




























































































































































































































































































































































































































































































































































































































































































































































V-1-16 

PRELIMINARY 

�I�-�-�~�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�I�-
1 System date 1 1 Page Number 1 1 
1------------------------------------------1 1 
1 Page Heading 1 1 heading 
1------------------------------------------1 1 
1 field 1 1 ... 1 field i 1 ... 1 field nil 
1------------------------------------------1 
1 1 
1 1 
1 1 
1 1 page 
1 1 1 1 1 1 1 body 
1------------------------------------------1 area 
I I 1 1 
1 1 
1 1 
1 1 1 

1------------------------------------------1-
1 Page Footing 1 1 footing 
1------------------------------------------1-

Figure V-1-9. Layout ofa Standard Report Page 

There are two methods for creating and modifying report definitions: by using interactive 
utilities (define. standard_report and edit. report) and procedurally, using 
Data_Definition_Mgt. 

define.standard report 
Creates the simplest, default report definition, given a data record defIni­
tion. 

edi t . report Creates and modifies report definitions. See the BiiNTM Systems Reports 
Guide for detailed information on edit. report. 

Application developers will normally use edit. report to create and update a report's 
definition. Report definitions can also be created procedurally using 
Data_Definition_Mgt. 

Reports are composed of the following components: 

Report Details A report detail is the smallest printable piece of a report. There are three 
kinds of details: 

Report Parts 

• Data detail 

• Computed detail 

• Text detail. 

A report consists of the following logical report parts, each consisting of 
one or more report details: 

• Record print layout 

• Report heading 

• Page heading 

• Page footing 

Understanding Human Interface Services 



PRELIMINARY 

• Control group heading (only if a control group hierarchy is defmed) 

• Control group footing (only if a control group hierarchy is defined). 

Printing a Report 

Reports are either printed or displayed depending oil the type of output device, that is, depend­
ing on whether the physical output device is a printer, a tenninal, or some other output device 
which supports character display I/O. 

Two methods are available for printing (or displaying) a report: procedurally, by calling the 
Report_Handler. Print procedure, and interactively, by using the print. file utility. 

Both of these methods read data records from the report input device, format each line of the 
report, and write the result to the given report output device. 

V-1.1.7.2 Report Summary 

• A report is produced from sets of input data records, fonnatted as desired, often presented 
in hierarchical groups with subtotals and totals. 

• There are two utilities for creating and modifying report definitions: edit. report and 
define. standard_report. 

• The report service (Report_Handler) provides calls to associate a report with an input 
and output device, print a report, and control error handling. 

• A report can be printed or displayed either procedurally, with the 
Report_Handler. Print procedure, or interactively, using the print. file utility. 

V-1.2 Summary 
• Human Interface Services is composed of five services: 

command service Given a command definition, parses and returns invocation and runtime 
commands. 

environment service 

menu service 

form service 

report service 

Reads, writes, and creates BiiNTM CL variables. 

Given a menu definition, provides on-screen menus (lists of menu 
items). 

Given a fonn definition, controls execution of a data entry or display 
fonn. 

Given a report defmition, produces a printed report from data records. 

• These services perfonn most of the processing necessary for user interaction, including 
enforcement of input requirements and automatic display of "help" messages. 

• A default data entry form, and a default report, can be automatically created from a file's 
record definition. 

• Human Interface Services provide a complete, consistent user interface, shared by BiiNTM 
system utilities and CLEX itself. 

Understanding Human Interface Services V-I-17 



PRELIMINARY 

V-I-IS Understanding Human Interface Services 



Contents 

PREUMINARY 

CREATING A BiiNTM 2 
APPLICATION PROGRAM 

Concepts ............................................................... V-2-4 
Designing a BiiNTM Program ........................................... V -2-4 
Defining the Application's Data Structure ................................ V-2-5 
Example Program Overview ........................................... V -2-5 

Techniques ............................................................ V-2-10 
Creating and Processing the Invocation Command ......................... V-2-10 
Using Windows in a Program ......................................... V -2-11 
Processing a Menu Selection .......................................... V-2-12 
Displaying a Message ............................................... V-2-15 
Getting Data from a Fonn ............................................ V-2-17 
Displaying Data Using a Fonn ........................................ V-2-19 
Updating a File ..................................................... V-2-20 
Printing a Report from a File .......................................... V-2-21 
Printing a Report from a Sorted File .................................... V -2-24 

Summary ............................................................. V -2-28 

Creating a BliNn .. Application Program V-2-1 



V-2-2 

PRELIMINARY 

This chapter describes how to use the various parts of the BiiNTM system software to create a 
simple application program. The example is an inventory program controlled with menus, 
which gets structured input from a user, updates the inventory files, displays fonnatted infor­
mation, and prints an inventory report. 

The complete source code for this example program is listed in Appendix A. 

Packages Used: 

Ac ce s s _Mgt Interface for checking or changing rights in access descriptors. 

Character Display AM 
- Provides device-independent 1/0 to character display devices such as 

printers, plotters, and windows on character and graphics tenninals. 

Data Definition Mgt 
- Manages data definitions (DOefs). This interface is a symbol table for the 

development of a OOef compiler. 

Directory_Mgt Manages directories and directory entries. 

File Admin Administers files. 

Form_Handler Provides calls to process, control, and change fonns. 

Message Services 
- Provides calls to write messages from message files, message stacks, or 

message blocks. 

Process_Mgt Provides public operations on processes. 

Record AM Provides device-independent record 1/0. 

Report Handler 
- Provides calls for initializing and printing a report. 

Window Services 
- Provides windows on character and graphics tenninals, including pull­

down menus. 

Figure V -2-1 shows the external relationships of a BiiNTM program to its terminal (windows), 
its control input (menus), its notes, warnings, and help infonnation (messages), its data input 
and display (forms), and its printed output (reports). 

As with most computer systems, the BiiNTM OS (CLEX) invokes the program and passes in 
invocation command arguments. And, as usual, the program interacts with files. 

Creating a BilNTM Application Program 



PRELIMINARY 

EJ 
v - ~ 

Menu \ 

I 
\ 
\ 

/ \ 
\ 
\ 
\ 

[WindOW 1 " 
~ ~ 

I , 
" 

~ I 
/ 

/ 
/ Program 

/ 
/ 

/ 
~ 

~ c:=J 
Form 

Figure V -2-1. Typical BiiNTM Application Program 

A BiiNTM program relies on various system seIVices. Each of these seIVices are described in 
other chapters in this BiiNTM/OS Guide. 

BiiNTM provides several ways of interacting with users via tenninals: 

• Windows, to reseIVe an area of the tenninal screen for a program. A program may open 
any number of windows. Usually, there is one main window for user input and data dis­
play, and optionally a small window for help and error messages. The message window 
may be the already existing system message window. 

• Messages, to display a text with up to five parameters (such as rue name and error number) 
in a user-selected language and fonnat (short, long, help). 

• Menus, to allow a user to select an item from a list. The menu group 10, menu 10, and 
menu item 10 numbers are returned to the program. 

• Commands, to allow the user to control a program. See Chapter V -3, "Building New 
Commands", for more infonnation. 

Creating a BliNn .. Application Program V-2-3 



PRELIMINARY 

• Forms, to enforce structured data entry. Each data entry field may have an associated help 
message. Forms are also used to display structured data. 

• Reports, to produce a formatted display of a set of data records. 

A BiiNTM program itself is insulated from changes to: 

• Message texts and variants - only the message file itself needs to be updated. Message 
variants are automatically displayed in the user's desired language and format 

• Changing languages for menus or commands - if the numeric menu and command IDs 
remain the same. 

• Form layouts - the displayed formats may be changed; as long as no fields are added or 
deleted, the program win not know the difference. 

• Report layouts - the report formatting, headings, control breaks, footings, and so forth, can 
be changed. 

The following tasks are described in this chapter: 

• How to create and read the program's invocation command. 

• How to create and display messages. 

• How to use windows, menus, and forms to interact with the user. 

• How to read, write, and update records in named files. 

• How to print a report from a file and how to sort records from a file and then print a report 
from the sorted records. 

V-2.1 Concepts 

V-2.1.1 Designing a BiiNTM Program 

V-2-4 

As with any program on any system, a complete program description is the first step when 
creating an application For a BiiNTM program, this program description includes: 

• Whether it's to be a batch or interactive program, 

• Whether to use a menU-driven or command-driven user control interface, 

menu selections Simplest for the user - defme menu groups, individual menus and menu 
items 

runtime commands Provides more control - define sets of commands, command names, 
types and numbers of command arguments. 

• What input and output files are required, including the record layout of the program's files, 

• Design of data entry and display forms, if used, 

• What data manipulation is desired, and 

• What types of reports are to be produced. 

Once the main files' record layouts have been specified, the specification of default data input 
fonns and reports can be done automatically (see the next section, "Defining the Application's 
Data Structure"). 

Creating a BoN
TN Application Program 



PRELIMINARY 

V-2.1.2 Defining the Application's Data Structure 

The data definition (record layout) of a file can be used to automatically generate input and 
display fonns and report definitions (DDefs). The resulting fonn and report DOefs can then be 
edited with the corresponding editor utilities to create a desired fonnat. 

Tools Used: 

TBD Creates a record DDejfor a flie. 

define.standard form 
Creates a standard fonn DOef from a record DDef. 

edit.form Edits a fonn description's layout and screen properties. 

define.standard report 
Creates a standard report DOef from a record DOef. 

edi t . report Edits a report description. 

Figure V-2-2 shows the relationship between a flie's record DDef, the standard fonn layout, 
and the standard report layout 

record 
part_ID 
desc 
unit 
location 

• • • 
end record; 

System_Defs. textlpart_ID_lenCJth; 
System_Defs. text desc_length); 
System _Defs. text un it_length); 
System_Defs.text loc_length); 

Form 
Editor 

Report 
Editor 

Part 10 _ ~ 
xxxx xxxx 

Desc __ 
xxxx xxxx 

Unit __ xxx x xxxx 

Location _ xxxx xxxx 

Form Report 

Form DDef Record DDef Report DDef 

Figure V-2-2. File Data Definition and Associated Forms and Reports 

V-2.1.3 Example Program Overview 

The example program is a menu-driven inventory control program. The menu group's title 
line is used to select one of six menus. Using selections from the menus, the user may inquire 
about parts on file, enter a new part 10 and description, change part infonnation, print one of 
two inventory reports, and re-index the parts flie. 

Creating a BiiNn~ Application Program V-2-5 



V-2-6 

PRELIMINARY 

The program has an associated message fue which contains the texts of all infonnation, warn­
ing, and error messages. Help texts are stored within the menu and fonn defmitions. 

Menus 

The menus in the example program are shown in Figure V -2-3. 

Housekeeping Exit Program +-- Menu Group 

Inquiry Menu 

* 1. 
2. 

* 3. 

Search by Part 10 
Search by Part Description 
Exit MenU! 

Posting Menu 

* 1. Receipts 
2. Issues 
3. Returns 
4. Spoilage 
5. Journal Entry 

* 6. Exit Menul 

Update Menu 

Add Part * 1. 
* 2. 
* 3. 
* 4. 

Change Part Information 

Exit Menu 
Delete Part 1 

Reports Menu 

* 1. 
* 2. 
* 3. 

Print Report by Part 
Print Report by Location 
Exit MenU! 

I Housekeeping Menu I 
* 1. Index Parts File 
* 2. Exit Menu 

(* ----.. menu selection enabled in example program) 

Figure V -2-3. Example Program Menus 

Data Files 

There are two data files used by this program: the inventory parts file, indexed by part ID, and 
the log flie, where records of updates and changes to the parts file are written. 

The parts fue record layout, in Ada, is: 

Creating a BiiNTM Application Program 



PRELIMINARY 

(from Inventory_Files specification) 

244 subtype part ID type is System Defs.text( 
245 part_ID_Iength) ; -
246 
247 subtype supplier ID type is System_Defs.text( 
248 supplier_ID_Iength); 
249 
250 subtype location type is System_Defs.text( 
251 loc_length);-

254 subtype qty type is System. ordinal 
255 range 0 .. 9_999_999; 

259 subtype cost type is float 
260 range 0.0 .. 99_999_999.99; 
261 
262 type supplier array type is 
263 array (l .. max_suppliers) of supplier_ID_type; 

266 type parts_record_type is 

269 
270 

272 
273 

275 
276 

278 

280 
281 
282 
283 

record 
part_ID: 

desc: 
desc_length) ; 

unit: 
unit_length) ; 

location: 

qty on hand: 
reorderyoint: 
reorder qty: 
suppliers: 

part_ID_type; 

System_Defs.text( 

System_Defs.text( 

location_type; 

qty type; 
qty=type; 
qty type; 
supplier_array_type; 

285 usage this month: qty_type; 
286 usage-last-month: qty_type; 
287 usage-last-year: qty_type; 
288 avg unit cost: cost type; 
289 last unit cost: cost=type; 
290 date-first act: 
291 Timing=Conversions.numeric_time; 

294 date last act: 
295 Timing_Conversions.numeric_time; 

298 status: System Defs.text( 
299 status length); -

302 end record; 

The log file record layout, in Ada, is: 

Creating a BiiNnl Application Program V-2-7 



V-2-8 

PREUMINARY 

(from Inventory_Files specification) 

316 type action_type is ( 
317 create, 

319 update, 

321 delete, 

323 receipt, 
324 issue, 
325 returns, 
326 spoilage, 
327 journal); 
328 
329 
330 type log_record_type is 

332 
333 

335 

record 
part_ID: 

action: 

337 time: 

part_ID_type; 

action_type; 

338 Timing_Conversions. numeric_time; 

340 doc number: System Defs.text{ 
341 -doc_length);-

343 qty: 

346 job ID: System Defs.text{ 
34 7 -job_length) ; -

353 end record; 

Program Source Code Files 

A typical menu-driven application program has the following outline: 

Setup Open a window for this program, open the necessary files, display the 
main menu group. 

Input Get a menu selection from user, get necessary data for operation (input 
directly from user, from a form, or from a ftIe). 

Processing 

Output 

Termination 

Perfonn the selected operation. 

Display infonnation in program window, update files, print a report. 

Dose ftIes, deallocate objects, close the program's window. 

The example program is organized into the one main procedure and six Ada packages. Each of 
the packages collects the procedures related to a given selVice area: windows, files, menus, 
forms, and reports. The relationship between these parts of the example program are shown in 
Figure V-2-4. 

Creating a BliNn" Application Program 



Setup 

Inventory 
Windows 

(i_windows.s) 
(i_windows.b) 

PREU:MINARY 

Inventory_main 

(inventory_moin.sb) 

Inventory Messages 
(i_msgs.ms) 

Inventory 
Files 

(i_files.s) 
(i_files.b) 

Inventory 
Menus 

(i_menus.s) 
(i_menus.b) 

Inventory 
Forms 

(i_forms.s) 
(i_forms.b) 

I 
Inventory 
Reports 

(i_reports. s) 
(i_reports. b) 

Figure V -2-4. Example Program Source Files 

The following program fragment shows how the example program sets up its windows, opens 
its files, and prepares for menu input 

(from Inventory_Main) 

29 procedure Inventory_main 

38 is 

97 begin 

101 Inventory_Windows.Open_program_windows; 

125 Character Display AM.Ops.Set input type mask( 
126 opened dev =>-Inventory Windows.main window, 
127 new mask => Terminal Defs.input type mask' ( 
128 -Terminal_Defs.menu=item-picked => true, 
129 others => false»; 

Processing 

The following program fragment shows the example program's main processing loop: read the 
menu selection, then perfonn the appropriate action (possibly just exit program). 

Creating a BiiNTM Application Program V-2-9 



PRELIMINARY 

(from Inventory_Main) 

134 loop 

139 Character Display AM.Ops.Read( 
140 opened_dev =>-Inventory_Windows.main_window, 

151 case menu select.menu is 
152 
153 when Inventory Menus.inquiry menu ID => 
154 Inventory Menus.Process Inquiry menu( 
155 selection => menu_select.item); 

157 when Inventory_Menus.posting_menu_ID => 

173 when Inventory Menus.exit menu ID => 
174 EXIT; - --

179 
180 
181 

Termination 

end case; -- "case menu select.menu is" 

end loop; 

The following program fragment shows how the example program closes both its windows 
(which disables enabled menus) and its files. 

(from Inventory_Main) 

186 Inventory_Files.Close-parts_file; 

200 Inventory_Windows.Close-program_windows; 
201 
202 end Inventory_main; 

V-2.2 Techniques 
After reading this section, you will be able to: 

• Interact with the command line: 

Create and store an invocation command definition and argument definitions 

Read command line argument values. 

• Set up a window for a program 

• Accept and process user menu selections from menus 

• Display a message 

• Set up a fonn and get the user's input data 

• Display a form containing program-generated information. 

• Update a given record from a file 

• Print a report from a file. 

V-2.2.1 Creating and Processing the Invocation Command 

V-2-10 Creating a BiiNTM Application Program 



PREUMINARY 

Calls Used: 

manage.program 
Creates command definitions. 

Command_Handler.Open_invocation_command-processing 
Opens the invocation command device for processing. 

Command_Handler. Get_argument_type 
Returns argument values. 

Command Handler.Close 
- Closes the opened invocation command input device. 

Defme your program's invocation command name and the necessary arguments. ' Use the 
manage. conunands command set in the manage. program utility to define the program's 
invocation command. 

Call Command_Handler. Open_invocat ion_cornrnand-proces sing to open the in­
vocation command input device. The invocation command has already been parsed, and calls 
to Conunand _ Handl er . Get_argument _type will return the invocation argument values. 

When you are through reading argument values, close the opened invocation command input 
device by calling Conunand_Handler. Close. 

See Chapter V -3 for more information on processing commands. 

V-2.2.2 Using Windows in a Program 

Calls Used: 

Character Display AM.Get device object 
- Returns the object underlyiiig a device. 

Process_Mgt.Get-process_globals_entry 
Returns process global variables; in this case, we are looking for the stan­
dard input device. 

Window Services.Ops.Create window 
- Creates a new windOw with a given size and poSition 

Window Services.Ops.Get terminal 
- Returns an ADto the terminal on which an existing window is installed. 

The following program fragment shows how the example program sets up its main window. 
The program assumes that the standard input, on entry, is from a window. 

First, you need to fmd that opened window, then the actual window, then the terminal display­
ing the actual window. Then you can set up the new program window on that terminal. 

Creating a BiiN
nl 

Application Program V-2-11 



PRELIMINARY 

(from Inventory_Windows spec~fication) 

27 main window size: Terminal_Defs.point_info:= 
28 80,20);-

31 main buffer size: Terminal_Defs.point_info:= 
32 80,20);-

35 main_window-F0s: Terminal_Defs.point_info:= 
36 1,1); 

(from Inventory_Windows body) 

12 procedure Open_program_windows 

21 
22 
23 
24 
25 
26 

is 

begin 

old opened window: 
old-window: 
underlying_terminal: 

Device Defs.opened device; 
Device-Defs.device; 
Device=Defs.device; 

31 old opened window := 
32 -Process_Mgt.Get-Frocess_globals_entry( 
33 Process_Mgt_Types.standard_input); 

37 old window := Byte Stream AM.Ops.Get device object( 
38 -old_opened_window); - --

43 underlying terminal := 
44 Window-Services.Ops.Get terminal( 
45 old_window) ; -

49 main window := Window Services.Ops.Create window( 
50 terminal - => underlying terminal, 
51 pixel units => false, -
52 -- characters, not pixels 
53 fb size => main buffer size, 
54 desired window size => main-window-size, 
55 window pos - => main-window-pos, 
56 view pos => - -
57 Terminal_Defs.point_info' (1,1»; 

71 end Open_program_windows; 

V-2.2.3 Processing a Menu Selection 

Calls Used: 

Character Display AM.Ops.Set input type mask 
- Sets the allowable input events for a wmdow. 

Character Display AM.Read 
- Reads an event from a terminal. 

Data Definition Mgt.Retrieve DDef 
- Retrieves an object's DDef, given the object's AD. 

Directory Mgt.Retrieve 
- Retrieves a stored object's AD, given the object's pathname. 

Window Services.Ops.Install menu group 
- Installs a menu group in a wIndow. 

Window Services.Ops.Menu group enable 
- Enables an installed menu group. 

V-2-12 Creating a BiiNTM Application Program 



PRELIMINARY 

This technique shows how to: 

• create a menu (using a utility) 

• install and enable a menu 

• read the user's menu selection 

• process a menu's selections. 

Creating Menus 

Defme the menu titles and menu item texts, then the menu groups. 

Create each menu group, using the TBD (edit . menu) utility. 

1. Create a null menu group to contain the menus. 

2. Add each menu and its title to the menu group. 

3. Add each menu item and its text to each menu. 

Store the menu group DDef under a pathname. 

Installing and Enabling a Menu Group 

Retrieve the menu group's DDef. 

Install and enable the menu group, using calls in Window_Services: 

1. Install_menu_group - install the menu group in an open window. 

2. Menu_group_enable - enable a menu group for user selection. 

(from Inventory_Menus specification) 

74 inv menu group ID: constant 
75 -TermInal_Defs.menu_group_ID := 1; 

(from Inventory_Menus body) 

30 menu_group_DDef_AD: Data_Definition_Mgt.DDef_AD; 

33 menu group node: 
34 Data_Definition_Mgt.node_reference; 

46 menu group DDef AD := DDef from untyped ( 
47 Directory Mgt.Retrieve( -
48 name ~> menu_group_DDef_path»; 

53 menu group node := Data Definition Mgt. 
54 Retrieve DDef( - -
55 DDef-=> menu group DDef AD, 
56 name => menu=group=DDef=root_name); 

61 Window Services.Ops.Install menu group ( 
62 window => Inventory WIndows. 
63 main window, 
64 menu group => menu-group node, 
65 ID - => inv_rnenu_group_ID); 

69 Window Services.Ops.Menu group enable( 
70 window => Inventory Windows. 
71 main window, 
72 menu group => inv menu group ID, 
73 enable => true); - -

Creating a BliNn .. Application Program V-2-13 



V-2-14 

PRELIMINARY 

Reading a Menu Selection 

To read a menu selection: 

• Set the input type mask for the menu group's window to include 
Terminal_Defs.menu_item-picked, 

• Wait for an input event at the tenninal, and 

• Read the menu selection values (menu group 10, menu 10, and menu item 10 numbers). 

(from Inventory_Main) 

79 menu select: Terminal_Defs.menu_selection; 

90 event num: System. ordinal; 

125 Character Display AM.Ops.Set input type mask( 
126 opened dev =>-Inventory Windows.main window, 
127 new mask => Terminal Defs.input type mask' ( 
128 -Terminal_Defs.menu=item-picked => true, 
129 others => false»; 

139 Character Display AM.Ops.Read( 
140 opened dev =>-Inventory Windows.main window, 
141 buffer-VA => menu select' address, -
142 max events => 1, -
143 max-bytes => 0, 
144 block => true, -- Wait 
145 type read => event type, 
146 num read => event=num); 

151 case menu select.menu is 
152 
153 when Inventory Menus.inquiry menu ID => 
154 Inventory Menus.Process Inquiry menu( 
155 selection => menu_select.item); 

Example Menu Processing Routine 

Use the menu and item selection numbers (for example, in a case statement) to detennine the 
appropriate action. 

Oefme the menu and item numbers: 

Creating a BuN
TY 

Application Program 



PRELIMINARY 

(from Inventory_Menus specification) 

80 inquiry menu IO: constant 
81 Terminal:Oefs.menu_IO := 1; 
82 
83 posting menu IO: constant 
84 Terminal=Oefs.menu_IO := 2; 
85 
86 update menu IO: constant 
87 TerminaI_Oefs.menu_IO := 3: 
88 
89 report menu IO: constant 
90 Terminal_Oefs.menu_IO := 4: 
91 
92 housekeeping menu IO: constant 
93 Terminal:Oefs~menu_IO := 5: 
94 
95 exit menu IO: constant 
96 Terminal_Oefs.menu_IO := 6; 
97 
98 Inquiry menu items 
99 inq by part item: constant 

100 -Terminal Oefs.menu item IO .= 1: 
101 inq by desc Item: constant-
102 -Terminal Oefs.menu item IO := 2; 
103 inq exit item: constant-
104 -TermInal Oefs.menu item IO := 3: - --

Process the menu's selections: 
(from Inventory_Menus body) 

79 procedure Process inquiry menu( 
80 selection: Terminal Defs.menu item IO} 
81 -- Selection made In this menu. 
82 is 

86 begin 
87 
88 case selection is 
89 
90 when inq_by-part_item => Inventory_Forms. 
91 Process_inquiry_form; 
92 
93 when in~by_desc_item => 
94 
95 Message Services. Write msg( 
96 msg=id => no_selection_code, 

105 when in~exit_item => 
106 return; 
107 
108 when others => null; 
109 
110 end case; 
111 
112 end Process_inquiry_menu; 

V-2.2.4 Displaying a Message 

Calls Used: 

Message Services.Write msg 
- Writes a specIfied message and its parameters to an opened device. 

Creating a BiiNTM Application Program V-2-15 



PRELIMINARY 

Messages are used to display status infonnation and for warnings and errors. 

To use messages, you must create a message file containing the texts for all your program's 
messages. This is done with the manage .messages utility (or the manage .messages 
command set in the manage. program utility), using your message definition commands. 

The program need only know the message file's patbname: 
(from Inventory_Messages specification) 

24 message file: constant System Defs.text AD := 
25 new-System Defs.text' (- -
26 31,31,"/example/inventory/message_file"); 

32 message object: constant System. untyped word := 
33 System. null_word; -
34 
35 pragma bind (message object, 
36 "inventory_messages.message_file"); 

A program refers to a message by an Incident_Defs. incident_code, which deter­
mines the message file, the message index numbers (module number and message number), 
and the severity level. 

The message definition commands can be stored in your source file near the 
Incident _ Def s . incident_code declarations. The manage. program utility can ex­
tract message definition commands from your source. fue, to create the message file. 

To define a given message: 
(from Inventory_Messages specification) 

30 module: constant:= 4; 

33 
34 

50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 

*M* 
-- *M* 

set. language :language = English 
create.variable module :value 4 

no selection code: constant 
- Incident-Defs.incident code := ( 

message object =>-
Inventory Messages.message object, 

module - => module, -
number => 1, 
severity => 

Incident_Defs.warning); 

*M* store :module = $module :number = 1\ 
*M* :msg name = no selection\ 
*M* :short = "Selection $p1<selection 
*M* number> is not implemented." 

To write a message to the default message device (window): 
(from Inventory_Menus body) 

80 

95 
96 
97 
98 
99 

100 
101 
102 
103 

selection: Terminal_Defs.menu_item_ID) 

Message Services.Write msg( 
msg-id => no selection code, 
param1 => - -

Incident_Defs.message-parameter( 
typ => Incident Defs.ord, 
len => 0)' ( -

typ => Incident Defs.ord, 
len => 0, -
oval => selection»; 

Creating a BiiNu
", Application Program 



PRELIMINARY 

V-2.2.S Getting Data from a Form 

Calls Used: 

Directory Mgt.Retrieve 
- Retrieves a stored object's AD, given the object's pathname. 

Form Handler.Clear 
- Clears a form from its window. 

Form Handler.Close form 
- Closes and deallocates an opened form. 

Form Handler.Fetch value 
- Gets a value from a field in a form. 

Form Handler.Get 
- Displays a form for user input; returns when the form is finished. 

Form Handler.Open form 
- Opens a form for processing. 

Record AM.Open by name 
- OPenSa device for record access, given the device's pathname. 

Record AM.Ops.Close 
- Closes an open device. 

Record AM.Ops.Update 
- Updates (writes) a record to an open device. 

Defme the form layout, field names, and field types. Create the fonn DDef with the 
define. standard_form utility, and/or the edit. form utility. Store the form's DDef 
under a pathname. 

Get the stored form DDefby calling Directory_Mgt. Retrieve with the form's path­
name, then converting the returned untyped word to a DDef AD using an instance of 
Unchecked_Conversion. Open the form by calling Form_Handler . Open_form. 

(from Inventory_Forms body) 

40 opened_form: Form_Defs.opened_form_AD; 

44 opened form := Form Handler.Open form( 
45 DDef => DDef from untyped( -
46 Directory-Mgt.Retrieve( 
47 name => form_pathname»); 

If the form has groups or piles to be set, call 
For~Handler. Create_group_instances as necessary. 

(from Inventory_Forms body) 

406 when Inventory_Menus.update_add_item => 
407 
408 Form Handler.Create group instances( 
409 opened form a - => opened form, 
410 group - - => update-add, 
411 number_of_instances => 1); -

If desired, open the form for record access: 

Creating a BiiNn 
.. Application Program V-2-17 



V-2-1S 

PRELIMINARY 

(from Inventory_Forms body) 

432 opened record form := Record AM.Open by name( 
433 name - => update_form-pathname, 
434 input_output => Device_Defs.inout); 

Display the fonn and allow user data entry, by calling Form_Handler. Get, specifying the 
fonn and the window where the fonn is to be displayed: 

(from Inventory_Forms body) 

439 
440 
441 
442 
443 
444 

form status := Form Handler.Get( 
opened form a -=> opened form, 
opened-window a => -

Inventory=Windows.main_window); 

if form_status /= Form_Defs.finished then 

Fetch data from fields in the fonn by calling Form_Handler . Fetch_value: 
(from Inventory_Forms body) 

451 
452 
453 
454 
455 
456 
457 
458 
459 
460 
461 
462 
463 

Form Handler.Fetch_value( 
opened form a => opened form, 
element - => part ID field, 
subunit => System nefs.null text, 

-- added subunit; value correct? -
value buffer VA => part ID'address, 
value-length- => part=ID'size/8, 
value -t => 

Data Definition Mgt.t string, 
element value length => length, 
empty - - => empty); 

if empty then 

Read a data record from the fonn by calling Record_AM. Ops . Read: 
(from Inventory_Forms body) 

371 parts record: 
372 Inventory_Files.parts_record_type; 

380 length: System. ordinal; 

495 
496 
497 
498 

length := Record AM.Ops.Read( 
opened dev => opened record form, 
buffer-VA => parts record' address, 
length- => parts=record'size/8); 

Clear the form from the window by calling Form_Handler. Clear_form. Close the fonn 
by calling Form_Handler.Close_form: 

(from Inventory_Forms body) 

553 Form Handler.Clear( 
554 opened_form_a => opened_form); 
555 
556 Form Handler.Close form( 
557 opened_form_a ~> opened_form); 

Close record access to the fonn, if opened: 
(from Inventory_Forms body) 

Record AM.Ops.Close( 561 
562 opened_dev => opened_record form); 

Creating a BiiNTY Application Program 



PRELIMINARY 

V-2.2.6 Displaying Data Using a Form 

Calls Used: 

Directory Mgt.Retrieve 
- Gets a stored object's AD, given its pathname. 

Form Handler.Clear 
- Clears a fonn from its window. 

Form Handler.Close form 
Closes and deallocates an opened fonn. 

Form Handler.Open form 
- Opens a fonn for processing. 

Form Handler.Put 
Displays a read-only fonn. 

Form Handler.Store value 
Assign'S a value to a field in an opened fonn. 

Record AM.Open by name 
- 6Pen'S a device for record access, given the device's pathname. 

Record AM.Ops.Close 
- Closes an open device. 

Record AM.Ops.Update 
- Updates (writes) a record to an open device. 

This section describes how to use a fonn to display structured infonnation. 

Defme and create the fonn, retrieve and open the form's DDef, and set any necessary groups 
or piles, as described in the previous section, "Getting Data from a Fonn". 

If the fonn has been opened for record access (see previous section), write a data record into 
the fonn by calling Record_AM .Ops. Update: 

(from Inventory_Forms body) 

371 parts record: 
372 InventorY_Files.parts_record_type; 

476 Record AM.Ops.Update( 
477 opened dev => opened record form, 
478 buffer-VA => parts record' address, 
479 length- => parts=record'size/8}; 

Store data directly into individual fields in the fonn by calling 
Form Handler.Store value: 

Creating a BliNn. Application Program V-2-19 



PRELIMINARY 

(from Inventory_Forms body) 

276 
277 
278 
279 
280 
281 
282 
283 
284 
285 
286 

Form Handler.Store value{ 
opened form a - => opened form, 
element - => desc_fIeld, 
subunit => System Defs.nuII_text, 

-- added subunit; value-correct? 
value buffer VA => 

parts record.desc'address, 
value length => 

parts record.desc'size/8, 
value t - => 

Data_Definition_Mgt.t_string); 

Display the fonn and its contents by calling Form_Handler. Put, specifying the fonn and 
the window where the fonn is to be displayedQ 

Clear the fonn from the window by calling Form_Handler. Clear_form, then close the 
fonn by calling Form_Handler. Close_form. 

V-2.2.7 Updating a File 

V-2-20 

Packages Used: 

Access Mgt.Permits 
- Checks an object for given access rights. 

Directory Mgt.Retrieve 
- Returns an AD to an object, given a pathname. 

Record AM.Keyed Ops.Read by key 
- Reads a record from an opened indexed device, given the index key value. 

Record AM.Keyed Ops.Update by key 
- UPdates a record in-an opened indexed device, given the index key value. 

Record AM.Ops.Close 
- Ooses an opened device. 

Record AM.Ops.Insert 
- Inserts a record into an opened device. 

Record AM.Ops.Open 
- Opens a given device for record input or output, given a device AD. 

Record AM.Ops.Open by name 
- Opens a given device for record access, given a device's pathname. 

This section briefly describes how to use the filing service to update records in a fue. For more 
infonnation and procedural examples, see Chapter IV-9, "Using Record I/O with Structured 
Files". 

1. Define the file's record layout and then create the file's record DOef. This can be done 
procedurally using calls to Data Definition Mgt. Store the file and its record DDef 
under pathnames. - -

2. Open the file by calling Record_AM. ops. Open or Record_AM. Open_by_name. 

3. Read/write/rewrite records: 

Creating a BliNn" Application Program 



rKELINllNAK r 

• If the file is indexed: 

read a record Get the index key value of the desired record, and call 
Record_AM.Keyed_Ops.Read_by_key. 

write a record Set the record value, then call Record_AM. Ops . Insert. 

rewrite a record Set the record value, then call 
Record_AM.Keyed_Ops.Update_by_key. 

• If the file is not indexed: 

read a record Set the record pointer with Record_AM. Ops . Set yo si tion, 
then read the record with Record_AM. Ops. Read. 

write a record Write the record with Record_AM. Ops . Insert. 

rewrite a record Rewrite the record with Record_AM. Ops. Update. 

4. Dose a file by calling Record_AM. Ops. Close. 

V-2.2.8 Printing a Report from a File 

Calls Used: 

Byte Stream AM.Open by name 
- - Opens a device for byte stream access, given the device's pathname. 

Directory Mgt.Retrieve 
- Retrieves an object, given the object's pathname. 

Record AM.Open 
- Opens a file or device for record access. 

Record AM.Ops.Close 
- Closes an opened file or device. 

Report Handler.Initialize 
- Initializes an opened report, given the report DDef and the input and out­

put devices. 

Report Handler.Print 
- Prints an initialized report. 

This technique shows how to produce a given report from a file to an output device. 

Creating a BiiNTI" Application Program V-2-21 



PRELIMlNAKY 

Parts File 

(part_ID) (desc. loc, unit) 

abc453-69 first part, shelf6, ton 

def3-3-4 motor mount. bin106, each 

xyz7445 some part. bin41. each 

zzz0123x another part, bin12. foot 

Report by Part_ID 

Unit of 
Part 10 Description Location Measure 

abc453-69 first part shelf6 ton 

def3-3-4 motor mount bin106 each 

xyz7445 some part bin41 each 

zzz0123x another part bin12 foot 

Figure V -2-5. File and an Associated Report 

Create the report itself: 

• Given the previously created file's record DDef, use the define. standard_report 
utility and/or the edi t . report utility, to create the desired report fonnat. 

• Store the report DDef under a pathname. 

Open the desired input file, by calling Record_AM. Ops . Open. 

• To select a range of records in an indexed file for inclusion in the report, call 
Record AM. Keyed Ops. Set key range with the appropriate first and last key 
values. - - --

V-2-22 Creating a BiiNTM Application Program 



PKELIMINAKY 

(from Inventory_Reports body) 

56 procedure Print_report_by-part( 
57 output_dev_pathname: System_Defs.text) 

65 is 
66 
67 opened_output: Device_Defs.opened_device; 

73 initialized_report: Device_Defs.opened_device; 

76 local-parts_file: Device_Defs.device:= 
77 Record AM.Ops.Get device object( 
78 Inventory_Files.parts_file); 

81 opened local parts file: 
82 Device_Defs.opened_device; 

89 begin 

94 opened local parts file := Record AM.Ops.Open( 
95 dev - => local-parts_fIle, 
96 input output => Device Defs.input, 
97 allow- => Device=Defs.readers); 

Open the desired output device (must support the byte stream access method) by calling the 
appropriate Open: 

• Fortenninal output, call Character_Display_AM. Open. 

• For printer or file output, call Byte _ S trearn _AM. Open. 

(from Inventory_Reports body) 

102 opened_output := Byte_Stream_AM.Open_by_name( 
103 name => 
104 output_dev_pathname, 
105 input output => 
106 Device_Defs.output); 

Get the report DDefby calling Directory_Mgt. Retrieve with the stored DOef's path­
name. You will then have to convert the Retr ieved untyped word into a DDef AD, by 
calling an instance of Unchecked_Conversion. 

(from Inventory_Reports specification) 

55 report_by-part_DDef_str: constant string := 
56 "/example/inventory/DDefs/report_byyart": 

60 report by part DDef pathname: 
61 System Defs.text( 
62 report by part DDef str'length) := ( 
63 report_by~art_DDef_str'length, 
64 report_byyart_DDef_str'length, 
65 report_by-part_DDef_str); 

(from Inventory_Reports body) 

111 report DDef := DDef from untyped( 
112 Directory Mgt.Retrieve( 
113 name ~> report_by_part_DDef_pathname»; 

Initialize the report handler by calling Report_Handler. Initialize with the report 
DDef, and the opened input and output devices. 

Creating a BiiNTM Application Program V-2-23 



PRELIMINARY 

(from Inventory_Reports body) 

119 initialized report := Report Handler.Initialize( 
120 description => report DDef, 
121 input => opened:local-parts_file, 
122 output => opened_output); 

Print the report by calling Report_Handler. Print with the initialized report. 
(from Inventory_Reports body) 

127 Report Handler.Print( 
128 report => initialized_report); 

Close the report's input file: 
(from Inventory_Reports body) 

152 Record AM.Ops.Close( 
153 opened_dev => opened_local-parts_file}; 

V-2.2.9 Printing a Report from a Sorted File 

V-2-24 Creating a BiiNTM Application Program 



t"KELIMlNAKY 

Calls Used: 

Byte Stream AM.Open by name 
- - Opens the report output device. 

Directory Mgt.Retrieve 
- Retrieves the report definition, given the report's pathname. 

Event Mgt.Wait for all 
- Waits fur all of a specified set of events to occur. 

Pipe_Mgt.Convert-pipe_to_device 
Converts a pipe AD into a device AD. 

Pipe Mgt.Create pipe 
- Creates a new pipe. 

Process Mgt.Deallocate 
- Deallocates a spawned process. 

Process_Mgt.Get-process_globals_entry 
Gets one of the process globals entries (in this case, this process's AD). 

Process_Mgt.Spawn-process 
Creates a new process which runs concurrently with the calling process. A 
tennination action is specified. 

Record AM.Ops.Open 
- Given a device AD, opens a fue or device for record access. 

Record AM.Open by name 
- Glvena pathname, opens a file or device for record access. 

Record AM.Ops.Get DDef 
- Gets the DDef underlying an opened device. 

Record AM.Ops.Close 
- Ooses a file. 

Report Handler.Initialize 
- Initializes an opened report, given the report DDef and the input and out­

put devices. 

Report Handler.Print 
- Prints an initialized report. 

Sort Merge Interface.Sort 
- - Sorts records from an input device to an output device, using a sort DDef 

to specify the sort fields and their ordering. 

This section describes how to sort a file and use the sorted records as input to a report. The 
example uses a pipe from the sort procedure to the report procedure. 

Create a Report Definition 

Create and store the report's DDef, as described in the previous section, "Creating a Simple 
Report". 

Create a Sort Definition 

Create the sort DDef, which defines the sort key fields and their ordering. This can be done 
interactively, with the TBD utility, or procedurally, using calls to Data_Definition_Mgt. 
Store the sort DDef under a pathname. 

Creating a BiiNTM Application Program V-2-25 



V-2-26 

PRELIMINARY 

Your Sort Procedure 

Implement the fue-sorting procedure: 

• Use the subprograrn_ value pragma to get an AD to your "Sort" procedure (process): 
(from Inventory_Reports body) 

42 type connection_record is 

46 record 
47 sort out: Device Defs.opened device; 
48 ---Output from "Sort" to pipe.-
49 report in: Device Defs.opened device; 
50 -- Input from pipe to "Print "-:-
51 report out: Device Defs.opened device; 
52 -- Output device far "Print". -
53 end record; 

158 procedure Sort( 
159 param_buffer: System. address; 

161 param_length: System. ordinal} 

168 is 
169 
170 conn rec: connection_record; 

172 FOR conn rec USE AT param_buffer; 

187 begin 

231 end Sort; 
232 pragma subprogram value( 
233 Process Mgt.Initial proc, 
234 Sort}; - -

• Open the input file, with Record_AM. Ops. Open or 
Record_AM.Ops.Open_by_narne. 

• Get the sort DDef: 
(from Inventory_Reports body) 

182 opened sort DDef: 
183 Device Defs.opened device; 
184 sort DDef reference: -
185 Data_Definition_Mgt.node_reference; 

200 opened_sort_DDef := Record_AM.Open_by_name( 
201 name => 
202 sort_by_loc_DDef-Fathname, 
203 input output => Device Defs.input, 
204 allow- => Device-Defs.readers, 
205 block => true};-

209 sort DDef reference .-
210 Record AM.Ops.Get DDef( 
211 opened_dev =>-opened_sort_DDef}; 

• Use the input end of the pipe for the output device. 

• Call Sort Merge Interface. Sort with the sort DDef, and the opened input and 
output devICes. -

Creating a BiiNTM Application Program 



rK~LINU~AKY 

(from Inventory_Reports body) 

217 Sort Merge Interface.Sort( 
218 Input device => 
219 opened_local-parts_file, 
220 DDef => sort DDef reference, 
221 output device => conn-rec.sort out, 
222 stable-sort => true~ -
223 tuning-opts => 
224 Sort_Merge_Interface.no_tuning); 

• Close the input file, with Record_AM. Ops . Clo se. 

Your Report Procedure 

Implement the report procedure: 

• Use the subprogram_value pragma to get an AD to your "Print" procedure (process). 

• Get the report DDef: 
(from Inventory_Reports body) 

252 report_DDef: Data_Definition_Mgt.DDef AD; 

266 report DDef := Dbef from untyped( 
267 Directory Mgt.Retrieve( 
268 report_by_loc_DDef_pathname»; 

• Use the output end of the pipe for the report input device. 

• Call Report Handler. Initialize with the report DDef, and the opened report in-
put and output devices. 

• Call Report_Handler. Print to print the report. 

• Close the report output device, by calling Record_AM. Ops . Close. 

Creating a Pipe 

Create the pipe, and open its input and output ends: 
(from Inventory_Reports body) 

334 sort_pipe := Pipe_Mgt.Create_pipe; 

340 sort out => Record AM.Ops.Open( 
341 Pipe Mgt.Convert pipe to device( 
342 sort pipe), - --
343 Device Defs.output), 
344 report in - => Record AM.Ops.Open( 
345 Pipe Mgt.Convert pipe to device( 
346 sort pipe), - --
347 Device_Defs.input), 

Spawning Your Sort and Print Processes 

Spawn your "Sort" and "Print" processes: 

Creating a BliNn" Application Program V-2-27 



I'K~LIMl~AKI 

(from Inventory_Reports body) 

311 this_process_untyped: System. untyped_word; 

316 sort~rocess: Process_Mgt_Types.process_AD; 

319 print~rocess: Process_Mgt_Types.process_AD; 

354 this~rocess_untyped := 
355 Process_Mgt.Get~rocess_globals_entry( 
356 Process_Mgt_Types.process); 

360 sort~rocess := Process_Mgt.Spawn~rocess( 
361 init proc => Sort' subprogram value, 
362 param buffer => conn rec'address, 
363 term_action => ( -
364 event => Event Mgt.user 1; 
365 message => System. null address, 
366 destination => this~rocess_untyped)); 

370 print~rocess := Process_Mgt.Spawn~rocess( 
371 init proc => Print' subprogram value, 
372 param buffer => conn rec'address~ 
373 term action => ( -
374 event => Event Mgt.user 2, 
375 message => System. null address, 
376 destination => this_process_untyped)); 

Wait for completion of the two processes, then deallocate them: 
(from Inventory_Reports body) 

380 Event Mgt.Wait for all( 
381 events => - -
382 (Event Mgt.user 1 .. Event_Mgt.user_2 => 
383 true, -
384 others => false), 
385 action_list => term_events); 

390 Process_Mgt.Deallocate(sort~rocess); 
391 Process_Mgt.Deallocate(print_process); 

V-2.3 Summary 

V-2-28 

• A BiiNTM program can be controlled by menus or commands. 

• A data file's record layout can be used to generate default fonn and report fonnats. Fonn 
and report fonnats can be updated without changing the calling program. 

• Input to a program can come from a window, a file, or a data entry fonn. 

• Output from a program can be displayed in a fonn, written to a device, or printed as a 
report. 

Creating a BiiNTM Application Program 



PRELIMINARY 

BUILDING NEW COMMANDS 3 
Contents 

Concepts ............................................................... V-3-2 
Developing Command-Driven Programs ................................. V -3-4 
Types of Commands ................................................. V -3-4 
Review of Command Syntax ........................................... V -3-7 
Review of Command Defmitions ...................................... V-3-10 
Types of Command Input ............................................ V -3-11 
Alternatives to Command Input ........................................ V-3-12 
Entering Commands to Programs ...................................... V-3-12 

Techniques ............................................................ V-3-13 
Defining an Invocation Command ...................................... V-3-13 
Defining a Runtime Command Set ..................................... V-3-14 
Reading the Invocation Command ..................................... V-3-14 
Processing Command Arguments ...................................... V-3-14 
Processing Runtime Commands ....................................... V-3-16 
Reading a Command Input Line as Text ................................. V-3-16 
Executing Commands from a Program .................................. V-3-16 

Summary ............................................................. V-3-17 

Building New Commands V-3-1 



rK~L.1lYlJ.l"'laK I 

This chapter describes how to process a program's invocation and runtime commands and 
arguments. 

Packages Used: 

CL Defs Contains declarations used by the command selVice, for processing com­
mand language (CL) arguments and variables. 

Command Handler 
Contains operations for reading and processing program commands and 
arguments. 

Command Execution 
- Contains a procedural interface to command execution. 

New commands for command-driven programs are created with the manage. commands 
command set in the manage. program utility. Your program calls the command selVice 
(with the command definition) to get and parse each command. Your program can then per­
fonn (implement) the returned command. 

There are three ways in which you can create the command definitions for a program's com­
mands: 

1. Enter manage. commands runtime commands to create the command definitions 
(command DDefs) interactively. 

2. Create manage. commands runtime commands in a command file. Submit the command 
fue to the manage. program utility to create the command DDefs. 

3. Include manage. commands runtime commands as tagged comment lines in a program's 
source fue. Use the : tagged commands argument to the manage. program utility to 
extract and process the definition commands from the tagged comment lines. 

The invocation command DDef is stored with the program itself. Runtime commands sets are 
stored under pathnames, which your program then uses when opening command set process­
ing. 

V-3.1 Concepts 

V-3-2 

• New commands are defined using the manage. commands command set in the 
manage. program utility - see the BiiNTM Command and Message Guide. 

• The command service uses the command definitions - to help the user correctly enter and 
complete a command. 

• There are three types of commands processed by the command service - built-in commands, 
CLEX commands, and program-defined commands; see "Types of Commands", below. 

built-in commands Part of, and processed by, the command selVice itself. Built-in runtime 
commands directly perfonn some action, such as setting a variable 
(set. variable). Built-in control commands control the logical 
flow of commands (if / then / else / endif). 

CLEX commands Commands specific to the command language executive (CLEX). 

program=defined commands 
Each program has an invocation command, which is entered to CLEX 

Building New Commands 



to invoke (execute) the program. Programs using the command service 
defme their own runtime commands, which control and are im­
plemented by the program. 

• Commands can be readfrom many different devices - including tenninals, pipes, and files. 

• Commands are entered and confirmed without program intervention - a complete, correct 
command is then available to the program. 

• "help" is available to the user for each command and each argument - the command ser­
vice displays requested "help" texts (defmed with the command DDef), without requiring 
any program action. 

• A command consists of up to three parts: 
command. name [:argument=value] ... 

[::control_option=value] ... 

command. name The name of the command. The command name may have two parts, 
separated by a period: cornmand_ verb. command_noun. See 
"Command Names", below. 

: argument value 
Zero, one, or more arguments may be part of a command. See 
"Argument Types and V alues", below. 

Arguments have a name, a type, and a value - an argument name is 
a string of characters, preceded by a colon (":", for example, 
: argument_name). The argument is one of seven types: 
boolean, integer, range, string, string list, pointer, or "derived" 
(actual value may be any of the preceding six types). The argument 
value's type must match the defmed argument type. 

Arguments may be mandatory or optional - mandatory arguments 
must be entered with the command name; there is no default. Op­
tional arguments may be entered to specify an argument value other 
than the default. 

An optional argument's value may be entered or defaulted - if an 
explicit value (: argument=value) is not entered, the argument 
has its default value, if any, defined with the command. 

: : control option = value 
- There are several control options defined in the command language, 

used to request input/output redirection, background execution, and so 
on. See "Control Options", below. 

Control options are processed by the command service. Control op­
tions entered with a command remain in effect until the next command 
is read (next Command_Handler . Get_command call). 

• An optional command history can be used - to record commands entered. 

The last cl i . n urn _la s t _ crnds commands entered are stored in a command buffer in 
active space. 

Commands may be re-executed from the command buffer, either by index number, or 
by giving an unambiguous abbreviation (or a pattern to be matched) of a previous com­
mand. 

The command history can be turned on and off as desired. 

Building New Commands V-3-3 



PRELIMINARY 

• A commandfile is a sequence 0/ commands stored in a text file - command files can be 
included into the command input stream by using the built-in include. command com­
mand. A command file can be made into an executable script by using the make. s cr ipt 
utility. 

• There are two methods for reading commands from an arbitrary file or device: 

- Call Command_Handler .Open_runtime_commandyrocessing on the file 
or device to return an opened command input device. Use 
Command_Handler. Get_ calls with that command input device. 

Enter the built-in runtime command include. command, specifying the file's or 
device's pathname. The specified file's or device's records are inserted into the com­
mand input stream. When the end of the file or device is reached, command input 
returns to the original device. The program reads the included commands as part of 
the original device's input command sequence. 

• The record access method is supported/or runtime command input - the command 
service's implementation of Record_AM allows non-Ada languages to read and process 
runtime commands. See the package description for Command_Handler, in the 
BiiNTM/OS Reference Manual. 

• There is support/or BiiNTM/UX invocation command conventions - for such constructions as 
Is -ld. The command service can set the expected invocation command variables (argv, 
argc, envp); see the BiiNTM/UX Commands Reference Manual. 

V-3.1.1 Developing Command-Driven Programs 

This section describes how to develop a command-driven program. 

Not all programs are suitable for command-oriented input Some applications can use menu­
oriented input (see Chapter V -5). 

Most programs using the command sexvice will be new utilities. 

Determine the invocation command name and the arguments your program will use on entry. 
Create and store its command definition, as described above and in Section V -3.2.1, "Defining 
an Invocation Command", below. 

To develop the runtime commands for your program: 

• Each distinct function that the program perfonns should have its own command. Com­
mands are defined during program development 

• Group related commands into command sets. Separate command sets may be defined for 
different program tasks or for different user groups. 

• Create and store the command definition(s) as described above and in Section V-3.2.2, 
"Defining a Runtime Command Set", below. 

V-3.1.2 Types of Commands 

V-3-4 

There are three types of commands processed by the command service: built-in commands, 
CLEX commands, and program-defined commands. All of these commands use the CL syntax. 

built-in commands Commands which are built into, and processed by, the command service. 

CLEX commands Commands which are recognized and processed by CLEX. 

Building New Commands 



rKELliVll.NAK r 

program-defined commands 
Commands which are specific to a program: 

invocation command 
The command which is entered to CLEX to execute 
the program. 

runtime commands Commands entered to and processed by your program. 

Runtime commands may be placed in a startup com­
mand file, to be automatically processed by your 
program directly after invocation, if desired. 

Each of these three types of commands are described in the corresponding sections below. 

V -3.1.2.1 Built-in Commands 

Some commands are built into and processed by the command service. These commands can 
be entered to CLEX, and are part of all command sets (see "Program-Defined Commands", 
below). 

There are two types of built-in commands, built-in control commands and built-in runtime 
commands. Each of these two types is described in the following tables. 

Table V-3-1 describes the built-in control commands. 

Table V-3-1. Built-in Control Commands 

Control Commands Description 

label label_1IIJm8 Labels a point in the command input stream; used by got o. The 
label_1IIJm8 may be any sequence of alphanumeric characters. 

goto label Transfers command input to the Imt command following the given 
labeL 

if condition then Perfonns commands (any ~), d~ndini:I the current evalua-
commands tion of condition. A condiiion can any ean expression, for 

elsif condition example, ($i < 5) OR $$exists (-/log/log_file). 
commands 

else 
commands 

endif 

loop 
commands 

Executes commands repeatedly, until an exi tloop is executed. 
or forever. 

[if condition then 
[commands] 
exitloop 

endif] 
[commands] 

endloop 

for range expression loop Repeatedly executes the loop, once for each element in the range 
cotiimaniis expression. The ran~e expression may be either a range (for $i 

[exitloop] in -3 .. 5), or a stnng list (for $i in (a bed e)}. An 
endloop exi tloop condition may be specified. 

while condition loop While condition evaluates true, executes the loop. An exi tloop 
commands may be specified. 

[exitloop] 
endloop 

Table V-3-2 describes the built-in runtime commands. 

Built-in runtime commands may have appropriate control options, for example: 

echo Hello ::output=x 

echo Hello > x 

Building New Commands V-3-5 



PRELIMINARY 

Table V -3-2. Built-in Runtime Commands 

Commands Description 

echo Echoes a given value to the standard output. Useful for displaying 
infonnation while in a command loop. 

run Executes a program or script. 

set. current_directory Sets the current directory to the given pathname. 

list. current_directory lists the current directory's pathname. 

set.alias Defmes an alias name for a given string. 

remove. alias Removes one or more alias names. 

list.alias lists the current values of the given alias names. 

include.conunand Inserts the given file into the runtime command input. Useful for 
reading pre-defmed command sequences stored in fales. 

set.command-9ath Sets the current command path (command name ~ace) to the 
given se~tring list) of directob}: pathnames. Wi no argument 
value, u tes the set of availab e commands, b~ searching 
through the current command name space, in or(ier (of directories 
currently specified). 

list.command-9ath lists the current pathnames in the command path. 

list. last_commands lists the last commands buffer, out of which commands can be 
re-executed with redo .last commands. 

redo. last_commands Repeats a previous command, or a sequence of commands. 

set.history_log Sets the scope (local or ~lobal) of history record~ for sUbs~uent 
~bs. If local (default, invoked jobs will not ' erit the er's 

'story me. If global, invoked jobs do inherit the caller's 
history file. 

start.history_log Creates a user histo~ me to be the current history, or restarts 
recordinn intothe~ histo~ me after stop. history l~ was 
called. the user 'story fi e name is not s~cified, the defa t 
pathname is -/$logon.history dir hi story timestamp, 

stop. history_log ~s recording into the job history m.e, and into the command 
ere 

list.history_log lists entries from the job history me, or from a specified history 
me. 

create.variable Creates a new CL variable in memoty. 

set.variable Assigns a value to a CL variable. 

remove. variable Removes a CL variable from memory. 

list.variable lists the names, types, modes, and values of the given variables. 

V -3.1.2.2 CLEX Commands 

Some commands are defined by the Command Language Executive (CLEX) for various 
system-related functions. See the BiiNTU Command Language Executive Guide for a complete 
description. 

Programs and utilities are called from CLEX; each has its own invocation command. 

V -3.1.2.3 Program-Defined Commands 

V-3-6 

There are two types of program-defined commands: the program's invocation command, en­
tered to CLEX to invoke your program, and the program's runtime commands, which are 
processed by and control the program. 

Building New Commands 



All programs (except ported C programs) should defme their invocation commands. The in­
vocation command definition contains the name of your program and defmes any arguments. 

Programs using the command service have runtime commands, grouped in command sets. 

• A command set defines the names of all commands and their argument names, types, 
defaults, and pennissible values. Command sets are defined during program development, 
using the manage. program utility. 

• All command sets include all the built-in commands. See "Entering Commands to 
Programs", below. 

• All command sets should have an abort or exit command defined, to stop command 
processing and tenninate the program. These commands are not built in, but should be 
defined with each command set. 

• The command set definition is a command DDef, stored under a pathname. The 
Command Handler.Open andCommand Handler.Change cmd setcallshave 
a mandatory parameter for thepathname of the command set defmitioo. -

• There may be several command sets defined for one program; for example, one primary 
command set for general operations, some of which in tum have their own command sets. 
The current command set may be changed with 
Command_Handler.Change_cmd_set. 

• Command_Handler calls use the command set definition to automatically check for cor­
rect command names, ensure completion of mandatory arguments, and supply default 
values for optional arguments. 

All commands, except the invocation command itself, must have a command definition. If 
there is no invocation command definition, calls in this package will succeed if the invocation 
command uses CLEX syntax. No type checking, range checking, or consistency checking can 
be perfonned on the entered arguments (see below, "Reading the Invocation Command", in 
Techniques). 

V-3.1.3 Review of Command Syntax 

This section briefly reviews the three components of a command: 

• command name 

• command arguments, if any 

• control options, if any 

V -3.1.3.1 Command Name 

The command name may be one word (for example, echo) or have two parts, separated by a 
period (H."; for example, set. alias). The two parts of a command name are the verb (for 
example, set.) and the noun (for example, alias). 

For invocation commands (see "Types of Commands", above), the command name may be 
preceded by the absolute or relative pathname of the directory where the named program or 
script resides: .... / library / command. name 

There are some command verbs suggested for compatibility with the OS utilities: 

change For "update", "modify". 

Building New Commands V-3-7 



list 

remove 

t"K~LI1Vllp!jAK I 

For "show", "display". 

For "delete", "kill". 

V -3.1.3.2 Argument Types and Values 

V-3-8 

Argument types and values are briefly described. 

Argument Types 

Table V -3-3 describes each of the seven argument types. 

An argument's default value may be a constant or a variable. In an argument's defmition, any 
command language (CL) variable (of the correct type) can be used as the default value of an 
argument. 

Table V -3-3. Argument Types 

Argument Types Description 

boolean Possible values are true or false. Boolean arguments nonnally 
have theirdefmed default value false. Enterin~a boolean ar-
gument without a value is recognized as true. or example, 
: boolean argument is the same as : boolean argument 
= true. - -

integer A s~uence of nmnbers, p<?ssibly including underscores ~ "), and 
~ionany preceded by a flUS (' + ") or minus (' - ") sir:. ossible 
values are m the ran,e - "31 (-2 147 483 648 to 2"32-1 
(4_294_967_295. - - -

range Two inte\ers, separated bl two periods r' .. t'), for exam~e, 
- 5 .• 3. ither or both 0 the low and hIgh values may 
defaulted. 

string Any se(luence of characters, possibly enclosed in double quotation 
manes ' .. ",forexample, "string of characters"). 

string list One or more strin~, enclosed in parentheses" ( ) ". separated by 
spaces;forexamp ,("string value 1" string2 
"string value 3"). There are several types (lexical classes) 
of strings, such as blankless and symbolic (for patbnames); 
see the BiWU Command and Message GuUk. 

pointer A relative or absolute patbname to a stored object; for example, 
-/object. 

derived Any of the above six types. The actual ~ of a deri ved 
vanable t~ is detennined (derived) by e command service from 
the format of the entered value. 

Argument Values 

An argument value can be entered with or without the argument name, that is, in named or 
positional notation. 

named notation The argument name is followed by an equals sign ("=") and the argument 
value. Boolean arguments are a special case; entering the name of a 
boolean argument without a value (: boolean _ arg) is the same as enter­
mg :boolean_arg = true. 

For example: 
:boolean argument 

(or) -
: boolean_argument true 

: integer_argument 15 

positional notation Argument values entered by themselves are assigned to arguments m se­
quence (the sequence of arguments in the command definition). That is, 
the first unentered argument (one which does not already have a value 
entered in named notation) is assigned the entered value. 

Building New Commands 



For example, the first argument of the built-in command 
set. current directory is the directory name (: directory). 
Entering set. current_directory -/my_dir is equivalent to 
entering set. current_directory : directory = -/my_dir 

Named and positional notation can both be used in a single command, if you are sure of the 
defined order of arguments. 

An argument's value may be entered as a constant, variable, function, or expression: 

constant A simple value of the argument's type. For example, 

:range_arg = 4 .. 7 

variable A variable name, of the same type as the argument, whose value is as­
signed to the argument For example, 

function 

expression 

V -3.1.3.3 Control Options 

:string_arg = $user.name 

A CL function giving a value of the argument's type. For example, 

:integer_arg = $$len($string_var) 

A CL expression giving a value of the argument's type. For example, 

:boolean_arg = (not $boolean_var) 

Several control options are part of the command language. A control option is specified by a 
double colon (" : : "), the control option's name (one of the names defined below), and pos­
sibly a value: 

::control_option = value 

The command service processes all control options. The given control options are set for the 
current command and remain in effect until the next Command Handler. Get command - -
call. 

Control options for CLEX commands are processed by CLEX. 

Control options for invocation commands (see "Program-Defined Commands", above) are also 
processed by CLEX, and are not directly available to the called program or script. 

Table V -3-4 describes each of the control options currently defined. 

Building New Commands V-3-9 



PK~LIMlNAKY 

Table V -3-4. Control Options for Runtime Commands 

Control Options I Description 

:: input or < Specifies an inl?ut device's (or file's) pathname. redirecting the 
standard input (ievice. 

: : output or> Specifies an output device's (or me's) pathname, redirecting the 
standard output Cievice. 

: : output_extend or» Whether to extend (if true) or overwrite (if false) the output device. 
Default is to overwrite. 

: : message Specifies a message device's (or me's) pathname, redirecting the 
standard message device. 

: : message_extend Whether to extend (if true) or overwrite (if false) the message 
device. Default is to overwrite. 

: : window Requests that the command be executed in a separate window. 

:: service Detennines the scheduling service object (SSO) to be used for this 
command. 

: : node Detennines the node on which the command is to be run, for 
example, : :node=/ / /my_node. 

: :historY_log Starts a new history log file for this command, for example, 
::history_log = ~/log/this_log. 

: : debug Specifies that this command is to be run in d8bug mods (see the 
Bi~ Application Debugger Guide. 

: : separate or & Requests that this command be executed as a separate job. 

V-3.1.4 Review of Command Definitions 

V-3-10 

The following is a short example of the command definition syntax (that is, the runtime com­
mands for the manage. program utility). See the BiiNTY Command and Message Guide for 
complete information. 

All commands are part of a given command DDef. There will be one command DDef for the 
invocation command, and one for each command set 

An invocation command is defined as follows: 
set.program -/example/my program 

-- The invocation name Is the same as the program's name 

manage. commands -- call the "manage. commands" command set 

create. invocation_command 

define.argument :arg_name 
: type 

set.mandatory 
end 

define.argument :arg_name 
: type 

set.mandatory 
end 

end 
exit -- exit "manage.commands" 

exit -- exit "manage.program" 

Runtime commands are defined in sets: 

my argument 1 \ 
string -

my argument 2 \ 
boolean -

create.runtime_command_set :cmd_def = ~/example/my_program.command_set 

define. command :cmd name 
define. argument :arg_name 

command.name 1 
command_argument_l \ 

Building New Commands 



set.mandatory 
end 

end 

rK~LIMJNAKY 

:type range 

define.command :cmd name = command.name 2 
define. argument :arg_name command argument 1 \ 

: type boolean- -
end 

define.argument :arg_name 
:type 

end 
end 

command_argument_2 \ 
range 

define.command :cmd name exit 
end 

end 

After creating a command DDef, it can be listed with the list : cmd def runtime com­
mand. 

Help Texts 

Help texts are defmed with each command and argument. Help texts are stored in help files. 
The default help file is part of a program's OEO. 

Either use the default help file associated with a program, or set the help file to be used with 
set. help_file messageJileyathname. 

Before the end of each defined command and argument, enter the help text, using the 
set. description command: 

create.runtime_command_set :cmd_def = -/example/my-program.command_set 

define. command :cmd name command.name 
define.argument :arg_name = command_argument \ 

:type = range 
set.mandatory 
set.description :text = " 

Range of values for this command. 
" 

end 

set.description :text = " 
Performs a given action, using the 
values specified with ' : command_argument' . 

end 

define. command :cmd name = exit 
set.description :text 

Exits the program. 

end 

end 

V-3.1.5 Types of Command Input 

Any device supporting the byte stream access method can be used for command input. 

The usual interactive command input device is the standard input 

Building New Commands V-3-11 



PK~LIMlNAK y 

After Command_Handler. Get_command has been called to parse a new command (and 
return the command name and command index), the command may be read in several ways: 

• In parts, reading each argument, with a series Command_Handler. Get_argument_type 
calls. See the appropriate sections under Techniques, below. 

• As a string, using Command_Handler. Get_command_string. 

• As a record, using Record_AM. Ops . Read See the package description for 
Command_Handler, in the BiiNTM/OS Reference ManU(ll. 

Startup Command File 

Runtime commands can be stored in a particular startup file, to be read automatically by 
your program. After the startup file has been read, runtime commands may be entered. 

Call Command_Handler. Open_startup_commandyrocessing to access the star­
tup command file, then call Command_Handler . Get_command to get each command. 

Process each command as a runtime command (see "Reading Runtime Commands", below). 

When the last command (for example, exit) is read, or the end of the startup file is reached, 
close the startup command input device by calling Command_Handler. Close. 

Changing the Command Set 

The Command_Handler. Change_cmd_set procedure changes the current command set 
definition. 

Reading Commands as Records 

The command selVice supports the record access method for command input. Programs writ­
ten in non-Ada languages can use the record access method (Record_AM. Ops . Read call) 
to get a record of the current command. 

See the package description for Command_Handler, in the BiiNTM/OS Reference Manual. 

V-3.1.6 Alternatives to Command Input 
There are several alternatives to using commands to control your program: 

menus 

keyboard input 

Read menu item selections. See Chapter V-5, Programming with Menus. 

Read the keyboard directly. See Chapter IV-5, Using Character Display 
//0. 

V-3.1.7 Entering Commands to Programs 

V-3=12 

All command sets include all of the built-in commands. The user can enter these commands as 
desired; the command service processes these commands transparently to your program. 

Some useful built-in commands are: 

run Executes any invocation command, for another program or script. For 
example, to display the current directory's entries, the user would enter 
run "list. current_directory". 

Building New Commands 



include. command 
Includes a given command file into the command input stream. At the end 
of the file, command input returns to the default 

.alias The three . alias commands (set. alias, list. alias, 
remove. alias) can set up aliases inside your program, for your runtime 
commands. 

. variable The four. variable commands (create. variable, 
set.variable,list.variable,remove.variable)cancreare 
and set variables for your program to read, or for use as argument values. 

control The control commands (if / then / else / endif, and the 
loop / exi tloop / endloop constructs) can set up runtime com­
mand loops, possibly using variables. 

V-3.2 Techniques 
After reading this section, you will be able to: 

• Define an invocation command 

• Define runtime commands 

• Create and store invocation and runtime commands 

• Read the invocation command 

• Read argument values 

• Read a runtime command 

• Read a command input line as entered 

• Give a command to be execured by CLEX. 

V-3.2.1 Defining an Invocation Command 

Utility Used: 

manage.program 
Creates invocation command and runtime command set DDefs. 

To define an invocation command: 

1. Detennine the invocation name of your program, and use that entry name for your ex­
ecutable program object 

2. Detennine the arguments for the invocation command, their types and'defaults, and 
whether each argument is mandatory or optional. 

3. Create an invocation command definition, in one of two ways: 

• In your program source text, using tagged comment lines. Use the 
: tagged commands argument to the manage. program utility to extract the com­
mand defUiltion into a command file. 

• In a separate command file. 

Building New Commands V-3-13 



4. Use the manage. program utility, optionally with a file of definition commands as input, 
to create and store the invocation command's DOef. 

V-3.2.2 Defining a Runtime Command Set 

Utility Used: 

manage.program 
Creates invocation command and runtime command set DOefs. 

Detennine the names and arguments for each runtime command. 

Follow the process described above, in "Defming an Invocation Command", to create the com­
mand set DOef(s). 

V-3.2.3 Reading the Invocation Command 

Calls Used: 

Command_Handler.Open_invocation_command-processing 
Opens a device for reading the invocation command. 

To read the invocation command, just call 
Command_Handler.Open_invocation_command-processing;thereisoruyone 
command, and it is already parsed. 

Next, read each argument value, as described below ("Processing Command Arguments"). 

V-3.2.4 Processing Command Arguments 

V-3-14 Building New Commands 



rK~LIM1NAK y 

Calls Used: 

Command_Handler. Get_argument_type 
Gets the value of a given argument of the current command. 

Command Handler.Get boolean 

Command_Handler. Get_integer 

Command_Handler.Get_range 

Command_Handler. Get-pointer 

Command_Handler. Get_string 

Command Handler.Get enumeration index - - -
Command_Handler.Get_string_list 

Command_Handler.Get_number_of_string_list_elements 

Command_Handler. Get_string_Iist_element 

Command Handler.Get argument info 
- Gets a record containing the name of an argument and the type and origin 

of its value. The origin of the argument's value is none, entered by the 
user, defined default value or defined default variable's value. This infor­
mation is usually only relevant for der i ved argument types or if multiple 
default value sources are supported. 

To read argument values, you must have an opened command input device and a current 
command. The current command is either the invocation command or has been gotten by 
Command Handler.Get command. ' 

You must know at least the position (or name) of the argument: 

argument name Defined by the command definition. 

For positional notation without a command definition (invocation com­
mands only), the argument names default to pI, p2, p3 and so forth, 
where n in pn is the argument position (argument number) in the com­
mand. 

The name pO is reserved for the command name. Its argument number is 
zero. The name cmd _name is also predefined for the invocation 
command's name. 

argument number Defined by the command definition, or else by the position in the invoca­
tion command line. 

Argument number zero is the command name itself. 

You may specify either the argument name or number in a 
Command_Handler. Get_argument_type call. For ease of program maintenance, using ar­
gument numbers is recommended (in case the names change). 

• If both a name and a number are specified, the name is ignored. 

• Ifno number is specified, the given name is used. 

• If neither the argument name nor the argument number are specified, the call raises 
System_Exceptions.bad-parameter. 

Building New Commands V-3-1S 



rK~L.1lVlll"'l8.A I 

Call Command_Handler. Get_argument_info ifnecessary (always necessary for 
der i ved argument types) for the type of the argument and the origin of its current value. 

Use the appropriate Command_Handler . Get_argument_type call to return the value of 
each argument 

If no value has been entered for an argument, and no default value is defined, 
CL ...,.:Def s . no_value is raised. This is only possible for arguments dermed as "not 
mandatory", since the command selVice guarantees that all mandatory arguments have a value. 

V-3.2.5 Processing Runtime Commands 

Calls Used: 

Command Handler.Get command 
- Gets and-parses the next command from a given input device. 

Command_Handler. Get_argument_type 
Gets the value of an argument of the current command. 

The most common way to read runtime commands is to open the runtime command input 
device, then use a loop to read and process runtime comm-ands until an exit (or similar) 
command is entered. 

V-3.2.6 Reading a Command Input Line as Text 

Calls Used: 

Command Handler.Get line 
Gets a line of text from a given input device. 

Reads a line of text, terminated by a carriage return/linefeed, directly from the command input 
device. This procedure can be used to read lines of data from the command input device, 
bypassing the command selVice' s parsing mechanism. 

An optional prompt can be specified, to alert the interactive user that the entered line will not 
be processed as a command. 

V-3.2.7 Executing Commands from a Program 

Calls Used: 

Command Execution.Execute command 
- Executes one or more CLEX commands. Blocks until finished. 

Command_Execution. Run-program_or_script 
Executes one CLEX invocation command, in a separate job. 

Set up a text record of the desired command(s), and make the appropriate call. 

V-3-16 Building New Commands 



V-3.3 Summary 
• Commands provide a consistent user control mechanism, used by all BiiNTM utilities. 

• A command consists of the command name, arguments if any, and possibly some control 
options. 

• The command service requires the user to enter a complete command; help is available for 
each command and for each argument. 

• Commands can be read from any device supporting the byte stream access method, includ­
ing fIles and pipes. 

• Some commands are built-in; other commands are defmed by programs using the command 
service (including CLEX itself). 

• Built-in commands are part of every command set. These commands are intercepted and 
processed by the command service itself. 

• New commands are defined with the manage. commands command set in the 
manage. program utility. Command DDefs are stored under a pathname. 

• New commands are processed by the command service, using a command DDef. The 
parsed command can be read in parts, or as a string, using calls in the 
Command_Handler package. A command can be read as a record using the 
Record_AM. Ops . Read call. 

• Your program can request execution of a CLEX command, optionally in a new CLEX 
instance, using calls in the Command_Execution package. 

• Menus are another method for the user to control a program. See Chapter V -5, 
Programming with Menus. 

Building New Commands V-3-17 



V-3-18 Building New Commands 



Contents 

PROGRAMMING WITH 4 
COMMAND LANGUAGE VARIABLES 

Concepts ............................................................... V -4-3 
System Variables .................................................... V-4-4 

Techniques ............................................................. V-4-5 
Read and Set an Environment Variable's Value ............................ V-4-5 
Display all Environment Variable Names ................................. V-4-6 
Get and Set Environment Variable Values in ASCII ........................ V -4-7 
Create and Remove an Environment Variable ............................. V -4-8 

Summary .............................................................. V -4-9 

Programming with Command Language Variables V-4-1 



V-4-2 

rK~L.l1Vlll""AA I 

This chapter describes how to create,·read, set, and remove command language (CL) variables, 
using calls in the Environment_Mgt package. Some CL variables influence the 
application's environment; for example, the eli. prompt variable contains CLEX's prompt 
string. CL variables can also be used to save·infonnation and share it with subsequent jobs. 

Packages Used: 

CL Defs Contains declarations used by the command selVice, for processing com­
mand language (CL) arguments and variables. 

Environment Mgt 
- Contains operations to get, set, or remove local and global environment 

variables. 

Figure V -4-1 shows how variables in passive store and active memory are related, and the 
order of evaluation for variables. 

Passive Store (manage.var _groups utility) 

System Variable Groups (/var _groups) 

User Variable Groups ('" /var _groups) 

copied on 
reference evaluation 

,..A_ct_iv_e_M_e_m_o ... ry ____ C ... E_n_vi_ro_n_m_e_n_t_-_M .... g_t _c_a_11 s ..... ) I 
globol (session) buffer ~ 

local (job) buffer 

Figure V-4-1. Command Language Variables 

This chapter discusses the use and modification of variables, using calls in the 
Environment_Mgt package. Forexample: 

• How to read a variable's value. 

• How to set a variable's value. Variables are created when set, if they do not already exist. 

• How to overwrite an existing variable's value. 

• How to remove a variable. 

Programming with Command Language Variables 



PRELIMINARY 

V-4.1 Concepts 
These concepts must be understood to use CL variables: 

• A variable has a name, a type, a mode, and a value -

name A CL string of letters and digits, up to CL_Defs .max_name_sz 
characters. 

type One of the CL Defs types: boolean, integer, range, string, 
string list, or pointer. 

mode Either CL Defs. read only, indicating that the variable can be 
read but not assigned, orCL_Defs. read_write, indicating that the 
variable can be read or assigned a value. 

value Any value of the appropriate type. 

• There are two types of variables - those dynamically created in active memory, using calls 
in Environment Mgt (and the . variable commands built into the command service) 
and those defmed in passive store, using the manage. variable_groups utility. 

• Dynamically created variables exist in one of two buffers - either a local buffer or the 
global buffer. The local buffer exists for the duration of the job; the global buffer exists for 
the duration of the session. All processes in a job share the same variables (buffers). 

• Variables in passive store are stored in system and user groups - system variable groups 
can only be updated by the system administrator. User variable groups are maintained with 
the manage. variable_groups utility. 

- Sets of system or user variables - may be collected together in groups, by giving them a 
group name. For example, eli. prompt is the prompt variable in the eli. group. 
Group variables may only be created with the manage. variable_groups utility. 

- System variable groups apply to all sessions on this node. System variables are created 
and maintained by the system administrator. System variables are in pre-defined 
groups, stored in the system directory /var_groups. See the "System Variables" 
section below. 

- User variable groups contain user-specific infonnation, values, and defaults. User vari­
ables are created and maintained with the manage. var iable groups utility. User 
variables are stored in a "var~ups" directory in your home directory 
(-/var_groups). 

- Job variables are created and used by jobs, in the global buffer. Job variables may be 
created and used either by calls to Environment_Mgt or by programs using the 
Command_Handler package (programs with runtime commands). Subsequent jobs 
in this session inherit all existing job variables. 

- Local variables are used like job variables, but only exist for the duration of a job. 
Local variables are stored in the local buffer. 

• Variable names are evaluated upwards until found -

1. local buffer 

2. global buffer 

3. user variable groups (-/var groups directory) 

4. system variable groups (/var_groups directory) 

Programming with Command Language Variables V-4-3 



• Eachjob has its own copy o/system, user, andjob variables (global buffer), and local 
variables (local buffer) - referencing a user or system variable causes a copy of that vari­
able to be created in the job's global variable buffer. Job variables may be created in either 
the global or local buffer. Local variables are created, set, and removed in the job's local 
variable buffer. . 

• Subsequent jobs are affected by changes to the global buffer - since they inherit a copy of 
the current global buffer. 

• Changes only affect the job's copy 0/ the variables - changes to stored (system or user) 
variables are actually made in the job's global variable buffer. Use the 
manage. variable_groups utility to change system and user variables pennanently. 

• Variables may also be created and changed - using four commands built into the command 
service: 

create. variable 
Creates a new local or global variable, optionally with an initial value. 

set. variable Sets a value into a variable which has mode CL Defs. read write. - -
remove. variable 

Removes a variable from the local or global buffer. The version of the 
variable in passive store is not affected. 

list. variable Lists the type, mode, name, and current value of the specified variables. 

• "read_write" system and user variables can be hidden - by creating a new variable with 
the same name in either of the job's buffers. "read_only" system or user variables 
cannot be hidden this way. 

• Rights/or Environment_Mgt calls - you must have use rights to read, modify rights to 
set, and control rights to create or remove variables. Group variables, being stored under 
pathnames, are subject to the usual access right restrictions. 

• All pre-defined variables - are either part of a variable group, or are dynamically created 
(OEO and status). 

status 

OEO 

integer variable created by each CLEX, before executing its first 
command. This variable is in the calling job's local buffer, and is set 
by CLEX from the exit status of the last executed command. 

The command selVice's built-in run command also creates a local 
status variable. The value of this variable is the exit status of the 
run program or script. 

pointer variable created by the command selVice for every program. 
This variable is a pointer to the program's outside environment object 
(OEO), or null if there is no OEO. 

OEO is needed for the command selVice's implementation of 
Record_AM; see the Conunand _Handler package for more infor­
mation. 

V-4.1.1 System Variables 

System variables are defined as part of CLEX. Current system variables are in six groups: 

• logon 

• cli (command line interface) 

V-4-4 Programming with Command Language Variables 



• pglob (process globals) 

• user 

• msg (message) 

• ux (BiiN™ lUX) 

V-4.2 Techniques 
After reading this section, you will be able to: 

• Get a variable's type (boolean, integer, ... ) and mode (read or read_wri te), then read 
the variable's value. 

• Set a value into a variable. Variables are created when set, if necessary. 

• Get and display all currently defined variable names. 

• Display a variable's value, read a user input value, and set the variable. That is, convert 
to/from a string value from/to a variable's value. 

• Remove a variable from active memory . 

. V-4.2.1 Read and Set an Environment Variable's Value 

Calls Used: 

Environment Mgt.Get var type 
- Gets the type Of a named variable. 

Environment Mgt.Get var mode 
- Gets the mode(read or read_write) of a named variable. 

Environment_Mgt.Get_~pe 
Gets a value from a variable of the named type. 

Environment_Mgt.Set_~pe 
Sets a value into a variable of the named type. 

Text IO. Put Puts a string or character value out to the standard output. 

Text IO. Get Gets a string or character value from the standard input. 

The following program fragment shows how to read the type and mode of a variable, given a 
variable name. 

If the given variable is ofCL_Defs. integer_type, this program will read the variable's 
current value. If the variable is in CL_Defs. read_write mode, this program will incre­
ment the value by one, and then store the incremented value back into the integer variable. 

Programming with Command Language Variables V-4-5 



(from Manage_Application_Environment_Ex.sb) 

25 variable name: System Defs.text( 
26 CL Defs.max name sz): 
27 variable type: -CL Defs.var type: 
28 variable=mode: CL=Defs.var=mode: 

32 integer_value: integer: 

81 Text_IO.Put("Enter a variable name:" ); 
82 
83 Text_IO.Get(variable_name.value): 
84 
85 variable type := Environment Mgt.Get var type ( 
86 var_name => variable_name): --
87 
88 variable mode ~= Environment Mgt.Get var mode ( 
89 var_name => variable_name); --
90 
91 if variable_type = CL_Defs.integer_type then 
92 
93 integer value := Environment Mgt.Get integer ( 
94 var=name => variable_name); -

102 if variable mode = CL Defs.read write then 
103 integer_value := integer_value + 1; 

120 end if; -- if "read write" 

159 end if; -- if "integer_type" 

V-4.2.2 Display all Environment Variable Names 

V-4-6 

Calls Used: 

Environment Mgt.Get all names 
- Gets the names of all currently defined variables. 

Text IO. Put Puts a string value out to the standard output. 

The following program fragment shows how to read the names of all local variables, then put 
each name to the standard output. 

Programming with Command Language Variables 



c n.LL.lIVl.ll"IIJ~.K I 

(from Manage_Application_Environment_Ex.sb) 

25 variable name: System Defs.text( 
26 CL_Defs.max_name_sz); 

30 variable_name_list: System_Defs.string_Iist(1000); 

57 Environment Mgt.Get all names( 
58 group name => System Defs.null text, 
59 list - => variable name list, 
60 global => false); - -
61 
62 Text IO.Put_Iine("List of local variables:"); 
63 
64 for i in 1 .. variable_name_list.count loop 
65 
66 String List Mgt.Get element( 
67 from -=> variable name list, 
68 elyos => i, --
69 element => variable_name); 
70 
71 Text_IO.Put_line(variable_name.value); 
72 
73 end loop; 

V-4.2.3 Get and Set Environment Variable Values in ASCII 

Calls Used: 

Environment Mgt.Convert and get 
- Gets an ASCII-representation of a variable's value. 

Environment Mgt.Convert and set 
- Sets a variable from an ASCII representation of the value. 

Text IO. Put Puts a string or character value out to the standard output. 

Text IO. Get Gets a string or character value from the standard input. 

The following program fragment asks for a variable name, then reads the type and mode of the 
variable. The current value of the variable is read as an ASCII representation, and displayed. 

If the variable is in CL_Defs. read_write mode, the user is prompted to enter a new 
ASCII representation for the variable's value. The entered value is then set into the variable. 

Programming with Command Language Variables V-4-7-



PRELIMINAKY 

(from Manage_Application_Environment_Ex.sb) 

25 variable name: System Defs.text( 
26 CL Defs.max name sz); 
27 variable type: -CL Defs.var type; 
28 variable=mode: CL=Defs.var=mode; 

33 
34 

81 
82 
83 
84 
85 
86 
87 
88 
89 

124 
125 
126 
127 
128 
129 
130 
131 
132 
133 

142 
143 
144 
145 
146 
147 
148 

152 
153 
154 
155 
156 
157 

ASCII value: 
answer: 

System Defs.text(1000); 
character; 

Text_IO.Put("Enter a variable name:" ); 

Text_IO.Get(variable_name.value); 

variable type := Environment "Mgt.Get var type( 
var_name => variable_name); --

variable mode := Environment Mgt.Get var mode ( 
var_name => variable_name); --

Environment Mgt.Convert and get( 
var name => variable name, 
value => ASCII_value); 

Text IO.Put("Value of H); 
Text-IO.Put(variable name.value); 
Text-IO.Put(" variable is:"); 
Text=IO.Put_line(ASCII_value.value); 

if variable mode = CL Defs.read write then 

else 

- - -
Text IO.Put("Enter new value:"); 
Text=IO.Get(ASCII_value.value); 

Environment Mgt.Convert and set( 
var name => variable name, 
value => ASCII value, 
var_type => variable_type); 

Text IO.Put("Mode of H); 
Text-IO.Put(variable name.value); 
Text=IO.Put_line(" variable is 'read-only' ."); 

end if; -- if mode read write 

V-4.2.4 Create and Remove an Environment Variable 

V-4-8 

Calls Used: 

Environment Mgt.Set ~pe 
- Sets a value into a variable of the named ~pe. The variable is created if it 

does not already exist. 

Environment Mgt.Remove 
- Removes a variable. Locally created variables (OEO and status) and 

loop variables (for i in range) cannot be removed. 

The following program fragments create a new local integer variable, named 
"new_integer". The new variable may be read or set as needed by the program. At the end 
of the program, the variable is removed (since it was a local variable, it would have dis­
appeared at program tennination anyway). 

Programming with Command Language Variables 



(from Manage_Application_Environment_Ex.sb) 

25 variable name: System Defs.text( 
26 CL_Defs.max_name_sz); 

44 Text Mgt.Set( 
45 dest => variable name, 
46 source => "new_integer"); 
47 
48 Environment Mgt.Set integer ( 
49 var name => varIable name, 
50 value => 0, -
51 mode => CL Defs.read write, 
52 global => false); -

164 Text Mgt.Set( 
165 dest => variable name, 
166 source => "new_integer"); 
167 
168 Environment Mgt.Remove( 
169 var name => variable name, 
170 quiet => true, -
171 global => false); 

V-4.3 Summary 
• Variables have a name, a type, a mode, and a value. The variable's type is one of the six 

CL types: boolean, string, .. '0 The variable's mode is either read_only or 
read_write. The variable's value is of the appropriate type. 

• Command language (CL) variables control aspects of the current CLEX instance (such as 
message type and language) and contain infonnation for use by jobs and programs (such as 
the current directory). 

• Global variables are inherited by subsequent jobs and processes in this session. Local 
variables are specific to the creating job. 

• System and user environment variables in passive store are maintained by the 
manage. variable_groups utility. 

• Environment variables may be set and changed using commands common to CLEX and the 
command handler seIVice: create. variable, set. variable, list. variable, 
and remove. variable. 

• Environment variable values can be read procedurally in two ways: as a value of the correct 
type (Get_type calls) or as an ASCII representation of the value (Convert_and_get 
call). . 

• Environment variable values can be set procedurally in two ways: with a value of the 
correct type (Set type calls) or with an ASCII representation of the value 
(Convert_and':=-set call). 

Programming with Command Language Variables V-4-9 



I'KELIMlNAK Y 

V-4-10 Programming with Command Language Variables 



rK~LUVu.NAK Y 

PROGRAMMING WITH MENUS 5 
Contents 

Concepts ............................................................... V-5-3 
Why Use Menus? .................................................... V-5-3 

Techniques ............................................................. V-5-3 
Define a Menu Group ................................................ V-5-4 
Install a Menu Group in a Window ...................................... V -5-5 
Enable an Installed Menu Group ........................................ V -5-6 
Get a Menu Selection ................................................. V -5-6 
Display a Checkmark for a Menu Item ................................... V -5-7 
Change a Window's Enabled Menu Group ................................ V-5-7 
Remove an Installed Menu Group from a Window ........................... V -5-7 

Summary .............................................................. V -5-8 

Programming with Menus V-5-1 



V-5-2 

This chapter describes how to use menus defined by the Window_Services package. 
Menus are created procedurally using Data_Definition_Mgt. The resulting menu data 
definition (menu DDef) is stored under a pathname. This chapter describes some design con­
siderations for menus and the procedural aspects of menu usage but does not describe the menu 
editor utility itself. 

Packages Used: 

Character Display AM 
- Provides device-independent I/O to character display devices such as 

printers, plotters, and windows on character and graphics tenninals. 

Window Services 
- Provides windows on character and graphics tenninals, including pull­

down menus. 

This chapter describes the following tasks: 

• How to defme a menu group. 

• How to install and enable (display) a menu group in a window. 

• How to detennine the menu choice made by a user. 

• How to change or remove a displayed menu group. 

Figure V -5-1 shows a menu group in a window, with one of the menus currently selected. 
This figure also shows the relationship between the window service (which provides the menus 
and the window), the terminal access method (which returns the user's selection), and your 
BiiNTM program. 

Application 
Program 

Window 
Service 

, 

Menu 1 

\.. 

~ 

Window 

/)i##/ Menu 3 
Menu item 1 
~PG/~~ 
Menu item .3 

~ 

~r 
/I')P~ Character{ 

Display 1-----------------. 
Access -----------------Method 

Figure V-S-l. BiiNTM Application Program and Menus 

Programming with Menus 



V-S.1 Concepts 
• Each menu is part 0/ a menu group - a menu group contains one or more menus. 

• A window can have only one menu group enabled - several menu groups can be installed in 
one window, but only one menu group is enabled at any time. 

• A menu has a title and one or more menu items - the user selects a menu title, causing that 
menu to appear, then selects one item from the menu. 

• Eachmenu item has a number and a string - the menu item's string is displayed, and the 
menu item's number is returned when the item is selected. The returned menu item's 
selection record contains three numbers: the menu group, menu, and menu item numbers. 

• Menu items may be picked by the cursor or by index - to choose an item, the user either 
moves the cursor onto the item and presses <TBD> or enters the displayed item's index 
number. 

• Menu items may have associated "help" messages - the user can request an explanation of 
any menu item. The associated "help" message is displayed by the menu service, without 
program intervention. 

• Some special/unction keys are used with menus - each implementation of menus defines its 
own. 

• Windows and this type 0/ menu are provided by the window service - in the 
Window_Services package and its. Ops nested package. 

• Menu item selections are input events - the character display access method 
(Character Display AM package) provides a Read call to read such events. Your 
program may read a menu item selection, a keyboard or mouse event, or any of the 
window-related events (see Terminal_Defs. input_enum for a complete list of 
awaitable tenninal input events). Note that mice are not supported by the character display 
access method. 

V-S.1.1 Why Use Menus? 

Menus provide an easy, standardized way to interact with the user: 

• Menus provide a common display and user input fonnat. 

• There are no commands for the user to learn or remember. 

• The user selects a menu item, without program intervention, resulting in one or more menu 
selections to be read. 

V-S.2 Techniques 
After reading this section, you will be able to: 

• Define a menu group 

• Install a menu group in a window 

• Get the user's menu item selection 

• Set a checkmark for a menu item 

• Change a window's enabled menu group 

Programming with Menus V-5-3 



• Remove a menu group from a window. 

For information about creating and using windows, see Chapters IV-4 and IV-5. 

V-S.2.1 Define a Menu Group 

V-5-4 

As part of program development, the menus to be used are defined. Design considerations 
when creating menus and menu groups include: 

• Determining the logical operation to be performed by each menu selection. 

• Grouping logically related items into menus. Each menu should contain from 2 to 10 menu 
items. (More than 10 menu items may be cumbersome for the user.) 

• Grouping logically related menus into menu groups. 

• Determining possible sets of menu groups: a menu selection may lead to a new menu 
group, under program control. 

Each menu group, and its associated menus and their menu items, is created by calls to the 
DDefprocedural interface (Data_Definition_Mgt package). 

The Make_Menu_DDef_Group_Ex package, in Appendix A, shows how to procedurally 
create a simple menu group, containing two menus and five menu items: Menu 1 has two 
menu items; Menu 2 has three. 

After being created, the menu group's DDef may be stored under a pathname. Your program 
then retrieves the menu group's DDeflater by its pathname. The menu group is installed in a 
window and enabled, as described in the next section. 

To change a menu item's text during program execution, call 
Window_Services.Replace_menu_item_text. 

The following program fragment defmes a menu group, menu, and some of the menu item 
numbers. These constants are used by the program to interpret a menu selection record (see 
"Get a Menu Selection", below). 

Programming with Menus 



(from Inventory_Menus specification) 

74 inv menu group ID: constant 
75 TermInal Defs.menu_group_ID .- 1; 

80 ~nquiry menu ID: constant 
81 Terminal-Defs.menu ID := 1: 
82 
83 posting menu ID: constant 
84 Terminal=Defs.menu ID := 2: 
85 
86 update menu ID: constant 
87 Terminal_Defs.menu_ID := 3: 
88 
89 report menu ID: constant 
90 Terminal_Defs.menu_ID := 4: 
91 
92 housekeeping menu ID: constant 
93 Terminal=Defs:menu_ID := 5: 
94 
95 exit menu ID: constant 
96 Terminal_Defs.menu_ID := 6: 
97 
98 Inquiry menu items 
99 inq by part item: constant 

100 -Terminal Defs.menu item ID := 1: 
101 inq by desc Item: constant 
102 -Terminal Defs.menu item ID := 2: 
103 inq exit item: constant-
104 -TermInal_Defs.menu_item ID := 3; 

V-S.2.2 Install a Menu Group in a Window 

Calls Used: 

Window_Services. Install_menu_group 
Installs a menu group in a window. 

The following program fragment retrieves the stored menu group's DDef, then installs the 
menu group in a window. 

(from Inventory_Menus body) 

33 menu group node: 
34 Data_Definition_Mgt.node_reference: 

46 menu group DDef AD := DDef from untyped ( 
47 Directory Mgt.Retrieve( -
48 name ~> menu_group_DDef-path}}: 

53 menu group node := Data Definition Mgt. 
54 Retrieve DDef (- -
55 DDef-=> menu group DDef AD, 
56 name => menu=group=DDef=root_name); 

61 Window Services.Ops.Install menu group( 
62 window => Inventory WIndows. 
63 main window, 
64 menu_group => menu-group node, 
65 ID => inv_menu_group_ID}; 

Programming with Menus V -5-5 



l"KELINllNAK I 

V-S.2.3 Enable an Installed Menu Group 

Calls Used: 

Window Services.Ops.Menu group enable 
- Displays the menu group and enables user menu item selection. 

The following program fragment enables the menu group installed in the previous section. 
(from Inventory_Menus body) 

69 
70 
71 
72 
73 

Window Services.Ops.Menu group enable( 
window => Inventory Windows. 

main window, 
menu group => inv menu group ID, 
enable => true); - -

V-S.2.4 Get a Menu Selection 

V-5-6 

Calls Used: 

Character Display AM.Ops.Set input type mask 
- Determines the allowable typeS-of userlnput from a window, including 

menu item selection. 

Character Display AM.Ops.Read 
- Reads an input event from a window. 

The following program fragment defmes the types and variables for getting a menu selection. 
(from Inventory_Main) 

79 menu_select: Terminal_Defs.menu_selection; 

86 event_type: Terminal_Defs.input_enum; 

90 event num: System. ordinal; 

The following program fragment sets the window input mask to menu_itemyicked, waits 
for the user's menu item selection, then calls the appropriate subprograms to perform the 
selection. 

Programming with Menus 



(from Inventory_Main) 

125 Character Display AM.Ops.Set input type mask( 
126 opened dev =>-Inventory Windows.main window, 
127 new mask => Terminal Defs.input type mask' ( 
128 -Terminal_Defs.menu=item-picked => true, 
129 others => false»; 

139 Character Display AM.Ops.Read( 
140 opened dev =>-Inventory Windows.main window, 
141 buffer-VA => menu select'address, -
142 max events => 1, -
143 max-bytes => 0, 
144 block => true, -- Wait 
145 type read => event type, 
146 num_read => event=num); 

151 case menu select.menu is 
152 
153 when Inventory Menus.inquiry menu ID => 
154 Inventory Menus.Process Inquiry menu( 
155 selection => menu_select.item); 

V-5.2.5 Display a Checkmark for a Menu Item 

Calls Used: 

Window Services.Ops.Menu item check 
- Displays a check mark 0/) next to a given item in a menu. 

Your program can display a (terminal-dependent) checkmark next to that menu item. The 
checkmark can indicate that the item is or was selected. For example, a menu of attributes for 
an object may have several attributes selected, with the selected attributes' menu items check­
marked. 

V-5.2.6 Change a Window's Enabled Menu Group 

Calls Used: 

Window Services.Ops.Menu group enable 
- Enables or disables an installed menu group in a window. 

To disable the currently enabled menu group, call 
Window_Services .Ops . Menu_group_enable with the enable parameter false. 

To enable another installed menu group in a window, just call 
Window_Services .Ops . Menu_group_enable for that menu group, with the enable 
parameter true. This implicitly disables the previously enabled menu group. 

V-5.2.7 Remove an Installed Menu Group from a Window 

Call Used: 

Window Services.Ops.Remove menu group 
- Removes an installed menu group from a window. 

Programming with Menus V-5-7 



Call Remove_menu_group to remove an installed menu group. There is no change·to any 
other installed menu groups (that is, none become enabled). 

V-S.3 Summary 

V-5-8 

• Menus provide a consistent, easy-to-use user interface. 

• A menu contains a menu title and one or more menu items. 

• A menu group contains one or more menus. 

• A window can have several menu groups installed, but only one menu group at a time can 
be enabled. 

• After a menu group is installed and enabled, menu selections and menu "help" messages 
are displayed without program intelVention. 

• After the user has made a selection, an input event is available, containing the chosen menu 
group, menu, and menu item numbers. 

Programming with Menus 



l'KELIMlNAKY 

UNDERSTANDING FORMS 6 
Contents 

Creating a Form Description ............................................... V -6-4 
Record I/O ............................................................. V -6-4 
Form Elements .......................................................... V -6-4 
Texts .................................................................. V-6-5 
Screen Fields ........................................................... V-6-5 

Character Fields ..................................................... V -6-5 
Option Fields ....................................................... V -6-7 

Enumeration ............................................................ V -6-7 
Null Enumeration Element ............................................ V -6-9 

Protecting Fields ........................................................ V -6-9 
Data Fields ............................................................. V -6-9 
Subforms .............................................................. V -6-9 
Groups ................................................................ V -6-9 
Piles ................................................................. V-6-10 
Expansion and Contraction of Forms ........................................ V -6-12 
Subroutines and the Subroutine Interface .................................... V -6-13 
Processing Routines ..................................................... V -6-14 
Key Catchers .......................................................... V -6-15 
Symbolic Keys ......................................................... V -6-16 
Key Lists ............................................................. V -6-19 
Form Name Environments ................................................ V-6-19 
Execution Paths ........................................................ V -6-20 

Explicit Modification of the Path Registers ............................... V -6-21 
Implicit Modification of the Path Registers ............................... V-6-21 

Messages and Help Infonnation ........................................... V -6-21 
Window Management ................................................... V -6-22 
Summary ............................................................. V -6-22 

Understanding Forms V-6-1 



V-6-2 

The fonn service provides means to create, modify, test and execute fonns which can be used 
interactively. Fonnsthe fonn service displays on screens have the same general appearance as 
fonns printed on paper that are frequently encountered in everyday transactions. Unlike paper 
fonns, the forms created and controlled by the form service and directed by a high-level ap­
plication program can perform a wide variety of functions dependent on the needs of the user 
and nature of the fonn. 

Traditionally, a fonn has been a printed document with labelled spaces provided for writing in 
infonnation. A typical paper fonn is shown in Figure V -6-1. 

PARTS FILE INFORMATION 

Part 10: Description: 

Location: Unit: each feet (circle 
lb inch one) 

Qty on hand: Usage this month: 

Reorder point: Usage this year: 

Reorder qty: Usage last year: 

Supplier 10: 

Average unit cost: $_,_._ 

Last unit cost: $_,_._ 

Date first activity: 

Date last activity: Status: 

Figure V-6-1. Sample Paper Form 

The fonn service builds on this concept to provide interactive fonns capabilities on a terminal. 
For example, the cursor, which marks the current position in the fonn, may be moved back a . 
space to erase an incorrect character, or back to the previous field to reenter a value. The 
contents of part of the fonn can be altered depending on the value of a previously entered field. 
Intennediate values can be calculated and stored transparently until needed later by the fonn. 
Even the order of execution of the fonn can be altered dynamically depending on the data 
entered. 

This chapter describes the various parts of an interactive fonn and how they are combined into 
a single, executable fonn as shown in Figure V -6-2. 

Understanding Forms 



PARTS FILE INFORMATION 
I 

texts----------------- alphanumeric fzeld 
I I 

Part 1D: 3512734 Description: 1/2" aluminum conduit 

Location: 02-F12 Unit: feet <----- overlaid enumeration 

Qty on hand: 500 Usage this month: 375 <------ numeric 
fzeld 

Reorder point: 750 Usage this year: 6250 

Reorder qty: 2000 Usage last year: 9475 

Supplier ID: RohmCo StanEfCo < -- group with 
three instances 

Average unit cost: $1.86 

Last unit cost: $1.65 <------------------------ numeric field 

Date first activity: 1985-06-25 <----------------- datefzeld 

Date last activity: 1987-03-13 Status: REORDER 

Delete this part (press <Return> to affirm)? DELETE 
I 

option fzeld 

Figure V -6-2. Annotated Executable Form 

This section describes the fonn parts available for constructing an executable fonn. The next 
chapter, V -7 describes how an executable fonn is controlled. 

Packages Required: 

Form Defs Defines types and constants used by the Form_Handler package. 

Form Handler Provides calls to process, control, and change fonns. 

Form_Def s contains the definitions for fonn properties (such as character display 
characteristics), symbolic keys (control keys, application keys, and infonnation keys), and 
other definitions which describe the physical attributes and current operational status of a fonn. 

Form_ Handle~ provides calls to: 

• Open and close a fonn. 

• Execute a fonn. 

• Modify data and control the execution network path. 

• Query the state of the fonn, a fonn element, or the last user interaction. 

Understanding Forms V-6-3 



V-S.1 Creating a Form Description 
A form can be created with edit. form (the form editor), create. form, or procedurally 
with the Data_Definition_Mgt package. 

The form editor is an interactive tool that enables a form developer to interactively create and 
modify form descriptions. This tool enables a form developer to design a form directly on the 
terminal screen and to define the properties for each form element as it is drawn and 
positioned. Detailed information for using the form editor is given in the BiiNTM Systems Form 
Editor Guide. Upon successful completion of an editing session, the form editor generates an 
executable form description. 

create. form automatically creates the most simple, default form design based on a file's 
associated record description. The resulting form description can be used as input to the form 
editor for tailoring the form to the user's needs, or be executed as is. 

Both the form editor and create. form generate a form description which can be executed 
by a user and controlled by Form_Handler calls. 

Every form is represented as a/orm DDej. (Form description is a higher-level synonym for 
form DDef.) The form DDef defines the elements of a form, their order of execution, display 
attributes, location, etc. Application programmers will normally use the form editor to create a 
form description. Form descriptions can also be created procedurally using 
Data_Definition_Mgt although this method requires a detailed understanding ofDDefs 
and is, therefore, not recommended. This low-level procedural interface is mainly of interest 
to implementors of interactive applications that create forms at runtime. 

Form descriptions are stored with a directory entry and consequently are retrieved with 
Directory_Mgt. Retrieve when their AD is needed for calls such as 
Form_Handler.Open_form. 

V-S.2 Record I/O 
If record 1/0 is used for executing a fonn, a record description must be associated with the 
form. A record description describes the structure of a communication area used by an ap­
plication program to communicate with an executing fonn. The primary benefit of employing 
record I/O is ease of use. It may not be appropriate for more complex applications for which 
Form Handler calls are more effective. 

If all or most of the screen fields that a fonn will use are already defmed in an existing record 
description, associating a form with the related record description is usually the most effective 
means for transferring data. Given an associated record, Form_Handler can store and 
retrieve the data from the form and record with single calls. When a form is not associated 
with a record description, the data for each screen field must be stored and retrieved with 
individual Form Handler calls. 

V-S.3 Form Elements 

V-6-4 

A form may consist of the following/orm elements: 

• Texts 

Understanding Forms 



• Screen fields 

• Enumerations 

• Subfonns 

• Groups 

• Piles 

• Data fields 

• Subprogram interfaces 

• Processing routines 

• Key catchers 

• Key lists. 

The first five fonn elements (texts, screen fields, enumerations, subforms and groups) are 
called sheet elements. The remaining form elements affect the appearance of the form (piles), 
hold intennediate data values (data fields), and affect the execution of the fonn. The sheet 
elements are visible elements in the screen image of the form, called a/orm sheet. The fonn 
sheet is the rectangular area displayed on the screen. 

V-S.4 Texts 
Texts are strings which commonly serve as labels for screen fields. In Figure V-6-3, the string 
Part ID: is an example of a text in such a use. Texts may also be used independently for 
other purposes such as column headers or explanatory text. 

V-S.5 Screen Fields 
Screen fields are areas defined on the fonn sheet for receiving or storing user input. Screen 
fields include: 

• Character 

• Option. 

V-S.5.1 Character Fields 

Character fields are areas defined on the form sheet in which a user may enter data. Figure 
V-6-3 illustrates an character field with an associated text string. 

PartID: __ _ 

Figure V -6-3. Character Field 

A screen field is not required to have an associated text. 

Character fields are of the following kinds: 

Understanding Forms V-6-5 



V-6-6 

• Numeric 

• Alphanumeric 

• Date. 

Numeric fields have fixed lengths. Internally, they are represented as 4-byte integer, 8-byte 
integer, or 8-byte real. Alphanumeric fields may be of fixed or variable length depending on 
how they are defmed. 

The size of a numeric field on the screen depends on the format definition. There are no 
fonnats for alphanumeric fields. Table V -6-1 illustrates examples of numeric field fonnatting. 
See the BiiNTM Systems Form Editor Guide for detailed instruction on fonnatting numeric 
fields. 

Table V -6-1. Examples of Numeric Formatting 

Field Fonnat Clear When Leading Trailing Dimla!ed 
Contents String Zero Text Text ield 

10.34 99999.99 irrelevant 00010.34 

10.34 ·····.99 irrelevant ···10.34 

5410.34 zazz,99 irrelevant 5.410.34 

0 99999.99 not set 00000.00 

0 99999.99 set 

10.34 ZZZZ9.99 irrelevant •• •• ··10.34·· 

10.34 ····9.99 irrelevant $ $···10.34 

12.34 ZZ9.9999999E+99 irrelevant 12.3400000E+00 

-12.34 -9.99999ge2'22+ irrelevant -1.234000E 1+ 

10.34 +O.999999E+99 irrelevant +O.l03400E+02 

A date field is a special case of an character field. 

Data fields require a fonnat string. The fonnat string is comprised of replacement characters 
and insertion characters. Replacement characters may include: 

YY - Last two digits of a year. 

YYYY - All four digits of a year. 

MM - Integer value of a month. 

MMM - Abbreviation of a month. 

DD - Interger value of a day. 

DDD - Abbreviation of a day. 

HH - Integer value of hours. 

II - Integer value of minutes. 

SS - Integer value of seconds. 

Insertion characters are printable characters that provide explanatory text or punctuation. Ex­
amples of data fonnatting showing the use of replacement and insertion characters are il­
lustrated in Table V-6-2: 

Understanding Forms 



Table V -6-2. Examples of Date Formatting 

Field Format Dimla!ed 
Contents String ield 

19841128120109 YYYY-MM-DD 1984-11-28 

1984 11 28 120109 YYYY:Mmm:DD 1984:Nov:28 

19841128120109 Year:yyyy Month:Mmm Day:dd Year: 1984 Month:Nov Day:28 

19841128120109 DDMMYY 2811 84 

1984 1224120109 DDD-YYYY 359-1984 

1984 11 28 120109 HH:1I:SS 12:01:09 

198411 28 120109 /Ill /01/ 

1984 1224 1201 09 DDD days HH hours 359 days 12 hours 

The contents of a date field are automatically validated after entry. If the contents of a part of 
the field are invalid, the local cursor is positioned at the beginning of that part. 

Default fonnats for these varieties of screen fields are shown in Table V -6-3: 

Table V -6-3. Default Screen Field Formats 

Default Format Type 

-zzz.zz:z:z2f) int4 

-zzzzzz2zzzzzzzzzz9 int8 

-9.9999999999E-99 real8 

yyyy-rnm-dd date 

V-S.S.2 Option Fields 

An option field is composed of a visible text string which may be selected and deselected with 
a symbolic key or a mouse. The actual data transmitted is a boolean value indicating whether 
or not the field is selected. Figure V -6-4 illustrates an option field. 

Delete this part (press <Return> to affirm)? DELETE 

Figure V -6-4. Option Field 

In Figure V-6-4, the DELETE string is an option field. An option field is highlighted when 
selected (true) and displayed in nonnal intensity when not selected (false). An option field is 
selected and deselected with the <select local> key. 

v-s.s Enumeration 
Enumerations are sheet elements consisting of an ordered set of values. The values of an 
enumeration are represented with texts. Each enumeration is assigned a nonnegative integer 
value. Each tuple (value, screen representation) is called an element of the enumeration. If an 
element's representation is empty, the element is called the null element of the enumeration. 

Enumeration elementss are selected with the <select local> key. When selected, the element is 
highlighted. Any previously selected element of the enumeration is simultaneously returned to 

Understanding Forms V-6-7 



I'KELIMlNAK J: 

normal intensity. The value of the currently highlighted element is the value assigned to the 
enumeration when the enumeration is left Characters cannot be entered into enumeration 
elements. 

Enumerations may be one of two kinds: overlaid and scattered. 

An overlaid enumeration is an enumeration in which the enumeration elements are displayed 
one at a time. The user toggles through the enumerations by using the <select local> key. The 
enumeration element currently displayed when the enumeration is left (commonly by pressing 
the <next> key) defmes the value which will be assigned to the enumeration. 

Figures V -6-5 and V -6-6 illustrate the first two enumeration elements of an overlaid enumera­
tion field with the text title Unit: and four units of measure as enumeration elements. 

Unit: each 

Figure V -6-5. Overlaid Enumeration: Initial Value 

After the user presses <select local>, the second enumeration value, feet, overlays the first 
enumeration value, each. 

Unit: feet 

Figure V-6-6. Overlaid Enumeration: Subsequent Value 

Each time <select local> is pressed, the next enumeration element will overlay the previous 
element until the last element is overlaid with the first and the cycle begins again. 

A scattered enumeration is an enumeration in which all of the enumeration elements are dis­
played simultaneously. The screen representations of the elements are arranged within the 
rectangular area allocated to the enumeration. The element whose value represents the current 
value of the enumeration is highlighted while all other elements are displayed in the display 
attributes defmed for the enumeration. Figure V -6-7 illustrates a scattered enumeration. 

Uni t: each feet 
lb inch 

Figure V -6-7. Scattered Enumeration 

The figure shows that the feet element is highlighted and, therefore, currently selected. 

The local cursor can be moved from a screen field or enumeration to a scattered enumeration 
with the <next>, <next with clear> or <previous> keys. Once the cursor is in a scattered 
enumeration the <next>, <next with clear> or <previous> keys move the cursor between the 
enumeration elements. The element at which the cursor is positioned can be selected with the 
select local> key. The currently selected element is highlighted and the previously 
selected element (if any) is returned to normal intensity. The enumeration element currently 

Understanding Forms 



highlighted when the enumeration is left defines the value which will be assigned to the 
enumeration. 

V-S.S.1 Null Enumeration Element 

A null element of an enumeration is an element which is associated with the value empty, 
meaning no value selected. An enumeration mayor may not contain a null element. In an 
overlaid enumeration, the null element, if present, must have a screen representation (possibly 
containing only spaces). 

If a scattered enumeration has a null value which is not assigned a screen representation, it can 
be selected with the <delete> key. If the enumeration has a null value that is represented on 
the screen, the value is selected like any other value. 

V-6.7 Protecting Fields 
Screen fields that are created with the protected property are used only for output 
Form_Handler . Store_value is used to place the new value into the fonn. They are not 
included in the network of paths (see the "Execution Path" section for more infonnation on a 
fonn's network of paths). These protected fields can be used, for example, to display the 
results of a calculation or logic decision. On the screen, they would appear the same as any 
other character field, but the user cannot enter data into them. 

V-6.8 Data Fields 
Datafields are not defined on the fonn sheet and are, therefore, not visible. They are used as 
storage areas for data used in computations or for exchanging data between processing 
routines, key catchers, and the application program. 

V-6.9 Subforms 
A subform is a fonn included in another fonn. This sheet element is provided as a con­
venience for making complex fonns out of simpler fonns. A subfonn can be created once and 
referenced by several other fonns and subfonns. Subforms may contain all the form elements 
allowed in a fonn, and may be nested. 

V-6.10 Groups 
A group is a subfonn which may be replicated. Each replication is called an instance of the 
group. The initial number of instances of a group is defined when the fonn is created, and may 
be modified during execution. Groups may contain any elements which may be used in a fonn 
including texts, screen fields, subfonns, other groups, piles, processing routine calls, and key 
catcher calls. 

For example, when the user enters the first supplier ID and leaves the field by using an 
application-defined key (that calls Form_Handler. Create_group_instances) rather 
than the usual key such as <next>, a second instance of the group is created so that the user, in 
this case, can enter a second supplier ID. In the sample fonn, a maximum of three instances 
can be displayed for character field for a supplier identification. Figure V -6-8 illustrates this 

Understanding Forms V-6-9 



group showing supplier IDs entered into the first two instances of the group, and the third 
instance created and awaiting entry of data. 

Supplier ID: RohmCo StanEfCo 

Figure V -6-8. Group Instances 

Groups are deployed (displayed) horizontally to the right, or vertically and downward. Figures 
V -6-9 and V -6-10 illustrate the two deploying directions for group instances. (The group 
shown in Figure V-6-8 is deployed horizontally.) 

I instance #1 I instance #2 I instance #31 

Figure V -6-9. Group Instances in a Horizontal Deployment 

Groups may contain multiple sheet elements as shown in Figure V -6-10. These group in­
stances contain name strings (alphanumeric fields), an enumeration of two values (Sex) and a 
numeric field with two insertion characters (SSN#). 

Last Name First Name Sex 

M F 
M F 
M F 
M F 

SSN# 

Figure V-6-10. Group Instances with Multiple Sheet Elements 

The number of instances of a group can be varied before or during the execution of the fonn 
with Form_Handler .Create_group_instances and 
Form_Handler . Remove_group_instances from within processing routines, key 
catchers or the application program. 

The maximum number of instances of a group can be set by the fonn programmer when the 
fonn is created or modified. The number of instances of a group may be zero. In this case, the 
group occupies an area the size of one character (unless the group is a member of a pile in 
which case it occupies no space at all). 

V-S.11 Piles 

V-6-10 

A pile is a sheet element occupying an area in a fonn in which other sheet elements can reside. 
Piles give the fonn designer control over the appearance of a fonn by specifying a fixed area of 
the fonn in which a choice of elements can be displayed. 

While the locations of sheet elements not on a pile are detennined directly by coordinates, 
piles offer an indirect method of positioning. A pile is a layout feature and cannot be executed. 
Processing routines or key catchers can be used to display pile elements. The order of execu­
tion of sheet elements is not affected by their being on a pile. 

Understanding Forms 



Piles, therefore, serve two primary functions. First, they reserve one area on the fonn for use 
by elements selected by the fonns designer. Second, the pile's reserved area can be sized 
sufficiently for the anticipated maximum expansion of its variable-length elements so that 
expansion will not dislocate neighboring sheet elements thereby altering the appearance of the 
fonn. (Read about expansion and contraction of a fonn in the next section.) 

When a pile is defined, one or more sheet elements are assigned to it. The order in which they 
are listed specifies their relative position or rank. Processing routines and key catchers deter­
mine which of the elements of pile are to be displayed. The selected pile elements are dis­
played in a horizontal or vertical deployment (specified when the pile is defined) in the order 
of their rank. 

For example, a fonn detennines which elements are to be displayed in a field depending upon 
whether the individual is (1) married and male, (2) married and female or (3) not married. The 
elements defined for the pile in this fonn include: 

• Given N arne of Spouse 

• Premarital N arne 

• Age 

• Separate Household 

This example describes a fonn used to collect personal data. The following figure shows the 
fonn (without the specific pile elements shown). 

Name: Given Name: 

+------+--------+ +-------+ 
I male I female I Imarriedl 
+------+--------+ +-------+ 

0 •••••••••••••••••••••••••••••••••••••••••••••••••••• 

[pile] 

Address: 

Figure V -6-11. Form with a Pile 

The following sheet elements is displayed in the pile of the fonn when "female" and "married" 
have been selected. (The deployment is vertical.) 

0 •••••••••••••••••••••••••••••••••••••••••••••••••••• 

. Given Name of Spouse: 

. Premarital Name: 

Figure V -6-12. First Pile Usage 

Understanding Forms V-6-11 



The following fonn element is displayed in the pile of the fonn when "male" and "married" 
have been selected. 

o •••••.••..•••••••••••••••••••••••••••••.•••••••••••• 
. Given Name of Spouse: 

Figure V -6-13. Second Pile Usage 

The following fonn element is displayed in the pile of the fonn when "married" has not been 
selected. 

o •.••••.•••...•.•.•••••.......•.....•.•••..•..•..•••. 
+------------------+ 

. Age: __ Iseparate household I 
+------------------+ 

Figure V-6-14. Third Pile Usage 

Piles may not be nested, but a group containing a pile may be located on a pile. Groups having 
no instances and a default instance of zero occupy an area the size of one character on a pile. 
Otherwise the area occupied is detennined by the number of default instances. 

V-6.12 Expansion and Contraction of Forms 

V-6-12 

Variable size sheet elements (alphanumeric screen fields of variable length and, optionally, 
piles and subforms) can expand beyond their default size when data is being entered into them. 
When they do expand horizontally, all of the sheet elements whose left boundaries are located 
right of the right border of the expanding element are automatically moved to the right. 
Likewise when they expand vertically, sheet elements whose upper boundaries are located 
beneath the lower boundary of the expanding element are automatically moved down. Thus, 
sheet elements are kept from being obscured by neighboring expanding elements. In table-like 
forms, column and line relationships are preserved. 

If a sheet element is about to expand over the boundary of the form sheet, the form sheet 
expands; that is, the rectangular area occupied by the form sheet within the window's frame 
buffer expands. When the fonn sheet is constrained by the size of the frame buffer, it can no 
longer expand. All subsequent operations which require expansion of a sheet element are 
rejected. 

Expansion of sheet elements not included within subforms and groups always affects subfonns 
and groups as a whole unit. For example, a variable-length alphanumeric field that expands 
into the upper-left comer of a group instance will move all elements of the group as a unit 
regardless of whether any individual group element is in the path of the expanding field. The 
area that a subfonn or group instance occupies may grow if the group contains elements of 
variable size such as an alphanumeric screen field, group or pile. 

Understanding Forms 



When a form expands or contracts, the rectangular area containing a scattered enumeration is 
relocated as a whole unit. 

If the deploying direction of a group is horizontal and if one or more instances of the group 
grows, instances with higher instance indexes are moved to the right but do not change their 
size. Figures V -6-15 and V -6-16 illustrate the effect of the growth of a group instance. In­
stance #1 grows horizontally, and instances #2 and #3, which do not change in size, move to 
the right. 

instance #1 I instance #2 I instance #3 

screen field 

Figure V -6-15. Effect of the Expansion of a Group Instance: Before Expansion 

instance #1 I instance #2 I instance #3 

screen field 

Figure V -6-16. Effect of the Expansion of a Group Instance: After Expansion 

The number of instances is restricted by the size of the frame buffer of the window in which 
the form is currently displayed. The frame buffer defines the limits of expansion for a form 
whether that expansion is by the addition of a group instance, or due to the expansion of a 
variable-length form element (such as an alphanumeric screen field). 

Contraction is the opposite of expansion. When a sheet element contracts, the form mayor 
may not contract depending on whether the contracting sheet element was the sole cause of the 
expansion. Contraction commonly occurs after an alphanumeric field is left. The area oc­
cupied by the field during data entry contracts to the rectangular size needed for displaying the 
current contents of the field or the size of the minimum area depending on which size is 
greater. 

An alphanumeric screen field first expands horizontally until it reaches the maximum line 
length (specified when the field was created) and then expands vertically. 

NOTE 
When an element of a group, a field is not constrained in its expansion by the deployment 
direction of the group. 

V-S.13 Subroutines and the Subroutine Interface 
Two kinds of subroutines may be used in a form: processing routines and key catchers. Sub­
routines are incorporated into a form by specifying a subprogram interface. This interface 
specification contains: 

• The name of the subprogram interface definition 

Understanding Forms V-6-13 



rK~L.l1Ylll"'1a.K I 

• The name of the image module in which the subprogram is contained 

• The name of the subprogram within the image module 

• Link option (link_at_bind_time) 

• A description of the formal parameters of the subprogram. 

The name of the image module and the name of the subprogram within the image module are 
used to retrieve a subprogram value (an AD to a domain object plus a procedure entry offset). 
The subprogram value is retrieved by calling Link_By_Call. Link. The Form_Handler 
can then call the subprogram using the subprogram value. 

The link option is set during fonn development. When set false, the subprogram is not linked 
to the fonn description at bind time. This makes it possible to create, bind and test a fonn 
whose processing routines and key catchers are not yet available. The fonn retrieves the 
subprogram value during the execution of the fonn when the subprogram is first called by the 
Form_Handler. When the link option is set to true, the subprogram is linked to the fonn 
description at bind time. 

Subroutines must be implemented according to the interlanguage calling conventions (see the 
BiiNTM Systems Programmer's Guide) for the language in which the subroutine is written) in 
order to be callable by the fonn service. Also, subroutines which are to be linked to fonns 
must be image modules (see the BiiNTM Systems Linker Guide). 

V-S.14 Processing Routines 

V-6-14 

Processing routines are subroutines written in high-level languages which are executable fonn 
elements. They can be used to: 

• Validate contents of screen fields 

• Control the order in which screen fields are entered 

• Modify contents of screen fields 

• Modify the appearance of the fonn sheet depending on user input 

• Perfonn any application-specific operations such as calculations. 

Processing routines are included in the network of the form execution path, and therefore, are 
called when the execution of the fonn reaches the point where they reside in the network. 
Processing routines may make Form_Handler calls to: 

• Create and remove group instances 

• Change the display attributes of sheet elements 

• Store and retrieve field values 

• Alter the order of execution of the fonn 

• Call other fonns. 

A processing routine call which has more than one successor in the form's network of paths 
must have a nextyath_element parameter defmed in its subprogram interface in order 
for it to proceed. The actual value of this parameter specifies a path element. The value is 
stored in the nextyath_element path register by Form_Handler. Form execution will 

Understanding Forms 



rK~LJ.1Vlli"'AK I 

then continue at that element when the processing routine has finished executing. Processing 
routine calls with only a single successor must not have a next yath _element parameter. 

Another parameter of the interface is terminal_input. This parameter is a byte string 
which is interpreted as a sequence of symbolic keys by Form_Handler, and inserted into the 
stream of input keys replacing the last key processed. Processing routines and key catchers 
can simulate user input by writing into this queue with this parameter. 

More than one processing routine call may refer to the same subprogram interface. Therefore, 
a single processing routine may be called from several locations within a form's network of 
paths. 

The subprogram interface describes the formal parameters of the subroutine and the processing 
routine call describes the actual parameters. 

V-S.15 Key Catchers 
Key catchers are subroutines written in high-level languages which are activated by pre­
defined keystrokes. They can be used to trigger entire functions with a single keystroke. A 
key catcher is assigned to a region of a form. A region defines the area of effectiveness of a 
key catcher. It may include a single screen field or enumeration, a group, a subform or the 
entire form. A single key catcher may be assigned to several regions, or several key catchers 
may be assigned to the same region. 

A subprogram interface for a key catcher is similar to a subprogram interface for a processing 
routine with the exception that a key catcher's interface does not include the 
nextyath_element parameter, and does include the trigger_key parameter. 
trigger_key references an internal queue which contains the symbolic key that triggered 
the key catcher. 

A key catcher for which a subprogram interface has been specified is included into a form by 
defining a key catcher call, and assigning it to the fonn, a subform, a screen field or enumera­
tion. A key catcher call must have the following parameters: 

• The name of the subprogram interface. 

• A key list (a list of keys which are to be caught by the key catcher). 

• The actual parameters (the actual values of the fonnal parameters specified in the sub-
program interface). 

When interpreting a keystroke, key catchers are scanned in the order in which they are as­
signed in the fonn description. Generally, the first key catcher in such a list is assigned to a 
screen field, and secondary key catchers are assigned to the group or subfonn. The least 
significant key catcher is assigned to the region defined by the entire form. 

When the fonn user enters a character, the character is transformed into the corresponding 
symbolic key. Then the key lists of the effective key catchers are searched for that symbolic 
key according to the ordering of the key catchers. This search is performed for every entered 
character. The search stops when the symbolic key is found in a key list. Then the key catcher 
pertaining to that list is called. If the search does not succeed, the input character is processed 
by the Form_Handler according to the type of the current sheet element. 

Understanding Forms V-6-15 



PK~LIM1NAKY 

V-6.16 Symbolic Keys 

V-6-16 

A symbolic key is a printable character, a control key, an application key or an information key. 
Printable characters correspond to the ASCII characters in the range 20 hex to 7E hex. A 
standard set of control keys are predefined in Form _ Def s and enable the user to trigger 
functions used in typical fonn dialogues. An example of a symbolic key is <previous> which 
moves the cursor back to the previous screen field or enumeration. Application keys, which are 
also declared in Form_Defs, trigger application-defmed functions. The application keys give 
the fom developer the opportunity to customize the fonn with unique features. 

Information keys differ from the other symbolic keys in that they are input events from the 
teminal. These keys may be included into key lists and caught by application-defmed key 
catchers. If they are caught by the Form_Handler, they do not trigger any action. 

Symbolic keys are used to mask differences among tenninal keyboards thereby contributing to 
the device-independent benefits of using fomm services. The tables V -6-4, V -6-5 and V -6-6 
contain definitions for the symbolic keys. 

Table V -6-4. Control Keys 

Mnemonic Name Function Value (hex) 

abort_execution Aborts execution of the fonn. 0100 

backspace Moves the cursor to the left by one space in 0101 
the active screen field or one part in a date 
field. 

begin_oCelement Moves the cursor to the first character input 0102 
position. 

begin_oCline Moves the cursor to the first character posi- 0103 
tion of the current line. 

bel Causes an audible or visible signal on the 0104 
tennina!. 

close_requested Requests that the fonn sheet window be 0105 
closed. 

correct DisKlays the data input to a nmneric screen 0106 
fiel without fonnatting. This k~ has no 
effect on nonnumeric screen fiel s. 

delete_character Deletes the character (or the part of a date 0107 
field) under the cursor. 

delete_charactecleft Deletes the character to the left of the cur- 0108 
sore 

delete Deletes active screen field' s in~ charac- 0109 
ters, replacing them with null c racters. 
Also, selects the null element (if any) of a 
scattered enumeration if the null element has 
no screen representation. 

down Moves the cursor to the next line in a o lOA 
multiple-line screen field. 

end_oCfonn Skips to the end of the fonn, or to the next o lOB 
compulsory screen field. Sets the 
destination path registerto lEND. 

forward_space Moves the cursor one space (or one part in a 010e 
date field) to the right. 

global_help Displays help infonnation for the fonn. 010D 

help DisNlays help infonnation for this screen o toE 
fiel . 

home Returns the input cursor to the beginning of 010F 
thefonn. Sets the destination patti 
register to IBEGIN. 

Understanding Forms 



Table V-6-4. Control Keys (cont.) 

Mnemonie Name Funetion Value (hex) 

insert_space Inserts a blank :r;:ce at the cursor ~ition. 0110 
In a date field, fects only the part of the 
date at the cursor position. 

insert_overwrite Switches between insert and overwrite 0111 
mode. In insert mode, existing characters 
move right to make room for new charac-
ters. In overwrite mode, existin£ characters 
are replaced by new characters at are input 
in thell' position. 

next When the cursor is in a screen field or 0112 
overlaid enumeration, skips to the next 
screen field, enumeration or to the end of the 
form. When the cursor is in a scattered 
enumeration, advances the cursor to the next 
enumeration element When the cursor is in 
a part of a date field, advances the cursor to 
the next part of the date field. 

nexc with_clear Deletes the rest of the current screen field 0113 
starting at the current cursor position (does 
nothing in an overlaid enumeration), then 
skips to the next screen field, or enumeration 
or to the end of the form. When the cursor 
is in a scattered enumeration, skips to the 
next element of the enumeration. 

previous Moves the cursor to the beginning of the 0114 
previous screen field. Sets the 
de st ina t i on path ~ister to the last 
touched screen field. en the cursor is in 
an overlaid enumeration, skips to th~-
vious screen field or enumeration. en the 
cursor is in a scattered enumeration, skips to 
the previous enumeration element. When 
the cursor is in a date field, moves the cursor 
to the previous part of the date field. 

refresh Refreshes (redisplays) the fann image. 0115 

reset Resets the fonn to its defmed initial state, 
then restarts fonn entry at the flfSt field. 

0116 

restore Restores the previous value of a field. 0117 

button_Creleased The fll'st mouse button has been released. 0118 

button_2_released The second mouse button has been released. 0119 

button_3_released The third mouse button has been released. 011A 

button_ 4_released The fourth mouse button has been released. 011B 

button_5_released The flJ'St mouse button has been released. 011C 

select_local Selects and deselects the value of option 0110 
screen fields. displays the next element in an 
overlaid enumeration and selects the current 
element of a scattered enumeration. 

menu_item-picked Indicates that a menu item was selected. 011E 

up Moves the cursor to the srevious line in a 011F 
multiple-line screen fiel . 

Understanding Forms V-6-17 



Table V -6-5. Application Keys 

Mnemonic: Name Function Value (hex) 

CI Application key 1. 0200 

C2 Application key 2. 0201 

C3 Application key 3. 0202 

C4 Application key 4. 0203 

CS Application key S. 0204 

C6 Application key 6. 0205 

C7 Application key 7. 0206 

CS Application key S. 0207 

C9 Application key 9. 020S 

CIO Application key 10. 0209 

C11 Application key 11. O2OA 

CI2 Application key 12. O2OB 

C13 Application key 13. 020C 

C14 Application key 14. O2OD 

CIS Application key 15. 020E 

CI6 Application key 16. 020F 

C17 Application key 17. 0210 

CIS Application key 18. 0211 

C19 Application key 19. 0212 

C20 Application key 20. 0213 

V-6-18 Understanding Forms 



Table V ·6·6. Information Keys 

Mnemoilic Name Function Value (hex) 

button_l,..pressed The first mouse button been pressed. 0300 

button_2,..pressed The second mouse button been pressed. 0301 

button_3,..pressed The third mouse button been pressed. 0302 

button_ 4,..pressed The fourth mouse button been pressed. 0303 

button_5..,pressed The five mouse button been pressed. 0304 

input_focusJained The window containing the fonn gained 0305 
the input focus. 

inputjocus_lost The window containing the fonn lost 0306 
the input focus. 

overlap_changed The visibility of the window containing 0307 
the fonn changed. 

size_changed The size of the window containing the 0308 
fonn changed. 

view_changed The position of the view of the fonn 0309 
changed. 

position_changed The ~ition of the window containing 
the onn changed. 

030A 

scrolCrequested Kind of scrolling requested: panning. 030B 
bar. or dragging. 

user_defmed_event A user-defined evenL 030C 

By default, control keys are effective over an entire fonn. They enable a user to trigger 
commonly used functions. The fonn programmer can disable control keys or give them other 
functions by catching them with a key catcher. 

V-6.17 Key Lists 
A key list contains names of printable and symbolic keys which are to be captured by the 
associated key catcher. Key lists can be created and modified with the fonn editor. 

V-6.18 Form Name Environments 
The name of a fonn element is called a basename. A basename is represented by a string of 
AScn characters. To address all elements of a fonn, fonn service distinguishes between three 
name environments within a fonn: 

Form name environment - Names of all elements of a fonn with the exception of those con­
tained in a group or subfonn of the fonn. 

SUbform name environment - Names of all elements of a simple or group subfonn with the 
exception of those contained in a subfonn of that subfonn. 

Form global name environment - Names of all elements of the fonn including those contained 
in subfonns. 

The names of the elements of a fonn or subfonn must be unique within the name environment 
of the fonn or subfonn. 

Instances of group subfonns are named by the basename of the group followed by the number 
of the instance (index) in parentheses. 

Understanding Forms V-6-19 



rK.r..LI1Vlll"'AK I 

To address elements within subforms, a form network patbname is constructed of one or more 
basenames or indexed basenames separated by a "/' (slash): For example, 
/group_3 (2) / screen_field_a is the form network patbname for screen_field_a 
of the second instance of group_3 of the fonn. 

An absolute patbname starts with a "/" and is evaluated starting with the name environment of 
the form. The simplest absolute patbname is the slash by itself that addresses the name en­
vironment of the form. 

A relative pathname is any patbname that does not start with a slash, and is evaluated from the 
name environment of the currently executing subform or group instance, or from the form 
name environment if no subform or group instance is executing. 

The patbname "." (dot) represents the name environment of the fonn, subfonn or group in­
stance currently executing. Similarly, the patbname " .. " represents the parent subform or 
group instance of the current subform or group instance, or the fonn if there is no parent 
subform or group instance. 

When no patbname (null string) is specified, the present form element is considered to be 
contained in the name environment of the subfonn or group instance currently executing, or if 
there is none, it is considered to be in the fonn name environment 

V-S.19 Execution Paths 

V-6-20 

Execution of a fonn follows a path or a network of paths composed of the following elements: 

• Screen fields 

• Processing routines 

• Subfonns 

• Groups 

• Fictive, predefmed path elements: BEGIN and END. 

BEGIN is the path element of a network, subfonn, or group that has no predecessor. END is 
the path element of a network, subfonn, or group that has no successor. Processing routines 
are the only path elements which may have more than one successor. A fonn may contain 
fonn elements which are not included in the execution network (texts, piles, subroutine inter­
faces, data fields, key catcher calls and key lists). Screen fields and subforms may be included 
in the network of paths; process routine calls must be included. 

The path elements are executed in an order that is determined by: 

• the network of paths, ~d 

• the contents of the path registers. 

destination and nextyath_element are predefined path registers that contain an 
arbitrarily selected path element and the nonnal successor to the current path element, respec­
tively. They may be used by an application program, processing routines, and key catchers to 
influence the order in which path elements are executed. 

destination denotes a target path element to which execution will proceed. 
nextyath_element contains the next path element to be executed. Normally, execution 

Understanding Forms 



will be pennitted to follow the network as defined. However, conditions arise in which execu­
tion must deviate from the dermed path such as when infonnation entered into a screen field 
fails to pass a validation test and execution is returned to the current path element (screen field) 
for re-entry of the data. 

Execution begins with the current element, the first path element or the next path element 
depending on the following possible values of destination: 

• If destination denotes a successor, execution proceeds from the current element to the 
destination element. 

• If destination denotes a predecessor, execution begins with the first path element of 
the fonn and proceeds until the destination is reached. 

• If destination is empty, execution proceeds with the next path element. 

V-6.19.1 Explicit Modification of the Path Registers 

destination is explicitly set by an application program, a processing routine or a key 
catcher by calling Form_Handler. Set_destination. 

nextJ>ath_ element can only be modified with processing routines. The purpose of this 
register is to enable a processing routine to select one of its direct successor path elements. 
Selection of a successor is required if the routine has more than one successor. 

V-6.19.2 ImpliCit Modification of the Path Registers 

destination is implicitly set to empty if: 

• The target path element is reached. 

• The target path element cannot be reached. 

• A screen field which requires input would have been skipped. 

next J>ath _element is implicitly set if: 

• The most recently processed path element has a single successor, then 
nextJ>ath_element is set to the name of the successor. 

• destination is set to a predecessor, then nextJ>ath_element is set to BEGIN. 

V-6.20 Messages and Help Information 
Local help infonnation may be optionally assigned to screen fields and enumerations. The 
fonn developer must specify the name of a message and the name of the message file that 
contains the help infonnation. The message and the message file need not be available when 
the fonn is created but must exist by the time the fonn is executed. Local help messages can 
be accessed during execution by pressing the <help> key. Infonnation relating to the entire 
fonn can be accessed during execution by pressing the <global help> key. 

Me s s age_Adm calls are used to define and store help infonnation. Infonnation messages are 
displayed on the standard message device. See the BiiNTM Command and Message Guide for 
additional infonnation on messages. 

Understanding Forms V-6-21 



rK.r.;Ll1Vlli~AK I 

V-S.21 Window Management 
The window in which the fonn is displayed must have a frame buffer that is large enough to 
display the form with its current contents, otherwise Form_Handler. Get and 
Form_Handler .Put calls will fail. The size of the frame buffer limits the expansion of 
fonns with variable size fonn elements. 

V-S.22 Summary 

V-6-22 

• The fonn selVice builds upon the concept of a paper fonn to provide interactive fonns 
capabilities on a tenninal. 

• A fonn can be created with the fonn editor or the create. form utility. 

• A fonn may consist of the followingjorm elements: 

- Texts 

- Screen fields 

- Enumerations 

- Data fields 

- Subfonns 

Groups 

- Piles 

- Subprogram interfaces 

- Processing routines 

- Key catchers 

- Key lists. 

• Variable length alphanumeric screen fields and the screen elements containing them can 
expand to accommodate data being entered into the field. 

• Execution of a fonn will follow a path or a network of paths composed of the following 
elements: 

- Screen fields 

- Processing routines 

- Subfonns 

- Groups 

- Fictive, predefined path elements: BEGIN and END. 

• The path elements are executed in an order that is detennined by the network of paths and 
the contents of the path registers (destination and nextyath_element). 

Understanding Forms 



PROGRAMMING WITH FORMS 7 
Contents 

Creating Executable Fonns ................................................ V-7-2 
Command Language Variables ............................................. V -7-3 
Fonn. Utilities ........................................................... V-7-5 
Editing Translation Tables ................................................. V -7-6 
Techniques ............................................................. V-7-6 

Opening and Closing Fonns ........................................... V -7-6 
Executing Fonns .................................................... V -7-7 
Setting and Resetting the Initial State of a Fonn. ............................ V -7-8 
Inserting, Storing, and Deleting the Contents of Screen and Data Fields ......... V -7-8 
Controlling the Execution Path ......................................... V -7-9 
Processing Routines and Key Catchers .................................. V -7 -10 
Defining a Processing Routine ........................................ V -7 -10 
Defining a Key Catcher .............................................. V -7 -11 
Intenupting Execution ............................................... V -7-11 
Adding and Removing Group Instances ................................. V -7 -11 
Modifying the Appearance of a Fonn. ................................... V-7-12 
Inquiring About an Element, Fonn Sheet, and Fonn Status .................. V -7-13 
Inquiring About the Last Edited Sheet Element and Input Event .............. V -7 -14 

Summary ............................................................. V-7-14 

Programming with Forms V-7-1 



This chapter describes how to use the procedural interface of the fonn service to control and 
modify fonns before and during their execution. You should read V-5.3 before reading this 
chapter. 

Packages Required: 

Form Defs Defines types and constants used by the Form_Handler package. 

Form Handler Provides calls to process, control, and change fonns. 

V-7.1 Creating Executable Forms 
Developing an executable fonn involves: 

• Designing a fonn 

• Generating a fonn description with the fonn editor (edit. form) or create. form 

• Creating and binding a message fue 

• Writing an application to execute a fonn 

• Writing processing routines, key catchers and key lists, as needed 

• Testing the fonn with the application. 

The following procedure is recommended for accomplishing the above steps. 

Step 1 - Design the Form 

Determine the primary design considerations related to the physical layout and the logic con­
trolling the execution of the fonn. These considerations may include: 

• Names and locations of sheet elements 

• Specifications for subfonns, groups and piles 

• The logic defIDing the network of paths 

• Specifications for key catcher regions 

• Functional descriptions of processing routines and key catchers including parameter 
specifications and Form_Handler calls. 

If the fonn to be designed is based on a record description and can be executed sequentially 
without requiring any logic decision, no path logic considerations need be detennined. The 
fonn editor provides a default path network. create. form also automatically provides a 
rudimentary, sequential, nonbranching path to the fonn. 

Step 2 - Create the Form 

Use the fonn editor, create. form or the DDef procedural interface to create a fonn 
description. 

Step 3 - Test the Form 

Use test. form to test and debug the execution logic, the validity of processing routine and 
key catcher calls, and the validity of the contents of fields. 

Step 4 - Create a Message File 

Use manage .messages to create a message file for the application program. This file can 

V-7-2 Programming with Forms 



be used for local and global help messages triggered by the <help> key, and for messages 
generated by processing routines and key catchers. 

Step 5 - Bind the Message File 

For a stable set of forms, use install. outside_environment to bind the message file 
to the application program. (More volatile form applications may handle messages directly.) 

Step 6 - Write an Application Program 

A form is called by a high-level language program. 

Step 7 - Write Subroutines, Translation Tables and Key Lists 

Write processing routines and key catchers referenced in the form design. Use the translation 
table editor to create any translation tables needed in addition to the default translation table 
provided by the Form_Handler. (Translation tables map the ASCII sequences generated by 
input devices to symbolic keys.) 

Step 8 - Test the Form with the Application 

Use test. form to again test the form. Include desired debug features in the application 
program, processing routines, and key catchers. 

Step 9 - Create a Window 

To execute a form, this program must create a window for the form to execute within. A 
window must be provided before a form can be opened. Therefore, the application program 
calls Window Services. Create window or - -
Window_Services. Ops. Create_window to provide a window for the form. 

V-7.2 Command Language Variables 
The following list contains the names, descriptions, types,· and initial values of the CL 
(Command Language) variables used by the form service. CL variables affect the appearance 
and performance of the form editor and Form_Handler. See the BiiNTM Systems Form 
Editor Guide for instructions on setting a screen field so that it can accept a CL variable as 
input and for a description of the CL variables used to make general adjustments to the form 
editor. The scope of each of the variables may be: 

H - Evaluated by the Form_Handler. 

E - Evaluated by the fonn editor. The variables are valid 
throughout the editing session or are relavant only in the 
initialization phase. 

D - Evaluated by the form editor. These variables provide 
default values for editor adjustments which may be changed 
during an editing session. 

See V-I for a general discussion of CL variables. 

form. decimal character 
Character which will be displayed and accepted as the decimal symbol. 
The possible values are Form_Defs .point and Form_Defs. comma. 

Scope: H, D 
Type: string 

Initial Value: "." 

form. insert mode 
Input mode set when the user starts to edit a new fOnTI. If true, mode is 

Programming with Forms V-7-3 



insert, else the mode is overwrite. The value of this variable can be 
toggled with the <insert overwrite> key. 

Scope: 
Type: 

Initial Value: 

form. visual bell 

H, E 
boolean 
true (insert) j 

Indicates whether signals sent to the tenninal will be visual or audible. If 
true, signal is visual, else the signal is audible. 

Scope: 
Type: 

Initial Value: 

H, D 
boolean 
false (audible) 

form . key_map Symbolic name of the translation table that is used by the 
Form_Handler to translate incoming characters into symbolic keys. If 
null, a standard, internal translation table is used. 

Scope: H 
Type: string 

Initial Value: null 

form. expansion step 
Contains the number of characters by which a variable-length, al­
phanumeric field will expand horizontally when the present size is ex­
ceeded by data being entered into the field. 

Scope: 
Type: 

Initial Value: 

H, E 
integer 
1 

form. escape character 
- The character which is used as the escape symbol in a fonnat string. See 

the BiiNTM Systems Form Editor Guide for infonnation concerning fonnat­
ting screen fields. 

Scope: 
Type: 

Initial Value: 

H, D 
string 
\ (backs lash) 

form. editor key map 
- Symbolic name of the translation table used by the fonn editor to translate 

incoming characters into symbolic keys. If null, a standard, internal trans­
lation table is used. 

Scope: E 
Type: string 

Initial Value: null string 

form.window-position_line 
Line number of the upper-left position of the Info window. The upper line 
of the Main window depends on the CL variable 
form. info window lines and the upper line of the Message win­
dow is likewise dependent on the values of 
form. info_window_lines plus form.main_window_lines. 

Scope: E 
Type: integer 

Initial Value: 1 

form.window-position_colurnn 
Column number of the upper-left position of the Info window. 

Scope: E 
Type: integer 

Initial Value: 1 

V -7 -4 Programming with Forms 



form. window columns 
- Width in columns of the three editing windows. 

Scope: E 
Type: integer 

Initial Value: 80 

form. info window lines 
Number of lines in the Info window. 

Scope: E 
Type: integer 

Initial Value: 10 

form.main window lines 
Number of lines in the Main window. 

Scope: E 
Type: integer 

Initial Value: 10 

form.message window lines 
- Number of lines in the Message window. 

Scope: D 
Type: integer 

Initial Value: 1 

form.pop up message window 
- - Detennines whether the Message window will open and close upon the 

receipt of a message or stay open. If true, a Message window is opened 
each time a message is to be displayed, and closed when input is entered 
into any of the editor windows. 

Scope: D 
Type: boolean 

Initial Value: false 

form.editor adjustments 
- Symbolic name of the form editor adjustments object. This object contains 

adjustments that affect the appearance and operation of the fonn editor. 
Adjustments may be made and saved with the fonn editor. If this string is 
null, default adjustments are used. 

V-7.3 Form Utilities 

Scope: E 
Type: string 

Initial Value: null string 

The following utilities are provided to automatically create a simple, standard fonn, to test a 
fonn, and to map symbolic keys to specific tenninals: 

• test. form 

• create. form 

• Translation tables editor. 

test. form interactively tests and debugs fonns. It provides the following functions: 

• Identifies any missing processing routines or key catchers. 

• Provides infonnation about fields. 

Programming with Forms V-7-5 



• Displays and permits changing the contents of fields. 

test. form displays and executes a form. When during execution of the form a processing 
routine or key catcher is found to be missing or a field's contents are invalid, execution is 
suspended and a message is displayed. The form tester may change or change the contents of 
fields. 

The form tester may change the value of the predefined path registers destination and 
nextJ>ath_element while the form is executing. It is not possible, however, to modify 
the path. 

When form execution is terminated, status information for the form displays. 

create. form automatically generates the most simple, default form design based upon the 
description of the associated data record. This utility is called with the name of a record 
description and the name to be given the new form. It can be used with the form editor to 
customize a fom. 

V-7.4 Editing Translation Tables 
Translation tables map the ASCII sequences generated by input devices to symbolic keys by 
associating a raw key (a sequence of keystrokes) with a symbolic key. Translation tables can 
be created and edited with the translation tables editor]. A translation table is required for each 
terminal on which a form will be executed thus providing terminal independence. 

One default translation table is always associated with the Form_Handler. See 
Form_Defs for a description. of the elements of this default translation table. 

V-7.5 Techniques 
After reading this section, you will be able to: 

• Open, execute, and close a form 

• Insert data into a form and retrieve data from a form 

• Alter the order of execution 

• Add and remove group instances before and during execution of a form 

• Modify the appearance of form elements 

• Retrieve information about the state of a form. 

The sample code segments are excerpted from the Inventory_Forms_Ex example pack­
age. 

V-7.5.1 Opening and Closing Forms 

V-7-6 Programming with Forms 



rK~LIM1NAKY 

Calls Used: 

Form Handler.Open form 
- OpenS a fonn. 

Form Handler.Close form 
- Closes a form. 

The application program opens the fonn with Open_form. Then the fonn can be activated for 
dialogue. The status of the fonn is set to initialized, and defaults are assigned to the 
fonn element values. Close_form deallocates the opened form. The following excetpt 
shows a fonn being opened and closed: 

40 opened_form: Form_Defs.opened_form_AD; 

44 opened form := Form Handler.Open form ( 
45 DDef => DDef from untyped( -
46 Directory-Mgt.Retrieve( 
47 name => form_pathname»); 

[form is executed] 

191 Form Handler.Close form ( 
192 opened_form_a ~> opened_form); 

V-7.S.2 Executing Forms 

Calls Used: 

Form Handler.Get 
- Executes a fonn (displays the fonn and accepts input from the user). 

Form Handler.Compute 
- Executes a form without displaying the form or requiring input 

Form Handler.Put 
- Displays a form without executing it. 

When Get is called, the fonn sheet is displayed and the form awaits user input The opened 
fonn must have status initialized, suspended, or input_required. This is the 
most common method for executing a form as shown in the following example code: 

236 
237 form status := Form Handler.Get( 
238 opened form a -=> opened form, 
239 opened-window a => Inventory Windows. 
240 - - main_window) ; 

Compute executes a fonn similar to Get but does not display the form or require input. 
Execution is suspended if input is required by a field. This call can be used to validate screen 
field values which receive their values from processing routines rather than user input. 

Pu t displays a form while refusing user input. It is commonly used for displaying forms on 
output-only devices such as printers, or for displaying forms on terminals when no input is 
required. 

Programming with Forms V-7-7 



V-7.5.3 Setting and Resetting the Initial State of a Form 

Calls Used: 

Form Handler.Set initial state 
Sets-the status of the fonn to initialized and marks the current con­
tents of the screen fields and enumerations as initial values. 

Form Handler.Reset form 
- Resets a fonn to the same state as immediately after its last initialization. 

Form Handler.Clear 
- Clears a fonn from the screen. 

Set_initial_state sets the status of the fonn to initialized and sets the current 
contents of the fields, the current number of instances of groups, and the current display at­
tributes of fields and texts at their initial values. 

Initial values are particularly significant under the following conditions: 

• If the <reset> key is entered (or Reset form is called) while the fonn is executing, 
the fields, group instances, and display attnbutes of fields and texts are reset to their respec­
tive initial values. 

• If there is more than one data entry sequence defmed by the network of paths, 
Form Handler uses the initial values as necessary to keep the fonn consistent with it­
self. For example, the fonn user may enter data into all the fields of a path, then use 
symbolic keys to return to an earlier field in the path and change its value. If the user then 
causes execution to proceed along another path, Form_Handler implicitly resets the con­
tents of the fields, group instances, and display attributes of fields and text in the first path 
to their initial values. 

Reset_form returns a fonn to the state immediately after its last initialization. The last 
initialization may have been perfonned implicitly with Open_form or explicitly with 
Set_initial_state. See the Interrupting Execution section for an example of 
the use of this call. 

- Clear removes a fonn sheet from the window usually in preparation for a new operation. 
The status of the fonn remains unchanged. 

702 
703 Form Handler.Clear( 
704 opened_form_a => opened_form); 
705 
706 Form Handler.Close form ( 
707 opened_form_a ~> opened_form); 

V-7.5.4 Inserting, Storing, and Deleting the Contents of Screen and Data 
Fields 

V-7-8 Programming with Forms 



I'KELIM1NAK Y 

Calls Used: 

Form Handler.Store value 
- Sets the value of a screen field, data field or enumeration element. 

Form Handler.Fetch value 
- Retrieves the value entered into a screen field, data field or enumeration 

element. 

Form Handler.Delete value 
- Empties a screen field, data field, or enumeration. 

Store_value assigns a value to a screen field, data field, or enumeration. If the fonn is 
displayed, the new values of screen fields appear on the screen. 

276 
277 
278 
279 
280 
281 
282 
283 
284 
285 
286 

Form Handler.Store value( 
opened form a - => opened form, 
element - => desc fIeld, 
subunit => System Defs.null text, 

-- added subunit; value-correct? -
value buffer VA => 

parts record.desc'address, 
value length => 

parts record.desc'size/8, 
value t - => 

Data_Definition_Mgt.t_string}; 

Fetch_value retrieves the value entered into a screen field, data field or enumeration ele­
ment. 

249 
250 
251 
252 
253 
254 
255 
256 
257 
258 
259 
260 
261 
262 
263 
264 

Form Handler.Fetch value( 
opened form a - => opened form, 
element - => part ID field, 
subunit => System Defs.null text, 

-- added subunit; value correct? -
value buffer VA => part ID'address, 
value-length- => part-ID'size/8, 
value-t =>-

Data Definition Mgt.t string, 
element value length => length, 
empty - - => empty}; 

if empty then 
-- null part_ID; return to menu 

Delete_val ue removes the value of a screen field, data field, enumeration which are con­
tained in an associated record description, and which have a representation for the null value 
defined. 

V-7.5.5 Controlling the Execution Path 

A fonn will execute according to the network of paths defined when the fonn is created or 
modified. This network of paths may contain branches controlled by processing routines 
which detennine the next executable element depending upon the value of entered or cal­
culated data. Explicit control over the execution path is provided by Set_destination. 

Programming with Forms V-7-9 



Calls Used: 

Form Handler.Set destination 
Stores a path element name in the destination path register. 

Set_destination stores a path element name in the destination path register. If the 
path element is a successor of the current path element, all path elements up to the specified 
path element are executed. If the specified path element is a predecessor of the current path 
element, execution of the fonn starts again with the first path element of the form and con­
tinues to the specified element. A boolean may be set to indicate whether processing routines 
are to be executed. 

The nextyath_element path register, unlike destination, cannot be modified 
directly by the application or by Form_Handler but can be modified by a processing 
routine. 

V-7.S.6 Processing Routines and Key Catchers 

A subroutine (processing routine or key catcher) is added to a form with the form editor. The 
form editor incorporates a subroutine into a form by specifying a subprogram interface for the 
subroutine. To generate the subprogram interface, the editor requires: 

• Programming language 

• Name of the subprogram interface 

• in parameters 

• out parameters 

• Link option. 

V-7.S.7 Defining a Processing Routine 

V-7-10 

A processing routine is added to a form by defming the following items with the fonn editor: 

• Name of the processing routine call 

• Subprogram interface 

• Name of the referenced form element 

• in parameters 

• out parameters. 

next yath_ element is an out parameter that specifies the name of a path element of the 
currently executed subfonn or form, and is stored in the nextyath_element predefmed 
path register. A processing routine with more than one direct successor must have this 
parameter. Processing routines with only one successor must not specify this parameter. 

terminal_input, an optional in parameter, ~s an actual value of a byte string that is 
interpreted as a sequence of symbolic keys and inserted into the stream of input keys replacing 
the last key processed. This parameter references an internal queue where symbolic keys 
arriving from the keyboard are stored. A processing routine can write directly into this queue 
to simulate user input. 

Programming with Forms 



When a processing routine call is reached during the execution of a fonn, Form_Handler 
calls the processing routine specified by the corresponding subprogram interface. The same 
processing routine can be called from several locations within a fonn's network of paths. 

V-7.S.8 Defining a Key Catcher 

A key catcher is added to a fonn in the same way as a processing routine except for the 
additional following items: 

• Key list 

• Region of effectiveness. 

A key list is created by the fonn editor and contains the keys to be caught by a key catcher. 
The region of effectiveness is a screen field, enumeration, subform or group to which a key 
catcher is assigned. 

trigger_key is an in parameter which receives the value of the symbolic key that triggers 
the key catcher. It references a predefined Form_Handler register. This register enables the 
key catcher to inquire as to which key contained in the associated key list caused the call. 

V-7.S.9 Interrupting Execution 

Besides altering the execution path, the application may also stop execution. With the next 
two calls, execution can be arbitrarily terminated, or halted. These calls can only be made by 
processing routines or key catchers. When the processing routine or key catcher returns, the 
application again gains control. 

Form Handler.Abort form 
- Aborts execution of a fonn. 

Form Handler.Suspend form 
- Suspends execution of a fonn. 

Abort_form halts and exits the execution of a form. All data entered during the current 
execution of the fonn is lost. This call can be made indirectly by pressing the <abort> key. 

Suspend_form suspends execution of a form without losing the currently entered data and 
awaits a status change before execution is resumed. Suspend_form can only be called by a 
processing routine or a key catcher. The execution of the form is suspended when the calling 
processing routine or key catcher returns, and the application gains control. The application 
must call Get to resume execution of the form. 

V-7.S.10 Adding and Removing Group Instances 

The number of group instances required for any given execution of the fonn can vary accord­
ing to the value of data entered. Therefore, the next two calls provide a means for increasing 
and decreasing the number of instances of a group prior to or during the execution of a form. 
When a fonn is created, a default number of instances is assigned to each group. This number 
may be changed dynamically with Create_group _instance and 
Remove_group_instance. 

Programming with Forms V-7-11 



Calls Used: 

Form Handler.Create group instance 
- Creates group instances. 

Form Handler.Remove group instance 
- Removes group instances. 

The following code shows creating a group instance. 
808 begin 
809 -- Add another instance of the supplier 1D group. 
810 Form Handler.Create group instances( 
811 opened form a - => opened form, 
812 group - - => suppliers field, 
813 nUmber_of_instances => 1}; -
814 
815 exception 
816 when Form_Handler.maximum_number_reached => null; 
817 
818 end; 

In this example, the Supplier ID is a group of three instances. The first instance is dis­
played when the field is executed (default instances = 1). Entering a supplier 10 and pressing 
the <return> key advances the cursor to the next screen field. If this part ID has a second 
supplier, the user presses the <next> key to display a second group instance. After the third 
group instance is displayed, the form selVice knows that this group has a maximum of three 
instances and will continue with the next path element regardless of the key pressed. This code 
segment is called by a key catcher which is triggered by the <next> key. 

V-7.S.11 Modifying the Appearance of a Form 

Screen fields, enumerations and text can be given the following display attributes: 

• inverse video 

• underline 

• half-bright 

• blinking 

• blank fill 

• text color (color tenninal only) 

• font index (graphics tenninal only) 

• concealment (contents of a field are not displayed). 

Any of these attributes may be changed, or reset to their initial values. 

Calls Used: 

Form Handler.Change display attributes 
- Changesthe display attributes of a screen field, enumeration, or text. 

Form Handler.Restore display attributes 
- Restores the display attributes of a screen field, enumeration, or text. 

V-7-12 Programming with Forms 



Display attributes include: 

• inverse video 

• underlining 

• half-bright 

• blinking 

• blank fill 

• font index 

• concealing (not displaying) the contents of a field. 

An example use of these two calls is to blink. a field's contents to alert the user that the entered 
data is erroneous and must be reentered. The field is restored to its original attributes after the 
user enters a valid value. 

V-7.S.12 Inquiring About an Element, Form Sheet, and Form Status 

An application can more effectively control the execution of a fonn when it is able to access 
the identity and current state of fonn elements. The availability of infonnation about the fonn 
sheet during execution ensures that device-dependent considerations stay transparent to the 
user. Fonn status and other current state infonnation gives a valuable snapshot of the execut­
ing fonn. All this infonnation is made available to the application.by the following calls. 

Calls Used: 

Form Handler.Get current number of group instances 
- Gets-the current number ofinstances of a group. 

Form_Handler.Get_current-path_element 
Gets the name and type of the path element currently being executed. 

Form Handler.Get current subunit 
- Gets-the pathname of the current subunit. 

Form Handler.Get element info 
- Returns infonnatlon about an element. 

Form Handler.Get index sequence of current subunit 
- Gets-the index of each subUnit (group instances and subfonns) comprising 

the current subunit 

Form Handler.Get last edited sheet element 
- Getsthe pathname of the last edited screen field or enumeration. 

Form Handler.Last input event 
- Gets mronnation about the last input event. 

Form Handler.Get selected sheet element 
- Getslnfonnation about thesheet element selected by the last mouse event. 

Form Handler.Get sheet info 
- Returns information about the currently displayed fonn sheet. 

Form Handler.Get status info 
Returns infonnation about the status of a fonn. 

Programming with Forms V-7-13 



rl<~L.l1V1.l1'lllli\.K I 

Get_element_info returns the type of the element and whether the contents of the ele­
ment have been changed since the last initialization. 

Get_sheet_info returns size infonnation about the currently displayed fonn sheet and 
whether it is designed to be displayed on a character or graphics terminal. 

Get_selected_sheet_element returns similar infonnation as Get_element_info 
except that the element is selected by a mouse event. This call is used by key catchers which 
catch mouse events. 

This infonnation is typically evaluated by the application program when the execution of a 
fonn is suspended or aborted. 

V-7.5.13 Inquiring About the Last Edited Sheet Element and Input Event 

These calls return infonnation identifying a previous action. 

Calls Used: 

Form Handler.Get last edited sheet element 
ProVIdes the fonn network patiiiiame of the screen field or enumeration 
last edited. 

Form Handler.Get last input event 
- RetUrns the type of the last input event. 

Get_Iast_edited_sheet_element returns the form networkpathname of the last 
screen field or enumeration that was edited. This call is commonly used by processing 
routines to aid in detennining which successor to choose as the next path element. 

Get_last_input_event returns the type of the last input event. This call is used 
similarly to get_Iast_edited_sheet_element. 

V-7.6 Summary 
• Form_Handler enables an application to dynamically control a fonn. 

• After a form has been created, it can be executed and controlled by Form Handler calls 
which perfonn the following functions: -

- Open and close a fonn 

- Execute a fonn 

- Insert and store data 

- Modify the order of execution 

- Add and remove group instances 

- Modify the appearance of the fonn 

- Inquire about the state of the fonn. 

• Developing an executable fonn involves: 

V-7-14 Programming with Forms 



- Designing a fonn 

- Generating a fonn description 

- Creating and binding a message file 

- Writing an application to execute the fonn 

- Writing processing routines, key catchers and key lists, as needed 

- Testing the fonn with the application. 

• The following steps comprise a recommended procedure for accomplishing these tasks: 

Step 1 - Design a Fonn Layout. 

Step 2 - Create the Fonn. 

Step 3 - Test the Fonn. 

Step 4 - Create a Message File. 

Step 5 - Bind the Message File. 

Step 6 - Write an Application Program. 

St~p 7 - Write Subroutines, Translation Tables and Key Lists. 

Step 8 - Test the Fonn with the Application. 

Step 9 - Create a Window. 

• A screen field can be set to accept a CL variable as input. 

• The following utilities are provided to automatically create a simple, standard form, to test 
a form and to map symbolic keys to specific tenninals: 

test.form 

- create.form 

- Translation tables editor. 

Programming with Forms V-7-1S 



V-7-16 Programming with Forms 



GENERATING REPORTS 8 
Contents 

Concepts ............................................................... V -8-2 
Report Olaracteristics ................................................ V -8-2 
Control Groups ..................................................... V-8-5 
Representation of Report Descriptions ................................... V -8-6 
Creating and Modifying a Report Description ............................. V -8-7 
Report CL Variables ................................................. V -8-9 
Printing a Report From the Command Line .............................. V -8-11 

Techniques ............................................................ V -8-11 
Printing a Report From Your Program .................................. V -8-11 
Setting Global Assignments ........................................... V -8-13 

Summary .............................................................. V -8-14 

Generating Reports V-8-1 



V-S.1 Concepts 
This chapter discusses the ways to create and modify a report description and print a report. 

Packages Used: 

Report Handler 
- Provides calls for initializing and printing a report. 

A report is a printed or displayed document containing labelled data, often presented in hierar­
chical groups with subtotals and totals. A simple report is shown in Figure V-8-l. 

INVENTORY REPORT 

Part ID Description Location Unit 

1234567 wiring harness 13-B27 each 
3512734 1/2" aluminum conduit 02-F12 feet 
4766117 5/16" hex carriage bolt 07-A02 lb 
7689482 flexible control cable 06-C13 inch 

Figure V-8-l. Sample Report 

V-S.1.1 Report Characteristics 

V-8-2 

A report is made up of various combinations of the following report parts: 

• Report heading 

• Report footing 

• Page heading 

• Page footing 

• Control group footing 

• Control group heading 

• Record print layout. 

A typical report consists of one or more pages of data, a report heading, and a report footing 
(see Figure V-8-2). 

Generating Reports 



Report 
Footing r;;t page--l 

, ••• t. ••••••••• , 

,.._1 ____ , 
I ith page I 

. I 
~..J 

~ ••• L ••••••••• ! ~ .... 
. : I 

~_I ____ ., ~..J 

I first page I 
I .... ; 

Report 
Heading 

I 

Figure V -8-2. Page Series of a Report 

The report heading prints on a separate page and may contain explanatory information similar 
to the title of a book or the burst page of a print job. The report footing may print on the last 
page or a separate page and can contain summary statistical infonnation pertaining to the 
report. Both are optional. . 

Data appears on the report pages other than the report heading and footing pages. The layout 
of a page is defined by the page body area shown in Figure V -8-3. 

Generating Reports V-8-3 



V-8-4 

r-­
I 
I 
I 
I 
I 
I 
I 
I 
I 

page 
length 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 't.. __ 

r- - - -- -page width - - - - -, 

I I 

Page Heading 

(date. page number, table heading) 

Page Body Area 

(Record print layouts, 
Control group headings and 

Control group footings) 

Page Footing 

(statistics) 

Figure V -8-3. Parts of a Report Page 

heading 

page 
body 
lines 

footing 

A page header typically contains the date, page number, and headings for the columns of data. 
The page footer typically contains statistics or is empty. Both are optional. 

The record print layout defines how the records are to be printed. This layout includes infor­
mation about: 

• the record fields selected for printing 

• additional, explanatory information 

• user-defined expressions 

• position, display attributes, and formatting of the record fields. 

The page body area contains one or more kinds of items defined by the record print layout: 

• A data corresponds to a field of the record from which the report is derived. It contains a 
reference to this field and all information about the layout of the data. When the detail is 
printed, the content of the corresponding record field is printed. 

• Computed data contains a mathematical expression. The expression may contain 
references to data in the same report part or in another report part. It contains all infor­
mation about the layout of the data. When the report is printed, the expression is calculated 
and the result of the calculation is printed. 

• A text represents an explanatory text string. 

The data in the page body area may be an unstructured stream of records or may be structured 
in groups of records framed by intermediate headings and footings called control groups. The 
records within control groups have in common a particular field which contains the same 
value. 

Generating Reports 



Figure V -8-4 illustrates control groups in three consecutive pages of a report. Two control 
groups are defined. Control group 2 is nested within control group 1. The 
dominant/subdominant relationship of the control groups defines the control hierarchy . 

.-----. Page Heading 

Control Group Heading 1 

I Control Group Heading 2 

• • • 

I Control Group Footing 2 

I Control Group Heading 2 

••• 

Page F aotlng L _____ --I 

Page 1 

.-----. Page Heading 

• •• 
I Control Group Footing 2 

I Control Group Heading 2 

• •• 

J Control Group Footing 2 

Control Group Footing 1 

Control Group Heading 1 

I Control Group Heading 2 

• •• 
I Control Group Footing 2 

L ~~e ~~g_ --I 
Page 2 

. -----. 
Page Headin g 

I Control Group Heading 2 

• • • 

I Control Goup Footing 2 

Control Group Footing 1 

Page Footing L _____ --I 

Page 3 

Figure V-8-4. Report With Nested Control Groups 

V-S.1.2 Control Groups 

Records printed in the page body area can be grouped into control groups. If a stream of 
records contain groups of records having at least one field with the same value, this collection 
of records can be printed as a group. The field with the common value can be designated as a 
control group field. 

Control groups may be nested. When nested, control groups define a hierarchical structure 
called the control group hierarchy that controls the sequence of printing the records. 

Each time a record of the file is read, the contents of all control fields are evaluated. The 
change of the value of a record field designated as a control field causes a control break. On a 
control break, printing is suspended until the following actions have been perfonned: 

• All control group footings are printed beginning from the lowest level of control group 
hierarchy up to the level associated with the highest level of the control field which caused 
the control break. 

Generating Reports V-8-5 



• All control group headings are printed beginning from the level associated with the highest 
level of the control field which caused a control break down to the lowest level. 

Figure V-8-5 shows a report with control breaks on the location field of the Parts Master 
File record of the Inventory Program example. The Cost column is dermed as computed data 
which is the product of qty_on_hand (not reported) and ave_unit_cost (not reported). 

Date: 12/31/87 Inventory Location Report Page: 1 

Location Part 1D Description Unit Cost 

02-F12 3512734 1/2"' aluminum conduit feet 121.98 
3571998 5/8" aluminum conduit feet 317.69 
3521195 3/4" aluminum conduit feet 79.50 

Total: 519.17 

07-A02 4766117 5/16" hex bolt lb 17.69 
4619984 3/8" stove bolt lb 37.55 
4722390 1/2" crenellated nut lb 7.05 

Total: 62.26 

Grand Total: 581. 43 

Figure V -8-S. Report With Control Breaks 

V-S.1.3 Representation of Report Descriptions 

V-8-6 

A report description is composed of report parts. Figure V -8-6 shows an example of the report 
parts that are combined in a report description. 

Generating Reports 



r--------

Control 
Hierarchy 1 

Heading 

Control 
Hierarchy 1 

Footing 

Control 
Hierarchy 2 

Heading 

Control 
Hierarchy 2 

Footing 

Report 
Heading 

Report 
Footing 

Page 
Heading 

Page 
Footing 

Record 
Print Layout 

------ ........ ---- ........ ---- ........ --::::: 
L _______ _ 

"" --"" ---­",,----
~--

Figure V -8-6. Report Parts of a Report Description 

----

The report sexvice requires a record DDef that describes the data to be printed. The record 
DDefcan be created using Data_Definition_Mgt, or an existing record DDeffor a fue 
can be used. 

V-8.1.4 Creating and Modifying a Report Description 
Three methods are available for creating and modifying report descriptions: interactively with 
edi t . report, dynamically with create. report, and procedurally using 
Data_Definition_Mgt. The report editor, edit. report, is the most commonly used 
method. create. report is the easiest method for generating a simple report. 
Data_Definition_Mgt is the most fundamental and complex method and is primarily a 
tool for utility writers. 

Application programmers will normally use edit. report to create a report description. 
Report descriptions can also be created procedurally using Data_Definition_Mgt, al­
though this method requires a detailed understanding ofDDefs. This low-level procedural 
interface is mainly of interest to implementors of utilities such as edit. report. 

The report editor, edit. report, is an interactive utility for creating and modifying report 
descriptions. Upon successful completion of a report design or update, the report editor 
generates a report description that can be used to print the report. See the BiiNTM Systems 
Reports Guide for detailed information on report editor. 

Generating Reports V-8-7 



V-8-8 

create. report automatically creates the most simple, default report design based upon the 
description of an associated data record. See the BiiN

TU 
Systems Reports Guide for instructions 

on using this editor. The layout of a standard report page i~ shown in Figure V-8-7. 

System Date I 
Page Heading 

Field a ••• Field i 

Field a (1) ••• Field i (1) 

Field a (2) ••• Field i (2) 

• • • 
Field a (m) ••• Field i (m) 

• • • 

Page Footing 

I Page Number 

••• Field n 

• •• Field n (1) 

• •• Field n (2) 

••• Field n (m) 

heading 

page 
body 
area 

footing 

Figure V -8-7. Layout of a Standard Report Page 

The report parts for a standard report assume the following default properties: 

Record print layout The data of the record print layout is taken from the corresponding fields 
of the record. 

Within the page body area, the data is printed line by line (according to the 
records read) and positioned beneath the matching column. 

The width of a column is detennined by the length of the name of the field 
in the heading and by the length of the field (by the fonnat string for 
numeric fields), whichever is larger. The smaller one is centered within 
the column. 

Default fonnats for numeric and date data are shown in Table 4-1. 

Table V -8-1. Standard Report Default Formats 

Default Fonnat Type 

-zzzzzzzzz9 int4 

-zzzzzzzzzzzzzzzzzz9 int8 

-9.9999999999E-99 rea18 

yyyy-mm-dd date 

Numeric fields are right-justified; byte string fields are left-justified. 

Control group hierarchy 
When the report is associated with a variant record, control hierarchies are 
defined by the standard layout for readability. 

Generating Reports 



If the record description does not contain variant parts, no control group 
hierarchy is defmed. 

Control group headings 
No control group heading is defined. 

Control group footings 
No control group footing is defined. 

Page heading The page heading prints the date on the left and the current page number 
on the right. A tabular heading line is printed in the third line of the 
heading. For variant records, the tabular heading line reflects the contents 
of the first record to print on any given page. 

Page footing The page footing is defined as a single, empty line. 

Report heading and footing 
The report heading and footing are not defined. 

V-S.1.5 Report CL Variables 

The following lists contains the names, descriptions, types, and initial values of the CL 
(Command Language) variables used by the report service. CL variables affect the appearance 
and performance of the report editor and report handler. See the BiiNTM Systems Reports Guide 
for instructions on the use of CL variables. See V-I for a general discussion of CL variables. 

The scope of a variable is defmed as E or D. E means that the variable is valid throughout the 
editor session or is only relevant in the initialization phase. D means that the variable provides 
default values for editor adjustments which may be changed during an editor session. 

Report Editor-Specific CL Variables 

report.editor_key_map 
Symbolic name of the translation table that is used by the report handler to translate incoming 
characters into symbolic keys. If null, a standard, internal translation table is used. 

Scope: 
Type: 

Initial Value: 

E 
string 
null string 

report.window~osition_line 

Line number of the upper-left position of the Info window. The upper line of the Main win­
dow depends on the CL variable report. info_window_lines and the upper line of the 
Message window is likewise dependent on the values of report. info_window_lines 
plus report .main_window_lines. 

Scope: 
Type: 

Initial Value: 

E 
integer 
1 

report.window~osition_column 

Column number of the upper-left position of the Info window. 
Scope: E 

Type: integer 
Initial Value: 1 

report.window_columns 
Width in columns of the three editing windows. 

Scope: E 
Type: integer 

Initial Value: 80 

Generating Reports V -8-9 



report.info_window_lines 
Number of lines in the Info window. 

Scope: 
Type: 

Initial Value: 

E 
integer 
10 

report.main_window_lines 
Number of lines in the Main window. 

Scope: E 
Type: integer 

Initial Value: 10 

report.message_window_lines 
Number of lines in the Message windowo 

Scope: D 
Type: integer 

Initial Value: 1 

report.pop_up_message_window 
Determines whether the Message window will open and close upon the receipt of a message or 
stay open. If true, a Message window is opened each time a message is to be displayed, and 
closed when input is entered into any of the editor windows. 

Scope: D 
Type: boolean 

Initial Value: false 

report.editor_adjustments 
Symbolic name of the report editor adjustments object. This object contains adjustments that 
affect the appearance and operation of the form editor. Adjustments may be made and saved 
with the form editor. If this string is null, default adjustments are used. 

Scope: E 
Type: string 

Initial Value: null string 

General CL Variables Used by the Report Editor 

form. decimal character 
Character which will be displayed and accepted as the decimal symbol. The possible values 
are Form_Defs .point and Form_Defs. comma. 

Scope: D 
Type: string 

Initial Value: "." (point) 

form. escape_character 
The character which is used as the escape symbol.in a format string. See the BiiNTM Systems 
Reports Guide for information concerning formatting screen fields. 

Scope: D 
Type: string 

Initial Value: \ (backslash) 

form. visual bell 
Defmes whether the editor user will be informed visually or audibly of incorrect input. If true, 
the signal is visual, else the signal is audible. 

Scope: D 
Type: boolean 

Initial Value: false (audible) 

V -8-10 Generating Reports 



user.verbose 
Indicates whether status messages should be displayed. 

Scope: 
Type: 

Initial Value: 

user.language 

o 
boolean 
false (not displayed) 

Defmes whether the editor user will be infonned visually or audibly of incorrect input. If true, 
the signal is visual, else the signal is audible. 

Scope: 0 
Type: string 

Initial Value: null string 

msg.long_text 
Used by the message service to detennine whether the long or short version of a message is to 
be used. 

Scope: 0 
Type: boolean 

Initial Value: false (short) 

V-S.1.6 Printing a Report From the Command Line 

print. file is a general purpose utility with which reports can be printed or displayed. It 
reads the input fue and writes the report to a spool queue. See the BiiNTM Systems 
Administrator's Guide for more infonnation about this utility. 

V-S.2 Techniques 
After reading this section, you will be able to: 

• Print a report from your program 

• Optionally sort a file and print the sorted entries 

• Change global assignments. 

The examples used are excerpted from the Inventory_Reports_Ex example listed in 
Appendix X-A. 

V-S.2.1 Printing a Report From Your Program 

Calls Used: 

Report Handler.Initialize 
- Initializes a report for printing. 

Report Handler.Print 
- Prints an initialized report. 

Initialization associates a report description with an input device opened for record stream 
input, and an output device opened for character display output to which the report is printed. 
Report_Handler. Print prints an initialized report. 

Generating Reports V-8-11 



V-8-12 

The entire input stream is printed in input order; that is, by record number for relative files or 
by index for indexed files. The input file may be the entire, original file associated with the 
report description or a subset of this file. 

If the fue is an indexed fue, a subset of the original fue can be selected with 
Record_AM. Keyed_Ops calls. If the report control hierarchy fields differ from the key 
fields of which the file index is composed, then Sort_Merge_Interface. Sort can be 
called to generate a record stream with the required record order. 

The following sample code demonstrates the use of Report_Handler .Print in which a 
range of records is printed in indexed order. 

76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 

local-parts_file: Device_Defs.device:= 
Record AM.Ops.Get device object ( 

Inventory Files.parts file); 
AD to parts fIle. -

opened local parts file: 
Device Defs.opened device; 

-- AD to-locally opened parts file. 

part: System Defs.text(4) := (4,4,"part"); 
Paramete~ to "report printing" message, 
since this report is-by "part". 

begin 

-- Open parts file for reading, so no 
-- concurrent updates will interfere: 

opened local parts file := Record AM.Ops.Open( 
dev - => 10cal-parts_fIle, 
input output => Device Defs.input, 
al~ow- => Device=Defs.readers); 

Open output device: 

opened_output := Byte_Stream_AM.Open_by_name( 
name => 

output dev pathname, 
input output => 

Device_Defs.output); 

-- Get report definition (DDef): 

report DDef := DDef from untyped( 
Directory Mgt.Retrieve( 

name ~> report by part DDef pathname»; 
Assume "Report_Hanche~. Is_~eportn. 

-- Initialize report: 

initialized report := Report Handler.Initialize( 
description => report DDef, 
input => opened=local-parts_file, 
output => opened_output); 

-- Print report: 

Report Handler.Print( 
report => initialized_report); 

Generating Reports 

I~ 
\J 
~ 



131 -- Display "report_printing" message: 
132 
133 Message Services.Write msg( 
134 msg-id => report printing code, 
135 paraml => Incident Defs.message parameter( 
136 typ => Incident Defs.txt, -
137 len => part.length), ( 
138 typ => Incident Defs.txt, 
139 len => part.length, 
140 txt val => part), 
141 param2 => Incident_Defs.message-parameter( 
142 typ => Incident Defs.txt, 
143 len => output_dev-pathname.length) , ( 
144 typ => Incident Defs.txt, 
145 len => output_dev-pathname.length, 
146 txt_val => output_dev-pathname), 
147 device => Inventory_Windows.message_window); 
148 
149 
150 Close locally opened parts file: 
151 
152 Record AM.Ops.Close( 
153 opened_dev => opened_local_parts_file); 

The report service also implements record I/O as another method for printing reports. This 
method enables printing reports from applications written in languages such as COBOL that 
provide record I/O but do not support ADs. Using record I/O to print a report is similar to 
writing to a file. The application program opens a device specifying the report description. 
Each Insert call supplies a record to the report service. The report is sent to the application 
program's current output device; that is, the standard output specified in the process globals. 

The report service allows report descriptions for files which contain variant records. 

V-8.2.2 Setting Global Assignments 

Calls Used: 

Report Handler.Set global assigns 
- Assigns the error handling controls for an initialized report. 

Several global properties may be set by report editor. Two of these, error decision and line 
end decision, may be changed with Set_global_assigns. 

The error decision defmes the action to be taken when a numeric error (overflow, underflow, 
or division by zero) occurs during the evaluation of an arithmetic expression. Possible actions 
include: 

• Printing the error symbol (default is ?) instead of the erroneous value 

• Suspending the evaluation of the current item, and continuing printing with the next item 

• Tenninating the report (closing output and returning). 

The line end decision defines the action to be taken when the width of the mounted sheet is too 
small for printing the report lines. Possible actions include: 

• Printing the remaining characters on the next line 

Generating Reports V-8-13 



r Kr..LllY1.l1~.&K I 

• Discarding the remaining characters 

• Tenninating the report. 

V-S.3 Summary 

V-8-14 

The report selVice and related utilities provide methods for creating and modifying a report 
description and for printing a report. 

e A report is a printed or displayed document containing labelled data, often presented in 
hierarchical groups with subtotals and totals. 

• A report description is composed of report parts. 

• Methods for creating and modifying report descriptions include the report editor, 
create. report and the Data_Definition_Mgt procedural interface. 

• Methods for printing or displaying a report include Report_Handler. Print, 
pr int . file and record I/O. 

• Report Handler includes calls to associate a report description with an input and out­
put device, print an initialized report and control error handling. 

Generating Reports 






