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GUIDE TO THIS MANUAL
S

This chapter describes this manual. It explains the organization of the manual, describes the
contents of each chapter, and discusses terminology used in the manual. It also shows the
chapters of the manual that should be of most interest to applications programmers, compiler
designers, and operating-system designers.

1.1 Manual Structure

This manual is a reference manual for the BiiN™ processor. It gives programmers and system
designers detailed information about the processor’s programming environment and operating-
system support facilities.

1.2 Chapter Overview

The following is a brief overview of the contents of each chapter:
Chapter 1 — Guide to This Manual. Overview of this manual.

Chapter 2 — Architecture Overview. Overview of the architecture implemented by this
Processor.

Chapter 3 — Data Types and Addressing Modes. Description of the non-floating-point data
types and of how bit and byte strings are addressed. The addressing modes provided for
addressing data in memory are also described in this chapter.

Chapter 4 — Instruction Set Summary. Overview of all the non-ﬂoatihg-pomt instructions
in the instruction set, arranged by functional groups.

Chapter 5§ — Floating-Point Operation. Description of the processor’s floating-point
processing facilities. This chapter includes an overview of floating-point numbers and a
description of the floating-point data types and their relationship to the IEEE floating-point
standard. Descriptions of the floating-point instructions, exceptions, and faults are also in-
cluded.

Chapter 6 — Execution Environment. Describes the basic execution environment, how the
processor executes instructions, and how the processor manipulates data.

Chapter 7 — Protection Model. Describes the subsystem call and protection mechanisms.
Chapter 8 — Object Addressing. Describes objects, and how they are addressed.

Chapter 9 — Type Management and Access Control. Describes object typing and access
control.

Guide to This Manual 1-1
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Chapter 10 — Faults. Describes the fault handling facilities.
Chapter 11 — Debugging and Tracing Support. Describes the tracing facilities.
Chapter 12 —Interrupts. Describes the interrupt handling facilities.

Chapter 13 —Introduction to Processes, Processors, and Synchronization. Anoverview
of the mechanisms to control processes and processors.

Chapter 14 — Interprocess Communication and Synchronization. Describes the methods
by which processes may communicate and synchronize.

Chapter 15 — Process Management. Describes the management of processes.

Chapter 16 — Processor Management and Interrupts. Describes the management of
processors.

Chapter 17 — Instruction Formats and Operand Addressing. Describes the instruction
format, and the mechanism for specifying the addresses of memory operands.

Chapter 18 —Instruction Reference. A detailed reference about each of the instructions for
the processor.

Appendix A — Instruction and Data Structure Quick Reference. A quick reference for the
instructions and data structures.

Appendix B — Considerations for Writing Portable Software. Describes the parts of the
processor implementation that may change between implementations of other processors in the
same family.

1.3 Notation and Terminology

The following paragraphs describe the notation and terminology used in this manual that have
special meaning. '

1.3.1 Reserved and Preserved

Certain fields in the processor’s system data structures are described as being either reserved
fields or preserved fields. A reserved field is one that may be used by other implementations
of the processor architecture. To help insure that a current software design is compatible with
future processors based on the BiiN™ CPU architecture, the bits in reserved fields should be set
to O when the data structure is initially created. Thereafter, software should not access these
fields.

Some fields in system data structures are shown as bemg required to be set to either 1 or 0.
These fields should be treated as if they were reserved fields. They should be set to the
specified value when the data structure is created and not accessed by software thereafter.

A preserved field is one that the processor does not use. Software may use preserved fields for
any function.

Guide to This Manual
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1.3.2 Set and Clear

The terms set and clear are used in this manual to refer to the value of a bit field in a system
data structure. If a bit is set, its value is 1; if the bit is clear, its value is 0. Likewise, setting a
bit means giving it a value of 1 and clearing a bit means giving it a value of 0.

Guide to This Manual 1-3
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ARCHITECTURE OVERVIEW 2

This chapter provides an overview of the architecture on which the processor described in this
manual is based.

2.1 General Comments

This architecture has been designed to provide reliable, high-speed data processing and com-
putational support for the BiiN™ family of computer systems. :

The architecture can best be characterized as a high-performance computing engine to which
many extensions have been added to support system functions. The computing engine features
high-speed instruction execution and ease of programming. Some of its more important at-
tributes include: :

e full 32-bit registers
e high-speed, pipelined instruction execution
e aconvenient program execution environment with 32 general-purpose registers

e a highly optimized procedure call mechanism that features on-chip caching of local vari-
ables and parameters

e extensive facilities for handling interrupts and faults
e extensive tracing facilities to support efficient program debugging and monitoring

e register scoreboarding and write buffering so that memory operations can be overlapped
with computations.

The architectural extensions added to the processor’s core computing engine are aimed at
improving overall system performance and at enhancing the reliability and robustness of the
system. Those extensions designed to improve system performance include on-chip support
for floating-point arithmetic, virtual memory management, multitasking, and multiprocessing.
Those extensions designed to enhance reliability include support for fault tolerant system
design through the use of redundant processors and facilities for fine-grained protection so that
each process can consist of many distinct address spaces. This latter feature allows each
software service needed by an application to have its own address space and yet still execute in
the same process as the application. The BiiN™ Operating System, which uses this feature, is
not monolith, as are other operating systems, but rather a collection of services.

The following sections describe those features of the core computing engine that are provided
to streamline code execution and simplify programming. An overview of the extensions added
to this computing engine is provided at the end of the chapter.
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2.2 High Performance Program Execution

Much of the design of the architecture has been aimed at maximizing the processor’s perfor-
mance through the implementation of a high-speed computational unit and through minimizing
the amount of and effect of memory accesses. The following paragraphs describe several of
the mechanisms and techniques used to accomplish this design, including:

e alarge register file

e caching of code and procedural data
e overlapped execution of instructions
e many single-clock instructions

2.2.1 Large Register File

A large register file contributes to performance by allowing variables to be held in registers
and thus reducing the number of memory accesses required to execute a program. A generous
supply of general-purpose registers is provided.

For each procedure, 32 registers are available (28 of which are available for general use).
These registers are divided into two types: "global" and "local". Both these types of registers
can be used for general storage of operands. The only difference is that global registers retain
their contents across procedure boundaries, whereas the processor allocates a new set of local
registers each time a new procedure is called.

2.2.2 On-Chip Caching of Code and Data

To further reduce memory accesses, the architecture offers two mechanisms for caching code
and data on chip: an instruction cache and multiple sets of local registers. The instruction
cache allows prefetching of blocks of instruction from memory, which helps insure that the
instruction execution pipeline is supplied with a steady stream of instructions. It also reduces
the number of memory accesses required when performing iterative operations such as loops.
(The size of the instruction cache can vary. With the processor described in this manual, it is
512 bytes.)

To optimize the architecture’s procedure call mechanism, the processor provides multiple sets
of local registers. This allows the processor to perform most procedure calls without having to
write the local registers out to the stack in memory. The global registers can be used for
parameter passing, and the local registers to hold local variables of a procedures.

(The number of local-régistcr sets provided depends on the processor implementation. The
processor described in this manual provides four sets of local registers.)

2.2.3 Overlapped Instruction Execution
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Another technique that the architecture employs to enhance program execution speed is over-
lapping memory accesses with computational operations. Separate instruction classes allow
this overlapping to occur. For example, all the arithmetic, logic, comparison, branching, and
bit operations are performed with just registers and literals. A set of fast, versatile load and
store instructions are also provided. These instructions allow burst transfers of 1, 2, 4, 8, 12, or
16 bytes of information between memory and the registers.
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Overlapping of memory accesses with computation is accomplished through two mechanisms:
write buffering and register scoreboarding. Write buffering allows a store instruction to com-
plete execution as soon as the operand of the store is transferred to an on-chip write-buffer.
The transfer of the operand to memory can then occur in parallel with the execution of the
instructions following the store.

Register scoreboarding permits instruction execution to continue while data is being fetched
from memory. When a load instruction is executed, the processor sets one or more scoreboard
bits to indicate the target registers to be loaded. After the target registers are loaded, the
scoreboard bits are cleared. While the target registers are being loaded, the processor is al-
lowed to execute other instructions that do not use these registers. The processor uses the
scoreboard bits to insure that target registers are not used until the loads are complete. (The
checking of scoreboard bits is carried out transparently to software.)

2.2.4 Single-Clock Instructions

It is the intent of the architecture that a processor be able to execute commonly-used instruc-
tions such as moves, adds, subtracts, logical operations, and branches in a minimum number of
clock cycles. Thus, over 50 instructions can be executed in a single clock cycle.

To maintain a high-execution rate, it must be possible to decode instructions quickly. All the
instructions in the architecture are 32 bits long and aligned on 32-bit boundaries. This feature
allows instructions to be decoded in one clock cycle. While one instruction is being executed,
the next instruction is being decoded.

2.2.5 Efficient Interrupt Model

The architecture provides an efficient mechanism for servicing interrupts from external
sources. To handle interrupts, the processor maintains an interrupt table of 248 interrupt vec-
tors (240 of which are available for general use). When an interrupt is signaled, the processor
uses a pointer from the interrupt table to perform an implicit call to an interrupt handler proce-
dure. In performing this call, the processor automatically saves the state of the processor prior
to receiving the interrupt; performs the interrupt routine; and then restores the state of the
processor. A separate interrupt stack is also provided to segregate interrupt handling from
application programs.

The interrupt handling facilities also feature a method of evaluating interrupts by priority. The
processor is then able to store interrupt vectors that are lower in priority than the task that the
processor is currently working on in a pending interrupt section of the interrupt table. When
the priority of the processor is lowered, the processor checks the pending interrupts and ser-
vices the highest priority pending interrupt that is above the processor’s priority level.

2.3 Simplified Programming Environment

Partly as a side benefit of its streamlined execution environment and partly by design, proces-
sors based on the architecture are particularly easy to program. For example, the large number
of general-purpose registers allows relatively complex algorithms to be executed with a min-
imum number of memory accesses. The following paragraphs describe some of the other
features for the architecture that simplify programming.
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2.3.1 Highly Efficient Procedure Call Mechanism

The procedure call mechanism makes procedure calls and parameter passing between
procedures simple and compact. Each time a call instruction is issued, the processor automati-
cally saves the current set of local registers and allocates a new set of local registers for the
called procedure. Likewise, on a return from a procedure, the current set of local registers is
deallocated and the local registers for the procedure being returned to are restored. On a
procedure call, the program thus never has to explicitly save and restore those local variables
and parameters that are stored in local registers.

2.3.2 Versatile Instruction Set and Addressing

The selection of instructions and addressing modes also simplifies programming. The ar-
chitecture offers a full set of load, store, move, arithmetic, comparison, and branch instruc-
tions, with operations on both integer and ordinal data types. It also provides a complete set of
Boolean and bit-field instructions, to simplify operations on bits and bit strings.

The addressing modes are efficient and straightforward, while at the same time providing the
necessary indexing and scaling modes required to address complex arrays and record struc-
tures.

The large 4-gigabyte address space provides ample room for programs and data.

2.3.3 Extensive Fault Handling Capability

To aid in program development, the architecture defines a wide selection of faults that the
processor detects, including arithmetic faults, invalid operands, invalid operations, and
machine faults. When a fault is detected, the processor makes an implicit call to a fault handler
routine, using a mechanism similar to that described above for interrupts. The information
collected for each fault allows program developers to quickly correct faulting code. It also
allows automatic fault recovery from some faults.

2.3.4 Debugging and Monitoring

To support debugging systems, the architecture provides a mechanism for monitoring proces-
sor activity by means of trace events. The processor can be configured to detect as many as
seven different trace events, including the instruction execution, branch events, calls, subsys-
tem calls, returns, prereturns, and breakpoints. When the processor detects a trace event, it
signals a trace fault and calls a fault handler.

2.4 System-Support Extensions

The system-support extensions in the architecture are built on top of the processor’s core com-
puting engine. These extensions are summarized in the following paragraphs.

2.4.1 On-Chip Floating Point
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The architecture provides a complete implementation of the IEEE standard for binary floating-
point arithmetic (IEEE 754-185). This implementation includes a full set of floating-point
operations, including add, subtract, multiply, divide, trigonometric functions, and logarithmic
functions. These operations are performed on single precision (32-bit), double precision (64-
bit), and extended precision (80-bit) real numbers.
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One of the benefits of this implementation is that the floating-point handling facilities are
completely integrated into the normal instruction execution environment. Single- and double-
precision floating-point values are stored in the same registers as non-floating-point values. In
addition, to the 32 (global and local) registers, the four floating-point registers are provided to
hold extended-precision values.

2.4.2 String and Decimal Operations

The architecture provides some instructions for moving, filling, and comparing byte strings in
memory. These instructions speed up string operations and reduce the amount of code re-
quired to handle strings.

The decimal instructions perform move, add with carry, and subtract with carry operations on
BCD coded decimals.

2.4.3 Virtual Memory Support

Another of the architecture’s important features is support for virtual memory management.
The processor’s virtual memory mechanism provides each process (or task) with an immediate
address space of up to 232 bytes, an extended address space of up to 28 bytes. An address
space is paged into physical memory in 4K-byte pages. On-chip memory management
facilities handle virtual-to-physical address translation. A on-chip "translation look-aside
buffer” (TLB) speeds address translation by storing virtual-to-physical address translations for
frequently accessed parts of memory, such as the location of the page tables and the location of
often used system data structures.

2.4.4 Multitasking

The architecture offers a variety of process management facilities to support concurrent execu-
tion of multiple processes (also known as tasks in some systems). These facilities can be
divided into two groups: process scheduling and interprocess communication/synchronization.

The processor provides a unique process handling feature called self-dispatching. Here, an
operating system schedules processes by queuing them to a dispatch port. Thereafter, the
processor handles the dispatching, preempting, and rescheduling of the tasks automatically,
independent of the operating system. When using this mechanism, processes can be scheduled
by priority, with up to 32 priority levels to choose from. Scheduling within a priority-level is
handled on a round-robin basis, based on a time-slice associated with each process.

The processor’s interprocess synchronization/communication facilities include support for
semaphores and communication ports. Semaphores allow processes that are sharing a resource
(e.g. a shared data structure) to synchronize their accesses so that only process is accessing the
resource at a time. Semaphores can also be used to signal a process that some event has
ocurred. Ports allow processes to pass information. One process can send messages to a port
while another process can receive messages from the port. The port handles the enqueuing of
messages when when there isn’t a process waiting to receive a message, and the enqueuing of
processes when there aren’t messages to be received.

The Dispatching facility and the interprocess synchronization/communication facilities are
fully integrated. For example, suppose a process executes a Receive instruction on an empty
port. The execution of the process is suspended, the process is enqueued on the port, the
processor goes to its dispatch port to dequeue the highest priority process, loads the state of
this process on-chip, and then executes it. This entire sequence of operations is handled with-
out any operating system intervention.
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The BiiN™ Operating System uses these same facilities for its own synchronization. Unlike
operating systems on other computers, there is no need for the BiiN™ Operating System to
mask-out interrupts for synchronization purposes. - In effect, the operating system can stay out
of the way of processes and interrupt routines that need very fast real-time responsiveness.

2.4.5 Multiprocessing

The architecture provides several mechanisms designed to simplify the design of multiple
processor systems, allowing several processors to run in parallel, using shared memory
resources. One of these mechanisms is described above.

All the processors in a system can share the same dispatch port so that the processing load is
automatically load-balanced across all processors. The communication/synchronization
mechanisms were designed to work in a multiple-processor environment. Because these
mechanisms are implemented directly in the silicon, multiprocessing is more efficient on
BiiN™ systems than on other computer systems.

The processor also provides an "interagent communication" (IAC) mechanism that allows
processors to exchange messages among themselves on the bus. This mechanism operates
similarly to the interrupt mechanism, except that IAC messages are passed through dedicated
memory-mapped registers on the system bus. The IAC mechanism can be used to preempt
processes running on another processor, to manage interrupt handling, or to control (start, stop,
resume) another processor.

A set of atomic instructions are also provided to perform atomic modifications to a memory
location. For example, the atmod instruction can be used to set one or more bits in a memory
word. The value of the memory location before the modification is a result operand.

2.4.6 Fault Tolerance

The architecture supports fault-tolerant system design through the use of a BiiN™ system ar-
chitecture component called the Bus Extension Unit (BXU). Ina BiiN" system, a processor
module consists a processor, 2a BXU, and an external cache (consisting of SRAM chips). The
directory for this cache is on the BXU, which also takes care of cache coherency in a mul-
tiprocessor configuration. The BXU connects to the system bus so that processor data flows
through the BXU to the system bus and then to main memory.

Two processor modules can be configured to work independently or as a "fault-checking
module”. In the latter case, one module is refered to as the "master” and the other as the
"checker". The master and checker operate in lock-step executing the identical instruction
sequence. The principal difference between master and checker occurs in putting data onto the
system bus. The BXU in the master module puts data onto the system bus, but the checker
does not; instead, the checker compares the data output by the master with the data it would
have put out (if it was the master). If the data does not match, an error is signalled in time for
the memory unit to suppress the memory write. The role of master/checker are switched op
every clock cycle so that a checker failure does not go undetected.

This fault detection mechanism supports several fault detection and recovery techniques, in-
cluding self-healing, and continuous-operation systems. For a more in depth overview, see the
BiiN™ Systems Overview.
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2.4.7 Support for Reliable and Secure System Software

Most computer architectures employ a supervisor/user protection scheme. In this scheme, a
process has two address spaces, one for the user/application, and one for the operating system.
Each process can have a different user address space. Some other architectures have general-
ized this scheme to provide more than 2 address spaces per process; for example, the Intel 286
and 386 architectures support 4 address spaces per process, labelled 0 through 3. Address
space O typically contains the operating system kernel and address space 3 the user application.
The other 2 address spaces are can be used by higher-level operating system services or other
system services (e.g. a DBMS). These address spaces are hiearchical, with repect to acces-
sibility. For example, a procedure executing in address space 1 has complete access to address
spaces 1, 2, and 3.

The BiiN™ processor provides a more fine-grained protection scheme. The number of address
spaces per process is effectively unlimited. Furthermore, each address space is independent of
the others so that execution in one address space does not imply implicit access to another.
The processor provides efficient call/return instructions for switching address spaces. A
program can also pass selective access to part of its address space to a procedure in a different
address space.

This protection scheme is used in BiiN™ systems to provide reliable and secure system
software. For example, the BiiN™ Operating System is a collection of protected services,
compared with the monolithic nature of other commercial operating systems. This scheme
also allows new services to be easily added without compromising the reliability and security
of established services, because the new service would execute in its own address space and
would not be able to corrupt any other services.

2.5 Addressing and Protection

The "virtual address space” of a BiiN™ system is made up of objects. An "object" is a typed,
protected segment of memory. The size of an object can be a small as 64 bytes and as large as
232 bytes (over 4 Gigabytes). Objects that are bigger than 4,096 bytes are paged so that only
the actively referenced parts of an object need be in physical memory. The virtual address
space of a BiiN™ system can contain up to 226 (more than 64 million) objects. Thus, the
processor can address up to 28 bytes of virtual memory.

2.5.1 How are Objects Referenced?

An "access descriptor" (AD) is a protected pointer to an object. The only way to reference an
object is via an AD.

In most computer systems, a pointer is simply an arbitrary bit pattern used as an address. Such
pointers can be corrupted without detection by the hardware or OS. ADs are specially tagged
memory words that can only be created or modified in carefully controlled ways. A memory
word in a BiiN™ computer system is actually 33 bits, the 33rd bit being the tag bit that distin-
guishes ADs from data. Changing an AD in an unauthorized way invalidates the AD (by
turning off the tag bit).

An AD contains both addressing information, used to find the object in memory, and also
access rights, that indicate what operations are possible with the AD (Figure 2-1).
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Figure 2-1. AD and Object

There are five access rights stored in each AD:

Read rep rights  Required to read an object’s representation. This right is checked and
enforced by the processor on every read access.

Write rep rights ~ Required to write an object’s representation. This right is checked and
enforced by the processor on every write access.

Three type rights Required for type-specific operations. These rights can be defined dif-
ferently and renamed for each type of object. These rights are checked and
- enforced by the processor on instructions that manipulate a hardware-
recognized type (e.g. port, semaphore, process). In all other cases, these
rights are checked and enforced by software.

Different users or programs may have ADs with different rights to the same object. Mary may
have an AD with both read and write rights to an object and John may have an AD with only
read rights.

To reference a particular field within an object, a program can use a two-part virtual address: a
32-bit offset to a byte within the object plus an AD to the object.

2.5.2 Address Spaces Within a Program
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A BiiN™ program can be partitioned into multiple protected modules (referred to as
"subsystems"), each with its own "linear address space" or "domain". See Figure 2-2. A linear
address space contains up to 232 bytes mapped onto four objects by the processor: static data,
instructions, stack, and a special object used only by the OS. Each domain provides access to0 a
particular collection of objects that can be reached from the objects mapped by its linear ad-
dress space. Only those program modules with a "need to know" about a particular object have
access to it, and then only have the access rights that they need. For example, each software
service can be placed in its own domain.
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Figure 2-2. Linear Address Space and Domain
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The memory access instructions (e.g. Load, Store) of the processor support both virtual ad-
dressing and linear addressing. A virtual address is 2 words and consists of an AD and a 32-bit
offset. A linear address is 1 word (32 bits). The high-order 2 bits select one of the four objects
that make-up the current linear address space. The low-order 30 bits specify a byte displace-
ment into the selected object.

When one domain calls a routine in another domain, switching address spaces is done by the
processor, as part of a inter-subystem call.

BiiN™ programmers can choose either a one-domain (linear) or multiple-domain (structured)
organization for their programs:

e A program that does not use object-based protection can be compiled entirely into one
domain. Because there is a single linear address space for the entire program, linear ad-
dresses can be used for pointers. This is the typical approach used in porting programs
from other computer systems over to BiiN™ systems. _

e A program that uses object-based protection can be compiled into multiple domains. Be-

cause linear addresses are only valid within a particular domain, ADs or virtual addresses
are normally used for pointers.

The organization of modules into domains can be varied to trade greater protection for greater
execution speed. For example, inter-related software services can be grouped into the same
domain.
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2.5.3 Three-Fold Protection

Each object in a BiiN™ system is protected in three ways, as shown in Figure 2-3:

Limited access: Only those modules with a "need-to-know" can reference the object.

Type checking: If an object’s type is not the proper type required by an operation, then the
operation fails.

Right checking: If the AD used does not have rights that allow the operation, then the
operation fails.

All objects in a system.

LIMITED ACCESS:

Object accessible to the current
subprogram call.

gj=ngl

TYPE CHECKING:

Accessible abjects with the
correct fype for the operation.

RIGHTS CHECKING:

‘Accessible objects with the
correct type and accessed
with the correct rights for the
operation.

DDD

Figure 2-3. Three-Fold Object Protection
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DATA TYPES AND ADDRESSING MODES

This chapter describes the available data types and addressing modes.

3.1 Data Types
The following data types are recognized:

Integer (8, 16, 32, and 64 bits)
Ordinal (8, 16, 32, and 64 bits)
Real (32, 64, and 80 bits)
Decimal (ASCII digits)

Bit Field

Byte String

Triple-Word (96 bits)
Quad-Word (128 bits)

Access Descriptor

The integer, ordinal, real, and decimal data types can be thought of as numeric data types
because some operations on these data types produce numeric results (for example, add and
subtract).

The bit field, byte string, triple-word and quad-word data types represent groupings of bits,
bytes, or words that can be operated on as a whole, regardless of the nature of the data con-
tained in the group. These data types facilitate the moving of blocks of bits or bytes.

The access descriptor (AD) data type is a special data type that is used in conjunction with
objects. The AD data type is described in Chapter 8.

3.1.1 Integers

Integers are signed whole numbers, which are stored and operated on in two’s-complement
format. Four sizes of integers are available: 8 bit (byte integers), 16 bit (short integers), 32 bit

(integers), and 64 bit (long integers). Figure 3-1 shows the formats for the four integer sizes

and the ranges of values allowed for each size.

Data Types and Addressing Modes
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SIGN

8 BYTE
BITS INTEGER

SIGN

16 SHORT INTEGER

BITS
18 0
SIGN
32
BITS INTEGER
31 [}
SIGN
B?':S LONG INTEGER
€3 ]
DATA TYPE RANGE DECIMAL EQUIVALENT
BYTE INTEGER -27 to 27 -1 -128 to 127
SHORT INTEGER —2" to 2 —1 -32,768 to 32,767
INTEGER —2%to 2" -1  ~ —2.14 x 10°to ~2.14 x 10°
LONG INTEGER —2%to 2% -1 ~-9.22 x 10™to ~9.22 x 10"
Figure 3-1. Integer Format and Range
3.1.2 Ordinals

Four sizes of ordinals are available: 8 bit (byte ordinals), 16 bit (short ordinals), 32 bit
(ordinals), and 64 bit (long ordinals). Figure 3-2 shows the formats for the four ordinal sizes
and the ranges of values allowed for each size.
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8 BYTE
BITS ORDINAL
7 [¢]
16
BITS SHORT ORDINAL
15 0
32
BITS ORDINAL
31 0
64
8ITS LONG ORDINAL
63 o]
DATA TYPE RANGE DECIMAL EQUIVALENT
BYTE ORDINAL 0 to 2% — 1 0 to 255
SHORT ORDINAL 0 to 2"™—- 1 0 to 65,535
ORDINAL 0 to 22— 1 0 to ~4.29 x 10°
LONG ORDINAL 0 to 2%- 1 0 to ~1.84 x 10"

Figure 3-2. Ordinal Format and Range

Ordinals can be used for both numeric and non-numeric operations. For numeric operations,
ordinals are treated as unsigned whole numbers. Some arithmetic instructions operate on or-
dinals. For non-numeric operations, ordinals contain bit fields, byte strings, and Boolean
values.

When ordinals are used to represent Boolean values, a 1 represents a TRUE and a 0 represents
a FALSE.

3.1.3 Reals

Reals (also known as floating-point numbers) are one of three sizes: 32 bit (reals), 64 bit (long
reals), and 80 bit (extended reals). The real-number format conforms to ANSI/IEEE Std.
754-1985, the IEEE Standard For Binary Floating-Point Arithmetic. Real numbers are dis-
cussed in Chapter 5.

3.1.4 Decimals

Three instructions perform operations on decimal values when the values are presented in
ASCII format. Figure 3-3 shows the ASCII format for decimal digits. Each decimal digit is
contained in the least-significant byte of an ordinal (32 bits). The decimal digit must be of the
form 0011dddd,, where dddd, is a binary-coded decimal value from O to 9. For decimal
operations, bits 8 through 31 of the ordinal containing the decimal digit are ignored.
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ASCIl FORMAT

001 1dddd

31 7 0

Figure 3-3. Decimal Format

3.1.5 Bits and Bit Fields

Several instructions perform operations on individual bits or fields of bits within an ordinal (32
bit) operand. Figure 3-4 shows these data types.

BIT FIELD

|
T
LENGTH | BIT NUMBER OF

LOWEST— NUMBERED BIT
Figure 3-4. Bits and Bit Fields

31 { o]

An individual bit is specified for a bit operation by giving its bit number in the ordinal in
which it resides. The least-significant bit of a 32-bit ordinal is bit 0; the most-significant bit is
bit 31.

A bit field is a contiguous sequence of bits of from O to 32 bits in length within a 32-bit
ordinal. A bit field is defined by giving its length in bits and the bit number of its lowest-
numbered bit.

3.1.6 Byte String

A byte string is a contiguous sequence of byte ordinals. The length of a byte string is the
number of bytes in the string; a length of zero specifies an empty string. The maximum length
of a byte string is 232 - 1 bytes.

Byte-string operations are performed on byte strings in memory. The address of a byte string
is the address of the first byte in the string. Consecutive bytes of the string are stored in
increasing byte addresses.

3.1.7 Triple and Quad Words

34

Triple and quad words refer to consecutive bytes in memory or in registers: a triple word is 12
bytes and a quad word is 16 bytes. These data types facilitate the moving of blocks of bytes.
The triple-word data type is useful for moving extended-real numbers (80 bits).

The quad-word instructions (1dgq, stq, and movq) offer the most efficient way to move large
blocks of data.
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3.2 Byte, Word, and Bit Addressing

Some instructions move blocks of data from memory to registers (load) and from registers to
memory (store). The allowable sizes for blocks are bytes, half-words (2 bytes), words (4
bytes), double words, triple words, and quad words. For example, the stl (store long) instruc-
tion stores an 8-byte (double word) block of data in memory.

When a block of data is stored in memory, the least-significant byte of the block is stored at a
base memory address and the following bytes are stored at successively higher addresses.

When loading a byte, half-word, or word from memory to a register, the least-significant bit of
the block is always loaded in bit 0 of the register. When loading double words, triple words,
and quad words, the least-significant word is stored in the base register. The following words
are then stored at successively higher-numbered registers. Double words, triple words, and
quad words must also be aligned in registers to natural boundaries as described in Section
6.2.4.

Bits can only be addressed in data that resides in a register. BitOina register is the least-
significant bit and bit 31 is the most-significant bit.

This numbering of bits within bytes, bytes within words, and words within multiwords is
sometimes referred to as "little-endian”.

3.3 Addressing Modes

This section provides a summary of the addressing modes available for operands of instruc-
tions. Detailed information (including memory representation) may be found in Chapter 17.

3.3.1 Literals and Registers

The majority of the instructions are register-to-register operations (denoted as a "REG"-format
instruction). These instructions usually take three operands (two sources and a destination),
although some instructions use fewer operands. Registers are described in Chapter 6.

The REG-format instructions may also use small literal values in place of a register desig-
nation. Literal values are restricted to integer or unsigned values that can be represented in
five bits (-16 through 15 for signed integers, O through 31 for unsigned), or the floating-point
constants +0.0 and +1.0.

3.3.2 Memory Access

Some of the remaining instructions transfer values between registers and memory (denoted as
"MEM"-format instructions). These instructions may use any of the following addressing
modes:

e register indirect: a register contains the target address.

e register indirect with displacement: a constant is added to a register to compute the target
address.

e register indirect with index: two registers are added (after an optional scaling of the
second "index" register) to compute the target address.

e register indirect with index and displacement: similar to register indirect with index,
with an additional constant added to the result to compute the target address.
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e absolute: the instruction contains the target address.

e absolute with index: similar to register indirect with index, but a literal constant provides
the base address.

o IP with displacement: the target address is computed as an offset from the current instruc-
tion pointer (IP).

The first four addressing modes (those that are "register indirect" plus something) may be used
with either a linear address or a virtual address. (The remaining addressing modes may be
used with only linear addresses.) A linear address is a conventional address, viewing the
address space immediately accessible to the process as a contiguous sequence of bytes. A
virtual address is a pair of values: an access descriptor denoting an object, and an offset from
the beginning of that object. See Chapter 8 for details.

Data Types and Addressing Modes .
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INSTRUCTION SET SUMMARY

This chapter provides an overview of the instruction set. Chapter 18 gives detailed descrip-
tions of each instruction.

4.1 Instruction Groups

The instruction set is made up of the following groups of instructions:

e Data Movement

e Address Computation

e Arithmetic (Ordinal, Integer and Floating Point)
e Decimal

e Logical

e Bit and Bit Field

e Comparison

e String

e Conversion

e Branch

e (Call/Return

e Execution Environment Management
e Debug

e Object Management

e Atomic

e Process Management

The following sections give a brief overview of the instructions in each of these groups. The
floating-point instructions are described in Chapter 5.

4.2 Data Movement

The data-movement instructions include those instructions that move data from memory to the
general registers; that move data from the general registers to memory; and that move data
among the general registers.
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4.2.1 Load

The four types of load instructions are load, load virtual, load mixed, and load virtual mixed.
The load and load virtual instructions load general data (words that are not ADs) from memory
to registers; the load mixed and load virtual mixed instructions move words that contain either
ADs or general data.

4.2.1.1 Load (Linear)
Idib load byte integer
ldob load byte ordinal
Idis load short integer
1dos load short ordinal
1d load
1dl load long
Idt load triple
ldq load quad

The load instructions copy the values from the linear address space to the destination general
registers. For the 1d, 1dob, ldos, 1dib, and 1dis instructions, a linear address and a destination
register are specified and the value at the given address in memory is copied into the register.
Zero and sign extending is performed automatically for byte and short (half-word) operands;
meaning that ordinals are zero-padded to the length of the destination operand, and integers are
sign-extended to the length of the destination operand. '

The 1d, 1dl, Idt, and 1dq instructions copy 4, 8, 12, and 16 bytes from a linear address into
successive registers.

NOTE

When using the load, store, and move instructions that move 8, 12, or 16 bytes at a time,
the rules for register alignment must be followed. Refer to Section 6.2.4 for a discussion
of these rules.

For the load instructions, the tag bits in the registers are always zeroed.

4.2.1.2 Load Virtual
ldvib load virtual byte integer
ldvob load virtual byte ordinal
ldvis load virtual short integer
Idvos load virtual short ordinal
ldv load virtual
1dvl load virtual long
1dvt load virtual triple
ldvq load virtual quad

The load virtual instructions copy values from any accessible object, which may be outside the
current linear address space, into the registers.

The source operand specifies a virtual address (AD for an object and an offset into the object)
and the destination operand specifies the register (or first register of a group of registers) to
receive the values. The load virtual instructions are essentially the same as the load instruc-
tions, except that they allow values to be loaded from any object specified with a valid AD.
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For the load virtual instructions, the tag bits in the registers are always zero.

Object addressing is described in Chapter 8. The virtual addressing modes are described in

Chapter 17.
4.2.1.3 Load Mixed
ldm load mixed
ldml load mixed long
ldmq load mixed quad
The load mixed instructions perform the same functions as the load instructions, except that
the tag bits are also copied.
4.2.1.4 Load Virtual Mixed
1dvm load virtual mixed
ldvmli load virtual mixed long
ldvinq load virtual mixed quad

The load virtual mixed instructions perform the same functions as the load virtual instructions,
except that the tag bits are also copied.

4.2.2 Store

For each load instruction there is a corresponding store instruction, which copies a value from
the source registers to memory.

4.2.2.1 Store (linear)
stib store byte integer
stob store byte ordinal
stis store short integer
stos store short ordinal
st store
stl store long
stt store triple
stq store quad

The store instructions copy the source registers (with the tag bits set to zero) into the linear
address space. For the st, stob, stos, stib, and stis instructions, a register and linear address are
specified and the value in the register is copied into memory. For the byte and short instruc-
tions, the value in the register is truncated for the shorter memory location. For the stib and
stis instructions, the truncation can lead to integer overflow if the register value is too large to
be represented in the shorter memory location.

The st, stl, stt, and stq instructions copy 4, 8, 12, and 16 bytes from successive registers into

memory.

4.2.2.2 Store Virtual
stvib store virtual byte integer
stvob store virtual byte ordinal
stvis store virtual short integer
stvos store virtual short ordinal
stv store virtual
stvl store virtual long
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stvt store virtual triple
stvq store virtual quad
The store virtual instructions copy the source registers (with the tag bits set to zero) to any
object with a valid AD.
4.2.2.3 Store Mixed
stm store mixed
stml store mixed long
stmq store mixed quad

The store mixed instructions copy ADs, general data, or a mixture of the two from registers to
the current linear address space. The destination tag bits are copied from the source tag bits;
meaning that ADs are copied as ADs, and data values are copied as data values.

4.2.2.4 Store Virtual Mixed

stm store mixed

stml store mixed long

stmq store mixed quad

stvin store virtual mixed

stvinl store virtual mixed long

stvinq store virtual mixed quad
The store virtual mixed instructions copy ADs, general data, or a mixture of the two from
registers to any object.

4.2.3 Move

The move instructions copy values from a register or group of registers (or small literals) to
another register or group of registers.

mov move word
movl move long word
movt move triple word
movq move quad word

The move (data) instructions zero the tag bit in the destination register or registers.

movm move mixed word
movml move mixed long word
movmq move mixed quad word

The move mixed instructions copy the tag bit during the move, meaning that ADs remain ADs,
and data values remain data values.

4.2.4 Address Computation

1da load address
cvtadr convert address

The Ida instruction computes an effective address using one of the addressing modes. A
frequent use of this instruction is to load a constant into a register, or to add a large constant to
a register.
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The cvtadr instructions translates a linear address into a virtual address. The resulting address
consists of the AD for the region that contains the linear address and the offset into that region.

4.3 Arithmetic

Table 4-1 lists the arithmetic instructions and the data types on which those instructions
operate. An "X" in this table indicates that an instruction is provided for the specified opera-
tion and data type. An "*" indicates that the specified operation can be performed on the
specified data type, but that a unique instruction for this operation is not provided. For ex-
ample, a specific instruction is not provided that allows two extended-real values to be added
together. However, this operation can be carried out with either the add real (addr) or the add
long real (addrl) instruction. A "N/A" in this table indicates that the operation is not ap-

propriate for the data type.
' Table 4-1. Arithmetic Operations

3?:33%&: Integer Ordinal Real Ilioe:F Il%xe:nded
Add X X X X *
Subtract X X X X *
Multiply X X X X *
Divide X X X X *
Remainder X X X X *
Modulo X

Shift Left X X

Shift Right X X

By X

Scale N/A N/A X X *
Round N/A N/A X X *
Square Root N/A N/A X X .
Sine N/A N/A X X *
Cosine N/A N/A X X *
Tangent N/A N/A X X *
Arctangent N/A N/A X X .
Exponent N/A N/A X X *
Log N/A N/A X X *
Log Binary N/A N/A X X *
Log Epsilon N/A N/A X X *
Classify N/A N/A X X .
Copy Sign N/A N/A . * X
g{g]ykevened N/A N/A . * X

A summary of the arithmetic instructions for real (floating-point) data types is provided in
Chapter 5. The following sections describe the arithmetic instructions for ordinal and integer
data types.
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Arithmetic instructions are generally "three-operand"” instructions, specifying two source
operands and a destination operand. Exceptions are noted in Chapter 17.

4.3.1 Add, Subtract, Multiply, and Divide

addi add integer
addo add ordinal
subi subtract integer
subo subtract ordinal
muli multiply integer
mulo multiply ordinal
divi divide integer
divo divide ordinal

These instructions operate on 32-bit integer or ordinal operands in registers (or small literals)
and store the results in a register. The integer versions generate an integer overflow if the
result is outside the range of the destination.

4.3.2 Extended Arithmetic

addc add ordinal with carry
subc subtract ordinal with carry
emul extended multiply

ediv extended divide

The addc and subc instructions add or subtract two operands and a carry bit (in the condition
code). If the result generates a carry, the carry bit in the condition code is set. Also, a second
condition code bit is set if the operation would have resulted in an integer overflow condition.

These instructions treat the operands as ordinals; however, the indication of overflow in the
condition code facilitates a software implementation of extended-integer arithmetic.

The emul instruction multiplies two ordinals (each contained in a register), producing long
ordinal result (stored in two registers). The ediv instruction divides a long ordinal by an
ordinal, producing an ordinal quotient and an ordinal remainder.

4.3.3 Remainder and Modulo

remi remainder integer
remo remainder ordinal
modi modulo integer

The difference between the remainder and modulo instructions lies in the sign of the result.
For the remi and remo instructions, the non-zero remainder has the same sign as the dividend;
for the modi instruction, the non-zero modulo has the same sign as the divisor.

4.3.4 Shift and Rotate
shlo shift left ordinal
shro shift right ordinal
shli shift left integer
shri shift right integer
shrdi shift right dividing integer
rotate rotate left ordinal
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In shlo and shli, zeroes are shifted in from the least significant bit. If the bits shifted out in shli
are not the same as the sign bit, an integer overflow exception is generated. In shro, zeroes are
shifted in from the most significant bit. In shri and shrdi, the value of the sign bit is shifted in
from the most significant bit. The shri instruction discards the bits shifted out which has the
effect of rounding the result toward negative. Hence, the shri may generate different result
than divi by 2 when the operand is negative. The shrdi corrects the result, by adding 1 to the
result, if the bits shifted out are non-zero and the operand is negative.

Shli and shrdi instructions are equivalent to muli and divi by two.

The rotate instruction rotates the bits of the operand to the left (toward the most-significant
bit) by a specified number of bits. Bits shifted beyond the left boundary of the register (bit 31)
appear at the right boundary (bit 0).

4.4 Decimal

dmovt move and test decimal
daddc decimal add with carry
dsubc decimal subtract with carry

These instructions operate on 32-bit decimal operands that contain an 8-bit, ASCII-coded
decimal in the least-significant byte of the word (as shown in Figure 3-3).

The dmovt instruction moves a decimal operand from one register to another and tests the least
significant byte of the operand to determine if it is a decimal digit (0 to 9). It sets the condition
code according to the results of the test: 010, if the operand contains a decimal digit and 000,
otherwise.

The daddc and dsubc instructions operate similarly to the addc and subc instructions. They
add or subtract two decimal digits plus bit 1 of the condition code (used as a carry-in bit). If
the operation produces a decimal carry, the condition code is set accordingly. The subtraction
operation is carried out in ten’s-complement arithmetic.

4.5 Logical
and Aand B
notand (not A) and B
andnot A and (not B)
xor not (A =B)
or AorB
nor (not A) and (not B), not (A or B)
xnor A=B
not notA
notor (not A)orB
ornot A or (not B)
nand (not A) or (not B), not (A and B)

These instructions provide logical bit-by-bit operations on the values contained in the registers
(or small literals).
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4.6 Bit and Bit Field

The bit instructions perform operations on a specific bit in an ordinal operand or on a bit field.

4.6.1 Bit Operations

setbit set bit

cIrbit clear bit
notbit not bit
chkbit check bit
alterbit alter bit
scanbit scan for bit
spanbit span over bit

The setbit, clrbit, and notbit instructions set, clear, or complement (toggle) a specified bit in
an ordinal.

The chkbit instruction causes the condition code to be set according to the state of a specified
bit in a register. The condition code is set to 010, if the bit is set and 000, otherwise.

The alterbit instruction alters the state of a specified bit in an ordinal according to the con-
dition code. If the condition code is x1x,, the bit is set; if the condition code is x0x,, the bit is
cleared.

The scanbit and spanbit instructions find the most significant set bit and clear bit, respec-
tively, in an ordinal.

4.6.2 Bit Field Operations

extract Extract bit field
modify Modify bit field

The extract instruction converts a specified bit field, taken from an ordinal value, into an
ordinal value. In essence, this instruction shifts a bit field in a register to the right and fills in
the bits to the left of the bit field with zeros.

The modify instruction copies bits from one register, under control of a mask, into another
register. Only the masked bits in the destination register are modified.

4.7 Comparison

Several types of instructions may be used to compare two operands. The following sections
describe the compare instructions for ordinal, integer, and AD data types. The compare in-
structions for real data types are discussed in Chapter 5.

4.7.1 Compare and Conditional Compare

4-8

cmpi compare integer
cmpo compare ordinal
concmpi conditional compare integer
concmpo conditional compare ordinal

The compare instructions compare two operands, then set the condition code according to the
result. The condition code is set to indicate whether one operand is less than, equal to, or
greater than the other operand.
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The cmpi and cmpo instructions simply compare the two operands and set the condition code
accordingly.

The concmpi and concmpo instructions first check the status of bit 2 of the condition code. If
it is not set, the operands are compared as with the cmpi and cmpo instructions. If bit 2 is set,
no comparison is performed and the condition code is not changed.

The conditional compare instructions are provided specifically to optimize two-sided range
comparisons to check if A is between B and C (thatis, BSA < C). Here, a compare instruc-
tion (cmpi or cmpo) is used to check one side of the range (for example, A 2 B)and a
conditional compare instruction (concmpi or concmpo) is used to check the other side (for
example, A < C) according to the result of the first comparison.

4.7.2 Compare and Increment or Decrement

cmpinci compare and increment integer
cmpinco compare and increment ordinal
cmpdeci compare and decrement integer
cmpdeco compare and decrement ordinal

These instructions compare two operands, set the condition code according to the results, then
increment or decrement one of the operands. These instructions are intended for loop end

comparisons.
4.7.3 Compare Mixed
cmpm compare mixed
chktag check tag

The compare instructions described above do not check the tag bits of the operands: they are
assumed to be 0. When the state of the tag bit is important in a comparison, the compare
mixed instruction (cmpm) is used. This compares two words for either access equality (if the
words are both ADs) or data equality (if the words are both general data words).

For example, if the two words are ADs (their tag bits are set to 1), the processor compares the
object index field for each word. If the ADs point to the same object, the condition code bits
are set to 010,. Likewise, if the two words are data words (their tag bits are set to 0), the
processor performs a bit-by-bit comparison of the two words, and if the words are equivalent,
the condition code bits are set to 010,.

If the tag bits of the two words are different, or if the object indices or word values are
different, the condition code is set to 000,.

The chktag instruction checks the tag bit of an operand and set the condition code bits to 010,
if the tag bit is 1 and 000, if the tag bit is 0.

4.8 String
movstr move string
movgstr move quick string -
fill fill string
cmpstr compare string

scanbyte scan byte equal
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The movstr and movgstr instructions move a byte string from one location in memory to
another. These instructions operate identically except that the movstr instruction guarantees
that if the strings overlap, no byte in the source string is overwritten until it is copied to the
destination string.

The fill instruction copies an ordinal operand repeatedly into a byte string in memory.

The cmpstr instruction compares two byte strings of equal length, and then sets the condition
code to show whether or not the strings are identical.

The scanbyte instruction performs a byte-by-byte comparison of two ordinals to determine if
any two corresponding bytes are equal. The condition code is set according to the results of
the comparison.

4.9 Conversion

cvtri convert real to integer

cvtril convert real to integer long

cvtzri convert truncated real to integer
cvtzril convert truncated real to integer long
cvtir convert integer to real

cvtilr convert integer long to real

These instructions'convert data between integers and floating-point numbers (reals). They are
discussed in detail in Chapter 5. _

4.10 Branch

The branch instructions allow the program flow to be altered by explicitly modifying the IP.
The processor provides three types of branch instructions:

e unconditional branch

e conditional branch

e compare and branch

Most of the branch instructions specify the target IP with a signed displacement to be added to

the current IP. Extended branch instructions specify the memory address of the target IP using
one of the addressing modes.

4.10.1 Unconditional Branch

4-10

b Branch

bx Branch Extended

bal Branch and Link

balx Branch and Link Extended

The b and bx instructions cause program execution to jump to the specified target IP.

The bal and balx instructions store the address of the next instruction in a register, then jump
to the target IP. For the bal instruction, the RIP is automatically stored in register G14. For
the balx instruction the RIP is stored in the destination register of the instruction. As described
in Chapter 7, the branch and link instructions provide a alternate method of performing proce-
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dure calls that do not use the processor’s call/return mechanism. The saved instruction address
is used as a return IP.

The bx and balx instructions can be made IP-relative by using the IP with displacement ad-
dressing mode.

4.10.2 Conditional Branch

With the conditional branch (branch if) instructions, the processor checks the condition code.
If the condition code "matches" the mask value specified in the instruction, the processor
jumps to the target IP. These instructions use the displacement plus IP method of specifying

the target IP:
be branch if equal
bne branch if not equal
bl branch if less
ble branch if less or equal
bg branch if greater
bge branch if greater or equal
bo branch if ordered
bno branch if unordered

Refer to Section 6.4 for an explanation of the condition-code bits.

The bo and bno instructions refer to comparisons of real numbers. Ordered and unordered real
numbers are described in Chapter 5.

4.10.3 Compare and Branch

The compare and branch instructions compare two operands, then branch according to the
results. There are three subtypes of instructions in this group: compare integer, compare
ordinal, and check bit.

cmpibe compare integer and branch if equal

cmpibne compare integer and branch if not equal
cmpibl compare integer and branch if less

cmpible compare integer and branch if less or equal
cmpibg compare integer and branch if greater
cmpibge compare integer and branch if greater or equal
cmpibo compare integer and branch if ordered
cmpibno compare integer and branch if unordered
cmpobe compare ordinal and branch if equal
cmpobne compare ordinal and branch if not equal
cmpobl compare ordinal and branch if less

cmpoble compare ordinal and branch if less or equal
cmpobg compare ordinal and branch if greater
cmpobge compare ordinal and branch if greater or equal
bbs check bit and branch if set

bbc check bit and branch if clear

With the compare-ordinal-and-branch and compare-integer-and-branch instructions, two
operands are compared and the condition code is set, as with the compare instructions
described earlier in this chapter. A conditional branch is then executed as with the conditional
branch (branch if) instructions.
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With the check-bit-and-branch instructions, one operand specifies a bit to be checked in the
other operand. The condition code is set according to the state of the specified bit (that is, 010,
if the bit is set and 000, if the bit is clear). A conditional branch is then executed according to
the setting of the condition code.

4.10.4 Conditional Faults

faulte fault if equal

faultne fault if not equal

faultl fault if less

faultle fault if less or equal
faultg fault if greater

faultge fault if greater or equal
faulto fault if ordered
faultno fault if unordered

The conditional fault instructions generate a fault according to the state of the condition code.

For further information about faults and fault-related instructions, see Chapter 10.

4.10.5 Conditional Tests

teste test if equal

testne test if not equal

testl test if less

testle test if less or equal
testg test if greater

testge test if greater or equal
testo test if ordered

testno test if unordered

These instructions cause a TRUE (value 1) to be stored in a destination register if the condition
code matches the mask specified in the instruction. Otherwise, a FALSE (value 0) is stored in
the register.

4.11 Call and Return

The call/return mechanism makes calls to procedures; these procedures may be located in the
current linear address space (a "local" call), or in another linear address space (a "subsystem"
call). The local call/return mechanism is described in detail in Chapter 6, while the subsystem
call/return mechanism is described in detail in Chapter 7.

call call

callx call extended
calld call domain
calls call system
ret return

The call and callx instructions call local procedures (procedures in the current linear address
space). The call instruction specifies the target procedure by adding a signed displacement to
the IP. The callx instruction uses an address mode to specify the target procedure. For these
instructions, a new set of local registers and a new stack frame are allocated for the called
procedure.
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The calld instruction calls a procedure in another subsystem. This instruction switches to
another linear address space. One of the operands for this instruction specifies a special data
structure called a domain object. The domain object specifies the ADs for regions 0, 1, and 2
of the target linear address space. (Region 2 is selected indirectly by means of a subsystem
ID.) The domain object also provides a procedure table, which contains pointers to procedures
in the selected subsystem. Another operand in the calld instruction selects a procedure entry
from the procedure table.

The calls instruction operates similarly to the calld instruction, except that the system domain
is used instead. The system domain is a special domain that is shared by all processes.

The ret instruction performs a return from a called procedure to the calling procedure (the
procedure that made the call). This instruction obtains its target IP (return IP) from linkage
information that was saved for the calling procedure. The ret instruction is used to return from
local, subsystem, supervisor, and from implicit calls to interrupt and fault handlers.

4.12 Execution Environment Management

modac modify arithmetic controls
flushreg flush local registers :
ldcsp load control-stack pointer

The modac instruction modifies the arithmetic controls register under the control of a mask.
See Section 6.4 for details.

The flushreg instruction stores the contents of all the local register sets, except the current set,
in the register save area of their associated stack frames, and forces these register sets to be
restored from memory upon return. This is necessary in order to access or modify the value of
a local register in a previous frame. If this instruction is not executed, accessing a previous
stack frame may not necessarily access the corresponding local register value, since some stack
frames are cached. See Appendix B for details.

The subsystem procedure mechanism maintains extra linkage information in a special stack
called the "control stack”. (The control stack is contained in a per-process environment table
and is described in Section 7.3.3.) An on-chip control stack pointer is maintained for the
control stack of the current process. The ldcsp instruction returns the current control stack
pointer independent of whether the value is on-chip or not.

4.13 Debug

Debugging and monitoring of program activity is supported through the use of trace events.
The following instructions support these debugging and monitoring tools:

modtc modify trace controls
mark mark
fmark force mark

The trace functions are controlled through the process trace controls for the current process.
Some of the trace-control bits allow various types of tracing to be enabled or disabled. Other
bits act as flags to indicate when an enabled trace event has been detected. Trace controls are
described in Chapter 11.

Instruction Set Summary 4-13



PRELIMINARY

The modtc instruction modifies the bits in the process trace controls.

The mark instruction generates a breakpoint trace event if the breakpoint trace mode is en-
abled. The fmark instruction generates a breakpoint trace event independent of the state of the
breakpoint trace mode flag. These two instructions allow a breakpoint to be placed anywhere

in a program.

4.14 Object Management

cread create AD

restrict restrict rights

amplify amplify rights

inspacc inspect access

ldtdo load type definition object

The cread instruction allows a privileged operating system module to create an AD. Here, the
procedure presents a general data word to the processor that contains an object index. The
instruction then sets the tag bit to 1 and the rights bits set to read only.

The restrict and amplify instructions allow a software module to restrict or amplify, respec-
tively, the access rights of an AD that it possesses.

The inspacc retums the respective page rights of a specified page of an object. This instruc-
tion is used in system software to check the accessibility of a location.

When a software module creates an object and AD, it has the option of including typing
information for the object in the form of a type definition object (TDO) and its associated AD.
The 1dtdo instruction loads the AD of the TDO associated with a particular object into a
destination register.

4.15 Atomic Instructions
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atadd atomic add
atmod atomic modify
atrep atomic replace mixed

The atomic instructions perform read-modify-write operations on operands in memory. These
instructions provide primitive operations for synchronization among multiple processors in a
shared-memory system.

There are three atomic instructions: atomic add (atadd), atomic modify (atmod), and atomic
replace mixed (atrep). The atadd instruction causes an operand to be added to the value in the
specified memory location. The atmod causes bits in the specified memory location to be
modified under control of a mask.

The atadd and atmod instructions assume that the target word in memory is a general data
word and always clears the tag bit. The atrep instruction replaces a word in memory
(including its tag bit) with a source operand. This instruction atomically inserts an AD directy
into a memory location.
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4.16 Process Management

Several instructions are available for process management. These instructions do not dictate a
particular process management scheme. Instead they provide support for a wide variety of
process management mechanisms. These instructions can be divided into two groups:

e process control

e interprocess communication

Process management instructions must have access to the correct valid address descriptors.
Address descriptors are available only in supervisor mode on systems with "tag mode" dis-

abled, or to any process under defined conditions if "tag mode" is enabled. See Section 16.3
for details.

Process management is described in detail in Chapters 15 and 16.

4.16.1 Process Control
The following instructions provide process control services:

saveprcs save process
resumprcs  resume process
schedprcs schedule process

sendserv send service
Idtime load process time
modpc modify process controls

ldglobals load from process globals

Three data structures are used for process control: a process object, a process global object,
and a dispatching port. The process object maintains information about the process, such as
the status of the execution environment when the process was last suspended, and system
resources allocated to the process. The process global object provides storage global infor-
mation associated with the process. The dispatching port is used for queuing processes that are
waiting for execution. '

The resumprecs instruction switches to the specified process. The savepres instruction causes
the current state of the currently running process to be saved in the proces object.

These two instructions perform roughly the same functions as the RESUME and SAVE func-
tions of most UNIX™ kemels. A dispatching port is not needed with these instructions.

The schedpres instruction causes a process to be enqueued at a dispatching port.

The sendserv instruction suspends the current process and sends a message to the specified
communication port.

The ldtime instruction accesses the execution time of a process.

The modpc instruction reads and optionally modifies the contents of the process controls for
the currently running process.

The ldglobals instruction reads a word from the process globals object of the current process.
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4.16.2 Interprocess Communication

Two techniques are available for communication among processes: semaphores and com-
munication ports.

4.16.2.1 Semaphores
wait wait
condwait conditional wait
signal signal

Counting semaphores are supported for synchronization among processes. A semaphore con-
tains a queue for waiting processes.

The wait instruction attempts to decrement the sempahore count. If the semaphore count is
non-zero, the count is decremented, and the process continues execution. If the count is zero,
the current process suspends and is queued to the semaphore. The process is then said to be
blocked.

The condwait instruction performs the same function as the wait instruction, except that the
process never blocks. Instead, the condition code is set to indicate whether or not operation is
successful or not.

The signal instruction releases a semaphore by incrementing the semaphore count if there is no
waiting process. Otherwise, the highest priority process is unblocked and rescheduled.

4.16.2.2 Ports
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A port is similar to a semaphore except that a port also provides a message-passing
mechanism. A port can be used both for synchronizing processes and as a means of passing
messages among processes. Messages are objects and contain their own queuing space.

receive receive

condrec conditional receive
send send

sendserv send service

With the receive instruction, the specified port is checked for a message. If a message is
queued at the port, the message is loaded into a specified register and the current process
continues execution. If the message queue is empty, the the current process is suspended, and
queued at the communication port, thus blocking the process.

The condrec instruction is similar to the receive instruction except that the process is not
blocked if the message queue is empty. Instead the the condition code is set to indicate
whether or not a message has been received.

The send instruction sends a message to a specified communication port. If there are no
processes at the port waiting for messages, the message is queued at the port and the current
process continues. If there are queued processes at the port, the first process in the queue is
unblocked, given the message, and rescheduled at the dispatching port. The current process is
then resumed.

Instruction Set Summary



PRELIMINARY

FLOATING-POINT OPERATION

This chapter describes the floating-point processing capabilities. The subjects discussed in-
clude the real number data types, the execution environment for floating-point operations, the
floating-point instructions, and fault and exception handling.

5.1 Introducing the Floating-Point Architecture

The floating-point architecture is designed to allow a convenient implementation of the IEEE
Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Standard 754-1985). This
hardware architecture, along with a small amount of software support, conforms to the IEEE
standard and provides support for the following data structures and operations:

Real (32-bit), long real (64-bit), and extended real (80-bit) floating-point number formats

Add, subtract, multiply, divide, square root, remainder, and compare operations

e Conversion between integer and floating-point formats

Conversion between different floating-point formats

Handling of floating-point exceptions, including non-numbers (NaNs)

The software to support the floating-point architecture is needed primarily to handle conver-
sions between real numbers and decimal strings.

In addition, the floating-point architecture supports several functions that go beyond the IEEE
standard. These functions fall into two categories:

e functions recommended in the appendix to the IEEE standard, such as copy sign and class-
ify, and

e commonly used transcendental functions, including trigonometric, logarithmic, and ex-
ponential functions.

5.2 Real Numbers and Floating-Point Format
This section provides an introduction to real numbers and how they are represented in floating-
point format. Readers who are already familiar with numeric processing techniques and the
IEEE standard may wish to skip this section.

5.2.1 Real Number System

As shown at the top of Figure 5-1, the real-number system comprises the continuum of real
numbers from minus infinity (-es) to plus infinity (+).
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BINARY REAL NUMBER SYSTEM

SUBSET OF BINARY REAL-NUMBERS THAT CAN BE REPRESENTED WTH
IEEE SINGLE—PRECISION (32-BIT) FLOATING-POINT FORMAT

;‘A 10.0000000000000000000000
S IR AR RARRARRRARREARRARARR!

PRECISION:}€&——24 BINARY DIGITS —3»|

NUMBERS WITHIN THIS
RANGE CANNOT
BE REPRESENTED

Figure 5-1. Binary Number System

Because the size and number of registers that any computer can have is limited, only a subset
of the real-number continuum can be used in real-number calculations. As shown at the bot-
tom of Figure 5-1, the subset of real numbers represents an approximation of the real number
system. The range and precision of this real-number subset is determined by the format used
to represent real numbers.

5.2.2 Floating-Point Format

To increase the speed and efficiency of real number computations, real numbers are typically
represented in a binary floating-point format. In this format, a real number has three parts: a
sign, a significand, and an exponent. Figure 5-2 shows the binary floating-point format. This
format conforms to the IEEE standard.

real value = (-1) S18" * significand * 2 e*ponent
The sign is a binary value that indicates whether the number is positive (0) or negative (1).
The significand has two parts: a one-bit binary integer (also referred to as the j-bit) and a

binary fraction. The j-bit is often not represented, but instead is an implied value. The ex-
ponent is a binary integer that represents the base-2 power to which the significand is raised.
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SIGN

EXPONENT SIGNIFICAND

‘.—-—

FRACTION
A

INTEGER OR J-BIT /

Figure 5-2. Binary Floating-Point Format

Table 5-1 shows how the real number 201.187 (in ordinary decimal format) is stored in
floating-point format. The table lists a progression of real number notations that leads to the
storage format. In this format, the binary real number is normalized and the exponent is

biased.
Table 5-1. Real Number Notation
NOTATION VALUE
ORDINARY DECIMAL 201.187
SCIENTIFIC DECIMAL 2.01187E, 2
SCIENTIFIC BINARY 1.1001001001011111E,111
SCIENTIFIC BINARY 1.1001001001011111E,10000110
(BIASED EXPONENT)
| SIGN [ BIASED EXPONENT | SIGNIFICAND
32-BIT 0 10000110 1001001001011111
FLOATING-POINT A
FORMAT 1 1. (IMPLIED)
(NORMALIZED)
§.2.2.1 Normalized Numbers

In most cases, real numbers are represented in normalized form. This means that except for
zero, the significand is always made up of an integer of 1 and a fraction as follows:

1fff.. ff

For values less than 1, leading zeros are eliminated. (For each leading zero eliminated, the
exponent is decremented by one.)

Representing numbers in normalized form maximizes the number of significant digits that can
be accommodated in a significand of a given width. To summarize, a normalized real number
consists of a normalized significand that represents a real number between 1 (inclusive) and 2
(exclusive) and an exponent that gives the number’s binary point.

5.2.2.2 Biased Exponent

Exponents are represented in a biased form. This means that a constant is added to the actual
exponent so that the biased exponent is always a positive number. This allows two real num-
bers (of the same format and sign) to be compared as if they are unsigned binary integers. The
value of the biasing constant depends on the number of bits available for representing ex-
ponents in the floating-point format being used. The biasing constant is chosen so that the
smallest normalized number can be reciprocated without overflow.
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5.2.3 Real Number and Non-Number Encodings

The real numbers that are encoded in the floating-point format described above are generally
divided into three classes: % 0, £ nonzero-finite numbers, and + o. Encodings for non-
numbers (NaNs) are also defined. The term NaN stands for "Not a Number.”

Figure 5-3 shows how the encodings for these numbers and non-numbers fit into the real
number continuum. The encodings shown here are for the IEEE single-precision (32-bit) for-
mat, where the term "s" indicates the sign bit, "e" the biased exponent, and "f" the fraction.
(The exponent values are given in decimal.)

5.2.3.1 Signed Zeros

Zero can be represented as a +0 or a -0 depending on the sign bit. Both encodings are equal in
value, but may produce different results depending on the operation. The sign of a zero result
depends on the operation being performed and the rounding mode being used. The sign of a
zero may indicate the direction from which underflow occurred, or it may indicate the sign of
an oo that has been reciprocated.

5.2.3.2 Signed, Nonzero, Finite Values

The class of signed, nonzero, finite values is divided into two groups: normalized and denor-
malized. The normalized finite numbers comprise all the nonzero finite values that can be
encoded in a normalized real number format. In the 32-bit form shown in Figure 5-3, this
group of numbers includes all the numbers with biased exponents ranging from 1 to 254,
(unbiased, the exponent range is from -126,(, to +127,).

5.2.3.3 Denormalized Numbers

5-4

When real numbers become very close to zero, the normalized-number format can no longer be
used to represent the numbers. This is because the range of the exponent is not large enough to
compensate for shifting the binary point to the right to eliminate leading zeros. Denormalized
numbers are used to represent values between 0 and the smallest normalized number.
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~DENORMALIZED FINITE +DENORMALIZED FINITE

-00 ~NORMALIZED FINITE \ -0 +0 / +NORMALIZED FINITE +00
1 ! 1] 1 (-
1 T LI T 1

REAL NUMBER AND NaN ENCODING FOR 32-BiT FLOATING—-POINT FORMAT

s € F s € F

Ll o | o [J-o sofo] o | o |
[FT o T wonzero | ~DENIRMAUZED +OENORMALIZED ['g ] o | nonzero |
[+ ] 1254 | anv vaue | ~NORMALIZED +NORMAIZED [0 [ 1254 | anv vacue |
[1] 255 | o |-e +oofo] 258 | o |
[x] 25 | 1oxxx | -snon +snon [x [ 255 | roxxt |
[xT 285 | 1ixx ] -anen +anaN ] 2ss ] x|

Notes:
1. Sign bit ignored.
2. Froction must be nonzero.

Figure 5-3. Real Numbers and NaNs

When the biased exponent is zero, smaller numbers can only be represented by making the
integer bit (and perhaps other leading bits) of the significand zero. The numbers in this range
are called denormalized numbers. The use of leading zeros with denormalized numbers allows
smaller numbers to be represented. However, this denormalization causes a loss of precision
(the number of significant bits in the fraction is reduced by the leading zeros).

When performing normalized floating-point computations, operations are normally performed
on normalized numbers and produce normalized numbers as results. Denormalized numbers
represent an underflow condition.

A denormalized number is computed through a technique called gradual underflow. Table 5-2
gives an example of gradual underflow in the denormalization process. Here the 32-bit format
is being used, so the minimum exponent (unbiased) is -126,,. The true result in this example
requires an exponent of -129, in order to have a normalized number. Since -129,, is beyond
the allowable exponent range, the result is denormalized by inserting leading zeros until the
minimum exponent of -126, is reached.

Table 5-2. Denormalization Process

Operation Sign Exponent* Significand

True Result 0 -129 1.01011100...00
Denormalize 0 -128 0.101011100...00
Denormalize 0 -127 0.0101011100...00
Denormalize 0 -126 0.00101011100...00
Denormalize Result 0 -126 0.00101011100...00
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*Expressed as unbiased, decimal number.

In the extreme case, all the significant bits are shifted out to the right by leading zeros, creating
a zero result.

5.2.4 Signed Infinities

Arithmetic on infinities is defined as the limiting case of real arithmetic with operands of
arbitrarily large magnitude. Negative infinity is less than every finite number. Positive in-
finity is greater than every finite number. Arithmetic on infinity is always exact and generates
no exceptions except the cases noted in Section 5.10.3. Infinity is always represented by a zero
fraction and the maximum biased exponent allowed in the specified format (e.g., 255, for the
32-bit format).

Whereas denormalized numbers represent an underflow condition, the two infinity numbers
represent the result of an overflow condition. Here, the normalized result of a computation has
a biased exponent greater than the largest allowable exponent for the selected result format.

5.2.5 NaNs

Since NaNs are non-numbers, they are not part of the real number line. In Figure 5-3, the
encoding space for NaNs in the floating-point formats is shown above the ends of the real
number line. This space includes any value with the maximum allowable biased exponent and
a non-zero fraction. (The sign bit is ignored for NaNs.)

The IEEE standard defines two specific NaN values: a quiet NaN (QNaN) and a signaling
NaN (SNaN). A QNaN is a NaN with the most significant fraction bit set; a SNaN is a NaN
with the most significant fraction bit clear. QNaNs are allowed to propagate through most
arithmetic operations without signaling an exception. SNaNs signal an invalid-operation ex-
ception whenever they appear as operands in arithmetic operations. Exceptions are discussed
in Section 5.10.

Section 5.9 provides detailed information on how the NaNs are handled.

5.3 Real Data Types

Three real-number data formats are supported: real, long real, and extended real. These
formats correspond directly to the single-precision, double-precision, and double-extended
precision formats in the IEEE standard. Figure 5-4 shows these data formats and gives the
resolution that each provides.
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REAL

32 I I
TS EXPONENT |<—\ FRACTION

33 N 0
INTEGER MPLIED
LONG REAL
S ] exeonent e FRACTION |
6382 82 51 N °
INTECER IMPUIED
EXTENDED REAL
s?:')s I I EXPONENT | lq—. FRACTION I
978 646362 N °
INTEGER
DATA TYPE RANGE
REAL 2- to 2'7 (~107% to-10%* )
LONG REAL 212 tq 2108 (=10~ to~10%® )

EXTENDED REAL  2—'%to 2% (<1074t =10+%)
Figure 5-4. Real Number Formats

For the real and long-real formats, only the fraction is given for the significand. The integer is
assumed to be 1 for all numbers except 0 and denormalized finite numbers.

For the extended-real format, the integer is contained in bit 63, and the most-significant frac-
tion bit is bit 62. Here, the integer is explicitly set to 1 for normalized numbers, infinities, and -
NaNs, and to O for zero and denormalized numbers.

Table 5-3 shows the encodings for all the classes of real numbers (that is, zero, denormalized
finite, normalized finite, and =-) and NaNs, for each of the three real data-types.
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Table 5-3. Real Numbers and NaN Encodings

CLASS SIGN |BIASED EXPONENT INTEGER1 FRACTION
+00 0 1.1 1
0 11...10 1 1.1
+ NORMALS : ' j
POSITIVE 0 00...01 1 00...00
0 00...00 0 11...11
+ DENORMALS ) ) )
0 00...00 0 00..01
+ ZERO 0 00...00 ) 00..00
- ZERO 1 00...00 0 00..00
1 00...00 0 00...01
- DENORMALS ' ’ ) )
1 00...00 (0] 11...11
NEGATIVE 1 00...01 1 00...00
- NORMALS
1 11...10 1 11...11
) 1 11...11 - 1 00...00
SNaN X 1.1 1 0X...XX2
NaN
QNaN X 11...11 1 1X... XX
REAL: €«—— 8 BITS —> —23 BITS ™
LONG REAL: l—— 11 BITS —» <52 BITS
EXTENDED REAL: f€—— 15 BITS —> €63 BITS>>
Notes:

1. Integer is implied for real and long real formats and is not stored.

2. Fraction for SNaN must be non-—zero.

Where the value is listed as signed, s=0 represents positive, s=1 represents negative.

A real is a 32-bit binary floating-point number. Bit 31 is the sign (s), bits 23-30 are a biased
exponent (e), and bits 0-22 are the fraction (f). The value of an occurrence of arealis as
follows:

e Ife=255 and f is nonzero, value is NaN, regardless of the sign.
e Ife=255 and f = 0, value is signed infinity.
o If 0<e<255, value is signed (1.£*2**(e-127)).
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e Ife=0 and fis nonzero, value is signed (0.f*2**(-126)). This is called a denormalized
number.

e If e=0 and f=0, value is signed zero.

A long_real is a 64-bit binary floating-point number. Bit 63 is the sign (s), bits 52-62 are the
biased exponent (), and bits 0-51 are the fraction (f). The value of an occurrence ofa
long_real data type is as follows:

e Ife=2047 and f is nonzero, value is NaN, regardless of the sign.
e Ife=2047 and f = 0, value is signed infinity.
o If 0<e<2047, value is signed (1.£*2**(e-1023)).

e If e=0 and f is nonzero, value is signed (0.f*2**(-1022)). This is called a denormalized
number.

e Ife=0 and f=0, value is signed zero.
An extended_real is an 80-bit binary floating-point number satisfying the requirement for the
implementation-dependent "double-extended" type specified in the IEEE standard. Bit 79 is

the sign (s), bits 64-78 are the biased exponent (e), bit 63 is the integer part (j), and bits 0-62
are the fraction (f). The value of an occurrence of an extended_real data type is as follows:

e Ife=32767 and j=1 and f is nonzero, value is NaN, regardless of the sign.
e Ife=32767 and j=1 and f=0, value is signed infinity.
o If 0<e<32767 and j=1, value is signed (j.f*2**(e-16383)).

e Ife=0 and j or f is nonzero, value is signed (j.f * 2**(-16382)). This is called a denor-
malized number.

o Ife=0 and j=0 and f=0, value is signed zero.
e Ife is nonzero and j=0, value is a reserved encoding.

5.4 Execution Environment for Floating-Point Operations

The floating-point processing capabilities are completely integrated into the execution environ-
ment. Operations on floating-point numbers are carried out using the same registers that are
used for ordinals and integers. In addition, four floating-point registers have been provided for
extended-precision floating-point arithmetic.

The following sections describe the handling of floating-point operations.

5.4.1 Registers

All of the global, local, and floating-point registers can be used for floating-point operations.
When using global or local registers, real values (32 bits) are contained in one register, long-
real values (64 bits) are contained in two successive registers, and extended-real values (80
bits) are contained in three successive registers.

Figure 5-5 shows how the three forms of the real data type are encoded when stored in global
and local registers. Note that long-real values must be aligned on even-numbered register
boundaries (g0, g2, ...). Extended-real values must be aligned on register boundaries that are
an integral multiple of four (g0, g4, ...).
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REAL
31 23 22 0
EXPONENT FRACTION J n
SIGN
LONG REAL
31 20 19 [o]
FRACTION (LEAST SIGNIFICANT BITS) n'
l EXPONENT | FRACTION (MOST SIGNIFICANT BITS) n+ 1

SIGN

EXTENDED REAL

31 16 15 14 o]
FRACTION (LEAST SIGNIFICANT BITS) ni
FRACTION (MOST SIGNIFICANT BITS) n+1
EXPONENT n+ 2

INTEGER SIGN

Notes:
1. Register number must be even.
2. Register number must be an integral multiple of four.

RESERVED

Figure 5-5. Storage of Real Values in Global and Local Registers

Real values in the floating-point registers are always in the extended-real format. When a real
or long-real value is moved from global or local registers to a floating-point register, the value
is automatically reformatted for the extended-real format.

5.4.2 Loading and Storing Floating-Point Values

5-10

Floating-point values are loaded from memory into global or local registers using the load (1d),
load long (1dl), and load triple (1dt) instructions. Likewise, floating-point values in global or
local registers are stored in memory using the store (st), store long (stl), and store triple (stt)
instructions.

Loading an extended-real floating-point value into a floating-point register requires two steps
(two instructions). First, the extended-real value must be loaded from memory into global or
local registers. Then, the value must be moved to the floating-point register using a move
extended-real (movre) instruction.

A similar two-step procedure is required to store an extended-real value from a floating-point
register into memory. The value must first be moved into global or local registers (using a
movre instruction), then stored in memory.

This two-step method for moving values from memory into floating-point registers and vice
versa may seem a little cumbersome; however, in practice it generally is not. Floating-point
registers are most often used to store and accumulate intermediate results of computations.
The contents of these registers are not normally stored in memory.

Floating-Point Operation
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EXECUTION ENVIRONMENT

This chapter describes the basic execution environment, how the processor executes instruc-
tions, and how the processor manipulates data. This chapter discusses the linear address space,
the register model, the instruction pointer, and the arithmetic controls.

6.1 Overview of the Execution Environment

The environment when executing an instruction is shown in Figure 6-1. An execution environ-
ment consists of a 232-byte linear address space, a set of global and floating-point registers, an
instruction pointer, and an arithmetic controls register.

An execution environment corresponds to a process-wide address space in other architectures.
Multiple address spaces may be available to a process, but only one address space can be
active at a time. Transfers from one address space to another address space are described in

Chapter 7.
g0 ‘0
SIXTEEN GLOBAL
32-817 REGISTERS
REGISTERS
gts
fp0 FLOATING—
FOUR 80-8IT REGISTERS POINT
tp3 REGISTERS
0 ADDRESS
SIXTEEN LOCAL
32-8IT REGISTERS SPACE
REGISTERS
115
[ 32.8ITS ARITHMETIC CONTROLS
32-BITS INSTRUCTION POINTER
221

Figure 6-1. Execution Environment
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6.2 Register Model

The register model consists of 16 global registers and 4 floating-point registers that are acces-
sible across procedure boundaries, and 16 local (or frame) registers that created newly for each
procedure.

At any instant, an instruction can address 36 of these registers as follows.

Register Type Register Name

Global Register GO ..G15

Floating Point Register FP0 .. FP3
(floating-point operand)

Local Register LO..L15

The global registers and local registers are collectively referred to as the "general registers"”.
Some addressing modes refer to general registers, to distinguish them from the floating-point
registers.

6.2.1 Global Registers

Each process has 16 associated global registers; they are saved in the process object (Chapter
15) when the process is not executing.

Of the 16 32-bit registers, g15 contains the current frame pointer (FP) and g0 through g14 are
general-purpose registers. The FP contains the linear address of the current (topmost) stack
frame. Since stack frames are aligned to 64-byte boundaries, the low-order 6 bits of FP are
ignored and always interpreted to be zero. (The alignment of the FP and the number of ig-
nored FP bits may change in future releases.) The FP is adjusted automatically upon each call
and return, and should not otherwise be modified.

6.2.2 Floating Point Registers

Each process has four associated floating-point registers; they are saved in the process object
(as described in Chapter 15) when the process is not executing.

Floating point numbers are stored in "extended real” format in the floating-point registers.
Floating point registers are accessible as operands in floating-point instructions, but such in-
structions may also use the general registers.

6.2.3 Local (or Frame) Registers

6-2

Registers 10 through 115 (the local registers) are allocated on procedure calls and deallocated
on retumns.

Multiple banks of local registers are provided (four in this release, but future releases may
provide a different number). When necessary, these registers are saved to and restored from
the first 16 words of the stack frame, where register 10 is mapped into linear address FP+0 to
FP+3, register i is mapped into linear address FP+4i to FP+4i+3, and so on.

For most programs, the existence of the multiple register sets and the saving/restoring of them
in the stack frames should be transparent. However, in some cases it may not be transparent.
For example:

e When a stack frame is allocated as a result of a procedure call, the local registers are not
necessarily cleared nor initialized from the memory values. Thus, the initial contents of a
local register (other than those altered by the call operation) are unpredictable.
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e The local registers are not associatively mapped into the frames; loading (or storing) a
value from (or into) the first 16 words of a frame is not guaranteed to access (or modify) the
associated register.

e A deallocated stack frame does not necessarily contain the local registers from the called
procedure. Local registers are not necessarily flushed before a ret call.

e To access or modify the local registers of a previous frame, first precede the access or
modification with a flushreg instruction. The flushreg instruction writes all register sets to
their associated stack frames in memory. However, the current frame cannot be accessed in
this way. Use register references instead.

e To modify the previous FP (in register 10), follow the modification with a flushreg instruc-
tion, or else the behavior of the ret instruction is not predictable.

e The current FP (in register g15) cannot be modified by writing into the register. Instead, a
routine must be called that modifies its previous FP (in register 10), and then returns.

6.2.4 Register Alignment for Multiple Word Operands

An operand in an instruction ranges from 1 to 4 words. When multiple registers are needed for
an operand, the lowest-numbered register is specified in the instruction, and additional con-
secutively higher registers are used as needed. The lowest-numbered register must be an
even-numbered register (10, 12, 14, and so on, or g0, g2, g4, and so on) if two registers are
needed. Similarly, the lowest-numbered register must be a multiple of four register (10, 14, 18,
and so on, or g0, g4, g8, and so on) if three or four registers are needed. Failure to properly
align either a source or destination will produce unpredictable results (including possibly a
fault).

6.3 Instruction Pointer

The IP is the linear address (using the current linear address map) of the current instruction.
Since instructions must begin on word (4-byte) boundaries, the two low-order bits of IP are
presumed to be zero, and ignored.

6.4 Arithmetic Controls

The Arithmetic Controls (AC) controls the arithmetic and faulting properties of the numeric
instructions, and retains the current condition codes. No faults are generated when the bits of
the arithmetic controls are explicitly modified. When a process is suspended, the AC is saved
in the process object.
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Figure 6-2. Arithmetic Controls

The AC contains the following information. All unused bits are reserved and should be set to
zero.

e Condition Code (bits 0-2). A set of flags set by comparison (and other) instructions and
examined by conditional-branch (and other) instructions.

e Arithmetic Status (bits 3-6). This field is altered as an indicator by certain floating-point
instructions. :

e Integer Overflow Flag (bit 8). This flag is set whenever an integer overflow occurs and
the mask is set. The flag is cleared only by explicit instructions.

o Integer Overflow Mask (bit 12). If set, an integer overflow does not generate an
Arithmetic fault. If S is the destination size, the S least-significant bits of the result are
stored in the destination unless otherwise noted.

e No parallel faults (bit 15). If set, faults are required to be synchronized. If clear, certain
faults can be parallel. See Section 10.10.4.

e Floating-point Overflow Flag (bit 16). This flag is set whenever a floating-point overflow
occurs and the mask is set. The flag is cleared only by explicit instructions.

o Floating-point Underflow Flag (bit 17). This flag is set whenever a floating-point under-
flow occurs and the mask is set. The flag is cleared only by explicit instructions.

e Floating-point Invalid-op Flag (bit 18). This flag is set whenever a floating-point invalid
operation occurs and the mask is set. The flag is cleared only by explicit instructions.

o Floating-point Zero-divide Flag (bit 19). This flag is set whenever a floating-point divi-
sion by zero occurs and the mask is set. The flag is cleared only by explicit instructions.

e Floating-point Inexact Flag (bit 20). This flag is set whenever a floating-point inexact
result occurs and the mask is set. The flag is cleared only by explicit instructions.

o Floating-point Overflow Mask (bit 24). If set, a floating-point overflow does not generate
a floating-point fault.

e Floating-point Underflow Mask (bit 25). If set, a floating-point underflow does not
generate a floating-point fault.
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e Floating-point Invalid-op Mask (bit 26). If set, a floating-point invalid operation does not
generate a floating-point fault.

¢ Floating-point Zero-divide Mask (bit 27). If set, a floating-point division by zero does
not generate a floating-point fault.

¢ Floating-point Inexact Mask (bit 28). If set, a floating-point inexact result does not
generate a floating-point fault.

e Floating-point Normalizing Mode (bit 29). If set, denormalized numbers in reals, long
reals or extended reals are first normalized before arithmetic is performed. If clear, denor-
malized numbers generate a floating-point fault.

e Floating-point Rounding Control (bits 31-30). This field indicates the rounding mode for
floating-point computations:
00 round to nearest
01 round down (toward negative infinity)
10 round up (toward positive infinity)
11 truncate (round toward zero)

Chapter 5 contains further information about floating-point rounding.

6.5 Stack Frame

The stack frame is a contiguous portion of the current linear address space, containing data in a
stack-like fashion. The stack grows from low addresses to high addresses. Each activated
procedure has one stack frame. The stack frame contains local variables, parameters, and
linkage information. A call operation acquires a new stack frame; a return operation releases
it. When a new frame is acquired, it is aligned on a 64-byte boundary.

The page or the simple object into which the first 64 bytes of a frame are mapped must be of
local lifetime. The lifetime of the page or the simple object is checked during a call. This
restriction is also necessary to ensure efficient manipulation of ADs in the local registers. (See
Chapter 8).

In addition to the requirement that a frame is mapped onto a local page or local simple object,
the mixed bit of the page or the object descriptor is set even though no tag bit may be written

to the frame. (Descriptors are discussed in Chapter 8.) This restriction is necessary to ensure
efficient manipulation of ADs in the local registers.

The structure of a stack frame is shown in Figure 6-3.
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Figure 6-3. Stack Frame Structure

The fields in the stack frame are defined as follows:

e Padding Area. This area is used to align the FP to the next 64-byte boundary. The size of
this area varies from O to 63 bytes. When a call operation is performed, a padding area is
added to round the caller’s SP to the next boundary to form the FP for this frame. If the
caller’s SP is already aligned, the padding area is absent.

e Frame Status (LO). The frame status records the information associated with the frame,
after a call, to be used on a return from the frame. The fields of a frame status are defined

as follows:

— Return Status, RRR (bits 0-2). This 3-bit field records the call mechanism used in the
creation of this frame and is used to select the the return mechanism to be used on
return. The encodings of this field are as follows:

000
001
010
011
100
101
110
111

Local

Fault

Supervisor, trace was disabled before call
Supervisor, trace was enabled before call
Subsystem (intrasubsystem)

Subsystem (intersubsystem)

Idle interrupt

Interrupt

— Prereturn Trace, P (bit 3). On a retumn from a frame when the prereturn trace bitis 1,
a prereturn trace event (if enabled) occurs before any actions association with the retum
operation is performed. This bit is initialized to 1 on a call if a call-trace event oc-
curred; otherwise it is initialized to O.

— Previous Frame Pointer, PFP (bits 4-31). The most-significant 28 bits of the linear
address of the first byte of the previous frame. Since frames are aligned to boundaries
of 64 bytes or more, the lower two bits of this field (bits 4 and 5) are always zero.

On all returns, the PRRR bits are interpreted as follows:
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1xxx Generate a prereturn trace

0000 Perform a local retumn

0001 Perform a fault return (see Chapter 10).

001T In supervisor mode, perform a supervisor retumn (see Chapter 7). The T bit is
assigned to the trace enable bit in the process controls, and the execution mode
bit is set to user. Otherwise, perform a local retumn.

010x Perform a subsystem return (see Chapter 7).

011x Perform an interrupt return (see Chapter 16).

e Stack Pointer, SP (L1). A linear address to the first free byte of the stack, that is, the
address of the last byte in the stack plus one. SP is initialized by the call operation to point

to FP plus 64.

e Return Instruction Pointer, RIP (L2). When a call operation is performed to a new frame
(via an instruction, interrupt, or fault), the return IP is saved here. When the process is
suspended, the instruction pointer of the next instruction is stored here. The RIP contains a
32-bit linear address to which control is returned after a return to this frame. Since the RIP
can be modified by implicit calls and by certain instructions implicitly, programs should

_ never use this register for other purposes.

6.6 Linear Address Space

The linear address space is partitioned into four regions as shown in Figure 6-4. Each region is
defined by an object. The first three regions of an address space are specific to the current
process (defined by the process object). The composition of the process-specific regions can
be changed by a subsystem call/return (see Chapter 7). The fourth region of an execution
environment is specific to the processor (defined by the processor object), and thus is shared
by all processes. Instructions, stack frames, or data may be located anywhere in the linear
address space. However, the operating system may require a particular partitioning. A recom-
mended partitioning (as used in BiiN™) is described in Section 7.3.1.

MAXIMUM ADDRESS
RANGE OF EACH

OBJECT

0000 0000

3FFF FFFF
4000 0000

7FFF FFFF
8000 0000

BFFF FFFF
C000 0000

FFFF FFFF

OBJECT O

OBJECT 1

OBJECT 2

OBJECT 3

Figure 6-4. Linear Address Space

PROCESS
SPECIFIC

SHARED BY ALL
PROCESSES
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6.6.1 Region Objects

The ADs to the four regions are always interpreted to have read-write rep rights. It is not
possible to protect each region differently using AD rep rights. Page-level protection can be
used to achieve finer grain protection.

When an operand spans across region boundaries, the behavior is unpredictable.

Each region can be changed independently. If the region object is léss than 1G bytes, a gap
occurs at the end of the region. A simple object may be used to define a region if the object is
4K bytes and page aligned.

When a process is executing, all four regions must be unique. The AD for each region must
have a different object index. Thus, linear address aliases are not allowed nor supported.

If the fault handler for virtual-memory faults (Chapter 10) is not a subsystem fault handler, the
OTE:s of the current regions must be valid for any process in the executing, ready, or blocked
state (see Chapter 15). If the fault handler for virtual-memory faults is a subsystem fault
handler, the OTEs of the regions in that subsystem must be valid.

6.6.2 Instruction Protection

Only read rights are necessary to fetch and execute instructions. Instruction pages should be
write-protected to prevent accidental damage to the instructions.

6.6.3 Instruction Caching

The instruction stream may be non-transparently cached. Instruction caching is independent of
the cacheable bit (see Chapter 8) in the page where instructions are located. Self-modifying
programs may not necessarily work unless the instruction cache is purged. An IAC message
(as described in Chapter 16) may be used to purge the contents of an instruction cache.

6.7 Local Procedure Mechanism

A procedure may begin at any arbitrary word address in a linear address space. Since instruc-
tions are fetched in blocks, it may be more efficient if the first instruction is aligned to a
quad-word boundary. Procedure calls use a stack in the linear address space, as shown in
Figure 6-5.
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Figure 6-5. Call Stack in Execution Environment

Two parameter passing mechanisms are suggested:

1. Global Registers. Parameters are copied to the global registers by the caller and copied
out (if necessary) of the global registers by the callee after the call. Return or result
parameters are copied to the global registers by the callee and copied out of the global
registers by the caller after a return. This is optimized for procedures with a small number
of parameters.

2. Argument List. An argument pointer to an argument list on the stack is used. This is an
escape mechanism when there are more parameters than can be passed using global
registers.
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6.8 Instructions

6.8.1 Local Call and Return

call
callx
ret

The call and callx instructions invoke the procedure at the specified address. call specifies the
procedure as the current IP plus a 24-bit signed displacement. callx specifies the procedure
using a general address.

A new stack frame is allocated during the call operation and the control flow is transferred to
the specified procedure.

The ret instruction transfers control back to the calling procedure and releases the called
procedure’s stack frame. Instruction execution is continued at the instruction pointed to by the
RIP in the calling procedure’s frame.

6.8.2 Miscellaneous Instructions

6-10

modac
flushreg
cvtadr

The modac instruction reads or modifies the current arithmetic controls. The flushreg instruc-
tion writes all local register sets except for the current one into their associated frames in
memory. The cvtadr instruction converts a current linear address into its corresponding vir-
tual address.
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For example, the following instruction

divr 13, 14, £fp2
addr 15, fp2, 16

causes the real value in local register 14 to be divided by the value in 13, with the extended-real
result stored in floating-point register fp2. Here, a move operation from the local registers to
the floating-point registers is not required, since it is implicit in the divide operation.
Similarly, a move operation from the fp2 to local register is not required because it is implicit
in the add operation.

5.4.3 Moving Floating-Point Values

Either the move instructions (mov, movl, or movt) or the move-real instructions (movr,
movrl, or movre) can be used to move real values among global and local registers. The move
real instructions are generally used to convert a real value from one format to another or for
moving real values between the global or local registers and floating-point registers. The move
instructions are used to move real values while keeping them in the same format.

When using the movr and movrl instructions to move floating-point numbers between the
global or local registers and the floating-point registers, the values are converted automatically
from real and long-real format, respectively, into the extended-real format and vice versa.

For example, the following instruction
movr g3, fpl

causes a 32-bit, real value in global register g3 to be converted to 80-bit, extended-real format
and placed in floating-point register fpl.

Going the opposite direction, the instruction
movrl £fp0, 14

causes an extended-real value in floating-point register fp0 to be converted to 64-bit, long-real
format and placed in local registers 14 and 15.

The movre instruction moves 80-bit, extended-real values between registers, without format
conversion. When this instruction is used to move a value from three global or local registers
to a floating-point register, the 80-bit value is extracted from the three word extended-real
format. When moving a value from a floating-point register to global or local registers, the
80-bit value is inserted into the three registers in the three-word format.

5.4.4 Arithmetic Controls

The arithmetic controls are used extensively to control the arithmetic and faulting properties of
floating-point operations. Table 5-4 shows the bits in the arithmetic controls that are used in
floating-point operations. See Section 6.4 for the encodings of these fields.
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Table 5-4. Arithmetic Controls Used in Floating-Point Operations

Arithmetic

ga:trol Function

0-2 Condition Code

3-6 Arithmetic status field

8 Integer overflow flag

12 Integer overflow mask

16 Floating overflow flag

17 Floating underflow flag

18 Floating invalid-operation flag
19 Floating zero-divide flag

20 Floating inexact flag

24 Floating overflow mask

25 Floating underflow mask

26 Floating invalid-operation mask
27 Floating zero-divide mask

28 Floating inexact mask

29 Normalizing mode flag
30-31 Rounding control

The condition code flags are used to indicate the results of comparisons of real numbers, just as
they are for integers and ordinals.

The arithmetic status field is used to record results from the classify real (classr and classrl)
and remainder real (remr and remrl) instructions. These instructions are discussed later in
this chapter.

The floating-point flags indicate exceptions to floating-point operations. Here, the term excep-
tion refers to a potentially undesirable operation (such as dividing a number by Zero) or an
undesirable result (such as underflow). The flags provide a means of recording the occurrence
of specific exceptions.

The floating-point masks provide a method of inhibiting the invocation of a fault handler when
an exception is detected.

Use of the floating-point flag and mask bits are discussed in Section 5.10.

5.4.5 Normalizing Mode

5-12

The normalizing-mode flag specifies whether floating instructions operate in normalizing
mode (set) or not (clear).

Normalizing mode is the most common mode of operation. Here, the operations are performed
on valid floating-point operands, regardless of whether they are normalized or denormalized
values.

When not operating in normalizing mode, a reserved-encoding exception is signaled whenever
denormalized floating-point value is encountered as a source operand. In either mode, denor-
malized numbers are be produced if the underflow exception is masked.
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There are no flag or mask bits in the arithmetic controls for this exception. When a reserved-
encoding exception is detected, a floating reserved-encoding fault is generated and the destina-
tion operand is left unchanged.

The unnormalized mode of operation is provided to allow unnormalized arithmetic to be simu-
lated with software. Here, a fault handler routine can be used to perform unnormalized arith-
metic whenever a reserved-encoding exception is signaled.

5.4.6 Rounding Control

Often the infinitely precise result of an arithmetic operation cannot be encoded exactly in the
format of the destination operand. For example, the following value has a 24-bit fraction. The
least-significant bit of this fraction (the underlined bit) cannot be encoded exactly in the real
(32-bit) format:

1.0001 0000 1000 0011 1001 0111E, 101

This result must then be rounded to one of the following two values:
1.0001 0000 1000 0011 1001 O11E, 101

1.0001 0000 1000 0011 1001 100E, 101

A rounded result is called an inexact result. When an inexact result is produced, the floating-
point inexact flag bit in the arithmetic controls is set.

Results are rounded according to the destination format (real, long real, or extended real) and
the setting of the rounding-mode flags of the arithmetic controls. Four types of rounding are
allowed, as described in Table S-5.

Table 5-5. Rounding Methods

Rounding Mode Description

Round up (toward +e0) Rounded result is close to but no
lcmss:ﬂttm the infinitely precise

Round down (toward -oo) Rounded result is close to but no
mter than the infinitely precise
L

Round toward zero (Truncate) | Rounded result is close to but no
greater in absolute value than the
infinitely precise result.

Round to nearest (even) Rounded result is close to the
infinitely precise result. If two
values are equally close, the
result is the even valne'(t!m is,
the one with the least-significant
bit of zero).

When the infinitely precise result is between the largest positive finite value allowed in a
particular format and +oo, the result is rounded as shown in Table 5-6.

Table 5-6. Rounding of Positive Numbers

Rounding Mode Description
Round up (toward +oe) +o0
Round down (toward -co) Maximum, positive finite value.

Round toward zero (Truncate) | Maximum, positive finite value.

Round to nearest (even) +o0
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When the infinitely precise result is between the largest negative finite value allowed in a
particular format and -e, the result is rounded as shown in Table 5-7.

Table 5-7. Rounding of Negative Numbers

Rounding Mode Description
Round up (toward +) Minimum, negative finite value.
Round down (toward -o) -0

Round toward zero (Truncate) | Minimum, negative finite value.

Round to nearest (even) +00

The rounding modes have no effect on comparison operations, operations that produce exact
results, or operations that produce NaN results.

5.4.7 Rounding Precision

Results are rounded according to the destination format (or precision). Since real, long real,
and extended real destinations are allowed, no rounding precision mode is necessary. It is
feasible to mimic all possible combinations of operand precision without suffering more than
one rounding error.

The floating-point instructions allow a result to be stored in a shorter destination than the
source operands. For example, the instruction

addr fpl, £p2, gs
produces a real (32-bit) result from two extended-real (80-bit) source operands. In all such

operations, only one rounding error occurs: the error that occurs when rounding the infinitely
precise result to the size of the destination format.

Technically, an operation which computes a narrow result from wide operands is in violation
of the IEEE standard. However, systems that are designed to conform to the IEEE standard do
not need to use this capability.

5.5 Instruction Format

The instruction format for floating-point instructions is the same as for the other instructions.
When programming in assembly language, an assembly language statement begins with an
instruction mnemonic and is followed by from one to three operands. For example, the
multiply-real instruction mulr might be used as follows:

mulr 18, 19, £fp3

Here, real operands in local registers 18 and 19 are multiplied together and the result is stored in
floating-point register fp3. '

From the machine level point of view, all floating-point instructions use the REG format.
Refer to Chapter 17 for details on the REG format instructions.

5.6 Instruction Operands
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Floating point operands for floating-point instructions can be either floating-point literals or
registers. Two encodings are recognized for floating-point literals: +0.0 and +1.0.
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A number of floating-point instructions contain both floating-point operands and
integer/ordinal operands.

All of the general purpose registers (global registers, local registers, and floating-point
registers) can be used as operands in floating-point instructions.

When general purpose registers are specified as operands, the instruction mnemonic (or
opcode) determines how the values in these registers are interpreted. For example, there are
two floating-point divide instructions: divide real (divr) and divide long real (divrl). When
using the divr instruction, global- or local-register operands contain real (32-bit) values. When
using the divrl instruction, global- or local-register operands contain long-real (64-bit) values.
Long real and extended real operands need to satisfy the register alignment requirement as
defined in Section 6.2.4. With either instruction, floating-point registers (containing extended-
real values) can also be used as operands.

5.7 Mixed-Precision Arithmetic

Using floating-point registers as operands allows mixed format or mixed precision arithmetic
to be performed with either real and extended-real values or long-real and extended-real
values. Mixed-format operations with real and long-real values are not supported, but can be
implemented with a sequence of two instructions without introducing extra rounding error.

subr g0, gl, g2
subr g0, fpl, g2
subr £fp0, gl, g2
subr fp0, fpl, g2
subr g0, gl, fp2
subr g0, fpl, fp2

subr f£fpO0, gl, £fp2
subr £fp0, fpl, £fp2

A single subr instruction can be viewed as eight different instructions. Seldomly is it neces-
sary to explicitly convert from one floating-point format to another in expression evaluations.

5.8 Summary of Floating-Point Instructions

Floating-point instructions consist of all instructions for which as least one operand is a real
data type.

These instructions can be divided into the following groups:
e Data Movement

e Data Type Conversion

e Basic Arithmetic

e Comparison and Classification

e Trigonometric

e Logarithmic and Exponential

The following sections give a brief overview of the instructions in each group. Detailed
descriptions of the operations of these instructions are given in Chapter 18.
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5.8.1 Data Movement

The non-floating-point load and store instructions are used to move real values between
registers and memory. Once in registers, the non-floating-point move instructions (mov, movl,
and movt) are used to move real values between global and local registers without format
conversion; whereas, the floating-point move instructions (movr, movrl, and movre) are used
to move real values between global and local registers and floating-point registers.

The copy-sign real extended (cpysre) and copy-reverse-sign real extended (cpyrsre) instruc-
tions provide a means of copying the sign of one extended-real value to another, if one of the
values is in a floating-point register. This operation is best performed on real and long-real
values using the bit instructions chkbit and alterbit.

All these instructions, with the exception of movr and movre, are non-arithmetic operations.
It is possible for movr and movrl to generate a real arithmetic fault even if the source and
destination operands are of the same format. Real arithmetic faults can be avoided if mov and
movl are used instead.

5.8.2 Data Type Conversion
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Two types of data type conversions are provided: conversion from one floating-point format
to another (for example, real to extended real) and conversion between integer and real.

Conversion between floating-point formats is handled in either of two ways: explicitly by
move real instructions or implicitly by using the floating-point registers as operands in
floating-point instructions.

As described earlier in this chapter, the movr instruction implicitly converts values from real
to extended real, and vice versa, when moving values between global or local registers and
floating-point registers. Likewise, the movrl instruction implicitly converts values from long
real to extended real, and vice versa.

Conversion between real and long-real formats requires the use of both instructions. For ex-
ample, the following two instructions convert a real value in global register g6 to a long-real
value contained in g6 and g7, using a floating-point register for intermediate storage of the
value:

movr g6, fpl
movrl fpl, g6

Implicit format conversion is also provided through the arithmetic, trigonometric, logarithmic,
and exponential instructions. For example, the instruction
addr 14, 15, fp2

adds two real values together and produces an extended-real result.

The following six instructions allow conversion between integers and reals:

cvtir convert integer to real

cvtilr convert long integer to long real
cvtri convert real to integer

cvtril convert real to long integer

cvtzri convert truncated real to integer
cvtzril convert truncated real to long integer
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Both the cvtir and cvtilr instructions can be used to convert an integer to an extended-real
value by specifying that the result be placed in a floating-point register.

The convert real-to-integer instructions round off the real value to the nearest integer or long-
integer value. For the cvtri and cvtril instructions, the rounding mode determines the direction
the real number is rounded. For the convert truncated real-to-integer instructions (cvtzri and
cvtzril), rounding is always toward zero. The latter two instructions are provided to allow
efficient implementation of FORTRAN-like truncation semantics.

Extended-real values can be converted to integers by using a floating-point register as a source
operand in either of the convert real-to-integer instructions.

Converting long-real values to integers requires two instructions, as in the following example:
movrl g6, fp3
cvtzri fp3, g6

The first instruction moves the long-real value to a floating-point register. The second instruc-
tion converts the extended-real value to an integer.

5.8.3 Basic Arithmetic
The following instructions perform the basic arithmetic operations specified in the IEEE stan-

dard:
addr add real
addrl add long real
subr subtract real
subrl subtract long real
mulr multiply real
mulrl multiply long real
divr divide real
divrl divide long real
remr remainder real
remrl remainder long real
roundr round real
roundrl round long real
sqrtr square root real
sqrtrl square root long real

The round instructions round the floating-point operand to its nearest integral value, based on
the current rounding mode. These instructions perform a function similar to the convert real-
to-integer instructions except that the result is in floating-point format. The remainder real
instructions are not the same as defined by the IEEE standard. The IEEE remainder can be
implemented easily using the provided instructions.

5.8.4 Comparison, Branching, and Classification

Comparison of floating-point values differs from comparison of integers or ordinals because
with floating-point values there are four, rather than the usual three, mutually exclusive
relationships: less than, equal to, greater than, and unordered.

The unordered relationship is true when at least one of the two values being compared is a
NaN. This additional relationship is required because, by definition, NaNs are not numbers, so
they cannot have greater than, equal, or less than relationships with other floating-point values.
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The following instructions are provided for comparing floating-point values:

cmpr compare real

cmprl compare long real

cmpor compare ordered real
cmporl compare ordered long real

All of these instructions set the condition code flags in the arithmetic controls to indicate the
results of the comparison. With the compare instructions (cmpr and cmprl), the condition
code flags are set to 000, for the unordered condition. With the compare ordered instructions
(cmpor and cmporl), the condition code flags are set to 000, and an invalid-operation excep-
tion is signaled for the unordered condition.

classr classify real
classrl classify real

Two branch instructions (bo and bno) allow conditional branching to be performed on an
ordered or unordered condition, respectively.

The classify-real instructions (classr and classrl) provide a means of determining the class of a
floating-point value (zero, denormalized finite, normalized finite, .o, SNaN, or QNaN). The
result of this operation is stored in the arithmetic status field of the arithmetic controls.

5.8.5 Trigonometric

5.8.6 Pi

5-18

The following instructions provide four common trigonometric functions:
sin sine real
sinrl sine long real
cosr cosine real
cosrl cosine long real
tanr tangent real
tanrl tangent long real
atanr arctangent real
atanrl arctangent long real

The arctangent instructions facilitate conversion from rectangular to polar coordinates.

The following value for & is used in computations:
n=f*22
where:

f=0.C90FDAA2 2168C234 Cj¢

(The spaces in the fraction above indicate 32-bit boundaries.)

This value has a 66-bit mantissa, which is 2 bits more than is allowed in the significand of an
extended-real value.

The extra 2 bits of precision in the internal = avoids the singularities that occur in some
trigonometric and complex functions. Since /2 or its multiples cannot be exactly represented
in the input operand, the tangent instructions never have to handle the singularity case at those
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points. Additionally, with the exception of sine of zero, the sine and cosine instructions never
retum zero.

If the results of computations that explicitly use = are to be used in the sine, cosine, or tangent
instructions, the full 66-bit fraction for 7 should be used. This insures that the results are
consistent with the argument-reduction algorithms that these instructions use. Using a rounded
version of T can cause inaccuracies in result values, which if propagated through several cal-
culations, might produce meaningless results.

A common method of representing the full 66-bit fraction of = is to separate the value into two
numbers. For example, the following two long-real values (in long real format) added together
give the value for & shown above with the full 66-bit fraction:

7t = highw + lowrn

where:
highr = 400921FB 54400000, ¢
lowr =3DD0B461 1A600000;4

Here highr gives the most significant 33 bits of & and lowr gives the least significant 33 bits.
Similar versions of & can also be written in the extended-real format.

When using this two-part %t value in an algorithm, parallel computations should be performed
on each part, with the results kept separate. When all the computations are complete, the two
results can be added together to form the final result.

5.8.7 Logarithmic, Exponential, and Scale

The following instructions provide three different logarithmic functions, an exponential func-
tion, and a scale function:

logbnr log binary real
logbnrl log binary long real
logr log real

logrl log long real

logepr log epsilon real
logeprl log epsilon long real
expr exponent real

exprl exponent long real
scaler scale real

scalerl scale long real

These instructions are described in detail in Chapter 18. The following is a brief description of
their functions.

The log binary instructions compute the IEEE recommended function logb (X) which returns
the unbiased exponent of X.

The log instructions compute the function Y * log, (X), where the log of X is the base-2
logarithm,

The log epsilon instructions compute the function Y * log, (X + 1), where the log of X + 1 is a
base-2 logarithm.
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The exponent instructions compute the value 2X 1.

The scale instructions perform a multiplication of a floating-point value by a power of 2.

5.8.8 Arithmetic Versus Nonarithmetic Instructions

The floating-point instructions can be divided into two groups: arithmetic and nonarithmetic.
Nonarithmetic instructions are those which do not generate the invalid operation faults for

signalling NaNs.

The five nonarithmetic instructions are move-real extended (mmovre), copy-sign real extended
(cpysre), copy-reversed-sign real extended (cpyrsre), and classify real (classr and classrl).
These nonarithmetic instructions are insensitive to real values and cannot generate any
floating-point faults, including the floating reserved encoding faults. The cmpr and cmprl
instructions also does not generate the IEEE floating-point faults, but do generate floating
reserved encoding faults. Hence, the IEEE recommended functions, finite(x) and isnan(x), can
be implemented as nonarithmetic. ‘

This distinction between arithmetic and nonarithmetic instructions is important because
floating-point exceptions and faults can be signaled only during the execution of arithmetic
instructions.

5.9 Operations on NaNs

The two types of NaNs are SNaN and QNaN. A SNaN is any NaN value with its most-
significant fraction bit set to O and at least one other fraction bit set to 1. (If all the fraction bits
are set to 0, the value is an e.) A QNaN is any NaN value with the most-significant fraction
bit set to 1. The sign bit of a NaN is not interpreted.

In general, when a QNaN is used in one or more arithmetic floating-point instructions, it is
allowed to propagate through a computation. An SNaN on the other hand causes a floating
invalid-operation exception to be signaled.

The floating invalid-operation exception has a flag and a mask bit associated with it in the
arithmetic controls. The mask bit determines how an SNaN value is handled. If the floating
invalid-operation mask bit is set, the SNaN is converted to a QNaN by setting the most sig-
nificant fraction bit of the value to a 0. The result is then stored in the destination and the
floating invalid-operation flag is set. If the invalid operation mask is clear, a floating invalid-
operation fault is signaled and no result is stored in the destination.

When the result is a QNaN, the format of the result is as shown in Table 5-8, depending on the
form of the source operands.

Table 5-8. Format of QNaN Results

Source Operands QNaN Result

Only one operand is NaN, | QNaN version of NaN source
dugmtion is same width Q

Only one operand is NaN, | QNaN version of NaN source, with
destination is longer fraction extended with zeros

Only one operand is NaN, | QNaN version of NaN source, with
desgnnion is shorter &aion truncated
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Table 5-8: Format of QNaN Results (cont.)

Source Operands QNaN Result

Both operands are NaNs | QNaN version of source whose
fraction field has greatest mag-
nitude, with fraction extended or
truncated as described above

In some cases, a QNaN result is returned when none of the source operands are NaNs. Here, a
standard QNaN is retumned. The significand for the standard QNaN is as follows:

1.1000...00
(For real and long-real destinations, the integer bit will be an implied 1.)

Other than the rules specified above, software is free to use the other bits of a NaN for any
purpose.

5.10 Exceptions and Fault Handling

Occasionally, a floating-point instruction can result in one of the six following floating-point
exceptions being signaled:

e Floating Reserved Encoding
e Floating Invalid Operation
e Floating Zero Divide

e Floating Overflow

e Floating Underflow

¢ Floating Inexact

These exceptions can be divided into two categories:

1. Situations in which one or more source operands are inappropriate for an operation and
would cause an exception to be signaled.

2. Situations in which the result of an operation is exceptional.

The reserved encoding, invalid operation, and division-by-zero exceptions fall in the first cate-
gory; the overflow, underflow, and inexact exceptions fall in the second category.

Except for the floating reserved-encoding exception, each of these exceptions has a flag and a
mask bit associated with it in the arithmetic controls. When an exception condition occurs, the
one of the following actions is taken:

o If the mask bit for the exception is set, the flag for the exception is set and instruction
execution continues, substituting a default value in place of the result.

o If the mask bit for the exception is clear, the flag for the exception is not set and a floating-
point arithmetic fault is raised, by saving diagnostic information in the fault information
area and diverting instruction execution to a fault handler.

Since the floating reserved-encoding exception does not have a flag or mask bit, it always
results in a fault.
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NOTE

The floating-point exception flags are cleared only with explicit instructions. They are
not cleared automatically at the next successful floating-point operation.

Under certain circumstances, multiple floating-point exceptions can occur at the same instruc-
tion. The two cases are inexact and underflow, and inexact and overflow. If either of these
cases occurs, the masked exceptions get their exception flags set, while the unmasked excep-
tions report the fault without setting the corresponding exception flags.

5.10.1 Fault Handler

When a floating-point fault is signaled, a single fault handler is invoked. This fault handler
determines how to handle the specific fault subtype by interpreting the floating-point exception

- flags and the information in the fault record. This process is described in detail in Chapter 10.

5.10.2 Floating Reserved-Encoding Exception

A reserved encoding exception occurs as a result of either of the following two conditions:

e When a reserved encoding is used as an operand in a floating-point instruction, or

e When a denormalized value is used as an operand in a floating-point instruction and the
normalizing-mode bit in the arithmetic controls is clear.

The first condition is rare, and occurs only when an extended-real value has a zero j-bit
(integer part) and a non-zero biased exponent.

The second condition was discussed in Section 5.4.5. This condition is also rare, since the
normalizing mode is typically enabled.

There is neither a flag nor a mask bit for this exception. When a reserved-encoding exception
occurs, floating reserved-encoding fault is raised, and the result is discarded (not stored).

5.10.3 Floating Invalid-Operation Exception

The invalid-operation exception indicates that one of the source operands is inappropriate for
the type of operation being performed. The following conditions cause this exception to be

signaled:

e Any arithmetic operation on an SNaN

e Addition of infinities of unlike sign

e Subtraction of infinities of like sign

e Multiplication of zero by e

¢ Division of zero by zero or o by oo

e Remainder of x by y, if y is zero or x is oo

¢ Square root of a negative, nonzero value

e Conversion of a NaN from floating-point format to integer format

e Sine, cosine, or tangent of oo

Floating-Point Operation



PRELIMINARY

e y*log(x),if:
— xis negative and nonzero,
— yiszero and x is oo,
— yand x are zero, Or
— yisecoandxis 1
e Log epsilon of (y, x), if y is o and x is 0
e Compare ordered, if a source operand is a NaN

When a floating invalid-operation exception occurs and its mask is set, the following occurs:

e When the result is a floating-point value, the standard QNaN value is stored in the destina-
tion and the floating invalid-operation flag is set. (A discussion of how the NaNs are
handled is provided in Section 5.9.) ‘

e When the result is an integer, the maximum negative integer is stored in the destination and
the floating invalid-operation flag is set.

When the mask is clear, no result is stored; the floating invalid-operation flag is not set; and
the floating invalid-operation fault is signaled.

5.10.4 Floating Zero-Divide Exception

5.10.5 Flo

The floating zero-divide exception is signaled when an exact infinite result would be produced
from finite operands. (Note that a different exception, overflow, is signaled when an infinite
result is produced inexactly from finite operands.) The most common example of this excep-
tion is a division operation, where the divisor is zero and the dividend is a nonzero, finite
value. The default result is an infinite with the sign equals to the exclusive-or of the sign of the
two source operands. A zero-divide exception also occurs in log and log binary instructions.

When the floating zero-divide mask is set, a correctly signed oo is stored in the destination and
the floating zero-divide flag is set. When the mask is clear, no result is stored, the floating
zero-divide flag is not set, and a floating zero-divide fault is signaled.

ating Overflow Exception

The overflow exception occurs when the infinitely precise result of a floating-point instruction
exceeds the largest allowable finite value for the specified destination format. Overflow oc-
curs when the infinitely precise result falls outside the range -1.0 * 2Emax+1 ¢g 1 0 * 2Emax+1
(exclusive), where Emax is 127 for real, 1023 for long real and 16383 for extended real.

When the floating overflow mask is set, a rounded result is stored in the destination and the
floating overflow flag is set. The current rounding mode determines the method used to round
the result. The default result is described in Section 5.4.6.

When the mask is clear, no result is stored in the destination and the floating overflow flag is
not set. Instead, the the result is saved in extended-real format in the fault information area.
The fraction of the extended-real value is rounded to the instruction’s destination precision.
For example, if the destination operand’s format is real (32 bits), the extended-real fraction is
rounded to 23 bits, with the 40 least-significant bits filled with zeros.
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If the exponent exceeds the range of the extended-real format (16383 unbiased), then the ex-
ponent is divided by 224576 3nd a flag is set in the fault information area to indicate that the
exponent has been bias adjusted. After this fault information is stored, a floating overflow
fault is signaled.

When using the scale instructions (scaler or scalerl), massive overflow can occur, where the
infinitely precise result is too large to be represented, even with a bias-adjusted exponent.
Here, a properly signed - is stored in the fault record.

The floating overflow exception cannot occur on a conversion from floating-point format to
integer format (although an integer overflow exception can occur).

5.10.6 Floating Underflow Exception

An underflow condition occurs when the infinitely precise result of a floating-point instruction
is less than the smallest possible normalized, finite value for the specified destination format.
Underflow occurs when an infinitely precise result falls in the range -1.0 * 2Emin 45 41,0 *
9+Emin where Emin is -126 for real, -1022 for long real, and -16383 for extended real.

When a floating underflow condition occurs, the setting of the floating underflow mask deter-
mines how the condition is handled.

If the mask is set when an underflow condition occurs, the the result is denormalized. Then if
the result is exact, it is stored in the destination and the floating underflow exception is not
signaled, nor is the floating underflow flag set. If, on the other hand, the denormalized result is
inexact, the floating underflow flag is set and the the inexact condition is handled (as described
in Section 5.10.7).

If the floating underflow mask is clear when an underflow-condition occurs, no result is stored
in the destination and the floating underflow flag is not set. Instead, the result is stored in
extended-real format in the fault information area, with the fraction of the extended-real value
rounded to the instruction’s destination precision. For example, if the destination precision is
real (23-bit fraction) the 40 least-significant bits of the fraction are set to 0.

If the exponent of the value stored is less than the minimum allowable value in the extended-
real format (-16,382 unbiased), then the exponent is multiplied by 224576 and a flag is set in the
fault information area to indicate that the exponent has been bias adjusted. After this infor-
mation is stored, a floating underflow fault is signaled.

The scale instructions can cause massive underflow to occur, where the infinitely precise result
is too small to be represented, even with a bias-adjusted exponent. Here, a properly signed
zero is stored in the fault record.

Refer to Section 5.10.8 for more information on the interaction of the floating underflow and
inexact exceptions.

5.10.7 Floating Inexact Exception

The floating inexact exception occurs when an infinitely precise result cannot be encoded in
the format specified for the destination operand. Either of the following two conditions can
cause an inexact exception to be signaled:

e When a result is rounded and the result is not exact
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e When overflow occurs and the floating overflow mask is set

If the floating inexact mask is set when an inexact condition occurs and an unmasked overflow
or underflow condition does not occur, the rounded result is stored in the destination and the
floating-point inexact flag is set. The current rounding mode determines the method used to
round the result.

If the floating inexact mask is clear when an inexact condition occurs, the floating inexact flag
is not set and one of the following operations is carried out:

e If only the inexact condition has occurred, the rounded result is stored in the specified
destination and a floating-inexact fault is raised.

e If the inexact condition occurs along with overflow or underflow, no result is stored in the
destination. Instead, the result is stored in extended-real format in the fault information
area, as described for the floating overflow and underflow exceptions, then a floating in-
exact fault is raised.

Refer to the following section for more information on the interaction of the floating underflow
and inexact exceptions.

5.10.8 Floating-Point Underflow Condition

Two aspects of underflow are important in numeric processings: the "tininess" of a number
and "loss of accuracy.” A result is tiny when it is nonzero and its exponent is between £ 2Emin
where E_; is the smallest unbiased exponent allowed in the destination format. For example,
if the destination format is long-real (64-bit format), a result is tiny if it is nonzero and in the
range of +1 * 2-1022 ¢5 .1 * 2-1022_ The ability to detect a tiny result is important because such
a result may cause an exception to be signaled in a later operation (for example, overflow on a
division).

Loss of accuracy occurs when a tiny result is approximated as part of the denormalization
process so that it will fit into the destination format.

Tininess is detected after rounding as an underflow condition. Loss of accuracy is detected as
an inexact condition.

The algorithm in Figure 5-6 shows how the these two conditions are handled when a floating-
point operation produces a tiny result.

An important point to note in this algorithm is that if the underflow mask is set, an underflow
exception is signaled only if the denormalized result is inexact. If the denormalized number is
exact, no flags are set and no faults are signaled.

Underflow is different from all other exceptions in that the condition under which the excep-
tion occurs depends on whether the underflow mask is set. The only difference is in the case
where a denormalized result is exact. When underflow is masked, neither underflow nor in-
exact flags are set. When underflow is not masked, an underflow fault is generated.
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generate infinitely precise result; # exponent and significand;
if exponent < underflow threshold then
if underflow fault mask clear then
goto underflow fault handler;
exit algorithm;
else #underflow fault is masked
generate denormalized number;

if denormalized significand equals infinitely precise significand then

store denormalized result in destination;
# no underflow is signaled;
else
set underflow flag in AC;
if inexact fault mask is clear then
goto inexact fault handler;
exit algorithm;
else # inexact fault is masked
set inexact flag in AC;
store denormalized result in destination;
end if;
end if;
end if;
else # no underflow, but result may be inexact
if infinitely precise result is inexact then
if inexact fault mask is clear then
goto inexact fault handler;
exit algorithm;
else # inexact fault is masked
set inexact flag in AC;
store normalized result in destination;
end if;
else # result is exact
store normalized result in destination;
end if;
end if;
exit algorithm

Figure 5-6. Interaction of Floating Underflow and Inexact Exceptions
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PROTECTION MODEL

This chapter describes the subsystem call and protection mechanism. This chapter discusses
the domain object, the environment table, the subsystem mechanism, and the supervisor call
mechanism.

7.1 Introduction

The processor supports two protection models: the conventional "supervisor" model, and the
"subsystem" model. (BiiN™ use the latter.) The supervisor model is principally described in
this manual for completeness, and also because the BiiN" Operating System intemally uses
the supervisor mode for operations such as interrupt handling.

In the supervisor protection model, a process consists of two address spaces, one for the user
(application program), and one for the supervisor (the operating system). In supervisor mode,
the operating system has complete access to both address spaces.

In the subsystem protection model, a process consists of any number of distinct address spaces.
Unlike the supervisor model, no address space has implicit access to any other address space.
Procedures may be invoked across address space boundaries in order for a process to gain
access to those data structures and procedures that are otherwise inaccessible to an address
space. A "domain" object represents the "public” interface of an address space. A domain
object defines the address space and the "procedure table" of entry points into that address
space.

The term "subsystem" transfer (call/return) describes the subsystem protection mechanism.
The term "supervisor" transfer describes the supervisor protection mechanism.

7.2 Supervisor Protection Model

The two modes of execution, "User" mode and "Supervisor" mode, support the efficient
emulation of conventional operating systems. (See Chapters 15 and 16 for additional details.)
Note however that there are no "privileged instructions"; that is, all instructions can be ex-
ecuted in either mode. A program gains privilege by nature of its access rights and its execu-
tion mode. The page rep rights in the current linear address space are interpreted differently
depending on the execution mode (see Chapter 9). Operating system storage generally has
page rep rights which do not allow user access, but may be read-only or read/write in the
Supervisor mode.

In systems where tagging is disabled (see Chapter 16), the tag bit is not available to distinguish
between data and ADs. Since all operands have tag bits of zero, any attempt to execute
instructions or operand specifiers which require an AD will fault in User mode. In the super-
visor mode, the fault is disabled and the data is treated as an AD. Supervisor mode allows the
execution of instructions which use ADs as operands (for example, the SEND instruction re-
quires an AD to a port object).
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In systems where tagging is enabled (as in the BiiN™ Operating System), the only difference
between the user and supervisor modes is the page rep rights interpretation. The automatic
interpretation of data as ADs in supervisor mode is not supported. Instructions that require
ADs can be executed only if the specified operand is an AD.

In an untagged system, the calls instruction is the only way to change the execution mode to
supervisor without faulting. The system domain contains a set of entry procedures for the
operating system.

The supervisor procedure call (via the calls instruction) is similar to a local call. Whena
supervisor procedure is specified in the procedure table in a domain object (see Chapter 7), the
domain object specifies the new supervisor stack pointer. If the process is in user mode, the
supervisor stack pointer becomes the new frame pointer. If the process is already in supervisor
mode, the stack pointer in the current frame is aligned to the next 64-byte boundary to form the
new frame pointer. This allows calling supervisor procedures from a supervisor procedure.
The supervisor stack is required to be frozen (that is, locked in memory). This is an intra-
address-space transfer with the exception that the execution mode (and trace enable) of the
process can be changed as part of the call. Typically, the data, instructions, and stack of the
supervisor is located in the processor-specific object of the current address space.

The return status field signals a supervisor return on a return from the frame. A supervisor
return is performed only if the process is in supervisor mode at the beginning of the instruc-
tion. Otherwise, a local return is performed. This prevents the modification of the trace
control and the selection of either fault or interrupt return by a procedure in user mode.

The supervisor procedure mechanism is intended for a simple untagged operating system. This
mechanism should be sufficient for an operating system that requires only two stacks (user
stack and supervisor stack) sharing the same linear address space and two protection levels.

7.3 Subsystem Based Protection

The target address space in a subsystem call is defined by the contents of a "domain" object.
The "procedure table" contains a list of valid entry points into the domain; that is, a procedure
table entry is a pointer for the first instruction of a procedure.

Two or more domain objects can specify the same address space, but with different procedure
table entries. With different entries, each domain object provides a different kind or level of
service. By limiting which programs or users get which domains, different service levels can
be granted to different users or programs.
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Figure 7-1. Subsystem Transfer

Private information or objects associated with an address space are not directly accessible via a
domain from other address spaces. As part of a subsystem call operation, objects that define
the address space are made accessible inside the address space.

A calld instruction requires an AD for the domain object with read rep rights. Except for the
domain object type manager, a domain object AD should not have write rights. Otherwise,
protection can be bypassed by modifying a domain object.

7.3.1 Target Address Spaces

A domain object specifies the target address space of an subsystem call. A subsystem transfer
may change one or more of the objects that define the current address space. With appropriate
placement of static data, stack frames, and instructions, a subsystem transfer may not need to
change all three objects at the same time. A typical (but not necessary) partitioning (such as
the one used in the BiiN™ Operating System) might be:

e "Data" Object. Region O contains static data and private variables. A subsystem
call/return changes at least region 0.
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e "Instruction" Object. Region 1 contains instructions. This allows sharing the instruction
part of a domain by copying a single AD without having to use page table sharing. This
object may remain unchanged during a subsystem call/return.

e "Stack" Object. Region 2 contains stack frames. This object is process-specific and
sharing among processes is not possible. This object may remain unchanged during a
subsystem call/return if the subsystem caller and callee trust each other.

If the fault handler for virtual-memory faults is specified in the fault table (Chapter 10) as a
subsystem, the OTEs for the objects of this subsystem must be marked as valid. Failing to do
so will lead to a system error or to an incorrect frame or stack pointer when the fault handler is
invoked.

7.3.2 Subsystem ID and Subsystem Table

A domain does not directly specify region 2 AD of the target address space, but indirectly with
a subsystem ID. The "subsystem table" locates all the stack (region 2) objects and their cor-
responding topmost frame and stack pointers associated with a process. A subsystem ID can
be mapped to different region 2 ADs, each associated with a different process. The subsystem
ID selects a subsystem entry in the subsystem table in the environment table object associated
with the current process. A subsystem entry, in turn, specifies the region 2 AD and the top-
most stack frame in the object.

A subsystem ID can be can be either an AD or data. If the subsystem ID is an AD, the object
index field of the AD provides a system-wide unique ID for the subsystem. Otherwise,
software needs to assign unique IDs to each subsystem within a single process. The subsystem
ID together with the subsystem table serves the following functions:

e Stack object sharing among domains. Domains for the same subsystem use the same
subsystem ID to allow stack object sharing within the same process. This also allows
subsystems that trust one another to share the same stack.

e Reentrancy of a stack object. When a subsystem is exited on a call to another subsystem,
the linear address of the topmost frame is saved in the subsystem entry. This allows a call
from subsystem A to subsystem B which in turn calls subsystem A without returning from
subsystem B first. :

e Trusted subsystems. A subsystem ID of 0 indicates the current stack object is unchanged.
This allows two mutually suspicious subsystems to share the same trusted library module
(for example, a run-time library).

e Guarantee stack resource. Since the stack resource associated with a subsystem need not
be shared with other subsystems, it is possible under some situations for software to
guarantee that stack resource exhaustion never occurs. This allows certain faults be
handled synchronously.

e Domain object sharing among processes. The subsystem ID also allows the same
domain for different processes, but the same domain is mapped to different region 2 ADs
using different process-specific stacks.

7.3.3 Control Stack

7-4

The subsystem call/return mechanism maintains a "control stack™ (in the environment table
object associated with a process) for the subsystem linkage information. A control stack is an
array of control stack entries. Each control stack entry contains the saved state of an address
space (to be restored on a retumn).
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7.3.4 Extended Subsystem Environment

The subsystem model requires the following objects:

¢ Environment Table Object. This includes both the subsytem table and the control stack.

e Current Subsystem ID. The process is associated with a subsystem ID which is saved in
the process together with related information (like the current subsystem table offset for the
current subsystem entry).

These fields are ignored when not operating with the subsystem model.

7.3.5 Interrupt Environment

When the process is in the interrupted state, subsystem calls consult an interrupt environment
table object. All subsystem calls in the interrupted state are handled as intra-subsystem calls
(where the region 2 and stack are not changed). Thus, the interrupt environment table does not
need a subsystem table at the beginning. The control stack in the interrupt environment must
start at a fixed offset.

7.4 Domain Objects
A domain object has object type 0011,.

The type rights in a domain object AD are uninterpreted.

An AD to a domain object should have read rep rights.
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Figure 7-2. Domain Object

The structure of a domain object is given in Figure 7-2. The fields of a domain object are
defined as follows:

e Region 0 AD (bytes 0-3). This AD references the object which defines region 0 of the
target address space for a subsystem call. If the tag bit is zero, an invalid AD fault is raised.

e Region 1 AD (bytes 4-7). This AD references the object which defines region 1 of the
target address space for a subsystem call. If the tag bit is zero, an invalid AD fault is raised.

o Subsystem ID (bytes 8-11). This mixed value is the subsystem ID that selects an entry in
the subsystem table in the environment table associated within the process object. A sub-
system entry in the subsystem table specifies the object that defines region 2 of the target
address space and the frame pointer of the topmost stack frame in the address space. If this
field is a data word of zero, the current region 2 remains unchanged and the current frame is
the topmost stack frame. Bits 6-31 of the subsystem ID produce a hash value into the

subsystem table.

e Trace Control, T (byte 12, bit 0). This bit specifies the trace enable bit of the process
controls after a subsystem or supervisor call via this object. This bit disables or enables
tracing inside the new address space. This bit is ignored during an explicit call to a super-
visor procedure in supervisor mode. This bit has the same encoding as that in the process
controls (see Chapter 15).
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Supervisor Stack Pointer (bytes 12-15, bits 2-31). This is a linear address (word-aligned)
for the supervisor stack. Supervisor calls locate the new frame with this field (in the user
mode) instead of the stack pointer in the current frame.

The process distinguishes between a user stack (in user mode) and a supervisor stack (in
supervisor mode). If the supervisor stack pointers in different domains contain different
values, all the stacks must be big enough to handle the needs of all the supervisor
procedures. Hence, the process supervisor stack pointers should be the same. Since the
fault table is associated with a processor, all the processes sharing the same processor need
to have a supervisor stack as specified by the supervisor fault handling procedures. Hence,
the supervisor stack pointer should be a system wide constant.

Procedure Entries (from byte 48 to the end of the object). A procedure entry specifies the
type and address of the target procedure. The fields of a procedure entry are defined as
follows:

— Procedure Entry Type (bits 0-1). This field indicates the type of procedure to be
invoked. The encodings of this field are as follow:

00 local procedure

01 reserved

10 supervisor procedure
11 subsystem procedure

—~ Offset (bits 2-31). This 30-bit field is a word offset into the target address space to the
first instruction of the target procedure.

The domain object may be bigger than the last entry of the procedure table. If so, the
unused entries should point at a local procedure that reports an error, to prevent com-
promise of the protection mechanism.

7.5 Environment Table Object

An

"environment table object" contains two data structures: a subsystem table and a control

stack. This object contains information necessary for all subsystem transfers within a single
process; thus, there is an one-to-one correspondence between a process object and an environ-
ment table object.

Protection Model
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Figure 7-3. Environment Table Object

An environment table object does not have a predefined object type. Some parts of the en-
vironment table may be held inside the processor. The fields of an environment table object
are defined as follows:

o Subsystem Table. This area is described in the following section. The first entry stores
the current control stack pointer, control stack limit, and subsystem table size.

e Control Stack. This area is described in the following section.

7.5.1 Subsystem Table

7-8

During a subsystem call, a domain object directly specifies only two of the three objects that
define the new address space. The domain object contains a subsystem ID which indirectly
specifies the third object of the new address space. A subsystem table is a data structure within
an environment table object which provides the mapping of a subsystem ID to region 2 AD of
the new address space. '

The first entry of the subsystem table is a dummy entry with the following defined fields:

e Current Control Stack Pointer, CCSP (bytes 0-3, bits 4-31). This is a quad-word index
for this object to the next available CSE. This field is incremented on a subsystem call and
decremented on a subsystem return.
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Control Stack Limit, CSL (bytes 4-7, bits 4-31). This is a quad-word index for this object
to the first CSE reserved for the control stack overflow fault handler (that is, not for regular
uses). When CCSP = CSL after the completion of a subsystem call, a Control-Stack

Overflow fault is generated.

Subsystem Table Size (bytes 12-15, bits 4-29). This field contains one less than the size
(in units of subsystem entries) of the subsystem table. The size of a subsystem table must
be a power of 2; thus, this field contains a bit mask of ones in the least significant bits.
Otherwise, the behavior is unpredictable. Thus, this field may be interpreted as the index of
the last subsystem table entry.

7.5.2 Subsystem ID to Subsystem Entry Mapping
A subsystem ID selects the corresponding subsystem entry as follows:

If the specified subsystem ID is zero or equal to the current subsystem ID, the current
subsystem ID is selected. Otherwise, search the subsystem table as specified below.

Bits 6-31 of the specified subsystem ID are logically-ANDed with the subsystem table size
to form the initial subsystem entry index.

Repeat the following,

— If the subsystem ID in the selected subsystem entry is zero, a Subsystem Not Found fault
is raised.

— If the subsystem ID in the selected subsystem entry matches (as if a cmpm instruction
were executed) that of the specified subsystem ID, exit from the search.

— Otherwise, select the previous subsystem entry by searching backward linearly through
the table. Entry O wraps around to the last entry pointed to by the system table size.

— If this is the initial subsystem entry and the process is not in interrupted state, raise a
Subsystem Not Found fault. If the process is in interrupted state, the current subsystem
is selected.

'7.5.3 Subsystem Entries

31 S 0
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TOPMOST STACK POINTER n+4

SUBSYSTEM 1D n+8
REGION 2 AD n+12

Figure 7-4. Subsystem Entry

The structure of a subsystem entry is shown in Figure 7-4. The fields of a subsystem entry are
defined as follows:

Topmost Frame Pointer (bytes 0-3, bits 6-31). This field contains the frame pointer of the
topmost stack frame. During a subsystem call into this address space, this field defines the
previous frame pointer in the new frame. During a subsystem call from this address space,
the current frame pointer is saved here. During a subsystem retum to this address space,
this defines the target frame pointer. During a subsystem return from this address space,
the previous frame pointer in the current frame is saved here.
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e Topmost Stack Pointer (bytes 4-7). This field contains the stack pointer in the topmost

stack frame. During a subsystem call into this address space, this field defines the frame
pointer of the new frame. During a subsystem call from this address space, the current
stack pointer is saved here. During an inter-subsystem retun from this address space, the
current frame pointer (that is, the rounded stack pointer in the previous frame) is saved
here. During other inter-subsystem returns from this address space, the current frame
pointer minus 64 (that is, the rounded stack pointer in the previous frame) is saved here.
During a return to this address space, this field is ignored.

Subsystem ID (bytes 8-11). This ID identifies the subsystem the target address space is
associated with. This ID is the key for a matching subsystem ID to a region 2 object; thus
it is unique within the subsystem table. A value of zero indicates this subsystem entry is
unallocated. Subsystem table entry O (with a subsystem ID of all ones) stores control stack
information.

Region 2 AD (bytes 12-15). This AD references the object that defines the region 2 of the
target address space partially specified by this entry. This AD must contain read/write
rights, otherwise, a Rep Rights fault is raised.

7.5.4 Control Stack

The organization of the control stack is shown in Figure 7-3. A control stack entry is pushed
on the control stack on a subsystem call, and popped off the control stack on a subsystem
return. The control stack is delimited on the low end by a reserved control stack entry. The
control stack is delimited on the high end by the control stack limit plus a few reserved entries
(for the control stack overflow fault handler). The number of entries to be reserved for stack
overflow fault haridler is software-defined.

7.5.5 Control Stack Entries

7-10

31 3 0
RETURN REGION 0 AD
RETURN REGION 1 AD

RETURN SUBSYSTEM ENTRY OFFSET IMODEI T

CALLED SUBSYSTEM’S DOMAIN AD

Figure 7-5. Control Stack Entry

The format of a control stack entry is shown in Figure 7-5. The fields of a control stack entry
are defined as follows:

e Return Region 0 AD (bytes 0-3). This AD references the object that defines region 0 of

the calling address space of the corresponding subsystem call. On a subsystem return,
region 0 is restored to this object. This AD must contain read/write rights; if not, a Rep
Rights fault will be raised.

Return Region 1 AD (bytes 4-7). This AD references the object that defines the region 1
of the calling address space of the corresponding subsystem call. On a subsystem return,
region 1 is restored to this object. This AD must contain read/write rights; if not, a Rep
Rights fault will be raised.

Trace Control, T (byte 8, bit 0). This bit contains the trace enable bit in the process
controls during the corresponding normal subsystem calls. During a subsystem retumn, the
trace control is restored to this bit.
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e Return Mode, MMM (byte 8, bits 1-3). This 3-bit field indicates the type of entries. This
field is encoded as follows:

000 Nommal intra-subsystem

001  Nommal inter-subsystem

100  Fault intra-subsystem

101 Fault inter-subsystem

x1x  reserved; Control-Stack Underflow fault is raised

Fault procedures are described in Chapter 10.

e Return Subsystem Entry Offset (bytes 8-11, bits 4-31). This field contains the entry
index into the subsystem table (in the environment table) for the subsystem entry that
defines the region 2 of the calling address space.

When a subsystem table is expanded and rehashed, the subsystem entry offset changes and
needs to be updated.

e Callee’s Domain AD (bytes 12-15). This AD references this subsystem call’s domain
object. This is initialized during a call, but it is ignored on a return.

7.6 Domain CALL/RETURN

calld
calls
ret

ldesp

The calld instruction invokes the procedure specified by the procedure number in the specified
domain object, and changes the address space as specified by the domain object. The specified
domain AD must have read rights. The procedure number is a word index into the procedure
table in the specified domain object for a procedure entry.

The calls instruction calls a procedure in the system domain. The system domain is a domain
referenced by the processor object. This instruction is necessary to allow supervisor calls in an
untagged system. In a tagged system, the system domain can map supervisor calls of an
untagged operating system to a tagged operating system.

The ret instruction retums to the caller. The particular return action is determined by the
return status field in the previous frame field of the current frame. This allows procedures to
be invoked from both inside or outside of their associated domains, even though different
actions are taken.

The ldcsp instruction returns the current control stack pointer of the process.
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OBJECT ADDRESSING

This chapter describes objects, and how they are addressed.

8.1 Address Spaces

The three address spaces are linear, virtual, and physical. A linear address space is mapped
onto a virtual address space which is, in turn, mapped onto a physical address space. An
address in each space has a unique structure.

Physical addresses define specific memory and I/O locations outside the processor. Virtual
addresses define objects and locations within objects; the operating system manages virtual
addresses to support multiprocessing and multiprogramming. Linear addresses provide a flat
address space to be used by programs operating in a "conventional" manner.

8.1.1 Physical Address Space

The physical address space consists of 232 (4G) bytes. The physical address space covers
read-write memory, read-only memory, and memory-mapped I/O. The last 16M bytes of the
physical address space (from FF000000, ¢ to FFFFFFFF o) are reserved; see Appendix B for
details.

The physical address space is byte addressable and must guarantee atomic and indivisible
access (read or write) for memory addresses that fall within 16-byte boundaries. An
indivisible access guarantees a processor reading or writing a set of memory locations will
complete the operation before another processor can read or write the same location. An
atomic operation allows a processor to read and modify a set of memory locations (within a
aligned 16-byte block) with the guarantee that another processor doing an atomic operation on
the same block will be delayed.

The physical medium representing an area of the physical address space may have more
restrictions on the alignment and the length of an individual access. These restrictions are not
necessarily detected.

Multiple processors may share a single, common physical address space.

8.1.2 Virtual Address Space

The system-wide virtual address space is actually a collection of objects. Given that any
datum within an object is located by a simple offset, the virtual address of the datum is
specified by two components: an object index that selects the desired object and an object
offset of the datum within the object. The size of the virtual address space is the product of the
number of objects allowed and the maximum size of each object. A maximum of 226 (64M)
objects are allowed, with a maximum of 232 (4G) bytes per object, yielding a total virtual
address space of up to 258 bytes.
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An object is also defined as the unit of protection. To control access within the virtual address
space, the generation of object indices is protected. A special type of pointer, called an access
descriptor (AD), contains an object index. (Ordinary data can not be used where an access

/ descriptor is required.) An access descriptor can point to any of the 64 million objects in the

virtual address space. It is more accurate, therefore, to say that a virtual address is specified
by a protected object index (an access descriptor) and an unprotected offset.

The use of a system-wide virtual address space allows different processors and processes to
communicate with each other without the conventions and restrictions imposed by conven-
tional architectures on shared address spaces.

8.1.3 Instantaneous Address Space

Access descriptors, directly or indirectly accessible, are conceptually assembled in sets to form
yet a third type of address space called the instantaneous address space. The instantaneous
address space defines the visibility of the execution environment. The execution environment
is further described in Chapter 6. Addresses are mapped onto the single virtual address space.
For maximum flexibility, there are two types of instantaneous addresses.

The first type, called a linear address, is defined by the four objects that form the execution
environment. A linear address is used to represent the conventional notion of a process ad-
dress space. Linear addresses, interpreted within a given environment, are mapped onto the
virtual address space. The mapping of linear addresses to virtual addresses is a fundamental
part of the instruction interpretation process. In a linear address, an operand specifier supplies
only an offset; the current linear address space is implied. The upper two bits of a linear
address implicitly selects one of the four objects that define the execution environment, while
the remaining 30 bits are an offset into the selected object.

The second type, called the structured address, is defined by a virtual address (that is, AD
plus offset). The structured address is used to access the more advanced object-oriented
protection features. In a structured address, an operand specifier supplies a virtual address.
Since an AD cannot be directly specified in the instruction stream, the AD part of the virtual
address must be specified indirectly using an AD selector in an operand specifier. An AD
selector specifies a register (global or local) that holds an AD.

8.2 Objects and Object Addressing

8.2.1 Access Descriptors and their Rights

8-2

An access descriptor is a protected pointer into the object space. Access descriptors are
protected from accidental or malicious creation and modification.

A program cannot address an object directly, but only indirectly via an access descriptor.
Since a program cannot reference an object without an access descriptor to it, nor can a
program create an arbitrary access descriptor, a program’s visibility is restricted to those ob-
jects it needs to access.

An access descriptor contains the following information:

e Object Index. This selects the object.

e Rights. An AD contains read rights, write rights and type rights. These rights indicate the
permissible operations on the object. Rights are described in Chapter 9. Note that rights
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are associated with an access descriptor and not with the object itself. It is thus possible to
have different rights to the same object by selecting different access descriptors.

e Lifetime. This bit indicates the lifetime of the object this AD references. Lifetime is
described in Section 8.4.

8.2.2 AD to Object Mapping

Objects are referenced using system-wide protected pointers called access descriptors. Each
access descriptor contains a 26-bit object index; thus, there are 226 (64M) possible objects. An
object index selects an object table entry in the system-wide object table object. An object
table entry specifies the location, size, type, and so on of the referenced object. Figure 8-1
introduces the mapping process.

OBJECT 1
ACCESS
DESCRIPTORS (AD's) >

AD 1

OBJECT TABLE OBJECT 2

OBJECT DESCRIPTOR 1

AD 2

OBJECT DESCRIPTOR 2

AD 3 OBJECT 3
_1—-) OBJECT DESCRIPTOR 3 > o
e

OBJECT 4
>

AD 4 OBJECT DESCRIPTOR 4

OBJECT 5
>

OBJECT DESCRIPTOR S

OBJECT 6

AD S | :
OBJECT DESCRIPTOR 6 >

AD 6

Figure 8-1. AD to Object Table to Object Mapping

8.2.3 Storage Blocks and Pages

Physical memory is partitioned into pages and suballocated pages. Suballocated pages are
further subdivided into storage blocks.

An object is physically composed of a storage block and/or a set of pages. A block is a
contiguous area in the physical address space. A block can be used to represent a simple
object, a page table, or a page table directory.

The base address of a storage block points to the first byte of the block. The base address of a
storage block must be aligned on a 64-byte physical address boundary. The length of a block
varies from 64 bytes to 4096 bytes. A block cannot span across a 4K-byte boundary.

An object can also be represented by a set of pages with one or two levels of page tables. The
first level table can be a storage block instead of a page. The pages that define an object are
described by a page table. A page is a fixed size block of 4K bytes with base address aligned
on a 4K-byte boundary.
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8.2.4 Tagging

An object contains access descriptors and/or data, that is, any binary information. Access
descriptors and data can reside in the same object and can be interleaved in any arbitrary order.

In some systems (such as BiiN™ Systems), a tag bit is associated with each 4-byte aligned
word in memory to indicate whether the word is data or an access descriptor. An access
descriptor must be aligned to 4-byte boundary with a tag bit of one. A tag bit of zero indicates
data.

In other systems, the tag bit is not used. The interpretation of a word as data or an access
descriptor depends on the operation; see Chapter 16.

In a word-aligned read or write of the whole word, the tag bit is either preserved or set to zero
depending on the operation. In an non-word aligned read, or a partial read of a word, the tag
bit of the returned value is always forced to zero. Similarly, in an non-word aligned write, or a
partial write of a word, the tag bit of any of the modified words is always forced to zero. The
data manipulation (arithmetic or logical) instructions require source operands with zero tag
bits, and generate values with zero tag bits.

8.2.5 Typed Objects

Certain objects have a predefined internal organization. These objects play a key role in the
protection system, the interprocess/interprocessor communication system, and the storage
management system. To recognize these objects and to control their use, each one must be
identified by a proper object type. This object type is maintained with the object’s address
mapping information. Additional object types may be assigned with their own type codes.
Object typing is described in Chapter 9.

8.2.6 Object Offset

An object offset is a 32-bit ordinal used to specify a datum within an object. The offset is
capable of pointing to either data or access descriptors in an object. An object offset is divided
into a number of fields. The interpretation of these fields are dependent on the object represen-
tation (described in later sections).

31 22 21 12 11 0

10 bits 10 bits 12 bits

L Page Offset
Page Index

Directory Index

Figure 8-2. Object Offset

8.2.7 Object Size

84

The maximum size of an object is 232 (4G) bytes. The size of an object is specified in an
object table entry. The object offset in a virtual address plus the operand size is compared with
the size of the referenced object on every address translation. This operation is called bounds
checking and prevents reference beyond the specified object of a datum which may belong to
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another object. For a 232 byte object, the offset wraps around instead of raising a fault. The
granularity of an object varies from 64 bytes to 64M bytes, depending on the object represen-
tation.

8.3 Object Representation

An object is described by an object table entry. The object table entry provides provides the
mapping information for the physical addresses of the storage blocks and pages. These blocks
and pages represent the physical object. Three different mapping schemes are used for dif-
ferent maximum object sizes and to minimize object representation overheads.

e Simple Objects. A simple object is represented by a block in physical address space
directly. The physical base address is stored directly in the object table entry. Such an
entry is called a simple object descriptor. Simple objects are objects between 64 and 4K
bytes.

e Paged Objects. A paged object is represented by a set of physical pages using a single-
level page table. The object table entry for a paged object, called a paged object descriptor,
contains the physical address of a page table, which is an array of page table entries for the
pages. Paged objects are objects between 4K and 4M bytes.

e Bipaged Objects. A bipaged object is represented by a set of physical pages using two
levels of page tables. The object table entry for a bipaged object, called a bipaged object
descriptor, contains the physical address of a page table directory, which is an array of page
table entries for page tables. Bipaged objects are objects between 4M and 4G bytes.

8.3.1 Simple Objects

A simple object is defined by a simple object descriptor and represented by a single block.
The maximum size of a simple object is 212 (4K) bytes. This size of a simple object is in units
of 64 bytes. A simple object descriptor contains the physical base address and the block
length. A simple object cannot span across a 4K-byte physical address boundary.

A simple object offset is partitioned as follows:

e Directory Index DI (bits 22-31). This 10-bit field must be zero. Otherwise an Object
Length fault is raised.

o Page Index PI (bits 12-21). This 10-bit field must be zero. Otherwise an Object Length
fault is raised.

e Block Offset SO (bits 0-11). This 12-bit field is the byte displacement added to the base
address of the block to form the physical address for the first byte of the operand.

8.3.2 Paged Objects

A paged object is described by an object table entry called a paged-object descriptor. Paged
objects are implemented with one level of page table. The maximum size of a paged object is
24“ (4M) bytes. The size of a paged object is in units of 4K bytes. The page table of a paged
object is aligned on 64-byte physical address boundary and the size is in multiples of 64 bytes.
A paged object is composed of 4K-byte pages and thus does not require contiguous physical
address space of more than 4K bytes. Each page is individually swappable and relocatable,
thus not all pages of a paged object need be present in physical address space at the same time.
To access an item of a paged object, only the page table (64-4096 bytes) and the selected page
(4K bytes) need to be located in the physical address space.
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A paged-object descriptor contains the object length, but does not contain the base addresses of
the pages which represent the object. The base address field of a paged-object descriptor
contains the base address of the page table block. The length of the page table block is defined
by the object length of the object.

A paged object offset is partitioned as follows:

e Directory Index, DI (bits 22-31). This 10-bit field must be zero. Otherwise, an Object
Length fault is raised.

o Page Index, PI (bits 12-21). This 10-bit field is used to index into the selected page table
for a page table entry.

o Page Offset, PO (bits 0-11). This 12-bit field is the byte displacement appended to the
base address (in the page table entry) of the page to form the physical address for the first
byte of the operand.

8.3.3 Bipaged Objects

A bipaged object is described by an object table entry called a bipaged object descriptor.
Bipaged objects are implemented with two levels of page tables. The second level of page
tables are always page aligned and 4K bytes in size. The maximum size of a bipaged object is
232 (4G) bytes. The size of a bipaged object is in units of 4K bytes. The page table directory
of a bipaged object is aligned on 64-byte physical address boundary and the size is in multiples
of 64 bytes. A bipaged object uses 4K-byte page tables and 4K-byte pages and thus does not
require contiguous physical address space of more than 4K bytes. Each page or page table is
individually swappable and relocatable; thus, not all pages or page tables of a bipaged object
need be present in physical address space at the same time. To access an item of a bipaged
object, only the page table directory (64-4096 bytes), the selected page table (4K bytes), and
the selected page (4K bytes) need to be located in the physical address space.

A bipaged object descriptor contains the object length, but does not contain the base addresses
of the pages nor page tables which represent the object. The base address field of a bipaged
object descriptor contains the base address of the page table directory block. The length of the
page table directory block is defined by the object length of the object.

A bipaged object offset is partitioned as follows:

e Directory Index, DI (bits 22-31). The directory index selects a page table entry in the page
table directory specified by the bipaged object descriptor.

o Page Index, PI (bits 12-21). The page index selects a page table entry in the specified page
table.

e Page Offset, PO (bits 11-0). The page offset is used as an offset into the page. The page
offset is appended to the base address (in a page table entry) to form the physical address
for the first byte of the operand. '

8.4 Object Lifetime

To support the implicit deallocation of certain objects while preventing dangling references,
the object lifetime concept is supported. The lifetime of an object can be local or global.
"Local" objects have a lifetime that is tied to a particular program execution environment (such
as a "job" within the BiiN™ Operating System). "Global" objects are not associated with a
particular execution environment.
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Each job has a distinct set of local objects. No two jobs can have ADs that reference the same
local object. The processor does not allow an AD for a local object to be stored in a global
object. Thus, when a job terminates, all the local objects associated with a job cab be safely
deallocated, and there cannot be any dangling pointers.

The local bits in access descriptors, object descriptors, and page table entries are the means by
which the lifetime of an object is determined and prevents a potential dangling reference (AD)
from being stored.

8.4.1 Local Bits

A local bit is associated with each object or page to denote its relative lifetime. The local bit is
located in the object descriptor for a simple object, and the PTEs for a page. A value of 0
indicates a global object or page with unbound object lifetime. A value of 1 indicates a local
object or page with bound object lifetime.

8.4.2 Lifetime Checking

The object lifetime check is performed every time an AD is stored. Since this requires the
lifetime of the source object and destination location to be compared, the operation is called
lifetime checking. If the source AD is valid and the local bit is 1 and the lifetime of the
destination location (in an object table entry or a page table entry) is global, a Lifetime fault is
raised.

In the implicit manipulation of system objects, lifetime checking is ignored unless explicitly
specified.

8.5 Garbage Collection

The software implementation of a parallel garbage collector is supported, as described in "On-
the-Fly Garbage Collection: An Exercise in Cooperation," by E.W. Dijkstra, L. Lamport, A.J.
Martin, C.S. Scholten, and EM.F. Steffens, in Communications ACM 21(11) p. 966-5
(November 1978). ‘

A gray and black boolean are associated with each object table entry to support parallel gar-
bage collection. The gray boolean is represented as a byte in the gray table, while the black
boolean is software defined. Since there are 226 objects (maximum), the size of the gray table
area can be up to 226 (64M) bytes.

The gray boolean (byte) associated with an object is set to one whenever a new AD for the
object is generated, while the mutator enable bit in either the processor object or current
process object is set. See Sections 15.3 and 16.1.

The gray boolean is not necessarily set (marked) until the AD is stored in memory. Thus, in
certain circumstances, the mutator operation can be delayed. The garbage collector software
has to synchronize with these exceptions. Gray marking may be delayed until process suspen-
sion for:

e The content of local registers (Chapter 6)
e The content of global registers (Chapter 6)
e The current subsystem ID (Chapter 7)
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o The current region 0-2 AD (Chapter 7)
e The current process AD (Chapter 15)

Gray marking is never perform for the:

e Object Table (Chapter 8)

e Process Object AD (Chapter 15)

e Region 3 AD (Chapter 6)

e System Domain AD (Chapter 7)

e Default TDO ADs (Chapter 9)

e Dispatching Port ADs (Chapter 14)

8.6 Mapping Tables

8.6.1 Object Table Objects

An object table object (OT) serves as the root of the virtual address mapping. An object table
is an array of 16-byte object table entries. The object index field in an access descriptor selects
an object table entry (OTE) in the object table. Object table entries are described in later
sections.

Object tables do not have a predefined system type.

Although an AD to an OT has a global lifetime, the OTE/PTEs of an OT must have a local
lifetime. This is necessary to support TDO ADs in OTEs.

One system-wide object table exists for all processors that share a single system-wide virtual
address space.

The swappable part of the PTEs of an OT should be cacheable to allow caching of addressing
translation information in an external cache.

8.6.1.1 Predefined Object Indices

The following object indices are predefined, and should not be used for any other purpose:

Object Indices Purpose

0 Reserved for empty AD
(special for syn* instructions and the empty queue
representation for port and semaphore operations)

1-7 Preserved

8 Object Table

9-15 Preserved

16-31 Default TDO ADs for object types 0-15 (see Chapter 9)

8.6.2 Page Tables or Page Table Directories

8-8

Page tables provide one or two level(s) of mapping for paged objects and bipaged objects.
Page table directories provide the first level of mapping for bipaged objects. Page tables (or
page table directories) contain page table entries (or page table directory entries) which define
the base address of a page, and other information for virtual memory management and garbage
collection. -
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Page tables and page table directories are predefined, but are not objects and do not have a
system type.

A page table is an array of page table entries, each of which is 4 bytes in length. Each page
table entry in a page table describes a page in a paged object or a bipaged object. Each page
table entry in a page table directory describes a page table for a bipaged object.

The page table of a paged object or the page table directory of a bipaged object can be variable
in size and aligned on any 64-byte boundary. The page tables of a bipaged object must be 4K
bytes in size and aligned on 4K-byte boundaries.

Page tables and page table directory are not objects and thus cannot be accessed directly in the
virtual address space. One approach is to access them using physical addresses. Another
approach is to map the page tables to part of the object they are defining. In the second
approach, the physical address of the page table directory or the page table must be duplicated.
If so, the software is responsible to guarantee the physical address alias is updated during
swapping.

8.6.3 Gray Table Area

A gray table area supports parallel garbage collection. The system-wide gray table area isin
region 3, and shared by all processors. The gray table area starts at offset C0000000,4 (in
region 3) of any linear address space.

The gray byte for object index i is located in linear address C0000000;¢ + i.

The gray table must be frozen (defined in Section 8.9.1) while either the mutator enable bit in
the processor object is 1 or the mutator enable bit in the current process object is 1.

The gray table can be swapped while the garbage collector is not active, or allocated before a
garbage collection cycle and deallocated after a garbage collection cycle.

8.7 Descriptor Formats

8.7.1 Data Words

Tag 31 0o
0 32 bits

Data
Tag

Figure 8-3. Data Word

The fields of a data value are defined as follows:

e Data (bits 0-31). This field contains any data value.
e Tag (Tag Bit). This bit is O for data values.
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8.7.2 Access Descriptors

Tag 31 6 5421 0
1 26 bits x Ixxx| x | x
——— Read Rights
Write Rights
Type Rights
Local
Object Index
Tag

Figure 8-4. Access Descriptor Format

The fields of an access descriptor are defined as follows:

Read Rights (bit 0). This bit indicates reading the contents of the object referenced by this
access descriptor is allowed. Read rights are further described in Chapter 9.

Write Rights (bit 1). This bit indicates whether writing the contents of the object
referenced by this access descriptor is allowed. Write rights are further described in Chap-
ter 9.

Type Rights (bits 2-4). The interpretation of this 3-bit field is determined by the object
type of the referenced object. Type rights are further described in Chapter 9.

Name of the bit Bit position in the AD
Use bit 2
Modify bit 3
Control bit 4

Local (bit 5). This bit indicates the object’s lifetime. This bit is O for a global object and 1
for a local object.

Object Index (bits 6-31). This 26-bit field selects an object table entry in the object table.
Tag (Tag Bit). This bit must be 1 for a valid access descriptor.

8.7.3 Mixed Words

A mixed word can be viewed as either a data word or an access descriptor depending on the
context.

8-10

The values of a mixed word are divided into the following classes:

1.

[Valid] Access Descriptor. A valid access descriptor has the tag bit set to 1. This can be
dereferenced (used to reference the content of the object) if the object for the corresponding
index is defined. The Invalid AD fault is raised when the tag bit is 0 and an AD is ex-
pected.

Data. A data word has the tag bit set to zero. When a data value is generated, the tag bit is
always set to zero. When a data value is expected, the tag bit is ignored and interpreted as
zero.

The instructions to manipulate access descriptors or mixed words are described in Section 8.8.
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8.7.4 Virtual Addresses

Object Offset n

Access Descriptor for the Object n+4

Figure 8-5. Virtual Address Format

The fields of a virtual address are defined as follows:

e Object Offset (bytes 0-3). This 32-bit field contains an ordinal offset into the object
referenced by the access descriptor in the virtual address.

o Access Descriptor (bytes 4-7). This AD specifies the object referenced by this virtual
address. The AD also specifies the permissible operations using this virtual address.

8.7.5 Object Table Entries

An object table can contain the following types of object table entries. All object table entries
are 16 bytes in size.

Specific object table entries are identified by the entry type field (bits 96-98) of each object
table entry as follows:

000 Invalid Object Table Entry

001 Embedded Descriptor (such as Semaphores)
010 Invalid Simple Object Descriptor

011  Simple Object Descriptor

100 Invalid Paged Object Descriptor

101  Paged Object Descriptor

110  Invalid Bipaged Object Descriptor

111  Bipaged Object Descriptor

The following object table entries are collectively called storage descriptors:

e [Invalid] Simple Object Descriptor
e [Invalid] Paged-Object Descriptor
e [Invalid] Bipaged Object Descriptor

Valid storage descriptors contain physical addresses. Invalid storage descriptors, where the
base address field may not necessarily be valid, are used to indicate that the selected object
cannot be accessed.

The term object descriptor and object table entry are no longer distinguished.

8.7.5.1 Storage Descriptors
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Figure 8-6. Storage Descriptors

The fields of a [invalid] simple object descriptor, a [invalid] paged object descriptor, or a
[invalid] bipaged object descriptor are defined as follows:

e TDO AD (bits 32-63). This field contains the type definition object AD associated with
this object descriptor. The TDO is described in Chapter 9.

e Reserved (bits 68-69). This field must be zero.

e Base Address (bits 70-95). This 26-bit field contains the physical base address (in units of
64 bytes) of the block, page table or page table directory. This provides a 232 byte physical
address space. This field is uninterpreted in an invalid storage descriptor.

o Entry Type (bits 96-98). This 3-bit field indicates the type of object table entries and the
definition of the rest of the descriptor. The (binary) encodings for the three types of OTE
are:

010 Invalid Simple Object Descriptor
011  Simple Object Descriptor

100  Invalid Paged Object Descriptor
101  Paged Object Descriptor

110  Invalid Bipaged Object Descriptor
111  Bipaged Object Descriptor

e Access Status (bits 99-103). This 5-bit field is described in Section 8.7.5.2. This field is
defined only in a simple object descriptor. This field is preserved for other entry types.

e Object Length (bits 114-119). This field contains one less than the length in units of 64
bytes of the storage block referenced by the base address field.

In a simple object, this field contains one less than the length in units of 64 bytes defined by
this descriptor.

In a paged object descriptor, this field contains one less than the length in units of 64K
bytes defined by this descriptor.

In a bipaged object descriptor, this field contains one less than the length in units of 64M
bytes defined by this descriptor.
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e Object Type (bits 124-127). This 4-bit field contains the object type of the object. Object

types are described in Chapter 9.
8.7.5.2 Access Status
103 102 101 100 99 OTE
7 6 5 4 3 PTE/PTDE
x| x| x| x|]x
l— Accessed
b Altered
Mixed
Cacheable
Local

Figure 8-7. Access Status

An access status contains information for the management of blocks and pages. It is found in
simple object descriptors and valid page table entries. This field does not appear in an invalid
object descriptor, a paged/bipaged object descriptor, nor a page table directory entry.

The fields of an access status are defined as follows:

e Accessed (bit 99 in OTE, Bit 3 in PTE). This bit indicates the object or page defined with
this descriptor has been referenced (read or written). This bit is ensured to be 1 before the
associated storage is referenced. Once set, this bit remains set until cleared by software.

e Altered (bit 100 in OTE, Bit 4 in PTE). This bit indicates the object or page defined with
this descriptor has been overwritten. This bit is ensured to be 1 before the associated
storage is overwritten. Once set, this bit remains set until cleared by software.

e Mixed (bit 101 in OTE, bit 5 in PTE or PTDE). This bit indicates that an AD has been
written in the object or page defined by this descriptor. This bit is ensured to be 1 before
the associated storage is overwritten with a non-zero tag bit. Once set, this bit remains set
until cleared by software.

e Cacheable (bit 102 in OTE, Bit 6 in PTE). This bit indicates the object or page defined
with this descriptor can be cached. The encodings of the cacheable bit are as follows:

0 Do Not Cache
1 Can Be Cached

Cacheability is described in Chapter 9.

e Local (bit 103 in OTE, bit 7 in PTE). This bit indicates the lifetime of the object or page
defined by this descriptor. This is O for a global object or page and 1 for a local object or

page.
8.7.5.3 Embedded Descriptors (Semaphores)

An embedded descriptor holds special predefined data structures. The only such predefined
data structure is a semaphore, defined in Chapter 7.
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Figure 8-8. Embedded Descriptor

The fields of an embedded descriptor are defined as follows:

Storage Area (bits 0-95). This 12-byte area contains the data structure.
Entry Type (bits 96-98). This field is 001, for an embedded descriptor.

Use Default TDO (bit 99). If set, this descriptor has an associated default TDO (see
Chapter 9). If clear, the TDO AD is assumed to be in bits 32-63 of the descriptor. Typi-
cally, this bit would be set.

Type (bits 124-127). This field is the 4-bit type value. The only predefined value is 0100,,
which indicates that the first three words hold a semaphore.

8.7.5.4 Invalid Object Table Entry
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Figure 8-9. Invalid Object Table Entry

The fields of an invalid object table entry are defined as follows:

TDO AD (bits 32-63). This field has the same interpretation as in a storage descriptor, but
only if flag use-default-TDO is clear.

Entry Type (bits 96-98). This field is 000, for an invalid object table entry.

Use Default TDO (bit 99). If set, this descriptor has an associated default TDO (see
Chapter 9). If clear, the TDO AD is assumed to be in bits 32-63 of the descriptor.
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e Object Type (bits 124-127). This field has the same interpretation as in a storage descrip-
tor.

8.7.6 Page Table Entries

A pége table or page table directory contains an array of 4-byte page table [directory] entries of
similar format. Page table entries in a page table directory specify page tables while page table
entries in a page table specify pages.

31 12 21

20 bits

%

0
1
l— Valid

Page Rights
Base Address/ /4096

Preserved
Figure 8-10. Page Table Directory Entry

31 12 87 321 0
20 bits @ S bits xx| 1
b Valid
Page Rights

Aozess Status
Base Address//4096

Preserved
Figure 8-11. Page Table Entry

The fields of a valid page table entry or page table directory entry are defined as follows:

o Valid (bit 0). This bit is 1 to indicates a valid page table entry or page table directory entry.

o Page Rights (bits 1-2). This 2-bit field encodes the permissible operations (read or write)
in different execution mode on the content of this page (in a page table entry) or for the
pages defined by this page table (in a page table directory entry). Since a page may be
controlled by more than one set of page rights, the effective rights is the minimum of all
page rights. See Chapter 9.

o Access Status (bits 3-7). This 5-bit field is similar to that in a storage descriptor and is
defined in the Section 8.7.5.2. This field is defined for a page table entry and is preserved
for a page table directory entry.

e Base Address (bits 12-31). This 20-bit field contains the physical base address (in units of
4K-byte pages) of the page.
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Figure 8-12. Invalid Page Table [Directory] Entry

The field of an invalid page table [directory] entry is defined as follows:
e Valid (bit 0). This bit is O to indicate an invalid page table [directory] entry.

8.8 Instructions

8.8.1 Access Descriptor Manipulation

8-16

Access descriptors, as opposed to data words, can be moved or copied only by a set of special
instructions that guarantee the integrity of the object index and the access rights, and satisfy the
object lifetime and the mutator function. Before an AD is copied, a lifetime check is per-
formed. If the AD is valid and the mutator function is enabled at either the processor or
process level, gray marking is performed.

ldm

1dml

Idmq

stm

stml

stmq

movm

movml

movimq

The move instructions copy an operand from register(s) to register(s). The load instructions
read an operand from memory. The store instructions write the content of registers to memory;
lifetime checking and gray marking are performed.

An AD in any accessible object will prevent the referenced object from being garbage col-
lected. ADs which are no longer needed can be deleted by overwriting the AD with any data
value.

The addresses of all mixed operands must be word aligned. Otherwise, a load mixed instruc-
tion becomes the equivalent of the corresponding load instruction, and so on.

These instructions can be used to store data values too, but will always be slower than the
corresponding store instructions. When a mixed record (contains both data and ADs) exists
where the internal layout is unknown, these instructions should be used.

In a record with both access descriptors and data, the ADs should be grouped together at the
beginning of the record if possible. This avoids introducing extra gaps when ADs are inter-
mixed with data. This also allows using a mixed instructions for the access parts and ordinal
instructions for the data parts.
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8.8.2 Object Reference Testing

cmpm
chktag

The cmpm instruction compares both ADs or data for equality. If both operands are ADs, the
instruction tests whether they reference the same object. If both operands are data, the instruc-
tion tests whether the data value are equal. The chktag instruction checks for the tag bit.

In an untagged system in supervisor mode, the tag bit is assumed to be set in the cmpm
instruction.

In the Ada expression "access_type_variable = null" where an AD is used to represent an
access variable, the chktag instruction should be used instead of the cmpm instruction with
zero because any non-zero data values cannot be used to reference an object.

8.8.3 Access Descriptor Creation

To facilitate proper lifetime checking, it is presumed that access descriptors are not
haphazardly created.

However, in certain controlled situations (such as object allocation), system software needs to
create an AD for an existing object.

cread

The cread instruction converts a data word to an AD.

8.8.4 Object Addressing Instructions
1dphy
The Idphy instruction returns the physical address of the operand.

8.9 Object Characteristics

8.9.1 Frozen

A number of predefined objects are required to be frozen, which means that no virtual memory
fault can be raised during the access of some predefined part of these objects. The object table
entry, page table directory entries and page table entries associated with the predefined area
cannot be set to make the object inaccessible. This includes the object table’s object descrip-
tor, the page table directory, the page table entry and the page when the object descriptor is
located. The software defined part of the predefined objects need not be frozen. In some
cases, the objects are required to be frozen only when the object is in certain states. When
these objects are relocated in memory, the normal mechanism for object relocation does not
work for these objects. The following are a list of objects required to be frozen:

e Gray Table in region 3 (Chapter 8)
e Environment Table Object (Chapter 7)
e Port Object (Dispatching) (Chapter 14)
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Process Object (Chapter 15)
Interrupt Environment Table (Chapter 16)
Interrupt-related stack/code/data PTE (Chapter 16)

For any process in the executing, ready, or blocked state (see Chapter 15), the object descrip-
tors of its regions must be marked as valid (that is, the V flags must be set).

8.10 Virtual Address Translation

8.10.1 Object Offset Translation
A memory request specifies the following information:

8-18

Access Descriptor
Object Offset
Read/Write
Length of Request

A single operand in an instruction may require one or more memory requests to fetch the
operand from memory. An example of this is the movstr instruction where the number of
memory requests depends on one of the source operands. Each of these memory requests goes
through the same address translation operation described below.

The following describes the address translation of a virtual address to a physical address.
Bounds and rights checking are included.

1.

Compute the last byte of the memory request by adding the request length to the object
offset. :

If the memory request spans a 16-byte address boundary, perform the following:
a. Split the request into two requests which do not span a 16-byte boundary.

b. Perform the request as two separate memory requests.

Determine the rep rights needed by the request type.

4. Raise a Rep-Rights fault if the rights needed are not presented in the read and write rights of

the AD.

5. Read the object table entry selected by the object index of the AD.
6. Raise an Invalid Descriptor fault if the entry type is 000, or 001,.
7. Raise one of the Virtual Memory faults if the object table entry is not a valid storage

descriptor.
If the object table entry is a simple object descriptor,
a. Set the accessed bit of the simple object descriptor atomically if the accessed bit is 0.

b. Set the altered bit of the simple object descriptor atomically if this is a write/RMW
operation and the altered bit is 0.

c. Set the mixed bit of the simple object descriptor atomically if this is a write/RMW
operation and the memory request is mixed.
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Raise an Object Length fault if the offset of the memory request is greater than the
object length in the object descriptor.

Add the object offset to the base address in the object descriptor to form the physical
address of the memory request.

If the object table entry is a paged object,

a.

b.

Raise an Object Length fault if the directory index and page index of the memory re-
quest is greater than the object length in the paged object descriptor. ‘

Scale the page index (bits 12-21) by 4 and add it to the base address in the object
descriptor to form the physical address of the selected data page table entry.

Read the page table entry and raise an Invalid PTE fault if the page table entry is
invalid.

Raise a Page Rights fault if the rights needed is greater than the page rights.

Set the accessed bit of the page table entry atomically if the accessed bit is O.

f. Set the altered bit of the page table entry atomically if this is a write/RMW operation

g.

h.

and the altered bit is 0.

Set the mixed bit of the page table entry atomically if this is a write/RMW operation and
the memory request is mixed. '

Concatenate the page offset (bits 0-11) to the base address in the page table entry to
form the physical address of the memory request.

If the object table entry is a bipaged object,

a.

b.

Raise an Object Length fault if the directory index of the offset of the memory request is
greater than the object length in the bipaged object descriptor.

Scale the directory index (bits 22-31) by 4 and add it to the base address in the object
descriptor to form the physical address of the selected page table directory entry for a
page table.

Read the page table directory entry and raise an /nvalid PTDE fault if the page table
directory entry is invalid.
Raise a Page Rights fault if the rights needed is greater than the page rights.

e. Set the accessed bit of the page table directory entry atomically if the accessed bit is 0.

f. Set the mixed bit of the page table directory entry atomically if this is a write operation

Object Addressing

and any tag bitis 1.

Scale the page index (bits 12-21) by 4 and concatenate it to the base address in the page
table directory entry to form the physical address of the selected page table entry for a

page.

Read the page table entry and raise an /nvalid PTE fault if the page table entry is
invalid.

Raise a Page Rights fault if the rights needed is greater than the page rights.

Set the accessed bit of the page table entry atomically if the accessed bit is 0.

Set the altered bit of the page table entry atomically if this is a write operation and the
altered bit is O.

Set the mixed bit of the page table entry atomically if this is a write operation and the
memory request contains valid access descriptors.
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m. Concatenate the page offset (bits 0-11) to the base address in the page table entry to
form the physical address of the memory request.

8.10.2 Caching of Address Translation Information

All valid/defined fields in valid page table entries and storage descriptors with storage al-
located can be cached for read references. See Chapter 9 on caching of the contents of an
object. Concurrent updates to these memory locations are not guaranteed to be reflected in the
cached copies within a finite period of time. Interprocessor messages and instructions are
provided to support software management of address translation information, as described in

Chapter 16.

Note that caching of addressing translation information is independent of the cacheable bits for
the object table.

8.10.3 Spanning Page Boundaries

When an access spans across the 232 boundary, the address wraps around to zero.

Page boundaries are completely transparent. If a memory write overlaps a page boundary, that
page is not re-read after it is written because of a virtual memory fault or a protection fault.
(The correct support of copy-on-write semantics requires the page boundaries to be completely

transparent.)
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TYPE MANAGEMENT AND
ACCESS CONTROL

This chapter defines object typing and access control.

9.1 Typed Objects

The two typing mechanisms are system-type and extended-type. They are not mutually ex-
clusive. System types can be viewed as predefined properties of the object, while the extended
type provides an unique identifier of the type and allows for type-specific software defined
functions. The system-type mechanism provides predefined type-specific instructions, which
require operands of these specific system types. The extended-type mechanism supports user
defined types. This allows software-defined type-specific operations and extended-typed-
specific operations to verify an object’s type before carrying out their prescribed functions.
This facility supports the type manager style of programming.

The type definition object contains a reference to a domain that provides some type-specific
procedures.
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Figure 9-1. Object Typing

9.1.1 Object Type Field

The system type of an object is specified by the object type field in its object descriptor (see
Chapter 8). One of the system types is generic that contains no predefined fields.

The encodings for the Object Type field are as follows:
Encoding (in binary) Object type

0000 Generic

0001 Type Definition Object

0010 Process Object

0011 Domain Object

0100 Semaphore (Embedded Object)
0101 Port Object

0110-0111 (reserved)

1000-1111 available for system software

9.1.2 Type Definition Object (TDO)

The extended type of an object is specified by the type definition object’s access descriptor
associated with the object descriptor, either explicitly or via a default (see Chapter 8). Ifa
default TDO is to be used, the object index for the default TDO is 16 plus the type encoding of
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the object or embedded descriptor. For instance, for a semaphore, the default TDO is entry 20
in the object table.

A type definition object contains information to manage the instances of a particular object
type.

The object index of the TDO can also be used as a unique identifier for the extended type. In
this manner, up to 226 (64M) extended types may be defined.

For system objects, while the object type is used to indicate the set of type specific instruc-
tions, the type definition object can be used to provide software (that is, procedural) extensions
to the predefined type-specific operations.

Different type definition objects may be associated with different instances of the same system
object type. This permits software extensions to the predefined instructions to be defined on a
per instance basis.

1dtdo
The 1dtdo instruction copies the type definition object AD associated with the object
referenced by the source AD into a register destination. If the object specified has a default

TDO, an AD (with no type nor rep rights and specifying global lifetime) to the default TDO is
returned.

9.2 Rights

The architecture uses various rights bits to restrict the way in which an object or an AD may be
manipulated. There are two sets of rights bits: one set is found in an AD, and the other set is
located in the various page table entries in the access (that is, address translation) path.

Different ADs can have different access rights to the same object. Rights on an access path are
shared among all users of the access path. An AD can be easily duplicated with the same or
less rights than the source AD. Since an access path cannot be similarly duplicated, any
change to rights in the access path affect all users of the access path.

An AD contains the following rights bits:

¢ Type Rights

¢ Read Rights

e Write Rights

A page table entry in an access path contains the following rights bits:
e Page Rights |

9.2.1 Type Rights

The type rights of an AD define the permissible type-specific operations for the object
referenced by the AD. The interpretation of the type rights bits of an AD depends on the type
of object referenced. The type rights bits for a generic object are uninterpreted. The inter-
pretation of the type rights bits for each system object are predefined. They are described in
the individual system object descriptions. The uninterpreted type rights bits are preserved for
software-defined type rights and interpreted by individual software-level type managers.
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9.2.2 Read and Write Rights in Access Descriptors

The read rights control reading the content of the referenced object, while the write rights
control writing. The actual permissible operations are also optionally determined by the page
rights in page tables. This allows the support of inaccessible objects, read-only objects, write-
only objects, and read-writeable objects.

There are no "execute" rights; only read rights are required to execute an instruction in the
execution environment.

9.2.3 Page Rights

The page rights in a valid page table entry define the read/write rights of the page in a bipaged
object or a paged object. Page rights are used to permit software-defined areas or regions of
the execution environment to have different access protection.

Page rights are interpreted differently depending on the execution mode of the current process.
Page rights are defined as follows: -

Execution Mode
Rights User Mode Supervisor Mode
00 no access read-only
01 1o access read-write
10 read-only read-write
11 read-write read-write

Page rights, instead of AD read/write rights, are used to protect the instruction areas of a linear
address space from accidental modification.

When the processor is in physical-addressing mode (address translation is disabled), rights
checking is disabled.

9.2.3.1 Effective Access Rights
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Figure 9-2. Effective Rights

As described above, the access rights for an item are defined by rights fields in each level of
the access path. Each access path contains the following:

1. Read and write rights in an AD.
2. Page rights in the page table directory entry for a bipaged object.
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3. Page rights in the page table entry for a paged object or a bipaged object.

The effective rights for an object address are the minimum of the rights in the access path.
inspacc

The inspacc instruction returns the effective page rights of the access path specified by the
source address.

9.3 Type Definition Object

A type definition object is used to control access rights amplification. A type definition object

has a predefined system type.

The type rights in an AD for a type definition object are defined as follows:

Use Unintepreted.

Modify Amplify Rights: If the bit is 1, the TDO may be used in the amplify
instruction. (In general, only the type manager for a type has an AD with
this right enabled.)

Control Create Rights. If the bit is 1, the TDO may be used in the cread instruc-

tion. (In general, only the memory manager of an operating system should
have an AD for a TDO with this right enabled.)

avits [ 36054 x lx—- byte 0

b Extended
Object Type

- Reserved
Figure 9-3. Type Definition Object

The fields of a type definition object are defined as follows:
e Super TDO (bit 0). This bit is interpreted during rights amplification as follows:

0 This TDO can be used to amplify ADs for objects whose type matches
that specified by this TDO.
1 This TDO can be used to amplify any AD. Thus, this TDO should be

available only to the memory manager of an operating system.

e Extended (bit 1). This bit is 1 if the TDO is used to manage objects having this object as
their TDO ADs. This bit is 0 if the TDO is used to manage objects having the same object
type as specified in the TDO.

This bit also allows a single TDO to manage objects of the specified object type inde-
pendent of their TDO ADs.

e Object Type (bits 28 - 31). This 4-bit field is defined to have the same format as the
corresponding field in an object descriptor. In the amplify instruction, this field is com-
pared against the object type of the referenced object if the extended type and the super
TDO bits are zero.
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9.3.1 Rights Manipulation

9-6

Some instructions increase or decrease the access rights of an AD. A rights mask is specified
during rights amplification and restriction. A rights mask has the same format as an access
descriptor, except that the local bit, the object index field, and the tag bit are not used. Access
rights are amplified by logically-ORing the access rights in the AD with those in the rights
mask. Access rights are reduced by logically-ANDing the access rights in the AD with the
complement of that in the rights mask.

amplify

restrict

The amplify instruction requires a type definition object AD with amplify rights. The amplify
instruction amplifies the source AD and stores the amplified AD in the destination. If the
super-tdo bit is 0, and the extended bit is 1 (as it is typically), the object referenced by the
source AD must reference an OTE that contains a matching TDO AD. Thus, a type manager
may amplify only ADs of objects managed by that type manager.

The restrict instruction removes the rights of the source AD specified by the rights mask and
stores the restricted AD in the destination.

The accessibility of an addressing environment may be restricted to those objects with the
minimum required access rights needed for the execution of the program. Instructions are
provided to remove (or restrict) access rights that are not needed. Access restriction is typi-
cally performed before an AD is passed as a parameter to a procedure or returned as a result.

Certain (system or extended) typed objects are manipulated exclusively by their corresponding
type managers. An AD to a typed object, outside the domain of its type manager, usually has
limited access rights (for example, no access or read-only) to prevent access to or modification
of the object without the knowledge of the type manager. The type manager restricts
(removes) the access rights in the ADs for objects of the type(s) under its control before pass-
ing them outside its domain. When such an AD is retumned to the type manager, the access
rights are amplified (increased) while inside the domain to allow modification of the
referenced object by the type manager.
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FAULTS 1 0

This chapter describes the fault handling facilities. The subjects covered include the fault-
handling data structures, the software support required for fault handling, and the fault han-
dling mechanism. A reference section that contains detailed information on each fault type is
provided at the end of the chapter.

10.1 Overview of the Fault-Handling Facilities

Various conditions may arise that require exceptional software treatment. These situations,
detected in programs or the machine state, are called faults. Some of these faults may
represent error conditions in the programs: for example, overflow that occurs during both in-
teger and floating-point arithmetic. Other faults may represent infrequent events that require
software intervention: for example, a virtual memory fault to invoke the operating system
software to bring the page in from swapping devices. In general, these faults are associated
with the execution of an instruction. A few of these faults are independent of the execution of
the current instruction: for example, the time-slice fault and event-notice fault can occur

anytime.

A fault is generally handled with a fault-handling procedure, called the "fault handler". The
fault handler is invoked through an implicit procedure call. Information about the state of the
process and the fault are made available to the fault handler in a data structure called the fault
record.

If the fault handler is able to recover from the fault, the process can be restored to its state prior
to the fault and resumed. If, on the other hand, the fault represents a program error, the
faulting record allows the debugger or the language-defined exception handler to gain control

- of the program.

10.2 Fault Types

Faults

All of the faults are divided into types and subtypes. The fault type selects a fault handler.
The fault subtype may be used by the fault handler to select a specific fault-handling action.

Table 10-1 lists the faults by type and subtype. For convenience, individual faults are referred
to in this manual by their fault-subtype name. Thus a machine bad-access fault is referred to
as simply a bad-access fault, or a virtual-memory, invalid page-table-directory-entry fault is
referred to as an invalid PTDE fault.

The fault encoding column of Table 10-1 shows each fault type/subtype word as it appears in
the fault record (at offset FP-8).
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Table 10-1. Fault Types and Subtypes

Fault Type Fault Subtype Fault Encoding
Hex | Name lggs{ggn Name Hex
1 Trace Bit 1 Instruction Trace xx01 xx02
Bit2 Branch Trace xx01 xx04
Bit 3 Call Trace xx01 xx08
Bit4 Retum Trace xx01 xx10
BitS Prereturn Trace xx01 xx20
Bit6 Supervisor Trace xx01 xx40
Bit7 Breakpoint Trace xx01 xx80
2 Operation | 1 Invalid Opcode xx02 xx01
4 Invalid Operand xx02 xx04
6 Subsystem Not Found xx02 xx06
3 Arithmetic | 1 Integer Overflow xx03 xx01
2 Arithmetic Zero-Divide xx03 xx02
4 Floating Bit0 Floating Overflow xx04 xx01
Point Bitl Floating Underflow xx04 xx02
Bit2 Floating Invalid-Operation xx04 xx04
Bit 3 Floating Zero-Divide xx04 xx08
Bit4 Floating Inexact xx04 xx10
Bit5 Floating Reserved-Encoding xx04 xx20
5 Constraint | 1 Constraint Range xx05 xx01
2 Invalid AD xx05 xx02
6 Virtal 1 Invalid Object-Table-Entry xx06 xx01
Memory 2 Invalid Page-Table- xx06 xx02
Directory-Entry (PTDE)
3 Invalid Page-Table-Entry (PTE) | xx06 xx03
7 Protection | Bit0 Lifetime xx07 xx00
Bit1l Object Length xx07 xx01
Bit2 Page Rights xx07 xx02
Bit3 Rep-Rights xx07 xx03
Bit4 Type Rights xx07 xx04
Machine 1 Bad Access xx08 xx01
9 Structural | 1 Control xx09 xx01
A Type 1 Type Mismatch xx0A xx01
2 Contents xx0A xx01
B Control 1 Control-Stack Overflow xx0B xx01
Stack 2 Control-Stack Underflow xx0B xx02
C Process 1 Time Slice xx0C xx01
Descriptor | 1 Invalid Descriptor xx0D xx01
E Event 1 Event Notice xx0E xx01

For some fault types, each subtype is assigned a separate bit. It is possible for more than one
of these bits be set if they are detected at the same time. This does not guarantee that all
possible faults will be detected and reported at the same time.

Faults
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10.3 Fault Masking

Certain faults have associated masks that can prevent the fault from being signaled. Some of
these faults have associated "sticky" flags which are set when a masked fault has been oc-
curred. (A "sticky" flag is a flag that is reset only by explicit instructions to the word in which
the flag is located.) Table 10-2 lists these masks and sticky flags, the system data structures in
which they are located, and the fault subtype they affect.

Table 10-2. Fault Flags or Masks

Flag or Mask Name Location Fault Affected
Integer Overflow Mask Arithmetic Controls Integer Overflow
Floating Overflow Mask Arithmetic Controls Floating Overflow
Floating Underflow Mask Arithmetic Controls Floating Underflow
Floating Invalid Operation Mask | Arithmetic Controls Floating Invalid Operation
Floating Zero-Divide Mask Arithmetic Controls Floating Zero-Divide
Floating-point Inexact Mask Arithmetic Controls Floating Inexact

No Imprecise Faults Arithmetic Controls All Imprecise Faults
Trace-Enable Controls All Trace Faults
Trace-Mode Flags Trace Controls All Trace Faults
Event-Fault Mask Environment Table Even Notice Fault

The integer and floating-point mask bits inhibit faults from being signaled for specific fault
conditions (that is, integer overflow and floating-point overflow, underflow, zero divide, in-
valid operation, and inexact). The use of these masks is discussed in Section 10.11. Section
5.10 describes the floating-point fault masks.

The no-parallel-faults flag controls the synchronization of faults. See Section 10.10.4 for
details.

The trace-enable bit in the process controls can disable all trace faults. The trace modes in the
trace controls enable only the selected trace faults if they are detected. See Chapter 11 for
details.

The event-fault disable bit in the subsystem ID field of the subsystem table temporarily
postpones the signaling of an event fault while executing in a subsystem with the event-fault
disabled.

10.4 Fault Information

10.4.1 Fault Record

Faults

When a fault condition is detected, execution of the current instruction is terminated. The state
and the cause of the fault condition are placed in a fault record. The fault record can be
considered as the parameters for the fault handling procedure.
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OVERRIDE FAULT DATA

16

FAULT DATA

24

i F1[FO]  OVERRIDE TYPE

OVERRIDE SUBTYPE 28

PROCESS CONTROLS 32

ARITHMETIC CONTROLS 36

F1|FO FAULT TYPE : FAULT SUBTYPE 40
ADDRESS OF FAULTING INSTRUCTION 44

RESERVED

Figure 10-1. Fault Record

The fault information is a function of the type of the fault. Only the fields necessary to
describe a fault are stored for a particular fault. The fault and resumption records are stored
"beneath"” the stack frame of the fault handler (at lower memory addresses). The fault-specific
interpretation of this record is given in Section 10.11. The general format of the format record
is shown in Figure 10-1. The fields of a fault record are defined as follows:

Address of Faulting Instruction (bytes FP-4 to FP-1). This field contains the linear ad-
dress of the faulting instruction (the instruction that caused the fault or that was being
executed when the fault occurred). In some cases, this field may be undefined.

Fault Flags (byte FP-5). Depending on the type of fault, these flags specify further infor-
mation about the fault. The only flags defined are FO (bit 24) and F1 (bit 25). If a fault is
not defined as altering these flags, their value is undefined.

Fault Subtype (byte FP-6). Depending on the type of fault, this byte ordinal specifies
further information on the cause of the fault; that is, the subtype.

Fault Type (byte FP-8). This byte ordinal indicates the fault type.

Process Controls (bytes FP-12 to FP-9). The value of the process controls at the time
when the fault is generated. The process controls are restored to this value on a return from
the fault handler.

Arithmetic Controls (bytes FP-16 to FP-13). The value of the arithmetic controls at the
time when the fault is generated. The arithmetic controls is restored to this value on a
return from the fault handler.

Faults
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e Override Flags (byte FP-17). See Section 10.6.2.
e Override Subtype (byte FP-18). See Section 10.6.2.
e Override Type (byte FP-20). See section 10.6.2.

e Fault Data (bytes FP-32 to FP-21). This field depends on the type of the fault and is
defined in detail in later sections. Any part of this field that is not specified for a particular
fault has an undefined value.

o Override Fault Data (bytes FP-44 to FP-33). See Section 10.6.2.

e Resumption Record (bytes FP-64 to FP-47). If an instruction is suspended (neither com-
pleted nor aborted) as the result of a fault, 16 bytes of additional information are saved with
the fault record, called the resumption record. This is similar to the data associated with an
interrupt record. The size and content of the resumption record are processor-defined.

10.4.2 Saved Instruction Pointer

The saved IP, the RIP in L2 of the stack frame where the fault occurred, is also part of the

" saved fault information. This points to the instruction to be executed on the returned from the

fault handler. The saved IP either points to the faulted instruction, the next instruction to be
executed if the fault had not occurred, or undefined. Normally, if the execution of the faulting
instruction has completed (like an arithmetic fault), the saved IP points to the next instruction.
If the execution of the faulting instruction is aborted (like a virtual memory fault), the saved IP
points to the faulting instruction so it will be re-executed on return from the fault handler.

10.4.3 Fault and Resumption Records in Process and Processor Objects

Normally, the fault and resumption records are stored below the stack frame of the fault hand-
ler. When a system-error interrupt occurs, the system-error fault records are stored in the
processor object at byte offset 128-175 as shown in Figure 10-1. Additionally, the system-
error-fault field (at offset 72-75 in the processor object) contains the fault type/subtype of the
system-error fault.

The fault record in the process and processor objects are processor defined. The resumption
record in these objects is used on implicit returns (fault and interrupt returns). The fault and
resumption records in the processor object are used when there is no process associated with
the processor.

10.5 Fault Table

Faults

The fault table directly or indirectly specifies the fault handler for each fault type. The physi-
cal address of the fault table is specified in the processor object. As shown in Figure 10-2, the
fault table contains one entry for each fault type plus an entry for overrides. When a fault
occurs, the fault type is used to select a fault table entry, which selects the different types of
implicit fault call mechanisms to be used in reporting this fault.
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31 0
OVERRIDE ENTRY 0
TRACE FAULT ENTRY - 8
OPERATION FAULT ENTRY 16
ARITHMETIC FAULT ENTRY 24
FLOATING-POINT FAULT ENTRY 32
CONSTRAINT FAULT ENTRY 40
VIRTUAL-MEMORY FAULT ENTRY 48
PROTECTION FAULT ENTRY 56
MACHINE FAULT ENTRY 64
STRUCTURAL FAULT ENTRY 72
TYPE FAULT ENTRY 80
CONTROL STACK FAULT ENTRY 88
PROCESS FAULT ENTRY g6
DESCRIPTION FAULT ENTRY 104
EVENT FAULT ENTRY 112
120
252

LOCAL PROCEDURE FAULT-TABLE ENTRY

FAULT-HANDLER PROCEDURE ADDRESS

INTERDOMAIN FAULT-TABLE ENTRY
31 ) 210

FAULT-HANDLER PROCEDURE NUMBER {1]o] n
DOMAIN AD ne4

RESERVED (INITIALIZE TO 0)

Figure 10-2. Fault Table and Fault-Table Entries

10.5.1 Fault-Table Entries

Each entry in the fault table is two words long, as shown at the bottom of Figure 10-2. The
fields of a fault type entry are defined as follows:

e Entry Type (bits 0-1). This field specifies the type of implicit call used to reported the
fault. The encodings of this field are as follows:

10-6 Faults



PRELIMINARY

00 perform an implicit call_extended operation.

01 reserved.
10 perform an implicit call_domain operation.
11 reserved.

e Procedure Offset/Number (bits 2-31). If the entry type is O, this field contains the word
address of the fault handler procedure. If the entry type is 2, this field contains the proce-
dure number to be used in the implicit calld operation. This field is reserved for the other
entry types.

e Domain AD (bits 32-63). If the entry type is 2, this field contains the domain AD to be
used in the implicit calld operation. This field is reserved for the other entry types.

10.6 Fault Levels

Faults are handled at one of the following levels dependent on when the fault is detected:

e Implicit procedure call to the primary fault handler

e Implicit procedure call to the override fault handler

e Implicit interrupt call to the system-error interrupt handler

e Halt .

The four fault levels provide a mechanism for recovering from faults or for gradually degrad-

ing processing activity when serious or catastrophic fault conditions are encountered. The
scenario for handling faults with this mechanism is as follows.

10.6.1 Primary Fault Handling

When a fault occurs during the execution of an instruction, a fault handler for that fault type is
selected and invoked from a data structure called the fault table.

As a result of calling primary fault handler, a fault record is created. This record includes the
type and subtype of the fault and information on the state of the process when the fault oc-
curred. If the fault occurred while in the midst of executing an instruction, a resumption record
for the instruction may also be included with the fault record. This fault record is stored on the
stack of the fault handler.

10.6.2 Overrides

Faults

If a fault occurs while performing the implicit call to the primary fault handler, an override
occurs. When an override faults, the fault record contains additional information associated
with the override faults.

A common override condition is a virtual-memory fault on the fault handler’s stack while
trying to store the fault record or allocating a stack frame for the fault handler. The override
fault data contains the address of the stack, and the override fault handler performs the actions
in the virtual memory fault handler to swap in the missing page. On the return from the
override fault handler, the primary fault is automatically refaulted so that it can then be
handled.
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10.6.3 System-Error Interrupt

If another fault occurs while performing the implicit call to the override fault handler, the
second fault is handled by means of a system-error interrupt. The fault and resumption records
for the primary and override faults are stored in the designated area in the processor object.
The fault type and subtype of the system-error fault is also stored in the processor object.
Interrupt number 248 is reserved for the system-error interrupt.

10.6.4 Halt

If another fault occurs while performing the implicit interrupt to the system-error interrupt
handler, the processor enters the stopped state and halts.

There is no fault information associated with the fault that causes the processor to halt. The
fault and resumption information associated with the primary, override and system-error faults
in the processor object may be undefined if the last fault occurs before these information can
be stored.

10.7 Fault-Handler Procedures

The fault-handling mechanism supports four types of fault-handler procedures:

o Local procedures (either through a local procedure entry in the fault table or a domain call
that points to a local procedure entry in the domain object)

e Supervisor procedures
e Intrasubsystem procedures

¢ Intersubsystem procedures

Local and supervisor procedures are generally located in region 3 of the linear address space,
so they are always accessible, regardless of whether a process is bound to the processor or not.
Otherwise, regions 0-2 are not defined when a fault occurs in a interrupt handler while the
processor is idle (or does not have a process).

Subsystem fault-handler can be either intrasubsystem or intersubsystem procedure (see Chap-
ter 7).

Supervisor or subsystem fault-handler procedures must be used if the execution of the normal
instruction stream is to be continued after a retun from the fault handler. A local fault handler
does not modify the trace enable bit on call, nor does it restore the process controls on the
return from a local fault handler.

10.7.1 Fault-Handler Invocation

10-8

When a fault occurs, the following steps are taken:
1. If system-error reporting is in progress, put the processor into the stopped state.

2. If override bit in the saved process controls is set, store the fault records into the system-
error fault record in the processor object, and the system-error fault type/subtype into the
system-error-fault field in the processor object. System-error reporting is now in progress.
Perform an implicit system-error interrupt.
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. If primary fault reporting is in progress, the override fault handler entry is used. The

overrides fields of the fault record composed according to the specific override fault. The
refault and resume bit in the saved process controls are set.

. If primary fault reporting is not in progress, the fault type is used as an index to an entry in

the fault table. The process controls and arithmetic controls are saved. A fault record is
composed according to the specific fault. Primary fault reporting is now in progress.

. If the fault was a virtual-memory, object-length, page-rights, event-notice, or a time-slice

fault occurred within an instruction that was suspended as a result, the resume flag is set in
the saved process controls. Some bits in the processor-defined field may also be set in the
saved process controls to specify different type of resumption actions.

. Depending on the selected fault table entry, an implicit callx or calld operation is per-

formed (see detail descriptions of callx and calld in Chapter 18), but with the following
exceptions:

e The return status of the fault-handler frame is different.

Normal Implicit
Local 000 001
Domain
local 000 001
supervisor 01T 001
intrasubsystem 100 100
intersubsystem 101 101

e The retum mode in the control stack entry of the fault-handler subsystem call is dif-
ferent.

Normal Implicit
Intrasubsystem 000 ' 100
Intersubsystem 001 101

e An extra 64 bytes are allocated below the fault-handler stack frame. So instead of
adding 63 to the stack pointer of the target stack where the fault-handler will run) before
rounding, 63 plus the size of the combined fault and resumption record is added to the
stack pointer. Note that the total size of the fault and resumption records is processor-
defined, and may vary from release to release.

e When the fault-handler stack frame is allocated, the fault record is stored at NFP-48 to
NFP-1 where NFP is the frame pointer of the fault-handler stack frame.

e If there is resume bit in the saved process controls is set, the resumption record is stored
at NFP-64 to NFP-49.

10.7.2 Fault Return

Faults

The retumn operation performs the following additional actions if the frame status is 001:

The arithmetic-controls field at FP-12 is stored in the process’s arithmetic controls. If the
execution mode is supervisor, the process-controls field at FP-16 is stored in the process’s
process controls, and if the resume flag is set, the resumption record at FP-48-M is copied into
the process’s resumption record.

The restoiing of the process controls affects how tracing occurs for this instruction; see Section
11.4.5. If the refault flag was set in the process controls in the fault record, additional actions
may be performed (see Section 10.9).
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10.7.3 Subsystem Fault Return

The retum operation performs the following additional actions if the retum status is 10x,
(subsystem return) and the return mode in the control-stack-entry is 10x,.

Same as the above, except that all is done regardless of the execution mode. If the refault flag
was set in the process controls in the fault record, additional actions may be performed (see
Section 10.9).

10.7.4 Returning Without Resumption

A fault handler may return to other than the point of the fault by first altering the return IP in
the previous frame. This could lead to unpredictable behavior if resumption information is
present with the fault. To perform such a retum predictably, one should clear the following
information in the process-controls field in the fault record before the retumn: resume flag,
refault flag, trace-fault-pending flag, internal-state field.

10.7.5 System-Error Interrupt Action

When a system-error interrupt occurs, data is collected on the faults that caused the condition
and the system-error interrupt fault handler is invoked. No mechanism, however, is provided
for resuming the process, once the handling of the interrupt is complete.

When a system-error interrupt occurs as the result of a second override fault, the following
actions are taken:

1. The fault records for both the primary fault and the override fault are stored in the system-
error-fault-record field in the processor object.

2. The type and subtype of the system-error fault are stored in the system-error fault field in
the processor object.

3. The interrupt stack is selected.

4. An implicit call operation to vector 248 (or F8¢, the predefined system-error interrupt
vector) in the interrupt table is initiated.

10.7.6 Halt Action

When a fault occurs while reporting the system-error interrupt, the following actions are taken:

1. The processor places itself in the stopped state and asserts the #FAILURE pin.

10.8 Process State After a Fault

10-10

As described earlier, faults can occur prior to the execution of the faulting instruction, during
the instruction, or after the instruction. When the fault occurs before the faulting instruction is
executed, the instruction can theoretically be executed on the return from the fault handler. So,
the fault is not accompanied by a change in process state.

When a fault occurs during or after the instruction that caused a fault, the fault may be accom-
panied by a change in the process state such that the faulting instruction cannot be reexecuted.
For example, when an integer-overflow fault occurs, the overflow value is stored in the des-
tination. If the destination register was the same as one of the source registers, the source
value is lost, making it impossible to reexecute the faulting instruction.
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In general, process changes never accompany the following fault types or subtypes:
e All Operation Subtypes

e Arithmetic Zero-Divide

¢ All Floating-Point Subtypes Except Floating Inexact

e Constraint Range

e Prereturn Trace

e Control Stack Underflow

e All Descriptor Subtypes

Process state changes always accompany the following fault types and subtypes:

e All Trace Subtypes Except Prereturn Trace
e Integer Overflow

Floating Inexact )

e Control Stack Overflow
Process state changes may or may not accompany the following fault types and subtypes:
e All Virtual Memory Subtypes
e Time Slice

e Event Notice

e Invalid AD

e All Structural Subtypes

e Bad Access

e All Protection Subtypes

e All Type Subtypes

If a fault occurs while an object is locked as part of the operation, the object is unlocked before
the fault is handled to prevent deadlocks.

The effect that specific fault types have on a process is given in Section 10.11.

10.9 Refault Operation

Faults

The resume and refault bits in the process controls are set in the saved process controls when
an override fault handler is invoked. These bits are used to indicate to the return from fault
operation to report the primary fault before the faulted instruction stream is to be resumed.

If the resume and refault bits are set in the saved process controls on a fault or subsystem fault
return, the fault and resumption records are saved before the fault-handler’s frame is deal-
located. At the end of a fault (from supervisor mode) or a subsystem retumn, the refault bit (and
under certain conditions, the resume bit) is cleared. The primary fault record in the fault
record is reported before any instructions in the faulted stack frame is executed.

10-11



PRELIMINARY

The refault mechanism can be used by software explicitly. A primary fault handler may decide
that a different fault handler should be used to handle a specific fault. For example, a page
rights protection fault may signify a copy-on-write operation which is more appropriately
handled by the virtual memory fault handler. To perform an explicit refault, a fault hander
must change the primary fault type and set the resume and refault bits of the saved process
controls. The return from fault handler operation will signal the new primary fault with the
rest of the fault record.

If a refault must be signaled from outside a fault handler, do the following:

1. Call a supervisor or subsystem procedure, so it is possible to fake a return from fault
operation.

Call a local procedure, so the space for the previous frame can be used for a fault record.
Execute the flushreg instruction.
Copy the previous frame pointer of the previous frame to LO to delete the previous frame.

LU S ol

Change the return status in LO to fault call (if this operation is performed in supervisor
mode) or the return mode in the control stack entry to the corresponding fault return (if this
operation is performed in a subsystem procedure).

o

Execute the flushreg instruction.
7. Compose the fault record. Set the resume and refault bit in the saved process controls.

8. Execute the ret instruction.

10.10 Muitiple Events

10.10.1 Faults and Interrupts

If an interrupt occurs when a fault is being reported the interrupt may be handled in either of
the following ways:

e The fault information is recorded as part of the resumption record, and the interrupt is
serviced immediately. On the return from the interrupt, the fault is reported as though the
interrupt has not occurred.

e The interrupt is delayed until the fault reporting has completed, but before the first instruc-
tion in the fault handler is executed.

10.10.2 Control Stack Overflow or Trace Fault on a Fault Call

A control-stack overflow fault detected at the end of a subsystem fault call is not considered an
override condition because the subsystem fault call is considered completed.

A trace fault signaled as a result of a fault call is not considered an override condition because
the fault call is considered completed. fault call is considered completed.

10.10.3 Multiple Fault Conditions

10-12

It is possible for multiple fault conditions to be associated with a single instruction. This
should be distinguished from parallel fault conditions associated with different instructions
when they are executed in parallel. In some cases when the subtype field allocates a bit
position for each subtype, multiple faults of the same fault type may be reported at the same
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time. In other cases when the multiple faults have different fault type, the fault mechanism
selects any one of the multiple faults and ignores the rest. The fault mechanism is only re-
quired to report a single fault at a time unless explicit specified by the specific fault, like
floating-point faults.

10.10.4 Parallel Faults

Faults

In some instances, the processor is able to execute instructions concurrently. When faults
occur, faults may be signaled out of order, making it different from a serial instruction execu-
tion model. When two instructions are being executed concurrently, it is also possible for
them to generate faults simultaneously.

Two mechanisms are provided to allow the circumstances under which faults are signaled to be
controlled. These mechanisms are: (1) the no parallel faults flag in the arithmetic controls and
(2) the syncf instruction.

Faults are grouped into the following categories: synchronized, parallel, and asynchronous.

Synchronized faults are those that are intended to be recoverable by software. For any instruc-
tion that can generate a synchronized fault, the processor will (1) not execute the instruction if
an unfinished prior instruction will fault and (2) not execute subsequent out-of-order instruc-
tions that will fault. The following faults are always synchronized:

® trace

® virtual memory
e protection

e control stack
e descriptor faults

Parallel faults are those that in some instances are allowed to occur and be signaled out of
order. These faults include the following:

e operation
e arithmetic
e floating-point
e constraint
e structural

@ type

Asynchronous faults have no direct relationship to the current executing instruction. This
category includes the machine, event, and process faults.

The no-parallel-faults flag controls whether or not parallel faults are allowed. When this flag
is set, all faults must be synchronized. In this mode, the ability to execute instructions concur-
rently is essentially disabled. All faults that occur are signaled.

When the flag is clear, faults in the parallel category can in some instances occur in parallel or
out of order. In this mode, the following conditions hold true:
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1. When a parallel fault occurs, the saved IP points to the instruction to be executed next after
all the parallel faults are handled.

The syncf instruction guarantees no faults associated with all previous instruction execution
can be signaled after the syncf instruction. One use is to force faults to be synchronized when
the no-parallel-fault flag is clear. The other use is'to insure that all instructions are complete
and all faults signaled in one block of code before execution of another block of code (for
example, on Ada block boundaries when the blocks have different exception handlers).

The intent of these fault-generating modes is that compiled code should execute with the no-
parallel-faults flag is clear, using the syncf instruction where necessary to ensure that faults
occur in order.

10.11 Fault Reference

10-14

This section describes each of the fault types and subtypes and gives detailed information
about what is stored in the various fields of the fault record. The section is organized al-
phabetically by fault type.

Each of the fault descriptions includes the following topics:

¢ Fault Type and Subtype
The fault-type section gives the number entered in the fault-type field of the fault record for
the given fault type. The fault-subtype section lists the fault subtypes and their associated
number or bit position in the fault-subtype field of the fault record.

e Function
The function section gives a general description of the purpose of the fault type, then
describes the purpose of each of the fault subtypes in detail. It also describes how each
fault subtype is handled.

¢ Fault Flags
Fault Data
Addr. Fault. Inst.
The fault record section describes how the flags, fault-data, and address-of-faulting-
instruction fields of the fault record are used for the fault type and subtypes.

e Saved IP
The saved IP section describes what value is saved in the RIP register (L2) of the stack
frame in which the fault occurred.

o State Changes
The process state changes section describes the effects that the fault subtypes have on the
state of the process.
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10.11.1 Arithmetic Faults

Faults

Fault Type:
Fault Subtype:
0
1

2
3-F

Function:

Fault Flags:

Fault Data:

Addr. Fault. Inst.:
Saved IP:

State Changes:

316
Number Name

Reserved

Integer Overflow
Arithmetic Zero-Divide
Reserved

This fault type applies only to integer, ordinal, floating-point to

integer/ordinal conversion instructions, but not floating-point-only instruc-
tions.

The integer-overflow fault occurs when the result of an integer instruction
exceeds the range of the destination and the integer-overflow mask in the
arithmetic-controls register is cleared. Normally, the n least significant
bits of the result are stored in the destination, where 7 is the destination
size.

The arithmetic zero-divide fault occurs when the divisor of an
ordinal/integer divide/remainder/modulo instruction is zero.

Not used.
Not used.
IP of the instruction that faulted.

IP for the instruction that would have been executed next, if the fault had
not occurred.

When an integer-overflow fault occurs, the instruction has been completed
and the truncated result has been stored in the destination before the fault

is signaled.

There is no state changes associated with a zero-divide fault.

10-15



PRELIMINARY

10.11.2 Constraint Faults

10-16

Fault Type:
Fault Subtype:

0
1
2
3-F

Function:

Fault Flags:

Fault Data:

Addr. Fault. Inst.:
Saved IP:

State Changes:

516
Number Name

Reserved
Constraint Range
Invalid AD
Reserved

The constraint-range fault occurs when a fault-if instruction is executed
and the condition code in the arithmetic controls matches the condition
specified by the instruction.

The invalid-AD fault occurs when an instruction attempts to reference a
object by means of an AD with the tag bit zero, or the execution mode is
user when tagging is disable.

Not used.

Not used.

IP of the instruction which faulted.

Not used.

There is no state changes associated with a constraint-range fault.

There is no state changes associated with an invalid-AD fault if the AD is
specified as an operand or in a domain. Otherwise, the accomplished state
changes are unpredictable. The latter could only occurs if system data
structures are incorrectly setup.
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10.11.3 Descriptor Faults

Faults

Fault Type:
Fault Subtype:

0
1
2-F

Function:

Fault Flags:

Fault Data:

Addr. Fault. Inst.:
Saved IP:

State Changes:

Dy

Number Name

Reserved
Invalid Descriptor
Reserved

when an AD points to a object descriptor that has an invalid type

when an AD points to a object descriptor that is an embedded type, but the
descriptor is not being used in a semaphore operation.

Not used.

The virtual address is stored in the first two words of the fault-data field.
IP of the instruction that faulted.

Same as the address-of-faulting-instruction field.

If there is any state changes associated with an invalid-descriptor fault,
sufficient resumption information will be saved to make the fault
recoverable on a return from the fault handler.
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Fault Type:
Fault Subtype:
0

1
2-F

Function:

Fault Flags:

Fault Data:

Addr. Fault. Inst.:
Saved IP:

State Changes:

PRELIMINARY

E6
Number Name

Reserved
Event Notice
Reserved

when a process is dispatched and the event-fault-request flags in the
process object are setwhile the event-fault disable bit is 0.

when a process notice IAC is received and the event-fault-request flags in
the process object are set while the event-fault disable bit is 0.

when an intersubsytem call/return which changes the event-fault disable
bit from 1 to 0 and the event-fault-request flags (may be cached) are set.

Not used.
Not used.
Not used.

IP for the instruction that would have been executed next, if the fault had
not occurred.

If this fault occurs while a process is being dispatched, the fault is signaled
before work on the process begins. This allows the fault handler to either
never begin work on the process or to retum to the process and begin work
onit.

If this fault occurs while an instruction is being executed, the processor
does one of the following: (1) terminates the instruction as if it had not yet
begun execution, (2) completes execution of the instruction, or (3)
suspends the instruction, saving the intermediate state in the resumption
record. The instruction being executed determines which action is taken.

If there is any state changes associated with an event fault, sufficient
resumption information will be saved to make the fault recoverable on a
return from the fault handler.

Faults
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10.11.5 Floating-Point Faults

Faults

Fault Type:
Fault Subtype:

Bit0
Bit1
Bit2
Bit3
Bit4
Bit5
Bits 6 and 7

Function:

Fault Flags:

Fault Data:

416
Bit Number Name

Floating Overflow

Floating Underflow
Floating Invalid-Operation
Floating Zero-Divide
Floating Inexact

Floating Reserved-Encoding
Reserved

Each floating-point fault is assigned a bit in the fault-subtype field. Mul-
tiple floating-point faults can occur simultaneously, but only the floating-
inexact faults can occur with either the floating-overflow or floating-
underflow faults.

The floating-point faults are described in detail in Chapter 5. The follow-
ing paragraphs give a brief description of each floating-point fault.

A floating-overflow fault occurs when the floating-point overflow mask is
0 and the rounded infinitely precise result of a floating-point instruction
exceeds the largest finite value of the destination format. This fault can
occur with the floating-inexact fault (as described in Chapter 5).

A floating-underflow fault occurs when the floating-point underflow mask
is 0 and the rounded infinitely precise result of a floating-point instruction
is less than the smallest normalized value of the destination format. This
fault can occur with the floating-inexact fault (as described in Chapter 5).

The floating invalid-operation fault occurs when the floating-point invalid-
operation mask is 0 and one of the source operands for a floating-point
instruction is a NaN or inappropriate for the type of operation being per-
formed.

The floating zero-divide fault occurs when the floating-point zero-divide
mask is 0 and an exact infinite result would be produced from finite
operands.

The floating-inexact fault occurs when the floating-point inexact mask is 0
and an infinitely precise result cannot be encoded in the format specified
for the destination operand. This fault interacts with the floating-overflow
and floating-underflow faults (as described in Chapter 5).

The floating reserved-encoding fault occurs when the normalizing-mode
bit in the arithmetic controls is 0 and a denormalized value is used as an
operand in a floating-point instruction, or an unnormalized extended-real
value is used.

FO0 -- Used if inexact fault occurs in conjunction with overflow or under-
flow fault. If set, FO indicates that the adjusted result has been rounded
toward +oo; if clear, FO indicates that the adjusted result has been rounded
toward e,

F1 -- Used with overflow and underflow faults only. If set, F1 indicates
that the adjusted result has been bias adjusted, because its exponent was
outside the range of the extended-real format.

Used only with overflow and underflow faults. Adjusted result is stored in
this field in extended-real format.
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Addr. Fault. Inst.: IP of the instruction that faulted.

Saved IP: IP for the instruction that would have been executed next, if the fault had
not occurred.

State Changes:  State changes accompany the floating-overflow, floating-underflow, and
floating-inexact faults, because a result is stored in the destination before
the fault is signaled. The faulting instruction can thus not be reexecuted.

No state changes do not accompany the floating invalid-operation, floating
zero-divide, and floating reserved-encoding faults, because the faults oc-
cur before the execution of the faulting instruction.
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10.11.6 Machine Faults

Fault Type: 816
Fault Subtype: Number Name
0 Reserved
1 Bad Access
2-F Reserved
Function: Indicates that the processor has detected a hardware or memory-system
€ITOT.

The bad-access fault is the only one of this fault type. This fault occurs
whenever an unrecoverable memory error occurs on a physical memory

operation.
Fault Flags: Not used.
Fault Data: Not used.
Addr. Fault. Inst.: Not used.
Saved IP: Not used.

State Changes:  This fault may occur at any time. When it does occur, the accompanying
state of the process is undefined. As a result, the processor is not able to
return predictably from the fault handler to the point in the process where
the fault occurred.

If this fault occurs during an atomic operation, there is no guarantee that
the locking mechanism that the memory subsystem uses for synchroniza-
tion is unlocked.
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10.11.7 Operation Faults

10-22

Fault Type:
Fault Subtype:

AWNHENN—=O

7-F

Function:

Fault Flags:
Fault Data:

Addr. Fault. Inst.:
Saved IP:

State Changes:

216
Number Name

Reserved

Invalid Opcode
Reserved

Invalid Operand
Reserved

Subsystem Not Found
Reserved

The invalid-opcode fault occurs when the processor attempts to execute an
instruction that contains an undefined opcode or addressing mode.

The invalid-operand fault occurs when the processor attempts to execute
an instruction for which one or more of the operands have special require-
ments and one or more of the operands do not meet these requirements.
This fault subtype is not generated on floating-point instructions.

The subsystem-not-found fault occurs when during an intersubsystem call,
the target subsystem is not found in the subsystem table. This fault will
not occur if in the in terrupted state because there is all intersubsystem
calls are handled as intrasubsystem calls.

Not used.

For the subsystem-not-found fault, the first word contains the subsystem
ID; not used for other faults.

IP of the instruction that faulted.

For subsystem-not-found fault, IP for the faulting instruction; not used for
other faults

No state changes associated with this fault.
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10.11.8 Process Faults

Fault Type: Cie
Fault Subtype: Number Name
0 Reserved
1 Time Slice
2-F Reserved
Function: The time-slice fault occurs when an end-of-time-slice event occurs and the
time-slice-reschedule flag in the process-controls is 0.
Fault Flags: Not used.
Fault Data: Not used.
Addr. Fault. Inst.: Not used.
Saved IP: IP for the instruction that would have been executed next, if the fault had
not occurred.

State Changes:  Since this fault often occurs while an instruction is being executed, it is
often accompanied by a process-state change. However, when the state
does change, sufficient resumption information will be saved to make the
fault recoverable on a return from the fault handler.

When the fault occurs, the processor does one of the following: (1) ter-
minates the instruction as if it had not yet begun execution, (2) completes
execution of the instruction, or (3) suspends the instruction, saving the
intermediate state in the resumption record. The instruction being ex-
ecuted determines which action is taken.
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10.11.9 Protection Faults

10-24

Fault Type:

Fault Subtype:
Bit0
Bit 1
Bit2
Bit3
Bit4
Bit5-7

Function:

Fault Flags:

Fault Data:

Addr. Fault. Inst.:
Saved IP:
State Changes:

T16

Bit Number Name
Lifetime

Object Length

Page Rights

Rep Rights

Type Rights

Reserved

Indicates that an instruction has attempted to violate the addressing-
protection rules. Each protection fault is assigned a bit in the fault-
subtype field. When multiple protection faults occur at the same time, the
architecture is permitted, but not required, to indicate each fault.

The lifetime fault occurs when an attempt is made to copy an AD with its
local bit set to 1 into an object or page with a local flag of 0.

The object-length fault occurs when a reference is made to object which
falls beyond the length of the object, or when the OTE referenced by an
AD falls beyond the length of the object table.

The page-rights fault occurs a reference is made to storage in a paged or
bipaged object and the associated page-table-directory entry or page-table
entry do not have the access rights needed by the reference under the cur-
rent execution mode.

A rep-rights fault occurs when the AD explicitly or implicitly used to ref-
erence storage within an object does not have the representation rights
needed by the reference.

The type-rights fault occurs when an object-operation instruction
references an object with an AD with insufficient type rights for the opera-
tion.

The action that the processor takes when these faults occur allows the fault
handler to modify the object table, page-table-directory, or page-table
when appropriate to correct the fault condition, then resume work on the
process from the point where the fault occurred.

FO0 -- Used with page-rights and rep-rights faults only. If set, FO indicates
that an attempted write operation caused the fault; if clear, FO indicates
that an attempted read operation caused the fault.

F1 -- Not used.

For a page-rights or object-length fault, the first two words contains the
virtual address of the attempted memory operation.

IP of the instruction that faulted
Same as the address-of-faulting-instruction field.

A process-state change accompanies each of the protection faults,
however, sufficient state information is saved to permit either reexecution
or completion of the faulting instruction on a return from the fault handler.

These faults occur while the faulting instruction is being executed. When
the fault occurs, the processor will either (1) terminate the instruction as if
it had not yet begun execution or (2) suspend the instruction, saving the
intermediate state in the resumption record. The instruction being ex-
ecuted determines which action is taken.
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10.11.10 Structural Faults

Faults

Fault Type:
Fault Subtype:

0
1
2-F

Function:

Fault Flags:
Fault Data:

Addr. Fault. Inst.:

Saved IP:
State Changes:

916
Number Name

Reserved
Control
Reserved

Indicates that the state of one of the system data-structures is preventing
the processor from performing a system operation. Examples of things
that can cause a structural fault include a pointer in one data structure to a
non-existent data structure or invalid state information in a data-structure
field. These faults often occur while the processor is performing an inter-
nal (implicit) operation and may not be related to a particular instruction.

The control fault occurs when the invalid contents of a data structure are
preventing a fault or interrupt from being handled or when a fault occurs
during the process of invoking an interrupt handler.

Not used.
Not used.
IP of the instruction that faulted.
Not used.

When a structural fault occurs, the accompanying state of the process is
undefined. The processor is thus not able to return predictably from the
fault handler to the point in the process where the fault occurred.
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10.11.11 Trace Faults
Fault Type:

Fault Subtype:

Bit0
Bit1
Bit2
Bit3
Bit4
Bit5
Bit 6
Bit7

Function:

10-26
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is

Bit Number Name
Reserved

Instruction Trace

Branch Trace

Call Trace

Return Trace

Prereturn Trace
Supervisor Trace
Breakpoint Trace

Indicates that the processor has detected one or more trace events. The
processor’s event tracing mechanism is described in detail in Chapter 11.

A trace event is the occurrence of a particular instruction or type of in-
struction in the instruction stream. The processor recognizes seven dif-
ferent trace events (instruction, branch, call, return, preretum, supervisor,
and breakpoint). It detects these events, however, only if a mode bit is set
for the event in the process trace-controls word, which is cached in the
processor chip. If, in addition, the trace-enable flag in the process controls
is set, the processor generates a fault when a trace event is detected.

The fault is generated following the instruction that causes a trace event
(or prior to the instruction for the prereturn trace event).

The following trace modes are available:

e Instruction -- Generate trace event following any instruction.

e Branch -- Generate trace event following any branch instruction when
branch is taken.

e Call -- Generate trace event following any call or branch-and-link in-
struction, or implicit procedure call (i.e., call to fault or interrupt
handler).

e Return -- Generate trace event following any retumn instruction.

e Prereturn -- Generate trace event prior to any return instruction.

e Supervisor - Generate trace event following any call-system or call-
domain instruction.

e Breakpoint -- Generate trace event following any processor action that
causes a breakpoint condition.

There is a trace fault subtype and a bit in the fault-subtype field associated
with each of these modes. Multiple fault subtypes can occur simul-
taneously, with the fault-subtype bit set for each subtype that occurs.

When a fault type other than a trace fault occurs during the execution of an
instruction that causes a trace event, the non-trace-fault is handled before
the trace fault. An exception to this rule is the prereturn trace fault. The
prereturn trace fault will occur before the processor has a chance to detect
a non-trace-fault, so it is handled first.

Likewise, if an interrupt occurs during an instruction that causes a trace
event, the interrupt is serviced before the trace fault is handled. Again, the
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Fault Flags:
Fault Data:
Addr. Fault. Inst.:
Saved IP:

State Changes:

PRELIMINARY

prereturn trace fault is an exception. Since it occurs before the instruction,
it will be handled before any interrupt that might occur during the execu-
tion of the instruction.

Not used.
Not used.
IP of the instruction that caused the trace event.

IP for the instruction that would have been executed next, if the fault had
not occurred.

A process state change accompanies all the trace faults (except the
prereturn trace fault), because the events that can cause a trace fault occur
after the faulting instruction is completed. As a result, the faulting instruc-
tion cannot be reexecuted upon returning from the fault handler.

Since the prereturn trace fault occurs before the return instruction is ex-
ecuted, a process state change does not accompany this fault and the fault-
ing instruction can be executed upon returning from the fault handler.
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10.11.12 Type Faults
Fault Type: A
Fault Subtype: Number Name
0 Reserved
1 Type Mismatch
2 Contents
3-F Reserved
Function: Indicates that the contents of a system-data structure or its descriptor are
inconsistent with the operation that the processor is trying to perform.
The type-mismatch fault occurs when the type information in a object
descriptor does not match the operation the processor is being asked to
perform. For example, a type-mismatch fault occurs when the AD given
in a resume-process instruction (resumprcs) does not point to a process
object.
The contents fault occurs when the information in a object is not defined
or is inconsistent.
Fault Flags: Not used.
Fault Data: Not used.
Addr. Fault. Inst.: IP of the instruction that faulted.
Saved IP: Not used.

State Changes:  When a type fault occurs, the accompanying state of the process is un-
defined. The processor is thus not able to return predictably from the fault
handler to the point in the process where the fault occurred.
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10.11.13 Virtual-Memory Faults

Faults

Fault Type:
Fault Subtype:

0
1
2
3
4-F

Function:

Fault Flags:

Fault Data:

Addr. Fault. Inst.:
Saved IP:

State Changes:

616

Number Name

Reserved

Invalid Object-Table-Entry

Invalid Page-Table-Directory-Entry (PTDE)
Invalid Page-Table-Entry (PTE)

Reserved

Indicates that an address or an AD in an instruction cannot be translated
into a physical address, because the object or page being referenced is not
in physical memory.

The invalid-object-table-entry fault occurs when the valid flag in a object
descriptor is 0, which can mean that the object, the page-table directory, or
the page table that the object descriptor points to is not in physical
memory.

The invalid-PTDE fault occurs when the valid flag in a page-table-
directory entry is 0, which means that the page table that the entry points
to is not in physical memory.

The invalid-PTE fault occurs when the valid flag in a page-table entry is O,
which means that the page that the entry points to is not in physical
memory.

The action that the processor takes when these faults occur allows the fault
handler to copy the missing object or page from the disk into physical
memory, then resume work on the process from the point where the fault
occurred.

Not used.

The virtual address of the attempted memory operation.
IP of the instruction that faulted

Same as the address-of-faulting-instruction field.

A process-state change accompanies each of the virtual-memory faults,
however, sufficient state information is saved to permit either reexecution
or completion of the faulting instruction on a return from the fault handler.

These faults occur while the faulting instruction is being executed. When
the fault occurs, the processor will either (1) terminate the instruction as if
it had not yet begun execution or (2) suspend the instruction, saving the
intermediate state in the resumption record. The instruction being ex-
ecuted determines which action is taken.
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DEBUGGING AND TRACING SUPPORT 1 1

(5

This chapter describes the tracing facilities, which allow the monitoring of instruction execu-
tion.

11.1 Overview of the Trace-Control Facilities

Trace events allow processor activity to be monitored. Some trace events occur just after
having executed a particular instruction, while others occur after having executed one of a
class of instructions, while still others occur just before executing a particular instruction.

By monitoring trace events, debugging software is able to display or analyze the activity of a
program. This analysis can be used to locate software or hardware bugs or for general system
monitoring during the development of system or applications programs.

The typical way to use this tracing capability is to enable certain trace events either by means
of the trace-controls word or a set of breakpoint registers. An alternate method of creating a
trace event is with the mark and fmark instructions. These instructions cause an explicit trace
event to be generated whenever they are executed.

If tracing is enabled, a trace fault occurs at each trace event. The fault handler for trace faults
can then call the debugging monitor software to display or analyze the state when the trace
event occurred.

11.2 Required Software Support for Tracing

To use the tracing facilities, software must provide trace-fault handling procedures, perhaps
interfaced with a debugging monitor. Software must also manipulate several control flags to
enable the various tracing modes and to enable or disable tracing in general. These control
flags are located in the system-data structures described in the next section.

11.3 Trace Controls
The following flags or fields control tracing:
e Trace controls
e Trace-enable flag in the process controls
e Trace-fault-pending flag in the process controls
e Trace flag (bit 0) in the return-status field of register 10
e Trace-control flag in the supervisor-stack-pointer field of the domain object
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11.3.1 Trace-Controls Word

11-2

The trace-controls word is located in the PCB for the current process. When a process is
bound to the processor, the contents of the trace-controls word are cached internally in the
processor.

The trace controls allow software to define the conditions under which trace events are
generated. Figure 11-1 shows the structure of the trace-controls word.

23222120191817

INSTRUCTION TRACE MODE

BRANCH TRACE MODE

CALL TRACE MODE

RETURN TRACE MODE

PRERETURN TRACE MODE
SUBSYSTEM/SUPERVISOR TRACE MODE
BREAKPOINT TRACE MODE
INSTRUCTION TRACE EVENT

BRANCH TRACE EVENT

CALL TRACE EVENT

RETURN TRACE EVENT

PRERETURN TRACE EVENT
SUBSYSTEM/SUPERVISOR TRACE EVENT
BREAKPOINT TRACE EVENT

RESERVE (INITIALIZE TO 0)

Figure 11-1. Trace-Controls Word

This word contains two sets of bits: the mode flags and the event flags. The mode flags define
a set of trace modes that the processor can use to generate trace events. A mode represents a
subset of instructions that will cause trace events to be generated. For example, when the
call-trace mode is enabled, the processor generates a trace event whenever a call or branch-
and-link operation is executed. To enable a trace mode, the kernel sets the mode flag for the
selected trace mode in the trace controls. The trace modes are described later in this chapter.

The event flags keep track of which trace events (for those trace modes that have been
enabled) have been detected.

A modtc instruction sets or clears flags flags in the trace controls. On initialization, all the
flags in the internal trace controls are cleared. The modtc instruction can then set or clear
trace mode flags as required. (This instruction does not affect the trace controls word in the
PCB for the current process.)

Software can access the event flags using the modtc instruction. However, this is unnecessary,
because these flags are modified directly by the trace-handling mechanism.

Bits 0, 8 through 16, and 24 through 31 of the trace controls are reserved. These bits should be
initialized to zero and not accessed or modified after initialization.
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11.3.2 Trace-Enable and Trace-Fault-Pending Flags

The trace-enable flag and the trace-fault-pending flag (in the process controls) control tracing.
The trace-enable flag enables the tracing facilities. When this flag is set, trace faults are
generated for all trace events.

Typically, software selects the trace modes to be used through the trace controls. It then sets
the trace-enable flag when tracing is to begin. This flag is also altered as part of some of the
call and retum operations, as described at the end of this chapter.

The trace-fault-pending flag keeps track of the fact that an enabled trace event has been
detected. This flag is used as follows. An enabled trace event sets this flag. Before executing
each instruction, this flag is checked, and if set, a trace fault is generated. By providing a
means of recording the occurrence of a trace event, the trace-fault-pending flag allows inter-
rupts or other faults to be handled before handling the trace fault.

11.3.3 Trace Control on Subsystem and Supervisor Calls

The trace flag and the trace-control flag allow tracing to be enabled or disabled when a subsys-
tem call (interdomain call) or a supervisor call is executed. This action occurs independent of
whether or not tracing is enabled prior to the call.

When a subsystem or supervisor call is executed, the current state of the trace-enable flag
(from the process controls) is saved into the trace flag (bit 0) of the retum-status field of
register 10.

Then, when the subsystem or supervisor procedure is selected from the procedure table in the
domain object, the trace-enable flag in the process controls is copied from the setting in the
trace-control flag in the domain object (bt O of the word that contains the supervisor-stack
pointer).

On a return from the subsystem or supervisor procedure, the trace-enable flag in the process
controls is restored to the value saved in the return-status field of register 10.

Thus, the trace-enable flag is established by the called domain, and not by the caller.
However, the caller’s trace flag is restored upon return from the called domain.

11.4 Trace Modes

The following trace modes can be enabled through the trace controls:
e Instruction trace

e Branch trace

e (Call trace

e Retumn trace

e Preretum trace

e Supervisor trace

¢ Breakpoint trace
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These modes can be enabled individually or several modes can be enabled at once. Some of
these modes overlap, such as the call-trace mode and the supervisor-trace mode. Section 11.7
describes what happens when multiple trace events occur.

The following sections describe each of the trace modes.

11.4.1 Instruction Trace

When the instruction-trace mode is enabled, each instruction generates an instruction-trace
event before the instruction is executed. This mode can be used within a debugging monitor to
execute a program a single step at a time ("single-step” the program).

11.4.2 Branch Trace

When the branch-trace mode is enabled, each branch instruction that successfully branches
(not including unsuccessful conditional branches) generates a branch-trace event. Branch-and-
link, call, and retumn instructions do not cause generate branch-trace events.

11.4.3 Call Trace

When the call-trace mode is enabled, every call instruction (call, callx, or calls), or a branch-
and-link instruction (bal or balx), or an implicit call (such as invoking a fault or interrupt
handler) generates a call-trace event.

During a call-trace event, the prereturn-trace flag (bit 3 of register 10) is set in the new frame
created by the call operation or in the current frame if a branch-and-link operation was per-
formed. This flag controls whether or not to signal a prereturn-trace event on a ret instruction.

11.4.4 Return Trace
When the return-trace mode is enabled, every ret instruction generates a retum-trace event.

11.4.5 Prereturn Trace

The prereturn-trace mode causes any ret instruction to generate a preretum-trace event prior to
its execution, but only when the prereturn-trace flag in 10 is set. (Prereturn tracing cannot be
used without enabling call tracing.)

The prereturn-trace flag is set whenever a call-trace event is detected. This flag performs a
preretum-trace-pending function. If another trace event occurs at the same time as the
preretumn-trace event, the preretum-trace flag allows the the non-prereturn-trace event to fault
first, then the prereturn-trace event is faulted. The prereturn trace is the only trace event that
can cause two successive trace faults to be generated between instruction boundaries.

11.4.6 Subsystem/Supervisor Trace

When the subsystem/supervisor-trace mode is enabled, the subsystem/supervisor-trace event is
generated any time (1) an implicit or explict domain call is executed; (2) an explicit domain
call is made, where the procedure table entry is a supervisor procedure; or (3) when aret
instruction is executed and the return-status field is set to 010, or 011, (that is, retum from
supervisor mode).

This trace mode allows a debugging program to determine the boundaries of operating-system
calls within the instruction stream.
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11.4.7 Breakpoint Trace

The breakpoint-trace mode allows trace events to be generated at places other than those
specified with the other trace modes. This mode is used in conjunction with the mark and
fmark instructions, and the breakpoint registers.

The mark and fmark instructions allow breakpoint-trace events to be generated at specific
points in the instruction stream. When the breakpoint-trace mode is enabled, breakpoint-trace
event are generated by every mark instruction. The fmark generates a breakpoint-trace event
regardless of whether the breakpoint-trace mode is enabled or not.

The processor has two, one-word breakpoint registers, designated as breakpoint 0 and break-
point 1. Using the set-breakpoint-register IAC, one instruction pointer can be loaded into each
register. A breakpoint trace is then generated any time an instruction referenced by a break-
point register is executed. (The BiiN™ Operating System does not provide access to the break-
point registers.)

11.5 Trace-Fault Handler

A fault handler is a procedure that is called to handle faults. The requirements for fault hand-
lers are given in Section 10.7.

A trace-fault handler has one additional restriction. It must be called with an implicit inter-
domain call, and the trace-control flag in the domain object entry must be clear. This restric-
tion insures that tracing is turned off when a trace fault is being handled, which is necessary to
prevent an endless loop.

11.6 Signaling a Trace Event

To summarize the information presented in the previous sections, a trace event occurs when
one of the following conditions occurs:

e An instruction included in a trace-mode group is executed or about to be executed (in the
case of a prereturn trace event) and the trace mode for that instruction is enabled.

e An implicit call operation has been executed and the call-trace mode is enabled.
e A mark instruction has been executed and the breakpoint-trace mode is enabled.
¢ An fmark instruction has been executed.

e An instruction specified in a breakpoint register is executed and the breakpoint-trace mode
is enabled.

When the trace-enable flag is set in the process controls, the trace event generates the follow-
ing actions:

1. The appropriate trace-event flag is set in the trace controls. If a trace event meets the
conditions of more than one of the enabled trace modes, a trace-event flag is set for each
trace mode condition that is met.

2. The trace-fault-pending flag is set in the process controls.

Note that the trace-event flag and the trace-fault-pending flag may be set before the instruction
that triggered the event is complete. However, the trace event is generated only "between" the
execution of instructions.
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If the trace-enable flag is clear, and a trace event is detected, the corresponding event flag is
set, but the trace-fault-pending flag is not set (and thus, the trace event does not trigger a fault).

11.7 Handling Multiple Trace Events

Multiple trace events are resolved according to the following precedence (from most sig-
nificant to least significant):

1. Subsystem/supervisor-trace event

2. Breakpoint- (from mark or fmark instruction, or from a breakpoint register), branch-, call-,
or return-trace event

3. Instruction-trace event

If two or more trace events occur at the same time, only the most significant event is neces-
sarily generated. Other events may or may not be generated.

11.8 Trace Handling Action

Trace events may or may not fault, depending on the trace-enable and trace-fault-pending
flags, and on other events occuring at the same time, such as an interrupt or a non-trace fault.

The following sections describe how trace events are handled for various situations.

11.8.1 Normal Handling of Trace Events

Before each instruction is executed, the trace-fault pending flag is checked. If the flag is clear,
the trace-enable flag is checked. If the trace-enable flag is clear, all trace event flags are
cleared before executing the next instruction. If the trace-enable flag is set, a trace fault is
raised, and the fault is handled as described in Chapter 10.

11.8.2 Prereturn Trace Handling

A prereturn-trace event is handled as described above, unless the event occurs at the same time
as a non-trace fault, in which case the non-trace fault is handled first.

On returning from the fault handler for the non-trace fault, the the prereturn-trace flag is
checked in register 10. If this flag is set, a preretum-trace is generated and handled as
described above.

11.8.3 Tracing and Interrupt Handlers

11-6

Tracing is disabled during an interrupt handlers automatically, by saving the current state of
the process controls, and then clearing the trace-enable and trace-fault-pending flags in the
current process controls.

Since the process controls are restored upon return from the interrupt handler, a trace fault may
be signaled depending on the trace-enable and trace-fault-pending flags in the restored process
controls.
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11.8.4 Tracing and Fault Handlers

Fault handlers may be invoked with either an implicit local call or an implicit interdomain call.
On a local call, the trace-enable and trace-fault-pending flags are neither saved on the call nor
restored on the return. The state of these flags on the return is thus dependent on the action of
the fault handler.

On a interdomain call, the trace-enable and trace-fault-pending flags are saved, as part of the
saved process controls, and restored on the return. So, if these two flags were set prior to
calling the fault handler, a trace fault will be signaled on the return from the fault handler.

On a return from an interrupt handler or a fault handler (other than the trace-fault handler), the
trace-fault-pending flag is restored. If this flag is set as a result of the handler’s ret instruction,
the detected trace event is lost.

Debugging and Tracing Support 11-7
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INTERRUPTS 1 2

This chapter describes the interrupt handling facilities. It also describes how interrupts are
signaled.

12.1 Overview of the Interrupt Facilities

An interrupt is a temporary break in the control stream of a process so that the processor can
handle another task. Interrupts are generally requested from an extemal source. The interrupt
request either contains a vector number or else points to a vector that tells the processor what
task to do while in the interrupted state. When the processor has finished servicing the inter-
rupt, it generally returns to the process that it was last working on when the interrupt occurred,
and resumes execution where it left off.

The mechanism for servicing interrupts uses an implicit procedure call to a selectcd interrupt
handling procedure, called an interrupt handler.

When an interrupt occurs, the current state of the process is saved. If the interrupt occurs
during an instruction that requires many machine cycles, the instruction state is also saved and
execution of the instruction is suspended.

A new frame is then created on the interrupt stack and the interrupt handler (selected with the
interrupt vector) is called. As part of the implicit call, the processor switches to a pseudo-
process.

Upon returning from the interrupt handler, the processor switches back to the process that was
running when the interrupt occurred, restores this process to the state it was in when the inter-
rupt occurred, and resumes work on the process.

Interrupts may be prioritized. If an interrupt is signaled that has the same or a lower priority
than the process that the processor is currently working on (and the priority of the interrupt is
below 31), the interrupt request is saved for service at a later time. Interrupts that are waiting
to be serviced are called pending interrupts.

12.2 Software Requirements for Interrupt Handling

Interrupts

The following items must be present in memory to use the interrupt handling facilities:

Interrupt Table

Interrupt Handler Routines
Interrupt Stack

Interrupt Environment Table

These items are generally established in memory as part of the initialization procedure. Once
these items are present in memory and pointers to them have been entered in the appropriate
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system data structures, interrupts are then handled automatically and independently from
software.

The requirements for these items are given in following sections of this chapter.

12.3 Vectors and Priority

Each interrupt vector is 8 bits in length, which allows up to 256 unique vectors to be defined.
In practice, vectors O through 7 cannot be used, and vectors 244 through 247 and 249 through
251 are reserved and should not be used by software. Vector 248 is reserved for a processor-
generated interrupt called a system-error interrupt. This interrupt is described in Section
10.6.3.

Each vector has a predefined priority, which is equal to the vector number divided by 8
(discarding any remainder). Thus, at each priority level, there are 8 possible vectors (for
example, vectors 8 through 15 have a priority of 1, vectors 16 through 23 a priority of 2, and so
on to vectors 246 through 255, which have a priority of 31).

The priority of an interrupt determines whether the interrupt will be serviced immediately. If
the interrupt priority is greater than the priority of the current process, the interrupt receives
immediate service; if the interrupt priority is equal to or lower than the priority of the current
process, the interrupt vector is saved as a pending interrupt so that the interrupt can be serviced
after work on the current process is complete.

A priority-31 interrupt is always serviced immediately.

Note that the lowest process priority allowed is 0. If the current process has a 0 priority, a
priority-0 interrupt will never be accepted. This is why vectors 0 through 7 cannot be used. In
fact, there are no entries provided for these vectors in the interrupt table.

12.4 Interrupt Table

The interrupt table contains instruction pointers to interrupt handlers. This table is located in
physical memory and must be aligned on a word boundary. The processor object contains the
location of the interrupt table as a physical address.

As shown in Figure 12-1, the interrupt table contains one entry (that is, one pointer) for each
allowable vector. The structure of an interrupt-table entry is given at the bottom of Figure
12-1. Each interrupt procedure must begin on a word boundary, so only the 30 most-
significant bits of the pointer are given.
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31 0
PENDING PRIORITIES 0
4
{ PENDING INTERRUPTS ;
32
ENTRY 8 36 (VECTOR 8)
ENTRY 9 40  (VECTOR 9)
ENTRY 10 44 (VECTOR 10)
ENTRY 243 976 (VECTOR 243)
980 (VECTOR 244)
< RESERVED < :
992 (VECTOR 247)
ENTRY 248 996 (VECTOR 248)
1000 (VECTOR 249)
< RESERVED < :
1008 (VECTOR 251)
ENTRY 252 1012 (VECTOR 252)
F ENTRY 255 1024 (VECTOR 255)

31 210
| INSTRUCTION POINTER lo]o]

S RESERVED (INITIALIZE TO 0)

Figure 12-1. Interrupt Table

The instruction pointers point to an address in the current linear address space of the processor
(local procedure).

The first 36 bytes of the interrupt table record pending interrupts. This section of the table is
divided into two fields: pending priorities (byte-offset 0 through 3) and pending interrupts
(byte-offset 4 through 35).

The pending-priorities field contains a 32-bit string in which each bit represents an interrupt
priority. The bit number in the string represents the priority number. A pending interrupt is
posted in the interrupt table by setting the corresponding bit. For example, if an interrupt with
a priority of 10 is posted in the interrupt table, bit 10 is set. '

The pending-interrupts field contains a 256-bit string in which each bit represents an interrupt
vector. For example, byte-offset 4 is reserved, byte-offset 5 is for vectors 8 through 15, byte-
offset 6 is for vectors 16 through 23, and so on. When a pending interrupt is logged, its
corresponding bit in the pending-interrupts field is set.
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For proper operation, these fields should be cleared during interrupt initialization, and then left
undisturbed during normal system operation.

12.5 Interrupt Table Sharing

The interrupt table is located in physical memory so that systems that use multiple processors
can share the interrupt table. When one processor receives an interrupt and posts itasa
pending interrupt in the interrupt table, another processor can service the interrupt.

12.6 Interrupt Handler Procedures

An interrupt handler is a procedure that is designed to perform a specific action that has been
associated with a particular interrupt vector. For example, a typical job for an interrupt handler
is to read a character from a keyboard.

12.6.1 Location of Interrupt Handler

An interrupt-handler procedure can be located in either the the current linear address space of
the process or within a subsystem. If an interrupt-handler procedure is located in the linear
address space, it is generally located in region 3. This makes the procedure available to all
processes and all subsystems. Procedures located in the current linear address space are ac-
cesssed with local procedure entries in the interrupt table. As stated in the previous section,
each procedure must begin on a word boundary.

The interrupt handler procedures can also be located in a subsystem, with access to these
procedures provided through intersubsystem calls. Here, a local procedure call is made from
the interrupt table to a procedure in the linear address space (as described in the previous
paragraph). This procedure then issues a calld instruction to the selected interrupt procedure in
the interrupt-handler subsystem.

When an interrupt handler makes a subsystem call, the interrupt environment table is used.
The AD for this table is located in the processor object. Using the interrupt environment table
protects the stack of the interrupted process, and permits the subsystem protection model to be
used during interrupt handling.

12.6.2 Interrupt Handler Restrictions

124

All interrupts are processed in supervisor mode. The pages that contain interrupt handler
routines may have their page rights set for supervisor-only access.

When an interrupt-handler procedure is called, the states of the process controls and arithmetic
controls for the interrupted process are saved. However, the interrupt handler shares the other
resources of the interrupted process, in particular the global registers and the address space.
This sharing of resources imposes two important restrictions on the interrupt handler
procedures.

First, the interrupt handler procedures must preserve and restore the state of any needed
resources. Local registers need not be saved, because a new local stack frame is already
established for the interrupt handler. If the interrupt handler needs to use the global or
floating-point registers, however, it should save their contents before using them and restore
them before returning from the interrupt.

Interrupts
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Second, the interrupt handler should not do anything that would cause the interrupted process
to be unbound from the processor and rescheduled, because doing so would leave the processor
in an indeterminate state. To avoid rescheduling the process, an interrupt handler should not
use the sendserv, receive, or wait instructions. Also, the interrupt handler should not enable
timing (set the timing flag in the process controls register), since this can result in an end-of-
time-slice event that can also cause the interrupted process to be rescheduled.

The resumprcs instruction (resume process) can be used; however, the state of the interrupted
process will be lost.

An interrupt-handler procedure can also be called from within a pseudo-process, where there is
no process object. One example of this situation is when the processor receives an interrupt
while it is servicing another interrupt. Here, execution of the ldtime instruction (load process
time), Idglobals (load-from-process-globals), or the condrec instruction (conditional receive)
returns an undefined result.

12.7 Interrupt Stack

The interrupt stack is usually located in region 3 of the address space. The location of the
interrupt stack is defined by a pointer in the processor object. To avoid raising a fault while
processing an interrupt, the interrupt stack must be frozen in physical memory, meaning that
the pages that contain the stack must always be valid.

The interrupt stack has the same structure as the local procedure stack described in Section 6.7.

12.8 Signaling Interrupts

The processor can be interrupted in any of the following six ways:
e Signal on its interrupt pins

e Signal on its interrupt pins from an external interrupt controller
e An IAC message from external source

e An IAC message from a program in the processor

e A system-error fault interrupt

¢ A pending interrupt (described at the end of this chapter)

12.8.1 Interrupts From Interrupt Pins

Interrupts

The processor has four interrupt pins, called INTO, INT1, INT2, and INT3. These pins can be
configured in either of the following three ways:

e as four interrupt-signal inputs;

e as two interrupt inputs and two pins for handshaking with an interrupt controller such as the
Intel 8259A Programmable Interrupt Controller; or

e as one IAC input and three interrupt inputs.

A 32-bit. interrupt-control register in the processor determines how these pins are used. Each
interrupt pin is associated with one 8-bit field in the register, as shown in Figure 12-2.
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31 24 23 16 15 8 7 0
[ 7> VecToR | INTz VECTOR | INTI VECTOR | INTO VECTOR 1

Figure 12-2. Interrupt-Control Register

If the interrupt pins are to be used as four inputs, a different interrupt vector is stored in each of
the four fields in the interrupt-control register. Then when an interrupt is signaled on one of
the pins, the vector from the pin’s associated field is read into the register. For example, if an
interrupt is signaled on pin INTO, the vector is derived from bits 0 through 7.

Interrupt vectors in the interrupt register are arranged in descending order from the INTO field
to the INT?3 field (that is, the priority of INTO 2 INT1 2 INT2 2 INT3). To insure that
interrupts are handled in the proper order, software should follow this convention.

If the INTO vector field is set to 0, the function of the INTO pin is changed to IAC, and it is
used to signal that an external IAC message has been sent to it. In fact, the INTO pin must be
configured in this manner for external IAC messages to be serviced.

If the INT2 vector field is set to 0, the functions of the INT2 and INT3 pins are changed to
INTR and INTA, respectively. Here, the INTR pin is used to receive signals from an interrupt
controller and the INTA pin is used to send acknowledge signals back to the controller. When
the the INTR pin is asserted, an interrupt vector is read from the least-significant 8 bits of the
local bus, and an acknowledge signal is sent to the controller through INTA. When the INT2
and INT3 pins are configured in this manner, the INT3 vector field is ignored.

The interrupt-control register is memory mapped to physical addresses FF000004,4 through
FF000007,¢. Only the processor can read or write this register using the synchronous load
(synld) and synchronous move (synmov) instructions. External agents on the bus cannot
access this register.

The value in the interrupt-control register after the processor is initialized is FFO00000,¢.

12.8.2 IAC Interrupts

12-6

The processor can also receive an interrupt request by means of the IAC mechanism. (The
IAC mechanism is described in detail in Chapter 16.) The interrupt IAC message can be sent
to the processor either from an extemnal bus agent, such as an I/O processor or another CPU, or
internally as part of the currently running process. The interrupt vector is contained in the
interrupt IAC message.

As with any other IAC message, an external interrupt-IAC message is triggered through the
INTO pin, which has been configured as an IAC pin, as described in the previous section. The
TAC message is then read to get the interrupt vector.

A program can signal an interrupt through an internal interrupt-IAC message. An internal IAC
is sent by means of a synchronous move instruction. When the processor executes a
synchronous move to its IAC message space, it signals an IAC message internally. The IAC
message is then read as if it was an external IAC.

Interrupts
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12.8.3 System-Error Interrupt

Under certain conditions, a system-error interrupt is signaled internally. This interrupt causes a
call to interrupt vector 248. The system-error interrupt mechanism, action, and possible han-
dling methods are described in Section 10.6.3.

12.9 Interrupt Handling Actions

The following section describes the actions the taken automatically while handling interrupts.
It is not necessary to read this section to use the interrupt mechanism or write an interrupt
handler routine. This discussion is provided for those readers who wish to know the details of
the interrupt handling mechanism.

12.9.1 Receiving an Interrupt
Whenever the processor receives an interrupt signal, it performs the following action:

1.

It temporarily stops work on its current job, whether it is working on a process or another
interrupt.

It reads the interrupt vector from the interrupt register, the bus, or the IAC message space.

It compares the priority of the vector with the priority of the current process (or pseudo-
process).

If the interrupt priority is higher than that of the process, the processor services the interrupt
immediately as described in the next sections.

If the interrupt priority is equal to or less than that of the current process, the processor sets
the appropriate priority bit and vector bit in pending interrupt record and continues work on
the current process.

12.9.2 Servicing an Interrupt

The actions performed to service an interrupt depends on the state the processor is in when it
receives the interrupt. The following sections describe the interrupt handling actions for
various states of the processor. In all of these cases, it is assumed that the interrupt is a higher
priority than the current process and will thus be serviced immediately after the processor
receives it. The handling of lower priority interrupts is described later in Section 12.9.8.

12.9.3 Process-Executing State Interrupt

When the processor receives an interrupt while it is in the process-executing state, it performs
the following actions to service the interrupt; this procedure is the same regardless of whether
the processor is in the user or the supervisor mode when the interrupt occurs:

1.

Interrupts

The processor saves the current state of process controls and arithmetic controls in an
interrupt record on the stack that the interrupted process is currently using. This stack can
be the local-procedure stack or the supervisor stack. (The interrupt record is described in
the following section.)

If the execution of an instruction was suspended, the processor includes a resumption
record for the instruction in the current stack and sets the resume flag in the saved process
controls. (Refer to the section in Chapter 16 titled "Instruction Suspension” for a discus-
sion of the criteria for suspending instructions.)
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The processor switches to the process-interrupted state.

In its internally cached process controls, the processor sets the process state to interrupted,
the execution mode to supervisor, and the priority to the priority of the interrupt. Changing
the mode to supervisor allows the processor to access interrupt handler procedures in
protected pages. Setting the process priority to that of the interrupt insures that lower
priority interrupts can not interrupt the servicing of the current interrupt.

Also in the current process controls, the processor clears the trace-fault-pending, timing,
trace-enable, and time-slice flags. Clearing these flags allows the interrupt to be handled
without trace faults being raised and without the process timing out.

The processor allocates a new frame on the interrupt stack and switches to the interrupt
stack.

The processor sets the frame return status field (associated with the PFP) to 111,.

The processor performs an implicit call-extended operation (similar to that performed for
the callx instruction). The address for the procedure that is called is that which is specified
in the interrupt table for the specified interrupt vector. This call is to a local procedure.

The called procedure may in tum issue a calld instruction to an interrupt handler subsys-
tem. The processor handles this call just as it would if the call had been made from within
aprocess. The only difference is that it uses the interrupt environment table instead of the
environment table for the current process.

Once the processor has completed the interrupt procedure, it performs the following action on
the return:

1.
2.

7.

If a subsystem call was made, the processor returns from the subsystem.

The processor deallocates the stack frame from the interrupt stack and switches to the local
or supervisor stack (whichever one it was using when the process was interrupted).

The processor copies the arithmetic controls field from the interrupt record into the arith-
metic controls in the processor.

The processor copies the process controls field from the interrupt record into the process
controls in the processor.

If the resume flag of the process controls is set, the processor copies the resumption record
from the interrupt record to the resumption record field of the process object for the process
being resumed.

The processor checks the interrupt table for pending interrupts that are higher then the
priority of the process being retuned to. If a higher-priority pending interrupt is found, it is
handled as if the interrupt occurred at this point.

Assuming that there are not pending interrupts to be serviced, the processor switches to the
process-executing state and resumes work on the current process.

If the processor is configured to use the high-level process management facilities or multiple
processors or both, the processor performs the following additional operations prior to resum-
ing work on the interrupted process.

1.

If either the multiprocessor-preempt flag or the check-dispatch-port flag in the processor
controls is set, the processor checks the dispatch port and clears the check-dispatch-port
flag. Otherwise, it goes to step 4.

If the dispatch port contains a process whose priority is higher than that of both the current
process and the value in the nonpreempt-limit field in the processor controls, the processor
suspends the current process and enqueues it at the front of the queue for its associated
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dispatch port. The processor then dispatches the higher priority process, which becomes
the current process.

3. If a higher priority process was not found on the dispatch port, the process that was inter-
rupted remains the current process.

4. The processor then begins work on the current process.

The processor executes the interrupt handler procedure from within a pseudo-process. The
priority of this pseudo-process is the same as that of the interrupt.

12.9.4 Process-Interrupted State Interrupt

If the processor receives an interrupt while it is servicing an interrupt, and the new interrupt
has a higher priority than the current pseudo-process, the pseudo-process is interrupted. Here
the processor performs the same action to save the state of the pseudo-process as is described
at the beginning of this section. A new pseudo-process is then created in which the interrupt
handler for the new interrupt runs.

If the interrupt is received while the processor is executing an interrupt-handler procedure, the
interrupt record is saved on the top of the interrupt stack, prior to the new frame that is created
for use in servicing the new interrupt.

12.9.5 Interrupt Record

The processor saves the state of the interrupted process in an interrupt record. Figure 12-3
shows the structure of this interrupt record.
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s the interrupt is serviced while the processor is warking on another
interrupt procedure, the new stack pointer (NSP) will be the same as

the SP.
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Figure 12-3. Storing of an Interrupt Record on the Stack

The resumption record within the interrupt record is used to save the state of a suspended
instruction. If no instruction is suspended, the resumption record is not created.

12.9.6 Idle or Stopped State Interrupt

The processor can also be interrupted while in either the idle or the stopped state. The proces-
sor handles such interrupts in essentially the same way that it handles interrupts that occur
while the processor is in the process-executing state, with the following exception. When the
processor allocates the new frame on the interrupt stack, it sets the frame retumn field to 110,.
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This causes the processor to revert to the idle or stopped state when the processor returns from
the interrupt-handler procedure.

12.9.7 Idle-Interrupted or Stopped-Interrupted State Interrupt

If the processor receives an interrupt while it is in the idle-interrupted or stopped-interrupted
states, it handles the interrupt just as it would if it occurred in the process-interrupted state.

12.9.8 Pending Interrupts

As described earlier, interrupts are evaluated according to their priority. If the interrupt
priority is not greater than the current process priority, the interrupt is not serviced, but is
instead noted by posting the interrupt in the pending-interrupt section of the interrupt table.
Occasionally, these pending-interrupts are checked, and any outstanding higher-priority inter-
rupts are then serviced. This pending interrupt mechanism provides two benefits:

1. The ability to delay the servicing of low priority interrupts (by posting them in the pending
interrupt section of the interrupt table) allows a processor to concentrate its processing
activity on higher priority tasks.

2. In a system that uses two or more processors, both processors can share the same interrupt
table. This interrupt-table sharing allows the processors to share the interrupt handling
load.

The following paragraphs describe how pending interrupts are handled.

12.9.8.1 Posting Pending Interrupts

An interrupt can be posted in the pending-interrupt record of the interrupt table in either of the
following two ways:

1. The processor receives an interrupt with a priority equal to or lower than that of the process
the processor is currently working on. The processor then automatically posts the interrupt
in the pending-interrupt record.

2. The kernel can set the desired pending-interrupt and pending-priority bits in the interrupt
table.

Using the first method, the processor performs an atomic read/write operation that locks the
interrupt table until the posting operation has been completed. Locking the interrupt table
prevents other agents on the bus from accessing the interrupt table during this time.

The second method of posting an interrupt is risky, because it does not use this locking tech-
nique. (The processor’s atomic instructions are not able to perform a locking operation that
spans several instructions.) This method will work only if the kernel can insure the following:

e that no external I/O agent will attempt to post a pending interrupt simultaneously with the
processor, and

e that an interrupt cannot occur after the pending-priority bit of the pending-interrupt record
is set but before the pending-interrupt vector is set.

12.9.8.2 Checking for Pending Interrupts

Interrupts

The interrupt table is automatically checked for pending interrupts at the following times:

e After returning from an interrupt-handler procedure
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e While executing a modpe instruction, if the instruction causes the process’s priority to be
lowered.

e After receiving a test-pending-interrupts IAC message.

12.9.8.3 Handling Pending Interrupts

Atomic read/write operations are used for both checking and posting to the interrupt table
table. This technique prevents other agents on the bus from accessing the interrupt table until
the pending-interrupt check has been completed.

A valid pending interrupt is treated as if the interrupt had just occured.

Should two pehding interrupts occur at the same priority, the interrupt with the highest vector
number is serviced first.
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INTRODUCTION TO PROCESSES, 1 3
PROCESSORS & SYNCHRONIZATION

Chapter 14 describes the interprocess communication facility ("ports").

Chapter 15 describes the management of the process object, and how processes use ports to
communicate.

Chapter 16 describes the management of the processor object, and how processors communi-
cate and dispatch processes.
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INTERPROCESS COMMUNICATION 1 4
AND SYNCHRONIZATION

The interprocess communication facility provides efficient message passing between
processes, and the synchronization, scheduling and dispatching of these processes. Addition-
ally, primitive synchronization mechanisms are provided, like atomic operations and
semaphores.

Interprocess communication is facilitated by "ports”. This chapter describes the structure and
semantics of ports; Chapter 15 describes the role of ports in process scheduling and dispatch-
ing.

An operating system (such as the BiiN™ Operating System) may not necessarily provide direct
access to the facilities described in this chapter, but instead provide services that use these
facilities.

14.1 Interprocess Communication Overview

Interprocess communication is based.on ports. A process makes a "request" to a port by
sending a message to the port; the message is enqueued until another (or possibly the same)
"service" process interrogates the port by attempting to receive a message. When a process
receives a message, the message is dequeued from the port and delivered to the process.

Messages are objects which contain their own queuing space. There is no limitation on the
number of messages enqueued at a port. Any objects can be used as messages independent of

their types.

If a receive is attempted from an empty port, the requesting process is suspended and is said to
have "receive-blocked". Receive-blocked process objects form a linked list extending from the
port object. There is no limitation on the number of blocked processes that can be blocked and
enqueued at a port.

When a message is sent to a port where at least one process (server) is receive-blocked, a
process is dequeued and is, in tumn, rescheduled (causes a preemption or enqueues at its dis-
patching port).

There are two enqueuing strategies, depending on the enqueuing mode of the port.

1. FIFO. The port has a single linked list, which is strictly FIFO, for both messages or
blocked processes. A receive from a FIFO port will obtain the first message in the queue.

2. Priority. The port has 32 queues, one for each of 32 priority levels. Messages or blocked
processes are linked to the various queues, one for each priority. A receive from a priority
port will obtain the first message in the highest priority non-empty queue. The priority
ranges from O for the lowest priority level to 31 for the highest priority level. Within a
priority level, processes are arranged in FIFO order.

Interprocess Communication and Synchronization 14-1
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14.2 Port Object

14-2

A port object has a predefined system type. A dispatch port is required to be "frozen". The
structure of a port is shown in Figure 14-1.

FIFO PORT

31 17 18 ’ 7 [

°| °W LOCK 0

QUEUE HEAD AD 4

QUEUE TAIL AD

PRIORITY PORT

31 17 16 7 [}
LOCK [o]
QUEUE STATUS
QUEUE HEAD AD (PRIORITY = 0) 8
QUEUE TAIL AD (PRIORITY = 0) 12
16
QUEUE HEADERS
(PRIORITIES = 1 THROUGH 30)
252
QUEUE HEAD AD (PRIORITY = 31) 256
QUEUE TAIL AD (PRIORITY = 31) 260

RESERVED (INITIALIZE T00)

PRESERVED

DN\

Figure 14-1. Ports

The type rights in an AD for a port object are defined as follows:
Type Rights 1 Uninterpreted.

Type Rights 2 Send/Receive Rights: If the bit is 1, a message may be sent to or received
from this port.

Type Rights 3 Service Rights: If the bit is 1, the current process may be sent to this port
using the sendserv instruction.
The fields of a FIFO port are defined as follows:

e Port Lock (byte 0). This byte is used to synchronize the manipulation of this object. If the
least-significant bit of this field is zero, a process or processor can manipulate this object
after atomically setting the least-significant bit of this field to one. If the least-significant
bit of this field is non-zero, this object is being manipulated.

Interprocess Communication and Synchronization
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e Preserved (byte 1).
e Port Status (bytes 2-3). This field contains the following subfields:

15 2 1

0
11

L ENQUEUEING MODE
—— QUEUE STATE

RS  RESERVED
Figure 14-2, Port Status Field
— Enqueuing Mode (bit 0).
0 FIFO. The priority of received blocked processes or messages are

ignored and the Queue Head/Tail is always used.

1 Priority. Received blocked processes or messages are enqueued by
priority using the Queue Headers for its priority.

— Queue State (bit 1). This bit is 1 when the object(s) in the queue(s) are processes
blocked waiting for messages. This bit is 0 when either the port is empty or the
object(s) in the queue(s) are messages waiting to be received.

e Queue Head (bytes 4-7). This AD references the first process or message enqueued at this
port. A data word of value 0 in this field indicates an empty list.

¢ Queue Tail (bytes 8-11). This AD references the last process or message in the queue, if
the queue head is not a data word of 0.

The fields of a priority port are defined as follows:

e Port Lock (byte 0). The same interpretation as a FIFO port.
o Preserved (byte 1).
¢ Port Status (bytes 2-3). The same interpretation as a FIFO port.

e Queue Status (bytes 4-7). In this field, each bit position corresponds to a priority level in
the port. If the bit corresponding to a particular priority is 1, there are one or more blocked
processes or messages at that priority. If the bit is 0, there are no blocked processes or
messages at that priority. A queue status of zero indicates an empty port.

e Queue Headers (bytes 8-267). For ports operating in Priority Enqueuing mode, there are
32 queue headers. Each Queue Header is structured as follows:

— Queue Head (bytes 0-3). This AD references the first process or message in the queue
for this priority. A data word of value 0 indicates an empty list.

— Queue Tail (bytes 4-7). This AD references the last process or message in the queue
for this priority, if the queue head is not a data word of value 0.

14.2.1 Port Usage
Ports can either be used as communication ports or as dispatching ports:

¢ Communication Port. Interprocess communication instructions use communication ports.
A communication port can be operated in either FIFO or Priority Enqueuing mode.
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e Dispatching port. Processors use dispatching ports to deposit and obtain schedulable
processes. A dispatching port must be a priority port, and the queue state is always zero (to
indicates all queues are message queues). Processes are directly enqueued at a dispatching
port as messages. When a process is rescheduled at a dispatching port (either as a result of
unblocking or via the schedprecs instruction), preemption activities may be invoked. A
dispatching port is intended to enqueue ready-to-execute processes. See Chapter 15.

The same interprocess communication instructions can be used on both port types.

14.3 Queue Record

A queue record links together processes or messages associated with a port. A queue record
can be found in a process control block, and is assumed to be found in all messages specified
in an interprocess communication instructions. A queue record is located at offset 0 within an
object.

BYTE OFFSET
WITHIN AN
31 o OBJECT
LINK AD 0
CURRENT PORT OR SEMAPHORE AD 4

1

s REMAINDER OF OBJECT T

Figure 14-3. Queue Record

The fields of a queue record are defined as follows:

e Link (bytes 0-3). This AD links objects in sequence while the object is enqueued at a port
or a semaphore; each object’s link refers to the next object in the sequence.

e Current Port or Semaphore (bytes 4-7). This AD refers to the port or semaphore at
which the object is enqueued. The type rights, read and write rights of this AD are cleared.
If a data word of value 0, this object is not enqueued at a port or semaphore.

14.4 Message Object

144

A message object does not have a predefined system type. Any object can be used as a
message, and a queue record is assumed to be found in all objects enqueued as messages.
Messages of a dispatching port are process objects and must be frozen.

The process executing a send instruction must have read/write access to the queue record in
the message operand.

A message should be involved in only one port operation at a time.
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14.5 Lifetime Checking

Port and message objects are not required to have global lifetime. However, the lifetime of the
message must be equal to the lifetime of the port. If they are not equal, a Lifetime fault is
raised during the send instruction. Lifetime violation is ignored for implicit operations like
rescheduling a process.

14.6 Interprocess Communication Instructions

14.6.1 Priorities

All send instructions take a message priority (0..31) as an operand.

The message priority enqueues the message. If a process blocks then it is enqueued at the
process priority. When a process is unblocked, it is always sent to the dispatching port at the
process priority.

If the port is operating in FIFO mode, the priority of the send operation is ignored.

14.6.2 Send and Receive Instructions

send
receive
condrec

The send instruction enqueues a message at the end of the queue of the specified priority at the
port, provided that there are no processes waiting at the port. Otherwise, a process is dequeued
and the message is bound to the process before the process is rescheduled at its dispatching
port or causes a preemption action.

The receive instruction attempts to receive a message from a port. If the port has enqueued

messages, the AD to the message is stored in the destination of the instruction. If the port has
no messages, then the process is suspended and the process is enqueued at the port. When the
process is unblocked (a message is sent to the port), the process is sent to its dispatching port.

The conrecv instruction also performs a receive from the specified destination port. If the
operation is successful, the condition code is set to 010,, otherwise the condition code is setto
000, (instead of suspending and enqueuing the process).

14.6.3 Process Level Port Instructions

sendserv
schedprcs

The sendserv instruction suspends the currently executing process and sends itself as a mes-
sage to the end of the queue at its priority in the specified port. The schedprcs instruction
enqueues the process the the front of its priority queue at the dispatching port if the process is
not preempting. Otherwise, preemption actions are performed. A send to a dispatching port
will not cause a preemption immediately.
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14.7 Atomic Instructions

Atomic instructions provide the ability to read, update, and write a data item in memory atomi-
cally (that is, without the possibility of another cooperating agent performing an atomic opera-
tion to the same 16-byte block, after the processor has performed the read, but before the
processor has performed the write). This capability is essential in any system which supports
multiple processors. Note that atomic memory operations are independent of normal memory
operations; thus, normal memory operations are allowed between an atomic read and write.

The atadd instruction adds the source operand to the target. The read and write of target are
done atomically. The initial value of target is stored in the destination (that is, the instruction
produces two results).

The atmod instruction modifies the target as specified by the source and the mask. The
original value of target is stored in the destination. The read and write of target are done
atomically. The bitwise-logical-AND of the source and the mask is logically-OR’d with the
logical-AND of the value in target and the complement of the mask.

The atrep instruction replaces the target word with the source. The initial value of target is
stored in the destination.

14.8 Semaphores

14-6

An additional type of synchronization is provided by a counting semaphore. This mechanism
provides the ability for a process to wait on a semaphore by suspension rather than by spinning
on a lock.

A semaphore is the only predefined type of embedded descriptor (Chapter 8). The format of
the 3-word data structure that resides in an embedded descriptor is shown in Figure 14-4.

The type rights in an AD referring to a semaphore are defined as follows:
Type Rights 1 Uninterpreted.

Type Rights 2 Signal/Wait Rights: If the bit is 1, the signal or wait operation on the
semaphore can be performed.

Type Rights 3 Uninterpreted.

31 16 15 8 7
COUNT nHuiny LOCK 0
SEMAPHORE QUEUE TAILS AD 4

T T T T H H H T Ry &
R PRESERVED

Figure 14-4. Semaphore

The fields of a semaphore are defined as follows:

e Semaphore Lock (byte 0). This byte synchronizes accesses to the semaphore count or the
semaphore queue. If the least significant bit (LSB) of this byte is zero, the object may be
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manipulated after atomically setting the bit to one. If the LSB of this byte is 1, another
process is manipulating the object.

e Preserved (byte 1).

e Semaphore Count (bytes 2-3). The semaphore count is a 16-bit short ordinal. If the
semaphore queue tail AD is not a data word of value 0, the semaphore count is not inter-
preted. If the semaphore queue tail AD is a data word of value 0, a non-zero sempahore
count indicates the number of waits that can be performed before process blocking will
occur, and a zero semaphore count indicates the next wait instruction will cause the process
to block. This field is initialized to 1 for a binary semaphore.

e Semaphore Queue Tail (bytes 4-7). This AD refers to the last process enqueued at this
semaphore. A data word of value O indicates an empty list. Blocked processes form a
circular linked list in decreasing priority order and FIFO within the same priority level.

14.8.1 Semaphore Instructions

wait
condwait
signal

A wait instruction decrements the semaphore count by one if the count is non-zero and the
queue tail is a data eord of value 0. Otherwise, the process is enqueued on the semaphore
queue. The IP of a process blocked on wait points to the wait instruction. A condwait
instruction is similar to the wait instruction except that the process will not block. When
process blocking would have occurred, the operation is terminated without modifying the
semaphore count and sets the conditional code accordingly. A signal instruction increments
the semaphore count by one if the queue tail is a data word of value 0. Otherwise, a process on
the semaphore queue is dequeued and rescheduled.

Processes are enqueued at semaphores in decreasing priority order and FIFO within a priority
level. The semaphore references the last process in the queue. The first process in the queue
can be located using the link field of the last process in the queue. The link field in the queue
record is used to form a linked list. The current port or semaphore field in the queue record
refers to the semaphore at which the process is enqueued.
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PROCESS MANAGEMENT 1 5

A process is a single thread of execution that allocates and controls processor resources. This
control is achieved via the process control block (PCB). This chapter discusses the process
control block and its management.

The process control block is a data structure that is required to be located at the beginning of
an object typed as a process object. Thus the terms process control block and process object
are often used interchangeably.

15.1 Process Management Overview

Low-level process management is acheived through a set of predefined mechanisms. These
mechanisms are responsible for processor resource allocation and operate according to the
conventions described here.

There are two major aspects of process management: dispatching and scheduling.
"Dispatching" is the activity of assigning a process to a processor. "Scheduling" is the activity
of maintaining a list of processes that are awaiting dispatch. Dispatching attempts to deploy
processor resources rapidly, while scheduling attempts to allocate those resources to a set of
executable processes.

Dispatching and scheduling are based on and supported by the ports described in Chapter 14.
Scheduling is equivalent to sending a process control block to a dispatch port, where it is
enqueued according to the priority value indicated by the process. Dispatching is equivalent to
a processor receiving a process from a dispatch port and resuming execution of that process.

Processors may schedule processes either through predefined mechanisms, or by software-
controlled scheduling and dispatching.

15.1.1 Processor Interconnection Architecture

The process-management mechanism is designed to support multiple-processor systems (for
example, to have multiple processors share a single dispatch mix).

15.1.2 Process States

A process can be in one of the following states. The term "bound" to a processor means that
the state of the process is partly or wholely contained within a processor. The term
"suspended" means that the state of a process is not within a processor and is contained within
its PCB.

e Executing. The process is bound to a processor and is being executed. At most one
process per processor can be in this or the interrupted state. :

e Interrupted (but executing). The process is bound to a processor and is being executed,
but is executing a procedure as a result of an interrupt. The processor cannot be allowed to
execute another process until this process returns to the executing state (doing so would
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leave the processor in an indefinite state). At most one process per processor can be in this
or the executing state.

Ready. The process is enqueued on a dispatch port and is suspended.

Blocked. The process is enqueued on a communication port waiting to receive a message
and is suspended, or the process is enqueued on a semaphore waiting to receive a signal and
is suspended.

A set of transitions among these states without software involvement is predefined. The states
and the events that trigger a transition are shown in Figure 15-1.

-

UNBLOCK SCHEDULE
DISPATCH
SUSPEND
BLOCKED AND BIND
RETURN FROM
INTERRUPT
BLOCK
INTERRUPTED
INTERRUPT

Figure 15-1. Process State Transitions

Events:

O 00 N O L A W N =

Pk b
- O

End of time slice

Execution of a receive instruction when the port has an empty message queue
Execution of a wait instruction when the semaphore has no signals

Execution of a sendserv instruction to a port without a blocked process
Execution of a sendserv instruction to a port with a blocked process
Execution of a send instruction to a port with a blocked process

Execution of a signal instruction to a port with a blocked process

Dispatch action of idling processor

Reserved

Interrupt (see Chapter 16)

Execution of a "return-from-interrupt” action (a possible side-effect of executing a
return instruction), in some circumstances (see Chapter 16)

Note that some of the events can cause multiple state transitions, and one, event 5, can cause
transitions in four processes. To understand this, one needs to think about uniprocessor and
multiprocessor systems. Not all of the transitions can occur in uniprocessor systems, where
there is at most one executing process. Event 5 can cause four transitions in the following
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way. Assume process A is executing on processor 1, process B is executing on processor 2,
process C is blocked on a port, and process D is ready on the dispatch port. If A executes a
sendserv to the port, A enters the ready state, C preempts B on processor 2, entering the
executing state and moving B to the ready state, and processor 1 grabs process D from the
dispatch port, moving it to the executing state.

15.2 Process State Actions

The processor controls transitions of processes from one state to another. The actions per-
formed for these transitions are defined below.

15.2.1 Dispatch Action

A dispatch action is that of a processor examining a dispatch port for a ready process. The
steps are:

1. Lock the dispatch port referenced in the processor control block.

2. Find the highest-priority nonempty queue in the dispatch port. If there is none, unlock the
dispatch port and examine it at a predefined interval. When it is seen to be non-empty,
resume with step 1.

Dequeue the first process.
Unlock the dispatch port.
Lock the process control block.

SO O

Perform the process-bind action.

15.2.2 Process Bind Action
This action consists of the following steps:

1. Fetch some parts of the PCB. The parts that are fetched and held within the processor
during execution are predefined.

2. If the event-fault-request flags are set, clear them and generate an Event Notice fault instead
of the following steps.

3. Begin instruction execution.

15.2.3 Process Suspension Action
The steps taken for this action are the following:
1. Wait for any uncompleted memory operations and/or instructions to finish.
2. Perform the timing actions defined in Section 15.6.

3. Write any cached local registers back to their associated stack frames. Write the current
cached state of the process back to the PCB and, if one exists, the environment table. The
state that is not accurate in the PCB prior to this is predefined. The region ADs that are
written back have no defined type or rep rights.
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15.2.4 End-of-Time-Slice Action

The steps taken for this action are as follows:

1. If the time-slice-reschedule flag is set, do the following:
a. Perform the process-suspension action.
b. Unlock the PCB.
c. Lock the dispatch port referenced by the PCB.

d. Enqueue the process at the end of the queue (in the dispatch port) whose priority is that
of the process.

e. Unlock the dispatch port.
f. Perform the process-dispatch action.
2. If the time-slice-reschedule flag is clear, do the following:

a. Generate a Time Slice fault.

15.2.5 Block Action

This action occurs when an executing process enters a blocked state (see Chapter 14). The
steps of this action are:

1. Perform the process-suspension action.

2. Perform the action defined for the blocking operation (defined in Chapter 14).
3. Unlock the PCB.

4. Perform the dispatch action.

15.2.6 Unblock Action

This occurs as a result of an operation that causes a blocked process to become unblocked.
The steps are:

1. Lock the dispatch port referenced by the PCB.

2. Enqueue the process at the front of the queue (in the dispatch port) for the priority of the
process.

3. Unlock the dispatch port.
4. If the process’s preempt flag is set, perform the preemption action.

15.2.7 Preemption Action

15-4

Processes whose preempt flag is set are considered preempting processes. When such a
process goes from the blocked to ready state, it requires an immediate dispatch action.

The action defined here applies only when multiprocessor-preempt flag in the processor con-
trols is clear.

The steps in this action are:

1. If the current process is in the interrupted state, set the check-dispatch-port flag in the
processor controls and skip the following steps.
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2. If the priority of the preempting process is not greater than that of the current process, skip
the following steps.

Clear flag check-dispatch-port.

Perform the process-suspension action on the current process.
Unlock the current PCB.

Lock the dispatch port referenced by the current PCB.

Enqueue the current process at the front of the queue (in the dispatch port) for the priority
of the current process.

8. Unlock the dispatch port.
9. Perform the dispatch action.

N kW

One use of the preempt flag is to set the flag in all processes above a predetermined priority
level, so that those processes may preempt lower-priority processes immediately.

15.3 Process Object

The process as a unit of scheduleable work is represented by a process control block The
process control block (PCB, also known as the "process object") specifies an execution en-
vironment, records the execution status of its program, and maintains information about system
resources allocated to the process.

The process object has a predefined system type. The PCB must be frozen when in the execut-
ing and interrupted states, when enqueued on the dispatch port, and when enqueued on a port
or semaphore when a valid addressing path exists to the latter. It must be mapped as a simple
object.

When in the executing or interrupted state, some parts of the PCB may be held internally (that
is, the memory image may not be accurate, and changing the memory image does not neces-
sarily have any effect on the process). Any part of the PCB may be held internally except for
the lock and process-notice fields.

The type rights in an access descriptor that references a PCB are interpreted as follows:
Type Rights 1 undefined.
Type Rights 2 undefined.

Type Rights 3 Control Right: If the flag is 1, certain process-related instructions may be
executed (see Chapter 18).
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GLOBAL AND FLOATING-POINT REGISTERS

7 0
QUEUE RECORD °
4
RECEIVE MESSAGE 8
DISPATCH PORT AD 12
RESIDUAL TIME SLICE 16
PROCESS CONTROLS 20
PROCESS NOTICE | LocK 24
PROCESS TRACE CONTROLS 28
PROCESS GLOBALS AD 32
PRIMARY ENVIRONMENT TABLE AD 36
SUBSYSTEM D 40
SUBSYSTEM TABLE OFFSET 44
REGION 0 AD 8
REGION 1 AD 52
REGION 2 AD 56
ARITHMETIC CONTROLS 60
NEXT TIME SLICE 68
EXECUTION TIME 72
76
80
é RESUMPTION RECORD <
124
128

RESERVED (INITIALIZE TO 0)

Figure 15-2. Process Control Block

The predefined fields in the PCB are described below.

e Queue Record. See Chapter 14. This is used when the process is in the blocked state to
link the process on a port or semaphore. It is also used to link the process as a message on

a port.

e Received Message. When a process leaves the blocked state from a port, the message
obtained from the port is placed here (Chapter 14). When the suspended receive instruc-
tion resumes, it obtains its result from this field.

e Dispatch Port AD. This AD references the dispatch port on which the process is enqueued
when it attains the ready state.
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e Residual Time Slice. An ordinal that specifies the time that the process is allowed to
execute before an end-of-time-slice event occurs. (See Section 15.6).

e Process Controls.

A AAAAAA I
TRACE ENABLE
EXECUTION MODE

TIME~-SLICE RESCHEDULE
TIME SLICE

TIMING

RESUME

TRACE-—-FAULT PENDING
PREEMPT

REFAULT

STATE

PRIORITY

INTERNAL STATE

RESERVE (INITIALIZE TO 0)

Figure 15-3. Process Controls

— Internal State. Reserved. This field should be cleared when the process is created, and
not touched after that.

— Priority. The priority of the process, a value in the range 0..31 (31 being highest
priority). When the process is in the executing state, this becomes the priority of the
Pprocessor.

— State. The state of the process.
‘00 executing or ready or blocked
01 interrupted (executing)
10 reserved
11 reserved

— Refault. This flag is associated with fault override conditions and returns from fault
handlers (see Section 10.6.2).

— Preempt. If this flag is set, the process is eligible to preempt another process when the
process becomes unblocked.

— Trace Fault Pending. If this flag is set, a trace fault is generated prior to executing the
next instruction, and the flag is cleared. See Chapter 10.

— Resume. If this flag is set when the process enters the executing state, or after a return
from a fault or interrupt handler, this flag is cleared and the resumption-record field is
fetched and used to resume execution of an suspended instruction.

- Timing. If set, the execution-timer of the process is operable. If clear, the timer is
suspended. (See Section 15.6.)
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~ Time-Slice. If set, an end-of-time-slice event is permitted (see Section 15.6). If clear,
this event will not occur.

— Time Slice Reschedule. If set, the process will be sent to the dispatch port when an
end-of-time-slice event occurs. If clear, an end-of-time-slice event will generate a Time
Slice fault.

— Execution Mode. If set, the process is in supervisor mode. If clear, the process is in
user mode.

— Trace Enable. If set, trace modes are enabled, and a detected trace event causes a
Trace fault (see Chapter 10).

e Lock. Ifbit Qis 1, the PCB is locked.

e Process Notice.

31

L S 0MMMMM™™ |

* MUTATOR ENABLE

EVENTS—FAULT
REQUEST FLAGS

RESERVED (INITIALIZE TO 0)

N reserveo
Figure 15-4. Process Notice

— Mutator Enable. If set when the process enters the executing state, gray-bit marking is
performed when an access descriptor is copied (see Chapter 8).

— Event Fault Request. This is denoted by two flags. If both are set when the process
enters the executing state, the whole field is cleared (bits 16-31), and an Event Notice
fault is generated.

e Process Trace Controls. This word contains trace control and status information. It is
described in Chapter 10.

e Process Globals AD. This AD references an object that is used by the ldglobals instruc-
tion.

e Primary Environment Table AD. This AD references the environment table used by
subsystem call and return operations when the process is not in the interrupted state.

e Subsystem ID. This is used by the subsystem call/return operations (see Chapter 7).

e Subsystem Table Offset. This is used by the subsystem call/return operations (see Chap-
ter 7).

e Region 0 AD. This AD references the object that represents region 0 of the linear address
space (see Chapter 6).

e Region 1 AD. This AD references the object that represents region 1 of the linear address
space (see Chapter 6).

e Region 2 AD. This AD references the object that represents region 2 of the linear address
space (see Chapter 6).
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e Arithmetic Controls. This word contains arithmetic control and status information. Itis
described in Chapter 6.

e Next Time Slice. An ordinal that is assigned to field residual-time-slice when the value of
the latter is O.

e Execution Time. A long-ordinal. The time this process has spent in the executing state
with timing enabled is given by the value of this field minus the value of residual time
slice.

o Resumption Record. An area used to hold the intermediate state of a suspended instruc-
tion when the current instruction is suspended because of an interrupt, preemption or end-
of-time-slice, or because of certain types of faults. When the resume flag is set, the
resumption information is taken from this field (see Chapter 16).

e Global Registers. The first 64 bytes hold the values of global registers G0-G15 (where GO
is in the first word, and so on). The remaining 48 bytes hold the values of the floating-
point registers FPO-FP3 (where, in the 48 bytes, FP0 is in bytes 0-9, FP0 is in bytes 12-21,
and so on). The two bytes (e.g., bytes 10-11) between each floating-point register are
reserved.

15.4 Event Fault

The event-fault-request flags in the process-notice field and the Event Notice fault allow a
process to induce a fault in a second process without encountering race conditions in a mul-
tiprocessor system (that is, independent of the state of the second process, which may be
changing while one is trying to induce the fault).

The event-fault-request flags are tested during a proéess-bind action and possibly as the result
of an IAC operation. If the flags are both set, they are both cleared after being tested (to ensure
that the fault does not occur twice).

Since the flags are not tested and cleared as an atomic operation, a race condition can exist if
software tries to set one when already set. The existence of two flags allows software to use
one as an enabled/disabled flag and the other as the signal.

15.5 Changing the Process Controls

There are several circumstances where the process controls of the current process can be
changed explicitly by the program. These circumstances are (1) during a modpc instruction,
(2) a retumn-from-interrupt action during a ret instruction (Chapter 16), and (3) a return-from-
fault action during a ret instruction (Chapter 10). The first alters the process controls under a
mask; the latter two restore the process controls from a word on the stack.

Such changes to the process controls have predictable results, except in situations where the
program alters the new value of the following fields of the process controls. This alteration
could occur by the modpc instruction, or changing the saved process controls in the stack prior
to executing the return operation.

o State. Changing the state field may or may not change the actual state, unless the change is
from "interrupt” to "executing” during a return.

e Resume. Changing this flag can cause a subsequently executed instruction to behave un-
predictably.
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e Internal State. Changing this field can leave the process in an undefined state.

e Trace Enable. If the trace-enable flag is changed via the modpc instruction, the effects
may not take place for up to four instructions.

15.6 Process Timing

15-10

A set of timing functions is provided for processes. All times are in units of "ticks". A tick is
a predefined unit of time; see Appendix B for the proper value.

Timing is as exact as possible, although in certain cases, variable results are possible, and
should be regarded as approximate.

To define the timing functions, the following notation will be used.

NTS Next time slice (in PCB)

RTS Residual time slice (in PCB)

ET Execution time (in PCB)

Tflag Timing flag (in PCB)

TSflag Time-slice flag (in PCB)

TSRflag Time-slice-reschedule flag (in PCB)

When timing is enabled (Tflag = 1), the following occurs every tick:
if RTS /= 0 then RTS := RTS - 1;

The following occurs whenever RTS is 0 and Tflag = 1:

RTS NTS:
ET ET + NTS;
if TSflag then
if TSRflag then
perform process-suspension action;
send process to dispatch port:;
else
raise TimeSlice fault;
end 1if;
end 1if;

To prevent endless loops in calling a time-slice fault handler or rescheduling the process, a
minimum "safe" value for NTS is predefined. See Appendix B for the value.

The rationale and usage of the timing information in the process is explained below.

NTS (next time slice) is the time a process is allowed to remain in the executing state before an
end-of-time-slice event occurs. It is set by software and not changed by the processor.

RTS (residual time slice) represents the actual time counter used by the processor. RTS is
used to hold the amount of time remaining in the time slice. It is used by the processor and not
normally altered by software. For a new process, software should set RTS equal to NTS.

ET (execution time) is the elapsed execution time of the process. Since it is updated at the end
of a time slice, one should subtract the value of RTS from it. For a new process, software
should set ET equal to NTS.
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Tflag (timing) can be used to stop the execution timer (C).

TSflag (time slice) can be used to disable the generation of an end-of-time-slice event. If
disabled, a process will continue to execute beyond the expiration of its time slice. If TSflag is
cleared by a modpc instruction, an end-of-time-slice event will not occur during the instruc-
tion.

TSRflag (time-slice reschedule) can be used to have the processor automatically schedule the
process when an end-of-time-slice event occurs, or to allow a fault handler to execute when the
event occurs. The latter allows software to change attributes of the process (for example, NTS,
priority) before sending it to the dispatch port. Since TSEflag is set when the event occurs, the
process will receive a full time slice (NTS) the next time it executes if the fault handler sends it
to the dispatch port.

The Idtime instruction allows a process to obtain its elapsed time during execution. The
instruction stores the value ET-RTS in its destination.

15.7 Other Process-Oriented Instructions

The modpc instruction does a modify operation on the process-controls word of the current
process. It uses a mask operand to allow one to set or clear bits selectively. The original value
of the process controls is stored in the destination. The process controls can be read without
alteration by using a mask of all zeros. If the process priority is lowered, the interrupt table is
checked for higher-priority interrupts.

The Idglobals instruction returns the value of a word at a specified offset in the object
referenced by the process-globals field in the PCB.

The saveprcs instruction suspends the current process (Section 15.2.3). The current state of
the process, including local register sets and the environment table, if being used, is written to
memory. The process is not unlocked, and continues to execute.

The resumpres instruction binds the specified process to a processor (Section 15.2.2). This
causes the processor to switch processes. The current process is not suspended; thus, its cur-
rent state disappears.

The saveprcs and resumprecs instructions are similar to the "save()" and "resume()" functions
in most UNIX™ kernels.
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PROCESSOR MANAGEMENT
AND INTERRUPTS

Processors are controlled with the processor control block (PRCB, also called the "processor
object"). This chapter discusses the management of PRCBs.

16.1 Processor Object

Each processor is represented by a data structure called a processor control block (PRCB, also
called the "processor object”). A PRCB is identified as such as a result of processor initializa-
tion.

Some parts of the PRCB may be held internally. Examining or changing the corresponding
memory locations with ordinary memory-access instructions may not necessarily produce the
expected results. Changing the internal representation of the PRCB can be performed by
certain instructions, by IACs, or by reinitializing the processor.
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Figure 16-1. Processor Control Block

The fields that constitute a PRCB are defined as follows:

e Processor Controls.
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Figure 16-2. Trace Controls

— Internal State. This field is reserved, and should be cleared to zero at initialization,
and then unmodified later.

— Check Dispatch Port. If set, the dispatch port is checked during certain interrupt
returns. The flag is set by the processor during certain process-unblock actions.

— Addressing Mode. If set, address translation is enabled and addresses are translated as
defined in Chapter 8. If clear, the process is in physical-address mode, where linear
addresses are interpreted as 32-bit physical addresses (see Section 16.2).

— Nonpreempt limit. A priority used during returns from interrupts.

— Mutator enable. If set, mutator is enabled (see Chapter 8).

-~ State
00 The processor is stopped or stopped-interrupted. The processor will not attempt

to dispatch processes. In the stopped state, the priority of the processor is zero.
01 Reserved.

10 The processor is idle or idle-interrupted. In the idle state, it will examine the
dispatch port for an available process at a predefined rate. In the idle state, the
priority of the processor is zero.

11 The processor is process-executing, that is, executing a process whose AD is
contained in field current-process-AD.

— Multiprocessor Preempt. If set, enables a high-level process preemption function that
allows multiple processors to handle preempting processes. This function is only useful
in multiprocessor systems, and should be set to O in single-processor systems. Refer to
Section for details.

— Tag enable. If set, tagging is enabled (see Section 16.3).

e Current Process AD. This AD refers to the process that is currently bound to the proces-
sor. This field is not cached. It has no defined value when the processor is not in the
executing state.

o Dispatch Port AD. This AD refers to the dispatch port used during the dispatching se-
quence.
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¢ Interrupt Table Physical Address. This physical address points to the base of the inter-
rupt table, which is used to determine the action to perform for an interrupt.

o Interrupt Stack Pointer. This linear address points to the base of the interrupt stack.

e Interrupt Environment Table AD. This AD refers to the object used for interdomain
calls and retums when the process is in the interrupted state.

e Region 3 AD. This AD refers to the object used as region 3 of all linear address spaces
(see Chapter 6).

e System Domain AD. This AD references the system domain, which is used in the calls
instruction (Chapter 7).

e Fault Table Physical Address. This physical address points to the base of the fault table,
which specifies how faults are handled (Chapter 10).

e Idle Time. A long-ordinal. The time that this processor has spent in the idle state is given
by the value of this field. See Section 16.4.

e System Error Fault. When a system error occurs, bits 16-23 specify the type and bits 0-7
specify the subtype of the fault directly causing the system error (see Section 10.6.3). This
field is not cached.

o Resumption Record. This field has the same purpose as the resumption record in the
process object. This field is used in place of the resumption record in a process object
when the processor is in the idle-interrupted or stop-interrupted state.

o System Error Fault Record. This field contains the fault record when a system error
occurs. This field is not cached.

16.2 Addressing Modes

When the addressing-mode flag is set, addresses are translated as specified in Chapter 8.

When the addressing-mode flag is clear, linear addresses are interpreted as physical addresses,
and such memory references are treated as cacheable (Chapter 9). Implicit and explicit
references via ADs behave according to Chapter 8, with the exception of objects representing
the current regions of the process, and regions of a subsystem within the control stack; such
references may have an undefined effect.

When a virtual-address is produced when in physical mode (for example, by the cvtadr
instruction), the AD produced is unpredictable and the offset is the physical address of the
operand.

16.3 Tag Control

164

ADs (Access Descriptors) are protected pointers to individual address spaces and have special
hardware semantics (that is, they cannot be arbitrarily altered or created). The hardware
semantics are controlled by using a tag bit, which is the 33rd bit of a data word and is not
directly accessible by user programs. Tag semantics may be disabled for those systems that do
not wish to use this feature. This capability is provided by tag-enable flag.

The tag-enable flag (in the processor controls) controls the interpretation of information inside
the processor. If tagging is disabled and the execution mode is not supervisor, the behavior is
the same as if tagging were enabled. If tagging is disabled and the execution mode is super-
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visor, the behavior is also the same, except that any value that must be an AD is assumed to be
an AD (that is, an implicit tag is supplied).

In a system where tags are not used, processor tag-enable should be clear. This allows proces-
sor operations (such as dispatching) to occur, interpreting data as ADs. Any reference to an
AD by a process becomes a "privileged" operation, which is prohibited from occurring if the
process is not in supervisor mode.

16.4 Idle Timing

The idle-time field in the PRCB is used to count the time spent by the processor in the idle
state, and in the idle-interrupted state if timing is enabled. (Idle-interrupted time would only
be counted if an interrupt handler enabled timing, which is not advisable.) The count is in
terms of ticks (see Section 15.6 for a definition of ticks).

This field, like the others in the PRCB, may be cached. However, in order to make the idle
time visible to software, the value is written back to the PRCB in memory at a predefined
interval. See Appendix B for details.

Like the process execution time, the processor idle time is only required to be an approxima-
tion, and it need not be exactly reproducible. Changing the idle-time field has an unpredictable
effect on its future values. The only time the the idle-time field is necessarily fetched from the
PRCB in memory is when a PRCB is first associated with the processor.
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INSTRUCTION FORMATS
AND OPERAND ADDRESSING

This chapter defines the formats of the instructions. It also defines the mechanisms for
specifying the addresses of operands in memory.

17.1 Instruction Formats

Most instructions are one word long, except for the class of instructions that use an additional
word as a 32-bit displacement. All instructions begin on a word boundary.

The formats of the instructions are shown in Figure 17-1. There are four basic formats, named
REG, COBR, CTRL, and MEM. The format of each instruction is defined by the opcode field.
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31 2423 19 18 14 10 7 4 0
opcode src/dest source_2 11 opcode sfr source_1
REG
31 24 23 19 18 14 12 21 0
opcode source_1 source_2 1| displacement sfr
COBR
31 24 23 21 0
opcode displacement sfr
CTRL
31 2423 19 18 14 11 0
opcode src/dest ‘abase md 0 offset
MEMA
31 24 23 19 18 1413 109 76 54 0
opcode src/dest abase mode scale | sfr index
displacement
MEMB

Figure 17-1. Instruction Formats

As shown in Figure 17-1, the MEM format has two "subformats,” named MEMA and MEMB.
These are distinguished by a bit outside of the opcode; thus an instruction having the MEM
format can be encoded with either the MEMA or MEMB format. The MEMB format is
unique in that an instruction in this format can be optionally followed by a 32-bit displacement.
Thus there are actually three "subformats” of the MEM format.

The following terms appear in the descriptions of the formats:

A 5-bit register number. Values 00000, through 01111, denote the local
registers (10 through 115), and values 10000, through 1111 1, denote the
global registers (g0 through g15). Encodings for floating-point registers

register

are defined in Section 17.2.1.
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A 5-bit value that is extended to a 32-bit value and used as the operand.
When a specific instruction defines an operand as a non-floating-point
value, a literal vatue of the form rrrr, defines an integer/ordinal value in
the range O through 31. When the instruction defines an operand as
floating-point, the values specified by literals are defined in Section 17.2.1.
When the instruction defines an operand as larger than 32 bits, values
specified by literals are zero-extended to the operand size.

When a specific instruction specifies that an operand is a "value”, the
operand may be a value in a register or a literal. When the size of an
operand is greater than 32 bits and the value is specified as a register,
successive registers hold the value as described in Chapter 6 (except for
the floating-point registers); when the value is specified as a literal, the
literal value is zero-extended to the size of the operand (except for
floating-point literals).

When an instruction specifies that an operand is an "address", the address
may be either a linear or virtual address. Linear addresses are contained in
the specified register. Virtual addresses are contained in a consecutive pair
of registers: the specified register contains an offset, and the next higher
register contains the AD of the object into which the offset selects an ad-
dress.

The fields in Figure 17-1 are defined as follows.

opcode
source_1

source 2
src/dest

ml
m2
m3

abase

index
displacement
offset

md

mode

scale

The opcode of the instruction. Opcode encodings are defined in Chapter
18.

An input to the instruction. Specifies a value or address. In the COBR
format, this field specifies a register in which a result is stored.

An input to the instruction. Specifies a value or address.

Depending on the specific instruction, this can be either an input value or
address, the register where the result is stored, or both.

If the instruction defines source_1 as a value, denotes whether source_1 is
a register (0) or literal (1). If source_1 is a floating-point value, see Sec-
tion 17.2.1. If the instruction defines source_1 as an address, denotes
whether source_1 is a register containing a linear address (0) or a register
pair containing a virtual address (1).

Same as m1, but applies to source_2.

If the instruction defines src/dest as an input value, m3 has the same mean-
ing as m1, but applying to src/dest. When src/dest is used as a destination,
m3 is ignored.

A register. The register’s value is used to compute a memory address.
A register. The register’s value is used to compute a memory address.
A signed two’s-complement number.

An unsigned positive number.

Specifies how a memory address for an operand is computed.

Specifies how a memory address for an operand is computed, and specifies
whether the instruction contains a second word to be used as a displace-
ment.

Specifies how a register’s contents are multiplied for certain addressing
modes (such as indexing).
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sfr An unused field for address-set extensions.

Unused fields are ignored.

17.2 REG-Format Instructions

The majority of the instructions have the REG format. Such instructions can have zero to three
operands. The usage of the operands is described in Chapter 18 for each instruction. REG-
format opcodes are listed in Chapter 18 as three hexadecimal di gits, where the rightmost digit
denotes the part of the opcode in bits 7-10.

17.2.1 Floating-Point Registers and Literals

When an operand’s type is floating-point and the corresponding m bit (m1/m2/m3) is 0, the
meaning is the same as that defined earlier; one (or a pair) of the 32 global or local registers is
addressed.

When the corresponding m bit is 1, the operand is defined in the following way. Source_1,
source_2, and src/dest field encodings 00000, through 00011, denote floating-point registers
fp0 through fp3, respectively. Encoding 10000, denotes the literal +0.0. Encoding 10110,
denotes the literal +1.0.

All other encodings when the m bit is 1 are reserved. Use of a reserved encoding as a source
produces an undefined value or an /nvalid Operation fault. Use of a reserved encoding or
literal as a destination either causes no result to be stored, causes one of the floating-point
registers to be altered, or causes the fault.

17.3 COBR-Format Instructions

Instructions having the COBR format are primarily the compare-and-branch instructions.
They have two source operands and a displacement. Source_1 can be a literal or register;
source_2 is a register. If the branch is taken, the displacement is interpreted as a signed value,
multiplied by four, and added to the IP.

In some instructions, source_1 specifies a destination register, in which case m1 is ignored.

17.4 CTRL-Format Instructions

Instructions having the CTRL format are those that have no operands and specify a memory
address of an instruction (for example, branches). The displacement is interpreted identically
to the COBR format.

17.5 MEM-Format Instructions

174

Instructions having the MEM format are those that require the computation of a memory ad-
dress. This category contains load, store, and load-address instructions, as well as some mis-
cellaneous instructions. All address computations produce a 32-bit ordinal result.

For loads, src/dest specifies the destination register (or, for operands bigger than this register,
the first of successive registers). For load-address instructions, src/dest specifies the destina-
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tion register. For stores, src/dest specifies the register (or first of successive registers) whose
value is stored in memory. For the miscellaneous instructions, the usage of src/dest depends
on the specific instruction.

The abase and index fields specify registers. The md and mode fields define how a memory
address is computed. In addition, the opcode defines whether the addresses are computed
"linear relative" (L) or "virtual relative” (V). When not explicitly mentioned, an instruction is

type L.
When bit 12 of the instruction is 0, the instruction has the MEMA format. Otherwise the
instruction has the MEMB format.

17.5.1 MEMA Format

The abase field specifies a register. The usage of the register is specified by the opcode (linear
versus virtual) and the md field. If the abase register (and the next higher register) is used as a
virtual address, this is denoted as (AD). If the abase register is used as a linear address, this is

denoted as (abase). »
The memory address is computed as follows:

Instruction

Type md Computed Address

L 0 offset

L 1 (abase) + offset

v 0 reserved

Vv 1 (AD) + offset

The load and store instructions having this format can reference operands in the first 4096
bytes of the linear address space, or reference operands up to 4096 bytes beyond a register
pointer, or reference operands in the first 4096 bytes of an object.

For a zero offset (such as accessing the value "(abase)"), the MEMB format should be used, as
it is faster to compute.

The lea instruction is used with md = 0 to load a 12-bit constant in a register.

17.6 MEMB Format

This category is the same as MEMA, except the options for computing the memory address are
different.

The abase and index fields specify registers. Depending on the mode and opcode, the abase
register value is used as an offset or a virtual address.

Some addressing modes provide for scaling of the index register. When this occurs, the value

in the register is multiplied by a value specified by the scale field. The definition of the scale
field is:
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Scale Scale factor (multiplier)
000, 1

001, 2

010, 4

011, 8

100, 16

All other values for scale are reserved.

The mode field defines how the memory address is computed, as follows:

Instruction
Type mode

0100,
0101,
0110,
0111,
1100,
1101,
1110,
1111,
0100,
0101,
0110,
0111,
1100,
1101,
1110,
1111,

SRR R R ol ol ol ol all ol all o

Computed Address

(abase)

(TP) + displacement + 8

reserved

(abase) + (index)*2**scale

displacement

(abase) + displacement

(index)*2**scale + displacement

(abase) + (index)*2**scale + displacement
reserved

reserved

(AD) + (index)*2**scale

reserved

(AD) + displacement

reserved

(AD) + (index)*2**scale + displacement
reserved

A reserved encoding raises an Invalid Operation fault.

For the modes in which a displacement is used, the word following the instruction is the

displacement.

(IP) + displacement + 8 denotes that the displacement + 8 is added to the address of the current

instruction.

17-6
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INSTRUCTION REFERENCE 1 8

This chapter provides detailed information about each of the instructions for the processor. To
provide quick access to information on a particular instruction, the instructions are listed al-
phabetically by assembly-language mnemonic. An explanation of the format and abbrevia-
tions used in this chapter is given in the following section.

18.1 Introduction

The information in this chapter is oriented toward programmers who are writing assembly-
language code for the processor. The information provided for each instruction includes the
following:

Alphabetic reference
Assembly-language mnemonic and name
Assembly-language format

Description of the instruction’s operation

Action the instruction carries out when executed (generally presented in the form of an
algorithm)

Faults that can occur during execution
Assembly-language example

Opcode and instruction format
Related instructions

Additional information about the instruction set can be found in the following chapters and
appendices in this manual:

Chapter 4 — Summary of the instruction set by group and description of the assembly-
language instruction format

Chapter 17 — Machine-Level Instruction Formats
Appendix A — Instruction Quick Reference

18.2 Notation

To simplify the presentation of information about the instructions, a simple notation has been
adopted in this chapter. The following paragraphs describe this notation.

Instruction Reference 18-1



PRELIMINARY

18.2.1 Alphabetic Reference

The instructions are listed alphabetically by assembly-language mnemonic. If several instruc-
tions are related and fall together alphabetically, they are described as a group on a single page.

The reference at the top of each page gives the assembly-language mnemonics for the instruc-
tions covered on that page (for example, subc). Occasionally, there are so many instructions
covered on the page that it is not practical to give all the mnemonics in the page reference. In
these cases, the name of the instruction group is given in capital letters (e.g., BRANCH or
FAULT IF)

A box around the alphabetic reference (such as| addr, addrl )) indicates that the instruction or

group of instructions are specifc to this processor, and may not necessarily be available in
similar processors.

18.2.2 Mnemonic

The Mnemonic section gives the complete mnemonic (in bold-face type) and instruction name
for each instruction covered on the page, for example:

subi Subtract Integer

18.2.3 Format

18-2

The Format section gives the assembly-language format of the instruction and the type of
operands allowed. The format is given in two or three lines. The following is an example of a
two line format:

sub* srcl, src2, dst

reg/lit reg/lit reg

The first line gives the assembly-language mnemonic (bold-face type) and the operands
(italics). When the format is used for two or more instructions, an abbreviated form of the
mnemonic is used. The " * * sign at the end of the mnemonic indicates that the mnemonic has
been abbreviated.

The operand names are designed to describe the functions of the operands (for example, src,
len, mask).

The second line of the format shows what is allowed to be entered for each operand. The
notation used on this line is as follows:
reg Global (g0 ... g15) or local (10 ... 115) register

freg  Global (g0 ... g15) or local (10 ... 115) register, or floating-point (fp0 ... fp3) register,
where the registers contain floating-point numbers

lit Integer or ordinal literal of the range O ... 31

flit Floating-point literal of value 1.0 or 0.0

disp  Signed displacement of range 222 ... 222 - 1)

mem Address defined with the full range of addressing modes

In some cases, a third line will be added to show specifically what will be in a register or
memory location. For example, it may be useful to know that a register is to contain an
address. The notation used in this line is as follows:
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addr Address
efa Effective address
AD Access descriptor

18.2.4 Description

The Description section describes what the instruction does and the functions of the operands.
It also gives programming hints when appropriate.

18.2.5 Action

The Action section gives an algorithm written in a pseudo-code that describes in detail what
actions the processor takes when executing the instruction and the precise order of these ac-
tions. The main purpose of this section is to show the possible side effects of the instruction.
The following is an example of the action algorithm for the alterbit instruction:

if (AC.cc and 2#010#) = 0 then

dst « src and not (2A(bitpos mod 32));
else

dst « src or 2M(bitpos mod 32);
end if}

In these action statements, the term AC.cc means the condition-code bits in the arithmetic
controls. The notation 2#value# means that the value enclosed in the "#" signs is in base 2.

Some of the action statements use the following notation:

byte ()
halfword ( )

word ( )
memory ( )
atomic_read ( )
atomic_write( )

The expression given in parentheses is a memory address (either virtual or linear); however, all
arithmetic in the experssion applies only to the linear address, or the offset part of a virtual
address. Byte (x) denotes the byte at address x in memory; halfword (x) denotes a 16-bit
quanitity at memory address x; and word (x) denotes a 32-bit quantity at memory address x.
Memory (x), atomic_read (x), and atomic_write (x) denote a quantity x at a memory address,
where the type or size of the quantity is obvious from the context.

On an atomic read operation, it is assumed that external hardware provides a memory lock.
The read is not performed until the lock is unlocked and is not completed until the lock is
relocked. On an atomic write operation, the read is not performed until the lock is unlocked.

18.2.6 Faults

The Faults section lists the faults that can be signaled as the result of execution of the instruc-
tion. Faults listed with all-capital letters refer to a group of faults; faults listed with initial-
capital letters refer to a specific fault.

All instructions can signal a group of general faults which are referred to as STANDARD
FAULTS. The list of standard faults is as follows:
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STANDARD FAULTS
Trace Instruction
Virtual Memory Object
Virtual Memory PTD
Virtual Memory PTE
Invalid Opcode
Unimplemented Operation
Invalid AD
Type Mismatch
Contents
Process Time Slice
Invalid Descriptor
Protection Length
Protection Page Rights
Protection Rep Rights
Protection Type Rights
Machine Bad Access

Note that the virtual memory and protection faults listed above can occur on instructions that
only access registers. Here, they can occur as a result of the memory access to fetch the
instruction.

The following additional standard faults can occur on any instruction that accesses memory:

STANDARD FAULTS
Invalid AD
Invalid Descriptor
Protection Rep Rights

The invalid opcode fault is a standard fault for all instrucitons that use the MEM machine-
format (load, store, branch extended, call extended, and so on).

Finally, the type mismatch, contents, and protection type rights faults are standard faults for all
instructions that perform operations on specific object types.

The following list shows the various fault groups and the individual faults in each group:

TRACE FAULTS
Instruction Trace
Branch Trace
Call Trace
Return Trace
Prereturn Trace
Supervisor Trace
Breakpoint Trace

OPERATION
Invalid Opcode
Invalid Operand

ARITHMETIC
Integer Overflow
Arithmetic Zero-Divide

FLOATING-POINT

Floating Overflow
Floating Underflow
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Floating Invalid-Operation
Floating Zero-Divide
Floating Inexact

Floating Reserved-Encoding

CONSTRAINT
Constraint Range
Invalid AD

VIRTUAL MEMORY
Invalid Object
Invalid Page-Table-Directory-Entry (PTDE)
Invalid Page-Table-Entry (PTE)

PROTECTION
Object Length
Page Rights

MACHINE
Bad Access

STRUCTURAL
Control
Dispatch
IAC

TYPE
Type Mismatch
Contents

PROCESS
Time Slice

DESCRIPTOR
Invalid Descriptor

EVENT
Event Notice

18.2.7 Example
The Example section gives an assembly-language example of an application of the instruction.

18.2.8 Opcode and Instruction Format

The Opcode and Instruction Format section gives the opcode and machine language instruction
format for each instruction, for example:

subi 593 REG
The opcode is given in hexadecimal format.

The machine language format is one of four possible formats: REG, COBR, CTRL, and MEM.
Refer to Chapter 17 for more information on the machine-language instruction formats.
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18.2.9 See Also

The See Also section gives the mnemonics of related instructions, which can then be looked up
alphabetically in this chapter for comparison. For instructions that are grouped on one page
(such as addr and addrl), only the first mnemonic is given.

18.3 Instructions

This section contains reference information on the processor’s instructions. It is arranged
alphabetically by instruction or instruction group.
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addc
Mnemonic:
addc 5B0O REG Add Ordinal With Carry
Format:
addc srcl, src2, dst
reg/lit regllit  reg
Description:

Adds the src2 and srcl, and bit 1 of the condition code (used here as a carry in), and stores the
result in dst. If the ordinal addition results in a carry, bit 1 of the condition code is set;
otherwise, bit 1 is cleared. If integer addition results in an overflow, bit 0 of the condition
code is set; otherwise, bit 0 is cleared. Bit 2 of the condition code is always set to 0. Regard-
less of the result of the addition, the condition code is always updated.

The addc instruction can be used for either ordinal or integer arithmetic. The instruction does
not distinguish between ordinal and integer source operands. Instead, the processor evaluates
the result for both data types and sets condition code accordingly.

This instruction never signals an integer overflow fault.

Action:
# Let the condition code be xCx.
dst « src2 + srcl + C,
AC.cc « 2#0CV#;
# C is carry from ordinal addition.
#V is 1 if integer addition would have generated an overflow.

Faults:

Example:

# Example of double-precision arithmetic

# Assume 64-bit source operands

# in g0,g9l1 and g2,g3
cmpo 1, O # clears carry bit in AC.cc
addc g0, g2, g0 # add low-order 32 bits:;
adde g1, g3, gl # add high-order 32 bits:

# 64-bit result is in g0, gl

See Also:
subc
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addi, addo
Mnemonic:
addi 591 REG Add Integer
addo 590 REG - Add Ordinal
Format:
add* srcl, sre2, dst

reg/lit reg/lit reg
Description:

Adds the srcl and src2 and stores the result in dsz. The binary results from these two instruc-
tions are identical. The only difference is that addi can signal an integer overflow.

Action:
dst « src2 + srcl;

Faults:
Integer Overflow
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addr, addrl

Mnemonics:

addr 78F REG Add Real

addrl 79F REG Add Long Real
Format:

addr=* srcl, sre2, dst

freg/flit  freg/flit  freg

Description:

Adds src2 and srcl and stores the result in dst.

For the addrl instruction, if any operand references a general register, two successive registers
are used.

'I"he following table shows the results obtained when adding various classes of numbers, as-
suming that neither overflow nor underflow occurs.

Srcl —

Src2! -0 -F -0 +0 +F +o0 NaN
-0 -0 -0 -o0 -0 -0 INV NaN
-F -o0 -F src2 src2 |tFort0 +00 NaN
-0 -0 srcl -0 0 srcl +o00 NaN
+0 o0 srcl +0 +0 srcl +oo NaN
+F -0 tFort0| src2 src2 +F +o0 NaN
o0 INV +o0 +o0 +00 +o0 +90 NaN

NaN NaN NaN NaN NaN NaN NaN NaN

Notes:
F Means finite-real number.
INV Indicates floating invalid-operation exception.

When the sum of two operands with opposite signs is zero, the result is +0, except for the
round toward -ee mode, in which case, the result is -0.

Action:
dst & src2 + srcl;

Faults:

Floating Reserved Encoding
Floating Overflow

Floating Underflow
Floating Invalid Operation
Floating Inexact
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alterbit
Mnemonic:
alterbit  58F REG Alter Bit
Format:
alterbit  biwpos, src, dst
regflit reg/lit reg
Description:
Copies the src to dst with one bit altered. Bit 1 of the condition code is copied into bit bitpos
of the dst.
Action:
if (AC.cc and 2#010#) = 0 then
dst « src and not (2A(bitpos mod 32));
else
dst « src or 2N(bitpos mod 32);
end if;
Faults:
Example:

# mov bit 10 of g3 into bit 24 of g4 and store in g9
chkbit 10, g3 # test bit 10 of g3
alterbit 24, g4, g9 # g9 « g4, with bit 24 changed
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amplify

Mnemonic:
amplify  653. REG Amplify Rights

Format:
amplify tdo_ad, rtsmsk, src/dst

reg/lit reg/lit reg
AD AD

Description:
Amplifies selected rights (read, write, and type) of an AD from src/dst and stores the amplified
AD in src/dst. The rights to be amplified are specified by a rights-mask in rzsmsk, which has
the same format as an AD, except that the local bit, the object index field, and the tag bit are
not used. The rights to be amplified are set to 1 in the rights mask. This rights mask is
logically ORed with the access rights of the specified AD.

The amplify rights operation is carried out under the control of a type definition object, the AD
of which is specified with tdo_ad.

The local bit cannot be amplified; the cread instruction has to be used.

Action:
if src/dst.tag = 0 then
raise invalid-AD-fault; # AD to be amplified must be valid
elsif TDO_of(src/dst) = tdo_ad then
continue; # TDO matches
elsif object_type_of(tdo_ad) # TDO then
raise type-mismatch-fault; # tdo_ad must be of object type TDO
elsif super TDO bit in tdo_ad object = 1 then
continue; # no check necessary for super TDO
elsif extended bit in tdo_ad object = 1 then
raise type-mismatch-fault; # TDO must match
elsif object_type_of(src/dst) # (object type field in tdo_ad object) then
raise type mismatch fault; # object type must match
endif
src/dst « src/dst or (rtsmsk and 2#11111#);
Faults:
Invalid AD
Type Mismatch
MEMORY FAULT
See Also:
restrict, cread

Instruction Reference 18-11



and, andnot

Mnemonics:
and
andnot

Format:
and

andnot

Description:

581
582

srcl,

reg/lit

srcl,

reg/lit

REG
REG

src2,

reg/lit

sre2,

reg/lit

PRELIMINARY

And
And Not

dst
reg

dst
reg

src2 and srcl values and stores the result in dst.

Action:
and:
andnot:

Faults:

See Also:
LOGICAL

18-12

dst « src2 and srcl;

dst « src2 and not srcl;

Performs a bitwise AND (and instruction) or AND NOT (andnot instruction) operation on the
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Mnemonic:
atadd

Format:
atadd

Description:

PRELIMINARY

612 REG Atomic Add
atadadr, src, dst

reg reg/lit reg

addr

atadd

Adds the src to the ordinal in memory specified by the ataddr. The initial value from memory
is stored in dsz. The ataddr is the linear or virtual address of the the ordinal. The address is
automatically aligned to a word boundary.

The read and write of memory are done atomically.

Action:
tempa « ataddr and not 2#11#; # force word alignment
temp « atomic_read (tempa);
atomic_write (tempa) ¢ temp + src;
dst « temp;
Faults:
MEMORY FAULTS

Instruction Reference
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atanr, atanrl

Mnemonics:

atanr 680 REG Arctangent Real
atanrl 690 REG Arctangent Long Real
Format:
atanr* srcl, src2, dst
freg/flit  freg/flit  freg
Description:
Computes the arctangent of src2/srcl and stores the result in dst. The result is returned in
radians and is in the range of -x to +=, inclusive. If srcl is the floating-point literal value +1.0,
then these instructions return a result in the range of -n/2 to +m/2. The sign of the result is
always the sign of src2.
For the atanrl instruction, if any operand references a general register, two successive registers
are used.
These instructions are commonly used as part of an algorithm to convert rectangular coor-
dinates to polar coordinates. They can also be used to implement the FORTRAN intrinsic
functions ATAN and ATAN2. '
The following table gives the range of results for various values of src2 and srcl, assuming
that neither overflow nor underflow occurs.
Srcl —
Src2l 0o -F 0 +0 +F 4o NaN
o -3n/4 -2 -2 -2 -2 /4 NaN
-F - -xto -1/2 -2 -2 w20 -0 0 NaN
0 - - -n 0 -0 0 NaN
+0 +T +1 +x +0 +0 +0 NaN
+F +x +no+x2| +72 +x2 | +x2t10+0 +0 NaN
+00 +31/4 +n2 +1/2 +n2 +n2 +n/4 NaN
NaN NaN NaN NaN | NaN NaN NaN NaN
Notes:
F Means finite-real number.
Action:
dst « arctan (src2/srcl);
Faults:
Floating Reserved Encoding
Floating Underflow
Floating Invalid Operation
Floating Inexact
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atmod
Mnemonic:
atmod 610 REG Atomic Modify
Format:
atmod ataddr, mask, srci/dst
reg reg/lit reg
addr
Description:

Replaces the bits of the ordinal in memory specified by ataddr by the corresponding bits in
src/dst under the controls of a bit mask. The bits set in the mask select the bits to be modified
in memory. The initial value from memory is stored in src/dst. The ataddr is the address of
the the ordinal. The address is automatically aligned to a word boundary.

“The read and write of memory are done atomically.

Action:
tempa « ataddr and not 2#11#; # force word alignment
temp « atomic_read (tempa);
atomic_write (tempa) « (src/dst and mask)
or (temp and not(mask));
srcldst « temp,

Faults:
MEMORY FAULTS
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atr ep
Mnemonic:
atrep 611 REG Atomic Replace Mixed
Format:
atrep ataddr, src, dst
reg reg/lit reg
Description:
Copies the mixed word (with tag bit) specified by ataddr to dst. Copies src (with tag bit) to
the mixed word specified by ataddr. The ataddr is the address of the the mixed word. The
address is automatically aligned to a word boundary.
The read and write of memory are done atomically.
Action:
tempa « src/dst and not 2#11#; # force word alignment
perform lifetime check of src with memory (tempa);
dst « atomic_read (tempa);
atomic_write (tempa) < src;
Faults:
Object Lifetime
MEMORY FAULTS
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bal, balx
Mnemonic:
bal OB CTRL Branch And Link
balx 85 MEM Branch And Link Extended
Format:
bal targ
disp
balx targ, dst
mem reg
Description:

Stores the address of the next instruction (the instruction following the bal or balx instruction)
and branches to the instruction specified with the targ operand.

With the bal instruction, the branch target is within -223 and (22 - 4) from the current IP. The
address of the next instruction is stored in g14.

With the balx instruction, the branch target can be anywhere in the linear address space. The
address of the next instruction is stored in dst. The targ is specified using the full range of
addressing modes. (Refer to Section 17.5 for different addressing modes.)

Action:
bal: G14 « IP +4; #destination next IP is always gl14
IP « IP + targ; # resume execution at the new IP
balx: dst « IP + inst length; # instruction length
#is 4 or 8 bytes
IP « effective_address(targ); # resume execution at the new IP
Faults:
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b, bx
Mnemonic:
b 08 CTRL Branch
bx 84 MEM Branch Extended
Format:
b targ
disp
bx targ
mem
Description:
Branches to the instruction specified by the targ.
With the b instruction, the branch target is within -22 and (223 - 4) from the current IP.
With the bx instruction, the branch target can be anywhere in the linear address space. The
targ is specified using the full range of addressing modes. (Refer to Section 17.5 for the
different addressing modes.)
Action:
b: IP « IP + targ * 4; # resume execution at the new IP
bx: IP « effective_address(targ); # resume execution at the new IP
Faults:
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bbc, bbs

Mnemonic:

bbc 30 COBR Check Bit and Branch If Clear

~ bbs 37 COBR Check Bit and Branch If Set

Format:

bb* bitpos, src, targ

reg/lit reg

Description:

Copies the bit in src (designated by bitpos) to bit 1 of the condition code. Bits 0 and 2 are set
to zeros. If the selected bit is 0, the condition code is set to 000, if the selected bit is 1, the
condition code is set to 010,. The processor then performs a conditional branch based on the
condition code.

For the bbc instruction, if the selected bit in src is 0, the processor sets the condition code to
000, and branches to targ; otherwise, it sets the condition code to 010, and goes to the next
instruction.

For the bbs instruction, if the selected bit is 1, the processor sets the condition code to 010,
and branches to targ; otherwise, it sets the condition code to 000, and goes to the next instruc-
tion.

The branch target is within -212 and (212 - 4) from the current IP.

The chkbit instruction followed by one of the branch-if instructions is equivalent to these
check-bit-and-branch instructions. The latter method produces more compact code; however,
the former method can be faster because the branch instruction may not have to wait for the
result of the comparison.
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Action:

Faults:
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bbc:

if (src and 2M(bitpos mod 32)) = 0 then
AC.cc « 2#0004#;
# resume execution at the new IP
IP « IP + (displacement * 4);

else
AC.cc « 2#0104#,
# resume execution at the next IP
IP«IP+4;

end if;

bbs:

if (src and 27(bitpos mod 32)) = 0 then
AC.cc « 2#000#;
# resume execution at the next IP
IP 1P +4;
else
AC.cc « 2#010#,
# resume execution at the new IP
IP « IP + (displacement * 4);
end if;
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Mnemonics:

be
bne
bl
ble
bg
bge
bo
bno

Format:
b*

Description:

12
15
14
16
11
13
17
10

targ
disp

PRELIMINARY

BRANCH IF

CTRL Branch If Equal

CTRL  Branch If Not Equal
CTRL Branch If Less

CTRL Branch If Less Or Equal
CTRL Branch If Greater

CTRL Branch If Greater Or Equal
CTRL Branch If Ordered

CTRL Branch If Unordered

Branches to a new instruction according to the condition code. The branch target is within 228
and (22 - 4) from the current IP.

For all branch-if instructions except the bno instruction, the processor branches to the instruc-
tion specified by the targ, if the logical AND of the condition code and the mask-part of the
opcode is not zero. Otherwise, it goes to the next instruction. The mask is in bits 0-2 of the

opcode.

For the bno instruction, the processor branches to the instruction specified with zarg, if the
condition code is 000,. Otherwise, it goes to the next instruction.

The following table shows the condition-code mask for each instruction:

Instruction | Mask | Condition

bno 000 | Unordered

bg 001 | Greater

be 010 |Equal

bge 011 | Greater or equal
bl 100 |Less

bne 101 | Notequal

ble 110 |Less orequal
bo 111 | Ordered

if ((mask and AC.cc) # 2#000#) or (mask = AC.cc) then
IP « IP + targ * 4, # resume execution at new IP

Action:

end if;
Faults:
Instruction Reference
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call
Mnemonic:
call 09 CTRL Call
Format:
call targ
disp
Description:

' Calls a new procedure. The processor performs a local call operation as described in Chapter 6
in the section titled "Local Calls." As part of this operation, the processor allocates a new set
of local registers and a new stack frame for the called procedure. The processor then goes to
the instruction specified with the targ argument and begins execution of the new procedure.
The called procedure must be within -223 and (223 - 4) from the current IP.

Action:
syncf, -- wait for all possible faults
temp « (SP + 63) and not 16#3f# -- round to next boundary
RIP « next_IP; -- IP of the next instruction after the call
if register_set_full then
save a register_set in memory at its FP;
end if;
allocate as new frame;
-- local register references now refer to new frame
IP « IP + displacement * 4;
PFP « FP; :
FP & temp; .
SP « temp + 64;
Faults:
MEMORY FAULTS
Call Trace
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calld
Mnemonic:
call 661 REG Call Domain
Format:
calld proc_no, dmn_ad, --
reg/lit reg
AD

Description:
Calls a procedure in a different subsystem (that is, performs a subsystem call). The dmn_ad
contains the AD of the domain object for the called subsystem. The proc_no contains the
procedure number of the called procedure.

This operation causes linkage information between the calling and called subsystem and the
calling and called procedures to be saved. A new 64-byte stack frame is allocated in the called
subsystem. The processor then gets the IP for the called procedure from the domain object of
the called subsystem and begins execution of the new procedure.

For more information about this instruction, refer to Chapter 7.

Action:
syncf,  -- wait for all possible faults
RIP « next_IP; -- IP of the instruction after the call

-- check the input operands

pe_offset « ((proc_no * 4) + 48) mod 2/32;

if pe_offset < 48 then -- wraps around 32 bits
raise invalid-operand fault;

end if;

if object_type_of(dmn_ad) # domain_type then
raise type-mismatch fault;

end if;

-- read the procedure entry and the first 4 words of the domain object
proc_entry « read_va(dmn_ad, pe_offset, word);
dmn_base « read_va(dmn_ad, 0, quad_mixed);
-- read new_region_0_ad, new_region_1_ad, new_subsystem_id,
-- supervisor_sp, new_trace_enable

-- handle different procedure type
case proc_entry.entry_type is
when local =>
perform a callx operation with
proc_entry.offset as the target procedure
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when supervisor =>
if process_controls.supervisor then
-- use current stack if already in supervisor mode
perform a callx operation with
proc_entry.offset as the target procedure, and
supervisor_sp as the current stack pointer
else
-- use the supervisor stack if calling from user mode
perform a callx operation with
proc_entry.offset as the target procedure
if implicit_fault_call then
null;
elsif process_controls.trace_enable then
new_frame_status « 2#011#
else
new_frame_status « 2#010#
end if}
-end if;
-- always change the trace controls
process_controls.trace_enable ¢ new_trace_enable;
process_controls.supervisor < 1;

-- check for trace events (the new_trace_enable is in effect)
if call or supervisor/subsystem trace enabled then

raise call and/or supervisor/subsystem-trace fault;
end if;

when subsystem =>
-- compose the new control stack entry
new_control_stack_entry.region_0_ad « current_region_0_ad;
new_control_stack_entry.region_1_ad « current_region_1_ad;
new_control_stack_entry.trace_enable « process_controls.trace_enable;
new_control_stack_entry.subsystem_table_offset «
current_subsystem_table_offset;

new_control_stack_entry.calling_domain_ad « dmn_ad,

-- separate intra- vs inter-subsystem call
if subsystem_id = current_subsystem_id or
subsystem_id = 0 or process_controls.interrupted then

-- intra-subsystem call
if implicit_fault_call then
new_control_stack_entry.return_mode « 2#100#;
else
new_control_stack_entry.return_mode ¢ 2#000#;
end if;
-- push the new control stack entry
write_va(cunent_environment_table_ad,
current_control_stack_pointer, quad_mixed) ¢
new_control_stack_entry;

-- use the current stack

perform a callx operation with
proc_entry.offset as the target procedure

new_frame_status « 2#100#

else
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-- inter-subsystem call

if implicit_fault_call then
new_control_stack_entry.return_mode « 2#101#;

else
new_control_stack_entry.return_mode ¢ 2#001#;

end if;

-- push the new control stack entry

write_va(current_environment_table_ad,

current_control_stack_pointer, quad_mixed) <
new_control_stack_entry;

-- compute hash index
init_subsystem_table_offset «—

(new_subsystem_id/4) and (subsystem_table_size);
new_subsystem_table_offset « init_subsystem_table_offset;

-- search subsystem table (backward)
loop
new_subsystem_entry « read_va(current_environment_table_ad,
new_subsystem_table_offset, quad_mixed);
if new_subsystem_entry.subsystem_id = new_subsystem_id then
exit; -- found
elsif new_subsystem_entry.subsystem_id = 0 then
-- a zero means the entry is available,
-- thus the new_subsystem_id cannot be in the other entries
raise subsystem-not-found fault;
elsif new_subsystem_table_offset = init_subsystem_table_offset then
-- search all entries already
raise subsystem-not-found fault;
else
-- performing BACKWARD search
new_subsystem_table_offset « new_subsystem_table_offset - 16;
if new_subsystem_table_offset = O then
new_subsystem_table_offset «— subsystem_table_size,
end if}
end if;
end loop;
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18-26

PRELIMINARY

-- new_subsystem_entry contains

-- topmost_fp

-- topmost_sp

-- new_region_2_ad

-- new_event_fault_mask

-~ (type rights 1 of the subsystem_id in the subsystem table)

-- save topmost_fp and topmost_sp of current subsystem table entry
wri te__va(current_environmcnt_table_ad,
current_subsystem_table_offset, long_word) «
(current_fp, current_sp);

-- update the intersubsystem specific part of the execution enviroment
current_region_2_ad « new_region_2_ad;

current_subsystem_id « new_subsystem_id;
current_subsystem_offset « new_subsystem_offset;
current_event_fault_mask new_event_fault_mask;

perform a callx operation with
proc_entry.offset as the target procedure
topmost_sp as the current stack pointer
topmost_{p as the current frame pointer
new_frame_status « 2#101#
end if;
-- update the current environment for all subsystem calls
current_region_0_ad « new_region_0_ad;
current_region_1_ad « new_region_1_ad;
process_controls.trace_enable «— new_trace_enable;
current_control_stack_pointer « current_control_stack_pointer + 16;

-- check for control stack overflow

if current_control_stack_pointer = control_stack_limit then
raise control-stack-overflow;

end if;

-- check for trace events (the new_trace_enable is in effect)
if call or supervisor/subsystem trace enabled then

raise call and/or supervisor/subsystem-trace fault;
end if;

end case;

The following faults applies to all cases:

Invalid AD

dmn_ad is invalid.
Invalid Operand proc_no too large.
Type Mismatch dmn_ad does not point to a domain object.
Call Trace

The following faults are specific supervisor calls:

Supervisor/Subsystem Trace

Instruction Reference



PRELIMINARY

The following faults are specific subsystem calls:
Subsystem Not Found

Control Stack Overflow
Supervisor/Subsystem Trace

See Also:
call, callx, calls

Instruction Reference
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calls
Mnemonic:
calls 660 REG Call System
Format:
calls proc_no, -, -
reg/lit
Description:
Calls a procedure in the system domain. The proc_no contains the procedure number of the
called procedure.
The calls performs the same operation as the calld except that the system domain is used
instead of specifing the domain using dmn_ad. The system domain AD can be found in the
processor control block. :
Action:
See calld, replace dmn_ad with an AD to the system domain.
Faults:

See calld, except that neither Type Mismatch Fault (on the object specified by dmn_ad), nor
Rep Rights Fault (on the dmn_ad) is possible.
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callx
Mnemonic:
callx 86 MEM Call Extended
Format:
callx targ
mem
Description:

Calls a new procedure. The processor performs a local call operation as described in Chapter 6
in the section titled "Local Calls." As part of this operation, the processor allocates a new set
of local registers and a new stack frame for the called procedure. The processor then goes to
the instruction specified with the targ argument and begins execution of the new procedure.

This instruction performs the same operation as the call instruction except that the target pro-
cedure can be anywhere in the linear address space. The targ is specified using the full range
of addressing modes. (Refer to Section 17.5 for the different addressing modes.)

Action:
syncf,  -- wait for all possible faults
new_FP « SP + 63;
if implicit_fault_call then
new_FP « new_FP + size-of-fault-resumption-record;
end if; -- round to next boundary
new_FP « new_FP and not 16#3f#;
if implicit_fault_call then
new_FP « new_FP + size-of-fault-resumption-record;
store fault and resumption records relative to new_FP
end if; -- round to next boundary
RIP « next_IP; -- IP of the instruction after the call
if register_set_full then
save a register_set in memory at its FP;
end if;
allocate as new frame;
-- local register references now refer to new frame
IP « effective_address(targ);
PFP « FP;
if implicit_fault_call then
PFP « FP or 2#001#; -- fault procedure
else
PFP « FP or 2#000#; -- local procedure
end if;
FP « new_FP;
SP « temp + 64;

Faults:

MEMORY FAULTS
Call Trace
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See Also:
call
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chkbit

Mnemonic:
chkbit 5AE REG Check Bit

Format:
chkbit bitpos, src, ---
reg/lit reg/lit

Description:
Copies the bit in src designated by bitpos to bit 1 of the condition code. Bits 0 and 2 are set to
zeros. If the selected bit is 0, the condition code is set to 000,, if the selected bit is 1, the
condition code is set to 010,.

Action:
if (src and 27(bitpos mod 32)) = 0 then
AC.cc « 2#000#;
else
AC.cc « 2#010#;
end if;
Faults:
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chktag
Mnemonic:
chktag S5A8 REG Check Tag
Format:
chktag Sre, - --
reg/lit
Description:

Copies the tag bit of the src to bit 1 of the condition code. Bits 0 and 2 are set to zeros. If the
tag is 1, the condition code is set to 2#010#; if the tag is 0, the condition code is set to 2#100#.

The purpose of this instruction is to check whether or not the word is an AD.

Action:
if src.tag = 1 then
AC.cc « 2#0104;
else
AC.cc « 2#000#,
end if;
Faults:
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classr, classrl

Mnemonic:
classr Classify Real
classrl Classify Long Real

Format:

classr* src
freg/flit

Description:
Checks the classification of the real number in src and stores the class in arithmetic-status bits
(3 through 6) of the arithmetic controls.

For the classrl instruction, if the src operand references a global or local register, this register
is the first (lowest numbered) of two successive registers. Also, this register must be even
numbered (e.g., g0, g2, g4).

The following table shows the setting of the arithmetic-status bits depending on the classifica-

tion of the operand.
AStatus | Classification
s000 Zero
s001 Denormalized number
s010 Normal finite number
s011 Infinity
s100 Quiet NaN
5101 Signaling NaN
s110 Reserved operand

The "s" bit is set to the sign of the src operand.

Refer to Chapter 5 for a discussion of the different real number classifications.

Instruction Reference 18-33



PRELIMINARY

Action:
s « sign_of(src)
ifsrc=0
then arithmetic_status « s000;
elseif src = denormalized
then arithmetic_status « s001;
elseif src = normal finite
then arithmetic_status « s010;
elseif src = oo
then arithmetic_status « s011;
elseif src = QNaN
then arithmetic_status < s100;
elseif src = SNaN
then arithmetic_status « s101;
elseif src = reserved operand
then arithmetic_status « s110;
end if
Faults:
STANDARD Refer to the discussion of faults at the beginning of this chap-
ter.
None of the floating-point exceptions can be raised.
Example:
classrl gl2 # classifies long real in gl2,gl3
Opcode:
classr 68F REG
classrl 69F REG

18-34 Instruction Reference



PRELIMINARY

clrbit

Mnemonic:

clrbit 58C REG Clear Bit
Format:

cIrbit bitpos, src, dst

reg/lit reg/lit reg

Description:

Copies the src to dst with one bit cleared. The bitpos specifies the bit to be cleared.
Action:

dst « src and not (2(bitpos mod 32));
Faults:
See Also:

alterbit, chkbit, notbit, setbit
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cmpi, cmpo

Mnemonics:
cmpi
cmpo

Format:

cmp*

Description:

5Al
5A0

srcl,

reg/lit

PRELIMINARY

REG Compare Integer
REG Compare Ordinal

src2

reg/lit

Compares the src2 and srcl and sets the condition code according to the results of the com-
parison. The following table shows the setting of the condition code for the three possible
results of the comparison.

Condition
Code

Comparison

100

srcl < src2

010

srcl = src2

001

srcl > src2

The cmp* instruction followed by one of the branch-if instructions is equivalent to one of the
compare-and-branch instructions. The latter method of comparing and branching produces

more compact code; however, the former method can be faster because the branch instruction
may not have to wait for the result of the comparison.

Action:

if srcl < src2 then AC.cc « 2#100#;
elseif srcl = src2 then AC.cc « 2#010#;

else AC.cc « 2#001#;
end if;

Faults:

18-36
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Mnemonics:
cmpdeci 5A7 REG Compare and Decrement Integer
cmpdeco SA6 REG Compare and Decrement Ordinal
Format:
cmpdec* srcl, src2, dst
reg/lit reg/lit reg
Description:

cmpdeci, cmpdeco

Compares the src2 and srcl and sets the condition code according to the results of the com-

parison. The src2 is then decremented by one and the result is stored in dst.

The following table shows the setting of the condition code for the three possible results of the

comparison.
Condition | Comparison
Code
100 srcl < src2
010 srcl = src2
001 srcl > src2

These instructions are intended for use in ending iterative loops. For the cmpdeci instruction,

interger overflow is ignored to allow looping through the minimum integer values.

Action:

if srcl < src2 then AC.cc « 2#100#;

elsif srcl = src2 then AC.cc « 2#010#;

elsif srcl > src2 then AC.cc « 2#001#;

end if;

dst « src2 - 1; #no overflow, ordinal arithmetic
Faults:
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cmpinci, cmpinco

Mnemonhics:
cmpinci  SAS REG Compare and Increment Integer
cmpinco S5A4 REG Compare and Increment Ordinal
Format:
cmpincx  srcl, src2, dst
reg/lit reg/lit reg
Description:

Compares the src2 and srcl and sets the condition code according to the results of the com-
parison. The src2 is then incremented by one and the result is stored in dst.

The following table shows the setting of the condition code for the three possible results of the

comparison.
Condition | Comparison
Code
100 srcl < src2
010 srcl = src2
001 srcl > src2

These instructions are intended for use in ending iterative loops. For the cmpinci instruction,
integer overflow is ignored to allow looping through the maximum integer values.

Action:

if srcl < src2 then AC.cc « 2#100#;

elsif srcl = src2 then AC.cc « 2#0104#;

elsif srcl > src2 then AC.cc « 2#001#;

end if;

dst « src2 + 1; # no overflow, ordinal arithmetic
Faults:
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PRELIMINARY

cmpm
Mnemonic:
icmpm SAA REG Compare Mixed
Format:
cmpm srcl, i[src2], -
reg reg
Description:

Compares srcl and src2 for either access equality (point to the same object) or data equality
(contain the same ordinal value) depending if both tag bits are both 1s or 0s. The condition
code is set accordingly.

If both words have tag bits of 1 and both words have the same object index (bits 6 through 31),
they have access equality and the condition code is set to 010,. If both words have tag bits of
0 and the words are the same, they have data equality and the condition code is also set to
010,. Otherwise, the condition code is set to 000,.

Action:

if (srcl.tag = src2.tag) and
((srcl.tag = 1 and srcl.object_index = src2 .object_index)
or
(srcl.tag = 0 and srcl.word = src2.word)) then
AC.cc « 2#010#

else
AC.cc « 2#100#;

end if;

Faults:
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COMPARE AND BRANCH

Mnemonics:
cmpibe  3A COBR Compare Integer And Branch If Equal
cmpibne 3D COBR Compare Integer And Branch If Not Equal
cmpibl 3C COBR Compare Integer And Branch If Less
cmpible 3E COBR Compare Integer And Branch If Less Or Equal
cmpibg 39 COBR Compare Integer And Branch If Greater
cmpibge 3B COBR Compare Integer And Branch If Greater Or Equal
cmpibo  3F COBR Compare Integer And Branch If Ordered
cmpibno 38 COBR Compare Integer And Branch If Unordered
cmpobe 32 COBR Compare Ordinal And Branch If Equal
cmpobne 35 COBR Compare Ordinal And Branch If Not Equal
cmpobl 34 COBR Compare Ordinal And Branch If Less
cmpoble 36 COBR Compare Ordinal And Branch If Less Or Equal
cmpobg 31 COBR Compare Ordinal And Branch If Greater
cmpobge 33 COBR Compare Ordinal And Branch If Greater Or Equal
Format:

cmpib*  srcl, src2, targ

reg/lit reg
cmpob*  srcl, sre2, targ

reg/lit reg disp

Description:
Compares the src2 and srcl and sets the condition code according to the resuits of the com-
parison. If the logical AND of the condition code and the mask-part of the opcode is not zero,
the processor branches to the instruction specified with the targ operand; otherwise, the
processor goes to the next instruction.

The branch target is within -212 and (212 - 4) from the current IP.

The following table shows the condition-code mask for each instruction:
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Action:

Faults:

See Also:

The cmpibo instruction always branches; the cmpibno instruction never branches.

PRELIMINARY

Instruction | Mask | Branch Condition
cmpibno 000 |Never
cmpibg 001 |srcl >src2
cmpibe 010 |srcl =src2
cmpibge 011 |srcl 2src2
cmpibl 100 |srcl <src2
cmpibne 101 |srcl #src2
cmpible 110 |srcl <src2
cmpibo 111 | Always
cmpobg 001 |srcl >src2
cmpobe 010 |srcl =src2
cmpobge 011 |srcl 2src2
cmpobl 100 |srcl <src2
cmpobne 101 |srcl #src2
cmpoble 110 |srcl Ssrc2

The cmp* instruction followed by one of the branch-if instructions is equivalent to one of the
compare-and-branch instructions. The latter method of comparing and branching produces

more compact code; however, the former method can be faster because the branch instruction
may not have to wait for the result of the comparison.

if srcl < src2 then AC.cc « 2#100#,;

elsif srcl = src2 then AC.cc « 2#010#;
else AC.cc « 2#001#;

end if;

if ((mask and AC.cc) # 2#000#) or (mask = AC.cc) then
# resume execution at the new IP
IP « IP + (displacement * 4);

else

# resume execution at the next IP

IP<1P+4;
end if;

BRANCH IF, cmpi
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cmpor, cmporl

Mnemonics:

Format:

cmpor 684 REG Compare Ordered Real
cmporl 694 REG Compare Ordered Long Real

cmpor*  srcl, src2, —
freg/flit freg/flit

Description:

Action:

Faults:

1842

Compares the src2 and srcl and sets the condition code according to the results of the com-
parison.

For the cmporl instruction, if any operand references a general register, two successive
registers are used.

The following table shows the setting of the condition code for the four possible results of the
comparison.

Condition | Comparison
Code

100 srcl < src2
010 srcl = src2
001 srcl > src2

000 if either srcl or src2
is aNaN

If either operand is in the NaN class, the condition code is set to 000, and a floating invalid-
operation exception is raised. The cmpr and cmprl instructions operate the same as the
cmpor and cmporl instructions, except that they do not signal an exception if a NaN value is
detected.

If a floating-reserved-encoding fault occurs, the condition code results are undefined.

if srcl <src2 then AC.cc « 2#100#;

elsif srcl = src2 then AC.cc « 2#010#;

elsif srcl > src2 then AC.cc « 2#001#;

else
AC.cc « 2#000#; # indicates one number is a NaN
raise floating invalid operation fault

end if;

Floating Reserved Encoding
Floating Invalid Operation
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cmpr, cmprl

Mnemonics:
cmpr 685 REG Compare Real
cmprl 695 REG Compare Long Real
Format:
cmpr#* srcl, src2, —
freg/flit  freg/flit
Description:
Compares the src2 and srcl and sets the condition code according to the results of the com-
parison.

For the cmprl instruction, if any operand references a general register, two successive registers
are used. '

The following table shows the setting of the condition code for the four possible results of the

comparison.
Condition | Comparison
Code
100 srcl < src2
010 srcl =src2
001 srcl > src2
000 if either srcl or src2
is a NaN

If either operand is in the NaN class, the condition code is set to 000,, and no fault is raised.
The cmpr and cmprl instructions operate the same as the cmpor and cmporl instructions,
except that the latter instructions raise an invalid-operand exception if a NaN value is detected.

If a floating-reserved-encoding fault occurs, the condition code results are undefined.

Action:

if srcl <src2 then AC.cc « 2#100#;
elseif srcl = src2 then AC.cc « 2#010#;
elseif srcl > src2 then AC.cc « 2#001#;
else
AC.cc « 2#000#; # indicates one number is a NaN
end if;

Faults:

Floating Reserved Encoding
Floating Invalid Operation
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cmp str
Mnemonic:
cmpstr 603 REG Compare String
Format:
cmpstr srcl, src2, len
addr addr reg/lit
Description:

Compares two strings of equal length and sets the condition code according to the result. The
srcl and src2 specify the addresses of the first byte in each string, and the len specifies the
string length in bytes, from 0 t0 232 - 1.

The two strings are compared in lexicographical order. The strings are compared byte-by-byte,
from low address to high address, according to their ordinal value. If the byte-by-byte com-
parison shows that the two strings are identical, the condition code is set to 010,. If the byte
from the srcl string is greater than the byte from the src2 string, the condition code is set to
001,. If the byte from the srcl string is less than the byte from the src2 string, the condition
code is set to 100,.

Action:
AC.cc « 2#010#;
foriinO..len- 1 loop
if byte (srcl + i) > byte (src2 + i) then
AC.cc « 2#001#;
Exit;
elsif byte (srcl + i) < byte (src2 + i) then
AC.cc « 2#100#;
Exit;
end if;
end loop;

Faults:
MEMORY_FAULT

See Also:
fill, movstr, movgstr
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PRELIMINARY

concmpi, concmpo
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