
edit_pos: cursor_location := edit_huf-pos;

begin

-- no deletes on long lines
if Last char in row (edit huf pos.row) = last column then

Message Services.Write-msg(no long lines cede);
return false; - - - -

end if;
if edit buf pos.column = Last char in row (edit buf pos.row) then

if edIt buf pos.row edit buffer.num lines then-
return false; - -

end if;
end if;

not a line feed
if edit_buffer. lines (edit_buf_pos.row) (edit_buf-pos.column)

/= ASCII.LF then
Delete the character from the frame.

if edit buf pos.column = last column then
edit huffer.lines(edit buf pos.row) (edit buf pos.column) := ASCII.NUL; - - - -

else
for col in edit huf pos.column •• last column - 1 loop

edit_buffer.1Ines(edit_buf-pos.row)(col) :=
edit buffer.lines(edit buf pos.row) (col + 1);

end loop; -. - -
end if;

edit_buffer. lines (edit_buf_pos.row) (last_column) := ASCII.NUL;

-- Delete the character from the window.

X-A-93

X-A-94

383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459

Character Display AM.Ops.Delete char(
opened_dev =>-open_edit_window);

line feed
else

-- not the last line
if edit_buf-pos.row < edit buffer.num lines then

-- empty line delete
if edit buf pos.column = first column then

-- shIft rows down by one -
for row in edit buf pos.row •• edit buffer.num_Iines - 1
loop - -

edit buffer.lines(row) := edit_buffer. lines (row + 1);
end loop; .
edit buffer.lines(edit buffer.num lines) :=

(others => ASCII.NUL); -
edit buffer.num lines := edit buffer.num lines - 1;
Character Display AM.Ops.Delete line (open edit window);

-- join current line and next line --
else

-- don't join if line wiil be too long
if Last_char_in_row(edit_buf-pos.row) +

Last char in row (edit buf pos.row + 1) >= last_column then
return false; --

end if;
for col in first column •• Last char in row(

edit_buf-pos.row + 1)
loop

edit_buffer. lines (edit_buf-pos.row) (edit_buf_pos.column) :=
edit_buffer.lines(edit_buf-pos.row + 1) (col);

edit_buf-pos.column := edit_buf-pos.column + 1;
EXIT when edit buf pos.column = last column;

end loop; - - -
edit_buf-pos.row := edit_buf-pos.row + 1;
-- shift rows down by one
for row in edit buf pos.row •• edit buffer.num_Iines - 1
loop - -

edit buffer.lines(row) := edit_buffer.lines(row + 1);
end loop:
edit buffer.lines(edit buffer.num lines) :=

(others => ASCII.NUL); -
edit buffer.num lines := edit buffer.num lines - 1;
Move-frame(O); - -- redraw - -
edit:buf_pos := edit-pos;
Character Display AM.Ops.Move cursor absolute(

opened dev =>-open edit wIndow, -
new pos => cursor pos);

end if; - -
-- last line
else

edit_buffer. lines (edit_buf_pos.row) (edit_buf-pos.column) :=
ASCII.NUL:

end if:
end if;
return true:

end Delete_forward;

DELETE BACKWARD

function Delete backward
return boolean

is

Logic:
Very similar to Delete forward except the cursor
is move back before the delete is performed.

success: boolean := true;
res: boolean;

begin

if Move back then -- back up cursor
success := Delete forward; -- Delete the character.

leave cursor pas unchanged if unsuccessful
if not success then res := Move_forward; end if;

Ada Examples

Ada Examples

460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536

else
success := false;

end if;
return success;

end Delete_backward:

INSERT

function Insert(insert char: character)

is

return boolean -

Logic:
Shifts the string of characters beginning at the
cursor's location one character position to the
right. It then inserts a printable ASCII character
to the left of the cursor. If a line is already
80 characters the insert is refused. Line feeds
are inserted by first moving all the rows beyond the
current row down by one. If there are characters
on the current line beyond the insert point they
are copied to the new line. If not just a line­
feed in put into the new line. If the file grows
beyond the current max line size it is expanded by
resize lines. -

use System: -- for adding System. ordinals

max lines: integer:
For-max lines USE AT edit_buffer.max_lines'address:

edit buffer untyped: System. untyped word:
FOR edit_buffer_untyped USE AT edit_buffer' address:

-- place holders for line splits
cursor pos: Terminal Defs.point info :=

Character Display-AM.Ops.Get-cursor position(open edit window);
edit-pos: cursor_location := edIt_buf_pos; --
column: column_range := first_column:

success: boolean := true:

begin

-- inserts on long lines NYI
if Last char in row (edit buf pos.row) = last column then

Message Services.Write-msg(no long lines code);
return false: - - - -

end if:

If the current column is the last column in the
view, insert the new character in the frame:
else shift trailing characters one column to
the right and insert the new character.

if insert char 1= ASCII.LF then
if edit=buf-pos.column = last_column then

edit_buffer. lines (edit_buf-pos.row)
(edit_buf_pos.column) := insert_char:

else
-- right shift characters to the right of insert position
for index in reverse edit buf pos.column + 1 •• last_column
loop - -

edit buffer.lines(edit buf pos.row) (index) :=
edit buffer. lines (edit-buf pos.row) (index - 1):

end loop: - - -

edit_buffer.lines(edit_buf~os.row)
(edit buf pos.column) := insert char:

edit_buf~os.column := edit_buf_pos:column + 1:
end if:

Insert the character in the frame buffer
(Frame buffer cursor is moved automatically)

X-A-95

X-A-96

537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613

Character Display AM.Ops.Insert chart
opened dev =>-open edit window,
buffer-VA => insert char' address,
num_char => 1); -

return
else

-- shift buffer lines beyond current row down by one
if edit buffer.num lines + 1 >= edit buffer.max lines then

-- add resize lines lines to current edit buffer size
Object Mgt.Resize(

obj => edit buffer untyped,
size => (Object Mgt:Get object size(

edit buffer-untyped) + -
ordinal«resize lines * last column) I 4»);

max lines := edit buffer.num lines +-resize lines;
edit buffer.lines1edit buffer.num lines + 1-•.

edit buffer.max lines) := (others => (others => ASCII.NUL»;
end if; - -

-- move row down one
for row in reverse edit_buf-pos.row + 1 •• edit_buffer.num_lines
loop

edit buffer.lines(row + 1) := edit buffer.lines(row);
end loop; -
-- blank fill line below current line
edit buffer.lines(edit buf pos.row + 1) := (others => ASCII.NUL);
edit:buffer.num_lines := edit_buffer.num_lines + 1;

-- add return to end of line
if edit_buf-pos.column = Last_char_in_row(edit_buf_pos.row) then

success := Move down;
-- first char of new line in LF
edit buffer.lines(edit buf pos.row) (first column) := ASCII.LF;
edit:buf-pos.column :=-first_column; -
Character Display AM.Ops.Insert line(open edit window);

-- insert return in-the middle of-the line (split line)
else

-- copy characters past point of insert to the next line
for col in edit_buf-pos.column •• Last_char_in_row(edit_buf_pos.row)
loop

edit_buffer.lines(edit_buf-pos.row + 1) (column) :=
edit_buffer. lines (edit_buf-pos.row) (col);

-- clear line past point of insert
edit buffer.lines(edit buf pos.row) (col) := ASCII.NUL;
edit:buf_pos.column :=-edit_buf-pos.column + 1;
column := column + 1;

end loop;
edit_buffer. lines (edit-pos.row) (edit_pos.column) := ASCII.LF;
Move frame(O); -- redraw
edit-buf pos.row := edit buf pos.row + 1;
edit:buf~os.column := fIrst:column;
Character Display AM.Ops.Move cursor absolute(

opened dev =>-open edit window, -
new pos => Terminal Defs.point info' (

end if;
end if;

-first_column, cursor-pos.vert-+ 1»;

return success;
end Insert;

SAVE FILE

procedure Save_file

is

Logic:
Writes the file in linear buf size amounts copied
from the edit buffer which is-an array of lines
to the linear-buffer. It checks for backslashes
in the last column and rejoins long lines.
Before writing the new file, it must be truncated
and the pointer moved back to zero.

Ada Examples

(

Ada Examples

614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
64B
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
66B
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
6B7
688
689
690

opened_file: Device_Defs.opened_device:
file ptr: Long Integer Defs.long integer;
linear buffer: array (1 .: linear buf size) of

character := (others => ASCII.NUL):-
index: integer := 1:

begin

opened_file := Byte Stream AM.Open by name(
name => file name, -­
input output => Device Defs.output,
allow- => Device=Defs.nothing);

delete data in original file
Byte Stream AM.Ops.Truncate(

opened dev => opened file,
new_length => Long_Integer_Defs.zero);

file-ptr := Byte_Stream_AM.Ops.Set-position(
opened dev => opened file,
pos - => Long Integer Defs.zero,
mode => Byte=Stream_AM.from_begin):

for row in 1 edit_buffer.num_Iines
loop

-- write each line to linear buffer until LF
for col in first_column •• last_column
loop

-- write out linear buffer when full;
if index > linear buf size then

Byte Stream AM.Ops.Write(
opened dev => opened file,
buffer-VA => linear-buffer' address,
length- => System~ordinal(linear buffer' size

linear buffer := (others => ASCII.NUL);-
index := 1;

end if;
-- reproduce long lines
if col < last column or

edit buffer. lines (row) (last column) /= '\' then
linear-buffer (index) := edit buffer. lines (row) (col);
index := index + 1; -
EXIT when edit buffer. lines (row) (col) = ASCII.LF;

end if; -
end loop;

end loop;

Byte Stream AM.Ops.Write(
opened dev => opened file,
buffer-VA => linear-buffer' address,
length- => System~ordinal(index»;

exception

when Directory Mgt.no access =>
Message Services.Write msg(

msg-id => new file-code,
paraml => IncIdent-Oefs.message parameter' (

typ => Incident Oefs.txt,
len => file name. length,
txt_val => file=name»;

end Save_file;

QUIT EDITOR

procedure Quit_editor

is
quit:

begin
exception;

Window_Services.Ops.Transfer_input_focus(

/ B»;

X-A-97

X-A-98

691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767

source window => edit window,
target=window => old_window);

if not saved then
if not Message Services.Acknowledge Msg(not saved code) then

Window Services.Ops.Transfer input focus(- -
source window => old window, -
target=window => edit_window);

return;
end if;

end if;

Character Display AM.Ops.Close(open edit window);
Window Services.Ops.Destroy window(edit window);
RAISE quit; - -

exception

when quit =>
RAISE;

CLOSE INPUT

procedure Close input
-- NYI (for menus)

is
begin

nUll;
end Close_input;

READ FILE

procedure Read_file

is

Logic:
Reads the input file into a linear buffer.
That is read one line feed to a row into
the edit buffer. The edit buffer is expanded
by resize lines increments as needed.
A backslash is place in the last column for
lines over 80 characters long.

use System; for adding System. ordinals

System. ordinal; characters read:
opened file:
linear-buffer:
col, row:

Device Defs.opened device:
array 11 .. linear-buf size) of character;
integer := 1; --

file: File_Defs.file_AD:

max lines: integer;
For-max_lines USE AT edit_buffer.max_lines'address;

edit buffer untyped: System. untyped word;
FOR edit_buffer_untyped USE AT edit_buffer' address;

begin

opened_file:= Byte Stream AM.Open by name(
name => file name, -­
input_output => Device_Defs.input);

loop

read by linear buf size blocks
characters read :~ Byte Stream AM.Ops.Read(

opened-dev => opened file,-
buffer-VA => linear-buffer' address,
length- ~> system:ordinal(linear_buffer'size I 8»;

for index in 1 integer (characters_read)

Ada Examples

(
\

Ada Examples

768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844

loop
if row > max lines then

-- add resIze lines lines to current edit buffer size
Object Mgt.Resize(

obj => edit buffer untyped,
size => (Object Mgt:Get object size(

edit buffer-untyped) + -
ordinal«resize lines * last column) / 4»);

max lines := edit buffer.num lines +-resize lines;
-- Initialize expanded area - -
edit buffer.lines(edit buffer.num lines + 1

edit buffer.max lines):= -
<others => <others => ASCII.NUL»;

end if;

if linear buffer(index) = ASCII.LF then
edit buffer. lines (row) (col) := linear buffer(index);
edit-buffer.num lines := edit buffer.num lines + 1;
col := 1; - - -
row := row + 1;

else
if col < last_column then

edit buffer. lines (row) (col) := linear_buffer(index);.
col := col + 1;

else -- long line
edit buffer. lines (row) (last column) := '\';
edit-buffer.num lines := edIt buffer.num lines + 1;
col := 1; - - -
row := row + 1;
edit buffer. lines (row) (col) := linear_buffer(index);

end if;
end if;

end loop;
end loop;

exception

-- make a new file
when Directory Mgt.no access =>

Message Services.Write msg(
msg-id => new file-code,
param1 => IncIdent-Defs.message parameter' (

typ => IncIdent Defs.txt,
len => file name. length,
txt val => file-name»;

file := Simple_File_AdmIn.create_file(file_name);
RETURN;

successful completion
when Device Defs.end of file =>

Byte_Stream_AM.Ops.Close(opened_file);

end Read_file;

MAKE WINDOW

procedure Make_window
is

underlying terminal: Device Defs.device;
new window-info: Window Services.window style info;
window attributes: Terminal Defs.window attr :=-

Terminal_Defs.default_window_attr; -

begin

-- Create new window from old opened window.
old window := Character Display AM.Ops.

-Get device object (Process Mgt.Get process globals entry(
-Process Mgt Types.standard input»; - -

underlying termInal-:= Window servIces.ops.
Get terminal (old window);-

edit window := Window Services.Ops.Create window(
terminal - => underlying_terminal,

X-A-99

X-A-IOO

845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921

pixel units => false,
fb_size => Terminal Defs.point info' (

last column, frame rows), - -
desired window size =>-Terminal Defs.point info' (

last column, preferred window rows), -
window-pos => origin, -
view-pos => origin);

Set window's input and output attributes
change from default:

window attributes.enable signal := false;
window-attributes.line editing := false;
window-attributes.echo-:= false;

for C B
for H

-- NOTE: track cursor NYI (use user agent to change view)
window attributes. track cursor := true;
Window-Services.Ops.Set-window attr(

window => edit wIndow, -
attr => window attributes,
attr mask => (others => true»;

Set TItle and Info lines
Text Mgt.Set(new window info.title, file name);
Window Services.Ops.Set-window stylet

window ~> edit window,=
new info => new window info,
style_list => (others =>-true»;

Open the edit
open edit window

device
input output
exclusive

window
:= Character Display AM.Ops.Open(
=> edit window, -
=> Device Defs.inout,
=> true);-

Clear window on terminal screen.
Character_Display_AM.Ops.Clear(open_edit_window);

Write from edit buffer to frame buffer.
NOTE: There cannot be more line feeds in the length
of characters written than there are rows in
the frame buffer, otherwise some of the first
characters will be overwritten in the frame buffer
The last line is written up to the line feed to
avoid having a blank line at bottom of the window

Character Display AM.Ops.Write(
opened dev =>-open edit window,
buffer-VA => edit-buffer.lines'address,
length- => System.ordinal«last column * (frame_rows - 1»

+ (Last_char_in_row(frame_end)-- 1»);

Home the cursor (1,1 position).
Character Display AM.Ops.Move cursor absolute(

opened dev =>-open edit wIndow, -
new_pos => origIn); -

Window Services.Ops.Transfer input focus (
source window => old window, -
target=window => edit_window);

end Make_window;

HANDLE INPUT

procedure Handle_input

is

System. ordinal; event num:
event-type:
char_buffer_AD:

Terminal Defs.input enum;
char_arraY_AD := new char_array' (others => ' ');

begin

-- Enter the basic read and process loop
loop

Read the next input event
default input mask is keyboard

Ada Examples

1\da Examples

922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998

Character Display AM.Ops.Read(
opened dev =>-open edit window,
buffer-VA => char-buffer AD.all'address,
max events => 1, - -
max-bytes => 0,
block => true,
type read => event type,
num read => event-num);

case event type is -
when Terminal_Defs.keyboard =>

key input (char buffer AD(l»;
when Terminal_Defs:menu_item-picked =>

key input (char buffer AD(l»;
when others => - -

null;
end case;

end loop;
end Handle_input;

IS PRINTABLE

function Is-printable(c: character)
return boolean

Logic:
Checks if character entered in printable

is
begin

if c >= , , or c = ASCII.LF then return true;
else return false;
end if;

end Is printable;
pragma inline(Is-printable);

KEY INPUT

procedure Key_input (key: character)

is
result: boolean := true;
cursor pos: Terminal_Defs.point_info;

begin -

-- Process the event
case key is

when ASCII.ACK =>
result := Move_forward;

when ASCII.STX =>
result := Move back;

when ASCII.DLE => -
result := Move up;

when ASCII.SO =>­
result := Move down;

when ASCII.NAK =>-
result := Move Page(-l);

when ASCII.SYN =>-
result := Move page(+l);

when ASCII.EOT => -
result := Delete forward;
saved := false; -

when ASCII.BS =>

Control

Control

Control

Control

Control

Control

Control

F

B

P

N

U

V

D

result := Delete backward;
saved := false; -

-- Control H

when ASCII.ETB =>
Save file; -- Control W
saved := true;

when ASCII.ETX =>
Quit editor; -- Control C

when others =>
--Insert text.
if Is_printable(key) then

X-A-IOI

X-A-I02

999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023

result := Insert(key);
saved := false;

else Character Display AM.Ops.Ring bell (open edit window);
end if; - - - --

end case;
if not result then

Character Display AM.Ops.Ring bell (open edit window);
end if; - - - --
-- cursor check
cursor-p0s := Character_Display_AM.Ops.Get_cursor-position(

open edit window);
if edit_buf-pos.row /= frame_begin + (cursor_pos.vert - 1) or

edit buf pos.column /= cursor pos.horiz then
RAISE editor_error; -

end if;

exception

when editor error =>
Message-Services.Write msg(editor error code);
return;- - --

end Key_input;

Ada Examples

X-A.4.20 Stream file ex Procedure
1 with Directory Mgt,
2 File Defs;
3 PassIve Store Mgt,
4 . Process-Mgt, -
5 Process-Mgt Types,
6 Simple File-Admin,
7 System-Defs;
8 Text_Mgt;
9

10 procedure Stream_file_ex is
11
12 Function:
13 Provide example calls for stream files.
14
15 filename: System Defs.text(60);
16 file1:· File Defs.file AD;
17 file2: File-Defs.file-AD;
18 file3: File:Defs.file:AD;
19 begin
20 Text Mgt.Set(filename, "my file 1");
21 fileI:= Simple File Admin:Create file(filename);
22 Creates a stream file in the-current
23 directory.
24
25 Code to write something into the file
26 could go here.
27
28 Text Mgt.Set(filename, "my file 2");
29 file2:= Simple File Admin:Create file(filename);
30 Simple File AdmIn.Copy file(source file => file1,
31 - - - target-file => file2);
32 Creates a second file in the current directory,
33 and then copies the contents of the first file
34 to the second.
35
36 Simple File Admin.Empty file(file1);
37 -- Empties the first file.
38
39 Text Mgt.Set (filename, "my file 2");
40 Directory Mgt.Delete(filename);-
41 The second file's pathname is deleted. The
42 -- second file is destroyed when the last
43 -- reference to it goes away.
44
45 file2:= Simple file Admin.Create unnamed file(
46 Passive Store Mgt.Home volume-set(-
47 Process Mgt.Get process globals entry(
48 Process Mgt-Types.current dIr»);
49 Creates a temporary file in the current
50 directory using the current directory's
51 volume set.
52
53 Text Mgt. Set (filename, "my local name");
54 Simple File Admin.Save unnamed filet
55 name =>-filename, - -
56 file => file2);
57 -- Names and saves the temporary file so that it
58 -- can be used in future jobs.
59
60 file3:= Simple file Admin.Create unnamed filet
61 Passive Store Mgt.Home volume-set (-
62 Process Mgt.Get process globals entry(
63 Process Mgt-Types.current dIr»);
64 Creates another temporary file in the current
65 directory.
66
67 Simple File Admin.Destroy file(file3)i
68 Destroys-the temporary-file before its job
69 terminates. If it is not destroyed or saved,
70 -- it goes away when the job terminates.
71
72 end Stream_file_ex;

Ada Examples X-A-I03

X-A.5 Human Interface Services

X-A-I04 Ada Examples

X-A.5.1 Inventory_main Procedure

Ada Examples

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

with Character Display AM,
Device Defs, -
Incident Defs,
Inventory Files,
Inventory-Menus,
Inventory-Messages,
Inventory-Windows,
Message Services,
System,­
Terminal_Defs;

Function:
Main (top-level) procedure for Inventory
Example Program.

The procedure "Inventory main" is called from
CLEX. "Inventory main" performs the top-level
processing for the Inventory Example Program:
program ini,tialization, main processing loop,
and termination.

History:
05-20-87, William A. Rohm:
10-27-87, WAR:

End of Header

Written.
Revised.

procedure Inventory_main

is

Logic:
1. Define incident codes.
2. Open windows and files.
3. Install and enable menu group, enable menu

selection
4. Process each menu selection until Exit
5. Close files and windows.

Incident codes for messages:

module: constant:= 1;
-- Message module index number.

M
M

set.language : language
create. variable module

welcome code: constant

English
:value = 1

IncIdent Defs.incident code := (
message object => -

Inventory Messages.message object,
module - => module, -
number => 0,
severity => Incident_Defs.information);

M store :module = $module :number = 0\
M :msg name = welcome \
M :short = "Welcome to the Inventory
M Example Program."

terminated code: constant
Incident Defs.incident code := (

message object => -
Inventory Messages.message object,

module - => module, -
number => 1,
severity => Incident_Defs.information);

M store :module = $module :number = 1\
M :msg name = terminated \
M : short = "Inventory Example Program
M terminated. II

X-A-I05

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

-- Variables:

menu select: Terminal Defs.menu selection;
Menu selection record for receiving user
input from "Character_Display_AM.Ops.Read".

Contains user's menu group, menu, and item
selection numbers.

event_type: Terminal Defs.input enum;
Type of user input event (returned from

-- "Character_Display_AM.Ops.Read").

event_num: System. ordinal;
Number of user input events (returned from

-- "Character_Display_AM.Ops.Read").

-- Inventory_main procedure:

begin

-- Open both main and message windows:

-- Display "Welcome" message:

Message Services.Write msg(
msg=id => welcome_code);

-- Open files:

Inventory_Files.Open~arts_file;

-- Retrieve and install menu group:

-- Set input event type mask for menu item selection
-- only:

Character Display AM.Ops.Set input type mask(
opened dev =>-Inventory Windows.main window,
new mask => Terminal Defs.input type mask' (

-Terminal Defs.menu-item picked => true,
others - - - => false»;

-- Main processing loop:

loop

Wait for and read next input event (must have
been a menu selection):

Character Display AM.Ops.Read(
opened dev =>-Inventory Windows.main window,
buffer-VA => menu select' address, -
max events => 1, -
max-bytes => 0,
block => true, -- Wait
type read => event type,
num read => event=num);

Act on menu selection:

case menu_select.menu is

Ada Examples

Ada Examples

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

when Inventory Menus.inquiry menu IO =>
Inventory Menus.Process Inquiry menu(

selection => menu_select.item);

when Inventory Menus.posting menu IO =>
Inventory Menus.Process posting menu (

selection => menu_select.item);

when Inventory Menus.update menu IO =>
Inventory Menus.Process-update menu(

selection => menu_select.item);

when Inventory Menus.report menu IO =>
Inventory Menus.Process-report menu(

selection => menu_select.item);

when Inventory Menus.housekeeping menu IO ->
Inventory Menus.Process housekeeping menu(

selection => menu_select.item); -

when Inventory Menus.exit menu IO =>
EXIT; - --

when others =>
null;

end case;

end loop;

-- Close files:

-- "case menu_select.menu is"

-- Write "terminated" message:

Message Services.Write msg(
msg=id => terminated_code);

Close both program windows. When the main
window is closed, the menu group is deallocated:

Inventory_Windows.Close-program_windows;

end Inventory_main;

X-A-I07

X-A.S.2 Inventory_Files Package Specification

X-A-I08

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

with Device Defs,
Incident Defs,
Inventory Messages,
System, -
System Defs,
Timing=Conversions;

package Inventory_Files is

Function:
Contains all operations related to
Inventory Program files.

This package contains the necessary calls
to open and close the two inventory files
(parts file and log file), and calls to
read and write records in the parts file,
and to write records to the log file.

History:
05-20-87, William A. Rohm:
11-02-87, WAR:

End of Header

Incident codes for messages:

module: constant:= 3;
-- Message module index.

Written.
Revised.

--*M*
--*M*

set. language :language=english
create. variable module :value 3

no modify rights code: constant
- Incident Defs.incident code :=

message object => -
Inventory Messages.message object,

module - => module, -

--*M*
--*M*
--*M*
--*M*
--*M*
--*M*

number => 1,
severity => Incident_Defs.error);

store :module = $module \
:number = 1 \
:msg name = no mod rights \
:short = "No modify rights for

parts file '$p1<parts file
name>'."

no parts file code: constant
- Incident Defs.incident code := (

message object => -

--*M*
--*M*
--*M*
--*M*
--*M*
--*M*

Inventory Messages.message object,
module - => module, -
number => 2,
severity => Incident_Defs.error);

store : module $module \
: number 2 \
:ms9_name = no-parts_file \
:short = "Parts file '$p1<parts

file name>' does not
exist."

no log file code: constant
- Incident Defs.incident code := (

message object => -
Inventory Messages.message object,

module - => module, -
number => 3,
severity => Incident_Defs.error);

Ada Examples

Ada Examples

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

--*M*
--*M*
--*M*
--*M*
--*M*
--*M*

store :module = $module \
:number = 3 \
:msg name = no log file \
:short = "Log file-'$p1<log

file name>' does not
exist."

index inconsistent code: constant
Incident Defs.Incident code :=

message object => -
Inventory Messages.message object,

--*M*
--*M*
--*M*
--*M*
--*M*
--*M*
--*M*
--*M*
--*M*
--*M*

module - => module, -
number => 4,
severity => Incident_Defs.error);

store :module = $module \
:number = 4 \
:msg_name = \

index inconsistent \
:short = "Parts file

'$p1<parts file name>' index
is inconsistent and must be
redone. Select the
Housekeeping Menu's item
'Index Parts File'."

not on file code: constant
-Incident Defs.incident code := (

message object => -
Inventory Messages.message object,

--*M*
--*M*
--*M*
--*M*
--*M*
--*M*
--*M*

module - => module, -
number => 5,
severity => Incident_Defs.error);

store : module $module \
: number 5 \
:msg name = not on file \
:short = "There-is-no parts

record for part ID 'Sp1<part
ID (index value»' does not
exist ...

not on file: exception;
pragma exception value (not on file,

- not-on-file code);
Raised by "ReadJ>arts_record" and
"Rewrite_parts_record".

invalid part ID code: constant
IncIdent-Defs.incident code := (

message object => -

--*M*
--*M*
--*M*
--*M*
--*M*
--*M*

Inventory Messages.message object,
module - => module, -
number => 6,
severity => Incident_Defs.error);

store : module $module \
: number 6 \
:msg name = invalid part ID \
:short = "An invalid part ID,

'$p1<part ID (index
value»', was entered."

invalidJ>art_ID: exception;
pragma exception value(invalid part ID,

- invalid~art=ID_code);
Raised by "Read parts record",
"Write parts record",-and
"RewriteJ>arts_record".

already on file code: constant
IncIdent_Defs.incident_code :=

X-A-I09

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

--*M*
--*M*
--*M*
--*M*
--*M*
--*M*
--*M*
--*M*
--*M*

message object =>
Inventory Messages.message object,

module - => module, -
number => 7,
severity => Incident_Defs.error);

store : module $module \
: number 7 \
:msg name = already on file \
:short = "Parts record-for part

lO '$p1<part lO (index
value»' already exists.
Either choose a new part lO,
or update the current part's
record."

already on file: exception;
praqma exception value(already on file,

- already-on-file code);
Raised by "Read-parts_record" and -
"Write_parts_record".

-- Constants:

parts file str: constant string :=
"/example/inventory/parts_file";

-- String constant for parts file"s
-- pathname. .

parts_file-pathname: System_Oefs.text(
Incident Defs.txt length) := (

Incident Defs:txt length,
parts file str'length,
parts-file-str);

Text constant-from parts file's pathname
string.

part IO index str: constant string :=
"part ID Index";
String constant for parts file's

-- index's name.

part IO index name: System Oefs.text(
part IO index str'length) := (

part ID index str'length,
part-ID-index-str'length,
part-ID-index-str);

Text constant from parts file's index's
name string.

log file str: constant string :=
-"/example/inventory/log file";

-- String constant for log file's
-- pathname.

log file pathname: System Defs.text(
-Incident Defs.txt length) := (

Incident Defs:txt length,
log file-str'length,
log-file - str):

Text constant from log file's pathname
string.

-- Variables:

parts file: Device Defs.opened device;
---iD to inventory parts file:

log file: Device Defs.opened device; -= AD to inventory log file. -

Inventory Parts File Record Definition

Ada Examples

Ada Examples

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305

I'KELlMlNAK Y

-- Constants:

part_ID_length: constant integer := Incident_Defs.txt_length;
desc_length: constant integer := 30;
unit_length: constant integer := 4;
loc_length: constant integer := 12;
status_length: constant integer := 7:
max_suppliers: constant integer := 3;
supplier_ID_length: constant integer := 10:

qty_digits: constant integer := 7;

-- Types:

subtype part ID type is System Defs.text(
part_ID_Iength): -

subtype supplier ID type is System_Defs.text(
supplier_ID_Iength):

subtype location type is System_Defs.text(
loc_Iength):-

--type qty_type is digits qty digits:
subtype qty type is system.ordinal

range 0 •• 9_999_999;

--type cost_type is delta 0.01
range 0.0 •• 99_999_999.99;

subtype cost type is float
range 0.0 .. 99_999_999.99;

type supplier array type is
array (l •• max suppliers) of supplier_ID_type;

Array of supplier IDs.

type parts record type is
Record declaration for parts file
records.

record
part ID: part ID type:

---Part identification code (ID).
desc: System_Defs.text(

desc length);
-- Description of part.

unit: System Defs.text(
unit length); -

-- Unit of measure.
location: location type:

-- Warehouse location of part.
qty on hand: qty type;
reorder-point: qty=type;
reorder qty: qty type;
suppliers: supplier array type;

-- Array of suppliers for-this part.
usage this month: qty type;
usage-Iast-month: qty-type:
usage-Iast-year: qty-type;
avg unit cost: cost type;
last unit cost: cost-type;
date-first act: -

Timing-Conversions.numeric time;
-- Date and time of first activity with
-- this part (entered into parts file).

date last act:
Timing Conversions. numeric time;

-- Date and time of last activity with
-- this part.

status: System Defs.text(
status length); -

-- Status of this part ("on order", "on
-- hold", "obsolete", ..•).

end record;

X-A-lll

X-A-112

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382

Inventory Log File Record Definition

-- Constants:

doc length:
job:)ength:

-- Types:

constant integer := 12:
constant integer := 32:

type action type is
create,-

-- Create ne~ parts record
update,

-- Update parts record
delete,

-- Delete parts record
receipt,
issue,
returns,
spoilage,
journal):

type log record type is
-- Record declaration for log file records.
record

part 10; part 10 tY~~i
---Part ID used In current action.

action: action type:
-- Action performed with this part ID.

time:
Timing Conversions.numeric time:

-- Date and time of action. -
doc number: System Defs.text(

-doc length): -
Supplier's document number.

qty: qty type:
Taken from -
"parts file record.qty on hand".

job ID: - System Defs.text(
-job length); -

-- ID-of job which called Inventory
-- Example Program to perform action.

supplier ID: supplier ID type;
-- ID of supplier for this part and
-- action.

end record:

Parts file procedures:
Open / Read / Write / Rewrite / Close file

procedure Open~arts_file;

Function:
Opens inventory parts file.

procedure Read~arts_record(
part ID: part ID type;

---Part ID of record to be read.
msg on error: boolean := false;

- Optional parameter specifying whether
a message is displayed when an

-- exception is raised. Default is no
-- message.

parts record: out parts record type):
-- Variable that receives parts record.

Function:
Reads a record from the inventory parts
file.

Exceptions:
not_on_file - "part_ID" does not index

Ada Examples

Ada Examples

383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459

PR.t;LIMlNAK Y

an existing parts record.
invalid part 10 - "part 10" contains an

- - invalId value.

procedure Write-parts_record(
parts record: parts record type);

-- Record to be wrItten. -

Function:
Writes a record to the inventory parts
file.

Exceptions:
already_on_file - "part 10" indexes

an exIsting parts record.
invalid_part_ID - "part ID" contains an

invalId value.

procedure Rewrite parts record (
parts record:- parts record type);

-- Record to be rewritten~

Function:
Rewrites a record in the inventory
parts file.

Exceptions:
not on file - "part IO" does not index

an exIsting parts record.
invalid part IO - "part IO" contains an

- - invalId value.

procedure Oelete parts record (
part IO: part IO type);

---IO of record-to be deleted.

Function:
Oeletes a record in the inventory parts file.

Exceptions:
not_on_file - "part IO" does not index

an exIsting parts record.
invalid-part_IO - "part_IO" contains an

invalid value.

procedure Close_parts_file;

Function:
Closes inventory parts file.

Log file procedures:
Open / Write / Close log file

Function:
Opens inventory log file.

procedure Write log record(
parts record: parts record type;

-- Affected parts record.-
action: action type);

-- Action taken with parts record.

Function:
Creates and writes a record to the inventory
log file.

X-A-113

r K~L.lJ.Vlll~AK J:

460
461 Function:
462 Closes inventory log file.
463
464 end Inventory_Files;

X-A-114 Ada Examples

rK~L1Nll~AK I

X-A.5.3 Inventory_Files Package Body
1 with Access Mgt,
2 Device-Defs,
3 Directory Mgt,
4 Incident Defs,
5 Inventory Windows,
6 Message Services,
7 Message-Stack Mgt,
8 Object Mgt, -
9 Record-AM,

10 System~
11 System Defs,
12 System-Exceptions,
13 Timed Requests Mgt,
14 Timing Conversions,
15 Unchecked_conversion;
16
17
18 package body Inventory_Files is
19
20 Function:
21 Contains all operations related to Inventory
22 Program files.
23
24 History:
25 05-20-87, William A. Rohm: Written.
26 10-27-87, WAR: Revised.
27
28 End of Header
29
30
31 -- Generic function:
32
33 function Device from untyped word is new
34 Unchecked conversion(-
35 source => System. untyped word,
36 target => Device_Defs.device);
37
38
39 Parts file procedures:
40 Open / Read / Write / Rewrite / Close parts file
41
42 procedure Open parts file
43 is --
44 parts_file_AD: System. untyped_word;
45
46 begin
47
48 -- Retrieve parts file, if possible:
49
50 parts file AD := Directory Mgt.Retrieve(
51 name => parts_file_pathname);
52
53 Check for access (modify) rights for parts file:
54
55 if not Access Mgt.Permits(
56 AD =>-parts file AD,
57 rights => Object Mgt:modify rights)
58 then --
59 Message Services.Write msg(
60 msg-id => no modify rights code,
61 paraml => Incident Defs.message parameter(
62 typ => Incident Defs.txt, -
63 len => parts file pathname.length)' (
64 typ => Incident Defs.txt,
65 len => parts file pathname.length,
66 txt_val => parts=file=pathname»;
67 end if;
68 -- Open parts file:
69
70 parts file := Record AM.Ops.Open(
71 dev => Device from untyped word(
72 parts file AD), - - -
73 input output => Device Defs.inout,
74 allow- => Device=Defs.readers);

Ada Examples X-A-115

X-A-116

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102·
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

r.K~L.11Vlll~A.K I

exception
-- Exceptions from "Directory Mgt.Retrieve",
-- "Record_AM. Ops • Open" : -

when others =>
Message Services.Write msg(

msg-id => no parts-file code,
param1 => Incident-Defs:message parameter(

typ => Incident Defs.txt, -
len => parts_file~athname.length)' (

typ => Incident Defs.txt,
len => parts_file~athname.length,
txt_val => parts_file_pathname»;

procedure Read parts record (
part ID: - - part ID type;
msg on error: boolean-:= false;
parts_record: out parts_record_type)

is
bytes_read: System. ordinal;

use System; To import "/=" for

begin

"System. ordinal", and division for
"'size/S" constructions

-- Read given record, if any:

bytes read := Record AM.Keyed Ops.Read by key(
opened dev => parts file,- - -
buffer-VA => parts-record' address,
length- => parts-record'size/8,
index => part ID index name,
key buffer => Record AM.key-value descr' (

-buffer VA => part ID'address,­
length- => part=ID'size/S»;

if bytes read /= parts record'size/8 then
-- msg-"Couldn't get-record"

end if;

exception

if msg on error then
Message-Services.Write msg{

msg-id ~> not on fIle code,
param1 => IncIdent Defs.message parameter(

typ => Incident Defs.txt, -
len => part ID.length)' (

typ -=> Incident Defs.txt,
len => part ID.length,
txt val => part-ID»;

Message Stack Mgt.Push msg I param(
not-on file code);- --

end if; - - -

if msg on error then
Message-Services.Write msg(

msg-id => invalid part ID code,
param1 => Incident Defs.message parameter(

typ => Incident Defs.txt, -
len => part ID.length)' (

typ -=> Incident Defs.txt,
len => part ID.length,
txt val => part-ID»;

Message_Stack_Mgt.Clear_messages;

Ada Examples

Ada Examples

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

PKt.;LIMlNAK Y

Message Stack Mgt.Push msg 1 param(
message id => invalid part ID code,
param1 - => Incident Defs.message parameter(

typ => Incident Defs.txt, -
len => part ID.length)' (

typ -=> Incident Defs.txt,
len => part ID.length,
txt_val => part=ID»;

end if;

when Record_AM.index_inconsistent =>

Message Services.Write msg(
msg-id => index inconsistent code,
param1 => Incident Defs.message parameter(

typ => Incident Defs.txt, -
len => parts file pathname.length)' (

when others =>
RAISE;

typ ~> Incident Defs.txt,
len => parts file pathname.length,
txt val => parts=file=pathname»;

procedure Write parts record (
parts_record: parts_record_type)

is

use System: -- For "'size/8" constructions

begin

Write (insert in index key sequence) new record
into parts file:

Record AM.Ops.Insert(
opened dev => parts file,
buffer-VA => parts-record' address,
length- => parts=record'size/8):

exception
when Record AM. invalid duplicate =>

RAISE already_on_file:

when Record AM.invalid record address I
Record-AM.key value incomplete =>

RAISE invalid_part_ID;-

when Record AM.index inconsistent =>
Message Services. Write msg(

msg-id => index inconsistent code,
param1 ~> Incident Defs.message parameter(

typ => Incident Defs.txt, -
len => parts file pathname.length)' (

when others =>
RAISE:

typ ~> Incident Defs.txt,
len => parts file pathname.length,
txt_val => parts=file=pathname»:

procedure Rewrite parts record (
parts_record:- parts_record_type)

is

use System; for "'size/8" constructions

begin

X-A-117

X~A-118

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305

PREUMINARY

-- Rewrite (update) parts record:

Record AM.Keyed Ops.Update by key(
opened dev ~> parts file,­
buffer-VA => parts-record' address,
length- => parts-record'size/8,
index => part_ID_index_name);

exception

when Record AM.invalid record address =>
Message Services.Write msg(-

msg-id => not on fIle code,
param1 => IncIdent_Defs.message-parameter(

typ => Incident Defs.txt,
len => part ID Index str.length)' (

typ -=>-Incident Defs.txt,
len => part ID Index str.length,
txt val ~> part-IO-inciex-name»;

RAISE not_on_file; - - -

when Record AM. key value incomplete =>
RAISE invalid_part_ID;-

when Record AM.index inconsistent =>
. Message Services. Write msg(

msg-id => index inconsistent code,
param1 => Incident Defs.message parameter(

typ => Incident Defs.txt, -
len => parts file pathname.length)' (

when others =>
RAISE;

typ ~> Incident Defs.txt,
len => parts file pathname.length,
txt_val => parts=file=pathname»;

procedure Delete parts record (
part_ID: part_ID_type)

is

use System; -- for "'size/8" constructions

begin

-- Delete parts record:

Record AM.Keyed Ops.Delete by key(
opened dev ~> parts file,-
index - => part ID index name,
key buffer => Record AM.key-value descr' (

-buffer VA => part ID'address,­
length- => part=ID'size/8»;

exception

when Re~ord AM. invalid record address =>
RAISE not=on_file; - -

when Record AM. key value incomplete =>
RAISE invalid_part_ID:-

when Record AM. index inconsistent =>
Message services.Write msg(

msg-id => index inconsistent code,
param1 => Incident Defs.message parameter(

typ => Incident Defs.txt, -
len => parts_file-pathname.length)' (

typ => Incident Defs.txt,
len => parts file pathname.length,
txt val => parts=file=pathname»:

Ada Examples

Ada Examples

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382

PKELIM1NAK Y

when others =>
RAISE;

procedure Close_parts_file
is

begin

if Record AM.Ops.Is open(parts file) then
Record AM.Ops.Close (-

opened dev => parts file);
end if; - -

end Close~arts_file;

Log file procedures:
Open / Write / Close log file

procedure Open_lag_file
is

log_file_AD: System. untyped_word;

-- Retrieve log file, if possible:

log file AD := Directory Mgt.Retrieve(
-log_file_pathname); -

Check for access (modify) rights for log file:

if not Access Mgt.Permits(
AD =>_log file AD,
rights => Object Mgt.modify rights)

then --
Message Services.Write msg(

msg-id => no modify rights code,
paraml => Incident Defs.message parameter(

typ => Incident Defs.txt, -
len => log file-pathname.length) , (

typ - => Incident Defs.txt,
len => log_file~athname.length,
txt val => log_file_pathname»;

end if;

-- Open log file:

log file := Record AM.Ops.Open(
-dev => Device from untyped word(

log file AD), - - -
input output-=> Device Defs.inout,
allow- => Device-Defs.nothing,
block => false);

exception
Exceptions from "Directory Mgt.Retrieve",

-- "Record_AM.Ops.Open":

when others =>
Message Services.Write msg(

msg-id => no log fIle code,
paraml => Incident Defs.message parameter(

typ => Incident Defs.txt, -
len => log file-pathname.length)' (

typ - => Incident Defs.txt,
len => log file-pathname.length,
txt val => log=file=pathname»;

end Open_log_file;

procedure Write log record(
parts record: parts record type;
action: action_type)-

X-A-119

PRELIMINARY

383 is
384 log_record: log_record_type;
385
386 use System; -- for "'size/8" constructions
387
388 begin
389
390 log_record.part_ID := parts_record.part_ID;
391
392 log_record. action := action;
393
394 log record. time := Timing Conversions.
395 -Convert stu to numeric time(
396 stu ~> TImed_Requests_Mgt.Get_time);
397
398 log record.doc number := System Defs.text(doc length)'
399 -(doc_length, 0, (others => ' '»; -
400
401 log_record.qty := parts_record.qty_on_hand;
402
403 log record.job ID := System Defs.text(job length)'
404 - (job_length, 0, (others - => ' '»; -
405
406 log record. supplier ID :=
407 -parts_record.suppliers(l);
408
409 Record AM.Ops.Set position(
410 opened dev =>-log file,
411 where - => Record AM. record specifier (
412 type of specifier => Record AM.last)' (
413 type_of_specifier => Record_AM.last»;
414
415 Record AM.Ops.Insert(
416 opened dev => log file,
417 buffer-VA => log-record' address,
418 length- => log=record'size/8);
419
420 end Write_lag_record;
421
422
423
424 procedure Close_lag_file
425 is
426
427 begin
428
429 if Record AM.Ops.Is open(log file) then
430 Record AM.Ops.Close(-
431 opened dev => log file);
432 end if; - -
433
434 end Close_log file;
435
436
437 end Inventory_Files;

X-A-120 Ada Examples

I'KELlMlNAK Y

X-A.S.4 Inventory_Forms Package Specification

Ada Examples

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
3,5
36
37
38
39
40
41
42
43
44
45
46
47
48
49
SO
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

with Device Defs,
Form Defs,
Incident Defs,
Inventory_Files,
Inventory_Messages,
System,
System Defs,
Terminal_Defs;

package Inventory_Forms is

Function:
Contains subprograms to display and process
Inventory Program forms.

Includes form handling routines
("Process *x* form"), a form processing routine
("Validate cost"), and two key-catcher routines
("Go_to_inquiry" and "Add_supplier_ID").

History:
07-06-87, William A. Rohm:
11-02-87, WAR:

Written.
Revised.

End of Header

Incident codes for messages:

module: constant:= 5;
-- Message module index.

--*M*
--*M*

set. language :language = English
create.variable module :value 5

invalid output device code: constant
IncIdent Defs.incIdent code := (

message object => -

--*M*
--*M*
--*M*
--*M*
--*M*
--*M*
--*M*

Inventory Messages.message object,
module - => module, -
number => 0,
severity => Incident_Defs.error);

store :module = 5 :number = 0\
:msg name = invalid output dev\
:short = "Entered output device

pathname '$pl<pathname>'
does not exist, or does
not support the record
access method."

unit cost error code: constant
Incident Defs.incident code := (

message object => -
Inventory Messages.message object,

--*M*
--*M*
--*M*
--*M*
--*M*
--*M*
--*M*
--*M*
--*M*

module - => module, -
number => 1,
severity => Incident_Defs.warning);

store :module = 5 :number = 1\
:msg name = cost error\
:short = "Entered part's unit

cost is not within
$p1<allowed variation
percentage>% of the average
unit cost. please re-enter
$p2<total/unit> cost, or the
number of units."

-- Constants:

inquiry form str: constant string :=
"/examples/inventory/forms/inquiry";

X-A-121

X-A-122

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

YK~L1M1NAKY

-- String constant for inquiry form's
-- pathname.

inquiry form pathname: System Defs.text(
inquiry form str'length) := (

inquiry form str'length,
inquiry-form-str'length,
inquiry-form-str);

Text constant from inquiry form's
pathname string.

receipts form str: constant string :=
II/examples/inventory/forms/receipts ll ;
String constant for receipts form's

-- pathname.

receipts form pathname: System Defs.text(
receIpts form str'length) :~ (

receIpts formstr'length,
receipts-form-str'length,
receipts-form-str);

Text constant from receipts form's
pathname string.

update form str: constant string :=
II/examples/inventory/forms/update":

-- String constant for update form's
-- pathname.

update form pathname: System Defs.text(
update form str'length) := (

update form str'length,
update-form-str'length,
update-form-str):

Text constant from update form's
pathname string.

report form str: constant string :=
"/examples/inventory/forms/report";
String constant for report form's

-- pathname.

report form pathname: System Defs.text(
report form str'length) := (

report form str'length,
report-form-str'length,
report-form-str):

Text constant from report form's
pathname string.

-- Field and subform names for forms:

part ID field: System Defs.text(7) :=
~,7; IIpart ID"): -

desc field: - System Defs.text(11) :=
I1,11,"description"): -

unit field: System Defs.text(4) :=
1,4, "unit"): -

loc field: system_Defs.text(8) :=
-a,8, "location");

qty field: System Defs.text(11) :=
-11,11, "qty on hand"); -

reorder pt field:- System Defs.text(13) :=
13,I3,"reorder pointll);

reorder qty field:- System Defs.text(11) :=
11,I1,lIreorder qty"): -

suppliers field: - System Defs.text(9) :=
9,9, -"suppliers"); -

usage tmo field: System Defs.text(16) :=
f6",16;"usage this monthll):

usage lmo field:- System Defs.text(16) :=
f6",16;"usage last month"):

usage lyr field:- System Defs.text(15) :=
15,15;"usage last year"): .

avg_cost_field: - SYstem_Defs.text(13):=

Ada Examples

Ada Examples

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

I"K~LIM1NAK Y

13,13,"avg unit cost");
last cost field: -system Defs.text(14) :=

I4,14;"last unit cost"f;
date first field: System Defs.text(14) :=

I4,14,"date first act"f;
date last field: System Defs.text(13) :=

I3,13;"date last act");
status field: - System Defs.text(6) :=

6,6, "status"); -

inq suppl ref field: System Defs.text(19) :=
-19,19;"supplier ref number");

inq date field: - System Defs.text(4) :=
-4,4,- "date"); -

inq time field: System_Defs.text(4) :=
-4,4,- "time");

rpt type field: System Defs.text(11) :=
-ll,lI,"report type"); -

rpt opt field: - System Defs.text(14) :=
-14,I4,"report options"f;

rpt dev field: - System Defs.text(20) :=
-20,20,"report_output_device");

-- Group and subform names for forms:

inq part ID only: System Defs.text(16) :=
-16,16, "Inq part ID only");

inq all: - System Defs.text(15) :=
-15,15,"inq_display_all");

update_add: System Defs.text(10) :=
10,10, "update add"); -

update change: - System Defs.text(13) :=
13;13,"update change"f;

update delete: - System Defs.text(13) :=
13;13, "update_delete"f;

-- Types:

subtype percentage is System. short_ordinal
range 0 .. 99;

type percentage range type is
-- Type for containIng percentage range.
record

percent less: percentage;
-- Maximum percent of change less than
-- reference value.

percent more: percentage;
-- Maximum percent of change more than
-- reference value.

end record;

procedure Process inquiry form;
Function: - -

Processes inquiry form:
main window, gets valid
("part ID"), then reads
displays parts record.

displays form in
information
Parts Master File and

procedure Process receipts form;
Function: - -

Processes receipts form: displays form in
main window, gets valid information
("part ID", "supplier", "quantity", etc),
reads Parts Master File to validate, updates
parts record, then writes log file record.

X-A-123

X-A-124

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305

I"K~L1M1NAK X'

procedure Process update form(
selection: Terminal-Defs.menu item lD);

-- Selection made In the "MaIntenance" menu;
-- either *Add*, *Change*, or *Delete*.

Function:
Processes update form: displays form in main
window, gets valid information ("part lO"),
reads Parts Master File and displays parts
record, then updates or deletes part record.

procedure Process report form(
report by part: -boolean;

-- True-if the report is to be "by part",
-- false if the report is "by location".

report out dev: out System Oefs.text);
Variable that receives-output device

-- pathname where report is to be sent.

Function:
Processes report form~ displays form in main
window, gets report output device.

Form processing & key catcher routines:

procedure Validate cost (
old parts record:

-Inventory Files.parts record type;
-- Parts record from file. -

qty received:
-Inventory Files.qty type;

-- Entered quantity received.
total cost: in out

Inventory Files.cost type;
-- Entered or calculated total cost.

unit cost: in out
Inventory Files.cost type;

-- Entered or calculated unit cost.
total: boolean := true:

Whether to calculate the "total_cost" from
the "unit_cost", or vice versa.

If true (default), the "total cost" is
calculated from the given "unIt cost" times
the given "qty_received". If false, the
"unit cost" is calculated by dividing the
given-"total cost" by the given
"qty_received".

percentage range:
percentage range type := (5, 5);

Maximum low and-high percentage
difference between parts record's

-- "avg unit cost~ (also required of
-- "last unit cost") and the entered or
-- calculated-"unit cost" parameter.

valid: -out boolean);
Whether the entered or calculated unit cost
is within the given "percentage_range" of
cost on file.

Function:
Processing routine called from the Receipts
form to validate unit cost and to calculate and
return either total cost or unit cost.

Function:
Key catcher called from the "Receipts" or
"Change" form when the user presses the
"<Go-to-Inquiry>" key. Calls
"Process_inquiry_form".

When this procedure (key-catcher) is activated,

Ada Examples

PRELIMINARY

306 the enclosing form has been suspended. When
307 this procedure returns, the enclosing form
308 continues.
309
310
311 procedure Add supplier IO(
312 opened form: Form-Oefs.opened form AD);
313 Opened form to' which another "supplier IO"
314 -- field will be added. -
315
316 Function:
317 Key catcher called from the "Add" form when the
318 user presses the "<next>" key. Adds another
319 "supplier IO" field to current form, up to a
320 total of three.
321
322 end Inventory_Forms;
323

Ada Examples X-A-125

PRELIMINARY

X-A.S.S Inventory_Forms Package Body

X-A-126

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

with Data Definition Mgt,
Device Defs, -
Direct'Ory Mgt,
Form Defs;
Form-Handler,
Inventory Files,
Inventory-Menus,
Inventory-Windows,
Message Services,
Record AM,
System;
System Defs,
Terminal Defs,
Text Mgt;
Timed Requests Mgt,
Timing ConversIons,
Unchecked Conversion,
Window~Services;

package body Inventory_Forms is

function Get form(

is

form-pathname: System_Defs.text)
return Form_Defs.opened_form_AD

Logic:
Gets requested form from directory, opens
form.

Generic function:

function DDef from untyped is new
Unchecked-conversion (

source => System. untyped word,
target => Data_Definition_Mgt.DDef_AD);

opened form: Form Defs.opened form AD;
Returned opened form's AD: -

begin
opened form : = Form Handler .-Open form (

DDef => DDef fr'Om untyped(-
Directory-Mgt.Retrieve(
name => f'Orm_pathname)));

return opened_form;

procedure Process_inquiry_form

is

Logic:
1. Display form in main window
2. Get valid information ("part ID")
3. Read Parts Master File and dIsplay parts

record

opened form:
form status:

Form Defs.opened form AD;
Form=Defs.status=t; -

opened record form: Device Defs.opened device;
-- F'Or record access to "'Opened_form":

part ID:
parts_record:

length:
empty:

Inventory Files.part ID type;
Inventory=Files.parts_record_type;

System. ordinal;
boolean;

Ada Examples

Ada Examples

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

PRELIMINARY

error: boolean:

first time: boolean := true:

use Form_Defs: import "/=" for type
"Form_Defs.status_t"

use System: for "'size/8" arithmetic

begin

opened_form := Get_form(inquiry_form~athname):

-- Open form's DDef for record access:

opened record form := Record AM.Open by name(
name - => inquiry form pathname,
input_output => Device_Oefs.Inout):

Set up first rank (group) in "inquiry form"
pile:

Form Handler.Create group instances(
opened form a - => opened form,
group - - => inq part ID only,
number_of_instances => 1):- --

-- Read part ID, display, ask for another:

loop

Get first part ID:

form status := Form Handler.Get(
opened form a -=> opened form,
opened-window a => Inventory Windows.

- - main_window):

if form status /= Form_Defs.finished then

-- some kind of error processing
null:

else
Form Handler.Fetch value (

opened form a - => opened form,
element - => part 10 field,
subunit => System Defs.null text,

-- added subunit; value correct? -
value buffer VA => part ID'address,
value-length- => part:ID'size/8,
value-t =>

Data Definition Mgt.t string,
element value length => length,
empty - - => empty);

if empty then

EXIT;
end if:

user entered null part ID:
exit loop: return to menu

-- Read parts file, handle exceptions:

begin

Inventory Files.Read parts record (
part_ID- => part_ID,-
msg on error => true,
parts_record => parts_record);

if first time then
-- set-up other rank

first_time := false;

-- Remove first group (rank):

X-A-127

X-A-128

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

rK~LJ.M1.NAK y

Form Handler.Remove group instances(
opened form a - => opened form,
group - - => inq_part_ID_only,
number_of_instances => 1);

Add second group (rank):

Form Handler.Create group instances(
opened form a - => opened form,
group - - => inq_alI,
nUmber_of_instances => 1);

end if; -- If "first_time" through

Record AM.Ops.Update(
opened dev => opened record form,
buffer-VA => parts record' address,
length- => parts=record'size/8);

exception
when Inventory Files.not on file =>

null: - "Record-not found" message
has been displayed; go
through loop again

when InventorY_Files.invalid-part_ID =>

end;

null; "Invalid part ID entered"
message has been displayed:
go through loop again

end if: if form status = finished

end loop: read part_ID, display loop

Form Handler.Clear(
opened_form_a => opened_form);

Form Handler.Close forme
opened_form_a ~> opened_form);

Close record access to form:

Record AM.Ops.Close(
opened_dev => opened_record_form);

procedure Process_receipts_form

is

Logic:
1. Display form in main window
2. Get receipt information ("part ID",

"supplier", etc) -
3. Read Parts Master File to validate
4. If valid, update parts record, then write

log file record.

opened form:
form_status:

part ID:
parts_record:

length:
empty, error:

now:

Form Defs.opened form AD;
Form=Defs.status=t: -

Inventory Files.part ID type;
Inventory=Files.parts_record_type;

System. ordinal;
boolean;

Timing_Conversions.numeric_time;

import "1=" for type
"F"orm_Defs. status_t"

Ada Examples

Ada Examples

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305

use System; -- for "'size/8" arithmetic

begin

loop

form status := Form Handler. Get (
opened form a -=> opened form,
opened=window_a => Inventory Windows.

main_window);

if form_status /= Form_Defs.finished then

-- Some Rind of error processing
null;

else

Form Handler.Fetch value (
opened form a - => opened form,
element - => part 10 field,
subunit => System Defs.null text,

-- added subunit; value correct? -
value buffer VA => part ID'address,
value-Iength- => part=ID'size/8,
value-t =>

Data Definition Mgt.t string,
element value length => length,
empty - - => empty);

if empty then
--- null part_ID; return to menu

EXIT;
end if;

begin

Inventory Files.Read parts record(
part_ID => part_ID,
msg on error => true,
parts_record => parts_record);

Form Handler.Store value(
opened form a - => opened form,
element - => desc fIeld,
subunit => System Defs.null text,

-- added subunit; value-correct? -
value buffer VA =>

parts record.desc'address,
value length =>

parts record.desc'size/8,
value t - =>

Data_Definition_Mgt.t_string);

Form Handler.Store value(
opened form a - => opened form,
element - => unit fIeld,
subunit => System Defs.null text,

-- added subunit; value-correct? -
value buffer VA =>

parts record.unit'address,
value length =>

parts record.unit'size/8,
value t - =>

Data_Definition_Mgt.t_string);

now := Timing Conversions.
Convert stu to numeric time(

stu-=> Timed_Requests_Mgt.Get_time);

Form Handler.Store value(
opened_form_a - => opened_form,

X-A-129

X-A-130

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382

PRELIMINARY

element => in~date_field,
subunit => System Defs.null text,

-- added subunit; value-correct? -
value buffer VA => now' address,
value-length- => now'size/8,
value-t =>

Data_Definition_Mgt.t_date);

Form Handler.Store value(
opened form a - => opened form,
element - => inq time field,
subunit => System Defs.null text,

-- added subunit; value-correct? -
value buffer VA => now' address,
value-length- => now'size/8,
value-t =>

Data_Definition_Mgt.t_date);

exception

when Inventory Files.not on file =>
null; -"Record not found" message

has been displayed; go
-- through loop again

when Inventory Files.invalid part ID =>
null; -"Invalid part-ID entered"

message has been displayed;
go through loop again

end; -- Read parts record block

end if; -- if form status

end loop;

Form Handler.Clear(
opened_form_a => opened_form);

Form Handler.Close form(
opened_form_a ~> opened_form);

finished

end Process_receipts_form;

procedure Process update form(
selection: Terminal=Defs.menu_item ID)

is

Logic:
1. Get update form and create appropriate

subform
2. Get "part 10"
3. Read Parts Master File and display parts

record
4. Add, change, or delete part record
5. Write appropriate log record

opened form: Form Defs.opened form AD;
-- AD to opened "update" form. -

part ID:
parts record:

Inventory Files.parts record type;
new parts record: - -

-Inventory Files.parts record type;
log_record: - Inventory_Files.log_record_type;

opened record form: Device Defs.opened device:
-- For record access to "opened_form":-

length: System. ordinal;
-- Length of a returned record, in bytes.

empty: boolean;

Ada Examples

Ada Examples

383
384
385-
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459

Whether the entered "part_IOn field was
empty.

new part: boolean; -= True if this is a new part 10 (add only!).

use Form_Oefs; to import "/=" for
Form_Oefs.status_t

use System; for ,., size/8" arithmetic

begin

-- Open "update" form:

opened form := Get form(
update_form_pathname):

Create appropriate group instance
(add, change, delete):

case selection is

Form Handler.Create group instances(
opened form a - => opened form,
group - - => update-add,
number_of_instances => 1); -

when Inventory Menus.update change item =>
Form Handler~Create group-instances(

opened form a - => opened form,
group - - => update-change,
number_of_instances => 1); -

when Inventory Menus.update delete item =>
Form Handler~Create group-instances(

opened form a - => opened form,
group - - => update~delete,
number_of_instances => 1); -

when others =>
null;

end case;

-- Open form's DDef for record access:

opened record form := Record AM.Open by name(
name - => update form pathname,
input_output => Device=Defs~inout);

loop
Get a part ID:

form status := Form Handler.Get(
opened form a -=> opened form,
opened-window a => ~

Inventory=Windows.main_window);

if form_status /= Form_Defs.finished then

-- Some kind of error processing
null:

else

Form Handler.Fetch value(
opened form a - => opened form,
element - => part ID field,
subunit => System Defs.null text,

-- added subunit; value correct? -
value buffer VA => part .ID' address,
value-length- => part=ID'size/8,
value-t =>

Oata_Oefinition_Mgt.t string,

X-A-131

X-A-132

460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536

PRELIMINARY

element value length => length,
empty - - => empty):

if empty then
EXIT; -- exit loop

else
begin

-- Get parts record, if possible:

new_part := false:

Inventory_Files.Read-parts_record(
part IO => part IO,
parts_record => parts_record):

Record AM.Ops.Update(
opened dev => opened record form,
buffer-VA => parts record' address,
length- => parts:record'size/8);

exception
when Inventory Files.not on file =>

new_part := true; --

when Inventory Files.invalid part IO =>
null; -"Invalid part-IO -

end;

entered" message has
been displayed; go
through loop again

case selection is
when Inventory Menus.update add item =>

if new part then --
length := Record AM.Ops.Read(

opened dev => opened record form,
buffer-VA => parts record' address,
length- => parts:record'size/8);

Inventory Files.Write parts record (
parts:record => parts_record);

Create and write log record:

Inventory Files.Write log record(
parts record => parts record,
action => -

Inventory_Files.create);

end if;

when Inventory Menus.update change item =>
length : = Record AM. Ops. Read (-

opened dev => opened record form,
buffer-VA => - -

new parts record' address,
length - =>-

new-parts_record'size/8);

Inventory Files.Rewrite parts record (
parts:record => parts_record):

Create and write log record:

Inventory Files.Write log record(
parts-record => parts-record,
action =>.-

Inventory_Files.update):

when InventorY_Menusoupdate_delete_item =>

Inventory Files.Delete parts record(
part~ID => part_IO); -

Create and write log record:

Ada Examples

Ada Examples

537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613

Inventory Files.Write log record(
parts-record => parts-record,
action => -

Inventory_Files.delete);

when others =>
null;

end case;

end if; if not empty part ID

end if; if form finished

end loop;

Form Handler.Clear(
opened_form_a => opened_form);

Form Handler.Close forme
opened_form_a ~> opened_form);

Close record access to form:

Record AM.Ops.Close(
opened_dev => opened_record_form);

procedure Process report forme
report by part: -boolean:

is

-- True-if by part, false if by location.
report out dev: out System Defs.text)

Returned output device's pathname,
-- "System_Defs.null_text" if error.

Logic:
1. Open report form
2. Get report options and output device
3. Attempt opening and closing report

output device
4. Clear and close form
5. If any error occurred, return

"report_out_dev" as "null_text"

opened form:
form status:

length:
empty:

Form Defs.opened form AD;
Form=Defs.status=t; -

System. ordinal;
boolean;

report options: System. ordinal;
-- Report options field value.

valid: boolean;
-- Whether the report information is valid.

test out dev: System Defs.text(Incident Defs.txt length);
-Entered report output device pathname to be -

-- checked.

test opened dev: Device Defs.opened device:
-Opened-device returned from

-- "Record AM. Open" (test to see if
-- entered-device pathname is valid).

use Form_Defs; import "/=" for type
"Form_Defs.status_t"

use System; for .It size/8" arithmetic

begin

opened_form := Get_form(report_form-pathname);

X-A-133

X-A-134

614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690

PKt;LIM1NAK Y

form status := Form Handler.Get(
opened form a -=> opened form,
opened-window a => Inventory Windows.

- - main_window);

if form_status /= Form Defs.finished then

-- some kind of error processing
null;

else

Form Handler.Fetch value(
opened form a - => opened form,
element - => rpt type field,
subunit => System Defs.null text,

-- added subunit; value correct? -
value buffer VA =>

report by part' address,
value length - => report by part'size/8,
value-t => - -

Data Definition Mgt.t boolean,
element value length => length,
empty - - => empty);

valid := not empty;

Form Handler.Fetch value(
opened ferm a - => opened form,
element - => rpt opt field,
subunit => System Defs.null text,

-- added subunit; value correct? -
value buffer VA =>

report options' address,
value length => report options'size/8,
value-t =>-

Data Definition Mgt.t ord4,
element value length => length,
empty - - => empty);

valid := valid and (not empty);

Form Handler.Fetch value(
opened form a - => opened form,
element - => rpt dev field,
subunit => System Defs.nuIl_text,

-- added subunit; value correct?
value buffer VA =>

test out-dev'address,
value length- => test out dev'size/8,
value-t =>-

Data Definition Mgt.t string,
element value length => length,
empty - - => empty);

valid := valid and (not empty);

-- Try to open device at the new pathname:

begin

test opened dev := Record AM.Open by name(
name - => test out dev,- -
input_output => Device_Defs.output);

Record AM.Ops.Close(
opened_dev => test_opened_dev);

exception

when others =>
valid := false;

Message Services.Write_msg(

Ada Examples

Ada Examples

691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767

PRELIMINARY

msq id => invalid output device code,
param1 => Incident_Defs.messaqe=parameter(

typ => Incident Defs.txt,
len => test out-dev.lenqth)' (

typ -=> Incident Defs.txt,
len => test out-dev.lenqth,
txt_val => test=out=dev»;

end; -- test open

end if; -- if form status finished

Form Handler.Clear(
opened_form_a => opened_form);

Form Handler.Close form (
opened_form_a ~> opened_form);

if valid then
report out dev := test_out_dev;

else - -
report out dev := System_Defs.null_text;

end if; - -

-- Form Processing Routine & Key Catchers:

procedure Validate cost(
old parts record:

-Inventory Files.parts record type;

is

qty received:- --
-Inventory Files.qty type;

total cost: - in out
Inventory Files.cost type;

unit cost: - in out
Inventory Files.cost type;

total: - - boolean := true;
percentage_range:

percentage range type := (5, 5);
valid: - - out boolean)

Logic:
Called from. the Receipts form to validate unit
cost and to calculate and return either total
cost or unit cost.

max_cost, min cost: float;

use System; -- to import "*" and "I"

begin

Calculate total or unit cost:

if total then
total cost .- float(unit cost) *

float(qty_received);
else

unit cost

end if;

:= float (total cost) I
float (qty_received);

Calculate minimum and maximum acceptable unit
costs:

min cost := float (old parts record.avg unit cost) *
-(1.0 - float(percentage-range.percent less)

I 100.0); - -

max cost := float (old parts record.avq unit cost) *
-(1.0 + float(percentage-range.percent less)

/ 100.0); - -

X-A-135

X-A-136

768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823

-- Check unit_cost against average cost:

valid := (unit cost >= min cost) and
(unit=cost <= max=cost);

end Validate_cost;

is

Logic:
Called from the "Receipts" or "Change" form.

Calls "Process inquiry form". Enclosing
(calling) form-is suspended during key-catcher
call, resumed upon return from this procedure.

begin

Process inquiry_form;

procedure Add supplier ID(
opened_form: Form=Defs.opened_form_AD)

is

Logic:
Called from the "Add" form.

Calls "Process inquiry form". Enclosing
(calling) form-is suspended during key-catcher
call, resumed upon return from this procedure.

begin

begin
-- Add another instance of the supplier ID group.
Form Handler.Create group instances(

opened form a - => opened form,
group - - => suppliers field,
number_of_instances => 1); -

exception
when Form Handler.maximum_number_reached => null;

end;

end Inventory_Forms;

Ada Examples

PRELIMINARY

X-A.S.6 Inventory_Menus Package Specification

Ada Examples

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

with Device Defs,
Incident Defs,
Inventory Messages,
System, -
System Defs,
Terminal Defs,
Window_Services;

package Inventory_Menus is

Function:
Contains subprograms to install and process
Inventory Example Program menus.

This package contains the routines which
perform each menu's selection actions. Some of
the menu selections require calls to the
"Inventory Forms" and "Inventory Reports"
packages. - -

History:
05-18-87, William A. Rohm: Written.
10-27-87, WAR: Revised.

End.of Header

-- Incident codes for messages:

module: constant:= 4;
-- Message module index.

M set.language :language = English
M create. variable module :value = 4

unable to install code: constant
Incident Defs~incident code :=

message object =>-
Inventory Messages.message object,

module - => module, -
number => 0,
severity =>

Incident_Defs.error);

M store :module = $module :number = 0\
M :msg name = unable install \
M :short = "Unable to install menus."

no selection code: constant
- Incident-Defs.incident code := (

message object =>-
Inventory Messages.message object,

module - => module, -
number => 1,
severity =>

Incident_Defs.warning);

M store :module = $module :number = 1\
M :msg name = no selection\
M :short = "Selection $pl<selection
M number> is not implemented."

menu group DDef path:
System -Defs~text (34) : = (34,34,

"/examples/inventory/DDef/menu DDef");
Pathname of stored menu group DDef.

menu group DDef root name:
System-Defs~text(4) := (4,4,"root tl

);

-- Pathname of menu group DDef's root node.

X-A-137

X-A-138

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

I'KKLIM1NAK Y

Terminal Defs.menu group ID := 1;
-- Inventory menu group/s ID.

-- Menu IDs
inquiry menu ID: constant

Terminal:Defs.menu_ID := 1;

posting menu ID: constant
Terminal:Defs.menu_ID := 2;

update menu ID: constant
Terminal_Defs.menu_ID := 3;

report menu IO: constant
Terminal_Defs.menu_ID := 4;

housekeeping menu ID: constant
Terminal-Oefs~menu_ID := 5;

exit menu ID: constant
Terminal_Defs.menu_IO .- 6:

Inquiry menu items
inq by part item: constant

-Terminal Oefs.menu item ID := 1:
inq by desc Item: constant­

-Terminal Oefs.menu item IO := 2;
inq exit item: constant-

-TermInal_Oefs.menu_item_IO := 3;

-- Posting menu items
post receipt item: constant

Terminal-Defs.menu item ID := 1;
post issue item: constant

Terminal Oefs.menu item IO := 2:
post return Item: constant

Terminal Defs.menu item ID := 3:
post spoilage item: constant

Terminal Defs.menu item ID := 4;
post journal-item: constant

Terminal-Defs.menu item ID := 5;
post exit item: constant

Terminal_Defs.menu_item ID := 6:

-- Update menu items
update add item: constant

Terminal Defs.menu item ID := 1:
update change item: constant

Terminal Defs.menu item ID .- 2;
update delete item: constant

Terminal Defs.menu item IO := 3;
update exit Item: constant

Terminal_Defs.menu_item ID := 4:

-- Report menu items
report_by~art_item: constant

Terminal Defs.menu item IO := 1;
report by location item: constant

Terminal Oefs.menu item IO := 2;
report exit Item: - constant

Terminal_Defs.menu_item_IO := 3:

Housekeeping menu items
hskpg index item: constant

Terminal Defs.menu item ID := 1;
hskpg exit item: constant­

Terminal_Defs.menu_item ID := 2;

-- Function:

Ada Examples

Ada Examples

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205

PREUMINARY

Retrieve Inventory Example Program's menu
group description (*a menu DDef*), then
install and enable the menu group in the main
window.

Menu selection processing procedures:
Inquiry / Posting / Update / Report / Housekeeping

procedure Process inquiry menu(
selection: Terminal Defs.menu item ID);

-- Selection made In this menu.

Function:
Processes selections from the Inquiry menu.

procedure Process posting menu(
selection: Terminal Defs.menu item ID):"

-- Selection made In this menu.

Function:
Processes selections from the Posting menu.

procedure Process update menu(
selection: Terminal-Defs.menu item ID);

-- Selection made In this menu.

Function:
Processes selections from the Update menu.

procedure Process report menu(
selection: Terminal-Defs.menu item ID);

-- Selection made In this menu.

Function:
Processes selections from the Report menu.

procedure Process housekeeping menu(
selection: Terminal Defs.menu item ID);

-- Selection made In this menu. -

Function:
Processes selections from the Housekeeping
menu.

end Inventory_Menus;

X-A-139

PRELIMINARY

X-A.S.7 Inventory_Menus Package Body
1 with Data Definition Mgt,
2 Device Defs 8 -

3 Directory Mgt,
4 File Admin,
5 File-Defs,
6 Incident Defs,
7 Inventory Files,
8 Inventory=Forms,
9 Inventory Messages,

10 Inventory-Reports,
11 Inventory-Windows,
12 Message Services,
13 Record AM,·
14 System-Defs,
15 Terminal Defs,
16 Unchecked Conversion,
17 Window_Services;
18
19 package body Inventory_Menus is
20
21 -- Generic function:
22
23 function DDef from untyped is new
24 Unchecked-conversion (
25 source => System. untyped word,
26 target => Data_Definition_Mgt.DDef_AD);
27
28 Variables:
29
30 menu group DDef AD: Data Definition Mgt.DDef AD;
31 ---AD to-stored menu group DDef. - -
32
33 menu group node:
34 Data Definition Mgt.node reference;
35 -- Node reference-to stored menu group DDef.
36
37
38 procedure Set_up_menu_group
39
40 is
41
42 begin
43
44 -- Retrieve menu group's DDef:
45
46 menu group DDef AD := DDef from untyped (
47 Directory Mgt.Retrieve(-
48 name ~> menu_group_DDef_path));
49
50
51 -- Retrieve menu group's root node:
52
53 menu group node := Data Definition Mgt.
54 Retrieve DDef(- -
55 DDef-=> menu group DDef AD,
56 name => menu=group=DDef=root_name);
57
58
59 Install menu group:
60
61 Window Services.Ops.Install menu group(
62 window => Inventory WIndows.
63 main window,
64 menu group => menu-group node,
65 ID - => inv_menu_group_ID);
66
67 -- Enable menu group:
68
69 Window Services.Ops.Menu group enable(
70 window => Inventory Windows.
71 main window,
72 menu group => inv menu group ID,
73 enable => .true): - -
74

X-A-140 Ada Examples

Ada Examples

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

I'KELIMlNAK r

procedure Process_inquiry_menu(

is

selection: Terminal Defs.menu item ID)
-- Selection made In this menu.

Logic:
Determine item selection, perform actions.

begin

case selection is

when inq by part item => Inventory Forms.
Process=inquIry_form; -

Message Services.Write msg(
msg-id => no selection code,
param1 => - -

Incident Defs.message parameter(
typ => Incident Defs.ord,
len => 0)' (-

typ => Incident Defs.ord,
len => 0, -
oval => selection));

when inq_exit_item =>
return;

when others => null;

end case;

procedure Process posting menu (
selection: Terminal nefs.menu item ID)

-- Selection made In this menu.
is

Logic:
Determine item selection, perform actions.

begin
case selection is

when post receipt item => Inventory Forms.
Process_receipts_form; -

when post issue item
post-return item
post-spoilage item
post=journal_Item =>

Message Services.Write msg(
msg-id => no selection code,
param1 => Incident Defs.message parameter(

typ => Incident Defs.ord, -
len => 0)' (-

typ => Incident Defs.ord,
len => 0, -
oval => selection));

when post_exit_item =>
return;

when others => null;

end case;
end Process_posting_menu;

X-A-141

X-A-142

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

PRELIMINARY

procedure Process update menu(
selection: Terminal-Oefs.menu item IO)

-- Selection made in this menu.
is

Logic:
Determine item selection, perform actions.

begin

case selection is

when update add item
update-change item
update=delete=item =>

Inventory Forms.Process update form (
selection => selectIon); -

when update exit item =>
return; - -

when others => null;

end case;

procedure Process report menu(
selection: Terminal-Oefs.menu item 10)

-- Selection made In this menu.
is

begin

case selection is

Inventory Forms.Process report form(
report by part => true, -
report=out_dev => report_out_dev);

Inventory Reports.Print report by part (
output_dev_pathname-=> report=out_dev);

Inventory Forms.Process report form(
report by part => false, -
report=out_dev => report_out_dev);

Inventory Reports.Print report by location(
output_dev_pathname-=> report=out_dev);

when report exit item =>
return; - -

when others => null;

end case;

end Process_report menu;

procedure Process housekeeping menu(
selection: Terminal Defs.menu item 10)

-- Selection made In this menu. -
is

begin

Ada Examples

Ada Examples

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251

I"KELIM1NAK Y

case selection is

File Admin.Reorganize index(
file => File Defs.Convert device to file(

s => Record AM.Ops.Get-device-object(
opened dev => - -

Inventory_Files.parts_file»,
index =>

Inventory_Files.part_ID_index_name);

when hskpg exit item =>
return; - -

when others => null;

end case;

end Process_housekeeping_menu;

end Inventory_Menus;

X-A-143

PRELIMINARY

X-A.S.8 Inventory_Reports Package Specification

X-A-144

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

with Device Defs,
Incident Defs,
Inventory_Messages,
System,
System Defs,
Terminal Defs,
Window_Services;

package Inventory_Reports is

Function:
Contains two procedures to process and
print either of the Inventory Program
reports (by part ID solely, or by part
location and then part ID) from the
Inventory Parts file.

One or the other of these procedures is
called from the Report Menu by the
apppropriate menu selection: "Print
"Report by Part", or "Print Report by"
"Location".

History:
05-21-87, William A. Rohm: Written.
10-27-87, WAR: Revised.

End of Header

Incident codes for messages:

module: constant:= 6;
-- Message module index.

--*M*
--*M*

set. language :language = English
create. variable module :value = 6

report printing code: constant
Incident DeIs.incident code := (

message object => -
Inventory Messages.message object,

--*M*
--*M*
--*M*
--*M*
--*M*
--*M*

module - => module, -
number => 0,
severity =>

Incident_Defs.information);

store :module = $module :number = 0\
:msg name = report printing \
:short = "Inventory parts file

report by $pl<part/location>
is now printing on device
$p2<output device name>."

report by part DDef str: constant string :=
"/example/lnventory/DDefs/report by part";
String constant for "report by part"

-- report DDef's pathname.

report by part DDef pathname:
System Defsotext(

report by part DDef str'length) := (
report by part DDef str'length,
report-by-part-DDef-str'length,
report-by-part-DDef-str);

Text constant-from "report-by part"
DDef's pathname string.

report by loc DDef str: constant string
"/example7inventory/DDefs/report by locat on";

String constant for "report -by -locat on"
-- report DDef's pathname.

Ada Examples

PRELIMINARY

75 report_by_loc_DDef-pathname:
76 System Defs.text(
77 report by loc DDef str'length) := (
78 report by-Ioc DDef str'length,
79 report-by-loc-DDef-str'length,
80 report-by-loc-DDef-str);
81 Text constant-from "report by location"
82 DDef's pathname string.
83
84
85 sort by loc DDef str: constant string :=
86 "/example/inventory/DDefs/sort by location";
87 String constant for "sort-by-location"
88 -- "(then by part ID)" sort DDef's pathname.
89
90 sort by loc DDef pathname:
91 System Defs.text(
92 sort by loc DDef str'length) := (
93 sort by-Ioc DDef str'length,
94 sort-by-Ioc-DDef-str'length,
95 sort-by-loc-DDef-str);
96 Text constant from-"sort by location"
97 DDef's pathname string.
98
99

100 procedure Print report by part (
101 output dev pathname: -System Defs.text):
102 Pathname of output device for
103 printing report. Can be any device
104 supporting the byte stream access
105 method.
106
107 Function:
108 Prepares report *by part ID* from parts
109 file, then prints report to given
110 output device.
111
112
113 procedure Print report by location(
114 output dev pathname: -System Defs.text):
115 Pathname of output device for
116 printing report. Can be any device
117 supporting the byte stream access
118 method.
119
120 Function:
121 Sorts parts file by location (and then
122 by part ID) into temporary file, then
123 prints report to given output device.
124
125 end Inventory_Reports:

Ada Examples X-A-145

PRELIMINARY

X-A.S.9 Inventory_Reports Package Body

Note: This example could not be compiled successfully due to the absence of the the
Report _Handler package at the time of this printing.

1 with Byte Stream AM,
2 Data-Definition Mgt,
3 Device Defs, -
4 Directory Mgt,
5 Event Mgt;
6 File Admin,
7 File-Defs,
8 Incident Defs,
9 Inventory Files,

10 Inventory-Windows,
11 Message Services,
12 Passive-Store Mgt,
13 Pipe Mgt, -
14 Process Mgt,
15 Process-Mgt Types,
16 Record AM, -
17 Report-Handler,
18 Sort Merge Interface,
19 System,-
20 System Defs,
21 Terminal Defs,
22 Unchecked conversion,
23 VOlume_set_Defs;
24
25 package body Inventory_Reports is
26
27 History:
28 05-21-87, William A. Rohm: Written.
29 10-27-87, WAR: Revised.
30
31 End of Header
32
33 Generic function:
34
35 function DDef from untyped is new
36 Unchecked-conversion (
37 source => System. untyped word,
38 target => Data_Definition_Mgt.DDef_AD);
39
40 Type:
41
42 type connection record is
43 Defines sort pipe's input and output, for
44 "Sort" and "Print" processes (called by
45 "Print report by location").
46 record - --
47 sort out: Device Defs.opened_device;
48 ---Output from "Sort" to pipe.
49 report in: Device Defs.opened device;
50 -- Input from pipe to "Print":
51 report out: Device Defs.opened device;
52 -- Output device for "Print". -
53 end record;
54
55
56 procedure Print report by part (
57 output_dev_pathname: -System_Defs.text)
58
59 Logic:
60 1. Open parts file for reading
61 2. Open report output device
62 3. Get report DDef and initialize report
63 4. Print report and display message
64
65 is
66
67 opened output: Device Defs.opened device;
68 -- Opened output devIce for printing report.
69
70 report DDef: Data Definition Mgt.DDef AD;
71 -- AD to a report data definition. -

X=A=146 Ada Examples

Ada Examples

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

initialized report: Device Defs.opened device;
-- Initialized (opened) report object-itself.

local parts file: Device Defs.device :=
Record AM.Ops.Get devIce object (

Inventory Files.parts file);
AD to parts fIle. -

opened local parts file:
Device Defs.opened device;

-- AD to-locally opened parts file.

part: System Defs.text(4) := (4,4,"part");
Parameter to "report printing" message,
since this report is-by "part".

begin

Open parts file for reading, so no
concurrent updates will interfere:

opened local parts file := Record AM.Ops.Open(
dev - => local parts fIle,
input output => Device Defs~input,
allow- => Device=Defs.readers);

-- Open output device:

opened_output := Byte_Stream_AM.Open_by_name(
name =>

output dev pathname,
input output =>

Device_Defs.output);

-- Get report definition (DDef):

report DDef := DDef from untyped(
Directory Mgt.Retrieve(

name ~> report by part DDef pathname»;
Assume "Report_Handler. Is_report".

-- Initialize report:

initialized report := Report Handler. Initialize (
description => report DDef,
input => opened-local parts file,
output => opened=output); -

-- Print report:

Report Handler.Print(
report => initialized_report);

-- Display "report_printing" message:

Message Services.Write msg(
msg-id => report printing code,
param1 => Incident Defs.message parameter(

typ => Incident Defs.txt, .-
len => part.length)' (

typ => Incident Defs.txt,
len => part.length,
txt val => part),

param2 => Incident Defs.message parameter(
typ => Incident Defs.txt, -
len => output dev pathname.length)' (

typ => Incident Defs.txt,
len => output dev pathname.length,
txt val => output dev pathname),

device => Inventory_Windows.message_window);

X-A-147

X-A-148

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218·
219
220
221
222
223
224
225

rK~L1Nll~AK I

-- Close locally opened parts file:

Record AM.Ops.Close(
opened_dev => opened_local_parts_file);

procedure Sort(

is

param buffer: System. address;
-- Address of connection record.

param length: System. ordinal)
Not used in this procedure, but required for

-- process's initial procedure.

Logic:
1. Open local copy of parts file (sort input)
2. Get sort DDef and perform sort

conn rec: connection record;
---Record containing pipe input/output devices.
FOR conn_rec USE AT param_buffer:

local parts file: Device Defs.device :=
Record AM.Ops.Get devIce object (

Inventory Files.parts file);
AD to parts fIle. -

opened local parts file: Device Defs.opened device;
-- AD to locally-opened parts file. -

opened sort DDef:
Device Defs.opened device;

sort DDef reference: -
Data_Definition_Mgt.node_reference;

begin

Open parts file for reading, so no
concurrent updates will interfere:

opened local parts file := Record AM.Ops.Open(
dev - => local parts fIle,
input output => Device Defs~input,
allow- => Device=Defs.readers);

-- Open sort definition (DDef):

opened_sort_DDef := Record_AM.Open_by_name(
name =>

sort by loc DDef pathname,
input output =>-Device Defs.input,
allow- => Device-Defs.readers,
block => true);-

Get sort DDef's node reference:

sort DDef reference :=
Record AM.Ops.Get DDef(

opened_dev =>-opened_sort_DDef);

Perform sort, using sort DDef, from parts
file to pipe:

Sort Merge Interface.Sort(
Input device =>

opened local parts file,
DDef - =>-sort DDef reference,
output device => conn-rec.sort out,
stable-sort => true; -
tuning-opts =>

Sort_Merge_Interface.no_tuning);

Ada Examples

Ada Examples

226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302

-- Close locally opened parts file:

Record AM.Ops.Close(
opened_dev => opened_localyarts_file);

end Sort;
pragma subprogram value (

Process Mgt.Initial proc,
sort); - -

procedure Print(
param buffer: System. address;

-- Address of connection record.
param length: System. ordinal)

Not used in this procedure, but required for
-- process's initial procedure.

Logic:
1. Get report DDef
2. Open report output
3. Get report DDef and initialize report
4. Print report from pipe output.

is

report DDef: Data Definition Mgt.DDef AD;
-- AD to a report data definition. -

initialized report: Device Defs.opened device;
-- Initialized (opened) report object-itself.

conn rec: connection record;
---Record containing pipe input/output devices.
FOR conn rec USE AT param_buffer;

begin

-- Get report definition (DDef):

report DDef := DDef from untyped(
Directory Mgt.Retrieve(

report_by_loc_DDef_pathname»;

Initialize report:

initialized report := Report Handler.Initialize(
description => report DDaf,
input => conn rac.report in,
output => conn=rec.report=out);

Print report:

Report Handler.Print(
report => initialized_report);

Close report output device:

Record AM.Ops.Close(
opened_dev => conn_rec.report_out);

end Print;
pragma subprogram value (Process Mgt.Initial proc,

- Print);- -

procedure Print report by location(
output_dev_pathname: -System_Defs.text)

Logic:
1. Open pipe input (sort output) and

output (report input)
2. Spawn "Sort" and "Print" processes
3. Wait for termination of processes
4. Deallocate processes
5. Display "report printing'" message

is

X-A-149

X-A-150

303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
.322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379

r KJ!,LllYU.l~AK I

conn rec: connection record;
-Record referencing all I/O connections used by

-- the child processes.

sort pipe: Pipe Mgt.pipe AD;
---Pipe from sort output to report input.

this process untyped: System. untyped word;
-Process-executing call to -

"Print report by location", as an
untyped word.- -

sort process: Process Mgt Types.process AD;
---Process executing -"Sort". -

print process: Process Mgt Types.process AD;
Process executing "Print". -

term events: Event Mgt.action record list(2);
-Array that receives termination events of the

-- two child processes.

location: System Defs.text(8) := (8,8,"location");
Parameter to-"report printing" message, since
this report is by "location".

begin

-- Create pipe:

Open sort output, report input, and report
output devices:

conn rec := (
sort out => Record AM.Ops.Open(

Pipe Mgt.Convert pipe to device (
sort pipe), - --

Device Defs.output),
report in - => Record AM.Ops.Open(

Pipe Mgt.Convert pipe to device(
sort-pipe), - --

Device Defs.input) ,
report out- => Record AM.Open by name(

output dev pathname, --
Device=Defs.output»);

-- Get this process's AD:

this process untyped :=
Process Mgt.Get process globals entry(

Process_Mgt=Types.process);-

Spawn "Sort" process:

sort process := Process Mgt.Spawn process (
Init proc => Sort' subprogram value,
param buffer => conn rec'address,
term action => (-

event => Event Mgt.user 1,
message => System. null address,
destination => this_process_untyped»;

Spawn "Print" process:

print process := Process Mgt.Spawn process (
init proc => Print' subprogram value,
param buffer => conn rec'address;
term action => (-

event => Event Mgt.user 2,
message => System. null address,
destination => this_process_untyped);

Wait for both processes to finish:

Ada Examples

Ada Examples

380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415

rK~L1Nll~AK I

Event Mgt.Wait for all(
events => - -

(Event Mgt.user 1 Event_Mgt.user_2 =>
true, -

others => false),
action_list => term_events);

The two processes must have terminated, so they
can be deallocated:

Process Mgt.Deallocate(sort process);
Process=Mgt.Deallocate(print_process);

-- Display "report printing" message:

Message Services.Write msg(
msg id => report printing code,
param1 => Incident Defs.message parameter(

-- "location" - -
typ => Incident Defs.txt,
len => location~length)' (

typ => Incident Defs.txt,
len => location~length,
txt val => location),

param2 => Incident Defs.message parameter(
-- "output device pathname" -

typ => Incident Defs.txt,
len => output dev pathname.length)' (

typ => Incident Defs.txt,
len => output dev pathname.length,
txt_val => output_dev_pathname»);

end Inventory_Reports;

X-A-151

PRELIMINARY

X-A.S.1 0 Inventory_Windows Package Specification
1 with Device Defs,
2 Terminal_Defs;
3
4 package Inventory_Windows is
5
6 Function:
7 Contains procedures to open and close the two
8 Inventory Program windows: the main window and
9 the message window.

10
11 The main window is used for menu and form
12 display and for user data entry. The message
13 window is only used to display status and error
14 messages to the user.
15
16 History:
17 06-04-87, William A. Rohm: Written.
18
19 End of Header
20
21 Constants:
22
23 module: constant:= 2;
24 Message module index value, for this
25 -- package's messages. Not currently used.
26
27 main window size: Terminal_Defs.point_info:=
28 80,20);-
29 -- Size of main window, in columns and rows.
30
31 main buffer size: Terminal_Defs.point_info:=
32 80,20);-
33 -- Size of main window's buffer.
34
35 main window pos: Terminal_Defs.point_info:= (
36 1,1); -
37 -- Position of main window (upper left corner).
38
39 message window size: Terminal_Defs.point_info:=
40 80,3);-
41 -- Size of message window, in columns and rows.
42
43 message buffer size: Terminal_Defs.point_info:=
44 80,3) ; -
45 -- Size of message window's buffer.
46
47 message window pos: Terminal Defs.point info :=
48 1, I + main window pos.vert); -
49 Position of message window (just below main
50 -- window) •
51
52 Variables:
53
54 main window: Device Defs.opened device;
55 -Main window, for displaying-menus and forms
56 and getting user input. Usable by other
57 modules after "Open program windows" has been
58 called. --
59
60 message window: Device Defs.opened device;
61 Message window, for status and-error
62 messages. Usable by other modules after
63. -- "Open_program_windows" has been called.
64
65
66
67 procedure Open_program_windows;
68
69 Function:
70 Open both program windows (main and message)
71 on the current terminal.
72
73 The main window is for the Inventory
74 Program's menus and forms. The message

X-A-152 Ada Examples

PRELIMINARY

75 window is opened, for message display.
76
77 The main window is opened at the top of the
78 screen. The message window is opened below
79 the main window.
80
81
82
83 procedure Close_program_windows;
84
85 Function:
86 Closes both Inventory Program windows: main
87 window and message window.
88
89
90 end Inventory_Windows;
91

Ada Examples X-A-153

PRELIMINARY

X-A.S.11 Inventory_Windows Package Body

X-A-154

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

with Byte Stream AM,
Device Defs;
Process Mgt,
Process=Mgt_Types,
System,
Terminal Defs,
Window_Services;

package body Inventory_Windows
is

procedure Open_program_windows

is

Logic:
1. Gets device AD to underlying terminal.
2. Opens main window, assigning

"inventory main". "
3. Opens message window, assigning

'"inventory_message".

old opened window:
old-window:
underlying_terminal:

Device Defs.opened device;
Device-Defs.device;
Device=Defs.device;

begin

Assume standard input, on entry, is from an
opened window:

old opened window :=
-Process" Mgt.Get process globals entry(

process_Mgt=Types.standard_Input);

-- Get device object of standard input window:

old window := Byte Stream AM.Ops.Get device object (
-old_opened_window); - --

Get device AD of standard input window's
terminal:

underlying terminal :=
Window-Services.Ops.Get terminal(

old_window); -

Create new main window:

main window := Window Services.Ops.Create window(
terminal - => underlying terminal,
pixel units => false, -

-- characters, not pixels
fb size => main buffer size,
desired window size => main-window-size,
window_pas - => main=window=pos,
view-pos =>

Terminal_Defs.point info' (1,1));

-- Create new message window:

message window :=
terminal
pixel units

Window Services.Ops.Create window(
~> underlying terminal,
=> false, -

fb size
desired window size
window_pos -

=> message buffer size,
=> message-window-size,
=> message=window=pos,

view pas =>
Terminal_Defs.point_info' (1,1));

Ada Examples

75 procedure Close_program_windows
76
77 Logic:
78 1. Closes main window.
79 2. Closes message window.
80
81 is
82
83 begin
84
85 Window_Services.Ops.Destroy_window(main_window);
86
87 Window_Services.Ops.Destroy_window(message_window);
88
89 end Close_program_windows;
90
91 end Inventory_Windows;

Ada Examples X-A-155

PRELIMINARY

X-A.S.12 Inventory~Messaqes Package Specification
1 with Incident_Defs,
2 System,
3 System_Defs;
4
5 package Inventory_Messages is
6
7 Function:
8 Defines Inventory Example Program's message
9 object, used for all incident code declarations

10 in the program.
11
12 Each package defines its own messages (using
13 tagged message definitions) with its unique
14 module number.
15
16 History:
17 07-27-87, William A. Rohm: Written.
18 10-27-87, WAR: Revised.
19
20 End of Header
21
22 Constants:
23
24 message file: constant System Defs.text AD :=
25 new-System Defs.text' (- -
26 31,31,"!example!inventory!message file");
27 AD to message file text name. -
28
29 *This will go away when "pragma bind" changes.*
30
31
32 message object: constant System. untyped word :=
33 System. null_word; -
34
35 pragma bind (message object,
36 "inventory messages.message file");
37 Message object for Inventory Program Incident
38 codes. Bound to "message file" constant by
39 pragma "bind". -
40
41 *When the resident compiler/linker is in place,*
42 *this pragma will become:*
43 I pragma bind(message object,
44 I "/example/inventory/message_file");
45
46 end Inventory_Messages;

X-A.6 Program Services

X-A-156 Ada Examples

rK~L.lIVlll~fU." I

X-A.6.1 At cmd ex Procedure

Ada Examples

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

with At Support Ex,
Command Handler,
Oevice Defs,

is

Long Integer Oefs,
Message servIces,
System Defs,
Timed_Requests_Mgt;

Function:
This procedure will run a command at a specified time.
It sets defaults for unspecified parameters and
parses mandatory and specified time parameters
and calls subprogram that will initial a new session
and job to run the command. The prompt will
return after the new job is started. The until
and count arguments are only effective if period is
set

History:
04-05-88, Ed Sassone, creation date
05-20-88, Ed Sassone, working version

End of Header

Command Oefinition:
at cmd ex :time=<extended string list(1 .. 25(1 •. 11))>

- - :command=<extended strIng(1 •• 80»
[:period=<extended-string list (0 •. 25 (0 •. 11)) >:= (" () ") 1
[:until=<extended string list (0 .. 2S (0 .. 11)) >: = (" () ") 1
[:count=<integer(1 .• 1_000»:=1_000 l

--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*

manage. commands
create.invocation commarid

define. argument time \
:type = string list
set.maximum length 25 11
set.mandatory

end

define.argument command \
:type = string
set.maximum length 80
set.mandatory

end

define. argument period \
:type = string list
set.maximum length 25 11
allow.null values :list :element
set. value default "()"

end -

define. argument until \
:type = string list
set.maximum length 25 11
allow.null values :list :element
set. value default "()"

end -

define. argument count \
:type=integer
set.value default 1000
set.bounds 1 •• 1000

end

function ($$upper) NYI
open bounds NYI

end create. invocation command

X-A-157

X-A-158

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

PRELIMINARY

-- for time comparison

odo: Device_Defs.opened_device;

-- parameters
time: System Defs.string list(25) :=

(25, 0, 0, (others => ' 'T);

command: System Defs.text(80) :=
(80, 0, (others => ' '»;

period: System Defs.string llst(25) :=
(25, 0, 0, (others => ' ') T;

until: System Defs.string list(25) :=
(25, 0, 0, (others => ' '»);

count: integer;

start at: System Defs.system time units :=
System Defs.null time; - -

-- stu equivalent of time

next at: System Defs.system time units :=
System Defs.null time; - -

-- stu equivalent of period

until at: System Defs.system time units :=
Long Integer Defs.max int;- -
stu-equivalent of until

begin

odo := Command Handler.
Open_invocation_command_processing;

Command Handler.Get string list(
cmd-odo => ado, -
arg-number => 1,
arg=value => time);

Command Handler.Get string(
cmd-odo => odo,
arg-number => 2,
arg=value => command);

Command Handler.Get string list(
cmd-odo => odo, -
arg-number => 3,
arg=value => period);

Command Handler.Get string list(
cmd-odo => odo, -
arg-number => 4,
arg=value => until);

count :=
Command Handler.Get integer (

cmd-odo => odo,
arg=number => 5);

Command_Handler.Close(odo);

-- parse timing arguments

start at :=
At Support Ex.Parse time(

- time - => time,
from_when => Timed_Requests_Mgt.system_epoch);

if period. length > 4 then
-- keep defaults if nothing assigned
next at :=

At_Support_Ex.parse_time(

Ada Examples

Ada Examples

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

r K.r.LJ.1Vlll~A.K·I

time => period,
from when => Timed_Requests_Mgt.now);

else
count := 1;

end if;
if no period do command only once

if until.length > 4 then
-- keep defaults if nothing assigned
until at :=

At Support Ex.Parse time(
- time - => until,

from_when => Timed_Requests_Mgt.system_epoch);
end if;

Message Services.Write msg(
msg-id => At Support Ex.prior time warning code);

end if; - - - - - -

-- creates new session and job so prompt will return
At Support Ex.Create waiting process (

-invocatIon record-=> At Support Ex.program record' (
command => command, - -
stu start => start at,
stu:geriod => next_at,
stu until => until at,
count => count);

X-A-159

YKJ4.;L1M1NAK Y

X-A.6.2 At_Support_Ex Package Specification

X-A-160

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

with Incident Defs,
Process Mgt,
Timed Requests Mgt,
System, -
System_Defs;

Function:
Provides support for At cmd ex. Parses time
arguments and invokes the gIven command either
once at the specified time or from the given time
multiple times based on a specified period until
a given count or time limit, whichever is first.

History:
04-05-88, Ed Sassone, creation date
05-20-88, Ed Sassone, working version

Exception Codes:
msg obj: constant System. untyped word :=

- System. null_word; -use oeo

time format error code: constant Incident_Defs.
Incident code-:= (

module
number
severity
message object

day format error code:
-incident code := (

=> 0,
=> 1,
=> Incident Defs.error,
=> msg obj);
constant Incident_Defs.

module => 0,
number => 2,
severity => Incident Defs.error,
message_object => msg_obj);

prior time warning code: constant
incident code := (

module => 0,
=> 3,

Incident_Defs.

number
severity
message_object

=> Incident Defs.warning,
=> msg_obj);

Exceptions:

--*0* manage.messages

time format error: exception;
-- Occurs when the time was not input in a proper
-- format
--*D* store 0 1 time format error \
--*D* :short = "$pl Is an improper time specification
--*D*The correct format is hh[:mm[:ss[.dd]]]"
day format error: exception;
-- Occurs when the day was not input in a proper
-- format
--*0* store 0 2 day format error \
--*0* :short = "$pl-is an Improper time specification
--*D*The correct format is [MM/]DD[/YYYY]]"

-- Warning message occurs when the time
-- specified has already past
--*0* store 0 3 prior time warning \
--*0* :short = "The specifIed time has already past.
--*D*Command is executed immediately."

-- End of Header

type program record is record
times in this record are all in
system_time_units to be used by Timed_request

Ada Examples

Ada Examples

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

PREUMINARY

command: System Defs.text(80):
-- command to be run with arguments

stu start: System Defs.system time units: -= initial request --
stu-period: System_Defs.system_time_units:

-- interval between execution (optional argument)
stu until: System Defs.system time units: -= upper time limit on command run-more than once
count: integer:

-- number of times job will run
end record:

function Parse time(
time: -System Defs.string list:

-- time from command line
from when: Timed Requests Mgt. from when type)

- -- specifies time to be relative to now
-- or absolute

return System Defs.system time units:
time in form usable-for
Timed_Request.Enter_request

Function:
Parses the time argument on the command line and
converts to system time units. The time
specification is divided into two strings, the
first being mandatory specifying hours and
minutes and optionally seconds and hundredths of
seconds. The second string is optional and
specifies the day of month and optionally the
month and year.

Exceptions:
time_format_error - raised when the hour string list

input for the timing
parameters is incorrect.

day_format_error - raised when the day string list
input for the timing parameters
is incorrect.

procedure Create waiting process (
invocation_record: program_record);

Function:
Creates a new session, job and process to wait
for specified time to execute.

procedure Wait-program(
param buffer: System. address;
param-length: System.ordinal);

pragma subprogram value (Process Mgt.initial proc,
Wait_program); - -

Function:
Created in a new session and job. Process issues
a timed request and waits on the locked semaphore
for specified time to execute program passed in
as a parameter. If the command is specified more
than once it will loop, issue another timing
request and reset the semaphore and wait.

X-A-161

PRELIMINARY

X-A.6.3 At_Support_Ex Package Body

X·A·162

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

with Command Execution,
Directory Mgt,
Job Admin; -- trusted
Job-Mgt,
Job-Types,
Long Integer Defs,
Incident Defs,
Message Services,
Message-Stack Mgt,
Semaphore Mgt;
Session Mgt,
Session-Types,
String List Mgt,
System; -
System Defs,
Text 10,
Text-Mgt,
Timed Requests Mgt,
Timing String Conversions,
Timing:Conversions;

package body At_Support_Ex is

Logic:
Supports at command by parsing time specification and creating
new session, job and process that will wait for timing requests
to invoke the waiting process.

History:
04-05-88, Ed Sassone, creation date
05-20-88, Ed Sassone, working version

End of Header

function Parse time(

is

time: -System Defs.string list;
from when: Timed Requests Mgt~from when type)

return-System_Defs:system_tIme_units- -

Logic:
This function first parses the mandatory string
containing hours, minutes, seconds, hundreths and
then it parses the second optional string
containing month day and year. For each string
it counts the number and position of the
separator. For the first string that is the ':'
and the '.' if hundreths are specified.
For the second string it is the 'I'. Based on the
separator positions, substrings representing the
individual time elements are copied into the
appropriate fields of string_time.

use Timed Requests Mgt;
-- needed in "if-from_when = system_epoch statement"

durn_text: constant System Defs.text(11) :=
(11, 11, (others => ' ')); -

-- used for the following initialization only:

string time:
("0000"," ",

", ") ;

Timing String Conversions. string time .. -
"00", "'00", "00", "00", "00", dum_text,

specified time values are copied into fields if
absolute time is used value is preloaded with
current time. Fields specified are overwritten

string_interval: Timing_String_Conversions.string_interval;

Ada Examples

Ada Examples

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

PREUMINARY

-- used for period (relative time)

hour time: System Defs.text(Incident Defs.txt length):
---used for hh:mm:ss.dd field --

day time: System Defs.text(Incident Defs.txt length): -= used for MM/DD/YYYY fIeld --

separators: array (1 •• 2) of
System Defs.text length:

-- array-of positions of separators

number separators: integer:= 0:
-- hold the number of separators in the field

month: string (1 2) : = "00":
used in place of string time. month because

-- string time.month is Jan •. Dec and specified
-- month Is 1 •. 12

package Int IO is new Text IO.Integer IO(integer):
needed-for conversions from string to numeric
month

begin

initialize string_time record

if from when = system epoch then
-- absolute time for current day
string time := Timing String Conversions.

Convert numeric tIme to string(
num-time =>-Timing Conversions.

-Convert stu to-numeric time (
stu- =>-Timed Requests Mgt.

Get_time»): -- current time

-- default if not specified
string time.minute := "00":
string-time. second := "00":
string-time.hundredth := "DO";

end if; -

-- *** PARSE MANDATORY HOUR STRING ***

String List Mgt.Get element(
from -=> time:-
elyos => 1,
element => hour_time);

find positions and number of ":"
number separators := 0;
separators := (others => 0);
for pos in 1 •• hour time.length

loop -
if hour time.value(pos) = ':' then

number separators := number separators + 1;
-- no more than :2 Vi: Ii allowed
if number separators > 2 then

RAISE tIme format error;
end if; - -
separators(number separators) := pos;

-- if non-digit or not the other separator
elsif (hour time.value(pos) < '0' or

hour time.value(pos) > '9') and
hour-time. value (pos) /= '.' then

RAISE time_format_error;
end if;

end loop;

case number separators is
when 0 =>-

if hour time. length > 2 then
RAISE-time format error;

end if; - -
string time.hour := hour_time. value;

when 1 =>

X-A-163

X-A-l64

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

PRELIMINARY

if separators(l) 1= 3 then
RAISE time format error:

end if: - -
string time.hour := hour time.value(l •• 2):
string-time.minute := hour time.value(4 •• 5):

when 2 => -
if separators(l) 1= 3 or separators(2) 1= 6 then

RAISE time format errQr;
end if: - -
string time.hour := hour time.value(l •• 2):
string-time.minute := hour time.value(4 5):
string=time.second := hour=time.value(7 •. 8):

-- do hundredths if specified
declare

pos: intege"r := Text_Mgt.Locate ('.', hour_time):
begin

case pos is
when a =>

null:
when 9 =>

string time. hundredth := hour time.value
(pes + 1 .. pos + 2): -

when others =>
RAISE time_format_error:

end case;
end: -- declare

when others =>
RAISE time_format_error:

end case:

-- *** PARSE OPTIONAL DAY STRING ***

if time.count "" 2 then
String "List Mgt.Get element (

from ~> time,-
el pos => 2,
element => day_time):

find positions of "I"
number separators := 0;
separators := (others => a):
for pos in 1 .. day time.length
loop -

if day time.value(pos) = 'I' then
number separators := number separators + 1:
-- no more than 2 "I" allowed
if number separators > 2 then

RAISE day format error:
end if: - -
separators(number separators) := pos:

-- digits only if net a valid separator
elsif day time.value(pos) < '0' or

day tIme. value (pos) > '9' then
RAISE-day_format_error:

end if:
end loop:

case number separators is
when a =>-

-- day of month only
string_time.day := day_time. value:

when 1 =>
month and day

if separators(1) 1= 3 then
RAISE day format error:

end if: - -
month := day time.value(1 •. 2):
string_time.day := day_time.value(4 •• 5):

when 2 =>
month, day and year

if separators(l) 1= 3 or separators(2) 1= 6 then
RAISE day format error:

end if: - -
month := day_time.value(1 •• 2):

Ada Examples

Ada Examples

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305

.l"KELIM1NAKY

string time.day := day time.value(4 •• 5);
string=time.year := daY_time.value(7 •• 10);

when others =>
RAISE day_format_error;

end case;

-- convert 1 •. 12 month to Jan •• Dec month
declare

month tmp: integer;
-- temporary variable for month conversion

length: positive;
dummy variable for month conversion

begin

Int IO.get(
-from => month,

item => month tmp,
last => length);

case month tmp is
when a =>

convert string to ordinal

null; --blank initial string
when 1 =>

string time.month
when 2 =>

string time.month
when 3 =>

string time.month
when 4 =>

string time.month
when 5 =>

string time.month
when 6 =>

string time.month
when 7 =>

string time.month
when 8 =>

string time.month
when 9 =>

:=

:=

:=

:=

:=

:=

:=

:=

"Jan";

"Feb";

"Mar";

"Apr";

"May";

"Jun";

"Jul";

"Aug";

string time.month := "Sep";
when 10 =>

string time.month := "Oct";
when 11 =>

string time.month := "Nov";
when 12 =>

string time.month := "Dec";
when others =>

RAISE day_format_error;
end case;

end; -- declare

end if; -- if time.count 2

range checking goes here

if from when = system epoch then
-- absolute time -
return Timing Conversions.Convert numeric time to stu(

num time => Timing String Conversions~ --

else

-Convert string-time to numeric(
str=time => strIng=time»;

relative time
initialize to zero

string interval := Timing String Conversions.
Convert numeric interval to string(

num-intervaI => Timing Conversions.
-Convert stu to numeric interval (

stu-=> System_Defs~null_time»;

string interval.sign := , ';
string=interval.days(7 .. 8) := string_time.day;

X-A-165

X-A-166

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382

rKJ!.L.l1Vlll"lAK I

string interval.hours(ll •• 12) := string time.hour;
string-interval.minutes(ll •• 12) := string time.minute;
string-interval. seconds (11 •• 12) := string-time.second;
string=interval.hundredths(11 •• 12) := strIng_time.hundredth:

return Timing Conversions.Convert numeric interval to stu(
num interval => Timing String-ConversIons. --

end if;

-Convert string interval to numeric(
str=interval => strIng=interval»;

exception

when time format error =>
Message-Services.Write msg(

msg-id => time format error code,
paraml => Incident Defs.message parameter' (

typ => IncIdent Defs.txt,
len => Incident-Defs.txt length,
txt_val => hour_time»: -

RAISE;

when day format error =>
Message Services. Write msg(

msg-id => day format error code,
param1=> IncIdent Defs.message parameter' (

typ => IncIdent Defs.txt,
len => Incident-Defs.txt length,
txt_val => day_time); -

RAISE:

end Parse_time;

procedure Create waiting process(
invocation_record: program_record)

is

Logic:
Creates a new session, then a job in that session,
and then the waiting process from that job.

new name: constant System Defs.text(13) :=
-(13, 13, "timed request"); -

job info: Job mgt. job info(80); -= SSO field used for creating new session

program length: System.ordinal:= System. ordinal (
invocation record' size / System.storage_unit);

begin

-- retrieves SSO for new session
Job Mgt.Get job info(

-info =>-job=info);

new job AD := Job Admin.Invoke job(
-init proc ~> Wait program' subprogram value,

param buffer => invocation record' address,
param-length => program length,
text - => new name,
session => Session Mgt.create session(

SSO => job-info.SSO, -
session_name => new=name»:

end Create_waiting_process;

WAIT PROGRAM

Ada Examples

Ada Examples

383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454

PK~L1M1NAKY

procedure Wait program(
param buffer: System.Address;
param=length: System. ordinal)

is

use Long Integer Defs;
-- for-system_time_units

program rec: program record;
FOR program_rec USE AT param_buffer;

wait: Semaphore Mgt.semaphore AD :=
Semaphore Mgt.Create semaphore (-

initial count =>-0):
create semaphore in locked state
blocks job until time specified

begin

period must be non-null for
Timed Requests Mgt.Get next activation

if program rec.stu period-= System Defs.null time then
program rec.stu period := System-Defs.stu per min;

end if: - - - --

Loop until cOlJ.nt is expired or "until" time is
expired, whichever is first. Count and until both
have defaults of max into If period was not specified
the loop count was set to one by the driver

while program rec.stu until >= program rec.stu start
and program rec.count > 0 - -

loop -
req index :=

-Timed Requests Mgt.Enter request (
req info => Timed Requests Mgt.request info(

-Timed Requests Mgt.semaphore signal)' (
kind -=> Timed Requests Mgt.semaphore signal,
wakeup time => program rec.stu start, -
from when => Timed Requests Mgt.system epoch,
semaphore => wait»); - -

wait until Timed Requests unlocks semaphore
NOTE: there is about a 3 second delay before the
command is actually run

Semaphore_Mgt.P(semaphore => wait);

command job AD :=
Command-Execution.Run program or script (
command-=> program_rec.command);-

program_rec.count := program_rec.count - 1;

NOTE1: This is an expensive call that should only be
used when slippage cannot be tolerated.
NOTE2: The call should be placed after command invocation.

Timed Requests Mgt.Get next activation(
period - =>-program rec.stu period, this cannot be null
next_activation => program=rec.stu=start);

end loop:

end Wait_program;

X-A-167

PRELIMINARY

X-A.S.4 Compiler Ex Package Specification
1 with Device_Defs;
2
3 package Compiler_Ex is
4
5 Function:
6 Supplies the procedural interface a Pascal
7 compiler.
8
9 This interface can be used to write the

10 compiler invocation script. End of Header
11
12 History:
13 08-10-87, Paul Schwabe: initial revision.
14 12-02-87, Paul Schwabe: revision.
15 pragma external;
16
17 procedure Compile pascal (
18 source code: Device Defs.opened device;
19 -- Opened on source-code input file, with read
20 -- rights.
21 machine code: Device Defs.opened device;
22 -- Opened on machine code output file, with read
23 -- and write rights.
24 listing: Device Defs.opened device);
25 Opened on listing output file, with write
26 -- rights.
27
28 Function:
29 Compiles a Pascal program.
30
31 Relies on the caller to handle user
32 interaction.
33
34 end Compiler_Ex;

X=A=168 Ada Examples

PRELIMINARY

X-A.6.5 Compil.er _Ex Package Body

Ada Examples

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

with Byte Stream AM,
Device Defs;
Event Mgt,
Pipe Mgt,
Process Mgt,
Process-Mgt Types,
System:- -

package body Compiler_Ex is

Logic:
Speeds up a Pascal compiler by dividing parsing
and code generation between two processes
connected by a pipe.

"Parse" and "Code gen" are the initial
procedures of the-two child processes.

History:
11-24-87, Paul Schwabe:
11-25-87, Gary Taylor:

End of Header

Initial version.
Added tagged comment lines.

type connection record is record
A "connection record" contains the I/O
connections used by the two child processes.
The entire record is passed to both children.

source code: Device Defs.opened device:
-- input file - -

machine code: Device Defs.opened device:
-- output file - -

listing: Device Defs.opened device;
-- output file - -

parse out: Device_Defs.opened_device:
-- output to pipe

code gen in: Device Defs.opened device;
---input from pipe - -

end record:

procedure Parse(

is

param buffer: System. address;
-- Address of connection record.

param length: System. ordinal)
Not used in this procedure, but required for

-- process's initial procedure.

Logic:
Do Pascal parsing using the I/O connections
specified in the "conn rec" parameter record.

conn_rec: connection_record; Record containing
parameters.

FOR conn rec USE AT param_buffer:
begin -

Code to parse "conn rec.source code" and write
-- parsed stream to "conn rec.parse out" and listing
-- to "conn rec.listing" ~oes here.
null; -

end Parse:
pragma subprogram_value(Process_Mgt.Initial_proc, Parse):

procedure Code gen(
param buffer: System. address;

-- Address of connection record.
param length: System. ordinal)

Not used but required for process's initial
-- procedure.

Logic:

X-A-169

X-A-170

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

is

PRELIMINARY

Do Pascal code generation using the I/O
connections specified in the "conn rec"
parameter record.

conn rec: connection record;
---Record containing parameters.

FOR conn rec USE AT param buffer;
begin - -

Code to read "conn rec.code gen in", write
-- compiled code to "conn_rec.machIne_code", and add
-- any needed messages to "cr. listing" goes here.
null:

end Code gen;
pragma-subprogram value (

Process_Mgt. Initial-proc,
Code_gen) ;

procedure Compile-pascal(

is

source code: Device Oefs.opened device;
machine code: Device-Defs.opened-device;
listing: Device=Defs.opened:device)

Logic:

1. Create a pipe.

2. Create a record specifying all I/O
connections for child processes. Open both
ends of the pipe to create the pipe
connections needed.

3. Get an AD for this process from process
globals.

4. Spawn the parsing process. The parameter
buffer address is the connection record's
address. The termination action signals the
"user_1" event to this process.

5. Spawn the code generation process. The
parameter buffer address is the connection
record's address. The termination action
signals the "user_2" event to this process.

6. Wait for both the "user 1" and "user 2"
events t~ be signalled Indicating that both
child processes have terminated.

7. Deallocate both child processes.

Notes:
No check is made for abnormal termination of
the child processes.

Would like to deallocate pipe when done with it
but "Pipe Mgt" does not provide a "Deallocate"
call. -

compiler-pipe: Pipe Mgt.pipe AD;
Pipe that connects "Parse" and "Code_gen"

-- processes.

conn rec: connection record;
-Record referencing all I/O connections used by

-- the child processes.

this process untyped: System. untyped word;
-Process-executing call to "Compile_pascal",

-- as an "untyped_word".

parse process: Process Mgt Types.process AD;
-- Process executing "Parse". -

code gen process: Process Mgt Types.process AD;
---Process executing "Code_gen". -

Ada Examples I

Ada Examples

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

PRELIMINARY

term events: Event Mgt.action record list(2);
-Array that receives termination events of the

two child processes.

begin
compiler-pipe := Pipe_Mgt.Create-pipe;

conn rec := (
source code => source code,
machine code => machine code,
listing- => listing;
parse out => Byte Stream AM. Ops. Open (

Pipe Mgt.Convert-pipe to device (
compiler pipe), - -

Device Defs.output),
code gen in => Byte Stream AM.Ops.Open(

Pipe-Mgt.Convert pipe to-device(
compiler pipe), - -

Device_Defs.Input»;

this process untyped :=
Process Mgt.Get process globals entry(

Process_Mgt=Types.process);-

parse process := Process Mgt.Spawn process (
init proc => Parse' subprogram value,
param buffer => conn rec'address;
term action => (-

event => Event Mgt.user 1,
message => System. null address,
destination => this_process_untyped»;

code gen process
Inityroc
param buffer
term_action

:= Process_Mgt.Spawn~rocess(
=> Code gen'subprogram value,
=> conn-rec'address, -
=> (-

event =>
message =>
destination

Event Mgt.user 2,
System. null address,

=> this_process_untyped»;

Event_Mgt.Wait_for_all(
events =>

(Event Mgt.user 1 .. Event_Mgt.user_2 =>
true, -

others => false),
action list => term_events);

These process are terminated so
"Deallocate" should work.

Process Mgt.Deallocate(parse process);
Process=Mgt.Deallocate(code_gen_process);

end Compile_pascal;

end Compiler_Ex;

X-A-171

PREUMINARY

X-A.6.6 Conversion_Support_Ex Package Specification
1 with Attribute Mgt,
2 Authority-List Mgt j

3 Data Definition Mgt,
4 Device Defs, -
5 Directory Mgt,
6 Event Mgt~
7 File Defs,
8 Identification Mgt,
9 Identification-Mgt,

10 Job Type$, -
11 Name Space Mgt,
12 Object Mgt;
13 Object-Mgt,
14 Passive Store Mgt,
15 Pipe Mgt, -
16 Process Mgt Types,
17 Session-Types,
18 System Defs,
19 system;
20 Unchecked_conversion;
21
22 package Conversion_Support_Ex is
23
24 Function:
25 Provides commonly needed compile-time type
26 conversions for OS access types.
27
28 Some OS calls can operate on many different
29 object types. Such calls require or return
30 values of type "System. untyped word", used to
31 hold any AD. If your applicatIon uses ADs with
32 more specific types, you must· convert those
33 types to and from "System.untyped word". For
34 example, to store an AD to a Type-Definition
35 Object in a directory, you must convert from
36 the type "Object Mgt.TDO AD" to
37 "system.untyped_word". -
38
39 All the conversion routines in this package are
40 instantiations of the "Unchecked conversion"
41 generic Ada function. Calls to the conversion
42 routines are processed at compile-time, and
43 have no runtime cost.
44
45 There are a few conversions that don't require
46 using a conversion routine. For example,
47 "Device Defs.device" is a subtype of
48 "System-:untyped word". This package still
49 provides the expected conversion routines--they
50 have no runtime cost, and by using them you do
51 not have to remember which types don't require
52 conversion.
53
54 The conversion function names have the form
55 "X from Y" where "X" indicates the result type
56 and "Y"-indicates the source type.
57
58 History:
59 06-03-87, Martin L. Buchanan: Initial version.
60 06-09-87, Paul Schwabe: Added full set of
61 unchecked conversions.
62 11-23-87,-Paul Schwabe: Fixed line sizes.
63
64 End of Header
65 pragrna external;
66
67. function Attribute 10 from untyped is new
68 Unchecked conversion(-
69 source-=> System. untyped word,
70 target => Attribute_Mgt.attribute_ID_AD);
71
72
73 function Untyped from attribute 10 is new
74 Unchecked_conversIon (-

X-A-172 Ada Examples

Ada Examples

75
76
77
78

.79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

PRELIMINARY

source => Attribute Mgt.attribute ID AD,
target => System.untyped_word); - -

function Authority list from untyped is new
Unchecked conversion (-

source => System. untyped word,
target => Authority List-Mgt.

authority_list_AD); -

function Untyped from authority list is new
Unchecked conversIon(-

source => Authority List Mgt.
authority list AD, -

target => System.untyped_word);

function DDef from untyped is new
Unchecked-conversion (

source => System. untyped word,
target => Data_Definition_Mgt.DDef_AD);

function Untyped from DDef is new
Unchecked conversIon(

source => Data Definition Mgt.DDef AD,
target => System.untyped_word); -

function Device from untyped is new
Unchecked conversion(

source => Device Defs.device,
target => AuthorIty List Mgt.

authoritY_list_AD); -

function Untyped from device is new
Unchecked conversIon(

source => Authority List Mgt.
authority list AD, -

target => DevIce_Defs.device);

function Opened device from untyped is new
Unchecked conversion(-

source => System. untyped word,
target => Device_Defs.opened_device);

function Untyped from opened device is new
Unchecked conversIon(-

source => Device Defs.opened device,
target => System~untyped_word);

function Directory from untyped is new
Unchecked conversion(

source => System. untyped word,
target => Directory_Mgt.directory_AD);

function Untyped from directory is new
Unchecked conversIon (

source => Directory Mgt.directory AD,
target => system.untyped_word); -

function Event cluster from untyped is new
Unchecked conversion (-

source => System. untyped word,
target => Event_Mgt.event_cluster_AD);

function Untyped from event cluster is new
Unchecked conversIon (-

source => Event_Mgt.event_cluster_AD,

X-A-173

X-A=174

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

PRELIMINARY

target => System.untyped_word)i

function File from untyped is new
Unchecked-conversion (

source => System. untyped word,
target => File_Defs.file=AD)i

function Untyped from file is new
Unchecked conversIon(

source => File Defs.file AD,
target => system.untyped=word);

function ID from untyped is new
Unchecked conversion(

source => System. untyped word,
target => Identification=Mgt.ID_AD);

function Untyped from ID is new
Unchecked conversIon(

source => Identification Mgt.ID AD,
target => System.untyped=word);-

function ID list from untyped is new
Unchecked conversIon(

source => System. untyped_word,
target => Identification_Mgt.ID_list_AD);

function Untyped from ID list is new
Unchecked conversIon(

source => Identification Mgt.ID list AD,
target => system.untyped=word);- -

function Job from untyped is new
Unchecked conversion(

source => System. untyped word,
target => Job_Types.job_AD);

function Untyped from job is new
Unchecked conversIon(

source => Job Types. job AD,
target => system.untyped_word)i

function Name space from untyped is new
Unchecked-conversion(

source => System. untyped word,
target => Name_Space_Mgt~name_space_AD);

function Untyped from name space is new
Unchecked conversIon (-

source => Name Space Mgt.name space AD,
target => System. untyped_word); -

function SRO from untyped is new
Unchecked conversion(

source => System. untyped word,
target => Object_Mgt.SRO=AD);

function Untyped from SRO is new
Unchecked conversIon(

source => Object Mgt.SRO AD,
target => System~untyped=word);

function TDO from untyped is new
Unchecked_conversion (

Ada Examples

Ada Examples

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301

PRELIMINARY

source => System. untyped word,
target => Object_Mgt.TDO=AD)i

function Untyped from TDO is new
Unchecked conversIon(

source => Object Mgt.TDO AD,
target => system:untyped=word);

function PSM attributes from untyped is new
Unchecked conversion(-

source => System. untyped word,
target => Passive Store Mgt.

PSM_attributes_AD);-

function Untyped from PSM attributes is new
Unchecked conversIon(-

source => Passive Store Mgt.
PSM attributes AD, -

target ~> System.untyped_word);

function Pipe from untyped is new
Unchecked-conversion (

source => System. untyped word,
target => Pipe_Mgt.pipe_AD);

function Untyped from pipe is new
Unchecked conversIon(

source => Pipe Mgt.pipe AD,
target => System.untyped_word);

function Process from untyped is new
Unchecked conversIon(

source => System. untyped word,
target => Process_Mgt_Types.process_AD);

function Untyped from process is new
Unchecked conversIon(

source => Process Mgt Types.process AD,
target => System.untyped_word)i -

function Session from untyped is new
Unchecked conversIon(

source => System. untyped word,
target => session_Types.session_AD);

function Untyped from session is new
Unchecked conversIon(

source => Session Types.session AD,
target => system.untyped_word);-

function Text from untyped is new
Unchecked-conversion (

source => System. untyped word,
target => system_Defs.text_AD);

function Untyped from text is new
Unchecked conversIon(

source => System Defs.text AD,
target => system:untyped_word);

X-A-175

r K1!.L.11Ylll~AK I

X-A.6.7 Memory_ex Procedure
1 with Object Mgt,
2 Long Integer Defs,
3 SRO Mgt, ~
4 system_Defs;
5
6 procedure Memory_ex
7
8 Function:
9 Provide examples of several memory management

10 programming techniques.
11
12 is
13 Declare a record for a job's memory
14 information:
15
16 job memory info: SRO_Mgt.SRO_information;
17 begin- -
18
19 Get current memory information for the calling
20 job:
21
22 job_memory_info:= SRO_Mgt.Read_SRO_information;
23
24
25 Shrink the calling process's stack to the
26 size currently used. The stack can still
27 grow and will be expanded as needed.
28
29 Object_Mgt. Trim_stack;
30
31
32 Force a local garbage collection run to start
33 immediately in the calling job:
34
35 SRO_Mgt.Start_GCOL;
36
37
38 Configure a local garbage collection daemon
39 to run in the calling job when it has used
40 50% of its storage claim OR 50% of its object
41 table page claim, AND at least 5 minutes
42 has elapsed since a previous local GCOL run
43 in the job.
44
45 SRO Mgt.Start GCOL(
46 -storage claim percent => 50,
47 OTP claIm percent => 50,
48 minImum delay =>
49 Long Integer Defs."*"(
50 Long=Integer=Defs.long_integer' (0, 5),
51 System_Defs.stu_per_min»;
52
53
54 Kill any local garbage collection daemon in
55 the calling job. (Does nothing if there
56 is no daemon.)
57
58 SRO_Mgt.Start_GCOL(O, 0, Long_Integer_Defs.max_int);
59
60 end Memory_ex;

X~A~176 Ada Examples

PKELIMlNAKY

X-A.6.8 Process_Globals_Support_Ex Package Specification
1 with Authority List Mgt,
2 Device Defs, -
3 Directory Mgt,
4 Identification Mgt,
5 Job Types, -
6 Name Space Mgt,
7 Process Mgt Types,
8 Session-Types,
9 system_Defs;

10
11 package Process_Globals_Support_Ex is
12
13 Function:
14 Provide calls to get and set commonly used
15 process globals entries, for the calling
16 process.
17
18 See "Process Mgt Types" for descriptions of all
19 process globals entries.
20
21
22 « What You Get with This Package »
23
24 There are three advantages to using this
25 package, as compared to using the "Process Mgt"
26 calls to get and set process globals: -
27
28 1. The underlying calls require or return
29 untyped words. You must instantiate
30 "Unchecked conversion" to convert to and from
31 the types you actually need, such as
32 "Device_Defs.opened_device".
33
34 2. You don't have to supply a value of type
35 "Process Mgt Types.process globals entry" that
36 specifies the process globals *slot* you are
37 manipulating.
38
39 3. The underlying calls can be used to stuff
40 garbage into process globals entries and later
41 return that garbage. The calls in this
42 package do reasonable checks on type, rights,
43 and object state for the modifiable process
44 globals entries. Such checks aren't needed for
45 the non-modifiable entries, assigned by
46 the OS.
47
48
49 « What You Don't Get with This Package »
50
51 This package does not support assigning or
52 retrieving null values for the modifiable
53 process globals entries. You can assign and
54 retrieve null values for these entries using
55 "Process_Mgt" calls.
56
57 This package does not support getting or
58 setting another process's globals. You can
59 access another process's globals by using
60 "Process_Mgt" or "Process_Admin" calls.
61
62 This package does not support setting any
63 process globals entries that can only be set by
64 an administrative interface, such as
65 "Process_Admin".
66
67 This package is selective, and does not provide
68 calls to get or set every publicly accessible
69 entry.
70
71 Exceptions:
72 user_dialog_not_interactive
73
74

Ada Examples X-A-177

X-A-178

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

PRELIMINARY

History:
06-03-87, Martin L. Buchanan: Initial version.
11-23-87, Paul Schwabe: Updated spec.

End of Header
pragma external;

function Get standard input
return DevIce Defs.opened device;

The callIng process's standard
-- input opened device,
-- open and with read rights.

Function:
Returns the calling process's standard input.

Exceptions:
Device Defs.device not open -

The opened device has been closed.

procedure Set standard input (
opened dev:- Device nefs.opened device);

---Opened device, open and with read rights.

Function:
Assigns the calling process's standard input.

Exceptions:
Device Defs.device not open -

The opened device has been closed.

function Get standard output
return DevIce Defs.opened device;

The callIng process's standard
output opened device,
open and with write rights.

Function:
Returns the calling process's standard output.

Exceptions:
Device Defs.device not open -

The opened device has been closed.

procedure Set standard output (
opened dev:- Device nefs.opened device);

---Opened device, open and with write rights.

Function:
Assigns the calling process's standard output.

Exceptions:
Device Defs.device not open -

The opened device has been closed.

function Get standard message
return DevIce Defs.opened device;

The callIng process's standard
message opened device,

-- open and with write rights.

Function:
Returns the calling process's standard message
opened device.

Exceptions:
Device Defs.device not open -

The opened device has been closed.

procedure Set standard message (
opened dev:- Device nefs.opened device);

---Opened device, open and with write rights.

Ada Examples

Ada Examples

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178'
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

PRELIMINARY

Function:
Assigns the calling process's standard
message opened device.

Exceptions:
Device Defs.device not open -

The opened device has been closed.

function Get user dialog
return DevIce Defs.opened device;

The callIng process's user
dialog opened device, open, with the
"is interactive" flag set in the
underlying device's information record,
and with both read and write rights.

Function:
Returns the calling process's
user dialog opened device.

Exceptions:
Device Defs.device not open -

The opened device has been closed.

procedure Set user dialog(
opened dev:- DevIce Defs.opened device);

-An opened device that is-open, with the
"is interactive" flag set in the underlying
devIce's information record, and with both
read and write rights.

Function:
Assigns the calling process's user dialog
opened device.

Exceptions:
Device Defs.device not open -

The opened device has been closed.

function Get home directory
return Directory Mgt.directory AD;

-- The calling-process's home directory.

Function:
Returns the calling process's home directory.

Notes:
Setting a process's home directory is an
administrative operation.

function Get current directory
return Directory Mgt.directory AD;

-- The calling-process's current directory.

Function:
Returns the calling process's current
directory.

procedure Set current directory(
dir: Directory Mgt~directory AD);

-- Any directory. -

Function:
Assigns the calling process's current
directory.

function Get authority list
return Authority List Mgt.authority list AD;

The calling-process's authority list.

X-A-179

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305

PRELIMINARY

Function:
Returns the calling process's authority list.

procedure Set authority list(
auth: AuthorIty List Mgt.authority list AD);

-- Any authority list. --

Function:
Assigns the calling process's default
authority list.

function Get 10 list
return Identification Mgt.ID list AD;

-- The calling process's 10 list.

Function:
Returns the calling process's 10 list.

Notes:
Setting a process's 10 list is an
administrative operation.

function Get command name space
return Name Space Mgt.name space AD;

-- The calling process's-command name space.

Function:
Returns the calling process's command name
space.

procedure Set command name space(
ns: Name_Space_Mgt:name=space_AD);

-- Any name space.

Function:
Assigns the calling process's command name
space.

function This process
return Process Mgt Types.process AD;

-- The calling process, with control rights.

Function:
Returns the calling process.

function Get parent process
return Process Mgt Types.process AD;

Parent process of the calling process, with
control rights. Null if the calling
process is the initial process of its job.

Function:
Returns the calling process's parent process,
if any.

function This job
return Job Types. job AD;

Job-that contains the calling process, with
list and control rights.

Function:
Returns the calling job.

function This session
return SessIon Types.session AD;

Session-that contains-the calling job, with
list and control rights.

-- Function:

Ada Examples

Ada Examples

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334

t"KELIMlNAKY

Returns the caller's session.

function Get-process_name
return System Defs.text AD;

AD to text record containing the calling
process's name.

Function:
Returns the calling process's symbolic name.

The symbolic name may be a null text record.

procedure Set process name(
name: System Defs.text);

A text record containing a name for the
process. The text record must be valid,
with a "length" field less than or equal
to its "max_length" field.

Function:
Assigns the calling process's symbolic name.

Exceptions:
System_Exceptions.bad_parameter

X-A-181

X-A.6.9 Process_Globals_Support_Ex ~ackage Body

X-A-182

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

with Access Mgt,
Authority List Mgt,
Byte Stream AM;
Device Defs;
Directory Mgt,
Identification Mgt,
Job Mgt, -
Job-Types,
Name Space Mgt,
Process Mgt,
Process-Mgt Types,
Session-Mgt;
Session-Types,
System Defs,
System:Exceptions,
System:

package body Process_Globals_Support_Ex is

Function:
Provide calls to get and set commonly used
process globals entries, for the calling
process.

History:
06-10-87, Paul Schwabe:
11-24-87, Paul Schwabe:
11-25-87, Gary Taylor:

End of Header

Initial version.
Updated version.
Added tagged comment lines.

function Get standard input
return DevIce_Defs.opened_device

is

Logic:
1. Get the process globals entry.
2. Check that the standard input is open,

which implicitly checks that its an opened
device.

3. Check that the standard input has
read rights.

4. Return the standard input.

stdin: Device_Defs.opened_device:
stdin untyped: System. untyped word:

FOR-stdin untyped USE AT stdIn'address:
begin -

stdin untyped := Process Mgt.
Get process globals entry(

-Process:Mgt_Typesostandard_input);

if not Byte Stream AM.Ops.Is open (stdin) then
RAISE DevIce_Defs.device_not_open;

elsif not Access Mgt.Permits(
AD => stdin untyped,
rights => Device Defs.read rights) then

RAISE system_Exceptions.insufficient_type_rights;

else
RETURN stdin;

end if:
end Get_standard_input:

procedure Set standard input (
opened_dev:- Device_Defs.opened_device)

Logic:
10 Check that the new standard input is open,

which implicitly checks that its an opened
device.

Ada Examples

Ada Examples

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

.rK.r.;L11Vll~AK J:

2. Check that that the new standard
input has read rights.

3. Set the new standard input.
is

stdin untyped: System. untyped word;
FOR-stdin untyped USE AT opened dev'address;

begin - -
if not Byte Stream AM.Ops.Is open(opened dev) then

RAISE DevIce_Defs.device_not_open; -

elsif not Access Mgt.Permits(
AD => stdin untyped,
rights => Device Defs.read rights) then

RAISE system_ExceptIons.insufficient_type_rights;

else Process_Mgt.Set~rocess_globals_entry(
slot => Process Mgt Types.standard input,
value => stdin_untyped); -

end if;

function Get standard output
return DevIce_Defs.opened_device

Logic:
1. Get the process globals entry.
2. Check that the new standard output is open,

which implicitly checks that its an opened
device.

3. Check that the standard output has
read rights.

4. Return the new standard output.
is

stdout: Device_Defs.opened_device;
stdout untyped: System. untyped word;

FOR stdout untyped USE AT stdout'address;
begin -

stdout untyped := Process Mgt.
Get process globals entry(

-Process=Mgt_Types.standard_output);

if not Byte Stream AM.Ops.Is open(stdout) then
RAISE DevIce_Defs.device_not_open;

elsif not Access Mgt.Permits(
AD => stdout untyped,
rights => Device-Defs.write rights) then

RAISE System_ExceptIons.insuffIcient_type_rights;

else
RETURN stdout;

end if;

procedure Set standard output (
opened_dev:- Device=Defs.opened_device)

Logic:
1. Check that the new standard output is

open, which implicitly checks that its an
opened device.

2. Check that that the new standard output
has write rights.

3. Set the new standard output.
is

stdout untyped: System. untyped word;
FOR stdout untyped USE AT -

opened=dev'address;
begin

if not Byte Stream AM.Ops.Is open (opened dev) then
RAISE DevIce_Defs.device_not_open; -

X-A-183

X-A-184

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

PRELIMINARY

e1sif not Access Mgt.Permits(
AD => stdout untyped,
rights => Device:Defs.write_rights) then

RAISE System_Exceptions.insufficient_type_rights;

else Process Mgt.Set process globals entry(
slot => Process Mgt TYpes.standard output,
value => stdout_untyped); -

end if;

function Get standard message
return DevIce_Defs.opened_device

Logic:
1. Get the process globals entry.
2. Check that the standard message

output is open, which implicitly
checks that its an opened device.

3. Check that the standard message
output has write rights.

4. Return the standard message output.
is

stdmsg: Device_Defs.opened_device:
stdmsg untyped: System. untyped word:

FOR stdmsg untyped USE AT -
stdmsgTaddress:

begin
stdmsg untyped := Process Mgt.

Get process globals entry(
-Process:Mgt_Types.standard_message):

if not Byte Stream AM.Ops.Is open (stdmsg) then
RAISE DevIce_Defs.device_not_open:

elsif not Access Mgt.Permits(
AD => stdmsg untyped,
rights => Device-Defs.write rights)
then - -

RAISE System_Exceptions.insufficient_type_rights:

else
RETURN stdmsg;

end if:
end Get_standard_message:

procedure Set standard message(
opened_dev:- Device_Defs.opened_device)

is

Logic:
1. Check that the new standard message

output is open, which implicitly checks
that its an opened device.

2. Check that that the new standard
message has write rights.

3. Set the new standard message output.

stdmsg untyped: System. untyped word:
FOR stdmsg untyped USE AT -

opened:dev'address;
begin

if not Byte Stream AM.Ops.Is open(opened dev) then
RAISE DevIce_Defs.device_not_open; -

elsif not Access Mgt.Permits(
AD => stdmsg untyped,
rights => Device-Defs.write rights) then

RAISE System_ExceptIons.insuffIcient_type_rights;

else Process Mgt.Set process globals entry(
slot => Process Mgt TYpes.standard message,
value => stdmsg_untyped); -

end if:

Ada Examples

Ada Examples

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305

PREUMINARY

function Get user dialog
return DevIce_Defs.opened_device

is

Logic:
1. Get the process globals entry.
2. Check that the user dialog is open,

which implicitly checks that its an
opened device.

3. Check that the user dialog has
read and write rights.

4. Return the user dialog.

user dialog: Device_Defs.opened_device;
user-dialog untyped: System. untyped word;

FOR user dialog untyped USE AT -
user=dialog'address;

begin
user dialog untyped := Process Mgt.

Get process globals entry(­
-process=Mgt_Types.user_dialog);

if not Byte Stream AM.Ops.Is open(user dialog) then
RAISE DevIce_Defs.device_not_open; -

elsif not Access Mgt.Permits(
AD => user dialog untyped,
rights => Device Defs:read write rights)

then - --
RAISE System_Exceptions.insufficient_type_rights;

else
RETURN user_dialog;

end if;

procedure Set user dialog(
opened_dev:- DevIce_Defs.opened_device)

is

Logic:
1. Check that the new user dialog is open,

which implicitly checks-that its an opened
device.

2. Check that that the new user dialog has
read and write rights.

3. Set the new standard message.

user dialog untyped: System. untyped word;
FOR user dialog untyped USE AT

opened_dev'address;
begin

if not Byte Stream AM.Ops.Is open(opened dev) then
RAISE DevIce_Defs.device_not_open; -

elsif not Access Mgt.Permits(
AD => user dialog untyped,
rights => Device Defs:read write rights)

then - --
RAISE System_Exceptions.insufficient_type_rights;

else Process Mgt.Set process globals entry(
slot =>-Process-Mgt Types.user dialog,
value => user_dialog=untyped); -

end if;

function Get home directory
return DirectorY_Mgt.directorY_AD

X-A-185

X-A-186

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382

is

Logic:
1. Get the process globals entry for

the "home directory."
2. Check that the entry is a

directory.
3. Check that directory has read rights.
4. Return the directory.

dir: Directory_Mgt. directory_AD:
dir untyped: System. untyped word:

FOR dir untyped USE AT -
dir'address;

begin
dir untyped := Process Mgt.

-Get-process_globals_entry(
Process_Mgt_Types.home_dir):

if not Directory Mgt.Is directory(dir untyped) then
RAISE System_Exceptions. type_mismatch:

else
RETURN dir:

end if;

function Get current directory
return Directory_Mgt.directory_A~

Logic:
1. Get the process globals entry.
2. Check that the "current directory"

is a directory.
3. Return the current directory.

is
dir: Directory_Mgt.directory_AD;
dir untyped: System. untyped word;

FOR dir untyped USE AT dir'address:
begin -

dir untyped := Process Mgt.
-Get process globals entry (

-Process=Mgt_Types.current_dir);

if not Directory Mgt.Is directory(dir untyped) then
RAISE System_Exceptions. type_mismatch;

else
RETURN dir;

end if;

procedure Set current directory(
dir: Directory_Mgt~directory_AD)

is

Logic:
1. Check that the "current directory" is

a directory.
2. Set the new current directory.

dir untyped: System. untyped word:
FOR dir untyped USE AT dir'address;

begin -
if not Directory Mgt.Is directory(dir untyped) then

RAISE System_Exceptions. type_mismatch:

else Process Mgt.Set process globals entry (
slot => Process Mgt Types.current dir,
value => dir_untyped); -

end if:

end Set_current_directory;

Ada Examples

Ada Examples

383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459

t'KELIMlNAK Y

function Get authority list
return AuthoritY_List_Mgt.authoritY_list_AD

Logic:
1. Get the process globals entry.
2. Check that the entry is an authority list.
3. Return the authority list.

is
auth list: Authority List Mgt.authority list AD:
auth-list untyped: system.untype~ word; -

FOR auth list untyped USE AT auth list' address:
begin - - -

auth list untyped := Process Mgt.
Get process globals entry (

-ProceSS=Mgt_Types.authority_list):

if not Authority List Mgt.
Is authority-list(auth list untyped) then

- RAISE System_Exceptions:type_mismatch;

else
RETURN auth_list;

end if;

procedure Set authority list(
auth: Authority_List=Mgt.authority_list_AD)

is

Logic:
1. Check that Hauth" is an authority list.
2. Set the new authority list.

auth untyped: System. untyped word;
FOR auth untyped USE AT auth'address;

begin -
if not Authority List Mgt.Is authority list(

auth untyped) then - -
RAISE System_Exceptions. Type_mismatch;

else Process Mgt.Set process globals entry(
slot =>-Process-Mgt Types.authority list,
value => auth untyped); -

end if; -

function Get ID list
return Identification_Mgt.ID_list_AD

Logic:
1. Get the process globals entry.
2. Check that the entry is an ID list.
3. Return the ID list entry.

is
ID list: Identification_Mgt.ID_list_AD;
ID-list untyped: System. untyped word;

FOR 10 list untyped USE AT ID-list'address;
begin - - -

ID list untyped := Process Mgt.
- Get-process globals entry(

-ProcesS=Mgt_Types.ID_list);

if not Identification Mgt.
Is ID list(ID list untyped) then

RAISE System_Exceptions. type_mismatch;

else
RETURN ID_list;

end if;

X-A-187

X-A-188

460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536

I"KELIM1NAK Y

function Get command name space
return Name_space_Mgt.name_space_AD

is

Logic:
1. Get the process globals entry.
2. Check that the entry is a name space.
3. Return the name space entry.

cmd_name_space : Name Space Mgt.
name space AD:

cmd name space untyped: System. untyped-word:
FOR cmd name-space untyped USE AT -

cmd:name:space'address:
begin

cmd name space untyped := Process Mgt.
-Get process globals entry(-

-Process:Mgt_Types.cmd_name_space):

if not Name Space Mgt.
Is name-space(cmd name space untyped) then

RAISE system_ExceptIons. type_mIsmatch:

else
RETURN cmd_name_space:

end if:

procedure Set command name space(
ns: Name_Space_Mgt~name:space_AD)

Logic:
1. Check that "ns" is a name space.
2. Set the new command name space.

is
ns untyped: System. untyped word:

FOR ns untyped USE AT -
nS'address:

begin
if not Name Space Mgt.

Is name space(ns untyped) then
RAISE System_Exceptions.type_mismatch:

else Process Mgt.Set process globals entry(
slot =>-Process-Mgt Types.cmd name space,
value => ns_untyped); --

end if:

function This process
return Process_Mgt_Types.process_AD

is

Logic:
1. Get the process globals entry

for the current process.
2. Return the process.

current process: Process Mgt Types.process AD:
current-process untyped:- System.untyped word;

FOR current process untyped USE AT -
current:process'address;

begin
current process untyped := Process Mgt.

Get-process-globals entry(-
-Process:Mgt_Types.process);

RETURN current_process;

end This_process;

function Get parent process
return Process_Mgt_Types.process_AD

Ada Examples

Ada Examples

537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571·
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613

is

YKELI1VllNAK I

Logic:
1. Get the process globals entry

for the parent process.
2. Return the parent process.

parent_process: Process Mgt Types.
process-AD;

parent process untyped: System. untyped word;
FOR parent process untyped USE AT -

parent=process'address;
begin

parent process untyped := Process Mgt.
Get process globals entry(-

-Process=Mgt_Types.creator);

RETURN parent~rocess;

function This job
return Job_Types.job_AD

Logic:
1. Get the process globals

entry for the current job.
2. Return the current job.

is·
current job: Job_Types.job~AD;
current-job untyped: System.untyped word:

FOR current job untyped USE AT -
current=job'address;

begin
current job untyped := Process Mgt.

Get-process globals entry(­
-Process=Mgt_Types.job):

RETURN current_job;

function This session

is

return SessIon_Types. session_AD

Logic:
1. Get process globals entry

for the current session.
2. Return the current session.

current session: Session_Types. session_AD:
current-session untyped: System. untyped word;

FOR current session untyped USE AT -
current=session'address;

begin
current session untyped := Process Mgt.

Get-process-globals entry(-
-ProceSS=Mgt_Types.session);

RETURN current_session:

end This_session;

function Get process name
return system_Defs~text_AD

is

Logic:
1. Return the name of the current process.

name: System Defs.text AD;
name untyped: System~untyped word;

FOR name untyped USE AT name' address;
begin -

name untyped := Process Mgt.
Get process globals-entry(

- Process_Mgt_Types.name);

X-A-189

r K.r..L.llVlll~AK I

614 RETURN name;
615
616 end Get_process_name;
617
618
619
620 procedure Set process name(
621 name: System_Defs.text)
622
623 Logic:
624 1. Check that "name" is a valid text.
625 2. Set the new process name.
626 is
627 name untyped: System. untyped word;
628 FOR name untyped USE AT -
629 nameTaddress;
630 begin
631 if name. length > name.max length then
632 RAISE system_Exceptions~bad_parameter;
633
634 else
635 Process Mgt.Set process globals entry(
636 slot => Process Mgt Types.name,
637 value => name_untyped);
638 end if;
639
640 end Set_process_name;
641
642
643 end Process_Globals_Support_Ex:

X-A-190 Ada Examples

l'KELIMJNAKt'

X-A.6.10 Symbol_Table_Ex Package Specification
1 package Symbol_Table_Ex is
2
3 Function:
4 Manages a symbol table for use by a compiler or
5 other application.
6
7 Synchronizes concurrent access to the symbol
8 table.
9

10 Symbol names can be no longer than
11 "max_symbol_length" characters.
12
13 There is no limit on the number of symbols in
14 the table; it is expanded as needed.
15
16 The symbol table is created empty at package
17 initialization.
18
19 Notes:
20 Nested blocks and symbols local to blocks are
21 not supported.
22
23 Exceptions:
24
25 symbol exists: exception;
26 -- "Add symbol" was called with a symbol that is
27 -- already in the table.
28
29 no such symbol: exception;
30 - "Read symbol data" was called with a symbol
31 -- that Is not In the table.
32
33 name too long: exception;
34 -"Add symbol" or "Read symbol data" was called
35 -- with-a symbol name longer than
36 -- "max_symbol_length".
37
38 max symbol length: constant positive := 32;
39 -= Maximum symbol length allowed.
40
41 History:
42 11-24-87, Paul Schwabe: updated spec.
43
44 End of Header
45 pragma external;
46
47 type symbol data is record
48 This type defines the characteristics recorded
49 for each symbol in the table. No fields are
50 defined for this example package.
51 null;
52 end record;
53
54
55 procedure Add symbol (
56 name: string;
57 -- Name cannot be in use in the table. Name
58 -- cannot be longer than "max_symbol_length".
59 data: symbol_data);
60
61 Function:
62 Adds a symbol and its data to the symbol
63 table.
64
65 Exceptions:
66 symbol exists
67 name_too_long
68
69
70 function Read symbol data(
71 name: string) -
72 Must name a symbol in the table. Name
73 cannot be longer than "max_symbol_length".
74 return symbol_data;

Ada Examples X-A-191

PRELIMINARY

75
76 -- Function:
77 Reads a symbol's data from the symbol table.
78
79 -- Exceptions:
80 no such symbol
81 name_t 0o_1 ong
82
83
84 end Symbol_Table_Ex;

X-A-192 Ada Examples

X-A.6.11 Symbol_Table_Ex Package Body
1 with Object Mgt,
2 Semaphore Mgt,
3 System:-
4
5 package body Symbol_Table_Ex is
6
7 Logic:
8 The symbol table is implemented as an object
9 containing an array. Because the table is

10 dynamically allocated, it can be expanded as
11 needed.
12
13 The "symbol table. lock" semaphore is used to
14 exclude other processes while a process is
15 accessing the table. All symbol table
16 operations lock ("P") the semaphore before
17 accessing the table, and unlock ("V") the
18 semaphore before returning or propagating an
19 exception.
20
21 Notes:
22 A realistic implementation could be optimized
23 for keyed retrieval using a hash table. Such
24 an implementation could use the same locking
25 code.
26 History:
27 11-24-87, Paul schwabe: updated code.
28 11-25-87, Gary Taylor: Added tagged comment lines.
29
30 End of Header
31
32 use System; -- Import arithmetic on type "ordinal".
33
34 table size: constant System. ordinal := 100:
35
36 type symbol name is array (
37 1 .. max_symbol_length) of character:
38
39 type symbol entry is record
40 name: symbol name;
41 data: symbol-data:
42 end record; -
43
44 FOR symbol entry USE
45 record at mod 32:
46 end record;
47
48 type symbol entry array is array(
49 System.ordinal range <» of symbol_entry:
50
51 type symbol table object (
52 max length: System. ordinal) is record
53 -- "max length" is maximum number of entries in a
54 -- full-table. Table can still grow by calling
55 -- "Expand symbol table".
56 length: -System~ordinal;
57 -- Number of entries in use.
58 lock: Semaphore Mgt.semaphore AD:
59 -- Used to lock symbol table-while a process
60 -- is accessing it.
61 value: symbol entry array(l .• max length);
62 -- Entries 1 ~. "length" contain symbol
63 -- entries.
64 end record:
65
66 type symbol table AD is access symbol table object;
67 pragma access_kInd(symbol_table_AD,-AD); -
68
69 symbol table: symbol table AD:
70 procedure Expand_symbol_table is
71
72 Operation:
73 Doubles the symbol table size.
74

Ada Examples X-A-193

X-A-194

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

PRELIMINAKY

"Expand symbol table" is normally called only
when the symbol table is full.

Performs these steps:
1. Resizes the symbol table object with space

for twice as many entries.
2. Changes the maximum length of the

symbol table entry.

Notes:
"Expand symbol table" is an internal
procedure that-must be called with the symbol
table already locked via the associated
semaphore!

symbol table untyped: System. untyped word;
FOR symbol-table untyped USE AT -

symbol:table'address;

max length access: System. ordinal;
FOR max length access USE AT

syrnbol_table.max_length'address;
begin

Object Mgt.Resize(
ob) => symbol table untyped,
size => 3 + (2-* symbol table.max length * (

symbol_entrY'size/32»); -

procedure Add symbol(
name: string;
data: symbol_data)

is

Logic:
1. Surround everything else with a lock on

"symbol table. lock". Release the lock
on all return paths and exception paths.

2. Check for "name" too long.
3. Convert "name" to "fixed width name",

padding with blanks. - -
4. Search the table and raise an exception if

the symbol is in the table.
5. Otherwise, add the symbol to the end of

the table, expanding the symbol table if
it is full.

fixed width name: symbol_name:= (others => ' ');
begin -

Semaphore Mgt.P(symbol table.lock);
begin - -

if name' length > max symbol length then
RAISE name_too_long; -

else
fixed width name(l .. name' length) :=

symbol name(name);
for i in 1-.. symbol table.length loop

if symbol table.value(i).name
fixed-width name then

RAISE symbol_exists;
end if;

end loop;
if symbol table. length =

symbol table.max length then
Expand symbol table;

end if; - -
symbol table. length := symbol table. length + 1;
symbol-table.value(symbol table.length) :=

symbol entry' (fixed wIdth name, data);
end if; - --

exception

Ada Examples

Ada Examples

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

when others =>
Semaphore Mgt.V(symbol table.lock);
RAISE; - -

Reraise exception that entered handler.
end;

Semaphore_Mgt.V(symbol_table.lock);

function Read symbol data(
name: string) -

return symbol_data

is

Logic:

1. Surround everything else with a lock on
"symbol table. lock". Release the lock
on all return paths and exception paths.

2. Check for "name" too long.

3. Convert "name" to "fixed width name",
padding with blanks. - -

4. Search the table. If the symbol is found,
return the symbol data. Otherwise raise
"no_such_symbol".

fixed width name: symbol_name:= (others => ' ');
begin - -

Semaphore_Mgt.P(symbol_table.lock);

if name' length > max symbol length then
RAISE name_tao_long; -

else
fixed width name(l .. name' length) :=

symbol name(name);
for i in 1-.. symbol table.length loop

if symbol table. value (i) . name =
fixed-width name then

Semaphore Mgt:V(symbol table.lock);
RETURN symbol_table. value (i) .data;

end if;
end loop;

RAISE no_such_symbol;

end if;

This call to "V" is never reached in the
current implementation. The call is included
as a safeguard in case code changes make it
reachable.

Semaphore_Mgt.V(symbol_table.lock);

exception
when others =>

Semaphore Mgt.V(symbol table.lock);
RAISE; - Reraise exception

-- that entered handler.

-- PACKAGE INITIALIZATION
begin

symbol table := new symbol table object (
table size); --

symbol table. length := 0;
Symbol table initially has space for 100

-- entries with 0 in use.

X-A-195

rKr..LJ.1Vlll~AK I

229 symbol table. lock := Semaphore Mgt.
230 Create semaphore; -
231 -- Lock Initially indicates table is available.
232 -- First "PH on lock will succeed.
233
234 end Symbol_Table_Ex;
235

X-A-196 Ada Examples

l"'K~LIM1.NAK Y

X-A.6.12 Word Processor Ex Package Specification - -
1 package Word_Processor_Ex is
2
3 Function:
4 This example shows how a word processor with a
5 spelling checker can use processes and events.
6
7 End of Header
8 pragma external;
9

10
11 procedure Word-processor;
12
13 Function:
14 Does word processing.
15
16 Gets its arguments from the command line.
17
18 Includes a concurrent spelling checker.
19
20
21 end Word_Processor_Ex;

Ada Examples X-A-197

PREUMINARY

X-A.S.13 Word Processor Ex Package Body - -

X-A-198

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

with Conversion Support Ex,
Event Mgt o - -

Process Globals Support Ex,
Process=Mgt, - -
Process Mgt Types,
System;- -

Logic:
This example shows how a word processor with a
concurrent spelling checker uses processes
and events.

The "Wordyrocessor" procedure spawns a
separate process to execute the
"Spelling checker" procedure. Communication
between the two processes is entirely via
events.

When a word is entered by the word processor
user, the word processor signals a 'word' event
to the spelling checker process. That event
has these
fields:

"event" - "word event value". - -
"message. offset" - Location of word to check,

encoded as a 32-bit

"message.AD"

"destination"

"word record".

- AD to word processor
process that is signalling
the event.

- AD to spelling checker
process that receives
the event.

Inclusion of an AD to the process that signals
the event allows a future implementation to use
the spelling checker process as a server for
mUltiple client processes.

If a word is misspelled, the spelling checker
signals a 'spelling error' event to the process
that requested the spelling check.
That event has these fields:

"event"

"message.offset" - Location of word that was
checked, encoded as a 32-bit
"word record".

"message.AD" - Not used. In this
implementation,
is "System. null_word".

"destination" - AD to the word processor
process that signalled the word to the spelling
checker.

The word processor handles spelling error
events with the "Spelling_error_handler"
procedure.

Notes:
The "word record" scheme of communicating words
to be checked is probably inadequate for an
implementation of the spelling checker as a
general server that can be used by multiple
concurrent applications.

Ada- Examples

Ada Examples

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

r K.r.LUY1.U"IAK I

History:
11-24-87, Paul Schwabe: updated code.
11-25-87, Gary Taylor: Added tagged comment lines.

End of Header

use System; -- Import operations on ordinal types.

type word record is record
This-type encodes a word location into 32 bits,
allowing a word location to be transmitted
using the "message. offset" field when an event
is signalled. The word processor and spelling
checker are presumed to share a two-dimensional
array containing the text being edited. Words
are presumed to not break across lines of the
array. A word location can thus be specified
as a line number, a starting column number, and
an ending column number. The encoding limits
line numbers to the range 0 .. 65 535 and
column numbers to the range 0 •• 255.

line: System. short ordinal;
start col: System.byte ordinal;
end col: System.byte-ordinal;

end record; -

FOR word record USE
record-at mod 32;

line at a range 0 15;
start col at 0 range 16 23;
end col at 0 range 24 31;

end record;

« Event Values Used »

The following local events can use the same event
value without conflict because they are always
signalled to different processes.

word event value:
constant-Event Mgt.event value := Event Mgt.user 1;

Local event-signalled-to spelling checker for­
-- each word to be checked.

spelling error event value:
constant Event Mgt.event value :=

Event Mgt.user 1; -
Local event signalled to client process for
each misspelled word.

procedure Spelling checker(

is

param buffer: -System. address;
-- Not used but required for process's initial
-- procedure.

param length: System. ordinal)
-- Not used but required for process's initial
-- procedure.

Operation:
. Loops doing these steps:

1. Wait for a word event.
2. Check the word's spelling.
3. If the word is misspelled, signal a

spelling error event to whatever
process requested the check.

word event: Event Mgt.action record;
---Receives each word to be checked.

current word: word record;
FOR current word USE AT word event.

message~offset'address; -
-- Overlay used to extract word location.,

word mispelled: boolean;
begin -

loop

X-A-199

X-A-200

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

PRELIMINARY

Event Mgt.Wait for any(
events => (word event value => true,

others => false), -
action => word_event);

Code-to check spelling of current word goes
here. The "word mispelled" flag is a stand-in
for whatever conditional expression indicates
a mispelled word.

if word mispelled then
Event-Mgt.Signal(Event Mgt.action record' (

event => spelling error-event value,
message => (- - -

offset => word event.message.offset,
AD => System.nuII word),

destination => word_event:message.AD»:
end if:

end loop:

end Spelling checker:
pragma subprogram value (Process Mgt.Initial proc,

Spelling_checker): - -

procedure Spelling error handler(
action: Event=Mgt.action_record)

is

Operation:
Handler invoked for each 'spelling error'
event.

misspelled word: word record;
FOR misspelled word

USE AT actIon.message.offset'address;
-- Overlay used to extract word location.

begin
Code to handle misspelled word goes here. For
example, this code could highlight the
misspelled word on the display and ring the
terminal's bell.

null;
end Spelling error handler:

pragma subprogram value (
Event Mgt.Event handler,
spellIng_error_handler):

procedure Word_processor

Logic:
1. Retrieve an AD for this process, to be

passed to the spelling checker so it will
know what process to signal if a word is
misspelled.

2. Create the spelling checker process.

3. Establish a handler for the spelling error
local event and enable the event. Save the
previous event status.

4. Loop, doing word processing. For each
word that is entered, signal the word event
to the spelling checker process.

5. When word processing is done, terminate and
deallocate the spelling checker process and
restore the previous event status for the
spelling error local event.

is
spelling_checker-process:

Process Mgt Types.process AD:
-- Process executing "Spelling_checker".

Ada Examples

Ada Examples

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305

rK~LINl1NAK y

child termination event value:
constant Event Mgt.event value :=

Event Mgt.user 2; -
Local event signalled when spelling checker
process terminates.

child termination event: Event Mgt.action record;
Action record used to receIve spelling checker

-- process's termination event.

this_process_untyped: System. untyped word;
Process executing "Word processor",

-- as an "untyped_word". -

word event: Event Mgt.action record;
---Used to signal each word-to be checked.

current word: word record;
FOR current word -

USE AT word event.message.offset'address;
-- Overlay used for word location.

old event status: Event Mgt.event status;
- Saves previous event status for the

spelling error local event, so the previous
status can be restored before exit.

begin
this process untyped :=

Process Mgt.Get process globals entry(
ProCess_Mgt=Types.process);-

spelling checker process := Process Mgt.
Spawn-process(-
init-proc =>

Spelling checker' subprogram value,
term action ~> (-

event =>
child termination event value,

message - => system~null_address,
-- Not used.

destination => this_process_untyped)):

old event status := Event_Mgt.
-Establish event handler(

loop

event- => spelling error event value,
status => (- - -

handler =>
Spelling error handler'

subprogram-value,
state => Event Mgt.enabled,
interrupt_system=call => false));

Presume that control exits the loop when a
user quits the word processor.

Code to do word processing goes here. For
each word entered by the user,
the following code is executed:

word event.event := word event value;
word=event.message.AD :=-this_process_untyped;

Code goes here to assign "current word" which
-- overlays "word_event.message.offset".

word event.destination :=
Conversion Support Ex.Untyped from process (

spelling checker process);
Event_Mgt.Signal(word_event);

end loop;

« QUIT » Presume control reaches this point
when a user exits the word
processor.

X-A-201

PRELIMINARY

306 Event Mgt. Signal (Event Mgt.action record' (
307 event => Event Mgt.termInation,
308 message => System. null address,
309 -- No message. -
310 destination => Conversion Support Ex.
311 Untyped_from-process(
312 spelling checker process»);
313 Event Mgt.Wait for any(- -
314 events => (-
315 child termination event value => true,
316 others => false),-
317 action => child termination event);
318 Process_Mgt.Deallocate(spelling_checker-process):
319
320 old event status := Event Mgt.
321 -Establish event handler(
322 event- => spelling error event value,
323 status => old event status): -
324 Reestablish prevIous event status.
325 Value returned is never used~
326
327 end Word_processor;
328
329
330 end Word_Processor_Ex;

X-A-202 Ada Examples

rK~LU"lll"'1AK I

X-A.6.14 View device main Procedure

Ada Examples

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

with CL Defs,
Command Handler,
Device Defs,
Environment_Mgt,
System,
System Defs,
VD Commands,
VD-Devices,
VD ~::Oefs;

procedure View_device_main

is

Function:
Main program for "view.device" utility
(Command-Oriented Program Example) .

The procedure "View device main" is
called from CLEX. "View device main"
performs the top-level processing for the
"view.device" example utility.

History:
10-08-87, William A. Rohm:
11-17-87, WAR:

Variables:

Written.
Revised.

command: System. short ordinal;
Index of current command (in current

-- command set).

command name: System Defs.text(CL Defs.max name sz);
Name of current command (in current - -

-- command set).

current cmd odo: Device Defs.opened device :=
Command-Handler.Open-invocation command processing;
Current opened command input device, -

-- initially the invocation command.

device name: System Defs.text(256);
-- Pathname of viewed device.

device opened: boolean;
Returned true from
"VD Devices.Open device" if device
successfully opened.

processing runtime: boolean:= false;
True If currently processing runtime
commands, false if processing startup
commands.

use System; to import = for
System. short_ordinal

begin

-- Get ":device" pathname:

Command Handler.Get string(
cmd-odo => current cmd odo,
arg-number => 1, --
arg=value => device_name);

Close invocation command processing:

X-A-203

X-A-204

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

PRELIMINARY

-- Open startup command input:

current cmd odo :=
command=Handler.Open_startup_command-processing(

cmd_set => VD_Defs.main_cmd_set);

-- Main processing loop:

loop

Command Handler.Get command (
cmd-odo => current cmd odo,
prompt => VD_Defs:main-prompt,
cmd id => command,
cmd=name => command_name);

case command is
when VD Defs.main change ID =>

Command Handler:Get string (
crod-odo => current crod odo,
arg-number => 1, --
arg=value => device_name);

VD Devices.device_info_valid := false;

when VD Defs.main list ID => - --
declare

ops: boolean;
Returned ":operations" parameter.

begin
-- Get ":operations" parameter:

ops := Command Handler.Get boolean(
cmd odo -=> current cmd odo,
arg=number => 1); - -

-- Display device information:

VD Commands.Display device info(
- device name => device name,

operatIons => ops); -

end;

declare
open mode: System. short ordinal;

-Enumeration index value of "access.device" method.

begin
-- Get desired open mode:

open mode :=
Command Handler.Get enumeration index(

cmd-odo => current cmd odo,
arg=number => 1); - -

-- Open device:

device opened := VD Devices.Open device (
device name => device name, -

end;

open mode => Device-Defs.
open_mode1val(open_mode));

if device opened then
-- Change to "access" command set:

Command Handler.Change cmd set(
cmd-odo => current cmd odo,
cmd=set_name => VD_Defs:access_cmd_set);

Ada Examples

Ada Examples

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

rK~Ll1Vll.NAK I

VD Commands.Process access commands(
- cmd_odo => current_cmd=odo);

-- Return to "main" command set:

Command Handler.Change cmd set(
cmd-odo => current cmd odo,
cmd=set_name => VD_Defs:main_cmd_set);

end if; -- if device_opened

if processing runtime then
EXIT; -

else

Close invocation command input
device:

-- Open runtime command processing:

current cmd odo :=
Command-Handler.Open runtime command processing(

cmd=set => VD_DeIs.main_cmd_set);

processing_runtime := true;

end if;

when others =>
null;

end case;

end loop;

if device opened then
VD Devices.Close device;

end If; -

-- Close runtime command input device:

-- Close program window:

X-A-205

PRELIMINARY

X-A.6.15 VD _ Def s Package Specification

X-A-206

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

with System,
System Defs,
Terminal_Defs;

package VD_Defs is

Function:
Contains definitions for the constants in
the Example Utility.

History:
10-08-87, William A. Rohm:
11-16-87, WAR:

End of Header

-- Constants:

Written.
Revised.

program window size:
Terminal Defs.point info := (80,20);
Size of-program's window, in columns

-- and rows.

program buffer size:
Terminal Dafs.point info := (80,20);

-- Size of-program window's buffer.

program window pos:
Terminal Defs.point info := (1,1);
Position of program's window on

-- terminal (upper left corner).

main cmd set str: constant string := "$OEO/main";
-String value of main command set's

-- pathname.

main cmd set: System Defs.text(
main-cmd set str'length) := (

main-cmd-set str'length,
main-cmd-set-str'length,
main-cmd-set-str);

Pathname of-main command set.

access cmd set str: constant string := "$OEO/access";
String value of "device access" command

-- set's pathname.

access cmd set: System Defs.text(
access-cmd set str'length) := (

access-cmd-set str'length,
access-cmd-set-str'length,
access-cmd-set-str);

Pathname 'Of "device access" command set.

main prompt str: constant string := "view. device> ";
-String-value of prompt for "main" command
set.

main prompt: System Defs.text(
main prompt str'length) := (

main prampt str'length,
main-prompt-str'length,
main-prompt-str);

"main" prompt's text.

access prompt str: constant string :=
"access.device> ";
String value of prompt for "access"

-- command set.

Ada Examples

Ada Examples

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

access prompt: System Oefs.text(
access prompt str'Iength) := (

access prompt str'length,
access~rompt=str'length,
access-prompt_str):

"access" prompt's text.

-- Command and Argument Indexes:

main_change_IO: constant System. short_ordinal
main list IO: constant System. short_ ordinal - -main access IO: constant System. short_ ordinal
main -exit IO: constant System. short_ordinal

Main -- command set command

input index: constant
System. short ordinal := 1:

output index: - constant
System. short ordinal := 2:

input partial index: constant
System. short ordinal := 3:

input output index: constant
System. short ordinal := 4:

index values.

For "access-:-device :open mode"; the
-- argument's enumeration index values.

access read IO: constant System. short ordinal
access-write IO: constant System. short-ordinal
access-exit rD: constant System. short-ordinal

access command set's -
command index values.

read length arg: constant
System. short ordinal := 1;

read position arg: constant
System. short ordinal := 2;

read offset arg:- constant
System. short ordinal := 3;

-- Argument index values for "read".

write position arg: constant
System. short ordinal := 1;

write offset arg: constant
System. short ordinal := 2;

-- Argument index values for "write".

:= 1:
:= 2:
:= 3:
:= 4:

:= 1:
:= 2;
:= 3;

X-A-207

rKJ!,LUVlll"1AK I

X-A.6.16 VD _Commands Package Specification

X-A-208

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

with Device Defs,
system:=Defs;

package VD_Commands is

Function:
Contains operations related to processing
"view.device" "access" command set's
commands.

History:
10-08-87, William A. Rohm:
11-17-87, WAR:

End of Header

procedure Display device info(
device name: System Defs.text:

-- Pathname of devIce.
operations: boolean);

Written.
Revised.

If true, displays "Byte Stream AM.Ops"
-- operations supported by-"device_name".

Function:
Calls "VD Devices.Get device info",
then displays the returned device
information record.

procedure Process access commands(
cmd odo: DevIce Defs.opened device); -= Opened command input device.

Function:
Processes the "access" command set.

end VD_Commands;

Ada Examples

rK~LJ.1VIU~AK I

X-A.6.17 VD _Commands Package Body
1 with Byte Stream AM,
2 CL Difs, -
3 Command Handler,
4 Device Defs,
5 System;
6 System Defs,
7 Text Mgt,
8 VD Difs,
9 VD=Devices:

10
11 package body VD_Commands is
12
13 Function:
14 Contains operations related to processing
15 "view. device" "access" command set.
16
17 History:
18 10-08-87, William A. Rohm: Written.
19 11-17-87, WAR: Revised.
20
21 End of Header
22
23
24 procedure Display device info(
25 device name: System Difs.text:
26 operatIons: boolean)
27
28 Logic:
29 1. Check for valid device info record: get it
30 if not valid
31 2. Display common device info values
32 3. Display BSAM device info values
33 4. If "operations" is true, display supported
34 ops
35
36 is
37
38 procedure Write info(
39 info string: string)
40 ---String value to be written.
41 is
42
43 Function:
44 Display string value, followed by a linefeed.
45
46 info text: System Defs.text(32):
47 -Text value of-various values' "'image"s.
48 begin
49
50 -- Make a text value of "info_string":
51
52 Text Mgt.Set(
53 clest => info text,
54 source => info=string):
55
56 Add a linefeed:
57
58 Text Mgt.Append(
59 clest => info text,
60 source => Stanclard.ASCII.LF):
61
62 Write text to the program's window:
63
64 Byte Stream AM.Ops.Write(
65 opened dev => VD Devices.program window,
66 buffer-VA => info text'address,-
67 length- => Systim.ordinal(info_text.length»;
68
69 end Write_info;
70
71
72 begin
73
74 -- Check for valid "device_info":

Ada Examples X-A-209

X-A-210

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

PRELIM1NAR Y

if not VD Devices.device info valid then
VD Devices.Get device Info(-

- device name => device name);
end if; - -

-- Display node id:

Write info (
info_string => n

Write info(

Node ID:");

info string => System Defs.node ID'image(
VD_Devices.device:info.common_info.node»;

Display access methods supported:

Write info(
info_string ""> " Access Methods Supported:");

for i in Device Defs.access method'first ..
Device:Defs.access:method'last loop

if VD Devices.device info.
common_info.acc_methods_supp(i) then

Write info(
info string => Device Defs.

access_method'image(i»;
end if:

end loop;

-- Display open modes supported:

Write info (
info_string => " Supported Open Modes:"):

for i in Device Defs.open mode' first ..
Device:Defs.open:mode'last loop

if VD Devices.device info.
common_info.open:modes_supp(i) then

Write info(
info string => Device Defs.

open_mode'image(i»:
end if;

end loop;

-- Display "store supported" boolean:

Write info(
info_string => .. Data written to device can be read back:"):

Write info (
info string => boolean' image (

VD Devices.device info.
- common_info.store_supp»;

-- Display "is interactive" boolean:

Write info(
info_string => "

Write info(

Device is interactive is:");

info string => boolean'image(
VD Devices.device info.

- common_info.is_interactive»;

Ada Examples

Ada Examples

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

Display byte-stream operations supported;

if operations then
Write info(

info_string ... > " Supported Byte Stream Operations:");

for i in Byte Stream AM.bsam operation' first
Byte=Stream=AM.bsam=operation'last loop

Write info(
info string => Byte Stream AM.

bsam_operation'Image(i»;
end if;

end loop;

end if;

procedure Process access commands(
cmd_odo: DevIce_Defs.opened_device)

is
command: System. short ordinal;

Index of current command (in current
-- command set).

command name: System Defs.text(CL Defs.max name sz);
Name of current command (in current - -

-- command set).

length: CL Defs.CL range;
-- Length-of displayed bytes for "read :length".

position: System. short ordinal;
-- Index of "read/write :position" argument's value.

offset: integer;
Value of "read/write :offset" argument.

begin

-- Command processing loop:

loop

Command Handler.Get command (
cmd-odo => cmd-odo,
prompt => VD Defs.access prompt,
cmd id => command, -
cmd=name => command_name):

case command is

when VD Defs.access_read_ID =>

Get ":length" argument:

length := Command Handler.Get_range(
cmd odo => cmd odo,
arg=number => VD_Defs.read_length_arg):

Get ":position" argument:

position := Command Handler.
Get enumeration-index(

-cmd odo ~> cmd odo,
arg=number => VD_Defs.read_position_arg):

-- Get ":offset" argument:

offset := Command_Handler.Get_integer(

X-A-211

X-A-212

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243 \
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267

cmd odo => cmd odo,
arg=number => VOj5'efs.read_offset_arg);

Read and display bytes:

TBO

when VO Oefs.access_write_IO =>

Get ":position" argument:

position := Command Handler.
Get enumeration-index(

-cmd odo => cmd odo,
arg=number => VO_Defs.write_position_arg);

--.Get ":offset" argument:

offset := Command Handler.Get integer (
cmd odo =>-cmd odo, -
arg=number => VD_Defs.write_offset_arg);

Get bytes and write to device:

TBD

when VD Defs.access exit ID =>
EXIT; -

when others =>
null;

end case;

end loop;

end Process_access commands;

end VD_Commands;

Ada Examples

X-A.6.18 VD _Devices Package Specification
1 with Byte Stream AM,
2 Device Defs;
3 Long Integer Defs,
4 System, -
5 System_Defs;
6
7 package VD_Devices is
8
9 Function:

10 Contains all operations related to the
11 viewed device and the windows.
12
13 This package contains calls to open and
14 close the program's windows, and calls to
15 read and write bytes to and from the
16 viewed device.
17
18 History:
19 10-08-87, William A. Rohm: Written.
20 11-17-87, WAR: Revised.
21
22 End of Header
23
24
2S -- Variables:
26
27 program window: Device Defs.opened device;
28 UtIlity's window, for accepting commands
29 -- and displaying data.
30
31
32 opened_device: Device Defs.opened device :=
33 System.null word; - -
34 -- Opened viewed device.
3S
36 device info: Byte Stream AM. device info;
37 Device information record for -
38 -- "Byte_Stream_AM".
39
40 device info valid: boolean:= false;
41 -- Whether the device information record is valid.
42
43
44 procedure Open_program_window:
45
46 Function:
47 Open the program's window on the
48 current terminal.
49
50
51 procedure Close_program_window;
52
53 Function:
54 Closes the program's main window, and
5S any opened "::window" windows.
56
57
58 procedure Get device info(
59 device_name: System_Defs.text):
60
61 Function:
62 Calls "Byte Stream AM. Get device info" to set
63 "VD_Devices:-device:)nfo" Information record.
64
65
66 function Open device(
67 device name: System Defs.text:
68 -- Pathname of devIce to be opened.
69 open mode: Device Defs.open mode)
70 -Open mode for device. -
71 return boolean:
72 -- rrue if device successfully opened.
73
74 Function:

Ada Examples X-A-213

X-A-214

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

Opens given device with
"Byte Stream AM.Open by name",
returning true if successful.

S~ts this packag~'s "opened device"
variable; "System. null word" if
inaccessible. -

procedure Read bytes(
length: - System. ordinal;

-- Number of bytes to .be read and
-- displayed.

position: Byte Stream AM.position mode;
-- Position from which-"offset" is-measured.

offset: integer;
-- Offset of first byte to be read and
-- displayed.

bytes: out System Defs.text);
-- Bytes read from device.

Function:
Reads and displays bytes from the opened
device.

procedure Write bytes (
position: Byte Stream AM.position mode;

-- Position trom which "offset" Is measured.
offset: System.ordinal;

-- Offset of first byte to be written to
-- device.

bytes: System Defs.text);
-- Bytes to be written to device.

Function:
Reads and displays bytes from the opened
device.

procedure Close_device:

Function:
Closes opened device with
"Byte_Stream_AM.Close".

end VD_Devices;

Ada Examples

X-A.6.19 VD _Devices Package Body

Ada Examples

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

with Access Mgt,
Byte Stream AM,
Device Defs;
Directory Mgt,

Example-Messages,
Object_Mgt,
Process Mgt,
Process=Mgt_Types,
System,
System Defs,
System-Exceptions,
Terminal Defs,
Unchecked Conversion,
VD Defs, -
Window_Services;

package body VD_Devices is

History:
10-08-87, William A. Rohm: Written.
11-17-87, WAR: Revised.

End of Header

procedure Open_program_window

is

Logic:
1. Gets device AD to underlying terminal.
2. Opens and assigns "program_window".

old opened window:
old-window:
underlying_terminal:

Device Defs.opened device;
Device-Defs.device;
Device=Defs.device;

begin

Assume standard input, on entry, is from
an opened window:

old opened window :=
-Process Mgt.Get process globals entry(

Process_Mgt=Types.standard_Input);

Get device object of standard input
window:

old window :=
-Byte Stream AM.Ops.Get device object (

old_opened_window); -

Get device AD of standard input window's
terminal:

underlying terminal .­
Window-Services.Ops.Get_terminal(

old_window);

-- Create program window:

program window :=
terminal
pixel units

Window Services.Ops.Create window< => underlying terminal,
=> false, ---characters, not pixels

fb size
desired window size
windowyos -
view_pos

=> VD Defs.program buffer size,
=> VD-Defs.program-window-size,
=> VD-Defs.program-window-pos,
=> Terminal_Defs.point_info' (1,1»;

end Open-program_window;

X-A-215

X-A-216

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

I'K~LIMINAK y

procedure Close_program_window

Logic~

1. Close the program window.
is
begin

Window_Services.Ops.Destroy_window(program_window);

end Close-program_window;

procedure Get device info(
device_name: System_Defs.text)

is
device: Device_Defs.device;

-- Device.

device untyped: System. untyped word;
FOR device untyped USE AT devIce~address;

Device as an untyped word.

begin

begin

device untyped := Directory Mgt.Retrieve(
name => device_name); -

device info :=
Byte Stream AM.Ops.Get device info(

dev => device); - -

device info valid := true;

exception
when Directory Mgt.no access =>

RAISE; -- msg no_access

when others => RAISE;

end;

function Open device(
device name: System Defs.text;

is

open mode: Device-Defs.open mode)
return-boolean - -

Logic:
1. Check for allowed open mode
2. Attempt "BSAM AM.Open by name"
3. If successful; assign- -

"opened device", return true;
otherwise, assign "opened device"
null, return false -

successful: boolean:= false;
Returned true if successfully opens
device.

begin

if not device info valid then
Get device Info (device name);

end if; - -

if device info valid and
device info. common info.

open_modes_supp(open_mode) then

Try to open device:

Ada Examples

Ada Examples

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

r K~L.uVlll"1AK J:

begin
opened_device := Byte Stream AM.Open by name(

name => device name, --
input output => open mode,
allow- => Device Defs.anything,
block => true);-

successful := true;

exception
when others =>

end;

end if;

opened_device := System. null_word;

if valid and open_mode
supported

return successful;

end Open_device;

procedure Read bytes (

is

length: - System. ordinal;
position: Byte Stream AM.position mode;
offset: integer; - -
bytes: out System_Defs.text)

byte position: Long Integer Defs.long integer;
-Byte pointer position, returned from

-- "Byte_Stream_AM.Ops.Set_position".

bytes read: System. ordinal;
-- Number of bytes actually read.

use System; to import "1=" for System. ordinal

begin

byte position := Byte Stream AM.Ops.Set position(
opened dev => opened devIce, -
pos - => Long Integer Defs.

Convert to long integer(
nurnber-=> offset),

mode => position);

bytes_read := Byte Stream AM.Ops.Read(
opened dev => opened device,
buffer-VA => bytes' address,
length- => System.ordinal(offset),
block => false);

if integer(bytes_read) = offset then

bytes read := Byte Stream AM.Ops.Read(
opened dev => opened device,
buffer-VA => bytes'address,
length- => bytes'size/8,
block => false);

if bytes read 1= length then
bytes.length := System_Defs.text_length(bytes_read);

end if;

end if;

end Read_bytes;

procedure Write bytes(
position: Byte Stream AM.position mode;
offset: System. ordinal;
bytes: System_Def~.text)

is
bytes read: System. ordinal;

-- Number of bytes actually read.

X-A-217

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
25B
259

PRELIMINARY

use System; -- import "=" for System. ordinal;

begin

bytes read := Byte Stream AM.Ops.Read(
opened dev => opened device,
buffer-VA => bytes' address,
length- => offset,
block => false);

if bytes_read = offset then

bytes read := Byte Stream AM.Ops.Read(
opened dev => opened device,
buffer-VA => bytes' address,
length- => bytes'size/S,
block => false);

end if;

end Write_bytes;

procedure Close device
is -
begin

Byte Stream AM.Ops.Close(opened device);
end Close_devIce; -

end VD_Devices;

X-A.7 Type Manager Services

X-A-218 Ada Examples

X-A.7.1 Acct main ex Procedure

Main procedure of the account manager test driver.

Ada Examples

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

COMMANO OEFINITIONS

--*0* manage. commands
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*

create. invocation command
end -

create.runtime_command_set :cmd def
: prompt

define. command :cmd name = create
set.description :text = "

acct_cmds \
"ACCT_MGT> "

Create a new account with an initial balance.

define. argument :arg_name
: type

set.description :text = "

init balance \
integer

Initial balance of an account.
-- Must be between 0 an 100000.

set.bounds
set.mandatory

end

:value = 0 .. 100000

--*0* end
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*

define. command :cmd name = cstore
set.description :text = "

Create and store a new account in one step.

define. argument :arg_name
: type

pathname \
string

set.description :text = "
Pathname to store the account. Must be
a valid pathname that is not already in use.
Caller must have store rights in the referenced
directory.

set.maximum length 43
set.mandatory

end

define. argument :arg_name init balance \
: type integer

set.description :text = "

Initial balance of the account. Must be
greater or equal to zero and less than or equal
to 100000.

set.bounds
set.mandatory

end

:value

define. argument :arg_name
:type

set.description :text = "

0 .. 100000

authority \
string

Specifies an authority list to be stored
with an account. Has to be created separately
invoking the manage. authority runtime command.
Oefault value is none.

X-A-219

74 --*0*
75 --*0*
76 --*0*
77 --*0*
78 --*0*
79 --*0*
80 --*0*
81 --*0*
82 --*0*
83 --*0*
84 --*0*
85 --*0*
86 --*0*
87 --*0*
88 --*0*
89 --*0*
90 --*0*
91 --*0*
92 --*0*
93 --*0*
94 ~~*O*

95 --*0*
96 --*0*
97 --*0*
98 --*0*
99 --*0*

100 --*0*
101 --*0*
102 --*0*
103 --*0*
104 --*0*
105 --*0*
106 --*0*
107 --*0*
108 --*D*
109 --*0*
110 --*D*
111 --*0*
112 --*D*
113 --*0*
114 --*0*
115 --*D*
116 --*0*
117 --*0*
118 --*D*
119 --*0*
120 --*0*
121 --*0*
122 --*0*
123 --*0*
124 --*D*
125 --*D*
126 --*0*
127 --*0*
128 --*0*
129 --*0*
130 --*0*
131 --*0*
132 --*0*
133 --*0*
134 --*0*
135 --*0*
136 --*0*
137 --*0*
138 --*0*
139 --*0*
140 --*0*
141 --*0*
142 --*0*
143 --*0*
144 --*0*
145 --*0*
146 --*0*
147 --*0*
148 --*0*
149 --*0*
150 --*0*

X-A-220

PRELIMINARY

set.maximum length 43
set.va1ue default :value "none"

end -
end

define. command :cmd name = store
set.description :text = "

Store an existing active account.
Causes separate command set acct_cmd_store
to be invoked.

define. argument :arg_name ref number \
integer : type

set.description :text = "
Reference to an account.

-- between 1 and 100.
Has to be

set.bounds :value = 1 .. 100
set.mandatory

end

define. argument :arg_name
: type

set.description :text = "

pathname \
string

Pathname to store the account. Must be
a valid pathname that is not already in use.
Caller must have store rights in the referenced
directory.

set.maximum length 43
set.mandatory

end

define.argument :arg name = authority \
: type = string

set.description :text = "
Specifies an authority list to be stored
with an account. Has to be created separately
invoking the manage. authority runtime command.
Default value is none.

set.maximum length 43
set.value default :value "none"

end -
end

define. command :cmd name = retrieve
set.description :text = "

Retrieve a stored account from a pathname
and make it available for online processing.

define. argument :arg_name
: type

pathname \
string

set.description :text = "
Pathname of a account to be retrieved. Can
be relative, absolute, or network pathname.
Must be a valid pathname and pathname must
reference an account.

set.maximum length :value = 43
set.mandatory

end
end

define. command :cmd name = "list"
set.description :text = "

end

List all accounts currently available for
online processing by ordinal reference number.

Ada Examples

151 --*0*
152 --*0*
153 --*0*
154 --*0*
155 --*0*
156 --*0*
157 --*0*
158 --*0*
159 --*0*
160 --*0*
161 --*0*
162 --*0*
163 --*0*
164 --*0*
165 --*0*·
166 --*0*
167 --*0*
168 --*0*
169 --*0*
170 --*0*
171 --*0*
172 --*0*
173 --*0*
174 --*0*
175 --*0*
176 --*0*
177 --*0:"
178 --*0*
179 --*0*
180 --*0*
181 --*0*
182 --*0*
183 --*0*
184. --*0*
185 --*0*
186 --*0*
187 --*0*
188 --*0*
189 --*0*
190 --*0*
191 --*0*
192 --*0*
193 --*0*
194 --*0*
195 --*0*
196 --*0*
197 --*0*
198 --*0*
199 --*0*
200 --*0*
201 --*0*
202 --*0*
203 --*0*
204 --*0*
205 --*0*
206 --*0*
207 --*0*
208 --*0*
209 --*0*
210 --*0*
211 --*0*
212 --*0*
213 --*0*
214 --*0*
215 --*0*
216 --*0*
217 --*0*
218 --*0*
219 --*0*
220 --*0*
221 --*0*
222 --*0*
223 --*0*
224 --*0*
225 --*0*
226 --*0*
227 --*0*

Ada Examples

PREUMINARY

define.command :cmd name = display
set.description :text = ..

-- Oisplay all relevant information about an account.

define. argument :arg name = ref number \
: type = integer

set.description :text - ..
-- Ordinal number referencing the account

set.bounds :value
set.value default :value

0 .. 100
o

end -
end

define. command :cmd name = withdraw
set.description :text = .. .

Withdraw a given amount from an account

define. argument :arg name = ref number \
: type = integer

set.bounds :value = 1 .. 100
set.mandatory

end

define. argument :arg name = amount \
: type = integer

set.bounds :value = 0 •. 100000
set.mandatory

end
end

define. command :cmd name = deposit
set.description :text = ..

Oeposit a given amount to an account

define. argument :arg name = ref number \
: type = integer

set.bounds :value = 1 •• 100
set.mandatory

end

define. argument :arg name = amount \
: type = integer

set.bounds :value = 0 .. 100000
set.mandatory

end
end

define. command :cmd name = transfer
set.description :text = ..

Transfer amount from source to destination.

define. argument :arg name = source \
: type = integer

set.bounds :value = 1 .. 100
set.mandatory

end

define. argument :arg name = destination \
: type = integer

set.bounds :value = 1 .. 100
set.mandatory

end

define. argument :arg name = amount \
: type = integer

set.bounds :value = 0 .• 100000
set.mandatory

end

X-A-221

X=A=222

228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304

--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*

PREUMINARY

end

define. command :cmd name = remove
set.description :text = ..

Remove an account from online processing
Ooes not affect an accounts passive version.

define. argument :arg name = ref number \
: type = integer

set.bounds :value = 1 •• 100
set.mandatory

end
end

define. command :cmd name = destroy
set.description :text = ..

Oestroy an account's passive version.
--*D*
--*0*

Does not affect an account~s online representation.
Fails for account's that have not been passivated.

--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*

define. argument :arg name = ref number \
: type = integer

set.bounds :value = 1 •• 100
set.mandatory

end
end

define.command :cmd name = manage. authority
set.description :text = ..

Invokes the manage. authority utility to
create authority list from within this
program.

--*0* end
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*

define. command :cmd_name = save

Invokes the screensaver utility.

define. argument :arg name = "args" \
: type = string

set.value default :value = ""
set.descrIption :text = "

end
end

Arguments to pass on to screensaver
Type csh command line in quotes.

define. command :cmd name = "exit"
set. description :text = "

end
end

Exit accounting program

--*0* exit

MESSAGE OEFINITIONS

--*D*
--*0* manage.messages
--*0*
--*0*

Ada Examples

Ada Examples

305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381

--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*

set.language :language

store :module 1 \
1 \

english

welcome \
: number
:msg name
: short "Welcome to the Account Manager"

store : module 1 \
: number 2 \
:msg_name local created \
: short "Local account number $pl<ref_number> has \

--*0* initial balance $p2<initial_balance>."
--*0*
--*0* store :module 1 \

3 \ --*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*

: number
:msg name
: short

list limits exceeded \
\ -

"You can no longer create accounts.
Your limit of $pl<list_length_limit> has been exceeded."

store :module
: number
:msg name
: short

store : module
: number
:msg name
: short

store : module
: number
:msg name
: short

store :module

1 \
4 \
unrecognized-problem \
"An unrecognized exception has been found."

1 \
5 \
no access \
"You specified an invalid pathname."

1 \
6 \
invalid account \
"You have specified an invalid account."

1 \
7 \

--*0*

: number
:msg name
: short

directory entry exists \
"You have-speciIied an existing directory entry"

--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*

store :module
: number
:msg name
: short

store : module
: number
:msg name
: short

store :module
: number
:msg name
: short

store : module
: number

--*0* :msg name
--*0* : short
--*O*is $pl<new_balance>"
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*

store : module
: number
:msg name
: short

1 \
8 \
no default authority \
"There is no default authority list."

1 \
9 \
not implemented \
"Operation not currently implemented."

1 \
10 \
not supported \
"Operation not supported."

1 \
11 \
new balance \
"The new balance in the account

1 .\
12 \
acct removed \
\

X-A-223

X-A-224

382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458

--*0* "Account with local number $pl<ref_number> has been removed."
--*0*
--*0*
--*0*
--*D*
--*0*
--*0*

store : module
~number

1 \
13 \

:msg name acct_destroyed \
: short \

--*D* "Account with pathname $pl<pathname> has been destroyed."
--*0*
--*D*
--*0*
--*D*
--*D*
--*D*
--*D*
--*D*
--*D*
--*D*
--*D*
--*D*
--*D*
--*D*
--*D*
--*D*
--*D*
--*D*
--*D*

store :module
: number

1 \
14 \

:msg name not account \
: short \ -

"$pl<pathname> is not an account."

store :module 1 \
: number 15 \
:msg name not type rights \
: short \ - -

"You have insufficient rights for this account.~

store :module
: number

1 \
16 \

--*D*
:msg name no master AD \
: short "This operation requires that the account \

--*D* be stored."
--*D*
--*D*
--*D* exit

with
Account Mgt Ex,
Acct visual;
Acct -Types,
Authority List Mgt,
Character-Display AM,
Command Execution;
Command-Handler,
ConversIon Support Ex,
Device Defs, -
Directory Mgt,
Incident Defs,
Long Integer Defs,
Message servIces,
Passive-Store Mgt,
process=:Mgt, -
Process Mgt Types,
System,- -
System Defs,
System-Exceptions,
Terminal Defs,
Text Mgt;
Transaction Mgt,
Unchecked conversion,
Window_Services;

Function:
Main event loop for account managing program.

Variables for creating and storing accounts:

local list: Acct Types.list;
-- List of local accounts.

list pointer: Acct Types.acct enum := Acct Types.list pointer init;
---Pointer to first-free element in "local list". - -

ref number: Acct Types.acct enum; --= Pointer to current element In "local list".
source number: Acct_Types.acct_enum; -
dest number: Acct Types.acct enum;
list-exceeded: boolean:= false;

Ada Examples

Ada Examples

459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535

-- True if "list" is full.
pathname: System Defs.text(Acct Types.name length limit);

-- Container for pathnames. - --
initial balance: integer;

-- Container for initial balances.
long initial balance: Long Integer Defs.long integer;

---Container for long integers. - -
amount: Long Integer Defs.long integer:

-- Container for long integers. -
new balance: Long Integer Defs.long integer: -= Container for long integers. -

-- Variables for Command processing:

input:
-- Opened

cmd id:

Device Defs.opened device;
device for top level-command processing.

-= Ordinal
cmd name:

-= Textual

System. short ordinal:
identifier for commands.

System Defs.text(Acct Types.name length limit):
identifier-for commands. - --

-- Variables for Window output:

old opened window: Device_Defs.opened_device: -= Standard input.
old window: Device_Defs.device: -= Standard input .. underlying device.
new opened window: Device Defs.opened device: -= Window for display output. -
new_window: Device Defs.device;

-- Window for display output -- underlying device.
underlying terminal: Device Defs.device;

-- User terminal. -
curr pos: Terminal Defs.point info:

---Current position in the opened window.
new window info: Window Services. window style info: -= Style-info for new window. --

-- Constants defining Window output:

frame_buffer:

window size:

view_pos:

title_string:

constant Terminal Defs.point info :=
Terminal-Defs.point-info' (80, 20);

constant Terminal-Defs.point-info :=
Terminal-Defs.point-info' (80, 10):

constant Terminal-Defs.point-info :=
Terminal-Defs.point-info' (1, 1);

constant Terminal-Defs.point-info :=
Terminal-Defs.point-info' (1, 1);

constant string := "ACCOUNTS;;

-- Variables for authority lists:

auth_Iist: Authority list Mgt.authority list AD;
-- Authority list for storing-accounts. -

authority name: System Defs.text(Acct Types.name length limit);
-- Pathname of authority list. - --

Auxiliary variables:

i: integer;
exit status:
aux text:
untyped_AD:
args:

Incident Defs.severity value;
System Defs.text(Window Services.max title);
System~untyped word; - -
System Defs.text(Acct Types.name length limit);
system=Defs.text(Acct=Types.name=length=limit); cmd line:

-- Exceptions:

list exceeded exc:
mission accomplished:
invalid-account:
not implemented:
new-balance exc:
account removed:
account=destroyed:

exception;
exception:
exception;
exception;
exception;
exception;
exception;

X-A-22S

X-A-226

536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612

r K~LJ.1YlJ.1~aK.I

not_account: exception;

-- Conversions:

function Untyped from account is new
Unchecked conversIon(

source => Account Mgt Ex.account AD,
target => system.untyped_word); -

function Account from untyped is new
Unchecked conversIon(

source => System. untyped word,
target => Account_Mgt_Ex~account_AD);

use Incident Defs;
use Long_Integer_Defs;

begin
-- Initialize account list

Import some frequently used defs.
Import long integer arithmetic.

for i in Acct Types.list pointer init .. Acct_Types.list_length_limit
loop - - -

Text Mgt.Set(
dest => local list(i) .name,
source => Acct_Types.empty_text);

end loop;

-- Open runtime command processing:

input := Command Handler.Open runtime command processing(
cmd_set => sYstem_Defs.text' (14, 14, "$OEO/acct_cmds"));

Open window for display output:

old opened window := Process Mgt.Get process globals entry(
-slot => Process Mgt Types.standard input); -

-- Retrieve standard Input. -

old window := Character Display AM.Ops.Get device object (
-opened dev => old opened window); - -

-- Retrieve the window underlying standard input.

underlying terminal := Window Services.Ops.Get terminal (
window-=> old window); - -

-- Retrieve underlying terminal.

new window :=
-terminal
pixel units
fb size

Window Services.Ops.Create window(
- => underlying terminal,

=> false, -

desired window size
=> frame buffer,
=> window size,
=> window-pos,
=> view_pes);

window_pos -

Text Mgt.Set(
dest => new window info.title,
source => title_string);

Window Services.Ops.Set window style(
window => new opened wIndow,
new info => new-window-info,
style_list => Window Services.window style mask'

(Window Services. set title => true,
others- - => false));

new opened window := Character Display AM.Ops.Open(
-device- => new window; -

input_output => DevIce_Defs.output);

Character Display AM.Ops.Move cursor absolute(
opened_dev =>-new_opened_window,-

Ada Examples

Ada Examples

613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689

newJ>os => Terminal_Defs.point_info' (15,2));

curr_pos := Terminal_Defs.point_info' (3, 5);

Message Services.Write msg(
msg-id => Incident Defs.incident code'

- (1, 1, information, system.nuII_word),
no header => true,
device => new_opened_window);

curr_pos := Terminal_Defs.point_info' (3, 2);

loop
begin

-- Program block to handle exceptions.

Command Handler.Get command (
cmd-odo => input,
cmd-id => cmd id,
cmd=name => cmd=name);

CREATE:

when 0 =>
A. Get argument from command line:

initial balance := Command_Handler.Get_integer(
cmd-odo => input,
name => System_Defs.text' (12, 12,ninit_balancen));

B. Check whether there is space available:

if list exceeded then
-- Out of space.
RAISE list_exceeded_exc;

else
Space available

long initial balance :=
Long Integer Defs.long integer' (0,
System.ordinal(initial-balance));

-- Convert integer to long integer.

-- C. Create account and add to local list:

local_list (listJ>ointer) .AD :=
Account Mgt Ex.Create account (

starting balance ~> long initial balance);
local list(list pOinter).number:= list pointer;
Text Mgt.Set(- -

dest => local list(list pointer).name,
source => Acct Types.local text);

local_list (list_pointer) .stored := false;

if list pointer = Acct Types.list length limit then
list exceeded := true; --
RAISE list_exceeded_exc;

end if;
list pointer := list pointer+l;
RAISE mission_accomplished;

end if;

-- CSTORE:

when 1 =>
A. Get arguments from command line:

initial balance := Command Handler.Get integer (
cmd=odo => input, - -

X-A-227

X-A-228

690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766

PRELIMINARY

name => System_Defs.text'(12, 12,"init_balance"»;

Command Handler.Get string(
cmd-odo => input,
name => Syst.em Defs.t.ext.~ (8, 8, ""pat.hname"),
arg_value => pathname);

Command Handler.Get string (
cmd-odo => input,
name => System Defs.text' (9, 9, "authority"),
arg_value => authorIty_name);

if list exceeded then
-- Out of space.
RAISE list_exceeded_exc;

else
Space available

long initial balance :=
Long Integer Defs.long integer' (0,
System. ordinal (initial-balance»;

-- Convert integer to long integer.

if Text Mgt.Equal(authority name, Acct Types.none text) then
-- No-authority list was specified. Use default~
auth_list := null;

else
auth_list := Conversion Support Ex.

Authority list from untyped(
Directory-Mgt.Retrieve(authority name»;

-- Retrieve authority list; -

end if;

-- C. Create account and add to local list:

local list(list pointer) .AD :=
Account Mgt-Ex.Create stored account (

starting balance => long-initial balance,
master - => pathname, -
authority => auth_list);

local list(list pointer).number := list pointer;
local-list(list-pointer).name := pathname;
local=list(list=pointer).stored := true;

if list pointer = Acct Types.list length limit then
list exceeded := true; --
RAISE list_exceeded_exc;

end if;

end if;
list pointer := list pointer+1;
RAISE mission_accomplished;

-- STORE:

when 2 =>
A. Get arguments from command line:

ref number := Command Handler.Get integer (
-cmd odo => input, -

name => System_Defs.text' (10, 10,"ref_number"»:

Command Handler.Get string(
cmd-odo => input,
name => System Defs.text' (8, 8, "pathname"),
arg_value => pathname);

Command Handler.Get string(
cmd-odo => input,
name => System Defs.text' (8, 8, "pathname"),
arg_value => authorIty_name);

Ada Examples

Ada Examples

767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843

if Text Mgt.Equa1(loca1 list (ref number) • name,
- Acct_Types.empty_text)

then
-- Unassigned account.
RAISE invalid_account:

end if:

if Text Mgt.Equa1(authority name, Acct Types.none text) then
-- No-authority list was specified. Use default:
auth_1ist := null:

end if:

-- Enclose passive store operations in a transaction:

Transaction Mgt.Start transaction:
begin - -

Directory Mgt.Store(
name - => pathname,
object => Untyped from account (

local list (ref number) .AD),
aut => auth_1ist); -

Passive Store Mgt.Request update (
obj- => Untyped_from_account (local_list (ref_number) .AD»:

Transaction Mgt.Commit transaction;
exception - -

when others =>
Transaction Mgt.Abort transaction;
RAISE; - -

end;

local list (ref number).name := pathname;
local=list(ref=number) . stored := true;

-- RETRIEVE:

when 3 =>
A. Get arguments from command line:

Command Handler.Get string(
cmd-odo => input,
name => System Defs.text' (8, 8, "pathname"),
arg_value => pathname);

if list exceeded then
RAISE-1ist_exceeded_exc;

else
B. Retrieve account and add to local list:

untyped AD := Directory Mgt.Retrieve(pathname);
if not Account Mgt Ex.Is account (untyped AD) then

RAISE not_account; - -

end if;

local list(list pointer) .AD :=
Account from untyped(untyped AD);

local list (list pointer) . number := list pointer;
local-list (list-pointer) .name .- pathname;
local=list(list=pointer) .stored := true;

long initial balance := Account Mgt Ex.Get balance(
- - 10cal_list(lIst_pointer).AD);

initial balance := integer(long_initial_balance.l):

if list pointer = Acct Types.list length limit then
list exceeded := true; --

X-A-229

X=A=230

844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920

PKELIMlNAl(1:

·end if;
list_pointer := list-pointer+1:
RAISE mission_accomplished,

end if:

-- LIST:

when 4 =>
Character Display AM.Ops.Clear(new opened window):
Acct visual. Display list (--

list => local list,
output => new opened window,
pixel units => false, -
locatIon => curr-pos);

-- DISPLAY:

when 5 =>
A. Get arguments from command line:

ref number := Command Handler.Get integer (
-cmd_odo => input, -

name => System_Defs.text' (10, 10,"ref_number"»;

if ref number
ref number :=

end if;

o then
list_pointer-1;

if Text Mgt.Equal(local list(ref number) .name,
- Acct_Types.empty_text)

then
-- Unassigned account.
RAISE invalid_account;

end if;

Character Display AM.Ops.Clear(new opened window):
Acct visual.Display account (- -

account => local list(ref number) .AD,
output => new opened window,
pixel units => false, -
locatIon => curr_pos);

-- WITHDRAW:

when 6 =>
A. Get arguments from command line:

ref number := Command Handler.Get integer (
-cmd odo => input, -

name => System_Defs.text' (10, 10,"ref_number"»;

initial balance := Command Handler.Get integer (
cmd-odo => input, - -
name => System_Defs.text' (6, 6, "amount"»:

if Text Mgt.Equal(local list (ref number) .name,
- Acct_Types.empty_text)

then
-- Unassigned account.
RAISE invalid_account:

end if:

amount :=
Long Integer Defs.long integer' (0,

System. ordinal (initial balance»;
-- Convert integer to long integer.

Ada Examples

Ada Examples

921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954,
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997

new balance := Account Mgt Ex.Change balance(
-account => local lIst (ref number).AD,

amount => - amount); -

DEPOSIT:

when 7 =>
A. Get arguments from command line:

ref number := Command Handler.Get integer (
-cmd odo => input, -

name => System_Defs.text' (10, 10,"ref_number"»;

initial balance := Command Handler.Get integer (
cmd-odo => input, - -
name => System_Defs.text' (6, 6, "amount"»;

if Text Mgt.Equal(local list (ref number) . name,
- Acct_Types.empty_text)

then
-- Unassigned account.
RAISE invalid_account;

end if;

amount :=
Long Integer Defs.long integer' (0,

System. ordinal (initial balance»;
-- Convert integer to long integer.

new balance := Account Mgt Ex.Change balance(
-account => local lIst (ref number). AD,

amount => amount); -

-- TRANSFER:

when 8 =>
A. Get arguments from command line:

source number := Command Handler.Get integer (
cmd odo => input,- -
name => System_Defs.text' (6, 6,"source"»;

:= Command Handler.Get integer (
=> input, -

dest number
cmd odo
name => System_Defs.text' (11, 11, "destination"»;

initial balance := Command Handler.Get integer (
cmd-odo => input, - -
name => System_Defs.text' (6, 6, "amount"»;

if Text Mgt.Equal(local list (source number).name,
- Acct Types.empty text) or

Text Mgt.Equal(locaI list (dest number).name,
- Acct_Types.emptY_text)

then
-- Unassigned account.
RAISE invalid_account;

end if;

amount :=
Long Integer Defs.long integer' (0,

System. ordinal (initial balance»;
-- Convert integer to long integer.

Account Mgt Ex.Transfer(
source account => local list(source number).AD,
dest account => local-list (dest number) .AD,
amount => amount); -

X-A-231

X-A-232

998
999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074

PRELIMINARY

REMOVE:

when 9 =>
A. Get arguments from command line:

ref number := Command Handler.Get integer (
-cmd_odo => input, -

name => System_Defs.text' (10, 10,lref_number"»:

if Text Mgt.Equal(local list (ref number).name,
- Acct_Types.empty_text)

then
-- Unassigned account.
RAISE invalid_account;

end if;

Text Mgt.Set(
dest => local list (ref number).name,
source => Acct_Types.empty_text);

RAISE account_removed;

DESTROY:

when 10 =>
A. Get arguments from command line:

ref number := Command Handler.Get integer (
-cmd odo => input, -

name => System_Defs.text' (10, 10,"ref_number"»:

if Text Mgt.Equal(local list(ref number).name,
- Acct_Types.empty_text)

then
-- Unassigned account.
RAISE invalid_account;

end if;

Text Mgt.Set(
dest => local list(ref number) . name,
source => Acct_Types.empty_text):

RAISE account_destroyed;

-- MANAGE.AUTHORITY:

when 11 =>
exit status := Command Execution.Execute command (

command => system_Defs.text ' (16, 16, "manage. authority"));

SAVE:

when 12 =>
A. Get arguments from command line:

Command Handler.Get string(
Cmd_odo => input,
name => System Defs.text' (4, 4, "args"),
arg_value => args);-

Text mgt.Set(
dest => cmd line,
source => "ss_"):

Text Mgt.Append(
dest => cmd line,
source => args):

Ada Exampies

Ada Examples

1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151

exit status := Command Execution.Execute command(
command => cmd_line); -

-- EXIT:

when 13 =>
EXIT;

when others =>
RAISE not_implemented;

end case;

exception
Main exception handler:

LOCAL:

when account destroyed =>
Text Mgt. Set (

dest => aux text,
source => pathname);

Message Services.Write msg(
msg-id => Incident Defs.incident code' .

- (1, 13, Information, SYstem.null word),
param1 => Incident Defs.message parameter'-

(txt, pathname.length~ aux text),
no_header => true); -

when account removed =>
Message Services.Write msg(

msg-id => Incident Defs.incident code'
- (1, 12, Information, SYstem.null word),

param1 => Incident Defs.message parameter'-
(int, 4,-integer(ref number»,

no_header => true); -

when invalid account =>
Message Services.Write msg(

msg-id => Incident Defs.incident code'
- (1, 6, error, System.null word),

no_header => true); -

when list exceeded exc =>
Message-Services~Write msg(

msg-id => Incident Defs.incident code'
- (1, 3, warning, System~null word),

param1 => Incident Defs.message parameter'
(int, 4,-Acct Types.IIst length limit),

no_header => true); - --

when mission accomplished =>
Message Services.Write msg(

msg-id => Incident Defs.incident code'
- (1, 2, information~ System.null word),

param1 => Incident_Defs.message-parameter' -
(int, 4, list pointer-I),

param2 => Incident Defs~message parameter'
(int, 4,-initial balance),

no header => true); -

when new balance exc =>
Message Services.write msg(

msg-id => Incident Defs.incident code'
- (1, 11, warning, System.null word),

param1 => Incident Defs.message parameter'
(int, 4,-integer(new balance.l»,

no header => true); -

when not account =>
Text Mgt.Set(

dest => aux text,
source => pathname);

Message_Services.Write_msg(

X-A-233

X-A-234

1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228

PRELIMINARY

msg_id => Incident Defs.incident code'
(1, 14, error, System.null word),

param1 => Incident Defs.message parameter'
(txt, pathname.length; aux text),

no_header ~> true); -

when not implemented =>
Message Services.Write msg(

msg-id => Incident Defs.incident code'
- (1, 9, warning, System:null word),

no~header => true): -

ACCOUNT_MGT_EX:

when Account mgt Ex.balance not zero =>
Message Services. Wri te msg (-

msg-id => Incident Defs.incident code'
- (0, 2, error, system.null word),

no_header => true); -

when Account Mgt Ex.insufficient balance =>
Message Services.Write msg(-

msg-id => Incident Defs.incident code'
- (0, 1, error, System.null word),

no_header => true); -

DIRECTORY_MGT:

when Directory Mgt.entry exists =>
Message ServIces.Write-msg(

msg-id => Incident Defs.incident code'
- (1, 7, error, system.null word),

no_header => true); -

when Directory Mgt.no access =>
Message services. Write msg(

msg-id => Incident Defs.incident code'
- (1, 5, error, System.null word),

no_header => true): -

when Directory Mgt.no default authority list =>
Message services. Write msg(- -

msg-id => Incident Defs.incident code'
- (1, 8, error, System.null word),

no_header => true): -

when Passive Store Mgt.no master AD =>
Message Services:Write msg(-

msg-id => Incident Defs.incident code'
- (1, 16, error, System.null word),

no_header => true); -

SYSTEM_EXCEPTIONS:

when System Exceptions.insufficient type rights =>
Message Services. Write msg(--

msg-id => Incident Defs.incident code'
- (1, 15, warning, System.null word),

no_header => true); -

when System Exceptions.operation not supported =>
Message Services. Write msg(- -

msg-id => Incident Defs.incident code'
- (1, 10, warning, System.null word),

no_header => true): -

when others =>
Message Services. Write msg(

msg-id => Incident Defs.incident code'
- (1, 4, error, System.null word),

no header => true): -
RAISE:-

end;

Ada Examples

Ada Examples

1229
1230
1231
1232

end loop;

r A~L.1lVl.lr'llaK I

X-A-235

rK~LJ.1Vll~AK I

X-A.7.2 Acct_Visual Package Specification

Display routines used by the account manager test driver.
1 with
2 Account Mgt Ex,
3 Acct Types,-
4 Authority List Mgt,
5 Device DeIs, -
6 Long Integer Defs,
7 System Defs,-
8 Terminal_Defs:
9

10 package Acct_visual is
11
12 Function:
13 This package contains procedures to display
14 information about accounts. It is called by the
15 Acct_main procedure.
16
17 Calls~
18 0 Display account Given an AD displays all information relevant to
19 - the account, i. e. pathname, creator, creation,
20 creation time, time last read, time last modified.
21 and the current balance.
22
23 0 List_account Given a Acct_main.list, displays that list.
24
25 Exceptions:
26
27
28 procedure Display account (
29 account: Account Mgt Ex.account AD:
30 -- Account that-is to be displayed.
31 output: Device Defs.opened device:
32 -- Device to use for displaying info.
33 pixel units: boolean:= false;
34 -- Whether to use character- or pixel units.
35 location: Terminal Defs.point info);
36 -- Where to display the account:
37
38 Function:
39 Displays relevant information about an account
40 in the following format:
41
42 +--+
43 I NAME: ///bla/bla/acct/bozo1 I
44 I CREATOR: ///bla/bla/id/bozo I
45 I CREATED: 12/12/1212 15:43:59 I
46 I LAST READ: 12/12/1212 15:43:59 I
47 I LAST MODIFIED 12/12/1212 15:43:59 I
48 I I
49 I Current Balance: $ 146358.00 I
50 +--+
51
52 For accounts that have no passive version the display will
53 look like this:
54
55 +--+
56 I NAME: local I
57 I CREATOR: I
58 I CREATED: I
59 I LAST READ: I
60 I LAST MODIFIED: I
61 I I
62 I Current Balance: $ 146358.00 I
63 +--+
64
65
66 procedure Display list(
67 list: -Acct Types.list;
68 -- List to display.
69 output: Device Defs.opened device;
70 -- Device to use for displaying info.
71 pixel units: boolean:= false;
72 -- Whether to use character- or pixel units.
73 location: Terminal_Defs.point_info);

X-A-236 Ada Examples

Ada Examples

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

-- Where to display the list.

Function:
Displays a list of local account in the following format:

<ref number>
- 1

pragma external;

end Acct_visual;

2
3

<stored>
stored
local
stored

<name>
///Gemini/State/home/tobiash/savings
///Gemini/State/home/martinb/checking
///Gemini/State/home/patty/stocks

X-A-237

X-A.7.3 Acct_Visual Package Body

X-A-238

Display routines used by the account manager test driver.
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

--*0*
--*D* manage.messages
--*D*
--*D* store
--*D*
--*D*
--*D*
--*D* exit

with

: module
: number
:msg name
: short

Account Mgt Ex,
Acct Types,­
Character Display AM,
Device Defs, -
Direct'Ory Mgt,
Incident. Defs,
Long Integer Defs,
Message Services,
Passive=Store_Mgt,
System,
System Defs,
System~Exceptions,
Terminal Defs,
Text Mgt:-
Timing Conversions,
Timing=String_Conversions;

package body Acct_visual is

2 \
1 \
acknowledge \
"Type any character to continue> "

procedure Display account (
account: Account Mgt Ex.account AD;
output: Device Defs~opened device;

is

pixel units: boolean := false; -
location: in Terminal_Defs.point_info)

account untyped: System. untyped word;
FOR account untyped USE AT account' address;
-- Untyped 'Overlay.

account info:
name value:
creator value:
created-value:
read value:
write value:
bal value:

Passive Store Mgt.passive object info;
System Defs.text(Acct Types.name-length limit);
System-Defs.text(Acct-Types.name-length-limit);
system-Defs.text(22);- --
System-Defs.text(22):
System-Defs.text(22):
Long_Integer_Defs.string_integer;

num time: Timing_conversions. numeric_time:

no name: boolean:= false:
position: Terminal Defs.point info;
ID untyped: System. untyped word;

FOR id untyped USE AT account info.owner'address:
num_bal:- Long_Integer_Defs.long_integer:

tb line: constant System Defs.text := System Defs.text' (65, 65,
,,+-------=----------------------=-------------------=------------+"):

side: constant System_Defs.text := System_Defs.text' (1, 1,
" I") ;

name: constant System_Defs.text := System_Defs.text' (5, 5,
"NAME:");

creator: constant System_Defs.text := System_Defs.text' (8, 8,
"CREATOR:"):

created: constant System_Defs.text := System_Defs.text' (8, 8,
"CREATED:");

read: constant System_Defs.text := System_Defs.text' (10, 10,
"LAST READ:");

write: constant System Defs.text := System_Defs.text' (14, 14,
"LAST MODIFIED:"); -

bal: constant System_Defs.text := System_Defs.text' (18, 18,

Ada Examples

Ada Examples

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

"CURRENT BALANCE: $");

begin
-- 1. Display account template:

position := location;
Character Display AM.Ops.Clear to bottom(output);
Character-Display-AM.Ops.Move cursor absolute(

opened dev =>-output, - -
new pos => position);

Character Display AM.Ops.Write(
-- Top line of box.

opened dev => output,
buffer-VA => tb line.value'address,
length- => system.ordinal(tb_line.length»;

for i in 1 •• 7 loop
position. vert := location.vert+i;
position.horiz := location.horiz;
Character Display AM.Ops.Move cursor absolute(

opened dev =>-output, - -
new pos => position);

Character Display AM.Ops.Write(
-- Left-side of-box

opened dev => output,
buffer-VA => side.value'address,
length- => System. ordinal (side.length»;

position.horiz := 10cation.horiz+74;
Character Display AM.Ops.Move cursor absolute(

opened dev => -output, - -
new pos => position);

Character Display AM.Ops.Write(
-- Right side of box.

opened dev => output,
buffer-VA => side.value'address,
length- => system.ordinal(side.length»;

end loop;

position.vert := location.vert+8;
position.horiz := location.horiz;
Character Display AM.Ops.Move cursor absolute(

opened dev => -output, - -
new pos => position);

Character Display AM.Ops.Write(
-- Bottom line of box. .

opened dev => output,
buffer-VA => tb line.value'address,
length- => System. ordinal (tb_line.length»;

position.horiz := location.horiz+1;
position.vert .= 10cation.vert+1;
Character_Display_AM.Ops.Move_cursor_absolute(

opened dev => output,
new-pos => position);

Character Display AM.Ops.Write(
-- Write "NAME:" in position 2,2.

opened dev => output,
buffer-VA => name.value'address,
length- => System. ordinal (name.length»:

position. vert := position.vert+1;
Character Display AM.Ops.Move cursor absolute(

opened dev =>-output, - -
new pos => position):

Character Display AM.Ops.Write(
-- Write "CREATOR:" in position 3,2.

opened dev => output,
buffer-VA => creator.value'address,
length- => System. ordinal (creator.length»;

position.vert := position.vert+1;
Character Display AM.Ops.Move cursor absolute(

opened dev =>-output, - -
new pos => position):

Character_Display_AM.Ops.Write(

X-A-239

X-A-240

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227

PRELIMINARY

-- Write "CREATED:" in position 4,2.
opened dev => output,
buffer-VA => created.value'address,
length- => System.ordinal(created.length»;

position.vert := position.vert+1;
Character Display AM.Ops.Move cursor absolute(

opened dev =>-output, - -
new pos => position);

Character Display AM.Ops.Write(
-- Write "LAST READ:" in position 5,2.

opened dev => output,
buffer-VA => read.value'address,
length- => System.ordinal(read.length»;

position.vert := position.vert+l;
Character Display AM.Ops.Move cursor absolute(

opened dev =>-output, - -
new pos => position);

Character Display AM.Ops.Write(
-- Write "LAST MODIFIED;" in position 6,2.

opened dev => output,
buffer-VA => write.value'address,
length- => System.ordinal(write.length»;

position.vert := position.vert+2;
Character Display AM.Ops.Move cursor absolute(

opened dev =>-output, - -
new pos => position);

Character Display AM.Ops.Write(
-- Write "CURRENT BALANCE: $" in position 8,2.

opened dev => output,
buffer-VA => bal.value'address,
length- => System.ordinal(bal.length»;

2. Determine whether "account AD" references an account
with a passive version. If-yes, get the account's name:

begin
-- This block controls the scope of the exception handler.
Directory Mgt.Get name(

obj => account untyped,
name => name_value);

exception
when Directory Mgt.no name =>

Text Mgt.Set(-
dest => name value,
source => Acct:Types.local_text);

no name := true:

when others =>
RAISE:

end;

3. Initialize values for
- Creator
- Creation Time
- Time Last Read
- Time Last Modified
- Current Balance

If account is unnamed initialize to "local".

if no name then
-- Account has no name and therefore has not
-- been passivated.
Text Mgt.Set(

dest => creator value,
source => Acct_Types.local_text);

Text Mgt. Set (
dest ~> created value,
source => Acct_Types.local_text);

Text_Mgt.Set(

Ada Exampies

Ada Examples

228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304

dest => read value,
source => Acct=Types.local_text);

Text Mqt.Set(
dest => write value,
source => Acct_Types.local_text);

else
Account has a name and has been passivated.

account info := Passive Store Mgt.Request passive object info(
obj-=> account_untyped); - - - -

Directory Mgt.Get name(
-- Obtain user name of owner from ID.

obj => ID untyped,
name => creator_value);

num time := Timing Conversions. Convert stu to numeric time(
-stu => account-info.create time); - - - -

Timing string conversions.Convert numeric time to ISO(
num time => num time, - - --
ISO=time => created_value);

num time := Timing Conversions. Convert stu to numeric time(
-stu => account-info.read time); - - - -

Timing string conversions.Convert numeric time to ISO(
num time => num time, - - --
ISO=time => read_value);

num time := Timing Conversions. Convert stu to numeric time (
-stu => account-info.write time); - - - -

Timing string conversions.Convert numeric time to ISO(
num time => num time, - - --
ISO=time => write_value);

end if;

-- 4. Get balance and convert to suitable format:

Long Integer Defs.Long integer image(
number => num bal,- -
image => bal=value);

5. Display values:

position.horiz := location.horiz+9;
position. vert := location.vert+l;
Character Display AM.Ops.Move cursor absolute(

opened dev =>-output, - -
new pos => position);

Character Display AM.Ops.Write(
opened dev =>-output,
buffer-VA => name value.value'address,
length- => System.ordinal(name_value.length»;

position.horiz := location.horiz+16;
position. vert := position.vert+l;
Character Display AM.Ops.Move cursor absolute(

opened dev =>-output, - -
new pos => position);

Character Display AM.Ops.Write(
opened dev =>-output,
buffer-VA => creator value.value'address,
length- => system.ordinal(creator_value.length»;

position. vert := position.vert+l;
Character Display AM.Ops.Move cursor absolute(

opened dev =>-output, - -
new-pos => position);

Character Display AM.Ops.Write(
opened dev =>-output,
buffer-VA => created value.value'address,
length- => System.ordinal(created_value.length»;

position.vert := position.vert+l;
Character Display AM.Ops.Move cursor absolute(

opened_dev =>-output, - -

X-A-241

X-A-242

305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381

PRELIMINARY

new-pos => position);
Character Display AM.Ops.Write(

opened dev =>-output,
buffer-VA => read value.value'address,
length~ => System. ordinal (read_value.length»;

position.vert := position.vert+1:
Character Display AM.Ops.Move cursor absolute(

opened dev =>-output, - -
new-pos => position):

Character Display AM.Ops.Write(
opened dev =>-output,
buffer-VA => write value.value'address,
length- => System. ordinal (write_value.length»;

position. vert := position.vert+2;
position.horiz := location.horiz+20:
Character Display AM.Ops.Move cursor absolute(

opened dev =>-output, - -
new pos => position);

Character Display AMeOpseWrite(
opened dev =>-output,
buffer-VA => bal value' address,
length- => 31);

end Display_account;

procedure Display list(
list: -Acct Types.list:

is

-- List to display.
output: Device Defs.opened device;

-- Device to use for displaying info.
pixel units: boolean:= false;

-- Whether to use character- or pixel units.
location: Terminal Defs.point info)

-- Where to display the list. -

Auxiliary variables:

i:
cur-p0s:
yes:
number:
step:
act len:

integer:
Terminal Defs.point info:
boolean;- -
System Defs.text(5):
integer:
integer:

begin
step := 0:
cur pos.horiz := 1;
cur-pos.vert := location.vert:
Character Display AM.Ops.Move cursor absolute(

opened dev => -output, - -
new-pos => cur_pas);

Character_Display_AM.Ops.Clear_to_bottom(output);

cur pas := location;
Character Display AM.Ops.Move cursor absolute(

opened dev =>-output, - -
new_pas => cur_pas);

for i in Acct Types.list pointer init
Acct_Types.list_length_limit-loop

if not Text Mgt.Equal(list(i) . name, Acct Types.empty text) then
act_len := integer'image(list(i).number)'length: -

declare
aux str: string(1 •• act_Ien);

begin-
aux_str := integer' image (list (i) .number):

Ada Examples

Ada Examples

382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Text Mgt.Set(
dest => number,
source => aux_str);

end;

step := step+1;
cur pos.vert := location.vert + (step mod 8);
cur-pos.horiz := location.horiz+3;
Character Display AM.Ops.Move cursor absolute(

opened dev =>-output, - -
new pos => cur pos);

Character Display AM.Ops.Write(
opened dev =>-output,
buffer-VA => number.value'address,
length- => System.ordina1(number.length»;

cur-pos.horiz := cur_pos.horiz+5;
Character Display AM.Ops.Move cursor absolute(

opened dev => -output, - -
new_pos => cur_pos);

if list(i) . stored then
Character Display AM.Ops.Write(

opened dev =>-output,
buffer-VA => Acct Types.stored text.value'address,
length- => system.ordinal(AcCt_Types.stored_text.length»;

end if;

cur_pos.horiz := cur-pos.horiz+Acct_Types.stored_text.1ength+2;
Character Display AM.Ops.Move cursor absolute(

opened dev => -output, - -
new pos => cur pos);

Character Display AM.Ops.Write(
opened dev =>-output,
buffer-VA => list(i).name.value'address,
length- => System.ordinal(list(i).name.length»;

if step mod 7 = 0 then
yes := Message Services.Acknowledge msg(

msg id => Incident Defs.incident code'
- (2, 1, Incident Defs.information, System.null_word»;

cur_pos.horiz := 1; -
cur pos.vert := location.vert;
Character Display AM.Ops.Move cursor absolute(

opened dev =>-output, - -
new pos => cur pos);

Character_Display_AM.Ops.Clear_to_bottom(output);

end if;

end if;

end loop;

end Display_list;

end Acct_visual;

X-A-243

PRELIMINARY

X-A.7.4 Account Manager Command File

Account manager command file.

X-A-244

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19-
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

set.program acct
create. invocation command

:set_def = acct_cmds

Invokes the Account Manager.

end

create.runtime_command_set" :cmd def acct cmds \
: prompt = "ACCT_MGT> "

Runtime commands of the account manager.

define. command :cmd name = create

-- Create a new account with an initial balance.

define. argument :arg~name = init balance \
: type integer

set.bounds :value = 0 •. 100000
set.mandatory
set.description :text = "

end

Initial balance of an account.
Must be between a an 100000.

set.description :text = "
Description:

Creates a local account with an initial balance.
Account is not stored and will go away when program
terminates unless it is stored prior to exiting.

Examples:
*> create 10000
Creates an account with an initial balance of 10000.

See Also:

end

define.command :cmd_name = cstore

Create and store a new account in one step.

define. argument :arg_name pathname \
string : type

set.maximum length 43
set.mandatory
set.description :text = "

end

Pathname to store the account. Must be
a valid pathname that is not already in use.
Caller must have store rights in the referenced
directory.

define. argument :arg name = init balance \
:type = integer

set.bounds :value = 0 •. 100000
set.mandatory
set.description :text = "

end

Initial balance of the account. Must be
greater or equal to zero and less than or equal
to 100000.

Ada Examples

Ada Examples

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147·
148
149
150

define. argument :arg_name authority \
string : type

set.maximum length 43
set.value default :value = "none"
set.descrIption :text = "

end

Specifies an authority list to be stored
with an account. Has to be created separately
invoking the manage. authority runtime command.
Default value is none.

set.description :text = "
Description:

CSTORE creates a local account with an initial balance
and stores the account with a pathname. The pathname must
reference an existing directory and must not already be
in use. The implementation must support stored accounts,
otherwise System Exceptions.operation not supported will
be raised. - - -

Examples:
*> cstore 10000 a1
Creates an account called a1 with an initial balance of
10000

See Also:

end

define. command :cmd_name = store

Store an existing local account

define. argument :arg_name ref number \
integer : type

set.description :text = "
Reference to an account.

-- between 1 and 100.
Has to be

set.bounds :value = 1 .. 100
set.mandatory

end

define. argument :arg name
: type

set.description :text = "

pathname \
string

Pathname to store the account. Must be
a valid pathname that is not already in use.
Caller must have store rights in the referenced
directory.

set.maximum length 43
set.mandatory

end

define. argument :arg_name
: type

authority \
string

set.description :text = "
Specifies an authority list to be stored
with an account. Has to be created separately
invoking the manage.authority runtime command.
Default value is none.

set.maximum length 43
set.value default :value

end -
set.description :text = "

Description:

"none"

Store an existing active account.
The implementation must support stored accounts.
Otherwise this operation will fail and the
, System_Exceptions. operation' will be raised.

X-A-245

X-A-246

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227

end

PK~L1M1NAK l'

Examples:
*> store :ref number = 3 :pathname = p177
Stores an account that has previously been
created and assigned local number 3 with
pathnarn~ ~p177~.

See Also:

define. command :cmd_name = retrieve

-- Make a stored account available for processing.

define. argument :arg_name = pathname \
: type = string

set.description :text = "
Pathname of a account to be retrieved. Can
be relative, absolute, or network pathname.
Must be a valid pathname and pathname must
reference an account.

set.maximum length.:value = 43
set.mandatory

end
set.description :text - "

Description:
Retrieve a stored account from a pathname
and make it available for online processing.

Examples:
*> retrieve :pathname = p177
Retrieves account named 'p177' in the current
working directory and places it on the local list
with the lowest available local number. 'pathname'
must reference an account. Otherwise operation fails.

See Also:

end

define. command :cmd name = "list"

-- List all accounts available for local processing.

set.description :text = "
Description:

List all accounts currently available for
online processing by ordinal reference number.

Examples:

See Also:

end

define. command :cmd_name = display

-- Display all relevant information about an account.

define. argument :arg name = ref number \
: type = integer

set.description :text = "
-- Ordinal number referencing a local account

set.bounds :value
set.value default :value

end -
set.description :text

-- Description:

0 .• 100
a

Ada Examples

Ada Examples

228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304

Display all relevant information about an account.
This is
NAME
CREATOR
CREATED
LAST READ
LAST MODIFIED

full network pathname.
full name of owner.
time when created.
time when last read.
time when last modified.

CURRENT BALANCE current balance in account.

Examples:

See Also:

end

define. command :cmd_name = withdraw

-- Withdraw amount from local account.

define. argument :arg name = ref number \
: type = integer

set.bounds :value = 1. .100
set.mandatory
set.description :text = "

end

Reference to a local account
'amount' is to be withdrawn.

define. argument :arg name = amount \
: type = integer

set.bounds :value = 0 .. 100000
set.mandatory
set.description :text = "

from which

Amount to be withdrawn. Must be less than
the current balance in the account.

end
set.description :text = "

Description:
Withdraw a given amount from a local account.
'amount' must be less than the current balance
in the account. Otherwise the operation will fail.

Examples:

See Also:

end

define. command :cmd_name = deposit

-- Deposit amount in local account.

define. argument :arg name = ref number \
:type = integer

set.bounds :value = 1. .100
set.mandatory
set.description :text - "

end

Reference to a local account
'amount' is to be deposited.

define. argument :arg name = amount \
: type = integer

set.bounds :value = 0 •• 100000
set.mandatory
set.description :text = "

Amount to be deposited.

end
set.description :text

in which

X-A-247

X-A-248

305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
34&
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381

Description:
Deposits a given amount in a local account.

Examples:

See Also:

end

define. command :cmd_name = transfer

-- Transfers an amount from one account to another.

define. argument :arg_name = source \
: type integer

set.bounds :value = 1 .. 100
set.mandatory
set.description :text = "

end

Source account for the transfer. The current
balance in this account must cover the transfer.

define. argument :arg name = destination \
: type = integer

setobounds ~value = 1 .. 100
set.mandatory
set.description :text = "

Destination account for the transfer.

end

define. argument :arg name = amount \
: type = integer

set.bounds :value = 0 .. 100000
set.mandatory
set.description :text = "

Amount to be transferred from 'source' to 'dest'.

end
set.description :text = "

Description:
Transfers 'amount' from 'source' to 'dest'. Transfer
happens as one atomic operation in implementations that
use transactions.

Examples:

See Also:

end

define. command :cmd name = remove

-- Remove an account from the online processing.

define. argument :arg_name = ref number \
: type = integer

set.bounds :value = 1 •. 100
set.mandatory
set. description :text - "

Reference to a local account.

end
set.description :text = "

Description:
Remove an account from online processing
Does not affect an accounts passive version.

Examples:

See Also:

Ada Examples

Ada Examples

382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458

rK.r.,L11Vlll~AK r

end

define. command :cmd_name destroy

-- Destroy an account.

define. argument :arg_name = ref number \
: type = integer

set.bounds :value = 1 .• 100
set.mandatory

end
set.description :text = "

end

Description:
Destroys an account's passive version
if the implementation supports stored accounts.
Otherwise deallocates the account.
A stored account still has an online version
after a 'destroy'.

Examples:

See Also:

define. command :cmd_name = manage.authority

-- Invokes the 'manage. authority' utility.

set.description :text
Description:

Examples:

See Also:

end

define. command :cmd_name = save

Invoke screensaver utility.

define. argument :arg name = "args" \
: type = string

set.description :text = "

end
end

Arguments to be passed on to
screensaver utility. Type
arguments exactly as you would
if you invoked the screensaver
from a shell, except enclose the
arguments in quotes.

define. command :cmd name "exit"

-- Exits 'acct'
set.description :text

Description:

end
end

Examples:

See Also:

X-A-249

X-A.7.S Account_Types_Ex Package Specification

X-A-2S0

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

with
Account Mgt Ex,
Systemj5efs;

package Acct_Types is

Global type definitions and constants for accounting program.

Constants:

name length limit:
list-length-limit:
message length:
list_poInter_init:
empty_text:

none text:

local_text:

stored text:

-- Types:

:= 43:
:= 100;
:= 55:

constant
constant
constant
constant := 1:
constant System Defs.text :=

System-Defs.text' (5, 5, "empty"):
constant System-Defs.text :=

System-Defs.text' (4, 4, "none"):
constant System-Defs.text :=

System-Defs.text' (5, 5, "local");
constant system-Defs.text :=

System=Defs.text' (6, 6, "stored");

subtype acct_enum is integer range 0 .. list_length_limit:

type local account is
record -

AD: Account Mgt_Ex.account_AD:
number: acct enum:
name: System Defs.text(name length limit):
stored: boolean; --

end record:

type list is
array(list pointer init •• list_pointer_init+list_length_limit-1)
of local_account: -

end Acct_Types:

Ada Examples

I"KELIM1NAK Y

X-A.7.6 Account_Mqt_Ex Package Specification

Common specification for active-only, non-trans action-oriented stored, transaction-oriented
stored, and distributed account type managers.

Ada Examples

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

with Authority List Mgt,
Incident Defs,­
Long Integer Defs,
Object Mgt, -
System;
System_Defs;

Function:
Type manager for accounts. An account
contains a non-negative balance of type
"Long_Integer_Defs.long_integer".

Several aspects of accounts are
implementation-defined:

1. Whether accounts can be passivated.

2. What activation model is used for
accounts.

3. Whether account operations are
atomic, either succeeding completely
or failing completely.

4. Whether an account object can
simultaneously be used by mUltiple
processes within a single job.

5. Whether the account manager is
distributed, providing service at
at mUltiple nodes in a distributed
system, regardless of which nodes
accounts are stored at.

6. Some of the protection provided
between the account manager and other
services.

7. How and where the account TOO is defined
(so long as its lifetime is >= the lifetime
of any account) .

8. Account attributes.

9. Account manager initialization requirements.

Calls:
Is account

Create account

- Checks whether an AD
references an account.

- Creates an account
with an initial balance.

Create_stored_account - Creates and stores an account.

Get balance

Change_balance

Transfer

Destroy_account

Messages:

insufficient balance code:

- Returns an account's
balance.

- Changes an account's
balance.

- Moves an amount between
accounts.

- Destroys an account.

X-A-251

X-A-252

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

constant Incident Defs.incident code :=
(0, 1, Incident_Defs.error, System.nu11_word);

--*D* manage.messages
--*D* store :module=O :number=l \
--*D* :msg name=insufficient balance code \
--*D* :short= \ --
--*D* "An account operation failed because it\
--*D* would create a negative balance."

balance not zero code:
constant IncIdent Defs.incident code :=
(0, 2, Incident_Defs.error, System.null_word);

--*D* store :module=O :number=2 \
--*D* :short= \
--*D* "An account cannot be destroyed because\
--*D* it has a non-zero balance."
--*D* exit

~~ Exceptions:

insufficient balance: exception;
pragma exception value(insufficient balance,

insufficient-balance code'address);
An operation failed because it would
cause a negative account balance.

balance not zero: exception;
pragma exception va1ue(balance not zero,

balance not zero code'address);
"Destroy-accaunt"-was called on an account
with a nanzero balance.

History:
11-01-1985 :
04-04-1988:

Martin L. Buchanan, Initial version.
Tobias Haas

Revised in order to unify all
account manager examples.

type account_object is limited private;

type account AD is access account object;
pragma access kind(account AD, AD);
-- User view 'Of an account~

change rights: constant
Object Mgt.rights mask :=
Object-Mgt.modify-rights;

-- Required to change an account's balance.

destroy rights: constant
Object Mgt.rights mask :=
Object-Mgt.control rights;

-- Required to destray an account.

function Is account (
obj: System. untyped word) AD to check.

return boolean; -
-- true if "obj" references an account,
-- else false.

pragma protected_return(Is_account);

Function:
Checks whether "obj" references an
account.

function Create accQunt(
starting balance:

Long-Integer Defs.long integer :=
Long=Integer=Defs.zero)

Ada Examples

Ada Examples

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

-- Initial balance of the account.
return account AD;

-- New account with all type rights and no
-- rep rights.

pragma protected_return(Create_account);

Function:
Creates an account and returns an AD with all
type rights. The caller is responsible for
storing the AD and updating the object.

"starting_balance" must be nonnegative.

Exceptions:
insufficient balance:

A negative-balance was supplied.

Passive Store Mgt.no master AD:
The object provided to store the AD in, has
no master AD.

function Create stored account (
starting balance: -

Long-Integer Defs.long integer :=
Long-Integer-Defs.zero;

-- Initial balance of the account.
master: System Defs.text;

-- Text record that holds the pathname
-- for the master AD.

authority:
Authority List Mgt.authority list AD :=
null) - - --

-- Optional authority list.
return account AD;

-- AD to the-account with all type rights and no
-- rep rights.

pragma protected_returnCCreate_stored_account);

Function:
Creates a new account and stores the master AD
under the pathname given by "master".
Caller must have store rights for the named
directory.
The pathname cannot already be in use.
"starting_balance" must be nonnegative.

If "authority" is null, then the new account's
authority list will be either (in that order) the
containing directory's default authority list, if
there is one, or the caller's default authority list.
If none of these three is available,
"Directory Mgt.no default authority list" will be
raised. - - - -

Exceptions:
insufficient balance:

A negative-starting balance was supplied.

Directory Mgt.entry exists:
The pathname provIded is already in use.

Direcotry Mgt.no default authority list:
No authority lIst was specified,-the target
directory has no default authority list and there
is no default authority list in the caller's
process globals.

function Get_balance(
account: account_AD)

-- Any account.
return Long Integer Defs.long integer;

-- Current balance. -
pragma protected_return(Get_balance);

-- Function:

X-A-254

226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302

PKELIM1NAKY

Returns an account's current balance.

function Change balance(
account: account AD;

-- Account with-change rights.
amount: Long Integer Defs.long integer)

-- Amount added to balance. -
return Long Integer Defs.long integer:

-- New balance, equal to old balance
-- plus "amount".

pragma protected_return(Change_balance);

Function:
Adds "amount" to an account's balance
and returns the new balance. The new
balance cannot be negative.

Exceptions:
insufficient balance

procedure Transfer (
source account: account AD;

-- Account with change-rights.
dest account: account AD;

---Account with change rights.
amount: Long Integer Defs.long integer);

Amount transferred from source to
destination accounts; it can be
positive or negative. Cannot cause
a negative balance in either account.

pragma protected_return(Transfer):

Function:
Subtracts "amount" from "source account"
and adds "amount" to "dest account".

Exceptions:
insufficient balance

procedure Destroy account (
account: account AD);

Account With-destroy rights. The
account's balance must be zero.

pragma protected_return(Destroy_account);

Function:
Destroys an account.

The passive version, caller's active version,
and any master directory entry are destroyed.

Notes:
Any subsequent "Get balance",
"Change balance", or "Transfer" call
will raise "object has no representation"
in the "System_Exceptions" package.

Exceptions:
balance not zero

pragma external;
Required if this package is used with the "virtual"
compilation model, which supports multiple domains
and multiple subsystems.

private

type account object is
Empty dummy record.
format is defined in

record
null;

end record;

The real object
the package body.

Ada Examples

I"KELIMl,NAK Y

303
304 end Account_Mgt_Ex:

Ada Examples X-A-255

PRELIMINARY

X-A.7.7 Account_Mqt_Ex (Active Only) Package Body

Active-only package implementation of the account type manager.
1 with Access Mgt,
2 Attribute Mgt,
3 Long Integer Defs,
4 Object Mgt, -
5 Passive Store Mgt,
6 System Defs, -
7 system:Exceptions;
8
9 package body Account_Mgt_Ex is

10
11 Logic:
12 This is an 'active-only' implementation of
13 the account manager, with these characteristics:
14 1. Accounts cannot be passivated.
15
16 2. Account operations are atomic.
17
18 3. An account should not be concurrently
19 used by more than one process in a
20 single job.
21
22 4. Accounts and the account TDO are local
23 to the job that uses them.
24
25 5. The account TDO has the passive store
26 attribute.
27
28 6. Initialization of the account manager
29 is done within each job that uses it.
30 Initialization creates the account TDO
31 and assigns the passive store attribute
32 so that accounts are active-only.
33
34
35 use Long Integer Defs;
36 -- Import "long_integer" operators.
37
38 type account rep object is
39 record - -
40 balance: Long Integer Defs.long integer;
41 -- Current balance. - -
42 end record;
43
44 type account rep AD is access account rep object;
45 pragma access kind(account rep AD, AD);-
46 -- Private view of an account.-
47
48 account TDO: constant Object Mgt.TDO AD :=
49 Object-Mgt.Create TDO;
50 This declaration is elaborated each-time
51 this package is initialized, that is, each
52 time a job using the package runs. This
53 technique for creating a TDO is only useful
54 for objects that are completely local to
55 a job and never stored or otherwise exported
56 outside the creating job.
57
58
59 function Is account (
60 obj: System. untyped word)
61 return boolean -
62
63 Logic:
64 If "obj" is not null, retrieve the object's
65 TDO and check whether it is the account TDO.
66 is
67 use Object Mgt, System;
68 Import "=" for "Object Mgt.TDO AD" and
69 -- "System. untyped word".- -
70 begin -
71 return obj /= System. null word and then
72 Object_Mgt.Retrieve_TDO(obj) account_TDO;
73 end Is_account;

X-A-2S6 Ada Examples

Ada Examples

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

YK.t;LlMlNAK Y

function Create account(
starting balance:

Long-Integer Defs.long integer :=
Long-Integer-Defs.zero)

return account_AD -

Logic:
1. Checks starting balance.
2. Allocates an account.
3. Initialize balance field,
4. Remove rep rights on the returned AD.

is
account: account AD;
account rep: account rep AD;
FOR account rep USE AT account' address;
account untyped: System. untyped word;
FOR account untyped USE AT account' address;

-- One word viewed with three Ada types.
begin

if starting balance < Long Integer Defs.zero then
RAISE insufficient_balance; -

else
account untyped := Object Mgt.Allocate(

size => Object Mgt.object size(
(account rep object' size + 31)/32),

Expression computes number of words
required to hold the number of bits
in an account.

tdo => account_TDO);

account rep. all := account rep object' (
balance => starting_balance);

account untyped := Access Mgt.Remove(
AD - => account untyped,
rights => Object Mgt.read write rights);

RETURN account; - --

end if;
end Create_account;

function Create stored account (
starting balance: -

Long-Integer Defs.long integer :=
Long-Integer-Defs.zero;

master: -System nefs.text;
authority: -

Authority List Mgt.authority list AD := null)
return account_AD - --

Logic:
This call is not supported by this implementation.

is
begin

RAISE System Exceptions.operation not supported;
RETURN null;- - -

function Get_balance (
account: account AD)

is

return Long_Integer=Defs.long_integer

Logic:
Amplifies read rights on "account" and
returns the balance field.

account rep: account rep AD;
FOR account rep USE AT account' address;
account untyped: System. untyped word:
FOR account_untyped USE AT account' address;

X-A-257

X-A-258

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227

begin
account untyped := Access Mgt.Amplify(

AD - => account untyped;
rights => Object Mgt.read rights,
tdo => account TDO): -

return account rep. balance:
end Get_balance;-

function Change balance<
account: account AD;

is

amount: Long Integer Defs.long integer)
return Long_Integer_Defs~long_integer

Logic:
1. Imports rep rights on account if account

has change rights.
2. Adds "amount" to the existing balance to

compute the prospective new balance.
"amount" can be positive (a deposit),
negative (a withdrawal), or zero.

3. If new balance would be negative, raises
"insufficient balance" and does not change
the balance. -

4. If new balance would be positive, then
stores the new balance and also returns it.

5. Makes the update an atomic operation. If anything
goes wrong the update is rolled back.

account rep: account rep AD:
FOR account rep USE AT account' address:
account untyped: System. untyped word;
FOR account untyped USE AT account' address;
new balance: Long Integer Defsolong integer; -= Holds the new-balance-until a decision is

-- made whether to store it in the account.
old balance: Long Integer Defs.long integer;

- Holds the old-balance-in case the operation
-- has to be rolled back.

begin
account untyped := Access Mgt. Import (

AD - => account untyped,
rights => change rights,
tdo => account_TOO);

new_balance := account_rep.balance + amount;

if new balance < Long Integer Defs.zero then
RAISE insufficient_balance;-

else
begin

old balance := account rep.balance;
account rep.balance :=-new balance:
RETURN new balance; -

exception -
An exception in this inner block means

-- that something has gone wrong with the
-- update. The old balance is restored.
when others =>

account_rep.balance := old_balance;
RAISE;

end:

end if;
end Change_balance;

procedure Transfer (
source account:
dest account:
amount:

Logic:

account AD;
account-AD:
Long_Integer_Defs.long_integer)

1. Imports rep rights on both accounts if
they have change rights.

2. Compute the prospective new balances,

Ada Examples

Ada Examples

228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
25~
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304

is

by subtracting "amount" from the source
account's balance and adding it to the
destination account's balance.
"amount" can be positive, negative,
or zero.

3. If either new balance would be negative,
raises "insufficient balance" and does
not change the balance.

4. Assigns the new balances. If an
exception occurs between assigning the
new source balance and the. new destination
balance, a handler rolls back the source
balance to its old value, preserving
atomicity.

source rep: account rep AD;
FOR source rep USE AT source account' address:
source untyped: System. untyped word;
FOR source untyped USE AT source account' address:
old source-bal: Long Integer Defs.long integer: -= Used to remember-the old-source balance in case

-- it needs to be restored if an exception occurs.
new source bal: Long Integer Defs.long integer:

- Holds-the new source balance until-a decision is
made whether to store it in the account.

dest rep: account rep AD:
FOR dest rep USE AT dest account' address:
dest untyped: System. untyped word;
FOR dest untyped USE AT dest account' address;
old dest-bal: Long Integer Defs.long integer: -= Used to remember the old destination balance in case

-- it needs to be restored if an exception occurs.
new dest bal: Long Integer Defs.long integer:

- Holds the new destinatIon balance until a decision
is made whether to store it in the account.

begin
source untyped := Access Mgt. Import (

AD- => source untyped,
rights => change-rights,
tdo => account TDO):

dest untyped := Access Mgt. Import (
AD => dest untyped,
rights => change rights,
tdo => account_TOO):

new source bal := source rep.balance - amount:
new=dest_bal := dest_rep:balance + amount;

if new source bal < Long Integer Defs.zero
or else - - -
new dest bal < Long Integer Defs.zero then

RAISE insufficient_balance; -

else
old source bal := source rep.balance;
old-dest bal := dest rep:balance:

Old balances are recorded here
-- in case the update will have to be
-- rolled back.
begin

source rep.balance := new source bal;
dest rep.balance := new dest bal;

exceptIon - -
An exception in this inner block means
that something has gone wrong with
the update. Restore the old balances to make
this operation atomic, then
reraise the exception.

when others =>
source rep. balance := old source bal:
dest rep.balance := old dest bal;
RAISE: - -

end;
RETURN:

X-A-259

305
306 end if;
307 end Transfer;
308
309
310 procedure Destroy account(
311 account: account_AD)
312
313 Logic:
314 Imports rep rights on account if account
315 has destroy rights.
316
317 If account's balance is not zero, raises
318 "balance_not_zero".
319
320 Otherwise, destroys the account.
321 is
322 account rep: account rep AD;
323 FOR account rep USE AT account' address;
324 account untyped: System. untyped word;
325 FOR account untyped USE AT account' address;
326 begin -
327 account_untyped:= Access Mgt. Import (
328 AD => account untyped,
329 rights => destroy-rights,
330 tdo => account:TDO);
331
332 if account rep.-balance /= Long_Integer_Defs.zero then
333 RAISE balance_not_zero;
334
335 else
336 Object_Mgt.Deallocate(account_untyped);
337
338 end if;
339 end Destroy~account;
340
341
342 begin
343 declare
344 passive store impl: constant
345 Passive Store Mgt.PSM attributes AD := new
346 Passive-Store-Mgt.PSM-attributes-object;
347 passive store impl untyped: System. untyped word;
348 FOR passive store Impl untyped USE AT -
349 passive:store:impl'address;
350 begin
351 Passive Store Mgt.Set refuse filters (
352 passive store impl); -
353 Attribute Mgt.Store attribute for type(
354 tdo - => account TDO,- -
355 attr ID => Passive-Store Mgt.PSM attributes ID,
356 attr:impl => passive:store:impl_untyped); -
357 end;
358 end Account_Mgt_Ex;

X-A-260 Ada Examples

X-A.7.8 Account_Mqt_Ex (Stored, Non-transaction-oriented) Package Body

Non-transaction-oriented implementation of the type manager for stored accounts.

Ada Examples

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

with Access Mgt,
AuthorIty List Mgt,
Oirectory-Mgt,­
Long Integer Oefs,
Object Mgt, -
Passive store Mgt,
System,- -
System_Oefs:

package body Account_Mgt_Ex is

Logic:
This is an implementation of the
account manager with these characteristics:

* Operations are NOT guaranteed to be
transaction-oriented or atomic.

* An account should NOT be concurrently
used, not by concurrent jobs and not by
concurrent processes in the same job.

* The account TOO must already exist in
the distributed system's directory structure.
The "bind" pragma is used to bind to the
stored TOO.

* The multiple activation model is used.

System:

Import long integer
operators.
Import ordinal operators.

type account rep object is
record - -

balance: Long Integer Defs.long integer;
-- Current balance. - -

end record:

type account rep AO is access account rep object:
pragma access kind(account rep AD, AD);-
-- Private view of an account.-

account TDO: constant Object Mgt.TOO AO := null:
-- This is a constant AD but not really null; its
-- filled in with an AD retrieved by the linker.
pragma bind(account TDO,

"account"):
-- Bind to TDO for accounts.

function Is account (

is

obj: System. untyped word)
return boolean -

Logic:
If "obj" is not null, retrieve the object's
TDO and check whether it is the account's TDO.

use Object_Mgt: -- Import "-" for type "TDO AD".
begin

return obj /= System. null word
and then -
Object Mgt.Retrieve TDO(obj) account_TOO:

end Is_account;- -

function Create account(
starting balance:

Long:Integer_Oefs.long_integer :=

X-A-261

X-A-262

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

is

l'K~L1M1NAK y

Long Integer Defs.zero)
return account_AD -

Logic:
1. Check the initial balance.

2. Allocate and initialize the account object.

3. Remove rep rights for the exported AD.
The caller is responsible for storing
the AD and updating the object.

4. Return the AD without rep rights.

account: account AD;
account untyped: System. untyped word;
FOR account untyped USE AT account' address;

Account with no rep rights, viewed with
-- either of two types.

account rep~ account rep AD;
account-rep untyped: System.untyped word;
FOR account-rep untyped USE AT -

account-rep' address;
Account with rep rights, viewed with

-- either of two types.

begin
1. Check the initial balance:

if starting balance < Long Integer Defs.zero then
RAISE insufficient_balance; -

else
2. Allocate and initialize the account object:

account rep untyped := Object Mgt.Allocate(
size =>-(account rep object' size + 31)/32,
tdo => account TDO);

account rep. all := account rep object' (
balance => starting_balance);

3. Remove rep rights for the exported AD:

account untyped := Access Mgt.Remove(
AD - => account rep-untyped,
rights => Object_Mgt.read_write_rights);

4. Return the account AD with no rep rights:

RETURN account;

end if;

end Create_account;

function Create stored account (
starting balance:

Long-Integer Defs.long integer :=
Long-Integer-Defs.zero;

master: - System_Defs.text;
authority:

Authority_List_Mgt.authority_list_AD := null)
return account_AD

Logic:
1. Check the initial balance.

2. Allocate and initialize the account object.

3. Remove rep rights for the exported and master
AD.

4. Store the master AD.
Use "authority" as authority list to store the

Ada Examples

Ada Examples

151
152
153
154
155
156
157
15B
159
160
161
162
163
164
165
166
167
16B
169
170
171
172
173
174
175
176
177
17B
179
1BO
1B1
1B2
1B3
1B4
1B5
186
1B7
1BB
1B9
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
20B
209
210
211
212
213
214
215
216
217
21B
219
220
221
222
223
224
225
226
227

is

r KJ!.L.11Vlll"lAK I

account. If "authority" is null, the default
authority list of the target directory is used.
If there is none the caller's authority list in
the process globals is used.

5. Passivate the account object itself.

6. Return the AD without rep rights.

account: account_AD;
account untyped: System. untyped word;
FOR account untyped USE AT account' address;

Account with no rep rights, viewed with
-- either of two types.

account rep: account rep AD;
account-rep untyped: System.untyped word;
FOR account-rep untyped USE AT -

account-rep'address;
Account with rep rights, viewed with
either of two types.

begin
1. Check the initial balance:

if starting balance < Long Integer Defs.zero then
RAISE insufficient_balance; -

else
2. Allocate and initialize the account object:

account rep untyped := Object Mgt.Allocate(
size =>-(account rep object' size + 31)/32,
tdo => account TOO);

account rep. all := account rep object' (
balance => starting_balance);

3. Remove rep rights for the exported and
master AD:

account untyped := Access Mgt.Remove(
AD - => account rep-untyped,
rights => Object_Mgt.read_write_rights);

4. Store the master AD:

Directory Mgt.Store(
name - => master,
object => account untyped,
aut => authority);

5. Passivate the account object itself:

-- 6. Return the account AD with no rep rights:

RETURN account;

end if;
end Create_stored account;

function Get_balance (
account: account AD)

is

return Long_Integer=Defs.long_integer

Logic:
1. Amplify rep rights on the account AD.

2. Return the balance.

account rep: account rep AD;
FOR account rep USE AT account' address;
account untyped: System. untyped word;·
FOR account_untyped USE AT account' address;

X-A-263

X-A-264

228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304

PRELIMINARY

begin
account untyped := Access Mgt.Amp1ify(

AD - => account untyped,
rights => Object Mgt.read write rights,
tdo => account_TDO); - -

return account rep.balance;
end Get_balance;-

function Change balance (
account: account AD;

is

amount: Long_Integer_Defs.long_integer)
return Long_Integer_Defs.long_integer

Logic:
1. Import the account AD, checking for

change rights and adding rep rights.

2. If the new balance would be negative,
then exit with an exception.

3. Otherwise, change the balance, update
the passive version, and return the
new balance.

account rep: account rep AD;
FOR account rep USE AT account' address;
account untyped: System. untyped word;
FOR account untyped USE AT account' address;

begin -
account untyped := Access Mgt. Import (

-AD => account-untyped,
rights => change rights,
tdo => account TDO);

if account rep. balance + amount < zero then
RAISE insufficient_balance;

else
account rep. balance :=

account rep. balance + amount;
Passive Store Mgt.Update(account untyped);
RETURN account_rep. balance; -

end if;
end Change_balance;

procedure Transfer (

is

source account: account_AD;
dest account: account AD;
amount: Long_Integer_Defs.long_integer)

Logic:
1. Import the account ADs, checking for

change rights and adding rep rights.

2. If either new balance would be negative,
then exit with an exception.

3. Otherwise, change the balances, update
the passive versions, and return.

Warning:
This implementation is not atomic; a change
may be made in the source account but not
in the destination account if an exception,
system crash, or other error intervenes.

source rep: account rep AD;
FOR source rep USE AT source account' address;
source untyped: System. untyped word:
FOR source_untyped USE AT source_account' address:

dest rep: account rep AD;
FOR dest rep USE AT dest account' address:
dest_untyped: System. untyped_word;

Ada Examples

Ada Examples

305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381

FOR dest untyped USE at dest account' address:
begin - -

source untyped := Access Mgt.Import(
AD- => source untyped,
rights => change-rights,
tdo => account TDO);

dest untyped := Access Mgt. Import (
AD => dest untyped,
rights => change rights,
tdo => account_TDO);

if source rep. balance - amount < zero
or else
dest rep.balance + amount < zero
then-

RAISE insufficient_balance:

else
source rep. balance :=

source rep. balance - amount:
dest rep. balance :=

clest rep. balance + amount;
Passive Store Mgt. Update (source untyped);
Passive-Store-Mgt.Update(dest untyped):
RETURN;- - -

end if;
end Transfer;

procedure Destroy account(
account: account_AD)

is

Logic:
1. Import the account AD, checking for

destroy rights and amplifying rep rights.

2. Check that the account's balance is zero.
If it isn't, raise an exception. If it
is, execute the remaining steps.

3. Destroy the account's passive version.

4. Get the name of the account's master
directory entry (if any). Delete that
directory entry. Note that other
entries and even a master AD may remain
for the account.

5. Deallocate the account's active version.

account rep: account rep AD:
FOR account rep USE AT account' address:
account untyped: System. untyped word;
FOR account_untyped USE AT account' address:

path length: integer:= 60:
-Initial text length for name assigned

by "Directory Mgt.Get name". If
insufficient,-then the value is
increased and the operation is
repeated.

begin
account untyped := Access Mgt. Import (

AD - => account untyped,
rights => destroy-rights,
tdo => account=TDO);

if account rep.balance /=
Long Integer Defs.zero then

RAISE balance_not_zero:

else
Passive_Store_Mgt.Destroy(account_untyped);

loop
declare

X-A-265

I"KELIM1,NAK 1:

382 path text: System_Defs'. text (path_length) :
383 begin -
384 Directory Mgt.Get name(
385 obj => account_untyped,
386 name => path text): -- out.
387 if path text. length >
388 path-text.max length then
389 -- Text was lost. Retry:
390 path length := path text.length:
391 else - -
392 Directory Mgt.Delete(path text):
393 EXIT; - -
394
395 end if;
396 exception
397 when Directory Mgt.no name =>
398 EXIT; - -
399
400 end:
401 end loop:
402
403 Object Mgt.Deallocate(account untyped);
404 end if; - -
405 end Destroy_account;
406
407 end Account_Mgt_Ex;

X-A-266 Ada Examples

X-A.7.9 Account_Mqt_Ex (Stored, Transaction-oriented) Package Body

Transaction-oriented implementation of the type manager for stored accounts.

Ada Examples

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

with Access Mgt,
AuthorIty List Mgt,
Directory-Mgt,­
Long Integer Defs,
Object Mgt, -
Passive_Store_Mgt,
System,
System Defs,
System-Exceptions,
Transaction_Mgt;

package body Account_Mgt_Ex is

Logic:
This is an implementation of the
account manager with these characteristics:

* All operations are transaction-oriented,
participating in any default transaction
or else creating a transaction for the
duration of the operation.

* An accoun~ should not be concurrently
used by more than one process in a single
job, unless an external locking protocol
is used.

* The account TDO must already exist in
the distributed system's directory structure.
The "bind" pragma is used to bind to the
stored TDO.

* The multiple activation model is used.

System,
Transaction_Mgt;

Import "long integer", "zero",
arithmetic and relational operators.
Import ordinal operators.
Import transaction calls.

type account rep object is
record - -

balance: Long Integer Defs.long integer;
-- Current balance. - -

end record;

type account rep AD is access account rep object;
pragma access kind(account rep AD, AD);-
-- Private view of an account.-

account TDO: constant Object Mgt.TDO AD := null;
-- This is a constant AD but not really null; its
-- filled in with an AD retrieved by the linker.
pragma bind(account TDO,

"account");
-- Bind to TDO for accounts.

function Is account(

is

obj: System. untyped word)
return boolean -

Logic:
If "obj" is not null, retrieve the object's
TDO and check whether it is the account's TDO.

use Object_Mgt; -- Import "_" for type "TDO AD".
begin

return obj /= System. null word
and then -
Object_Mgt.Retrieve~TDO(obj) account_TDO;

end Is_account;

X-A-267

X-A-268

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

PRELIMINARY

function Create account(
starting balance:

Long-Integer Defs.long integer :=
Long-Integer-Defs.zero)

is

return account_AD -

Logic:
1. Check the initial balance.

2. Allocate and initialize the account object.

3. Return AD with no rep rights.

4. If any exception occurs, abort any local
transaction, deallocate the account,
and reraise the exception.

account: account_AD;
account untyped: System. untyped word;
FOR account untyped USE AT account' address;

Account with no rep rights, viewed with
-- either of two types.

account rep: account rep AD;
account~rep untyped: System.untyped word;
FOR account-rep untyped USE AT -

account-repTaddress;
Account with rep rights, viewed with
either of two types.

begin
1. Check the initial balance:

if starting balance < Long Integer Defs.zero then
RAISE insufficient_balance; -

else
2. Allocate and initialize the account object:

account rep untyped := Object Mgt.Allocate(
size =>-(account rep object' size + 31)/32,
tdo => account_TOO);

begin
-- Inside this block it is guaranteed
-- that the object has been allocated.
account rep. all := account rep object' (

balance => starting_balance);

3. Remove rep rights for the exported AD:

account untyped := Access Mgt.Remove(
AD - => account rep-untyped,
rights => Object_Mgt.read_write_rights);

exception
4. If any exception occurs, abort any local

transaction, deallocate the account,
and reraise the exception:

when others =>
Object Mgt.Deallocate(account untyped);
RAISE;- -

end;

RETURN account;

end if;
end Create_account;

function Create stored_account(
starting balance:

Long-Integer Defs.long integer :=
Long=Integer=Defs.zero;

Ada Examples

Ada Examples

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227

is

master: System Defs.text;
authority: -

Authority List Mgt.authority list AD := null)
return account_AD - --

Logic:
1. Check the initial balance.

2. Allocate and initialize the account object.

3. Remove rep rights for the ,exported and
master AD.

4. Start a local transaction if there is
not a transaction on the stack.

5. Store the master AD.
Use "authority" as authority list to store the
account. If no authority list has be explicitly
specified the default authority of the target
directory is used. If there is none the the caller's
authority list in the process globals is used instead.

6. Passivate the account object itself.

7. Commit a'ny local transaction.

8. If any exception occurs, abort any local
transaction, deallocate the account,
and reraise the exception.

account: account_AD;
account untyped: System. untyped word;
FOR account untyped USE AT account' address;

Account with no rep rights, viewed with
-- either of two types.

account_rep: account rep AD;
account rep untyped: System. untyped word;
FOR account-rep untyped USE AT -

account-rep/address;
Account with rep rights, viewed with

-- either of two types.

trans: boolean:= false;
-- True if a local transaction is started.

begin
1. Check the initial balance:

if starting balance < Long Integer Defs.zero then
RAISE insufficient_balance; -

else
2. Allocate and initialize the account object:

account rep untyped := Object Mgt.Allocate(
size =>-(account rep object'size + 31)/32,
tdo => account TDO);

account rep. all := account rep object' (
balance => starting_balance);

3. Remove rep rights for the exported and
master AD:

account untyped := Access Mgt.Remove(
AD - => account rep-untyped,
rights => Object_Mgt.read_write_rights);

4. Start a local transaction if there is not
a transaction on the stack:

if Transaction Mgt.Get_default_transaction
null then

Transaction_Mgt. Start_transaction;
trans := true;

end if;
begin

X-A-269

X-A-270

228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304

rK~LJ.IVu.l"a.l'\.I

-- 5. Store the master AD:

Directory Mgt.Store(
name - => master,
object => account untyped,
aut => authority);

6. Passivate the account object itself:

7. Commit any local transaction:

if trans then
Transaction Mgt.Commit transaction;

end if: - -
exception

8. If any exception occurs, abort any local
transaction, deallocate the account,
and reraise the exception:

when others =>
if trans then

Transaction Mgt.Abort transaction:
end if: - -
Object Mgt.Deallocate(account untyped):
RAISE;- -

end:
RETURN account:

end if;
end Create_stored account:

function Get_balance(
account: account AD)

is

return Long_Integer=Defs.long_integer

Logic:
1. Amplify rep rights on the account AD.

2. Loop (in case of retry due to a transaction
timestamp conflict) .

3. If there is no default transaction,
start a local transaction and flag that
it is started.

4. Reserve the account object to read-lock
the passive version and ensure a clean
and *current* active version.

5. Commit any local transaction, releasing
the lock.

6. Return the balance from the certainly
clean active version.

7. If there is a transaction timestamp
conflict, and if a local transaction was
started, then abort that transaction, loop
back, start afresh transaction, and try
again.

8. If there is any other exception, then
abort any local transaction and reraise
the exception.

account rep: account rep AD;
FOR account rep USE AT account' address:
account untyped: System. untyped word:
FOR account_untyped USE AT account' address;

trans: boolean:= false;
True if a local transaction is started.

begin

Ada Examples

Ada Examples

305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381

rK~LllVJ.1rlilAK r

account untyped := Access Mgt.Amplify(
AD - => account untyped,
rights => Object Mgt.read write rights,
tdo => account_TOO); - -

loop
if Transaction Mgt.Get default transaction

null then - - -
Transaction_Mgt. Start_transaction;
trans := true;

end if;
begin

Passive Store Mgt.Reserve(
obj- => account untyped,
read => true): -

if trans then
Transaction Mgt.Commit transaction;

end if; - -
RETURN account_rep.balance;

exception
when System Exceptions.

transaction timestamp conflict =>
if trans then - -

Transaction Mgt.Abort transaction;
else - -

RAISE;

end if;
when others =>

if trans then
Transaction_Mgt.Abort_transaction;

end if;
RAISE;

end;
end loop;

end Get_balance;

function Change_balance (
account: account AD;
amount: Long Integer Defs.long integer)

return Long_Integer_Defs~long_integer

Logic:
1. Import the account AD, checking for

change rights and adding rep rights.

2. Loop (in case of retry due to a transaction
timestamp conflict).

3. If there is no default transaction, then
start a local transaction and flag that it
is started.

4. Reserve the account object to write-lock
the passive version and ensure a clean
and *current* active version.

5. If the new balance would be negative, abort
the transaction and exit with an exception.

6. Otherwise, change the balance, update the
passive version, and commit any local
transaction, releasing the lock.

7. If there is a transaction timestamp conflict,
and if a local transaction was started, then
abort that transaction, loop back, start a
fresh transaction, and try again.

8. If there is any other exception, then
abort any local transaction and reraise
the exception.

Notes:

X-A-271

X-A-272

382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458

is

It might appear that instead of reserving the
object, the implementation could simply compute
the new balance, do the update, and reset the
active version and retry in the infrequent
case that "outdated object version" in
"Passive Store Mgt"-is raised. However, such
an implementatIon would base the checking for
an insufficient balance on a possibly obsolete
value, which is unacceptable.

account rep: account rep AD;
FOR account rep USE AT account' address;
account untyped: System. untyped word;
FOR account_untyped USE AT account' address;

trans: boolean:= false;
-~ True if a local transaction. is started.

begin
account untyped := Access Mgt. Import (

-AD => account-untyped,
rights => change rights,
tdo => account_TDO):

loop
if Transaction Mgt.Get default transaction

null then - - -
Transaction_Mgt.Start_transaction:
trans ;"" true;

end if;
begin

Passive Store Mgt.Reserve(account untyped);
if account rep.balance + amount <-zero then

RAISE insufficient_balance;

else
account rep. balance :=

account rep.balance + amount;
Passive Store Mgt.Update(account untyped);
if trans then- -

Transaction Mgt.Commit transaction;
end if; - -
RETURN account_rep. balance;

end if:
exception

when System Exceptions.
transaction timestamp conflict =>

if trans then - -
Transaction Mgt.Abort transaction;

else - -
RAISE:

end if;
when others =>

if trans then
Transaction Mgt.Abort transaction:

end if; - -
RAISE;

end;
end loop;

end Change_balance:

procedure Transfer(
source account: account_AD;
dest account: account AD:
amount: Long_Integer_Defs.long_integer)

Logic:
1. Import the account ADs, checking for

change rights and adding rep rights.

2. Loop (in case of retry due to a transaction
timestamp conflict).

3. If there is no default transaction, then
start a local transaction and flag that it

Ada Examples

Ada Examples

459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535

is

J"K~L1M1NAKY

is started.

4. Reserve the account objects to write-lock
the passive versions and ensure a clean
and *current* active version.

5. If either new balance would be negative, abort
the transaction and exit with an exception.

6. Otherwise, change the balances, update the
passive versions, and commit any local
transaction, releasing the lock.

7. If there is a transaction timestamp conflict,
and if a local transaction was started, then
abort that transaction, loop back, start a
fresh transaction, and try again.

8. If there is any other exception, then
abort any local transaction and reraise
the exception.

source rep: account rep AD;
FOR source rep USE AT source account' address;
source untyped: System. untyped word;
FOR source_untyped USE AT source_account' address;

dest rep: account rep AD;
FOR dest rep USE AT dest account' address;
dest untyped: System. untyped word;
FOR dest_untyped USE at dest_account'address;

trans: boolean:= false;
True if a local transaction is started.

begin

source untyped := Access Mgt. Import (
AD- => source untyped,
rights => change-rights,
tdo => account TDO);

dest untyped := Access Mgt.Import(
AD => dest untyped,
rights => change rights,
tdo => account_TDO);

loop
if Transaction_Mgt.Get_default_transaction

null then
Transaction Mgt.Start transaction;
trans := true; -

end if;
begin

Passive Store Mgt.Reserve(source untyped);
Passive-Store-Mgt.Reserve(dest untyped);
if source rep~balance - amount-< zero

or else
dest rep.balance + amount < zero
then-

RAISE insufficient_balance;

else
source rep.balance :=

source rep. balance - amount;
dest rep.balan~e :=

dest rep. balance + amount;
Passive store Mgt. Update (source untyped);
Passive-store-Mgt.Update(dest untyped);
if trans then- -

Transaction Mgt.Commit transaction;
end if; - -
RETURN;

end if;
exception

when System Exceptions.
transaction timestamp conflict =>

if trans then - -

X-A-273

X-A-274

536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612

PRELIMINARY

Transaction Mgt.Abort transaction;
else - -

RAISE;

end if;
when others =>

if trans then
Transaction Mgt.Abort transaction;

end if; - -
RAISE:

end:
end loop:

end Transfer:

procedure Destroy account(
account: account_AD)

is

Logic:
1. Import the account AD, checking for

destroy rights and amplifying rep rights.

2. Loop in case of retry due to timestamp
conflict.

3. If there is no default transaction, then
start a local transaction and flag that it
is started.

4. Reserve the account object to write-lock
the passive version and ensure a clean
and current active version.

5. Check that the account's balance is zero.
If it isn't, raise an exception. The
block's exception handler will abort
any local transaction.

6. Destroy the account's passive version.

7. Get the name of the account's master
directory entry (if any). Delete that
directory entry. Note that other
entries and even a master AD may remain
for the account.

8. If there is a transaction timestamp
conflict, and if a local transaction
was started, then abort that transaction,
loop back, start a fresh transaction,
and try again.

9. If any other exception occurs, abort
any local transaction and reraise the
exception.

10. Deallocate the account's active version.

account rep: account rep AD;
FOR account rep USE AT account' address;
account untyped: System. untyped word:
FOR account_untyped USE AT account' address;

trans: boolean:= false;
-- True if a local transaction is started.

begin
account untyped := Access Mgt. Import (

AD - => account untyped,
rights => destroy-rights,
tdo => account=TDO);

loop
if Transaction Mgt.Get default transaction

null then - -
Transaction_Mgt.Start_transaction;
trans := true;

end if;

Ada Examples

Ada Examples

613
614
615
616
617
618
619
620
621
622
-623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674

declare
path length: integer:= 60;

-Initial text length for name assigned
by "Directory Mgt.Get name". If
insufficient,-then the value is
increased and the operation is
repeated.

begin
Passive Store Mgt.Reserve(account untyped);
if account rep. balance /= -

Long Integer Defs.zero then
RAISE balance_not_zero;

end if;
Passive Store Mgt.Destroy(account_untyped);

loop
declare

path text: System_Defs.text(path_length);
begin -

Directory Mgt.Get name(
obj ~> account untyped,
name => path text); -- out.

if path text.length >
path-text.max length then

-- Text was lost. Retry:
path length := path text. length;

else - -
Directory Mgt.Delete(path text);
EXIT; - -

end if:
exception

when Directory Mgt.no name =>
EXIT: -

end;
end loop:

exception
when System Exceptions.

transaction timestamp conflict =>
if trans then - -

Abort transaction;
else -

RAISE;

end if;

when others =>
if trans then

end;
EXIT;

Abort transaction:
end if;-
RAISE;

end loop:
Object Mgt.Deallocate(account untyped);

end Destroy_account; -

X-A-275

X-A.7.10 Stored Account TDO Init Ex Procedure

Initialization procedure for stored account type managers.

X-A-276

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59.
60
61
62
63
64
65
66
67
68
69
70
71
72
73

with Account Type Name Ex,
Attribute Mgt, -
Authority-List Mgt,

-- Example package.

Directory-Mgt,-
Identification Mgt,
Object Mgt, -
Passive Store Mgt,
Refuse reset active version Ex, -- Example package
System; - -
System Defs,
System-Exceptions.
Text Mgt,
Transaction Mgt,
Type Name Attribute Ex, -- Example package.
User-Mgt,- -
Unchecked_conversion;

procedure Stored Account TOO Init Ex - - - -

is

Logic:
Initialize TOO for accounts and place it in
the passive store for use by instances of
"Stored_Account_Mgt_Ex" at different nodes.

The account TOO has the OS passive store
attribute and the (example) type name attribute.

Resetting an account's active version or
copying accounts are not allowed outside the
type manager. Other passive store requests
are allowed.

Martin Buchanan, Initial version.
History:

??-??-????:
12-01-1987: Tobias Haas, Removed 'Refuse reset active version'

procedure and placed in separate package.
04-20-1988:
05-06-1988:
05-20-1988:

Tobias Haas, Added extractor comments, bstex*.ex
Tobias Haas, Modified extractor comments, bstex*.ex
Tobias Haas, Added handler for Directory Mgt.
entry_exists -

use Transaction Mgt;
-- Import transaction operators.

account name: constant string :=
"account";

-- pathname of account tdo.

account text: System Oefs.text(account name'length);
Pathname is placed in this text before calling

-- "Directory_Mgt.Store".

account TOO: Object Mgt.TOO AD;
-- TOO for accounts. -

passive store impl:
Passive Store Mgt.PSM attributes AD;

Implementation of passive store-attribute
-- for accounts.

type name impl: System. untyped word;
-Implementation of type name attribute

-- for accounts.

owner only: User Mgt.protection set (1);
Protection set that includes only one ID, namely

-- the type manager's owner.

authority: Authority List Mgt.authority list AD;
Authority list that contains only one ID; namely

-- the type manager's owner.

trans: boolean:= false;
-- Set if local transaction is started.

Ada Examples

Ada Examples

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

function Untyped from PSM attributes is
new Unchecked conversIon(

source =>-Passive Store Mgt.PSM attributes AD,
target => System.untyped_word);- -

function Untyped from TDO is
new Unchecked conversion (

begin

source =>-Object Mgt.TDO AD,
target => system:untyped=word);

Text_Mgt. Set (account_text, account_name);

. passive store impl := new
Passive_Store_Mgt.PSM_attributes_object:

passive store impl.reset :=
Refuse reset active version Ex.

Refuse_reset_active_version'subprogram_value:

passive_store_impl.copy_permitted := false;

Attribute Mgt.Store attribute for type (
tdo - => account TDO,- -
attr ID => Passive-Store Mgt.PSM attributes lD,
attr=impl => Untyped-from PSM attrIbutes (-

passive store impl»:
type_name_impl := Account_Type_Name_Ex'package_value;

Attribute Mgt.Store attribute for type(
tdo - => account TDO,- -
attr lD => Type Name Attribute Ex.

Get type name attr rD,
attr_impl => type_name_impI); -

owner only. length := 1;
owner-only. entries (1) . rights := User_Mgt.access_rights' (

true, true, true);
owner_only.entries(l).id := Identification_Mgt.Get_user_id:

authority := Authority_List_Mgt.Create_authority(owner_only);

if Transaction Mgt.Get default transaction
null then - - -

Transaction_Mgt. Start_transaction:
trans := true;

end if:

begin
Directory_Mgt.Store(

name => account text,
object => Untyped-from TDO(account TDO),
aut => authority); - -

Passive Store Mgt.Request update(
Untyped from TDO(account TDO»;

Passive store Mgt.Request update(
Untyped from PSM attrIbutes(

passive store impl»;
Passive Store Mgt.Request update(

type_name=impl); -

if trans then
Transaction Mgt.Commit transaction:

end if; - -
exception

when Directory Mgt.entry exists =>
if trans then -

Transaction Mgt.Abort transaction;
end if; - -

when others =>

X-A-277

PRELIMINARY

151 if trans then
152 Transaction Mgt.Abort transaction;
153 end if; - -
154 RAISE;
155
156 end;
157
158 end Stored_Account_TDO Init Ex;

X-A-278 Ada Examples

X-A.7.11 Account_Type_Name_Ex Package Specification

Type name attribute implementation for stored account type managers.
1 with System,
2 Type_Name_Attribute_Ex;
3
4 package Account Type Name Ex is
5 pragma package_value(Type_Name_Attribute_Ex.Ops);
6
7 Function:
8 Defines the type name attribute for accounts.
9

10 A type that supports this attribute has a
11 printable name. For example, a directory
12 listing utility could use this attribute to
13 print the types of the objects in a
14 directory.
15
16
17 function Type name(
18 obj: System. untyped word)
19 return string: -
20 -- Name of the "account" object type.
21
22 Function:
23 Returns the type name for account objects.
24
25
26 pragma external:
27
28 end Account_Type_Name_Ex;

Ada Examples X-A-279

X-A.7.12 Account Type Name Ex Package Body - - -

X-A-280

Type name attribute implementation for stored account type managers.
1 . with System;
2
3
4
5
6
7
8
9

10
11
12
13
14
15

function Type name(
obj: System. untyped word)

return string -
is
begin

return "account";
end Type_name;

Ada Examples

X-A.7.13 Type_Name_Attr_Ex Package Specification

Type name attribute package type.

Ada Examples

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

with Attribute Mgt,
System; -

Function:
Define an attribute that returns a type's name.

A type that supports the *type name* attribute has a
printable name. For example, a directory listing utility
could use the attribute to print the types of the objects
in a directory.

function Get type name attr lD
return Attribute Mgt~attrIbute lD AD:

-- Type name attribute lD, wIth-type rights.

Function:
Returns the type name attribute's attribute lD.

package Ops is
pragma package_type("typnamattr"):

Function:
Provide "Type_name" attribute call.

function
obj:

return
pragrna

Type name(
System. untyped word)

Any object that-support~
the type name attribute.
string; -- Name of the object's
interface (value, Type_name);

Function:

type.

Returns a printable name for an object's type.

end Ops;

pragma external;

X-A-281

X-A.7.14 Type_Name_Attr_Ex Package Body

X-A-282

Type name attribute package type.
1 with Attribute Mgt,
2 system_Defs;
3
4 package body Type_Name_Attribute_Ex is
5
6
7 type name attr ID: constant
8 Attribute Mgt.attribute ID AD := null;
9 pragma bind(type name attr ID,

10 "typnamattrn);-

11 -- Attribute 1D is retrieved at link time using the
12 -- specified pathname. Should have store rights.
13
14
15 function Get type name attr ID
16 return Attribute_Mgt:attrIbute_ID_AD
17 is
18 begin
19 return type name attr ID;
20 end Get_type_name_attr_ID;
21
22
23 package body Ops is
24
25 Logic:
26 Attribute packages have null bodies.
27
28
29 end Ops;
30
31
32 end Type_Name_Attribute_Ex;

Ada Examples

X-A.7.15 Type_Name_Attribute_Init_Ex Procedure

Creates the type name attribute ID.

Ada Examples

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

with
Attribute Mgt,
Conversion Support Ex,
Directory Mgt, -
Passive Store Mgt,
System Defs, -
Transaction_Mgt;

Function:
o Create new attribute.

o Store new attribute. If attribute already
exists, all changes are rolled back and the
procedure exists

o Update new attribute.

History:
05-10-1988: Tobias Haas: Initial version.

typ nam attr ID AD: Attribute_Mgt.attribute_ID_AD;
- New attribute.

begin
Transaction Mgt.Start transaction;

-- Transaction ensures that both operations, Store and
-- Update, will take place together or not at all.

begin
typ nam attr ID AD := Attribute Mgt.Create attribute ID(

-type specifIc => true); - - -
-- Create new attribute.

Directory Mgt.store(
name - => System Defs.text' (10, 10, "typnamattr") ,
object => Conversion Support Ex.Untyped from attribute ID(

typ nam attr ID AD)); - - -
Store attribute.-If attrIbute already exists, this
operation will cause the Directory Mgt.entry exists
exception to be raised. - -

Passive Store Mgt.Request update(Conversion Support Ex.
- - Untyped from attribute ID(typ nam attr ID AD));

Transaction Mgt.Commit transaction; - - - - --
Commit-transaction after successful completion of

-- both operations.

exception
when Directory Mgt.entry exists =>

Transaction Mgt.Abort transaction;
-- If entry exits, roll back any changes.

when others =>
Transaction Mgt.Abort transaction;
RAISE; - -

end;
end Type_Name_Attribute_Init_Ex;

X-A-283

YKELlMlNAKY

X-A.7.16 Refuse;.,.. Reset ~cti ve _ Vers ion_Ex Package Specification

Type-specific implementation for stored accounts.
1 with System,
2 System Exceptions,
3 Passive_Stare_Mgt;
4
5 package Refuse_reset_active_version_Ex is
6
7 procedure Refuse reset active version(
8 obj: System:untyped_word);
9

10 Function:
11 Handles requests to reset an account's active
12 version by refusing such requests.
13
14 pragma external;
15
16 pragma subprogram value (
17 Passive Store-Mgt.
18 Type specific reset active version,
19 Refuse_reset_active_version); -
20
21 end Refuse_reset_active_version_Ex;

X-A-284 Ada Examples

X-A.7.17 Re£use_Reset_Active_Version_Ex Package Body

Type-specific implementation for stored accounts.

Ada Examples

1
2
3
4
S
6
7
8
9

10
11
12
13
14
lS
16
17
18
19
20
21
22
23
24
2S
26

wi th System,
System Exceptions,
Passive_Store_Mgt;

History:
12-01-87:
04-20-87:

Tobias Haas, initial version.
Tobias Haas, added extractor comments bstex*.ex

procedure Refuse reset active version(
obj: system:untyped_word)

is

begin

Function:
Handles requests to reset an account's active
version by refusing such requests.

RAISE System_Exceptions.operation_not_supported;

X-A-285

X-A.7.18 Account_Mqt_Ex (Distributed) Package Body

Package body of the distributed account manager.

X-A-286

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

with
Access Mgt,
Attribute Mgt,
Authority-List Mgt,
Directory-Mgt,-
Distr Acct Call Stub Ex,
Long Integer Defs, -
Object Mgt, -
Passive Store Mgt,
Semaphore Mgt;
System, -
System Defs,
System-Exceptions,
Transaction_Mgt;

package body Account_Mgt_Ex is

Logic:
This is an implementation of the distributed
account manager. It follows the single activation
model. It has the following characteristics:

* All operations on accounts are centralized in
one home job. The home job is created at the node
where the first call to this package is made.

* Accounts can be stored anywhere on the system.

* Initialization, (creating the TDO, the server,
the service, installing the server, and setting up
the homomorph template) happen when the package is
eleborated.

* All synchronization is centralized in the
home job: Transactions are used to synchronize accross
job boundaries and semaphores to synchronize between
different processes inside one job.

* This code is used in the home job and in all
other jobs. In the home job operations are
done directly. In all other jobs a call stub
package is called that issues RPCs
to the home job to perform the actual operation.

* The following picture
illustrates the structure of the distributed
implementation. Boxes represent independent jobs
that may run on any node. The names in the boxes
are the names of the packages.

+--------------+
IAccount Mgt Exl
I - - I
I Distr Acct I
I Call-Stub- I
+--------------+

Application
Job

+--------------+
IAccount Mgt Exl
I - - I
I Distr Acct I
I Call-Stub- I
+--------------+

Application
Job

+--------------+
I Distr Acct I
I server_Stub I
I I
I Account_Mgt_ExI
+--------------+

Server Job
(Home Job)

* ADs to the TDO and the account service are created
by an initialization routine called Distr acct init
and stored with pathnames. They are retrieved by the

Ada Examples

Ada Examples

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

various models at link-time.

Exceptions:
no server installed:

Server for accounts is not installed.

History:
01-31-88: Tobias Haas, Initial version.
06-08-88: Tobias Haas, Design revision.

System,
Transaction_Mgt;

Import "long integer", "zero",
arithmetic, and relational
operators.
Import ordinal operators.
Import transaction calls.

account TDO: constant Object Mgt.TDO AD := null;
pragma bind(account TDO, "account"):

Constant AD to account TDO. Initially null.
Filled in at link-time.

type account rep object is
RepresentatIon of an account.

record
lock: Semaphore Mgt.semaphore AD;

-- Locking area -
is homomorph: boolean;

- If false identifies the object
-- as the active version; if true
-- as a homomorph.

balance: Long Integer Defs.long integer;
-- Starting-balance~ -

end record;
FOR account rep object USE
record AT mod 32:

lock at 0 range 0 31;
is homomorph at 4 range 0 7;
balance at 8 range 0 63;

end record;
type account rep AD is access account rep object;

pragma access kind(account rep AD, AD);-
-- Private view of an account.-

IS ACCOUNT

func"tion Is account (

is

obj: System. untyped word)
return boolean -

Logic:
If "obj" is not null, retrieve the object's
TDO and check whether it is the account's TDO.

use Object_Mgt; -- Import "=" for type "TDO AD".
begin

return obj /= System. null word
and then -
Object_Mgt.Retrieve_TDO(obj) account_TDO;

end Is_account;

CREATE ACCOUNT

X-A-287

X-A-288

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227

.l"K):!;LlNllNAK l:

function Create account(
starting balance:

Long-Integer Defs.long integer :=
Long-Integer-Defs.zero)

is

return account AD -

Logic:
Creates an account by allocating an object
of type account. Storing the account is the
responsibility of the caller. Accounts can
be created in any account.

1. Check initial balance.

2. Allocate and initialize the account
object.

3. Remove rep rights for the exported and
master AD.

4. If any exception occurs, deallocate the object
and return.

account: account_AD;
account untyped: System. untyped word;
FOR account untyped USE AT account~address;

Account with no rep rights, viewed with
-- either of two types.

account_rep: account rep AD;
account rep untyped: System. untyped word;
FOR account-rep untyped use AT -

account-rep'address;
Account with rep rights, viewed with

-- either of two types.

trans: boolean:= false;
True if a local transaction has been

-- started.
begin

1. Check initial balance:

if starting balance <
Long Integer Defs.zero then

RAISE InsufficIent_balance;

else
2. Allocate and initialize the

account object:

account rep untyped := Object Mgt.Allocate(
size =>-(account rep object'size+31)/32,
tdo => account_TDO);

begin
account rep. all := account rep object' (

lock => null, - -
is homomorph => false,
balance => starting balance);

3. Remove rep rights for the exported and
master AD:

account untyped := Access Mgt.Remove(
AD - => account rep-untyped,
rights => Object_Mgt.read_write_rights);

exception
4. If an exception occurs, deallocate the account

and reraise the exception:

when others =>

Object Mgt.Deallocate(account untyped);
RAISE;- -

Ada Examples

Ada Examples

228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304

end;
RETURN account;

end if;

end Create_account;

function Create stored account (
starting balance: -

Long-Integer Defs.long integer :=
Long-Integer-Defs.zero;

is

master: -System nefs.text;
authority: -

Authority List Mgt.authority list AD :=
null) - - --

return account AD

Logic:
Any job can create accounts. In order to
ensure that no mUltiple active versions of
any account exist the active version is
deallocated as soon as it has been
passivated. Passivating the master AD
and deallocating the active version
are enclosed in a transaction.
These are the steps:

1. Check initial balance.

2. Allocate and initialize the account
object.

3. Remove rep rights for the exported and
master AD.

4. Start a local transaction if there is
not a transaction on the stack.

5. Create a master AD. Use "Store". This also
sets the object's authority list.

6. Passivate the account.

7. Deallocate the active version of the
account.

8. Commit any local transaction.

9. If an exception occurs, abort any local
transaction, deallocate the account
and reraise the exception.

account: account_AD:
account untyped: System. untyped word:
FOR account untyped USE AT account' address:

Account with no rep rights, viewed with
-- either of two types.

account_rep: account rep AD;
account rep untyped: System. untyped word;
FOR account-rep untyped use AT -

account-rep'address:
Account with rep rights, viewed with

-- either of two types.

X-A-289

X-A-290

305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381

PRELIMINARY .

trans: boolean:= false;
True if a local transaction has been

-- started.
begin

1. Check initial balance:

if starting balance <
Long Integer Defs.zero then

RAISE InsufficIent_balance;

else
2. Allocate and initialize the

account object:

account rep untyped := Object Mgt.Allocate(
size =>-(account rep object'size+31)/32,
tdo => account TDO);

account rep. all := account rep object' (
lock => null, - -

-- Null because "lock" is. not present
~= in passive version.

is homomorph => false,
balance => starting_balance);

3. Remove rep rights for the exported and
master AD:

account untyped := Access Mgt.Remove(
AD - => account rep-untyped,
rights => Object_Mgt.read_write_rights);

4. Start a local transaction if there is
not one on the stack:

if Transaction Mgt.Get default transaction
null then - - -

Transaction_Mgt. Start_transaction;
trans := true;

end if;

begin
This block controls the scope of
the exception handler.

5. Create the master AD:

Directory_Mgt. Store <

name => master,
object => account untyped,
aut => authority);

6. Passivate the representation of the account:

7. Deallocate the active version of the
account:

Object_Mgt.Deallocate(account_rep_untyped);

8. Commit any local transaction.

if trans then
Transaction Mgt.Commit transaction;

end if; - -

exception

9. If an exception occurs, abort any local
transaction, deallocate the account and
reraise the exception:

when others =>
if trans then

Ada Examples

Ada Examples

382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458

Transaction Mgt.Abort transaction;
end if: - -
Object Mgt.Deallocate(account rep untyped);
RAISE;- - -

end;
RETURN account;

end if;
end Create_stored account;

GET BALANCE

function Get_balance(
account: account AD)

is

return Long_Integer=Defs.long_integer

Logic:
1. Amplify rep rights on the account AD.

2. If "is_homomorph"· is true:

* Call the call stub.

3. If "is_homomorph" is false:

* Start transaction if there is not
one on the stack.

* Lock account with a semaphore.
(Deadlock is avoided by the
transaction timeout.)

* Read current balance.

* If an exeception occurs release the
account and abort any local transaction.

* Release the object and commit any local
transaction.

account_rep: account rep AD;
-- Account with rep rights.-

account rep untyped: System. untyped word;
FOR account rep untyped USE AT account rep'address;
-- untyped view-of account with rep rights.

account no rep untyped: System. untyped word;
FOR account no rep untyped USE AT account'address;
-- Untyped view of-account with no rep rights.

current balance: Long Integer Defs.long integer;
-- Current balance.

trans: boolean:= false;
Is true if there is a local transaction.

begin
account_rep_untyped := account_no_rep_untyped;

-- 1. Amplify rep rights:

account rep untyped := Access Mgt.Amplify(
AD - ~> account rep untyped,
rights => Object Mgt.read write rights,
tdo => account_tdo); - -

if account_rep.is_homomorph then

X-A-291

X-A-292

459
460
46:1.
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535

PK~LlM1NAKY

2. We have a homomorph:

Call the call stub:

RETURN Distr Acct Call Stub Ex.
Get_balance1account};

else

3. We are in the home job for accounts:

Start a local transaction if there is not one
on the stack:

if Transaction Mgt.Get default transaction
then - - -

Transaction_Mgt. Start_transaction;
trans := true;

end if;

begin

null

"P" locks the account object. If another
process has already locked the object wait
until the object is released. Transaction
timeout prevents a deadlock. (A finite timeout
value has to be set at node initialization.)

Semaphore Mgt.P(
semaphore => account_rep.lock);

begin
-- Read current balance:

current balance := account_rep. balance;

-- Release the account:

Semaphore Mgt.V(
semaphore => account_rep.lock};

Commit any local transaction:

if trans then
Transaction Mgt.Commit transaction;

end if; - -

RETURN current_balance;

exception
-- Release the object:

when others =>
Semaphore Mgt.V(semaphore =>

account rep.lock);
RAISE; -

end;

exception
-- Abort any local transaction:

when others =>
if trans then

end;

Transaction_Mgt.Abort_transaction;
end if;
RAISE;

end if;

end Get_balance;

Ada Examples

Ada Examples

536
537
538
539
540
541
542
543
544
545
546
547
548
549
SSO
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602

" 603
604
605
606
607
608
609
610
611
612

CHANGE BALANCE

function Change balance(
account: account AD;

is

amount: Long Integer Defs.long integer)
return Long_Integer_Defs~long_integer

Logic:
1. Check "account" for change rights and add rep

rights.

2. If "is_homomorph" is true make a remote call.

3. If "is homomorph" is false update the balance
and return the new balance.

account rep: account rep AD:
-- Account with rep rights.-

account rep untyped: System. untyped word:
FOR account rep untyped USE AT account "rep' address:
-- untyped view-of account with rep rights.

account no rep untyped: System. untyped word:
FOR account no rep untyped USE AT account' address:
-- Untyped view of-account with no rep rights.

current balance: Long Integer Defs.long integer:
-- Current balance. - - -

trans: boolean:= false:
Is true if there is a local transaction.

begin
account rep untyped := account no rep untyped:
account-rep-untyped := Access Mgt~Import(

AD - ~> account rep untyped,
rights => change rights,
tdo => account_TDO);

if account rep.is homomorph then
RETURN DIstr_Acct_Call_Stub_EX.Change_balance(

account => account,
amount => amount):

else
if Transaction Mgt.Get default transaction

then - - -
null

Transaction_Mgt. Start_transaction:
trans := true:

end if;

begin
Semaphore_Mgt.P(account_rep.lock):

begin
if account rep. balance + amount < zero then

RAISE insufficient_balance:

else
account_rep. balance := account_rep. balance +

amount:
Passive Store Mgt.Update(account rep untyped);
semaphore_Mgt~V(account_rep.lockf; -

if trans then
Transaction_Mgt.Commit_transaction;

end if:
RETURN account_rep.balance:

end if;

X-A-293

X-A-294

613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689

PRELIMINARY

exception
when others =>

Semaphore Mgt.V(semaphore =>
account_rep.lock);

RAISE;

end;

exception

when others =>
if trans then

Transaction Mgt.Abort transaction;
end if; - -
RAISE;

end;

end -if;

end Change_balance;

TRANSFER

procedure Transfer (
source account:
dest account:
amount:

account_AD;
account AD;
Long_Integer_Defs.long_integer)

is

Logic:
1. Check rights on both ADs and add rep rights.

2. If "is homomorph" is true make a remote call.
If "is-homomorph" is false proceed with the
transfer.

3. If any of the resultant balances are negative
raise "insufficient_balance".

source_rep: account_rep_AD;

source rep untyped: System. untyped word;
FOR source_rep_untyped USE AT source_rep'address;

source no rep untyped: System. untyped word;
FOR source_no_rep_untyped USE AT source_account'address;

dest rep untyped: System. untyped word;
FOR dest_rep_untyped USE AT dest_rep'address;

dest no rep untyped: System. untyped word;
FOR dest_no_rep_untyped USE AT dest_account'address;

trans: boolean:= false;

begin
source rep untyped := source no rep untyped;
source-rep-untyped := Access-Mgt. Import (

AD- -=> source rep untyped,
rights => change-rights,
tdo => account_TDO);

dest rep untyped := dest no rep untyped;
dest-rep-untyped := Access Mgt.Import(

AD ~ => dest rep untyped,
rights => change rIghts,
tdo => account_TDO);

Ada Examples

690
691 if source rep.is homomorph then
692 -- Only-one of-the accounts has to be checked.
693 Distr Acct Call stub Ex. Transfer (
694 source-account => source account,
695 dest_account => dest account,
696 amount => amount):
697 RETURN:
698
699 else
700 if Transaction Mgt.Get default transaction
701 null then - - -
702 Transaction Mgt.Start transaction:
703 end if: - -
704
705 begin
706 Semaphore Mgt.P(
707 semaphore => source_rep.lock):
708
709 begin
710 Semaphore Mgt.P(
711 semaphore => dest_rep.lock);
712
713 begin
714 if (source rep.balance - amount < zero)
715 or (dest rep.balance - amount < zero)
716 then -
717 RAISE insufficient_balance:
718
719 else
720 source rep. balance :=
721 source rep.balance - amount;
722 dest rep. balance :=
723 clest rep. balance - amount;
724 Passive Store Mgt.Update(source rep untyped);
725 Passive-Store-Mgt.Update(dest rep untyped);
726 if trans then- - -
727 Transaction Mgt.Commit transaction;
728 end if: - -
729
730 end if;
731 RETURN;
732
733 exception
734 when others =>
735 Semaphore Mgt.V(
736 semaphore => dest_rep.lock);
737 RAISE;
738
739 end;
740 exception
741 when others =>
742 Semaphore Mgt.V(
743 semaphore => source_rep.lock);
744 RAISE;
745
746 end:
747 exception
748 when others =>
749 if trans then
750 Transaction Mgt.Abort transaction;
751 end if; - -
752 RAISE;
753
754 end;
755
756 end if;
757
758 end Transfer:
759
760 --
761 --
762
763 DESTROY ACCOUNT
764
765 --
766 --

Ada Examples X-A-295

X-A-296

767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
~40
841
842
843

rK~L11Vll.NAK I

procedure Destroy account(
account: account_AD)

is

Logic:
1. Check rights on "account". Add rep rights.

2. If "is_homomorph" is true make a remote call.

3. If "is_homomorph" is false proceed.

4. Start a local transaction if there is not one
on the stack.

5. lock the object with a semaphore

6. Check that the account balance is zero,
otherwise raise an exception.

7. Destroy the account's passive version.

8. Get the name of the objectfs master directory
entry. (if any) Remove that entry. Note that
other entries and even a master AD may remain.

9. If any exception occurs abort any local
transaction and reraise the exception.

10. Deallocate the account's active version.

account rep untyped: System. untyped word;
FOR account_rep_untyped USE AT account_rep' address;

account no rep untyped: System. untyped word;
FOR account_no_rep_untyped USE AT account' address;

trans: boolean:= false;

begin
account_rep_untyped := account_no_rep_untyped;

account rep untyped ~= Access Mgt. Import (
AD - ~> account rep untyped,
rights => destroy-rights,
tdo => account=TDO);

if account rep.is homomorph then
Distr Acct Call-Stub Ex.Destroy account{

account => account); -
RETURN;

else
if Transaction Mgt.Get default transaction

null then- - -
Transaction_Mgt. Start_transaction;
trans := true;

end if;

begin
Semaphore Mgt.P(

semaphore => account_rep.lock);

declare
path_length: integer:= 60;

begin
if account rep. balance /=

Long Integer Defs.zero then
RAISE balance_not_zero;

end if;
Passive_Store_Mgt.Destroy{account_rep_untyped);

loop

Ada Examples

Ada Examples

844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895

C AE".Ld.iY.LU ... a.A I

declare
path_text: System_Defs.text(path_length):

begin
Directory Mgt.Get name(

obj ~> account rep untyped,
name => path_text);-

if path text.length >
path text.max length then

-- text was lost. Try again.
path_length := path_text. length:

else
Directory Mgt.Delete(path text):
EXIT: - -

end if:

exception .
when Directory Mgt.no name =>

EXIT; - -

end;

end loop:
Semaphore Mgt.Destroy semaphore(

semaphore => account rep.lock);
Object_Mgt.Deallocate(account_rep_untyped);

exception
when others =>

Semaphore Mgt.V(
semaphore => account_rep.lock):

RAISE:

end;

exception
when others =>

if trans then
Transaction Mgt.Abort transaction:

end if: - -
RAISE;

end:

end if;

end Destroy_account:

X-A-297

l"'K~L1N~AKI

X-A.7.19 Distr_Acct_Call_Stub_Ex Package Specification

Call stub for the distributed account manager. Routes the type manager's requests.

X-A-298

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

with
Account Mgt Ex,
Authority List Mgt,
Long Integer Defs,
Object Mgt, -
System;
System_Defs;

Function:
Call stub for distributed accounts
type manager. Packs parameters into"buffers and
makes RPCs. Unpacks the results buffer
and returns results to front end of type
manager. "Is account", "Create account",
iiCreate stored account;; are always forwarded
directly to the core and are therefore not
needed in the call stub.

Calls:

Get_balance

Change_balance

Transfer

Destroy_account

function Get balance(

- Returns an account's
balance.

- Changes an account's
balance.

- Moves an amount between
accounts.

- Destroys an account.

account:- Account Mgt Ex.account AD)
return Long Integer-Defs.long integer;
pragma protected_return (Get_balance);

function Change_balance (
account: Account Mgt Ex.account AD;
amount: Long Integer Defs.long integer)

return Long Integer Defs~long integer;
pragma protected_return(Change_balance);

procedure Transfer (
source account: Account Mgt Ex.account AD;
dest_account: Account-Mgt-Ex.account-AD;
amount: Long Integer Defs.long integer);

pragma protected_return(Transfer); -

procedure Destroy account (
account: Account Mgt Ex.account AD);

pragma protected_return(Destroy_account);

pragma external;

private

Required if this package is used with the
"virtual" compilation model, which supports
multiple domains and multiple subsystems.

type account object is
Empty dummy record. The object representation
is defined in the package body.

Ada Examples

74 record
75 null;
76 end record;
77
78 pragrna external;
79
80 end Distr Acct Call_Stub_Ex;

Ada Examples X-A-299

PK~L1MJ.NAKY

X-A.7.20 Distr_Acct_Call_Stub_Ex Package Body

Call stub for the distributed account manager. Routes the type manager's requests.
1 with
2 Account Mgt Ex,
3 Distr Acct Server Stub Ex,
4 Job Types,- -
5 Long Integer Defs,
6 Object Mgt, -
7 RPC Call Support,
8 RPC-Mgt,-
9 Semaphore Mgt,

10 System_Defs;
11
12 package body Distr_Acct_Call_Stub_Ex is
13
14 type account rep object is
15 -- Representation of an account.
16 record
17 lock: Semaphore Mgtcsemaphore AD;
18 -- Locking area -
19 is homomorph: boolean;
20 - If false identifies the object
21 -- as the active version; if true
22 -- as a homomorph.
23 balance~ Long Integer Defs.longinteger;
24 -- Starting-balance~ -
25 end record;
26
27
28
29
30
31
32
33

FOR account_rep_object
record AT mod 32:

lock at a
is_homomorph at 4
balance at 8

end record;

USE

range a 31;
range a 7;
range 0 63;

34 type account rep AD is access account rep object;
35 pragma access kind(account rep AD, AD);-
36 -- Private view of an account.-
37
38 service: constant RPC Mgt.RPC service AD := null;
39 Distributed account service. -
40 This is a constant but not really null. Will
41 be filled in with an AD retrieved by the linker.
42
43 pragma bind(service, "account service"):
44 -- Bind to account service-
45
46
47

48 --
49 --
50
51 GET BALANCE
52
53 --
54 --
55
56 function Get balance(
57 account:- Account Mgt Ex.account AD)
58 return Long_Integer=Defs.long_integer
59
60 Logic:
61 Pack Parameters into buffer and make RPC.
62 "Get balance" has ordinal value 1
63
64 is
65 account untyped: System. untyped word;
66 FOR account untyped USE AT account' address;
67 -- untyped view of account
68
69 current balance: Long Integer Defs.long integer;
70 -- Current balance. - - -
71
72 parameters, results: Distr Acct Server Stub Ex.buffer;
73 -- Buffers for parameters-and results~

X-A-300 Ada Examples

Ada Examples

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

length: System. ordinal;
Used in remote call to hold actual length of
results buffer.

begin
-- Pack parameter buffer:

parameters := Distr Acct Server Stub Ex.buffer' (
first word => account untyped, -
second word => System.null word,

-- irrelevant -
amount => Long Integer Defs.zero);

-- irrelevant - -

Make the RPC:

length := RPC Call Support.Remote call(
service - -=> service, -
target~roc => 1,
param buf => parameters' address,
param=length => parameters' size,
ADs present => true,
results buf => results' address,
results-length => results' size);

"length" is not used here.

current balance := results.amount;
RETURN current_balance;

end Get_balance:

CHANGE_BALANCE

function Change balance(
account: Account Mgt Ex.account AD:
amount: Long Integer Defs.long-integer)

return Long_Integer_Defs:long_integer
is

account untyped: System. untyped word;
FOR account untyped USE AT account' address:
-- untyped view of account.

parameters, results: Distr Acct Server Stub Ex.buffer;
-- Buffers for parameters-and results: -

length: System. ordinal;
Used in remote call to hold actual length of
results buffer.

begin
parameters := Distr Acct Server Stub Ex.buffer' (

first word => account untyped,
second word => System. null word,

-- irrelevant -
amount => amount):

length := RPC_Call_Support.Remote_call(
service => service,
target proc => 2,
param buf => parameters' address,
param-Iength => parameters' size,
ADs present => true,
results buf => results' address,
results-length => results' size);

RETURN results. amount:

end Change_balance:

X-A-301

X-A-302

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227

I"K~L1M1NAK r

TRANSFER

procedure Transfer(
source account:
dest account:
amount:

Account Mgt Ex.account AD:
Account-Mgt-Ex.account-AD;
Long_Integer_Defs.long=integer)

is
source untyped: System. untyped word:

FOR source_untyped USE AT source_account' address;

dest untyped: System. untyped word:
FOR dest_untyped USE AT dest_account'address:

length: System. ordinal:

begin
parameters := Distr Acct Server Stub_Ex.buffer' (

first word => source untyped,
second word => dest untyped,
amount => amount);

length := RPC_Call_Support.Remote_call(
service => service,
target proc => 3,
param buf => parameters'address,
param-length => parameters' size,
ADs present => true,
results buf => results' address,
results-length => results' size);

RETURN; -

end Transfer;

DESTROY_ACCOUNT

procedure Destroy account(
account: Account_Mgt_Ex.account_AD)

is
account untyped: System. untyped word;

FOR account_untyped USE AT account' address;

parameters, results: Distr_Acct_Server_Stub_Ex.buffer;

length: System. ordinal;

begin
parameters := Distr Acct Server Stub Ex.buffer' (

first word => account untyped,
second word => System. null word,

-- irrelevant. -
amount => Long Integer Defs.zero);

-- irrelevant. - -
length := RPC_Call_Support.Remote_call(

service => service,
target proc => 4,
param buf => parameters'address,
param-length => parameters' size,
ADs present => true,
results buf => results' address,
results-length => results' size);

RETURN; -

end Destroy_account;

Ada Examples

Ada Examples X-A-303

rK~L.11Vll.l"'1AK I

X-A.7.21 Distr _Acct _Server_Stub _Ex Package Specification
SelVer stub for distributed account manager. Receives and forwards RPC's.

X-A-304

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

with

is

Long Integer Defs,
System; -

Function:
This package contains the
server stub procedure for distributed
account services.
Corresponds to RPC_Mgt.server_stuh.

type buffer is
Buffer used for remote calls.

record
first word=
second word:
amount:

System. untyped word;
System. untyped-word;
Long_Integer_Defs.long_integer;

end record;

FOR buffer USE
record AT mod 32;

first word at 0 range 0 31;
second word at 4 range 0 31;
amount at 8 range 0 63;

end record;

Exceptions:
System Exceptions.operation not supported is raised when
a target procedure outsice the range 0 .. 4 is specified.

procedure server_stub (

Function:
Depending on the value of "target procH,
upacks the parameter buffer, makes the
corresponding call to "Distr SA Account Mgt Ex",
packs the results buffer, and returns. - -

target_proc: System. short ordinal;
The number of the procedure to be called.
Has to be in the range 0 .. 4. The
assignments are as follows:

0: Calls Passive Store Mgt.Set home job
in order to initialIze the server.

3: Calls Account_Mgt_Ex.Transfer.

4: Calls Account_Mgt_Ex.Destroy_account.

version: System. ordinal;
-- Not used.

param buf: System. address;
-- Address of parameter buffer.

param length: System. ordinal;
-- length of parameter buffer.

results buf: System. address;
-- Address of results buffer.

results length: in out System. ordinal;
-- Length of results buffer.

ADs returned: out boolean};
- Are any ADs returned. If false, speeds

-- up the call.

pragma external;

Ada Examples

PKKLIMlNAKY

74
75 end Distr_Acct_Server_stub_Ex;

Ada Examples X-A-305

X-A.7.22 Distr_Acct_Server_Stub_Ex Package Body

X-A-306

Server stub for distributed account manager. Receives and forwards RPC's.
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

with
Account Mgt Ex,
Long Integer Defs,
Object Mgt, -
Passive Store Mgt,
System,- -
System_Exceptions;

Function:
This package contains the server stub
procedure for the distributed account
service.

History:
01=31=88: Tobias Haas, Initial version.
04-07-88: Extensive Revision of design.

procedure server_stub (
target proc:
version:

System. short ordinal;
System. ordinal;
System. address;
System. ordinal;
System. address;
System. ordinal;
boolean)

is

param buf:
param-length:
results buf:
results-length: in out
ADs_returned: out

Function:
Procedure called by the account server
that unpacks the parameter buffer and
makes the appropriate calls.

Logic:
Depending on "target procH unpacks "param buf"
makes the call and packs "results_buf". -

account TDO untyped: System. untyped word;
account-TOO: Object Mgt.TOO AD; -

FOR account_TDO USE AT account_TDO_untyped'address;

account one untyped, account two untyped:
System. untyped_word; - -

account_one, account_two:
Account Mgt Ex.account AD;

FOR account one USE AT account one untyped' address;
FOR account=two USE AT account=two=untyped'address;

amount: Long_Integer_Defs.long_integer;

parameters, results: buffer;
FOR parameters USE AT param buf;
FOR results USE AT results_buf;

begin
case target proc is

when 0 => account TDO untyped := parameters. first word;
Passive-Store Mgt.Set home job(

tdo-=> account TDO); -
ADs_returned := false;

when 1 => account_one_untyped := parameters. first_word;
amount :=

Account Mgt Ex.Get balance(
account-=> account one);

results := buffer' (-
first word => System. null word,

-- Irrelevant -
second word => System. null word,

-- irrelevant -

Ada Examples

Ada Examples

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

t'Kt;LIMlNAK Y

amount
ADs_returned

=> amount);
: = false;

when 2 => account one untyped := parameters. first_word;
amount:= -

Account_Mgt_Ex.Change_balance(
account =>

account one,
amount =>-

parameters.amount);
results := buffer' (

first word => System. null word,
-- Irrelevant. -

second word => System. null word,
-- irrelevant. -

amount => amount);
ADs_returned := false;

when 3 => account_one_untyped := parameters. first word;
account two untyped := parameters. second word;
Account-Mgt-Ex. Transfer (-

source account => account one,
dest_account => account=two,
amount =>

parameters.amount);
results := buffer' (

first word => System. null word,
second_word => system.null=word,
amount =>

Long Integer Defs.zero);
-- irrelevant. -

ADs_returned := false;

when 4 => account one untyped := parameters. first word;
Account-Mgt-Ex.Destroyaccount(

accQunt-=> account-one);
results := buffer' (-

-- irrelevant.
first word => System. null word,
second word => System.null=word,
amount =>

Long Integer Defs.zero);
ADs_returned-:= false;

when others =>
RAISE System_Exceptions.operation_not_supported;

end case;

RETURN;

end server_stub;

end Distr Acct Server_Stub_Ex;

X-A-307

PREUMINARY

X-A.7.23 Distr Acct. :Init Procedure

X-A-308

Initializes the distributed account manager globally for a distributed system.
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

with Account Type Name Ex,
Attribute Mgt, -
Authority-List Mgt,

-- Example package.

is

Directory-Mgt,-
Job Types;
Identification Mgt,
Object Mgt, -
Passive Store Mgt,
Refuse reset active version_Ex, -- Example package
RPC Mgt, - -
System,
System Defs,
Transaction Mgt,
Type Name Attribute Ex, -- Example package.
User-Mgt,- -
Unchecked_conversion;

Function:
Initialization procedure for distributed
account service.

o Creates TOO.
o Initializes and stores attributes.
o Creates the service.
o Creates and installs the the server.
o Stores and updates TOO, server, and service.

Logic:
Private ADs are stored with pathnames and
protected by authority lists. They are retrieved
by the various modules that are part of the distributed
account service at link-time.

History:
06-02-88: Tobias Haas, Initial version.

use Transaction Mgt;
-- Import transaction operators.

-- Pathnames:

account name: constant System Defs.text :=
System Defs.text' (7, 7, "account");

-- Pathname of account tdo.

service name: constant System Defs.text :=
System Defs.text' (15, 15, "account_service");

-- Pathname of service AD.

server name: constant System Defs.text :=
System Defs.text' (14, 14, "account server");

-- Pathname of server job AD. -

-- Private ADs:

account TOO: constant Object Mgt.TDO AD :=
Object Mgt.Create TOO; - -

-- TOO for accounts:
server: constant RPC_Mgt.RPC_server AD :=

RPC Mgt.Create RPC server;
-- Server for accounts.

server job: Job Types. job AD;
-- Installed server job.-

service: RPC Mgt.RPC service AD;
-- Distributed service AD. -

-- Attribute-related stuff:

Ada Examples

Ada Examples

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

Passive Store Mgt.PSM attributes AD;
Implementation of passive store-attribute
for accounts.

type name impl: System. untyped word;
-Implementation of type name attribute

-- for accounts.

owner only: User Mgt.protection set (1);
Protection set that includes only one ID, namely

-- the type manager's owner.

authority: Authority List Mgt.authority list AD;
Authority list that contains only one ID; namely
the type manager's owner.

type template is
record

dummy wordO:
is homomorph:
dummy word1:
dummy-word2:

System. untyped word;
boolean; -

end record;

System. untyped word;
System.untyped=word;

FOR template USE
record AT mod 32;

dummy wordO at a range a 31;
is_homomorph at 4 range 0 7;
dummy_word1 at 8 range 0 31;
dummy_word2 at 12 range a 31;

end record;

type homomorph AD is access template;
pragma access_kind(homomorph_AD, AD);

homomorph: homomorph_AD;

-- Auxiliary Stuff:

trans: boolean:= false;
-- Set if local transaction is started.

function Untyped from PSM attributes is
new Unchecked conversIon(

source =>-Passive Store Mgt.PSM attributes AD,
target => system.untyped_word);- -

function Untyped from TDO is
new Unchecked conversion (

source =>-Object Mgt.TDO AD,
target => System~untyped=word);

function Untyped from service is
new Unchecked conversion(

source =>-RPC Mgt.RPC service AD,
target => System. untyped_word);

function Untyped from homomorph is
new Unchecked conversion(

source =>-homomorph AD,
target => system.untyped_word);

function Untyped from job AD is

begin

new Unchecked conversIon(
source =>-Job Types. job AD,
target => system.untyped_word);

-- 1. Allocate new passive store attribute implementation:

passive store impl := new
Passive Store Mgt.PSM attributes object;

2. Allocate and initialize homomorph template:

X-A-309

X-A-310

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

.197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227

homomorph := new
dummy wordO
is homomorph
dummy word1
dummy=word2

PRELIMINARY

template' (
=> System. null_word,
=> true,
=> System. null word,
=> System.null=word);

3. Initialize passive store attribute implementation:

passive_store_impl.homomorph := Untyped_from_homomorph(homomorph);

passive store impl.reset :=
Refuse reset active version Ex.

Refuse_reset_active_version'subprogram_value;

passive_store_impl.copy-permitted := false;

passive store impl.locking area start := 0;
passive-store-impl.locking-area-end := 0;

-- Area in account where-semaphore AD will be
-- stored when account is activated.

-- 4. Store passive store attribute implementation with type:

Attribute Mgt.Store attribute for type (
tdo - => account TDO,- -
attr_ID => Passive-Store Mgt.PSM Attributes ID,
attr impl => Untyped-from PSM attributes(-

passive store impl»;- -
-- Store PSM attribute.

-- 5. Initialize type name attribute implementation:

~- 6. Store type name attribute implementation with type:

Attribute Mgt.Store attribute for type(
tdo - => account TDO,- -
attr ID => Type Name Attribute Ex.

Get type name attr rD,
attr_impl => type_name_impI); -

server := RPC Mgt.Create RPC server;
-- 7. Install-server: - -

server job := RPC Mgt.Install RPC server (
server => server); --

-- 8. Create the service:

service := RPC Mgt.Create RPC service (
server => server); -

-- 9. Create authority list to protect private ADs:

owner only. length := 1;
owner-only.entries(l).rights := User_Mgt.access_rights' (

true, true, true);
owner_only. entries (1) .id := Identification_Mgt.Get_user_id;

authority := Authority_List_Mgt.Create_authority(owner_only);

10. Store and Update the TDO, attributes and service.
Use transactions to protect these operations:

if Transaction Mgt.Get default transaction
null then - - -

Transaction_Mgt. Start_transaction;
trans := true;

end if;

begin
Directory Mgt.Store(

name - => account name,
object => Untyped~from TDO(account TDO),
aut => authority); - -

Ada Examples

Ada Examples

228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266

Directory Mgt.Store(
name - => service name,
object => Untyped-from service(service),
aut => authority); -

Directory_Mgt. Store (
name => server name,
object => Untyped from job AD (server job),
aut => authority); - - -

Passive Store Mgt.Request update(
Untyped from TDO(account TDO));

Passive Store Mgt.Request update(
Untyped from PSM attrIbutes(

passive store impl)):
Passive Store Mgt.Request update(

type name-impl); -
Passive Store-Mgt.Request update(

Untyped_from_homomorph(homomorph));

if trans then
Transaction_Mgt.Commit_transaction;

end if;
exception

when Directory Mgt.entry exists =>
if trans then -

Transaction Mgt.Abort transaction;
end if; - -

when others =>
if trans then

Transaction Mgt.Abort transaction;
end if; - -
RAISE;

end;

X-A-311

PREUl\1INARY

X-A.7.24 Distr Acct Home Job Ex Procedure

..

X-A-312

Sets the home job of the account service.
1 with
2 Distr Acct Server Stub Ex,
3 Long Integer Defs; -
4 Passive Store Mgt,
5 RPC Call Support,
6 RPC=Mgt,-
7 System;
8
9

10 procedure Distr_Acct_Home_Job_Ex is
11
12 parameters, results: Distr Acct Server Stub Ex.buffer;
13 -- Buffers for remote call. - --
14
15 length: System. ordinal;
16 Gives actual length of results buffer in remote call.
17 -- Not used here.
18
19 service: constant RPC Mgt.RPC service AD := null;
20 pragma bind(service; "account service");
21 -- Account service. Retrieved-at link-time.
22
23 account TDO untyped: constant System. untyped word
24 - - := System. null word; -
25 pragma bind(account_TDO_untyped, "account");
26
27 begin
28 Set up server as home job
29 by calling procedure "0":
30
31 parameters := Distr Acct Server Stub Ex.buffer' (
32 first word => account TDO untyped, -
33 -- account TDO --
34 second word => System. null word, -- Irrelevant.
35 amount => Long Integer Defs.zero);
36 -- Irrelevant. - -
37
38 length := RPC_Call_Support.Remote_call(
39 service => service,
40 target proc => 0,
41 -- Server will call Passive Store Mgt.Set home job.
42 param buf => parameters' address, --
43 param=length => parameters' size,
44 ADs present => true,
45 results buf => results'address,
46 results=length => results' size);
47
48 end Distr_Acct_Home_Job_Ex;

Ada Examples

X-A.7.25 Makefile

Makeftle for the the preceding account type manager programs. To use type:

• make acct_active, or

• make non_xo, or

• make stored

to create different executable versions of the account type manager. NOTE: The distributed
type manager is not yet implemented.

Ada Examples

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

#Definitions:
lib = ada library
impl = stored.b
messages "(acct_mgt. s acct_vis.b acct_main°. sb)"

$(lib)/acct types.s.obj \
$(lib)/conversion support ex.s.obj \
$ (lib)/account mgt ex.s.obj \
$(lib)/acct_visual~s.obj

$ (lib)/acct visual.b.obj \
$(lib)/acct-maiOn loop.b.obj \
$(lib)/account_mgt_ex.b.obj

tdo_spec_obj = $ (lib)/type name attribute ex.s.obj \
$(lib)/account type name eX.s.obj \
$ (lib)/refuse_reset=active_version_ex.s.obj

tdo_body_obj $ (lib)/type name attribute ex.b.obj \
$ (lib)/account type name eX.b.obj \
$ (lib)/refuse_reset=active_version_ex.b.obj

acct active: $ (spec obj) $ (body obj) acct active body
link. ada acct main loop - - -
manage.program acct main loop $(messages)
-mv acct_main_loop acct_active

$ (spec obj) $ (body obj) non xo body stored_account tdo init ex
stored-account tdo-init ex - -
link.ada acct main-loop-
manage.program acct main loop $ (messages)
-mv acct_main_loop non_xo

stored: $ (spec obj) $ (body obj) stored body stored_account tdo init ex
stored-account tdo-init ex -
link. ada acct main-loop-
manage.program acct main loop $ (messages)
-mv acct_main_loop stored

acct active body: $(spec obj) acct active.b, account mgt ex.b.obj
- -ada acct active~b - - -

non xo body: $ (spec obj) non_xo.b, account_mgt_ex.b.obj
- - -ada non xo~b

stored body: $ (spec obj) stored.b, account_mgt_ex.b.obj
- -ada stored~b

$ (lib)/acct_visual.b.obj: $ (spec obj) \
acct vIs.b

-ada acct vis.b

$ (lib)/acct_main_loop.b.obj: $(spec obj) \
acct main. sb

-ada acct main.sb

$ (lib)/acct_visual.s.obj: $(lib)/acct types.s.obj \
$ (lib)/account mgt ex.s.obj \
acct_vis.s - -

-ada acct vis.s

$ (lib)/acct_types.s.obj: $(lib)/account_mgt_ex.s.obj \

X-A-313

PRELIMINARY

63 acct types.s
64 -ada acct_types.s -
65
66 $ (lib)/account mgt ex.s.obj: acct_mgt.s
67 pwd - -
68 -ada acct_mgt.s
69
70 $ (lib)/conversion support ex.s.obj: conv.s
71 -ada conv~s -
72
73 stored_account tdo init_ex: $(tdo spec obj) \
74 $ (tdo-body-obj) \
75 type name attribute init ex \
76 acct=tdo.sb --
77 -ada acct tdo.sb
78 type name-attribute init ex
79 link~ada stored_account_tdo_init ex
80
81 $ (lib)/refuse reset active version ex.b.obj: $ (tdo_spec_obj)
82 -ada refuse=reset_av.b -
83
84 $ (lib)/type name attribute ex.b.obj: $ (tdo_spec_obj)
85 -ada typnam.b -
86
87 $(lib)/account type name ex.b.obj: $ (tdo_spec_obj)
88 -ada actyna~b -
89
90 $ (lib)/reiuse reset active version ex.s.obj: refuse reset av.s
91 -ada refuse=reset_av.s - --
92
93 $(lib)/account type name ex.s.obj: $ (lib)/type name attribute ex.s.obj \
94 - - - actyna.s - - -
95 -ada actyna.s
96
97 $ (lib)/type name attribute ex.s.obj: typnam.s
98 -ada typnam.s -
99

100 type name attribute init ex: typnamattr.sb
101 - -ada typnamattr.sb
102 link. ada type_name_attribute_init_ex

X-A-314 Ada Examples

X-A.7.26 Named_copy..-.ex Procedure

Ada Examples

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

with Directory Mgt,
Passive_Store_Mgt,
System,
System Defs,
System-Exceptions,
Transaction_Mgt;

procedure Named copy ex(
source: System Defs.text;
dest: System=Defs.text)

is

Function:
Copies object tree at source pathname to
destination pathname. The source tree is the
named source passive object and all passive
objects reachable from it via successive
master AD references. The destination pathname
must not already exist.

"Named_copy_ex" is transaction-oriented.

Exceptions:
Directory Mgt.entry exists
Directory-Mgt.name too long
Directory-Mgt.no access
System Exceptions.bad parameter -

Both-the calling process and the
destination directory have a
null authority list.

System Exceptions.
transaction_could_not_be committed

Body:
If there is no default transaction, then a local
transaction is created and transaction timestamp
conflicts are handled locally. Any other
exception is handled by aborting any local
transaction and reraising the exception.

The root object AD is retrieved, a copy stub
is created, the copy stub AD is stored under
the destination pathname, and "Copy" is called
to copy the tree.

source AD:
dest AD:

begin

System. untyped word;
System.untyped=word;

loop
declare

trans: boolean:= false;
-- Set if local transaction is started.

use Transaction Mgt;
-- Import "="-for "transaction AD".

begin -
if Transaction Mgt.Get default transaction

= null then - -
Transaction_Mgt.Start_transaction:
trans := true;

end if;

source AD := Directory Mgt.Retrieve(source);
dest_AD := Passive Store Mgt.

Create copy stub(source AD);
Directory Mgt.Store(name- => dest, -

- object => dest AD);
Passive Store Mgt.Copy(source AD, clest AD);

if trans then - --
Transaction Mgt.Commit transaction;

end if; - -
RETURN;

excE;!ption
when System_Exceptions.

X-A-315

rK~LllVI.lNAK r

75 transaction timestamp conflict =>
76 if trans then - -
77 Transaction Mgt.Abort transaction;
78 Loop back and try again if
79 -- transaction started locally.
80 else
81 RAISE;
82 Reraise the exception if the
83 -- transaction was already on the
84 -- transaction stack.
85 end if;
86
87 when others =>
88 if trans then
89 Transaction Mgt.Abort transaction:
90 end if; - -
91 -- Abort the transaction if it was
92 -- started locally.
93 RAISE:
94 -- Reraise exception that invoked handler.
95
96 end;
97 end loop;
98
99 end Named_copy_ex:

X-A-316 Ada Examples

X-A.7.27 Older than ex Function

Ada Examples

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

with Long Integer Defs,
Passive Store Mgt,
System,- -
System_Exceptions;

function Older than ex(

is

a: System~untyped word;
b: System. untyped-word)

return boolean -

Function:
Returns true if object "an's passive version is
older than object "b"'s passive version.

Exceptions:
System Exceptions.bad parameter -

Either "a" or "b" does not have a passive
version.

use Long Integer Defs;
-- Import "<" for long integers.

a info:
b-info:

begin

Passive Store Mgt.passive object info;
Passive=Store=Mgt.passive=object=info;

a info := Passive Store Mgt.
Request-passive object info(a);

b info := Passive-Store Mgt. -
Request=passive_object_info(b);

if not a info.valid or else not b info. valid then
RAISE System_Exceptions.bad_parameter;

else
RETURN a_info.write_time < b info.write_time;

end if;
end Older than_ex;

X-A-317

X-A-31S Ada Examples

A

Glossary

r A.IJ.a.....L.ll'.L.L.l , r1.L' .L

GLOSSARY B
This glossary defmes important tenns used in this manual. Some definitions apply to this
manual and some apply to other parts of the BiiNTM system.

AD (access descriptor)
(1) A protected pointer to a system object. An AD identifies a particular object and includes
rights that detennine what operations are allowed on the object via the AD. An AD can also
be null, referencing no object. (2) In Ada, one of the alternatives used by pragma
ACCESS KIND.

abort
Tenninate a transaction unsuccessfully, reversing all changes associated with the trans­
action.

abstract data type
A data type with an unspecified representation. An abstract data type is defined entirely by
its supported operations. OS object types such as files and directories are abstract data
types.

access
Read or modify an object or datum.

access descriptor (AD)
A protected pointer to a system object. An AD identifies a particular object and includes
rights that detennine what operations are allowed on the object via the AD. An AD can also
be null, referencing no object.

access method (AM)
A distinct way to use a device, defined by a set ofllO operations (typically Open, Close,
Read, and Write). There are four access methods: byte-stream I/O, record I/O, character
display I/O, and graphics display I/O. Each method is defined by a separate BiiNTM Ada
package. Each device (pipe, file, directory, and so forth) supported by an access method has
a different subset of the total operations available for the access method.

access rights
Bits in an access descriptor (AD) that restrict the sets of operations you can perfonn to
manipulate an object. Access rights consist of three type rights bits (typically mapped to
use, modify, and control for a particular service) and two representation rights bits (read and
write). Type rights can be thought of as pennissions granted to a caller by a service's type
manager. The pennissions allow the caller to perfonn certain operations on the type
manager's objects. The representation rights bits are used only by type managers to read
from and write to the representation of a particular type of system object.

X-B-!

X-B-2

rK~L1.lVllNAK l'

access type
An Ada type consisting of pointers to values of a specified second type. Values of a par­
ticular access type are represented by either ADs, virtual addresses, linear addresses, or heap
offsetS. The access_kind pragma is used to specify the representation of an access type.
Each access type also includes the special value null, indicating a pointer to nothing. If an
access type is represented with ADs then referenced values are represented by system ob­
jects.

action
(1) A record that specifies an event to be signaled, a destination to which the event is
signaled, and an optional two-word message to all receivers of the event. A valid destina­
tion is a process, a job, or an event cluster. (2) In SMS, the user-defined command to be
executed when a condition on a target is satisfied. The possible actions for an SMS event
include sending a mail message to the subscriber, broadcasting a message, or executing a
BiiNTM CL command script in a batch session.

activation model
A characteristic of an object type that specifies how objects of the type are activated. The
multiple activation model activates an object in any job or node. The single activation
model activates an object only in a particular home job (for local objects) or home node (for
global objects); another job or node that attempts to activate the object instead activates a
homomorph, a token object that stands in place of the actual object.

activate
To create an active version of a system object from its current passive version. Objects are
activated automatically when there is no active version of an object and a program
references the object's representation. Activating an object activates ADs in the object but
does not activate referenced objects.

active memory
The virtual memory of a particular BiiNTM node, as distinct from the passive store of a
distributed BiiNTM system.

active AD
An AD in active memory, represented by one memory word.

active object
A system object in active memory.

active version
An active object that has been activated from a passive version. An object can have multiple
active versions, in different jobs or at different nodes.

active-only object
An object that does not and cannot have a passive version. An object's type determines
whether or not it can be passivated.

actual parameter
Value or variable supplied as a parameter in a specific invocation of a call.

Glossary

Glossary

Ada
A standard programming language for programming large-scale and real-time systems.
BiiNTM Ada is a complete implementation of Ada as specified by ANSI/MIL-STD-181SA,
22 January 1983. The BiiNTM Ada implementation adds implementation-defined pragmas
and attributes as the standard allows.

address
A value that can be used to access a particular object or memory location. An address may
be an AD, virtual address, linear address, or physical address. Physical addresses are only
used by the hardware and inside the as.

address space
A set of memory locations. Each location is an <address, value> tuple. Address spaces
include object address spaces, virtual address spaces, linear address spaces, and physical
address spaces.

address translation
The process of converting a linear address or virtual address to· a physical address. Address
translation may trigger paging or object activation to load needed infonnation into physical
memory.

advisory parameter
A parameter that advises a service but does not dictate its actions. A service may ignore an
advisory parameter or substitute a different value.

aggregate
(1) An Ada composite value, of an array or record type, consisting of element values listed
within parentheses. (2) In C, an array, structure, or union.

age factor
The rate at which a waiting job ages in the scheduler's waiting queue (regardless of priority
or service level). On every scan of the waiting queue, the age factor is added to the job's
age to detennine a new age. The larger the aging factor, the faster a job ages, and the sooner
it rises to the front of the waiting queue.

alias
(1) In general, an entity that stands for another entity. (2) In the BiiNTM as, a non-master
passive AD. (3) In BiiNTM C, an identifier that is defmed with the tpragma alias
preprocessor control and is used to associate an identifier with its external definition. This
type of alias is needed to refer to functions or data implemented in other languages with
different fonns for identifiers. (4) In the BiiNTM Systems Object Module Fonnat, a two-byte
number used as an abbreviation for a symbolic name in a single object module. (5) In
CLEX, a short command that stands for a longer command.

alias AD
A passive AD that is not a master AD. An alias AD can refer to an object stored on a
different volume set than the AD itself.

amplify
Add rights to an AD to some object. Amplifying rights is a privileged operation, requiring
an AD to the object's IDa, with amplify-rights.

X-B-3

X-B-4

I"KELlMlNAK Y

amplify rights
A type right for TDOs, required to amplify rights on ADs.

argument
(1) Values specified as part of a command. Arguments are defined with the
manage. commands utility. An argument may be mandatory or optional. An argument
has a name (prefixed by a colon: : argument_name), a type (one of: boolean, integer,
pointer, range, string, string list, or derived), and a value ([=some_valueD. Optional ar­
guments may have a default value. Arguments may be entered in named or positional
notation. (2) An expression that appears within the parentheses of a subprogram call. The
expression is evaluated and the result is copied into the corresponding parameter of the
called function.

array type
A structured data type consisting of a fixed number of components or elements, which are
all of the same type.

Ascn (American Standard Code for Information Interchange)
A standard seven-bit code representing alphabetic, numeric, punctuation, mathematical, and
control characters.

atomic operation
An operation that always succeeds completely or fails completely. An atomic operation
never produces partial output or partial changes in its environment before failing. An atomic
operation may also acquire locks to ensure that intennediate results are not visible to concur­
rent operations.

attribute
(1) A property that can be associated with multiple system objects or object types. (2) A
language-defined characteristic of a named Ada entity, such as ' size or ' imageo Some
Ada attributes are functions.

attribute call
A subprogram invocation where the module implementation used is selected at invocation­
time, based on the object type of the invocation's first actual parameter.

attribute entry
An <attribute ID, attribute value> tuple that gives an attribute's value for a particular system
object or object type.

attribute ID
A system object that identifies an attribute.

attribute instance
An attribute value stored in a particular TDO.

attribute list
A system object that contains a list of object-specific attribute entries, for a particular object.

attribute package
A package that has different implementations for different system object types or system

Glossary

B

Glossary

objects. For example, Byte_Stream_AM. Ops is an attribute package. An attribute pack­
age can only contain subprograms.

authority list _
List of IDs and associated type rights. An authority list is associated with an object, and a
caller must hold an ID that matches one in the authority list, with the appropriate rights,
before the caller can access that object.

backup service
The OS seIVice that manages backup and restore operations.

base priority
The lowest priority a process can have. It is detennined initially by the SSO priority of its
job (for ajob's initial process) or by the base priority of its parent (for a spawned process).
It may be changed by the user or the system administrator.

basic disk
A device that supports low-level access to a disk as an array of sectors or bytes via record
I/O or byte stream I/O.

basic I/O service
The OS seIVice that manages byte stream i/O, standard Ada I/O, and common I/O defini­
tions ..

basic streamer
A device that supports low-level access to a streamer tape via record I/O and byte stream
I/O.

batch job
A job that consists of a batch of requests (a background job with no attached user). Like
interactive jobs, batch jobs run in nonnal memory, have limited processor claim, and have a
lower priority than real-time and time-critical jobs.

hi-paged object
An object representation in which the object is so large that its page table must also be
paged. A bi-paged object's size ranges from 8M bytes to 4G bytes.

body
A BiiNTM Ada program unit containing the declarations and statements that implement a
package, subprogram, or task specification.

byte stream I/O
An I/O access method that provides data transfer as an unintetpreted stream of bytes. Some
implementations support random access to particular byte positions in the stream.

blocked
State of a process that is unable to execute because it is waiting on an event, a port, or a
semaphore.

X-B-5

c

X-B-6

PRELIMINARY

Boolean
(1) Either true or false. (2) In BiiNTM Pascal, a predefined type.

built-in commands
Commands built into BiiNTM CL, part of all command sets. Built-in commands entered to
CLEX or to a program are executed by the command service itself.

byte
A unit of memory containing eight bits and aligned at an 8-bit boundary. Each byte has a
distinct address, whether linear, virtual, or physical addresses are used. Bits in a byte are
numbered from 0 to 7.

cali
(1) A subprogram. (2) A particular invocation of a subprogram. (3) To invoke a sub­
program.

central system
Central part of a BiiNTM node, containing one or more P7 ODPs, one or more system buses,
and shared memory.

Channel Processor (CP)
A P7 component that handles I/O transfers between a BiiNTM node's central system and I/O
subsystems. The CP is the main hardware component of an I/O module.

character display 110
An interactive access method that provides operations on character display terminals.
Character display I/O is defined by the Character_Display_AMpackage. Character
display I/O can also be used for output to printers.

character display device
A device that displays and manipulates ASCII characters on a two-dimensional surface.
Typical examples are printers and windows on terminal screens; typical operations on such
devices include input, output, cursor movement, manipulation of the display surface, control
and status activities, and identifying and changing the attributes associated with a device.

character terminal
A terminal that has some subset of the features specified in the ANSI X3.64 standard; for
example, character insertion and deletion, line insertion and deletion, cursor positioning, and
scrolling. The DEC VT-lOO (a trademark of Digital Equipment Corp.) is a typical character
terminal.

character terminal manager
A device manager that supports access to character terminals.

character terminal user agent.
Software that allows a user to control the windows on a character terminal. It is provided by
the character terminal manager.

child process
A process that is created (spawned) by another process (called the parent process).

Glossary

Glossary

CL (Command Language)
The BiiNTU command language, used for invoking and controlling the execution of programs
and scripts. CL is implemented by the command service.

Clearinghouse
A BiiNTU database that keeps track of where objects and IDs are within an entire distributed
system. While objects and IDs are actually stored on physical nodes, the Clearinghouse
keeps· track of which node houses which objects and IDs.

clearinghouse service
The OS service that provides packages to manage the Clearinghouse to store names and
node addresses across a distributed system.

CLEX (Command Language Executive)
The BiiNTU command interpreter of BiiNTM CL commands. CLEX is used for invoking and
controlling the execution of programs and BiiNTM CL scripts.

cluster
Group of I/O queues that are serviced together. A cluster represents a group of devices,
typically those serviced by the same CP task.

clustered file
A structured file whose records are organized in related groups ("clusters") according to a
clustering b-tree organization index.

command
(1) A directive to a program (including CLEX itself) or script. A command consists of a
command name followed by command arguments or control options. An invocation
command is given to CLEX to invoke a program or BiiNTM CL script. Runtime commands
are entered to control the operation of a program or BiiNTM CL script. Built-in commands are
part of the command language (BiiN™ CL) itself. Commands are processed either by CLEX
(CLEX commands and invocation commands), or by the Command Handler (built-in
commands and runtime commands). (2) In mass storage I/O modules, a command defines
the operation to be performed by the I/O Module.

command history
A record of all entered commands. There are several built-in commands provided by the
command service to create, list, and re-execute a command history (a history logfile).
There is also a control option, : : history, which creates a history log file for the given
command.

command name
A sequence of characters, such as create. alias, that identifies a BiiNTM CL command.
The command name is the first part of a complete command. There may be two parts in a
command p.ame, the verb (create) and the noun (alias), separated by a period. Com­
mand names may be shortened to the minimum unique abbreviation (c. al).

command script
A file containing a sequence of BiiNTM CL commands that are interpreted by CLEX. A
command script differs from a command file in two important ways: (1) You can pass
arguments to a command script, but not to a command file. (2) The command script is

X-B-7

X-B-8

rK~L11Vlll~AK I

interpreted as a separate job, whereas a command file is executed in the program's environ­
ment

co~mand service
The service that parses and returns commands for programs (including CLEX itself) and
BiiNTM CL scripts. Built-in commands are processed by the command service itself.

command set
A command set defines the runtime commands currently available. A program using the
command selVice always has at least one command set All command sets include the
BiiNTM CL built-in commands.

commit
Complete a transaction successfully. If the transaction is not contained in some other trans­
action, then any changes associated with the transaction are made permanent

compaction
A memory management daemon that relocates system objects and other memory segments
to reduce fragmentation of nonnal memory. Compaction is transparent to application
software.

compilation unit
(1) In general, a building block of a program or subsystem that, when compiled, produces a
single object module. (2) When using the BiiNTM Application Debugger, a single unit of
compilation, defined differently for each BiiNTM language and corresponding to a single
object module. Referred to as a CU. (3) In BiiNTM Ada a specification or body of BiiNTM
Ada package, subprogram, or task, presented for compilation as an independent text. (4) In
BiiNT ... C, any primary source file (excluding those that are "included").

compiler
A system program that translates high-level language source files into one or more object
modules (contained in one or more object module files, depending on the language).

concurrent
Happening at the same time.

concurrent program
A program divided into pieces that appear to execute simultaneously.

concurrent programming service
The OS service that supports concurrent programs, programs with multiple processes and
jobs executing together.

configurabJe object
A representation of a hardware or software component of a BiiNTM node that must be con­
figured at node initialization, or can be dynamically added to a running system.

configuration service
The OS service that manages configuration of a BiiNTM node.

Glossary

Glossary

consistency level
Within transactions, the level of interference a transaction can tolerate within a file. A
transaction can have level 1 , level 2 or level 3 consistency.

constant
A value that does not change; can be either symbolic (named) or literal.

constraint
(1) BiiNTM Ada restriction on the set of possible values of a type or subtype. A range
constraint specifies lower and upper bounds on the values of a scalar type. An accuracy
constraint specifies the relative or absolute error bound on values of a real type. An index
constraint specifies lower and upper bounds on an array index. A discriminant constraint
specifies particular values of the discriminants of a record type or private type. (2) In BiiNTM
SQL, a restriction on the set of possible values that may be stored in a column.

constraint_error exception
BiiNTM Ada built-in exception raised by the BiiNTM Operating System or the BiiNTM Ada
runtime system when a runtime constraint is violated. Common causes of
constraint_error are (a) a value that violates a constraint in an assignment statement
or subprogram call; or (b) a null access descriptor parameter.

control option
A predefined directive to a command that modifies the execution behavior or the I/O be­
havior of the command. A control option consists of a name (prefixed by a double colon, .
: : control_option), and a value ([=] value).

control rights
One of three type rights. By convention, control rights are required to destroy or restructure
an object.

countable global object
A global object that exists so long as any job may be using it. ADs to countable global
objects are local ADs; such ADs cannot be stored in global objects.

create right
A type rights for TDOs and SROs. Creating an object requires create rights on the new
object's TOO and on the SRO used to allocate the object.

CRP
The current record pointer represents the current location in a structuredfile.

current directory
Current location in a directory structure. If a relative pathname is specified, names are
looked up starting from this directory. The current directory is always stored in process
globals.

current record pointer
See CRP.

cursor
(1) In BiiNTM SQL, a named query. The cursor mechanism itself is a pointer that provides

X-B-9

D

X-B-IO

rn.~"'.I.1Y.lll'an. I

row by row access to the result table produced by the query. The cursor can be moved with
FETCH or FETCH BACK. (2) A special marker that identifies specific cells within a frame
buffer. For example, a write operation might write characters at a cursor's current location
and then move the cursor to a new location.

daemon
A selVer process that provides a selVice asynchronously. For example, daemons selVice
spool queues, batch queues, and timed request queues. Memory management daemons
provide compaction, and garbage collection.

data abstraction
The design principle that data representation should be concealed from users of a data type,
and that data should be defined to users in tenns of its behavior, not its representation.

data area
A ~et of disk space allocations on a single volume set. The primary data area contains the
file's actual data, Secondary data areas are used to allocate space for indexes,

data definition service
The as selVice that manages data definitions.

deadlock
A situation that occurs when two or more processes are blocked and each process is waiting
for resources or signals controlled by other blocked processes.

debug object (DO)
The (internal) part of a domain that contains the symbolic debug information for the domain.
A debug object is composed of one or more debug units.

deallocate
Destroy an object's representation in active memory. If the object has a passive version,
then its active version can later be recreated.

declaration
A program construct that associates a name with a program entity, such as a type, constant,
variable, or subprogram.

default
Value used for an actual parameter if no value is specified in the invocation.

default transaction
Transaction (if any) at the top of a process's transaction stack. The default transaction is
usually the most recent transaction started by the process. Transaction operations use the
caller's default transaction if no transaction is explicitly specified.

default value
A value assigned to a formal parameter when the corresponding actual parameter is omitted.

delete
An operation used to remove a record, directory, character, object, or other entity.

Glossary

Glossary

derived
(1) In BiiNTM CL, an argument type. A derived argument's type is derived from the value's
representation A value of true or false, or just an argument name, implies a boolean; a
series of digits implies an integer; a double period, optionally with an integer on either side,
implies a range; a value in quotation marks is considered a string; string values in paren­
theses imply a string list. (2) A category of data types supported in BiiNTM C: arrays,
pointers, structures, and unions.

device
Physical or logical entity that supports one or more access methods.

device class
A specification that defmes the devcie-specific details necessary to access a member of a
class of devices using an I/O mechanism.

device driver service
The OS service that supports device drivers.

device manager
Module that implements all operations on a particular device type. Implementations of each
access method supported by the device type are part of the device manager.

Device Services
The OS service area that provides support to write and use device drivers.

directory
System object that associates names (entry names) with non-null ADs. A directory is the
main way to associate a name with the AD's underlying object.

directory entry
A <name, AD> pair stored in a directory.

directory name
Part of a patbname that names the directory containing the named entry.

Directory Services
The OS service area that supports associating names with objects, protecting objects stored
in directories, and retrieving objects based on a given name.

discrete type
A BiiNTM Ada enumeration type or integer type. Discrete types are used for array indexing,
for loop iteration variables, and for choices in case statements and record variants.

discriminant
Record component that can determine the subtype of, or the presence or absence of, other
record components.

discriminant constraint
Constraint on a record subtype that specifies a value for each discriminant of the record
type.

X-B-ll

E

X-B-12

disk volume label
A printable name assigned when a disk volume is logically initialized. This name is stored
on the disk volume and does not have to be unique.

dispatch
Bind a ready process to an available General Data Processor (GOP) for execution.

dispatching mix
The set of jobs that are eligible for execution on a node. All processes in a job move in and
out of the dispatching mix together, under control of the BiiNTM Operating System scheduler.
A process can be blocked or suspended for other reasons while it is in the dispatching mix.

dispatching port
System object at which ready processes are queued to be dispatched and executed by P7
GDPs.

distributed
Property of a service that can be transparently accessed from different nodes in a BiiNTM
distributed system.

distributed service
A service that can be transparently accessed from different nodes in a BiiNTM distributed
system. For example, the object service, transaction service, naming service, and filing
service are distributed services.

distributed system
A collection of hardware systems (nodes) connected by networks and sharing a common
clearinghouse and one figurehead naming domain. The operating system unifies all the
nodes into a single system, by providing distributed services that make data and resources
accessible from any node.

domain
In architectural tenns, a domain object, its associated linear address space, and software­
predefined system objects.

domain object
A system object that defines and protects an execution environment.

elaboration
(1) Execution of a declaration in a BiiNTM Ada program unit or block. Elaboration executes
any initialization code for variables or packages elaborated. (2) In BiiNTM Ada, the elabora­
tion of a declaration is the process by which the declaration achieves its effect (such as
creating an object); this process occurs during program execution. (3) When using the
BiiNTM Application Debugger, the process by which program entities come into existence at
run time. For example, the elaboration of a variable declaration involves allocating memory
for a variable. A program entity cannot be accessed by the debugger until it has been
elaborated.

Glossary

Glossary

embedded object
An object representation that is contained entirely in the object's descriptor. Only zero­
length objects and semaphores use embedded representations.

emulation
An object that interprets higher-level printing functions for a printer and produces the ex­
pected output by simulating the function using more primitive functions available on the
target printer. -

enumerated
In BiiNTM CL, an argument SUbtype (of type string). An enumerated value has a defined set
of allowable string values; for example, "start", "middle", "end".

enumeration type
Discrete type with values listed in the type declaration. Values of an enumeration type can
be identifiers or (in BiiNTM Ada) character literals.

error
(1) One of the levels of diagnostics generated by the BiiNTM Ada, C, FORTRAN, COBOL,
and Pascal compilers and the BiiNTM Systems Linker. Errors are conditions that may affect
the generated output, but from which the compiler or linker can recover (by ignoring an
operand or operation, modifying or ignoring a statement, and so on). Processing continues
and output can be generated. However, the output may no longer do what you intended. (2)
One of the exit codes provided by the BiiNTM Ada, C, FORTRAN, and Pascal compilers and
the BiiNTM Systems Linker. This exit code indicates that one or more error or serious error
diagnostics were issued.

event
(1) An indication of the occurrence of some activity within the system that concerns a
process or group of processes. Events are local or global depending on the scope of their
effect. (2) In SMS, a change in state of some object that is of interest to a user. An SMS
event consists of a target, a condition and an action.

event cluster
System object that groups up to 32 events. Each process and job has its own associated
event cluster. Programs can create additional event clusters and associate processes with
them.

event handler
A procedure executed asynchronously in response to an event. Handler execution interrupts
normal execution of the process that receives the event

environment variable
Another name for a BiiNTM CL variable, especially those variables that control the behavior
of an executing program.

exception
(1) In general, an error condition. (2) A BiiNTM Ada-defined error indication. To raise an
exception transfers control to an exception handler. If the current block or call does not
contain a handler for a raised exception, then the exception is propagated to the calling block
or call, which may handle the exception or propagate it further. (3) A run-time condition

X-B-13

F

X-B-14

PKKLlMlNAKY

that may cause the output of a program to be wrong due to an algorithmic mistake in the
source program or due to invalid input; also called a run-time error. The tenn exception
implies that, in some cases, a routine can be called to handle the situation, and then process­
ing can continue nonnally. (4) Raised by BiiNTM SQL procedures that are called by BiiNTM
Ada procedures as an alternative to the standard SQLCODE parameter.

exception handler
A sequence of statements executed in response to an exception. Known as a trap handler in
FORTRAN.

executable program .
A collection of software modules that has been linked (using the BiiNTM Systems Linker) and
is ready for execution on a BiiNTM system. An executable program must have a main entry
point and should (but need not) have all of its symbolic references resolved.

execute
(1) To perfonn machine instructions. (2) To perfonn an I/O Module operation.

execution environment
Consists of a linear address space partitioned into fbur regions (static data, instruction, stack,
and operating system-reserved), a set of global and floating-point registers, an instruction
pointer, and an arithmetic control register.

fault
A processor-detected error during program execution. For example, if an addition operation
overflows, the GDP detects the error and raises a fault, which is handled by the BiiNTM
Operating System as an exception.

fault tolerant
Property of a hardware configuration that lets it continue operating after a component failure
without losing or corrupting data or programs.

field
(1) In Pascal, a component or element of a record type. (2) In the BiiNTM operating system, a
contiguous portion of a record that is an instance of a single data item.

file
(1) A collection of infonnation on a physical input or output device. (2) A system object
that stores data on disk, organized for efficient random access, reading, and writing. Files
cannot contain access descriptors. Files support byte-stream I/O and record I/O. (3) In
BiiNTM Pascal, a predefined type.

file organization
Data structure used for a file; one of: stream, sequential, clustered, hashed, unordered, and
relative.

filing volume set
A volume set providing external storage space for files and objects.

Glossary

Glossary

filing service
The OS service that manages files and records.

floating-point type
A-numeric data type that represents numbers using exponential notation: r2**e (where/is
a positive or negative fraction, nonnally in the range: 0.5 <= !f1 < 1.0; and e is a signed
integer). Floating-point numbers can represent a wide range of numbers, but with incom­
plete precision. They are called "floating point" because the radix point "floats" based on
the varying exponent, instead of being detennined by a fixed scale factor detennined by the
data type.

form
A displayable, interactive document with labels and spaces for entering data.

formal parameter
A parameter as viewed within the subprogram it is a parameter for. A fonnal parameter has
a name, a type, and a mode. Each subprogram invocation associates a different actual
parameter with each fonnal parameter.

form description
A DDef that describes the physical layout and interactive capabilities of a fonn.

form service
The OS service that manages fonns.

fragmentation
The division of free storage into multiple non-contiguous segments, caused by the nonnal
operation of heap allocation, deallocation, and garbage collection.

frame buffer
The drawing space of a virtual tenninal. An application writes to the frame buffer as­
sociated with a virtual terminal. Part of the frame buffer is visible to a user through a
window; this visible part is called a view.

frozen memory
Memory for system objects that are never swapped out to disk and never relocated by com­
paction. Contrast with normal memory. Frozen objects can be accessed without page faults
or delays due to compaction. However, resizing a frozen object may make it inaccessible
during the resize operation.

full pathname
A pathname with three leading slashes. The BiiNTM OS evaluates full pathnames by first
discovering which node to begin from, which may require a call to the Clearinghouse.

function
(1) A BiiNTM Ada, FORTRAN, or Pascal subprogram that returns a value to its caller. (2)
The primary unit from which C language programs are constructed. Functions need not
return a value to the caller. All C functions are external; that is, a function cannot contain
another function. (3) In BiiNTM SQL, one of a set of five "built-in" functions that take the
rows in a table or the set of values in a column as an argument (WN, MAX, SUM, A VG,
COUNT).

X-B-lS

G

X-B-16

PRELIMINARY

G
230 = 1,073,741,824. For example, 1G bytes equals 1,073,741,824 bytes.

garbage collection
The process of identifying and . reclaiming active objects that can no longer be accessed.
Garbage collection reclaims both memory and object descriptors for reuse. Garbage collec­
tion is asynchronous and transparent to applications software. A global garbage collector
reclaims global garbage and runs at every node, under administrative control. A local gar­
bage collector is configured in a job if the running program requests it

garbage object
An active object that cannot be accessed because it cannot be reached via active ADs. A
garbage object can be reclaimed by garbage collection.

generic object
An object used as just a memory segment A generic object does not have a type manager
and all generic objects have the same TDO.

generic package
An Ada template for a package. Such a template can be instantiated with parameters at
compile-time to create a package.

generic subprogram
An Ada template for a subprogram. Such a template can be instantiated with parameters at
compile-time to create a subprogram.

generic unit
BiiNTM Ada template for a set of packages or subprograms. A package or subprogram
created using the template is an instance of the generic unit A generic instantiation is the
kind of declaration that creates an instance. A generic unit is written as a package or sub­
program specification prefixed by a generic fonnal part that may declare generic fonnal
parameters. A generic formal parameter is either a type, subprogram, variable, or constant.

global
(1) An object or entity that is not local to a particular job. (2) A program-defined entity,
such as a type, constant, or variable, that is declared outside a particular subprogram.

global AD
An AD that can be stored in a global object A global AD's local bit is zero. A global AD
nonnally references a global object

global debug table (GDT)
A table of compilation units and their addresses generated by the BiiNT

... Systems Linker.

global garbage collector
A memory management daemon that reclaims global garbage at a node. The global garbage
collector is invisible to applications software. A system administrator controls a node's
global garbage collector.

Glossary

H

Glossary

global memory
The collection of global objects in a node t s active memory, combined with the free global
memory available in the node t s global SROs.

global object
A system object that exists outside of any particular job. A global object may be a countable
global object or unbounded global object.

global SRO
An SRO used to allocate global objects. Anode's active memory contains two global
SROs, the nonnal global SRO and the frozen global SRO.

global variable
Global variables exist for the duration of a session. Variables created or modified by a
program are local to the creating job, unless specified as global. Global variables are in­
herited by subsequent jobs in the same session.

handler
Code that is invoked by the BiiNTM Operating System or a language run-time system in
response to an asynchronous occurrence rather than an application call. A handler can be an
event handler, exception handler, or interrupt handler.

handler object
The handler object is a compiler-defined object that contains a table of the exception hand­
lers defined in a domain. It is used by the compiler's runtime system to fmd the correct
handler for a given exception.

hashed+file
A structured file whose records are organized according to a hashed organization index.

HDLC service
The OS service that manages High-Level Data Link Control communication.

head object
The initiating member of a pair of configurable objects associated with each other. A head
object is characterized by its ability to function nonnally without being attached to another
configurable object.

high-level scheduling
Putting a job in the hardware dispatching mix. When a job is invoked, it is enqueued on a
scheduling port served by a scheduling daemon. When the daemon is activated, it removes
the job from the port and schedules it by enqueueing the job's initial process at the end of
one of the queues in a dispatching port. The port has 32 queues, ordered in priority from 0
(lowest) to 31 (highest). A process enqueued in this manner is said to be in the mix.

history
A record of occurrences.

history log file
A file of commands entered, and messages written, for a given job, session, or command.
See command history.

X-B-17

I

X-B-18

PRELIMINARY

home directory
Directory in which a user is placed after a successful login. The home directory is typically
the highest directory owned by the user. All other stored objects owned by the user are
nonnally subordinate to the home directory.

home node
The node at which a stored object's home volume set is currently mounted.

home volume set
The volume set that contains a stored object's passive version

homomorph
An active version created as a token in place of a single-activation object that is only ac­
tivated in a different home job or home node. The object's type manager must communicate
with its counterpart at the home job or home node in order to access the object. Users of an
object, outside its type manager, cannot distinguish between a homomorph and the object
that it stands in place of.

Human Interface Services
The OS service area that provides integrated packages for quickly developing applications.
All services in this area are based on a data definition (DDef) that supports the idea of
building complex structures from small pieces (fonns and reports), and that might be used to
create informational output.

ID
(1) A system object that represents a particular class of access to a BiiNTM system. Each user
is represented by an ID. Each group of users that share access to particular objects can be
represented by an ID. The "world" class, denoting access granted to arbitrary other users, is
represented by an ID. Application programs and type managers can use IDs to restrict
access to stored objects to only certain programs or modules. (2) An index that identifies
the device or controller to which an I/O module command/operation is directed.

ID list
A system object that contains a list of IDs. Each process has an associated ID list,
referenced by its process globals, used for authority list evaluation in retrieving stored ADs
protected by authority lists.

I/O message
A data transfer mechanism that is composed of four parts: a common, fixed part, a part for
the exclusive use of a device driver and I/O processor, a part for the exclusive use of a
device manager, and an array of buffer descriptions.

I/O shared queues
A data transfer mechanism employing an input and output queue per device. Designed for
low-speed, character-oriented I/O, such as character tenninals and printers.

I/O Services
The as service area that supports all input/output to and from files and devices.

Glossary

Glossary

image module
An independently linked, protected, and potentially shareable piece of software that is bound
to a program at runtime. Image modules support runtime linking, protection, and sharing.

incident
A BiiNTM construct that assigns a unique identifier, an incident code, to each error or excep­
tional situtation. An incident code references a message file, an individual message within
that file, and a severity level.

incident code
Representation of a software incident. An incident code indicates the module which defines
the incident, the incident number within the module, the incident severity, and a pointer to a
message file. .

index
The mechanism in which a data value is presented to an ordered list that contains the loca­
tion of the desired value in a file. The index does not often contain all the values of the data
item, but simply a limiting range of values. An organization index is an index for a clus­
tered file or hashed file that influences the placement of records in the primary data area.
An alternate index is an index in a structured file that in no way influences the placement of
records in the primary data area.

index constraint
A restriction on a BiiNTM Ada array type or subtype that specifies the lower and upper
bounds (and thus the number of values) for each index (subscript) of the array.

index type
The type of the array selector or index that is used to reference an element of a Pascal array.
A Pascal index type must be an ordinal type.

initial_age
Ajob's age when it first enters the scheduler's waiting queue of swapped-out jobs. Larger
values indicate older jobs. The job at the head of the queue is the oldest job and is
scheduled for execution before the other jobs in the queue.

input event
An action performed by the user when interacting with an appliation through a terminal
window. Typical examples are mouse and keyboard input events. Input events are for­
warded to the application.

input focus
The virtual terminal to which a physical terminal's keyboard and mouse input are connected
at a given time.

instance
Member of a class. For example, an instance of an attribute, an instance of a generic pack­
age.

instantiation
Operation performed by the BiiNTM Ada compiler to create an instance of a generic package
or subprogram.

X-B-19

J

K

X-B-20

I'K~L1M1NAK y

instruction object
The predefined system object that contains the code belonging to a particular domain. This
object represents the instruction region, region 1.

integer
(1) An exact representation of a positive, negative, or zero value. (2) In BiiNnt CL, an
argument or variable type. (3) One of the data types of BiiNnt FORTRAN. In BiiNnt
FORTRAN, an integer datum can occupy 1,2,4, or 8 bytes; the default is 2 or4, depending
on the value of the compiler's: intsize argument (4) In standard Pascal, a sequence of
decimal digits. In BiiNTM Pascal, a sequence of binary, octal, decimal, or hexadecimal digits.

integer type
(1) Any type containing only whole numbers in a particular range. (2) One of the C­
language data types char or int (all sizes, signed or unsigned). (3) One of the Pascal data
types: char or integer.

interactive job
A job that interacts with a human user. Interactive jobs run in nonnal memory, have limited
processor claim, and have a lower priority than real-time and time-critical jobs.

interrupt
Asynchronous hardware signal indicating some occurrence (such as I/O) that requires action
by an I/O module.

interrupt handler
A procedure invoked in response to an interrupt.

interrupt reply procedure
A subprogram specified by a device manager in an I/O message that enables a device
manager to process the reply infonnation contained in an I/O message that has been sexviced
by either an I/O processor or a device driver.

invocation command
A BiiNnt CL command that invokes (calls and starts) a program or BiiNnt CL script.

job
. A system object that represents an executing program. Each job has its own storage
resource and its own address space. Each job has its own processing resources; scheduling
for a node is done on a per-job basis. Resource control and reclamation is done on a per-job
basis. A job can contain multiple processes executing concurrently.

K
210 = 1,024. For example, lK bytes equals 1,024 bytes.

key
A value used to designate a data item in a record. A primary key is a key value that
uniquely identifies a record in a file. A key value that does not uniquely identify a record in
a file is a secondary key.

Glossary

L

Glossary

PREUMINARY

kidnapped process
Process interrupted by an interrupt handler. The process is restored to its prior state and
resumes execution when the handler completes.

LAN service
The OS service that manages Local Area Network communication.

library unit
A compilation unit that is not a subunit of another unit. Library units belong to a program
library.

lifetime
A system object characteristic that detennines how long an object can exist and how the
object can be deallocated. There are three possible lifetimes: local, countable global, and
unbounded global. Local objects are local to a job, exist no longer than their job, and can be
deallocated by job termination or a local garbage collector. Countable global objects are
shared by one or more jobs and can be deallocated when the jobs are no longer using the
objects. Unbounded global objects have an unbounded lifetime and can be reclaimed by
global garbage collection when the objects are no longer accessible via any AD.

lifetime check
A check, whenever an AD is copied, to ensure that a local AD is not copied into a global
object. Attempting such a copy raises
System_Exceptions. lifetime_violation.

limited type
A BiiNTM Ada type that does not allow assignment or comparisons for equality.

linear address
A word interpreted as a 32-bit ordinal that specifies a byte offset into a linear address space.
Bits 30 and 31 specify one of four region objects. Bits 0-29 specify a byte offset into the
selected region. Region 0 contains static data. Region 1 contains instructions. Region 2 is a
stack. Region 3 is used by the OS and is identical for all linear address spaces at a particular
node.

linear address space
A 232 byte (4G byte) address space partitioned into four regions~ defined by a domain and a
particular process. A domain contains ADs for region 0 (static data object) and region 1
(instruction object). A domain contains a subsystem ID that detennines which of a
process's stacks is used as region 2. Region 3 is defined by the OS and never changes. The
linear address space contains holes where region objects are less than 1G byte in size.

link object
A system object with an system object type that supports the BiiNTM Operating System link
attribute. When an AD for a link object is retrieved from a directory, an associated link
evaluation function is called to evaluate the link and return a different AD. For example, a
symbolic link system object contains a pathname. Retrieving an AD for a symbolic link
triggers the retrieval of the AD named by the pathname in the symbolic link object.

X-B-21

X-B-22

rK~L11VllNAKJ:

linker
The BiiNTM software tool' that combines the object modules created by the BiiNTM Ada, C,
FORTRAN, COBOL, Pascal, and SQL compilers with the languages and systems environ­
ment to build an executable program. Besides producing the executable program directly
from the object modules created by compilers, the linker can also produce image modules
from object modules.

literal
(1) A symbol or number that represents a specific value rather than naming a value defmed
elsewhere (variable or constant) or describing a computation (expression). A literal can be· a
numeric literal, enumeration literal, character literal, or string literal. (2) In BiiNTM SQL, the
representation of character strings, exact numeric values (FIXED) and approximate numeric
values (FLOAT).

lock
An entity that allows a transaction or opened device to ensure that it alone has access to a
particular resource.

local
(1) An object or entity that is local to a particular job. (2) A scope of an entity, such as a
constant or variable, that is declared and visible only within a particular subprogram or
block.

local AD
An AD that is local to a job. A local AD cannot be contained in or copied to a global object.

local bit
A bit in an AD that is one in a local AD and zero in a global AD. The local bit is not
interpreted in null ADs.

local garbage collector
A memory management daemon that reclaims local garbage within a job. A running
program must request local garbage collection or else no daemon is created for the job.
Once requested, local garbage collection is invisible to the application

local object
A system object that is local to a particular job. When a job tenninates, all its local objects
are deallocated.

local SRO
An SRO used to allocate local objects. Each job has one local SRO.

local variable
Local variables exist only for the duration of a job. A variable created or modified by a
program is local to the creating job, unless specified as global.

low-level scheduling (dispatching)
Assigning a process to a processor. Each processor has a pointer to a dispatching port.
When a processor is available to execute a process, it dequeues the first process from the
highest numbered, non-empty queue in the port, and executes it.

Glossary .

M

Glossary

M
220 = 1,048,576. For example, 1M bytes equals 1,048,576 bytes.

mandatory argument
An argument that must be entered as part of a complete command.

mass storage service
The OS service that manages disk and tape storage.

master AD
The first access descriptor stored in passive store for a particular object An object's passive
version is deleted when its master AD is deleted. If a master AD is stored in a directory
entry and other directory entries on the same volume set reference the same object, then
deleting the master AD converts the AD in one of those other entries to a master AD,
preserving the object.

medium-level scheduling
The process of dynamically assigning priorities to executing processes. Medium-level
scheduling considers a process's running priority, service class, and dynamic behavior.

memory type
The kind of memory used by a system object, either normal memory or frozen memory.

menu service
The OS service that manages menus.

message
(1) Infonnation issued by an executing program in response to some internal or external
incident A message can have three levels (short, long, and help) and can exist in various
message languages (English, Gennan, etc.). (2) Infonnation used in executing the action
associated with an SMS event. For an action class of command, the message becomes a
process global that contains infonnation for the batch job that is triggered by the event. For
an action class of mail, the message is sent to the mailboxes listed in the action refmement.

message file
The container for a program's messages.

message service
The OS service that manages system and application errors and messages.

message stack
A stack that can be used to push and pop messages as execution continues. A message stack
can thus contain a traceback of an error's propagation path from the point of error back
through the various layers of software to the topmost level. Each process has a message
stack associated with it.

menu
A list of choices provided by a program. There are two types of menus: "pull-down menus"
from Window Services, and "screen menus" from the Menu Facility. Pull-down menu titles
are displayed in a line at the top of a window; selecting a pull-down menu title causes the

X-B-23

N

X-B-24

menu itself to be displayed. A screen menu (with its menu items) is displayed in a window
under program control. Screen menus may have hierarchies of menus and submenus.

Menu Editor
System utility used to interactively create and modify menus.

Menu Handler
Ada package that processes menus.

menu item
Element of a menu representing one of the choices available in the menu. Composed of the
displayed menu item text, and the returned menu item index; see the
Window_Services package.

mode
The mode of a variable is either "read-only", meaning that the variable can only be read, or
"read-write", indicating that the variable may be read or assigned a value.

modify rights
One of three type rights. By convention, modify rights are required to change an object's
state.

monitor service
The OS service that supports monitoring of program execution.

multiple activation model
An activation model that activates an object in any job or node. Compare with single
activation model.

name
(1) A character string label for an object or a stored AD. (2) A program-defined label for a
program entity, such as a type, variable, constant, exception, package, or subprogram.

name space
A name space is a list of directories to be searched by the BiiNTM OS when looking for an
object. This is similar in function to the UNIX environment variable PATH or the MS-DOS
PATH command.

named association
A BiiNTM Ada construct that binds a parameter or an aggregate member to a value; has the
fonn name => value.

named notation
(1) Entering an argument value to a command by specfying the name of the argument. (2) A
BiiNTM Ada construct.

naming service
The OS service that provides packages to manage pathnames, directories, and lists of direc­
tories.

Glossary

o

Glossary

r.K~L.lIVlll"'1A.K I

node
A single BiiNTM hardware system. Multiple nodes can be combined into a single distributed
system.

node pathname
A pathname with one leading slash. The BiiNTM OS evaluates node pathnames beginning at
the calling node's root (top) directory.

normal memory
Memory for system objects that can have pages swapped out to disk and that can be relo­
cated by compaction. Contrast with/rozen memory. Accessing a nonnal object may en­
counter delays waiting for pages or waiting for compaction to relocate the object.

null
(1) An invalid address, a pointer to nothing. (2) In general, empty or missing.

offset
An unsigned displacement from some base address, typically from the beginning of an ob­
ject. An offset is in bytes unless other units are explicitly specified.

object
(1) A typed, protected memory segment. Such an object is also called a system object. (2)
In Ada: a typed container for a value, such as a variable or constant. An Ada object mayor
may not be represented by a separate memory segment.

object address space
Up to 226 system objects simultaneously addressable in a particular node's active memory.

object descriptor
A data structure used to hold various system object characteristics: size, location in
memory, AD to the object's TDO, and other information. Object descriptors are internal to
the OS; object descriptors are only described because it is difficult to explain how objects
are located, sized, and typed without mentioning them.

object index
A field in an AD that identifies a particular object. In an active AD, the object index is a
26-bit index into the node's object table, selecting the object's descriptor.

object orientation
(1) A set of characteristics that enhance the coherence and security of integrated systems.
The principal characteristic of object orientation is the use of protected data structures called
objects to represent parts of the system itself as well as application entities. Objects are.
addressable and protected by cooperating hardware and software mechanisms. (2) An intui­
tive style of user interface that emphasizes representation of real-world entities rather than
implementation-oriented details.

object representation
The contents of a system object. An object's representation can contain from zero to 40
bytes. The representation is not synonymous with the object itself because an object has
several other characteristics, such as object type and attributes. Accessing an object's
representation requires an AD or virtual address with rep rights.

X-B-25

X-B-26

PRELIMINARY

object section
In the BiiNTM OMF, a contiguous portion of an object.

object service
The OS selVice that provides calls to manage objects, access to objects, and storage of
objects.

obj ect table
An object that contains all object descriptors for objects that are in a node's active memory
or that have active ADs on the node. There is one object table per node. The object table is
internal to the OS; it is described only because it is difficult to explain how objects are
located, sized, and typed without mentioning the object table.

object tree
A collection of passive objects, beginning with a single root object, and linked by master
ADs. An object x is in the tree if and only if x is the root object or another object in the tree
contains x's master AD. Because master ADs cannot refer to objects on other volume sets,
all objects in an object tree are on the same volume set as the root object.

object type
A set of object attributes that indicates such characteristics as its purpose, visibility, and
usability by other system elements. Some types define objects that are recognized by the
processor and for which special instructions are provided. Software-defined types can be
manipulated only by a type manager corresponding to the type of the object.

object-specific attribute .
An attribute that is defined differently or not defmed at all on a per-object basis.

operator
A programming language element that specifies an operation to be perfonned on one or
more operands in an expression.

operating system
The OS provides:

• General management of objects: object-oriented storage, protection, naming, and pro­
gramming.

• Control and accounting for system resources, such as memory and processing recources,
in a multiuser environment.

• Device-independent I/O access methods.

• Support for concurrent programming.

• Distributed selVices, so that applications built on those selVices are naturally di~tributed.

• High-level selVices commonly needed by many applications, such as messages, struc­
tured files, commands, forms, and reports.

System SelVices is the programmer's interface to the OS.

optional argument
An argument to a command that need be entered only if a value other than the default is
desired.

Glossary

p

Glossary

organization pathname
A patbname with 2 leading slashes. The BiiNTM OS evaluates organization patbnames by
first discovering which node to begin from, which may require a call to the Clearinghouse.

outside environment object (OEO)
An object that references the command definitions and messages associated with a program.
These are used by the command language executive (CLEX).

package
An Ada module containing logically related types, constants, variables, exceptions, sub­
programs (calls), and tasks. A package is represented by two separate compilation units, a
package specification and a package body.

package body
The implementation of an Ada package specification. The body includes implementations
for each subprogram in the package specification, any private data and subprograms internal
to the body, and any needed package initialization code.

package specification
The external interface to an Ada package. Declarations in the public part of a package
specification can be used from outside the package. A package specification can also con­
tain a private part that provides information needed by the compiler but not available to
external users.

package type
A package specification that can have alternate bodies, with a body selected for each call
depending on the object type of the first actual parameter. Compare with attribute call.

page
(1) A 4K-byte memory block, aligned on a 4K-byte boundary. (2) A printed page.

page descriptor
A data structure that locates a particular memory page and that contains access rights and
status information for the page.

page table
A table that locates the pages of a paged object. The table contains an array of page descrip­
tors.

page table directory
A page table that locates the pages of a large page table that is itself paged.

paged object
A large object that is stored in multiple pages of physical memory. The object descriptor for
a paged object references a page table that in tum references the pages of the object.

paging
The process of moving pages between physical memory and a swapping volume set. Pages
are loaded into physical memory on demand. Modified pages are written to the swapping
volume set by an asynchronous paging daemon.

X-B-27

X-B-28

panning
Moving a view up or down in its frame buffer in order to see a different part of the frame
buffer. Also called scrolling.

parameter
A value or variable that can be different for each invocation of a subprogram, and thus is
supplied for each invocation. A fonnal parameter represents a parameter within a sub­
program body. An actual parameter is the actual value or variable supplied for a particular
invocation.

parameter mode
For an Ada parameter, one of:

in

out

in out

passivate

The parameter is a value that is read but not written.

The parameter is a variable that is assigned but not read.

The parameter is a variable that can be read or assigned.

Copy an active version of a system object to its passive version.

passive AD
An AD in passive store.

passive object
A system object in passive store, a passive version.

passive version
An object's version in passive store. An object can also have zero or more active versions.

passive store
The distributed object filing system for storing system objects on disk. Compare with active
memory.

pathname
(1) A string of names that contains slashes and is a "path" of directories from a point in a
directory structure to an entry. BiiN

T
... uses four kinds of pathnames: relative, node, or­

ganization, and full. (2) A series of base names, separated by slashes, that uniquely iden­
tifies an element in a form.

physical address
A 32-bit address of a physical memory location or memory-mapped device register.

physical address space
The 232 byte address space used by the BiiNTM hardware.

physical memory
A node's semiconductor memory, whether nonnal RAM (volatile, read-write), battery­
backed-up RAM (non-volatile, read-write) or ROM/EPROM/EEPROM (non-volatile, read­
only for normal uses). Compare with active memory.

Glossary

Glossary

physical terminal
A video display device with a keyboard. It may also have a pointing device (mouse).

pipe
A software-defined object that supports interprocess communication (in one direction only).
One process writes to the pipe and the other reads from it. The pipe uses a fixed-size buffer
to hold data written by the first process but not yet read by the second process. The writing
process will block if the buffer is full, and the reading process will block if the buffer is
empty (the processes resume when these conditions no longer hold).

pointer
(1)- A variable that contains the address of another variable or of a function. (2) In BiiNTM
CL, an argument or variable type. A pointer value is a pathname to a passivated object.

port
An interprocess communications mechanism consisting of queued data structures that use
shared memory and provide communications for processes within a single job. Ports con­
tain messages, blocked processes, or are empty. Ports are the appropriate message
mechanism when fast and simple message passing is needed.

positional notation
Providing the value of a command argument by specifying the value at the appropriate
position in the command's argument list

pragma
A directive to the Ada compiler, embedded in an Ada source file. Pragmas can provide
important semantic information, such as how pointers are represented, or whether a sub­
program can be called from another language.

print device
A device created by an application through which data is spooled or printed directly.

print service
The OS service that manages printers.

printer
An object that represents a physical printer connected to the system.

printinfo
A set of attributes describing the capabilities of a printer.

procedure
(1) A program unit in BiiNTM Ada, FORTRAN, or Pascal that is invoked by a call statement.
Unlike a function, a procedure does not return a value. (2) In BiiNTM COBOL, a paragraph
or group of logically successive paragraphs, or a section or group of logically successive
sections, within the Procedure Division. (3) In BiiNTM SQL, a collection of one or more SQL
statements that can be called by a host language module. Procedures are grouped into SQL
modules. (4) A program in CP microcode that forns a part of an 10M microcode program.

process
The smallest unit of scheduling; a single thread of execution; represented by a processor­
recognized object. Processes specify execution environments for running programs.

X-B-29

X-B-30

PKJ£LIM1NAKY

process globals
A data structure that defmes the environment in which a process executes. It is a list of ADs
associated with the process.

process preemption
Forcing a running process to relinquish the processor to another process waiting in the dis­
patching port. It occurs if the waiting process has a higher priority than the running process
and is a preemptive process (has a priority higher than the preemptive threshold).

processor claim
The number of time slices available to the processes in a job during each scheduling cycle.
When the claim is exhausted, the scheduler terminates the job if it has exceeded its time
limit, or obtains more processor claim if it hasn't (allowing the job to continue).

program
(1) A complete collection of software modules that are designed to accomplish a given piece
of work. There are several kinds of programs: dialogue programs (which accept runtime
commands), start-and-go-programs (which accept runtime commands), application
programs, and system utilities. A program may be invoked interactively from the.keyboard
or batched in a BiiNTM CL script. An executable program is the linked version of a program.
(2) In Ada, a program is composed of a number of compilation units, one of which is a
subprogram called the main program. Execution of the program consists of execution of the
main program, which may invoke subprograms declared in the other compilation units of the
program.

program building service
The OS service that provides support for building programs: creation, execution, and
debugging.

program object
The root of a network of objects that comprise a program. A program object is created by
the linker and referenced by a program AD. The linker stores the program AD in a directory
after creating the program. A program consists of a program object, a global debug table
(GDT), an outside environment object (OEO), and one or more domain objects.

Program Services
The OS service area that provides support for concurrent programming, program building,
and resource control.

protection service
The OS service that provides packages to manage users, IDs and authority lists.

protection set
List of IDs and associated access rights. A protection set is associated with an ID, and a
caller must hold an ID that matches one in the protection set, with the appropriate rights,
before the caller can access that ID.

public data object
An object containing data that can be referenced from other domains (domains that have an
AD to the public data object in their static data objects.)

Glossary'

R

Glossary

pull-down menu
A menu that is activated by a mouse and which appears only on explicit request of the user.
After a user has selected menu items from the menu, the program can detennine the menu
choices by calling the appropriate terminal access method.

range
In BiiNTM CL, an argument or variable type. Range values are composed of two integers that
are separated by a double period (lower integer .. upper integer). - -

rank
(1) Default order in which spool files will print. (2) Default order in which subfonn group
instances will be displayed in a fonn.

read rights
A type right required for many devices and opened devices, in order to read data using an
I/O access method. Read rights rename use rights.

read rep rights
Rights bit that must be 1 to read an object's representation. ADs and virtual addresses
contain read rep rights.

real-time job
A job that is executed in real time because it cannot wait for objects to be brought into
memory or for another job to finish with a processor before executing. Real-time jobs have
very high priority and infinite processor claim. They run in frozen memory, and are not
subject to the scheduling process. If they block for I/O, the hardware reschedules them
immediately.

real type
A simple data type that represents a floating-point number.

record
(1) In the BiiNTM OS, an element of a structured file. Each record in a structured file has a
unique record ID that can be used to access the record. A record has aformat that is either
fzxed-Iength or variable-length. (2) In COBOL, the most inclusive data item. The level­
number for a record is 01. A record may be either an elementary item or a group item. (3)
In BiiNTM Pascal, a predefined type. (4) The unit of infonnation in an object module. The
BiiNTM Systems Object Module Fonnat specifies about a dozen records, each of which con­
tains specific infonnation about the object module. These records are a header record,
various symbol and object definition and reference records, and an end-of-module record.

record access method
An access method that transfers data in record-like units, in various access modes.

record type
A structured data type consisting of a fixed number of components (fields), possibly of
different types, that are referenced by means of identifiers.

recovery agent
Process provided on each node by the OS that detects I/O processor failures and maintains a

X-B-31

X-B-32

table of existing I/O messages. Device managers keep this list current by calling
DD_Support . Register_IO_mes,sage each time they create an I/O message.

region
(1) An area within a fonn. Valid regions are: the fonn as a whole, a subfonTI, a group, a
screen field or an enumeration. (2) A linear address space is partitioned into four 1-gigabyte
system objects called regions. Region 0 contains static data, region 1 contains instructions,
region 2 contains the stack, and region 3 is used by the operating system. Calling another
domain in the current subsystem can change regions 0 and 1. Calling a domain in another
subsystem can also change region 2. If a region contains less than one gigabyte, then the
linear address space contains invalid parts. Reading or writing with an invalid linear address
raises System_Exceptions. length_violation.

relative tile
A structured file whose records are organized in an array of fixed-size record slots that may
or may not contain infonnation. A relative file can be read or written in any order.

relative pathname
A patbname with no leading slashes. The BiiNTM OS evaluates relative patbnames relative to
a specific directory; by default, the current directory.

rep rights
Rights bits required to read or write an object's representation. ADs and virtual addresses
contain rep rights. There are two rep rights: read rep rights and write rep rights.

representation type
An object characteristic that specifies which of the four kinds of object representation is
used: embedded, simple, simply-paged, or bi-paged.

report
A printed or displayed document containing labelled data, often presented in columns and
hierarchical groups with subtotals and totals.

report description
A DDef that describes the format of a report and the data to be printed in it.

report service
The OS service that manages reports.

reservation service
The OS service that supports the reservation of devices for exclusive use by a session.

resource priority
A process's resource priority. When an interactive or batch process requests the use of a
resource (for example, a disk), the process's priority is raised to the sum of its base, bias,
and resource priorities (but still in the range 1 to 10).

resource service
The OS service that supports resource control and accounting.

Glossary

s

Glossary

rights
Bits in an AD that control access to a system object There are two kinds of rights: rep
rights and type rights. Rep rights are required to read or write an object's representation.
Rep rights are checked and enforced by the CPU. Type rights are required to invoke certain
type manager calls with an object The interpretation of type rights varies for different
object types. Type rights are checked and enforced by type managers. Rights are not
interpreted in null ADs.

rights mask
A record representing rights to be checked, added, or removed in an AD.

running priority
The priority at which an interactive or batch process is currently running. It fluctuates
between the process's base priority and the priority of the resource the process requested
most recently.

runtime command
A command that is processed by a program, using the command service. Runtime com­
mands are defined in command sets. Command sets can be stored in the program's outside
environment object (OEO), or as separate objects.

scalar type
A data type whose variables have a single value; also called a simple type.

scheduler
A collection of hardware and software entities that together schedule the execution of jobs
(and thus processes). The scheduler seeks to maximize the use of system resources by
scheduling processors, physical memory, and I/O devices.

scheduling service object (880)
An object that detennines the type of scheduling ajob receives by specifying the job's
service class, priority, time slice, memory type, initial age, and age factor. An SSO is
associated with a job when the job is invoked. The system administrator is responsible for
creating different types of SSOs and controlling access to them, thus controlling the type of
service granted to different jobs.

scheduling service
The OS service that manages scheduling of jobs and processes.

scope
(l)The part of a fonn in which an element exists and can be referenced. A form element is
in a fonn, or contained in a subfonn, a group, or a pile, i.e., in another fonn element. At any
one time the editing scope extends only to elements located directly in the fonn, or directly
in a subfonn or group, or directly on a pile. Only elements in the editing scope can be
edited. (2)The portion of a program in which a program entity exists and can be referenced.

scrolling
Moving a view up or down in its frame buffer in order to see a different part of the .frame
buffer. Also called panning.

X-B-33

X-B-34

semaphore
An object for controlling and synchronizing access to data that may be shared by concurrent
processes.

sequential file
A structured file whose records are organized in the sequence they are physically written. A
sequential file must be read in exactly the same order that it was written.

service
A logically related set of packages or other program modules. A service provides com­
pletely procedural solutions to problems. Applications call services on behalf of users, but
users do not directly interact with services. Compare with tool and utility.

service class
Denotes the general class of service a job is to receive. Four service classes are defined:
realtime, time-critical, interactive, and batch.

service area
A logically related set of services.

session
A grouping of jobs belonging to one instance of a user's interaction with the system. A
session typically contains several jobs. A session is usually an interactive logon/logoff
period, but can also be the running of a batch command file.

set
In BiiNTM Pascal, a predefined type.

simple object
An object representation that fits entirely into all or part of one memory page. A simple
object's size ranges from 64 bytes to 4K bytes.

simply-paged object
An object representation that requires multiple memory pages, but with a page table that fits
entirely into all or part of a memory page. Compare with bi-paged object. A simply-paged
object's size ranges from 8K bytes to 4M bytes.

single-activation model
An activation model that activates an object only in a particular home job (for local objects)
or home node (for global objects); another job or node that attempts to activate the object
instead activates a homomorph, a token object that stands in place of the actual object.

spin lock
A synchronization device used during the processing of I/O messages with calls that raise
and restore interrupt handler priority levels.

spool file
A buffer maintained by a spool queue that holds data from print device objects which is to
be printed.

Glossary

Glossary

spool queue
A spool device that must be installed before anything can be printed.

spool service
The OS selVice that manages spoolers.

SSO priority
The priority defined in ajob's SSO.

stable store
Non-volatile RAM storage that is used to optimize I/O throughput from active memory to
disk. Using stable store, writes to disk can be delayed indefinitely, which greatly reduces
I/O access time.

stack
System object that provides a stack of frames that each contain the state of a particular
subprogram call.

standard kernel image
Factory-supplied OS preconfigured to run on a system disk and a console terminal.

starter image
A self-contained, linked image that does not need a secondary store (such as a disk) for
operation, and which is booted into memory from a distribution channel (such as a tape) for
the sole purpose of executing certain system utilities to prepare the physical system to be
operable under an OS standard kernel.

statement
(1) A program construct that defines actions to be performed by the program. (2) A source
program construct at which a breakpoint can be set when using the BiiNTM Application
Debugger. In general, any construct that is considered a statement in the formal definition
of the language is also considered a statement by the debugger. However, the following
constructs are not considered statements for debugging purposes:

• Any declaration in any language (or definition in C) other than a variable declaration
(definition) involving dynamic initialization or a subprogram declaration (definition).

• Any declaration (as opposed to definition) in C.

In addition, subprogram declarations are always considered statements by the debugger,
regardless of their treatment by the source language.

static data object
System object that contains the data for a particular domain. This object represents the static
data region (region 0).

storage resource object (SRO)
An object used to allocate other objects. An SRO provides access to available memory and
to available object table entries. The SRO used to allocate an object determines the objecfs
memory type and whether the object is local or global. Each job has a local SRO, used to
allocate objects local to the job. Each node has two global SROs, one for normal memory
and one for frozen memory.

X-B-35

X-B-36

stream tile
A stream of bytes that allows random byte positioning. This UNIX-like file organization is
useful if you simply want to read and write bytes.

string
(1) In BiiNTM CL, an argument or variable type. String values are sequences of characters,
enclosed in single or double quotation marks (e.g., ' string' or "string"). If there are
no spaces, tabs, or linefeeds in a string, the quotation marks are optional. One string subtype
is enumerated, for which a set of allowable string values is defined. (2) In standard Pascal, a
sequence of one or more characters, enclosed by apostrophes, representing a value of type
CHAR (if a single character) or of type PACKED ARRAY [1 .. n] OF CHAR, where n is a
positive integer equal to the number of array elements. (3) In BiiNTM Pascal, STRING is a
resezved word, used as a type denoter.

string list
In BiiNTM eL, an argument or variable type. String list values are sets of strings, enclosed in
parentheses (e.g., (stringl, string2, string3). The string values may be
separated by spaces, tabs, or commas. If a string list contains just one string value, the
parentheses are optional.

structured file
A fue containing records of either fixed or variable length. Structured flies optionally can
have indexes. Structured files are useful if you need a way to maintain record structures.
Structured file I/O is typically accomplished using record I/O. A structured file can have
one of these organizations: clustered, hashed, relative, sequential, or unordered.

subnet
Informal term for subnetwork.

sub net service
The OS sezvice that provides network-independent communication between nodes within a
subnet.

subprogram
(1) A procedure, function, or subroutine written in any BiiNTM programming language. (2)
In a form, a processing routine or key catcher.

subprogram type
An Ada subprogram specification that can have alternate bodies.

sub transaction
A transaction that is contained within another transaction.

subsystem
One or more domains that share a common stack (that is, they have a single subsystem ID).

Support Services
The OS sezvice area that provides common defInitions and utility packages that are of use to
all other sezvices.

Glossary

T

Glossary

swapping volume set
A volume set providing external storage for virtual memory.

symbolic link
A symbolic link contains a pathname. Symbolic link evaluation retrieves whatever AD is
stored with that pathname.

System Configuration Object (SCO)
A sequence of configuration commands that attach and start configurable objects during the
booting of the system to put the configurable objects into operable states.

system SCO
A sequence of configuration commands that attach and start those configurable objects
(typically hardware components) required to complete node initialization of the as.

tag bit
A 33rd bit that tags each memory word and indicates whether the word contains a valid AD.
A tag bit of 1 indicates a valid AD. A tag bit of 0 indicates a data word or a null AD.

tail object
An object that must be attached to a configurable object before it can become functional.

temporary file
A file that is unnamed when created and exists only for the duration of the current job
(unless explicitly named and saved).

terminal access method
One of two currently supported methods for procedural interaction with a tenninal: charac­
ter (Character_Display_AM), or graphics. Contains calls to access the screen and
input devices.

terminal service
The as service that manages teITIlinals and windows.

time-critical job
A job that has less stringent time constraints than a realtime job. Time-critical jobs have the
same priority as realtime jobs, but limited processor claim (they are rescheduled in round­
robin fashion when a time slice expires). They need not run in frozen memory, since their
time constraints can tolerate page faults.

time limit
The total processing time available to a job (and its descendant jobs). When the processes in
a job exhaust the job's processor claim, the scheduler teITIlinates the job if it has exceeded its
time limit, or obtains more processor claim if it hasn't (allowing the job to continue).

time slice
The amount of processing time assigned to each process in a job in each dispatching cycle.
(It does not include time spent on intenupts, processor preemption, or waiting at a port or on
a semaphore). When a process exhausts its time slice, it is generally redispatched with the
same time slice value. However, each job has a processor claim value that detennines the

X-B-37

X-B-38

total processor time available to all the processes in the job. When the job's processes have
used n time slices and exhausted the processor claim, the job is reexamined by the scheduler
and either terminated or granted additional processor claim (and the processes resume
execution).

timing service
The OS selVice that manages ~ystem time, timed requests, time computations, and time
format conversions.

TM concurrent programming service
The OS selVice that provides concurrent programming support for advanced type managers.

TM object service
The OS selVice that provides object and memory operations for building advanced type
managers.

TM transaction service
The OS selVice that manages transactions within a type manager.

transaction
A system object that groups related operations so that either all the operations succeed, or all
are aborted and undone.

transaction service
The OS selVice that provides calls to start and resolve transactions.

transaction stack
A per-process stack of transactions. The top transaction on the stack is the default
transaction for any transaction-oriented operations.

transport service
The OS seIVice that provides network-independent communication between nodes.

type
A label that distinguishes one kind of entity from another. The type of an entity typically
determines the entityjs allowed values, allowed operations, and representation.

type definition object (TDO)
An object that represents one type of system object. A TDO contains type-specific attribute
entries for the type. These attribute entries are inherited by all objects of the type.

type manager
A program module that conceals the representation of an object type and that provides all
basic operations for the object type. One module may act as a type manager for more than
one object type. Several type managers that work closely together to manage some aspect of
the system (for example, filing) constitute a "selVice".

type rights
Rights bits required to invoke certain type manager calls with an object. ADs and virtual
addresses contain type rights. There are three type rights: use rights, modify rights, and
control rights. The interpretation of type rights varies for different object types. A type
manager may also rename the type rights that it uses.

Glossary

u

Glossary

type-specific attribute
An attribute that can only be defined once for an object type. The attribute entry is stored in
the object type's TOO. All objects of the type inherit the attribute entry.

Type Manager Services
The OS service area that provides packages to build type managers, software modules that
implement new object types and their attributes.

unique identifier (UID)
An identification number that is never changed or reused once it is assigned to a particular
entity. A UID securely identifies the entity for all time and all systems. For example, each
BiiNTM node is assigned a UID.

unbounded global object A system object that is not local to any job and that has an un­
bounded lifetime. An unbounded global object can be reclaimed by global garbage collec­
tion when it is no longer accessible via any AD.

unordered file
A structured file whose records are organized according to available free space.

use rights
One of three type rights. By convention, use rights are required to read an object's state.

user
(1) In general, one entity using the services of another. For example, a program is a user of
system services. (2) The person sitting at the tenninal issuing commands and entering data.

user interface
The part of a program that accepts user input, displays messages, and creates output.

userSCO
A sequence of configuration commands that attach and start configurable objects (typically
software modules) of a configuration that are not required to complete node initialization of
the OS.

utility
Program or BiiNTM CL script that is invoked interactively from the CLEX> prompt. It is
supplied by the system to perfonn a particular service for some group of users. Developers
may create new utilities. A utility mayor may not have runtime commands.

utility service
The OS service that provides system deftnitions, texts, string lists, and long integers.

v

X-B-40

I"K.t,;L1~AKI

variable
(1) A datum whose value can change during program execution. (2) In CLEX, a named and
typed daturil containing a value; also called an environment variable. A variable's mode is
either "read-only" or "read-write". A variable's type is one of: boolean, integer, pointer,
range, string, or string list. A variable may be read (and, if "read-write", set) either inter­
actively (using the built-in commands for variables: create. variable,
list. var iable, remove. variable, set. variable) or procedurally (using the
environment service). The scope of a variable may be either global or local. Passivated
variables are stored in variable groups; some groups are predefined for use by CLEX,
programs, and scripts. Variables are stored and passivated with the
manage. var iable _groups utility. (3) In FORTRAN, the tenn "variable" does not
include array elements. (4) In COBOL, a data item whose value may be changed by execu­
tion of the object pro gam. A variable used in an arithmetic expression must be a numeric .
elementary item.

variable group
A group of BiiNTM CL (environment) variables, associated with one or more BiiNTM services,
programs, or applications. A variable in a variable group is identified by the group name, a
period, and the variable's name. For example, CLEX uses the eli. (command line
interface) variable group, which contains the current directory's pathname, command input
prompt string, and so on.

version
(1) In general, a variation of a file that reflects the state of its development. (2) In the BiiNTM
Software Management System, a member of a version group. A version captures a point in
the evolution of a fue (object).

view
(1) In BiiNTM SQL, a view is a named query that may be used as a table. In effect, views are
virtual tables derived from the underlying base tables. They do not take up physical space.
(2) A copy of an image module that makes available only a subset of the procedures defined
by the image module from which it was derived. Executable programs may be linked to
views, much like image modules and linker libraries. Views are a fonn of infonnation
hiding. (3) The visible part of a frame buffer.

virtual address
A location within an object, given by a 32-bit byte offset and an AD to the object. A virtual
address can also be null, referencing no object. An active virtual address contains two
words aligned on a word boundry. The first word is the offset; the second word is the AD.

virtual address space
Up to 258 bytes simultaneously accessible: Up to 232 bytes in each of up to 226 system
objects.

virtual memory
A memory management feature that supports a logical view of memory (for example as a
collection of varying-size objects) that is distinct from the physical address space. Virtual
memory requires hardware address translation, which is provided by the CPU. Virtual
memory also implies support for logical memories larger than the physical memory, with the
obvious problems being avoided by juggling parts of memory to and from disk.

Glossary

w

Glossary

virtual terminal
A device which, to an application, appears indistinguishable from a physical tenninal. It
provides a screen-like drawing space for the output of characters or graphics, and a keyboard
and mouse for input.

volume
Logical storage area for storing files and objects. Volumes are members of volume sets.

volume number
A sequential number assigned to each volume in a volume set when created that identifies it
relative to other volumes on the volume set.

volume set
A logical disk containing volumes used to store fIles and objects. Volumes of volume sets
can span multiple physical disk devices.

volume set name
Name assigned when a volume set is created. It must be unique on all disk volumes that
contain the volume set's volumes.

window
A portion of a tenninal screen in which I/O can occur.

word
A unit of memory containing 32 value bits and an associated tag bit. A word is always
aligned on a 4-byte boundary. Value bits in a word are numbered from 0 to 31.

work queue mechanism
A work queue data structure and two associated interrupt handlers designed to aid device
driver writers in maintaining and initiating I/O requests for directly-connected devices.

working set model
A model for the reclamation of primary memory pages. The working set of a job is dynami­
cally defined as the set of primary memory pages referenced by the job in the last time
quantum, T, measuring backwards from a given time t. Every T time units the scheduler
detennines the working set for each running job. Any pages that have not been accessed in
that time period are returned to a pool of free pages.

write rights
A type right required for many devices and opened devices, in order to write or change data
using an I/O access method. Write rights rename modify rights.

write rep rights
Rights bit that must be 1 to write an object's representation. ADs and virtual addresses
contain write rep rights.

X-B-41

I'K~LIN~AK 1:

X-B-42 Glossary

$OEO V-4-4
$status V-4-4

2-space view 1-1-9

configure utility VII-7-9

AD 1-3-2
_VA 1-3-2

A

Access descriptor 1-3-2, II-2-3, VII-I-12
Access methods IV -1-2
Access modes

Indexed-random IV-9-7
Indexed-sequential IV -9-5
Physical-random IV -9-4
Physical-sequential IV -9-3
structured files IV-9-3

Access rights 1-1-15
Activation model II-3-12

choosing one II-3-14
Active-onlyobject II-3-6
AD 1-1-13,1-3-2

alias VII -1-17
passive VII-I-17
retrieving ill -1-8

AD activation II-3-5
Address space

protection 1-1-10
Age factor VI-3-7
Alias AD II-3-8
Alias entry ill-1-2
Allocating a buffer 1-3-6
Alternate index IV -8-15
Application program IV -4-2. V -2-2

clear and close a fonn V -2-18
closing record access to a fonn V -2-18
commands V -2-3
creating a me-sorting procedure V -2-26
creating a menu group V -2-13
creating a pipe V-2-27
creating a report-printing procedure V -2-27
creating a sort DDef V-2-25
creating a window V-2-11
defining a me V -2-20
defining a fonn V-2-17
defining a message V-2-16
defining a report V-2-22
de:fming the invocation command V-2-11
design V-2-4
displaying a fonn for user input V -2-18
displaying a message V-2-16
displaying a read-only fonn V -2-20
fetching a value from a fonn V-2-18
form and report DDefs from a me's DDef V-2-5
forms V-2-4
getting a menu selection V-2-14
getting a report's DDef V-2-23
getting and opening a fonn V-2-17
initializing a report V -2-23
installing and enabling a menu group V -2-13
menus V-2-3

Index

messages V -2-3
modifying afonn V-2-17
opening a me V-2-20
opening a report's input device V -2-22
opening a report's output device V-2-23
printing a report V-2-24
processing the invocation command V -2-11
producing a report from a sorted me V -2-25
producing a report V-2-21
reading a data record from a fonn V -2-18
record access to a fonn V-2-17
relation to Human Interface Services V-1-2
reports V-2-4
spawning concurrent processes V -2-27
storing data into a fonn's field V-2-19
updating a me V -2-20, V -2-21
updating an indexed me V -2-20
using a menu selection V-2-14
waiting for concurrent processes . V -2-28
windows V -2-3
writing a data record into a fonn V -2-19

Attribute
Ada VII-4-3
ID Vll-4-5
implementation of VII-4-7
instance VII-4-5
new VII-4-5

Attributes
OS IV-I-5
window IV-5-6

Authority list ill-3-2
access, illustration ill-3-2
calls to manage ill-3-9
changing an object's ill-3-11
changing the default ill-3-10
creating ill-3-9
multiple objects sharing, illustration ill-3-6
Passive Store Protection: VII-I-18
using the default ill-3-9

Authority-based protection ill-3-3
Authority_List_Mgt ill-3-2

B

Banner page IV -6-7
Base priority VI-3-8
Batchjob VI-3-6
Batch process VI-3-5
Booting anode VII-7-3
Buckets IV -7-4
Buffer IV -2-3

allocating 1-3-6
Building

indexes IV-8-14, IV-8-15
Byte_Stream_AM.Ops IV-4-16

c
Call Stack

trimming VII-5-5
Canonical pathname ill -1-7
Character display devices IV -5-2

INDEX

1

Character display I/O
input model IV-S-4
output model IV -5-4

Character fields V -6-5
Character tenninal user agent IV -4-15
Character tenninaIs IV -4-3
Character Display AM IV-S-2, V-5-3
Character-Display -AM.Ops IV-4-18,IV-S-2
Character-Terminal Mgt IV-4~
CL variables -V-4-2 -
CL Defs V-3-2
Clearinghouse 1-1-11, ill -1-5
Cluster JX-I-8
Command

alternatives V-3-12
arguments V -3-8
control options V-3-9
flIe V-3-4
history V -3-3
named arguments V -3-8
names V-3-7
positional arguments V -3-8
sets V-3-7
Unix conventions V -3-4

Command language variables V -4-2
active memory buffers V -4-3
active memory V -1-9
buffers V-I-10
built-in. variable commands V-I-1O
concepts V -1-9
creating a variable V -4-8
creating V -1-11
displaying variable names V -4-6
evaluation of V -1-10
job variables V -1-10, V -4-3
local variables V-1-10, V-4-3
passive store V -1-9
reading a value as a string V -4-7
reading a value V -4-5
reading V -1-11
removing a variable V -4-8
setting a value from a string V -4-7
setting a value V-4-5
setting V -1-11
variable groups V-4-3

Command name space ill-4-2
Command service V-1-6, V-1-8, V-3-2

program-defmed commands V-1-7
types of commands V -1-7
use of command defmition V -1-7

Command Execution V-1-8, V-3-2
Command-Handler V-3-2
Commands V-I-7, V-3-2

2.

built-in control V-3-5
built-in runtime V -3-5
defming help messages V -3-11
defIDing invocation V-3-13
defIDing runtime V-3-4, V-3-14
defIDing V-1-8, V-3-1O
entering runtime V-3-12
executing from program V -3-16
processing arguments V-3-15
processing runtime V-3-16
reading as text V-3-16
reading from devices V -3-4, V -3-11
reading invocation V-3-14
record access V -3-4, V -3-12
runtime V-3-7
startupflIe V-3-12
syntax V~1~7

types of V-3-4

f'.KELIMlNARY

Concurrency IV-1-3.IV-1O-3
Concurrent program VI-2-2
conditional P VI-I-17
Configurable Object (CO) VII-7-S
Configurable object VII-7-6
Configuration VII-7-2
Configuration attribute VII-7-5
Configuration.Ops.Attach VII -7-6
Configuration.Ops.Start VII -7-7
Control break V -8-5
Control group V -8-5

field V-8-S
footings V -8-9
headings V -8-9
hierarchy V -8-5, V -8-8

Cpu scheduling VI-3-3
Create call, example VII-3-9
create. form V-6-4, V-7-6
create. report V-8-7
create. standard form V-I-5
create. standard-report V-I-6
create. variable -V-I-I0
Creating

flIes IV-8-12
Current record pointer (CRP) IV -9-2
Cursor IV-5-4

D

Data
Abstraction VII-1-2

Data areas
primary IV-7-3
secondary IV-7-3

Data defmition (DDet)
defining an index key DDef IV-8-12
record DDef IV -8-6

Data fields V -6-9
Data Definition Mgt V-I-4, V-1-11, V-1-14, V-1-16, V-8-7
Date flcld V -6-6 -
DDefs V-I-4
DDF Utility Support V-I-4
Deadlock IV-I 0: 10, VI-I-19
Deallocation

Deallocating Passive Versions VII-2-10
Explicit VII -2-10
Job Tennination VII-2-1O

Debug object VI-I-7
Default fonnats V -6-7
Default transaction ll-4-3
define. standard form V-1-I4
define • standard-report V-1-I6
Defmition V-I-4 -
destination V-6-20
Destination path register V-7-10
Destroy call, example VII-3-11
Device IV-1-2

closing IV -2-2
opening IV -2-2

Device class IX -1-4
Device driver IX-I-4
Device manager IX-1-3, IX-l-4
Device object IX-I-3
Direct mode IV -6-3, IV -6-8
Direct printing IV -6-9
Directories

protecting ill -1-5
Directory ill-1-2

creating a directory ill-2-2

Index

deleting a directory entry ill-2-4
listing directory contents ill-2-5
node's default directories ill -1-8
retrieving a directory AD from process globals ill-2-7
retrieving an AD in a directory ill-2-4
standalone ill-l-IO
storing a directory entry ill-2-3
transactions and m -1-10
using a pattern to fllter directory contents m-2-7
valid entry names ill-I-2

Directory entry
alias entry ill-I-2

Dirty read ll-4-5
Dispatching VI-3-4
Distributed system 1-1-8
Domain object VI -1-4

E
edit. form V-I-5, V-I-14, V-6-4
edit.key map V-I-6
edi t. repO'rt V-I-6, V-I-16, V-8-7
End-of -flle IV -2-3, IV -9-9
Entry name

valid names ill-I-2
Enumeration

overlaid V -6-8
scattered V -6-8

Environment service V -1-8
Environment Mgt V-I-9, V-4-2
Error II-5-2 -
Error decision V -8-13
Evaluation ill-3-6

during Retrieve, example, illustration ill-3-8
during Retrieve, illustration ill-3-7

Event VI-1-12
establishing a handler for VI -2-10
handler VI-1-12
signaling an VI-2-9
signaling VI-I-12
table oflocal event values VI-I-16
waiting for VI-2-11

Event clusters VI-I-12
global VI-I-12
local VI-1-12, VI-I-16

Event_Mgt VI-1-12, VI-2-3
Example program

data flles V -2-6
menus V-2-6
overview V -2-5
processing V -2-9
setup V-2-9
source code mes V -2-8
tennination V -2-10

Excape character V -8-9
Exception II-5-6

recovering from 1-3-8
Exception handler 1-3-8

F

Fault tolerance 1-1-5
OS support for 1-1-5

File access modes
indexed-random IV -9-19
indexed-sequential IV -9-20
physical-random IV-9-17

~ physical-sequential IV -9-18

Index

r.l'-~L.l..ln.J.1,.dA ...

File descriptors
index descriptors IV -7-9
logical file descriptor IV -7-8
physical fIle descriptors IV -7-8

File organization IV -7-4
Files

creating IV-8-12
nontransaction-oriented flles IV-I 0-3
primary data area IV-7-3
secondary data area IV-7-3
stream IV-7-2
structured IV-7-2.

Fonn V-6-2
annotated V -1-13
CL variables V-7-3
contraction V -6-13
creating V -1-13
defIning V-I-14
elements V-I-14
example V-I-12
executable V-6-3, V-7-2
initial values V -7 -8
using V-1-13

Fonn DOef V-6-4
Fonn description V-7-2
Fonn elements V -6-4
Fonn service V-I-12, V-1-13
Fonn sheet V -6-5
form. decimal character V-8-10
Form Handler -V-1-13
Fonnat string V-7-4, V-8-9
Fonns V-6-12
Frame buffer IV -5-2, IV -4-2
Frozen memory 1-1-11
Full patbname ill-l-6

G

Garbage Collection
Global VII-2-lO, VII-2-13
Local VII-2-10
setting/changing local VII-5-5
starting local VII-5-5
stopping local VII-5-6

Garbage collector (GCOL) VII-2-11
Global debug table (GDT) VI-1-3
Graphics tenninal user agent IV -4-15
Graphics tenninals IV -4-3
Group V-6-9

H

deployed V -6-10
instances V -7 -11

Handler object VI -1-8
Handling recoverable exceptions 1-3-8
Head object VII -7-6
High-level scheduling VI-3-3
Human Interface Services V -1-2

features V -1-4
utilities V -1-4

"",.'i, .

3.

I

I/O message IX-I-5
I/o scheduling VI-3-9
ID m-3-3

calls to manage m-3-9
changing an object's owner m-3-11
contents of ill-3-4
illustration m-3-4
record IV-7-3
type rights for ill-3-5
user ID m-3-11
when first created m-3-9

ID list m-3-3. ill-3-4
illustration m-3-5

Identification Mgt m-3-2
Image module VI-I =2
Import 1-3-6
Importing operators 1-3-5
Incident IT-5-2. IT-5-4
Incident code IT-5-4
Independent transaction IT-4-6
Index

b-tree IV-7-4. IV-8-3
defining a key DDef IV -8-12
hashed IV-7-4, IV-8-3
index descriptors IV -7-9
organization key IV -7 -7. IV -8-3
perfonnance IV -8-5

Indexed-random access IV -9-7
Indexed-sequential access IV -9-5
Indexes

alternate IV -8-15
building IV-8-14. IV-8-15
organization IV -8-14

Initial age VI-3-7
Input focus IV -4-2
Instruction object VI-l-6

Optimized Handling of Vll-2-13
Interactive job VI-3-6
Interactive process VI-3-5
Interlanguage calling conventions V-6-13
Intetprocess communication VI -1-12
Interrupt reply procedure IX -1-6
Is call. example Vll-3-8

J
Job VI-I-9. VI-2-2

and multiprocessing 1-1-4
batch VI-3-6. Vll-2-12
interactive VI-3-6. Vll-2-12
real-time VI-3-6. Vll-2-12
time-critical VI-3-6. Vll-2-12

Job variables V-I-I0
Job Admin VI-l-ll
Job:=Mgt VI-I-9. VI-l-11 , VI-3-5

K

Key catcher V -7-11
Key catchers V-6-15
Key list V-6-19, V-7-11

4

L

line end decision V-8-13
list. variable V-I-I0
Local Address Space

getting infonnation about Vll-5-6
Local variables V -1-10
Locking area IT-3-15
Locks

acquiring IV-I 0-6
escalating IV-I 0-7
lock modes IV-I0-5
opened devices IV-I 0-11
releasing IV-I 0-7
transactions IV-I0-2

Logging 1-1-6
Logically delete Vll-2-10
Long integer IT -1-4

illustration IT-I-2
using a literal IT -1-7

Long-tenn logging IV-I 0-11
Long Integer Defs IT-I-8
Low-level scheduling VI-3-4

M

make. script V-I-7. V-3-4
manage. commands V-I-5. V-3-2
manage. messages V-I-6
manage. variable group V-I-5. V-I-9
Master AD IT-3-7.m-=-I-3

restrictions IT-3-8
transferring mastership IT-3-9

Medium-level scheduling VI-3-5
Memory

active Vll-1-16
Compaction Vll-2-13
control Vll-5-2
monitor Vll -5-2
Pool VIT-2-4
Primary Vll-2-5
Secondary Vll-2-5
shared over distributed system 1-1-3
Virtual Paging Vll-2-12

Memory address
overlay 1-3-5

Memory Allocation
Frozen Vll-2-7
Nonnal Vll-2-7

Memory scheduling VI-3-9
Memory type VI-3-7
Menu V-I-H. V-5-2

checking an item V -5-7
defining V -1-11
getting a menu selection V-5-6
group V-I-12
help V-I-12
interactions V -1-11
item numbers V -5-3
item V-I-12
reading V-I-12
selecting V -1-12
title V-I-12

Menu group V-5-2
creating a DDef V-5-4
defining V-5-4
disabling V -5-7
enabling V -5-6
installing V-5-5

Index

removing V -S-S
Menu seIVice V-I-II
Menus IV -4-13
Message ll-S-3
Multiple activation ll-3-12

N

N-space view 1-1-9
Name space m-4-2

changing command name space in process globals m-4-4
changing command name space in user prome m-4-4
command name space m-4-2
creating m-4-3
reading directories in a m-4-2

Name Space Mgt m-4-2
Named notation V -3-S
Naming'domain m-1-6
Networkofpaths V-6-20, V-7-9
next_path_element V-6-14, V-6-20, V-7-10
Non-stop computing I-l-S
Nontransaction-oriented mes IV-I 0-3
Null element V -6-9
Number

record IV-7-3
Numeric fields V -6-6

o
Object 1-1-13, IT-2-2, VII-1-2

Activation VIT-2-12
active-only VII-3-8
Attributes VII-l-6
Bipaged VII-2-8
Countable Global VII-2-9
debug VI-1-7
Descriptors VTI-2-5
domain VI -1-4
Embedded VII-2-S
generic ll-2-4, VII-1-14
Global Vll-2-9
handler VI -l-S
How Objects Work Vll-I-5
instruction VI -1-6
Local Vll-2-9
outside environment VI-I-4
Paged Vll-2-S
program VI -1-3
Protection Vll -1-6
public data VI -1-6
Simple Vll-2-S
Sizes Vll-1-S
stack VI-l-6
static data VI-1-S
Table Vll-2-S
type VII-3-2
Types Vll-1-S
Unbounded VII-2-9
Why use Vll-1-2

Object activation IT-3-4
Object passivation IT-3-5
Object tree II-3-9
Object versions ll-3-3
Opened device IV -1-2
Option field V -6-7
Organization index IV -S-14
OS service

building a new 1-1-13

Index

Outside environment object (OEO) VI-l-4
Overflow

recovering from 1-3-7
Overlapped windows IV -4-7
Overlay I-3-S

p

p VI-l-17
Package Vll-4-3

type-specific instance of Vll-4-3
Package-level variable 1-3-3
Page

footer V -S-4
Frame Vll-2-4
header V -S-4

Page body area V -S-3, V -S-4
Page footings V -S-9
Page heading V -S-9
Page table (PT) Vll -2-S
Page table directory (PID) Vll-2-S
Paired calls 1-3-9
Passivation dependencies ll-3-6
Passive AD II-3-7

as universal identifier IT-3-l0
Passive object

characteristics IT-3-10
copying II-3-20
creating IT-3-16
destroying TI-3-19
getting infonnation IT-3-22
lifetime II-3-9
requesting an update IT-3-lS
updating IT-3-lS

Passive store IT-3-l, VTI-1-16
default behavior IT-3-1S
for generic objects IT-3-l0
transaction support IT-3-14
type manager support IT-3-lS

Passive store attribute IT-3-1S
Physical tenninal IV-4-2
Physical-random access IV -9-4
Physical-sequential access IV -9-3
Pile V-6-l0
Pipe VI-1-14, VI-1-19

connecting processes with a VI-2-12
Pipe_Mgt VI-I-IS, VI-2-3
Port mechanism 1-1-11
Positional notation V -3-S
Pragma

bind Vll-4-S
package_type Vll-4-6
~ckage_value VIT-4-6

Pragma bind VII-3-S
Primary data area IV-7-3
Print

area IV-6-4
delays IV -6-7
device IV -6-3, IV -6-S
me IV-6-S
position IV-6-4
tennination message IV -6-7

print. file V-S-ll
Printer IV -6-12

adding IV-6-12
list IV-6-3
type IV-6-S

Printinfo IV -6-S, IV -6-12
Priority VI-3-4

:"}'.:t

5.L~

base VI-3-8
resource VI-3-8
running VI -3-8
SSO VI-3-8

Process 1-1-11, VI-r·9.VI-2-2
batch VI-3-S
creating a VI-2-S
getting information about VI-2-7
interactive VI-3-S
real-time VI-3-S
suspending and resuming VI-2-7
tenninating a VI-2-8
time<ri.ti.cal VI-3-S

Process globals 1V-1-9, VI-I-I0
getting an enuy VI-2-4
retrieving IV -2-4
setting an entry VI:.24
table of values VI-I-ll

Process Admin VI-l-ll
Process-Mgt VI-I-lO, VI-2-3
Process ~ Mgt Types VI-l-IO, VI-2-3
Processingroutitle V-7-l0
Processing routines V -6-14
Processor

claim VI-3-S
multiple 1-1-2
preemption VI-3-4

Program VI-I-2
deflnition VI-I-2
execution VI -1-9
invocation VI-I-8
module Vll-3-2
structure VI-I-2

Program object VI-I-3
Program Mgt VI-I-2, VI-1-9
Protected_Can, pragma example Vll-3-14
Protected_retum, pragma example Vll-3-14
Protection

Memory Vll-l-3
system object I-I-IS

Protection set ill-3-5
Public data object VI -1-6
Public type, example Vll-3-4

R

Rank IV-6-3, V-6-11
Read lock IT-4-S
Real-time job VI -3-6
Real-time process VI-3-5
Record

access modes IV -7-9
DDef layout IV -8-6
derIDing a DDef IV -8-10
ID IV-7-3
number IV-7-3
record id IV -9-16
record number IV -9-16
size IV-7-3

Record i/o V -6-4
deleting records IV -9-14
inserting records IV-9-13

Record ID IV-7-3
Record number IV -7-3
Record print layout V -84, V -8-8
Record size IV-7-3
Record AM.Ops IV4-17
Records -IV-7-3
Recovering from record overflow 1-3-7

PRELIMINARY

Recovery IV-I 0-3, IV-I 0-11
Recovery agent lX-1-8
Reference Counting VIT-2-l0
Region V-6-lS, V-7-11
Releasing

locks lV-lO-7
remove. variable V-l-lO
Report V -8-2

defming V-1-16
description V -8-6
details V-1-16
example V-I-IS
footing V -8-3
footings Vo 80 9
fonnat V-I-IS
heading V -8-3
headings V -8-9
parts V-I-16, V-8-2, V-8-6
printing V -1-17

Report selVice V -1-15
Representation of objects 1-3-2
Resize rule IV 4-10
Resource priority VI-3-8
Resource-driven priorities VI-3-7
Rights VIT-1-12

representation 1I-24, Vll-3-2
type IT -24

Rights evaluation ill -3-6
Root transaction IT 44
Running priority VI-3-8

s
Scheduling 1-1-4

cpu VI-3-3
high-level VI-3-3
I/O VI-3-9
low-level VI-34
medium-level VI-3-5
memory VI-3-9

Scheduling service object (sso) VI-3-6
Screen flelds V -6-5

protected V -6-9
Secondary data area IV -7-3
Semaphore VI -1-17
Semaphore Mgt VI-2-3
Service class -VI-34, VI-3-6
Service conflguration attribute Vll-7-5, Vll-7-6
Session VI-I-9
set. variable V-I-tO
Shared data structures

locking VI-2-13
Shared queues IX-I-8
Sheet elements V -6-5
Short-tenn logging IV-I 0-11
Single activation ll-3-14
Size

record IV-7-3
Spool

device IV -6-5
ftle 1V-6-3
queue priority IV -6-3
queue IV-6-3

Spooled mode IV -6-3, IV -6-8
SSO priority VI-3-6, VI-3-8
SSO Admin VI-3-6
SSO -Types VI-3-7
Stack object VI -1-6
Standalone directory ill -1-10

Index

Standard report V -8-8
Static data object VI-1-S
Storage

Claim VII-2-7
Stream files IV -3-2

copying IV -3-6
creating temporary files IV-3-7
creating IV -3-S
deleting IV -3-6
emptying IV -3-6

String list II-I-2
creating a string list II -1-6
illustration II-I-2
invalid (ovedlow) II-I-3
reading elements from II -1-6

String List Mgt II-l-6
Structured fIles -

access modes IV -9-3
Subfonn V -6-9
Subprogram-level variable 1-3-3
Subtransaction II -4-4
Subtransactions

locking IV -10-8
Swapping memory' 1-1-10
Symbolic key V-6-16
Symboliclink m-I-4,m-S-2

illustration m-S-2
Synchronization 1-1-4
system 1-3-2
System components V11-7-S
System Configuration Object (SCO VII -7-4
System Configuration Object (SCO) V11-7-8
System object 1-1-14
System SCO VII -7-8
System Service VII -4-4
System variable groups V -1-10
system Defs 1-3-2
system:=exceptions 1-3-3

T

Tab bit II-2-3
Tail object VIT -7-6
TOO VII-3-3

as stored object V11-3-8
Temporary files IV -3-4

creating IV-3-7
Tenninal attributes IV -4-S
Terminal Defs IV-5-2
terminal-input V-6-15, V-7-1O
Tenninals -

character IV -4-3
graphics IV -4-3

test. form V-7-6
Text II-I-3

declaring a constant II -1-4
illustration IT -1-2
invalid (ovedlow) II-I-3
procedure with text result IT -1-5
recovering from ovedlow 1-3-7
using a literal IT -1-4

Texts V-6-5
Time limit VI-3-S
Time slice VI-3-7
Time-critica1job VI-3-6
Time-critica1 process VI-3-5
Timestamp conflicts IT -4-6
Transaction II -4-1

and job tennination II-4-6

Index

coding tules II-4-4
deadlock avoidance II-4-6
independent transaction II-4-6
locking II-4-S
recovering from timestamp conflicts
timeouts II-4-S
using only when needed II -4-7
using II-4-6

Transaction stack II-4-3
Transactions 1-1-7
Translation tables V -7-6
trigger key V-6-IS, V-7-11
Type 1-1-13, II-2-3

Manager VII-I-13, VII-3-2
lDlchecked conversion 1-3-3

&-c-IV {)~£d
,,, .. F.-IV !)::J't1JO'.>:1l

Z-t·ri ,tIrti(l!1JJ'

:n~!~ " ~~i:~~~I :\?~)(n<i
::<>1v .r.bl!~d

';.:. ,";' '5,~;~~1~)}~\~' i~:,:f;:~::j~
" ",'" ". : .. 1"110": ~~

;. "'~' .~. / , ;.:; ~ r.~.l~.r~~ .' .. : .. ~;~

:>' ·1'l ji~:i;Ji": .. ,r',,"."!

. : ;,i!l"';' :' .~~ t f':,; }~t.;.<

~ :::::s ~-;i~:!!'!!ction VII_3~,3~.:·L -~;'~=:, ~.~. j~~i;~~:;-'.
Type rights I-I-IS

evaluating rights to an object m-3-6
Typemgr_Support VI-I-18

u
Unchecked conversion 1-3-3
unchecked conversion 1-3-4
Update VII-3-13
User IV-4-2
User agent IV-4-1S
User variable groups V-1-10
User Mgt m-3-2
Using paired calls 1-3-9

v
v VI-I-17
Variable 1-3-3
Variables V -1-9
View IV-4-2, IV-S-2. VI-I-2
Virtual address 1-3-2
Virtual memory VII-2-2
Virtual tenninal IV -4-2
Volume set m-l-6

Filing VII-2-4
mirrored 1-1-6
Swapping VII-2-4

w
Window IV -4-2, IV -S-2

mput model IV 4-6
output model IV -4-7

Window attributes IV-S-6
Window coordinates IV-4-4
Window service V-I-II

I'

.•. • :"'i
... " ~ .. ,

~~ ~ ,#1',/ X~:rLtr·.)~~·.:··~

nt.,ili..:'.: ~ ·.~·,:-tl ~

;" -~;~!.',' ·~]lJ·;·'· i.~:~

~: ~\' :-;.O!t.:ri::";"l ~ ~

,,: .; f,dc~ .r!l.~···:,;' t· ~}

:. ~ E. "..i rh7 ~. 7.

..)"

:, 1· r',,'n hi .\.~O':I'r:
Window Services IV-4-2.IV-S-2, V~S~3 or :'}CL1":lJf! L.:;;l,;'

Working set VI-3-9
Write lock II-4-S ·.-·6···

,'];,,;.;:)51 :::;,-:>;
~:~ '.~ \1X.~'";' gr~':'~·.\:~:;;' :.::

: '1\""_ 'i.l-;- .z:~.r ~:-~\..";~.,; .. , I.

J;;o'(d ;;;n:q t·:, :;.;<
'> ~ ... \lJ :j~:i~ tno:)~5i'

:·_:: ···.1:j' ~;.aO.r~~L~. r)":5c!']::':'

"£-r.V1':"'" ebJ:':.)o.H
.~ ;-. 7t):':;~1 In~Y!·~ ~. rt n:1V().:,)!;;'"'

CJ.\.r..L.lIVllNAK.Y

Index
8

We'd like your comments ...

Your comments help us produce better documentation.
Please fill out the form on the reverse of this card, then fold
it, tape it shut, and drop it in the mail. (Postage is free if
mailed within the United States.) We will carefully review
your comments. All comments and suggestions become the
property of BiiNT~

322073-001

Fold here

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 226

POSTAGE WILL BE PAID BY ADDRESSEE

BiiNTM
Technical Publications Department
2111 NE 25th Ave.
Hillsboro, OR 97124-9975

HILLSBORO, OR

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

Bii.~

Please use this form to help us evaluate this manual and improve the quality of future versions. Mailing instructions
are on the other side of this form. .

If you want to order publications, see Page ii of this manual.

Manual Title: ______________________ Revision Number (Page ii): _____ _

Please fill in the squares below with a rating of 1 to 10, with 1 being worst and 10 being best:

] Technical Gompleteness

] Technical accuracy

] Readability

] Organization

If you gave a 4 or lower in any category, please explain here:

] Usefulness of material for your needs

] Quality and relevance of examples

] Quality and relevance of figures

Please list any suggestions you have for improving this manual:

Please list any technical errors you found:

Please tell us your name and address. (If you would like us to call you for more specific comments about this book,
please list your phone number as well.)
Name: ___ _

Address:

Phone (Optional): __________________________________ _

Thank you for taking the time to fill out this form.

