SYSTEM SERVICES GUIDE
VOLUME 1 OF 2

B “TM



\ SERVICES GUIDE
"VOLUME 1 OF 2

Order Code: 6ANS010-1XA00-0BA2

LIMITED DISTRIBUTION MANUAL

This manual is for customers who receive preliminary ver-
sions of this product. It may contain material subject to
change.

BiiN™
2111 NE 25th Ave.
Hillsboro, OR 97124

© 1988, BiiN™



FPRELIMINAKY

oo
153

REV. REVISION HISTORY DATE

-001 | Preliminary Edition | 7/38

BiiN™ MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. "

BiiN™ assumes no responsibility for any errors that may appear in t.lus document. BiiN™ makes no commitment to update nor to keep current the
information contained in this document. TR A B ,‘ Gooiv s

No part of this document may be copied or reproduced in any form or by any means without written consent of BiiN™".
BiiN™ retains the right to make changes to these specifications at any time, without notice.

The following are trademarks of BiiN™: BiiN, BiiN/OS, BiiN/UX, BiiN Series 20, BiiN Series 40, BiiN Series 60, BiiN Series 80.

Screw and Mfg. Ada is a certification mark of the Depanmem of Defense, Ada Joint Program Office. DEC, VTIOQ and VAX are trademarks of
Digital Equipment Corporation. Smartmodem is a trademark of Hayes Corporation. IBM is a trademark of Intemnational Business Machines, Inc.
MULTIBUS is a registered trademark of Intel Corporation. Macintosh is a trademark of McIntosh Laboratory, Inc. Microsoft is a registered
trademark of Microsoft Corporation. Mirror is a registered trademark of SoftKlone Distributing Corporation. WYSE is a registered trademark of
Wyse Technology. WY-60 and WY-50 are trademarks of Wyse Technology.

Additional copies of this or any other BiiN™ manuals are availablé from:

BiiN™ Corporate Literature Dept.
2111 NE 25th Ave.
Hillsboro, OR 97124

ii



PRELIMINARY

PREFACE

Purpose

The BiiN™/OS Guide shows you how to use the services provided by the BiiN™ operating
system. U

Audience

This manual is intended for both applications programmers and systems programmers. Such
programmers use the OS to create:

e Object-oriented applications that provide data protection, data integrity, program
modularity, and extensibility

e Applications that manage record-structured files

e Interactive applications that use windows, menus, commands, messages, and forms
o Concurrent applications using multiple processes, including real-time applications
o Distributed applications that provide services at multiple nodes in a network

o New device drivers.

Organization

Preface

The BiiN™/0S Guide is divided into eleven major parts:

I Introduction  Introduces the OS and how to make system calls.

II. Support Services
Fundamental services for message handling, text and string handling, using
system objects, and transaction processing.

HI. Directory Services
Hierarchical directories, lists of directories, user IDs, and authority lists.

IV. /O Services Standard I/O access methods and I/O devices.

V. Human Interface Services _
Programming interactions with the user: command input, menus, forms,
and reports.

VI. Program Services
Concurrent programming and scheduling.

VII. Type Manager Services
Creating new services using new object types.

VIII. Distribution Services
Creating services that exist at multiple nodes in a network and that com-
municate to provide distributed services.

iii



PFRKELIMINAKY

IX. Device Services .
Creating device managers and device drivers.
BRS S
X. Appendixes  Complete listings of examples excerpted in this manual, and a Glossary of

terms used in this mianual.
Index e
The chapters in each part describe major programming areas such as "Using Basic I/O" or
"Building Concurrent Programs.” A chapter may contain basic concepts about the program-
ming area, specific programming:techriques, or both. Many techniques are illustrated with
excerpts from BiiN™ Ada examples listed in Appendix X-A.

LTI S B

Related Publications

This manual does not provide detailed reference information for system calls. For descriptions
of system calls, see the BiiN"/OS Reference Manual. All OS programmers should also see the
"Files, Modules, and Views" appendix in the BiiN"/OS Reference Manual for important infor-
mation regarding finding OS files and compiling and linking programs that use the OS.

The following manuals may be of use to you while programming with the OS:

BiiN™ Systems Overview
High-level description of BiiN™ systems.

Getting Started with BiiN™ Systems
How to log in, basic interactive commands, and how to set up your en-
vironment.

BiiN™ Systems Programmer’s Guide .
Languages and tools used to program in the BiiN™ environment, and some
application examples.

BiiN™ Ada User’ s Guide
User’s guide for the BiiN™ Ada programming language.

BiiN™ Ada Language Reference Manual
Language reference for the BiiN™ Ada programming language.

BiiN™ C Programming Manual
Programmer’s manual for the BiiN™ C programming language. This
manual includes a chapter on using the OS from C programs.

BiiN™/0S Reference Manual
Package descriptions for using the OS.

Notation

iv

glossary term Terms being defined or used for the first time are in italic font, and can be
found in the Glossary.

Package_ Name BiiN™ Ada reserved words and OS package and call names are in
typewriter font.

The following abbreviations are used throughout this manual:

K 210 = 1,024, For example, 1K bytes equals 1,024 bytes.

Preface



Preface

M
G
AD

SRO

TDO

GDP

PRELIMINARY

220 = 1,048,576. For example, 1M bytes equals 1,048,576 bytes.
230 = 1,073,741, 824 “For example, 1G bytes equals 1,073,741,824 bytes.

Access Descnptm;, a system object pointer. An AD references a system
object.

Storage Resource Object, which defines memory storage available for a
job or node.

Type Definition Object, which defines an object’s type. Each object .
references the TDO forits type.

General Data Processbr, a central processing unit in a BiiN™ node.

In examples of BiiN™ commands, the user’s input is and the system’s prompts and

responses are not. For example:

clex-> |cg hello.c

clex—> [link hello.obj :output=hello|

clex->

Hello, world!
clex—>

name ;.=

name
name
a-z

A/B
[A]
A..

(A)

‘This manual uses the following notation to describe syntax:

syntax-exp

A syntactic equation, indicating that the word on the left side symbolizes
the expression on the right side.

Words in italic font are names for other expressions. A name containing
hyphens, such as basic-type-specifier, should be considered a single word.

Words and symbols in t ypewriter font are literal characters and
character strings.

Specifies any single character >= g and <= z in the ASCII collating se-
quence.

OR: Specifies a string that matches A or a string that matches B.
Brackets surround an optional syntactic element.

Ellipses indicate that one or more elements can be used.
Parentheses group items to specify an order of evaluation.

An example of syntax notation:

appetizer ::=
[ soup-type ] soup /
vegetable almondine /
chips/[& salsa]

soup-type ::=
meat noodle/
cream of vegetable

meat ::=
chicken/beef

vegetable ::=
potato/cauliflower /broccoli



vi

PRELIMINAKY

The following strings are valid appetizers, according to the above syntax:

chicken noodle soup
cream of broccoli soup
broccoli almondine
chips

Preface



PRELIMINARY

CONTENTS
R e e

- Part 1. Introduction.

Chapter 1. Concepts

I-1.1 BiiN™ OS FUnctionality . ............oeveirirennrineneneneaennenenss I-1-2
I-1.2 Transparent Multiprocessing with Multiple Processors .................... I-1-2
I-1.3 Fault-Tolerant COMPULING ... ...ouvrinneinnnernernrnenennonenennnns I-1-5
I-1.4 Transaction Processing and DBMS Support ...........ccciiiiiiinnnn.n. I-1-7
I-1.5 Computing in a Distributed Environment ...............cc.cc0vuiienn... I-1-8
I-1.6 Support for UNIX and ISO Standards .......... e I-1-8
I-1.7 Services for High-Function Applications .............ccciviiinennneennns I-1-9
I-1.8 Transparent Resource Management for Easy Programming ................ I-1-10
I-1.9 GettingReal TimeData ............ciiniiiiiiinrinninennnennennnnns I-1-10
I-1.10 System Administration and the Clearinghouse ......................... I-1-11
I-1.11 BiiN™ OS AICRItECIIIE ...t eeetne et eeetineenaeennaennnanns I-1-12
IF1.12 SomMe BasiCs . ..vviviiiintniie ittt ittt i e I-1-13

I-1.12.0.1 WhatIs A System Object? ...........cciviiiiinrrnennnnnnnn. I-1-14

1-1.12.0.2 How Are System Objects Protected? .................ccovun.... I-1-15

Chapter 2. Service Areas and Services

I-2.] SeIVICE ATCaS .o vviiiteireet it ie s eeenrereeneneeensenenenonenan 1-2-3
I-2. 2 SUPPOIt SeIVICES ..ottt ittt it it it i it ittt e i e I-2-3
I-2.2.1 Utility SeIvViCe ...ttt ittt i iee it iieneanenennns I-2-3
12,22 ObjeCt SeIVICE .. iiiti ittt ittt i i e e e e e 1-24
I-2.2.3 Transaction ServiCE ... ...c.oviiiiiii it ii et ieninnennnneanss 1-2-4
I-2.2.4 MeSSage SEIVICE ...ttt eiaet et nnaaeaans 1-24
I-2.3 DAreCtOry SeIVICES . .ivvitii it iie ittt iieeeneeneenaaeannaanns I-2-5
I-2.3.1 Naming Service . ....coiiitiiir ittt ittt eietninenaenanannn I-2-5
I-2.3.2 PrOleCtOn SeIVICE ... ittt ittt ittt it it ittt ettt e et ennenenen I-2-5
| 1@ <) o (- P 1-2-5
I-:2.4.1 BasiCI/O SeIViCe ... ivvtiitit it ittt ittt ettt ettt 1-2-6
1-2.4.2 Character Terminal Service ........ e ettt e I-2-6
I-2.4.3 Print SeIVICE .. ittt ittt ittt it it e e it e 1-2-6
I-2.4.4 Spool Service ........iiniiii it i e e e e e I-2-6
1-2.45 FiliNg SEIVICE ..\ vi it i et et et an I-2-6
1-2.4.6 Database SUPPOIt SEIVICE . .......vtuiiniiieneennneennennnennnnns 1-2-7
I-2.4.7 Data Definition Service . ......oviiiir ittt it e nieannann 1-2-7
[-2.4.8 Volume Set ServiCe .. ....oviiiit ittt ittt ittt it 1-2-7
I-2.4.9 BasiC DisKk SeIViCe . ... iiitit ittt ittt it ittt ettt ittt © 1227
I-2.4.10 Basic Streamer ServiCe .. ....cviriiit ittt ittt 1-2-8
I-2.4.11 Null Device Service .............. e e e e e e I-2-8

Contents vii



OINLLLIVALINAKI X

I-2.5 Human Interface SErvices ...........oiiuitiiniininenneneenenannnnns I-2-8
I-2.5.1 Command SEIVICE ........ciiriiniineneineneneenenneacnaanannns I-2-8
I-2.5.2 FOmm SeIVICE ... ivitt ittt ittt in i niteenenerensaeennsannas I-2-8
I-2.5.3 RePOIL SeIVICE ...ttt ittt ittt ittt ittt eieteeneennnnanaanan I-2-8

I-2.6 Program SeIVICeS .. .....vitieinnnenennneneeuneennennnenaeenennnns I-2-9
1-2.6.1 Concurrent Programming Service ............cciiiuiiinienenennnn. I-2-9
I-2.6.2 Scheduling ServiCe .........ccouiiiniiiniinienereneennennnennnns 1-2-9
1-2.6.3 TIMING ServiCe ........iiuniiiii ittt iietieeenecnaanaeans I-2-10
I-2.6.4 ReSOUICE SEIVICE .. ..o vvttitiiie e tneenernnsonenseneoaaoonnns I-2-10
I-2.6.5 Program Building Service .............coieiiiiiiiiniiiicnnneaenns 1-2-10
I-2.6.6 MOMItOr SEIVICE .. ... ..ttt ittt i ierneanrnenannaonnas I-2-11

I-2.7 Type Manager SEIViCes . ........uiuiiiinnieineennenennneeennneennns I-2-11
I-22.7.1 TMODJeCt SeIVICE ... itiiii it ittt ittt inerieaarnnraenennnns I-2-11
I1-22.72 TM TransaCtion SE€IVICE ... ....viviiinernnenrernenneenaennennnnn I-2-11
1-2.7.3 T™ Concurrent Programming Service ................cccvivinnn.. . 1-2-12
I-2.7.4 Configuration SEIVICe ... ......ciiiiiiiiuninerneneenenennonannn I-2-12
I-2.7.5 Custom Naming Service ...........iitniiniieunrrenenerennnenennn I-2-12
I-2.7.6 BacKup SeIViCe .. .....citiiiiiiiii it iieteneenanaenennans I-2-12
I-2.7.7 Distribution ServiCes ........cuoviiniinriniiniiniinereeenannn I-2-13
[-2.7.8 Clearinghouse SeIViCe .......vviiiiniiniii ittt inerneennnennn 1-2-13
I-22.7.9 RPC SeIVICE i .iiititttiet ittt ieeiieiineineeaaenneonanns I-2-13
I-2.7.10 Transport SEIVICE .. ... c.ieeitintneneieeenereeneeeeennnnennns I-2-13

I-2.8 DevVICe SEIVICES . ...t vitiriie i iieeeiiiernneernnneencenonnenenns I-2-14
I-2.8.1 Device Driver Service ..........coitiiiiiiiininnineneenennenannn I-2-14
[-2.8.2 Shared QUeUe SeIviCe . ...ttt e i e e e I-2-15
I-2.8.3 Asynchronous Communication Service ..............cciiiieenen... I-2-15
I-2.8.4 Mass StOrage SeIviCe .........viiieiininnreenrneenernnennnennnn I-2-15
I-2.8.5 SCSLSeIVICE .. iviitti ittt ittt ettt I-2-15
I-2.8.6 Subnet Service .. ..... ..ttt i i i et e I-2-15
I-2.8.7 HDLC SeIViCe . ..iiiitiiii ittt teieeteenrneeaenaannnnens I-2-16
I-22.8.8 LAN SeIVICE ..ottt ittt ittt tieennainannnanns I-2-16

Chapter 3. Ada Programming Techniques

viii

S R 03 4 1o/ o1 1. AP I-3-2
I-3.1.1 WorkingwithPointers ........... .. .. ittt iiiiiiiennnnanss I-3-2
I-3.1.2 Common Types in the Systemand System Defs Packages ......... I-3-2
I-3.1.3 Standard System Exceptions .............. ittt iniiiennann I-3-3
I-3.1.4 Package-level and Subprogram-level Variables ...................... I-3-3

I-3.2 TeChmiqUES .. oeititi ittt ittt it it it e ittt e e I-3-3
I-3.2.1 Using Unchecked Type Conversion ..............cccviuiuniinnennann 1-3-3
1-3.2.2 Using Overlays as an Alternative to Unchecked Type Conversion ....... I-3-5
I-3.2.3 Importing OPEIatOrS ... ...vvttunetneneneneuneneeneneeneneenenns I-3-5
I-3.2.4 AllocatingaBuffer ..................... e e et e e I-3-6
1-3.2.5 Recovering from Record Overflow ............. .. ... . it I-3-7
I-3.2.6 Handling Recoverable Exceptions ............. .. .. oiiiiivn.... I-3-8
I-3.2.7 UsingPaired Calls ........coiiuniniiiiiiiiiii i iiiiiiiiiiennnnn I-3-9

I-3.3 SUMMAIY ..ottt it it e ettt ettt it et e I-3-10

Contents



PRELIMINARY

Part ll. Support Services.

Chapter 1. Using Utility Packages

0 O R 0 ¢ 1) o £ P II-1-2
II-1.1.1 String Lists . ..ot i i et i i i i II-1-2
B > < 1 II-1-3
II-1.1.3 LOng Integers .. .ovvite ittt it ittt inenerneeeenenanaannnnns 1I-14

I-1.2 TeChmiqUes ...t ittt ittt ittt teereraenansasnennasnsnenns II-14
II-1.2.1 UsingaLiteral TeXt . ... ..cuitireeniinrnneneenneneneionensnenas II-1-4
II-1.2.2 DeclaringaConstant TeXt ............c.uuitienenenenenenenennn II-14
II-1.2.3 Calling a Procedure witha TextResult .................... ..., II-1-5
II-12.4 CreatingaString List ...........ciiiiiiiiiiiiiiiiiiiinnnnnn. II-1-6
II-1.2.5 Reading Elements froma StringLiist ....................covven.... II-1-6
II-1.2.6 UsingalLiteral LongInteger .............cvtiiuienineenennenenn. II-1-7
II-1.2.7 Computing withLong Integers ............coivuiieiennennnennnn. II-1-7
I1-1.2.8 Converting Between Strings and Long Integers ..................... II-1-8
II-1.29 SUMMAIY ...ttt ittt it tne it eeteeenenenaneeneenenns II-1-8

Chapter 2. Using Objects and ADs

II-2.1 COMCEPIS .« v ettt ettt tee et te e et iie it en e e enaenanennennas II-2-2
II-2.1.1 Whatisan Object? ..........itiiriiriii ittt iineenaennns 11-2-2
I1-2.1.2 Whatis an Access Descriptor? ............civiiiiiiienennnenann. II-2-3
II-2.1.3 Rep Rights Control Access to an Object’s Representation ............. I1-24
II-2.1.4 Type Rights Control What Type-Specific Operations are Allowed ...... I1-2-4
II-2.1.5 GeneriC ObJeCtS . ..ottt ittt ittt ieeieeeenannennannn I1-2-4
II-2.1.6 Building Type Managers That Define New Object Types ............. 11-2-4

II-22 TechnmiqQues .......iuninni ittt it ittt iienennennn II-2-5
I1-2.2.1 Checking an Object’s TYPe ....vvvuriiiiinnnernenenenenneenennns II-2-5
I1-2.2.2 CheckingRightsonan AD ............c.citiiiiniiinnnnennnnn, II-2-5
II-2.2.3 Removing Rights FromanAD ........... ... iiiiiieniiiennnn.. II-2-5
II-224 Creating aGeneric Object . ......ovuiirninnniniininennennnnn. I1-2-5
II-2.2.5 Resizing an ObjJect ... ....ouitientn ittt ineneacaanenss II-2-6
I1-2.2.6 Deallocatingan Object ..........uiiiirntinineninennnnnnneaas II-2-6

II-2.3 SUMMATY ...ttt e it et et ittt teeeaannsananon II-2-6

Chapter 3. Storing Objects

Contents

L O T B o) 4 Uo7 o £ II-3-3
I1-3.1.1 Comparing Passive Store, Files, and Directories ..................... 1I-3-3
I1-3.1.2 Using Passive Store at DifferentLevels ............... ... .. oo.... II-3-3
II-3.1.3 Object Versions ................. P I1-3-3
II-3.1.4 ObjeCt ACHVALION .. ..ottt i, 1-3-4
I1-3.1.5 Activationas Reincarnation ................c.coiiiiiiiennnann. II-3-5

ix



PRELIMINARY

II-3.1.6 AD ACHVAtION . ..... ..ttt ittt it iiiiaenneneennanas II-3-5
I1-3.1.7 Object Passivation ..........c.cciiiiieininieniineeneenneennenns 1I-3-5
I1-3.1.8 Passivation Dependencies ..........ocieviiniiieninieneenennnn I1-3-6
I1-3.1.9 Active-Only Objects ........coiuriiiiiiiniiiiiniiineenennennns II-3-6
I1-3.1.10 Passive Store Behavior of OS Object Types .........ccvviivnn.n. II-3-6
II-3.1.11 Passive ADS .. ..ottt ittt ittt i it e 11-3-7
II-3.1.11.1 Referencing Between Active Memory and Passive Store ......... 1I-3-7
II-3.1.11.2 Master ADS ... . it ittt ittt iieannenes 1I-3-7
II-3.1.11.3 AaS ADS . .iviitie ittt iieeineiateenetneeneceonennns II-3-8
II-3.1.11.4 Restrictionson Storing Master ADS ...........ccoviiiieiennnn II-3-8
I1-3.1.11.5 Master ADs and Passive Object Lifetimes ..................... I1-3-9
II-3.1.11.6 Transferring Mastership ............coiiiiiiienennnnennnn. II-3-9
II-3.1.11.7 ObJECt TIEES .. vvveei ettt ittt iineiiaaeeeannnns II-3-9
I1-3.1.11.8 Passive ADs as Universal Identifiers ......................... I1-3-10
I1-3.1.12 Passive Store Behavior of Generic Objects ........................ I1-3-10
I1-3.1.13 Passive Object Characteristics ........c.cvvviinrenniniennnennnnn. 11-3-10
II-3.1.14 The Life History of a Passivated Object .......................... II-3-11
II-3.1.15 ActivationModels .......... ..ottt II-3-12
I1-3.1.15.1 Multiple ACtIVation . .........civiniiiiiininnneennnennnn I1-3-12
I1-3.1.15.2 Single ACHVALION .........cvvuiiuninnreneeneennennnenannn I1-3-14
I1-3.1.15.3 Choosing an ActivationModel ............... ..., I1-3-14
I1-3.1.16 Transaction SUPPOIT ... ...ttt iietiennnererennenenenennanesns I1-3-14
I1-3.1.17 The Passive Store Attribute ..............c.iiiiiiiiiiiiiinnn.e. II-3-15
I1-3.1.18 Default Passive Store Behavior ............... ... ... i, II-3-15
II-3.1.19 Type Manager SUPPOIt . ......iiviinininniinneneennnenennonnens II-3-15
II-3.2 TeChNIQUESs ...ttt i it ettt e II-3-16
II-3.2.1 Creating aPassiveObject .......... ... i, I1-3-16
II-3.2.2 Updating a Passive Object ......... ...ttt iiiiiiinnnn., I1-3-18
II-3.2.3 Requestingan Update ...........c.ciiiiiiiiiniiiiiennnnrenennn I1-3-18
I1-3.2.4 Destroying a Stored Object ........cciiiriitnenreennnaraeenennnn I1-3-19
II-3.2.5 Copying aPassiveObjectTree ............coiieniiiiinnennnennnn I1-3-20
I1-3.2.6 Getting Passive Object Information ............. ..o, 1I-3-22
II-3.3 SUMMAIY . ..ottt ittt ittt it ettt ie e iaeenneenns I1-3-23

Chapter 4. Starting and Resolving Transactions

II-4.1 COMCEPES vt ete vt tttneeense s atieeetsseosneennenenenonensuenns 1-4-2
II-4.1.1 What Transactions Provide ..............0 it 11-4-2
I-4.1.2 Transaction Calls .........iiiiiiiii i ittt it iniaeeannn 11-4-3
I1-4.1.3 Transaction Stack ..........ccitiiiiir ittt ieeneanaann I-4-3
I1-4.1.4 The Default Transaction .............. ... iiiuuuenn. P, 11-4-3
I1-4.1.5 Participating in Transactions ...............covuiiiiiinnennenenns 11-4-3
I1-4.1.6 The Transaction Service asa Coordinator .......................... 114-4
IT-4.1.7 SubtranSactions . ...........oeieinennennenrnnennennrnenennenns 11-4-4
I1-4.1.8 Avoiding Subtransactions .............c.covuiiniiiinniunennennn 11-4-4
I1-4.1.9 Rules for Using Transactions ..........c..oeueeeuenenenneenunenonan 11-4-4
I1-4.1.10 TransactionLocking ............ ..ttt iniiiiinnennnnn 11-4-5
II-4.1.11 Transaction TiMeEOULS . ... ...t ittninniieeianeennrennennnan I1-4-5
I1-4.1.12 Transactions and Job Termination ............cciitiierinrrnnenn. 11-4-6
II-4.1.13 Avoiding Deadlock with Timestamp Conflicts ..................... 11-4-6

X Contents



PRELIMINARY

II-4.1.14 Independent Transactions ...................covuunn e I1-4-6
II-4.2 TeChnmiqUeS ......civuiintiiieinineeneeneeneeeenenenoneenannnnns 11-4-6
II-4.2.1 UsingaTransaction . ...........ccuiiiiiniunrinnennennenneennens I1-4-6
I1-4.2.2 Avoiding Unnecessary Subtransactions .............oeeeeeneneness 11-4-7
II-4.2.3 Using a Transaction and Recovering from Timestamp Conflicts ........ 11-4-8
II-4.3 SUMMAIY ...ttt ittt ettt it iie ettt tteeasenanasnenoneaanenas 11-4-9

Chapter 5. Writing Messages

Contents

II-5.1 CONCEPLS o ovvtittt it ee it ie it s searenreesnosoenonenosnesnenns II-5-3
II-5.0] MESSaEeS it it ittt e et iie e ie ettt I1-5-3
II-5.12 Message Files ....... ...ttt ittt II-5-4
II-5.1.3 Incident Codes . ... ... ittt it ittt inneeannananns 1I-5-4
II-5.1.4 Message BIOCKS . .....coviiiniiiii ittt iienieeenenns II-5-5
II-5.1.5 Message Stacks . ...vviiniiiii ittt ittt e II-5-5
II-5.1.6 Messages and EXCEPLONS . ......c.oviiinrnnenineneennnnennnnnn. 1I-5-6
II-5.1.7 CL Variables That Affect Messages ...........ccceiiivinrnnnnnnnn. II-5-6
II-5.1.8 How CLEX Handles Messages From Terminated Jobs ............... 1-5-7
II-5.1.9 Message Utilities ..........ccuiiiniiiiinineninenennnnennennns II-5-7
II-5.1.10 History Files ........ ..ttt it ees II-5-7

II-5.2 System EImorLog . ....oitiiiiiiiiiit ittt ie e einaennenn II-5-7

II-5.3 TeChniqUes .......ccoiimiiniiiie ittt iteineneeeenenrnaanannns I1-5-7
I1-5.3.1 Defining Application Messages . .......cvvtivrrnrnnennroernennnnn I1-5-8

II-53.1.1 IntheSource File ............cciiiniiiiiiiinniinennannnn. II-5-9
II-53.12 maCommand File ............ ... iiiiiiiiiiiininnnnnn. II-5-9
II-5.3.1.3 Using manage .MeSSagesS .....uveurueeneneneneenenannnnns I1-5-9
II-5.32 Writing aMessage .. ....vvviiiiinneineneentnenennnnnnennnns I1-5-10
I1-5.3.3 Associating an Incident Code With an Exception .................... I1-5-10
II-5.3.4 Replacing an OS Exception With an Application Message ............ II-5-11
II-5.3.5 Taking Advantage of Predefined OS Messages ..................... II-5-11
I1-5.3.6 Pushing a Message When Raising an Exception ..................... II-5-11
I1-5.3.7 Clearing the Message Stack When Handling an Exception ............ I1-5-12
II-5.3.8 Writing a Message With Acknowledgement ........................ I1-5-13
II-5.3.9 Recording History Entries ...............oiiiiiiiniiinnan.. II-5-13
II-5.3.10 SUMMATY ..ottt ittt it ii it te e reaaannennnn I1-5-14
xi



FKELIVIINAKY

Part lll. Directory Services.

Chapter 1. Understanding Directories

HI-1.1 Directory StrUCIUIE . ... .oeiteeernrenoeeereeneocnassanonsnennsnean ImI-1-2
III-1.1.1 Pathname Symtax ........cc.iuetnonenenentoreennsnnasaaoceoans II-1-3
III-1.1.2 Alias Entries and Master Entries ...........ccovuiiunennrennconn. Im-1-3
IT-1.1.3 SymboliCLINKS ... ...vuuituierinnnennennernreneenenneeennenns Im-14
III-1.1.4 Protecting Directories and theirContents ...............cccovun.. II-1-5

ITI-1.2 The Clearinghouse: Naming in a Distributed System .................... II-1-5
III-1.2.1 ANode’s Default DireCtories ... ....covuviiiiiinn e eneennnns II-1-8

ITI-1.3 Directory Operations . ...........ceeuineinnneunneernneenneeeennenn III-1-8
III-1.3.1 RetrieviDg ENHES ... ...covniiin it ieinieinnenanensneanennas III-1-8
II-1.3.2 Listing @ DIr€CIOTY ..ot tvit ettt iin it iieeienenrannennnennns I1-1-9
III-1.3.3 Process Globals and Directories ...........cciveiiiiinnennnnenns -1-9
III-1.3.4 Directory Operations and Transactions .............c.coiuieinennn II-1-10
III-1.3.5 Standalone DIireCtOries . .......ccvvuiiieninneneneenenennennenns II-1-10

II-1.4 SUMMAIY .. ..iitiettt it tte e tee s tneeneraeeenenaesesensonnnenns mI-1-11

Chapter 2. Using Directories

III-2.1 Creating aDireClOry . ...ttt i eneiennnneennenns I1-2-2
III-2.2 Storing an ADina Directory .............. et II-2-3
III-2.3 Retrieving a DireCtory ENtry . .......ciiiininiiiintntenneenennennn I1-2-4
III-2.4 Deleting aDirectory BNty ......o.iiuinio it inteenaenoaeanenns II1-2-4
II-2.5 Listing @ DireClOTY .. oivvtitt ettt teeee e rtenenennenanonns II-2-5
III-2.6 Using a Pattern to Filter a Directory Listing ............. ... oviunn. 11-2-7
III-2.7 Retrieving a Directory from ProcessGlobals ................. ... ..... 1-2-7

Chapter 3. Protecting Stored Objects

F0 0O 0 R ) ¢ Lo o A I11-3-3
III-3.1.1 Why Objects Need Authority-Based Protection .................... II-3-3
I1-3.1.2 IDsIdentify the Caller ...........c.iiuniiiiiniiinennrnnnennnn. 1-3-3

III-3.1.2.1 What'sInanID? ........ ...ttt 11-3-4
I-3.1.3 AProcess’sIDLISt .. .oivitnin it ittt e, I11-34
III-3.1.4 TypeRightsonanID .......... ... ... i, II1-3-5
II1-3.1.5 Authority Lists Specify Who Can Access Objects ................... II-3-5
III-3.1.6 How a Caller’s Access Rights to an Object Are Evaluated ............ I1-3-6

III-3.1.6.1 Evaluating Access DuringaRetrieve ......................... I1-3-6

II1-3.1.6.2 Evaluating Access Rights During Activation ................... I11-3-8

II-3.2 TeChniQUES ... ..vvt et et eie e e e e et iaaee e 11-3-8
III-3.2.1 Getting Information about an Object’s Protection ................... MI-3-9
II-3.2.2 Using Default Protection  .............ciiuiiiiiiiiinennenenne. 111-3-9
III-3.2.3 Creating an Authority List .......... .. ... it iiiiinnnnnnnn. 1-3-9

Xii v Contents



PRELIMINAKY

II1-3.2.4 Changing a Directory’s Default Authority List ..................... MI-3-10
III-3.2.5 Changing an Object’s Owner and Authority List .................... IT1-3-10
0 CC RS IIN 1111114 o 2P HI-3-11

Chapter 4. Using Name Spaces

II-4.1 COnCePIS . oiiiite it ittt ittt ieen i teteseeeaeeeneanenenennnnnnns I11-4-2
I11-4.1.1 A Name SpaceisaListof Directories .............ccvvvuineenen.. I1-4-2
I11-4.1.2 How a Name Space References Directories ..............ccovuuu... I11-4-3

IT-4.2 TeChniQUeS ......ccuviiniininntninieieeeeineneeeneneeneneennenas 111-4-3
IMI-42.1 CreatingaName Space ............ccoiiuiiiiennnnneneeennnnns I11-4-3

I11-4.3 Changing a User’'s Command Name Space ...............covivivnnn... I11-4-4

I11-4.4 Changing the Command Name Space within a Jobor Process ............. I11-4-4

OI-4.5 SuMmMaAry ...ttt iit ittt ineeerieeeenenenaenannannns I114-5

Chapter 5. Creating Symbolic Links

II-5.1 COmCePIS o vt ittt ittt it it e et eetnanaasenenennannenan I11-5-2
III-5.1.1 Suppressing Link Evaluation .................... i, I11-5-2
I11-5.1.2 How Symbolic Links Compare with Aliases ....................... II1-5-3
III-5.1.3 Symbolic Links and Links in General .......... e I1-5-3

II-52 TeChMIQUES ... .vvvirn ittt ettt e eeeeeaanaanennas 11-5-3
II-5.2.1 CreatingaSymbolicLink ............ ...ttt I1-5-3

IMI-5.3 SUMMATY ..ottt it ittt ittt e it ae et eaeneaaennnn II1-5-4

Contents xiii



OINDALLIVILUNAIR L

Part IV. 1/O Services.

Chapter 1. Understanding I/O Access Methods

L T B D1 1o Iv-1-2
IV-1.2 Opened DeviCes . ......cueitnreniitniennenenanreaeeneennnenonens IV-1-2
IV-1.3 Concurrent Accessto Opened Devices ............cciiiiieiernnonnnns Iv-1-3
IV-14 Devicelndependence ............c.ouniiiiiiiiiiiinininenneenenaans IV-14
IV-1.5 How Access Method ImplementationsCanVary ...............c.cunn. IV-1-6
IV-1.6 BiiN™ Operating System I/O Access Methods ................c..ovnn... IV-1-6
IV-1.6.1 ByteStream I/O ....... ...ttt iinenennannnnns Iv-1-7
IV-17 Record IO .ttt et IV-1-7
IV-1.8 Character Display I/O ...ttt i Iv-1-8
IV-1.9 Standard /O Connections ...........c.ccueuiininenniiennennnnnreneeans IV-1-9
IV-1.10 SUMMAIY ..ottt ittt it iieeieieeeenneneeeeennennnnennns IV-1-9
Chapter 2. Using Basic I/0
IV-2.1 Opening and Closing anI/ODevice .............uiitiiniinennnnnnn. Iv-2-2
IV-2.2 Readingand Writing Bytes ..........ccoutiuiiuiiiiiineennnnennnnnnns Iv-2-3
IV-2.3 Handling End-of-File ......... .. .. ittt Iv-2-3
IV-2.4 Using Default /O Connections . .........cciieiuronneeenennannenannn IvV-24
IV-2.5 Positioning WithinaByte Stream ........... ...t iiiininennnnnnn. IvV-2-5
IV-2.6 Reading and Inserting Records Sequentially ........................... IV-2-6
Chapter 3. Managing Stream Files
| AT 30 B 0 5 1+7 o £ P IvV-3-2
IV-3.1.1 WhatIsaSweam File? ........... ... i, Iv-3-2
IV-3.1.2 Using Access Methods with Stream Files ......................... Iv-3-3
IV-3.12.1 Byte Stream I/O ... .. it e i e e Iv-3-3
IV-3.122 Record I/O ..ot e e e Iv-3-3
IV-3.1.3 TemporaryFiles ............ e e e e IvV-34
IV-32 Technmiques .....oouiiniii it it i et e i ineanaaannn Iv-3-5
IV-3.2.1 CreatingaStream File .............. .. .. .. it iiiiiinninn.. Iv-3-5
IV-3.2.2 CopyingaStream File ........... . ... ... i, IV-3-6
IV-3.23 EmptyingaStream File ............. .. ... i, IV-3-6
IV-3.24 DeletingaStream File ............. ..t iiiiiiiiiiiniiinnennnn. IV-3-6
IV-3.2.5 Creating Temporary Files ........... .. .o, IvV-3-7
IV-33 Summary ... i e e IV-3-8
Xiv Contents



PRELIMINARY

Chapter 4. Using Windows

IV-4.1 CONCEPIS it vet ittt titete s it ieee et eieseneeneterenaananenans Iv-4-2
IV-4.1.1 Terminals and Windows ............c.ciiiriiiiinininnnnennnnn. IV4-3
IV-4.1.2 Accessing Windows . ........c.ciiriiniiininenennnnenennnnnnans IvV-4-4
IV-4.1.3 Window Coordinates ............civiniunineneenenenenneannnns Iv-4-4
IV-4.14 Terminal ARributes .............c.iiuiiieenenenrnerneneennnns IvV-4-5
IV-415 ThelnputModel ........... ittt IV-4-6
IV-41.6 The Qutput Model .........coiiiiiiinieinnineennrenenneennnns 1v-4-7
IV-4.1.7 Overlapped Windows . ........coiuiiiiiiinnrinneneneennnennnns Iv-4-7
IV-4.1.8 Some Key POINtS ... ...ttt ittt iieeiiieiaenanenns Iv-4-9
IV-4.1.9 ResizingaWindow ........ ..ottt iiniinnennnn. IV-4-10
IV-4.1.10 Basic Window Operations ..............ccveeueunrunennenanenns IV-4-12
IV-4.1.11 Window Style . ...ttt i ittt ce it i e IV4-12
IV-4.1.12 Menus and Windows ...........coiiiuiiuininrnnnunennnennnans IV4-13

IV-4.1.12.1 Menu Hierarchy ...........ciiiiiiiiiiiiniiiiniinennnnn IV-4-13
IV-4.1.12.2 Building and InstallingaMenu ................cccvvvuunnn.. IV4-14
IV-4.1.13 USEr AGENLS . ...ttt ittt tieieentaeenreneeanennsens IV-4-15
IV-4.1.14 Character Terminal Manager .............c.coveevueenenennnanss IV4-15
IV-4.1.15 Character Terminal Manager Support for Input Operations .......... IV4-15
IV-4.1.16 Character Terminal Manager Support for Output Operations ......... IV-4-16

IV-4.1.17 Character Terminal Manager Support for Access Method Operations .. IV-4-16
IV-4.1.17.1 Character Terminal Manager Support for Byte_Stream AM ... IV-4-16

IV-4.1.17.2 Character Terminal Manager Support for Record AM ......... IV4-17
IV-4.1.17.3 Character Terminal Manager Support for
Character_Display AM .......c.ieuiiniiniuniunrnenenenaeninnenns IV4-18
IV-42 Techniques .......coiiiiiiniin ittt iieneeereensnnnneenns IV-4-18
IV-4.2.1 Obtaining an AD for the Underlying Terminal ..................... IV4-18
IV-422 Creating aWindow ...........c..iiiiiiniinennnennnnnnnnn IV-4-19
IV-4.2.3 Setting a Window’s Attributes ..............ccviiiiiernineen.n. 1v-4-19
IV-42.4 Settinga Window’s Style ...ttt iniinnenennn, 1IvV4-19
IV-4.3 SUMMATY ...ttt ittt it ittt ittt et eaanaenns IV4-20

Chapter 5. Using Character Display I/0

IV-5.1 COmCePIS v ottt ettt it ittt ettt et et i e e IV-5-2
IV-5.1.1 Character Display Devices .........coiiiiriiniininenrnennenenns Iv-5-2
IV-5.12 TheFrame Buffer ......... ... ..o ittt IvV-5-2
IV-5.1.3 The Output Model . ... .. .. i i e e inen Iv-54
IV-5.14 TheImput Model ....... .. it it ieaann IvV-5-4
IV-5.1.5 Window Afributes ...........ocuuiiiinnirintnernnnenenennenn, IV-5-6
IV-5.1.6 Operations ... .......ouuieriniunetineeneenneunennenenennenns IV-5-6

IV-5.2 TeChniqUes .. .ovi ittt ittt it i ittt it ee e e aeeeennaneanns IVv-5-8
IV-52.1 Opening a Window ......... ...ttt iiiiiiannn.n IV-5-8
IV-5.2.2 Clearingthe Frame Buffer ............. ... .. . . i, IV-59
IV-5.2.3 Writingtothe Frame Buffer ......... ... .. .. .. o it IV-5-9
IV-5.2.4 Moving the Cursor to an Absolute Position ........................ IV-59

Contents XV



FKELLVIINAKY

IV-5.2.5 Moving the Cursor Relative to its Current Position .................. IV-5-10
IV-5.2.6 ReadingInput Events ............c.ciiuiiiiiiiniininennnnnnnnn. IV-5-10
IV-5.2.7 Inserting Characters ...........ieieeeuernennenenennenennnnnnns IV-5-11
IV-5.2.8 Deleting CharaClers ......cvvviitnternnnneneneeenenenrnenannns IvV-5-11
IV-5.2.9 Identifying the Underlying Device ..............cciiiiiiiiinn... IV-5-11
IV-5.3 SUMMAIY ...ttt ittt ittt eeetaeae e eneennaannnens IV-5-11

Chapter 6. Printing

IV-6.1 COmCeP S i viiiiti ettt teeteeineneananennenasesnenananenanns 1V-6-2
IV-6.1.1 Spool QUEUE .........cciiiiiiiiiiineiernenereenaneenannanns IV-6-3
IV-6.12 PrintDevice ..........iiiiniiiiiiin ittt IV-6-3
IV-6.1.3 Spooled Printing ..........c.coiiniiiiiniennenennenneneneennn IV-6-3
IV-6.14 Direct Printing ..........cciiiuiitiiiiiiinineeeeineennannnn IV-6-3
IV-6.1.5 Spool File ........ ...ttt ittt IV-6-3
IV-6.1.6 Printer LiSts ........coiiiiniiiiiiiiiiint i, IV-6-3
IV-6.1.7 Print Area and Print Position .............. ..ot IV-6-4
IV-6.1.8 Requesting Form Type and SheetSize ................ ... ... ... IV-64
IV-6.19 PrintinfO ....... ...ttt ittt iiii i IV-6-5
IV-6.1.10 Print Properties ............ciuiiiiiiieinneieenernnennnenannn IV-6-5
IV-6.1.11 Implementation of Spool Device Attributes  ...................... IV-6-5
IV-6.1.12 Delayed Printing . ..........oiriiuniunennnennonnenennennennnn IV-6-7
IV-6.1.13 Banner Page and Print Termination Message ..................... Iv-6-7
IV-6.1.14 Default PrOperties .. ......cuuuurineennenerenneneennennnennnnn IV-6-7

IV-6.2 TeChmiqQues .......ciiniiiiiiin et ineeneneteeeenanaeanenanns IV-6-8
IV-6.2.1 PrintingtoaSpool File ...........ciiiuiiiiiiinniiinnennennns IV-6-8
IV-6.2.2 Printing DirectlytoaPrinter ........... ...ttt iieininenn. IV-6-9
IV-6.2.3 Controlling Print Properties .............cootiiiiiiunineenennennn IV-6-10
IV-6.2.4 Administering Spool Devices ...........ccoiiiiiiiiiiiennennn. IV-6-11
IV-6.2.5 AddingaNew Printer ..........c.coiuiiiininiinetennenennnnnnnnn 1V-6-12

IV-6.3 SUMMaAIY . ...ttt ittt it ittt eneaneeenaannan IV-6-12

Chapter 7. Understanding Structured Files

IV-7.1 Stream Files and Structured Files .............c. it innennnnnn. Iv-7-2
IV-7.11 Dalad ArCaS . .vv ittt ittt ittt ittt ie et ettt ia e naans IV-7-3
F Y I -+ ) (' Lt IV-7-3
IV-7.3 BUCKEIS .ottt ittt ittt et ettt et et ettt e IV-74
IV-74 INAEXES ..ttt i i ittt e ettt et et et IV-74
IV-7.5 Structured File Organizations ...............oiieniueninrnenenenennn. Iv-74
IV-75.1 Sequential Files ........... ..ottt IV-7-5
IV-7.5.2 Relative FIles .. ...ttt ittt ittt it it e i eenenn IvV-7-5
IV-753 Unordered Files ...ttt ittt i iiei e IV-7-6
IV-754 Clustered Files ...........ciiiiininieneenenn.. e IvV-7-7
IV-7.5.5 Hashed Files ... ...ttt ittt ittt it inieneneannnnn I1V-7-8
IV-7.5.6 File DESCIIPIOIS .. ...t \tttit ittt ittt eie e IV-7-8
IV-7.6 Using Byte Stream and Record /O withFiles ......................... IvV-7-9
IV-7.7 Structured Files and Transactions .............iiiiiiernnrennnnnnenns IV-7-10

Xvi Contents



PRELIMINARY

IV-7.8 SUMMAIY .. ..\ooiinetttt ettt e e it ciieaaaneeenn e IV-7-10

Chapter 8. Managing Files and Indexes

IV-8.1 COnCePtS . .iitiiiiit ittt it e teneteannenaaensneeosasannnenns IV-8-2
IV-8.1.1 Index KeyS . ..ottt ittt ineneernennrenasnannenns IV-8-2
IV-8.1.2 INdeX SIIUCIUIES ... .uvtnrenrenenerenenennnneenensonennneenns IV-8-3

IV-8.1.2.1 B-Tree Alternate Index .......... ..o it iiiiriinnnnennn,s IV-8-3
IV-8.1.2.2 B-Tree OrganizationIndex ..............ccciiiiiieennnn.n. 1v-8-4
IV-8.1.2.3 Hashed OrganizationIndex ...............c.cuviieninnnnn.. IV-8-5
IV-8.1.3 ChoosingIndexes ..........c.cuiiriiiiininneneenennnnnnnnnnnnn IV-8-5
IV-8.1.4 Record DDefs . ....cvviiiiiniit ittt ettt ieenennenannnnnn IV-8-6
IV-8.15 IndexKey DDefs ..........ciiiiiiiiniiiiiiii i, Iv-8-7
IV-8.1.6 NULLVaAlUES ......iitiiiiiiitnienetnretnneneenannnenennns IvV-8-9

IV-8.2 TeChMQUeS . ...cvvviiiiitntiie ittt tteiieernenenenasanaanans IV-8-10
IV-8.2.1 DefiningRecord DDefs ...........coiiiiiiiiiiiiinenenennnnnn. IV-8-10
IV-8.2.2 Defining IndexKeyDDefs ..........cciviiiitiiinniinnnennnn. IV-8-12
IV-82.3 Creating Files . ......ititiiininiit ittt i ineieensineaannns Iv-8-12
IV-8.2.4 Building OrganizationIndexes ...............ccciiiieninnnnnnnn. Iv-8-14
IV-8.2.5 Building Alternate Indexes ...........ccoviiiiiiiiiiniienn.nn. Iv-8-15

IV-8.3 Summary ... ..o e e e e IV-8-16

Chapter 9. Using Record I/O with Structured Files

IV-0.1 COMCe IS . vviiitt ittt iietieeeeeeeaeenanaeneneaasnsaaenennn IV-9-2
IV-9.1.1 CurrentRecord Pointer ............c.ciiiiiiininernenennnnnnnn. Iv-9-2
IV-9.1.2 ACCESSMOAES ... ooviiiiin ittt it iieeiiie e eieeneanenns IV-9-3

IV-9.1.2.1 Physical-Sequential ACCESS .........ciieririienennnnanannns IV-9-3
IV-9.1.2.2 Physical-Random ACCESS . ........c.ovverumnnemnnennnnennnnn IvV-94
IV-9.1.2.3 Indexed-Sequential ACCESS ... ...veeverrneeneeneenneneeennns IV-9-5
IV-9.1.2.4 Indexed-Random ACCESS .. .....vvvinernnennennennennnnnnns IvV-9-7
IV-9.1.3 Record I/Oand Structured Files .............covviiniinennnnnnn. IV-9-8
IV-9.1.3.1 Sequential Files ...........c.oouiiiiiiiiniii i iininennnn. IV-9-8
IV-9.1.32 Relative Files ....... ..ottt ittt IV-9-8
IV-9.13.3 Hashed Files ...........coiiiuiiiiiiii i, IV-9-9
IV-9.14 Endof File ......ciiiiiiiiiiii ittt eie i IvV-9-9
IV-9.1.4.1 End of File forIndexed Access ............ovverineennenann. IvV-9-9
IV-9.1.5 Record /O and Transactions .............c.oeuvivennnennnnennnns IV-9-11
IV-9.1.6 Filesand Disk Flushes ............. ... ...t inninnannann.. IvV-9-11
IV-9.1.7 Record [/O Operation Status  ............coveiriinnenninnnnnnnn. IvV-9-11

IV-9.2 TeChIMQUES ... vveeie ittt it ieiee e eieeieeineneeetesonnanennns IV-9-12
IV-9.2.1 Opening and Closing Structured Files ............................ IvV-9-12
IV-922 SettingOpenMode ...ttt IV-9-13
IV-9.2.3 Inserting ReCOrds . .......ciuniiiiiiiiiiiiii it IV-9-13
IV-9.24 Accessing FieldsinRecord Buffers ......... ... ... ... .. ... ... IV-9-14
IV-9.2.5 Deleting Records ..........cccuiiiiiiiiiiiiininiininnennnnns IV-9-14
IV-9.2.6 Reading and UpdatingRecords ............. ..o, IV-9-15
IV-9.2.7 Using Physical-Random ACCESS ........c.c.viuiininininneninnnn, IV-9-17

Contents xvii



FRELAVUINAKY

IV-9.2.8 Using Physical-Sequential ACCESS .........ccoiiieniinnrnrnennan. IV-9-18
IV-9.2.9 Using Indexed-Random ACCESS ..........ovuiiinnnennenennnennns IV-9-19
IV-9.2.10 Using Indexed-Sequential AcCess ...........ciieiiiininrnnnnnn. IV-9-20
IV-9.2.11 Reading Key Values Sequentially ..............cciiviiinninian. 1v-9-22
IV-9.2.12 Reading and Updating RecordsbyKey ...............cviiia, 1v-9-23
IV-0.3 SUMMaAIY ... .iivtit it ie it initeeeeenrarneaecsaroanenannnonens 1v-9-23

Chapter 10. Locking Files and Records

IV-10.1 COMCEPLS . ovitt it ittt it et ettt en e ennenneens IV-10-2
IV-10.1.1 Concurrency Control and Recovery ............coveiniiennnen.. Iv-10-3
IV-10.1.2 Transaction Locking ..........cciuiiiiiniininiinenenenneannns IV-104

IV-10.1.2.1 LockMOdes ........iiiiiiiiiiiiiieniernennenenaeanans IV-10-5

IV-10.1.2.2 Lock Mode Compatibility ...............cciiiiiniiiennn.. IV-10-6
IV-10.1.3 AcquiringLOocks ........ciiiiiiiii ittt it IV-10-6
IV-10.1.4 Lock Escalation ............cocuiuiiniiuninienennenenennennnns IvV-10-7
IV-10.1.5 Releasing LoCKS .........oiuriuiiiiiiiiinieieinenennnnanns IV-10-7
IV-10.1.6 Consistency Levels ...t ieinineannoeanns IvV-10-7
IV-10.1.7 Reading KeyRange Values ............ccoiiiiiiiiiininnnennnn Iv-10-8
IV-10.1.8 Locking and Nested Subtransactions .............cceeeuvenenonns IV-10-8
IV-10.1.9 Lock COMENtiON . ....ovvvttiorunenneeneeenoneonnrenoeenneons IV-10-10
IV-10.1.10 LoggIng ...ttt ettt eeineeans IV-10-11
IV-10.1.11 Transactions and Opened Device Objects ............cvveneennn. IV-10-11
IV-10.1.12 File-Level Locks Associated with Opened Devices ............... IV-10-12
IV-10.1.13 File Administration Operations and Locking ..................... IV-10-12

IV-10.2 TeChniQUeS . ....vvtniinrn ittt iieie e cneenoncenononnsanons Iv-10-12
IV-10.2.1 UsingLevel 3COoNSIiSteNCy .. ....oveitiiiinninnnnennennnennnn IV-10-12

IV-10.3 SUMMATY . ovtte ittt it ieie et neeneeaoseneenneenonneons IV-10-14

Chapter 11. Processing Collections of Records

xviii

L O ) T o IV-11-3
IV-11.1.1 ReadingRecords ...........c.oiiiniiiniiiniininninnnnnennnnn IV-11-3
IV-11.1.1.1 Record Sreams ...........couuiuirnenennennnnenennnnnnans IV-114
IV-11.1.1.2 DDefs and Record Processing Support ...............ccvu.n.. IV-11-5
IV-11.1.2 UpdatingRecords ............coiuniiiniiiiiiiiiiiiniinnennnn. IV-11-5
IV-11.1.3 Database Operations ...........couuiiuniiieiinenneenennnennnn IV-11-5
IV-11.14 SeleCtion . .....ciniinini ittt ittt ieeeeaennannn IV-11-6
IV-11.14.1 Customizinga Selection ........... ..o, IvV-11-7
IV-11.1.4.2 Using the Associate_index_selection_function Call ............ IV-11-7
IV-11.1.4.3 Using the Associate_read_procedure Call .................... IV-11-7
IV-11.1.5 ProJeCtOn ... ...cuiirun ittt iiieiineneenrennennens IvV-11-7
IV-11.1.5.1 Using the Associate primary data_projection Call .. IV-11-8
IV-11.1.5.2 Using the Associate_index _projectionCall .......... IvV-11-9
IV-11.1.6 Difference, Intersection,and Union .......... ... ... ... .oiiua.. Iv-11-9
IV-11.1.7 Interaction Between Record Processing Calls ..................... IV-119
IV-1101.8 JOINS .oeii et it it et ittt i et Iv-11-10
IV-11.19 Sortingand Merging ............oiriiiiiiiiiiiiiiiinnnenn. IV-11-11
Contents



Contents

PRELIMINAKRY

IV-11.1.9.1 Sorting RecOrds .....c.ivriiiiii ittt it et tiieinnennnnns Iv-11-12
IV-11.19.2 Sort Ordering ........c.ooviiiieriineennneennenennennnnn IV-11-13
IV-11.1.9.3 Stable SOIMS .. ..vvteirieiieiieiinnnnrerenanennns IvV-11-13
IV-11.2 Techniques .....oviiiin ittt ittt ittt iie e ninaneenns IvV-11-13
IV-11.2.1 SelectingaSetofRecords ............ccoiiiiiiiiiinennnennn. IV-11-14
IV-11.2.2 Using ProjectiononanIndex ................. ... ... .. ........ IV-11-15
IV-11.2.3 Joining Records from Two Devices ................ccciiuienn... IV-11-16
IV-11.24 SortingRecordsinaFile ..............ciiiiiiiinineinnennnnn. IV-11-16
IV-11.2.5 Sorting and Merging Records from TwoFiles .................... Iv-11-17
IV-113 SUMmMATY ..ottt it ittt ettt i et e IV-11-18
xix



PKELIVINARY

Part V. Human Interface Services.

Chapter 1. Understanding Human Interface Services

0 0 T ) 11 o P V-1-3
V-1.1.1 Why Use Human Interface Services? ...........ccciiiiiiiiiinnnn. V-14
V-1012 UHIHES  .ove ittt iie it iee et e ieeeiaeennneeennnennns V-14
V-1.1.3 Command SEIrviCe ........coiuiiuiuiiiininenenninenenenrnseencns V-1-6
V-1.1.3.1 Command CONCEPLS .. .uv v innrennureneennssoeesnneananns V-1-7
V-1.1.32 Command SUMmMAry .........c.ccoieunerenrennreeerenneenanns V-1-8
V-1.1.4 Environment SeIVICe .. ......c.uiuvrienenronenenerneensanensnns V-1-8
V-1.1.4.1 Environment Variable Concepts ............covviieninnennnnn V-19
V-1.1.4.2 Environment Variable Summary .............ccvveeiiennenn.. V-1-11
V-1.15 Menu Service . ..ovii ittt ittt it et ea e V-1-11
V-1.1.5.1 Menu COonCePLS .. ovvvnetneettneteeneneensneeneaeeaannsnnns V-1-12
V-1.1.52 Menu SUMMATIY . ....iuntnntnenenneneneenraceneononeonenns V-1-12
V-1.1.6 FOrm ServiCe . ......iiiiiiiiiiiiiiii it iininiinaennnnsn V-1-12
V-1.1.6.1 FOImM SUMMAIY . .....cuitiitntneennneeerorneenoneensocenns V-1-14
V-1.1.7 REPOIt SEIVICE .. .. iiiiiitin it ittt ittt ininneneennn V-1-15
V-1.1.7.1 RepOrt CONCEPLS . ..o vt cvenivenrnenraeneneneneonnonenans V-1-15
V-1.1.7.2 REPOIt SUMMAIY ... .ivutentnenrueenoneensneeneneonsoaeans V-1-17

VA BN V111 T o 2 V-1-17

Chapter 2. Creating a BiiN™ Application Program

7 B @) 1) o) i PN V-2+4
V-2.1.1 Designing a BiiN™Program .............c.ccuoeeuinrenennanennnn. V-2-4
V-2.1.2 Defining the Application’s Data Structure  ...............cooiuien.. V-2-5
V-2.1.3 Example Program OVEIVIEW ..........ccuiuiiniiunennunnnennennnns V-2-5

V-2.2 TeChmiqUes .....vvniiiieiiitie ittt eieeeeeeneenenaenaenennenanns V-2-10
V-2.2.1 Creating and Processing the Invocation Command ................... V-2-10
V-2.2.2 Using WindowsinaProgram ................cieiuiininennnnnenn. V-2-11
V-2.2.3 ProcessingaMenu Selection ........... ..ottt V-2-12
V224 Displaying aMessage ........cviniiiiieniienennninenennneans V-2-15
V-2.25 Getting DatafromaForm ............. ... oot V-2-17
V-2.2.6 Displaying DataUsingaForm ........... ..o, V-2-19
V-227 UpdatingaFile ......... ..t V-2-20
V-2.2.8 PrintingaReportfromaFile .............couiiiiiiiiiiiiinnnnnn V-2-21
V-2.2.9 PrintingaReportfromaSortedFile ............. ... .. it V-2-24

V-2.3 SUMMATY ..ottt ittt ettt ettt i it c it s V-2-28

Chapter 3. Building New Commands

B T8 B @) [¢1-) o) i< PO PO V-3-2
V-3.1.1 Developing Command-Driven Programs .......................... V-34

XX Contents



PRELIMINARY

V-3.1.2 Typesof Commands ............ciitiinininnenernennnnannnnann V-3-4
V-3.1.2.1 Built-inCommands .............ciiiiiiiniiiiiiiniinennens V-3-5
V-3.122 CLEXCOommAands .......ccotueiunenenneneenenenanneennans V-3-6
V-3.1.2.3 Program-Defined Commands ...............coiiiiiiienrennn. V-3-6

V-3.1.3 Reviewof Command Syntax ...........ccovuivuienenennennonanns V-3-7
V-3.1.3.1 Command Name ..........ccotiiiiiininienrnrennnennsenenns V-3-7
V-3.1.3.2 Argument Typesand Values ...............coviiiiunnennn... V-3-8
V-3.1.3.3 Control Options . .......ccvveunrrirnrnnenennnnenennsnnennnn V-39

V-3.1.4 Review of Command Definitions ...........ccovivuieininennnnnnn. V-3-10

V-3.15 Typesof CommandInput ............ ... iiiiiiiiunernnnennnn. V-3-11

V-3.1.6 Altemnativesto CommandInput ................ ..., V-3-12

V-3.1.7 Entering Commandsto Programs ...............cooiiiniiiin.nn. V-3-12

V-3.2 TeChnmiques ......oiuniriinii ittt eenrietecnanenensnnnns V-3-13

V-3.2.1 Defining an Invocation Command .................coiuiiuennenn. V-3-13

V-3.2.2 Defining a Runtime Command Set ..............cccvviireenennn.. V-3-14

V-3.2.3 Reading the InvocationCommand ....................cieiiun.... V-3-14

V-3.2.4 Processing Command ATgUMENtS . .........cuoviueueenenannennannns V-3-14

V-3.2.5 Processing Runtime Commands ............ccoiiiinienennenren.. V-3-16

V-3.2.6 Reading a Command InputLineas Text .................. ..., V-3-16

V-3.2.7 Executing Commands fromaProgram .....................cco..... V-3-16

V-3 SUMMATY ..ttt ittt ittt ie ettt e e rerneaeannnanaenennnns V-3-17

Chapter 4. Programming with Command Language Variables

V4.1 COMCEPIS vt titie et ne et inee e eneeaneasansassennenanneenenn V-4-3
V-4.1.1 System Variables ...........cuuitiiiieeeeneenenennnnnnaennnnn V44
V-4.2 TeChniqUes . ......iuniunininiitinete e ieneeaaeaenenannn V-4-5
V-4.2.1 Read and Set an Environment Variable’sValue ..................... V-4-5
V-4.2.2 Display all Environment Variable Names .......................... V-4-6
V-4.2.3 Get and Set Environment Variable Valuesin ASCII ................. V-4-7
V-4.2.4 Create and Remove an Environment Variable ...................... V-4-8
V4.3 SUMMATY .ottt et ittt it teiae e aeeieeeeaannennenenns V-4-9

Chapter 5. Programming with Menus

T T B O ) 107 o £ PPN V-5-3
V-5.1.1 Why Use Menus? ...ttt ie it iniienennennann V-5-3
V-5.2 TeChniQUes .. .....c.uiuiiiiin ittt ineeninenanneenennn V-5-3
V-5.2.1 Define aMenu Group .......ccviiniiiin ettt eiennaneanenn V-5-4
V-5.2.2 Installa Menu Groupina Window ..............coiiininiiniin... V-5-5
V-5.2.3 Enable anInstalled Menu Group ............couuieienrennruennenenn. V-5-6
V-5.24 GetaMenu Selection . .......uuiriiii ittt V-5-6
V-5.2.5 Display a Checkmark foraMenultem ............................ V-5-7
V-5.2.6 Change a Window’s Enabled MenuGroup ...........c.oiiiuvunn... V-5-7
V-5.2.7 Remove an Installed Menu Group from a Window .................. V-5-7
V-5.3 SUMMATY ..ottt et et et e e e V-5-8

Contents xxi



PKELIVIINAKYX

Chapter 6. Understanding Forms

V-6.1 Creating a Form Description ...........cciiiiiiiiiiiiiiinieerenennns V-6-4
V-6.2 ReCOTA I/ ...ttt i ittt e et e eaeareeneananas V-6-4
V-6.3 FOMEIEMENtS ... ...itiinieniiiitiiiireenreeenrnnenearonsoocnsas V-6-4
V6.4 TOXIS ittt ettt eeeeeneneenereeeoeeaeaeeesasaeuasossooansns V-6-5
V-6.5 Screen Fields ...ttt it it i i i i e V-6-5

V-6.5.1 Character Fields .........coiiitiinininnniieriraeeraeannanens V-6-5

V-6.52 Option Fields .........coiituriiinnnn it iniinnanennnen. V-6-7
V-6.6 ENUMETation . .......utiiunieintennetneenereeeeneenneneenanonnnens V-6-7

V-6.6.1 Null EnumerationElement .............c.ciiiiiiiiiiiiinnnnnn. V-6-9
V-6.7 Protecting Fields .........iiuuiiiiiinntnreneeneneenroneanenennanas V-6-9
V-6.8 DataFields .......cciuniiimiiiiiii ittt ittt ittt ietainenaanns V-6-9
V-60.9 SuUDfOMMS .. .ottt ittt i i e it et it V-6-9
Vo6.10 GIOUPS .ot iitt ittt ineananenneononeensnsessnssssecassoasasas V-6-9
T 0 8 O T V-6-10
V-6.12 Expansion and Contraction of Forms .........o i, V-6-12
V-6.13 Subroutines and the Subroutine Interface ............... ... ... .. ..., V-6-13
V-6.14 Processing ROULINES ........coiuiiniiinniiiiiiiiiiiiiiiiiennnen. V-6-14
V-6.15 Key CatChers .. ..oiuiiii ittt iie it ittenteneaonenaonanasas V-6-15
V-6.16 SymbolC KeyS .....iuiiiiintiiiiiiet it in it ieeneanannnennas V-6-16
Vo6.17 KeY LiStS . oiittittte ettt iteeneeneseneeareneeaenaenensens V-6-19
V-6.18 Form Name Environments .............ccouniniiineenenennunenennns V-6-19
V-6.19 Execution Paths .. ... ... ..o ittt innnan V-6-20

V-6.19.1 Explicit Modification of the PathRegisters ....................... V-6-21

V-6.19.2 Implicit Modification of the Path Registers ....................... V-6-21
V-6.20 Messages and Help Information ............ .. .. it ineennnn. V-6-21
V-6.21 Window Management . ..........c.oervneneeenneeenenoneoeanneaenns V-6-22
V-6.22 SUMMAIY ..ttt ittt et teettaeeaeeeeeneeneeeeneaenaenns V-6-22

Chapter 7. Programming with Forms

V-7.1 Creating Executable FOrms ...........c.ciiitiriienrnenenenennnannn V-7-2
V-7.2 Command Language Vanables ...................................... V-7-3
V-7.3 Form UtIHES ... .vetietnt ittt it eae e V-7-5
V-7.4 Editing Translation Tables ...........ouiiiiirniiiinnnenenenenennn V-7-6
V-7.5 TeChmiqUeS ..ooi it iitt ittt it ittt ittt e e e V-7-6
V-7.5.1 Opening and ClosingForms .............cco i, V-7-6
V-752 Executing Forms ........ ... oot V-7-7
V-7.5.3 Setting and Resetting the Initial StateofaForm ..................... V-7-8
V-7.5.4 Inserting, Storing, and Deleting the Contents of Screen and Data Fields .. V-7-8
V-7.5.5 Controlling the ExecutionPath ............. ... .. ... ... .. . ... V-7-9
V-7.5.6 Processing Routinesand Key Catchers ............. ... cooiiinat. V-7-10
V-7.5.7 Defining a ProcessingRoutine ..............c.ciiiiiinniniunnnnn V-7-10
V-7.5.8 DefiningaKey Catcher ............cciiiuiiiiiiiiiiiiiinenen.. V-7-11
V-7.5.9 Interrupting EXeCution .............ciininiiniiiiiiiiiiiinnennn V-7-11
V-7.5.10 Adding and Removing GroupInstances ............... .. ..ot V-7-11

Xxii Contents



PRELIMINARY

V-7.5.11 Modifying the AppearanceofaForm .................... ..., V-7-12
V-7.5.12 Inquiring About an Element, Form Sheet, and Form Status ........... V-7-13
V-7.5.13 Inquiring About the Last Edited Sheet Element and Input Event ....... V-7-14
V-7.6 SUMMATY ...ttt ittt it iteeeeneneneeenoneenasennsnennneennss V-7-14

Chapter 8. Generating Reports

V-8.1 COMCEDPIS . .ittitiitt ittt iiieiiitiinaetn e easenneannaenss V-8-2
V-8.1.1 Report CharaCteristiCs .. ......vveirineuenenennnenenenenennnennn V-§8-2
V-8.1.2 Control GIOUPS ..ottt ttet et ieeaeneeaneeanenerneenneennnns V-8-5
V-8.1.3 Representation of Report Descriptions . ..........cccevveiinenennn.. V-8-6
V-8.1.4 Creating and Modifying a Report Description ...................... V-8-7
V-8.1.5 Report CL Variables ...........cccuciieiininnenenennennneenannn. V-8-9
V-8.1.6 Printing a Report From the CommandLine ........................ V-8-11

V-8.2 Techniques ......covniniiininin e e tannnaeneeeneneneneeennnenns V-8-11
V-8.2.1 Printing a Report From YourProgram ................... ..., V-8-11
V-8.2.2 Setting Global ASSIgNMENLS . ......cvviitnuneneneenenenanneannns V-8-13

V-8.3 SUMMATY ..ottt i it e ettt e e i e e V-8-14

Contents xiii



PRELIMINAKY

Part VI. Program Services.

Chapter 1. Understanding Program Execution

VI-1.1 Definition of aProgram ............coiitiineinneeenenanracenensns VI-1-2
VI-1.2 Program StUCIUIE .. ... tuitntui it eneneenereroeneneeonaneannns VI-1-2
VI-1.2.1 The Program ObJect ..........couiiiiriiiiiiininrieenennnenens VI-1-3
VI-1.22 The Domain Object . .......c.ciiiiniinienieneinneeneennnnnncnns VI-14
VI-1.2.3 The Static Data Object ..........coiiiiiiiiiiiiiiiiiiinieennn. VI-1-5
VI-1.24 The Instruction Object ...........couiiuiiiiiiiiininneninnnnnn VI-1-6
VI-1.25 The Stack Object ....... ..ottt iiiininnans VI-1-6
VI-1.2.6 ThePublicDataObject ...........ciiiiniiiiniiiiiniiinnenninnn VI-1-6
VI-1.2.7 The Debug Object ... ..ottt iiiieiiiieiiiinnnaenn VI-1-7
VI-1.2.8 The HandlerObject ........ ...ttt iiiiiiiiiiinnnnnnnans VI-1-8
VI-1.3 Invoking aProgram ............ciiiiiiiiiiniiiiiiiiiiiiiiiiiiaiaa VI-1-8
VI-1.4 Program EXECUtiON . .......uuiiuniiiiniiiiiiiiieiiiinineennnnns VI-1-9
VI-1.4.1 Sessions, Jobs, and Processes .........ccvvtteitrnernnnrnnenennns VI-1-9
VI-1.4.2 Process GIObals  ......oiiiiini ittt ittt VI-1-10
VI-1.5 Interprocess Communication . ............ccuoiiernenrrneneneenaensn, VI-1-12
VI-1 Sl EVenIS .ottt ittt ittt ittt eieneeenneneannnens VI-1-12
T2 B T A P VI-1-14
VI-1.53 Pipesvs. Events ........o ittt e e e VI-1-15
VI-1.6 Process CONtrol .. .....iunitiiiiie ittt it iie e e inee s VI-1-15
VI-1.6.1 Process States .. ..vvvvtnineinetnrnt e enneneaeneeneensans VI-1-15
VI-1.6.2 Local Event Cluster . .........oiiininiininineinneenenennnneanns VI-1-16
VI-17 SemaphOres . .ovi it ittt e it i e e et VI-1-17
VI-1.8 Use of Multiple Processes .........coouiiiiiiiiiininiiinieneenennens VI-1-19
VI-L0 SUMMAIY ..ottt ittt ittt ittt teceesareraeneaeaeasaenoannss VI-1-21
Chapter 2. Building Concurrent Programs

VI-2.1 GettingaProcessGlobalsEntry ............. . oo, VI-24
VI-2.2 Settinga Process GlobalsEntry ...........ciiiiiiieninenineneenna. VI-2-4
VI-2.3 Creating a Process . ......cvoiiniiiininiitintieniaenenenrnenenenes VI-2-5
VI-2.4 Getting Process Information ................oiiiiiiiiiiiiiiienian. VI-2-7
VI-2.5 Suspending and Resuming aProcess ............c.coeiiiiniiniiinennnns VI-2-7
VI-2.6 Terminating aProcess ...........coiuiuiiiiiiiiiiniiniinnnnnnenn. VI-2-8
VI-2.7 SignalinganEvent ........ ...t i e VI-2-9
VI-2.8 Establishingan EventHandler .............. .. .. ... .. i, VI-2-10
VI-2.9 Waiting for Events .. ...ttt ittt VI-2-11
VI-2.10 Connecting ProcesseswithaPipe ........... ..o, VI-2-12
VI-2.11 Locking Shared Data Structures  ..................... e VI-2-13
Xxiv Contents



PRELIMINARY

Chapter 3. Scheduling

VI-3.1 Whatthe SchedulerIs ............ccoiiuiiiiiiiiniininnenenennnnnnns VI-3-2
VI-3.2 The Scheduler’s Objectives ..........c.iiiiiniinininrieenenrannnnnn VI-3-2
VI-3.3 The Scheduler’s Task .........c.cciiiiiiiininiinin i iineneneennnnnn VI-3-2
VI-3.4 CPUScheduling ............iiiiiiiiiiiiii ittt i i VI-3-3
VI-3.4.1 CPU SchedulingModel ............................ e VI-3-3
VI-34.1.1 HighLevel Scheduling ........... ...t VI-3-3
VI-3.4.1.2 LowLevel Scheduling .............cciiiiiiiiiiiinenan.. VI-3-4
VI-3.4.1.3 Processor Preemption ...........ccoitniniennnenennnennnnns VI-3-4
VI-3.4.1.4 Classes and Priorities .............ccittitiininrnnnnennennn VI-3-4
VI-3.4.1.5 Processor Claim and Job Time Limit ......................... VI-3-5
VI-3.4.1.6 Medium Level Scheduling ...............cciiiiiieinenn... VI-3-5
VI-3.4.2 Scheduling Service Objects (SSOS) ......ovviiiiiiiininennennnn. VI-3-6
VI-3.4.2.1 Service Classes .. ....viiiiiniiiiineeiiereeesnenennaennnnn VI-3-6
VI-3.4.22 SSOPHIONtY ..ottt ittt ittt eeeenenannannennn VI-3-6
VI-3.42.3 TIMEe SHCE ...ttt ittt ittt it e e it enenenenns VI-3-7
VI-3.42.4 Memory TYPe . ..ottt ittt ittt i VI-3-7
VI-34.2.5 Initial Age ...oiiitiiiiiit ittt eteien i eeeanaananan VI-3-7
VI-34.2.6 AgeFactor ...ttt ittt VI-3-7
VI-3.4.3 Resource-Driven Priorities .............coiiiiiiiin e, VI-3-7
VI-3.43.1 Priorities Used . ........iitiiiiiii ittt iiinie e, VI-3-8
VI-3.432 AnExample .......oiiitiii it i i e e e e VI-3-8
VI-3.5 Memory Scheduling ........... . i i i i e VI-3-9
VI-3.6 I/JOScheduling ......ooitini it ettt ie e, VI-3-9
VI-3.7 SUMIMAIY ittt ettt it teein et eneaeneneanaenaaaaeannnas VI-3-9

Contents XXV



PRELIMINARY

Part VIl. Type Manager Services.

Chapter 1. Understanding Objects

VII-1.1 Why Use ObJeCtS? .. ...ttt it iie i ienietieeanennneenns VII-1-2
VII-1.1.1 Data AbStraction ............iiuienneirnonennreceennocnannsnns VII-1-2
VII-1.1.2 Memory Protection ...........cuiiiiniinnenenrnienennanennnns VII-1-3
VII-1.1.3 Secure and Dynamic Memory Management ...................... VII-14
VII-1.1.4 Support for Complex and Extensible Applications ................. VII-14
VII-1.1.5 Uniform Storage Model for Permanent and Volatile Memory ......... VII-1-4
VII-1.1.6 Distributed Storage Model ............ ... .cciiiiiiiiiiinninn.. VII-1-5

VII-1.2 How Objects WOTK ... .ottt ii it it ee et e ineennns VII-1-5
VII-1.2.1 ObJect Sizes . ...ttt e taeiiianeneens VII-1-5
2 L 07 1 o X P VII-1-5
VII-1.2.3 Object ProteCtion .........c.ciuiiiunn i iinnetrnieennnneenns VII-1-6
VII-1.2.4 AIDULES . ..ottt e it e e e VII-1-6
VII-1.2.5 The Inside ViewofanObject .............ciiiiriininennnnnnnn. VII-1-8

VII-1.3 Address Space ProteCtion ...........c.coviniiiiiinerneeerenennnnenns VII-1-10
VII-1.3.1 Access DeSCriptorS ... .ovtt e ettt et eieneeeennnnnnnns VII-1-12
VII-1.3.2 Type Managers . ......oiintnnittneunennoreneeneeaeanaennnns VII-1-13
VII-1.3.3 Domains ..ottt ittt it i ettt i VII-1-14

VII-1.4 Passive ObJECES ... vvvttit ittt ittt ettt iieeieaeneeneannn VII-1-15
VII-1.4.1 ACHVE MEIMOTY ...ttt iiniieierenreeerennnnnnnnnn VII-1-16
VII-1.4.2 Passive StOT€ ..o v ittt ittt ittt nnenanns VII-1-16
VII-14.3 Passive ADS .. ..oiiii i i i e e e e i VII-1-17
VII-1.4.4 Passive Store Protection -- AuthorityLists .................ccvn... VII-1-18
VII-14.5 IDS ettt ittt ettt e it ittt VII-1-19
VII-1.4.6 Updating Stored Objects .........coviiiiiiiinnnnennenennnnns VII-1-20

VII-1S SUMMAIY oottt ittt ittt et e et eeenanns VII-1-20

Chapter 2. Understanding Memory Management

VII-2.1 Physical Memory Organization .............c.ccuieeienenenneneennenn. VII-2-2
VII-2.2 Virtual Memory Organization .............cueiiieenennnenrnnnrennnn VII-2-5
VII-2.2.1 TheObjectTable ..........c.coiiuiiiiiinrenneenennennnennnns VII-2-5
VII-2.2.2 Object-Based Address Translation ...................ccoivevnn.. VII-2-7
VII-2.2.3 Storage Resource Object ............c.oiiiiniiiiieinennnnnnn VII-2-7
VII-2.2.4 Object Representations ..........c.ooeuvemeruneenneneenneennnn VII-2-8
VII-2.2.5 Frozen and Normal Memory Types ..........c.oiiiiniiniunnn. VII-2-9
VII-2.3 Different Allocation Policies .............c.ooiiiiiiiiiiiiiineenn.. VII-2-9
VII-2.4 Object Lifetimes ..........cuuiiiuiiinninntneeneenennennneennss VII-2-9
VII-2.5 Object Deallocation Strategies ............cciiiiiiiinnenennnnenns VII-2-10
VII-2.6 Controlling and Accounting for Memory Resources ................... VII-2-12
VII-2.7 User-Transparent Memory Management Functions .................... VII-2-12
VII-2.7.1 Object ACHVALION . ..... ...ttt iineneeanns VII-2-12
VII-2.7.2 Virual Memory Paging .......... ... ... . i i VII-2-12
VII-2.7.3 Global Garbage Collection ..............ciirernenenenennnennn. VII-2-13

XXvi Contents



PRELIMINARY

VII-2.7.4 COMPACLON . ...ttt it it in e e e iraneaaeaeearanenaraannsnaens VII-2-13
VII-2.7.5 Optimized Handling of Instruction Objects ....................... VII-2-13
VII-2.8 SUMMAary . ...ttt ittt it ittt iinenieneennsnenns VII-2-13

Chapter 3. Building a Type Manager

R%¢ S 70 B ) 7<) o £ VII-3-2
VII-3.1.1 The Type Manager Defines All Calls for a Type of Object ........... VII-3-2
VII-3.1.2 Type Managers Hide Data Representation .................covv... VII-3-3
VII-3.1.3 Only the Type Manager Has the Key to Access the Type’s Objects .... VII-3-3
VII-3.1.4 One Module Can Manage Multiple Types ..............c.covven.. VII-3-3

VII-3.2 TeChNIQUES ... ovvvuiiniinnnetiiteeeaneneneraenenenenneenenns VII-3-3
VII-3.2.1 Definingthe Pubic Type .........c.cciiiiiiiiiniiiiineninnnnn, VII-3-4
VII-3.2.2 Defining Type Rights ..ottt VII-3-5
VII-3.2.3 Defining EXCEPLONS . ... vvitit et enneneneneeeennensnnns VII-3-6
VII-3.2.4 Definingthe Type’sCalls ..........cciiiiiiiiiiiiiiinninne. VII-3-6
VII-3.2.5 Defining the Private TYPES . ....cvviieiiniiiiiiiienenrenrnnes VII-3-7
VII-3.2.6 Defining Needed BiiN'* Ada Type Overlays ...................... VII-3-7
VII-32.7 Creating the TDO . ...ttt ittt iiie i VII-3-8
VII-3.2.8 BindingtoaStored TDO ...........iiiiiiiennininenenenanenns VII-3-8
VII-3.2.9 Implementingthe Is account Call ................... .. ..., VII-3-8
VII-3.2.10 Implementing the Create_account Call ..................... VII-3-9
VII-3.2.11 Implementing the Create_stored account Call ............. VII-3-9
VII-3.2.12 Implementing Calls that Require Type Rights .................... VII-3-10
VII-3.2.13 Implementing Calls that Do not Require Type Rights .............. VII-3-11
VII-3.2.14 Implementingthe Destroy Call ........... .. ...t VII-3-11
VII-3.2.15 Making Operations AtOmiC ..........ccviiininrnnineneneninnn. VII-3-12
VII-3.2.16 Initializingthe Type Manager ..............ciiviiiiiiinnn.n. VII-3-13
VII-3.2.17 Protecting the Type Manager from Other Services ................ VII-3-14

VII-3.3 SUMMAIY ..ottt ittt it ie e ieeae e enraaneanens VII-3-15

Chapter 4. Using Attributes

VII-4.1 COnCe S .t itt ittt ettt ie e te e teeaaanenoaaneanraonenaneneaans VII-4-3
VII-4.2 TeChNMUQUES ... oovuttn ittt ettt inean it eenneetaeneaanneneens VII-4-5
VII-4.2.1 DefiningaNew Attribute ......... ...t ininineninans VII-4-5
VII-4.2.2 Defining an AttributeInstance ........... ... . i, VII-4-6
VII-4.2.3 Initializing the Type’sTDO ........ .ottt VII-4-7
VII-4.2.4 Initializing an Objects Attribute List ........... .. ... .. . 0oL, VII-4-8
VII-4.3 SUMMAIY ...ttt ittt ettt ittt en it VII-4-8

Chapter 5. Managing Active Memory

VII-5.1 A Brief Overview of How Memory Is Allocated ................. ..., VII-5-2
VII-5.2 Collecting Garbage Objects --GCOL  ...........coiiiiiiiiinen... VII-5-3
VII-5.2.1 Local GCOL ... . i e et VII-5-3

Contents xxvil



PRELIMINARY

VII-5.22 Global GCOL ..ottt it iiee e ieeienee e VII-5-4
VII-5.3 TeChniques ......oviiinniiiiii ittt ittt ittt iiie e ennnes VII-5-5
VII-5.3.1 Trimming the Caller’s Stack ...........covviiitiinrineneneennn VII-5-5
VII-5.3.2 Starting Local Garbage Collection .............c.covvuivevenenn. VII-5-5
VII-5.3.3 Setting/Changing Local GCOL Parameters .............c.coveuunn VII-5-5
VII-5.3.4 Stopping Local Garbage Collection ...............ccciieuuneenn. VII-5-6
VII-5.3.5 Getting Information About a Job’s Local Memory ................. VII-5-6
VII-54 SUMMATY . .oiiti ittt ieneeeeneeenaeneenneneseeenaaenoenns VII-5-6

Chapter 6. Building Type Managers for Stored Objects

VII-6.1 COnCePS .« ot itetiteneeieenenneeneeneoeeaooeeaeseneeasananaens VII-6-2
VII-6.1.1 Storing and Retrieving Objects in Passive Store  ................... VII-6-2
VII-6.1.1.1 Lifetime Requirements .............ccovuniiiniienennnennnnn. VII-6-3
VII-6.1.1.2 Storing Objects Requires Three Steps . ............covvven. ... VII-6-3
VII-6.1.1.3 Object Treesin Passive Store ...........ccoviviiiineenn.... VII-6-3
VII-6.1.2 The Type Manager Can Customize Passive Store Operations ......... VII-6-3
VII-6.1.3 Synchronizing Access to Objects -- Transactions and Semaphores ... .. VII-6-4
VII-6.2 TEChMQUES .. .vviteteittie e teeeeneeeaeneeeaseneanenensans VII-6-4
VII-6.2.1 Definingthe Type’sCalls .........coiiiiiiiiiiiniiniinennnnn. VII-6-5
VII-6.2.2 Implementing the Create_accountcall ....................... VII-6-6
VII-6.2.3 Implementing the Create_stored_account Call .............. VII-6-7
VII-6.2.3.1 Starting, Commiting, and Aborting a Transaction .............. VII-6-8
VII-6.2.3.2 Storingthe Master AD ..........ciiiiiiiiininnninnnnnnnns VII-6-9
VII-6.2.3.3 Updating the OBJECt ... \vvvrverr e eereeireeranneneenns. VII-6-9
VII-6.2.4 Implementing the Change_balanceCall ...................... VII-6-9
VII-6.2.5 Implementing the Transfer Call ..............c.civviiiennen. VII-6-11
VII-6.2.6 Implementing the Destroy_account Call ..................... VII-6-12
VII-6.2.7 Initializing the Type Manager ...........ccoiieiiiiiinennnennn.. VII-6-13
VII-6.2.8 Protectingthe Type Manager ............covviiviinneennnnnnnnn VII-6-16
VII-6.3 SUMMATY ...ttt ittt ittt ittt e it i iee e VII-6-18

Chapter 7. Understanding System Configuration

VII-7.1 Creating a Node’s Configuration ..............coieiiniiiennennennnn. VII-7-3
VII-7.2 Defining a Node’s Configuration ..............coiiiiiiiininnennn. VII-7-4
VII-7.3 Configuration Attribute Calls .......... ..., VII-7-4
VII-7.4 Creating Configurable Objects . .........ccouiiiiiiininiinninnennnns VII-7-5
VII-7.5 Attaching Objects to Configurable Objects ..............cccivenen.s VII-7-6
VII-7.6 Configuring Software Services ...........c.cciiiiiiriiiiininnnnenn. VII-7-6
VII-7.7 Starting Configurable Objects .............coiiiiiiiiiiiininon.. VII-7-7
VII-7.8 System SCOsand User SCOS . .....ciiiiiiinininiiiiiiiiiinan.. VII-7-8
VII-7.9 The configure Utility .........coiinimiiiiininiiiiiiniinennn.. VII-7-9
VII-7.10 SUMMATY . oottt ettt e ettt et ettt ee e enaeaneeens VII-7-9

XXviii Contents



PRELIMINARY

Part VIIl. Distribution Services.

Chapter 1. Understanding Distribution

VIII-1.1 IntroduCtOn ... .oieit ittt it ittt e e iiin e cenracnensaenen VII-1-2
VIII-1.2 What a Distributed System CanDo ............c.coitiiiiiiiiinnene. VII-1-4
VIII-13 Naming ...ooiniiintint ittt it ineineneeneenennneennns VIII-1-5
VIII-1.3.1 TheClearinghouse ........ ..ottt iiiiiiiinennnnnn. VIII-1-6
VIII-1.4 COMMUNICALONS ...ttt iitiinntieeenennenensneenenennennns VIII-1-8
VIII-1.5 Review of the Computational Model .................c.coviiuiint. VIII-1-10
VIII-1.5.1 Processes, Jobs and Sessions ..........cooeiviiniiiinnnnenennn. VIII-1-10
VIII-1.5.2 Active and Passive ADS . ........c.iiiiiiiiinineneninnnennns VIII-1-10
VIII-1.5.3 Single and Multiple ActivationModel .......................... VIII-1-11
VIII-1.6 Single Activation Distributed Services ..................cooiiiiinn.. VIII-1-13
VIII-1.7 Protection in a Distributed System ..............coiviiiiiiineen.., VIII-1-13
VIII-1.8 Transparently Distributed Services .............coiiiiiiiiiiiininen, VIII-1-14
VIII-1.8.1 Passive StOre ... ...ttt ittt ittt teanneanenenens VIII-1-14
VIII-1.8.2 DIMECIOMES ..o vvvee e tieineenetietnriecnsaeonenenenneaaens VII-1-14
VIII-18.3 IS ottt ittt ittt ettt tneein et sneennaneeneennnenns VIII-1-15
VIII-1.8.4 FAleS ....oiiiiiiii ittt iteiieenrnernreneaeannsnanaanns VIII-1-16
VIII-1.8.5 Data Integrity, Synchronization, and Transactions ................. VIII-1-16
VIII-19 SUMMATY ..ottt ittt it ittt ittt eee et ee i eaeeie e enennaneneens VIII-1-16

Chapter 2. Building a Distributed Type Manager

08 B oL o VIII-2-2
VIII-2.1.1 Homomorphs and Active Versions ...............ccvvvieneennnnn VIII-2-3
VIII-2.1.2 TheRemote Call .......... ..ottt iiiiiieiinneennannnn VIII-2-3
VIII-2.1.3 Synchromizing ACCESS .. ......uuiiieetueinnereannenannnnnn VIII-2-4

VII-22 TeChmiques ........ciiuniiniinten it iteeiaieeneeannann, VIII-2-4
VIII-2.2.1 Defining The Representation of The Object ...................... VIII-2-5
VIII-2.2.2 Defining the Homomorph Template ....................c.ccou... VIII-2-6
VIII-2.2.3 Setting the Passive Store Attribute  ........................ ..., VIII-2-6
VIII-2.2.4 Defining Buffers for Remote Procedure Calls .................... VIII-2-7
VII-225 TheIs_ Call ......ooniiniiiiiiii ittt it ieinenaeennn VIII-2-7
VIII-2.2.6 The The Create_Calls ..............c.ooiiiiiiiiiiiiiin.. VIII-2-8
VIII-2.2.7 Implementing Calls that Require Remote Calls ................... VIII-2-9

VIII-2.2.7.1 Recognizingthe Home Job ................ ... .. ... .. ..... VIII-2-10
VIII-2.2.7.2 Making the Remote Procedure Call ......................... VIII-2-10
VIII-2.2.7.3 The Server Stub . ... . iviii ittt it ittt VIII-2-11
VIII-2.2.8 Synchronizing with Transactions and Semaphores ................. VIII-2-12
VIII-2.2.9 Initialization . .........iitniinruniii et iie e eianennn. VIII-2-12
VIII-2.2.9.1 Private ADs are Hidden in the Static Data Object. ............. VIII-2-13
VIII-2.29.2 Creating the Server ..........oviiniiiiniinenennennnen. VIII-2-13
VIII-2.2.9.3 Creating and Registering the Service ........................ VIII-2-14
VIII-22.9.4 Setting Upthe Home Job ...........coviiiiiiiniinennn.n. VIII-2-14
VIII-2.3 SUMMAIY . ..ttt it ettt e eee e ea e neeanannn VIII-2-15

Contents XXIX



PRELIMINARY

Part IX. Device Services.

Chapter 1. Understanding Device Managers and Device
Drivers

IX-11 COnCe IS o vi ittt iiie it ieeeiarneeeanonetoatnsannnansasssnsoans
IX-1.2 JOMOdel ...t i ittt ettt ttrataanneneaarenas
IX-1.2.1 Access Methods ......oviiiiiiin ittt i it iieniieneanenns
IX-1.2.2 Device Managers .........vvivennenenennrnrnennonenenocnnens
IX-1.2.3 DeviCe DIivers .. ..o iiriteinie e iitteeennnannentronsanas
IX-1.2.4 DeviCe Classes .......vvevrrneenennenenenneneneanensnnenneens
IX-1.25 /OMechanisSms ..........coiiiieinineenieeennenaanann,
IX-1.2.6 The I/O Messages Mechanism .............c.ooiiiiiiiiiinnn...
IX-1.3 Data Transfer Via the I/O Messages Mechanism  ......................
IX-1.3.1 JJORECOVEry AZENt . ...ttt tiiiiinieinnneeeennnn.
IX-1.4 Data Transfer Via the Shared Queues Mechanism .....................
IX-1.5 Clusters and CluSter SEIVEIS . ... .vviutuentnenenenenanaanonesnnoens
IX-1.5.1 AdministrativeInterface .............c i iiiiiiiiiiiniiinennn.
IX-1.5.2 DeviceDriverExample ............ciiitiiiiininennrinnnnn.
IX-1.5.3 I/O Shared Queues Data Transfer Mechanism .....................
IX-1.6 SUMMArY ...ttt it iie e et ta e tennaneeaanens

XXX

Contents



PRELIMINARY

Part X. Appendixes.

Appendix A. Ada Examples

D €700 B 1113 (o1 117615 1o) A OPAP X-A-4
X-A.2 SUPPOIL SEIVICES .. iiviiti e it iieietnetrnenenestneneentoanannas X-A-4
X-A.2.1 Example_Messages Package Specification ..................... X-A-5
X-A.2.2 Long_Integer_ Ex Package Specification ...................... X-A-7
X-A.2.3 Long_Integer ExPackageBody ............................ X-A-8
X-A.24 Make_menu_group DDef exProcedure ...................... X-A-12
X-A.2.5 Manage_application_environment_exProcedure .......... X-A-20
X-A.2.,6 String_list_exProcedure ................ .. ... il X-A-23
X-A.3 DireCtOry SeIVICeS . ..vtieii i in e iirieie e teieeeenraeaanneanannns X-A-23
X-A.3.1 Create_directory cmd_exProcedure ...................... X-A-24
X-A.3.2 Create_name_space_cmd_exProcedure ..................... X-A-26
X-A.3.3 List current dlrectory cmd_exProcedure ............... X-A-31
X-A.3.4 Make object_public_exProcedure ......................... X-A-33
X-A.3.5 Show_current_directory cmd_exProcedure ............... X-A-35
X-Ad TJO SEIVICES ..ttt et et tetet e e et ettt e e e, X-A-36
X-A4.1 DBMS_Support_Ex Package Specification ...................... X-A-37
X-A4.2 DBMS_Support_ExPackageBody ................... ...l X-A-38
X-A.43 Employee_Filing Ex Package Specification ................... X-A-42
X-A44 Employee Filing ExPackageBody ......................... X-A-46
X-A4.5 Hello_ada exProcedure ...........cciiiiiiiiiiiiiniinnn, X-A-54
X-A4.6 Hello _OS_exProcedure ...........coviiiiiiiiiiinneiinn, X-A-55
X-A4.7 Join File Ex Package Specification .......................... X-A-56
X-A.4.8 Join Flle ExPackageBody ...........cciiiiiiiiiiiiiiiiin.. X-A-57
X-A.49 Record Locklng Ex Package Specification .................... X-A-61
X-A.4.10 Record Locking ExPackageBody ......................... X-A-62
X-A.4.11 Output_bytes_exProcedure ............................... X-A-64
X-A.4.12 Output_records_exProcedure ................ .. ...l X-A-65
X-A.4.13 Print_cmd_exProcedure ............... .. ... il X-A-67
X-A4.14 Print_Cmd MessagesPackage ................ ... ... .. ... X-A-70
X-A.4.15 Record_AM Ex Package Specification ......................... X-A-71
X-A4.16 Record AM ExPackageBody .........coiiiiiiiiiiiininanin, X-A-75
X-A4.17 Simple_. edltor cmd _exProcedure ............. .. ...l X-A-84
X-A4.18 Simple_ Ed:Ltor Ex Package Specification .................... X-A-85
X-A.4.19 Simple Editor ExPackageBody .......................... X-A-89
X-A420 Stream file exProcedure .............. ...l X-A-103
X-A.5 Human INterface SEIVICES .. .........ouenineeneoneneanennennenennns X-A-104
X-A5.1 Inventory mainProcedure ................ ... .., X-A-105
X-A.5.2 Inventory Files Package Specification ...................... X-A-108
X-A53 Inventory FilesPackageBody ................ ... ... .. ... X-A-115
X-A.54 Inventory_ Forms Package Specification ...................... X-A-121
X-A.5.5 Inventory FormsPackageBody ............................ X-A-126
X-A.5.6 Inventory Menus Package Specification ...................... X-A-137
X-A.5.7 Inventory MenusPackageBody ................ ... ... L X-A-140
X-A.5.8 Inventory Reports Package Specification .................... X-A-144
X-A.59 Inventory ReportsPackageBody .......................... X-A-146
Contents xxxi



XXx1i

PRELIMINARY

X-A.5.10 Inventory_Windows Package Specification ................... X-A-152
X-A.5.11 Inventory WindowsPackageBody ......................... X-A-154
X-A.5.12 Inventory_ Messages Package Specification .................. X-A-156
X-A.6 Program SeIviCes .......cviiuveeinnenneeneeneneeeneenneneeeanenns X-A-156
X-A6.1 At_cmd exProcedure .......... ... ..l X-A-157
X-A.6.2 At Support Ex Package Specification ......................... X-A-160
X-A.6.3 At_Support_ExPackageBody .................oiiiiiiii, X-A-162
X-A.6.4 Compiler Ex Package Specification ........................... X-A-168
X-A.6.5 Compiler ExPackageBody ...............c..ciiiiiiiiiinn. X-A-169
X-A.6.6 Conversion_Support_Ex Package Specification ............... X-A-172
X-A.6.7 Memory exProcedure ........... ... ittt X-A-176
X-A.6.8 Process_Globals_ Support_Ex Package Specification ......... X-A-177
X-A.6.9 Process_Globals Support Ex PackageBody ............... X-A-182
X-A.6.10 Symbol_Table Ex Package Specification ..................... X-A-191
X-A.6.11 Symbol Table ExPackageBody ..................... ... ... X-A-193
X-A.6.12 Word_Processor_Ex Package Specification ................... X-A-197
X-A.6.13 Word_Processor_ExPackageBody ......................... X-A-198
X-A.6.14 View_device mainProcedure ............. ... ..ol X-A-203
X-A.6.15 VD_Defs Package Specification ...............ciiiiiiiiiiin, X-A-206
X-A.6.16 VD_Commands Package Specification .......................... X-A-208
X-A.6.17 VD_Commands PackageBody .............. .. .. .. oLt X-A-209
X-A.6.18 VD_Devices Package Specification ....................0ou.... X-A-213
X-A.6.19 VD Dev1ces PackageBody .............iiiiiiiiiiiiiiiian, X-A-215
X-A.7 TyPe Manager SEIVICES . ... .vvvevneretn e e e eeneeeeeeaenenennnn, X-A-218
X-A.7.1 Acct_main_exProcedure .............. . .. il X-A-219
X-A.7.2 Acct_Visual Package Specification .................... ... ..., X-A-236
X-A73 Acct_VisualPackageBody ................ .o, X-A-238
X-A.74 Account ManagerCommandFile ............................ X-A-244
X-A.7.5 Account_Types_Ex Package Specification ..................... X-A-250
X-A.7.6 Account_Mgt_Ex Package Specification ....................... X-A-251
X-A.7.7 Account_Mgt_Ex (Active Only) Package Body .................. X-A-256
X-A.7.8 Account_Mgt_Ex (Stored, Non-transaction-oriented) Package Body .X-A-261
X-A.79 Account_Mgt_Ex (Stored, Transaction-oriented) Package Body ..... X-A-267
X-A.7.10 Stored_Account_TDO Init ExProcedure .................. X-A-276
X-A.7.11 Account_Type Name Ex Package Specification ............... X-A-279
X-A.7.12 Account_Type Name ExPackageBody ..................... X-A-280
X-A.7.13 Type_Name_ Attr_Ex Package Specification ................... X-A-281
X-A.7.14 Type_Name Attr_ ExPackageBody ......................... X-A-282
X-A.7.15 Type_Name Attribute Init ExProcedure ................ X-A-283
X-A.7.16 Refuse_Reset_Active_Version_Ex Package Specification ...X-A-284
X-A.7.17 Refuse_Reset_Active Version_ ExPackageBody ......... X-A-285
X-A.7.18 Account_ Mgt Ex (Distributed) Package Body .................. X-A-286
X-A.7.19 Distr Acct_Call Stub_Ex Package Specification ............ X-A-298
X-A.7.20 pistr_Acct Call Stub ExPackageBody .................. X-A-300
X-A.721 Distr Acct Server Stub_Ex Package Specification ......... X-A-304
X-A.7.22 Distr Acct_Server Stub Ex PackageBody ............... X-A-306
X-A.723 Distr Acct Init Procedure .........oevuvvuennennennnennn. X-A-308
X-A.724 Distr Acct Home Job_ExProcedure ...................... X-A-312
X-A7.25 MAKEEILE oottt it e e X-A-313
X-A.726 Named_copy_exProcedure ............. ... ...l X-A-315
X-A.727 Older_than exFunction .................ciiiiiiiiaa.... X-A-317

Contents



PRELIMINARY

Appendix B. Glossary

Contents Xxxiii



PRELIMINARY

List of Figures

XXX1V

I-1-1. Networked, Distributed, MultiprocessingNodes ........................ I-1-3
I-1-2. How the Dispatcher Handles Multiprocessing ............covvivieenen. I-14
I-1-3. How the BiiN™ OS Aids Fault TOIErance ...............ceeeueeeneennn. I-1-6
I-1-4. The OS Interface is Made up of Services, Packages,and Calls ............. I-1-12
I-1-5. ADs Provide Access and Protectionto Services ...........covviiiinn.n. I-1-14
I-1-6. An AD Showing Type Rights ....... ... .. it iiiiiiiiinnann, I-1-16
II-1-1, Data Structures for String List, Text, and Long Integer .................. II-1-2
II-2-1. ADand ObBject ... .cuntiitit ittt iiiininnaeeinneans 11-2-2
I1-2-2, A Valid Access DesSCHPIOr . ...ttt tir ittt it ieieieeennnanaanennn I1-2-3
II-3-1. Passive Store is a Distributed Object Filing Service that Unifies all Nodes in a
BIIN Y S SleIM. .ottt e I1-3-2
I1-3-2. A Single Object can have Passive and Active Versions. .................. 1I-34
II-3-3. AStored ObJeCt .. ovvtni ittt ittt ittt ittt nnnenns II-3-10
II-3-4. Life History of a Stored ObjectPartI ............ ... . oiiiiiiin.. II-3-11
II-3-5. Life History of a Stored ObjectPartII .......... .. ... ... ..o, I1-3-12
I1-3-6. A Single Object can have Multiple Active Versions. .................... II-3-13
II-3-7. Copying an Object Tree . ....cvvvtirinnin it iiieieeneninennonns I1-3-21
II-5-1. Incidents Associate Errors withMessages ............c.ceiviiininienns II-5-3
III-1-1. Directories Contain <Name, AD>Pairs ..............ccciiiiiiinnnnn. 1I-1-2
III-1-2. A Directory Structure with Aliases ...........coiiiiiiiininnnienn, ImI-1-3
ITI-1-3. A Directory is Protected with an Authority List ....................... 1I-1-5
III-1-4. Directory Mgt uses the Clearinghouse to Resolve Network Names. .... III-1-6
III-2-1. Directories Contain <Name, AD>Pairs. ...................coiiiia... 1-2-2
III-3-1. A Caller Accesses aProtected Object .................cooiuininn.n... I11-3-2
OI-3-2. Partsof anID ... ... . i i ittt ci i 1I-3-4
III-3-3. AProcess’sIDLISt ..ottt i i it innennn Im1-3-5
III-3-4. Multiple Objects Sharing an Authority List ........... .. .. .coviiian, 1I1-3-6
III-3-5. Evaluating Access DuringaRetrieve ........... .. ..o i, Im1-3-7
III-3-6. Example: Evaluating Access DuringaRetrieve ....................... II1-3-8
II1-4-1. A Name Space Lists Directoriestobe Searched ....................... I1-4-2
III-5-1. ASymbolicLink ...t i it ii i I1-5-2
IV-1-1. Opened Devices are I/O Channels to Devices .................oviiun. IV-1-3
IV-1-2. Concurrent I/O .. ... . .. i i it it e it IvV-14
IV-1-3. Access Methods are Supported by Multiple Devices ................... Iv-1-5
IV-1-4. ByteStream I/O ... ...t i i i i Iv-1-7
IV-1-5. Record I/O ..ot i i it e et e i IvV-1-7
IV-1-6. Character Display /O ... . ittt it ittt ienennannn IV-1-8
IV-3-1. Stream File Being Opened for ACCESS . ..o vviiii i i in it iaennen.. 1v-3-2
IV-3-2. Line Formats for Stream Files ............ .. ... . i, 1v-34
IV-4-1. Windows Displayed on a Physical Terminal .......................... IV-4-3
IV-4-2. Window_Services Coordinate Systems ................coiiinnn... IV4-5
IV-4-3. Relationship Between Windowand View ................ .. .oinnt, IvV-4-8
IV-4-4. Example of Overlapped Windows ...............ciiiiiiiiiininnn, IV-4-9
IV-4-5. Example Showing Two Possible Resize Rules ........................ IV-4-10
IV-4-6. Left TopResizeRule .......... .. .o, IV4-11
IV-4-7. Contents Resize Rule Example ............ ..., IV-4-12
IV-4-8. MenuBarand Pull-downMenu ............ ... oo, IV-4-14
Contents



Contents

PRELIMINARY

IV-5-1. Views, Windows, and Frame Buffers .............. .. o i, IV-5-3
IV-5-2. The Frame Buffer Coordinate System ...............ccoviiiiiinane. IV-5-4
IV-6-1. Spooled Printing . ........c.covunuiiiiiiiiniiiieiniinrinneennennns IV-6-2
IV-6-2. Print ATCa .. ... .ottt ittt e eiieateianenenrennnonnenanns IvV-6-4
IV-7-1. File Objects and Data AT€aSs ..........oouuitniennrenernrunnennennns IvV-7-3
IV-7-2. Sequential File ..........coiuiuiiiniiiiiiniiiiiiiiiiinennennnns IV-7-5
IV-7-3. Relative File ...... ... oot it ... IV-7-6
IV-7-4. Unordered File .........c.iitiiiuniiiiniiniinninieenanninnnnns IV-7-6
IV-7-5. Clustered File . ... .. .o i i ittt i i aa Iv-7-7
IV-7-6. Hashed File ...... ...ttt ittt i IV-7-8
IV-8-1. AnIndexed File ...........cc.iiiiiiiiiiiiiiiiiiniiiiinneinnenns IvV-8-2
IV-8-2. Index Key Values that PointtoRecords ..............coviiiiiinnn.. IV-8-3
IV-8-3. B-Tree Alternate Index ... ...ttt IV-84
IV-8-4. Clustering B-Tree OrganizationIndex ................ ... ... ... ..., Iv-84
IV-8-5. Hashed OrganizationIndex ...............coviiiiiiiiiiiiiinnnan., IV-8-5
IV-8-6. ASimple Record DDef ........ ... i ittt iiiiiiiiinnenn. IV-8-6
IV-8-7. A Simple DerivedIndex KeyDDef ............ ..., IvV-8-8
IV-8-8. Layoutof a Derived Index KeyDDef .......... ... . . i, Iv-8-9
IV-9-1. ARecordI/ORead Operation .............coieiiurrnenenrennennnnn 1V-9-2
IV-9-2. Physical-Sequential ACCESS . ......c.vuiiieniiiiininiiiinenenenn, IV-94
IV-9-3. Physical-Random ACCESS . ........ccoviiriiininininnennennenneennnn IV-9-5
IV-9-4. Indexed-Sequential ACCESS .......coiiiimiinirnrinenennennnnenns IV-9-6
IV-9-5. Indexed-Random ACCESS ........coviiiiiininiininieerneneeeennennns IV-9-7
IV-9-6. EOF Detection During Indexed-Sequential ACCESS .. .....vvvvuvueennn. IV-9-10
IV-10-1. Lost Update Problem . ..........c.oiitniiiniiniininneenrenneennnn IV-10-2
IV-10-2. Locking Hierarchy ........... ..o ittt IvV-104
IV-10-3. AnUpdatewithanX-lock .......... ... it iininennnn. IV-10-5
IV-10-4. Locks Inherited by Subtransactions ................coiiiiuruninenn. IV-10-10
IV-11-1. CustomizingaRead Call ............ ..ttt innineneannn. Iv-11-2
IV-11-2. Associating aRecord ID Stream withaFile ......................... Iv-114
IV-11-3. DBMS Operations .........ovuveeueenienrnrenenreeenenennoenenss IV-11-6
IV-11-4. A Primary Data Projection ..............itiiieeninennennncnnennns IV-11-8
IV-11-5. AJoInOperation .........coviuunernnruneroeennennenennneennens IV-11-10
IV-11-6. Sorting and MergingRecords .............ccoiuieiiiiiineennennns IvV-11-12
V-1-1. Human Interface Services and a BiiN™ Program ....................... V-1-2
V-1-2. Utility, Data Definition, and Service ..............cciiiiiiiiien.n. V-1-5
V-1-3. BiiN™ Application Program and the Command Service .................. V-1-6
V-1-4. Command Language Variables ...............c.ciiiiiiiiiiiienn.n. V-1-9
V-1-5. BiiN™ Application Program and MENUS ................oveurerenenn.. V-1-11
V-1-6. Example FOIM ... ....o ittt ittt iie et rneeeenenn V-1-13
V-1-7. Annotated Executable Form .......... ... .. .. . i, V-1-14
V-1-8. Example Report . ... ..ottt it i it e e V-1-15
V-1-9. Layoutof a Standard ReportPage ............ ...ttt iiinnennn.. V-1-16
V-2-1. Typical BiiN™ Application Program ...............oeeueeueerenenrns. V-2-3
V-2-2. File Data Definition and Associated Forms and Reports  ................. V-2-5
V-2-3. Example Program Menus  ............iuitniitiiinenninianneninnay V-2-6
V-2-4. Example Program Source Files ........... ... .. o i, V-2-9
V-2-5. File and an Associated Report ......... ..., V-2-22
V-4-1. Command Language Variables ................c.coiiiiiiiiiiinn... V-4-2
V-5-1. BiiN™" Application Program and MENUS .................oveuurnrennnns V-5-2
V-6-1. Sample PaperForm ........... ..ttt i V-6-2
V-6-2. Annotated Executable Form ........ ... ... ... o i, V-6-3
XXXV



PRELIMINARY

V-6-3. CharacterField ...........coiiiiiiiiiiiiiiii ittt iieieenaannnns V-6-5
V-64. OptionField ...................coiuu. et e et V-6-7
V-6-5. Overlaid Enumeration: Initial Value ....................c.coiviunn... V-6-8
V-6-6. Overlaid Enumeration: Subsequent Value ..............covienenvennn. V-6-8
V-6-7. Scattered EnUmMeration .............c.coiiuiiinirenrnnrenennrnnnaens V-6-8
V-6-8. Group Instances . ..........c.iuiiuiiiiiinereenieenenennenanannnnnn V-6-10
V-6-9. Group Instances in a Horizontal Deployment .......................... V-6-10
V-6-10. Group Instances with Multiple SheetElements ....................... V-6-10
V-6-11. FormwithaPile .......... ... i ittt iiiiinnnnnannn. V-6-11
V-6-12. First Plle Usage ........c.citiiiiiriiieennineenneneenneneannanons V-6-11
V-6-13. Second Pille Usage .......c.oviiiiiiiiierneniininenenennneannanns V-6-12
V-6-14. Third Pile Usage ........c.iiniiiriiiineeneneenenenenaeennnnnanns V-6-12
V-6-15. Effect of the Expansion of a Group Instance: Before Expansion .......... V-6-13
V-6-16. Effect of the Expansion of a Group Instance: After Expansion ........... V-6-13
V-8-1. Sample RePOIt . ... ..ottt ittt e iieteeneenennennaanns V-8-2
V-8-2. Page Series Of aRePOIt .. ... ittt ittt ittt V-8-3
V-8-3. Partsof aReport Page ..........ciiiiiiiiinin ittt iieinnennnnn, V-84
V-8-4. Report With Nested Control GroupS .........veiienrnenenenennnnnnns V-8-5
V-8-5. Report WithControl Breaks ..........coiiiiiiiiiiniiiiiineeenennn. V-8-6
V-8-6. Report Parts of a Report Description ........... ..ottt V-8-7
V-8-7. Layoutof a Standard ReportPage ........... ... oottt V-8-8
VI-1-1. Static Structureof aProgram ..............cciiiiiiiiiiiiineainann. VI-1-3
VI-1-2, Program Object ....o.ivniiiiii ittt iiieiaeneenaeenaans VI-14
VI-1-3. Domain Object . .....ovtiiiiiriiiiet it ienrenetneeaaneanenns VI-1-5
VI-1-4. Static Data, Instruction, and Stack Objects ................... ... ..... VI-1-6
VI-1-5. PublicData Object ..........c.coiiuinniiiin ittt VI-1-7
VI-1-6. Debug Object .....oiti ittt ittt et ettt et VI-1-8
VI-1-7. Job and ProCesSeS ... ....ovtietiierueteneeneennrneeneennennnennns VI-1-10
VI-1-8. Events can be Handled, Queued, or Discarded. ........................ VI-1-14
V10, PIpe I O i i i i e it et i e e e VI-1-14
VI-1-10. Major Process States . .........cuuuiretnnnennneenneennenennnnnnn VI-1-16
VI-1-11. Binary Semaphores ............coiiiiiiiiiintiinnnnnnnnnnn. VI-1-18
VI-1-12. Processes Connected by a Pipe Speed Upa Compiler. ................. VI-1-19
VI-1-13. Multiple Processes Speed Up a Large Array Calculation. ............... VI-1-20
VI-1-14. A Separate Spelling Checker Process Preserves Word Processor

RESPONSIVENESS. ..t ottt i ettt ittt it i et e e et VI-1-20
VI-2-1. Job and ProCeSSES . ....vvvertnnirinne e ieeeeneeennennnnaennns VI-2-2
VI-3-1. High-level Scheduling ............. ..ot iiiiiiiiiiiiiiinnnen, VI-3-3
VI-3-2. Low-level Scheduling ........... ... ... ... VI-3-4
VII-1-1. AnObjectasaBlack BoX ...........coiiiiiiiiii ittt VII-1-3
VII-1-2. AnObjectCanbeResized .............ccoiiiiiiiiiiiiiiiiinnnn.. VII-1-5
VII-1-3. Object and Access DESCIIPIOr ... ...ovttrne e e neennnnennn VII-1-6
VII-1-4. How Attributes WOTK . ...... ..ottt ittt iiieannns VII-1-7
VII-1-5. Objects Are Typed and Protected .............covtieiiiiinenennann. VII-1-9
VII-1-6. Threefold ObjeCt pProteCtion . ...........coveirenrreeenenneenneann. VII-1-11
VII-1-7. An AcCess DesCIiPtOr .. .ovvitiiiitit it ittt e e ieeennrnnannnns VII-1-12
VII-1-8. A Type Manager Makes the Object Appearas aBlack Box ............. VII-1-13
VII-1-9. Linear Address Spaceand Domain ............... ... 0o iiiiiiann.. VII-1-15
VII-1-10. An Object’s Active and Passive Version .......................... VII-1-16
VII-1-11. Passive Store Unifies All Nodes in a BiiN™ System. .................. VII-1-17
VII-1-12. AStored ObJect . ..ottt i et e e e nanns VII-1-19
VII-2-1. The Organization of Memory in a BiiN™ sytem ...................... VII-2-3

XXXVi Contents



Contents

FIKLLLVILIINAK X

VII-2-2. PasSIVE SIOTE ... v it ti ittt iie it ie e iieaneeneanneenonnnns VII-2-4
VII-2-3. Physical Memory is Divided intoPages ..................cccivin.... VII-2-4
VII-2-4. Active Memory Uses BothRAMand Disk. ......................... VII-2-5
VII-2-5. The Object Table and Object Based Adress Translation ................ VII-2-6
VII-2-6. A Valid Virtual Address ...........couuriiiniineinnennennennennnns VII-2-7
VII-2-7. Active Virtual Memory, Jobs, Nodesand SROs ...................... VII-2-8
VII-2-8. Garbage ColleCtOr .......iuitiitii ittt iniiereneneneennennnn VII-2-11
VII-4-1. Attribute STUCIUTE . ... .ottt ittt it ee e nenneanananns VII-4-2
VII-4-2. AnOS Attribute . ...ttt ittt i et ittt VII-4-4
VII-5-1. Algorithm That Controls Garbage Collection ........................ VII-5-4
VII-7-1. System Configuration ............c.cooiriiinreieenreneenneeneennns VII-7-3
VII-7-2. BootingaNode .........coiiiiiiiiiiiiiii ittt iieienneenannn VII-74
VII-7-3. Creating Configurable Objects ............ccciiiiiiiniinennnennnn. VII-7-5
VII-7-4. Simple Attach .. ... ittt i it ittt ittt VII-7-7
VII-7-5. Attaching to a Dependent Software Service ...................covun.. VII-7-7
VII-7-6. Back Attachment of a Dependent Software Service .................... VII-7-8
VII-7-7. Compound Attachment .............c..iiititirrnrnenenennnnnennns VII-7-8
VII-7-8. System Configuration Objects ...........cc.iiiiiiininennnnnnnennn. VII-7-9
VIII-1-1. A Network of BN NOES . ........oovueinernernarenneenninnss VII-1-3
VIII-1-2. The Hierarchical Structure of the Clearinghouse ..................... VIII-1-7
VIII-1-3. Three Different CommunicationMethods .......................... VIII-1-9
VIII-14. Single and Multiple ActivationModel ............................. VIII-1-12
VIII-1-5. Partial View of a Node’s Directory Structure ..............ccooveenn.n. VIII-1-15
VIII-2-1. General Model of Communication UsingRPCs ...................... VIII-2-3
IX-1-1. Device ENVIrONMENt . ........cutuiunenenenenrenenenenenenannnanas IX-1-3
IX-1-2. Device Driver using the I/O messages Mechanism ..................... IX-1-6
IX-1-3. Cluster Server, Clusters and sharedqueues ..............ccvevvueennnn. IX-19
IX-1-4. Device Driver with the Shared Queues Mechanism .................... I1X-1-10
IX-1-5. I/O shared queues Data Transfer Mechanism ......................... IX-1-11
XXXVii



PRELIMINARY

List of Tables
IV-1-1. Devices and Supported Access Methods ............cviiiiivenenen.. Iv-1-5
IV-1-2. Common /O Operations ..........c.ccieuuiiuiiunneunenneuneencennns IV-1-6
IV-1-3. Selected Byte Stream Access Method Calls ..............coveivinnnn. Iv-1-7
IV-1-4. Selected Record AccessMethod Calls ...........coiiiiieiiiiiinensn IV-1-8
IV-1-5. Selected Character Display Access Method Calls ...................... IV-1-9
IV-4-1. Terminal Attributes ........c.iuiirnineinrieeernereenenoenseannas IV4-5
IV-5-1. Window Atributes .........couiiiunniiiiin i ieennenneennennns IV-5-6
IV-6-1. Implementation of Spool Device Attributes .............covuivenenn. IV-6-6
IV-6-2. Getting and Setting Print Properties ............cciviiininennenan.. IV-6-10
IV-6-3. Executing Printand Spool Tasks ........... ... ..., IvV-6-11
IV-7-1. Accessing Stream and Structured Files ........... ... ..o, IV-7-9
IV-7-2. File ACCessS MOAES  ....ciiiiiniiiiin it itiereeenennasnannnnns IV-7-9
IV-8-1. Index Performance Considerations .............ccveiieiernvennnann. IV-8-5
IV-9-1. Operation StatusRecord ........... et e i e IV-9-11
IV-10-1. Compatibility Of LOCKS . ... tvvituenetarnrenreereeeensonnnannns IV-10-6
IV-10-2. Lock Modes for Opened Device Locking .............ccivivnnennn.. IV-10-12
IV-11-1. Interaction of DBMS Calls .........ccuiiniiiiiniinininnnrennnnenns IV-11-10
V-3-1. Built-inControl Commands .............ciiuiiiniiieiinenrinrenenns V-3-5
V-3-2. Built-inRuntime Commands ..............cooiiiniiiiiiniiineranenns V-3-6
V-3-3. Argument Types ...ttt ittt ittt ittt V-3-8
V-3-4. Control Options for Runtime Commands .................ccovvien.... V-3-10
V-6-1. Examples of NumericFormatting ..........c.ccovtiiiienenennnenenans V-6-6
V-6-2. Examplesof Date Formatting .............cciiiiiiiniiiunnnneennnn. V-6-7
V-6-3. Default ScreenField Formats ..........c.ciitiiiiiiiniinnnnneenennn. V-6-7
V-6-4. Control Keys .....ociiiiiiiiiiiiiiiitiiiiiiieieneennnnaneneanns V-6-16
V-6-5. Application Keys ....... ..ottt ittt V-6-18
V-6-6. Information Keys . ......coouiuiiiiiiiiiii ittt V-6-19
V-8-1. Standard Report Default Formats ...............cciuiriiiiinnvennnnnn V-8-8
VI-1-1. Process Globals Entries ...........c.ciiiiiinerenennnnrnenenannnnns VI-1-11
VI-1-2, Local Event Values ........citiirnininnineierineennenonnnnannns VI-1-16
VII-5-1. Key GCOL Parameters . ........ccuuiteeeneenereenenenanaenaennnn VII-5-3
VII-5-2. GCOL Parameters to Start and Stop Special GCOL ................... VII-5-4
VIII-1-1. Distribution vs. Multiprocessing vs. Networking ..................... VIII-1-4
xxxviii Contents



FPRELIMINAKY

Part |

Introduction

This part of the BiiN""/OS Guide provides important concepts and basic programming tech-
niques that are used throughout the system and throughout this manual. You should read these
chapters before reading any subsequent chapters in this guide.

The chapters in this part are:

Concepts Provides an overview of the OS.

Services Areas and Services
Describes the organization of OS packages into service areas and services.

Ada Programming Techniques
Contains common Ada programming techniques used with system calls.
(A future release will add a chapter to describe C programming techniques
used with system calls.)

Part I Overview



PFRKELLIVIINAKY

Part I Overview



FKELIVMINAKY

CONCEPTS

Contents
BiiN™ OS FUNCHONAILY ...\ vvtttttt e etet e et eeeereteee e, I-1-2
Transparent Multiprocessing with Multiple Processors ..............cccovieinenn... I-1-2
Fault-Tolerant COmMpPULINE . ....vtitntntietnnenreeenneeenensenneoeneneneennns I-1-5
Transaction Processing and DBMS Support .........c.ciiiiiiiiniinnenenennn. I-1-7
Computing in a Distributed Environment - ............... 0ttt iiinnnnnnnnnn. I-1-8
Support for UNIX and ISO Standards .............ccoiiiiiiinininennennnennnn. I-1-8
Services for High-Function Applications ...............c.iiiiiiiinunnnnnnennn.. I-19
Transparent Resource Management for Easy Programming ....................... I-1-10
GettingReal Time Data . ........iiuieiiiiiiniiin ittt neeeeeannnnnennns I-1-10
System Administration and the Clearinghouse ................ ... iiiiinon... I-1-11
BiiN™ OS AICRILECIUIE ...\ttt te e e te e et e et et et e e e e e eeennanenenns I-1-12
SO BaSICS o ittt ittt ittt e i e e it e 1-1-13

Concepts

I-1-1



FRKELIVUNAKY

This chapter provides an overview of the BiiN™ operating system (OS) for BiiN™ computers.
It discusses:

e The functionality of the BiiN™ OS relative to other well-known operating systems such as
VAX/VMS and UNIX systems

e The object-oriented architecture of the BiiN™ OS.

The BiiN™ OS is accessed using System Services. These services provide a variety of opera-
tions.

I-1.1 BiiN™ OS Functionality

The OS is made up of logical groups of BiiN™ Ada packages. Each package contains system
calls to the BiiN™ OS. These services support and protect applications. These applications

can be:

multiprocessing  Providing a common queue of processes for execution by one of many
CPUs

Sfault tolerant Giving nearly continuous service that protects against accidental or mali-

cious destruction of information

transaction processing
Ensuring the integrity of system and application disk storage

distributed Supporting location-independent processing, local area networks, circuit
switched networks, and public packet switched networks.

In addition, there are several other important features and functions discussed in this chapter.

I-1.2 Transparent Multiprocessing with Multiple Processors

A single BiiN™ node can have multiple processors that share a common addressable memory.
Also, multiple computing nodes can be connected into a single distributed system that shares
data and resources between nodes. See Figure I-1-1.

1-1-2 Concepts



Concepts

PRELIMINARY

NODE 1
NODE 2
crul lcpul |cru /
l ]
|
SHARED SHARED
MEMORY DEVICES
NODE 3 NODE 4
NODE 5
NODE 6/

Figure I-1-1. Networked, Distributed, Multiprocessing Nodes

With the strategy employed by other systems, it’s difficult for different processes to share

memory (in particular, program variables).

e There’s no CPU support to efficiently synchronize access to shared data from multiple

processes.

e There aren’t primitives to help a scheduler make the right scheduling decisions. The
scheduler doesn’t know when processes are working on the same task and should be

scheduled together.

The BiiN™ OS supports the CPU with low-level primitives that handle multiprocessing. Un-
like most computer systems on the market today, BiiN™ systems have been designed—from
the VLSI-component level to the OS level—to support multiple processors.

Figure I-1-2 shows how the dispatcher handles multiprocessing.



FKELIVIINAKY

BLOCKED
PROCESS
C

SEMAPHORE

RUNNING
PROCESS A
(UNBLOCKED)

DISPATCHING

DISPATCHING
v Ny - -
READY READY
PROCESS //DRocsss ngéggs
B A n
C blocks on semaphore releasing CPU. CPU dequeues A and runs it

Figure I-1-2. How the Dispatcher Handles Multiprocessing

® A single processor is self-dispatching at a dispatching port.

¢ Synchronization and communications use high-level instructions:
— semaphore instructions,
— communication port instructions, and
— adispatching port instruction.

e The multiprocessing is transparent to users.

® Low-level scheduling (dispatching of processes) is performed by the CPU, with no direct
OS intervention. All CPUs share a common queue of processes, and the work load is
evenly shared among all CPUs.

® The CPU provides synchronization instructions. A synchronization CPU instruction can
suspend a process while allowing other processes to run. This is done without OS inter-
vention. Synchronization instructions such as semaphore locking and unlocking that
suspend and release a process are much less cycle-intensive than test-and-set instructions
that keep chewing up cycles.

e Computations are done as jobs. Initially, a job has one process. Your program can create
more processes in the same job. All processes in the same job can share the same address
space (for example, the same global program variables). The OS scheduler schedules jobs
rather than processes; it schedules jobs into and out of the dispatching mix based on exter-
nal priorities and resource constraints. It is quite possible for all the processes of a single
job to be simultaneously executing—each on a different processor.

I-14 Concepts



PRELIMINARY

I-1.3 Fault-Tolerant Computing

Concepts

In existing computer systems, protection mechanisms are very limited and have changed little
in the last 20 years. If any application or service makes an addressing error, it can overwrite or
otherwise corrupt data (or code) in many other parts of the system. Finding an error is difficult
because almost any application or service could have caused the error, not just the module that
detects the error. Because errors are not confined to one module or data structure, system
reliability is limited, and the system becomes less reliable as its software becomes more com-
plex.

The BiiN™ OS detects errors at their source (or, at minimum, nearby) and limits the damage
that any one program can cause. The hardware and the OS software work together to make
addressing violations impossible; no service can access code or data outside its protected ad-
dress space.

The non-stop, fault-tolerant engineering of the BiiN™ OS relies on the concept of a
confinement area within which an error is contained at the time of detection and repair. If a
bug is detected, then the damage is known to be confined to the address space accessible to
that program.

The BiiN™ OS supports hardware fault tolerance. The BiiN™ Series 20/40 Hardware System
Description and the BiiN™ Series 60/80 Hardware System Description describe hardware fault
tolerance.

OS support for hardware fault tolerance includes:

® You (or your system administrator) can choose a level of hardware fault tolerance for your
particular system configuration.

® You can monitor hardware operations for potential failures.

® You can configure redundant hardware to step in, for example, if a board fails. The
hardware-controlled "stepping in" occurs without interrupting your normal servicing.

Your system administrator determines policy. For example, if a board goes out and the system
recovers, decisions are required:

¢ Should the system maintain the same level of fault tolerance and run with fewer proces-
sors?

¢ Or, should the level of fault tolerance be set lower so that checking occurs without recovery
and all processors continue functioning?

The BiiN™ OS lets you control the outcome of these decisions. It also supports fault tolerance
by providing built-in redundancy. Figure I-1-3 shows how the BiiN™ OS aids fault tolerance.

I-1-5



I-1-6

PRELIMINARY

DISK
MIRRORING E File A Con1trol|er
= — File B
L Copy of File A Conéroller
E Copy of File B

LOGGING Log
Write ——s|  File A L

L Log file records
what happens to
File A.

The writes that

TRANSACTIONS R occurred during the
oliback interval between
%) Ty ond Ty are

A
we \e
Wrike ¥ ke e\ undone.
l L 2 ]
l ! | | |
T. T,

Line from A to
COMMUNICATIONS D/—\D C goes down.

Node A Node B

Automotik /
rerouting D

Node C

Figure I-1-3. How the BiiN™ OS Aids Fault Tolerance

o Volume sets can be mirrored. If a file exists on a mirrored volume set, the file exists on

two disks.

— If one disk or I/O controller goes down, the data on a mirrored volume set remains

accessible.

— Mirroring can be re-established (online and transparent to applications using the disk) if

the bad disk comes back up.

e Files and directories can be logged. Everything that happens to the file or directory can be
written to alog. After a disk crash, the file or directory can be restored from a previously
saved back-up copy. Once restored, the file can be rolled forward to a specific date/time

based on log entries.

® [Incomplete transactions are undone. If a system crash occurs before a transaction is com-
pleted, all effects of the transaction are automatically undone. (See the next section for

more on transactions.)

Concepts



E INALALALGVARINAANN K

Communication is automatically rerouted. The nodes in a multi-node system can be con-
nected with redundant connections controlled by separate I/O controllers. If a connection is
lost, communication gets rerouted.

I-1.4 Transaction Processing and DBMS Support

Transactions are a familiar concept to most mainframe DBMS users. Basically, transactions
group file writes so that either all occur at once, or none occur at all.

Concepts

Although transactions are primarily used to protect data in files, the BiiN™ OS extends the
concept of transactions to include directories and other resources managed by non-filing ser-
vices.

Most conventional systems build transactions into a database layer:

To use transactions, programmers are forced to learn a DBMS. Existing files and programs
must be converted to DBMS formats. This is acceptable for programmers who are familiar
with query languages such as SQL. It’s not, however, always the best solution for
programmers who want quick record access using the existing files of their ported applica-
tions.

Because conventional OS filing does not provide the right structures for database systems,
transactions build into a database layer can be hard to implement. DBMS software must
build file structures (for example, a file cache on top of virtual memory) using the primi-
tives supplied by the OS. This is inefficient.

Transactions and other DBMS filing functions are built into the BiiN™ OS. The BiiN™ filing
service offers:

UNIX-style byte stream files and special BiiN™ record files

hashed or b-tree indexes for record files

sequential, relative, clustered, hashed, and unordered file organizations
one or more key values (of multiple data types) for an index key

support for null values

true variable-length records and true variable-length fields within a record

integration with the BiiN™ Data Definition Facility (known in other systems as a data
dictionary facility).

record-level locking integrated with transaction-support

different levels of consistency including level 3 as defined by IBM SYSTEMR.
sorting and merging large collections of records

database joins, projects, and selects

logging, integrated with backup/restore, so that a file can be backed up and later rolled
forward from a log.

A major performance advantage of the BiiN" file service is file buffering that uses a file cache
in a special RAM-based stable store. Several configurations are available. For example:

A configuration that is fully duplicated, ECC protected (with spare-bit), battery-backed-up,
with each component powered by separate power supplies and separate batteries

I-1-7



FKELIVMINAKY

A configuration that is accessible from two busses (in case one bus goes down).

Because of the reliability of the stable store, writes to disks may be delayed indefinitely. Com-
pleting a transaction or closing a file may not cause a disk write.

I-1.5 Computing in a Distributed Environment

When large timesharing machines in the 1970s were shared by many users, data and file shar-
ing was easy. However, CPU cycles were hard to come by.

Today anyone can have a PC, workstation, or other node in a small local area network attached
to a mainframe or mini. CPU cycles may be plentiful, but program and data sharing between
nodes is complicated, often requiring communications, file transfers, and remote file access.
This is tricky to do without a knowledge of file naming conventions and network protocols.

The BiiN™ OS protects users from the complexity of inter-node communication between ser-
vices. For example, you can type a command at your home node and simultaneously run
programs at other machines that are accessing files from still other machines. The combined
file space of all nodes looks like a single file space.

e When a program runs, it sees the same current directory and home directory regardless of

the node it runs on.

There is no special naming for remote files. A file stored in your directory with the name
suppliers might be on any node on a distributed system. The program that accesses the
file (regardless of the node the program executes on) sees the same interface to the OS file
service.

You control where your program is run, but your system administrator controls which
nodes you can run on, and the quality-of-service you’ll get on each of these nodes.

You can control the location of your files (and other programming resources) and find out
where files needed by your program are located. For a program with lots of I/O, it is often
more efficient to run the program on the same node as the data, rather than bring the data to
the node running the program.

I-1.6 Support for UNIX and ISO Standards

The BiiN™ OS supports many industry standards, including:

I-1-8

System V Interface Definition for UNIX systems

Communication Protocols:

ISO Transport Class 4
- ISOFTAM

- X.25

- HDLC

LAN 802.3

|

IEEE Floating Point

Concepts



PRELIMINARY

These standards allow you to easily integrate your existing hardware and software into BiiN™
systems. Since UNIX System V-compatible calls are supported, you can port your existing
UNIX applications easily.

I-1.7 Services for High-Function Applications

Concepts

Many systems provide two address spaces within a process—one for an application and one for
the OS. Filing, program execution, and other supervisory routines reside in a monolithic ker-
nel. This is known as the two-space view.

As applications increase in function, they are becoming more complex. To build these high-
function applications, supporting services such as database, forms, and communications are
required. The dilemma faced by traditional two-space operating systems is how to fit these
supporting services to the OS.

There are three approaches to adding a service to a two-space operating system:

® Put the supporting service in the address space of the OS. The result? The OS increases in
size and complexity. The introduction of a new service (from which the rest of the OS
can’t be protected) results in lower OS reliability, and therefore reduced system reliability.
Typically, this is how communications is implemented.

® Put the supporting service in the address space of the application. This is often impossible
because the supporting service needs to access data and operations that the application isn’t
allowed to access. It becomes difficult to track down errors: an apparent malfunction in a
supporting service could be caused by a bug in the supporting service or the application
program. The bug might be as simple as using an uninitialized index variable to store into
an array.

® Put the supporting service in its own address space. This is the approach often taken by
mainframe DBMS software—it means putting the DBMS in its own process. The result?

— Invoking the supporting service from application programs can be awkward. Instead of
a simple call/return mechanism, costly inter-process communication must be used.

— Processing bottlenecks occur when different applications make requests at the same
time.

— There are problems in accounting, resource control, and protection. How does the re-
questing application get charged for its use of the service? How does the service know
the identity of the requestor? How does the service prevent one application from
swamping it with requests, at the expense of other applications?

In contrast, the BiiN™ solution gives each supporting service its own address space within a
process. This is known as the n-space view. Calls to a service are synchronously executed by
the user process itself. However, the data and operations of the called service are protected
from the caller by using a separate address space for the service.

Today’s high-function applications often need to use many supporting services. This demands
more than a simple 2-space view of the world. The BiiN™ OS provides a uniform call/return
mechanism that can be used by all services in the system—from supervisory routines to ap-
plications. Each service can have its own call stack, and can be used by the application the
same way you use an existing service (such as an OS filing service). This increases system
speed, reliability, and ease-of-use. Basically, the key to understanding the n-space view is
protection.

I-1-9



PRELIMINARY

‘A traditional "onion skin" view of the BiiN™ OS doesn’t convey how programs and data are

protected by the system. Each system service can have an invincible boundary of protection
built around the address space it occupies.

Compared to other operating systems:

e The BiiN™ OS is fast. Within a single process, each service can execute in its own address
space. A single call instruction takes care of switching address spaces. This form of call is
faster than most supervisor call instructions on other machines.

e The BiiN™ OS is reliable. Aninvoked service’s access to the caller’s address space is
limited to just the parameters passed by the caller. A service is protected from an applica-
tion, and an application is protected from a service. One service can invoke another service
using the same calling conventions.

e The BiiN™ OS is easy-to-use. A service executes in a user-invoked process. It does not
have to provide its own protection, resource control, and accounting mechanisms. With
less code, and fewer primitives to learn, you can concentrate on the service’s operations.

I-1.8 Transparent Resource Management for Easy

Programming

Many operations of the BiiN™ OS are executed transparently using virtual memory and file
buffering (with a little help from hardware):

® You can invoke and run several programs simultaneously. Each program runs as a job and
can appear as a window on your terminal screen.

¢ Job scheduling, memory space allocation, and file buffer space are handled automatically.

For example, the total of all address spaces for a job might be 2 MB, but your job really only
needs 500 KB of primary memory to run. Here’s what happens:

e When a job accesses a page not present in primary memory, a fault (invisible to the job) is
generated and the page gets swapped in.

e When the hardware reports that a page in primary memory has not been recently accessed,
the page is swapped out if changed previously.

I-1.9 Getting Real Time Data

I-1-10

Suppose you need to monitor the movement of robot vehicles on the floor of a factory. You
need a way to sense their movement, perform computations, and tell them what to do next—in
real time. You don’t want a lot of memory and 1/O overhead to do this; the robots would be
crashing into each other because of the time delays.

The BiiN™ OS stays out of the way and lets the hardware do much of the work:

e As your program executes, -application-defined interrupt handlers are invoked without OS
intervention.

e Low-level scheduling and synchronization is handled by the CPU. |

e Low-level scheduling is priority-based with preemption.

Concepts



PRELIMINARY

Consider an interrupt procedure that gets invoked due to a signal from a robot vehicle. The
procedure might do some processing and then signal a semaphore to cause a suspended real-
time process to run. The OS just stays out of the way and lets the hardware do the work.

The BiiN™ OS supports real-time programming:

Your system administrator can define different real-time scheduling levels and grant access
to specific users/programs for a particular level.

— A real-time program can run at a high-priority level.

— The job remains in the dispatching mix (managed by hardware), and bypasses the OS
scheduler.

A real-time program can spawn multiple processes within the same job. Each process can
run at a different priority.

— Processes can communicate information using shared memory and can synchronize
using semaphores.

— The hardware also provides a message-passing mechanism (ports) that uses Send and
Receive instructions. Like semaphores, the port mechanism is integrated with
hardware dispatching.

A real-time job can run with its entire address space in primary memory (that is, in frozen,
non-relocatable memory). When this occurs, the job will not encounter any virtual memory
faults.

Real-time data collection programs can quickly stream large amounts of data to and from
disk, with minimal disk head movement.

— The filing service lays out files contiguously on disk using extents.
— The file buffer management strategy is read-ahead and write-behind.
— Indexes and file records can be placed on different physical disks.

I-1.10 System Administration and the Clearinghouse

What is a "Clearinghouse?" Basically, it’s a location-server database that lets a system ad-
ministrator easily control and administer a network of nodes. The Clearinghouse maintains a
record of which objects and IDs are at which nodes.

Concepts

With most distributed computer systems, it’s difficult to administer networks that consist of
more than a handful of nodes:

To add a new node to a network, the system administrator has to modify configuration data
for all nodes.

Additional modifications are required if a node is moved from one local network to
another.

Often, a file name previously used to access a file on a node must be changed when the
node is relocated.

If a node goes down with a bad board, there is no way to easily move the node’s disk to
another node.

I-1-11



FEKELLIVIINAKYX

To remedy this situation, the BiiN™ OS maintains a database of information about nodes,
users, volume sets, and distributed services—the Clearinghouse.

® The system administrator adds information using a Clearinghouse utility.
¢ The information is duplicated on a few key nodes, and is available to all nodes.
e When node 1 needs information about node 2, it asks the Clearinghouse.

¢ The system administrator can select which nodes have Clearinghouse data, and which por-
tion of the total Clearinghouse database they contain.

Suppose, for example, that node 1 contains a volume set (a logical disk). Your system ad-
ministrator can move the volume set from node 1 to node 2 (perhaps on a different local
network) by changing the I/O configurations of nodes 1 and 2. This does not affect users and
programs that previously accessed files on the volume set. All file names remain the same, and
appear as if they are on your home node.

I-1.11 BiiN™ OS Architecture

I-1-12

System Services consist of several distinct service areas such as I/O Services. These service
areas consist of one or more system services such as the filing service. Each service controls a
certain part of the system, and all services interact.

Figure 1I-1-4 illustrates the relationship between services, packages, and calls.

SERVICE
AREA SERVICE PACKAGE CALL

PRI
O

{1

BiiN /0S <

A

A

EXAMPLE: A 1/0 Services
O filing service
] File_Admin
— Create_file

Figure I-1-4. The OS Interface is Made up of Services, Packages, and Calls

Concepts



PRELIMINARY

I-1.12 Some Basics

Concepts

Each service executes in its own address space. This space is broken up into individual
protected segments of memory called objects. One way to think of this decomposition is to
imagine a box of building blocks. The blocks—triangles, squares, rectangles, and so
forth—can be combined to form different structures such as bridges and houses.

One structure (for example, a bridge) is independent from another structure (for example, a
house), yet all structures are composed of the same basic blocks. In this analogy the dif-
ferently shaped blocks are objects, and the structures correspond to services. All blocks of the
same shape have the same characteristics. Similarly, every object has a "type", and all objects
of the same type have the same characteristics.

An object is sometimes referred to as a system object to distinguish it from a BiiN™ Ada object.
(A BiiN™ Ada object is a variable or construct—see the BiiN™ Ada Language Reference
Manual.) However, when you see the term object used in this manual, it refers to system
object unless otherwise specified.

Think of an object as a resource managed by a service. For example, a file is represented as an
object of type "file" that is managed by the filing service. Each individual service controls
access to its objects.

Existing operating systems provide two mechanisms to name files, I/O channels, users,
processes, and nodes (that is, their "objects"):

names Symbolic names that you assign to objects, and
identifiers Binary digits that provide an efficient means for a program to identify an
object.

Each "object" in existing systems usually can be referenced by an identifier. In general, the
format for identifiers of each object type is different—an I/O channel identifier has a different
format than a user identifier. The mapping of names to identifiers is also different for each
object type.

In contrast, the BiiN™ OS supports one form of identifier (actually in hardware) for its objects.
This allows identifiers for different object types to be distinguished. It also permits universal
name mapping.

BiiN™ OS identifiers serve several functions:

e They contain the addresses of the objects they correspond to (that is, they function as
conventional pointers).

e They specify the rights of the calling program to use the objects managed by a service.
e They can be used to find out the type of object they reference.

This manual uses the term access descriptor or AD to refer to the object used by the BiiN™ OS.
Figure I-1-5 shows how ADs specify the calls you are allowed to make.

I-1-13



FKELIMINAKY

A caller with my_AD can Open, Create, Rename, or Delete.

Type Rights P -——
7
111 / .
my_AD /Open, The ‘naming
L Create, service is
List Rights On Rename, ]ng mgnoger
——Store Rights On Delete directory
Control Rights On { object.
\
directory object \
> \
\, Package
-~ -

— —

FILING SERVICES

your _AD 001

I— List Rights On
l— Store Rights Off
Control Rights Off

A caller with your_AD can only Open the directory.

Figure I-1-5. ADs Provide Access and Protection to Services

The caller withmy_AD can make the calls Open, Create, Rename, and Delete. The
directory service processes those calls. The identifier my_AD controls the caller’s access.
Similarly, the caller with your_AD can only Open the directory (for reading).

I-1.12.0.1 What Is A System Object?

A system object is a protected segment of memory.

A system object is distinct from a BiiN™ Ada object (an entity that contains a value of a certain

‘type). Whenever you see the unqualified use of the term object in this manual, it means system
object.

There are many types of objects, including file, directory, and pipe objects. Each type of
object can have multiple instances (for example, there might be several instances of an object
of type "pipe” in memory at any particular moment).

1-1-14 Concepts



PRELIMINARY

1-1.12.0.2 How Are System Objects Protected?

System objects are protected from unauthorized reference. Access to an object is restricted to
software with a "need to know" about the object. Access can be controlled at the level of
individual data structures and procedures through the use of an AD. Each call requires the use
of one or more ADs.

Each memory word has a tag to indicate whether or not it is an AD. ADs can only be manipu-
lated in controlled ways and with special instructions, all designed to make accidental or mali-
cious violations of the object protection mechanism impossible.

ADs are also protected pointers to data structures and correspond to the pointer values sup-
ported by some programming languages. For example, a BiiN™ Ada access value can be
represented as an AD. ADs are also synonymous with the protected pointers called
capabilities provided by some object-oriented computer architectures.

There can be multiple ADs for an object, and different ADs can grant different access rights.
There are two classes of access rights:

type rights There are three type rights. Each right corresponds to a set of operations
that manipulate an object. The type rights used by the operating system
are usually mapped to use, modify, or control. A caller can have any com-
bination of the three type rights.

rep rights There are two representation ("rep") rights. They are used to control ac-
cess to the contents of an object (using CPU instructions directly). These
are only important to you if you’re creating your own service. See "Type
Manager Services."

An understanding of type rights is helpful for most OS programming. Figure I-1-6 shows an
AD with type rights.

Concepts I-1-15



I-1-16

PFKELIVIINAKY

Access Descriptor
TITLT

Use
Modify Type Rights

Control

Object

Figure I-1-6. An AD Showing Type Rights

Type rights are:

use Required to retrieve information from an object, without changing it. Cor-
respond to a set of operations provided by the service that manages the
object.

modify Required to modify an object, without destroying it or changing its basic
nature. Correspond to a set of operations provided by the service that
manages the object. When compared with use rights, modify rights give a
user additional operations to manipulate the object.

control Required to destroy or restructure an object.

Different services sometimes map their rights to variant names. For example, use
rights—needed to read a file—in the filing service corresponds to the same level of access as
list rights—needed to list the contents of a directory—in the directory service.

Two programs can have ADs for a shared object, with one having only use rights and the other
having only modify rights. An AD can also be null, indicating that it references no object. For
example, objects can be linked together in a list, with each object containing an AD that
references the next list element. The last object in the list would contain a null AD in the link
field, indicating that there are no more list elements.

ADs can be freely copied. It is normal to pass a copy of an AD to a called subprogram to
specify an object as a parameter. The rights on an AD are often restricted when it is copied:
some rights are removed from the copy, leaving only those rights needed by the subprogram
that receives the copy.

Concepts



PRELIMINARY

Adding rights to an AD is called amplifying those rights. Only the service that manages the
object is allowed to amplify its rights. See "Type Manager Services" for details.

Concepts 1-1-17



FKELLVIINAKY

1-1-18 Concepts



PRELIMINARY

SERVICE AREAS AND SERVICES

Contents
e 4 (oI N (- T I-2-3
SUPPOIT SeIVICES .. i ittt ittt it ittt ittt ieianeeenaeenanansasonannnnenas I-2-3
Uty SeIViCe . .i ittt ittt ittt ittt iereecneonesoeansonsneansanss 1-2-3
(0031701 3 4 o AP I-2-4
TTanSaCtioN SeIVICE . ... .'virrin ittt ie i it ieeeernsaanonsasnonennns I-24
MESSage SeIVICE ..t ii ittt ittt ittt et I-24
DA IOy SeIVICES . it i it ie ittt attee e teeaeiaasseaeneesonenoaneansannsnn I-2-5
NamIng SeIVICE ...ttt i ittt i et iae s enaneanasnsoneass I-2-5
ProteCtOn SEIVICE ... ittt it ittt iieern it raensnsnootosesssosonsnss I-2-5
1O SIVICES .o ivii ittt ie e it it ettt e e e I-2-5
BasiCI/O ServiCe .....oiiiiii ittt i i it i e e e e I-2-6
Character Terminal SEIVICE . .......oiiiiiiininienneenenenenenenennnnnns I-2-6
v LA TS TGN I-2-6
SPOOL SeIVICE .. ittt i i i i e e e e e e i e I-2-6
Filing SeIVICE ..o ititii ittt it ittt ittt et teeaeneenanaanaaas I-2-6
Database SuppOrt SeIVICE . ... ..t iitit ittt e e e e 1-2-7
Data Definition Service ........ciuiiiiiiiiiininnenennenenenenenenennnn I-2-7
Volume Set ServiCe .. ...oiiiiii ittt ittt i e I-2-7
Basic Disk Service ........coiiiiiiiiiii i e e e I-2-7
Basic Streamer ServiCe .........iiiiiiiit i i e e e it I-2-8
Null Device Service ................ A PPN I-2-8
Human Interface Services . .........c.ciuiiiniiiiiin i en it iieieineeenanennn I-2-8
Command SerViCe . ......iuiiiiiiiii ittt s I-2-8
FOm Service ...t i i i e e e e e e I-2-8
REPOIt SeIVICE ..ot ittt it i it it it ettt et aaenanaanenas I-2-8
Program Services . .....itiii i i e e et e e I-2-9
Concurrent Programming Service .............c.cuuiiieiiennenenneennnnns. I-2-9
Scheduling Service ........iiiiiiiiii i i it e et i 1-2-9
TimMiNgG SeIVICE . ...ttt it it e ettt e e I-2-10
RESOUICE SEIVICE ...ttt ittt et it ettt enennas I-2-10
Program Building Service .......... ... i 1-2-10
1% (0] 11102 g 4 et I-2-11
Type Manager SEIVICES ... ...ttt it ittt it I-2-11
TM ObJeCt SeIVICE ..t it ittt ittt ittt ettt tee ettt tietieenaannnns I-2-11
TM Transacton SeIVICE .. ...\ iuititr it initnneneneneenenanenenennnnnn I-2-11
TM Concurrent Programming SEIviCe ..........ccuveienvnnneeneenenennnns I-2-12
Configuration SeIviCe .........uiiiiitn ittt ittt ittt I-2-12
Custom Naming Service ...........coiiiiiiiiiiiii it iiiinenenennn. 1-2-12
BacKuUD SeIVICE ..ot e e e I-2-12
DiStribution SEIVICES .. ...ttt ittt i e e e e [-2-13
Clearinghouse ServiCe ..........ivuiiinin ittt it innenannnnnn I-2-13

Service Areas and Services ' I-2-1



I-2-2

FKELIMINAKY

RPC SIVICE ..ttt ittt ittt ittt teeeteeareneeeeeenassoneeennennens I-2-13
TranSPOIt SEIVICE ... .ttt iieieien it ineteraneeonencanensannnas I-2-13
VI SEIVICES .. i ittt ittt ittt ie it et a et I-2-14
Device DIVEr SeIVICE .. .iiiti ittt it ittt ittt ienrnnenennenns 1-2-14
Shared QUeUE SeIVICE ... i ittt ittt it ettt ittt ettt eneeeneeneeanns I-2-15
Asynchronous Communication SErvice ..........cvuiiierenrenrnrnrnnnanann I-2-15
Mass StOrage SeIVICE .. ...vviiiiiiieiiin it ereaneereeneneeoeacaannas I-2-15
N O3 =) o (O 1-2-15
L4 T A3 ¥4 (o I-2-15
5 €0 IO o7 (T TP 1-2-16
LAN SeIVICE ..ottt ittt ittt ittt it ienenteeannseeanennnennens 1-2-16

Service Areas and Services



PRELIMINARY

This chapter briefly describes the OS as a collection of services and service areas. A service is
simply a logical collection of packages. A service area is alogical collection of services.
Services and service areas define a logical organization of the OS, for documentation and
learning purposes. '

Often, a service manages one or more closely related object types. For example, the naming
service manages directories, open directories, name spaces, open name spaces, and symbolic
links.

Packages listed in this chapter can be found in the BiiN™/OS Reference Manual.

I-2.1 Service Areas

There are eight service areas:

Support Services Often-used basic services, including system definitions, utility packages,
object management, transactions, and messages.

Directory Services Manages directories, directory lists (name spaces), symbolic links, and the
authority lists and IDs used to protect directory entries.

1/O Services Provides byte-stream, record, and character display I/O. Manages files,
character terminals, character terminal windows, printers, spool queues,
~ and other I/O devices.

Human Interface Services
Provides commands, forms, and reports used to interact with users.

Program Services Provides various program execution services including concurrent pro-
gramming, scheduling, timing, resource control and accounting, and
program monitoring.

Type Manager Services
Provides special OS interfaces for trusted type managers, including access
to global memory and participation in system configuration.

Distribution Services
Provides services used to build distributed applications that execute trans-

parently in a distributed BiiN™" system.
Device Services  Provides services used to build new device drivers and device managers.

I-2.2 Support Services

Support Services contains:

utility service
object service
transaction service
message service.

I-2.2.1 Utility Service
Manages system definitions, text strings, and long integers.

Long Integer Defs
Defines types and calls for 64-bit long integers.

Service Areas and Services 1-2-3



FKELLVIINAKY

Machine_Code_Insertion
Provides useful operations that map to inline CPU instructions.

String_List_ Mgt
Provides operations on string lists.

System Provides implementation-defined (as opposed to Ada-defined) types and
constants.

System Defs Provides common definitions used throughout the OS.

System_Exceptions
Defines common exceptions.

Text_Mgt Provides operations on text records.

1-2.2.2 Object Service

Manages objects, access to objects, and storage of objects.

Access_Mgt Interface for checking or changing rights in access descriptors.

Attribute Mgt
Provides a way to define general-purpose operations supported by multiple
object types or objects, with different type-specific or object-specific im-
plementations.

Object Mgt Provides basic calls for object allocation, typing, and storage management.
Defines access rights in ADs.

Passive_Store Mgt
Provides a distributed object filing system.

1-2.2.3 Transaction Service

Manages transactions.

Transaction_Mgt

Provides transactions used to group a series of related changes to objects
so that either all the changes succeed or all are rolled back.

1-2.2.4 Message Service

1-2-4

Manages system and application errors and messages.

History_ Services
Contains calls for using a job’s history log files. See also the built-in ‘¢
.history log’’ commands, and the : :history control option, in the
Command Language Executive Guide.

Incident_Defs
Defines incident and message types.

Message_ Adm Manages message files used by Message Services.

Message_ Services
Provides calls to write messages from message files, message stacks, or
message blocks.
Message_ Stack Mgt
Manages a process’s message stack.
Msg Object_Defs
Defines the four message objects used by the operating system.

Service Areas and Services



PRELIMINARY

System Error_ Recording
Provides calls to record errors in a system log file.

I-2.3 Directory Services

Directory Services contains:

naming service
protection service.

1-2.3.1 Naming Service
Manages directories, lists of directories, and symbolic links.

Directory Mgt
Manages directories and directory entries.

Name_Space_Mgt
Provides calls to manage name spaces (lists of directories).

Symbolic_Link Mgt
Provides calls to create, list, and identify symbolic links.

[-2.3.2 Protection Service
Manages authority lists, IDs, and user profiles.

Authority List_Mgt
Provides calls to manage authority lists and to evaluate a caller’s access
rights to objects protected by authority lists.

Identification_Admin
Provides calls to create and modify IDs, and to modify an ID’s user
profile.

Identification Mgt
Provides operations to manage IDs and ID lists.

User_ Mgt Provides calls to manage a user’s protection set and user profile.

I1-2.4 1/O Services

1/0O Services contains:

basic I/O service
character terminal service
print service

spool service

filing service

database support service
data definition service
volume set service
basic disk service

basic streamer service
null device service.

Service Areas and Services 1-2-5



OINDLAIVALIINAI I

I-2.4.1 Basic I/0O Service

Manages byte stream I/O, common I/O definitions, and byte stream files.
Byte_Stream AM

Provides device-independent I/O using streams of bytes.
Device_Defs Declares common I/O types, constants, and exceptions.
Simple File Admin

Manages stream files.

1-2.4.2 Character Terminal Service

Manages character terminals and character terminal windows.

Character_Display_ AM

Provides device-independent I/O to character display devices such as
printers, plotters, and windows on character and graphics terminals.

Character_Terminal Mgt
Manages character terminals.

Terminal_ Admin
Provides administrative operations for terminals.
Terminal Defs

Defines constants, types, and exceptions used by the terminal service
packages.

Terminal_Info
Manages terminfo entries.

Window_Services

Provides windows on character and graphics terminals, including pull-
down menus.

1-2.4.3 Print Service
Manages printers.
Printer Admin
Provides administrative operations for printers.
I-2.4.4 Spool Service
Manages spool queues.

Spool_Defs Declares types and constants used by spooling packages.
Spool_Device Mgt
Manages spool devices.

Spool_Queue Admin
Provides administrative calls for spool queues.

I-2.4.5 Filing Service
Manages files and records.

File_Admin Administers files.

1-2-6 Service Areas and Services



PRELIMINARY

File_ Defs Provides declarations used for filing and indexing.
Record AM Provides device-independent record I/O.

1-2.4.6 Database Support Service
Provides advanced or trusted interfaces to support DBMSs (database management systems).

Join_Interface
Provides support for block joins of records from multiple indexed files or
record stream devices.

Record_Processing_Support
Provides specialized support for processing collections of records.

Sort_Merge_ Interface
Sorts and merges records from one or more input devices into a single
ordered record stream.

Trusted Record Processing_Support
Provides specialized support for processing collections of records using
user-supplied routines.

I-2.4.7 Data Definition Service
Manages data definitions.

Data_Definition_ Mgt
Manages data definitions (DDefs). This interface is a symbol table for the
development of a DDef compiler.

DDF_Utility_ Support
Defines DDef properties used by services other than the data definition
service.

Field Access Provides buffer access to fields in records that reference data definitions
(DDefs).

[-2.4.8 Volume Set Service
Manages volume sets.

Volume_Set_Admin
Manages volume sets.

Volume Set Defs
Defines types, constants, and type-checking for volume sets and volume
set disks.

VSM_Disk_Admin
Provides administrative and information calls for volume set disks.

VSM Disk_ Support
Provides calls to initialize a volume set disk, verify the allocated space on
a disk, and remove a volume from a volume set disk.

I-2.4.9 Basic Disk Service

Manages basic disks.

Basic_Disk Mgt
Manages basic disks.

Service Areas and Services I-2-7



PKELLVIINAKY

1-2.4.10 Basic Streamer Service
Manages basic streamers, representing streaming tape drives.

Basic_Streamer Mgt
Manages basic streamer devices.

1-2.4.11 Null Device Service

Manages null devices, used as "bit buckets" that discard all output and provide an immediate
end-of-file for input.

Nuldev_Mgt Manages null devices. Null devices support byte stream I/O and record
I/0.

I-2.5 Human Interface Services

Human Interface Services contains:

command service
form service
report service.

1-2.5.1 Command Service

Supports application-defined commands and command sets, and manipulation of command
language variables and of command help texts.

CL_Defs Contains declarations used by the command service, for processing com-
mand language (CL) arguments and variables.

Command_Execution
Contains a procedural interface to command execution.

Command_Handler
Contains operations for reading and processing program commands and
arguments.

Environment Mgt
Contains operations to get, set, or remove local and global environment
variables.

Help_ Text Adm
Manages command and form help texts.
1-2.5.2 Form Service
Manages forms.

Form Defs Defines types and constants used by the Form_Handler package.
Form Handler Provides calls to process, control, and change forms.

I-2.5.3 Report Service
Manages reports.

Report_Handler
Provides calls for initializing and printing a report.

1-2-8 Service Areas and Services



FKELILVIINAKYX

I-2.6 Program Services

Program Services contains:

concurrent programming service
scheduling service

timing service

resource service

program building service
monitor service.

I-2.6.1 Concurrent Programming Service

Supports concurrent programs, programs with multiple processes or jobs executing together.

Event_Admin Provides Establish_event handler and Change event
state calls for administrative users, more powerful than the correspond-
ing calls in Event_Mgt.

Event_ Mgt Manages event clusters. Event clusters provide distributed communica-
tions and software interrupts for processes.

Job_Admin Provide a more powerful Invoke_job call for administrative users.

Job_Mgt Provides public operations on jobs.

Job_Types Declares types and type rights for jobs.

Pipe Mgt Manages pipes. A pipe is a one-way interprocess or interjob I/O channel.

Pipes support byte stream I/O and record I/O.

Process_Admin
Provides more powerful Spawn_process and Set_process__
globals calls for administrative users.

Process Mgt Provides public operations on processes.

Process_Mgt_ Types
Declares types and type rights for processes.

Semaphore Mgt '
Manages semaphores. Semaphores can be used to synchronize concurrent
access to shared data structures or resources.

Session_Admin
Provides administrative operations on sessions.

Session Mgt Provides public operations on sessions.

Session_Types
Declares types and type rights for sessions.

I-2.6.2 Scheduling Service
Manages scheduling of jobs and processes.

SSO_Admin Provides calls to create and modify Scheduling Service Objects (SSOs).

SSO_Types Defines job scheduling classes, Scheduling Service Objects (SSOs), and
SSO messages. Also provides a function to determine whether an AD
references an SSO.

Service Areas and Services 1-2-9



IRELLVIANAKYX

1-2.6.3 Timing Service
Manages system time, timed requests, time computations, and time format conversions.

Clock_Mgt Manages a node’s system clock.

Protection_Key_ Mgt
Manages protection keys.
Time_Zone_Map
Provides calls to map between time zones and time zone names.

Timed Requests_ Mgt
Supports the scheduling of timed requests at a node and provides access to
the node’s system clock.

Timing_Admin Provides calls for manipulating timed request queues and setting the local
time zone.

Timing Conversions
Provides calls for converting between numeric representations of time and
other representations, and for obtaining the local time zone.

Timing_String Conversions
Provides calls for converting between string representations of time and
other representations.

Timing Utilities
Provides calls to inquire about timed requests.

1-2.6.4 Resource Service
Supports resource control and accounting.

Resource_Mgt Provides distributed resource management.

Resource_ Mgt AM
Provides the type manager’s interface to resource management, including
the resource administration attribute.

Resource_Types
Defines constants and types used for resource management.

Resource_ Utilities
Implements resource accounting.

1-2.6.5 Program Building Service

Supports programs that build or manipulate programs, such as compilers, linkers, and debug-
gers.

Control Types
Defines a process’s arithmetic controls, process controls, and trace con-
trols.

Debug_Support
Supports the debugger by providing access to a process’s domain object,
static data object, instruction object, control stack, process controls, and
other structures.

Domain_Mgt Provides calls to check whether an AD references a domain object, an
instruction object, a static data object, or a stack object.

I-2-10 Service Areas and Services



FKELILVINAKYX

Execution_Support
Supports the execution of executable objects.

Link_By Call Supports finding and calling an arbitrary subprogram at runtime. The sub-
program must be in an image module or view and be interdomain-callable.

Program Mgt Supports program invocation and the retrieval of program-related infor-
mation.

RTS_Support  Supports language-defined runtime systems (RTSs).

1-2.6.6 Monitor Service
Supports monitoring of program execution.

Monitor Defs Defines types used by Monitor Mgt.
Monitor_ Mgt  Manages monitors used to record information about program execution.

I-2.7 Type Manager Services

Type Manager Services contains:

TM object service

TM transaction service

TM concurrent programming service
configuration service

custom naming service

backup service.

1-2.7.1 TM Object Service

Provides object and memory operations for building advanced type managers.
Countable Object Mgt
Supports type managers of countable global objects.

Global_ SRO Defs
Provides access to the global SROs used to allocate global objects.

Lifetime_Control
Provides a trusted interface for creating and managing lifetime violations.

PSM _Trusted Attributes
Defines the passive store trusted attribute.

SRO_Mgt Provides memory management information and control of local garbage
collection for local storage resource objects (SROs).

Unsafe Object Mgt
Provides special object allocation and deallocation calls.

1-2.7.2 TM Transaction Service
Manages transactions within a type manager.

Local Transaction_Defs

Defines the per-object record used by instantiations of the Local
Transaction_Mgt generic package.

Local_Transaction Mgt
Provides transaction-oriented locking for type managers of local objects.

Service Areas and Services 1-2-11



PRKELIMINARY

TM_Transaction_Mgt
Supports global transaction-oriented type managers that customize their
participation in transactions. See Transaction_Mgt for a general
description of the transaction service.

1-2.7.3 TM Concurrent Programming Service
Provides concurrent programming support for advanced type managers.

Job_Resource_ Reclamation
Supports type managers that reclaim resources when a job is terminating.

Port Mgt Provides fast interprocess communication within a job.

Typemgr_Support
Supports masked type managers implementing blocking operations.

Unsafe_Port_ Mgt .
Provides unsafe deallocation for ports.

Unsafe_Semaphore_ Mgt
Provides unsafe deallocation for semaphores.

I-2.7.4 Configuration Service

Defines how type managers configure themselves during system initialization, or dynamically
reconfigure themselves at runtime.

Configuration
Provides operations for creating and modifying a system configuration.

I-2.7.5 Custom Naming Service
Supports custom directories and custom links.

Customized Name Mgt
Provides a call to retrieve the name mapper attribute and an .Ops inter-
face package for implementing customized name mappers.

Link Mgt Provides a call to return the link attribute ID.

Standalone_Directory_ Mgt
Provides the Create_standalone_directory call

1-2.7.6 Backup Service

Supports type managers that participate in backup, logging, restore, or rollforward operations.

Backup_Support
Defines the backup attribute that trusted type managers can implement to
support backup and recovery. This package is not implemented in this
release. Its specification is included to provide design information about
the backup service.

Trusted Log Mgt
Provides trusted type managers with calls for writing to the system logs.
This package is not implemented in this release. Its specification is in-
cluded to provide design information about the backup service.

1-2-12 Service Areas and Services



PRELIMINARY

I1-2.7.7 Distribution Services

Distribution Services contain:

clearinghouse service
RPC service
transport service.

1-2.7.8 Clearinghouse Service

Manages the Clearinghouse, used to find network addresses, volume sets, and other infor-
mation in a distributed system.

CH_Admin Manages Clearinghouse administrators, and provides calls for ad-
ministrators to add and delete servers, organizations, domains, and en-
vironments.

CH_Client Manages Clearinghouse entries and entry properties.

CH_Support Provides calls to find out about the Clearinghouse structure, to modify
client key, and to check access to environments. Also provides calls to
administer an environment.

Node_ID Mapping
Provides calls for getting node ID and naming information,

1-2.7.9 RPC Service

Provides a remote procedure call (RPC) mechanism for communicating between instances of a
service at different nodes in a distributed system.
RPC_Admin Provides administrative RPC calls.

RPC_Call_Support
Provides functions for remote procedure calling.

RPC_Mgt Provides a remote procedure call (RPC) facility used to implement dis-
tributed services.

1-2.7.10 Transport Service
Provides network-independent communication between nodes.
Comm_Defs Contains common addressing and buffer definitions for the communication
services. See also TM_Comm_Defs and Subnet_Defs.
Datagram AM Provides service-independent datagram communications.
DG_Filter Mgt

Defines datagram 1/O filter functions. See also VC_Filter_ Mgt for vir-
tual circuit I/O filter functions.

Distributed_Service_ Admin

Provides calls for building universal distributed services.
Distributed Service_ Mgt

Provides features needed by distributed service implementers.
ISO_Adr Defs Defines ISO-specific NSAP, TSAP and TCP addresses, and several func-

tions for converting between Comm_Def's byte addresses and ISO ad-
dresses.

Service Areas and Services 1-2-13



PRELIMINARY

ISO_Config Defs ‘
Defines parameter records and incident codes for creating ISO transport
services, including direct and indirect subnetworks, and gateways. See
also the ISO_Adr_ Defs package.

ISO_TM Admin Provides operations to enable and disable communications tracing, and to
get ISO-specific status information.

TM_Comm_Defs Contains common definitions for transport services. See also the Comm__
Defs and Subnet_Defs packages.

VC_Filter Mgt
Defines virtual circuit I/O filter functions. See also DG_Filter_ Mgt for
datagram I/O filter functions.

Virtual Circuit_AM
Provides service-independent virtual circuit communications.

I-2.8 Device Services

Device Services contains:

device driver service

shared queue service

asynchronous communication service
mass storage service

SCSI service

subnet service

HDLC service

LAN service.

I-2.8.1 Device Driver Service
Provides interfaces used to build device drivers.

CP_IO_Defs Contains declarations used for communicating with Channel Processors
(CPs).

CP_Mgt This package defines the types used in communicating with a Channel
Processor (CP). This includes the format of various data structures used
by a Channel Processor. Furthermore, the Send_to_CP operation is
defined here. It forwards an I/O message to a Channel Processor for ser-
vice.

CP_Resources Defines the CP resources attribute.
DD_Support Supports directly-connected device drivers.

Handling Support
Provides calls to save and restore global registers.

Interrupt_Handling Support
Manages interrupt handlers.

IO Messages Defs
Defines the I/O messages mechanism interface.

IO_Messages_ Ops
Provides driver-independent 1/O message calls for device drivers.

Region_3_Support
Provides a call for installing macrocode in Region 3.

I-2-14 Service Areas and Services



PRELIMINARY

1-2.8.2 Shared Queue Service
Supports device drivers using the shared queues mechanism for low-speed 1/0.

Cluster_Service
Manages cluster servers.

IO_Shared Queues
Defines the shared queues I/O mechanism.

1-2.8.3 Asynchronous Communication Service
Defines the OS asynchronous device driver.

Async_Defs Defines the asynchronous device class.

I-2.8.4 Mass Storage Service
Defines the OS interface to mass storage drivers (various SCSI devices and future IPI devices).

Bus_Independent_Disk_Defs
Defines disk command and reply codes that are independent of any par-
ticular I/O bus, such as SCSI or IPIL.

Bus_Independent_Streamer Defs
Defines command and reply codes for streaming tape drives that are inde-
pendent of any particular I/O bus, such as SCSI or IPI.

Bus_Independent_Tape_Defs
Defines command and reply codes for start/stop tape drives that are inde-
pendent of any particular I/O bus, such as SCSI or IP1.

Mass_Store_Reply Codes
Defines I/0 message reply classes and reply codes for mass storage
devices.

MS_Configuration_Defs
Defines I/O message command codes and reply codes used to configure
mass storage device.

1-2.8.5 SCSI Service
Defines the bus-specific interface to the SCSI bus.

CP_SCSI_Defs Defines CP resources and data structures used to communicate with an
SCSI mass storage 1/0 subsystem.

CP_SCSI_Mgt Defines type-checking calls for SCSI buses, controllers, and devices.

SCSI_Bus_Dependent_Defs
Defines bus-specific commands and replies for the SCSI (Small Computer
System Interface) I/O bus.

1-2.8.6 Subnet Service
Supports network-independent communication between nodes within a subnet.

Carrier_ Mgt Defines communication carriers and functions for manipulating carriers.
Communication carriers are used for carrying user data, protocol data, and
local control information.

Service Areas and Services 1-2-15



FKELLVIINAKYX

Subnet_CL_AM Defines connectionless (CL) subnetwork 1/O calls. For connection-
oriented subnet calls, see the Subnet_ CO_AM package.

Subnet_CO_AM Common interface to connection-oriented (CO) subnet I/O calls.

Subnet_Defs Contains definitions used by other subnetwork (subnet) communication
packages. See also the Comm _Defs and TM Comm_Defs packages.

Trace_Defs Contains types and definitions for tracing communications. Each com-
munications service provider defines the procedural interface for tracing its
own communications; for an example, see the ISO_TM Admin package.

Trace_Support
Manages tracing of network communications.

I1-2.8.7 HDLC Service

Defines the OS interface to the HDLC protocol.
HDLC_Mgt Manages HDLC subnetworks.

1-2.8.8 LAN Service

1-2-16

Defines the OS interface to Local Area Network protocols.
CSMA_CO_Defs Defines parameters and codes for the Intel 82588 Local Area Network
controller.

Ethernet_LAN Mgt
Manages Ethemet subnetworks.

IEEE8023 LAN Mgt
Manages IEEE 802.2/802.3 subnetworks.

Service Areas and Services



PRELIMINARY

ADA PROGRAMMING TECHNIQUES

Contents
L @04 173 o) - P I-3-2
Working with POINters ...........ouiitiniiiiieientnineeeenenenreeanss I-3-2
Common Types in the Systemand System_Defs Packages ................ 1-3-2
Standard System EXCEPHONS . .....ciiititirinnnenernrereineanneeennns I-3-3
Package-level and Subprogram-level Variables .................. ... .o oL, I-3-3
B =Tod o141 o 111 AU I-3-3
Using Unchecked Type Conversion ...........c.ceiiiiiiuneiennenennenennns I-3-3
Using Overlays as an Alternative to Unchecked Type Conversion ............... I-3-5
ImpOrting OPErators ... ...ttt ittt iieetteeteenonisnerneenenenns I-3-5
Allocating a Buffer ... ... i i i i it e et 1-3-6
Recovering from Record Overflow ........ ... . ittt iiiiinnnn.n. I-3-7
Handling Recoverable EXCEptions ..........c..ciiiiinininiinnrnnennenenn. 1-3-8
UsingPaired Calls ..........c.iiiiiuiiniin it iienneneanenenannenns I-3-9
SUMIMATY ..ottt ittt i i teee it nee et tnaanneeonsnaasasneanansans I-3-10

Ada Programming Techniques I-3-1



PRELIMINARY

This chapter shows you common Ada programming techniques used with system calls. (A
future release of this manual will include a chapter on C programming techniques as well.)
You should read this chapter before reading any subsequent chapters in this manual, because
many examples throughout the manual depend on these concepts and techniques. h

I-3.1 Concepts

This section introduces several concepts that are prerequisites to understanding the program-
ming techniques presented.

1-3.1.1 Working with Pointers

Many system calls require or return pointers to objects managed by the OS. A pointer to an
object is called an access descriptor (AD) and contains rights bits that control access to the
object. An AD is defined for each OS object type. The AD is actually a BiiN™ Ada access
type. For example, an AD for a job is defined in Job_Types:

type job_AD is access job_object:

By convention, access types that consist of ADs to a particular type of system object are named
with the suffix AD.

Only the OS can access the internals, or representation, of objects managed by the OS. Your
application can only perform those operations allowed by the system calls defined for a par-
ticular object type.

Another type of pointer, besides an AD, is a virtual address. Some system calls require that the
caller supply the virtual address of a buffer or record to be used by the call. Such parameters
may have the type System. address. '

A virtual address represents an AD to an object and a 32-bit byte offset within the object. By
convention, access types or parameters that are virtual addresses are named with the suffix
_VA. Forexample, in the package Record_AM:
type operation_status_VA is
access operation_status_record;

—— Virtual address of an operation status record.
pragma access_kind(operation_status_VA, virtual);

I-3.1.2 Common Types in the Ssystem and System_Defs Packages

I-3-2

The built-in BiiN™ Ada Sy st em package and the S ystem Defs support package define
types used for many different system calls. In the System package:

¢ System.untyped word is the type used to represent any 32-bit quantity. It may be a
data value, or more typically an AD to any object.

® System.address is the type used to contain any virtual address.

® System.subprogram_type is the type used to contain a pointer to a procedure or
function.

¢ System.null_word, System.null_address, and
System.null_subprogram are the null values for the preceding three types.

¢ System.ordinal, System.short_ordinal,and System.byte ordinal are
32-bit, 16-bit, and 8-bit unsigned integer types respectively. All integer operators are sup-
ported for these types, but without overflow checking.

Ada Programming Techniques



PRELIVMIINAKY

In the System_Defs package:

® System Defs.text is the type used as a container for strings passed to and from sys-
tem calls. System Defs.null text is a zero-length text.

® System Defs.system time units is the type used by the OS to measure times and
durations.

I-3.1.3 Standard System Exceptions

The System_Exceptions support package defines exceptions commonly encountered
when making system calls. You should read and understand the exception descriptions in
System_Exceptions inthe BiiN™/OS Reference Manual.

I-3.1.4 Package-level and Subprogram-level Variables

Variables can be declared as either package-level or subprogram-level variables.

A package-level variable is declared inside a package, but outside any subprogram. A
subprogram-level variable is declared within a procedure or function.

The lifetime of package-level variables is independent of the invocation of any subprogram
inside the package. If the code is shared by multiple processes, these variables are visible to all
processes. On the other hand, subprogram-level variables exist only for the duration of the
particular subprogram call.

It is recommended that you avoid package-level variables for cases where multiple processes
will access the code. Using such variables without careful synchronization between processes
can corrupt the variables.

[-3.2 Techniques

This section shows you how to:

e Use unchecked type conversion

e Use overlays as an alternative to unchecked type conversion
® Import operators

e Allocate a buffer

e Recover from record overflow

¢ Handle recoverable exceptions

e Use paired calls.

All techniques are illustrated with excerpts from compiled examples. Appendix X-A contains
complete listings for all examples.

I-3.2.1 Using Unchecked Type Conversion

In different contexts, the OS may require different BiiN™ Ada types to be used for the same
value. If these BiiN™ Ada types are not compatible according to BiiN™ Ada’s type conversion
rules, then an unchecked conversion between types is required.

Ada Programming Techniques . I-3-3



1-34

PRELIMINARY

Declarations Used: Unchecked_conversion
BiiN™ Ada generic function that does compile-time conversion between
otherwise incompatible types.

-

For example, the BiiN™ Ada type used to contain any AD is System.untyped word.
Some system calls that can operate on any AD use untyped_word as the BiiN™ Ada type of
their parameters or their returned value. Unchecked conversion can convert between other AD
types and untyped word.

To convert between two types with unchecked conversion:

1. The BiiN™ Ada Unchecked_conversion unit must be in your unit’s with clause.

2. Your program must instantiate Uncheéked_convers ion to create a new type conver-
sion function.

3. Your program uses the new type conversion function to do the conversion.
In the following example, which changes the current directory in a caller’s process globals, the
value needs to be converted from type directory AD to type untyped_word. These

steps are shown in the following excerpts from the List_current_directory_cmd_ex
example:

1 with Byte_Stream AM,
9 Unchecked_Conversion;
11 procedure List_current directory cmd_ex

37 is

41 function Directory AD from untyped word is

42 new Unchecked conversion(

43 source => System.untyped word,

44 target => Directory Mgt.directory AD):
79 begin

92 —— Open directory for reading, filtered by

93 -— ":pattern":

94 -

95 opened_dir := Directory_Mgt.Open directory(

96 dir => Directory AD_from untyped_ word(
97 Process Mgt .Get_process_globals_entry(
98 Process_Mgt_Types.current_dir)),
99 pattern => pattern);

126 end List_current directory cmd ex;
Line 9 includes Unchecked_conversion in the unit’s with clause.

Lines 44-47 create the Untyped_word_from_directory function. The function created
by specifying Unchecked_conversion accepts one parameter, of the source type, and
returns a result of the target type.

Line 96 shows a call to the new function, required because Process_Mgt
.Get_process_globals_entry uses the untyped_word type for the value returned,
while Directory Mgt .Open_directory requires a value of type directory AD.
Such calls are evaluated at compile-time and have no run-time cost. ,

Ada Programming Techniques



PKELIMINAKY

1-3.2.2 Using Overlays as an Alternative to Unchecked Type Conversion

BiiN™ Ada provides an overlay feature that allows a programmer to specify the memory ad-
dress of a variable, rather than relying on the compiler to allocate storage and determine the
variable’s address. A variable can be given the same address as a previously declared
parameter or variable, providing different BiiN™ Ada types for the same value. The different
names can be used as an alternative to performing unchecked type conversions where different
BiiN™ Ada types are needed.

CAUTION

Overlays can be dangerous if used in an unstructured manner because this technique
voids all of the strong typing of BiiN" Ada. Serious programming errors can resullt.

This excerpt is from the Show_current_directory cmd_ex example:

10 procedure Show_current_directory_ cmd_ex

29 is

37 current_dir: Directory Mgt.directory AD :=
38 Directory Mgt.directory_ AD(
39 Process_Mgt.Get_process_globals_entry(
40 Process_Mgt_Types.current_dir));
41 —-—- Current directory’s AD.
43 current_dir_ untyped: System.untyped word;
44 FOR current_dir untyped USE AT
45 current_dir’address;
46 —-— Current directory’s AD as an untyped word.
51 begin
. 52
53 —-— Get current directory’s pathname:
54 --
55 Directory Mgt.Get_name (
56 obj => current_dir untyped,
57 name => dir_name):;

73 end Show_current_directory cmd_ex:

Lines 43-—45 show how an overlay with a different type is declared. The local variables
current_dir and current_dir_ untyped name the same word in memory, but with
different types. The name current_dir is used wherever the type

Directory Mgt.directory_ ADisrequired. The name current_dir_ untypedis
used wherever the type System.untyped_ word is required.

Line 56 shows dir untyped used in the call to Directory Mgt.Get_name.

1-3.2.3 Importing Operators

Some BiiN™ Ada operators ("=", "+", and so on) are defined for many types declared in
System Services packages or the BiiN™ Ada System package. The following rules indicate
where operators are defined:

1. The package that defines an access type also defines "=" and " /=" for that type.

2. The package that defines an enumeration type also defines all relational operators for that
type. If a subtype of the enumeration type is declared in another package, the subtype still
" uses the operators defined in the first package for the base enumeration type.

Ada Programming Techniques I-3-5



FKELIVUINARY

3. The package that defines a record type also defines "=" and " /=" for that type.
4. The System package defines for all ordinal types all operators allowed for integers.

5. The Long_Integer_ Defs package defines for long integers all operators allowed for - -
integers.

6. The Text_Mgt package defines the operators "<", "<=",6">" and ">=" for the
System Defs.text record type. The System Defs package implicitly defines "="
and " /=" for texts.

7. Other OS packages may define additional operators for their types.

Your program can use such operators in two ways:
1. Explicitly qualify each use with the package name.

2. Import the package that defines the operators with a use clause, and thén use the operators
normally.

In either case, the packages must be listed in your program’s with clause.

If A, B, and C are long integer variables, the following code fragments show how to write A
:= B + C; using the two techniques. First, using explicit qualification:

A := Long Integer_Defs."+" (B, C);
Note that BiiN™ Ada syntax requires that a qualified operator be quoted and does not allow an

operator qualified with a package name to be used as an infix operator. The following code is
WRONG:

A := B Long_Integer Defs."+" C;

The next code fragment shows importing Long_Integer Defs with a use clause and then.
doing the computation:

use Long Integer Defs;
A :=B + C;

Recommended coding practice is to import packages if operators from the package must be
used, with these restrictions:

1. References to any other calls or declarations in the package should still be fully qualified.
For example, write Long_Integer_ Defs.zero instead of just zexo.

2. If operators from a particular package are used only in a particular call or code block, then
use the same scope for the use clause.

use clauses should be used only where necessary. If names of entities declared in other
packages are not fully qualified with their package names, then your program is harder to
understand and harder to maintain.

I-3.2.4 Allocating a Buffer

I-3-6

When you need to set up a buffer to process the results of a system call, there are two main
options:

Allocate a buffer as a local variable.
This is the recommended option, because allocation is fast and the buffer
can be reclaimed as soon as control exits the subprogram or block.

Ada Programming Techniques



PRELIMINARY

Create an object for the buffer.
This is useful when the buffer may need to be resized, as it might be when
reading variable-length records. A disadvantage is the overhead required
to allocate and deallocate an object.

The following excerpt from the example List_current_directory cmd_ex shows
how to allocate a buffer as a local variable. In this example, the buffer holds each entry name
between reading it and writing it.

11 procedure List_current_directory_cmd_ex

37 is

70 name_buffer: array(l .. 250) of character;
71 -- Each entry name is read into this buffer
72 -- and then written from it.

79 begin

102 ~- Get and write each entry name:

103 --

104 loop

105

106 length := Byte Stream AM.Ops.Read(

107 opened_dev => opened dir,

108 buffer VA => name_buffer’address,
109 length => name_buffer’size/8):;
110

111 Byte Stream AM.Ops.Write(

112 opened_dev => standard_output,

113 buffer VA => name buffer’address,
114 length => length);

115

116 end loop:

126 end List_current_directory cmd_ex:

See Output_records_ex in Appendix X-A for an example of a dynamically sized buffer
contained in a separate object.

1-3.2.5 Recovering from Record Overflow

Some system calls assign array values to fixed-length records supplied by callers as out
parameters. If an array value is too large, these system calls simply assign all the values that
will fit in the record and assign the total array’s length to a field in the record.

Checking for such "record overflows" is the caller’s responsibility. Any system call that as-
signs a text record behaves in this way; record overflow assigns an invalid text with 1length >
max_length. "Information” calls that return lists of processes in a job, jobs in a session,
entries in an authority list, or other varying-length arrays can overflow in the same way.

The following excerpt from the Stored_Account_Mgt ex example package body shows
how an application checks for text record overflow and retries if necessary. The same tech-
nique can be used to handle similar overflows for other record types.

The text record is declared and used in a nested block. To retry, the variable controlling the
text’s size is increased and control jumps back to the beginning of the block, reentering the
block and reallocating the text with the new size. Because the text record is declared in a
nested block, it can only be used within that block.

Ada Programming Techniques I-3-7



FKELIMINAKY

552 procedure Destroy_account (

594 is

602 begin . ce o
607 loop

614 path_length: integer := 60;

615 —-— Initial text length for name assigned
616 == by "Directory Mgt.Get name". If
617 —- insufficient, then the value is
618 -- increased and the operation is
619 -- repeated,

629 loop

630 declare

631 path_text: System Defs.text(path_length);
632 begin

633 Directory Mgt .Get_name(

634 obj => account_untyped,

635 name => path_text); -- out.
636 if path_text.length >

637 path_text.max length then

638 ~- Text was lost. Retry:

639 path_length := path text.length;
640 else

641 Directory Mgt.Delete(path_text):;
642 EXIT;

643

644 end if;

645 exception

646 when Directory Mgt.no name =>

647 EXIT:

648

649 end;

650 end loop:;

668 EXIT;

669 end loop:;

671 end Destroy_account:;

I-3.2.6 Handling Recoverable Exceptions

Most exceptions raised by system calls cannot be recovered from. When an exception can be
recovered from, this section describes a specific coding technique for recovery.

If an exception occurs, execution of the surrounding block is abandoned and any exception
handler is entered. An exception handler cannot jump back into the abandoned code to retry an
operation. Thus, if an operation needs to be retried in some cases, then the operation should be
placed in a nested block within a loop. The nested block can then handle the possible cases:

¢ The operation is successful. In this case, a return or exit statement can exit the loop.

¢ The operation is not successful and a recoverable exception is raised. In this case, the
nested block contains a handler for the exception. After handling the exception, control
loops back and the operation can be retried.

¢ The operation is not successful and a non-recoverable exception is raised. In this case,
the exception is simply propagated.

Using a nested block to retry an operation and handle a recoverable exception is illustrated by
the following excerpt from the Stored_Account_Mgt example package body:

I-3-8  Ada Programming Techniques



405
406
407
408
409
410
411

7

419

420
421
422
423

426

427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

PRELIMINARY

loop
if Transaction_Mgt.Get_ default_transaction =
null then
Transaction Mgt.Start_transaction;
trans := true;
end if;
begin
Passlive_Store_Mgt.Update(account_untyped);
if trans then
Transaction_Mgt.Commit_transaction;
end if;
RETURN account_rep.balance;
exception

when System_Exceptions.
transaction_timestamp_conflict =>
if trans then
Transaction_Mgt.Abort_transaction;
else
RAISE;

end if;

when others =>
if trans then

Transaction Mgt .Abort transaction:
end if; - -
RAISE;
end;
end loop:

I-3.2.7 Using Paired Calls

Some important system calls must be carefully paired for your application to work properly.
Some common pairings are:

¢ InSemaphore Mgt: P (Lock) with V (Unlock).

®* InTransaction_Mgt: Start_transaction with either of
Commit_transaction (if successful) or Abort transaction (if unsuccessful).

¢ Ineach I/O access method package: Open with Close. If Close is omitted, an opened
device is closed when all jobs using it terminate.

Pairing system calls is complicated by exceptions, which can cause unexpected transfers of
control out of a code block. If a matching system call must be executed before leaving a block,
use a when others exception handler, as in the following excerpt from the

Symbol Table_ Ex example:

127
128

151

152
153
154
155
156
157
158

begin

Semaphore_ Mgt .P (symbol table.lock);

exception
when others =>
Semaphore Mgt .V (symbol table.lock):
RAISE;
—-- Reraise exception that entered handler.
end;

Semaphore_Mgt.V(symbol_table.lock);

Ada Programming Techniques : : I-3-9



PRELIMINAKY

I-3.3 Summary

I-3-10

Many system calls require or return pointers to objects managed by the OS.
A pointer to an object is called an access descriptor (AD) and contains rights bits that

control access to the object.

fad

By convention, access types that consist of ADs to a particular type of object are named

with the suffix AD.

By convention, access types or parameters that are virtual addresses are named with the

suffix VA.

The built-in BiiN™ Ada System package and the System_Defs support package define
- types used for many different system calls.

The System_Exceptions support package defines exceptions commonly encountered

when making system calls.

Ada Programming Techniques



PRELIMINARY

Part Il

Support Services

This part of the BiiN™/0S Guide shows you how to use Support Services, needed throughout
all other service areas for basic tasks. The chapters in this part are:

Using Utility Packages
Gives data structures and examples for common system types and opera-
tions.

Using Objects and ADs
Shows basic techniques for using objects and ADs.

Storing Objects Shows how to use the system’s distributed storage system to store objects
on disk.

Starting and Resolving Transactions
Shows how to use transactions to group operations so that either all opera-
tions in the group succeed or all are rolled back.

Writing Messages Shows how to use the system’s facilities for writing messages. The mes-
sage service allows messages to be expressed in different languages and
edited without access to source code.

Support Services contains the following services and packages:

utility service:
Long_Integer_Defs
Machine_Code_Insertion
String List_Mgt
System
System Defs
System_Exceptions
Text Mgt

object service :
Access_ Mgt
Attribute Mgt
Object_ Mgt
Passive_Store Mgt

transaction service :
Transaction_Mgt

message service :
History_ Services
Incident_Defs
Message_Adm
Message_Services
Message_Stack Mgt
Msg Object Defs
System Error Recording

Part II Overview



PRELLIVIINAKY

Part II Overview



PRELIMINARY

USING UTILITY PACKAGES

Contents
L10) 4107 o £ T II-1-2
. 5. II-1-3
SHHNG LSS .ot v ettt ittt teesaeeneeteeenaeeeaenneanassasanennneanens II-1-2
03 o1 011570 o PPN II-14
T CIIQUES .. vv v ettt ittt ittt ettt ieenenneoeneesnsassonoansnensnonans II-14
UsingaLiteral TEXt ... ....ivuininiiiiiniininieninenieennnenrenenens II-14
Declaring aConstant TeXt . .....cvviiniienineernreneneeneneanscnoanaans II-1-4
Calling a Procedure witha TextResult ......... ... ..o it II-1-5
Creating aString List . ......c.ititiieiiiiiiiie it it enenreesnenanans II-1-6
Reading Elements from a String List .......... ..ottt iiiinen.. II-1-6
UsingaLiteral Long Integer .........oiuniiniiirieeeninnnencnneeennns II-1-7
Computing withLong Integers .........coiuiiiiiiiirnrnenenennenensn. II-1-7
Converting Between Strings and Long Integers ..............ccciiiiienennn. II-1-8
SUMMAIY ..ottt it it it ittt ittt ittt e ein e enennns II-1-8

Using Utility Packages II-1-1



PFRKELIVIINAKY

Utility packages are used throughout the system by services in all the services areas. Many
system calls require parameters of the types in these packages, such as text, string list,
and long integer. This chapter shows how to perform common operations using these

types.

Packages Used:
String_List_ Mgt

Provides operations on string lists.
Text_Mgt Provides operations on text records.

Long_Integer Defs
Defines types and calls for 64-bit long integers.

System Defs Provides common definitions used throughout the OS.

Figure II-1-1 shows the data structures for the objects discussed in this chapter.

string 1 string 2

byte offset A AL

(

01 2 3 4 56 7 8 38 10 11(12 13 14 15 16 17 18 19 20 2? 22 23 24 25 26 27 28)
String | 17 ] 17 | 2 8 Jux _gr oup| S5Jwor i d
List {

\. v

Yﬁst = list of strings

count = number of strings in "list”

length = number af bytes in "list”

max_length = maximum number
of bytes the stringlist can hold

01 2 3 45 6 7 8 9 101 12
Text l's] 9]/ exe/cl e x|

L____ value = array of characters (1..max_length)

length = number of characters in text

max_length = maximum number of characters
the text can hoid

byte
offset < word boundary
I:;togger low word 0
high word 4

Figure II-1-1. Data Structures for String List, Text, and Long Integer

lI-1.1 Concepts

lI-1.1.1 String Lists

A string list is a standard container for a list of strings. String lists are often used with text
records.

1I-1-2 Using Utility Packages



PRELIMINARY

String lists have the System_Defs.string_list type. A particular string list has a fixed
size and can contain any string values that will fit. An individual string in a string list is
preceded by a two-byte length field and can have from O to 32,767 characters.

A string list contains these fields:

max_length A discriminant, specifying the maximum number of bytes that the 1ist

field can hold.
length The number of bytes used in the 1ist field.
count The number of strings in the string list.
list An array of max_length characters, indexed from 1 to max_length.

list (1 .. length) contains the strings in the list. Each string is contained in a record of
type System Defs.var_ text, a two-byte length followed by the specified number of
characters. Successive strings are packed with no unused bytes and no alignment require-
ments.

list (length + 1 .. max_length) is the free space available in the string list.

System calls that retrieve string lists do so via out parameters. If a string list is larger than the
space in a particular string list record, then such calls assign the actual length of the string list
to the 1length field, the actual number of strings to the count field, and the strings that will
actually fit (without breaking in mid-string) to the 1ist field. This sort of overflowing string
list is an invalid string list. It is the application’s responsibility to check for invalid string lists
where they can occur.

See also String_List_ Mgt.

11-1.1.2 Texts

A text is the standard container for a string.

Texts have the System Defs.text type. A particular text can hold a fixed-size string and
contains a value of any length up to that size. Text sizes range from O to 32,767 characters.

A text contains these fields:

max_length A discriminant, specifying the maximum number of characters that the text
can hold.
length Number of characters actually used, or if greater than max_length, the

number of characters needed in the text.
value An array of max_length characters, indexed from 1 tomax_length.

Many system calls assign strings to text out parameters. If the string is larger than the space
in the text (overflow), such calls assign the actual size of the string to the Length field and
assign the first max_length characters of the string to the value field. Such a text value,
with length >max_length, is an invalid text.

See Chapter I-3 for a technique to recover from such a text overflow.

See also Text_Mgt.

Using Utility Packages II-1-3



KINLLAVAAINAIR K

ii-1.1.3 Long integers

A long integer is represented as a record of two ordinals.

Long integers are of type Long_Integer Defs.long_ integer and range from
-(2*%*63) to (2**63)-1.

The range of long integers in decimal is:
-9,223,372,036,854,775,808 .. 9,223,372,036,854,775,807

Note that the record’s representation reverses the order of the h and 1 fields, so that the low
word is first in memory followed by the high word. This representation is consistent with the
representation used for all other multi-byte integer and ordinal types: the least significant byte
is at the lowest memory address, followed by the next most significant byte, etc. The most
significant byte is always at the highest memory address used.

See also Long_Integer_ Defs.

lI-1.2 Techniques

After reading this section, you will be able to:

Use a literal text

Declare a constant text

Call a procedure with a text result

Create a string list

Read elements from a string list

Use a literal long integer

Compute with long integers

Convert between strings and long integers.

Complete listings of the programs used in the following examples can be found in Appendix
X-A.

1I-1.2.1 Using a Literal Text

The following example from the inventory example program (module
Inventory Messages) shows the use of a literal text:

24 message_file: constant System Defs.text AD :=
25 new System Defs.text’ (

26 31,31,"/example/inventory/message_file");
27 -- AD to message file text name.

II-1.2.2 Declaring a Constant Text

1I-1-4

The following example from the inventory example program (module
Inventory_Reports) shows the declaration of a constant text:

Using Utility Packages



PRELIMINARY

55 report_by part_DDef_str: constant string :=
56 "/example/inventory/DDefs/report_by part";
57 —-- String constant for "report by part"

58 —-- report DDef’s pathname.

59

60 report_by part DDef pathname:

61 System Defs.text(

62 report_by part DDef str’length) := (
63 report_by_ part DDef str’length,
64 report_by part DDef str’length,
65 report_by part DDef str):

66 —-— Text constant from "report by part”

67 —- DDef’s pathname string.

11-1.2.3 Calling a Procedure with a Text Result

After calling a procedure that retrieves a text result, be sure to check for an invalid text (not
enough space to accommodate the desired text). There are many system calls that return a
result of type text; Directory Mgt .Get_ name is just one.

Calls Used:

Directory Mgt.Get_ name
Gets the full pathname of an object’s master AD.

The following example is from the Stored_Account_Mgt_Ex example package body in
Appendix X-A.

629 loop

630 declare

631 path _text: System Defs.text(path_length):
632 begin

633 Directory Mgt .Get_ name(

634 obj => account_untyped,

635 name => path text); -- out.
636 if path_text.length >

637 ) path_text.max_length then

638 -— Text was lost. Retry:

639 path_length := path_text.length;
640 else

641 Directory Mgt.Delete(path text);
642 EXIT;

643

644 end if;

645 exception

646 when Directory Mgt.no name =>

647 EXIT;

648

649 end;

650 end loop;

In the above example, note how the developer enclosed the call within a nested block to check
if all the characters in the desired text actually fit into the destination text.

The parameter to receive the text is called path_text. After the pathname is received from
Directory_Mgt.Get_name, the values path_text.length and
path_text.max_length are compared to see if the number of bytes in the text was
greater than the maximum specified for the text. If so, then the text is resized to the higher size
and Directory Mgt.Get name is repeated.

Using Utility Packages II-1-5



PRELIMINARY

1I-1.2.4 Creating a String List

The simplest way to create a string list is to use String_List_ Mgt and build the string list
from texts.

Calls Used:

String_List_Mgt.Set
Copies a text to a string list.

String List_Mgt.Append
Appends a text to a string list.

The following example shows how to create a string list.

1 with String List Mgt,
2 System Defs;
3
4 procedure String list_ex
5 -
6 -- Function:
7 - Create string list with following entries:
8 - 1. "ux_group"
9 - 2. "world"
10 is
11 string list: System Defs.string list (255):
12 begin
13
14 ~= 1) "ux_group"
15 String List_Mgt.Set (string list,
16 System Defs.text’ (8, 8, "ux _group")):
17
18 -- 2) "world"
19 String List Mgt.Append(string list,
20 System Defs.text’ (5, 5, "world")):
21

22 end String list ex;

II-1.2.5 Reading Elements from a String List

1I-1-6

The package String_List_Mgt provides calls to access the strings in a string list.
Get_element retrieves a string from a string list, given its position number.

Get_element_ by index retrieves a string from a string list given an index variable,
which it updates. Both can be used to loop through all strings in a string list. Get_element
is simpler to use. Get_element_by_index executes more quickly, especially for large
string lists.

Locate finds a string and returns its position number.

Locate_index finds a string and returns its index.

Calls Used:
String_List_ Mgt.Get_element_ by index

Gets the string with a specified index from a string list, and updates the
index variable to reference the next string.

Using Utility Packages



PRELIMINARY

The following excerpt from the Create_name_space_cmd_ex example shows how
Get_element_by_index canloop through all strings in a string list:
156 i:=1;

157

158 loop

159

160 String List Mgt.Get_element by index(
161 from => directory_list,
162 list_index => i,

163 element => directory path):
164

165 —-— Exit after last string:

166 -

167 EXIT when i = 0;

203 end loop:;

11-1.2.6 Using a Literal Long Integer

The following example from the Long_Integer_Ex example package shows the use of a

literal long integer:
244 -— Declaring a negative long integer constant,
245 -- the easy way and the hard way:
246 -
247 negative_twenty: constant long_integer :=
248 - long_integer’ (0, 20):
249
250 another negative_twenty: constant long integer :=
251 (le#ffff ffff#, 16#ffff ffec#):;
252 -—- Use the hard way when you want a declaration
253 —-— elaborated at compile-time instead of
254 -- at run-time.

11-1.2.7 Computing with Long Integers

All standard Ada arithmetic and relational operators are defined for long integers. The = and
/= operators are implemented using Ada record comparison. All other long integer operators
are defined in the package Long_Integer_Defs.

To use long integer operators, a program unit must explicitly use Long_Intege r_Déf s.

Long integers do not support Ada attributes of integers. A long integer is a record type, hence
the usual Ada attributes defined for integers cannot be applied. The following list gives long
integer alternatives to Ada attributes of integers:

"first Use Long_Integer Defs.min_int.

"last Use Long_Integer Defs.max_int.

"width At most 20 characters are required to represent a long integer as a string.
Long_ Integer_ Defs uses 31 characters, which allows ample space for
embedded underscores.

'pos Not needed; x’ pos = x for integer types.

"val Not needed; x* val = x forinteger types.

"succ Add one.

'pred Subtract one.

" image Call Long_Integer Defs.Long_integer_ image.

Using Utility Packages 1I-1-7



FRKELLVILINAK X

fvalue Call Long_Integer_Defs.Long_integer_value.

1I-1.2.8 Converting Between Strings and Long Integers

To convert between a string type and a long integer type, Long_Integer_ Defs provides
two straightforward calls:

Calls Used:

Long_Integer_ Defs.Long_integer_image
Converts a long integer to a string image.

Long_Integer_ Defs.Long_integer_value
Converts a string image to a long integer.

See the Long_integer_value function in the Long_Integer_ Ex package in Appendix
X-A for an example of code that converts a string image to a long integer. (The code is too
long to include here.)

1-1.2.9 Summary

e Many system calls require parameters of the types text, string list, and long
integer.

® A textis the standard container for a string.
® A string listis a standard container for a list of strings.

® A long integer is represented as a record of two ordinals. All standard Ada arithmetic and
relational operators are defined for long integers.

1I-1-8 Using Utility Packages



PRELIMINARY

USING OBJECTS AND ADS

Contents
COMC PSS .« it ittt ettt it aeeeeeneneeosanenoeneeneanenssosnensnseanasenns I1-2-2
Whatis an Object? . ......oitiiniit ittt ittt ieaenrereaanannens II-2-2
What is an Access Descriptor? ... .ttt i i i i it I1-2-3
Rep Rights Control Access to an Object’s Representation .................... 11-2-4
Type Rights Control What Type-Specific Operations are Allowed ............. I1-2-4
GeEneriC O JCIS .ot vttt ittt iieteeeenrnenenenenensenensaenennnans I-2-4
Building Type Managers That Define New Object Types ...........cccvuenn. 1I-2-4
O IQUES ..ottt ittt ittt it ittt e I1-2-5
Checking an Object’ s TYPE . .vvviiin it iniie i iiete e neneanenaneennns II-2-5
CheckingRightsonan AD ... .. .. ittt i iiennnn. I1-2-5
Removing Rights Froman AD . ... ... . ittt it iieinienanns I1-2-5
Creating aGeneriCc Object ........iiititiin ittt it ininaaenenenns I1-2-5
Resizing an Object ... ..ottt ittt ittt tneeineneanaeanananns II-2-6
Deallocating an Object ..ottt ittt ieeereienenernreanenennns II-2-6
N1 1114 1 o1 AP II-2-6

Using Objects and ADs 1-2-1



ii-2.1 Concepts

This chapter presents an overview of objects and access descriptors. Objects are the fun-
damental units of object-oriented programming. Access deseriptors are pointers that reference

these objects.

Packages Used:

Access_Mgt
Object Mgt

INLLAWVILIINAK L

Interface for checking or changing rights in access descriptors.

Provides basic calls for object allocation, typing, and storage management.
Defines access rights in ADs.

Access Descriptor

Pointer Rights

Object

Y

Figure II-2-1. AD and Object

I1-2.1.1 What is an Object?

1I-2-2

An object is a typed and protected memory segment. An object has the following charac-
teristics:

A unique identity that cannot be forged, and is guaranteed to exist
as long as references to the object exist

A type, determined by a Type Definition Object (TDO)

A representation, an area of active memory or passive store that
holds the object’s contents

A Storage Resource Object (SRO) from which the object is
allocated and to which its memory space is returned when deallocated

A lifetime that determines whether an object’s existence is
limited to the lifetime of a single job oris

indefinite

A memory type that detehnines whether the object will reside in
normal (swappable) memory or frozen (non-swappable) memory.

Using Objects and ADs



PRELIMINARY

The size of an object may be from 0 to 232 bytes, and can be dynamically changed. Up to 226
objects are possible in a node’s four gigabytes of active memory.

A type manager is a routine that provides basic operations for all objects of its type. A TDO
defines a type manager’s type. Object types are specified when objects are created, and cannot
be changed.

Only a type manager can create objects of its type, or read or write to the object representation.
Other services can reference objects of a type manager’s type, but must call the type manager
to read or change the objects. Therefore, the integrity of type-managed objects depends only
on the type manager, and not on other services that use the object.

I-2.1.2 What is an Access Descriptor?

An access descriptor is a protected pointer to an object, with rights describing how the object
can be used. Figure II-2-2 shows an access descriptor layout.

Word
‘Boundary
3 \
Tag 1 6543210

Object Index (26 bits)

L Read Rep Rights .
Write Rep Rights Rep Rights

Use Rights
Modify Rights Type Rights

Control Rights

Local

Figure II-2-2. A Valid Access Descriptor

An AD is represented by a memory word with Ada type System.untyped word. An
untyped_word is a one-word, word-aligned value corresponding to one 33-bit memory
word, 32 bits of information and a zag bit. (The tag bit indicates whether the word is a valid
AD.) Anuntyped word can be interpreted as either an access descriptor word or as a non-AD
word.

If interpreted as an AD, an untyped_word contains:

e A valid AD that references an object and provides rights to the object when the tag bii is1
e A null AD when the tag bit is 0, regardless of the value of the first 32 bits.

If interpreted as a non-AD, an untyped_woxrd contains 32 bits of data and the tag bit is
ignored.

By convention, access descriptor names end with _AD. For example, directory ADisan’
access descriptor that references a directory object.

Using Objects and ADs 1I-2-3



OINGEAIVILINAR L

An AD contains five righis biis: two representation rights and three type righis. These righis
are described in the following sections.

1I-2.1.3 Rep Rights Control Access to an Object’s Representation

Representation rights are required to read or write the object’s representation. These rights
grant access to an object’s physical layout in memory. Rep rights are checked by the CPU
whenever a program reads or writes memory. If needed rep rights are not present, then
System_ Exceptions.insufficient_rep rightsisraised. If an object has atype
manager, then the type manager normally removes rep rights on any ADs it exports for the
object. A type manager can turn on ("amplify") rep rights on ADs for objects that it manages.

11-2.1.4 Type Rights Control What Type-Specific Operations are Allowed

Type rights are specific to the object type and provide access to an object’s logical structure by
determining what type manager calls are allowed on that object. The three rights are desig-
nated use, modify and control by convention to ensure that they are interpreted consistently
regardless of object type.

Use - To get information about the object
Modify - To change the contents of an object but retain its existence and representation
Control - To destroy the object, or perform other privileged operations.

Use and modify rights correspond to read and write rights for files. Control rights give the
user maximum control over the object. The actual functions of these rights is determined by
the type manager. Usually, these types are renamed to reflect the particular usage of the rights.
For example, the naming service defines list and store rights for directories, which correspond
to use and modify rights.

These rights do not form a hierarchy in that a type manager may provide any one or more of
them. For example, a type manager could interpret modify rights and not interpret use or
control rights. rights. :

Checking and enforcing type rights is done by type managers and not by the CPU. A type
manager raises System_Exceptions.insufficient_type_ rights if needed type
rights are missing.

11-2.1.5 Generic Objects

When an object is created without specifying a particular TDO, the new object is generic and is
associated with the generic TDO. A generic object is used only as a memory segment. It does
not have a type manager, and has the same TDO as all other generic objects. The generic TDO
is held by the BiiN™ Operating System. Applications can create and manage generic objects.

l1-2.1.6 Building Type Managers That Define New Object Types

Type managers can be built to support new object types. A new type is defined by creating a
new TDO. See Chapter VII-3 for instructions for building a type manager for a new type.

11-2-4 Using Objects and ADs



PRELIMINARY

[1-2.2 Techniques

After reading this section, you will be able to:

e Check an object’s type

e Check rights on an AD

¢ Remove rights from an AD
e Create a generic object

e Resize an object

e Get an object’s size

e Deallocate an object.

1I-2.2.1 Checking an Object’s Type

An application can check that an object is of a particular type before attempting to perform
type-specific operations on it. Each BiiN™ Operating System type manager provides an Is_
call that checks whether an AD points to an object of the managed type. The following code is
from the Process_Globals_Support_Ex example. After the process global entry for
the home directory is retrieved, the following code checks to verify that it is a directory object.

323 if not Directory Mgt.Is directory(dir_untyped) then
324 RAISE System Exceptions.type mismatch;

11-2.2.2 Checking Rights on an AD

The access rights of an AD can be examined. The rights to be checked for are set in
Object_Mgt.rights_mask. ThenAccess_Mgt.Permits iscalled. True is returned
if the AD has the rights which were set in the mask.

lI-2.2.3 Removing Rights From an AD

The access rights of an AD can be removed. The rights to be removed are set in a rights mask.
Then Access_Mgt .Remove is called. An AD to the same object is returned without the
rights set in the mask. The following code is from the Account_Mgt _Ex example. While
creating a new account, all rep rights are removed from the returned AD thus requiring all
reading and writing of the account object to be performed via the account type manager.

110 account_untyped := Access_Mgt .Remove (
111 AD => account_untyped,
112 rights => Object Mgt.read write_ rights);

11-2.2.4 Creating a Generic Object

A new object can be allocated with Object_Mgt .Allocate. If no TDO is specified in the
call, the new object is generic. Another method for creating objects is to use the Ada new
allocator. The following example allocates a symbol table object with space for

table_ size entries and no entries in use.

223 symbol table := new symbol table object (

224 table size});

225 symbol table.length := 0;

226 -~ Symbol table initially has space for 100
227 —-— entries with 0 in use.

Using Objects and ADs 1I-2-5



PFKELIVIINAKYX

1I-2.2.5 Resizing an Object

Object Mgt .Allocate allocates an object at a specified size. That size can be deter-
mined with Object_ Mgt .Get_object_size. (Object size is specified in words.) The
size can also be changed with Object Mgt .Resize as shown in the following example:

98 Object Mgt.Resize(

99 obj => symbol table_ untyped,

100 size => 3 + (2 * symbol_table.max_length * (
101 symbol entry’size/32))):

102

103 max_length_access := 2 * symbol_table.max length;

In this example, a symbol table is expanded so that it will hold twice as many entries and
changes the maximum length of a symbol table entry.

11-2.2.6 Deallocating an Object

Objects can be dynamically deallocated. The following excerpt from Account_Mgt_Ex
shows an account object checked for a zero balance and then destroyed (deallocated).

326 begin

327 account_untyped := Access_Mgt.Import (
328 AD => account_untyped,
329 rights => destroy rights,
330 tdo => account_TDO);
331
332 if account_rep.balance /= Long Integer Defs.zero then
333 RAISE balance_not_zero;
334
335 else
336 Object Mgt.Deallocate(account_untyped);
337
338 : end if;
11-2.3 Summary

1I-2-6

An object is a typed and protected memory segment.

An access descriptor is a protected pointer to an object, with rights describing how the
pointer can be used.

An object’s representation is an area of active memory or passive store that holds the
object’s contents.

A type manager is a routine that provides basic operations for all objects of its type.
A TDO defines a type manager’s type.

Type rights are specific to the object type and provide access to an object’s logical structure
by determining what type manager calls are allowed on that object.

Representation rights are required to read or write the object’s representation.

A generic object is used only as a memory segment. It does not have a type manager, and
has the same TDO as all other generic objects.

Using Objects and ADs



PRELIMINARY

STORING OBJECTS

Contents

L0) 4 1o o PP II-3-3
Comparing Passive Store, Files, and Directories ................covvieen... II-3-3
Using Passive Store at DifferentLevels ............ ... ..o, II-3-3
ObJeCt VEISIONS ...\ttt ittt ittt it it et i i iiie i canens II-3-3
ObjeCt ACHVALON . ...ttt ittt iitie e ineeenaneneonsnsasnsnensannns I1-34
ActivationasReincamation .............coiiiiiiiiiii it it e II-3-5

AD Activation ...... e e ie e II-3-5
Object Passivation . ..........iuiiuiiiinin ittt iaeenieennanenns II-3-5
Passivation Dependencies .............ciiiiiiiiiiiiii it II-3-6
AcCtive-Only ObJECES .. vvitittiieiert et te it retennenrannaennnnsens II-3-6
Passive Store Behavior of OS Object Types .......covviviinenrninenennennn. II-3-6
Passive Store Behavior of GenericObjects ...........cciiitiiiniinnnnenn.. II-3-10
Passive ADS ...t e e e i i it i e 1I-3-7
Referencing Between Active Memory and Passive Store ..................... 1I-3-7
MaSter ADS ..ttt i i e e e i e e II-3-7

ALIaS ADS .. ... i i e i e e it e II-3-8
Restrictionson Storing Master ADS ..........coiiiiiiiiiiiinennennenns II-3-8
Master ADs and Passive Object Lifetimes .....................ccvou... II-3-9
Transferring Mastership ........c.ooiiiiiii ittt i it ie it ieann, II-3-9

L0 o) [T ot A PN II-3-9
Passive ADs as Universal Identifiers ................ ... o i, I1-3-10
Passive Object CharaCteriStics . .....covventinenrnieneeeneeeneennenennns I1-3-10

The Life History of a Passivated Object ..............ccoiiiiiineennnen.n. II-3-11
Activation Models . ... oottt i e e e e e i e I1-3-12
Multiple ACHVALION ... ...titiiiiirt et iettennnarneeneeneneenennnns II-3-12
Single ACHVALON ... ...ttt ittt it te e teneneneaeneneaanas I1-3-14
Choosing an ActivationModel ............ ... .. .. il I1-3-14
Transaction SUPPOIT .. ...ttt ittt ittt i ittt e i asnannan I1-3-14

The Passive Store Attribute . ...... ...ttt ittt 1I-3-15
Default Passive Store Behavior ........... ... ... .. i, II-3-15
Type Manager SUPPOIt ..........covevvnnereenneeennnnn e, II-3-15
TeChIQUES .. ittt it i it it e i i e i e II-3-16
Creating aPassive Object ........c.iiiiniiiiiiiiiiiiiinianinnennnn I1-3-16
Updating aPassive ObjeCt . ... ..cvtiiiiriniiiiet i inieaennnanneanns 1I-3-18
Requestingan Update .........coinitiiniieenenrnreneneaeenncnonenns II-3-18
Destroying a Passive Object . ....... ..ottt ittt II-3-19
Copying a Passive Object TIeE . ... ivvin ittt ittt teeneannnnenns 11-3-20
Getting Passive Object Information .......... ... ... iiiiiiiiiiinn.. I1-3-22

3 011 1 II-3-23

Storing Objects II-3-1



1I-3-2

PRELIMINARY

Passive store is the collection of objects stored on disk in a BiiN™ system. This chapter shows
you how to store objects on disk.

Packages Used:

Directory_ Mgt Manages directories and directory entries.

Passive_Store_ Mgt
Provides a distributed object filing system.

Passive store is distributed--spread over multiple nodes and transparently accessible from any
node (Figure 1I-3-1). Of course passive store is equally usable on a single-node system.

NODE

SK

NODE NODE

Figure II-3-1. Passive Store is a Distributed Object Filing Service that
Unifies all Nodes in a BiiN™ System.

Passive store is reliable--stored objects survive system crashes and changes to stored objects
are transaction-oriented.

In many ways passive store is the "glue" that holds together a distributed BiiN™ system. Many
system objects are stored there, such as files, directories, programs, and TDOs.

The use of passive store is typically hidden by the services that use it. For example, the filing
service and directory service handle all needed passive store operations for files and direc-
tories.

Storing Objects



PRELIMINARY

lI-3.1 Concepts

II-3.1.1 Comparing Passive Store, Files, and Directories

All objects stored on disk are "in" passive store, including file objects and directory objects.
However, an application that only uses files and directories can ignore most aspects of passive
store and use files and directories in a familiar way. Even for an application that uses other
object types, files and directories can be appropriate containers for much of the application’s
stored data. The application designer should consider these points:

¢ Files support byte stream I/O and record I/O. Several record-structured file organizations
are supported and a rich set of file management, file indexing, and record access operations
is provided.

e Files cannot contain ADs.

e Directories can contain ADs but have a fixed structure: a set of <name, AD> pairs, such
that each name is unique within its directory.

¢ If the application wants to store its own typed objects on disk, objects that can contain ADs
and have an arbitrary structure, then it must use passive store directly to store those objects.

1I-3.1.2 Using Passive Store at Different Levels
Passive store can be used at three different levels:

1. At the conventional application level, an application can use files and directories. Passive
store is transparent, but the application may still benefit from the distributed file system and
the flexible protection model.

2. At the sophisticated application level, an application can:

e Request that system objects, such as TDOs or authority lists, be stored.
e Create its own network of generic objects and store it.

3. At the object-oriented application level, an application can define new object types and type
manager modules for those types. Each type manager uses the Passive Store Mgt
package to customize the passive store behavior of its object type.

Passive_Store_ Mgt is directly used by the second- and third-level applications. Two
different groups of calls are provided for the two different levels. The sophisticated applica-
tion can use Request__ calls, such as Request_update, which do not require any rights.
However, an object’s type manager can specify type-specific handling of such calls or refuse
them by raising System Exceptions.operation not_supported. A type
manager in an object-oriented application can use direct calls, such as Update, which require
rep rights. A type manager only uses the direct calls for the objects that it manages. The two
groups of calls appear in the same package because one module will often use both groups of
calls: the direct calls for objects that it manages and the Request__ calls for objects that other
modules manage. Chapter VII-6 shows how to build a type manager for a stored object type.

11-3.1.3 Object Versions

Active memory is the collection of objects in virtual memory on a particular BiiN™ node. An
object can have versions in both active memory and passive store (Figure II-3-2).

Storing Objects 1I-3-3



PRELIMINARY

Passive Version

PASSIVE
STORE

Active Version

ACTIVE
MEMORY

Figure II-3-2. A Single Object can have Passive and Active Versions.

An object can have multiple active versions, in use by different jobs or nodes, but can have
only one passive version. Though the term "version" is used, passive store is not a "version
control” or "revision control" system and cannot store or reconstruct any but the most current
passive version. The passive store does ensure that out-of-date active versions cannot corrupt
an object’s passive version.

I1-3.1.4 Object Activation

1I-3-4

Only active versions can be directly read or written. Reading or writing a stored object with no
active version causes activation of the object, creation of an active version that is then read or
written.

Objects are activated when needed in the same way that pages of virtual memory are swapped
in when needed. Both operations are invisible to your application.

Changing an object’s active version does not change the passive version.

An active version of an object can only be created from the object’s passive version. There is
no way to create an active version from another active version.

Local objects are activated on a per-job basis. If jobs A and B both use an object, then they get
separate active versions. Activating a local object consumes storage in the job’s local SRO
(storage resource object).

Global objects are activated on a per-node basis. If jobs A and B both use an object and are on
the same node, then they share an active version. If jobs A and B are on different nodes, then
they use different active versions. A global object is activated in either the normal or frozen
global SRO, depending on its memory type.

Storing Objects



PRELIMINARY

11-3.1.5 Activation as Reincarnation

A passive object can "live" multiple times, in the form of successive activations in different
jobs. For example, job A may create and passivate an object, and then terminate. Some time
later, job B references the object and a second active version is created, a second active "life"
for the object. Whether an object remembers its "past lives" depends on whether or not each
job passivates any changes that it makes.

11-3.1.6 AD Activation

Activating an object activates all ADs in the object. However, activating an object does not
activate the objects that it references. For example, a program accesses object A, triggering
A’s activation. A contains an AD for object B. The AD for B is activated, but not B itself. B
will subsequently be activated if the program accesses it.

AD activation is the point at which protection of passive objects is implemented. Chapter III-3
describes how passive objects are protected. When an AD is activated as part of object activa-
tion, then a null AD is activated in its place if the owner of the object that contains the AD is
not allowed access to the object referenced by the AD.

AD:s are frequently activated by being retrieved from directory entries. Protection of ADs in
directory entries is handled somewhat differently, as described in Chapter I1I-3. If the caller is
not allowed access to an AD in a directory entry, then Directory Mgt.no_accessis
raised.

11-3.1.7 Object Passivation

An object’s passive version is modified only when a program or type manager explicitly
passivates or updates the object. Passivating an object copies a particular active version to the
passive version.

These Passive_Store Mgt calls create or update an object’s passive version:

Request_update

Update

Update_tree

Update_with_alternate_rep
Update updates a single object, for which the caller has rep rights. Update_tree updates
a tree of objects; the caller must have rep rights for the root object. Request_update is
used to update type-managed objects from outside their type managers; it requests that the
object’s type manager update an object. A type manager can refuse an update request by
raising System_Exceptions.operation_not_supported.

When an object is passivated from a particular active version, then all other active versions are
marked as being obsolete. Any attempt to update an object from an obsolete version is
rejected, with the Passive_Store Mgt .outdate_object_version exception.

An object’s passive version can have a different size than its active version. For example,
passive versions that contain ADs are larger than the corresponding active versions.

Storing Objects I1-3-5



PRELIMINARY

11-3.1.8 Passivation Dependencies

A passive object should normally only refer to other passive objects. This rule includes im-
plicit references, such as the AD that every object has for its TDO. Thus:

e If an object is passivated, its TDO should be passivated.
e If an object is passivated, 4then its attribute list should be passivated.

e Ifa TDO or an attribute list is passivated, then all attribute IDs and attribute value objects
that it references should be passivated.

e If an object is passivated, then any authority list protecting the object should be passivated.
e If an object is passivated, then objects for which it contains ADs are normally passivated.

As a general rule, if A depends on (references) B, then B should live as long or longer than A.
Note that this rule should also influence when destroying a passive version is allowed.

If your application attempts to access an object that has no active or passive version, then
System Exceptions.object_has_no_representation is raised.

11-3.1.9 Active-Only Objects

Some types of object cannot be passivated; such objects are called active-only. For example,
objects that exist only during program execution are active-only: sessions, jobs, processes,
stacks, and transactions.

Paradoxically, an active-only object type must have the passive store attribute! This is because
the default behavior of objects is to be passivatable. The

Passive_Store Mgt.Set_refuse_filters call assigns fields within a type’s pas-
sive store attribute record so that the type’s objects are active-only.

11-3.1.10 Passive Store Behavior of OS Object Types

II-3-6

This section summarizes the passive store behavior of some common types of objects. The
lists in this section are selective; see the "OS Object Types" appendix in the BiiN™/0S Refer-
ence Manual for a list of object types.

The following OS object types are kept in passive store by their type managers:

normal directories
files.

The following OS object types can be passivated, but the application must handle creating and
updating passive versions:

Storing Objects



The following OS object types are active-only and cannot be passivated:

PRELIMINARY

attribute ID

attribute list

authority list

basic disk

basic streamer

data definition (DDef) object
domain

event cluster

generic object

instruction object

name space

pipe

static data object

type definition object (TDO).

job

all opened device types

certain system directories
process

session

stack

storage resource object (SRO)
transaction

windows (character or graphics).

The following OS object type cannot be passivated but is permanently stored in the Clearing-
house instead of in passive store:

ID.

I1-3.1.11 Passive ADs

Like any other object, a stored object can be referenced by many ADs, located in active ver-
sions or in other stored objects. Before creating an object’s passive version, you must store at
least one AD to the object. The first passive AD for an object is the object’s master AD. All
other passive ADs for an object are alias ADs. In certain circumstances, described in Section
II-3.1.11.6, an AD is converted from an alias AD to a master AD, but there is never more than
one master AD.

I1-3.1.11.1 Referencing Between Active Memory and Passive Store

ADs can freely cross the boundary between active memory and passive store. A passive

version can contain an AD for an active-only object. An active-only object can contain an AD
for a passivated object.

1I-3.1.11.2 Master ADs

The master AD determines the stored object’s:

Storing Objects

volume set
owner

authority list (if any).

II-3-7



PRELIMINARY

Master ADs can be stored in directories or any other passive objects.

A stored object is always on the same volume set as the object containing its master AD.
Because master ADs cannot reference across volume sets, any passive object can be reached
by a chain of master ADs from its volume set’s root directory. The volume set containing an
object’s passive version cannot be changed; however the volume set may be moved to another
node or even another BiiN™ system. Also the backup service provides techniques to archive
volume sets or collections of objects within volume sets and then restore them on other volume
sets (but with new object identities).

A stored object’s initial owner is the user ID for the process that stores the master AD.
A stored object’s initial authority list is determined as described in Chapter III-3.

Authority list evaluation uses whatever rights are on the master AD, even when evaluating
rights for an alias AD. Normally a master AD should have all type rights and no rep rights, as
rep rights should only be granted within the type manager. For a passivated generic object, the
master AD should normally have rep rights as well.

11-3.1.11.3 Alias ADs

All passive ADs besides the master AD are aliases or alias ADs. Aliases can be freely created
and deleted without restriction. Aliases can reference objects on other volume sets or other
nodes. An alias may even reference an object on a volume set that is not mounted in the
system.

Alias ADs can be used for any object operations. While some operations require that an object
have a master AD, no operation distinguishes between a master AD and alias when specifying
an object to operate on.

I1-3.1.11.4 Restrictions on Storing Master ADs
There are these restrictions on storing master ADs:

1. If the object will use authority list protection, then its authority list must be set before the
master AD is stored.

2. A master AD cannot be stored after an AD for the object is stored in an active-only direc-
tory.

3. A master AD cannot be stored after an AD for the object is transmitted to another job via
any of these techniques:

e Job invocation parameter buffer
e Event cluster signal

e Remote procedure call

e Datagram

e Virtual circuit.

4. A master AD cannot be stored after an application tries to store a master AD within a
transaction, and then aborts the transaction.

These restrictions will cause no problem if you create a passive object as follows:

II-3-8 Storing Objects



PRELIMINARY

Allocate the object’s initial active version.
If needed, explicitly set the object’s authority list.
Store the master AD.

Passivate the object.

o O

If done within a transaction and the transaction aborts, recover all the way to the first step,
allocating a new object if the code retries. This avoids the problem of being unable to store
a master AD for the previously allocated object.

II-3.1.11.5 Master ADs and Passive Object Lifetimes

In active memory there is no concept of a "master" AD, so why is one AD for each object
singled out in passive store? There are several reasons, and one of the best reasons is that this
solves the problem of knowing when to delete passive versions. Active objects are reclaimed
either by job termination (for local objects) or by garbage collection. Garbage collection can
reclaim objects with indefinite lifetimes by detecting when those objects can never again be
accessed by any chain of ADs. However garbage collection is impractical in passive store,
because ADs can reference between nodes in a network and even reference between mounted
and dismounted volume sets! An exhaustive scan of all filing volume sets at all nodes would
consume too much network and disk bandwidth, but a scan that includes dismounted volume
sets is completely impractical. Instead the master AD is singled out, and constrained to be on
the same volume set as the object it references. If the master AD is deleted, then the object is
deleted and reclaimed. The object can also be explicitly destroyed while the master AD still
exists, but no further passive version of the object can be created.

A passive object exists until its master AD is deleted, or until the object’s passive version is
explicitly destroyed.
II-3.1.11.6 Transferring Mastership

In two cases, deleting a master AD does not destroy a passive object O, but instead converts an
alias AD to become the new master AD:

e If the master AD is stored in a directory entry and other directory entries on the same
volume set reference O, then "mastership” is transferred to one of the other entries.

e If the master AD is stored in a non-directory object and other ADs in that object reference
O, then mastership is transferred to one of those other ADs.

Note that the master AD always remains on the same volume set as the object it references.
Note also that mastership is never transferred from a directory entry to a non-directory object.

1I-3.1.11.7 Object Trees

An object tree is defined by a stored root object and all objects reached from it via a chain of
master ADs. For example, if A contains a master AD for B which contains a master AD for C,
then the object tree rooted in A contains C.

All objects in an object tree have the same volume set.

Several passive store calls operate on object trees: Copy, Destroy, Request_update (in
its default version), and Update tree.

Storing Objects II-3-9



PRELIMINARY

I1-3.1.11.8 Passive ADs as Universal Identifiers

A passive AD contains enough information to uniquely identify a passive object among all the
passive objects ever created on any BiiN™ system anywhere at any time. Passive objects
created on different volume sets, nodes, or systems can never be confused. A passive AD
references one object in a universal address space, an address space that spans all objects ever
created on any BiiN™ system anywhere.

11-3.1.12 Passive Store Behavior of Generic Objects

Generic objects support all passive store calls. All Request__ passive store calls on generic
objects require read rep rights.

11-3.1.13 Passive Object Characteristics

Figure II-3-3 shows a passive object and some of its associated characteristics.

Directory
Entry Master
Name AD
. Passive Object Descriptor
- Owner
Passive Version
DO - .
< Optional
Authority
- List
- Type
Rights
=
DY Rights
| l ID\[_]

Figure I1-3-3. A Stored Object

A passive object information record is also maintained for every passive object:

I1-3-10 Storing Objects



PRELIMINARY

length

create_time
read_time

write time
change_status_time
owner

auth_list

volume_ set

node

1I-3.1.14 The Life History of a Passivated Object
Figure II-3-4 shows a job creating and using a stored object:
1. Creating the active version
2. Storing the master AD
3. Storing the passive version
4. Changing the active version
5

. Updating the passive version.

When the job terminates, the object’s active version is deallocated but the passive version still

exists.
ACTIVE ACTIVE PASSIVE
OPERATION AD VERSION NAME /MASTER AD VERSION
1. Creat. ti t
object with mitiar | F—{__100]
balance 100
2. Store AD under [ —={  100] [/ocet/023 ] —
name /acct/023
3. Updat t
pdate accoun I I I 100 I/occt/023 l }———){ 1001
4, Add 200 to bal
© bolance [ —] 300] [/acct/023 | 100
5. Update account L I )l 300[ mcct/ozs I }—-)I SM
6. Job A terminates I/occt/ozs I 300

Figure II-3-4. Life History of a Stored Object Part1

Figure II-3-5 shows another job using and then destroying the same stored object:
1. Retrieving an AD from the directory entry
2. Accessing the object (transparently creates an active version)

3. Destroying the passive version, the directory entry, and the active version.

Storing Objects II-3-11



FPKELLVIINAKYX

ACTIVE ACTIVE PASSIVE

OPERATION AD VERSION NAME /MASTER AD VERSION
7. Job B retrieves

AD from directory :——-’ l/acct/023 | '—-->| 300'
8. Read balance

(activates object) I l 3 ! 300] |/occt/023 I l"—)l 300‘
g. Destroy passive

version l }—)‘ 300I I/acct/023 I I—-—-)
10.  Delete directory

entry l I-—)[ 300]

1. Dealiocate active
version

Figure II-3-5. Life History of a Stored Object Part II

11-3.1.15 Activation Models

Passive store supports two models of object activation: the multiple activation model and the
single activation model. The choice of an activation model can be concealed within an
object’s type manager, and only the type manager implementer needs to be concerned with the
choice.

I1-3.1.15.1 Muitiple Activation

In the multiple activation model, a single stored object can have multiple active versions in
different jobs (Figure I1-3-6).

11-3-12 ’ Storing Objects



PRELIMINARY

PASSIVE VERSION

PASSIVE
STORE

ACTIVE
STORE

A'S ACTIVE VERSION B'S ACTIVE VERSION

Figure I1-3-6. A Single Object can have Multiple Active Versions.

In Figure II-3-6, if Job A updates the object, then Job B’s active version is obsolete. Passive
store keeps track of object versions and refuses updates from obsolete active versions, raising
the outdated object_versionexceptionin Passive Store Mgt.

An application can handle the outdated_active_ version exception by:
1. Calling Reset_active_version to make its active version current

2. Redoing whatever changes it made to the active version

3. Attempting the update again.

A type manager can also define a version-out-of-date flag in the type’s objects. Passive store
then sets the flag in any obsolete active versions of the type. An application can check the flag
before using an active version, resetting the active version if needed. Note that using the flag
does not eliminate the outdated_object_version exception; there can be communica-
tion delays in setting the version-out-of-date flags.

A job using a transaction can avoid any problems with an obsolete object version by reserving
the object for the transaction. The object is reserved until the transaction is resolved. While a
stored object is reserved, only updates associated with the reserving transaction are allowed.
Passive_Store_Mgt.Reserve resets the caller’s active version if it is obsolete, ensuring
that subsequent code begins with the current version.

Reserving frequently accessed objects for long periods can cause performance problems by
delaying other jobs.

Storing Objects 1I-3-13



PRELIMINARY

For global objects, there is one active version of the object per node where the object is ac-
cessed rather than per job.

I1-3.1.15.2 Single Activation

In the single activation model, an object is only activated in one home job. Other jobs that
activate the object receive a token active version called a homomorph in place of the object.
Those other jobs communicate with the object’s home job to request operations on the real
object.

The type manager conceals the use of homomorphs. When an application requests an opera-
tion on a homomorph, the type manager handles all the communication needed to perform the
operation and return results.

A type manager can distinguish between homomorph and real active versions by defining an
is_homomorph boolean that is true in the homomorph template and that is false in all real
passive and active versions.

I1-3.1.15.3 Choosing an Activation Model

In the single activation model, operations come to the object. In the multiple activation model,
the object goes to the operations. In either case, the type manager’s public interface should be

the same. The choice of an activation model is an implementation decision, important only to

designers of type managers, not to outside users.

The multiple activation model:

e [s often easier to implement
e Brings the object to the operation (good for repeated operations on smaller objects)

e Often requires code to handle clashes between concurrent and incompatible versions of the
same object.

The single activation model:

e [s often more difficult to implement
e Brings the operation to the object (good for larger objects such as files)

e Does not cause clashes between multiple active versions of the same object.

11-3.1.16 Transaction Support

1I-3-14

Most passive store calls that change passive versions are transaction-oriented. A transaction-
oriented call participates in any default transaction. If there is no default transaction, then a
transaction is created for the duration of the call.

Object activation and Reset_active_version calls normally can do dirty reads, reading
a passive version written by another transaction before that transaction commits. An applica-
tion can ensure that a committed version of an object is used by calling Reserve on the
object.

An object can reserve an object using either a write lock or a read lock. Write locks are
exclusive and are not released until the enclosing root transaction is resolved. Read locks can
be shared with other read lockers, and can be released early with explicit Release calls.
Update and destroy calls assert write locks if the affected objects are not already write-locked
by the calling transaction.

Storing Objects



PRELIMINARY

Applications that use passive store may choose to maintain its transaction orientation. To do
this, applications should group any sequence of logically dependent passive store/file/directory
calls within a transaction. Chapter II-4 shows you how to use transactions.

Stored objects can be concurrently accessed by multiple jobs using multiple transactions. A
passive store call on an object can be refused because it is being used by a transaction with a
more recent timestamp than the transaction enclosing the refused operation. Chapter II-4
shows you how to handle timestamp conflicts.

1-3.1.17 The Passive Store Attribute

The behavior of passive store is customized for a particular object type by supplying a passive
store attribute for the type. Each instance of this attribute is an object with the
Passive_Store_Mgt.PSM_attributes_object Ada type.

11-3.1.18 Default Passive Store Behavior

If an object type does not have the passive store attribute, then by default it supports all passive
store calls. The default allows copying of passive objects of the type and maps all Request _
calls to the corresponding direct calls, regardless of what rights are on the AD supplied.

1I-3.1.19 Type Manager Support

All the features described in this section are controlled by fields in a type’s passive store
attributes object.

A type manager can supply type-specific subprograms to be called in response to any or all of
the following Passive_Store Mgt calls:

Request_passive_object_info

Request_release

Request_reserve

Request_reset _active version

Request_set_timestamps

Request_update

A type-specific subprogram that refuses a request should raise
System_ Exceptions.operation_not_supported.

A type-specific subprogram that makes multiple updates to passive objects, files, or directories
can enclose its updates in a transaction, so that the type-specific subprogram is transaction-
oriented.

A type manager can refuse to allow copying of the type’s stored objects by setting the
copy_permitted boolean to false in the PSM attributes object. For example, if an account
balance represents an amount of money, then it may be wise to prohibit copying of account
objects!

A type manager can define a locking area in its type’s objects, using fields in the passive store
attribute object. When an object is activated, a semaphore is created and an AD for the
semaphore is placed in the first word of the locking area. Other words of the locking area are
initially zero. When an active version is reset, the locking area is preserved and copied over
from the preceding active version.

Storing Objects ) II-3-15



FKELIVMINAKYX

A locking area is needed when multiple processes in a job share an active version. The active
version must contain a semaphore and possibly other information to synchronize access to the
active version. Without a locking area, resetting the active version would lose the reference to
needed synchronization information, such as a semaphore with a blocked process waiting to
use the active version.

1I-3.2 Techniques

After reading this section, you will be able to:

e Create a passive object

e Update a passive object
e Request an update

¢ Destroy a passive object
e Copy a stored object tree

e Get passive object information.

Many of the examples are excerpted from the non-transaction-oriented body of the

Stored Account_Mgt_Ex example. This package extends the type manager for accounts,
developed in Chapter VII-3, to use passive store. Appendix X-A contains complete listings for
Stored_Account_Mgt_Ex and other units excerpted in this chapter.

1I-3.2.1 Creating a Passive Object

Calls Used:

Directory Mgt.Store
Stores a new directory entry.

Passive_Store_ Mgt.Update
Updates an object’s passive version.

To create a stored object:
1. Create and initialize the active object (as described in Chapter VII-3).
2. Store a master AD for the object.

3. Update the object, creating the passive version.

The following excerpt from the Stored_Account_Mgt_Ex package body (non-
transaction-oriented) shows how to create a stored object:

1I-3-16 : _ Storing Objects



PRELIMINARY

132 function Create_stored_account (

133 starting balance:

134 Long_Integer Defs.long_integer :=

135 Long_Integer_Defs.zero;

136 master: System_Defs.text;

137 " authority:

138 Authority_ List Mgt.authority list AD := null)
139 return account_AD

140 --

141 -- Logic:

142 - 1. Check the initial balance.

143 -

144 - 2. Allocate and initialize the account ocbject.
145 -

146 - 3. Remove rep rights for the exported and master
147 - AD.

148 --

149 - 4, Store the master AD.

150 - Use "authority" as authority list to store the
151 - account. If "authority™ is null, the default
152 -- authority list of the target directory is used.
153 - If there is none the caller’s authority list in
154 - the process globals is used.

155 -

156 - 5. Passivate the account object itself.

157 -

158 - 6. Return the AD without rep rights.,

159 is

160 account: account_AD;

161 account _untyped: System.untyped_ word:

162 FOR account_untyped USE AT account’address;

163 —— Account with no rep rights, viewed with

164 -- either of two types.

165

166 account_rep: account._rep_AD;

167 account_rep_untyped: System.untyped word;

le8 FOR account_rep_untyped USE AT

169 account_rep’address;

170 -— Account with rep rights, viewed with

171 -- either of two types.

172

Storing Objects II-3-17



PFKELIMINAKY

begin
—-- 1. Check the initial balance:
if starting balance < Long_Integer Defs.zero then
RAISE insufficient_balance;

else
-— 2. Allocate and initialize the account object:
account_rep_ untyped := Object_ Mgt.Allocate(
size => (account_rep object’size + 31)/32,
tdo => account_TDO):
account_rep.all := account_rep object’ (
balance => starting balance):

-=- 3. Remove rep rights for the exported and
- master AD:
account_untyped := Access_Mgt .Remove (

AD => account_rep untyped,

rights => Object Mgt.read write rights):

-- 4, Store the master AD:

Directory Mgt.Store(

name => master,
object => account_untyped,
aut => authority):

-~ 5. Passivate the account object itself:

Passive_Store_Mgt.Update(account_rep_untyped):

-- 6. Return the account AD with no rep rights:

RETURN account;

end if;
end Create_stored_account;

11-3.2.2 Updating a Passive Object

Calls Used:

Passive_ Store Mgt.Update

Updates an object’s passive version.

Any operation that changes a stored object normally updates it. For example, the
Change_balance callin Stored Account_Mgt_Ex updates the affected account.

267
268
269

account_rep.balance :=
account_rep.balance + amount:;
Passive_Store_ Mgt.Update (account_untyped);

11-3.2.3 Requesting an Update

II-3-18

Calls Used:

Passive_ Store_ Mgt.Request_update
Requests a type-specific update. Defaults to Update tree.

Storing Objects



PRELIMINARY

The following excerpt from the Make _object_public_ex example shows storing a
master AD and then requesting an update for an authority list object:

58 aut list: constant

59 Authorlty List_Mgt.authority list_AD :=

60 Authority List_ Mgt.Create authorlty(entrles),
67 Directory Mgt.Store(aut_list path, aut_untyped):
68 Passive_Store_Mgt. Request _update (aut_untyped) ;

The excerpt uses Request_update instead of Update because the caller is not the type
manager for authority lists and does not have rep rights.

11-3.2.4 Destroying a Stored Object

Calls Used:

Directory Mgt.Get_name
Gets an object’s full pathname (if any).

Directory Mgt.Delete
Deletes a directory entry.

Passive Store Mgt.Destroy
Destroys a stored object tree.

The Destroy_account callinthe Stored_Account_Mgt_Ex example destroys an
account’s passive version, deletes one dlrectory entry for the account, and deallocates the
account’s active version. If additional directory entries reference the account, then those
entries become dangling references. (Any attempt to access the object via such a dangling
reference raises System Exceptions.object_has no_representation. Hereis
the code:

Storing Objects I1-3-19



PRKELIMINAKY

path_length: integer := 60;

Initial text length for name assigned

-- by "Directory Mgt.Get_name®™. If
-- insufficient, then the value is
-- increased and the operation is
—-- repeated.
begin
account_untyped := Access_Mgt.Import (
AD => account_untyped,
rights => destroy_rights,
tdo => account_TDO};

if account_rep.balance /=
Long_Integer Defs.zero then
RAISE balance_not_zero;

else

Passive_Store_ Mgt.Destroy(account_untyped):

loop
declare

path_text: System Defs.text(path_length):

begin
Directory Mgt.Get_name(
obj => account_untyped,
name => path text); -- out.
if path_text.length >
path_text.max length then
-- Text was lost. Retry:
path_length := path_text.length;
else
Directory Mgt .Delete(path_text):
EXIT:

end if;

exception
when Directory Mgt.no_name =>

EXIT;

end;
end loop;

Object_Mgt.Deallocate (account_untyped);
end if;
end Destroy_account;

NOTE: If an application knows that an object has only a single directory entry on its home
volume set, and that the directory entry contains the object’s master AD, then destroying the
object is simpler: Just delete the directory entry containing the master AD and the passive
version is also destroyed.

11-3.2.5 Copying a Passive Object Tree

11-3-20

Calls Used:

Directory Mgt.Store

Stores an AD in a new directory entry.

Passive_Store Mgt.Create_ copy_stub
Creates a copy stub, used as the target of a subsequent Copy call.

Passive_Store_Mgt.Copy

Copies a tree of stored objects.

Storing Objects



PRELIMINARY

Suppose that passive store contains a tree of objects that you want to copy, such as a program
containing many modules; perhaps you want a copy to create a variation of the program.
Objects in the tree, all connected to the root by master ADs, are all the parts of the program.
The program also contains alias ADs that reference system services or shared library routines.

When you make a copy of the program, you want to preserve the program’s structure in your
copy. For example, if object A in the program has a master AD for object B, then you want
your copy of object A to contain a master AD for your copy of object B. Thus, copying must
not just copy stored objects but sometimes remap ADs in the objects. On the other hand, if
object B contains an alias AD for an object D that is not in the tree, then the copy of object B
should contain an identical AD. This is the case when the program and the copy reference
shared services or libraries that are not also copied. Figure II-3-7 shows how master ADs (A
to B which maps into E to F) are remapped and alias ADs to objects outside the tree (B and F
to D) are unchanged when a tree is copied. Any AD from an object in the tree that references
another object in the tree is remapped, even if it is an alias (C to B which maps into G to F).

\ COPY /\
Bcom- C Feemmn0
\ -7
‘Dk/

———>» MASTER AD
-——=—3 ALIAS AD
Figure II-3-7. Copying an Object Tree

The passive store copy calls should not be used for backing up or restoring stored objects. See
the BiiN™ Systems Administrator’s Guide for information about backing up or restoring stored
objects.

Some object types cannot be copied. For example, TDOs and attribute IDs cannot be copied.
Objects that correspond to physical devices cannot be copied. (What would it mean to "copy"
a printer?) The copy_permitted boolean in a type’s PSM attributes object determines
whether objects of the type can be copied. The Set_refuse filters call assigns
copy_permitted false. If any objects in a tree cannot be copied, then Copy raises
System_ Exceptions.operation_not_supported.

Copying an object tree copies passive versions and does not create active versions of any of the
copied objects.

When you make a copy, you create a new stored root object and possibly other new objects
below it in a tree. But before this root object that does not yet exist can be stored, a master AD

Storing Objects ; 11-3-21



FKELIVIINAKY

must be stored for it! The master AD must be stored to determine the new object tree’s
volume set, owner, and authority lists. So that a destination master AD can be stored before
copying an object tree, Passive_Store_Mgt provides the Create_copy_stub call,
which creates a new "stub" object that is only used to:

1. Store a master AD.
2. Be the destination of a Copy operation.

Copying a tree of stored objects thus has three steps:

1. Create a copy stub, used as the target of the Copy call.
- 2. Store a master AD for the stub.

3. Copy the object tree to the stub.

The Named_copy_ex example procedure copies a source object tree to a destination object
tree, given source and dest pathnames. This excerpt shows the three-step operation:

62 source_AD := Directory_ Mgt.Retrieve(source);
63 dest_AD := Passive_Store Mgt.

64 Create_copy_stub(source_AD);

65 Directory Mgt.Store(name => dest,

66 object => dest AD);

67 Passive_Store_Mgt.Copy(source_ AD, dest AD):;

11-3.2.6 Getting Passive Object Information

Calls Used:

Passive_Store_ Mgt.Request_passive object_info
Requests information about an object’s passive version.

The OS keeps much more information for passive versions than active versions: owner, au-
thority list, volume set, node, size, and time created, last read, last written, and last modified in
any way.

The Older_than_ex example function compares two stored objects to determine if the first
was last written before the second. For example, Older_than_ex can be used to determine
if a machine instruction object is older than the associated source code object, requiring a
recompile.

The function uses Request_passive_object_info rather than
Get_passive_object_info because it may not have rep rights on the objects being
checked:

I1-3-22 Storing Objects



PRELIMINARY

21 use Long Integer Defs;

22 -— Import "<" for long integers.

23

24 a_info: Passive Store Mgt.passive object_info;
25 b_info: Passive_Store_Mgt.passive_object_info;
26 Dbegin

27 a_info := Passive_Store Mgt.

28 Request_passive_object_info(a):

29 b_info := Passive_Store_Mgt.

30 Request_passive object_info(b);

31

32 if not a_info.valid or else not b_info.valid then
33 RAISE System Exceptions.bad_parameter;

34

35 else

36 RETURN a_info.write_time < b_info.write_time;
37

38 end if;
39 end Older_than_ex;

The valid field of the passive object_info record is false if the object does not have
a passive version. /

i1-3.3 Summary

Storing Objects

Passive store is a distributed, reliable object filing service.

Use files instead of passive store if you do not need to store ADs and object types. Use
files to port programs that use conventional file systems. Use files if you need fast random
access to record-structured data.

An object can have zero or one passive versions and zero, one, or multiple active versions.
These are all versions of a single object.

Active versions are created automatically when you try to access an object’s representation
within a job without an active version of the object.

Passive versions are created and changed by explicit update calls.

The first AD stored for an object is its master AD, and must be stored before the object is
stored.

An object tree is a root object and all objects reached from it via a chain of master ADs.
Some passive store calls operate on object trees.

The passive store service detects conflicts between multiple object versions and raises ex-
ceptions that can be handled by the callers.

Passive store calls are normally handled within type managers.

Type managers can customize the passive store service for their type’s objects by defining
an instance of the passive store attribute.

11-3-23



FKELIVMIINAKY

11-3-24 Storing Objects



PRELIMINARY

STARTING AND RESOLVING
TRANSACTIONS

Contents
L0073 107 o 11-4-2
What Transactions Provide ............ciiiiitiiiiiiiiiiiiniinnnennnnn. I1-4-2
Transaction Calls . ... ..ottt reneneononasennonsasonsnnes 11-4-3
Transaction StaCKS .......iiiiiiiinniiieieieiieietirieneenaenensans 114-3
The Default Transaction ... ......couiieituinnnrnennrornrocanoneenenenns 114-3
Participating in Transactions . .........c.cvuieven i ennennennerneenennns 114-3
The Transaction Serviceasa Coordinator .............cciiiivnnrennennnnn. 44
SUDIANSACHONS . ... iittttitin ittt ieernenreneeaeneenennsennnennens 11-4-4
Avoiding Subtransactions . ..........c..iiiiiiiiiiiiiie it I1-4-4
Rules for Using Transactions . .......c.oveirveieneneneneanenenreenanenens I-4-4
TransactionLocking ....... ...t i i I1-4-5
Transaction TIMEOULS . ... ..ttt ittt tnaeaanreannnns I1-4-5
Transactions and Job Termination ..............ciiiiiiiiiiiiniiinninnnn. I1-4-6
Avoiding Deadlocks with Timestamp Conflicts ............. ..o, I1-4-6
Independent Transactions ...........c.o.oieiieiininiiiinineenenennenennas 11-4-6
TeChMIQUES ...ttt i i i i i et i i it e e I1-4-6
UsSing a TransaCtion . .........ciuiueeuneneueereeneenenraanananonsoensas 11-4-6
Avoiding Unnecessary Subtransactions .............ccovuiieiiineinnenienns 11-4-7
Using a Transaction and Recovering from Timestamp Conflicts ............... I1-4-8
SUMIMIATY ..ottt it i it i it i i e e e e e e 11-4-9

Starting and Resolving Transactions 114-1



PRELIMINARY

A transaction groups related operations so that either all the operations succeed or all are
rolled back.

Packages Used:

Transaction_ Mgt
Provides transactions used to group a series of related changes to objects
so that either all the changes succeed or all are rolled back.

This chapter introduces transactions and basic techniques for using transactions. Chapter
IV-10 describes transaction locking of files, opened files, key ranges, and records.

Transactions are typically used to group changes to files or other objects stored on disk. For
example, transferring $100 from one bank account to another could be enclosed in a trans-
action. If the change to either account failed or if the system crashed before all changes were
made, then all changes would be undone.

Transactions are also useful in less obvious ways. Even when a single record is inserted into a
file, several disk writes may be needed to update indexes as well as the file’s primary data area.
The filing service uses a transaction to ensure that a failure within such a group of writes
doesn’t make the file and its indexes inconsistent.

lI-4.1 Concepts

11-4.1.1 What Transactions Provide

1I-4-2

Transactions provide several services simultaneously to the developer:

Atomicity Transactions are atomic or indivisible, either completely succeeding or
making no changes at all. (Though atomicity only applies to those opera-
tions that participate in the transaction, as described below.)

Consistency Inconsistent and transitory states that your data passes through within a
transaction are not visible from outside the transaction. For example, the
state when one account has changed but not the other, or the state when
one index has changed but not another, are not visible outside the enclos-
ing transactions. (Consistency is enforced by type managers.)

Crash Recovery  Transactions work correctly even if the system hardware or operating sys-
tem crashes. Transactions in progress when a crash occurs are aborted as
part of crash recovery.

Synchronization  Transactions synchronize with each other so that one transaction cannot
access data being actively used by another transaction.

Deadlock avoidance
Transaction synchronization is designed so that deadlocks are not possible.
An example of a deadlock would be if two transactions each blocked wait-
ing for locks held by the other transaction. However, because each is
blocked, the locks would never be released. The transaction service
defines an ordering scheme that determines whether a particular trans-
action is allowed to block for another particular transaction. If blocking is
not allowed, an exception is raised.

Starting and Resolving Transactions



PRELIMINARY

Time limits When an application creates a transaction, it can specify a timeout that
limits (aproximately) the total time taken by the transaction.

Distributed service The transaction service is distributed. One transaction can include changes
to objects at multiple nodes.

Extensible service By default the transaction service can be used with any new type of local
passivatable object. A type manager can also customize the transaction
service for its object type.

1I-4.1.2 Transaction Calls
Transaction_Mgt defines three basic calls for transactions:

Start_transaction
Creates a transaction.

Commit_transaction
All changes within a transaction are done successfully. Terminate the
transaction.

Abort_transaction
Something went wrong. Undo changes made within the transaction and
terminate the transaction.

Transaction_Mgt includes several other calls, used for special purposes. The three basic
calls are all that many applications need.

I1-4.1.3 Transaction Stack

Transactions can be nested, and several transactions may be active at once. Each process has
an associated transaction stack in its process globals. A process’s transaction stack is initially
empty. Creating a transaction pushes the new transaction onto the caller’s transaction stack.

1I-4.1.4 The Default Transaction

The transaction on top of a process’s transaction stack is its default transaction. Many
Transaction_ Mgt calls have a transaction parameter that can be defaulted, indicating that
the caller’s default transaction should be used. Start_transaction pushes the new trans-
action onto the caller’s transaction stack. By default, Commit_transaction and
Abort_transaction operate on the default transaction and pop it from the stack.

I1-4.1.5 Participating in Transactions

A transaction only affects those calls that participate in the transaction. A participating call
must be implemented in such a way that it can be aborted up to the time it is committed. Some
calls only participate in a transaction if the caller has a default transaction. Other calls par-
ticipate in a transaction even if the caller has none, by creating a transaction for the duration of
the call. If a System Services call participates in transactions, then its call description in the
BiiN™/OS Reference Manual will state that it participates. Calls that affect structured
transaction-oriented files, directories, and other passive objects often participate in trans-
actions.

It is important to realize that aborting a transaction does not roll back non-transaction-oriented
actions! For example, screen I/O, printing a check, or assigning a program variable are not
rolled back.

Starting and Resolving Transactions 14-3



FKELIVIINAKY

i-4.1.6 The Transaction Service as a Coordinator

The transaction service acts as a coordinator for whatever type managers participate in a par-
ticular transaction. Different transaction-oriented type managers may implement transaction
locking, commital, and abortion differently. '

11-4.1.7 Subtransactions

If Start_transaction is called when there is already a default transaction, then the new
transaction is a subtransaction or child transaction of that default transaction. A top-level
transaction is a root transaction. Subtransactions and root transactions behave somewhat dif-
ferently:

e Committing a subtransaction does not make changes permanent but simply passes respon-
sibility for the changes up to its parent transaction.

e Committing a root transaction makes permanent any changes made within the root trans-
action and within any committed subtransactions.

e A transaction cannot be committed until all of its subtransactions are committed or aborted.

e Aborting a subtransaction only aborts changes within the subtransaction and does not abort
the parent transaction.

e Aborting a transaction also aborts its subtransactions.

Why use subtransactions? As far as atomicity and rollback, there seems to be no advantage to
having transactions within transactions. There are two good reasons that subtransactions are
used:

1. To allow transaction-oriented functions to be combined in straightforward ways. A can call
B which can call C, each procedure can enclose its code in a transaction, and they will all
work.

2. To provide synchronization between concurrent processes within the same transaction. The
transaction service uses transactions as the units being synchronized. Any concurrency
within an overall transaction must be split into different subtransactions or the needed lock-
ing won’t happen. (To be precise, subtransactions for synchronization of concurrent
processes in a transaction are only needed if there is data that may be used and locked by
more than one of the processes.)

11-4.1.8 Avoiding Subtransactions

There is some overhead in creating subtransactions when they are not required. A transaction-
oriented module may choose to check whether there is already a default transaction and only
start a new transaction if there is not already one on the stack.

11-4.1.9 Rules for Using Transactions
These rules can help you in designing code that uses transactions:

1. Normally the section of code that starts a transaction should also commit it if successful
and abort it if any exceptions occur.

2. If possible, code between matching Start_transaction and
Commit_transaction calls should not include operations that don’t participate in the
transaction.

11-4-4 v Starting and Resolving Transactions



PRELIMINARY

3. If possible, code between matching Start_transaction and
Commit_transaction calls should not include transfers of control out of that code
block, such as RETURN, EXIT, or GOTO. If there are such transfers, then the transaction
should be either committed or aborted on every possible path out of the block.

4. Your code should normally not manipulate the transaction stack directly.

5. If you spawn child processes within a transaction T and those processes need to participate
in T, then:

a. T must be passed to each child.

b. Each child must push T on its transaction stack and then start a subtransaction.
c. Each child must resolve its subtransaction before terminating.

d. Each child should signal resolution of the subtransaction to the parent process.

e. The parent process should not attempt to commit 7 until it is signaled that all the sub-
transactions used by the child processes have been resolved.

11-4.1.10 Transaction Locking

Whenever a transaction-oriented operation reads or writes data, it locks the data or some entity
containing the data. Locking prevents concurrent changes and also keeps changes within the
transaction from being visible to other transactions until such changes are committed. There
are two type of locks asserted by a transaction:

read lock Indicates that a transaction is using an entity and that the entity cannot be
changed until the lock is released.

A read lock allows other read locks but excludes write locks.

A read lock can be explicitly released from within the transaction that as-
serted the lock.

write lock Indicates that a transaction is using an entity and may change it. The
entity cannot be read or written from outside the locking transaction until
the locking transaction commits or aborts (except for dirty reads).

A write lock is exclusive and does not allow any other concurrent locks.

A write lock cannot be explicitly released. Only resolving the locking
transaction releases a write lock.

The granularity of locking depends on the application or type manager. Transaction locks can
be aquired on entire files, records within files, entries within directories, or entire passive
objects.

For reading only, an application can choose to bypass locks and dirty read data that may be
involved in an uncommitted transaction.

11-4.1.11 Transaction Timeouts

Whenever a transaction is specified, an advisory timeout duration is specified. By defaulta
system-supplied value, specified as a node configuration parameter, is used. A transaction that
runs out of time is automatically aborted by the transaction service. A timeout is a lower limit
on the actual time allowed. For example, if a timeout of 30 seconds is requested, then the
actual timeout may occur after one minute. A timeout value is always finite--there is no
concept of waiting forever--but can be very large. Timeouts help ensure that files, records, or
other data structures don’t remain locked indefinitely if a process holding a transaction lock is
killed.

Starting and Resolving Transactions v 114-5



PRELIMINARY

1-4.1.12 Transactions and Job Termination

When a transaction is started, it is associated with the calling job. If that job terminates and the
transaction is not already committed or aborted, then job termination aborts the transaction.

11-4.1.13 Avoiding Deadlock with Timestamp Conflicts

To avoid circular waiting, the transaction service defines a precedence scheme for transactions.
Younger transactions will wait for older transactions but not the reverse. If an older trans-
action does request a lock held by a younger transaction, then

System_ Exceptions.transaction_timestamp_conflict israised. The rules
are different if the transactions involved are ancestor and descendant; see
Transaction_Mgt.Blocking permitted for details.

An application can recover from a timestamp conflict by:

e Aborting its transaction

¢ Resetting any other state information, such as variables

e Looping back in its code to the point where the transaction is started.

The newly started transaction will be younger than the transaction holding the lock and will be
allowed to wait. Multiple loop backs can occur due to (rare) concurrent activity.

11-4.1.14 Independent Transactions

Transaction_Mgt.Start independent_transaction can be called to create a
new root transaction even if the caller has a default transaction. Consider a system accounting
manager as an example of using independent transactions. Operations that consume or return
system resources would update accounts on disk via the system accounting manager. Such
updates are independent of whatever the application may be doing, and should be independent
of any surrounding transaction. Otherwise, an abort of the surrounding transaction could erase
all charges for resources used during the aborted operation.

A process using an independent transaction should not try to get any lock held by an older
unresolved transaction in the same process. This will cause the process to block until the older
unresolved transaction times out.

I1-4.2 Techniques

After reading this section, you will be able to:

¢ Use a transaction
¢ Avoid unnecessary subtransactions

e Use a transaction and recover from timestamp conflicts.

1I-4.2.1 Using a Transaction

11-4-6 Starting and Resolving Transactions



PRELIMINARY

Calls Used:

Transaction Mgt.Start_ transaction
Creates a transaction.

Transaction_Mgt.Commit_transaction
Indicates that changes within a transaction are done. Makes the changes
permanent if the transaction is a root transaction.

Transaction Mgt.Abort_ transaction
Undoes all changes made within a transaction.

The following excerpt from the Make_object_public_ex example shows how to use a
simple transaction:

65 Transaction Mgt.Start_transaction;

66 begin

67 Directory_ Mgt.Store(aut_list_path, aut_untyped):
68 Passive_Store_ Mgt .Request_update (aut_untyped):;
69 Transaction_ Mgt.Commit_transaction;

70 exception

71 when others =>

72 Transaction_ Mgt .Abort_transaction;

73 RAISE;

74

75 end;

Note that the block containing the exception handler is only entered if the transaction is suc-
cessfully started. Any exception causes the transaction to be aborted and the exception to be
reraised.

11-4.2.2 Avoiding Unnecessary Subtransactions

Calls Used:

Transaction Mgt.Start_transaction
Creates a transaction.

Transaction Mgt.Commit_transaction
Indicates that changes within a transaction are done. Makes the changes
permanent if the transaction is a root transaction.

Transaction Mgt.Abort_ transaction
Undoes all changes made within a transaction.

The following excerpt from the Stored_Account_Mgt_Ex transaction-oriented body
shows how to start and resolve a local transaction only if the caller does not already have a
default transaction:

Starting and Resolving Transactions 114-7



FRELIMINAKY

195 trans: boolean := false;

196 -— True if a local transaction is started.
219 -— 4, Start a local transaction if there is not
220 - a transaction on the stack:

221 --

222 if Transaction_Mgt.Get default_ transaction =
223 null then

224 Transaction_Mgt.Start_transaction:;

225 trans := true;

226 end if;

227 begin

239 -- 7. Commit any local transaction:

240 —-—

241 if trans then

242 Transaction_Mgt .Commit_transaction;

243 end if;

244 exception

245 -- 8. If any exception occurs, abort any local
246 - transaction, deallocate the account,
247 - and reraise the exception:

248 -

249 when others =>

250 if trans then

251 Transaction_Mgt .Abort_transaction;

252 end if;

253 ' Object_Mgt.Deallocate (account_untyped);
254 RAISE;

255

256 end;

Note the use of the t rans boolean to indicate whether or not a local transaction has been
started.

11-4.2.3 Using a Transaction and Recovering from Timestamp Conflicts

11-4-8

Calls Used:

Transaction Mgt.Start transaction
Creates a transaction.

Transaction Mgt.Commit_transaction
Indicates that changes within a transaction are done. Makes the changes
permanent if the transaction is a root transaction.

Transaction Mgt.Abort transaction
Undoes all changes made within a transaction.

The System_Exceptions.timestamp_conflict exception is raised to prevent trans-
action deadlocks, commonly when an older transaction requests an entity locked by a younger
transaction. An application can recover from a timestamp conflict by aborting its transaction,
resetting any other state information (such as variables), and looping back in its code to where
the transaction is started. The newly started transaction will be younger than the transaction
holding the lock and will be allowed to wait. Note that multiple loop backs can occur due to
(rare) concurrent activity. The following example of using a transaction and handling times-
tamp conflicts is excerpted from the Stored_Account_ Mgt _Ex example’s transaction-
oriented body:

Starting and Resolving Transactions



PRELIMINARY

397 trans: boolean := false;

398 -- True if a local transaction is started.
399 begin

400 account_untyped := Access_Mgt.Import (

401 AD => account_untyped, -

402 rights => change_rights,

403 tdo => account_TDO);

404

405 loop

406 if Transaction Mgt.Get_default transaction =
407 null then

408 Transaction Mgt.,Start transaction;

409 trans := true;

410 end if;

411 begin

412 Passive_Store_Mgt.Reserve (account_untyped);
413 if account_rep.balance + amount < zero then
414 RAISE insufficient_balance;

415

416 else

417 account_rep.balance :=

418 account_rep.balance + amount;

419 Passive_Store_Mgt.Update (account_untyped);
420 if trans then

421 Transaction_Mgt.Commit_transaction:;
422 end if;

423 RETURN account_rep.balance;

424

425 end if;

426 exception

427 when System_Exceptions.

428 transaction_timestamp conflict =>
429 if trans then

430 Transaction Mgt.Abort transaction;
431 else

432 RAISE;

433

434 end if;

435 when others =>

436 if trans then

437 Transaction_Mgt.Abort_ transaction;
438 end if;

439 RAISE:;

440 end;

441 end loop;

442 end Change_balance:;

lI-4.3 Summary

e A transaction groups related operations so that either all succeed or all are rolled back.

¢ Using a transaction can be done with three simple calls that all use the caller’s default
transaction, with no explicit parameters.

e Transactions synchronize with each other using read locks and write locks.
e Younger transactions will wait for older transactions at a lock, but not vice versa.

o Transactions can have timeout values.

Starting and Resolving Transactions 114-9



FKELIVIINAKY

11-4-10 Starting and Resolving Transactions



PRELIMINARY

WRITING MESSAGES

Contents

L0007 4107 o PP II-5-3
B0 (o TP I1-5-3
Message Fles ... .iiunniiiiit ittt ittt ittt ittt II-5-4
InCident Codes . ...oivtiiiiit it i ittt it i i e e II-5-4
Message BIOCKS ... i ittt i i e e e i i i e e II-5-5

B (o TN 7 10 I1-5-5
Messages and EXCeptions  .........ccuiiiiiiiierieennnnenennnnneaennannn I1-5-6

CL Variables That Affect MeSSaZES . ..vivivrntienernenenennenneaenennns II-5-6
How CLEX Handles Messages From Terminated Jobs ...................... II-5-7
Message UtItES .. .....oonitniiiiiiiii ittt it iiiinineneennennn I1-5-7
HiStory Files ... .o i it ittt e ittt ittt it ae e 11-5-7
System EITOr LOg ...ttt i i i e i e e et I1-5-7
BT 41 131 O A 1I-5-7
Defining Application MeSSages . ....vvviiunneenereeeneeneenrnneonnnnnns II-5-8
WHtNZ aMESSAZE ..o vv ittt ittt ettt eterneeaeaeaeenoeas II-5-10
Associating an Incident Code Withan Exception .......................... II-5-10
Replacing an OS Exception With an Application Message .................. II-5-11
Taking Advantage of Predefined OS Messages ..........cvvviienennnnnnn. I1-5-11
Pushing a Message When Raising anException ..................... ... ... II-5-11
Clearing the Message Stack When Handling an Exception .................. II-5-12
Writing a Message With Acknowledgement .....................coevn.n... I1-5-13
Recording History Entries ........c.ciiiiiiiiiniiein i iiiininninenennn. I1-5-13
1) T o 2 I1-5-14
Writing Messages II-5-1



FRELIVIINAKYX

Messages, incidents and exceptions are used to pass error messages between applications,
programs, program modules, and users. This chapter discusses messages, incidents and excep-
tions from a procedural viewpoint.

Packages Used:

History_ Services
Contains calls for using a job’s history log files.

Incident_Defs Defines incident and message types.

Message_Services
Provides calls to write messages from message files, message stacks, or
message blocks.

Message Stack_ Mgt
Manages a process’s message stack.

System Error_ Recording
Provides calls to record errors in a system log file.

Traditionally, a program developer defines errors and exceptional situations and handles the
messages that need to be sent when such situations occur. The BiiN™ system offers an ef-
ficient and powerful mechanism for reporting errors and sending messages using incidents and
messages. Help messages are similar to error messages but are managed separately. See

Help Text Admin the BiiN"/OS Reference Manual.

An incident can be a normal program error, an Ada exception, an OS error, a test point as
defined by a test point monitor, a situation that requires a message to the user or any situation
that is reported outside the program. Each incident is assigned an incident code which iden-
tifies a message and a severity level for the incident. Figure II-5-1 shows how an application
developer can associate an error with an appropriate message using incident codes.

I1-5-2 Writing Messages



PRELIMINARY

developer's source code

define error NN

define incident code NN
if error

write message (incident
code NN)

message file ABC

Y I\

incident msgq file ABC

code NN
module 3 message| English = "not found”
number 1 3.1 German = "nicht gefunden”

severity =
error

Y

environment variable \

I $ user.language = english |

"not found”

Figure II-5-1. Incidents Associate Errors with Messages

[I-5.1 Concepts

Using incidents greatly eases the development of messages and the handling of errors for large
projects with coherent user interfaces. For example, once an incident has been defined for the
common situation £ile not found, all developers on a large project can reference that
incident code when the situation comes up and only the definer needs to maintain the actual
message text and severity level for that incident.

[I-5.1.1 Messages

A message is the human-readable text associated with an incident. The message may contain
text in more than one natural language (German, English, etc.) in a short or long form and
contain parameters that can be substituted at the time the message is displayed.

The Message_Services package provides the procedural interface for sending messages.
The developer indicates specific message by passing an incident code, message block or com-
plete message stack (see subsequent sections for descriptions of these message constructs).
The human language and the message level are determined by the user’s setting of CL vari-
ables.

From the user’s point of view, a message contains a header, generated by the system, and the
message text, derived from the possible texts in the message for that incident code according to
the user’s CL variables.

Writing Messages II-5-3



FRELAVIINNAKX

A header is automatically prepended to messages of warning, error and fatal status but
not to messages of information status. The heading consists of the time of occurrence, the
sender name and a single-letter code for the severity level. The appearance of a header and
message is affected by CL variables (defined in a subsequent section).

In the following message example, the time of the incidentis 14 : 30 : 25, the sender is
Inventory_Files and the severity level is E (error). The CL variable msg. time is set to
true, message.longis false and user.language is English.

14:30:25 Inventory Files - E: Insufficient access rights to read file.

For more information about the contents of a message, see the BiiN" Command and Message
Guide.

11-5.1.2 Message Files

A message file contains the short and long forms of messages in one or more language varia-
tions. The messages are indexed by a message index comprised of a module number and
sequential number and, optionally, by a message name. A message file is created for one or
more applications by the manage .messages runtime command of the manage .program
utility. The message_object field in the incident code references the application’s mes-
sage file.

For more information about creating a message file, see the BiiN™ Command and Message
Guide.

11-5.1.3 Incident Codes

An incident is a BiiN™ construct that assigns a unique identifier, an incident code, to each
error situation. An incident code references a message file, an individual message within that
file and a severity level.

It is recommended that each Ada exception be assigned an incident code. Situations that are
not Ada exceptions may also have incident codes. For example, an incident code can be
assigned when a user presses a special function key.

An incident code record contains the following fields:

message_object
This field references the message file containing the message texts. The
message file itself is created with the manage .messages utility. The
software developer decides how to group messages (in a single file or in
multiple files) and how to associate the message file with the software (to
explicitly name the message file or to use a default message file). This
field takes one of three values:

e A valid AD to a message file.

¢ A null AD indicating that the message file is the default message file.
The default message file is created using manage .messages and is
associated with the program via the OEO (Outside Environment Ob-
ject, see the BiiN™ Command Language Executive Guide) using
store.default _message file. (Seethe BiiN" Command and
Message Guide for more information on these utilities.)

1I-5-4 . Writing Messages



PRELIMINARY

e A compiler-generated value (if the programmer did not define an in-
cident code). This value may be an AD to some object other than a
message file or a non-AD value. Either shows that a message is not
defined for the incident code. In a program where the programmer
does not define messages for program exceptions, for example the com-
piler generates unique exception values.

module A number from 0O to 256K-1, inclusive, assigned to a program or module
within a program. Combined with the incident number to identify an
individual message within a message file. The incident module and in-
cident number provide an index into the message file.

number A number from 0 to 4095, inclusive, assigned to the incident within the
module where it is defined.
severity A level of seriousness for the incident. Four severity levels-are recognized:

information, warning, error and fatal error.

e information
Not related to an error or waming; provides additional or helpful infor-
mation.

® warning
Indicates an occurrence which deviates from the expected behavior but
does not impede the expected outcome of an operation.

® error
Indicates that the operation generating the error cannot complete
properly until the condition causing the error is corrected.

e fatal error
Indicates an error of such severity that further processing is not pos-
sible.

1I-5.1.4 Message Blocks

A message block contains an incident code (which includes the message’s module and number)
and any message parameters. Calls that accept separate incident code and message parameters
(see Message_Stack_Mgt) reformat them into message blocks.

1I-5.1.5 Message Stacks

Program errors or incidents are frequently propagated through many layers of operations, espe-
cially within a large application. The message stack provides a means of keeping a trace of
any incidents that have occurred within a process along with specific information about each
incident.

The message stack is a fixed-length, open-bottomed stack. Each process has its own message
stack. The message stack is large enough for two messages of maximum size. The message
stack is open-bottomed so that if another message is pushed on a full stack, the bottom mes-
sage on the stack is lost.

A message stack contains message block entries. Calls that accept separate incident code and

~ message parameters (see Message_Stack_Mgt) reformat them into a message block which
is then pushed onto a message stack. Entries are retrieved from the message stack as message
blocks.

Writing Messages II-5-5



PRELIMINAKY

A message block is pushed onto a message stack whenever more specific information than that
associated with the exception itself would be useful to someone debugging the program.
(Messages are not automatically pushed on the message stack; they must be explicitly pushed
on the stack by the exception handler.) Large user-written applications may make use of the
message stack in a similar manner.

When a process terminates due to an unhandled error propagating out of its top level proce-
dure, its message stack contains the history of that error’s propagation. The first message
block on the message stack is the actual error that caused termination. The subsequent mes-
sage blocks contain information about the various levels of the system through which the error
propagated.

It is good practice, although not required, for a program that catches and handles an incident or
error to clear the message stack. Otherwise, on a later incident or error, the message stack
contains the history of the previous (already-handled) errors as well as the error that caused
termination. This can be confusing to someone debugging the program.

See the Message_Stack_Mgt package for more information about message stacks.

11-5.1.6 Messages and Exceptions

An exception is the Ada construct that signals the occurrence of errors or other exceptional
situations that arise during program execution. Raising an exception causes normal program
execution to be abandoned in order to deal with the error or situation.

Each exception may be, but is not required to be, associated with an incident. When a
programmer wants to define a message for an exception, an incident code is assigned to that
exception.

[I-5.1.7 CL Variables That Affect Messages

1I-5-6

The following CL variables affect how a message is displayed.

user.verbose Determines whether information level messages are displayed. Messages
which report job status, for example, may be displayed only in verbose
mode. The developer can set verbose_only to true in order to make
informational messages display when calling
Message_Services.Write msgqg or similar calls. When
user .verbose is false, only warning, error and fatal_error
messagess are displayed.

user . language Controls which language variant of a message is displayed. If the message
does not exist in the desired language, the message’s default language
variant is displayed (the first variant stored in the message file).

msg.long_text Controls which form of the message (short or long) is displayed. If false
(the default), the short form is displayed, otherwise the long form. If the
selected level does not exist, the other level is displayed.

msg.time Controls whether the time the incident occurred should be displayed as
part of the message header.

The built-in command set . variable sets or changes the values of user CL variables.

Writing Messages



PRELIMINARY

1I-5.1.8 How CLEX Handles Messages From Terminated Jobs

An exception for which no exception handler exists will terminate a job. All messages pushed
on the message stack (up to the maximum it can hold) prior to termination will be on the stack.
A message, if any, associated with the terminating exception will not appear on the stack.

11-5.1.9 Message Ultilities

A message file can be created and updated with the manage .messages runtime command
of the manage.programutility. The runtime commands of manage .messages include
change, list, remove, set.language and store.

11-5.1.10 History Files

Message_Services automatically records messages in a job history log if one is installed.
Users can turn off message recording via a boolean parameter in the various Write msg
calls. The History Services.Record message call takes an incident code and sends
the corresponding message to the job’s history log file. Thus a job can maintain a record
of any messages that were sent during the course of the job.

A user can have a history installed for a logon session if the CL variable
logon.install history_ logistrue.

A job can have a history installed if:

¢ The control option : :history log was called in the invocation of the job, or
¢ The built-in command start.history_log was called, or

e The package History Services was used to create, open and seta history log
file.

1I-5.2 System Error Log

The System Error_Recording package provides calls for recording system errors on a
system error log. This log is a record-oriented, sequential file. The error information can be
specified as an incident code with from zero to five parameters or as a message block. The
record layout is defined by the type Monitor_Defs.monitor_message.

System Error_Recording.Get_event_cluster provides access to an event cluster
that gets signalled whenever an error is recorded to the system error log file. The system error
log is only for trusted type managers such as device drivers.

1I-5.3 Techniques

After reading this section, you will be able to:

Define application messages

Write a message

Associate an incident code with an exception

Replace OS exceptions with application messages

Writing Messages 1I-5-7



PRELIMINAKY

® Use predefined OS messages

¢ Push a message when raising an exception

® (lear the message stack when handling an exception
e Write a message with acknowledgement

® Record history entries.

Code examples in the following sections are excerpts from the At _Cmd_EXx,
At_Support_Ex, Inventory_ file,Create_Name_ Space_ Cmd_Ex,
Example Messages and Inventory_ Files example programs that are listed in their
entirety in Appendix X-A.

11-5.3.1 Defining Application Messages

1I-5-8

Declarations Used:

Incident_Defs.incident_code
A representation for errors, warnings, information, exceptions and system
€ITOrS.

The system recognizes four types of messages:

e Those used to identify exceptions
e Those used to identify other messages to be pushed onto a process’s message stack
e Those used to identify operating system errors, and

¢ Those used as test point monitoring codes.

All of these message types may be represented by Incident_Defs.incident_code.
This incident code contains the severity of the incident and a message file reference and
index (module and number) which uniquely identifies message text associated with the in-
cident.

To create an incident code, declare a constant of type Incident_Defs.incident_code
with the following fields:

message object An AD to the message object.

module Number of the module in which this incident is defined.
number A number for the specific incident within the module.
severity A severity level.

When the application developer assigns a module number and a sequential number to an in-
cident, these numbers must be unique within the environment in which they are visible.

The following example from At _Support_Ex defines an incident code:

Writing Messages



PRELIMINARY

-~ Exception Codes:
msg_obj: constant System.untyped word :=
System.null_word; -- use oeo

time_format_error_code: constant Incident Defs.
incident_code := (

module => 0,
number =1,
severity => Incident_Defs.error,

message_object => msg obj);

The fields of the time_format_error_code incident code contain the following values:

message_object

module
number

severity

Declared as a null AD (uses the default message file specified in the
programs Outside Environment Object).

The module number of At_Support_Ex. The value is 0.
The number of this incident in this module. The value is 1.
The value error.

The actual text of the message associated with an incident can be stored in a message file by
one of the following three methods.

I1-5.3.1.1 In the Source File

Include the actual text of the message in the source file with tagged comment lines which can
be identified and extracted by manage .messages. The tag for the comment line in the
example code is *D* (that is, *D* immediately follows the two dashes of an Ada comment
line. The extract.tagged_commands utility extracts tagged lines and passes them to
manage .messages which creates the message file. In this method, the text of the message
is physically close to the definition of its associated incident, an advantage for small programs
with few messages.

In the following code example, tagged comment lines are used to include message text in the
program source file:

45

-- Exceptions:

—--*D* manage.messages
time_ format_error: exception;
——~ Occurs when the time was not input in a proper

~— format
~—*D*  store 0 1 time_ format error \
—=*D* :short = "$pl is an improper time specification

--*D*The correct format is hh[:mm{:ss[.dd]]]"

II-5.3.1.2 In a Command File

Include the text of messages in a command file which is passed to manage .messages
which in turn creates the message file. This method allows all messages for a program to be
kept in a single file which can be edited or updated using any text editor.

I1-5.3.1.3 Using manage .messages

Invoke manage .program then run manage . messages and use its runtime commands to
create and update the text of messages. This method allows easy listing, searching and updat-
ing of individual message texts, an advantage for larger applications where consistency and
coherence among messages is desirable. The following example shows the declaration for the
not_on_file message, the tagged lines used by manage .messages to include the mes-
sage in a message file and the declaration of the exception associated with the message.

Writing Messages

II-5-9



PRELIMINARY

104 not_on_file code: constant

105 Incident_Defs.incident_code := (

106 message_object =>

107 Inventory Messages.message_object,
108 module - => module,

109 number => 5,

110 severity => Incident_Defs.error):
111

112 ——*D* store :module = Smodule \

113 —=—*D* :number = 5 \

114 ——*Dx* :msg_name = not_on_file \

115 ——=%D* :short = "There is no parts
116 —=*D* record for part ID ‘$pl<part
117 —=*D* ID (index value)>’ does not
118 ~—*D* exist.”

119

120 not_on_file: exception;

121 pragma exception value(not_on_file,

122 not_on_file code):
123 ~- Raised by "Read_parts_record" and

124 -- "Rewrite_parts_record".

For more information on creating message texts, see the BiiN"™ Command and Message Guide.
11-5.3.2 Writing a Message

Calls Used:

Message Services.Write_ msg
Formats and writes a message.

To write a message to the user’s message window, specify:

msg_id Incident code for the message.

param(l...5) Parameter(s) to insert into the message text, if any.

device Opened device to which message is sent. The user’s opened message win-
dow by default. :

For example in the At_Cmd_Ex example program, the message associated with incident code
prior_time warning_code is written as follows:

168 Message_Services.Write_msg(
169 msg_id => At_Support_ Ex.prior_time warning code):

For more information on writing message texts to accept message parameters, see the BiiN™
Command and Message Guide.

11-5.3.3 Associating an Incident Code With an Exception

Declarations Used:

pragma exception_value '
Binds the value of an exception with a named incident code.

It is often useful to associate an Ada exception with an incident so that when the exception is
raised, the incident code is implicitly available. pragma exception_value associates an

II-5-10 Writing Messages



PRELIMINARY

exception with an incident code. This binding is illustrated with the following example from
Inventory File:

104 not_on_file code: constant

105 Incident_Defs.incident_code := (

106 message_object =>

107 Inventory Messages.message_object,
108 module => module,

109 number => 5,

110 severity => Incident_Defs.error);
120 not_on_file: exception;

121 pragma exception_value(not_on file,

122 not_on_file code);
123 -— Raised by "Read parts_record" and

124 -- "Rewrite_parts_record".

11-5.3.4 Replacing an OS Exception With an Application Message

When the operating system raises one of its exceptions, that exception can be replaced with a
more detailed local message. The following code from the Inventory Files example
program shows an update operation. When it is unsuccessful,

Record_AM.invalid record_address is automatically raised. The package raises its
own exception, not_on_file and writes an explanatory message.

230

231 -~ Rewrite (update) parts record:

232 --

233 Record AM.Keyed Ops.Update by_key (

234 opened_dev => parts_file,

235 buffer VA => parts_record’address,

236 length => parts_record’size/8,

237 index => part_ID_index_name) ;

238

239 exception

240

241 when Record AM.invalid_record_address =>

242 Message_Services.Write_msg(

243 msg_id => not_on_file code,

244 paraml => Incident_Defs.message_parameter(
245 typ => Incident Defs.txt,

246 len => part_ID_ index_str.length)’ (
247 typ => Incident_ Defs.txt,
248 len => part_ID_index str.length,
249 txt _val => part_ID_index name)):
250 RAISE not_on_file;

11-5.3.5 Taking Advantage of Predefined OS Messages

The /msqg directory contains predefined message files. These messages may be used by ap-
plication programs. It is advisable to use the messages in the same context for which they
were originally created. These messages may be reviewed with the 1ist command of the
manage .messages run-time command of the manage . program utility.

1I-5.3.6 Pushing a Message When Raising an Exception

Calls Used:
Message_ Stack Mgt.Push msg_ 1l param

Pushes a message block with one parameter onto the caller’s message
stack.

Writing Messages II-5-11



PRELIMINARY

The BiiN™ Operating System often pushes a message to the message stack prior to raising an
exception. Applications may also push messages on the stack when raising exceptions in order
to provide more information concerning the reason for abnormal program termination.

In the following example from Inventory_ Files, the exception handler for the

Read parts_record procedure catches an attempt to read a part that is not on the file and
writes the message associated with the not_on_file_code. It then pushes the
not_on_file message on the message stack.

126 Message_Services.Write_msg(

127 msg_1id => not_on_file code,

128 paraml => Incident_Defs.message_parameter (
129 typ => Incident_Defs.txt,

130 len => part_1ID.length)’ (

131 typ => Incident_Defs.txt,

132 len => part_ID.length,

133 txt_val => part_ID));

134 Message_Stack_Mgt.Push_msg_1_ param(

135 not_on_file_code):

i1-5.3.7 Clearing the Message Stack When Handling an Exception

1I-5-12

Calls Used:

Message_Stack_ Mgt.Clear messages
Discards all messages on the caller’s message stack.

It is good practice, although not required, for a program that catches and handles an incident or
error to clear the message stack. Otherwise on a later incident or error, the message stack
contains the history of the previously handled errors as well as the error that caused termina-
tion. This can be confusing to people debugging the program.

In the following example from Inventory Files, the exception handler for the
Read_parts_record procedure catches an incomplete key value and writes the message
associated with the invalid_part_ID_code. Itthen clears the message stack before
pushing the current message.

143 Message_Services.Write_msg/(

144 msg_id => invalid part_ID_ code,

145 paraml => Incident Defs.message_parameter (
146 typ => Incident Defs.txt,

147 len => part_ID.length)’ {

148 typ => Incident Defs.txt,

149 len => part_1ID.length,

150 txt_val => part_ID)):;

151 Message_Stack_Mgt.Clear_messages;

152 Message_Stack_Mgt.Push msg_ 1 param(

153 message_id => invalid part ID_code,

154 paraml => Incident Defs.message_parameter(
155 typ => Incident Defs.txt,

156 len => part_ID.length)’ (

157 typ => Incident_Defs.txt,

158 len => part_ID.length,

159 txt_val => part ID));

Writing Messages



PFPRELIVMIINAKY

11-5.3.8 Writing a Message With Acknowledgement

Calls Used:

Message_Services.Acknowledge_msg
Writes a message with no <LF>, then reads and parses the user’s response.

To write a message and receive a response from the user, use
Message_Services.Acknowledge msg.

The message should explain to the user the choices on which his response must be made. A
positive acknowledgement currently results from yes, ja, true or +. Any other input, in-
cluding just <CR>, returns false. The words yes, ja and true can be abbreviated to one
letter.

If an opened device is specified, it is used both for writing a message and reading the response.
Otherwise, the device from the caller’s user_dialog entry in process globals is used. In
any case, the device must be interactive as defined by

Device Defs.device_info.common_info. The call does nothing and returns false if
the device is noninteractive.

If writing or reading fails for any reason, false is returned.

The following code is from Example Messages (the acknowledge message) and
Create_name_space_cmd_ex (code requesting affirmation from the user before storing a
new name space as a directory entry).

63 overwrite query code:
64 constant Incident_Defs.incident_code :=
65 (0, 4, Incident_Defs.information, msg_obj):
66 -
67 -—*D* store :module=0 :number=4 \
68 ——*D%* :msg_name=overwrite query_ccde \
69 ——*kD* :short = \
70 —-=%D* "Spl<pathname> exists. Overwrite it?"
261 -- Confirm overwrite:
262 -
263 overwrite :=
264 Message_Services.Acknowledge msg(
265 Example_ Messages.
266 overwrite query code,
267 ‘ Incident Defs,
268 message_parameter (
269 typ => Incident_Defs.txt,
270 len => name.max_length)’ (
271 typ =>
272 Incident_Defs.txt,
273 len =>
274 name.maX_length,
275 txt_val => name)):
276 end if;

11-5.3.9 Recording History Entries

Writing Messages II-5-13



PRELIMINARY

Calls Used:

History_ Services.Record message

Records a message in an opened history file, or in the caller’s current job
history, retuming the record ID.

To record a message in a job’s history 1log file, record an individual message explicitly
viaHistory_ Services.Record message. This call returns a record ID.

11-5.3.10 Summary

11-5-14

An incident is a BiiN™ construct that assigns a unique identifier, an incident code, to each
error situation.

An incident code identifies a message and a severity level for an incident.

An exception is the Ada construct that signals the occurrence of errors or other exceptional
situations that arise during program execution.

A message is the human-readable text associated with an incident.

A message file contains the short and long forms of messages in one or more language
variations. The message_object field in the incident code references the application’s
message file.

A message block contains an incident code (which includes the message’s module and
number) and any message parameters.

A message stack is a fixed-length, open-bottomed stack that provides a means of keeping a
trace of any incidents that have occurred within a process along with specific information
about each incident.

Writing Messages



FKELLVIINAKYX

Part lll

Directory Services

This part of the BiiN"/0OS Guide gives concepts and techniques for naming objects in direc-
tories and for protecting stored objects from unauthorized access.

This part contains these chapters:

Understanding Directories

Explains basic concepts needed to understand the system’s directory
mechanism.

Using Directories Provides techniques for using directories.

Protecting Stored Objects
Shows how to protect objects using IDs and authority lists.

Using Name Spaces
Shows how to use name spaces (lists of directories).

Creating Symbolic Links
Shows how to use symbolic links between directories or directory entries.

Directory Services contains the following services and packages:

Naming Service
Directory Mgt
Name_Space Mgt
Symbolic_Link_ Mgt

Protection Service
Authority List Mgt
Identification_Admin
Identification_ Mgt
User Mgt

Part III Overview



FKELLVIINAKY

Part IIT Overview



KELIMINAKY

UNDERSTANDING DIRECTORIES

Contents
DAreCtOry StUCIUIE .. ..ottt ti ittt eteeeeennesosesososotsnonsssasosnsnas nI-1-2
Pathname SYMIaX .. ....vvieenineneneneneentoeaonsosensosaassnsesanas nI-1-3
Alias Entries and Master Entries ..........ccvuininiiniininnrncnrannenns Im-1-3
SymbolC LINKS .....cuitiiiiii it ineeiieerenrneenonoannnencnsnnns n-14
Protecting Directories and theirContents ............covuieiennneennnnens II-1-5
The Clearinghouse: Naming in a Distributed System  ..................coooiaut. II-1-5
ANode’s Default DireCtories  .......ovvienineeneneternenananssosannns III-1-8
Directory Operations . ..........coeeeueeeroressonsosansnsnoneocsnanasosans I1-1-8
Retrieving ENtIies .....vvitiiiineinernnnnreensososonenanansnsnsnnas III-1-8
Listing a DireCtOry ... ovuitiiiiin it iiiiieneiintnerasnraceneneneencans II-1-9
Process Globals and DireCtories .........ovvveirierrenrnenosnsesannsons II-1-9
Directory Operations and Transactions ...........c.ceoeveereuoaecnsenanns II1-1-10
Standalone DIireCtories . ... ..cvvitiiieiienreenrnreennrnsnonennsocenss 1I-1-10

Understanding Directories II-1-1



FRKELLVIINAKY

directory joe
Name specs Name src Name | schedule
AD AD AD

Figure ITI-1-1. Directories Contain <Name, AD> Pairs

Directories allow you to associate a name with the object’s AD and store the <name, AD> pair
in a directory (Figure III-1-1). Given a full pathname, you can find the object associated with
that name.

This chapter explains in more detail the concepts of BiiN™ directories.

lll-1.1 Directory Structure

1I1-1-2

In other systems, directories map names to files or directories only. By contrast, the directory
service allows an AD for any type of object to be stored in a directory. This includes files,
other directories, devices, programs, IDs, authority lists, data definitions, version groups, form
definitions, report definitions, and so on.

All names within a given directory must be unique. The storage of names in directories is
case-sensitive; that is, lowercase characters are distinct from uppercase (for example,
My File isdistinct frommy_ file).

Examples of valid names include:

ADA_source tools
Chapter-1.12 673-59-1257
%_of cost #s_per_sq_inch
2

A directory can contain another directory (a subdirectory), allowing for conventional tree
structures and hierarchies. For example, in Figure III-1-2, src is a subdirectory of joe. A
directory that contains an entry or another directory is the parent of that entry or directory.

A directory can also contain an alias entry. An alias entry is another name for an AD that
already has a name. Because an AD can have any number of aliases, you can set up directory
structures that are not limited to trees or strict hierarchies (Figure I1I-1-2).

Understanding Directories



PFKELIMINAKY

joe su

__-..':_ Alias
AD e et wE LD LD P LT TR \
schedule schedule {
AD| 1
AD .
| alias
/
/
version 1
AD
imodule T Alias module T
ADL_ Jq-—— --—___-—-—-—__—_T\D —— —_l
- module 2|

AD

Figure III-1-2. A Directory Structure with Aliases

In Figure III-1-2, an example of an alias is the name module 1 in directory joe/src. Joe
has a name for this module as does Sue. Both names reference the same underlying object.
Note that an alias can reference an AD on a different node in the distributed system. Deleting
an alias has no effect on the referenced object, so Joe can delete his module_1 without
affecting Sue’s.

Directories and subdirectories are common in other systems. Using BiiN™ directory services,
however, a set of connected directories is not limited to tree structures. A single object can be
stored in the same directory under different names (aliases) or in other directories under the
same or different names. Directories can be linked together into meaningful, networked struc-
tures.

{correct this later. 6/24/88 - stanf} Cycles are allowed; that is, in Figure III-1-2, Sue’s file
module_1 can be aliased to directory sue, even though sue is a parent of sue/src.
llI-1.1.1 Pathname Syntax

See the "Pathname Syntax" appendix in the BiiN"/0S Reference Manual for an explanation of
the different kinds of pathnames and their syntax.
llI-1.1.2 Alias Entries and Master Entries

Calling Directory Mgt .Store to store an AD with a name for the first time places an
entry in the directory and the associated passivated AD is the master AD. Subsequent
Stores of an AD for which a master already exists result in alias entries.

Storing an AD to an object doesn’t always produce a master AD for the object. Only the first
AD to cross the boundary between active and passive space as a result of a Store (or

Understanding Directories II-1-3



FKELIVIINAKX

Create_directory) orupdate of an object which contains the AD produces a master. If
the first AD to cross the boundary from active to passive space does so as a result of some
other operation, then subsequent Stores of the AD (or updates of its container) will NOT
produce a master AD.

111-1.1.3 Symbolic Links

1I1-1-4

A symbolic link contains a pathname. Symbolic link evaluation retrieves whatever AD is
stored with that pathname. If an AD to a symbolic link is stored in a directory entry, then
retrieving from the entry does not return the entry’s AD. Instead, an AD to the object
referenced by the link is returned.

Aliases and symbolic links provide two ways to associate an AD with different names.

Both are useful in that they allow the user flexibility in the naming and symbolic referencing of
objects.

Both aliases and symbolic links may be stored in any directory for which the user has store
rights.

However, using an alias ina Directory Mgt .Delete causes only the alias to be deleted;
the underlying object is not affected. Using a symbolic link ina Directory Mgt.Delete
causes the symbolic link object itself (not the object referenced by the link’s value) to be
deleted.

An alias has the following advantages:

o It references the same object type.

e The alias may inherit "mastership," so that even if the master pathname is deleted, there
may still be a named reference to the object (inheritance requires that the alias entry reside
on the same volume set as the master AD).

An alias has this disadvantage:

e [t references the same object type, i.e, the associated AD is "object instance" specific, so
that if the underlying object is deallocated, the alias may be left as a dangling reference.
For instance, if you have a program / joe/prog that is aliased by / joe/bin/p and you
replace / joe/prog with a revised version of the same program, the / joe/prog alias
will point to the outdated version. If the alias was /vs2/joe/prog, it would be a
dangling reference to the old version.

A symbolic link has the following advantages:

e It references an object NAME. Any object can exist under this name at one time or
another. This means you can also update an object under that name and not end up with a
dangling reference as for aliases (you might want to replace an existing program with a
revised version, or some such).

® You can set its value to a CL variable, for example, $mybin, which gives you a great deal
of flexibility.

A symbolic link has the following disadvantages:
e The symbolic link cannot inherit "mastership” for the object referenced by the link’s value.

Understanding Directories



FKELIVMINAKY

e The associated link value is "name" specific, so that if a different object is stored under the
same name, the user may end up accessing something incompatible with the type needed.

lll-1.1.4 Protecting Directories and their Contents

Most OSs determine who has access to what programs and data using an owner/group/world
mechanism. Access to programs and data depends on whether your group (or you, or
everyone) has the authority to read, write, or execute a file.

The BiiN™ system extends the familiar three-level owner / group / world protection to flexible,
multi-level protection. This is done with authority lists and IDs. The associated authority list
protects the object. (Chapter III-3 discusses authority lists and IDs in more detail.)

Each caller is represented by a list of IDs which that caller can portray. By default, these IDs
are the user ID, ux_group, and wor1d, which the caller acquires during the logon session.
When the caller tries to access a protected object, the caller’s IDs are compared with the IDs in
the authority list to determine access.

There can be any number of IDs in the authority list (Figure III-1-3), as opposed to the three
allowed in owner / group / world protection. The authority list contains a list of IDs and
associated type rights. For each ID, the type rights specify what the ID holder can do with the
object protected by this authority list.

directory authority list type rights
joe | IDs| Joe 1T list, store, control
ux_groupl| TFF
guest FFF
admin TTT
proj—mgr | TFF
v sue TFF v
world TFF

Figure ITI-1-3. A Directory is Protected with an Authority List

For example, according to the authority list associated with directory joe in Figure III-1-3, a
caller holding the ID for proj_manager has list rights, and can list the contents of the
directory. But a caller holding the ID for gue st has no type rights and cannot access that
directory at all.

Chapter III-3 discusses authority lists and IDs in more detail.

Il1-1.2 The Clearinghouse: Naming in a Distributed System

The Clearinghouse maintains the database showing where objects are actually stored in a dis-
tributed system, by keeping track of where each volume set is mounted. (A volume set is a
logical disk, and contains programs and objects of various types as well as files.)

Understanding Directories III-1-5



I1-1-6

FKELLVIANAKYX

Directory_Mgt goes to the Clearinghouse to find the node and volume set, then to the
node and volume set to find the named object. This process is transparent to the caller, so that
the caller does not need to know which node an object is stored on. (The caller also doesn’t
need to know about the Clearinghouse, beyond understanding its role in finding named
objects.)

To illustrate, Figure III-1-4 shows the process Directory_ Mgt goes through to return an
AD for a full pathname.

Caller Directory_Mgt Clearinghouse

I///spirit/eng/id/joe I.__)l // /spirit/eng/id/joe I_ org

Caller has full @ Directory_Mgt sends eng
pathname, wants full pathname dom
AD to Clearinghouse

to discover node,
vs and home AD env “

|joejnode y|/usr}

AD | |<————-[ Retrieve (/usr/joe) i(—- ///spirit/eng/node y/usr /joe}
@ Caller receives Directory_Mgt .
AD corresponding retrieves AD for Clearinghouse
to full pathname object named finds node, sends
/usr/job on node Y full path +

node path to
Directory_Mgt

Figure ITI-1-4. Directory_Mgt uses the Clearinghouse to Resolve Network Names.

When specifying an organization or full pathname, for example to access an object or service
in a different /organization/domain in the distributed system, it is helpful to understand a little
about how objects and services are stored and named over the distributed system. The dis-
tributed storage-and-naming system works like this.

Every object that has been Stored with Directory Mgt .Store exists on a volume set,
which is a logical disk. There can be many names for any volume set, and many volume sets
attached to a particular node.

All the volume sets attached to all the nodes in a distributed system form the passive space.
The passive space is grouped into naming domains, so-called to distinguish them from other
kinds of domains in the BiiN™ system. A naming domain is identified by the org/dom part
of a pathname; for example, spirit_motors/engineering. Each volume set is as-
signed to a naming domain, and a naming domain can contain one or more volume sets. All
volume sets in a naming domain must have unique names.

Understanding Directories



A ANAYRJALIYARLNZALIN &

Objects in the passive space are identified by pathnames. The BiiN™ system needs a way to
identify objects anywhere in the distributed system, no matter where they are. To refer to an
object in the same naming domain, you can simply use a node or relative pathname. To refer
to an object in a different naming domain, you must use a pathname that begins with two or
more slashes (organization or full pathname). The rest of this paper describes how full path-
names are built.

In BiiN™ systems, there are many valid pathnames for any object. However, there is one
standard pathname, called the canonical patmame, which uniquely identifies a passive object
anywhere in a network of BiiN™ systems by specifying the volume set it is on and its path-
name within the volume set. All utilities that result in full pathnames show them in canonical
form. For example, the output of 1ist.current_directory is always a canonical path-
name.

A canonical full pathname looks like this:
///org/dom/vs/vsname/pathname
The parts of this pathname have the following meanings:

org A BiiN™ distributed system can be divided into several organizations. The
organization is the largest division in a distributed system. For example, a
system for a large corporation might be divided by division (systems,
components, and software) or by site (portland, new_york,
maui, and berlin).

dom Each organization can be divided into several domains. For example, the
organization systems could be divided into the domains
engineering, doc,marketing, manufacturing, and
shipping, or alternatively first_floor, second_floor, and
basement.

vs vs is a predefined directory in each naming domain that holds the names
of all volume sets in the naming domain. The literal word vs in a path-
name indicates that the rest of the pathname refers to an object on one of
the volume sets in the network. (vs is actually one of several
environments in each domain. Two other environments are home and
node, which will be discussed later. Howeyver, the vs environment is
always used in the canonical pathname.)

vsname This is the name of a particular volume set. Volume sets may have names
like vs1, vs2, and vs3 or sys_volset,user volset, and
temp_volset, or anything else.

pathname The pathname that follows the volume set name traces the directories from

the top directory of the volume set to the specified object. It uniquely
identifies the object in the volume set.

For example, if usr is the name of a volume set, then the canonical pathname of the file
~jane/books/ssqg might be

///software/doc/vs/usr/jane/books/ssg
Note that this pathname does not specify the node on which the volume set usr is currently

mounted. This pathname continues to be valid even if the volume set is moved to another node
in the distributed system, as long as it remains in the same naming domain.

The canonical form is not the only way to refer to an object in the distributed system, espe-
cially if the object is in your naming domain. Here are some other valid ways of building
pathnames:

Understanding Directories 11-1-7



PFKELLVIINAKY

® ///org/dom/home/username/pathname

This pathname identifies the object relative to the home directory of the specified user. For
example, if /usr/jane is the home directory of user jane, the following full pathnames
refer to the same object:

///software/doc/home/ jane/books/ssg
///software/doc/vs/usr/jane/books/ssg

® ///org/dom/node/nodename/pathname

This full pathname identifies the object according to the node to which it is attached. For
example, if the volume set usr in the example is attached to the node named greedo, the
following full pathname names the same object as the one in the previous example:

///software/doc/node/greedo/usr/jane/books/ssg

11-1.2.1 A Node’s Default Directories

The following directories are installed by the system in a node’s / sy s directory, thereby
presenting a common set of directories at all BiiN™ nodes:

aid
dev
home

id

node

rid

S80O

sys
tdo

vs

An alias to the attribute ID directory on the system volume set.
An alias to the device directory on the system volume set.

An active-only directory that provides access to the home Clearinghouse
environment of the node’s naming domain (see CH_Client in the
BiiN™/OS Reference Manual). References of type /home/jerry resolve
to an AD for the home directory of ID jerry.

An active-only directory that provides access to the ID Clearinghouse en-
vironment of the node’s naming domain.

An active-only directory that provides access to the node Clearinghouse
environment of the node’s naming domain. A listing of "/node" lists the
names of all the nodes belonging to the node’s naming domain.

An alias to the resource ID directory on the system volume set.

An alias to the SSO directory on the system volume set (contains Schedul-
ing Service Objects).

An alias to the root directory of the node’s system volume set.

An alias to the TDO directory on the system volume set (contains Type
Definition Objects).

An active-only directory that provides access to the vs Clearinghouse en-
vironment of the node’s home naming domain.

In addition to these root directory entries, BiiN"™/UX reserves the following entries:

/etc /usr /tmp

lll-1.3 Directory Operations

11I-1.3.1 Retrieving Entries

The most common directory call is Directory Mgt.Retrieve. Retrieve takesa
name such as /usr/ joe as a parameter and returns an AD for the object stored under the

specified name.

II-1-8

Understanding Directories



PRELIMINARY

Storing an object’s AD by name in a directory does not necessarily mean the object itself is
also stored there. Directory names can reference objects stored in active memory or in passive
store.

(Storing of objects in directories is distinct from the filing service, which stores data in tradi-
tional file structures. See Chapter III-3 for information about storing objects.)

1l1-1.3.2 Listing a Directory

To list the contents of a directory, you open it as a read-only device to be read with
Byte_Stream_ AMor Record AM. The result is a stream of entry names in ASCII collat-
ing sequence. Associated ADs are not read.

In contrast to Byte_Stream_ AMor Record_AM, the Open callsinDirectory Mgt
allow a pattern to be specified that is used to filter the stream of names. Only those entry
names in the directory that match the pattern will be read. A pattern is a combination of plain
characters which simply match the identical characters in a name, and pattern operators each
of which matches a sequence of zero or more characters in a name.

The pattern operators are:

? Matches any single character.

* Matches zero or more characters.

[amz] Where amz denotes zero or more characters. Matches any of the single
characters within brackets.

[a-z] Where q and z are single characters. Matches all ASCII characters >=a
and <= z. Match always fails if z < a.

\ Escape character. Interprets the following character literally and not as a
pattern operator. Must precede any of 2, *, [, ] thataretobe
matched.

! Not (negation). Makes sure the character immediately following does
NOT match. For example, a [ !b] c matches every 3-character string
beginning with a and ending with c, except the string abc.

Directory_Mgt inthe BiiN™/OS Reference Manual lists which access method calls are
supported and the exceptions that can be raised.

I-1.3.3 Process Globals and Directories

In the BiiN™ system, every process has process globals that determine the environment in
which the process executes.

Process globals carry the following items pertinent to directories:

home directory Location after successful login, that is, initial current directory. Set by a
system administrator.

current directory Current location in a directory structure and usual starting directory for
evaluating relative pathnames.

command name space :
Default directory list to search for commands during name evaluations
started, for instance, by Human Interface Services.

Understanding Directories 1I1-1-9



FIDLAVIINNAKY

authority list Default authority list, to protect objects for which ADs are being stored
with a name for the first time, when the directory in which the ADs are
being stored has no default authority list.

11I-1.3.4 Directory Operations and Transactions

These calls automatically participate in the caller’s transaction:

Create_directory
Delete

Get_name
Open_directory_ by name
Rename

Retrieve

Store

If there is no caller’s transaction, Create_directory, Rename, and Delete start their
own transactions.

Directory_Mgt calls are atomic; when carried out within a transaction, if the transaction
aborts their effects are undone, whether or not the directory call has already successfully com-
pleted.

The Directory_ Mgt package description in the BiiN™/0S Reference Manual describes
transaction locking.

111-1.3.5 Standalone Directories

I-1-10

A normal directory is integrated into the system’s directory structure. Occasionally, however,
it’s useful to create directories that are independent of the system’s directory structure.
Standalone_Directory_Mgt creates such directories. The entries in a standalone direc-
tory are managed with normal Directory Mgt calls.

Standalone directories differ from normal directories in several important ways:

e Normal directories have names, whereas standalone directories are identified only by their

ADs (that is, they do not have names).

e Normal directories are created and passivated in an existing parent directory. Standalone
directories are created in the active space; it is the caller’s responsibility to passivate the
standalone before using it. The caller must update the standalone before trying to use it;
failure to do so will raise an exception during calls on the standalone.

e A normal directory resides on the same volume set as its parent directory; a standalone
directory’s home volume set depends on where the caller passivates the standalone’s master
AD.

¢ Entries in a normal directory are always protected by an authority list. By default, stan-
dalones also protect their entries with an authority list; however, if a standalone is created
with the no_authority parameter set to t rue, the entries in the standalone are not
protected by an authority list.

Once a standalone is created, the user cannot later add or remove the protecting authority
list. (An existing list can be replaced.)

¢ Innormal directories, ownership of the directory is assigned to whomever makes the
Create_ directory call. Similarly, by default, ownership of a standalone directory is
assigned to whomever first passivates the directory. That is, ownership is assigned to the
user_ID of the calling process.

Understanding Directories



FRDLLUVIAINAKX

It is possible to create normal directories in standalones. As with normal directories, the caller
can also invoke Directory_ Mgt calls on entries within this structure.

For example, a caller may wish to define a database with two components: a database descrip-
tion and a set of associated ADs to components of the database. One approach would be to
define the database using two ADs, one to the descriptor, one to a standalone directory contain-
ing the related AD set. In a simplified scenario, the caller would act as follows:

1. Create the database and database descriptor.

2. Call Create_standalone_directory to create a standalone in the active space (this
operation does not store and update the standalone directory).

3. Copy AD:s for the descriptor and standalone ADs into the database.

4. CallPassive_Store_ Mgt .Update to passivate the database and its embedded objects
(that is, the descriptor and standalone).

5. The caller may create and store entries in the standalone, and perform other calls common
to directories.

A standalone directory can be deleted from the system by calling

Passive_Store Mgt.Destroy, which will destroy the standalone directory and any
entries it contains. A standalone may also be deleted implicitly as a result of master AD
deletion, for instance, by deleting an object that contains the standalone’s master AD.

To prevent unwanted deletion of standalone directory entries, the caller might call Destroy
from a utility that asks the user for confirmation before completing destructive operations.

lll-1.4 Summary

e Directories associate names with objects by storing <name, AD> pairs in the directory.

® Directory_Mgt.Retrieve is an important call to obtain an AD for an object in the
BiiN™ directory structure.

¢ Directory entry names can be listed using Byte Stream AMor Record AM.

¢ When listing directory contents, the names can be "filtered” so that only names that match a
pattern are listed.

e Directories can be set up with hierarchies, subdirectories, and aliases to other directories,
across the entire distributed system (crossing node boundaries).

Understanding Directories ImI-1-11



FKELLVIINAKX

111-1-12 Understanding Directories



PRELIMINAKY

USING DIRECTORIES

Contents
Creating @ DHrCCIO Y .\ i vv ittt ieeeeenernsaeoneionnneaeenasnsonasasasas II-2-2
Storing an ADiNaDirectory ......oiuiiiiitiinninreenneneenneracennnonnnns II1-2-3
Retrieving aDirectory Entry ... .ottt ittt 11-2-4
Deleting a DireCtory Entry .. ... .c.iiiiiiiiii ittt ieiieneeanannnnnns I-24
Listing @ DITECIOTY ... oottt ittt iie ittt nen et eneeneeneennsencenns III-2-5
Using aPatternto Filtera Directory Listing  ..........cciitiiiiiinenenniannans 11-2-7
Retrieving a Directory from Process Globals ..............cciiiiiiiinenenann. 111-2-7

Using Directories I-2-1



PRELIMINARY

Directories allow you to name and organize objects in a BiiN™ system. You can name an
object by associating a name with the object’s AD and storing the <name, AD> pair in the
directory (Figure III-2-1). Given a name, you can then find any object in the system. This

chapter gives some specific techniques for using directories.

Packages Used:

Directory_ Mgt Manages directories and directory entries.

directory

Name specs

Name

AD

AD

joe

src

Name

AD

schedule

Figure III-2-1. Directories Contain <Name, AD> Pairs.

After reading this chapter, you will be able to:

Create a directory

Store a directory entry

Retrieve a directory entry

Delete a directory entry

List a directory

Use a pattern to filter a directory listing
Retrieve a directory from process globals.

Complete listings of the following examples can be found in Appendix X-A.

llI-2.1 Creating a Directory

The simplest way to create a directory is to call Directory Mgt .Create_directory,
specifying the pathname of the new directory and using defaults for the rest of the parameters.

1122

The pathname must be a System Defs.text record.

Calls Used:

Directory Mgt.Create_directory

Creates a directory.

Using Pirectories



A ANAYRGALVARLNLSAAN &

The following example from procedure Create_directory_command_ex Creates a new
directory with the name given as input. This excerpt shows just the declarations and state-
ments to create the directory:

45 dir_name: System Defs.text (252):

46 -~ Name of the directory to be created.
47

48 dir_AD: Directory Mgt.directory AD;

49 -- Newly created directory’s AD; returned
50 —- but not used by "create.directory”.
60 Command_Handler.Get_string(

6l cmd_odo => opened_command,

62 arg_number => 1,

63 arg_value => dir_ name);

72 dir_AD := Directory Mgt.Create_directory(
73 name => dir name);

The Create_directory call automatically:

e Stores a master AD for the new directory in the parent directory.
e Creates a representation of the new directory in passive store.

e Assigns an authority list to protect the new directory, either the parent directory’s default
authority list or the default authority list in process globals.

e Sets the owner of the new directory to the caller’s ID.
e Returns the new directory’s AD to the caller with all type rights.

You then have a new directory ready for use.

ll1-2.2 Storing an AD in a Directory

The simplest way to create a directory entry is to call Directory_ Mgt .Store, specifying
the new pathname and the object’s AD, and using defaults for the other parameters.

Calls Used:

Directory Mgt.Store
Creates a new directory entry: AD and name.

The calling process must have store rights in the parent directory for the call to succeed. The
calling process will have store rights if the calling process:

o Created the target directory
e Has become its owner, or

e [s granted store rights by the authority list protecting the parent directory.
Directory_Mgt.Store cannot overwrite an existing entry.

If the AD is the first AD stored in passive store for the object, then:

¢ The directory entry is the object’s master AD,

Using Directories 1I1-2-3



IIDLAIVILIINAKRNI

e The caller’s ID is the object’s owner,

e Either the parent directory’s authority list or the process globals authority list protects the
object, if the authority list parameter is defaulted.

If there are subsequent stores of the same AD under different names, the subsequent entries are
alias entries and the object’s owner remains the master AD’s owner.

Note that storing the AD for the object does not store the object itself. To update the object’s
passive version, you must call Passive_Store_Mgt.Request_update after
Directory Mgt.Store.

The following example from procedure Named_copy_ex stores an AD in a new directory

entry.
9 source: System Defs.text;
10 dest: System_Defs.text)
62 source_AD := Directory Mgt.Retrieve(source);
63 dest_AD = Passive_Store Mgt.
64 Create_copy_stub(source AD);
65 Directory Mgt.Store(name => dest,
66 object => dest_AD);

llI-2.3 Retrieving a Directory Entry

Retrieving a directory entry is a common way to obtain an AD for a named object in the BiiN™
system. To retrieve a directory entry, use Directory_Mgt.Retrieve. Retrieve ac-
cepts a name (and optional directory and ID) and returns an AD for a directory entry.

Calls Used:

Directory Mgt.Retrieve
Returns AD associated with pathname.

The following excerpt from the Make_object_public_ex example procedure retrieves an

AD for the ID world.
43 -- Get the world ID AD
44 world name: constant System Defs.text(9) :=
45 (3, 9, "/id/world"):
46 world untyped: constant System.untyped word :=
47 Directory Mgt.Retrieve(world name);

lll-2.4 Deleting a Directory Entry

To delete a directory entry, use Directory_ Mgt .Delete, giving the pathname and using
the defaults for the other parameters.

The calling process must have list and store rights in the parent directory for a Delete to
succeed.

If the AD is the object’s master AD (the first AD stored in passive store) and no alias entries
exist for this object on the same volume set, then deleting the AD deletes the object’s passive
version.

111-2-4 Using Directories



EINDAAVIAINARNL

If the AD is the master AD and alias entries do exist on the same volume set, then the OS
converts one of the alias entries to the master AD, and the object’s passive version is not
deleted.

lll-2.5 Listing a Directory

To list the contents of a directory, open the directory as a device and use Byte _Stream AM
or Record_AM to read the opened device. The result is a list of entry names.

Remember that ADs are Retrieved; names are Read.

Calls Used:
Directory Mgt.Open_ directory
Given a directory AD, opens directory for sequential reads.

Byte_Stream Am.Ops.Read
Reads bytes from opened device.

Byte Stream Am.Ops.Write
Writes bytes to opened device.

Byte_Stream AM.Ops.Close
Closes an opened device.

The following example from the List_current_directory_cmd_ex example proce-
dure uses the following steps:

1. Opens directory as an input device.
2. Opens standard output.

3. Sets up a buffer.
4

. Sets up a read/write loop: reads bytes from directory into buffer, writes from buffer to
standard output.

Using Directories 1I1-2-5



-2-6

126

.

PRELIMINARY

procedure List_current_directory cmd_ex

-- Function:
-— Lists names of entries in user’s current
- directory.

- Each entry name is written to the user’s
- standard output, on a separate line.

is
opened_dir: Device_Defs.opened_device;

~=- Opened device for reading stream of names
—-— from user’s current directory.

standard_output: Device Defs.opened device :=
Device_Defs.opened device(
Process_Mgt.Get_process_globals_entry(
Process_Mgt Types.standard output));
-- User’s standard output.

name_buffer: array(l .. 250) of character;
-- Each entry name is read into this buffer
~-- and then written from it.

length: System.ordinal;
—-—- Length in bytes (characters) of last
-- entry name read.

begin
-- Open directory for reading, filtered by
-—- ":pattern":
opened_dir := Directory Mgt.Open_directory(
dir => Directory AD from untyped word{
Process_Mgt.Get_process_globals_entry(
Process_Mgt_Types.current_dir)),
pattern => pattern);

-~ Get and write each entry name:
loop
length := Byte_Stream AM.Ops.Read (
opened_dev => opened dir,
buffer VA => name_buffer’address,
length => name_buffer’size/8);
Byte_Stream AM.Ops.Write(
opened_dev => standard output,
buffer VA => name_buffer’address,
length => length):
end loop;
exception
when Device_Defs.end of file =>
Byte_ Stream_ AM.Ops.Close(opened dir);
RETURN;

end List current_directory_cmd_ex;

Using Directories



FIDLAIVIEINAIE

l1l-2.6 Using a Pattern to Filter a Directory Listing

To filter a directory listing according to a pattern, use Directory_ Mgt .Open or
Directory Mgt.Open_directory_ by name. When you specify a pattemn to these
calls, only the directory entries that match the pattern are returned by Reads.

For example, you could add a pattern specification to the call Open_directory. The
pattern must be a text record conforming to System_Defs.text. The following ex-
ample from List_current_directory_cmd_ex "filters out" those entries beginning
with a period (those that match pattern ! . *):

27 —=*D* define.argument pattern \

28 —-—*D* :type = string

29 —=*D* set.lexical class symbolic_name

30 ~——*D* set .maximum_length 252

31 —=*D* set.value_default "*"

32 —-—*D* end

54 pattern: System Defs.text(252) := (252, 252, (others => ' ’));
55 -- Optional ":pattern"™ used to select entries
56 -- matching the pattern, such as "abc?" or

57 —- "m*device"™. Default is "!.*", meaning all
58 —- entries NOT beginning with a "." (period).
92 -— Open directory for reading, filtered by

93 -- ":pattern":

94 -

95 opened_dir := Directory Mgt.Open_directory(

96 dir => Directory AD from untyped_ word(
97 Process_Mgt.Get_process_globals_entry(
98 Process_Mgt Types.current_dir)),

99 pattern => pattern):
100

ll1-2.7 Retrieving a Directory from Process Globals

The call Process_Mgt .Get_process_globals_entry allows you to retrieve one of
the two directory ADs in the process’s process globals. A process’s globals contain the ADs
for two directories: the home directory of the process’s user_ID and the current directory.

Calls Used:

Process_Mgt.Get_process globals_entry
Retrieves a value from a slot in process globals.
Directory Mgt.Get_name
Gets the full pathname of an object’s master AD.

The following example from Show_current_directory cmd_ex retrieves the name of
the current directory from process globals with the following calls:

1. Process_Mgt.Get_process_globals_entry gets the AD for the current direc-
tory.

2. Directory_ Mgt .Get name gets the name associated with the AD of the current direc-
tory.

Using Directories ‘ 11-2-7



1I1-2-8

FRKELIMINAKY

10 procedure Show_current_directory cmd_ex

é9 is

37 current_dir: Directory Mgt.directory AD :=
38 Directory_Mgt.directory AD({

39 Process_Mgt.Get_process_globals_entry(
40 Process_Mgt_Types.current_dir));
41 -- Current directory’s AD.

42

43 current_dir untyped: System.untyped_word;

44 FOR current_dir untyped USE AT

45 current_dir’address;

46 —— Current directory’s AD as an untyped word.
47

48 dir name: System Defs.text (252);

49 -~ Current directory’s name.

51 begin

52

53 ~-- Get current directory’s pathname:

54 -

55 Directory Mgt.Get name (

56 obj => current_dir untyped,

57 name => dir name);

73 end Show_current_directory cmd_ex;

Using Directories



FKELLVUINAKYX

PROTECTING STORED OBJECTS

Contents
L80) 4107 o PP III-3-3
Why Objects Need Authority-Based Protection ...............ccceiuninn... III-3-3
IDsIdentifythe Caller ...........ccoiiniiiiiiniin i iieiienneenannns III-3-3
AProcess s ID LISt .....iuiitniiiiiii ittt ittt i II1-3-4
TypeRightsonanID ......... ittt it iiinenennaennns III-3-5
Authority Lists Specify Who Can Access Objects  .........cocvviieinennnnn. II1-3-5
How a Caller’s Access Rights to an Object Are Evaluated ................... I11-3-6
TeChIIqUES . ...ttt i i i i i ettt e II1-3-8
Getting Information about an Object’s Protection ..................c.cooo... MI-3-9
Using Default Protection ............c.coiiuiiiiiiiniiniiiennrnnnenennns I-3-9
Creating an Authority List ....... ...ttt II1-3-9
Changing a Directory’s Default Authority List ..................ccovvn.n. I-3-10
Changing an Object’s Owner and Authority List ....................0.... II1-3-10
SUMMATY ..ttt it ittt ittt it ettt et e I11-3-11

Protecting Stored Objects II1-3-1



I-3-2

PRELIMINARY

This chapter shows you how to protect stored objects from unauthorized access, using IDs and
authority lists.

Packages Used:
Identification_ Mgt
Provides operations to manage IDs and ID lists.

Authority List_ Mgt
Provides calls to manage authority lists and to evaluate a caller’s access
rights to objects protected by authority lists.

User_Mgt Provides calls to manage a user’s protection set and user profile.

Objects may be protected with authority lists and IDs.

An authority list shows which IDs can access the object, with what access rights. An ID
identifies what agent is trying to access the object. A process carries IDs for agents it may
represent in an id list (Figure I11-3-1).

Target
Caller Object
Authority List:
Type
ID List IDs Rights
joe fred 77T
finance 4 susan TFF
~N
design_team “=>| finance TTF
world world FFF
After evaluation, caller is granted "use” and
"modify” rights to object, via ID "finance.”
SSG\prstob

Figure III-3-1. A Caller Accesses a Protected Object

In Figure III-3-1, the caller carries IDs for joe, finance, design_teamand world.
When this caller tries to access an object, all these IDs are used in evaluating the caller’s
access to the object. (Evaluation is discussed in more detail later in this chapter.)

' The object itself is protected by an authority list. In the authority list, ID fred has all rights,

ID susan has "use" rights, ID £inance has "use" and "modify" rights, and ID wor1d has
no rights. When a caller tries to access this object, these <ID, type rights> pairs are used in
evaluating the caller’s access to the object.

Protecting Stored Objects



PKELLVIINAKY

llI-3.1 Concepts

The following concepts present authority-list-based protection from a user standpoint.

llI-3.1.1 Why Objects Need Authority-Based Protection

When you store an object, you must protect it with authority-based protection. This is distinct
from the address space protection mechanism provided by ADs. Basically, authority lists are
intended to extend the architecture’s capability-based protection (ADs) into passive store.

An object is stored in passive store similar to the way files are stored in a conventional filing
system. If there were no authority-list protection, the object would be accessible to any user
over an entire distributed BiiN™ system, not just to the caller who stored the object. This
presents a problem: how can the object itself be protected from unauthorized access while in
passive store, which is accessible from the entire distributed system? Authority lists provide a
solution.

You associate the object with an authority list. To oversimplify, the authority list specifies
exactly which IDs, with what type rights, can access the object. Thereafter, any caller’s ID
must appear in the authority list, with the proper type rights, for the caller to access the object.
(Evaluation is discussed in full in Section III-3.1.6).

llI-3.1.2 IDs Identify the Caller

An ID represents an entity, either an individual or an access class. An individual is usually a
user (joe). An access class may represent a collection of users (design_group), a
program (database) or all "outsiders" (wor1d).

Typically, each individual has a unique ID, which is created by the system administrator when
creating a new user. The system administrator may also define various access classes within
the system and create IDs for them, so that users, by holding an ID to one or more access
classes, may also portray themselves as members of these classes.

The caller carries IDs in an ID list which is stored in the caller’s process globals. The first ID
in the list is the caller’s user ID. The ID list can contain one or more IDs. For example, in
addition to the caller’s user ID, a single caller might carry IDs for the following:

another user (joe)

a group of users (design_team)
aprogram (db_data_entry)

a group of programs (cad_system)
a generic ID (world)

To access an object, one of a caller’s IDs must match an ID in the object’s authority list, with
the proper rights. Access to the object is evaluated according to the rights associated with that
ID in the authority list. (This is oversimplified; more on evaluation in Section III-3.1.6).

In addition to the IDs in the caller’s process globals, many Directory_ Mgt calls accept an
explicit ID. This is especially useful for system utilities that may require rights for an ID that
is not available in the ID list itself.

Protecting Stored Objects II-3-3



FPRKELIMINAKY

II1-3.1.2.1 What’s In an ID?

Figure III-3-2 shows the parts of an ID.

ID
User (logon) name joe Protection set
password opensezme joe 77T
admin TTT
user
profile
Figure ITI-3-2. Parts of an ID
User (logon) name Name for this ID.
Protection set A protection set protects an ID just as an authority list protects a stored

object. IDs are protected with protection sets instead of authority lists
because IDs are maintained in the Clearinghouse, not in passive store. In
Figure III-3-2, the protection set for ID joe allows all type rights to callers

Joe and admin.

Password Password for this ID. Originally set by the system administrator, and
changeable by anyone with control rights to the ID.

User profile Originally set by the system administrator, and some parts changeable by

anyone with control rights to the ID.

IDs and ID lists are active-memory-only objects, maintained through
Identification_Mgt and the Clearinghouse. Thus, calls to Passive_Store_ Mgt on
IDs and ID lists will raise exceptions.

IDs are created with the Identification_Admin package.

111-3.1.3 A Process’s ID List

III-3-4

The caller’s ID list is in the caller’s process globals. By convention, the OS always interprets
the first ID in a process’s ID list as the user ID. (By default, the second ID in the list is the
group ID for BiiN™/UX applications.) BiiN"/UX User’s Guide). See Figure I1I-3-3 for an
illustration of an ID list.

Any caller can obtain an AD to its ID list with Process_Mgt

.Get_process_globals_entry or can list the contents of an ID list with
Identification Mgt.List_IDs, but setting the ID list in the process globals can only
be done using the Process Adm:Ln or Job_Admin packages.

The caller’s ID list is inherited by child processes, just as other items in process globals are
inherited.

Protecting Stored Objects



FRELIVMINARY

ID List

joe user ID (first in list)

//p/rocess gobos/,’//y finance

design_team

world

Figure III-3-3. A Process’s ID List

1ll-3.1.4 Type Rights on an ID
The following type rights are defined for IDs:

Portray rights Needed to enter an ID into a process’s ID list.

Control rights Needed to change an ID’s password or to set an object’s owner. The user
ID in a process’s ID list must also have control rights.

By default, users have portray and control rights to their own user IDs.

Portray rights are acquired by being passed an ID AD with such rights, or through rights
evaluation. ID rights can be amplified to control and portray rights by providing the correct
password to Identification_Mgt.Portray ID.

111-3.1.5 Authority Lists Specify Who Can Access Objects

An authority list is composed of a protection set, a record containing <ID, type rights mask>
pairs. Normally, the caller who stores an object assigns the authority list, either specifying one
or using the default.

An authority list is an object in itself, separate from the object it protects. As objects, authority
lists need to be stored using Directory Mgt and updated using Passive_Store Mgt;
these calls are not done automatically.

Both active and stored objects can be protected by authority lists, and any number of objects
can share a single authority list, thus saving storage space (Figure I1I-3-4).

Protecting Stored Objects 1I1-3-5



FKELIMINAKY

Active Memory Passive Store

object B object C

directory

object A

authority list

e3> | SUSAN TTT

/ testing TTF
L____// design_team | TTF

world TFF

SSG\share
Figure III-3-4. Multiple Objects Sharing an Authority List

l11-3.1.6 How a Caller’s Access Rights to an Object Are Evaluated

Whenever a caller retrieves or activates an AD, the caller’s access rights to that object are
evaluated. That is, the caller’s IDs are checked against the authority list, to return the proper
type rights on the underlying object.

Directory_Mgt.Retrieve does an implicit Authority List_ Mgt.Evaluate
against retrieved ADs before returning the result to the caller.

Object activation, which is done transparently by Passive Store_Mgt, also does an
Evaluate; however, evaluation differs somewhat between a Retrieve and activation. The
following sections discuss each evaluation process.

ITI-3.1.6.1 Evaluating Access During a Retrieve
Figure III-3-5 shows the steps in the evaluation during a Directory_Mgt .Retrieve.

111-3-6 ' Protecting Stored Objects



PRELIMINARY

START

Does object Activate AD
@ have no with rights
as stored

authority list
?

yes

At Ieos't @ Is caller
1 of caller’s IDs no owner or volume no Caller gets
match authority set administrator no access

list's IDs ?
3 ?
yes yes
_Combine type Caller receives
@ rights associated AD with no
with matching IDs rights
(OR)
¥ .
END

Combine results

@ with rights in
object’'s master AD

(AND)

Y

Return AD with

@ evaluated type
rights

Figure III-3-5. Evaluating Access During a Retrieve

1. If the object has an authority list, proceed to step 2. Otherwise, activate the object, granting
the same type rights as when the object was stored, and end evaluation.

2. If at least one of the caller’s IDs matches an ID in the object’s authority list, evaluation
continues at step 4. If the caller’s IDs do not match any in the authority list, evaluation
proceeds to step 3.

3. Ifthe caller is the object’s owner or volume set administrator, the caller receives an AD
with no type rights (no authority list access) and evaluation ends. If the caller is not the
object’s owner or volume set administrator, the caller gets the exception
Directory Mgt.no_access and evaluation ends.

4. The type rights associated with the matching IDs in the authority list are combined (logical
OR). This results in the maximum type rights for that caller and that authority list.

5. The maximum type rights are then compared (ANDed) with the type rights in the object’s
master AD. This results in the least type rights for that caller and that object. That is, the
caller can never get more rights than are present in the object’s master AD.

6. The caller receives an AD with the final evaluated type rights.

Protecting Stored Objects 11-3-7



PRELIMINARY

For example, consider the caller, object, and authority list in Figure III-3-6.

Caller’'s Object’s
ID List Object master AD
joe « e TFF
finance owner |D
design_team ] > project
world | object’s
I ¢ authority list
matching D | susan TTT
with maximum |
rights | testing TTF
L design_team | TTF
admin TTT
world TFF

Figure III-3-6. Example: Evaluating Access During a Retrieve

1. The caller’s IDs design_team and world match IDs in the object’s authority list.

2. Type rights associated with ID design_team are "use" and "modify". Type rights associated
with ID world are "use". A logical OR between these two results in type rights "use" and

"mo dif}'" .

3. The type rights in the object’s master ID are "use"” only. A logical AND between these
rights, and the results of the OR operation gives "use" rights only.

4. The caller receives an AD for the object with "use" rights.

III-3.1.6.2 Evaluating Access Rights During Activation

A caller’s access to an object is also evaluated when activating the object’s AD. If access is
not granted, a null AD is activated in place of the AD that should be activated, instead of
raising Directory_Mgt.no_access. Seethe Passive_ Store_ Mgt package for
more information about AD activation.

l1l-3.2 Techniques

After reading this section, you will be able to:

¢ Get information about an object’s proiection
e Use default protection

e Create an authority list

111-3-8 Protecting Stored Objects



PRELIMINARY

e Change a directory’s default authority list
e Change an object’s owner and authority list.

Creating IDs is a privileged operation for the system administrator; see the BiiN™ Systems
Administrator’ s Guide.

lll-3.2.1 Getting Information about an Object’s Protection
The following calls are used to get information about an object’s ID and authority lists.

Calls Used:
Identification_Mgt.Get_object_owner
Returns the owner ID AD of the object.

Authority_ List_Mgt.Get_object_authority
Returns AD for the object’s authority list.

Authority_List_Mgt.List_authority
Retumns the set of authority list entries.

Directory Mgt.Get_default_ authority
Retrieves directory’s default authority list.

Authority_List_Mgt.Evaluate
Retums type rights on object.

Identification Mgt.List_IDs
Returns the set of IDs from the ID list.

Note that the calls List_authority and List_IDs require the caller to receive results in
an out variable.

ll1-3.2.2 Using Default Protection
Nonhally, what happens by default is all the protection you need. The usual way to store an
object with authority list protection is to use Directory_ Mgt .Store, accepting the target
directory’s default authority list as the object’s protecting authority list.

1l1-3.2.3 Creating an Authority List
In general, to avoid unexpected results, an authority list should be stored and updated before
being assigned to protect objects.
Calls Used:

Authority List Mgt.Create_authority
Creates an authority list.

To create an authority list:

1. Create a protection set (list of <ID, type rights> pairs) in the form required by
User_ Mgt.protection_set.

Protecting Stored Objects 111-3-9



FKELIVIINAKYX

2. Create the new authority list with Create_authority, specifying the protection set.
You will receive an AD, with control rights, to the new authority list.

3. Store the new authority list AD with Directory Mgt.Store.

4. Passivate the new authority list with Passive_Store_Mgt.Request_Update.

The following example from Make_object_public_ex shows how to create a simple

authority list for an object, allowing all type rights for the world ID.

10 procedure Make object_public_ex(

.

42 is

51 —- Define the protection set

52 entries: constant User_ Mgt.protection_set (1) := (
53 size => 1, length => 1,

54 entries => (1 => (rights => (true, true, true),
55 id => world_id))):

56

57 -~ Create the authority list

58 aut_list: constant

59 Authority List Mgt.authority list AD :

60 Authority List Mgt.Create_authority(entries);
61 aut_untyped: System.untyped_ word;

62 FOR aut_untyped USE AT aut_list’address;

63

64 Dbegin

67 Directory Mgt.Store(aut_list path, aut_untyped):
68 Passive_ Store_Mgt.Request_update (aut_untyped):

78 end Make object_public_ex;

Once the authority list has been created, stored, and updated, you can then associate that list

with any object.

ll1-3.2.4 Changing a Directory’s Default Authority List

You may want to change a directory’s default authority list to another authority list. Note that
Directory Mgt.Create_directory sets the default authority list to null; the caller

must act to set a directory’s default authority list.

Calls Used:

Directory_ Mgt.Set_ default_authority
Sets directory’s default authority list.

A directory’s default authority list is the first one Store looks for when a master AD is stored

with default protection.

The default authority list of a directory is not necessarily the authority list that protects the

directory itself.

l1I-3.2.5 Changing an Object’s Owner and Authority List

I1-3-10

Protecting Stored Objects



PRELIMINARY

Calls Used:

Identification Mgt .Portray ID

Retumns ID AD with control and portray rights.

Identification_Mgt.Set_object_owner

Sets or changes the owner ID of an object.

Authority List_Mgt.Set_object_authority

Associates a new authority list with an object.

To change an object’s owner:

1.
2.
3.

Obtain the new owner ID AD with Directory Mgt .Retrieve.
Obtain control rights to the new owner ID with Identification_Mgt.Portray ID.

Replace the object’s current owner with a new owner with Set_object_owner. The
caller’s ID (ecither passed or default user ID) must match the old owner ID, and must have
control rights. By default, Set_obJject_owner uses the caller’s user ID, which has
control rights.

To change an object’s authority list:

1.

Replace the object’s authority list with a new authority list via
Set_object_authority. The caller’s ID (either passed or default user ID) must
match the owner ID, and must have portray rights. By default,
Set_object_authority uses the caller’s user ID, which has portray rights.

[11-3.3 Summary

Objects may be protected with authority lists and IDs.

An authority list shows which IDs can access the object, and what type rights they can
acquire.

An ID identifies what caller is trying to access the object.

A caller carries one or more IDs in an ID list which is stored in the caller’s process globals.
The first ID in the ID list is the caller’s user ID.

A protection set protects an ID just as an authority list protects a stored object.

Whenever a caller retrieves or activates an AD, the caller’s access to that object is
evaluated.

During a Retrieve, the caller’s IDs are compared with the object’s authority list and
master AD to return the proper rights on the retrieved AD.

During AD activation by Passive_Store_ Mgt, the "containing” object’s owner ID is
compared with the object’s authority list to return the proper rights on the activated AD.

Protecting Stored Objects m-3-11



FRKELIVIINAKYX

I11-3-12 Protecting Stored Objects



PRELIMINARY

USING NAME SPACES

Contents
M PIS vttt e eeteteeesoaaesaoseeeasansnenonesasasassaaanssonanas I1-4-2
A Name SpaceisaListof Directories ...........c.coiiiiiiiiiiinrnnannns 1I1-4-2
How a Name Space References Directories ...........cocviiiiiiiiieenan. I11-4-3
TeChIQUES .. ..iiii ittt ittt ittt ittt ittt e 111-4-3
Creating aName SPace .......ciiitininitieneneneneenenenrneeenennnns 111-4-3
Changing a User’s Command Name Space .........ccevvenvenrneneninenn. 1144
Changing the Command Name Space within a JoborProcess ................ 144
UMM A Y . ittt tteneeeeneeneenenoaeonsasoneaneasanasosensaseneenses I11-4-5

Using Name Spaces 114-1



FKELAVIINAKYX

A name space is a list of directories to be searched when looking for an object. This is similar
in function to the UNIX-like path environment variable or the MS-DOS PATH command.
This chapter gives concepts and techniques for creating a name space.

Packages Used:

‘Name_ Space_Mgt
Provides calls to manage name spaces (lists of directories).

Name Space directories

/If this is caller’s

current directory,
@ . this directory will
@ /b' be searched first
in
@ /local /bin
@ /usr/bin

@
b'Q | bin

Figure III-4-1. A Name Space Lists Directories to be Searched

lll-4.1 Concepts

A name space contains a string list. Each string list is the name of a directory.

lll-4.1.1 A Name Space is a List of Directories

Directories in a name space are searched in the order in which they appear. For example, in
Figure III-4-1, Directory_Mgt first looks in directory /bin, then in directory
/local/bin, thenin directory /usr/bin. If the "current directory”, represented by dot (),
is in the name space, the directory that is current at the time the call is made will be searched.

Each user’s user profile references a command name space, used by CLEX when searching for
commands.

The directories in the name space are used only for retrieving and listing. That is, no
Store/Delete/Rename or other Directory Mgt calls are allowed on the listed direc-
tories.

14-2 Using Name Spaces



FEELLIVIINAKY

Opening a name space does not open any directories in the name space. Instead, directories
are opened as encountered during Reads. Thus, the first directory in the name space is
opened at the beginning of the first Read request. Rights evaluation is performed against
listed directories when they are opened, to make sure list rights are present in the directories.

As name space Reads progress, the current opened directory is closed and the next directory
in the name space is opened. When the last directory in the list reaches end_of_file, the
name space is also marked as at end_of_file.

A pattern may be specified to select only names which satisfy the pattern (see Chapter III-2 for
an example of using a pattemn).

Name spaces are constants and cannot be modified once they have been created.

lll-4.1.2 How a Name Space References Directories

Reads on name spaces return names (not ADs), just like Reads on directories.

When read using Byte_Stream_ AM Reads, the names are separated by an ASCII newline
character; for Record_AM Reads, each name is returned as a record.

Note that if a directory’s pathname is renamed after the name space is created, the directory
cannot be opened in the name space because the name space won’t be able to find it.

Relative pathnames are usually avoided in name spaces, because you want to use the same
name space regardless of your starting directory. An exception to this is the current directory
(.) which is often the first element in a name space.

Reads on name spaces do not participate in transactions and the directory currently being read
is not locked.

lll-4.2 Techniques

After reading this section, you will be able to:

e Create a name space
e Change the command name space in the user profile

e Change the command name space in process globals.

lll-4.2.1 Creating a Name Space

To create a name space, use Name_Space_ Mgt .Create_name_space, specifying the
list of directories. The list must conform to System Defs.string list.

Calls Used:

Name Space Mgt.Create name_space
Creates a name space containing text entries.

The following is from the example Create name space_cmd_ex in Appendix X-A. The
developer uses the Command_Handler package to get the new name space’s name and
parent directory from user input.

Using Name Spaces II14-3



FINLALVILINARN X

17 procedure Create_name_space_cmd_ex

78 1is

86 directory list: System Defs.string list(508):

87 -~ 8tring list containing pathnames of the

88 -- directories in the new name space.

143 Command_Handler.Get_string list (opened _cmd, 2,

144 arg value => directory_ list):
210 name_space := Name_Space_ Mgt.Create_name_space(
211 directory list);
221 Directory Mgt.Store(name, name_space_untyped);
337 Passive_Store_Mgt.Request_update(

338 name_space_untyped) ;

358 end Create name_space_cmd_ex;

l1I-4.3 Changing a User’s Command Name Space

To change a user’s command name space in the user profile, use User_Mgt:
1. Use User_Mgt.Get_user_profile to get the current user profile record.

2. Change the command_path component of the user_profile record to contain the
desired new command path, of type System Defs.string list.

3. Use Set_user_profile withthe new user_ profile record to insert the new com-
mand name space in the user’s profile.

It is the responsibility of the one modifying a user profile to guarantee the validity of names in
the profile.

lll-4.4 Changing the Command Name Space within a Job or

111-4-4

Process

The call Process_Mgt .Set_process_globals_entry allows you to insert a name
space into its slot in process globals, to be effective for the duration of the job or process.

Calls Used:

Process_Mgt.Set_process_globals_entry
Assigns a value to a process globals entry.

Note that as for any object, the name space should be created and passivated before being
assigned to process globals.

The following example from Process_Globals_Support_ex shows setting the
cmd_name_space slot in process globals.

Using Name Spaces



PRELIMINARY

procedure Set_command_name_space(
ns: Name_Space_Mgt.name_ space_AD)
-— Logic:
- 1. Check that "ns" is a name space.
- 2. Set the new command name space.
is
ns_untyped: System.untyped word;
FOR ns_untyped USE AT
ns’address;
begin
if not Name_Space_ Mgt.
Is_name_space(ns_untyped) then
RAISE System Exceptions.type mismatch;

else Process_Mgt.Set_process_globals entry(
slot => Process Mgt_Types.cmd_name_space,
value => ns_untyped):

end if;

end Set_command_name_space;

lll-4.5 Summary

e A name space is a list of directories to be searched when looking for an object.

o Each user’s user profile references a command name space, used by CLEX when searching
for commands.

Using Name Spaces

1114-5



FIKGLAVIAINAKYX

II14-6 Using Name Spaces



PRELIMINARY

CREATING SYMBOLIC LINKS

Contents
0] 4107 o 1SN III-5-2
Suppressing Link Evaluation ...............0. i iiiiiiiiiiiinininnnnn. II1-5-2
How Symbolic Links Compare with Aliases .............covvieenenrnnnnn. I1-5-3
Symbolic Links and LinksinGeneral ..................ciiiiiunnnennn. -, II-5-3
TeChNIQUES .. .ottt it ittt it ettt et et M1-5-3
CreatingaSymbolicLink .............ciiiuiiiiiiniiniiniinnennnnnnn. I1-5-3
SUMMAIY ...ttt ittt it ienetnerneeanoeesoneeneenaeoeneneanaens I11-54

Creating Symbolic Links II1-5-1



FICELAVILIINAK L

A symbolic link provides a way to associate another name with an object already stored under
a different name. This chapter gives concepts and techniques for creating a symbolic link.

Packages Used:

Symbeolic_Link Mgt
Provides calls to create, list, and identify symbolic links.

Figure III-5-1 diagrams a symbolic link.

name 1 |specs name 2 | proj.spec
AD1 AD2

y symbolic link

~joe /specs

Retrieve ("~sue/proj.spec”) returns AD1
Figure III-5-1. A Symbolic Link

l1I-5.1 Concepts

A symbolic link contains a pathname. Symbolic link evaluation retrieves whatever AD is
stored with that pathname.

If an AD to a symbolic link is stored in a directory entry, then retrieving from the entry does
not return the entry’s AD. Instead, an AD to the object referenced by the link is returned.

For example, in Figure III-5-1, aDirectory Mgt .Retrieve("~sue/proj.spec")
returns AD1.

It is also possible to suppress the link. For example, in Figure III-5-1, you can obtain AD2 by
suppressing link evaluation of ~sue/proj. spec.

lll-5.1.1 Suppressing Link Evaluation

I1-5-2

The at sign ( @ ) suppresses link evaluation.

If Directory_Mgt.Retrieve is called with a pathname that contains an at sign ( @ ), the
part of the pathname preceding the at sign is evaluated. If the resulting object has the link
attribute, the link evaluation is suppressed and the AD of the named object itself is used to
complete the evaluation.

Creating Symbalic Links



PRELIMINARY

For example, in Figure III-5-1,aDirectory Mgt.Retrieve ("~sue/proj.spec@")
returns AD2,

The one exception to this rule is Directory_Mgt .Delete when the name supplied is the
name of the link object itself. In this case, whether or not there is a trailing at sign, the link
object itself is deleted.

llI-5.1.2 How Symbolic Links Compare with Aliases

Symbolic links and aliases provide two different ways to associate another name with an object
that already has a name. A symbolic link can be thought of as a "soft link," and an alias as a
"hard link."

A symbolic link is a new name for a new object that contains the name of an existing object.
An alias is a new name for an object that already has a name.

Aliases can become master ADs, whereas symbolic links can’t.

A symbolic link has the following advantages:

e It references an object name. Any object can exist under this name at one time or another.
This means you can also update an object under that name and not end up with a dangling
reference as for aliases (you might want to replace an existing program with a revised
version, or some such).

® You can set its value to a CL variable, for example $mybin, which gives you a great deal
of flexibility.

A symbolic link has the following disadvantages:

e The symbolic link cannot inherit "mastership” for the object referenced by the link’s value.

® The associated link value is "name" specific, so that if a different object is stored under the
same name, the user may end up accessing something incompatible with the type needed.
IlI-5.1.3 Symbolic Links and Links in General

Symbolic links are one implementation of the OS link attribute as defined by Link_Mgt.
You may also provide your own implementation of the link attribute, so that a

Directory Mgt.Retrieve will execute your implementation when it retrieves your ob-
ject with the link attribute. See the Link_Mgt package for information about implementing
the link attribute.

llI-5.2 Techniques

After reading this section, you will be able to:

e Create a symbolic link.

llI-5.2.1 Creating a Symbolic Link

To create a symbolic link, use Symbolic_Link Mgt.Create_ symbolic_link,
specifying the pathname within the link. An AD to the link is returned.

Creating Symbolic Links I-5-3



K INURIVARINIAAIN X

Calls Used:

Symbolic_Link Mgt.Create_symbolic_link
Creates a symbolic link.

l1l-5.3 Summary

e A symbolic link provides a way to associate a name with an object stored under a different
name.

e Symbolic link evaluation retrieves whatever AD is stored with that pathname.

e The at sign ( @ ) can suppress link evaluation, to allow you to retrieve the AD of the
symbolic link.

I11-5-4 Creating Symbolic Links



PRELIMINARY

Part 1V

1/0 Services

This part of the BiiN™/0S Guide gives concepts and techniques for managing files, terminals,
windows, printers, and other devices using byte stream, record, and character display I/O.

The chapters in this part are:

Understanding I/O Access Methods
Explains the I/O access methods provided by the OS. An access method is
a set of operations for accessing devices.

Using BasicI/O  Shows basic byte stream and record I/O techniques.

Managing Stream Files
Shows you how to manage stream files.

Using Windows  Explains the use of windows on character and graphics terminals, includ-
ing terminal manager support for windows and I/O access methods.

Using Character Display I/O
Shows you how to do I/O to a character display device.

Printing Explains spooled and direct printing.

Understanding Structured Files
Explains basic filing concepts and trade-offs between the available struc-
tured file organizations.

Managing Files and Indexes
Explains calls and data structures for managing files and indexes.

Using Record I/O with Structured Files
Explains the concepts and techniques for using record I/O with structured
files.

Locking Files and Records -
Explains concepts and techniques for locking and unlocking files and
records.

Processing Collections of Records
Explains concepts and techniques for pro