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CHAPTER 9

MASTER CONTROL

SECTION 9.1 — INTRODUCTION

The G—20 operation codes are performed by a single comélex of cir—
cuitry. For purposes of design and discussion, the functions handled
by this circuitry are divided into sections called sequencers. By this
means functions are easily identified and discussion is limited to a
reasonably small set of manipulations. It should be emphasized that
this organization is strictly for referencing convenience. Neither the
discussions of individual sequencers in this manual nor the depiction of
each on a separate flow chart should be taken as an indication that each
has unique circuitry; on the contrary, circuitry is shared wherever

possible.

Since the tasks performed by the sequencers vary in importance, a
hierarchy has been established. The lowest level sequencers are those
which perform bookkeeping—type operations. These are called building
block sequencers, designated by Q; each handles one or more basic
tasks. On a higher level are the K sequencers, called opcode level
sequencers because each handles the final steps in the processing of a
group of operation codes. The K level sequencers use the building
block sequencers — and, in the case of repeat operations, the Master
Control sequencer — to carry out specific portions of their assigned

tasks. Over—all control is effected by the Master Control sequencer,
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FIGURE 9.1-1 Lines of Communication Between Sequencers
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designated KC. Despite the use of the name, KC, Master Control is
not a K level sequencer; it comprises the step above the K level
sequencers. Thus, where the term "K level sequencers" appears in
this write—up, it is understood that KC is not included. Master Control
uses the Q level sequencers, where appropriate, and starts up the K
level sequencers when the final operand is available in the required
form and all preliminary manipulations are completed. This operation
is referred to as opcode startup. For some non—complex opcodes
which use only one operand, KC does not start a K level sequencer.
Figure 9. 1-1 indicates the possible lines of communication between

sequencers. (Double lines are used to distinguish repeat operations. )

The relationships that exist between sequencers require a certain
amount of explanation. Confusion arises from control transfers, the
simultaneous operation of two or more sequencers, loops within
sequencers, etc. Because the sequencers are so interdependent, a
description of any one of them must include information concerning the
environment. The interdependent and repetitive aspects of the
sequencers create confusion in following execution of an opcode on the
sequencer flow charts. The basic operations performed by each
sequencer are quite simple; the manipulations involved in adapting all
cases to these operations make it difficult to follow the basic operations.
This is particularly true in the case of Master Control where provisions

are included for all possible combinations of mode, index, and opcode.

Description of Master Control presents an additional difficulty in that,
as the initiator of all activities, it is responsible for instructing itself.
The task currently being executed by KC is always predicated on the
previous one with the chain of events going back to the time the machine
was bootstrapped. (The bootstrap operation, described in the section
on input/output, allows for the initialization of the Central Processor. )

Thus, in each sequencer write—up, considerable emphasis is placed on
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the relation of this sequencer to the others with which it communicates.
This should make it possible to grasp the G—20 logic as an integrated

whole rather than as a series of disconnected fragments.

Basic documentation for the G—20 logic sequencers are the 19
sequencer flow charts. These are time oriented, showing what
happens on each clock within each sequencer from the time it is taken
from its idle loop to the return to this loop. Each clock time is called
a sequencer state. These states are referred to by their letter names,
using the name of the sequencer and sequential letters in the alphabet.
Thus, the KT sequencer has states KTA, KTB, KTC, KTD, KTE and
KTF. (Letters I and O are omitted to avoid confusion.) The A-B states
of each sequencer represent the idle loop in which it remains until its
start signal arrives. When the machine is initialized, most sequencers
are sent to their A—B states. Those that are used for receiving the
bootstrap program are set to the states appropriate for handling this

function.

Sequencer states are distinguished from one another by means of
flip—flops which, again, use the name of the sequencer, this time
associated with numbers. In short sequencers, four flip—flops are
used: two on clock 1, two on clock 2. In the longer sequencer, eight
flip—flops are necessary to provide enough distinct states. KC is a
long sequencer and thus uses eight flip—flops. Here, the KCI1 flip—flop
on clock 1 is echoed by KC2 on clock 2: KC3 on clock 1 is echoed by
KC4 on clock 2. This state information is shown in the left hand

margin of the chart as follows:

KCA which represents Cl A KC7 ~KC5 AKC3 AKCI
0000

KCB which represents C2ZAKC8 AKC6 A~ KC4 A KC2
0000

KCC which represents C1 A KC7 A KC5 A KC3 A KCl1
0100
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KCD which represents C2 A KC8 A KC6 A KC4 A KC2
0100

etc.

No set pattern is used for the changing of states; sometimes 11 follows
10, sometimes not. Sequencers skip in their states by means of
changes in the stafe flip—flops. Thus, to get from

QSF (which represents C2 A QS6 ~ QS4 A QS2)

011
to

QSI. (which represents Cl A~ QS5 A QS3 A QS1)

101
it is necessary to set QS5 and reset QS3. Since C2 flip—flops echo C1,
no jumps in the logic occur between Cl and C2; they always follow C2.
The flow charts show the decisions and resulting branches made at
each sequencer state. The decisions are based on the signals read at
that clock time. These signals are called the gating terms and are
shown above the boxes. Inside the boxes are shown the events that
occur when the particular branch is taken. The setting and resetting
of sequencer state flip—flops have not been included in the boxes since
it is clear from a glance at the state decoding that must be set or reset
in order to get to the next state. Also omitted from the boxes are
redundant terms which occur when one branch at a given state
requires enabling of a path or changing of a flip—flop state while
another branch does not; if this term does not in any way affect the
other branch, it is not inhibited on the non—affected branch (since more
logic would be required to do so) and arrival at this particular state
will cause this event to occur. These terms have been left off the
branches they do not affect because they tend to obscure what is
happening, and, in fact, can cause a good deal of confusion if a reason

for this event is sought.



A third omission that should be pointed out is that of an indication of
which flip—flop is being read for the flip—flop signals shown: the clock 1
or clock 2. This has been done in the same spirit of economy, since
there are a considerable number of terms included and the addition of

1 or 2 to the end of each makes them harder to read. It should be
understood that for clock 1 states (QSA, QSC, QSE) the flip—flops which
are stable on clock 1, e.g., SZ1, SM1, will be read, while on clock 2
the opposite case exists, e.g., flip—flop SZ2 and SM2 are stable. Also,
if a path is enabled on clock 2 to copy the state of one flip—flop into
another, as, for example, the path AS(0)WS, it is assumed that the AS
flip—flop is being read on clock 2. This means that ASZ2 is stable and

is being used to affect the state of WS1 so that it will reflect the state
of AS2 on the next clock 1. Hence, the enabled path is AS2(0)WS1.
Similarly, the path WS(C)SM, enabled on clock 2 causes the SM1 flip—
flop to be stable on clock 1 in the opposite (or complement) state from

that of the WS2 flip—flop.

A few words of introduction concerning terminology may save the
reader a great deal of time; it is always easier to remember initials if
it is understood what they represent. The names of the 19 sequencers

have the following origins:

KA — ARITHMETIC operations;

KC — CONTROL K level sequencers;

KD — DIVIDE/multiply;

KJ — JUMP and register commands;

Ki, — LOGIC operations;

KM — MULTIPLE access;

KP — PUTAWAY and index commands; (store commands were

originally called putaway);
KT — TRANSFER and register commands;

KW — Block input/output (transmit/receive);
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KX — TRANSMIT single character (from Xmit);
QA — ACCUMULATOR put (store in Accumulator);
QB — Memory control — B (operates in conjunction with QM

when external memory is used);

QC — Access second COMMAND word in multiple access
operations;

OM — MEMORY control;

QP - PRODUCT (multiply);

Q0 — QUOTIENT (divide);

QS — SUM/difference operations;

QW — Block input/output (transmit/receive);

QZ — Shift operand to ZERO exponent or pickapoint exponent.

It should also be understood that the general term "Accumulator" is
used to refer to the A register, the AE exponent register, and the AS
sign flip—flop; thus, if an operand is stored in the Accumulator, infor—
mation is sent to A, AE, and AS. The term, Accumulator, is often
abbreviated to Acc. Similarly, a reference to OA implies use of reg—
ister N, exponent register EA, and sign flip—flop WS. A corresponding
operand storer is the D, EP, SM complex, but this has been given no
special name, probably because the prografnmers do not need to refer
to it. In keeping with common usage, parentheses indicate "the
contents of". Thus, "(D) are sent to register S" is read "the contents

of D are sent to register S".



9.2

SECTION 9.2 — PROCESSING OF A SIMPLE OPCODE

The activities of Master Control are surprisingly repetitive. The
same operation is often performed several times at various stages in
the processing of a single command. For example, consider the steps
necessary in processing the command "clear and add to the Accumu—
lator the contents of the location specified by the addition of the con—
tents of index register 378 to the contents of location 3628". Execution
proceeds as follows: (1) the command word is accessed and decoded,
(2) the operand is assembled, (3) since this is mode 3 and asks for
the contents of the assembled operand as the final operand, the former
is used as an address for the final access, and (4) the result of this

final access is stored in the Accumulator.

In this example, two of the three tasks performed by KC are demon—
strated; command access and operand assembly. The command is

executed entirely by KC so that no opcode startup is necessary.

Assume these initial conditions: completion of the preceding opcode
has been signaled, the address of the next command (stored in register
CA) has been incremented, the previous command left nothing useful in

OA, and the following octal values are relevant:

(OA) = 0

(Register CA) = 01102

(Location 01102) = 06053700362

(Location 00362) = 00000000032

(Location 00037) = 00000000016 (This is an index register)
(Location 00050) = 00000000236

Master Control begins by accessing the memory location designated by

the address stored in register CA. This brings the command word
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9.2

06053700362

into register B. Bits 29—15 of this command are sent to the command
decoding circuitry. If bits 14—0 contain a number destined for use as
part of the operand (modes 0 or 2) the number is sent to the Arithmetic
Unit where it is added to the contents of OA. 1If, instead, it is an
address (such is the case in this example) it is sent to register BA to
be used as the address for the next access. Specifically, the address

00362 is sent to BA. When this location is accessed

00000000032

is left in register B. It should be noted that this memory access does
not differ from the earlier one. When the second access occurs,
however, Master Control has advanced in its logic so that this infor—
mation will not be decoded as a command word. Instead, it will be

sent to the Arithmetic Unit to be added to the contents of OA.

Next, the index address from the command word is sent to the BA

register and that location is accessed. This brings
00000000016

into register B and this quantity is also added into the operand. The
result of this addition (the number 508) is to be used as the address of
the final operand, thus necessitating an additional memory access

which brings the contents of location 50
00000000236

into register B. The final step in the operation is the storing of the
mantissa in the Accumulator register and its exponent (in this case,

zero) in the Accumulator exponent register.

Despite the relative simplicity of the example, four memory accesses

and three addition operations were necessary. Since memory accesses
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are accomplished by the QM sequencer and add/subtract operations by
QS, this meant startup of QM four times and QS three times. If the
processing of this operation were to be explained step by step on the
KC flow charts, the discussion would include the relevant events at
each of the following states (this is assuming that all numbers accessed
are single precision): KCA, KCB, KCG, KCH, KCJ, KCK, KCL,
KCM, KCS, KCT, KZE, KZF, KCL, KCM, KCS, KCT, KZC, KZD,
KCL, KCM, KCS, KCT, KCA. Confusion is bound to result from a
description of this kind, but the principal objection to this approach is
that the reader will not gain an understanding of the sequencer
activities. He will only be able to follow each step involved in this
particular operation. In view of the fact that there are 104 G-20
operation codes, and that each can be modified through use of modes
and most of them through the use of indices, the probability is high that
he would be unable to follow a second operation without prompting.
Examination of individual cases does not serve as a good introduction
to Master Control; thorough understanding of this sequencer can be

attained only through analysis of its logic.
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SECTION 9.3 — TASKS PERFORMED BY KC

The three principal tasks carried out by KC are the accessing of com—
mands, the assembly of operands, and the startup of the appropriate
opcodes. The handling of each of these functions is described in
general terms in this section. A more specific discussion of the logic
appears later in the chapter. In general, it can be said that the paths
taken in KC are determined by the status of the program being executed
(i.e., is the next access a normal access or has an interrupt been
requested, etc.), the precision of the information being accessed, the
mode and index information contained in the command word, the
operand format requirements for the particular opcode, the timing
considerations which result from simultaneous operation of KC with

other sequencers, and the requirements of the opcode itself.

9.3—=1 COMMAND ACCESS The sequencer logic assumes that the

commands of programs to be executed are stored consecutively unless
otherwise indicated, i.e., unless the program specifically calls for a
jump to another location. When execution of any program begins, the
starting location is sent to register CA. This number is normally
incremented by 1 each time a command is executed. If a command
calls for a jump to, say, location ALPHA, ALPHA is sent to CA. If
the command is a transfer and mark to location ALPHA, the address
of the current command plus 1 is stored in location ALPHA, and

ALPHA plus 1 is sent to CA.

When the branch in the program has been executed, the program will
call for a jump to the contents of location ALPHA which will cause the
address stored in ALPHA to be sent to CA. The handling of these
addresses and the incrementing of CA are carried out by the lower
level sequencers which complete processing of the opcodes. These

sequencers also inform KC of the opcode completion. KC is then
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responsible for accessing the command whose address is currently

stored in CA, assembling the designated operand, and sending a start

signal to a K level sequencer if required.

Command access proceeds on the basis of the following:

(1)

(2)

(3)

(4)

accessing of a new command begins when KC is signaled that
the last operation is completed or when an early start signal
is received indicating that it is safe to proceed with the next
access even though the current operation is not entirely

finished;

if a repeat operation is in progress, the command access
logic is skipped (this happens because the same command is

being repeated for a block of addresses);

if the previous command was an OA command (leaving infor—
mation in the OA register so that it will affect the operand
assembled for the following command) the OA register is not
cleared; otherwise, it is cleared so that any information it

contains will not affect the formation of the new operand;

if an interrupt has been requested, a transfer and mark to
location 64 is effected. This causes entry to the Interrupt
Service Routine where action appropriate to the particular
interrupt is taken. In order to prevent the possible loss of
information, interrupts are not processed until the current
opcode is completed and unless the previous command was
something other than an OA command. In the case of repeat
operations, no external interrupts are processed. The
operation will be terminated by the occurrence of an internal
interrupt whether due to an error condition or the occurrence

of a flag.
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9.3-2

The general algorithm for command access appears in Figure 9. 3—1.
The flow chart for this section of the logic is discussed in Section 9.5

while the flow chart appears in Figure 9.5-1.

FIGURE 9.3~1 Algorithm for Command Access

Has Early Start
Been Signaled?

Previous Command
Complete?

Useful Information
in OA?

Transfer and Mark
to 64 for Processing
by Interrupt Service
Routine

Has Interrupt
Occurred?

No

Clear OA

Ready for Memory \No
Accese? ]
Yes

Ready for
Memory
Access?

Read Command

Clear OA
Read Command

Error Condition? Yes

™

Is This an Early Start? }X°3

Set Interrupt -

Previous Opcode
Complete ?

Clear 0:‘
R

*An early start signal will not be sent if an interrupt has been requested.

9.3-2 OPERAND ASSEMBLY The process of operand assembly

follows the algorithm shown in Figure 9.3—2 and 9.3-3. Examination
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of these charts will demonstrate how provisions have been made for
any legitimate opcode modification. It should be noted that branchings
for repeat operations are not indicated on the flow chart since all such
branchings (with a single exception at KCS) are for the purpose of
indicating that the address of the next word to be accessed is stored in
register CA rather than in register BA. This is due to a peculiarity of
repeat operations and does not in any way affect the general rule for

operand assembly. The branch at KCS is discussed later.

The flow chart is divided into two parts: I, actions determined by the
requirements of the command word, i.e., the mode, index information,
requirements of the opcode, etc., and II, requirements of the K level
sequencer that will complete processing of the particular opcode.
Handling of the indicated decisions is discussed in detail in Sections

9.6 and 9. 9.

9.3—=3 OPCODE STARTUP This operation consists of sending a

start signal to the K level sequencer responsible for final processing
of the current command. In following the execution of a given com—
mand on the flow charts it should be remembered that, for most
opcodes, startup may occur at more than one state of KC depending
upon how soon the operand conforms to the operand requirements of
the particular opcode. For those opcodes which impose no restric—
tions on the operand, only one startup from KC is possible. Others
may be started from 2, 3, and in some cases, 4 different places.
Alternate starts are included so that time will not be lost if the
operand meets the requirements without being manipulated, while
provisions are made for startup from each point at which it is

possible that the requirements have been met.

One unusual case of opcode startup exists: the KA sequencer may be

started early when the commands it handles are written in mode 2 or 3.
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FIGURE 9.3-2 Algorithm for Operand Assembly; I:
Command Word Requirements

Send (Address Field)
to be added to
the Operand

le the Command
Mode odd?

Send {Address Field) to
BA; Access Memory

»{ Double Precisions |2

(3§ ® Contents of

Index Field ® Index portion of command word (Bits 15-20)

Address Field > Address portion of command word (Bits 0~14)

Yes

Access Second
Half of Word

Add to Operand

Clear Index Field to
Avaid Re—entry ; Send (Index Field) to BA
Access 1

Do the (I) Affect

the Operand?

g2 | ,
,,7:“;,;5_;,;;5; Mode €[ positive Integer? Integer Operand? L] Mode 2 or 37 )
Access Memory

T lNo lNo

Complement Sign |.__Y_°:| Negative Zero? Shift to Integer ‘
lNo

Tilt Exit

Does Operand
Modify the (1)?

Change Command
to Avoid Re—entry

This is possible because the initial operations performed by KA do not

conflict with or depend upon those still going on in KC.
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FIGURE 9.3-3

Algorithm for Operand Assembly; II:

K Level Sequencer Requirements
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No
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Is it a Negative Zero?

Is the Operand
Positive?

No
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SECTION 9.4 — BREAKDOWN WITHIN THE LOGIC

KC is easily separated into four sections on the basis of the four trans—
fer states that occur in the logic: KCA, KCL, KZC, KZE. For
purposes of discussion, the KCL section, which is by far the most
complex, is further subdivided into KCL and KCS. The approach to

KC taken in the succeeding paragraphs attempts to clarify the logic of
the entire sequencer through presentation of a detailed analysis of each
of the sections in conjunction with explanations of how each implements

the KC tasks discussed earlier.

Understanding of KC also requires knowledge of QS, QZ, QA and QM,
the building block sequencers used by KC as subsections of its own
logic. KC remains in control during the operation of these Q level
sequencers and continues to advance in its own logic while the building
block sequencers complete their tasks. Since processing is simul—
taneous, and KC is sometimes held up while the Q level sequencers
complete their tasks, an understanding of these Q level sequencer
functions and the signals they generate on completion is essential to an

understanding of KC.

(1) The QM sequencer controls memory accesses and stores.
No memory operation can be started until the (RQM READY)
QM signal is available. QM is started by a GCA or a GBA
signal, depending upon whether the address of the location to
be accessed is stored in register BA or register CA. Memory
operations also require sending of an MS or Memory Start
signal and, in addition, it is necessary to clear the B register
prior to starting the memory because the transfer into
register B is true sides only. Thus, memory accesses are
indicated on the flow chart as "Clear B, MS, GCA". When

the addressed information is available in register B, a DAS
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(2)

(3)

(4)

(Data Available Signal) is sent by QM.

The QZ sequencer is used by KC to shift the operand to
integer format (zero exponent). QZ is started by means of a
GQZ (GO QZ) signal and sends a ZE2 (zero exponent) signal

when the final operand is available.

The QA sequencer is used by KC to store the result of an
operation in the Accumulator (registers A and AE, sign flip—
flops AS). It is started by GQA and sends a KR signal to KC
after it has completed all but its bookkeeping operations so
that no unnecessary time is lost before accessing of the next

command begins.

QS is the most important of the building blocks with respect to
involvement with the logic of KC. QS adds the contents of
register N to the contents of register D and gates the result
into register S. The following signals, necessary to KC, are

generated by QS:

1) DOS — DONE QS; DQS is high when the sequencer has
completed the current operation and the result is available

in OA. (Note that DQS remains high for only one clock.)

2) RQS —READY QS; RQS is high any time QS is not in

operation.

3) ZE — Zero Exponent; ZE is high when the operand resulting
from the addition has a zero exponent and the operation is
complete. (Note that two terms are necessary to indicate

a non—zero exponent, i.e., ZE A DQS.)

4) WS — Working Sign flip—flop; WS holds the sign of the
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operand stored in OA; WS high indicates a negative sign.

A WGI1 signal followed by GQS N~ WG2 are used by KC to start the QS
sequencer. These signals are sent at the KCL and KCM or the KCQ
and KCR states, depending upon whether the information being accessed
is single or double precision. In either case, the first call for DQS

(at KCT) occurs only one clock time after QS is started. QS has pro—
visions for a quick exit in the case of a zero operand in register N.
Thus, DQS can be high at KCT only if (N) = 0. When (N) # 0, DQS
comes high at KCZ. (An idle loop between KCW and KCX allows time
for QS to finish.)

Similar considerations explain the manner in which exponents are
handled at the KCT and KCX states. In the case where the (N) are
initially zero, the QS sequencer leaves the exponent of the result in
registers EP and ES. Thus, in order to update the EA register,

which may contain spurious information, KC transfers the exponent via

the ES(O)EA path.

If OS does not finish early, i.e., if (N) were other than zero, QS

leaves the exponent in register EA and the exponent plus one is in
register ES. Thus, the uninformed register at KCZ is EP. KC updates
EP by means of enablling the ES(—1)EP transfer path. Consequently,

at KCT the ES(O)EA path is enabled while at KCX, the path is EA(—1)EP.

The KCZ state is entered only when the QZ sequencer has been
started for the purpose of shifting the operand to zero exponent. In
this case no exponent manipulations are required beyond the clearing

of the EP register since QZ will shift the operand until (EA) = (EP).

Each of these sequencers is discussed in detail later in the manual.

These remarks are intended to orient the reader and to enable him to
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grasp the way in which KC depends upon these Q level sequencers for
specific operations. It was pointed out earlier that KC used the QM
and QS sequencers several times in performance of the opcode used as
an example. It might also be noted that some logic sections of KC
itself are used more than once in performance of this operation.
Analyzed according to use of the five blocks of logic, the example can

be diagrammed as follows:

TABLE 9.4—1 Blocks of KC Logic Used in Example

Entry Time —
Points

KCA X | X
KCL X X X

KCS X X X

KZE X

KZC X

This illustrates some of the characteristics of the KC logic: the KZE
and KZC blocks can be entered only once during an operation, an
operation is comprised of all events between advancement from KCA
to re—entry at KCA (with the exception of repeat operations which enter
at KCA on each iteration), and KCL and KCS may be entered several
times (the same number of times each since progress is always from
KCL to KCS}). The same questions are asked each time a state is
entered, but the decision and, hence, the paths followed, may be

different each time.

One term which occurs throughout KC requires a bit of explanation:

signal RKM (READY KM sequencer). The KM sequencer is used only
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for multiple access operations (block input/output and repeat arith—
metic and logic commands). RKM is always high except when KM is in
operation. Thus, RKM indicates repeat operation. Branching on this
term occurs throughout KC when memory accesses are required
because the address to be accessed is in register BA for non—repeat
operations and in register CA for repeat. This necessitates the
sending of a GCA command in one case, GBA in the other. At KCS, a
similar branch occurs but for a different reason. In this case, the
use of the BA register is involved. All repeat operations call for
storage of the complemented block length (which specifies the number
of times the operation is to be repeated) in register BA. However,
for non—repeat operations, entry at KCS calls for the transfer of the
index portion of the command word (which can only contain an index
address) to register BA where it will be used by QM in accessing the
index information. The branch at KCS prevents this transfer during

repeat operations and thus protects the block length in BA.
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SECTION 9.5 — ENTRY AT KCA

This is the most straightforward section of logic: the commands are
accessed, the mode, index, and opcode information is sent to register
CD, and decoding begins. Thus, all of the command access logic is

included as well as the initial steps of operand assembly.

The general algorithm for command access is shown in Figure 9. 3-1.
Command access occurs when the previous command is complete, or
an early start signal has been sent, and the memory is available.

Four actions can be initiated at the KCB state:

(1) accessing of the next command,

(2) processing of an interrupt,

(3) a jump to the KCJ state if this is a repeat operation,

(4) return to the idle loop while waiting for RQM or KR2 or SKC.

The occurrence of an interrupt request takes precedence unless either
a repeat operation is in progress or the previous command was an OA
command. The programmer is allowed the flexibility of storing infor—
mation in OA through use of OA commands in order to modify the
operand assembled for the next command. To protect this information,
any time an OA command is used the command which follows it must
be processed immediately. The intervention of an interrupt would
result in loss of information. During repeat operations, external
interrupts are not recognized. Internal interrupts, whether due to
flags or error conditions, terminate the operation and the interrupt is

processed if Master Interrupt Control is on.
When the command has been accessed and is available in the B

register, the bits containing mode, opcode and index information

(29B15) are sent to the CD register. If the number in the address
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field (14B0) is to be used as an address (i.e., if this command is
written in an odd mode, 1 or 3), the address is sent immediately to the
BA register; if not, it is sent to the Arithmetic Unit to be added into
the operand. This addition is accomplished by means of the QS
sequencer which adds this new value to the contents of OA. Bits 30
and 31 of register B are checked for command flags; an interrupt will
occur when processing of the command is completed if the command
word was flagged and the appropriate bit position in register U was set.

(This is referred to on the flow chart as "enable JCA, JCB".)

The processing of interrupts begins with the sending of a start signal,
GKJ, to the KJ sequencer. KJ then performs the desired operation, a
transfer and mark (command X3) to location 64, (1008), the address
that marks the beginning of the Interrupt Service Routine. Since the
sending of 64 to CA is contrary to the usual procedure for the X3
opcode (the destination of the transfer can ordinarily be any desired
location in the program) a modification must be effected. This is
handled by decoding of the first KC interrupt state, KCE, which causes
KJ to follow the path wherein 64 is sent to CA. This state of affairs is
indicated on the KC flow chart by the notation KJH = 64(0)CA.

Thus, KJ processes the interrupt cases as it would an X3 command
with the exception the 64, rather than the assembled operand, is sent

to CA and no interrupts can be requested during the processing.

Figure 9.5—1 shows the KCA section of Master Control. The terms

used on the flow chart are defined on the opposite page.
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TABLE 9.5—1 Terms Used on the Flow Chart of the

KCA Section of Master Control

B{(R15)14CDO0

B28

B(0)14BAO

B(0)14D0

Clear B

Clear OA

Enable JCA, JCB

DAS

GBA, GCA

GQs
Int

KR

LE

LKC

MNA

MS

(0A)

ROM

SKC

TKC

UJE

WGl

WwG2

Path enabled to send the index and command information from the command word to the command
decoding register.

Bit 28 in the B register; this flip—flop will hold mode information when 2 command word has been
accessed; thus, B28 high indicates odd mode, B28 low, even mode.

Path enabled for mode 1 or 3 commands to send address information from the command word to
register BA where it will be used bv the QM sequencer in accessing the contents of the addressed
location.

Path enabled for mode 0 and 2 command words to send operand information from the command word
to register D where it will be added directly into the operand. The remaining bits in register D are

cleared via the enabling of the Clear 41DI5 path.

Clear register B; information read from memory is sent to the B register; since this is a one—sided
transfer, it is necessary to clear B before performing the access.

Clear Operand Assembly information; this involves the following operations: clear register N, clear
exponent register EA, reset the WS flip—flop, set the SM flip—flop.

Enable detection of command flags.

Data Available Signal from QM; DAS is sent when the accessed information is available in the
B register.

Signals that start the QM sequencer; GCA is sent when the address is held in register CA; GBA
is sent when the address is BA.

GO signal to QS sequencer.
Indicates that an enabled interrupt has occurred.

Opcode DONE signal to KC; KR is reset at KCH so that it can be used at the completion of the
current opcode.

Large Exponent signal; LE is sent by the QS sequencer when an exponent overflow occurs during
its operation; QS hangs up in an idle loop until cleared by higher control; KC requests an interrupt,

clears QS, and returns to idle.

Loop KC sequencer; LKC is sent by the KM, KA or KL sequencers during the processing of repeat
operations to direct the access of the next operand.

Memory Non—existent signal; MNA is high when an illegal address is detected during operation of
the QM sequencer; KC clears QS, requests an interrupt and returns to idle.

Memory Start signal necessary to the initiation of any memory operation.

Useful information has been stored in OA via use of an OA command; in this case OA is not cleared
prior to operand assembly; (OA) indicates that the information left in OA is not relevant and that OA
should be cleared.

READY OM sequencer; no memory operation can begin until this signal is high.

Early START signal to Master Control; SKC gates the access of the next command word before
the proceeding operation is completed.

Tilt KC sequencer; this signal is high when KC exits from the normal processing paths due to the
occurrence of an error condition which results in an interrupt request.

Master interrupt control enable flip~flop; UJE is reset at KCF to inhibit the processing of an
interrupt during the operation of the interrupt service routine which has just been entered via the
transfer of 64) to the CA register.”’

Wait Gate signal; WG1 is a signal to the QS idle loop to enable the N(L3)S.

Wait Gate signal; WG2 is not the echo of WG1; WG2 is necessary in conjunction with GQS in order
to start the QS sequencer.
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FIGURE 9.5-1

The KCA Section of Master Control

KCA
0000

KCB

KCGC
0100

KCD

KCE
0110

KCF

KCG
0010

KCH

KCJ
0011

KCK

‘ l
1
SKCAKRA KRARQMA
All other § cases ROM (OAWINT §KRAROMA(OA) KRAOAWINT LKC
—L] 2 GCA gclear OA 4_] GCA ﬂ 6
e MS GCA MS GKJ
Clear B -MS Clear B Reset KR -
Clear B
[}
1
MNA | MNA
B
KR KR
[1jTkC 2 5]
Set INC
Clear QS Clear OA
Clear KC
1]
KIH 2> 64(0)CA
KRAROM l KRARQM
1 2
J L—IGCA. MS, Clear B
KJJ = S(0)N Clear OA
Reset UJE
]
WGl
TE~MNAADAS
All other § cases ‘ LEVMNA ‘ B28 ‘ BZBARQS
l 2] g g B(0)14D
TKC B(0)14BA0 0
wez Set INC B(R15)14CDO0 B(R15)14CD0
Clear QS Enable JCA, JCB Clear 41D15 WG2
Clear KC Reset KR Reset KR GQS
‘ Enable JCA, JCB
1]
ROM
ROM * RKM J REKM
[T [2] GBA 3 GCA
_ MS MS
Clear B Clear B
KCL KCL

9-25

KC




9.6

SECTION 9.6 — ENTRY AT KZC

Entry at KZC occurs under the following conditions: the relevant

information in the A and I fields has been assembled; the command is

written in mode 2 or 3 indicating that this assembled operand is to be

used as an address in accessing the final operand; this address is in

integer format.

If the address is positive and the QM sequencer is ready, the following

actions occur:

(1)

(2)

(3)

(4)

register B is cleared, memory access is started, and the
decoding of the mode of the command is changed, by the
resetting of CDI14, to 0 or 1 (depending upon whether the
original mode was odd or even) so that KZC will not be entered

again;

the KA sequencer is started if the command is any arithmetic
operation or test, any OA command other than OCA or OCS, or
one of the logic commands requiring arithmetic operations

(L2, L3, S2, S3);

LP is set for all logic operations and tests that are handled by
the KL, sequencer. (This excludes the four listed above that
are handled by KA. ) It should be noted that the final operands
for all mode 2 or 3 logic commands are accessed in logic

format. (Formatting is discussed in Section 9. 8);

for those commands which are not handled by KA, the notation
"Clear OA™" appears. (Clear OA = clear N, clear EA, reset
WS, set SM.) This means that previous information stored in
these registers and flip—flops will not affect the final operand

when it is accessed;
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(5)

9.6

Four of the commands that call for the startup of KA are single
operand commands (2f: A0, Al, TO, T1l). For these com—
mands, the N register is cleared so that the accessed operand
will be added to zero when the QS sequencer is started. (Reg—
ister EA is not cleared since the contents of EA must equal
zero before the KZC loop is entered.) For the two operand
commands which involve KA, the contents of register N, which
have already been sent to the BA register for use as the address
of the final operand, are destroyed by the superpositioning of
the contents of the Accumulator. The transfers involved here
are A(O)N, AE(0)EA, and AS(0)WS. Thus, when the final
operand is accessed and stored in registers D and EP, the
startup of QS will perform the sum or difference operation
required on the two operands. The early startup of KA involves
manipulations of the sign values attached to the operands and
to the commands itself. Since sign values are basic to all
arithmetic operations, the detailed discussion of their handling
has been left to Chapter 13 which includes all the sequencers
that use the Adder. Section 13.1 covers the area of sign
manipulations while Section 13. 7 handles the use of the GKA
signal and the sign evaluations necessitated by this early start.
To avoid redundancy, dnly a cursory discussion of these factors
is included at this time. Recall that GKA will be started at
this point only if the sign of the address of the final operand is
positive. This sign is reflected both by the WS and SM flip—
flops (WS low for positive, SM high). Before QS is started,
the SM flip—flop must contain the sign of the operation: SM
high indicates the summing of two positive or two negative
values, SM low a differencing. For the single operand com—
mands, the state of SM remains high unless the operand
accessed is negative (B28 high) during the KCL loop. This

effects the correct setting of SM since the positive opcodes
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(A0, TO) would call for a differencing operation if the operand
were negative, a summing otherwise. For the odd, or negative,
opcodes, SM is reset in the KZC loop. Then, if the operand
accessed is negative, the reversal of the state of SM will
correctly call for a summing operation. (The sign in WS will
be made negative during the operation of QS.) For the two
operand commands, the path AS(0)SM is enabled for the odd—
numbered (negative) commands, the path AS(C)SM for the
positive commands. The reason for the complementation in

the latter case is that AS is high to imply negative, while SM is
high for positive. Thus, a reversal of states between AS and
SM keeps the sign the same which is correct for positive
commands. On the other hand, the copying of states from AS

to SM reverses the sign value, which is correct for the

negative opcodes. In all cases, accessing of a negative operand
during the KCL loop will cause the SM flip—flop to be reversed.
(Refer to Chapter 13 for a detailed explanation of these

manipulations. )

If the address is negative or the QM sequencer is not ready:

(1)

(2)

the SM flip—flop is set in case the address turns out to be a

‘negative zero; (the sign manipulations at KZH are identical to

those at KZD and, thus, assume SM set. ) If the address is not

zero, it is illegal and the state of SM will be ignored.

a check is made for negative zero by means of the zero test
associated with register S. (The address was transferred into
S at KZC by means of the N(L3)S path.) If this is a zero
address, the sign is complemented and processing continues as

stated above since positive or negative zero is a legal address.
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(3)

(4)

9.6

if OM is not ready, KC idles between KZG and KZH waiting

for it.

if the address is truly negative, the TILT exit is taken: an

interrupt is requested and KC is cleared.
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TABLE 9.6-1 Terms Used on the Flow Chart of the

KZC Section of Master Control

AS

AS(0)WS

CDl14

Clear B

Clear BAI1S

Clear OA

Fix SM

GBA

GKA

Group 2f

Group 2g

Group 4c¢

JNC
KR

LP

MS

N(0)BA

N(L3)S
RQM

SM

sz

WS

Accumulator Sign flip—flop, AS is low to indicate positive sign; AS holds the sign of the operand
stored,in the Accumulator.

Path enabled to transfer the sign of the operand held in the Accumulator to WS; this is necessary
when an early start signal is sent to the KA sequencer (GKA). See Section 13.1 and 13.7.

Bit 14 in register CD (Command Decoding); the state of CD1l4 is determined by the 29th bit

of the command word and, thus, contains made information after command access; if CD14 is high,
the mode is 2 or 3, and the KZC loop is entered; thus, CDl14 must be reset before-opcode startup
in order to avoid re—entry into KZC.

Register B is cleared prior to startup of the QM sequencer to access the final operand because
the transfer into B is single—sided.

Bit 15 in register BA is cleared simultaneously with the transfer of the 15-bit address (the assembled
operand) to 14BAO to insure a zero in that bit position.

Clear N, EA, reset WS, set SM.

This refers to the determination of the correct state of the SM flip—flop for the case where the KA
sequencer is started early. Refer to Sections 13.1 and 13.7 for explanations of sign value determination
and the GKA signal.

START signal to the QM sequencer when the address is in register BA.

Early GO signal to the KA sequencer which allows for use of the QS startup at KCM to perform

the sum or difference called for by the opcode. This is possible for mode 2 or 3 commands since,

on the final access, the startup of QS for operand assembly would be meaningless. See Sections 13.1

and 13. 7 for a detaileq explanation of the GKA signal.

Term used to gate the following commands through Master Control: arithmetic operations A0, Al
(CLA, CLS); arithmetic tests TO, T1 (FOP, FOM).

Term used to gate the following commands through Master Control: arithmetic operations A2—7
(ADD, SUB, ADN, SUN, ADA, SUA); arithmetic tests T2—7 (FSP, FGO, FSM, FLO, FSN, FUO);
address preparation N2—7 (OAD, OSU, OAN, OSN, OAA, OSA); logic operations L2, L3 (ADL,
SUL); logic tests S2, S3 (ISN, 1UO).

Term used to gate the following commands through Master Control: logic operations LO, L1, L4-7
(CAL, CCL, EXL, ECL, UNL, UCL); logic tests S0, Sl, $S4-7 (102, ICZ, 1EZ, IEC, IUZ, IUC).

JNC flip~flop is set to request an interrupt when a negative address is detected.

Opcode DONE signal to KC.

Logical Product flip-flop; LP is set during the operation of Master Control to gate the commands
in group 4c for the final access when they are written in mode 2 or 3: when LP is set, the final
access will be made in logic format.

Memory Start signal necessary to the initiation of any memory operation.

Path enabled to transfer the assembled operand to the BA register for use as an address during
the access of the final operand.

Path enabled to send the assembled operand to register S to be tested against zero.
READY QM sequencer; no memory operation can begin until this signal is high.

SuM flip—flop; SM high directs QS to perform a summing operation; SM low, a differencing
operation.

S register Zero flip—flop; SZ is set when the operand in register S is zero.

Working Sign flip—flop; WS contains the sign of the operand stored in OA; WS is reset to indicate
a positive sign.
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6

FIGURE 9. 6-1

The KZC Section of Master Control
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SECTION 9.7 — ENTRY AT KZE

The flexibility allowed in the handling of index information forces a
general discussion of the subject before the specific operations of the
KZE section are spelled out. Two types of addressing dictate the
handling of index information. In standard addressing, the contents of
the designated index are used to modify the operand. The term special
addressing refers to those commands which use the index field to
specify the index or register which is to be acted upon in accordance
with the particular command. (Special addressing is used with the

eight index commands and the four register commands. )

KZE handles all commands which require the accessing of an index,
whether written with standard or special addressing. Thus, KZE
handles any command written with standard addressing which contains
index information. It does not, however, handle all commands written
with special addressing, since not all of these require accessing of an
index location. For the register opcodes, the index portion of the
command word is used to specify the register to be acted upon; thus,
accessing of an index is not required and KZE is never entered for
these commands. Of the eight available index commands, only four
require an index access and, thus, handling by KZE. Explanation of
this requires an account of the rule followed in processing all index

commands.

Index commands can be grouped into several different categories:

(1) four test commands (B4, B5, B6, B7), and four non—test,

(2) four positive commands (B0, B2, B4, B6), and four negative,

(3) four commands which modify the contents of a particular index
by the amount of the operand (B2, B3, B6, B7), and four which

load the quantity specified by the operand into the location
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named in the I field.

The processing of these opcodes proceeds as follows: the (A) of the
command word are added to (OA); if the command is written in mode 2
or 3, the final operand is accessed. At this point a branch is taken
for the four opcodes in group 3f: B2, B3, B6, and B7. (These are the
index opcodes that call for modification of the contents of an index. )

Of the opcodes in this group, two are the opposite of the other two.

The working sign is complemented in the two negative cases leaving,

in effect, two positive opcodes: B2 and B6. The contents of the
indicated index are then accessed and added to the operand. The result
is the quantity to be loaded into the index. Recall that the other four
index opcodes load a specified quantity, held in register N, into a
designated index. The operand now assembled for B2 and B6 is also
held in register N and is ready to be loaded into the index. From this
it can be seen that these commands now call for the same operations
as B0 and B4: loading a positive quantity into an index. This makes
possible a further simplification in decoding with B2 becoming B0 and
B6 becoming B4. Thus, the four opcodes of group 3f (B2, B3, B6, B7)
are first reduced to B2 and B6 and then reduced out of existence by
means of changes to B0 and B4. In this way, the next path taken at
decision state KCT will be that gated by the 3c group: BO, Bl, B4, B5
and KZE will not be entered again. (It should be pointed out that B4
and B5 are the same as B0 and Bl except that B4 and B5 call for testing

the operand against zero. )

The signs for two of the negative cases in group 3f have already been
adjusted.  In the KCS block, wherever 3c is gated for opcode startup,
the working sign is complemented for Bl and B5 (the opposites of B0
and B4). (This change does not affect the B3 or B7 negative commands
since by this time they are being decoded as B0 or B4 commands; in

this way double reversing of the sign is avoided.) With this last change
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of sign, the effective number of commands was reduced to two positive
cases, one of which calls for a test against zero. The KP sequencer
is then started. KP performs the test in the desired case (the address
in CA is incremented by 1 when the integer is found to be zero) and

stores the operand in the designated register.

To return to KZE, this block is entered at the beginning of this sequence
of events for all cases requiring accessing of an index. As stated
before, this happens (1) when standard addressing is used and the
command contains index information (the contents of the index register
are used to modify the operand) and (2) when special addressing is used
and the contents of a particular index are to be modified (opcode group
3f). These branches are gated to KZE from KZT by means of the

following terms:
(1) XZ~g3

This indicates that the index portion of the command word is
not zero and the command is not one of the g3 commands. This
latter term excludes all commands which use the I field to
specify the index or register to be acted upon by the command.
Thus, this branch handles only commands written with standard

addressing which contain index information.
(2) CD14 A~ 3f

Four of the commands excluded in (1) above (B2, B3, B6, B7)
are gated by the second branch at KCT if the command is mode
Oor 1. (When the mode is 2 or 3 for these commands, the
final access for the desired operand must be made at KZC along
with the change of decoding to mode 0 or 1 before this branch

is taken.)

These two branches enter KZE and remain distinct, the gating terms
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being 3f or 3f which is sufficiently exclusive to distinguish between the
commands which are allowed to enter KZE. The 3f commands (case 1
above) require clearing of the index portion of the command word and

accessing of the index information.
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TABLE 9.7-1

Terms Used on the Flow Chart of the KZE Section
of Master Control

Clear B

Clear 5CDO

GBA

Group 3f

Group 3h

Group 3i

Group 3j

Group 3k

RQS = WS(C)SM

Clear register B; this is necessary before any
memory access occurs since the transfer into B
is single—sided.

Clear the least significant 6 bits in register CD;
these are the bits containing the index address
from the command word; once this address has
been used during operand assembly, the address
must be destroyed so that the same access won't
occur again the next time around (XZ will be high).

START signal to QM sequencer when the address
is held in register BA.

Term used to gate the following index commands
in Master Control: B2, B3, B6, B7 (ADX, SUX,
AXT, SXT).

Term used to indicate the following index com-—
mands in Master Control: B2, B3 (ADX, SUX).

Term used to indicate the BO (LXP) command in
Master Control.

Term used to indicate the following index com—
mands in Master Control: B6, B7 (AXT, SXT).

Term used to indicate the B4 (XPT) command in
Master Control.

At READY QS, the sign of the resulting operand,
which is held in the WS flip—flop, is copied into
the SM flip—flop. This happens in the QS
sequencer and is referred to here only to indicate
that SM is properly undated. For a discussion of
the determination of sign values, see Section 13.1.
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FIGURE 9.7-1

The KZE Section of Master Control KC
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SECTION 9.8 — ENTRY AT KCL

This state is entered following each memory access involved in the
assembly of the operand. (Accessing of commands is carried out in
the KCA section.) Two functions are handled here: the information
just accessed is formatted and the QS sequencer is started. Generally,
QS adds the new information into the operand. However, if KA has
been started early, (see Section 9. 6 for further clarification of the
early start signal to KA), this GQS initiates the add/subtract stipulated
by the opcode, i.e., the operand that resulted from the assembly

process is added to or subtracted from the contents of the Accumulator.

The formatting of operands as they are stored in memory is described
in Section 11.3. When accessed, the information will be formatted in
accordance with the requirements of the opcode and certain information

bits in the word itself.

(1) If number format is called for, data flags are enabled
("enable JDA, JDB") so that an interrupt requested through
use of a data flag can be processed. If flip—flop B28 is
high, indicating a negative sign, the state of the SM flip—flop

is reversed (see Section 13.1, in particular, Table 13.1-=2);

(2) 1If this is the right half of a double precision word, (if flip—
flop B29 is high), the right half of the word is formatted as
follows:

B(0)20D0
B(R21)EP

or, if flip—flop B27 is high indicating a negative exponent
value, the path
B(R21C)EP

is enabled. This makes the negative exponent, which was
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(3)

(4)

(5)

9.8

stored in true form, available for arithmetic operations in
complement form. Following this the left half of the word is

accessed.

When the left half of the double precision word is available in

register B, the following transfer takes place:
B(L21)41D21

This leaves the double precision number property position in

register D, with exponent in EP.

If single precision format is called for, the format will be
pickapoint if the pickapoint enable flip—flop (UPE) and flip—flop
B27 are both high. Register PE contains the pickapoint
exponent with the sign value in PE6. (PE6 high indicates
negative sign.) If UPE is low, the format is floating point and
B27 holds the sign of the exponent. Bits 6 and 7 of the expo—
nent registers are set for negative exponents. These bits
serve the purpose of storing exponent overflow information
(see Section 13.8). They are set for negative exponents since

these are used in complement form.

Pickapoint Floating Point
B(0)26D0 B(0)20D0

PE6 = PE(0)EP B27 = B(R21)EP
PE6 = PE(C)EP B27 = B(R21C)EP

PE6 = Set EP6, EP7 B27 = Set EP6, EP7

If logic format is called for, i.e., if this is the final access
for a mode 2 or 3 logic operation, or an operand access during
a repeat operation that is handled by KL, logic flags are
enabled ("enable JLA, JLB") so that an interrupt requested
through use of a logic flag can be processed, and the following

transfer takes place:
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(7)

(8)

9.8

B(0)31DO0
Clear 41D32

In addition, the EP register is cleared since logic format

calls for a zero exponent.

If KA6 is high, indicating that the KA sequencer was started
in the KZC loop, or by the KM sequencer (final access for a
mode 2 or 3 command, or operand access during a repeat
operation that is handled by KA (see Section 13.2) KC is
essentially finished at this point. KA6 causes branching at the

KCM state for formatting. The term
KA6 ALP A 2a

gates the 2a opcodes, the logic opcodes calling for arithmetic

operations and logic formatting. The term
KA6 ~2a AB29 ALP

gates single precision formatting for all of the arithmetic
operations and tests and all of the OA commands except OCA

and OCS. The term
B29 A LP
gates double precision formatting for this group.

If LP is high, the operand is accessed in logic format as
called for on the final access of a mode 2 or 3 logic command
or the access of each operand during a repeat operation

handled by KL (see Section 13.2).

In all cases except the occurrence of errors, completion of

this section is accompanied by a startup of the QS sequencer.
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TABLE 9.8-1 Terms Used on the Flow Chart of the

KCL Section of Master Control

B28

B29

Clear B

Enable JDA, JDB
Enable JLA, JLB
F: Logic, Single
Precision, Double
Precision

Group 2a

GCA

GQS

JNC

KA6

LE

LpP

MNA

MS
ROM

TKC

WGl

wG2

Bit 28 of the B register; for number accesses, this flip—flop contains the sign of the accessed
operand; B28 low indicates a positive sign; when B28 is high at KCM, the state of the SM flip—fiop
is reversed (see Section 13.1 for a discussion of sign manipulations).

Bit 29 of register B; if the operand is accessed in number format, this flip~flop will be set for
double precision words, reset for single; for number accesses with B29 high, QM is started to
access the second half of the word; if the operand is accessed in logic format, this flip—flop
contains the 30th bit of the logic word.

The B register is cleared prior to each memory access because the transfer into B from memory
is single—sided.

Enable detection of data flags.
Enable detection ©of logic flags.

Indicates type of formatting used on accessed information. See text for details.

Term that gates commands L2, L3, S2 and S3 through Master Control.

GO signal to QM sequencer when the address is held in register CA.

GO signal to QS sequencer; GQS is used in conjunction with WG2 to start the QS sequencer.
JNC is set to request an interrupt when MNA or LE is high.

The KA6 signal is high when KA is in the KAG-KAH idle loop; thus, if KA6 is high at KCM and
KCR, KA is known to be in operation, KC bypasses opcode startup and returns immediately to

idle.

Large Exponent; this signal is high when QS hangs up due to generation of an exponent overflow
condition.

Logical Product flip—flop; LP is set in Master Control to gate final access of mode 2 or 3 logic
commands in logic format. This same access path is used to access the operands during repeat

logic operations. (See Section 13.2.) LP also affects the operation of the Adder. (See Section 13.1.)

Memory Non—existent Address; MNA is high when an illegal address is detected during the operation
of OM.

Memory Start signal; MS is necessary to the initiation of any memory operation.
READY QM sequencer; no memory operation can begin until this signal is high.

Tilt KC sequencer; this signal is higk; when KC exits from the normal processing paths due to the
occurrence of an error condition which results in an interrupt request.

Wait Gate signal; WGI is sent to the idle state of QS to enable the N(L3)S path.

Wait Gate signal; WG2 is used in conjunction with GQS to start the OS sequencer. WG2 is not
an echo of WGI.
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FIGURE 9.8-1 The KCL Section of Master Control
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SECTION 9.9 — ENTRY AT KCS

This is the most complex of the logic sections; it handles basic decision
making for the operand assembly and the opcode startup functions.

This section follows KCL which starts the QS sequencer prior to its
completion. At KCT, the paths taken are determined by answers to

the following set of questions:

(1) Is this a legal opcode?

(2) Is index addressing used?

(3) Is it necessary to wait for the completion of QS before
continuing with this operation?

(4) 1Is there any information in the index portion of the command
word?

(5) 1Is this in the mode 0 or 1 or the mode 2 or 3 group?

(6) Has QS finished?

(7) To which group of opcodes does the current one belong? Is
the operand properly formatted for this group?

(8) 1Is this a final access for a mode 2 or 3 logic operation?

These apparently straightforward questions become involved when
asked simultaneously, as is the case at KCT. One of the most difficult
problems is that of determining which questions have precedence. A
further area of confusion results from the repetition of the same
questions at KCX and KCZ, since a term not available at KCT may be
available at KCX and so forth.

The following signals are used in gating:

At KCS RKM — repeat mode not being used;
At KCT LP —mode 2 or 3 logic commands which use KL; final
access is in logic format;

CDl4— modes 2 and 3; CD14 — modes 0 and 1;
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XZ —index portion of current command contains zeros;
ZE — zero exponent;
DQS — done QS sequencer;

ws - positive sign for operand;

It should be noted that ZE can come high only when QS is finished.

Thus, the term ZE ~ DQS would be redundant and only ZE appears in
the gating. If, however, QS is finished and the result has a non—zero
exponent, both terms (ZEA DQS) are needed since ZE does not imply

DQ@sS.

In the KCS block, the decision states are KCT, KCX, KCZ, and KZK.
The requirements of the command word dictate the first decision since
special processing is required for accessing of an index register and
for commands written in modes 2 and 3. Accessing of indices is
handled by the KZE block, modes 2 and 3 by KZC. Assuming that both
of these conditions are necessary for a given command, the order of

precedence is as follows:

SPECIAL ADDRESSING STANDARD ADDRESSING
1. KzZC 1. KZE

2. KZE (Index commands 2. KZC
only)

This is due to the peculiarities of special addressing where, for index
commands, the index portion of the command word is used to specify

the index that is to be modified by the amount of the operand. In order
to accomplish this, the operand must be formed before the value
currently in the index is accessed. Thus, the determination of the

final operand precedes accessing of the index. For standard addressing,
however, the value contained in any specified index location is used to
modify the current operand and must be added to it before the final

access is made (modes 2 and 3). " Thus, the index is accessed before
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the operand is used as an address to access the final value. If DQS
arrives at the KCT state, and the operand is already in integer format,
an immediate exit is gated to KZC. Otherwise, two alternatives are
available: if DQS has not arrived, the path is gated to an idle loop to
await the arrival of DQS; if DQS is high but the operand is not in integer
format, the QZ sequencer is started and the path gated to an idle loop
to wait for its completion. These gating terms are shown in

Table 9. 9-2.

When the command word requirements are satisfied, the remainder of
the decisions are based upon the requirements of the five basic groups

of opcodes. These groupings are as follows:

group 1: the opcodes processed entirely by KC; no K level sequencer
is started; the operand is not required to be in integer
format and the operand need not be available in order for

processing to continue; thus, DQS is not required.

group 2: the opcodes that require an available operand in order for
processing to continue; this is because the next step in
processing is the startup of K level sequencers and these
will use the operand to perform the required operation;
thus, DQS is required; integer format is not required for

these opcodes. Opcode startup can occur at KCT or KCX.

group 3: the integer and register opcodes (all commands which use
index addressing) require the operand in integer format.

Opcode startup can occur at KCT, KCX, or KCZ.

group 4: the opcodes which require integer operands (same as
requirement for group three, but this applies to standard
addressing). Opcode startup can occur at KCT, KCX, or
KCZ.

group 5: the opcodes which require that the operand be used as an
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address; thus, the operands must be positive integers.

Opcode startup can occur at KCT, KCX, KCZ, or KZK.

The breakdown of each of these groups is given in Table 9. 9—1.

Table 9. 9-2 lists all of the gating terms at the four decision states
(KCT, KCX, KCZ, KZK); on the left side of the chart the terms shown
are those required to exit from this block. On the right side are those
corresponding to the desired terms which take care of the failure
cases. Kach alternate path leads, of course, to a reiteration of the
required conditions at a later state so that in most cases, the desired
terms occur at more than one state. Thus, for all cases where DQS is
required and is not available at KCT, gating is provided to the idle loop
between KCW and KCX which waits for DQS. The queries are then
repeated at KCX. |

Two idle loops allow for timing consideration between KC and QS and
QZ. If DQS is required and QS is not finished, the idle loop mentioned

above is entered.

If QZ is needed to shift the operand, a second idle loop is provided
between KCY and KCZ. This idle loop allows cases 3, 4, 5 and 8 to
exit immediately on receipt of ZE, the signal indicating that the
exponent is now zero. In the case of group 5 commands (which require
a positive operand) the presence of a negative sign inhibits exiting from
the loop on receipt of ZE. Rather, it calls for a return to KCY and
branching on QZA (QZA will be high following sending of the ZE signal
since QZ will return to its normal idle loop QZA—QZB). Here the
operand will be sent to S for the zero test. At KCZ, the terms gating
box 5 will now be available (since Ready QZ = QZB) and opcode startup
can proceed if the address is zero. If the operand is non—zero, an

interrupt is requested.
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It should be noted that when opcode startup occurs at KCT or KCX,
exponents are adjusted in accordance with the timing of QS. That is,

if DQS arrives at KCT, indicating (N) =0, the appropriate final transfer
ES(0)EA is accomplished by KC. Similarly, at KCX, DQS and opcode
startup cause KC to transfer the exponent from ES to EP via the path
ES(—1)EP. When QZ is used to shift, the contents of EP are cleared to
zero prior to the start of QZ, and the exponents are correct when QZ

is done so that final shifts of this type are not required at KCZ.

For several opcode startups, an additional shift of exponents is
required: AE(0)EA. This happens when the opcode involves the con—
tents of the Accumulator and the K level sequencer expects to find this
exponent value in register EA. (See KCT—4, KCT—5, etc.) Use of this

transfer is explained in Table 13. 6—1.

One last generalization involves opcodes which are identical except that
one is the negation of the other. In such cases, the working sign (WS)
is adjusted for the negative case, and processing is identical for both.
For example, at KCT—3, the two commands OCA and OCS are gated.

If the command is OCS, the sign of WS is reversed by means of the
enabling path WS2(C)WS1, after which no distinction is made between

the two opcodes.
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TABLE 9. 9-1

Basic Opcode Groupings

R B N D A T L s P X 3 *‘
2 3
0123[01234567/01234567012 [01234567012345670123456701234567/01234 012345 | EJ‘
gl: no opcode startup; | | gl | : ! [ | | | I
opcode processed l ‘ la [ < | I I | | |
by KC | | | [ | [ [ | |
g2: opcode startup | g2 | | | | ! | |
waits for final | | 22 l X X ! X X I
operand (DQS); | | ! 2b IX xx | l [ I ! l '
integer f‘orrgat | | | 2c | | x | x f ! | : |
not require
K I ' I 2d I Ix X I ' | | | l
| I 'Zexxxxxxl | x x x x x xlx x x x x x x x X X | X X I | |
| | { 2 ! Jx x Ix x | ‘ I | |
I | !ngxxxxxl | x x x x x x| x x x % x x X X | X X l l |
[— | | ] . | | |
g3: index addressing; |XX XX g4: standard addressing; g4 [xx X X X XIX x x x x x| | x _xx_|
i opcode requires integer operand
integer operand , |y » » x|y x X x P qu ger op 4a | x x x x! x x x x| | |
required 1 % | |
3b I ' X x | 4c gates these commands 4b Ix x |x X | ‘ X X X I
3c | 'xx X x ] w:l:itten it’imodesOand 1; *4;: % x xxxx'xx % x x xl ‘ |
34 Jx x | | LP gates these commands ' 4d | l ! l x [
e | x xl 1 written in modes 2 and 3 ge | | | | xx |
|
£ | | ' I | !
3 X X X X { g5: operand used as address; !
3g | I x X | thus, positive integer required | | g5 Ix x x x x XX X I x X
1
3h | T x x | l l I | 5alxxxxx | |
[ ! | | | I [
34 L‘ | | 5p | 'x X X X x
0 | | | I |
3j | I x.X | I | 5¢c I I ! X
3k | | x I | | l 54 | | ! x
| I . | ' ! |
! | I I [ | 5e Ix X I
| | | 5 | s
| | | [ [ ! ! ] 1 i
g6gatesg2,g3,gStoid|1eloopwaitingforDQS xxxxxxlexx kxxxxxxxhxxxxxxxh xxx xxxxbexxxxxxxlx xxxx Ixxxxxx lx _X
. | | | | | | | | | |
g7 gates g4, g5 to idle loop waiting for QZA | | I l |xx X x % % b x xxx xlx x x x x xxxxxx |x X
-
3 3
& S
R B N D A T L s P X x 2
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TABLE 9.9-2 Gating Terms at KCT, KCX, KCZ, KZK

1. COMMAND REQUIREMENTS

1]
NO.| TERMS TERMS |CAUSE [REOUIRED D, |, REASON I TERMS I'no. !
' | 1Dy u NO BRANCHES
ON | NEEDED |OCCUR [EXIT ~ |ACTION: 91813 g For | NEEDED | ON |
FLOW | TO [AT: ITO: | | |§" I's &|| FAILURE TO GATE | FLOW ' From | TO*
CHART | EXIT | I | . .8 'a & ! THIs cASE | CHART | !
1 t t } } }
| = ! 1 |
9 , CDI4~ 3f KCT-8 | Accessing | ! | !
_____:___; _____ —t-———-—|KZE : of [ I | | ! |
10! G3AXZ 'kcT-9 | | index [ | | ! '
t - I 1 ! ™ 1 — — 1 1 1
| CD14A~ZE A |KCT-131 | Final 1) ! 0S not CD14 A~ DQOS A [g3 Vv (g3 ~XZ)] 11 KCT-11 1
— | finished ' ! '
8 ) [g3v(g3~X2)] |JKCX-9 | KZC  laccess — (' inishe : — j L .
: |KGZ~5 | |modes 2 :\/: \/: Non-—integer : CD14 ADOS ~ZE ~ [g3 v (g3 ~ XZ)] | 13 | KCT-12| 2
1 ] Jand 3 operand ; N | KCX-9
II. OPCODE STARTUP REQUIREMENTS
! | ! 'O code .o ! |
s ! | ! | P P I
DL ROl ikea s oy ! l ' |
| | | Access [ | | | | '
1 | CDI4~XZ~gl jKCT-3 I kcA next I | | | |
h . | command L1 | . | |
i [KCT—4 | Opcode 1/1 ! QS not I T I T
2 | CDI4 ~ DQS A~ XZ ~ gZIch—z i KCA IStartup 1Y : finished | CD12 A DQS A [3a v (XZ A~ g6)] I e | KcT-11 | 1
1 . N ! ]
f [KCT-6 | I R ! ! i )
3! CDTZA~AZE ~3a" Ikcx—4 l | l | ! C?S.not | | | |
| lkCZ-2 | | | | | finished | See No. 6 l 6 | KCT-11 | 1
| | | Opcode |
RPN S —— ———xkca | vViv = —==——= +———_—————— N M i Ay
r TKCT—7 I lStartup | | Non—integer | CDI4~ADQS AZE A '_
— Kcx-5 | | P! | 7 I kcx-7 2
4| CDI4~ZE ~XZAg4 iy o | P operand | [3a v (g7 ~X2)] | |
! O ! P ! ! | l
1 | ! [ | |
| | | QS not
i | I ' by finished j See No. 6 | 6 I xct-10 l 1
| (CDI4A ZE ~XZ  |KCT-5 | I N | e e i 1—-——4————|————-
5 1 AWS ~g5)Vv (WS KCX-3 |Opcode [ Negative = ws | KCT=12| ()
: A~ KZK) :xcz—x : KCA istartup :‘/I‘/! Vo ||Laddress ..:_(:124_/\ EoxEn e .}_12 Kex-—7 _}.
KZK-2 i Yo r T N I
! | | ! ]! NomAMeEST | SeeNo. 7 |7 koxs |2
| o o Tremee T T e s S T SR R b
l | I | U address : CDl4~AZE ARQZAWS ~g5 l 17 | KC2=¢ 3
f t T
| . *
_ 15 | Illegal Opcode |K_CT_—2__: |Adjust 1 Idle loop for DQS; then to KCX state
| 'If |for 2 1dle loop for QZA; then to KCZ state
rror i
- _1_6 I_L_E_(Elcp._ Overflow) _|KCX—1 | KCA :e " 3 Test for negative zero at KZJ
T ZE2 = DQS
18 | WS2 (Neg. address) | KZK—l | !
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TABLE 9.9-3

Groupings Used on the KCS Flow Chart

GATING TERMS AT DECISION
STATES (KCT, KCX, KCZ, KZK)

*®
OPCODE STARTUP

GROUPS REFERENCED

10

4

14
15
16
18

CD14 A ZE A [g3 v (XZ ~ g3)]

If DOS: s
11 CD14 ~ DQS A [g3 v (XZ A g3)]

If ZE: _ .
13 CD14~DQS A ZE A [g31UXZ~g3)]

CDI14 AXZ ~gl
CD14 ~DQS ANXZ A g2

If DQS:
6 CD14 A DQS A [3a v (XZ ~ gb)]

CDl4 A~ ZE A~ 3a

If DQS:
6

If ZE: .
7 CD14 A DQS A ZE A [3a(XZAg7)]

CD14 A~ ZEAXZ A g4 |

If DQS:
6

If ZE:
7

(CD14 A ZE A XZ A WS A g5 MWSAKZK)

If DQS:
6

If ZE:
7

If WS:

12 CD14 AZEAXZ A WS A g5
17 CD14 ANZEARQZ AXZ ~WS ~g5

LP

Illegal Opcode
LE
WS

2b = ES(0)EA (KCT only)
2b = AE(0)EA, GKD
2{ 2¢c = WS2(C)ws1
2d = GQA
2e = SKA

3 => WS2(C)Wsl
3c = SKP

3d = GKT

3e = SKJ

(4a = AE(0)EA

4b = ES(0)EA (KCT only)
44 4c = GKL

4d = GKJ

| 4e = GKX

(5a = AE(0)EA, GKP
5b = ES(0)EA (KCT only)
54 5¢ = GKM
5d = SKM
5e = GKT
5 = GKJ

| {LP = GKL
4a = AE(0)EA

gl = NO, N1
la = N1
g2 = N2-7, D0O-2, A0-7, TO-7,
L2-3, S2-3
2b = DO-2
2c = Al, Tl
2d = A0, Al
2e = N2-7, A2-7, TO-7,
1.2-3, S2-3

g3 = R0-3, BO-7

3a = R0-3, BO, Bl, B4, B5
3b = Bl, B5
3c = BO, Bl, B4, B5
3d = RO, RI1
3e = R2, R3
3f = B2, B3, B6, B7
3g = B3, B7
g4 = LO, L1, L4-7, SO, S1, S4-7,
X2, X4, X5
4a = L4-7, S4-7
4b = LO, L1, SO, S1, X2,
X4, X5
4c = LO, L1, L4-7, SO, S1,
S4-7,
4d = X2
4e = X4, X5
gb = P0-4, X0, X1, X3, MO, Ml
5a = P0—4
5b = X0, X1, X3, M0, Ml
5¢ = MO
5d = Ml
5e = X0, Xl
5f = X3
5g = M0, Ml

LP = 4c (modes 2 and 3)

gb = g2 vg3vgh

g7 = g4vgb
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FIGURE 9.9-1
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SECTION 9.10 — REVIEW OF OPCODE STARTUP

Aside from the early start of KA from the KZC block, all opcode
startups occur in the KCS block. The six terms that gate these startups

are reviewed here.

LP

This term occurs at KCT and gates the same opcodes as the 4c sub—
section of group 4 for non—repeat operations. (LP handles commands
written in mode 2 or 3, 4c handles mode 0 or 1.) For repeat operations,
LP gates each operand access (see Section 13.2). The commands

included in this group are:

Logic operations L0, L1, L4-7: CAL, CCL, EXL, ECL, UNL, UCL
Logic tests S0, S1, S4-7: 10Z, ICZ, 1IEZ, IEC, IUZ, IUC

Opcode startup on the LP branch involves the sending of a start signal
to KL, the sequencer which handles all logic operations. No formatting
is necessary since, at KCM, the operand gated by LP was accessed in
logic format. When the same opcodes are written in mode 0 or 1, they
are accessed in number format so that, along with the other opcodes
gated by group 4, their startup begins. For the opcodes handled by KL
that involve two operands, the exponent of the Accumulator register is

sent to register EA via the transfer path AE(0)EA.

These terms gate the OCA and OCS, the commands that are processed
by Master Control without startup of a K level sequencer. Since the
result may be in any form and no start signal is sent, an immediate
exit is made to KCA after KR is set. If QS has finished at KCT, the
usual exponent adjustment occurs. It should be noted that accessing of

the next command proceeds whether or not the QS sequencer is
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finished. ‘One additional bookkeeping operation at KCT involves

complementing of the working sign if the command is OCS.

CDI4~ADQSAXZAg2

Group 2 includes the following commands:

Arithmetic operations A0 — 7: CLA, CLS, ADD, SUB, ADN, SUN,
ADA, SUA
D0 — 2: MPY, DIV, RDV

Arithmetic tests TO — 7: FOP, FOM, FSP, FGO, FSM, FLO, FSN,
FUO

Address modification N2 — 7: OAD, OSU, OAN, OSN, OAA, OSA
Logic operations L2, L3: ADL, SUL
Logic tests S2, S3: ISN, IUO

These commands have in common the need to have the final operand
available before the opcode startup occurs. Integer format is not
required. The usual exponent manipulations related to QS take place at
KCT and KCX. The MPY, DIV, and RDV opcodes, which are
processed by KD, vary from this rule at KCT because the KD sequencer
expects to find the Accumulator exponent in register EA. Thus, the
transfer path AE(0)EA is enabled at KCT for these three commands.

It should be noted that working sign reversal takes place for negative

commands.

CDl14 ~NZE N 3a

Group 3a includes the following commands:

register operations RO — 3: LDR, EXR, ERO, ERA
index operations B0, Bl, B4, B5: LXP, LXM, XPT, XMT

This group will gate all of the index and register opcodes since these
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index commands not specifically included will have their decoding
changed (in the KZE block) to allow gating with this group the next time
around. At startup, the two remaining negative index commands (Bl,
B5) cause reversal of the working sign. KP is started for the index
commands, KT for LDR and EXR (to transfer information from OA to
the specified bus register); KJ is started for register commands ERO
and ERA (to perform the extractions indicated). Startup can occur at
KCT, KCX, and KCZ depending upon when the operand is available in

integer format.

CDl4A~AZEAXZ N g4

Group 4 includes the following commands:

logic operations L0, L1, LL4-7: CAL, CCL, EXL, ECL, UNL,
UCL

logic tests S0, S1, S4 —7: 10Z, ICZ, 1IEZ, IEC, IUZ, IUC
control operations X2: SKP
input /output operations: X4, X5: TLC, TDC

The logic commands are those gated by LP when written in mode 2 or 3
and by 4c when written in mode 0 or 1. In the latter case, the operand
is accessed in numeric format and is shifted to zero exponent before
opcode startup. The actual startup is handled in the same way as that
of LP: the exponent of the Accumulator is transferred to register EA
for those commands involving two operands, and a GKL signal is sent.
The KJ sequencer handles the SKP command while KX handles the

single character transmit command.

(CD14 A~ ZE A WS2 A~ g5) v (WS A KZK)
Group 5 gates the following commands:

store operations PO —5: STD, STS, STL, STI, STZ
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control operations X0, X1, X3: TRA, TRE, TRM
BLOCK operations Ml
REPEAT operations MO

All of these commands require a positive integer operand. Startup
may occur at KCT, KCX, KCZ, or KZK. At KZK startup results from
testing for negative zero and finding one. When this occurs, the sign
is complemented and startup proceeds normally. For the store opera—
tions, the exponent of the operand to be stored is sent from register AE
to register EA where the KP sequencer expects to find it. The KM
sequencer handles block input/output and repeat operations, KT is

started for TRA and TRE, and KJ for TRM.

The KA sequencer is started early when the commands processed by
that sequencer are written in mode 2 or 3. This startup occurs at KZD
or KZH (the latter in the case of a negative zero address). KA is

started for the following commands:

2f = arithmetic operations A0, Al: CLA, CLS
arithmetic tests TO, Tl: FOP, FOM

2g = arithmetic operations A2 — 7: ADD, SUB, ADN, SUN, ADA,
SUA

arithmetic tests T2 — 7: FSP, FGO, FSM, FLO, FSN, FUO

logic operations L2, L.3: ADL, SUL

logic tests S2, S3: ISN, IUO

address preparation N2 — 7: OAD, OSU, OAN, OSN, OAA,
OSA

KC continues to perform final manipulations after KA is started. In the

case of logic operations, KA will leave the result in logic format.
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CHAPTER 10

MISCELLANEOUS SEQUENCERS

SECTION 10.1 — INTRODUCTION

Before embarking on a discussion of the remaining sequencers, it

would be helpful to relate the tasks performed by the various sequencers
to the over—all logical scheme. In Chapter 9, it was pointed out that the
three basic tasks performed by Master Control apply to each command
word: accessing, operand assembly, opcode startup. During its
operation, Master Control pays rudimentary attention to individual
opcodes by formatting the operands in accordance with the requirements
of groups of opcodes. At opcode startup, the K level sequencers assume
the role of controller while KC returns to idle. The sequencer started
at this time remains in control until the opcode processing is complete

(or nearly so) at which time KC is signalled to begin the next access.

As the processing of a command proceeds, the groupings of those with
similar requirements become smaller. Consider the command to add
logical and store in the Accumulator (ADL). At access time, it is in
the group of all commands that must be accessed. At opcode startup
time, it is one of the group of 26 opcodes that require startup of the
KA sequencer. During operation of the KA sequencer, it belongs to a
group of four opcodes that require startup of QZ in order to shift the
result to zero exponent for logic formatting. It might be assumed,

then, that minute distinctions between opcodes would be made at the
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lowest control level, or in the Q sequencers. This, however, is not
the case. As a general rule, each Q level sequencer handles a single
well defined function which may be used by only one or by several K
level sequencers. The Q sequencers whose functions are used by
several K level sequencers are generally set up to ignore individual
opcodes altogether. When started up, they pick up the required infor—
mation from specified storage locations and act on it without regard for

the source.

This arrangement requires less logic than would be necessary to make
it possible for the Q sequencers to differentiate between all cases since,
with the K level sequencers handling the distinctions, the breakdown
will involve fewer decisions. The best example of this manner of
operations is the use of the QS sequencer. When started up, QS per—
forms a summing or differencing operation on the values stored in the

N and D, assuming that the respective exponents are in the EA and EP
registers, and that the sign of the operation is in SM, and stores the
result in OA (N, EA, and sign in WS). QS never takes cognizance of
the current opcode; the K level sequencers that use QS set up the

operands, exponents and signs before sending the start signal.

All of the K sequencers, with the exception of KT, begin their operation
by positioning the operands, starting a Q level sequencer, and idling
for the result. Processing often continues with the startup of a second
Q sequencer. Consequently, some K sequencers do little more than
keep track of the current activities of the Q sequencers, performing
bookkeeping operations between their startups. (For example, KD has
very little to do with implementation of the multiply/divide algorithms
beyond the startup of Q sequencers and the checking of results at
various points during the operation. KM does much the same sort of

thing during multiple access operations.) On the other hand, KP,
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while using two Q level sequencers, nonetheless handles a good many
of the basic manipulations required for store operations. It appears,
then, that the tasks performed by the K sequencers cannot be described
as being more basic or of more importance than those of the Q level
sequencers whose activities they direct. It is perhaps most reasonable
to state that the two distinguishing characteristics of the K sequencers
are the factor of control and the orientation toward the needs of the

opcodes.

To understand the functioning of the K sequencers, it is necessary to
have some grasp of the manner in which the groups of opcodes were
formed. With the emphasis on the opcodes, it might be anticipated that
opcode groupings for processing would be natural ones, i.e., that each
sequencer would handle a group of closely related opcodes. To a con—
siderable extent this is true. However, the explanations for the existence
of certain groups under the control of the same sequencer are not
always immediately apparent. KT processes two control and two reg—
ister opcodes, a rather surprising combination, while the index opcodes
are handled by the KP, or store in memory, sequencer. Examination of
the tasks necessary to the processing of these opcodes reveals the

similarities which make them compatible.

The hardware facilities of the G—20 — the Adder, shift paths between
registers, subtractor—comparator circuitry, etc. —have been described
in earlier sections. The G—20 logic uses these facilities to perform all
the functions available to the programmer through the command structure
of the computer. The logic is organized into 19 K and Q sequencers.

KC (Chapter 9) exerts over—all control; KM, the multiple access
sequencer, provides the special control necessary to the processing of
block operations; three of the sequencers handle unique operations, KT,
QA and QZ. The remaining 14 fall into three basic categories according

to the functions they perform and the hardware they use.
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2)

3)

10.1

Those that provide for storing and accessing of words in

memory.

Those associated with input/output operations which provide
communication between the Central Processor and the external

world.

Those associated with arithmetic and logic operations per—

formed through use of the adder circuitry.

Thus, the discussion is organized as follows:

1)

2)

3)

4)

Miscellaneous operations: KT, QA, QZ sequencers.
(Because these are both simple and basic they provide a good

orientation to the G—20 logic and its documentation. )

Memory system: Introduction to the memory system; QM, QB,

KP sequencer.

Input/output sequencers: Introduction to the input/output
system; single character output: KX, Shift—Send mode of QW
sequencers; Block input/output: KM, QC, KW, QW sequencers.

Adder sequencers: Introduction to opcodes that require use of
the Adder; control of repeat operations: KM, QC sequencers;
logic operations: KJ, KL sequencers; arithmetic operations:

QS, KA, KD, QP, QQ sequencers.

Introductory remarks applicable to all sequencers in each group

preceded the sections. In two cases the discussion of a sequencer has

been divided between its two functions. KM, the multiple access

sequencer, is handled in this manner because its operation in the two

instances is quite distinct and its obligations in each case are a part of

the functions being described. Similarly, KD's role in divide/multiply

operations is most easily understood if discussed in terms of these two

functions.
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SECTION 10.2 — INTRODUCTION TO KT, QA AND QZ

The three sequencers included in this section are grouped together not
because of their similarities, but because of the distinctiveness of the
tasks they perform and their consequent lack of conformity to the
natural groupings of the other sequencers. The QA and QZ sequencers
do have in common responsibility for exponent manipulation: QZ is
devoted entirely to the performance of exponent equalization while QA
performs the appropriate exponent manipulations prior to the start of
the multiply/divide opcodes in addition to its Accumulator Put function.
Because the G—20 is a floating—point machine, the handling of exponents
takes on great importance. Thus, an early introduction to the QA and
QZ sequencers may prove helpful. KT has nothing in common with the
other two except that it is also an extremely simple sequencer,

comprising, as it does, only two clock times.
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SECTION 10.3 — THE KT SEQUENCER

The KT sequencer handles four opcodes, two of which call for a trans—
fer on the basis of the information in OA (the assembled operand), and
two of which call for changing the contents of a register on the basis

of the information in OA. The latter two are register opcodes: RO
(load register) which calls for the loading of the operand into the
selected register, and R1 (extract register) which calls for a selective
reset of the indicated register through use of the operand as an
extractor. The other two are control opcodes: X0 (GO command) calls
for a transfer in the program to the address stipulated by the operand,
and X1 (GO and enable interrupts) which is the same as X0, except that
it also calls for the turning on of the Master Interrupt Control flip—flop.
No diagrams are used in the description of the processing of these
commands due to the simplicity of the operations involved and the fact
that most of the explanation required involves the significance of the

opcodes themselves rather than the means of implementation.

Before opcode startup for X0 and X1 commands, KC checks the
assembled operand, which is to be used as an address, for positive
sign and zero exponent. If the exponent is non—zero, it starts the QZ
sequencer to perform the shifts necessary to make the exponent zero.
If the address is non—zero and negative, an interrupt is requested. The
register code stipulated for the R0 and R1 commands is checked during
the processing of KT (state KTC). It is not checked by KC since the
register code is written in the index portion of the command word and
is, therefore, sent to the CD register at command access time for
future decoding. At KTC, the decoding must be one of those shown in
Table 10.3-1, indicating a correct register address; otherwise, an

interrupt occurs.
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TABLE 10.3-1 Decoding for Register Selection

Relevant CD Register Bits

Signal | Interpretation 11 10 5 4 3 2 1 0

SRU Select register U 1 X 0 0 0 0 0 1

SRH Select register H 1 X 0 0 0 0 1 0

SRJ Select register J 1 X 0 0 0 0 1 1

SPE Select pickapoint 1 0 0 0 0 1 0 0
exponent register

N.B. The X's indicate that this bit is not decoded.

Note that SCA, Select register CA, is not included in the table. This
omission results from the fact that this register cannot be loaded using
these commands. Its contents are affected by the X0 and X1 commands.
Reading of the contents of CA is carried out by means of the R2 (ERO)
and R3 (ERA) commands (see Section 13.4). The 5CDO0 decoding for
register CA is 000000.

Processing of the two register opcodes depends upon the fact that
transfers into register U, J, and H are single—sided while transfers
into PE are double—sided. For the command RO, it is desired to load
15 bits of information into registers U, J, and H, and 7 bits into
register PE. The quantity to be loaded is the assembled operand. The
transfer is accomplished by the enabling of the false and true paths
between N (which contains the assembled operand) and the register.
For the PE register, only an N(O)PE enable is necessary (double—sided

transfer).

The command R1 calls for the extraction of the contents of the register
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into itself using the assembled operand as the extractor. Recall that
the logical function of extracting or ANDing will leave a 1 bit in the
result if, and only if, both operands have a 1 in that position. This
command applies only to the U, J, and H registers and is used almost
exclusively to update the information held in register J, the interrupt
request register, when one of the requests has been processed or to
reset bits in register U. If the processed request bit were not reset,
there would be no way to keep track of work done; on the other hand,
the register cannot be cleared because the other requests would be lost
while, if time were taken to read out the contents and do the updating in
the Arithmetic Unit, a further interrupt request might occur during

this process which would be lost. Thus, this command is essential to
proper utilization of the interrupt facilities of the G—20. The extraction
is accomplished by means of the transfer of the false side of the
extractor (N) into the register: i.e., N(F)U. This effects extraction
as follows: a 1l bit in the operand will not be transferred; a 1 existing
in the corresponding position in the register will, thus, remain. Zeros
will be transferred from the operand, thus destroying any l's in bit
positions not containing l's in the extractor. Thus, a single transfer
fulfills the requirements of extraction, leaving the result in the regis—

ter, and the operation is complete.

The X0 command provides an unconditional jump in the program. This
means that the previous contents of the next command register, CA,
are to be replaced by the assembled operand and no record is to be
kept of the former address. Thus, all that need be done is to enable

the path N(0)CA.

X1 performs the same transfer as that of X0 to effect the required
jump in the program. KT then resets UJE, the Master Interrupt
Control flip—flop, in case it was set already, sends an early start to

KC, and waits until KC has advanced to state KCC. This allows time
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for KC to access the next command and insures that no interrupt will be
processed before the next command access. When KCC is reached,

KT enables UJE and sends an opcode DONE signal to advance KC.
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TABLE 10.3-2 Terms Used on the KT Flow Chart

Command decoding designations:

CDl11 — Register opcode;

CDI11 — Control opcode;
CD11 ACDI10 - RO (LDR);
CD11 ACD10 —R1 (EXR);

CD11 ACDI10 - X0 (TRA);

CD11 ACD10 - X1 (TRE);

KC5
NRC

RC

SKC
SRH
SRJ
SRU
SPE
XJJ

Set INC
UJE

KC5 high indicates state KCC of KC sequencer

Non—legal Register Code; NRC is high when the
designated register is not one of those shown in
Table 10.3-1.

Legal Register Code; RC is high when the designated
register is one of those shown in Table 10.3~-1.

Early START to KC sequencer.
Select Register H.

Select Register J.

Select Register U.

Select Pickapoint Exponent register.

Enabled interrupt has been requested; SKC is not sent
when this has occurred.

Request interrupt.

Master interrupt control flip—flop; when UJE is reset,
no interrupt requests can be processed.
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FIGURE 10.3—1 The KT Flow Chart K I
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SECTION 10.4 — THE QA SEQUENCER

The QA sequencer performs two tasks: accumulator put, wherein it
stores the result of an operation from OA to the Accumulator, and
exponent manipulation, which calls for specific manipulation of
exponents and mantissas for the D opcodes (multiply/divide). The
first of these tasks, called the Accumulator Put, is the function for
which the sequencer was named. It is used following performance of
all opcodes calling for the result to be stored in the Accumulator as
well as after the performance of block input/output opcodes which, on
termination, leave the address plus one or the address plus two of the
last operand in the Accumulator. Since this sequencer will never be
started until the processing of the current opcode is complete, QA is
charged with a task usually reserved for K sequencers, that of signalling
KC to access the next operand through use of the KR signal (opcode
DONE).

Implementation of the accumulator put function calls for three transfers:

1) the result left in register N is gated to register A;

2) the exponent of the result is transferred from register EA to
the Accumulator Exponent register, AE;

3) the sign of the result is copied from flip—flop WS into flip—flop
AS.

The exponent manipulations performed by QA for multiply/divide
operations involve the formation of the initial product or quotient
exponent through use of the subtractor—comparator circuitry, SC. This
circuitry is set up to subtract the contents of register EP from the
contents of register EA with the result being gated into ES. The
exponents for the three commands in question must be loaded into the

EA and EP registers in such a way that this subtraction yields the

10—-13



10.4

desired result.

1)

2)

3)

4)

6)

Divide calls for the subtraction of the exponent of the
denominator from that of the numerator. Since (A) =
numerator, (N) = denominator in this operation, the
exponents associated with these values are already stored
correctly in registers EA and EP. Thus, enabling of

SC(0)ES gives the appropriate initial exponent, (EA) — (EP).

For reverse divide, the correct term is obtained by
complementing the output of SC since (EA) — (EP) =
(EP) - (EA).

Multiplication calls for the addition of the exponent of the
multiplicand to that of the multiplier. In order to use the SC
circuitry for this purpose, the complement of (EA) is used.
Thus,

- [(EA)] - (EP)
which is the same as

- [(EA) + (EP)].

Complementation of this result gives the desired result.

The exponent in ES is gated into EA; the final exponent sign
is stored in EA8 by means of enabling the path

ES7(0)EAS
for divide, and the path

ES(C)EAS
for reverse divide and multiply. The complement path is
necessary in these cases since the output from SC will be in

complement form.

For reverse divide and multiply operations, the contents of A

are switched with the contents of N.

The sign of the contents of A, held in flip—flop AS, affects the
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sign of the contents of N, held in flip—flop WS, if (A) is
negative by causing WS to be complemented; this, through
enabling of the WS2(C)WS1 path. See Section 13.8 for a dis—

cussion of sign determination.
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FIGURE 10.4-1 Algorithm for the Accumulator Put

Function of QA
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FIGURE 10.4-2 Algorithm for QA Manipulations for
Multiply and Divide
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TABLE 10.4-1

Terms Used on the QA Flow Chart

AS
CD8

CD10

Clear MM

Fix EAS8

GQA

KDC, KDD
KR

LJC

PBL

Sz

WS

Accumulator Sign flip—flop; AS high indicates negative.

Command decoding bit used to distinguish between
divide and reverse divide or multiply; CDS8 is high
for reverse divide and multiply, low for divide.

Command decoding bit used to distinguish between
multiply and divide; CD10 is high for multiply, low
for divide or reverse divide.

Bookkeeping operation necessary for multiply/divide;
See Section 13. 8 for a discussion of the Modulo—-
Three counter.

Set EAS8 if exponent in EA is negative, reset if
positive.

GO QA sequencer.
States of the KD sequencer (multiply/divide).
Opcode DONE signal to KC.

START QA sequencer signal from KC for multiply/
divide opcodes; LJC also starts the KD sequencer.

Product Bits Lost flip—flop used in processing
multiply/divide opcodes; PBL is reset by QA as
part of the operations performed for these opcodes.

S register Zero flip—flop; SZ is high when register S
contains zero.

Working Sign flip—flop; WS holds the sign of the
operand in OA; WS high indicates negative.
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FIGURE 10.4-3

The QA Flow Chart
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SECTION 10.5 - THE QZ SEQUENCER

The QZ sequencer performs the function of shifting the cufrent
operand (held in N) until its exponent agrees with that held in the EP
register. It is started for two purposes: The usual case is that in
which it is desired to shift (N) to zero exponent. To accomplish this,
the EP register is cleared prior to the startup of QZ so that
equalization will be achieved when (N) have been shifted to zero
exponent. In the other instance, the command Pl (STS) is used with
the pickapoint mode enabled so that the exponent of the value to be
stored must be equal to the value currently stored in the pickapoint
exponent register. When this happens, the pickapoint exponent is sent
to register EP prior to the startup of QZ so that the operand will end
up with an exponent equal to the pickapoint exponent. Nine octal digits
of the operand will then be stored without an exponent appended, but
with a flag in bit 27 to indicate pickapoint exponent, as distinguished

from pickapoint integer.

The handling of integers written in the pickapoint mode requires
additional explanation. Integer format normally calls for shifting to
zero exponent and truncating to seven octal digits. However, it is
possible to retain nine octal digits after the shift, if in the pickapoint
mode. Thus, pickapoint integers are shifted to zero exponent but
retain nine octal digits. This formatting is handled by the KP
sequencer which performs final storing for index commands and which
formats the operand for the P3 (STI) command (store in integer for—
mat). KP does not perform the shift to zero exponent for the index
commands; that part of the formatting is handled by KC. KP does use
QZ to shift the operand in the case of STI commands, however. In
both cases, KP stores seven octals for non—pickapoint, nine octals

for pickapoint mode.
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There are two other store commands which cause KP to start QZ:
STS and STL. The STL (STore Logical) command calls for shifting of
the operand to zero exponent; lost bits at either end of the word are
disregarded. KP completes the formatting by truncating the operand
to 32 bits. Shifting for the STS (STore Single) command is handled by
QZ only if the pickapoint flip—flop is on. When QZ is started, in this
instance, loss of significant bits due to left shifts is considered an
error and results in an interrupt. If bits are lost due to right shifts,
the loss is recorded in the discarded bits flip—flop so that KP can

roundup before storing the operand.

KC uses QZ to shift the assembled operand to zero exponent in three
cases: 1) the assembled operand is to be used as an address, 2) the
current opcode requires an integer operand, and 3) the current

opcode is to be handled by KL which expects to receive an operand

with zero exponent sothat it is partially in logic format. (KL performs

the truncation to 32 bits that completes formatting.) KC clears EP

before sending GQZ and thus effects the shift to zero exponent.

KL, the logic sequencer, starts QZ to shift the operand stored in the
Accumulator to zero exponent for the two—operand logic commands
(L4—7) and logic test commands (S4—7). The operand that is assembled
prior to startup of KL, will have been shifted to zero exponent by QZ
under the jurisdiction of KC as a part of the operand assembly
process. Truncation of both operands to 32-bit logic format is

handled by KL following the finish of QZ.

KA, the arithmetic sequencer, uses QZ in the processing of the four
commands it handles that require the result to be in logic format.
These opcodes (L2, L3, S2, S3) are processed with the arithmetic
commands until the result is obtained. The result is then shifted to

zero exponent (by QZ) and then truncated to 32 bits to provide the logic
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formatting.

At GO QZ, the operand to be shifted is stored in register N and its
exponent in register EA. If the number is to be shifted to zero
exponent, register EP will have been cleared. Otherwise, the
pickapoint exponent will have been transferred into EP. Exponent
circuitry will then provide signal EE (Exponents Equal) if (EP) = (EA),
EL if (EA) > (EP), if EL if (EA) < (EP). If EL is high, left shifts are
required with concurrent exponent decrements. EL has the opposite
affect. When the shift is to zero exponent, the state of EL also

indicates whether the current exponent is positive or negative.

The shift paths used to carry out these tasks are listed below. Much
more extensive use is made of these same signals and shift paths in

the QS sequencer which will be discussed in Section 13. 6.

EL: Paths enabled for left shifts: N(L3)S, S(0)N
Paths enabled for exponent decrements: EA(0)ES, ES(-1)EA

EL: This calls for right shifts of (N). Since no paths exist between
S and N which allow for right shifts, it is necessary to switch
(N) with (D) in order to use the right shift paths between D
and S. Paths enabled to perform this switch:

N(L3)S, D(0)N, S(R3)D

Paths enabled for right shifts: D(0)S, S(R3)D
Paths enabled for exponent increments: EA(0)ES, ES(+1)EA

EE: When EE goes high, the mantissas must be restored to their
original positions. Paths enabled to perform this restoration:

N(L3)S, D(0)N, S(R3)D

The two algorithms that follow show the action taken in the two
possible cases: where the operand is to be shifted to zero exponent
(Figure 10.5-1) and where the exponent is to be made equal to the

pickapoint exponent (Figure 10.5-2).

10-22



10.5

FIGURE 10.5-1
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FIGURE 10.5-2 Algorithm for Setting Exponent Equal to
Pickapoint Exponent for P1 (STS) Command Pickapoint Mode
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TABLE 10.5-1 Terms Used on the QZ Flow Chart

CzZ Carry Zero flip—flop; CZ is set to cause a carry in to
the first bit of the Adder. In QZ, if the roundup signal
(RU) is high, indicating that rounding should be
carried out by the KP sequencer for the STS command,
the CZ flip—flop will be set by enabling of the
RU(0)CZ path.

DB Discarded Bits flip—flop; DB is set when any of the
three bits shifted out of the D register on a right
shift is a 1; this information is used in establishing
the condition of the roundup signal:

DB = D-1 v D-2v D3

DQZ DONE QZ sequencer.
EE Exponents Equal; (EA) = (EP).
EL Exponent Larger; (EA) > (EP).

KP4 A CDI0 Terms used to gate the Pl (STS) command through
QZ in the pickapoint mode.

KR Opcode DONE to KC.

RU Round—Up signal; RU is high when rounding is
required. The non—biased round—up rule states that
round—up takes place if the least significant octal
digit (the next one to be discarded by an S(R3)D
transfer) is greater than half. If this digit is exactly
one—half and the least significant digit retained is
even, round—up. Otherwise, truncate. S2 defines
one—half since, after the S(R3)D transfer, this will
be 2 . SO VSl v DB indicates greater than one—half
if S2 is high, and S3 indicates that the least
significant digit retained is even. Thus,

RU = S2 A (S0 v Sl v S3 v DB)
If RU is high, CZ will be set to effect the round-up.
Set JNC Request interrupt.

SW S register Wide signal; SW is high when the operand
in register S has overflowed, i.e., there are
significant bits in S44 v S43 Vv S42.

ZE Zero exponent flip—flop; ZE is set when the EA register
contains a zero exponent and QS is done.
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FIGURE 10.5-3

The QZ Flow Chart
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CHAPTER 11

MEMORY SEQUENCERS

SECTION 11.1 — INTRODUCTION TO MEMORY CONTROL LOGIC

The G—20 memory system has been designed to provide efficient
operation given any of the possible system configurations. G—20
memory modules consist of panels of 4,096 words each; a single computing
system can contain no more than eight such panels. The portion of the
basic G—20 computing system that is referred to as the external
memory system consists of from one to seven memory panels and an
associated bus system. The memory system panels are housed in
MM-10 units, one or two in each. This part of the memory is called
external memory to distinguish it from the one or two panels internal
to the system Central Processor. Internal memory is not a part of the
memory system; that is, it is not connected to the bus system and it
cannot be accessed. by any unit other than the Central Processor. The
bus system connecting the external memory units to the memory users
is comprised of four buses: one for the transmission of control signals
and three information buses (an address bus for the transmission of
necessary address information, a write bus to carry the word that is

to be stored in WRITE operations, and a read bus to send out the word
that has been read on READ operations). Thus, each memory

operation involves the use of three buses.

In the basic G=20 system there are one, two, or three memory users:
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a Central Processor and, at the option of the user, one or two two—
channel DC—11 modules. Each of these units contains the logic
necessary to control memory operations and is capable of initiating
these operations independently. In an expanded G—20 System, all
memory users (additional G—20's and DC—11's) will contain the logic

necessary to effect such control.

External memory units have been designed to function independently of
one another in order to make possible simultaneous use of two or
three MM—10's. The limiting factor on the number of simultaneous
memory operations possible within a memory system is the time
involved in the use of the bus system. A bus is tied up for two micro—
seconds on each use; thus, if three controllers required access to
three different MM=10's, startups could occur at two microsecond
intervals, as the address bus became free. Any time two controllers
required use of the same MM—10, the second one is, of course, held
up until the first has completely finished the memory operation. (An
MM-10 can perform only one memory operation at a time.) A priority
system determines which user gets precedence if two or more of them

request use of the bus simultaneously.

A memory operation, once started, is controlled by the addressed
memory timing counter, that is, the timing counter associated with
the panel containing the addressed location. ¥Each timing counter
carries to completion the memory operation initiated in the associated
panel. Memory start signals to G=20's or MM—10's containing two
memory panels start both timing counters, but only the counter of the
addressed panel remains in operation. Timing counter control of
memory operations is an important factor in the independence of
MM=—10 modules. Equally important are the 15—bit MA register and
the 33—bit B register contained in the Central Processor and the 16—bit

MA and 33—bit MB registers of the same description in the DC—11.
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(The DC—11 is provided with a 16—bit address register in anticipation
of an expanded G—20 system in which 14 memory panels would be
available in external memory. Addressing of this number of words
requires 16 bits.) When a memory user requires a memory operation,
it stores the address of the designated location in its internal MA

register.

From its MA register, the Central Processor decodes the three most
significant bits. These bits are sufficient for the determination of the
addressed memory panel since the panel containing the lowest
addresses (0 — 7777) will have 000 in 14MA12, the second panel, con—
taining 10,000 — 17,777 will have 001, etc. The remaining 12 bits
designate the address within the indicated panel. Thus, when decoding
of 14MA12 indicates that an external memory operation is called for,
it is not necessary to transmit the 15—bit address to that unit, but
rather suffices to send the least significant 12 bits of the address to
the 12—-bit MA register in that unit. The external B registers, how—
ever, are copies of the B or MB registers in the users. Thus, if the
Central Processor B register is holding a word to be stored in
external memory, the word is transmitted to the B register of the
addressed unit after decoding from MA indicates which unit is
involved; conversely, if a word is read out from an external memory
panel, it is held in the B register of that unit so that it can be written
back into memory. The sense amplifiers send the word to the B
register and at the same time transmit it on the line. Here it is
double inverted before arriving at the user's B register memory.
Parity is checked (on READ) and generated (on WRITE) in the user's

internal B register.

These facilities make it possible for the MM—10's to operate quite

independently once the memory operation has been initiated. The user
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supplies the address information, the type of operation, and a start
signal. In WRITE operations, the word is supplied; in READ operations,
the user waits for the word to be sent to the internal B register. In all
cases, the memory cycle is completed under the direction of the

timing counter and the unit involved will not be available until the cycle

is completed.

The basic timing counter is the same for every memory panel,

whether internal or external. The counter requires six microseconds
to complete a memory cycle, thus establishing the basic six micro—
second memory cycle for both internal and external memory operations.
This counter shown in Figure 11.1-1, is started on receipt of an MS
(Memory Start) signal. Definitions for the signals generated by the

timing counter are given below:

RM: Read Memory signal; this signal is high for the first half of the
memory cycle (when the information stored in the addressed

location is read out);

TR: Time of Read signal; this signal is high for the time in the first
half of the memory cycle during which reading of the contents of

the location is actually under way;

DA: Data Available signal; DA is high to indicate that the read
operation has been completed; (DA sets the DAS and DAR

flip—flops — see below);

WM: Write Memory signal; this signal is high for the second half of
the memory cycle (when the information from register B is

stored in the addressed location);

TW: Time of Write signal; this signal is high for the time in the
second half of the memory cycle during which the writing of the
contents of register B into the addressed location is actually

under way;
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FIGURE 11.1-1

Basic Memory Timing Counter
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FC: Finish Cycle signal; this signal is high when the memory cycle
is complete; it is used by the QM memory sequencer to gate the

return to idle;

MY, Timing signals internal to the memory timing counter and not

MZ: wused elsewhere.

It is obvious from this that the cycle has two parts: Read and Write.
During read, the information from the addressed location is sensed
and, due to the destructive—read characteristic of core memory, the
location is zeroed. During write, the information stored in the

associated B register is transferred into the addressed location.

Communication between the addressed timing counter and the memory
user is kept to a minimum. The timing counter receives and sends
the essential control signals on the control bus and the address infor—
mation on the address bus. The word being handled is transmitted or
received on the write or read bus. This communication between the
MM-10 and the memory user is the same in all cases; the MM-—10 does
not distinguish between users. Aside from this, the logic within the
user operates independently, relying in WRITE operations, on the
sending of the Memory Start signal (MS) to the addressed timers and,
in READ operations, on a timing signal from the addressed unit
indicating transmission of the word read out in order to synchronize
its own activities with the progress’of the actual memory cycle. Thus,
the memory user detects the arrival of the information in its own B
register from the results of its own logic rather than from a signal
from the timing counter. This mode of operation is desirable for
several reasons. It keeps to a minimum possible timing difficulties on
the bus lines, cuts down on communication between the units which is
expensive in time and money, and allows flexibility in use of the basic

cycle. Consider the memory operations performed by the Central
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Processor using this memory cycle.

Before a WRITE operation is initialized, the word to be stored is sent
to the internal B register. The WR flip—flop (WRite) is set to inhibit
sensing of the core outputs. Thus, the Read portion of the memory
cycle is used to clear the location to zero. This is necessary since
the transfer from register B into memory is single—sided. The Write
part of the cycle then stores the word from B into the addressed

location.

A READ operation necessitates the saving of the word read out. When
WR is low, the sensed information is sent to B. However, this is also
a single—sided transfer, so the B register is cleared before a READ
operation is started. The G—20 sequencer that requested the infor—
mation is informed of its arrival in the internal B register by means of
a DAS signal (Data Available Signal). The sequencer waits for this
DAS, then proceeds with its own operation while the timing counter
completes the memory cycle by restoring the word from the external

B register back into the cleared location.

The DELAY—WRITE mode of operation amounts to a modified form of
WRITE. The addressed location is read out into B at which point the
timing cycle is halted. The sequencer calling for the operation
receives the DAS signal and proceeds to send the new word to register
B, thereby erasing the word just read out. The sequencer signals the
memory timing counter to complete the Write portion of the cycle,
and the word is correctly stored. The provision for saving the con—
tents of the location and then deliberately destroying the word seems
nonsensical unless viewed historically. DELAY-WRITE was included
in order to implement the EXCHANGE command. This command
called for the exchange of a word in memory with one stored in another

device and, thus, necessitated the saving of the word read out until it
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had been picked up from register B, and the halting of the memory
cycle until the new word was available in B. This command no longer
exists, but the provision to save the word remains in the DELAY—
WRITE mode. This mode is, in fact, used only by the KW sequencer
which controls input/output operations on the Central Processor
Communication Line. When a block of information is being received,
KW calls for the reading of the location to be used for storing the

next word while that word is being received. The DAS signal causes
KW to send the new word to B, following which KW sends an MF signal

(Memory Finish) to start completion of the memory cycle.

MM-10 control logic is contained in each memory user and varies
somewhat from unit to unit. This logic must, among other things,

make the following determinations:

1) is the addressed memory panel internal or external? (A

DC-11 unit will know this already; it has no internal panels);

2) if the panel is external, which memory module (MM-10) is

involved?
3) is the addressed MM-10 available?
4) is the address bus free?

The method employed by the user to make these determinations will be
similar in all units; the handling of the bus system will vary from unit
to unit. In this manual, it is only appropriate to discuss the way in

which the Central Processor makes these decisions.

The flip—flops in the Central Processor that decode this information use

the following signals to do so:

1) the Gate Data signal (GDA for unit A, GDB, GDC) is used
during READ operations to indicate the timing of the actual

read out of information and the transmission of the word to the
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Central Processor;

2) the Finish Cycle signal (AFC for unit A, BFC, CFC), sent by
the timing counter in operation when the 6 microsecond cycle
is completed, is used in determining the availability of

external units for future operations;

3) signals resulting from decoding of bits 14MA12 are used to

determine which unit is addressed;

4) signals indicating bus line availability.

Availability decoding for external memory units amounts to a deter—
mination of the addressed panel in conjunction with an examination of
the current status of the panels in that unit. Bits 14MA12 identify the
addressed panel. These panels are lettered A, B, C, D, E, F, G, H
(assuming an eight—panel system) with panel A containing the lowest
numbered addresses. A decoding exists for the selection of each of
these panels; thus, if 14MA12 contains 000, the SMA (Select Memory
A) decoding is high. The MM—10 units are, confusingly enough, also
lettered A, B, and C with unit A containing the addresses following
those in the Central Processor, etc. In the usual case, the Central
Processor will contain panels A and B and each MM-10 will contain two
panels so that unit A will contain panels C and D, unit B, panels E

and F', etc. The schematics represent this scheme of things. A slight
bit of rewiring makes possible the change to a system wherein the

Central Processor or MM~-10 contains a single panel.

Availability of panels A and B (internal memory) need not be analyzed
in this manner; a memory operation cannot be requested unless the
Central Processor sequencers which handle memory operations are
available, and they are never available if internal memory is still in
operation. External units, however, can be addressed by other users

or, in the case of WRITE operations, the unit may be completing a
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cycle that the Central Processor believes to have been finished a

couple of microseconds earlier. (This handling of external WRITE
operations is discussed in detail later.) Thus, it is quite possible for
these units to be tied up when the Central Processor requests access.
This availability is determined by use of the Memory Ready flip—flops.
Each MM-10 has a corresponding MR flip—flop, these being MRA, MRB,
and MRC for units A, B, and C respectively. When a start signal is
sent to unit A, the MRA flip—flop is reset; when unit A finishes its cycle
and transmits the Finish Cycle signal (FCA for unit A), the MRA flip—
flop is set. Thus, if memory unit A is addressed, availability is
determined by means of the MRA signal. The External memory

ReaDy signal (ERD), which starts the external memory cycle, is high
when the addressed unit and the address bus are free. When ERD goes
high it causes transmission of a Memory Start signal (MS) to the
addressed unit; both timing counters in the unit are started, but only
the addressed one remains in operation. (Signal ERD has an additional
qualifying condition for DELAY—-WRITE operations: it does not come
high until the input/output sequencer stores the received word in
register B; following this, the memory operation is handled as a
normal WRITE operation and signal ERD comes high when the addressed

unit and the address bus are free.)

Central Processor memory logic is handled by two sequencers, QM
and QB. These communicate with other sequencers through use of the

following signals:

1) RQM;

2) GCA or GBA;
3) DAS;

4) MF;

1) The RQM signal (READY QM sequencer) indicates that the
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memory logic is available for use. No request for memory
operations can occur unless RQM is high; the user sequencer

idles for RQM, then sends a GCA or GBA signal. The distinction
between the two cases is that, for GCA, the designated address is
stored in register CA and contains either the address of the next
command in the program or the next operand in the block (for
block input/output or repeat logic and arithmetic operations) while
for GBA the BA register holds either the assembled operand which
is to be used as an address, an index address, or (A) from the

command word.

2) When the GCA or GBA signal is sent, the internal B register
is cleared for READ and DELAY—-WRITE operations. (For
WRITE, the word to be stored is already in B.) Transmission of

GCA or GBA has the following results:

a) the address is sent to the internal MA register for
decoding;

b) for WRITE operations, set the WR flip—flop; for
DELAY-WRITE, set the DW flip—flop;

c) GCA causes GQM to be sent; GBA causes SQM to be
sent;

d) the address is incremented by |l via the AC increment
path. In the case of GCA, this leaves in CA the address
of the next command in the program or the next operand
in the block; in the case of BA, this is necessary since
the information being stored or accessed may be double
precision and, thus, call for use of the next address.

e) an internal MS signal is generated. QB is started
simultaneously with QM by means of this internal MS.
(QM is started by the SQM or GOM signal.) This signal
also starts the internal memory counters. Decoding of

14MA12 will cause either QB or the internal timers to
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go out of operation. If the operation is internal, only
one of the timers will remain in effect. If the operation
is external, QB idles until it receives the ERD signal.
External timing counters are not started until ERD is
high. Recall that this signal indicates availability of the
addressed unit and the address bus. In the case of
DELAY-WRITE external memory operations, it also
indicates that the input/output sequencer has sent the
received word to register B and that the operation can
proceed as a normal WRITE operation. When ERD is
high, QB proceeds from its idle loop, the addressed
MM-10 receives the necessary address information, and
the external memory timing counter receives the external
MS signal, MWR if the internal WR flip—flop is set, and
the external B register of the addressed unit is cleared.
The external MS starts both timing counters if the unit
contains two panels, but only the addressed one remains

in operation.

3) The DAS signal is sent to the user sequencer to indicate that
the desired information is available in register B and can be
picked up. The user sequencer waits for this signal only if the '
operation is READ or DELAY-WRITE. In READ, that sequencer
will idle for the DAS signal and then proceed through its own
cycle. (If the next operation called for is a memory operation, it
will idle for the RQM signal.) In DELAY—-WRITE, the input/output
sequencer waits for DAS to signal the arrival of the word read out
in the B register before it sends the received word to the B

register to be stored.

4) The user sequencer then sends the MF signal to indicate that
the WRITE operation may proceed. (This is handled differently

for internal and external operations. For internal memory
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operations, the signal MF goes directly to the timing counter and
starts the Write half of the memory cycle. For external
operations, the necessary DAS is generated within the G—20
before the addressed timing counter is started; the MF is then a
qualifying term of ERD which will go high when the addressed
external unit is available, the data is in internal B, and the
address bus is free. The operation then proceeds as a normal
WRITE. This is possible because the word read out and the word
to be stored are held in two different B registers on external
operations. For the internal DELAY—-WRITE, the word to be
stored would be destroyed if it were sent to the B register prior

to the read out.

The logic involved in the handling of internal memory operations is
much simpler than that involved in external operations. Internal
memory is available only to the Central Processor. It is controlled
directly by the QM sequencer. QM relies upon two signals, DAR and
FC, to gate it from its two idle loops. The DAR signal represents the
end of the READ half of the internal memory cycle and is sent by the
DAR flip—flop when a DA signal is received from the addressed
memory timing counter. (DA also sets the DAS flip—flop during
internal memory operations.) The Finish Cycle signal, FC, is
received directly from the internal timer on internal operations and
gates QM back to the READY state. Since the cycle requires 6
microseconds to complete, all internal memory operations require 6

microseconds of Central Processor time.

External memory operations are traced internally by the QB
sequencer. QM (which is started simultaneously with QB) is gated
through its cycle by means of signals from QB so that memory logic
availability will be signalled (RQM high) at the right time. It was

pointed out earlier that communication between MM=10's and the
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memory user (DC—11 or G—20) is kept to a minimum. Once the

external memory operation is initiated, QB carries the responsibility

of reporting progress in the cycle to the other sequencers. Thus, QB

sets the DAS and DAR flip—flops by means of the DAX signal. The

setting of DAR always gates QM from the first idle loop. The DAS

signal is sometimes useful, sometimes not:

1) on WRITE operations, the user sequencer does not require

the DAS signal; the DAR signal is generated for the purpose
of gating QM from the first idle loop.

2) On DELAY—-WRITE, the DAS signal is generated before the
memory cycle begins to cause the input/output sequencer to
send the received word to the internal B register. The DAR
generated at the same time will gate QM. (These are set
redundantly in DELAY—-WRITE after the memory cycle starts
since DELAY—WRITE is handled at that time as a WRITE

operation. )

3) On READ operations, the user sequencer waits for the DAS
signal to indicate that the word is available in the internal B
register; thus, setting of DAS is dependent upon the actual
transmission of the word read out; i.e., it is set two micro—
seconds after the Gate Data signal indicates that the word is
being read and transmitted. The DAR signal is also set to

gate QM from its idle loop.

QOB also generates a pseudo—Finish Cycle signal to gate QM back to the
READY state. This signal (FCX) sets the FC flip—flop three micro—
seconds before the actual end of the memory cycle on external WRITE
operations. This effectively shortens the Central Processor cycle
time and, since the memory logic is made available, allows for
immediate use of the memory if it doesn't involve the unit which is

still finishing up.
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Figure 11.1-2 demonstrates these timing distinctions for internal
operation, the sequence of events is always the same; for external

operations, timing varies.

The QB sequencer has the capacity to serve as intermediary between
the MM—10 and the other internal logic because QB's operation is
synchronized with that of the addressed timing counter. Recall that
QB idles, waiting for signal ERD, until the addressed unit is available
and the address bus is free. ERD high sets in motion both the
addressed timing counter (via the external MS signal) and the QB logic
(which is gated directly by signal ERD. For WRITE operations, it
remains only for the word stored in the internal B register to be gated
to the external unit when the WRITE bus is free, i.e., two micro—
seconds after the ERD signal is high. This bus will always be avail—
able when needed since timing requirements on WRITE operations do
not vary, i.e., the address bus availability used to start the memory

cycle implies write bus availability at the appropriate time interval.

On READ operations, the problem is more complex since it is neces—
sary to provide for the case where a slower or faster memory unit is
added to the system. No such unit is now used with the system, but it
is anticipated that there may be a need for such provisions. Thus, the
time interval between the arrival of the ERD signal and the trans—
mission of the word read out to the internal B register cannot be
predicted. The signal sent by the MM—10 to indicate this transmission
is the Gate Data signal (GDA for unit A, GDB, GDC). This signal is
used by the QB sequencer to set the DAL flip—flop. An idle loop pro—
vides for the case where DAL is low. (This loop will be taken for
slower memory devices, not for MM—10's.) The Gate Data signal, the
FC signal from the timing counter (used to qualify the ERD signal), and
the transmission of the word on the read bus represent the only

communication between QB and the MM—10 during a memory operation
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FIGURE 11.1-2 Timing

Diagram for Signals DAS, DAR and FC

If internal panel is addressed,
DA] = Set DAS, set DAR

1f external panel is addresssed,
External MS is sent when ERD
is high; timing shown indicates
that ERD came high immediately

If internal panel is addressed:

If external panel is addressed and
ERD comes high as shown above?

Internal MS Signal

DA from Internal
Timing Counter

DAl => Set DAS *

DAl = Set DAR

External MS Signal

WRITE Operation: DAS
DAX = Set DAS, Set DAR DAR
(DAS doesn't get reset)

READ Operation:
DAX => Set DAS

DAX = Set DAR

External DELAY-WRITE:
DAS, DAR are set after
internal MS signal, but

before signal ERD is
high

DAX = Set DAS

DAX = Set DAR

FCI1 From Timing Counter

On WRITE:
QB sends FCX

On READ:
OB sends FCX

*
The DAS flip—flop is in the set condition when QM is started and is reset
on the second clock (except in external WRITE).

wk
Following receipt of MF signal from KW, indicating that the received
word is stored in the internal B register, the DELAY—WRITE
operation is handled as a normal WRITE operation waiting for ERD.

Cl
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after the ERD signal goes high (with its concomitant transfers of

address information, etc. ).

The operations of the QM and QB sequencers have been described in
some detail in this section because their activities are so interdepend—
ent. Table 11.1-1 is included to demonstrate the similarities and the
distinctions between the various operations. Details of implementation
are covered in Section 11.2 which includes the algorithms and flow

charts for each.
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TABLE

11.1-1

Memory Users

REGISTERS WRITE READ DELAY-WRITE
SIGNALS KP KJ |{KC KC oM KW KW
PATHS UNDER {Command access {(Operand
DISCUSSION and repeat) assembly)
g Internal B Word to be stored Contains last word accessed or stored; not cleared at this point.
3 |register must be sent to B
3 |External B Contains last word stored or accessed; not cleared at this point.
5 & |registers
>
‘e b |Current address BA ca [ca BA ca ca ca
2§ [sentto address
H :
s & register
SEQUENCER REQUIRING MEMORY CYCLE MUST WAIT FOR SIGNAL RQM-INDICATING THAT QM IS AVAILABLE BEFORE STARTING OPERATION
E Starting GBA GCA |GCA GBA GCA GCA GCA
g o signal
o
3 |[signals
- .
Py generated:
S & |START toOM soM GQM [GQM soM GoM GaM GOM
Mode of operation: WR WR W
* Internal B register is cleared Internal B register is cleared
W e * * * * * * *
£ K MS MS | MS MS MS MS MS
3
M » | Actions taken as MS goes to internal timing counters; an internal timer remaining in operation only if addressed; otherwise
7 8 |START signal is it drops out.
5 E |sent to OM: s ; . . N .
2 F MS also starts QB; if decoding from MA- indicates an internal operation, QB goes to idle.
Paths enabled by BA(0)AC CA(0)AC  [CA(0)AC BA(D)AC CA(0)AC ca(0)ac | ca(oac
starting signal: BA(0)MA CA(0)MA | CA(0)MA BA(0)MA CA(0)MA CA(0)MA | CA(O)MA
{This is the internal MA register only. )
EXT (QB only) This signal comes high if decoding of MS shows that external memory has been addressed;
if it is low, OB returns immediately to idle.
ERD (QB only) This signal gates the next step in QB; it is high when the addressed MM~10 and the address
bus are free.
On DW, ERD is always low the first time
- through. DW causes generation of false
.5 DAS and DAR signals so that input/output
ie control will store the received word in
52‘ internal B register.
]
IS
e When this is done, input/output supplies MF
g 2 which is, in this case, necessary to cause
-4 ERD to go high. Thus, the bus, MM~10 and
] MF must all be available before OW proceeds|
o
S | Action for Least significant 13 bits of address are sent to MM—10: 11MAD to external MA, MAI2 to select memory timer-
M ERD: (QB only) Timing counters in addressed MM=10 started by MS**, only the addressed counter will remain in operation.

RM: Read Mode, 1st half of basic

memory cycle; ends with generation

of DAS, DAR

Mode of operation:
(QB only)

Register B of addressed unit is cleared.

MWR MWR)|

INTERNAL MEMORY:
DA signal from memory
timing counter indicates
that the location is cleared
and the write part of the
cycle may proceed; DA
sets the DAS and DAR flip+
flops; DAR gates QM from|
idle.

EXTERNAL MEMORY:
DAX signal from QB sets
the DAS and DAR flip—
flops; DAR gates QM from
idle; this is done at the
start of the memory cycle
to enable early exit from
OM.

REM REM REM REM

INTERNAL MEMORY: DA signal from memory timing
counter indicates that the data is available in the internal B
register; DA sets the DAS and DAR flip—flops to gate OM
from idle and signal user that it can pick up the data.

EXTERNAL MEMORY: DAX signal from the OB sequencer
sets the DAS and DAR flip~flops; DAX is high 2 us after
receipt of the Gate Data signal from the addressed unit that
signals transmission of the word to the internal B register;
DAS and DAR are used as described above.

MWR

(From this point on, delay~write is handled
as a WRITE operation by QB)

INTERNAL MEMORY: DA signal from
memory timing counter indicates that the
data is available in the internal B register;
DA sets the DAS and DAR flip—flops;
input/output sequencer waits for DAS, then
sends received word to internal B register,
overlaying the word read out; DAR gates
QM from idle.

WR: Write Mode, 2nd half of basic memeory

cycle; ends with generation of FC

FC (FCX

for external
memory)

End of WRITE
portion of
memory cycle

INTERNAL MEMORY:
signal from memory
timing counter gates QM
to READY.

EXTERNAL MEMORY:
QM doesn't need to wait
for this signal from exter-
nal timers; OB supplies
pseudo—finish FCX to
advance OM to READY;
OB goes to idle. Total
time from start of mem—
ory timers: 3 micro—
seconds, another memory
operation can be started
.immediately if it doesn't
involve the same MM-10.
Actual FC generated by
external timer is used in
Central Processor to
determine the availability
of that unit.

INTERNAL MEMORY: signal from memory timing
counter gates QM to READY.

EXTERNAL MEMORY: again, pseudo—finish is sent to
OM, this time only 1 microsecond early; OM to READY,
OB to idle.

Actual FC generated by external timer is used in Central
Processor to determine the availability of that unit.

INTERNAL MEMORY and EXTERNAL
MEMORY: identical to WRITE operation.
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SECTION 11.2 — THE QM AND QB SEQUENCERS

In comparison with the discussion of the memory system in general,
the description of the operation of the OM sequencer is remarkably
simple. This is true because QM does not take cognizance of the
operation being performed, i.e., it operates in the same way whether
the operation is internal or external, and is unaware of the state of
control signal WR (high for WRITE operations) or signal DW (high for
DELAY—-WRITE operations). These signals are sent to the timing

counters, not to QM.

OM has the following tasks:

1) it checks the designated address; if the address does not exist
in the machine, MNA will be high causing QM to send an

interrupt request and exit;
2) it increments the current address by 1;

3) it idles until it receives a DAR signal; DAR can be set by a
DA signal from the internal timers or by a DAX signal from
the OB sequencer. If neither of these terms is available,
DAR and DAS are reset. This is necessary since DAS will
still be set from the preceding memory operation and must
be reset so that the user sequencer will not read a false

signal;

4) if a memory parity error is found on a READ operation, it
hangs up in an idle loop, causing the Memory Parity light to
go on in the Central Processor control panel. (Memory
parity errors will not occur on WRITE operations since the

parity is generated, not checked, during WRITE.)

5) if no memory parity error occurs, QM idles until an FC

signal arrives; the FC flip—flop is set by the internal timing
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counter at the end of the internal cycle, or by the FCX
pseudo—finish signal from the QOB sequencer as soon as the
current operation is no longer dependent upon Central

Processor control;

it signals READY QM sequencer, indicating memory logic

availability, when gated back to its normal idle loop.

The two branches in QM (GQM and SQM) correspond to the two start

signals GCA and GBA and differ only in that, for GCA the address is

stored in register CA while for GBA the address is in register BA.

Otherwise, the branches are identical. (See Section 11.1 for a dis—

cussion of what happens when GCA or GBA is sent.)

Operation of the OB sequencer has also been described in some detail.

The QB basic algorithm is shown in Figure 11.2-3 and the flow chart

in Figure 11.2—4. For purposes of clarity, it might be well to review

the following points:

1)

2)

QB is started by the sending of the internal MS signal; this
signal also starts the internal timing counters; if decoding
of 14MA12 causes SMA or SMB to go high, the EXT
(EXternal Memory) signal is low and QB returns to idle;
otherwise, if SMC, SMD, SME, SMF, SMG or SMH is high,
EXT is high and QB remains in operation while the internal
timing counters go out. Thus, QB is active only on external

memory cycles.

ERD governs the actual start of external memory cycles;

for WRITE and READ operations, ERD is high when the
addressed memory is available and the address bus is free;
for DELAY—-WRITE operations, there is an additional
qualifying term. QB generates (at QBC) an early DAS signal

which informs the input/output sequencer that it can proceed
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to store the received word in the internal B register. When
it has done this, it sends signal MF. On external DELAY—
WRITE operations, MF is necessary to qualify ERD. During
the actual memory cycle, DELAY—-WRITE can thus be
handled as a simple WRITE operation.

3) The memory timers of the addressed unit are actually
started at QBD by sending of an external MS signal when
ERD goes high; only the addressed timer will remain in

operation, but both are started.

4) Flip—flop DAL (DAta on Line) goes high on READ operations
when the Gate Data signal indicates that the word read out is
being transmitted on the read bus. Timing of the MM-10 is
such that this signal will always be high at QBF when that
unit is accessed and the idle loop will not be taken. For
slower memory devices, this idle loop would be used while

waiting for the data to be available.

5) Flip—flop DAT (DAta) is set to gate the word to be stored
from the internal B register to the external memory via the

B(T)EM path. (This transfer takes place on the write bus.)

The effective WRITE cycle (the time during which QM is not READY) is
shortened to three microseconds on external operations by sending of
an early DAR signal and an early pseudo—finish signal to QM. It
should be noted that, on READ operations, the DAS flip—flop is high
after three microseconds during internal operations and after four

microseconds during external operations.
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FIGURE 11.2-1 Algorithm for QM Sequencer

Y

Send READY Signal

GO or START
to OM?

Yes WRITE: Word is in B

READ: B is clear

. | Send interrupt
request

Has non—existent
address been used?

Increment current
address by 1

'

Start readout of
addressed location

No

Yes | Has location been

cleared?

Accessed data
available in B?

Send data available
signal

Has 1/O0
sequencer sent
received word

to B?

DELAY-WRITE
operation?

I — _._| DELAY-WRITE: B is clear |

DELAY-WRITE: Received word c
_— be sent to B
READ: Word can be read from B

_‘

an

Advance to idle
awaiting signal for
finish cycle

Parity wrong

Set signal to sound bell ;
signal?

Idle until manually cleared

[

Memory cycle

complete? READ operation?
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TABLE 11.2-1 Terms Used on the QM Flow Chart

DA

Dw

FC

Fix DAS, DAR

GQM

JNC

MNA

PW

ROQM

DAta available signal from addressed timing counter; on internal memory operations, DA sets
flip—flops DAS and DAR.

DELAY-WRITE flip—flop; DW is set by the user sequencer (KW sequencer is the only user of
DELAY-WRITE) at the time the start signal is sent to the memory logic.

Finish Cycle flip—flop; FC is set by the addressed timing counter. The FC signal is sent by
the addressed timing counter on internal memory operations; on external operations, the FC
flip—flop is set by the pseudo—finish signal (FCX) generated by QB to gate QM back to READY.

Data Available Signal and DAta Ready flip—flops; DAS and DAR are set by the DA signal on
internal operations and by the DAX signal on external operations; Fix DAS, DAR is an
abbreviation for

DA v DAX = set DAS, set DAR

DA ~DAX = reset DAS, reset DAR
The resetting is necessary for the DAS flip—flop since it is left set at the end of a memory
operation. It is left in 2 set condition because the user sequencer may not read it immediately.
Thus, it must be cleared on the next memory operation before the next user sequencer reads it.

GO signal to QM sequencer; the sending of signal GCA generates signal GQM.

Indicates the sending of an interrupt request, an action that is taken when the designated address
is found to be non—existent.

Memory Non—existent Address; MNA is high when the current address is found to be non—existent.
Parity Wrong flip—flop; PW goes high on READ operations when a check on the parity bit shows it

to be in the wrong state; this condition causes QM to hang up so that the machine must be initialized
before the logic can be used again.

READY QM sequencer.

WRite flip—flop; WR is set by the user sequencer when requesting a WRITE operation.
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FIGURE 11.2-2 The QM Flow Chart
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FIGURE 11.2-3

Algorithm for the QB Sequencer
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TABLE

11.2-2 Terms Used on the QB Flow Chart

DAR

DAS

DAL

DAX

Dw

ERD

EXT

Fc2

FCA,FCB,FCC
FCX

FM

GDA, GDB,GDC

MS
MWR

RD

REM

RTM

DAta Ready flip—flop; set by QB to gate QM sequencer.

Data Available Signal flip—flop; set by QB whenever DAR is set; on DELAY-WRITE operations, the
DAS is generated early so that the input/output sequencer will send the received word to the internal
register B; on READ operations, DAS is sent to the user sequencer two microseconds after the
transmission of the word to the internal B register begins. On WRITE operations, the signal is not
used.

Data Available on Line flip—flop; DAL is set by the Gate Data signal from the MM—10 on external
READ operations to indicate the actual transmission of the word from the addressed external

memory to the internal B register.

Data Available eXternal signal; DAX sets the DAR and DAS flip~flops during external memory
operations.

DELAY~-WRITE flip—flop; this flip—flop is set by the input/output sequencer that uses the DELAY—-WRITE
mode at memory startup time.

External ReaDy signal; ERD indicates that the address bus is free and the addressed unit is available;
on DELAY—~WRITE operations, it also indicates that the received word has been stored in the internal
B register and the operation may proceed as a normal WRITE operation.

EXTernal memory signal; signal EXT is set when 14MA12 decoding indicates that an external memory
panel has been addressed.

Finish Cycle signal from the memory timing counter; FC2 high indicates that the memory cycle will
be complete one clock time later.

Finish Cycle signals from the memory timing counters of units A, B, and C.
Pseudo-Finish Cycle signal sent by QB to gate QM to the READY state.

Finish Memory operation flip~flop; FM is set by the MF signal generated by the input/output sequencer
during DELAY-WRITE when the received word has been transferred to register B.

Gate Data signal sent during external READ operations when the word is being transmitted to the
internal B register from unit A, B, or C respectively.

Internal Memory Start signal; (external MS is sent at QBC via enabling of the MS(T)EM path).
Memory WRite; MWR is high for external WRITE operations.

ReaDy flip—flop, RD is set when an external memory operation begins and serves a bookkeeping
function after that.

Read External Memory flip—flop; REM is set to distinguish a READ from a WRITE operation.
(DELAY—WRITE is processed as a normal WRITE operation. )

Read TiMe flip—flop; RTM is high during transmission of the word to the Central Processor
during READ operations.

WRite flip~flop; set by the user sequencer at the start of a memory WRITE operation.
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FIGURE 11.2—4 The QOB Flow Chart
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SECTION 11.3 — THE KP SEQUENCER

The purpose of the KP sequencer is to supervise the storing of infor—
mation as called for by one of the five store commands or as required
by the eight index commands, all of which call for modification of the
contents of an index register and, therefore, must be completed by a
return of the information to that location. KP concerns itself
primarily with the requirements of the particular opcode and with the

startup of the QM sequencer to perform the WRITE operation.

The functioning of KP differs in the two cases since the information

necessary to performance of the store is differently placed.

1) Store commands: the contents of the Accumulator are to be
stored in the address specified by the assembled operand;
thus, QM will expect to find the assembled operand in BA,
the low order portion of the contents of the Accumulator,
plus exponent information, sign bits, and length flag if

double precision, in B.

2) Index cormmands: the assembled operand is to be stored in
the index register specified in the index portion of the com—
mand word; thus, QM will expect to find the assembled
operand in the B register, the index address in BA. No
exponent information or length determination is necessary
in the case of index commands since information is always

stored by these commands in integer format.

Two signals sent by Master Control start KP: GKP and SKP. SKP
pertains only to the eight index commands. At the time this signal is
sent, the decoding of the index commands will have been reduced to one
of four (see description of this in the KC write—up). The signs of Bl

and B5 will already have been reversed by KC. These commands are
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the same as the BO and B4 commands, except that they call for loading
the index negative rather than positive. Thus, with sign determination
complete, there is no distinction between the B0 and Bl commands or

B4 and B5. The only remaining distinction is between B0 and Bl which
calls for loading the index register, and B4, B5 which calls for loading
the register and testing the operand against zero. (In the test case, if
the operand is zero, execution of the program will continue after one

command is skipped.)

At the time SKP is sent, KC will have transferred the index address to
the BA register, reduced the opcode decoding as indicated, assembled
the operand, stored it in OA (N, EA, sign in WS), and shifted the
operand to zero exponent since the storage must be in integer format.
KP will send the operand to the B register, along with the sign from
the WS flip—flop, as a seven or nine digit integer depending upon
whether or not the pickapoint mode of storage is enabled. (Pickapoint
integer format calls for a nine digit integer with zero exponent. ) The
transfer of the operand to B will effect a truncation of the integer to
the desired length. Figure 11.3—1 demonstrates how this is handled;

Figure 11.3—2 shows the relevant sequencer blocks.

At the time GKP is sent, Master Control will have assembled the
operand which is to serve as the address for the store operation,
shifted it to zero exponent and checked it for positive sign. This
address is in OA at GKP. KP sends the address to BA, then formats
the contents of the Accumulator in accordance with the store command,

sends the operand to B, and starts QM.

These commands call for the storage of information in the Accumulator
(register A), formatted according to the command specifications, in
the address indicated by the assembled operand (which will be stored in

BA) referred to here as X. The commands and their format
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FIGURE 11.3-1 Final Processing of Index Commands by KP
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Y

requirements are discussed first, then the KP algorithm for carrying
out these actions. The order of the discussion corresponds to the
degree of complexity inherent in the proces;sing of each. Thus, P2 and
P4 are first, followed by PO and P3, leaving P1 until last since it is

the most challenging of the lot.

P2 (STL) — store logical — provides for the storage of the least

significant 32 bits of the Accumulator following shifting of the contents
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TABLE 11.3—-1 Terms Used on the KP Flow Chart for Final
Processing of Index Commands

BO, B1, B4, B5 Index opcodes LXP, LXM, XPT, XMT.
At opcode startup, the decoding of the
other four index commands will have been
modified to agree with one of these com—
mands so that only four are gated through
KP (see Section 9. 7).

Clear EA Signal that clears exponent register EA to
conform to zero operand.

KR Opcode DONE signal to KC.

ROM READY QM sequencer.

SKP START signal to the KP sequencer for
index opcodes.

WS Working Sign flip—flop.

ZTM Zeros To Memory signal; when high, ZTM

indicates that zeros exist in the least
significant seven (for non—pickapoint mode)
or nine (for pickapoint mode) octals of the
operand that is to be stored in the memory.
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FIGURE 11.3-2 The KP Flow Chart for the Final KP
Processing of Index Commands by K
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of the Accumulator to zero exponent.
31(A)0 - 31(X)0

P4 (STZ) — store zeros — provides for zeroing a location; the contents

of the Accumulator have no affect on this store operation.
0 - 31(X)0

Figure 11.3—3 contains the basic algorithm for these commands,

Figure 11.3—4 shows the corresponding sections of KP.
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FIGURE 11.3-3 Algorithm for the Processing of Store
Logical and Store Zero Commands by KP
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TABLE 11.3—-2 Terms Used on the KP Flow Chart for the
Store Logical and Store Zeros Commands

AS

EE

GKP

GQZ

KR

PO, P1, P2, P3, P4

RQM
WS

ZTM

Accumulator Sign flip—flop; AS is set when
the sign of the operand in the Accumulator
is negative.

Exponents Equal; (EA) = (EP).

GO signal to KP sequencer sent by KC for
the processing of STORE commands.

GO to QZ sequencer to shift the operand
to zero or pickapoint exponent.

Opcode DONE signal to KC.

Store commands STD, STS, STL, STI,
and STZ respectively.

READY OM sequencer.
Working Sign flip—flop.

Zeros To Memory signal; when high, ZTM
indicates that zeros exist in the least
significant seven (for non—pickapoint mode)
or nine (for pickapoint mode) octals of the
operand that is to be stored in the memory.
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FIGURE 11.3—4 The KP Flow Chart for the Processing KP
of Store Logical and Store Zero Opcodes
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PO (STD) — store double precision — provides for the floating point
storage of the 42 bits of information held in the Accumulator register.

This requires the use of the two 32—bit words, locations X and X + 1.

First word: 20(A)0 -~ 20(X)0, 6(EA)0 -~ 27(X)21,
sign in WS flip—flop - (X)28,
double precision flag - (X)29,
0 - 31(X)30

Second word: 41(A)21 - 20(X + 1)0,
31(X)21 will be the same as those stored for
the first word; on access, these bits are

ignored.

KP sends the information required for the first word to the B register
and starts QM. QM stores the word in the address specified by (BA),
increments (BA) by 1, and sends a READY signal to KP. KP then
sends the information from 41(A)21 to the least significant end of the
B register, leaving undisturbed the remaining bits in B. QM is
started again and, while QM completes the store, KP signals KC of

completion of the operation and returns to idle.

When the first word of a double precision number is accessed by KC,
the flag in bit 29 is detected and the second half of the number is
accessed immediately. This will occur only during the operand
assembly operation of KC (for both repeat and non—repeat operations).
None of the other access operations call for this interpretation of the

information read out.

1) KC, on command access, will interpret the word as a
command; thus, the 29th bit will represent mode infor—

mation;

2) QC is concerned only with command access;
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3) KW accesses words for purposes of transmission, not
interpretation. It will access and transmit the number of
words specified by the block length regardless of the

precision and will never investigate the status of the 29th bit.

An interesting implication of the double precision store is that the state
of the pickapoint enable does not affect this operation. This makes it
possible to perform lengthy pickapoint operations and still insert some
information in floating point by calling for double precision storage

without necessitating the turning on and off of the pickapoint enable.

P3 (STI) — store integer — provides for storage of the least significant
7 digits of the Accumulator along with the sign, or, if the pickapoint
mode is enabled, for storage of the least significant 9 digits of the
Accumulator and the sign. In either case, the value is shifted to zero
exponent prior to being stored. Lost bits at either end are ignored

during the shifting.

1) Floating point integer (pickapoint not enabled):
20(A)0 -~ 20(X)0
sign in WS — (X)28,

0 - remaining bits

2) Pickapoint integer:
26(A)0 - 26(X)O0,
sign in WS — (X)28,

0 - remaining bits.

Note that pickapoint integers are stored with B27, pickapoint single

precision numbers with B27.

The algorithm and flow chart for these commands are contained in

Figures 11.3=5 and 11. 3-6.
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Pl (STS) — store single precision — provides for floating point storage
of the most significant 7 digits of the value held in the Accumulator, or

for the pickapoint storage of the most significant 9 digits of this value.

1) Floating point single precision (pickapoint not enabled):
If 41(A)21 = O (the operand is not longer than 7 digits)
20(A)0 -~ 20(X)0. Otherwise, (A) are shifted right, with
exponent increments, until 41(A)21 = 0.
6(EA)0 - 27(X)21,
sign in WS flip—flop - (X)28,
0 - 31(X)29
An interrupt is requested if the exponent overflows due to

the shifts.

2) Pickapoint single precision (pickapoint enabled):
(A) are shifted left or right, whichever is necessary, to
bring the exponent into agreement with the pickapoint
exponent. If left shifts generate too large a mantissa, an
interrupt is requested; if significant bits are lost due to

right shifts, rounding takes place.

Figures 11.3—7 and 11. 3-8 show how these actions are

implemented.

Thus, three of the store commands can cause KP to start the QZ
sequencer. For the store integer and store logical commands, QZ is
always started if the exponent of the operand proves to be other than
zero. The exponent checking is handled as follows: the EP register is
cleared to zero, and the exponent of the operand to be stored is sent to
EA at state KPB. Thus, the comparator circuitry has time, by KPD,
to produce EE (exponents equal) if (EA) = (EP) or zero. In either case,
if the signal is EE, QZ will be started. (Recall that the store integer

command, with pickapoint enabled, calls for storage of 9 digits shifted
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FIGURE 11.3-5 Algorithm for the Processing of Store
Double Precision and Store Integer Opcodes by KP
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TABLE 11.3—=3 Terms Used on the KP Flow Chart for Store
Double Precision and Store Integer Opcodes

AS Accumulator Sign flip—flop; AS is set when the sign of the operand in the Accumulator
is negative.

Clear EA Signal that clears exponent register EA to conform to zero opexand.

EE Exponents Equal; (EA) = (EP).

ES7 Bit 7 in register ES; when high, ES7 indicates that the exponent now held in
register ES is negative.

GQzZ GO to QZ sequencer to shift the operand to zero or pickapoint exponent.

KR Opcode DONE signal to KC.

MNA Memory Non—existent Address; MNA can affect KP only on the STD command

since, for the others processed by KP, the KR signal will have been sent to KC
and KP will have returned to idle before OM checks the address.

PO, Pl, P2, P3, P4 Store commands STD, STS, STL, STI, and STZ, respectively.

QZA, QZB Idle states of the QZ sequencer; Q_ZA indicates that QZ is in operation.

ROM READY QM sequencer.

TL Operand Too Large flip—flop; TL is set only for the STS command in non-pickapoint
mode; it indicates that the operand is larger than 7 octal digits.

UPE Pickapoint enable flip—flop; UPE high indicates pickapoint mode.

ws Working Sign flip—flop.
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FIGURE 11.3—6 The KP Flow Chart for the Processing
of Store Double Precision and Store Integer Opcodes
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FIGURE 11.3-7

Algorithm for the Processing of Store Single
Precision Commands by KP
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TABLE 11.3—-4 Terms Used on the KP Flow Chart for

Processing Store Single Precision Commands

AS

Clear EA

cz

DB

EE
EL

ES7

Fix EP

GKP
GQZ

JLE

KR

MNA

PO, P1, P2, P3, P4

RU

ROM

SwW

TL

TLA

UPE

ws

ZT™M

Accumulator Sign flip—flop; AS is set when the sign of the operand in the
Accumulator is negative.

Signal that clears exponent register EA to conform to zero operand.

Carry—Zero flip—flop; CZ is set to cause a carry—in to the first bit of the Adder. This
flip—flop is used by KP only when the STS command is being processed. It can be set

by CZ for use by KP when the STS command is written in the pickapoint mode (see
Chapter 8), or by KP for the case where the STS command is not written in the pickapoint
mode and shifting is required in order to reduce the operand to 7 octal digits. The CZ
flip—flop is set by the enabling of the RU(0)CZ path when RU is high.

Discarded Bits flip—flop; DB is set when any of the 3 bits shifted out of the D register
on a right shift is a 1, this information is used in establishing the condition of the
roundup flip—flop. In KP, this will affect only the shifting necessitated by too large an
operand on the STS command;

DB = D-1 v D-2 v D-3.

Exponents Equal; (EA) = (EP).
Exponent Larger; (EA) > (EP).

Bit 7 in register ES; when high, ES7 indicates that the exponent now held in register ES
is negative.

When the STS command is written in the pickapoint mode, the pickapoint exponent is
sent to register EP and QZ is started to shift the operand until its exponent value is the
same as that in EP or an error occurs. Fix EP refers to the transfer of the pickapoint
value from PE to EP. The path enabled is PE(0O)EP if the current pickapoint exponent
is positive, PE(C)EP if negative.

GO signal to KP sequencer sent by KC for the processing of STORE commands:
GO to OZ sequencer to shift the operand to zero or pickapoint exponent.

Interrupt request set by KP when shifting is necessitated for the STS command in
non-pickapoint mode if the exponent overflows, or by QZ for the STS command in
pickapoint mode if the mantissa overflows. (An exponent overflow will not occur in
QZ since the pickapoint exponent is known to be in the normal range. )

Opcode DONE signal to KC.

Memory Non—existent Address; MNA can affect KP only on the STD command since, for
the others processed by KP, the KR signal will have been sent to KC and KP will have
returned to idle before QM checks the address.

\
Store commands STD, STS, STL, STI, and STZ, respectively.

Round-up signal; RU is high when rounding is required. The non—biased round—up rule

states that round-up takes place if the least significant octal digit (the next one to be

discarded by an S{R3)D transfer) is greater than half. If this digit is exactly one—half and

the least significant digit retained is even, round—up. O_t}'nerwise, truncate. S2 defines

one—half since, after the S(R3)D transfer, this will be 2 . SO0 VSl v DB indicates greater

than one—half if S2 is high, and S3 indicates that the least significant digit retained is even. Thus,
RU => 52 A (S0 VSl vS3 v DB).

READY QM sequencer.
S Wide signal; when high SW indicates that the value in the S register is too large, i.e.,
significant bits have been shifted into 544 v S43 v S42. This signal is noticed in QZ only for

shifts necessitated by the STS ~ UPE command and causes an interrupt to be set.

Operand Too Large flip—flop; TL is set only for the STS command in non—pickapoint mode;
it indicates that the operand is larger than 7 octal digits.

Too Large exponent signal; when high, TLA indicates that the exponent has overflowed due
to shifts necessitated in order to bring the operand into the 7 octal digit range on STS and
UPE command.

Pickapoint enable flip—flop; UPE high indicates pickapoint mode.

Working Sign flip—flop.

Zeros To Memory signal; when high, ZTM indicates that zeros exist in the least significant

7 (for non—pickapoint mode) or 9 (for pickapoint mode) octals of the operand that is to be
stored in the memory.
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FIGURE 11.3-8 The KP Flow Chart for Store Single

Precision Commands
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to zero exponent.)

The store single precision command will cause startup of QZ only if
the pickapoint mode is enabled. (Otherwise, the value is stored with
its own exponent.) In the case of the pickapoint mode, the pickapoint
exponent is sent to register EP and the operand is shifted until its
exponent agrees with that in EP. Nine rather than 7 digits of the
value can be stored since the pickapoint exponent will be held in
register PE and need not be kept with each value to which it is
appended. An error exit at KPF provides for the case where QZ
signals that the left shifts necessitated by the pickapoint mode have
caused generation of too large a mantissa. This condition results in
an interrupt request. If the shifts to bring about equalization are right
shifts, the discarded bits flip—flop will be set as soon as significant
bits are shifted out of range and QZ will set CZ so that KP can
roundup the value before storing it. KP transfers the operand from N
to D, clears N and S, and gates (D) through the Adder with CZ high to

obtain the roundup.

As indicated in the definition of the store single command, the

operand will be adjusted so that the most significant bits are within

the 20(A)0 range, i.e., operand is no longer than 7 octal digits, before
the value is stored. KP tests for this condition by checking 41(A)21 =
0. Actually, at the time the test takes place, the operand is being
held in the S register, having been sent there via the left three shift
path. Thus, the bits in S which must register zero in order to indicate
correct positioning of the value are 44524. For this reason, the Too
Large signal, TL, goes high if 44524 # 0. With TL high, KP shifts

the operand to the right three bits at a time, incrementing the exponent
by 1 for each octal shift, until TL goes low, at which point it will

roundup the value if CZ has been set during the shift operation.
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TABLE 11.3-5 Terms Used on the KP Flow Chart

AS

BO, Bl, B4, B5

Clear EA

cz

DB

EE

EL

Fix EP

GKP
GQZ

JLE

MNA

PO, P1, P2, P3, P4
QZA, QZB
QZD

RU

ROM
SKP

SwW

TL

TLA

UPE

ws

ZTM

Accumulator Sign flip—flop; AS is set when the sign of the operand in the Accumulator
is negative.

Index opcodes LXP, LXM, XPT, XMT. At opcode startup the decoding of the other
four index commands will have been modified to agree with one of these commands so
that only four are gated through KP (see Section 9. 7).

Signal that clears exponent register EA to conform to zero operand.

Carry~Zero flip—flop; CZ is set to cause a carry—in to the first bit of the Adder. This
flip—flop is used by KP only when the STS command is being processed. It can be set by
QZ for use by KP when the STS command is written in the pickapoint mode {see Chapter 8),
or by KP for the case where the STS command is not written in the pickapoint mode and
shifting is required in order to reduce the operand to 7 octal digits. The CZ flip—flop is set
by the enabling of the RU(0)CZ path when RU is high.

Discarded Bits flip—flop; DB is set when any of the 3 bits shifted out of the D register on a
right shift is a 1; this information is used in establishing the condition of the round-up
flip—flop. In KP, this will affect only the shifting necessitated by too large an operand on
the STS command;

DB = D-1 v D-2 v D=-3.

Exponents Equal; {EA) = (EP).
Exponent Larger; (EA) > (EP).

Bit 7 in ES register; when high, indicates that the exponent now held in register ES

is negative.

When the STS command is written in the pickapoint mode, the pickapoint exponent is sent

to register EP and QZ is started to shift the operand until its exponent value is the same

as that in EP or an error occurs. Fix EP refers to the transfer of the pickapoint value from
PE to EP. The path enabled is PE(0)EP if the current pickapoint exponent is positive,
PE(C)EP if negative.

GO signal to KP sequencer sent by KC for the processing of STORE commands.
GO to QZ sequencer to shift the operand to zero or pickapoint exponent.

Interrupt request set by KP when shifting is necessitated for the STS command in non—pickapoint
mode if the exponent overflows, or by QZ for the STS command in pickapoint mode if the
mantissa overflows. (An exponent overflow will not occur in QZ since the pickapoint exponent
is known to be in the normal range. )

Opcode DONE signal to KC.

Memory Non—existent Address; MNA can affect KP only on the STD command since, for the
others processed by KP, the KR signal will have been sent to KC and KP will have returned
to idle before QM checks the address.

Store commands STD, STS, STL, STI, and STZ, respectively.
Idle states of the QZ sequencer; QZA indicates the QZ is in operation.
State of the QZ sequencer at which SW is sensed.

Round-up signal; RU is high when rounding is required. The non—biased round-up rule

states that round-up takes place if the least significant octal digit (the next one to be ;

discarded by an S(R3)D transfer) is greater than half. If this digit is exactly one-half and

the least significant digit retained is even, round-up. Otherwise, truncate. 52 defines

one-half since, after the S(R3)D transfer, this will be 2 . S0 v D1 v DB indicates greater

than one—half if S2 is l:n_igh, and S3 indicates that the least significant digit retained is even. Thus,
RU =52 A (S0VvSl vS3 v DB).

READY OM sequencer.

START signal to the KP sequencer for index opcodes.

S Wide signal; when high, it indicates that the value in the S register is too large, i.e.,
significant bits have been shifted into S44 v S43 v 542. This signal is noticed in QZ only

for shifts necessitated by the STS A UPE command and causes an interrupt to be set.

Operand Too Large flip~flop; TL is set only for the STS command in non—pickapoint mode;
it indicates that the operand is larger than 7 octal digits.

Too Large exponent signal; when high, TLA indicates that the exponent has overflown due to
shifts necessitated in order to bring the operand into the 7 octal digit range on STS and
UPE command.

Pickapoint enable flip—flop; UPE high indicates pickapoint mode.

Working Sign flip—flop.

Zeros To Memory signal; when high, ZTM indicates that zeros exist in the least significant

7 (for non—pickapoint mode) or 9 (for pickapoint mode) octals of the operand that is to be
stored in the memory.
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FIGURE 11.3-9 The KP

Flow Chart
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12.1

CHAPTER 12

INPUT/OUTPUT SEQUENCERS

SECTION 12.1 — INPUT/OUTPUT CONTROL

Central Processor input/output logic provides communication between
the Central Processor and associated memory system and the
input/output equipment which it controls. All input/output operations
in the G20 System are carried out by means of transmission of single
characters over the communication system. Peripheral units regard
these characters as separate entities; the Central Processor regards
them as elements of 32-bit words. Thus, when the Central Processor
is transmitting one or more words from its memory, it accesses each
in turn and transmits it one character at a time. When it is the
receiver, it packs the characters into 32—bit words and stores the
words in successive locations in the memory. In this way all data is
received by the Central Processor in the form of logic words. Each
32-bit word can be considered as consisting of five 6—bit or four 8-bit
characters. The programmer has the option of coding in 6— or 8-bit
mode. The packing and unpacking of G—20 words, and the transmission

and receipt of the characters, is referred to as block input/output.

When a Central Processor participates in an input/output operation, it
is the controlling element whether it assumes the role of receiver or
transmitter. That is, it will always be responsible for setting up the

operation and for instructing the other device. Peripheral devices are
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not synchronized with the Central Processor and memory system clock
and, in fact, each type of device operates at its own rate of speed.
Magnetic tapes, for example, have much faster transfer rates than do
card punches. Since the speeds of these external devices are fixed, it
must be possible for the Central Processor to keep pace with any of
them if information is not to be lost during communication. This makes
mandatory an adaptable input/output control. To accomplish this,

input /output logic is designed so that it is dependent upon a response
being received to each transmission. Manipulations necessary between
transmission or receipt of characters by the Central Processor are
completed in time for the fastest response to be received. The Central
Processor then idles. When the response is received and has been
synchronized with the internal clock (when the response can be read)
the synchronizing signal, SY, goes high and takes the Central
Processor out of its idle loop. The response that sets SY will fall into

one of the following categories:

1) a green response (GRN = 002) sent as a code on character
lines in answer to an instruction to indicate that everything

is normal and the program should not branch;

2) an REQ signal (REQuest for character) received on the
separate REQ line in the communication cable as the
acknowledgement to receipt of an expected character and

request for the next;

3) a character correctly received in response to an REQ signal

sent out by the Central Processor;

4) occurrence of an error condition (parity error, incorrect

response, etc.) causing the ER signal to come high;

5) any unexpected response. For example, a red response
(RED = 003) is sent by some units when a program branch is

called for. This is a line command code, but is not decoded
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as such. Rather, it causes ER to go high because it does not
conform to the expected response. Similarly, receipt of an

unexpected END code causes ER to go high.

If ER goes high during synchronization, a transfer will occur in the
program when SY becomes available. The command that causes the
transfer is that following the input/output command. The occurrence
of signal ER causes termination of a block input/output operation
regardless of whether or not the end of the block has been reached.
Thus, ER ASY'terminate a block operation and cause the next com—
mand to be executed. If ER is not high, and the end of the block has

been reached, computation resumes with the next command plus one.

Block input/output operations handle two distinct functions: the
instructing and querying of the input/output units, and the performance
of data transfers either from a block of words in memory to the
instructed device or from that unit to a block of locations in the
memory. The Central Processor uses queries and instructions,
referred to as line commands, to control input/output operations.
Block transmission of line commands always occurs from the Central
Processor to the other device. However, the units do use a few line
commands as responses. The only one so used that is decoded and
understood by the Central Processor is the green code (GRN = 002),
the response used by the unit being instructed to indicate that
conditions are normal and that it is ready to receive the next line com—
mand. If the unit is not ready to proceed, a RED response is sent.
The RED code (003) is not decoded, but will cause the ER signal to
come high because it is not the expected response, (GRN), and will,
thus, cause the block operation to terminate and the program to branch

to an error routine.

Two line commands, ERR (005) and END (004), are sometimes used
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as responses by input/output units during data transfers, ERR or END
being sent on detection of an error condition, or END at the end of a
block operation, but the Central Processor does not interpret these as
line commands. The ERR code causes the right result because it is
not a correct response (REQ or a data character), and, thus, signal
ER comes high. Similarly, an ER signal results from receipt of an
unexpected END code. If END is sent at the end of the block operation,
it is ignored because the Central Processor is already aware of the

end of the operation and is not expecting any response.

Much of the input/output flexibility of the G—20 System is due to the use
of line commands. The structure of any given input/output system can
be changed — units added or removed — without requiring drastic
revisions in the input/output routines that handle the system. Line
commands make it possible to ascertain the availability of units at any
given time, thus allowing for program runs with input/output operations
of varying lengths without necessitating the leaving of enough time for
the operation of maximum length in all cases. They also provide the
means for maximizing available input/output facilities during execution
of a program. This because the input/output program can assign tasks
to several units of the same type, query them to determine which
finishes first, and assign the task that should be handled next to the
first unit available rather than the predetermined unit that might be

tied up for some time.

Six opcodes initiate block input/output operations. Two of these call

for transmission of a block of line commands: BTC6 and BTCS.

Line commands are usually packed in the 8—bit mode due to the format
used for the CAL command and instruction numerics. Sending of the
line command CAL amounts to transmission of the particular unit's

call number; sending of instruction numerics, numbers necessary to the
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positioning of certain of the devices, amounts to transmission of the
correct series of numbers. Since call numbers are always assigned
in the 2nn range, and instruction numerics in the lnn range, neither
of these codes can be packed into the 6—bit mode. However, all other
line commands are in the 00—77 range and can, therefore, be written
in the 6—bit mode using the BTC6 command. No provision exists for
receipt of line commands; information is always received in the form

of data characters.

Four commands are used to handle data transfers: BTD6, BTDS,
BRD6 and BRD8. Before any such transfer can take place, the
participating unit (whether it is to be the receiver or the transmitter)
must be instructed by the Central Processor. This means that it must
receive a series of line commands and that it must respond correctly
to each of them. The line commands will most often be packed into a
block and sent out through use of opcode BTC6 or BTC8. (Coding of
these commands one per command word, using the Transmit Line

Command opcode, is discussed later.)

Thus, one block operation is used to set up another block operation.
As the line commands are received by the peripheral device, they are
decoded and a response is returned to the Central Processor. The
normal response to these commands is GRN; when this is received,
the next command in the block will be sent. If any other response is
received, or no response is received for 1 second, the transmission
will be terminated and computation will continue with the next com—

mand in the program (the error branch).

Consider the setting up of a data transfer from an MT—10 to the
Central Processor. A possible series of commands to do this would
be: a call to the unit (this consists of the call number of the unit), a

query to see if it is ready to accept more instructions (Query Ready —
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QRD) and, assuming that the tape is positioned at the correct block
address, TRA if it is to be the transmitter in the operation. If the
responses to these commands are all green, the tape enters the
INSTRUCTED state and remains there until the actual transfer is
initiated by another block input/output operation (which sends it to the
MESSAGE state) or, through some change in plan, it is called again
and sent back to the CALLED state.

When a unit has been instructed to receive or transmit data, the actual
data transfer can be initiated by use of the BRD and BTD opcodes.
Whichever of these opcodes is used, the starting line command that
occurs in the second command word must always be SDT (Start Data
Transfer = 010) which informs the other device that the operation for
which it has been instructed is ready to begin and sends it to the
MESSAGE state. From this point on, the response to each received
data character (whether transmitted by the Central Processor or the

other device) will be a signal on the separate REQ line.

The operation will end when the Central Processor transmits either an
END or ERR code depending upon whether or not an error has occurred
during the processing. Receipt of either of these causes the other
device to leave the MESSAGE state and, thus, makes it available for
the next operation. Actions taken when an error is detected by the
input /output unit vary. For example, the tape unit sends ERR to the
Central Processor on detection of a parity error. The Central
Processor does not decode this signal, but interprets it as an incorrect
response so that signal ER comes high. The disc, in one mode of
operation, does not stop the operation until the end of the current block
when a parity error is detected on a received character. Instead, it
sets its own error flip—flop and switches the state of the parity bit to
allow correct parity for purposes of transmission. At the end of the

block, it transmits ERR. On detection of an error condition, some
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units send END or ERR, some do not respond. Any of these events
cause the Central Processor's ER signal to come high. (ER is high if

a response is not received within one second. )

In data transfers, each character transmitted is supplied with a flag in
the 9th bit or data flag bit. This is necessary because the same
facilities are used for the transmission of data and line commands and
the input/output devices must be able to distinguish immediately
between the two. This flag is supplied by the hardware in the Central
Processor during transmit operations, or by the logic in the
input/output device during receive. Any code received by an
input/output unit that does not have this flag attached, will be inter—
preted as a line command. If the code does not correspond to one of
the commands pertaining to this particular unit, the unit will not
respond. The failure to respond will set ER in the Central Processor

at the end of one second.

Parity bits are supplied to the characters being transmitted by the
Central Processor circuitry. Parity of data characters is checked by
some receiving devices and parity of line commands is checked by all
except the MT—10 which checks parity only on its CAL command.
Unlike the flag bits, the parity bits are recorded with the data
characters in some input/output units. On transmission, parity is
checked by the device if the parity bits are stored with the data
characters. It is always checked by the Central Processor on each
character received. Detection of a parity error by the Central
Processor will bring ER high and cause a branch in the program. All
input/output devices that do not store parity bits must be capable of
adding them to the characters on transmission since the parity will be
checked by the Central Processor before the words are packed and

stored.
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The block of words operated upon in a block operation may be any
length from one word to the maximum available number of words in
memory. The same logical manipulations are involved in the handling
of each word. Thus, block input/output operations are processed as
repeat operations with the iterations continuing until the limit specified
by the programmer has been reached. All repeat operations are
specified by two command words. The first command word contains
the block designation 033 in the opcode bits for all block input/output
operations.

31 29 27 20 14 0
F |M 0011011 i A

KC accesses this word, decodes 033, assembles the operand which is
the address of the starting location of the block, checks it for integer
format, and sends a START signal (SKM) to the KM sequencer (a GO
signal (GKM) is sent for repeated arithmetic and logic operations)
which sets up all repeat operations. There are no programming
restrictions on the use of address modifications in writing such a

command.

KM starts the QC sequencer to access the second command word. This
word contains the following information: the block input/output opcode
to be executed, the starting line command to be sent to the peripheral
device, and the length of the block to be used in the operation. Note
that this command word must be carefully formulated: no address
modification is allowed (KC does not participate in this access and QC
handles the word in a simple—minded fashion) and the number of bits
available for the opcode and the starting instruction are unique. Only
five bits of the input/output opcode are preserved for decoding in this
second word and, of these, only three are actually used (see

Table 12.1-1). In the opcode list, these commands are given as 7—bit

opcodes, but the least significant four bits are zeros and, of these,
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two are omitted from the command word itself. This makes 8 bits

(15 = 22) available for the starting line command (the 6 index bits plus
the two from the opcode). In addition to accessing the second word,
QC sends appropriate information to the various control registers
before returning control to KM. Thus, the operation is entirely set up
except for the transmission of the starting line command. In the case
of block data transfers, whether the Central Processor is transmitting
or receiving, this line command is always Start Data Transfer (SDT =
010); in the block transmission of line commands, the starting line
command is the first in the block to be transmitted. This will most
often be a call to the unit being addressed, e.g., if the commands are
directed to an MT—10 unit with the call number 220, the line command
CAL, which in this case consists of the number 220, appears in the
second command word. This word will then have the form

31 27 22 14 0
0000 11000 10010000 Block Length

Most input/output operations are handled through use of block com—
mands. It is also possible, however, to transmit single characters or
commands. No such commands exist for receipt of single characters
or commands. Only one word is necessary to stipulate such an
operation. The commands are Transmit Line Command (TLC = 157)
and Transmit Data Character (TDC = 117). For these commands, the
operand assembled by KC is the character or command that will be
transmitted. Use of these opcodes to instruct a device, or to effect a
data transfer, obviously requires more execution time than use of the
block mode since each character or command requires accessing of a
separate command word and the opcode must be decoded for each.
There are situations, however, in which it is appropriate to send only a
single character or a single query to an input/output device so that
these commands do have a place in the input/output opcode structure.

Since these are not repeat operations, KM is not involved. KC accesses
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TABLE 12.1-1

Opcode in Second Command Word of
Block Input/Output

BLOCK BLOCK BLOCK
COMMAND: TRANSMIT TRANSMIT RECEIVE
COMMANDS DATA DATA

6 8 6 8 6 8
OCTAL
DESIGNATION: 040 140 000 100 020 120
= BINARY: 0100000 1100000 0000000 1000000 0010000 1010000
COMMAND
AS WRITTEN
IN 27 -23 01000 11000 00000 10000 00100 10100
OF COMMAND '
WORD
DECODING
USED IN 010 110 000 100 001 101
CD REGISTER
CDl12 (MODE) 0 1 0 1 0 1
CD11 (CLASS OF
' 1 1
INFORMATION} 0 0 0 0
CD10 (DIRECTION 0 0 0 0 1 1
OF TRANSFER)
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the command word, decodes the 7-bit opcode, and starts KX to handle
the transmission. Although 7 bits are used to designate the opcode,
consistency has been maintained in the decoding of the most significant
three bits. As was the case in the block codes, CD12 = 1 for 8-bit
mode (TLC and TDC can be written only in the 8-bit mode), CDI1 = 1

for commands, 0 for data, CD10 = 0 for transmit operations.

CDl2 CDll1 CDI0
TDC 1 0 0 1 1 1 1

TLC 1 1 0 1 1 1 1

Despite the distinctions between the command format and the processing
of block and single character input/output operations, the timing
considerations and the hardware facilities used for the actual trans—
mission and receipt of information are the same for both. The Line
Receiver register (LR) stores incoming information; it consists of 10
bits corresponding to those transmitted over the communication lines:

8 information bits, a data flag, and a parity bit. The Line Driver reg—
ister (LD) is a pseudo-register (i.e., the Line Drivers are blocking

oscillators, not flip—flops) from which information is transmitted.

Information is sent to the Line Drivers from 33526 by the enabling of
the path S(R26)L.D which triggers the Line Drivers. (The data flag and
parity bit are supplied by the appropriate circuitry.) Thus, for all
transmit operations, the command or character that is to be sent must
be shifted into position at 33526. This means that, at the very least, a
left shift of 2 bits is required to position the information since the left—
most character of a word is normally positioned at 31S24. In block
operations, where successive characters in the word are to be trans—
mitted, the word is shifted left between each transmission so that each
character is eventually positioned at 33526 and sent to LD. In single

character transmissions, the character must be shifted from the least

12-11



12.1

significant end of the word (where it resides following operand assembly)

to this position.

Receive operations also call for left shifts. All information received is
packed into 32 bit words, with each character being received in the

least significant bits of the S register through enabling of the LR(0)S
path. (Parity and flag decoding is handled by the appropriate circuitry.)
The word being formed must, then, be shifted 6 or 8 bits (depending
upon the mode) to the left between the receipt of each character in

order to make room for the next.

In the 6—bit mode, the breakdown of the 32 bits is actually into one

8—bit character followed by four 6—bit characters.

31 23 17 11 5 0

In sending and receiving in this mode, 8 bits will always be trans—
mitted. The most significant character will contain the information
from 31524 of the word, while the most significant two bits of the
succeeding characters will be zeroed. If these bits were not zeroed, it
would be possible for 1l's to be transmitted as part of the character

(the least significant two bits of the preceding character are positioned
in bits 32 and 33 and the Line Drivers will transmit this information if
zeros are not supplied). This would cause the recording of incorrect
information in the devices that store all 8 bits on the line. Thus, it is
essential that the two leading bits be zeroed for 6-bit mode input/output

operations.

In this introductory section, considerable emphasis has been placed on
details of input/output because the various operations performed are so

interdependent that they cannot be thoroughly understood except in
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relation to one another. Thus, while transmit differs from receive,
and block operations from single transmit operations, there is a basic
sameness in the handling of all of them. Most importantly, it should be
clear that all input/output operations use the same hardware facilities
and that all of them rely on the QW sequencer to coordinate and control
these activities. QW is the basic input/output sequencer. It shifts the
current word in increments of 6— or 8—bits, sends or receives
information by triggering the Line Drivers or sensing the Line
Receivers, synchronizes the arrival of the responses, and detects the

occurrence of errors. It handles four distinct operations:
1) receive blocks of data words (BRD6, BRDS8);

2) transmit blocks of data words or line commands (BTC6,

BTC8, BTD6, BTD8);
3) transmit single characters or commands (TLC, TDC);

4) transmit the starting instruction from the second command

word of block operations.

In 1) and 2), blocks of information are involved and QW will handle one
complete word at a time; in 3) and 4), single characters only are
involved; QW will shift this character to 33526 and transmit it. QW
uses the SHS flip—flop to distinguish between block and single character
operations. SHS is high for cases 3) and 4) (shifting and transmitting a
single character). This tells QW to shift in 6—bit increments until the
character is in transmitting position and to trigger the Line Drivers.
SHS indicates a block operation. QW uses the CD decoding to gate
block operations: CDI10 = receive, CDIO0 = transmit, CD12 = shift in

8—bit increments, CD12 = shift in 6—bit increments.

The CP—CQ character counter is meaningful in all four cases. This
counter, which consists of flip—flops CP1l, CP2, CP3, CQl, CQ2, and

CQ3, is designed to keep track of the number of shifts performed. In
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the case of block operations, this is also the number of characters
handled. Counting is done in the Gray code and must go high enough to
keep track of five shifts (necessitated by words handled in the 6-bit

mode).

TABLE 12.1-2 Counting as Performed by the CP—CQ Counter

Number of Shifts Remaining CP3 CP2 CPl1
4 0 0 0
3 0 0 1
2 0 1 1
1 0 1 0
0 1 1 0

The QW sequencer uses the CP3 signal from this counter. It expects to
receive CP3 on the last (or, when SHS is high, the only transmission).
Thus, the counter must be initialized so that CP3 will go high correctly.
In block operations, the counter is set to 000 when in the 6—bit mode,

to 001 for the 8—bit mode. In the case of TLC, TDC commands, the
operand to be transmitted must be shifted from 7NO to 33526 before
transmission. The SHS flip—flop will be set indicating that only one
character is to be handled, and the CP—CQ counter will be set to 001.
Since SHS shifts occur only in the 6—bit mode, this will send the
character 24 bits to the left. The remaining shift (2 bits) will be
handled by KX prior to the startup of QW so that, when CP3 comes
high, the character will be properly positioned and the transmission

may proceed.

In the remaining case, that of transmitting the starting instruction
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from the second command word of block input/output operations, the
character must be shifted from its position in 22515 to 33S26, or left
11 bits. Since SHS will be high for this operation, shifting will occur
in increments of 6 bits. KW, the controlling sequencer for this
operation, sets up the 11-bit shift by first shifting the word 1 bit to
the right, setting up the CP—CQ counter so that CP3 will come high
after two 6—bit shifts have been made, and then starting QW. In this
way, when CP3 comes high, the starting command will be positioned

at 33526 for transmission.

This has been a fairly lengthy discussion of factors that are mainly
concerned with the QW sequencer. However, these manipulations are
basic to all input/output operations and thus, provide necessary
orientation to the detailed sequencer descriptions that follow. The
remaining sections of this chapter are organized into single character
operations and block operations. This means that the KX sequencer,
which handles TLC and TDC commands, and the SHS or Shift—Send mode
of the QW sequencer are discussed first, followed by the general
algorithms for block operations, the KM, QC and KW sequencers, and
the SHS mode of QW. Table 12.1-2 is included as a reference for
basic input/output information and Table 12.1-3 contains the signals
that are used most frequently by all input/output sequencers. It is

included at this point to avoid unnecessary redundancy.

One additional topic requires inclusion in this introduction to
input/output: that of the initialization or bootstrap mode of operation.
This mode of operation is essential since it provides the only method
for gaining control over the computer when no control program is in
the memory. Bootstrap allows for the input of the control program.
In order to use existing logic to perform this operation, key flip—flops
are set to artificially advance certain of the sequencers to states they

would normally reach midway in an output operation. All other flip—flops
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are reset, thus effectively clearing the rest of the logic. When the

computer is initialized, the initial load switch is thrown. This

generates a ZM pulse (Zero Machine) which causes the following:

1)

2)

3)

4)

5)

6)

7)

the KM sequencer is advanced to state KMH by means of

setting flip—flops KM2 and KM4;

the KW sequencer is advanced to state KWL by means of

setting flip—flop KW7;

all remaining sequencers are cleared to their normal idle

loops since the decoding flip—~flops are reset;

the BS (BootStrap) flip—flop is set to provide special gating

in the KM sequencer;

flip—flop 7 of the CA register (CA6) is set; this effectively

stores address 1008 (64)) in the address register so that control

program will correctly be read in starting at this location;

Flip—flops 11 and 13 of the CD register (CD10 and CD12) are
set; this establishes the code 101 (receive, 8-bit mode) which

is correct for reading in the program;

all other flip—flops are reset; since this includes the Master
Interrupt Control flip—flop (UJE) no interrupts will be
processed during the bootstrap operation; this also clears all
registers including register BA which normally holds the
block length on an input operation. Thus, no set length is
established for the bootstrap program. The device used for

bootstrapping is in charge of terminating the operation.
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TABLE 12.1-3

Input/Output Information

N.B. Only 3 bits are necese=| TRANSMIT TRANSMIT BLOCK BLOCK BLOCK
sary to decode opcode of 2nd | LINE DATA TRANSMIT TRANSMIT RECEIVE
word in block command: COMMANDS CHARACTERS COMMANDS DATA DATA
27B25
These are sent to CD. 6-BIT 8~BIT | 6-BIT 8~BIT | 6-BIT 8~BIT
(MODE) CDh12 1 1 | 0 1 | 0 1 10 1
(CLASS OF CDl1 1 0 | 1 1 0 0 lo 0
INFORMATION) | | I
(DIRECTION CDl10 0 1] I 0 0 |o 0 |1 1
OF TRANSFER) Central Processor is transmitter i } = | receiver ——»
L
+

l

SET COMMAND COMMAND | TWO COMMAND WORDS: 1st SPECIFIES BLOCK OPERATION (033),
uP 1S TLC 15 TDC | OPERAND IS STARTING ADDRESS OF BLOCK; 2nd SPECIFIES OPCODE
OPERATION | (SEE DECODING ABOVE), OPERAND IS BLOCK LENGTH, BITS 22-15
OPERAND IS CHARAGTER OR CONTAIN STARTING IlNSTRUCTION |
COMMAND TO BE SENT |
]
STARTING 1st COMMAND SDT | SDT
INSTRUCTION IN BLOCK |
|
RESPONSE FROM |
OTHER DEVICE | None

PROCESSOR
ACTION:

OPERAND TRANSMITTED

1st OPERAND IN BLOCK IS ACCESSED
AND FIRST CHARACTER TRANSMITTED

i 1st ADDRESS IN BLOCK
ACCESSED TO PREPARE
| FOR STORING OF

| RECEIVED OPERAND,

| SEND REQ

RESPONSE FROM
OTHER DEVICE

GRN GRN

|

| |
| s
' |
| I
1 L
'r 1
| GRN GRN } REQ REQ
|

|

|

|

[

1

Al

|

{ GRN GRN I REQ REQ

[
| 1st CHARACTER

NORMAL SEQUENCE OF EVENTS

ERROR CONDITIONS

(Acc) = ADDRESS OF
PLUS 2

CURRENT WORD

IN CURRENT WORD
:WITH ZEROS;
TRANSMIT ERR CODE;
| TERMINATE
(Acc) = ADDRESS OF
| CURRENT WORD PLUS 1

PROCESSOR IF NO ERROR CONDITION | IF NO ERROR CONDITIONS ARISE, CONTINUE OPERATION UNTIL
ACTION: OCCURS, EXECUTION OF THE | END OF BLOCK IS REACHED; EXECUTION OF THE PROGRAM WILL
PROGRAM WILL CONTINUE | CONTINUE AFTER ONE COMMAND IS SKIPPED
AFTER SKIPPING ONE |
COMMAND | | TRANSMIT END CODEi >
| I i
RESPONSE IS NOT GRN | | RESPONSE IS NOT | RESPONSE IS NOT
CODE ! > | REQ | DATA CHARACTER
POSSIBLE | | |
ERRORS NO RESPONSE RECEIVED I t | »
FOR 1 SEC. . ) |
PARITY ERROR DETECTED : ! f >
| MEMORY OVERFLOWl 1 >
ACTIONS i TERMINATE TRANSMIT ERR : FILL ANY REMAINING
TAKEN | CODE; TERMINATE | CHARACTER POSITIONS
1
I
I
|
I
|
|
1

MEMORY OVERFLOW SETS JO FOR INTERRUPT
IN ALL CASES, DETECTION OF AN ERROR CONDITION IS SIGNALED BY ER GOING HIGH; IN BLOCK
OPERATIONS, ER CAUSES BRA TO GO HIGH :
OCCURRENCE OF AN ERROR CAUSES PROGRAM TO CONTINUE WITH NEXT COMMAND WHICH
SHOULD CALL FOR BRANCHING TO AN ERROR ROUTINE
THE PATH LR(0)H IS ENABLED CAUSING THE FOLLOWING INFORMATION TRANSFERS INTO THE

H REGISTER

CHARACTER

COUNTER

CP -CQ TED
TIME

2
2 : ERROR
DELAY
FLIP-FLOP
,_M.\

3]
o 3 LR REGISTER CONTAINING
» I CURRENT RESPONSE; PED
B & FLIP-FLOP DETERMINES
gg : STATE OF H9
REQ PED oA
FLIP-FLOP PARITY 9 8 7 6 5 4 3 2 1 0
ERROR
FLIP-FLOP
~— —_—

I

]

14 13 12 11 10 9

8 7 6 5 4.3 2

1 0

THUS THE ERROR ROUTINE CAN DETERMINE THE CAUSE OF THE ERROR THROUGH USE OF ERO AND ERA COMMANDS. NOTE
THAT IF REQ IS PRESENT AND IS INCORRECT, H10 IS HIGH, 9H0 ARE CLEARED.
WORDS ARE FILLED WITH ZEROS AND STORED; THUS, THE CP COUNT WILL ALWAYS INDICATE A FULL WORD IN THIS CASE.

ALSO, ON BLOCK RECEIVE INCOMPLETE
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TABLE

12.1—4 Input/Output Information

BA15

BLA

BRA

CP, CQ

ER

PED

RL

SHS

SY1, SY2, SYA,
SYB, SYC, SYD

TSB

TDA

ZBA

Bit 15 of register BA; this flip—flop is set by ZBA high and the enabling of the AC(+1)BA
path and indicates that the end of the block has been reached.

Block Line Amplifiers flip—flop; when high, it inhibits LR inputs; BLA goes low one-half
clock time after a ission if a resp is expected.

BRAnch flip—flop; BRA is set when ER is high} the input /output program will branch on
execution of the next command.

Character counter flip—flops; CP3 is high when shifting is completed for the current
operation of QW.

ERror signal; ER high indicates that an incorrect response has been received by the
Central Processor or that the response calls for a branch in the program.

Parity Error Detected inverter; PED is high when such an error has been detected in
the character received.

Reset LR register flip—flop; when RL is set it causes register LR to be cleared (each
flip—£lop to be reset) and the BLA flip—flop to be reset (to enable receipt of inputs).

Shift-Send flip—flop; when set indicates to QW that it is handling a single character,
i.e., OW shifts in 6-bit increments until CP3 is high and then transmits the character
positioned at 33526; used in processing TLC and TDC and, in block input/output, to
transmit the starting instruction for the second command word.

Synchronize input flip~flops; when high, indicate that response has been received and
synchronized with the G~20 clock or that no response has been received for one second.

Transmit Six Bit mode inverter; CD12 causes TSB to go high and remain high after
transmission of starting instruction (all single character transmission is in the 8—bit
mode). This signal controls the transfer of LR to S; the transfer will contain 6 bits if
TSB is high, 8 bits if low.

Transmit Data inverter; CDl1 causes TDA to go high; TDA is used to code data
flag, LD8.

Zero BA signal; ZBA is high when (AC) = 777778- ZBA, combined with the enabling of the
AC(+1)BA path, causes BAI5 to go high.
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SECTION 12.2 — THE KX SEQUENCER

The KX sequencer is started by KC to handle processing of the Transmit
Single Data Character (TDC) and Transmit Single Line Command (TLC)
opcodes. At opcode startup, the assembled operand, in integer
format, is positioned in the least significant bits of the N register.

Bits 7NO contain the character or command that will be transmitted.
Before the transmission can take place, the operand must be shifted to
the sending position in register S: 33526, or 26 bits to the left.
Twenty—four bits of the shift are handled by the QW sequencer. Recall
that, when QW operates in the Shift-Send mode, it shifts and transmits
only one character with shifts continuing in increments of 6 bits until
CP3 signals completion. Thus, KX calls for four such shifts by setting
the CP—CQ counter to 001. KX initially shifts the operand 2 bits to the
left so that when CP3 comes high, the operand is correctly positioned
at 33526. (KX performs this shift by means of two 1—bit shifts because
there is no direct 2—bit—left shift path.) KX must, then, perform the

following tasks before starting QW:

1) Set the SHS flip—flop;

2) Clear the Line Response register: Set RL = clear LR and
reset BLA. Following this, BLA is set to inhibit inputs to LR
so that the character transmitted will not be heard; QW will
enable receipt of the response after the character is trans—
mitted.

3) Reset the SY flip—flop so that synchronization can be signalled;

4) Shift the operand 2 bits to the left and set the CP—CQ counter
to 001.

Note that, while shifting with SHS high is always in 6—bit increments,

the TLC and TDC commands can be written only in the 8—bit mode,

i.e., CD12 is always high for these commands.
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When the response from the other device has been received and
synchronized, or no response has been received for one second, KX
proceeds on the basis of the state of signal ER. If no error has
occurred, the address of the next command is incremented by one; if
an error has occurred, no increment takes place. (As with all
input/output commands, the command immediately following calls for
a transfer to the error routine while the normal procedure calls for

the skipping of one command.)
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FIGURE 12.2-1 Algorithm for the KX Sequencer

Idle

Error information to
register H; Leave
ja§—{ 1/0 flip—flops in
correct state; Opcode
DONE to KC

ND/ GO from KC?

Yes — — — — — —
—_— — —— — —](N) = Operand with zero exponent
N —

Set up operation of QW:
Enable Shift-Send Mode ;
Clear register LR to receive
response; Reset SY to free
it for the response

'

Set character counter to 001
so that QW will shift left —6
four times;

Shift operand left 1 bit 2 times
for total of 26 left shift

Y

GO to QW; Enable LR
to receive response

SY high? (Response \No
synchronized?)

+Yes

Yes{ ER high?
(Error condition)

‘No

Increment next command

address to avoid error branch;
Leave 1/O flip—flops in correct-
state; Opcode DONE to KC .

v
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TABLE 12.2-1 Terms Used in the KX Flow Chart

BLA Block Line Amplifier flip—flop; reset to enable
response to enter register LR input.

Clear CQ Set up CP—CQ counter to handle appropriate
shift; in KX it is set to 001 to call for four
shifts.

ER ERror signal; ER high indicates that an

incorrect response has been received by the
Central Processor or that the response calls
for a branch in the program.

LR(0)H Path enabled when ER is high to send last
response received and error information to
register H (see Table 12.1-3).

SHS Shift—Send flip—flop; SHS high causes QW to
shift a single character in 6—bit increments
until CP3 is high and then transmit.

SY SYnchronization flip—flops.

RL Reset Line Receiver register flip—flop;
Set RL => reset LR register and reset BLA.
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FIGURE 12.2-2 The KX Flow Chart
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SECTION 12.3 — QW OPERATING IN THE SHIF T-SEND MODE

When QW is started with the SHS flip—flop set, it performs 6—bit shifts
until CP3 goes high to indicate that the operand is properly positioned,
triggers the Line Drivers, and signals that the operation is complete.
This mode of operation is used for transmitting the starting instruction
from the second command word in-block operations and for transmitting
the operand for the TLLC and TDC commands. In both instances, the
SHS flip—flop must be set, and the CP—CQ counter must be correctly
initialized. In the case of the block operation, the KM sequencer
(multiple access) sets the SHS flip—flop, while the KW sequencer sets
the counter to 011. KW also performs a right—l1-bit shift so that the
left—12—bit shift called for by this setting of the character counter will
result in a total shift of left—11, the correct amount to send the starting
instruction from 22515 to 33S26. In the case of the TLC, TDC com—
mands, a total left shift of 26 bits is required to send the operand from
7NO to 33526. To accomplish this, KX sets the SHS flip—flop and shifts
the operand 2 bits to the left, then sets the counter to 001 so that QW
will perform the remaining 24—bit shift. With the character properly
positioned, QW triggers the line drivers and sets the RL flip—flop to
clear the Line Receiver register and enable the response. (The BLA
flip—flop has been set prior to entry into QW so that the character

transmitted will not be sent to LR.)
The algorithm for Shift—Send appears on Figure 12.3-1, and the flow

chart in Figure 12.3-2. Note that shifting in this mode is in

increments of 6 bits only.
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FIGURE 12.3-1

Algorithm for the Shift-Send Mode of QW
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'
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Y
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processing TLC or TDC command:
SHS set by KX
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CP-CQ set to 001 by KX

KX idles at KXG—-KXH for signal SY

processing block operation:

SHS set by KM (see Section 4)
KM idles at KMG—-KMH for DKW
CP-CQ set to 011 by KW
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TABLE 12.3-1 Terms Used on the QW Flow Chart for the
Shift=Send Mode

CP (+1) CQ Increment path for CP—CQ counter.
DQW : DONE QW sequencer.
ER ERror signal; ER high indicates that an

incorrect response has been received or that
the response calls for a branch in the program.

GQW GO signal to QW.

LR(0)H Path enabled when ER is high to send last
response received and error information to
register H (see Table 12.1-3).

RL Reset Line receiver register flip—flop; Set
RL = reset LR, reset BLA.

RQW READY QW sequencer.

SHS Shift-Send flip—flop; SHS high causes QW to

take paths gated by signal SHS; shift a single
character in 6—bit increments until CP3 is
high and then transmit.

S(R26)LD Enabled path that triggers the Line Drivers
and causes transmission of the information
in 33S26.

SY SYnchronization flip—flops.
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FIGURE 12.3-2

The QW Flow Chart
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SECTION 12.4 - BLOCK INPUT/OUTPUT

The general concepts involved in the processing of block input/output
commands were discussed in the introduction. The remaining sections
in this chapter are devoted to a description of the implementation of

this function. The KM sequencer controls block input/output operations,
using QC, KW, QW, OM and QA to carry out specific portions of the
work. Figure 12.4—1 shows the over—all breakdown of responsibility
during block receive (input) operations. KM is in operation from the
time of opcode startup until QA is started. (QA sends an opcode DONE
signal to KC so that KM need not wait for its completion before

returning to idle.)

Figure 12.4-2 shows the path used in implementation of a block
receive operation (BRD6 in this case) from the time KM sends a GO
signal to KW until the received word has been transferred to the B
register so that it is ready to be stored in memory by QM. The
enabled paths that affect each transfer are noted, as are the sequencer
states at which each occurs. These actions are further related to
those taken by KW and QM which proceed with other tasks while QW
handles shifting and transmitting of the operand. This example
demonstrates the two uses of QW: in the SHS mode for transmission of
the starting instruction, and in the normal mode for receipt of data.

It should be remembered that the operation being demonstrated would
be initiated through use of two command words, and that the second

of these would be accessed by the QC sequencer. QC would send the
block length to register BA and 5 bits of the opcode to register CD,
thus completing the setting up of the operation except for the trans—
mission of the starting instruction. This instruction is held in 22515 of
the second command word so that a left shift of 11 bits is necessary to
position it for transmission. Recall that KW shifts this instruction 1

bit to the right before starting QW in the Shift—Send mode, then sets the
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CP—CQ counter up to shift left 12 bits, thus effecting a left shift of 11
bits. The paths involved in the shifts are shown in Figure 12. 4-2.
Following this, the paths used for receipt of characters in the least
significant end of the S register and the shifting required to pack the
word are demonstrated. The example ends when the word is properly

positioned in the B register for storing in memory.

Figure 12.4-3 is a breakdown of the block transmit (output) operation,

similar to that given for block receive, while Figure 12. 4—4 shows the
transfer and shift paths used in implementation of the BTC8 command.
Recall that, for the BTC commands, the starting instruction contained
in the second command word is actually the first command in the block
of commands about to be transmitted. In this example, it is assumed

that the first command is a CAL to an MT-10 unit with the call number
220. Thus, the second word has the form

31 27 22 14 0
0000 |11000 | 10 010 000 |Block Length

This starting instruction will be shifted and transmitted in the same
manner as was the SDT in the preceding example. The example
follows the action from the time that the first word in the block has
been accessed by QM and QW has completed the shifting and sending of
the starting instruction to the transmission of the least significant

command in the first word.

The remaining sections in the chapter deal with the KM, QC, KW and
QW sequencers. Only the block input/output function of KM is included
in this chapter; the other half of that sequencer appears in the Adder
chapter since it is applicable only to repeat operations. The Shift-Send
mode of QW has already been described; hence, the final section
describes the operation of QW in the transmission or receipt of full

words as it occurs in block operations.
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FIGURE 12.4-1

General Algorithm for Block Receive Operations
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BRA: Computation resumes with
next command and thus branches
to error routine;

BRA: Next command address
incremented by 1; computation
resumes after skipping branch
command; In all cases: Sends
GO to DA to store address infor—
mation in Accumulator; Returns
to idle at KMA~KMB.

|/

oM
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1f incorrect response received, sends
response to register H and BRAnch
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Sends READY signal.

Qw

For all errors, the

Returns

complete:
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When the word is

L,

QC
When QM READY:
Sends GO to OM to access
Second command word; Idles
at QCE—QCF for DATA
AVAILABLE; |

[
|

Sets up information in
required registers;
Idles at QCA-OCB.

\

\

oM
Accesses word, signals DATA
AVAILABLE: At completion
of cycle: Returns to idle at
QMA-OMB; Sends READY

signal.

Kw
Performs preliminary shift for
QW; Sets up Character Counter;
Sends GO to QW;

When QW and OM READY:

Sets up Character Couater to
handle full word; Sends GO to
QW to receive word; Sends GO
to QM to read out first location
in delay~write mode; Waits for
DATA AVAILABLE signal that
means location has been read out;

When QW READY and DATA
AVAILABLE: Sends new word

to B; Finish Cycle signal to QM
to write new word; Sets up
Character Counter to receive full
word; GO to QW to receive next
word;

I
|
|
i
'
I
I
|

|
When QM READY:
Sends GO to read out next
location in delay-write mode;
Waits for DATA AVAILABLE
signal; [

|

BRA: ERR code sent to
instructed device; In 21l cases:
Send DONE KW to KM; Returns
to idle at KWA=KWB.

/

oM
Accesses word; signals DATA
AVAILABLE; Idles for signal
that new word is in register B
and WRITE portion of cycle
can proceed;

|
I
|
|
|
|
!
|

Advances to WRITE portion of
cycle; At completion:
Returns to idle at QMA-QMB;
Sends READY signal;

oS o

oM
Accesses word; signals DATA
AVAILABLE; Idles for signal
that new word is in register B
and WRITE portion of cycle
can proceed;

—
Accumulator;
DONE to KC.

Stores last address plus | in

QA

Sends opcode

REPEAT FROM /A UNTIL END OF BLOCK IS REACHED OR QW SIGNALS ERROR CONDITION (BRA}
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FIGURE 12.4-2 Block Receive Example

At GKW:

{$) = 2nd command word

minus flags

{CD) = 5 opcode bits

(BA) = 2's complement of
block length

Remaining task before
block operation begins:

t ransmission of starting
instruction

Shift left 3 twice more until

BRD6 Code Starting Instruction, SDT

31 27 22 15 14 0 -1

44
S

“Joooo Jootoo | 00001000 | Block Length | |

No response is expected from the

receiver of SDT.

KW sets up QW to receive:
Sends REQ, fixes counter and
starts read out of st address
block so that new word can be

OW clears LR; after
Ist character, sends
out REQ-

KWB S(R}%D \
41 28 9 12 -3 -4
D r I | 00001000 [ l i
/
KWE / ngz)s / /
44 30 2 14 ) -1
s | i T _ooo01000 | |
T
‘ S(0IN 4 l £
OWF
41 30 21 14 0 Lost
N[ ] [ ocootoo0 T ]
QWG / /N(L3)S '/ '/
44 33 24 17 3 -1
s [ | [ 00001000 ] | |
OWH ‘ ‘ S(0)N ¢ ‘
41 33 24 17 3o
N i [ oooo1000 | T ]
/
Qwy N(L3)s
44 36 27 2! 6 -1
s | I [ oooarooo | ] ]
44 33 26 12 —1
s [ 00001000 [ I |
QWF M
—7 Q
Lo [ofooo1000
Parity Bit Data flag
‘made even
in
stored. 9 0
LR 18t Char
OWE Errng LR(0)S If no error and !st CHAR is synchronized
44 decod19 -1 {SY),LR(0)S is enabled
s [ [ st Char T ]
QWF S(0)N ‘ * Note that communication lines transmit
41 7 0 zeros in bits 7 and 8 for 6-bit mode; these
N [ ] ] zeros are retained in the most significant
’/ / character as flag bits to complete 32—bit word.
W L3
Q f; ML3)S 10 B -1 If an error occurs, incomplete words are
filled with zeros: the path LR(OJH is then
s [ [ist char | ] enabled.
OWH S{0)N ‘ ‘
41 10 30
N I []
Qw1 N(L3)S / /
44 1 6 -1
s | I ]
OWK S(0IN ‘ &
41 13 [
v [ I I |
9 5 0 If 2nd character is in LR, no error has
LR occurred,and the character is synchronized,

LR(0)S Error
codin

Zero bits ignored Q——de—s—

13 6 5

LR(0)S is enabled.

0
[ Vst Char _|2nd Char]

S(0)N ‘ é i

13
I 1st Char lan Charl

N/
16 9 8 3 -

1

[1st Char, [2ndChad

31 o

—1

llst Char [2nd Char l3rd Char l4th Char {5th Charn

S(R3)M

-3

[
J M(L2)A

30 -

]
4

I
/ A(LIM
1

-3

QWE
44
s [
OWF
41
N
QWG
44
s [
OW continues to receive, error
check, synchronize and shift
until a full word has been received
44
s [
OWF
41
OW exit=, OM has read out word M |
stored in desired location and is
read;, to write this one in its KWU
placc. KW shi‘ts it into position. 41
Al
KWV
41
M [
KWX Pa
bit

From B, 1t is stored in memory.

M(0)B

Lt 04—_°\J

¥Z1
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FIGURE 12.4-3 General Algorithm for Block

Transmit Operations

DONE signal.

KC
When OM READY, sends GO to access first command word;
Idles at KCG-KCH for DATA AVAILABLE;

Assembles operand, checks it for positive sign, shifts it to
zero exponent for use as address of first operand:
033 for START to KM; Idles at KCA-KCB waiting for opcode

Decodes

KM

Sends GO to OC to handle second
word; Idles at KME-KMF for
QC finish;

|
|
|

Sets up QW to tranamit starting
instruction in Shift-Send mode,
| Sends GO to KW to initiate
receive operation; Idles at
. KMG~KMH for DONE KW;

BRA: Computation resumes with
next command and thus branches to
error routine;

: Next command address
incremented by 1; computation
resumes after skipping branch
command; In all cases: Sends
GO to OA to store address infor—
mation in Accumulator; Returns
to idle at KMA~-KMR.

Qc
When OM READY:
Sends GO to QM to access
second command word;
Idles at QCE-QCF for
DATA AVAILABLE;

Sets up information in
required registers;

Idles at QCA-QCB.

. ow

Shifts and sends starting
instruction; .If incorrect
response received, send.
Tesponse to register H
and BRAnch signal to KW;
Returns to idle at QMA-.
QMB; Sends READY
signal.

\

KwW
Performs preliminary shifts
for QW; sets up character
counter; Sends GO to QW;
When QM READY: Sends GO
to accept first word;

When QW REAII)Y and DATA
AVAILABLE: Sets up character
counter to handle full word;
Sends GO to QM to access next
operand;

o/

ow
Transmits word one character
at a time; If an error occurs,
transmission is halted, the
last response received is sent
to register H, and a BRAnch
signal is sent to KW: When
transmission is complete or
BRA is set, Returns to idle
at QWA-OWB; Sends
READY signal.

TS REpEAT FROM
REACHED OR QW SIGNALS ERROR CONDITION (B!

7

/A UNTIL END OF BLOCK IS

BRA: If transmission of data
(not commands) has been in
progress, ERR code is sent to
receiver; In all cases: Send
DONE KW to KM; Returns to
idle at KWA-KWB.

\

0A

Stores last address plus 2
in Accumulator;
Sends opcode DONE to KC.

oM
Accesses word, signals DATA AVAILABLE:

At completion of cycle: Returns to idle at
/ OMA-QMB; Sends READY signal.

oM
Accesses word, signals DATA AVAILABLE:
At completion of cycle: Returns to idle at
QMA-OMB; Sends READY signal.

\

oM

Accesses first operand in block, signals
DATA AVAILABLE; At completion of cycle:
Returns to idle at QMA—QMB;

Sends READY signal.

oM
Accesses next operand in block, signals
DATA AVAILABLE,; At completion of cycle:
Returns to idle at QMA-QMB;
Sends READY signal.
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FIGURE 12.4-4 Block Transmit Example

QW transmitted the first command,
at the same time KW caused QM to
access the first operand in the block.
At KWJ-KWK, KW idles until operand
is in B and QW is ready to send it

QME block address incremented
to 2nd operand

Parity
Bit™a 3! 23 15 7 0
8 [ 2nd Command[3rd Command[sth Command [5th Command |
KWK B(O)D ! GRN response to
4 31 23 15 7 _4  lst command
KW starts QW o[ 2 I 3 [ PR [ ]  rr [1]0]oooc00r0

response to set SY =
or for ER to set SY
and enable LR(0)H

QW waits for GRN /

D(L2)s /

44 33 25 17 9 2 -1

sl 1 . 1 s [ & T s T ]

S(R26)LD

\ Ty, 0
\ [_List command |

\ 0 to data lt’lag
Parity bit made even

|
OWF \ S(0IN :
41 33 25 17 9 ! 0
N | [ z | [« T - 11
LR cleared for /
receipt of next response OWG / N{(L3)S
44 3 20 12 5 -1
s | ! 2 | 3 4 s 1 ]
QWH S(0)N ‘
41 36 28 20 12 5 0
N [ 2 | 3 [ 4 [ 5 ] i
ows / N(L3)S
14 39 31 27 15 8 -1
s ] [ PR T B B | ]
OWK S(ON ‘
41 39 31 23 15 8 0
N [ 2 | 3 [ a | 5 | I
awL N(L1)S J
44 40 32 24 16 9 )
s | [ 2 | 3 | 4 s | ]
QWM / S(0)N J
41 40 32 24 16 9 0
N[ e [ s T s T s ] ]
QwN N(LL)S
14 4 33 s Lt |
s [ ] 2 [ 5 | s | s : [ 1
No error and SY = : QWF S(R26)D ]
Error and SY enables il 0
i | ([ Deacom.
I 0 to data flag
! | Parity bit made even
|
*QWP and QWF S(0)N |
41 33 25 17 l! 0
N 2 | [ | [ ]
OW continues until the 44 41 33 -1

last character is sent

S I | 4 | 5 I | L l

W
\-7 0

[ 1 sen com. ]

or an error occurs.

OWF

= SY

KW starts QM to access 2nd
operand; block address incremented
to 3rd operand

When the second operand is
available in B, it is sent to
D by KW

(KWP)

GRN response to

2nd command

9 0
& [1]o[o00000010]
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SECTION 12.5 — THE KM SEQUENCER

KM controls all multiple access opcodes. Since block input/output
operations involve this type of operation, they are controlled by KM.
The charts in Section 4 should provide some orientation to the type of
control exercised by this sequencer. It is interesting to note the
distinction in methods used to access the operands in the block in the
two types of operations controlled by KM. In block input/output, KM
uses QM to access the next operand. In repeat arithmetic and logic
operations, KC is used to perform the accesses. (This makes it
possible to use the KC logic to format the operands correctly and also
to connect properly with the sequencer handling the operation.) In
repeat operations, all activities are stopped during the access since
the operand must be available in order for the arithmetic or logic
operation to proceed; in block input/output, operands are handled
entirely separately so that, while one is being transmitted, the next can
be accessed. In block input/output, these operations are run as closely
together as possible with the interesting results shown in the figures in

Section 4.

No interrupts are allowed during the processing of a block input/output
operation. In fact, there is no way for an interrupt to be processed
since the state at which such a decision is made in Master Control,
KCA, will not be re—entered until the entire block operation is complete.
In order to ensure immediate processing of any enabled interrupts when
control returns to KC, the KM sequencer sets the CD8 flip—flop prior
to exiting. Recall that interrupts are not processed by KC if the
preceding command left useful information in the OA register, i.e., if
it were one of the N commands. Only 3 bits are used in the decoding

of block input/output commands and, while this is sufficient to
distinguish them from one another, it does not distinguish between the

block commands and the N commands. Since CD8 is always low for N
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commands, changing the decoding configuration by means of setting
CD8 before returning control to KC allows for the immediate pProcessing
of any enabled interrupts. KM also restores the next command address
to the CA register before exiting, incrementing it by 1 if nothing has

occurred to cause a branch in the program.
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FIGURE 12.5-1

Algorithm for the Control of Block

Input/Output Operations by KM

ldle

START from KC?

Set SHS so that OW will
transmit starting instruction
correctly;

Send GO to QC to access 2nd
command word

t__

f}————— Signal KC to proceed

Yes Non—existent

,address?

Increment next command
address by 1 to skip
error branch

No

Has an error
occurred?

Send GO to QA;

Receive:

stores last address plus

1 in accumulator;
Transmit:

stores last address plus 2

y

‘(N) *assembled operand,
checked for positive sign, |
—-l shifted to zero exponent.
Will be used as address |
| _of first operand.

I (CA) = address of first location
in block,
I {BA) = 2's complement |
of block length,
—l (12CD8) = five most significant |
bits of opcode
(AM) = next command address
{S) = 2nd command word |
minus flags
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TABLE 12.

5—1 Terms Used on the KM Flow Chart for
Control of Block Input/Output

AM(0)CA

BRA

BU(0)D

Clear EA

GKW
GOA
GQcC

KR

Reset WS

SCA

Set CD8

Set KM5

SHS

QCK

Path enabled to restore the next command address to CA register.

BRAnch flip—flop; BRA is set when ER is high; the input/output program will branch
on execution of the next command.

Path enabled to send the current information on the bus to register D.

Register EA holds the exponent of the information in register N; since CA will store an
address from the N register into the Accumulator, and the address should h.ive i zero
exponent, it is necessary to clear EA to insure against attachment of an erroneous
exponent to the address.

GO signal to KW sequencer.

GO to the QA sequencer.

GO to QC; there is actually no such signal; OC is started when OM sets the OC1 flip—~flop.
Opcode DONE signal to KC.

Working Sign must be positive to agree with address information to be stored by QA.

Select bus register CA for transfer of information; this will make possible the storing
of the address of the last operand plus one in the Accumulator.

Command decoding bit set to enable interrupt processing; TO looks like NO without
7CD6 and an interrupt won't be processed following an N command.

KW signals DONE to KM by advancing KM logic (setting KM5 sends KM to KMJ).

Shift-Send mode; SHS high directs OW to shift a single character to transmitting position
and to send it.

Decoding for state OCK of QC sequencer; when QC reaches this point in its processing, it
is almost finished and KM considers this the signal to continue.
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FIGURE 12.5-2 The KM Flow Chart for the Control of

Block Input/Cutput
1
KMA Set RKM
000
SKM i SKM
1] [3] setsms
KMB Set QC1 ®» GQC
KME 1]
010
e— (RS ———
lQCKAMNA l QCKAMNA QCKAMNA
__l_] 12] setxr B
KMF GKW Set KMR > DKW e
GKC
1
KMG -
011
Set KM5 Set KM5
aj T
KMH —I
1
KMJ _]
111 Set SCA
1c1BU‘°4)1D D15
KMK Reset WS
Clear EA
1| DN
KML —nlre-et SCA
110 Set CD8
AM(O)CA
BRA BRA
1] 2]
CA(0)AC
KMM GQA GQA

KMN
100

KMP

_

AC(+1)CA

!

i
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SECTION 12. 6 — THE QC SEQUENGCER

QC has a single responsibility: that of handling the second command
word in multiple access operations. It is started by KM to access this
word and set up the information contained therein. In the case of block
input/output operations, this word has the form:

31 27 22 14 0
0000 | opcode | starting instruction | block length

In repeat arithmetic or logic operations, the word has the form

31 27 20 14 0
0000 | opcode 000000 block length

These formats differ in that repeat operations do not call for inclusion
of a starting instruction and the entire 7—bit opcode is specified in the
repeat operation, whereas only 5 bits of the opcode are used in the
block command. Neither of these differences are noticed by QC. The
starting instruction in the block operation is handled elsewhere and
only 5 bits of the opcode are preserved for decoding purposes in the
repeat operations, these being sufficient to differentiate between the

32 repeat commands, so that no distinction need be made by QC.

When started, QC uses OM to access the second command word. When

the word is available, the following actions are taken:

1) the next command address held in CA is sent to the AM
register for the duration of the block operation and the address
of the first operand (the assembled operand from the first
command word) is sent to CA. With the operand address in
CA, accesses are carried out by QM in the normal manner
with the address in CA being incremented each time QM is
started. The next command address is restored to CA by the

KM sequencer when the block is complete.
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The five most significant bits of the opcode are sent to CD

for décoding.

The block length is stored in register BA. Some explanation
is required regarding the handling of the block length. The
most obvious way to keep track of the current stage of the
operation would be to decrement the block length each time an
operand access occurred and test the remaining length against
zero. A zero result would, of course, indicate the end of the
block. However, the fact that the BA register is not used for
operand addresses during block operations makes it available
for storage of the block length and, in addition, makes avail—
able the increment paths associated with BA. (When QM is
started by the signal GBA, the address in BA is incremented
by means of the BA(0)AC, AC(+1)BA paths.) Thus, if the block
length is stored in BA in complement form, these increment
paths can be used to keep track of the progress of the operation
and no additional logic is required. QC stores the block length
in BA in 2's complement form, this because the addition of any
number to its 2's complement results in a string of zeros of the
same length with the addition of a leading 1 bit. For example,
the 2's complement of the number 11 = 0l.
11

+01

100
Thus, the end of the block is detected by the change of state of
the leading bit. Since the number of words available in memory
will never exceed 32768,35, the block length can be specified in

the address portion of the second command word.

The BA register is 16 bits in length (15BA0). QC transfers the
1's complement of the block length into 14BAO0, leaving the
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BAIS5 flip~flop reset so that it can be used to signal the end of
the block. BAIl5 is set when ZBA is high, indicating that the
AC register contains all 1's and the path AC(+1)BA is enabled.

This will cause termination of the block operation. As an
example of the handling of block length, consider what would occur
in the handling of a block length of 178. This would appear

in the address portion of the command word as

000 000 000 001 111

QC would complement the command word and send 14NO to BA.
This transfer does not affect the reset condition of BA15. The

contents of BA would then be
0111 111111110 00O

Enabling of the increment path by QC leaves the 2's complement

in BA
0111 111111 110 001

178 increments later, if no enabled flags or error conditions

occur to end the operation earlier, the contents of BA will be
1 000 000 000 000 000

and the operation will be terminated.
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FIGURE 12. 6-1

Algorithm for Accessing the Second Command
Word for Repeat and Block Input/Output Operations

Idle

Y

Started by KM?

[Yes
S S —

Address of 1st operand in N i
Address of 2nd command word in CA

Is QM available for acces

s?|No

{ Yes

Send GO signal to QM

Yes

Has non—existent
address been used?

*No

DATA AVAILABLE
signal from QM?

No

Second command word containing |
block length and opcode in B

Yes —
(I

(B) sent to D;
Next command address
saved in AM register

Y

First address in block
sent from N to CA;
(D) sent to S

'

(D) complemented via S(C)N
path; Opcode obtained via
B(R15)12CD8 path

'

14NO {block length in 1's
complement) sent to
register BA

'

Block length incremented
by 1 to form 2's
coinplement

| Most significant 5 bits of opcode in
CD; Block length in 2's complement |
form in BA; Next command address |

in AM; lst address of block in CA;

| 2nd Command word minus flags in S
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TABLE 12.6—1 Terms Used on the QC Flow Chart

DAS

GCA
GQC

MNA
ROQM

Data Available Signal from QM; DAS is high when
the accessed operand is in register B.

DONE QC sequencer; DQC is a non—existent signal;
KM decodes either QCF ~ MNA or QCK for DQC.

Go to QM sequencer; GCA = CA(0)AC, CA(0)MA.

Go to QC; non—existent signal, QC is started
when KM sets the QC1 flip—flop.

Memory Non—existent Address.

READY QM sequencer.
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FIGURE 12.6-2 The QC Flow Chart

QC

QCA
000

QCB

occ
001

QCD

QCE
011

QCF

QCG
111

QCH

QcJ
110

QCK

QCL
100

QCM

‘ MNA
1

OCFAMNA=®DQC

+ DAS

_i.l B(O}D

CA(0)AM

-y

'

! | n(oyracao

D(0)s

'

._l_j S{C)N

B(R15)12CD8
1
N(0)14BAO
1
rJ BA(O)AC
QCK = DQC
1]
AC(+1)BA

!

’_1J

+ DAS
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SECTION 12.7 — THE KW SEQUENCER

Perhaps the most involved aspect of the operation of KW is that of
timing. KW functions simultaneously with KM, QM, and QW and is the
controller for their combined activities. KM does not require atten—
tion; it idles until the block operation is terminated. QW and QM must
both be started in order to process each word. The timing of these
starts varies depending upon whether the operation is transmit or
receive and whether or not this is the first operand. In general, QM
is always one operand ahead of QW on transmit operations so that the
next operand will be available for transmission. On receive, QW is
slightly ahead of QM, but works on the same operand for part of the
cycle. Receive operations use the memory in the delay—write mode.
Thus, QM reads out the location, signals KW, and waits to be told that
it can go ahead with the write half of the cycle. KW also waits for QW
to finish the receipt of the word, then transfers the word to the B
register and signals QM to finish the cycle. In the meantime, QW can

begin receiving the next word.

The fact that OM is ahead of QW in transmit, and follows it in receive,
accounts for what gets stored in the Accumulator at the end of the
operation. QA is started by KM to store the contents of the CA register
as the last task in the block operation. The contents of CA will be the
address of the last operand plus two in transmit, while in receive it
will be the last address plus one. (Address incrementing occurs when
QM is started up.) To avoid confusion, the block transmit algorithm
calls for an extra increment of the address when the operation
terminates due to the end of block signal because, in this case, no
access was made the last time through the algorithm. If this additional
increment were not included, the address stored would be the last

plus one when termination was due to the end of the block, and the

address plus two when termination was due to the occurrence of an error.
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It is interesting to note that, at termination of the operation, the END
or ERR code will be sent to the other device on BRD, and BTD
operations, but never on BTC, since END and ERR are us ed to
terminate block data transfers, but are meaningless following a string

of line commands.
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FIGURE 12.7-1

The KW Algorithm for Block Receive

Idle

'

GO signal from KM?

Clear register LR to receive data':
‘2 to QW's counter ‘= QW will shift
| left 6 twice; Shift (S) right 1

(Total shift = left 11);Start QW to
shift and send starting command

'

Enable LR to receive data

No
OM ready?

{ ‘KM idling at KMG—~KMH for DONE KW

:QW set to shift—=send mode

(S) = 2nd command word minus flags ; |
Starting instruction (SDT) at 22515 J

(AM) = next command address
{CA) = lst address in block

L ]

{Yes

QW sending starting Yes
instruction?

No
O

Start QM access; prepare
for delay—~write of
received data

T
W receiving,shifting, sending REQ |
|

must be shifted to 33527 and transmitted
{CD) = most significant 5 bits of opcode
{BA) = block lengthin 2's complement form I

No

DONE OW?

Prepare QW to receive first
operand: inhibit shift-send
Yes mode, set up counter to handle |
full word; Start QW to receive
and shift data; Send REQ to
transmitter

Non—existent address |Yes
detected by QM?

No

DATA AVAILABLE  \No
signal from QM?

Ees

y

Is QW finished? No
Yes
Increment block length;
Send word in M left 2 to A"
Error in QW or end Yes

of block?

lNo

(A) left 1 to M for normal position;
Set up counter to handle full word;
Start QW to receive and shift data;
Inhibit shift-send mode

v

No

SY signal and QW \Yes
finished?

ERROR and DONE
signals to KM;
ERR to transmitter

' Received word positioned in
28M=-3 due to restrictions of

.sA)'left 1toM
or normal position

'

(M) sent to B to be stored

!

Send MF to QM to
complete memory cycle

—

(CA) = last operand
address plus 1

—
'__._
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Idle

'

GO signal from KM?

No

Clear register LR to receive data’
2 to QW!'s counter ‘= QW will shift
left 6 twice; Shift {S) right 1
(Total shift = left 11):Start QW to
shift and send starting command

'

Enable LR to receive data

-

No
QM ready?

iYes

QW sending starting Yes
instruction?

Start QM access; prepare
for delay-write of
received data

‘KM idling at KMG~-KMH for DONE KW

I :QW set to shift-send mode i
(S) = 2nd command word minus flags ;

‘_{ Starting instruction (SDT) at 22515 J

No

DONE QW?

must be shifted to 33527 and transmitted
(CD) = most significant 5 bits of opcode
(BA) = block length in 2's complement form
(AM) = next command address |
(CA) = lst address in block

|
e

Yes

Prepare QW to receive first
operand; inhibit shift—send
mode, Set up counter to handle | g,
full word; Start QW to receive
and shift data; Send REQ to
transmitter

Non—existent address Yes
detected by QM?

No

DATA AVAILABLE  \Neo
signal from QM?

Yes
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TABLE 12.7-1 Terms Used on the KW Flow Chart for

Block Receive

BLA

BRA

Clear CQ

DKW

DW
END(O)LD
ERR(0)LD
GCaA

Fix CQ
GOwW

LR

MF

RET
RL
ROM
ROW

SHS

SY

TRF

Block Line Amplifier flip—flop; when set, blocks inputs to the Line Receiver register.
BRAnch flip—flop; when set, indicates that ER is high due to either the occurrence of an
error or the occurrence of a condition that calls for a branch in the program; computation

continues with the next command.

Set up CP—CQ counter to handle appropriate shift in SHS mode; for starting instructions,
KW sets the counter to 011 to effect two shifts of 6 bits each.

DONE KW sequencer; signal sent to the KM sequencer when KW is finished.

Delay—Write flip—flop; when set, causes the memory cycle to wait at the end of the read part
of the cycle until a Memory Finish signal is supplied.

The end of the block operation is signalled to the other device by means of transmission of
one of these commands if the operation is not BTC6 or BTCS8.

GO signal to the QM sequencer; GCA = CA(0)MA, CA(0)AC.

Set up CP—CQ counter to handle a full word (000 if receiving 6~bit mode, 001 if 8-=bit).
GO to QW sequencer.

Line Receiver register.

Memory Finish flip—flop; set by KW when the word to be stored in memory has been positioned
in the B register.

RETurn flip—flop; set after handling of first operand in block operation to gate KW correctly.
Reset Line receiver register flip—flop; Set RL = reset LR, reset BLA.

READY OM sequencer.

READY QW sequencer.

Shift-Send flip—flop; used in block operations only for transmission of starting instruction;
reset throughout the remainder of the block operation.

SYnchronization flip—flops.

TRansmit request For character flip—flop; when TRF is set, LLD14 transmits an REQ signal on the
separate REQ line in the communication cable.
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FIGURE 12.7-2 The KW Flow Chart for Block Receive
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FIGURE 12.7-3 The KW Algorithm for Block Transmit
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TABLE 12.7-2 Terms Used on the KW Flow Chart for

Block Transmit

BLA

BRA

CDI1l

Clear CQ

DKW
Fix CQ
GCA

END(O)LD
ERR(0)LD

Gaw
LR
LR(0H
RET
RL
ROM
ROW

SHS

SY

Block Line Amplifier flip—£lop; when set, blocks inputs to the Line Receiver register.
BRAnch flip—flop; when set, indicates that ER is high due to either the occurrence of an error
or the/occurrence of a condition that calls for a branch in the program; computation continues
thh/,(he next command.

/
Command decoding bit used to distinguish between types of transmission; CDL1 high indicates
command transmission, low indicates data.

Set up CP—CQ counter to handle appropriate shift in SHS mode; for starting instruction, KW
sets the counter to 011 to effect two shifts of 6 bits each.

DONE KW sequencer; signal sent to the KM sequencer when KW is finished.
Set up CP—CQ counter to handle a full word (000 if receiving 6—bit mode, 001 if 8=bit).
GO signal to the QM sequencer; GCA = CA(0)MA, CA(O)AC.

The end of the block operation is signalled to the other device by means of transmission of one
of these commands if the operation is not BTCé6 or BTCS.

GO to QW sequencer.

Line Receiver register; flip—flops in LR must be reset before response can be received.
Path enabled when ER is high to send last response received to H register.

RETurn flip—flop; set after handling of first operand in block operation to gate KW correctly.
Reset Line receiver register flip—flop; Set RL: = reset LR, reset BLA.

READY QM sequencer.

READY QW sequencer.

Shift-Send flip—flop; used in block operations only for transmission of starting instruction;
reset throughout the remainder of the block operation.

SYnchronization flip—flops.
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FIGURE

12.7-4 The KW Flow Chart for Block Transmit
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TABLE 12.7-3 Terms Used on the KW Flow Chart

All those shown separately for transmit and receive with the
additions:

Command decoding bit designations:

CDl10 receive operation,

CDI0 transmit,

Eﬁa A CDI11 transmit commands,

ZM Zero Machine; this entry to KW is used

in the bootstrap or initializing operation
to allow input of the control program which
is stored in location 64.
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FIGURE 12.7-5

The KW Flow Chart
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12.8

SECTION 12.8 — THE QW SEQUENCER

The functions carried out by QW have been described in some detail in
the introduction to this chapter as well as in Section 3 which handles
the Shift—Send mode of QW. (This mode of operation allows for
handling of the TLC and TDC commands and for the transmission of
the starting instruction in block operations.) QW is started for the
actual block transmission or receive operation following the sending

of the starting instruction and the turning off of the Shift—Send flip—flop.
It is important to remember that a separate startup of QW is required
for the handling of each word in the operation. The character counter
is set by KW at each entry (000 for 6—bit mode, 001 for 8—bit mode) and
QW will send or receive characters until CP3 indicates that a full word
has been handled. Control is then returned to KW which operates
simultaneously, using QM to store or access the operands, setting up
the character counter, and returning control to KM when the operation

is terminated.

On block receive, the transmitting device expects to receive an REQ
signal from the Central Processor for each character that it sends out.
This signal is sent on a separate line in the communication cable and is
triggered by the setting of I.LD14. The Transmit Request for character
Flip—Flop (TRF) controls LLD14. KW is responsible for setting TRF
the first time QW is started. For all subsequent characters in the
operation, QW sets TRF. Thus, at QWF, TRF is set, even on the last
character in the particular word, unless ZBA is high. (ZBA is the
signal used to indicate that the next block length increment will send
BA15 high, i.e., this is the last word in the block.) Occurrence of an
error before a word is complete causes QW to fill the remaining
character positions with zeros before exiting (using blocks QWEZ2 and

QWF6).
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For both transmit and receive operations, receipt of a correct, but
unexpected response, or of a wrong response, causes ER to go high
and thus sets the BRAnch flip—flop. Thus, the program will continue
with execution of the next command which calls for a transfer. Note
that each transmission of a character is accompanied by the clearing

of the LR register and enabling of the response (resetting BLA).
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FIGURE 12.8-1 The QW Algorithm for Block Receive
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TABLE 12, 8-1

Terms Used on the QW Flow Chart for
Block Receive

(Most of these have been discussed elsewhere; short definitions
are included at this point for ease of reference.)

BLA
BRA
CDl10

CDl2

CP(+1)CQ
CP3

DOQW
ER
LR(0)H

LR(0)S

LDl4

RL
RQW
SY
TRF
ZBA

Block Line receiver Amplifiers flip—flop.
BRAnch flip—flop.

Command decoding bit used to distinguish between
transmit and receive operations; CD10 high indicates
receive.

Command decoding bit used to distinguish between
the 8 and 6—bit mode; CD12 high indicates 8-bit,
low indicates 6-bit.

Increment path for CP—CQ character counter.

Signal sent by CP—CQ counter when a full word has
been handled.

DONE QW sequencer.
ERror signal.

Path enabled when ER is high to send last response
to the H register; (see Table 12.1-3 for explanation
of transfers caused by enabling of LR(0)H).

Path enabled to send the last response to the least
significant bits of the S register.

When LD14 is high, a signal is sent on separate line
in communication cable which is interpreted as a
REQuest for character.

Reset Line receiver register.

READY QW sequencer.

SYnchronization flip—flop.

Transmit Request For character flip—flop.

BA register Zero signal; ZBA is high when (AC)
indicate that the next enabling of the AC(+1)BA
increment path will cause BA1l5 to go high.
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FIGURE 12.8-2 The QW Flow Chart for Block Receive
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FIGURE

12.8-3 The QW Algorithm for Block Transmit
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TABLE 12.8-2 Terms Used on the QW Flow Chart for

Block Transmit

(Most of these have been discussed elsewhere; short definitions
are included at this point for ease of reference.)

BLA
BRA
CD10

CD12

CP(+1)CQ
CP3

DQW
ER
LR(0)H

LR(0)S

RL
ROQW
SY

Block Line receiver Amplifiers flip—flop.
BRAnNch flip—flop.

Command decoding bit used to distinguish between
transmit and receive operations; CD10 low
indicates transmit.

Command decoding bit used to distinguish between
6 and 8-bit mode; CD12 high indicates 8—bit.

Increment path for CP—CQ character counter.

Signal sent by CP—CQ counter when a full word
has been handled.

DONE QW sequencer.
ERror signal.

Path enabled when ER is high to send last
response to the H register.

Path enabled to send the last response to the
least significant bits of the S register.

Reset Line receiver register.
READY QW sequencer.
SYnchronization flip—flops.
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FIGURE 12. 8-4

The QW Flow Chart for Block Transmit
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FIGURE 12.8-5 The QW Flow Chart
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CHAPTER 13

ADDER SEQUENCERS

SECTION 13.1 — INTRODUCTION

The sequencers that are described in this chapter process opcodes that
call for use of the Adder. The operation, design, and cycle time of the
Adder are discussed in Section 5.3. The speed of the add cycle is such
that the result is always available by the time the logic calls for it.
This speed is an important factor in the processing times for all
arithmetic and logic operations, and particularly for the multiply and
divide opcodes which use the Adder several times during the processing
of a single command (in the formation of the remainder or of the
partial product). Processing times are also affected by the basic
simplicity of binary arithmetic. This is, of course, a factor in the
speed of the Adder. It is also important in the multiply and divide
algorithms where a significant amount of processing time is saved due
to the fact that multiples of the divisor and the multiplicand are never
involved in the calculation. The divisor can either be successfully
subtracted from the numerator or not so that determination of the
quotient bit becomes a simple branch: 1 or 0. Similarly, the
multiplicand is added to the partial product or not depending upon
whether the multiplier bit is 1 or 0. Applying the principles of non—
restorative divide and string multiply to the basic divide and multiply
algorithms, respectively, results in very fast processing times for

these opcodes.
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The Adder has two modes of operation: if the LLP flip—flop (Logical
Product) is set, the Adder forms the logical product of (N) and (D);

if LP is reset, it forms the arithmetic sum. This is the only adapta—
tion possible in the operation of the Adder. All other aspects of the
particular operation must be handled by the controlling sequencers
which set up the operands in the desired format in the N and D registers
and set or reset the LP flip—flop. Exponen.t and sign values of the
operands are ignored by the Adder; evaluation of these factors is left

entirely to the sequencer logic.

The logic mode of the Adder is not used in the processing of all logic
commands. (The KL and KJ sequencers, which handle almost all of
the logic commands, set LP only for the R2, R3, L4, L5, S4, and S5
opcodes.) For the remaining logic operations, processing is carried
out with LLP reset. The operands are set up so that gatiﬁg of the sum
from the Adder yields the desired result (see Section 13.5). Logic
operations require distinct formatting: the operands are shifted to
zero exponent and truncated to 32 bits prior to being sent through the
Adder. (This does not include commands L2, L3, S2 and S3 written in
mode 0 or 1 which are handled in number format.) In addition to this,
sign manipulations, which figure importantly in the processing of
arithmetic operations, do not affect the processing of logic commands

since logic words are unsigned.

Sign and exponent values are of great importance in the processing of
arithmetic operations. The KC, KA, and KJ sequencers have similar
requirements with respect to these factors and, thus, use a common
Q level sequencer, QS, for the formation of the sum or difference.
The multiply and divide algorithms have distinct needs and do not,
therefore, use QS but rather gate the sum or difference directly from
the Adder. Little need be said at this point cdncerning the handiing of

exponents: users of QS set up the operands in the N and D registers
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with the respective exponents in EA and EP; QS carries out exponent
equalization, if necessary, before proceeding with the sum or
difference operation. Handling of exponents in multiply and divide
operations involves several sequencers; this is described in detail in
Sections 13. 8 through 13.12. It is appropriate, however, to discuss sign
manipulations at this point since, even for the logic opcodes in which
the operands are unsigned, there is a time during the operand
assembly process at which the operands have attached signs, and, for
arithmetic opcodes, the development of the final sign starts at operand
assembly and continues to the end of the processing. A general dis—
cussion should forestall unnecessary repetitions each time a sign

value is changed.

Sign values are stored in the AS, WS, and SM f{lip—flops and in the 29th
bit of signed numbers in memory (integers, single and double
precision numbers). This latter sign value is read from or stored into
the 29th bit of register B when the word is being READ or WRITTEN.
Hence, it is referred to as the B28 flip—flop. For the AS, WS, and
B28 flip—flops, the low state indicates a positive sign; for the SM
flip—~flop, the low state indicates a negative sign. The SM flip—flop is
used to indicate whether a summing or differencing operation is called
for (SM is high for summing). The other sign flip—flops are

associated with operands as follows:

1) flip—flop AS holds the sign of the operand stored in the
Accumulator;

2) flip—flop WS holds the sign of the operand stored in OA.

Some general statements can be made concerning the status of each

flip—flop at certain stages of Master Control.

1) At KCA just prior to command access: the SM flip—flop is

set, the WS flip—flop reset to indicate a cleared condition for
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these flip—flops. The exceptions to this are the OA commands
(N0—7 and R2) which leave useful information in OA and,
therefore, the sign value of this information in SM and WS;
flip—flop B28 holds bit 28 of the last word read from or
written into memory; the AS flip—flop holds the sign of the

operand stored in the Accumulator.

2) At KCH, just following command access: the B28 flip—flop
holds mode information for the command; the SM, WS, and

AS flip—flops are unchanged.

3) At KCM, when the accessed information is available in reg—
ister B: the B28 flip—flop holds the sign of the accessed
information (unless this is a logic word accessed in logic
format: an operand of a logic repeat operation or the final
access of the operand for a mode 2 or 3 logic command in
which case it holds bit 28 of the logic word); the WS and SM2
flip—flops hold the sign of the partially assembled operand or,
if this is the first step in operand assembly, both hold a
positive sign; (if B28 is high on a number access, the state of

SM1 is being reversed); the AS flip—flop is unchanged.

4) At opcode startup: the sign of the assembled operand is in the
WS and SM f{lip—flops; the AS flip—flop is unchanged; the B28
flip—flop reflects the sign of the last information accessed.

At opcode startup the state of the WS flip—flop is checked for
all opcodes which call for use of the assembled operand as an
address. If WS is high (indicating negative) and the address
is non—zero, an interrupt is requested and opcode startup

bypassed.

From the time the K level sequencers are started, sign values are
important only in handling of arithmetic and logic operations. The A,

D, and LL commands call for storing of the result in the Accumulator.
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This means that the sign of the final value will be copied into the AS
flip—flop. In the case of logic commands, the sign will be that of the

result only in the following cases:

1) L2 and L3: the logic commands calling for arithmetic opera—
tions and, therefore, processing by KA; (result is shifted to

zero exponent and truncated to 32 bits);

2) LO and L1 written in modes 0 or 1: these commands call for
the use of only one operand; in modes 0 and 1, logic command
accesses are in number format; hence, the sign saved will be
that of the operand accessed. (For the LLO and LL1 commands

in modes 2 and 3, the sign is made positive. )

Otherwise, for logic commands, the state of the AS flip—flop is
unchanged by the operation and thus retains the sign of the last
operand stored in the Accumulator. For S and T test commands, the
contents of the Accumulator are unchanged unless the command is a
repeat cornmand in which case the Accumulator will contain the
address plus one of the last operand processed and the AS flip—flop is

accordingly made positive.

For the multiply/divide opcodes, determination of the final sign is a
simple operation performed by the QA sequencer. If the sign of the
operand stored in the Accumulator is positive, the sign of the result is
that of the operand in OA (the sign held in the 'S flip—flop); if the
Accumulator sign is negative, the sign in WS is reversed and, thus,
becomes the final sign. This sign is copied into the AS flip—~flop as the
final sign value. It should be pointed out that other pseudo sign
manipulations are carried on during the processing of these commands.
These in no way affect the true sign of the result which is already
stored in the AS flip—flop; they serve only as temporary reminders of
the size of the current remainder or partial product (see Sections

13. 8 through 13.12).
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The remaining arithmetic operations call for the determination of a
sum or difference of two operands under control of the QS sequencer.
When QS is used, the controlling sequencer sets up the operands in

the N and D registers, with exponents in EA and EP and signs in WS

and SM, and sends a GO signal to QS. QS handles exponent equalization,
complements one of the operands for differencing operations, deter—
mines the final sign for differencing operations, gates the result to the S
register, transfers it to N, and sends a DONE signal. QS is started

by KC during operand assembly, by KA for each opcode handled by

that sequencer, and by KJ for execution of the X2 (SKP) opcode. The
QS inputs are shown in Table 13.1-1.

Following command access, QS is started one or more times during
operand assembly. If the command is one of those calling for use of
QS during processing by KA, the operand is transferred to registers
D and EP while the second operand, if any, is transferred from the
Accumulator to OA, and QS is started again. For the repeat
arithmetic commands that use the Adder, QS is started for each
iteration. Sign manipulations during this process seem to be

enormously involved unless the basic actions of QS are understood.

Three sign values are involved in these calculations: that of the
operation called for (add or subtract) and that of each operand. QS has
cognizance of only two sign values: those held in SM and WS. At GQS,
the state of SM reflects the combination of the three signs mentioned
above. SM high indicates that a summing operation is called for
(addition of two positive or two negative values); SM low indicates a
differencing operation. The WS flip—flop holds the sign of the operand
stored in register N. For summing operations, where both operands
have the same sign, the sign in WS is the sign of the result. For
differencing operations, this is the final sign only if the larger

operand is stored in register N. Otherwise, the state of WS is
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TABLE 13.1-1 QS [nputs
OA: Registers N and Registers D and

Sequencer EA, Flip—Flop WS EP, Flip—Flop SM

KC Partially assembled Mantissa and exponent

(operand operand with exponent | just accessed (if logic

assembly) and sign or, at start format, zero exponent);

of operand assembly, SM reflects sign held

zeros with zero in WS (positive if at

exponent and positive start of operand

sign. assembly); if B28 high
(negative sign on
accessed information),
SM state is reversed
(SM made positive if
logic access).

KJ Assembled operand Contents of register CA
with zero exponent; (Next command address);
WS contains sign. zero exponent; SM

reflects sign of WS.

KA Operand from Assembled operand
Accumulator; transferred from OA.
registers A and AE,
flip—flop AS.

reversed to obtain the final sign.

At DONE QS, the WS and SM

flip—flops both hold the sign of the result so that SM is already taking
into account one of the values necessary in determination of the next
sign value. (Recall that SM high holds the same sign value as WS low;

thus, at DQS, the flip—flop states are either WS and SM or WS and SM. )

One of the inputs to QS is always the assembled operand which, at
opcode startup, is stored in registers N and EA with the sign value

held in SM and WS as described above. During operand assembly
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(KC sequencer) the partially assembled operand in OA is added to the
accessed information which will be sent to the D and EP registers. If
the accessed operand is negative (B28 high), the state of the SM flip—
flop is reversed. In KA's execution of arithmetic operations involving
two operands, the second operand is in the Accumulator registers A
and AE, with sign value in AS. KA transfers the assembled operand
to D and EP and the Accumulator operand to N and EA. The sign in
AS is sent to WS (WS is assumed to represent the sign of the operand
held in N). The SM flip—flop is adjusted to represent the combination
of the three sign values (see table below). The KJ sequencer inputs to
QS are the assembled operand and the next command address from the
CA register. This address is sent to register D and, since addresses
have zero exponents, the EP register is cleared. KJ is adding the
assembled operand to the next command address. The sign of the
address is understood to be positive so that the state of SM (which
reflects the sign of the assembled operand) is not changed before QS is
started. If the operand is negative, SM low will correctly indicate a

differencing operation.

TABLE 13.1-2 Sign Determination

Sign held in WS and SM

following last operation of QS: I +|+| =] -
Sign of second operand

(Held in AS or B28): I +1 =]+ -
Sign of operation

(Add or subtract): +l+i+ |+ SR QI I
Sign in SM at GO QS: +i—1=-1+ —{+i+|-
Sign in WS and SM

At DONE QS: +{?]? |- 21+ —-17?
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The preceding table summarizes the factors involved in determination

of the final sign at DONE QS.

The question marks indicate that the final value is that of the larger
operand. Notice that the manipulations are reversed for the add and

subtract operations.
Table 13.1-3 relates the various sequencer operations and the way in

which the Adder is used to carry them out; Table 13.1—4 identifies

the princiapl signals used or generated by the Adder circuitry.
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TABLE 13.1-3 Comparison Between Sequencers That Use
the Adder

Adder users:
(Initialization and
overall control) KC KA KJ KL KJ KD KD

Adder used to form: Sum/Ditference Logical Product |Logical Product [Partial Product | Remainder
or Logical Sum

Output used as: Current value |Final result of |Next command |Final value of [Means of reading|Current partial | Current remainder
of assembled [current arith— |address current logical |contents of product value
operand metic operation operation designated
register
Adder input from Partially Contents of Assembled Contents of Assembled Multiplicand Remainder
register N: assembled Accumulator operand Accumulator operand (binary (Numerator
operand (extractor) normalized) binary
normalized)
Adder input from Information Assembled Contents of CA |Assembled Contents of Partial Product | Complemented
register D: just accessed |operand register operand register to be denominator
extracted {binary

normalized)

LP Flip—flop: Reset Reset Reset Set to form Set Reset Reset
logical product,
reset to form
logical sum

Output from Adder

gated by: os Qs Qs KL KJ oP QQ
Exponent QS equalizes exponents prior Operands Operands Formation of Formation of final
manipulations: to add cycle, thus forming have zero have zero final exponent exponent involves
final exponent p p involves QA, KD| QA, KD and QQ
and QP
Enabled output path: R(0)S R(0)S R(0)S R(L1)S R(0)S R(0)S R(0)S
R(L1)S R(LL)S
Result sent from S N, exponent  |A, exponent Register CA A, exponent A if ERA (R3) |A, exponent A, exponent in
to N; at opcode in EA, sign in AE, sign in AE, sign N if ERO (R2) |in AE. sign AE. sign in AS
completion, stored in:|| in WS in AS in AS in AS

N.B. KA, KC, and KD do not use the adder directly; rather, they control operations that involve use of the adder. KJ uses the adder directly in two
instances, indirectly in one. The relationships that exist between the controlling sequencers and the adder are shown above.
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TABLE 13.1—4 Signals Important in Operation of the Adder

0} 4

CZ

DB

LFC, LFK,
PC, PK

LP

SM

S42

S43

R(0)S, R(L1)S

RU

Carry signal CY is generated if there is a
mantissa overflow from the Adder and the
carry out flip—flop (CYE) is set.

Carry Zero flip—flop; CZ is set to cause a
carry in to the zero bit of the Adder.

Discarded Bits flip—flop; DB is set when
any of the 3 bits shifted out of register D
on a right 3 shift is a 1; thus

DB = D-1 v D-2 v D-3.

This information is used in evaluating the
state of the CZ flip—flop.

LeapFrog Carry, LeapFrog Kill, Propagate
Carry, Propagate Kill; signals used by the
Adder in determination of the result; see
Section 5.3 for a description of the use of
these terms.

Logical Product flip—flop; when LP is set the
Adder output is the logical product or
extraction of the two operands.

Sum flip—flop; SM is high to indicate a summing

. operation in the QS sequencer; SM indicates a

differencing operation. In the operation of
QS, SM sets CZ in anticipation of an end—
around carry (see Section 13. 6).

Bit 42 in register S; if the Adder output is
gated R(0)S, S42 high sets CY if CY is enabled.

Bit 43 in register S; if the Adder output is
gated R(L1)S, S43 high sets CY if CY is
enabled.

Paths that can be enabled to gate output from
the Adder.

Round—Up flip—flop; RU is set when the number
held in the S register has as its least significant
octal digit a 5, 6 or 7, or if it has a 4 in con—
junction with either the DB signal high or the
second least significant octal digit is an even
number; thus, RU = S2 A (S0 Vv Sl v 53 v DB).
This produces a non—biased round—up.
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SECTION 13.2 — REPEAT OPERATIONS

The command format used to designate repeat operations is basically
the same as that described in the chapter on block input/output. The
assembled operand of the first command word is the address of the
first location in the block; the opcode for repeat is 013 (input/output is
033). Master Control checks the operand for address format and
sends a GO signal to KM. The second command word, accessed by
QC, contains less information than does the second word in block
input/output, but no distinction is made between the two cases by QC.
(Refer to Section 12. 6 for a discussion of the QC sequencer.) The
second word contains the block length and the opcode that is to be
repeated. The difference between the two lies in the lack of any
information in bits 22—15 for repeat commands. (In block input/output,
these bits are used to specify the starting instruction. Transmission
of this instruction to the instructed device is carried out by the
input/output sequencers.) For repeat commands, the only information
required in this word is the block length and designation of the opcode

that is to be repeated.

Of the opcodes that call for use of the Adder, 32 can be repeated: A,
T, L, and S. Thus, the KA and KL sequencers which handle these
commands operate in the repeat and non—-repeat modes. KA can be
started by either KC or KM; KL is started by KC in all cases. Recall
that two of the logic operations and two of the logic tests are handled
by KA, the arithmetic sequencer, rather than KL because they call

for performance of arithmetic operations. This leaves 12 opcodes for
handling by KL in the repeat and non—repeat modes. KA processes 26
opcodes in non—repeat and 20 in repeat. (The additional 6 in non—repeat
are the address preparation opcodes N2—7 which are not available in
the repeat mode.) In order to understand the functioning of the KA and

KL sequencers in both repeat and non—repeat modes, it is necessary to
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be aware of the basic simplicity of the opcode list with regard to the
arithmetic and logic commands. There is no distinction between the
processing of the N and A commands except that the N commands call
for storage of the result in OA, while A commands store them in the
Accumulator. The arithemtic test commands also call for performance
of the same operation with the additional requirement that the result
obtained be tested. This correspondence between the A and T com—

mands is similar to that which exists between the LL and S commands.

The value of the T and S test commands is that they provide the
programmer with a means for causing a branch in the program when a
certain condition is met. For the T and S2, S3 commands, the test is
satisfied when the result is positive and non—zero; the remaining S
commands are satisifed when the result is zero. Following each test
command, the programmer uses two words to stipulate the action to be
taken next. The next command is a transfer command that is used to
cause a branch to some other part of the program. This command is
executed when the test conditions are satisfied. The next command
plus one is taken when the test conditions are not satisfied. In
programming jargon, the case where the test is satisfied and the next
command taken is known as the transfer branch because the command
used in that location is normally a transfer command. This should not
be confused with the use of the term jump to describe the incrementing
of the next command address when the test conditions are not satisfied.

Jump simply refers to skipping the next command.

The similarities between groups of opcodes can be analyzed further.

For the N, A and T commands numbered 2—7, the even—numbered

operate on the quantity ((Acc) + X), the odd—numbered on ({Acc) — X).

This rule also applies to the logic commands L2, L3, S2 and S3. Further,

the N, A and T commands numbered 2—7 can be grouped as follows:
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1) Those numbered 2 or 3 give a positive sign to the result; for
the test commands, the test is satisfied if the result is
positive and non—zero; when satisfied, a transfer in the

program occurs via the next command.

2) Those numbered 4 and 5 give a negative sign to the result; for
the test commands, the test is satisfied if the result of the
negation is positive; when satisfied, a transfer in the program

occurs via the next command.

3) Those numbered 6 and 7 take the absolute value of the result;
for the test commands, the test is satisfied if the absolute
value of the result is greater than zero; when satisfied, a
transfer in the program occurs via the next command. (This

applies also to the S2 and S3 test commands. )

In the processing of the LL and S commands (except L.2, L3, S2 and S3)
the logical analog of the positive—negative rule is used. The even—
numbered opcodes operate on ((Acc) $ X), the odd—~numbered on
((Acc) $ X) where $ indicates a logical operation and X indicates the
complement of X. Logic opcodes 4 and 5 call for the formation of the
logical product, while 6 and 7 call for logical sum. Logic tests are

satisfied when the resulting quantity equals zero.

The single operand commands, numbered 0 and 1, involve the quantity
+X or —X for the N, T and A commands, and X or X for the S and L,

commands.

From a programming point of view, these commands afford great
variety; from the point of view of the logic used to implement these
commands, they are not very different from one another. Versatility
is gained through the manipulation of signs, the placement or the

formatting of the result, and, above all, the interpretation of what has
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taken place. To demonstrate the flexibility obtained through sign
manipulations, consider the handling of the N2—-N7 commands (address
preparation opcodes) by KA. When QS has summed or differenced the

two op‘erands, processing is handled as follows:

1) N2 and N3 call for storing the result from the sum or difference
operation in OA (N, EA, WS). Since QS leaves the result in
OA, no further action is required. Thus, control is returned

to KC;

2) The N4 and N5 commands call for the negation of the result to
be left in OA; thus, the sign in WS is reversed and control is

returned to KC;

3) The N6 and N7 commands call for the absolute value of the
result to be left in OA; thus, the WS flip—flop is reset; control

is returned to KC.

To demonstrate the simplicity involved in the processing of test com—
mands, consider the test T4 (iF Sum Minus, FSM) which calls for a
transfer if (Acc) + X < 0. For programming purposes, a negative
result satisfies this test and calls for execution of the next command.
However, the logic in KA says that the test is satisfied when the
result is positive and non—zero. Hence, the processing of the com—
mand involves reversing the meaning of the result of the arithmetic

operation as follows:
1) QS performs the summing of (Acc) + X;

2) The sign of the result, held in WS, is complemented. This
means that a case that satisfies the criterion and does, in fact,
show negative sign, will become positive before the test occurs
and thus also satisfy the logic. The reverse is obviously true

also;
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3) The result is sent to the S register to be tested against zero;

4) If the result is either zero or negative, the test fails and the
address of the next command is incremented by one to cause a

jump in the program.

Similar manipulations adapt all tests to the non—negative, non—zero
requirement. The logic tests handled by KA are not concerned with
signs since there can be no such thing as a negative logic word; thus,
these are gated through this part of the sequencer on free positive signs

so that they will not be mistakenly held up.

The processing of logic opcodes by KL differs in three respects from
that carried out for arithmetic opcodes by KA. These distinctions are

shown in Table 13. 2-1.

Despite the distinctiveness of these operations, the basic
manipulations still closely resemble those involved in the processing
of arithmetic operations. The commands involving a single operand —
L0, L1, S0, S1 — comply with the rules mentioned above but are other—
wise handled no differently than the single operand arithmetic com—
mands. The commands L4, L5, S4 and S5 require determination of
the logical product. This process, also referred to as ANDing, calls
for 1 bit in the result wherever there is a 1 bit in both operands. The
result is obtained by the Adder operating with the LP flip—flop set. The
opcodes numbered 6 and 7 call for uniting (ORing) the two operands.
This operation results in a 1 bit wherever a 1 bit exists in either
operand. To perform the union, one operand is stored in S, the other
in D, and N is cleared. The Adder adds (D) to (N), that is, to 0, and
transfers the result to S. Since the transfer into S is one—sided, the

result of superimposing (D) onto (S) is the union of the two operands.
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TABLE 13.2-1

Processing Distinctions Between KA and KL

Sequencer: KA KL
Operand Logic format for L2, Logic format (zero
Format: L3, S2 or S3 com— exponent with trun—
mands written in cation to 32 bits).
mode 2 or 3; other—
wise, number
format.
Quantity
involved in
even—numbered ((Ace) + X) ((Acc) $ X)
opcodes: ($ = logic operation)
Odd—numbered =
omcodes: ((Acc) - X) ((Acc) $ X)

Test com—
mands
satisfied if:

Result positive

Result zero

Logic tests handled by KL are processed so that they are satisfied when
the result is zero. For example, the command S5 (If Extraction of

Complement zero) is handled as follows:

1) both operands are put in logic format;

2) the operand from register N is complemented;

3) the logical product is gated from the Adder;

4) the result is sent to S for the zero test;

5) if the result is zero, computation will continue with the next
command which will call for a branch in the program; if not

zero, the next command address is incremented by one.

All of the commands handled by KA and KL, used individually, are
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valuable to the programmer. Not all of them are necessary in the

repeat mode. In fact, the address preparation opcodes have been
omitted from the repeat cycle, and some of those remaining are not
really helpful. (There is little to be gained by clearing the Accumu—
lator and adding the next operand over and over, but this is possible
through use of the AO command.) However, repeat has been set up in
such a way that it requires no additional logic to make all the A com—
mands or all the L. commands available in this mode if some of them

are valuable and should be included. Thus, the retention of repeat AO.

Logic Test Commands

TABLE 13.2-2 Processing of the Arithmetic Test and

COMMANDS:

Non—-Repeat
AO-7

Repeat
AO-T7

Non-Repeat
LO-7

Repeat
LO-7

OPERAND IN N
AT OPCODE
STARTUP:

Double or single pre—
cision number,
accessed in number
format.

Block can contain mixed
double and single pre—
cision numbers; each is
accessed in number
format.

MODE 0 or | command:
single or double pre—
cision number, accessed
in number format

MODE 2 or 3 command:
single word accessed in
logic format.

Block can contain only
single words that will
be accessed in logic
format.

OTHER OPERAND

Contents of Accumulator

Contents of Accumulator

Contents of the

Contents of the

number format) stored
in the Accumulator.

of result in Accumulator
makes it available as
one of the operands for
the next iteration. KA
signals KC to access
next operand in the
block.

Result stored in
Accumulator

IF ANY: which, after the first Accumulator Accumulator which,
iteration, will be the after the first iteration,
result of the preceding will be the result of the
operation. preceding operation.

PROCESSING Arithmetic operation Arithmetic operation Contents of Accumulator shifted to zero exponent,

PROCEDURE: performed; result {in performed; storage truncated to 32 bits; logical operation performed;

torage of result in
Accumulator makes it
available as one of the
operands for the next
iteration; KL (KA if L.2 or
L3} signals KC to access
lnext operand.

CONTENTS OF

ACCUMULATOR
AT CONCLUSION:

Result of single
operation

Result at time of
termination

Result of single
operation

Result at time of
termination

REASONS FOR
TERMINATION:

Enabled data flag, end of
block, exponent overflow
or memory overflow

Enabled logic flag, end
of block, or memory
overflow.

Some of the repeat commands are extremely important in providing

programming flexibility. For example, if it is necessary in the

execution of a program to examine a table of information in order to
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TABLE 13.2-3

Test Commands

Processing of the Arithmetic Test and Logic

Handled by KA

Handled by KL

Non—Repeat Repeat Non—Repeat Repeat
COMMANDS: TO0-7 52, s3 TO-7 52, S3 $0, 51, S4-7 S0, S1, $4-7
OPERAND IN N Double or Same as that Block can Same as that MODE 0 or 1 commands: Block can contain only
AT OPCODE single stated for contain mixed | started for single or double single words that will be
STARTUP: precision 50, S1, double and S50, s1, precision number, accessed in logic format.
number, S4-7 single S4-7 accessed in number
accessed in precision format. MODE 2 or 3
number numbers: command: single word
format. each is accessed in logic format.
accessed in
number
format.

OTHER OPERAND

Contents of

Contents of

Contents of

Contents of

IF ANY: Accumulator Accumulator Accumulator Accumulator
PROCESSING Arithmetic operation Same as for single operation Contents of Accumulator skifted to zero exponent,
PROCEDURE: performed; result sent to S with new operand being tested || truncated to 32 bits; logical operation performed.

for zero test; sign made
positive for S2 and S3.

against contents of
Accumulator at each iteration.

TEST BRANCHES:

TEST SATISFIED:

Positive and non—zero—take
next command.

TEST NOT SATISFIED:
Negative or zero—increment
next command address by 1
for jump in program.

IF TEST SATISFIED:

Continue testing with next
operand.

IF TEST NOT SATISFIED:
Repeat operation is terminated;

increment next command
address by 1 for jump in
program.

TEST SATISFIED:
Result = 0 —take next
command.

TEST NOT SATISFIED:
Result # 0 — increment
next command address
by 1 for jump in
program.

IF TEST SATISFIED:
Continue testing with next
operand.

IF TEST NOT SATISFIED:
Repeat operation is
terminated; increment next
command address by 1

for jump in program.

TERMINATION DUE
TO END OF BLOCK:

All tests satisfied;
computation continues with
next command.

All tests satisifed;
computation continues
with next command.

TERMINATION DUE TO
INTERRUPT REQUEST

SET BY ENABLED FLAG,

MEMORY OVERFLOW,
OR EXPONENT OVER-
FLOW:

Next command or next
command plus one taken
depending upon the result of
the last test before the
interrupt was requested.

Next command or next
command plus one taken
depending upon the result
of the last test before the
interrupt was requested.

CONTENTS OF
ACCUMULATOR AT
TERMINATION:

Contents of Accumulator
undisturbed by this
operation.

Address plus one of last
operand tested.

Contents of Accumulator
undisturbed by this
operation.

Address plus one of last
operand tested.

determine whether or not it contains a particular word, the programmer
can do so using the S3 command (IUO) in the repeat mode. If the word
is in the table, the operation will be terminated on the operand and
computation will continue with the next command. In addition to this,
the address of the equivalent operand in the table, plus 1, is left in the
Accumulator so that the programmer can determine the exact location
of the word in the table. (This is only one of the possible ways to
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search the table; the programmer can choose the repeat command that

best suits the situation. )

Since all of the opcodes discussed here are handled similarly,

Tables 13.2—2 and 13. 2—3 have been included in order to point up the
distinctions between them. Figure 13.2-1 shows the tasks performed
by the various sequencers involved in the repeat logic operations and
tests that are handled by KL; Figure 13.2-2 gives the same infor—
mation for repeat operations and tests handled by KA. (This

includes the A and T commands as well as L2, L3, S2 and S3.) The
control of repeat operations by the KM sequencer is described in

Section 13. 3.
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FIGURE 13.2-1

Commands Handled by KL

General Algorithm for Processing Repeat

KC
‘When QM READY, sends GO
to access first command
word; Idles at KCG-KCH for
DATA AVAILABLE signal;

I
!
I
!

N

oM
Accesses word, signals DATA
AVAILABLE; At completion of
cycle: Returns to idle at
QMA-QMB;
Sends READY signal.

Assembles operand, checks
it for positive sign, shifts it
to zero exponent for use as
address of first operand;
Decodes 013 for GO to KM;
Idles at KCA-KCB.

KM
Sends GO to QC to handle second
coramand word; Idles at
KMC—KMD for QC finish;

Sets LP flip~flop to direct KC
in accessing of operand; Sends
LKC to KC to indicate repeat
mode and no command access;
Idles at KMG—KMH for signal
of ion of repeat

l
[
I
|
|
|
I
!
I
|
I
I
[
I
[
[
[
[
I
|
[
!

DRA: Start QA; Restores next
command address to register CA;
Returns to idle at KMA—KMB;

BRA: Increments address by |
(one command skipped in
execution of program);

BRA: Address not incremented
{computation resumes with next
command);

KMS5: Restores next command
addrens to regi ‘or CA; Sends
address of last opi-rand plus 1

‘o register N; Starts QA to store
this address in Accumulator;
Returny 1o idle at KMA—~KMB.

Qc
When OM READY,
Sends GO to QM to access
second command word;

|

Idles at OCE-QCF for DATA
AVAILABLE signal from OM;

oM
Accesses word, signals DATA
AVAILABLE;

At completion of cycle: Returns
to idle at OMA~QMB and sends
READY signal.

\

KC
When OM READY, sends GO
10 access operand;
Idles at KCL-KCM for DATA
AVAILABLE signal;

Sets up information in
required registers;
ldles at QCA—QCB.

N\

oM
Accesses word, signals DATA
AVAILABLE;
At completion of cycle:
Returns to idle at OMA-OMB;
Sends READY signal.

%

Sends operand to D in logic
format; If interrupts are
enabled, requests interrupt
for any logic flags on
operand; Sends GO signal to
KL; Returns to idle at
KCA—-KCB.

REPEAT FROM A UNTIL TERMINATION
CONDITION ARISES

\ idle at QAA-OAB.

0A
Stores final result in
Accumulator; Returns to

LOGIC COMMANDS

Performs required logic

operation on accessed operand and,

if two operands are involved, con—
tents of Accumulator; Increments
block length; If no termination con—
dition exists, sete LP and sends LKC
to start next operand access; Sends
result of last operation to Accumulator
to be picked up as second operand at
next iteration; Returns to idle at
KLA~KLB.

TERMINATES ON:
End of block or occurrence of enabled
logic flag; Sends pseudo DRA signal,
signals KC of opcode DONE condition;
Returns to idle at KLA~KLB.

LOGIC TEST COMMANDS
Performs required logic
operations and tests on accessed
operand and, if two operands
are involved, the contents of
the Accumulator; Increments
block length; If no termination
conditions exist, sets LP and
sends LKC to KC to start access
of next operand; Returns to

idle at KLA-KLB.

TERMINATES ON:

Resulting operand tests unequal
to zero (test not satisfied):
Resets BRA;

Test satisfied, but end of block
reached or enabled logic flag
detected: Sets BRA;

In either case, sets KM5 and
returns to idle at KL.A~KLB.

N ———

QA
Stores address of last
operand plus | in Accumulator;

Sends opcode DONE to KC;
Returns to idle at QAA-QAB.
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FIGURE 13.2-2 General Algorithm for Processing Repeat
Commands Handled by KA

of first operand, decodes 013 for
/ GO to KM; Idles at KCA~KCB.

KC
‘When QM READY, sends GO
to access first command word;
Idles at KCG-KCH for DATA
‘AVAILABLE signal;

Assembles operand, checks it
for positive sign, shifts it to
zero exponent for use as address

KM
Sends GO to QC to handle second
command word; Idles at KCM~KMD
for OC finish;

Sends early GO to KA;

Initializes arithmetic operation’
called for by opcodes transfers
(Acc) to N along with sign and
exponent, fixes sign of operation
according to odd— or even—numbered
opcode; inputs to QS are then com—
plete except for operand to be
accessed by KC; Sends LKC to KC
to cause access of first operand;
Idles at KMG-KMH for signal
from KA of termination;

[
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|

DRA: Starts QA; Restore next
command address to CA register;
Returns to idle at KMA~KMB.

BRA: Increments address by 1
{one command skipped in execution
of program);

BRA: Address not incremented
{computation resumes with next
cormmand);

KMS5; Restores next command
address to CA register, sends
address of last operand plus 1 to
regisber N; Starts QA to store this
address in Accumulator; Returns to
idle at KMA-KMB.

—

la—"] required registers;

QcC
When OM READY,
Sends GO to OM to access
second comshand word; ,
Idles at QCE—QCF for DATA
AVAILABLE signal from QM;

|
|

Sets up information in

Idles at QCA—OQOCB.

\

oM

Accesses word, signals DATA
AVAILABLE; At completion
of cycle, returns to idle at
QMA-QMB and sends READY
signal.

/

oM
Accesses word, signals DATA
AVAILABLE; At completion of
cycle, returns to idle at QMA—
QMB; Sends READY signal.

KA
Advance to KAG-KAH
waiting for QS finish;

.

A -

When OM READY, sends GO
to access operand; Idles at
KCL~KCM for DATA
AVAILABLE signal;

logic format for L2, L3, 82, S3;
otherwise in number format;
Reverses sign of operation if
operand negative; Inputs to QS
now complete; Sends GO to QS;
If interrupt enabled, requests
interrupt for any data flag on
operand; Returns to idle at
KCA-KCB.

/

T~

| /
Sends operand to D register in

oM
Accesses operand, signals
DATA AVAILABLE; At
completion of cycle: Returns
to idle at QMA~OMB;
Sends READY signal.

I

Qs
Performs sum/difference
operation on operands set up by
KM (if first iteration) or KA
(all succeeding iterations); if
exponent overflows, sends LE
signal; Idle until cleared by KA
Otherwise sends DONE signal;
Returns to idle at QSA-QSB.

|
|
|
I
|
|
|
|
|
|
I
l
|
!
|

LE: clear 0S, KA, set

interrupt request, return to

REPEAT FROM A UNTIL TERMINATION CONDITION ARISES

//

idle at KAA-KAB. DONE QS:
perform sign and exponent
manipulations for particular
opcode; logic format for result
if L2, L3, S2, S3; Iftest, send
to S for zero test; Initialize
arithmetic operations as KM
did earlier; Send LKC to KC to
access next operand; Idle at
KAG-KAH for QS finish;

QA

| __wf Stores address of last operand

NON~TEST COMMANDS

TERMINATE ON:

End of block or occurrence of

enabled logic flag; Sets DRA,

signals KC of opcode DONE
ition; Returns to idle at

Stores final result in A
lator; Returns to idle at QAA—QAB.

.

QA

plus 1 in Accumulator; Sends
opcode DONE to KC; Returns
to idle at DAA—QAB.

KLA-KLB.

TEST COMMANDS TERMINATE ON:
Resulting operand tests equal to zero
or negative (test not satisfied): Resets
BRA; Sets DRT;

Test satisfied, but end of block or
enabled data flag detected: Sets BRA;
Sets DRL;

In either case, sets KMS.
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SECTION 13.3 — KM SEQUENCER CONTROL OF REPEAT
OPERATIONS

The operation of KM in the handling of repeat operations differs only
slightly from that involved in the processing of block input/output. The
QC sequencer is started to access the second word and set up the
information contained therein. The operation of QC is the same for
both repeat and block modes. When this is accomplished, KM sets up
the first of the repeat operations, a process that will be referred to as
initialization, and signals KC to access the first operand. If the
repeated opcode is one of those processed by KA, a GKA signal is sent
to advance KA to the KAG-KAH idle loop where it waits for a DONE

QS signal. There are two reasons for doing this:

1) KC is designed so that a mode 2 or 3 command, or a repeat
command, processed by KA can use the QS startup at KCM (or
KCR for double precision accesses) to perform the arithmetic
operation called for by the opcode. This is feasible because
these accesses do not require operand assembly. In fact, the
startup would be superfluous if not used in this way since it
would be necessary to clear OA before sending the GQS signal
and the accessed operand would then be added to zero. The
handling of mode 2 or 3 commands destined for processing by
KA was described in Chapter 9. KA transfers the second
operand, if any, to OA, the accessed operand is sent to D, and
a GKA signal advances KA. Following the transmission of the
GQS signal, KC returns to normal idle. KA idles for the DONE
QS signal and then proceeds with its normal operations.
Similarly, KM sends the second operand, if any, to OA for the
first iteration of repeat commands, and a GKA signal to KA.
An LKC signal instructs KC to access the operand. Following

transmission of the GQS signal, KC returns to the normal idle
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loop while KA waits for the DQS signal. On subsequent
iterations, KA sends the second operand to OA, the LKC signal
to KC, and goes automatically to the KAG—KAH idle loop.

2) The gating used by KC to send it back to its normal idle loop
following the startup of QS rather than to opcode startup is the
term KA6. KA6 is part of the KAG—KAH decoding and is high
only if the KA sequencer is in operation. Thus the early

advancement of the KA sequencer effects the necessary branch.

If the repeated opcode is one of those processed by KL, it is impossible
for KM to speed up the operation because KL does not use the QS
sequencer. KM does clear OA so that the accessed operand will not be
affected by any residual information in that register when GQS is sent,
and the LP flip—flop is set to gate an operand access in logic format
and immediate startup of KL.. (This is the path taken on the final

operand access of mode 2 and 3 non—repeat opcodes in this group.)

The sign manipulations throughout KM are in accordance with the
algorithm described in Section 13.1 and will not, therefore, be dis—
cussed in detail in this section. Figure 13.3—1 shows the algorithm
for the KM control of repeat operations and Figure 13.3—2 contains the
corresponding section of the KM flow chart. Figure 13.3—3 is the

flow chart for the entire KM sequencer.
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FIGURE 13.3-1 Algorithm for KM Control of Repeat Operations

Idle
(]
GO from KC? N
Yes Assembled operand (checked for
_— e — - | positive sign, shifted to zero |
exponent) in N; will be used as
| address of first operand
Start QC to access 2nd - T
command word
Send START signal | Yes Was non—existent
to Mdster Control address used?
No
No
QC done? f_—“‘______]
Address of first operand is in CA
Yes | Block length (2's complement) is I
in BA

_—‘—m—————-——{OpcodeisinCD |

Next command address in AM
I 2nd command word minus |

Yes{ A0-7, To—7, L2, L3, L_ flags in S N

Initialize
S2, $3 Command?

operation *
* An explanation of this occurs in

the description of

Ll,L2, No
L4-7,51,52,54-7

Y
Signal KC to access Clear OA so that it won't affect
st operand . operand about to be accessed;
Early start signal Set LP for access in logic format
to KA Signal KC to access lst operand

Has KA or KL
terminated the repeat
operation?

Restore address of
next command to
CA; start QA to
store last result in
Accumulator

Completion of A or L
(non=test) operation?

Restore next command
address to CA

l Increment (CA)
Termination due to Yes Computation will go on
test failure? with next address

plus 1
No J

GO to QA to store
address plus 1 of last
operand in Accumulator

!
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TABLE

13.3-1

Terms Used on KM Flow Chart for Control of
Repeat Operations

BRA

BU(0)D
Clear OA
DKM

DRA

DRL

DRT

EVEN
GKA
GKC
GKM
GQA

GQC

GRS
Group 2f

Group 2h

Group 4c
KMR

KR

LKC

LP

MNA

OoDD

QCK

RKM

SCA

Set KM5

Set CD8

SM

WS

BRAnRch flip—flop; BRA is set when a repeat test operation terminates due to end
of block or enabled flag; program continues with the execution of the next command.

Current information on the bus sent to register D.

Clear N, clear EA, reset WS, set SM.

DONE signal from KM sequencer.

Done Repeat Arithmetic operations (including L2 and L3); high when the end of the
block is reached, an enabled flag detected or MNA goes high during the processing of

these opcodes.

Done Repeat test signal; high when repeat test terminated due to end of block or
enabled flag; program will continue with execution of the next command DRL = set BRA.

Done Repeat Test signal; DRT is high when the test is not satisfied; program will
continue with execution of the next command plus 1.

Even—numbered opcodes.

GO signal to KA sequencer.

Computed signal used to advance KC; GKC sets KR.
GO signal to KM sequencer for repeat operations.
GO signal to QA sequencer.

Go to QC sequencer; there is actually no such signal, OC is started when KM
sets the QC1 flip—flop.

Go Repeat Sequencer flip—flops; GRS = LKC.
A0, Al, TO, TIi.

A2-7, T2-7, L2, L3, S2, S3 (this is the group gated through KC by 2g, but without
the N commands which do not occur in the repeat mode).

Lo, L1, L4-7, S0, S1, S4-7.

KM sequencer Ready signal; KMR = DKM.

Opcode DONE signal to KC.

Loop KC signal; LKC directs KC to access the next operand in a repeat operation.

Logical Product flip—flop; LP is set at KMD to direct KC to access the first operand
in the repeat operation in logic format.

Memory Non—existent Address inverter; MNA is high when QM detects an illegal
address during the memory access.

Odd-numbered opcodes.

Decoding indicating the QCK state of QC sequencer; when QC reaches this point in its
processing, it is almost finished and KM considers this the signal to continue.

READY KM sequencer; when high, indicates that a repeat operation is not in
progress.

Select bus register CA for transfer of information; this will make possible the storing
of the address of the last operand plus 1 in the Accumulator.

KL signals DONE to KM by advancing logic (setting KM5 sends KM to the KMJ state).

Necessary to enable interrupt processing; TO looks like NO without 7CD6é and no
interrupt processing is allowed if the last command was an N command.

SuM flip—flop; SM is used by the QS sequencer; SM high indicates summing, low,
differencing.

Working Sign flip—flop; WS reflects the sign of the operand stored in OA.
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FIGURE 13.3-2 The KM Flow Chart for Controlling
Repeat Operations KI\A

000 Set RKM

GKM & GKM

1] z

KMB e Set OCl = GQC
— |
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ool Reset RKM
l QCKAMNA lQCKAMNAMc l QCKAMNA~Zh 1 QCKAMNA~2S § GCK~MNA
[a] [2] 3l AN AE(0)EA 4] Clear v, EA [s]
Clear OA AS(0)WS GKA Reset WS  GKA
KMD Set KMR = DKM Set LP Set GRS = LKC Set GRS = LKC —
GKC = Set KR Set GRS = LKC 0dd = AS(0)5 Odd = Reset SM
Even = AS(CJSM Even 2 Set SM

KMG _ﬂ
01l —_—
‘ DRA l DRTVSet KMS5VDRL
! 2] [2]
AM(0)CA
KMH GQA P -
KMJ 4 .l_l A
11 Set SC.
L] Butop
Clear 41DI5
KMK Reset WS
Clear EA

i

'

1{  D(OIN
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1o Set CD8
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BRA ‘ BRA
2] 12]
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1—‘ [T ‘

100 AC(+1)CA

!

i
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KMP
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FIGURE 13.3-3

The KM Flow Chart
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SECTION 13.4 — THE KJ SEQUENCER

The KJ sequencer, like KT, handles two register and two control
opcodes, specifically, RZ, R3, X2 and X3. Processing is similar to

that carried out by KT, but is considerably more complex.

The control commands X2 and X3 involve modification of the next
command address (held in register CA). The X2 command (SKiP)
calls for a jump in the program of the number of words specified by
the assembled operand. Thus, KJ adds the operand (OA) to the next
command address (register CA). Both of these values have zero
exponents (the assembled operand is shifted to zero exponent before
opcode startup) so that exponent values do not figure in the addition.
However, the fact that the skip may be in either direction means that
determination of the new address is dependent upon the sign of the
operand. Since the QS sequencer is set up to handle sign manipulation,
KJ starts QS to form the sum or difference of the two values. At DONE
QS , KJ checks the sign of the resulting value for positive before

sending it to the CA register as the next command address.

The X3 command (TRansfer and Mark) calls for a transfer in the
program to the location specified by the assembled operand with the
further provision that the address of the command following the TRM
(held in register CA) be saved to enable a return to the point at which
the transfer occurred. This address, called the mark, is stored in
the word designated by the assembled operand. Program exeuction
then continues at the mark plus one. This command is used by
programmers to incorporate subroutines in their programs. For
example, if the program calls for several determinations of sine
values, the programmer will not copy all the lines of code necessary
to the performance of this calculation into his program at each

iteration; instead, he will include the coding once and, for each use,
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transfer to the subroutine with the TRM command. At the end of the
subroutine, the programmer calls for a return to the mark by means
of an X0 command, i.e., GO to the contents of the first word in the
subroutine. Since the previous contents of CA are stored in that
location, this effects a return to the proper place in the program.
Implementation of these actions by KJ is quite straightforward. KC
checks the assembled operand for positive sign and shifts it to zero
exponent before starting KJ. At GO KJ, the operand is in OA and the
address of the next command is in register CA. KJ sends the contents
of CA to the B register to be stored in memory and the assembled
operand to register CA to be used as the address in the memory
WRITE operation. Thus, when QM is started, the former contents of
CA are written in the location specified by the assembled operand. QM
increments the address in CA so that program execution continues at
the mark pvlus one. Note that the programmer must not use the first

location in the subroutine since that word is used to store the mark.

KJ also handles the storing of the program mark during the processing
of interrupts. At KCA, the occurrence of an enabled interrupt request
causes entry into the interrupt branch of Master Control unless the
last command left useful information in OA. (The processing of an
interrupt before this information is used would result in less of the
information.) Master Control starts KJ for the purpose of storing the
program mark and setting up entry into the Interrupt Service Routine.
The entry point to this routine does not change; it is always location
64,y. KJ supplies the necessary transfer and mark to this location,
handling it as a pseudo—TRM command. The distinction between the
handling of TRM and interrupts by KJ is simply that, for interrupts,
64 is sent to CA rather than the assembled operand. When the mark
has been stored, KC will access the command in location 65 and, thus,

start execution of the Interrupt Service Routine.
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The two register commands handled by KJ (R2 and R3) both call for
extraction of the contents of the indicated register using the assembled
operand as the extractor with the result going to OA for R2 and to the
Accumulator for R3. Recall that the KT sequencer does not use the
Adder in performance of the extraction required by the Rl command.
The purpose of this command is to modify the contents of the

indicated register so that the result of the extraction is left in the
register and use of the Adder is not required. For the R2 and R3 com—
mands, however, the value in the register is undisturbed by the
operation; the extractions are being used to read the information in the
indicated register. Thus, the Adder is used to perform the extraction,
the result is gated into S, then to N, and, in the case of ERA, the QA

sequencer is started to store it in the Accumulator.
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FIGURE 13.4-1 Algorithm for the Processing of R2 and R3

Commands by KJ

wo/

\ START from KC?

res

Request interrupt, ‘No,
DONE signal to KC -o—Q(I) =0, 1, 2 or 37
‘Yes

Clear S5 for adder output;
Set LLP to gate logical
product from adder

v

Contents of I field = 07 L8

‘No

Send (CA}to D

( =17 Yes Send (U) to D
‘No
= 27 Yes

Send {H} to D

No
=z 3

Send {J) to D

Clear all but relevant
bits in D and N

!

Gate adder into S,
then (S) to N

!

DONE signal to KC =2 R2?

No
R3

GO signal to QA to store
result in Accumulator

!
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TABLE 13.4-1 Terms Used on the KJ Flow Chart for R2 and
R3 Commands

ABR Addressable Bus Register inverter;
ABR is high when decoding of infor—
mation in the index field indicates that
a legal register address has been used.

BU BU register; after bus register is
selected (XZ, SRU, SRH, SRJ) BU
is used to indicate that register.
Thus, SRJ followed by BU(0)14DO0
causes transmission of the contents
of register J to register D.

GQA GO signal to QA sequencer.
KR Opcode DONE to KC sequencer.
R2, R3 Register commands ERO (Extract

Register into OA) and ERA (Extract
Register into Accumulator).

Set LP Set the LP flip—flop to cause the Adder
to form the logical product of the
operands in registers N and D.

SKJ START signal to KJ sequencer for
commands R2 and R3.

SRH, SRJ, SRU, SCA Select Register H, J, U or CA
respectively.

SZ S Register Zero signal; SZ is high when

the S register contains zeros.

XZ Index field Zero inverter; XZ high
indicates that the index portion of the
command word (bits 20—15) contains
zeros. This is the designation for
selecting register CA. Decoding is
actually from 5CDO.
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'IGURE 13.4-2 The KJ Flow Chart for the Processing of R2 K J
and R3 Commands
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FIGURE 13.4-3 Algorithm for the Processing of X2 Commands by KJ
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TABLE 13.4-2 Terms Used on the KJ Flow Chart for the
X2 Command

BU

DQS

GKJ

GQS

Int

KR

SRH, SRJ, SRU, SCA

Sz

WG2

WS

ZE

BU register; after bus register is
selected (XZ, SRU, SRH, SRJ) BU
is used to indicate that register.
Thus, SRJ followed by BU(0)14DO0
causes transmission of the contents
of register J to register D.

DONE QS sequencer.

GO signal to KJ sequencer for com—
mands X2 and X3 or for the
processing of an enabled interrupt.

GO signal to QS sequencer.

Indicates that an enabled interrupt is
being processed; interrupts are
treated as pseudo—X3 commands.

Opcode DONE to KC sequencer.

Select Registers H, J, U or CA
respectively.

S Register Zero signal; SZ is high when
the S register contains zeros.

Wait Gate signal; WG2 is brought high
as part of the GO QS signal. This
inverter is not the echo of WGI.

Working Sign flip—flop; WS holds the
sign of the operand stored in OA. WS
low indicates a negative sign.

Zero Exponent signal; in KJ, ZE comes
high when the EA register contains
Zeros.
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FIGURE 13.4-4 The KJ Flow Chart for the Processing of

X2 Commands by KJ
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FIGURE 13.4-5 Algorithm for Processing of the X3 Command

and Enabled Interrupt Requests by KJ
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TABLE 13.4-3 Terms Used on the KJ Flow Chart for the
X3 Command and Interrupts

BU

GCA

GKJ

Int

KCE, KCF

KR

ROM

SRH, SRJ, SRU, SCA

X2, X3

BU register; after bus register is
selected (XZ, SRU, SRH, SRJ) BU
is used to indicate that register.
Thus, SRJ followed by BU(0)14D0
causes transmission of the contents
of register J to register D.

GO signal to QM sequencer.

GO signal to KJ sequencer for
commands X2 and X3 or the
processing of an enabled interrupt.

Indicates that an enabled interrupt
is being processed; interrupts are
treated as pseudo—X3 commands.

States in the KC sequencer; decoding
of these states in conjunction with
KJC and KJD indicates that an
interrupt is being processed.

Opcode DONE to KC sequencer.
READY QM sequencer.

Select Register H, J, U or CA
respectively.

Transfer commands SKP (SKiP) and
TRM (TRansfer and Mark).
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FIGURE 13.4-6 The KJ Flow Chart for the Processing
of X3Commands and Enabled Interrupt Requests by KJ
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TABLE 13.4—-4 Terms Used on the KJ Flow Chart

ABR

BU

GCA

GKJ

GQs

GQA

Int

KCE, KCF

KR

R2, R3

ROM

Set LP

SKJ
SRH, SRJ, SRU, SCA
Sz

WGl

wG2

WS

X2, X3

XZ

ZE

Addressable Bus Register inverter; ABR is high when decoding of information
in the index field indicates that a legal register address has been used.

BU register; after bus register is selected (XZ, SRU, SRH, SRJ) BU is used

to indicate that register. Thus, SRJ followed by BU{0)14D0 causes transmission
of the contents of register J to register D.

DONE QS sequencer.

GO signal to QM sequencer.

GO signal to KJ sequencer for commands X2 and X3 or for the processing of an
enabled interrupt.

GO signal to QS sequencer.
GO signal to QA sequencer.

Indicates that an enabled interrupt is being processed; interrupts are treated
as pseudo—X3 commands.

States in the KC sequencer; decoding of these states in conjunction with KJC
and KJD indicates that an interrupt is being processed.

Opcode DONE to KC sequencer.

Register commands ERO (Extract Register into OA) and ERA {Extract Register
into Accumulator).

READY QM sequencer.

Set the LP flip—flop to cause the Adder to {>rm the logical product of the operands
in registers N and D.

START signal to KJ sequencer for commands R2 and R3.
Select Register H, J, U or CA respectively.
S Register Zero signal; SZ is high when the S register contains zer»ss.

Wait Gate signal; WGI high is used as a signal to the QS idle state to enable the
N(L3)S path.

Wait Gate inverter; WG2 high is used as part of the GO QS signal.

Working Sign flip—flop; WS holds the sign of the operand stored in OA. WS low
indicates a positive sign.

Transfer commands SKP (SKiP) and TRM (TRansfer and Mark).
Index field Zero flip—flop; XZ is set to indicate that the index portion of the command
word (bits 20—15) contains zeros. This is the designation for selecting register CA.

Decoding is actually from 5CDO.

Zero Exponent signal; in KJ, ZE is brought high when the EA register contains
Zeros.
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FIGURE 13.4-7 The KJ Flow Chart
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SECTION 13.5 — THE KL SEQUENCER

The KL sequencer processes all of the L, and S commands that call for
logical operations. This excludes L2, L3, S2 and S3 which require

arithmetic operations and are, therefore, processed by KA.

The commands that call for startup of the KL sequencer are gated
through Master Control by two terms: 4c and LP. The 4c term gates
those commands when written in mode 0 or 1; the LP flip—flop is set
to gate the final operand access for those commands written in mode 2
or 3 and to gate the accessing of the operands during repeat operations.
The distinction is necessary due to the fact that all operand assembly
occurs in number format. In modes 0 and 1, there are no further
accesses. In modes 2 and 3, the assembled operand is used as an
address and final access is carried out in logic format for logic
commands. Only this last access can be conditioned by the opcode.
Thus, if the command is written in mode 0 or 1, the operand is in
number format at the time KL is started. Since KL expects to receive
an assembled operand that has an exponent value of zero, the exponent
is checked by KC before a mode 0 or 1 startup occurs (gated by 4c).
The operand is shifted to zero exponent if necessary; truncation to 32

bits is performed by the KL sequencer.

On the other hand, accesses of the final operands for mode 2 or 3
commands, or of the next operand in a block operation, involve no
operand assembly and, thus, can be carried out in logic format. These
accesses are gated by the signal from the LP flip—flop which is set
during the KZC (mode 2 or 3) loop of Master Control or by the KM or
KL sequencer during repeat operations. When LP is set, the least
significant 32 bits of the operand are sent to register D and exponent
register EP is cleared. Thus, no exponent check is necessary and LP

gates immediate startup of KL at KCT.
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The LP flip—flop serves a different purpose when operand access is
not in progressr. In the processing of the L4, L.5, S4 and S5 opcodes,
it directs the Adder to form the Boolean product of (N) and (D). This
amounts to the determination of the logical product (extraction) of the
two operands. (This process calls for a 1 bit in the result wherever
there is a 1 bit in both operands.) Thus, LP is reset at KLLD for all
but the 4 and 5 opcodes. It is reset at KLK, after the result has been
gated from the Adder, for all cases except incomplete repeat opera—
tions. On repeat, an LKC signal is sent to KC directing the access of
the next operand. The LP signal gates the logic formatting of the

accessed information and the startup of KL.

KL is started by KC, both for repeat and non—repeat operations, by
means of a GO KL signal. For the two—operand commands (those
numbered 4, 5, 6, 7) the Accumulator value is checked for zero
exponent. This check is made through use of the subtractor—
comparator circuitry which compares the exponent in EP (known to be
zero since the assembled operand has either been accessed with a zero
exponent or shifted to zero exponent prior to the startup of KL) with
that in EA (the Accumulator exponent has been sent from AE to EA).
The signal EE is high when (EA) = (EP) so that, in this case, EE
signals zero exponent. If EE is not high, the QZ sequencer is started
to shift the operand to zero exponent. Following this, both operands

are truncated to 32 bits.

Because KL handles all opcodes similarly, it serves little purpose to
flow chart the basic algorithm. It is more important to compare the
requirements of the opcodes and to understand the subtleties in the
logic that adapt it to each case. Referring to Table 13. 2—-1, the
following generalizations concerning the processing of logic opcodes
can be made:

1) The operands are handled in the logic format: zero exponent,
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truncation to 32 bits. For those operands gated by 4c, a
check is made for zero exponent before KL is started; the
operands are truncated to 32 bits by KL.. For those gated by
LP, the operand is accessed in logic format (a zero exponent
is sent to register EP and the least significant 32 bits of the
operand are sent to register D). For the LL.4-7 and S4-7
commands, the operand stored in the Accumulator is checked
for zero exponent; if it is not zero, QZ is started to shift it to

that condition.

2) The odd—numbered commands operate on ({Acc $ X)where
X is the complement of X and $ indicates a logical operation.

(The complement of a value is the logical analog of negation. )

3) The test conditions are satisfied (take next command) if the

result is equal to zero.

In all cases, KL gates the result of the operation from the Adder by
means of the R(L1)S path. The requirements of each logical operation

and the Adder initialization are shown in Table 13. 5-1.

In group I, the operand is summed with a zero value and is, thus,
unchanged. The group II opcodes call for extraction (the formation of
the Boolean product). This is obtained when the LP flip~flop is set.
For the opcodes in group IIl union results from storing one of the
operands in S, then transferring the other into S from the Adder. (1
bits already in S will not be destroyed by this single—sided transfer,
while additional 1 bits from the other operand will be copied, thus

effecting the union. )
The L. commands call for storage of the result in the Accumulator.

For both repeat and non—repeat operations, the sign left in the AS flip—

flop will be that of the operand that was originally stored in the
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TABLE 13.5-1 Use of the Adder by KL
Single
T
Operand wo Operands
I LO, L1, II: .4, L5, II: L.6, L7,
Commands: S0, Sl1 S4, S5 S6, S7
Logic
Operation: Bring Extraction Union
(1 bit in result (1 bit in result
in bit positions in bit positions
where each where either
operand has a 1) operand has a 1)
Register N: Cleared Operand from Cleared
Accumulator
Register D: Assembled Assembled Assembled
operand operand operand (L6, S6)
(L0, SO0) (L4, S4) or or complement
or complement (L7, S7)
complement (L5, S5)
(L1, S1)
Register S: Cleared Cleared Operand from
Accumulator
State of LP
Flip—Flop: Reset Set Reset

Accumulator for the two—operand commands. For the single—operand
commands, the former state of AS is meaningless. Thus, for mode 0
and 1 commands (access in number format) the sign is that of the
operand, while for mode 2 and 3 commands (access in logic format) the

sign is positive.

On non—repeat tests the contents of the Accumulator are not disturbed
when the command is processed. The program continues with
execution of the next command or the next command plus 1 depending

upon whether or not the result of the operation was equal to zero. For
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repeat test commands, the address plus 1 of the last operand processed

is stored in the Accumulator so that the programmer can determine the

location of the operand last processed.

Repeat operations have been described in some detail in Section 13. 2.

The following points should be emphasized:

1)

2)

3)

Following the initial operand access which is set up by KM, all
subsequent accesses are controlled by KL.. KL clears the N
register in anticipation of the startup of QS, sends an LKC
signal to KC to direct the access of the next operand, sets the
LP flip—flop to gate the access in logic format and resets WS as
part of the logic formatting of the result of the previous

operation.

A Done Repeat Arithmetic operation signal is not generated as
shown, but KLK ~ RKM ~ CD8 ARTF has the same affect as
does DRA and is replaced on the flow chart by DRA for
convenience. (DRA => AM (0) CA, reset KM1, reset KM3).

KL does not start QA to store the result of each L. operation in
the Accumulator, but performs these shifts on its own, clearing

the exponent register and resetting WS in line with logic format.
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TABLE 13.5-2

Terms Used on the KLL Flow Chart

AS

BRA

DRA

EE
EVEN
GKC
GKL

GQZ

KR
LO, L1, L4, L5, L6, L7

LKC

LpP

ODD

QZA, QZB

RKM

R(L1)S
RTF

RTJ

S0, S, S4, S5, S6, S7

Set KM5

SKC

sz
WS

ZE

Accumulator Sign flip—flop; AS holds the sign of the operand currently stored
in the A register.

BRAnch flip—flop; in repeat operations, if the tests are all satisfied and the
operation terminates due to end of block, the BRA flip—flop is set; computation
continues with the next command which normally calls for a transfer or branch
in the program.

Done Repeat Arithmetic operation signal; DRA is not'generated by KL; rather,
the combination of KLK A~ CD8 ~RKM ARTF is equivalent to the DRA signal
since both have the following consequence: AM(0)CA, reset KM1, reset KM3.
Exponents Equal signal; EE high indicates that (EA) = {EP).

Even-numbered opcodes, i.e., L0, 4, 6, SO, 4, 6.

GO KC sequencer; GKC advances the KC logic by setting the KR flip—~flop.

GO KL sequencer.

GO QZ sequencer.

Decoding of KLJ state of the KL sequencer; KLJ decoding inhibits the transfer
of the bit held in bit position D-1 of register D to the S register when the Adder
output is gated to S. (The path D-1{L1)S0 is inhibited.)

Opcode DONE signal to KC.

Logic commands processed by the KL sequencer! CAL, CCL, EXL, ECL, UNL, UCL.

Loop KC sequencer; the LKC signal is sent to direct KC to access the next
operand in a repeat operation.

Logical Product flip~flop; LP is set during operand access if logic format is
required; this happens for the L. and S commands processed by KL when

written in the repeat mode or in the non-repeat mode with mode 2 or 3 commands.
LP is set during the operation of KL for the opcodes numbered 4 and 5 which call
for formation of the logical product by the Adder circuitry. For the other
opcodes processed by KL, the LP flip—flop is reset.

Odd—-numbered opcodes, i.e., L1, 5, 7, 81, 5, 7.

Normal idle states of the QZ sequencer; when OZA and QZB are high, OZ is
not in operation.

READY KM sequencer flip—flop; RKM is set when KM is not in use, reset if
KM is in use. Hence, RKM = no repeat operation, RKM = repeat.

Path enabled to gate the Adder output to register S during operation of KL.
The RTF inverter indicates the opposite state to that of the RTJ inverter.

Repeat operation Terminates inverter; during operation of KL, RTJ it high
due to the end of the block or the occurrence of an enabled logic flag.

Logic test commands processed by the KL. sequencer (I0Z, ICZ, 1EZ, ICZ,
Uz, 1IuC).

KL signals DONE to KM for repeat operations by advancing logic {setting KM5
sends KM to the KMJ state).

Early Start signal sent to KC; SKC is sent only during non-repeat operations
of KL.

S register Zero signal; SZ is high when the S register contains zeros.
Working Sign flip—flop; WS holds the sign of the operand currently stored in OA.

Zero Exponent signal; during the operation of KL., ZE is high when the EA
exponent register contains a zero exponent.

13-52




13.5

FIGURE 13.5-1

The KL, Flow Chxrt
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SECTION 13.6 — THE QS SEQUENCER

The use of this sequencer was described in detail in Section 13.1. It

will suffice to review the points made at that time:

1) QS is started by KC, KA, and KJ to perform floating—point

summing and differencing operations on two operands;

2) the user sequencers set up the operands in the N and D regis—
ters with exponents in the EA and EP registers respectively.

The sign of the operand in register N is the WS flip—flop;

3) at GO QS, the state of the SM flip—flop indicates whether a sum
or difference operation is to be performed. (SM high indicates
summing operation. ) This state is arrived at by means of
combining the sign in WS, the sign of the operand held in
register D (taken from the B28 flip—flop when the operand is

accessed), and the sign of the operation itself (add or subtract);

4) S handles equalization of exponents if necessary and deter—

mination of the final sign value.

At DONE QS the resulting mantissa is stored, rounded if necessary, in
register N, the sign is in the WS and SM flip—flops, and the signed
exponent is in the exponent circuits as follows. If, at GO QS, the
operand in N is equal to zero, an early exit from QS leaves the
exponent of the result in registers EP and ES. If this is a non—zero
operand, the normal exit from QS leaves the final exponent in register
EA and the exponent plus 1 in registers EP and ES. The way in which
these values are handled by the user sequencers is shown in Table

13.6-1.

The idle states of the QS sequencer are unusual in two respects: there

are three distinct idle loops and a GQS is not sufficient to set the

13-54



13.6

TABLE 13. 6~1

Use of Exponents Generated by QS

QS User
Sequencers: KJ KA KC
Exponent Starts QS for SKP | Expects At opcode
Requirements: command. No to find startup, some
exponents are ~assembled | opcodes require
involved since the | operand in | exponent of
next command OA, N, EA| assembled
address has no WS. operand in EA,
exponent and the some require
assembled exponent of
operand is shifted Accumulator
to zero exponent operand in EA.
prior to opcode
startup.
If (N)= O The path If DQS available
(Exponent ES(0)EA is ?t KCT [imply—-
in EP and enabl.ed at | ing (N) = 0]
ES) KAH if requirements of
DQS ~QSF | opcode deter—
(DQS is mine which of
generated these paths is
at QSF only| enabled:
if (N) = o. ES(0)EA
or
AE(0)EA.
If (N) # O: The path
ES(-1)EP is
(F‘.xponent enabled to
in EA,
exponent corre'ct exp.o-—
. nent in EP in all
plus 1 in
EP and ES) cases except

those where zero
exponent is
required.

sequencer in operation.
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and GQS. Any time both of these signals are available, QS exits from

idle.

Before exiting from the idle loop, the path N(L3)S is enabled to send
the operand to register S for a zero test on (N). This enabling can be
handled by means of a WGI1 signal sent to QS or, as in the case of KJ,
by direct enabling of the path. Note that WG2 does not echo WGI1.
This makes it possible to use the WG1 signal for enabling of the
N(L3)S path even when the QS sequencer is not about to be started, a
circumstance which is necessary to circumvent more direct use of

this overloaded enable path.

Figure 13. 6~1 shows the algorithm for a summing operation (SM high)
when (N) = 0 or the exponents of the two operands are equal;

Figure 13. 6-2 cbntains the corresponding portion of the QS flow chart.
A mantissa overflow, indicated by signal S42, is corrected by means
of a right—3—bit shift with a corresponding increment of 1 to the
exponent. Register N is cleared so that the operand stored there
won't be addéd again and the sum is sent to D for gating through the
Adder again. If the round—up inverter is high enabling of the

RU(0)CZ path sets the carry—zero flip—flop to cause rounding this time
through the Adder. Due to the nature of binary arithmetic, the
mantissa will never overflow by more than 1 bit. Thus, this shift will
always correct the condition. Exponent overflow (generation of an
exponent larger than 778) is not handled by QS. Rather, QS idles until
cleared by KC or KA, whichever started the operation. The control
sequencer will request the interrupt and take care of any other book—

keeping operations necessary to its own return to idle.

When the SM f{lip—flop is reset, indicating a differencing operation, the
operand in register N is 1's complemented and an add cycle performed.

The usual case is taken to be that where /D/>/N/ so that complementing
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FIGURE 13. 6-1
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to complete the operation.
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(N) and adding (N) to (D) results in generation of a carry out. In
binary arithmetic, this carry out indicates that the result of the opera—
tion is in true form (since the uncomplemented value is larger) but is

Thus, a carry in to the zero order of the Adder is necessary

Since the usual case is taken to be that in
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which a carry in is necessary, the carry in flip—flop (CZ) is set
before the result of any differencing operation is gated from the

Adder.
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TABLE 13. 62

Terms Used on the QS Flow Chart for Summing

Clear QS

CcY

CYE

cz

EE

EPZ

GQs

LE

LES

R(0)S

RU

SM

S42

SZ
wG2

WS

2E

Signal from higher level control. On detection of exponent overflow by QS, user
sequencer requests an interrupt, clears QS, and takes any actions necessary to its
own status. ‘QS, on being sent a Clear signal, returns to idle.

CarrY inverter; CY high indicates that a mantissa overflow has occurred in the
Adder output. CY, if enabled (CYE high), sets S42 or $43 depending on the output
path from the Adder.

CY Enable flip—flop.

Carry Zero flip—flop; CZ high indicates a carry into the zero order of the Adder.
It is used in summing to round up the mantissa if RU is set.

DONE QS sequencer.

EA register Zero inverter; when high, EAZ indicates that the exponent held in
register EA is zero.

Exponents Equal signal; EE indicates (EA) = (EP).

EP register Zero inverter; when high, EPZ indicates that the exponent held in
register EP is zero.

GO signal to QS sequencer; GQS must occur when WG2 is high in order to start
the sequencer.

Large Exponent; LE indicates that an exponent overflow has occurred.

Large Exponent Signal; LES is high when (EE) = 101 _. (This is 77_ plus I since
the exponent in EP is one greater than the final exponent when the result is gated
from the Adder.)

Path enabled to gate output from Adder.

Round—Up inverter; RU is high during right shifts in accordance with the round—up
rule:RU = S2 ~ (S0 v S1 vS3 v DB).

SuM flip—~flop; SM high indicates that a summing operation is called for.

Bit 42 in register S; if the output from the Adder is gated R(0)S, and CY ~CYE
are high, 542 goes high.

S register Zero signal; SZ is high when register S holds zeros.
Wait Gate inverter; WG2 is used in conjunction with GQS to start the QS sequencer.

Working Sign flip—flop; WS holds the sign of the operand in N at GO QS and that of
the result at DONE QS.

Zero Exponent signal; during operation of OS, ZE comes high when the final
exponent is zero.
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FIGURE 13.6—2 The QS Flow Chart for Summing
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Consider the following example. To store the quantity —22 in the
Accumulator, the Al command (CLear Subtract) is written with an
operand of 22. This sends 22 to register A, zero to the AE register,
and the AS flip—flop is set to indicate negative. If this is followed by
an A3 command (SUB) with an operand of —31, then operand assembly
will store 31 in register N, zero in register EA, and the SM and WS
flip—flops will hold the negative sign. The KA sequencer then sends
the operand from the Accumulator to OA, and that from OA to regis—
ters D and EP. The state of SM is fixed according to the rule demon—
strated in Table 13.1-2. (A subtract operation with negative values
in AS and SM leaves SM low to indicate a differencing operation. WS
remains high; its final value will be that of the larger operand.) Thus,

at GQS:

41 0
register D |[0. . . . . . .. 011001 |
41 0

register N [0. . . . . . . . 010010

SM flip—flop reset; WS flip—flop set.

The operand in register N is complemented and transferred to register

D while that from D is sent to N.

41 0
register D [1 . . . . . ... 101101 |

As was stated earlier, CZ is set on the assumption that the
uncomplemented value (original (D)) has the larger absolute value so
that the result will be in normal form, low by 1. With CZ set, the add
cycle is as follows:

(N) = 000000000000000000000000000000000000011001

(D)= 111111111111111111111111111111111111101101
CZ 1

CY 000000000000000000000000000000000000000111 = 78.
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The CY (CarrY out) signal high indicates that the setting of the carry
in was correct and that the larger absolute value was, in fact, the
original (D). This means that the sign of the value originally stored in
register N is not the sign of the result and the state of the WS flip—flop
is reversed. Before the operation is complete, the sign is copied into
the SM flip—flop. Thus, at DQS, WS is low and SM high to indicate that

the final value is +7.

For the case where /D/</N/, the output from the Adder is handled
differently. If the values used in the example above were reversed,

the operation would be handled as follows:

41 0
register D [0 . . . . . ... 10010 ]

41 | 0
register N [0. . . . . . .. 011001}

Contents of register N are complemented and transferred to register

D while (D) are sent to N.

41 0
register D 1. ... .... 100110 |

The addition that takes place is as follows:

(N) = 000000000000000000000000000000000000010010
(D)=111111111111111111111111111111111111100110
CZ 1

CYy 1111111121111111111111111111111111111111001

No carry out is generated. This indicates that the absolute value of
the complemented operand (the original (D)) is larger. Therefore, the
result is in 2's complement form and the carry in flip—flop should not
be set. QS checks the state of the CY flip—flop before gating the
result from the Adder. If CY is low, QS resets the carry in flip—flop
(CZ) and re—enters the Adder portion of its logic. The result gated

from the Adder will be the 1's complement of the correct result.
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Thus:

()= 111111111111111111111111111111111111111000

This value is 1's complement to give the final answer: 78. In this
case, the larger value was originally stored in register N and, thus,

the correct final sign is already in the WS flip—flop. This sign is

copied into SM so that, at DONE QS, WS is high and SM is low indicating
a result of =7. Figures 13.6—3 and 13. 6—4 show the algorithm and

flow charts for differencing operations.

Before two numbers can be correctly summed or differenced, their
exponents must be equal. The EE signal (Exponents Equal) is high
when the exponent in the EA register equals that in EP. Since, at GO
QS, the operands are stored in registers N and D with exponents in EA
and EP respectively, QS uses the EE signal to determine whether or
not exponent equalization is necessary. Equalization is carried out by
means of a series of mantissa shifts in conjunction with the appropriate
exponent increments or decrements. These manipulations are similar
to those described for the QZ sequencer with the positioning of
mantissas for shifting being determined by the available shift paths.
Thus, the mantissa in register N can be shifted left 3 bits at a time
while that in register D can be shifted right 3 bits at a time. However,
in QZ one of the exponent values is fixed ahead of time and the other is
brought into agreement with it whereas, in QS, the equalization
algorithm allows for convergence of the two exponent values in order
to make possible the retention of maximum possible significance in the

mantissas.

The QS equalization algorithm begins with left shifts of (N) along with
decrements of the exponent associated with that mantissa. (The
mantissa with the larger exponent is held in register N. If this is not

the case when exponent equlaization begins, the mantissa in register N
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FIGURE 13.6—3 Differencing Algorithm
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TABLE 13.6-3

Terms Used on the QS Flow Chart for Differencing

Clear QS

(2 4

CYE

cz

EAZ

EE

EPZ

GQSs

LE

LES

R(0)S
SM

S42

sz
WGl, WG2

wSs

ZE

Signal from higher level control. On detection of exponent overflow by QOS, user .
sequencer requests an interrupt, clears QS, and takes any actions necessary to
its own status. QS, on being sent a clear signal, returns to idle.

CarrY inverter; CY high indicates that a mantissa overflow has occurred in the
Adder output. CY, if enabled (CYE high), sets 542 or 543 depending on the

output path from the Adder.

CY Enable flip—flop.

Carry Zero flip—flop; CZ high indicates a carry into the zero order of the Adder.
CZ is set before differencing operations to effect the anticipated end around carry.

DONE QS sequencer.

EA register Zero inverter; when high, EAZ indicates that the exponent held in
register EA is zero.

Exponents Equal signal; EE indicates {EA) = (EP).

EP register Zero inverter; when high, indicates that the exponent held in register EP
is zero.

GO signal to QS sequencer; GQS must occur when WG2 is high in order to start
the sequencer.

Large Exponent; LE indicates that an exponent overflow has occurred.

Large Exponent Signal; LES is high when (EP) = 1018. {This is 77 plus 1 since
the exponent in EP is one greater than the final exponent when the result is
gated from the Adder.)

Path enabled to gate output from Adder.

SuM flip—flop; SM high indicates that a differencing operation is called for.

Bit 42 in register S; if the output from the Adder is gated R{0)S, and CY ~CYE are
high, S42 goes high.

S register Zero signal; SZ is high when register S holds zero.
Wait Gate signals; WG2 is used in conjunction with GQS to start the QS sequencer.

Working Sign flip—flop; WS holds the sign of the operand in N at GO QS and that of
the result at DONE QS.

Zero Exponent signal; ZE comes high in OS when the final exponent is zero.
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FIGURE 13.6—4 Paths Enabled During Exponent Equalization
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is switched with that in register D.) If (N) become octal normalized
before equalization of exponents occurs, i.e., if significant bits are
shifted into the high order octal position os register N, no further shifts
are performed on that mantissa. Rather, equalization proceeds by
means of shifting the mantissa in register D to the right with con—
current exponent increments. This process continues until either the
exponents become equal or all the significant bits in register D are
shifted out of the register. In the latter case the operand held in N and
its exponent value are taken as the final result. On right shifts, loss

of significant bits is remembered for use in rounding.

Another difference between the mode of operation of QS and that of QZ
concerns the action taken when the exponents have become equal. In

QZ, if the mantissas have been switched, they are returned to the
original positions before control goes back to the higher level sequencers
for completion of the operation. In QS, the mantissas are not

exchanged but are gated through the Adder immediately. Control does
not return to the higher level sequencer until the final result is avail—

able.

The basic algorithm for exponent equalization is shown in Figure 13. 6-5.
It should be noted that a test is made for (N) = 0 before the question of
exponent equalization arises. Thus, it is only necessary to check for
(D) = 0 during the equalization process. The algorithm shown is for

the case where the mantissa associated with the larger exponent is
stored in register N. Since this exponent is larger, it calls for
exponent decrements and for left shifts of the associated mantissa. If
(N) become octal normalized before exponent equalization occurs, the
mantissa in register D is shifted right. Since the available shift paths
for register N allow for left shifts only, while those for register D

allow for right shifts, this is the simple case.
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When the mantissa with the larger exponent is stored in register D, the
mantissas must be interchanged in order to implement the left shifts
required for the mantissa originally stored in D. It is not necessary to

interchange the exponent values because both EA and EP have increment

and decrement paths.

FIGURE 13.6-5 Basic Algorithm for Exponent Equalization

Shift {N) left 3 bits;
1 Decrement exponent
byl

Shift (D) right 3 bits;
Increment exponent
by 1

o '

< (D) = 07 }Eﬁ( Exponent equal? >

Yes ;Yes Yes

(Nhoctal normalized?

Exponent equal?

If differencing:

Operand in D . : : If differencing:
complemented; Sign Continue with s B8 Operand in N

diff i
value reversed; CZ 2rerlat;a::ncmg complemented;
flip—flop state P CZ flip—-flop set
determined *

*Basic differencing operation assumes /D/>/N/. The WS flip=flop holds the sign of (N},
the operand that is complemented in assumed case. At DONE QS, if expected carry—out
has occurred, verifying /D/>/N/, the sign in held in WS is reversed to give it the sign of
(D) rather than (NY. When exponent equalization takes place during the shifting of (D), the
operand in D is complemented. This reverses the meaning of the carry—out signal.

Hence, the sign held in WS is reversed.

It has been pointed out earlier that the CZ flip—~flop is set prior to differencing operations.
When {D) are shifted right, two factors influence the state of the CZ flip—flop: the state
of the RU flip—flop {set when rounding is required due to loss of significant bits) and the
requirements of the differencing operation. If CZ is assumed to be in the set condition
due to the differencing operation, the occurrence of RU set will cause CZ to go low again.
Since CZ is always set for differencing, the final state in this case is always the opposite
of the RU flip~flop. Consequently, the complement of RU is sent to CZ for this case. On

right shifts during summing operations the state of RU affects CZ directly.

The fact that the mantissas are not then stored in the registers
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EL is High — (EA) > (EP)

FIGURE 13. 66 Algorithm for Equalizing Exponents when
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from roundup

Return to summing
or differencing operation
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in this case since
{EP) = final exponent

*
Operand that was in register N at GO QS.

*k
Operand that was in register D at GO OS.

{Figures 13.6=1, 13.6-3)

fokeke
Sign reversal accompanies complementation of operand that was in D at GQS since the basic

algorithm assumes that the N operand will be complemented and that WS reflects the sign of

the complemented operand.
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will either be equal or only one of them will be meaningful.

associated with their respective exponent values does not affect the
operation since, in shifting the mantissas in N or S, QS decrements or
increments the correct exponent whether it is stored in EP or EA.
Shifting continues until either the exponents are equal or the contents of

D become zero so that, when the add cycle is entered, the exponents
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In Figure 13. 6—6 the equalization algorithm shown is the detailed
counterpart of the basic algorithm of Figure 13. 6~5. For this case it
is assumed that (EA) > (EP). This exponent relationship is indicated
by the exponent larger signal, EL, which is high due to the exponent
circuitry when (EA) > (EP). The paths used in implementing this

algorithm are shown in Table 13. 6—4.
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TABLE 13.6—4 Paths Enabled During Exponent Equalization

(N) Not Octal Normalized (N) Octal Normalized
Mantissa N(L3)S Mantissa D(0)s
shifted left: S(0)N shifted right: S(R3)D
Exponent EA(0)ES Exponent EP(0)ES
decremented: ES(-1}EA incremented: ES(+1)EP

The algorithm is, for the most part, self-explanatory. The following

points require some discussion.

1)

2)

(EP) are incremented before the shifting process begins,
thereby putting the exponent associated with the (D) one step
ahead of the mantissa shifts. (Since EL is high, the exponent
stored in EP is the smaller one.) This increment takes place
because the assumption is made that it will be necessary to
shift (D) to the right before equalization is achieved. This
early increment will, during right shifts, cause equalization to
be signalled one shift early and, thus, makes it possible to
complement, if required, on the final shift. When equalization
occurs before (N) are octal normalized, a final shift and

exponent decrement take place after equalization is signalled.

A meaningless transfer of (EP) into ES takes place when (D) are
shifted to zero. The transfer occurs because it is necessary in
the case where the exponent stored in EP is larger than that in
EA (the case indicated by the signal E_L) and, therefore, the

(N) and (D) have been interchanged. When this happens, and
(D) are shifted to zero, the exponent of the result is that stored
in EP and hence, the transfer is necessary. It remains in this

algorithm since it does no harm and extra circuitry would be
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involved in inhibiting it. The transfer will shortly be wiped out
by the EA(O)ES transfer when the summing or differencing

process continues (see Figures 13. 6~1 and 13. 6-3).

Figures 13.6-8 and 13.6—9 represent the EL case. This, of course,
resembles what happens for EL, but some confusion can arise due to
the mantissa interchange. (D) and (N) are switched by means of
enabling three paths: N(L3)S, D(0)N, S(R3)D. It should be noted that
(EP) are decremented while (N) are shifted left, and the (EA) are
incremented when (D) are shifted right. The early increment this time
involves the EA register. A further difference is that a test must again
be made for (N) = 0 since the earlier test for this condition involved

the mantissa that is now stored in register D.
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TABLE 13.6—5 Terms Used on QS Flow Chart for

Exponent Equalization

Cz

DB

EE

EL

NN

RU

SM

SZ

WS

Carry Zero flip—flop; CZ is set to cause a carry
into the zero order bit of the Adder. It is set on
summing operations if the RU inverter is high; it
is set before differencing operations unless right
shifts of (D) were required and the RU signal is
high.

Discarded Bits flip—flop; DB is set when any of
the 3 bits shifted out of register D on the right-3
shift is a 1; thus DB = D-1 v D=2 v D-3.

Exponents Equal signal; EE = (EA) = (EP).

Exponents Larger flip—flop; EL is set when
(EA) > (EP); reset when (EA) < (EP).

Octal Normalized inverter; NN is high when the
operand in register N becomes octal normalized,
i.e., when there are significant bits in any of
the 3 most significant bit positions so that no
further shifts can be performed on this mantissa
without loss of significant bits.

Round—Up inverter; RU is set during right shifts
in accordance with the rounding rule.
RU = S2 A (S0 v Sl vS3 v DB).

SuM flip—flop; SM is set for summing operations,
reset for differencing.

S register Zero signal; SZ comes high in QS when
register S holds zeros.

Working Sign flip—flop; WS holds the sign of the
operand in N at GO QS and that of the result at
DONE QS. It is reversed during exponent
equalization if the operand originally stored in
register D is complemented.
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The QS Flow Chart for Equalizing Exponents

FIGURE 13.6-7
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FIGURE 13.6-8 Algorithm for Ecualizing Exponents when
EL is High — (EA) < (EP)
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TABLE 13.6—6 Terms Used on QS Flow Chart for

Exponent Equalization

cz

DB

EE

EL

NN

RU

SM

SZ

WS

Carry Zero flip—flop; CZ is set to cause a carry
into the zero order bit of the Adder. It is set on
summing operations if the RU inverter is high;
it is set before differencing operations unless
right shifts of (D) were required and the RU
signal is high.

Discarded Bits flip—flop; DB is set when any of
the 3 bits shifted out of register D on a right-3
shift is a 1; thus DB = D-1 v D=2 v D-3.

Exponents Equal signal; EE = (EA) = (EP).

Exponent Larger flip—flop; EL is set when
(EA) > (EP); reset when (EA) < (EP).

Octal Normalized inverter; NN is high when the
operand in register N becomes octal normalized,
i. e., when there are significant bits in any of the
3 most significant bit positions so that no further
shifts can be performed on this mantissa without
loss of significance.

Round—Up inverter; RU is high during right shifts
in accordance with the rounding rule.
RU =S2 A (S0 VSl vS3 v DB).

SuM flip—flop; SM is set for summing operations,
reset for differencing.

S register Zero signal; SZ comes high in QS when
register S holds zeros.

Working Sign flip—flop; WS holds the sign of the
operand in N at GO QS and that of the result at
DONE QS. It is reversed during exponent
equalization if the operand originally stored in
register D is complemented.
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FIGURE 13.6—9 The QS Flow Chart for Equalizing Exponents

when EL is High — (EA) < (EP)
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TABLE 13.6—7 Terms Used on the QS Flow Chart for
Miscellaneous Operations Performed by QS

(These terms are general in nature and have, therefore, been omitted from earlier charts. They are mainly
concerned with the bookkeeping operations necessary to the operation of 0S.}

Clear EP The final exponent is now in EA; register EP is left cleared for the
next user.

Clear QS This operation, which occurs in KA and KC, takes QS out of the idle
loop it enters due to an exponent overflow and takes care of all necessary
cleanup operations so that QS can be entered again.

cz Carry into Zero Adder bit flip—flop; CZ is assumed to be reset when OS
is entered and must, hence, be reset before exiting. (See also discussion
of differencing operation. )

DB Discarded Bits flip—flop. DB is used external to QS and is reset here in
case it has been set during operation of QS so that it is ready for the next
user.

DOS DONE QS flip—flop. DQS is set to indicate that QS has successfully

completed its operation and is ready to exit. Itis reset at QSA (when
QS returns to idle) since the result of the last operation may no longer
be available in OA.

Qss8 QS8 flip—flop; this signal causes sending of an SKC or EARLY START
signal to KC. QS8 is set when (S is far enough advanced in its operation
that another command access can begin. QS8 is reset at QSL so that it
will be in the correct state when QS is entered the next time.

ZE Zero Exponent signal; ZE2 is reset at QSE, after QS is entered, but
before ZE could be meaningful to the current operation, due to the
fact that it is used by other sequencers and no assumptions can be
made about its status at the tirne OS is entered.

WS(C)SM This path is enabled each time QS completes an error—free operation,
i.e., each time DQS is sent. The WS flip—flop, at the end of the
operation, holds the sign of the result. This transfer leaves the final
sign in the SM flip—flop. (WS states have the opposite meaning from
those of SM; thus, WS and SM both indicate positive. )
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FIGURE 13.6-10 Miscellaneous Operations Performed by QS
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FIGURE 13.6-11

The QS Flow Chart
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SECTION 13.7 — THE KA SEQUENCER

KA controls the processing of the add/subtract opcodes gated through

the KC sequencer in group 2f:

arithmetic operations A0, Al

arithmetic tests TO, T1
and group 2g:

arithmetic operations A2-7
arithmetic tests T2-7
logic operations L2, L3
logic tests S2, S3

address preparation operations N2—7

(Non—repeat use of commands A0 and Al, in modes 0 and 1, do not call
for startup of KA; this case is handled by KC.) In execution of these
opcodes, the QS sequencer is used to perform the required summing or
differencing, QZ to shift the result to zero exponent for the L. and S
commands, and QA to store the result in the Accumulator for the A and

L commands.

Two signals start the KA sequencer. These are called GKA and SKA
despite the fact that the SKA signal does not exist. It has been used on
the flow chart instead of RML, the equivalent existing signal, because
of the general use of GO and START signals in sequencer terminology.
This should cause no confusion as long as it is clear that the

schematics refer to RML instead of SKA.

An SKA signal is sent to the KA sequencer at opcode startup for non—
repeat operations in which one of the opcodes listed above has been
written in mode 0 or 1. On receipt of an SKA signal, KA initializes the

operation, starts QS to form the sum or difference, and, at DQS,
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completes the requirements of the opcode and informs KC. The
exceptions to this are the TO and Tl commands written in mode 0 or 1
which are processed by KA only because of the test requirements and

which do not involve startup of QS.

A GKA signal is generated in two cases:

1) One of the commands listed above has been written in mode 2
or 3. When this occurs, KC sends the GKA signal to KA and
initializes the operation before accessing the final operand.
KA idles for DQS, completes the opcode requirements and

returns control to KC.

2) One of the A, T, L or S commands listed above is written in
the repeat mode. When this occurs, the KM sequencer (having
been started by KC after decoding of the repeat command
designation in the first command word) starts QC to access the
second command word, initializes the operation, sends a GKA
to KA, and signals KC to access the first operand in the block.
KA idles until the DQS signal arrives. On subsequent opera—
tions, KA performs the initialization, signals KC to access the

next operand, and goes to the idle loop where it waits for DQS.

A comparison of the two sources of the GKA signal is shown in

Table 13. 7-1. This distinction is made between the SKA and GKA cases
because, on repeat as well as on mode 2 or 3 non—repeat commands, it
is possible to effect a considerable saving in processing time by using
the Master Control startup of QS at KCM (or KCR for double precision
accesses) to form the sum or difference required by the current
opcode. In the KCL loop of Master Control, the accessed information
is sent to the D and EP registers and QS is started to add it to the
partially assembled operand. In the case of GKA, no operand

assembly is going on when this access is made. (For mode 2 or 3
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TABLE 13.7-1
of Signal GKA

Comparison of KA Startups Through Use

Repeat Commands
(A, T,L2,L3,S2,S3)

Non—Repeat Commands (A, T,
N, L2,L3,S2,S3) Written in
Mode 2 or 3

1. KC assembles operand,
starts KM, returns to idle.

2. KM starts QC to access
second command word,
initializes first sum or
difference operation, sends
GKA signal to advance KA to
idle loop waiting for DQS,
sends LKC signal to KC to
start access of first operand,
waits for signal of termination
of repeat operation, returns
control to KC and goes to idle.

3. KC on receipt of LKC:
starts QM to access operand,
idles for DAS signal, starts QS
sequencer, gated to idle by
term KA6 which is high when
KA is in operation.

4. KA on receipt of GKA:
idles for DQS, completes
requirements of opcode,

IF OPERATION NOT
COMPLETE:

initializes next sum or
difference operation, sends
LKC to KC to start access
of next operand, returns to
idle loop waiting for DQS
signal. IF OPERATION
COMPLETE: signals KM
of termination, returns

to normal idle.

1. KC assembles operand,
sends operand to BA register
for use as address in accessing
final operand, starts QM to
access final operand, initializes
sum or difference operation,
sends GKA signal to advance KA
to idle loop waiting for DQS
signal, waits for DAS signal,
starts QS to perform sum or
difference, gated to idle by
term KA6 which is high when KA
is in operation.

2. KA on receipt of GKA:
idles for DQS, completes
requirements of opcode,
returns to normal idle.
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commands, this is the final operand access using the assembled
operand as an address; for repeat commands, no operand assembly
process is involved.) Thus, it is possible to set up the second
operand, if any, in OA and to determine the state of the SM flip—flop
before the GQS signal is sent, thereby taking advantage of this startup
of QS. The set—up process, which is referred to as an initialization,
has been described to some extent in Section 13.1 in conjunction with
the discussion of inputs to the QS sequencer. It will be reviewed here

in detail in order to clarify the manner of implementation.

Each operation performed by KA requires initialization prior to the
startup of QS. (Note that QS is not started for the commands TO and
T1 written in mode 0 or 1.) When an SKA signal starts KA, the
initialization and the QS start are handled by KA. For the GKA branch,

there are two possible controls:

1) for non—repeat commands written in mode 2 or 3, initialization
occurs at KZD (or KZH for negative—zero addresses) in the KC

sequencer;

2) for repeat operations (first iteration), initialization occurs at

KMD in the KM sequencer.

Initialization is occurring when KA is advanced to state KAB. The
actions involved are included on the KA flow chart at KAB for easy
reference. KA then jumps to KAG—KAH where it idles for DQS. On
subsequent iterations during repeat, KA completes initialization of
each operation at KAP, then goes directly to the idle loop at KAG—-KAH

to await the DQS signal.

The term initialization covers the manipulations necessary to setting

up the inputs to the QS sequencer. These are:

1) determination of the state of the SM flip—flop;
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2) determination of the state of the WS flip—flop;

3) for single-operand comrﬁa.nds registers N and EA are cleared
and flip—flop WS is complemented if the opcode is odd-numbered;

4) for two—operand commands, the second operand is transferred
from the Accumulator to OA. On SKA, the assembled operand
is transferred from OA to D and EP. On GKA, the accessed
operand goes directly to D and EP.

All sign manipulations are in accordance with the values shown in
Table 13.1—2. At SKA, the assembled operand is in N, its exponent in
the EA and EP registers, and the sign in the WS and SM flip—flops. In
handling the single—operand commands gated by the term 2f, KC
reverses the WS flip—flop for the odd—numbered commands. For A0
and Al, KA is not started up in mode 0 and 1. Rather, a start signal is
sent to QA to store the operand in the Accumulator following the sign
reversal if the command is Al. For TO and T1, KA is started to carry

out the test; QS is not used for these commands.

For the two operand commands gated through Master Control by the
term 2g, the SKA signal finds the operands set up as follows:
assembled operand: N, EA and EP, WS, SM;
second operand: A, AE, AS.
The assembled operand is sent to D; its exponent is already i.n EP. The
second operand is transferred to N and EA. The sign in AS is copied
into WS (so that, during operation of QS, WS reflects the sign of the
operand in register N). At this point, SM holds the sign of the
assembled operand. If the opcode and the sign in AS are both positive
or both negative, no change is required in the state of SM (see
Table 13.1—-2). On the other hand, if the signs are opposite one

another, the state of SM is reversed. The term "Fix SM" on the KA

flow chart refers to implementation of this rule via decoding of ACDI10

(even—numbered opcodes) A AS = SM2(C)SM1, or CD10 (odd—numbered
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opcodes) A AS = SM2(C)SML.

For the GKA case, two sign values are involved in the single—operand
commands: that of the operand and that of the opcode. Since the
operand from the Accumulator would normally be sent to OA before
the summing or differencing operation, OA is cleared (registers N and
EA cleared, the WS flip—flop reset). The SM flip—flop, which indicates
a summing or differencing operation, is reset for the odd—numbered
or subtract opcodes, and set for the even—numbered opcodes. (If the
accessed operand is negative, indicated by B28 high, the state of SM

is reversed at KCM.)

For the two operand commands, SM is initially adjusted to reflect the
sign of the second operand combined with that of the operation itself.
The sign of the accessed operand is the last to be taken into account
since it is not available until the access takes place (just prior to the
startup of QS). At GKA, the operands are stored as follows:
final operand: not yet available; access is just about to begin;
second operand: A, AE, AS.
The values in A and AE are sent to N and EA. Sign adjustments are

made in order given below:

1) At KMD (repeat) or KZD (mode 2 or 3 non—repeat), the sign
held in the AS flip—flop is sent to the WS flip—flop.

2) The GKA signal allows KA to do some decoding at state KAB
where the opcode sign is taken into account. The value héld in
SM at this time is not relevant to the current operation since it
reflects the assembly of the last operand. In the operand
assembly process, SM holds the same sign as WS when the KCL
section of KC is entered, but operand assembly calls only for
addition whereas commands handled’ by KA call for addition or

subtraction depending upon whether the command is odd or even
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numbered. Since the approach taken is to artificially create
the situation that would occur during operand assembly given
these values so that a normal access will be handled correctly,
it is necessary to adjust SM so that it reflects the combined
sign of the operation (positive for addition, or even—numbered
opcodes) and the sign of the operand from the Accumulator (the
sign in AS which is also being copied into WS). Referring to
Table 13.1-2, these values can be related to those given if the
sign in B28 (thus far unknown since the operand has not been
accessed) is assumed to be positive. The sign in AS takes the
place of the sign value given for WS and SM for this deter—
mination since the operand from the Accumulator is assuming
the role of the assembled operand. With B28 positive, the sign
in SM should be the same as that in AS for the positive (even—
numbered) opcodes. Since SM is in the opposite state from the
other sign flip—flops to represent the same value, the state of
SM is established by means of enabling the AS(C)SM path for the
even—numbered opcodes. Similarly, if the opcode is odd—
numbered, the state of SM is reversed by the enabling of the

AS(0)SM path.

3) At KCM the accessed operand is available in the B register. If
B28 is high, indicating a negative value, the SM flip—flop is
reversed via the enabling of the SM2(C)SMI1 path.

4) On subsequent repeat operations, KA handles 1) and 2) above at

the KAP state. 3) occurs in the same way in all cases.

The basic processing distinctions made by KA are between the repeat
and non—repeat cases and the test and non—test cases. Thus, the

sequencer has been divided into four basic algorithms:

1) non—-repeat logic, arithmetic and address preparation opcodes;

(SKA for mode 0 or 1, GKA for mode 2 or 3); see Figures 13. 7-1
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and 13.7-2;

2) repeat logic and arithmetic opcodes; (address preparation
commands are not available in the repeat mode); (these
commands are started by a GKA from the KM sequencer);

see Figures 13.7-3 and 13.7—4;

3) non—repeat arithmetic and logic tests; see Figures 13.7-5 and

13. 7-6; (started by SKA for mode 0 or 1, GKA for mode 2 or 3);

4) repeat arithmetic and logic tests; (started by GKA from the KM

sequencer); see Figures 13.7—7 and 13. 7-8.

The manipulations described in these diagrams are based on the
material in Sections 13.1 and 13.2 which give the basic rules for use
of QS, the handling of repeat operations, the use of tests, etc. The
behavior of the QS and KM sequencers is also relevant (Sections 13.3
and 13.6). To avoid redundancy, this information is not repeated in

this section.

13-92



13.7

FIGURE 13.7-1 Algorithm for the Processing of Non—-Repeat
Logic, Arithmetic and Address Preparation Opcodes by KA
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TABLE 13.7=2Z Terms Used on the KA Flow Chart for the
Processing of Non—Repeat Logic, Arithmetic
and Address Preparation Opcodes

A0-7 Arithmetic commands.

AS Accumulator Sign flip=flop; AS holds the sign of the operand stored in the Accumulator; AS
high indicates negative sign.

DQS DONE signal from the QS sequencer.

DRA Done Repeat Arithmetic operation; DRA is sent to KM at the termination of repeat

operations for L2, L3, A0-7 commands.

EVEN Even—numbered opcodes.

Fix SM SM is adjusted according to the rules described in Table 13. 1-2.

Group 2e Term used to gate commands N2—-7, A2~7, T2~7, L2, L3, 52 and S3 through KC.
Group 2f Term used to gate commands A0, Al, TO and Tl through KC.

GKA GO signal to KA sequencer.

KR Opcode DONE signal to KC.

L2, L3- Logic commands ADL and SUL which are processed by KA.

LE Large Exponent; LE is equivalent to state QSP of the QS sequencer.

MNA Memory Non—existent Address signal; MNA is sent by OM on detection of a non—legal

address during access.

N2-7 Address Preparation commands.

OoDD Odd—numbered opcodes.

Set JNC Request interrupt due to use of non—existent address.

SKA Start KA signal from KC; this signal is non—existent; it is equivalent to RML and

indicates that the current command is non—repeat and has been written in mode 0 or 1.

SKC Start KC; early Go to Master Control which places KC in the KCC state.

SM SuM flip—flop; SM is set to direct QS to perform a summing operation,reset for
differencing.

TKC Tilt KC; TKC = CD8, Set KR1, Reset LP, thus enabling interrupts and disabling

logic accesses. This exit is taken when KA is halted by the occurrence of a non-legal
memory address.

WGl Wait Gate signal; WG is sent to the idle state of QS to enable the N(L3)S path.

wWG2 Wait Gate signal; WG2 is sent to QS along with GQS to start the QS sequencer. WG2 is
not the echo signal of WGI.

ws Working Sign flip—flop; WS holds the sign of the operand currently held in OA.

ZE Zero Exponent flip—flop; ZE is set by KA when the EA exponent register contains zeros.
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FIGURE 13.7-2 The KA Flow Chart for Processing Non—Repeat

Logic, Arithmetic and Address Preparation Opcodes
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FIGURE 13.7-3 Algorithm for the Processing of Repeat

Logic and Arithmetic Opcodes by KA
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TABLE 13.7-3 Terms Used on the KA Flow Chart for

Processing of Repeat Logic and Arithmetic

Opcodes

AO-7

DRA

EVEN
Group 2a
Group 2e
Group 2f
GKA

L2, L3
LE

LKC

ODD

QSF ~ DQS

RTJ

SM

SZ

TKC

ws

ZE

Arithmetic commands.
DONE signal from the QS sequencer.

Done Repeat Arithmetic operation; DRA is sent to KM at the termination of repeat
operations for L2, L3, A0—7 commands.

Even—numbered opcodes.

Term used to gate commands L2, L3, 52, S3 through KC.

Term used to gate commands N2-7, A2-7, T0-7, L2, L3, S2, and S3 through KC.
Term used to gate commands A0, Al, TO and T1 through KC.

GO signal to KA sequencer.

Logic commands ADL and SUL which are processed by KA.

Large Exponent; LE is equivalent to state QSP of the QS sequencer.

Loop KC sequencer; when high, LKC directs KC to access the next operand in
repeat mode.

Odd-numbered opcodes.

Decoding indicating that the {N) = 0 and QS has taken an early exit path. Under these
conditions, the path ES(0)EA is enabled to leave the exponent properly positioned in EA.

Repeat Termination signal; RTJ is high when the end of the block is reached or an
enabled flag (logic for L2, L3, $2, $3 commands, data for A or T commands) is detected.

SuM flip—flop; SM is set to direct QS to perform a summing operation, reset for
differencing.

S register Zero signal; SZ is high when register S contains zeros.

Tilt KC; TKC = Set CD8, Set KR1, Reset LP, thus enabling interrupts and disabling
logic accesses. This exit is taken when KA is halted by the occurrence of a non-legal
memory address.

Working Sign flip~flop; WS holds the sign of the operand currently held in OA.

Zero Exponent signal; ZE comes high in KA when the EA exponent register contains zeros.
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FIGURE 13.7-4 The KA Flow Chart for the Processing of
Repeat Logic and Arithmetic Opcodes by KA
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FIGURE 13.7-5 Algorithm for the Processing of Non—Repeat
Logic and Arithmetic Tests Handled by KA
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TABLE 13.7-4 Terms Used on the KA Flow Chart for the
Processing of Non—Repeat Logic and Arithmetic Tests

AS Accumulator Sign flip—flop; AS holds the sign of the operand stored in the Accumulator;
AS high indicates negative sign.

DRA Done Repeat Arithmetic operations; DRA is sent to KM at the termination of repeat
operations for L2, L3, A0~7 commands.

Fix SM SM is adjusted according to the rules described in Table 13. 1-2.

Group 2e Term used to gate commands N2-7, A2-7, T0-7, L2, L3, S§2 and S3 through KC.
Group 2f Term used to gate commands A0, Al, TO and T1 through KC.

KR Opcode DONE signal to KC.

LE Large Exponent; LE is equivalent to state QSP of the QS sequencer.

MNA Memory Non—existent Address signal; MNA is sent by OM on detection of a non—legal

address during access.

QSF A DQS Decoding indicating that the (N) = 0 and QS has taken an early exit path. Under these
conditions, the path ES(O)EA is enabled to leave the exponent properly positioned in EA.

s2, S3 Logic test commands ISN and 1UO which are processed by KA.

Set JNC Request interrupt due to use of non—existent address.

SM SuM flip—flop; SM is set to direct QS to perform a summing operation,reset for
differencing.

sz S register Zero signal; SZ is high when register S contains zeros.

TO-7 Arithmetic test commands.

TKC Tilt KC; TKC = Set CD8, Set KR1, Reset LP, thus enabling interrupts and disabling

logic accesses. This exit is taken when KA is halted by the occurrence of a non—legal
memory address.

WS Working Sign flip—flop; WS holds the sign of the operand currently held in OA.

ZE Zero Exponent signal; ZE comes high in KA when the EA exponent register contains zeros.

13-102




13.7

FIGURE 13.7-6 The KA Flow Chart for Processing
Logic and Arithmetic Tests Non—Repeat
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FIGURE 13.7-7 Algorithm for the Processing of Repeat Logic
and Arithmetic Tests Handled by KA
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TABLE 13.7-5 Terms Used on the KA Flow Chart for the

Processing of Repeat Logic and Arithmetic

Tests

AS

BRA

DRA

DRL

DRT

EVEN
Group 2a
Group 2e
Group 2f
GKA

LE

MNA

ODD

RTIJ

sz, S3
SM

Sz
TO0-7

TKC

wS

ZE

Accumulator Sign flip—flop; AS holds the sign of the operand stored in the Accumulator;
AS high indicates negative sign.

BRAnch flip—flop; BRA is set on termination of a test command if‘the termination is

due to processing of the last operand in the block or the occurrence of an enabled logic
flag (S2 and S3) or data flag (T0-7). The program will continue with the execution of the
next command. BRA is reset if termination is due to test failure; the program will
continue with execution of the next command plus 1.

DONE signal from the OS sequencer.

Done Repeat Arithmetic operation; DRA is sent to KM at the termination of repeat
operations for L2, L3, A0—7 commands.

Done Repeat operation signal sent to KM when termination of a repeat test command
is due to enabled flag or end of block.

Done Repeat Test operation signal sent to KM when termination of a repeat test
command is due to test failure.

Even—numbered opcodes.

Term used to gate commands L2, L3, S2, 53 through KC.

Term used to gate commands N2-7, A2-7, T0~7, L2, L3, S3 and S2 through KC.
Term used to gate commands AQ, Al, TO and T1 through KC.

GO signal to KA sequencer.

Large Exponent; LE is equivalent to state QSP of the OS sequencer.

Memory Non—existent Address signal; MNA is sent by QM on detection of a non—legal
address during access.

Odd-numbered opcodes.

Repeat Termination signal; RTJ is high when the end of the block is reached or an

enabled flag (logic for L2, L3, S2, and $3 commands, data for A or T commands) is
detected.

Logic test commands ISN and IUO which are processed by KA.

SuM flip~flop; SM is set to direct QS to perform a summing operation, reset for differencing.
S register Zero signal; SZ is high when register S contains zeros.

Arithmetic test commands.

Tilt KC; TKC = Set CD8, Set KR1, Reset LP, thus enabling interrupts and disabling logic
accesses. This exit is taken when KA is halted by the occurrence of a non-legal memory
address.

Working Sign flip~flop; WS holds the sign of the operand currently held in OA.

Zero Exponent signal; ZE comes high in KA when the EA exponent register contains zeros.
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FIGURE 13.7-8 The KA Flow Chart for the Processing of
Repeat Liogic and Arithmetic Tests Handled by KA
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TABLE 13.7-6 Terms Used on the KA Flow Chart

A0-7

AS

BRA

DRA
DRL
DRT

EVEN
Fix SM
Group 2a
Group 2e
Group 2f
GKA

KR

L2, L3
LE

LKC

MNA

N2—7
ODD

QSF ~ DQS

ROM

RTJ

§2, S3
Set JNC

SKA

SKC
SM
sz
TO-7

TKC

WGl

WwG2

ws

ZE

Arithmetic commands.

Accumulator Sign flip—flop; AS holds the sign of the operand stored in the Accumulator;
AS high indicates negative sign. :

BRAnch flip—flop; BRA is set on termination of a test cormmand if the termination is due to
processing of the last operand in the block or the occurrence of an enabled logic flag {S2 and S$3)
or data flag (T0~7). The program will continue with the execution of the next command. BRA is
reset if termination is due to test failure; the program will continue with execution of the next
command plus 1.

DONE signal from the QS sequencer.

Done Repeat Arithmetic operation; DRA is sent to KM at the termination of repeat operations
for L2, L3, A0—7 commands.

Done Repeat operation signal sent to KM when termination of a repeat test command is due to
enabled flag or end of block.

Done Repeat Test operation signal sent to KM when termination of a repeat test command is
due to test failure.

Even-numbered opcodes.

SM is adjusted according to the rules described in Table 13.1-2.

Term used to gate commands L2, L3, S2, S3 through KC.

Term used to gate commands N2-7, A2-7, T0-7, L2, L3, S2 and $3 through KC.
Term used to gate commands A0, Al, TO and T1 through KC.

GO signal to KA sequencer.

Opcode DONE signal to KC.

Logic commands ADL and SUL which are processed by KA.

Large Exponent; LE is equivalent to state QSP of the QS sequencer.

Loop KC; when high, LKC directs KC to access the next operand in repeat mode.

Memory Non—existent Address signal; MNA is sent by QM on detection of a non—legal
address during access..

Address Preparation commands.
Odd-numbered opcodes.

Decoding indicating that the (N) = 0 and QS has taken an early exit path. Under these
conditions, the path ES{(0)EA is enabled to leave the exponent properly positioned in EA.

READY OM sequencer.

Repeat Termination signal; RTJ is sent when the end of the block is reached or an enabled
flag (logic for L2, L3, S2, S3 commands, data for A and T commands) is detected.

Logic test commands ISN and IUO which are processed by KA.
Request interrupt due to use of non—existent address.

Start KA signal from KC; this signal is non—existent; it is equivalent to RML and indicates
that the current command is non-repeat and has been written in mode Q or 1.

Start KC; early Go to Master Control which places KC in the KCC state.

SuM flip—flop; SM is set to direct QS to perform a summing operation, reset for differencing.
S register Zero signal; SZ is high when register S contains zeros.

Arithmetic test commands.

Tilt KC; TKC = Set CD8, Set KR1, Reset LP, thus enabling interrupts and disabling logic
accesses. This exit is taken when KA is halted by the occurrence of a non—legal memory address.

Wait Gate signal; WG] is sent to the idle state of QS to enable the N(L3)S path.

Wait Gate signal; WG2 is sent to QS along with GQS to start the QS sequencer. WG2 is not the
echo of WGI1.

Working Sign flip—flop; WS holds the sign of the operand currently held in OA.

Zero Exponent signal; ZE comes high in KA when the EA exponent register contains zeros.
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FIGURE 13.7-9 The KA Flow Chart
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SECTION 13.8 —INTRODUCTION TO MULTIPLY AND DIVIDE

The KD, QP and QQ sequencers execute the multiply and divide
opcodes. The two G—20 divide commands, divide and reverse divide,
are processed by KD and QQ. (These are handled as the same com—
mand after the set up of the numerator and denominator and formation
of the initial quotient exponent since, for reverse divide, the roles of
the operands are simply reversed.) The single multiply command is
handled by KD and QP. The KD sequencer control of multiply is dis—
cussed in Section 13.9, the product formation of QP, in Section 13.10.
Similarly, KD control of division is described in Section 13.11, the
quotient formation of QQ, in Section 13.12. (This results in a split
discussion of KD: the entire KD flow chart is included at the end of
Section 13.11 for the sake of completeness.) The G—20 algorithms for
the processing of multiply and divide commands are not discussed here.
This section is included for purposes of orientation. The similarities
between the two operations are described with particular emphasis on

use of the Adder and exponent manipulation.

Considering the general case of multiplication and division in binary
arithmetic rather than the handling of these operations by the G-20, the
following statements can be made. For each multiply or divide
operation the same set of actions is repeated several times, this
because multiplication is actually a sequence addition operation, while
divide is a sequence subtract operation. During multiply, the two
operands involved in the addition are the multiplicand and the partial
product. The result of each addition is the new partial product. (For
the first add cycle, the partial product value is zero.) The final value

is the last partial product, called simply the product.

As an example of what happens during binary multiplication, consider
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the case where 2 is multiplied by 2:

2
2

010
010

multiplicand

multiplier

The bits in the multiplier determine when add cycles are to take place.
Each bit in the multiplier, starting with the least significant, is
examined. The least significant position, or the first order, in the
example contains a O bit; therefore, no add cycle takes place. The
second order contains a 1, calling for an addition. The Adder inputs
in this case will be a zero partial product and the multiplicand which
will be shifted 1 bit to the left to position it at the same order as the
multiplier bit under consideration. The third order multiplier bit is
again a zero. Thus, only one add cycle is necessary, with the inputs

being:

multiplicand 100 (shifted 1 bit to the left)
partial product 000
Adder output 100 = 4

In divide, the two operands involved in the subtraction are the
denominator and the numerator (or remainder). Each remainder is
formed by subtracting the denominator from the last remainder when—
ever r > d. The remainder is compared to the denominator starting
with the most significant bit. For each such subtraction, the result of
the operation (quotient) receives a 1 bit in the appropriate order; when
no subtraction takes place, the quotient receives a 0 bit. (The quotient
is formed starting with the most significant bit. ) Thus, if 4 is divided

by 2, the operands are as follows:

4

1}
-
o
o

remainder (numerator)

010

denominator = 2

At the most significant order, r is 1 while d is 10, so the quotient bit
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is zero. At the second most significant order, r is 10 and d is 10 so a
subtraction takes place:
10
-10
00

and the quotient receives a 1. The quotient is now 01. At the third
order, the r_emainder is now 00 while the denominator is 10 so that no
subtraction takes place and the quotient receives a 0. Therefore, the
final quotient is 010 or 2. Thus, in multiply, the least significant
multiplier bits are examined first; in divide, the most significant

remainder bits are examined {first.

The relationships between the operands involved in these operations and
the way in which the G—20 Adder inputs are set up is shown in

Table 13.8-1.

In both cases it is necessary to shift one of the Adder inputs between
each add cycle in order to position the operands at the correct order.
It is possible to position these operands in more than one way and get
the correct result if care is taken to keep the exponent value correct.
For example if, in multiply, the multiplicand is positioned to be added
to the correct order of the partial product at each addition by means of
shifting the multiplicand to the left, no change is required in the
exponent value. If, instead, the partial product is shifted to the right,
the product exponent is incremented in step with the shifts. In divide,
if the denominator is shifted right prior to each subtraction, no
exponent change is required. However, if the remainder is shifted to
the left, the quotient exponent is decremented in step with the shifts.
As will be explained in the following sections, the G—20 logic handles
both operations in the non—standard manner. Thus, for multiplication,

the partial product is shifted right and the exponent incremented; for
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TABLE 13.8-1 Use of the Adder in Multiply and Divide Operations

Operation: MULTIPLY DIVIDE

Role of assembled multiplier denominator (divide)

operand: numerator (reverse

divide)

Role of operand multiplicand numerator (divide)

from Accumulator: denominator (reverse

divide)

Adder inputs: multiplicand remainder (numerator
and partial on first subtraction)
product and denominator

Add cycle started examination of relative sizes of

on basis of: multiplier bits remainder and

denominator

Output from Adder: new partial new remainder

product: on last
cycle, final
product

Final result of final product quotient formed during
operation: operation; quotient
receives a 1 bit at each
order where a sub—
traction occurs, 0 bits
otherwise.

division, the remainder is shifted left and the exponent decremented.

An additional action that is repeated in each operation involves the
manipulations performed on the operand that is not an input to the
Adder. During multiplication, this is the multiplier, the operand
whose bit configuration determines the orders at which add cycles
take place. For divide, this is the quotient which is formed by the
insertion of 1 bits at each order for which a subtraction occurs. It

would be possible, though difficult, to design the logic to handle these
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values without shifting them. However, it is far more satisfactory to
shift the values so that the examination of multiplier bits or insertion
of quotient bits always occurs at the same place. Thus, the multiplier
is shifted to the right as the operation progresses and the least
significant bits examined. This shifting is in step with that of the
partial product and in fact, governs the shifts of the partial product.
Conversely, the quotient is shifted to the left with the new bits being
inserted into the least significant bit position. Multiplication continues
until the multiplier is shifted out of existence; division continues until

a quotient of 14 octal digits has been formed.

From this brief analysis it can be seen that in multiply and divide
operations there is one operand that requires no shifting, two that do
require shifting. Since these shifts occur between gatings of the
partial product or remainder from the Adder, the choice of shift paths
has been based on the Adder input requirements. The Adder input
registers are N and D and, therefore, the quantities that must be
summed or differenced, the partial product and multiplicand or the
remainder and denominator, are set up in these registers. The Adder
output (the current partial product for multiply or the current
remainder for divide) is gated to register S. Since the multiply
algorithm calls for right shifts of the partial product, and right shift
paths are available between S and D, this dictates storage of the
partial product in D, thereby delegating the multiplicand to N.
Similarly, N becomes the storage register for the remainder in divide
since the remainder is shifted to the left and left shift paths are avail—
able between S and N. The A and M registers are used to shift the

multiplier during multiply and to form the quotient during divide.

Thus, it is clear that shifting is a basic factor in these operations and

that each shift affects the value of the final exponent. A preliminary
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exponent is formed by the QA sequencer prior to setting up the opera—
tion. Following that, each time a shift is performed on a quantity
involved in the operation, the exponent is counted up or down accord—
ingly. This counting may be octal or binary depending upon whether
the shift is 1 or 3 bits. Since shifts occur in both directions, itis

necessary to count the exponents up and down.

Octal shifts with concurrent exponent increments or decrements of 1
occur frequently in opcode processing. This facility is provided by
the octal exponent counter which consists of registers ES and EA. It
counts up or down via the paths ES(+1)EA and ES(—~1)EA. (The same
paths are correct for negative exponents since these values are stored
in 1's complement form. ) In multiply and divide, this counter is
activated by the signal CHE. It is set up to accept CHE on C2's but
decoding takes place on Cl's, making it necessary to employ a change
count delay flip—flop (CED) to hold off the CHE signal for 1/2 clock.
Thus, a change in the octal count is implemented by the setting of CED

which in turn sets CHE causing the relevant increment or decrement.

The change octal exponent circuitry adjusts the exponent for the octal
shifts in multiply and divide. However, these operations also call for
frequent binary shifts which necessitate exponent increments and
decrements of 1/3. The two registers used for this purpose are MM
and MT, referred to jointly as the modulo—three counter. For 1 bit
shifts to the right, the signal MT(+1)MM causes the counter to be
incremented by 1/3; for left shifts of 1 bit, the signal is MT(—1)MM.
At the next clock time, the contents of MM are copied back to MT via
the MM(0)MT path. When incrementing, the counting sequence is 00,
01, 10, 00: when decrementing, 00, 10, 01, 00.

The modulo—three counter affects the octal exponent in EA when CED is

set. Since the exponents count up and down in both operations, it is
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necessary to make the action taken on receipt of CED (i.e., the

decision to count up or down) a function of the current opcode and
sequencer state. If these considerations indicate an exponent increment,
the CEP (Change Exponent Positive) signal goes high; if a decrement is
indicated, CEN (Change Exponent Negative) goes high. Thus, if the
counter contains 10 and an MT(+1)MM signal is received, CED will be
decoded along with the current sequencer state to set CEP and the

ES(+1)EA path will be enabled.

Both multiply and divide require checking of exponent ranges. The
normal range of exponents, from —63 to +63, can be held in a 6—bit
register; detection of over and underflows is effected by a seventh bit,
and of over—overflows and under—underflows by an eighth bit. These
bits also permit proper counting outside of the normal range so that,
when checking shows that such a condition exists, an attempt to
retrieve the value through shifting can be made. Two things should be
pointed out: one, if an overflow is detected, an interrupt will be
requested. This is true of all G20 operations. Two, if an under—
underflow condition exists, it will be impossible to retrieve the value
through shifting right since the value will become zero before the
exponent reaches the normal range. Thus, detection of under—
underflows results in a normal zero replacing the final value as the
result. For an underflow condition, if the mantissa is shifted to zero
before the exponent reaches the normal range, a normal zero is the
final result. Provisions for counting outside the normal range make it
poss1b1e to hold off exponent range checking until the final stage in

multiply, / divide operations.

Thus, a normal exponent of +63 appears as follows in the EA register:

76543210
00111111}
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The ninth bit, EAS8, is set to 0 for positive.

Table 13. 8—2 demonstrates the use of the most significant bits in the

EA register.

TABLE 13.8-2 Exponent Ranges and Associated Signals
Signal | Range EA8 | ES7 | ES6 | Condition Indicated
EVV +128 to +191 0 1 0 | Exponent oVer—oVerflow
EVF + 64 to +127 0 0 1 | Exponent oVerFlow

O0to+ 63 X 0 0 | EXponent Normal
EXN

—63to—- 1 X 1 1

EUF ~127 to — 64 1 1 0 | Exponent UnderFlow
EUU —191 to —128 1 0 1 Exponent Under—Underflow|

X's appear for EA8 in the EXN range because EAS8 is fixed before

any counting takes place and counting could cause the counter to

change to the upper half of the EXN range from the lower or vice

versa, thus reversing the state of EAS.

Having covered the areas common to the multiply and divide opera—

tions, it is possible to proceed to a description of the basic multiply

algorithm and its implementation without unnecessary redundancy.
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SECTION 13.9 — KD SEQUENCER CONTROL OF MULTIPLY
OPERATIONS

Product formation during multiplication is handled by the QP
sequencer. Prior to the startup of QP, the QA and KD sequencers
set up the operation. The interaction between these sequencers is
shown in Figure 13.9-1. Note that QA sums the exponents of the
operands for an initial product exponent value and determines the
sign of the product. This sign is positive if both operands (the
multiplier and the multiplicand) have the same sign whereas, if their
signs differ, the product sign is negative. The final product sign is
determined and stored in the WS flip—flop by means of complementing
the sign in WS (the sign of the multiplier) if the sign in flip—flop AS
(the sign of the multiplicand) is negative. Other sign manipulations
occur during the operation of QP, but have no bearing on the sign of
the final product. The state of WS does not change once it is

established by QA.

When QA has transferred the multiplicand to register N, KD checks
both operands against zero. If either is a zero, KD starts QA and
exits, leaving a zero in register N to be stored in the Accumulator by
QA as the final result. Otherwise, KD proceeds by shifting the
multiplicand left until it is binary normalized, i.e., the most
significant bit in the register is a 1. The product exponent is
decremented in step with these left shifts. (KD shifts octally,
decrementing the exponent by 1 for each shift, until octal normali—
zation occurs, then shifts binarily with exponent decrements of 1/3.)
The multiplicand is positioned in this manner to allow for retention
of maximum significance in the final product. The first partial
product is formed by the addition of the multiplicand to the initial
partial product value of zero; thus, the binary normalization of the

multiplicand means that the first partial product will also be binary
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FIGURE 13.9-1

General Algorithm for Multiply Operations

D2 (MPY) calls for the multiplication of the quantity stored in the Accumulator by the operand

specified in the command word.

multiplicand. Processing is as follows:

Thus, (OA) becomes the multiplier, (Accumulator), the

(o}
Access command word containing command D2;
Assembles operand and stores it in OA;
Sends exponent of (Accumulator) to EA;

Starts KD and QA sequencers;

Returns to normal idle waiting for opcode DONE from QA.

QA

Adds (EA) to (EP) for initial product
exponent. stores it in EA;
Determir.es product sign, stores it in
WS flip~flop;
Reverses (A) with (N) so that

(A) = multiplier,

(N) = multiplicand;
Clears modulo—three counter;

Returns to normal idle waiting for
GQA from KD.

QP
Forms final product (see Section
13.10);
Sends DONE signal to KD when
final product is in register S and
the exponent is non—fractional
{(modulo—three counter contains zeros);
Returns to normal idle.

QA
Stores product mantissa in register A,
exponent in register AE, sign in flip~
flop AS;
Sends opcode DONE to KC;
Returns to normal idle.

KD
Advances to KDC~-KDD idle loop where it waits
for QA;

|

|

[

|

I

WHEN QA REACHES STATE QAH:

Checks for 0 operand in either A or N;

If 0: product = normal zero; starts QA

to store zero in Accumulator as final

result and returns to normal idle.

IF NOT 0: shifts multiplicand left to binary
normalized position, decrementing exponent
in step;

Starts QP to form product;
Idles at KDG—KDH for DONE from QP;

IF EXPONENT UNDERFLOW (-127 < exp < —63):
shift product right while incrementing expnnent
in attempt to bring the exponent into normal
range; if the product becomes zero before the
exponent becomes normal, the final product

is normal zero;

IF ROUNDING IS REQUIRED due to loss of
significant bits during right shifts in QP or
during right shifts in KD necessitated by
occurrence of a product longer than 42 bits,

the carry—zero flip—flop is set and the product

is gated through the adder;

IF EXPONENT OVERFLOW (+64 < exp < +127) OR
EXPONENT OVER-OVERFLOW (+128 < exp <
+191): requests interrupt;

IF EXPONENT UNDER-UNDERFLOW (-128 <
exp <—191): product = normal zero;

FOR ALL CASES:

starts QA to store product in Accumulator and
returns to normal idle.
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normalized. As product formation proceeds, this partial product is
shifted to the right. Thus, the initial left justification of the value

results in a minimum loss of significance.

KD starts QP to form the product, then idles until the DONE QP
signal is received. At this time the unrounded, 14-octal product is
in register S with a non—fractional exponent (modulo—three counter
contains zeros) stored in register EA. KD performs exponent range
checking and rounds the product if significant bits have been lost due

to right shifts. Finally, KD starts QA to store the result and returns
to idle.
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FIGURE 13.9-2

Algorithm for KD Control of Multiply Operations

Idle

N
i/START signal from KC?

N

—

—
Initial product exponent [ (EA) + (EP)] in

EA, sign in EAS8;

Product sign in flip~flop WS;
(A) have been switched with (N):
(A) = multiplier, (N) =

al product exponent [ (EA) + o) in |
l
|

mulnphcand

I‘ Multiplier and multiplicand in A and §

for zero test !

e

(Did rounding cause
carry?)

Yes

fractional exponent in S; Current

YYes |
No Has QA completed I
initialization? '
Yes _J
O — Y
Start shift and
¢ | exponent decrement: No (N) octal normalized?
(N) left 3 to S,
(EA) to ES
‘Yes
Start shift and cxponeni
d. at of 1/3; No
(Iz;li.zxfl:elﬁtoos /3 (N) binary normalized?
MT (=1 MM
T T T Yes
(N) left 3 to S;
(EA) to ES
‘Product = normal zero; o Is either operand
e Start QA to store result ) = zero?
Complete shift and
exponent decrement:
Multiplicand now (S) to N; If octal
binary normalized? shift, (ES) minus '
to EA; If binary,
Yes (MM) to MT
GO to QP to form
product
(EA) to ES to update
octal exponent
during QP
Ne QP DONE?
Yes
exponent value in EA
Start octal shift and T L - -
exponent increment: Yes E
N xponent underflow?
(D)to S, (EA) to ES {S) right 3 to D, (=1 27<exp<—63)
(ES) plus ! to EA
No _
] : Will ding
Product now = 07 No ‘Normal exponent ? | Yes Fr°d‘1°t 1:’"891' than retquii?énd:;g::e' \ No
[(s) = 07] (=63 <exp<+63) 4 octals? \_ the shift?
‘Yes No Yes
Product = normal No[ Does product require
zero; Start QA to rounding? Start shift and
store result ¥ exponent increment:
‘ €s {S) right 3 to D,
(ES) plus 1 to EA
(S)to N
Set up adder: Set up adder:
Product in N, Product in D,
Clear D, | (SZIfar N, a
Set carry—in,Clear S } et carry=in, Clear S
Gate adder to S Gate adder to S
. Product larger than
No( 14 octals?

Start shift and exponent

increment: (S) right 3
to D, (ES) plus | to EA
- )

!

Complete shift:
(D) to S
|
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—‘Start shift and

exponent decrement:
(N) left 3 to S,
(EA) to ES

Start shift and cxponent
decrement of 1/3:

(N) left 1 to S,

MT (-1 MM

\ initlalliZzailons

No

No

Yes

I

(N) octal normalized?

‘Yes

(N) binary normalized?

TYes

(N} left 3 to S;
(EA) to ES

‘Product = normal zero;

/ Is either operand

Start QA to store result

(D) to S, (EA)to ES

Product now =

[ts) = 07]

0?

‘Yes

Product = normal
zero; Start QA to

store resulk

No

Start octal shift and

exponent increment:
(S) right 3 to D,
(ES) plus ! toEA

= zero?

‘ Multiplicand now
binary normalized?

}Yes

GO to QP to form
product

o]

es

A

No

‘Normal exponent ?
(=63 <exp<+63)

Product in S sent to N; s
Start QA to store result

Ye

A

J%»\

|

(EA) to ES to update
octal exponent
during QP

!

QP DONE?

Exponent underflow?
(=127<exp<=~63)

TN

Product longer than
14 octals?

No

Does product require
rounding?

&Yes

{S) to N

!

Complete shift and
exponent decrement:
(S) to N; If octal

shift, (ES) minus 1’
to EA; If binary,
(MM) to MT

N\
Will rounding be, \ o

required due to
\ the shift?

Yes

Start shift and
exponent increment:
(S) right 3 to D,
(ES) plus 1 to EA

Set up adder:

Product in N,

Clear D,

Set carry=in,Clear S

Set up adder:

Product in D,

Clear N,

Set carry—in, Clear S

!

!

Gate adder to S

Gate adder to S

!

Product larger than

‘No( 14 octals?

(Did rounding cause
carry?)

Yes

Unrounded 14 octal product with no
fractional exponent in S; Current

exponent value in EA
L

Start shift and exponent

increment: (S) right 3
to D, (ES) plus 1 to EA
: )

'

Complete shift:
(D) to S

Complete exponent
increment:
(EA) to ES-

!

Request interrupt;
Start QA to store result

(=63<exp<+63)

ﬂ Exponent normal?

No

Yes prcment overflow',

\ (exp>+63}
No
UNDERFLOW Y (exp<—63)

Clear N to zero for
final result;

Start QA to store result
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TABLE 13.9—-1 Terms Used on the KD Flow Chart for
Control Multiply

AZ A register Zero; AZ is high when the contents of register A are zero.
CcDlo Command Decoding bit used to distinguish between multiply and divide; CD10 is high for multiply.
CHE = Set CED Path enabled to effect octal exponent decrement during octal normalization of the multiplicand.

(CHE = CHange octal Exponent signal; CED = Change Exponent Delay signal that will, in this
case, enable CEN to go high, which will be used for enabling of the ES(—1)EA path.)

Cz Carry Zero flip—flop; CZ is set when a carry-in to the zero order of the Adder is desired; in KD
it is set prior to roundup.

DKD DONE KD sequencer; this signal is non—existent; it is equivalent to the following: GQA,
reset CZ, clear KD.

ES6 Bit b in register ES; ES6 is low when an exponent underflow occurs, high otherwise.

EUF Exponent UnderFlow signal; EUF is high when the exponent held in register ES is in the —127 to
—64 range.

EUU Exponent Under—Underflow signal; EUU is high when the exponent held in register ES is in the
~191 to —128 range.

EVF Exponent oVerFlow signal; EVF is high when the exponent held in register ES is in the +64 to
+127 range.-

EVV Exponent oVer—oVerflow signal; EVV is high when the exponent held in register ES is in the
+128 to +191 range.

EXN EXponent Normal signal; EXN is high when the exponent held in register ES is in the —63 to
+63 range.

GQP GO signal to the QP sequencer.

JLE Interrupt request set if exponent overflow has occurred.

LAP Long Accumulator Put signal; LAP is set when the product held in the S register is longer
than 42 bits, but rounding is not required; LAP gates the last step of the right—3—bits shift.

LJC Signal sent by KC to start the KD and QA sequencers; LJC is equivalent to GO KD.

N41 Bit 4] in register N; N4l is high when there is a2 | in this bit position

indicating binary normalization of the multiplicand.

NN (N) octal Normalized signal; NN is high when significant bits occur in the most significant
octal position in register N.

QAH State of the QA sequencer; when QA has advanced to QAH, KD can continue with its operations.
QPB Decoding for clock 2 of idle state of QP sequencer; QPB high indicates that QP is not in operation.
QP2 Decoding inverter for the QP sequencer; all states in QP except idle (QPA—OPB) have as part

of their decoding QP2; thus, QP2 is used to signal DONE QP sequencer.
R(0)S Path enabled to gate product from Adder when rounding has occurred.
RUP RoundUp Product; RUP is high when no shift is called for but rounding is necessary due to the

loss of significant bits (PBL high) during product formation; thus, RUP = S-1 ~ (PBL v §0).

S44 Bit 44 in register S; when S44 is high, the multiplicand is binary normalized; (this is equivalent
to the N4l signal since a left 3 shift occurred between N and S).

SRP Shift, Roundup Product; SRP is high when rounding is called for in conjunction with a 3-bit-right
shift due to SW high. Thus, SRP = S2 A (PBL VvS1 v§S0 v S-1 v 53).

SW S register Wide signal; SW is high when the product is too large (greater than 42 bits); this
condition is corrected by means of a right 3 shift and, if SRP is high, rounding occurs.
SW = S42 Vv 543 v S44.

SZ S register Zero signal; SZ is high when the contents of register S are zero.
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FIGURE 13.9-3

The KD Flow Chart for Control of
Multiply Operations
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SECTION 13.10 —PRODUCT FORMATION BY THE QP SEQUENCER

In binary multiplication, the product is formed by means of adding the
multiplicand to the partial product at each order in which a 1 bit
occurs in the multiplier. The simplicity of binary arithmetic speeds
up the process since the multiplicand itself is always the second
operand. (This, of course, is due to the fact that only 0 and 1 bits are
possible in the multiplier.) The decision made at each order is

between shifting and adding or shifting and not adding.

At GO QP, the current value of the product exponent is held in the
octal exponent counter and the modulo—three counter. Appropriate
increments are made to this exponent as right shifts occur during the
operation of QP. When QP is started, the operands are positioned as

described in Section 13. 8, that is:

1) the multiplicand is binary normalized in register N; it remains

here, unchanged, throughout the operation of QP;

2) the multiplier is in the A register; it will be shifted to the
right between the A and M registers.

The partial product is formed between the S and D registers. The S
register is cleared by QP for the starting partial product value of zero.
For each add cycle, the partial product is left in register D while the

S register is cleared to receive the Adder output.

In the G—20, the multiply algorithm is speeded up by means of exami—
nation of the 3 least significant multiplier bits simultaneously, a
process known as string multiplication. Depending upon the configura—
tion of these bits, a 1—, 2—, or 3—bit shift to the right will occur in both
the partial product and the multiplier. An add cycle rﬁay or may not be

part of the action taken.
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To begin with the simple case, consider a multiplier whose least
significant 3 bits are zeros. These call for no action other than right
3 shifts of the multiplier and the partial product along with an octal

exponent increment of 1.

Three 1 bits in succession can be handled easily if advantage is taken
of the relationship between a number consisting entirely of 1's and the
number that is one greater than this. For example, the number 1000
is 1 greater than 111 or equal to 111 + 1, just as the number 1000000
is 1 greater than 111111. Thus, if the 3 multiplier bits being
examined are 1's, or 111 * multiplicand, this can equally well be
viewed as 1000 * multiplicand minus 1 * multiplicand. On the basis of
this, a subtraction of 1 * multiplicand takes place at the first order of
the string of 1's, followed by right shifts of the partial product and the
multiplier until the order following the last 1 bit is reached. At this

order the quantity 1 * multiplicand is added to the partial product.

When the subtraction takes place at the first order of the string (on
entry into the string) the partial product is lower than its true value
and is, indeed, negative. This negative value is remembered by means
of the Partial product Sign flip—flop, PS. When the end of the string is
reached and the final addition occurs, the partial product is restored
to its true value and PS is reversed to indicate positive. Thus, the PS
flip—flop records the sign of the partial product and, thereby, indicates
entry into or exit from a string of 1's. This facilitates keeping track
of the fact that a long string of 1's is being processed so that they can
be handled as easily as short strings. (When the 3 bits examined are
all 1's and PS indicates a negative partial product or that a 1's string
is being processed, the multiplier and partial product are shifted right

and the exponent is incremented by 1.)

PS is initially reset, or positive, to indicate the zero's string mode,
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i. e., if the first 3 bits are zeros the only action taken would be right
shiftvs and exponent increment. QP does not exit until PS is reset; this
insures that a positive partial product will always be restored for a
true final value. Again, this sign value does not affect the final
product sign that has been established by QA and stored in the WS
flip—flop. PS is used only during the operation of QP and for the

purposes mentioned above.

When use of the Adder is indicated, the operation performed is a sum
or difference depending upon the current sign values. These values are
handled in a manner similar to QS, but the implications are less far—
reaching since they are confined to the realm of QP. The PS flip—flop
holds the current partial product sign; it is combined with that of the
indicated addition or subtraction to determine whether to sum or
difference the operands. When the signs are similar, the operation is
summing; when they differ, differencing. (The multiplicand is assumed
to be positive and, therefore, does not affect the determination. )
Consider the case of entry into a 1's string (mode 1) which calls for
subtraction of 1 * multiplicand. Since the partial product sign has

been positive and this is a subtraction, a differencing operation will be
performed. The new partial product will be negative. At the end of
the string, this negative value is added to 1 * multiplicand, thus calling
for a second differencing operation. The various possible sign

combinations are shown in Table 13.10~-1.

Carry is not enabled on difference operations. Recall that, in QS,
occurrence of this carry on a difference operation served to indicate
which operand was larger; it was never taken to be a part of the result
and never gated into S. In the case of multiply, it is known that the
multiplicand is larger than the partial product since the former is
binary normalized before the differencing takes place and the latter is

always shifted right at least one place. Thus, it is also known that the
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TABLE 13.10-1

Partial Product Sign Values

enable flip—flop
(CYE)

State of PS flip—flop; reset | reset set set

low for positive partial| + + - -

product (mode 0), high

for negative (mode 1)

Is add or subtract add subtract | subtract add

operation indicated?

(See Table 13.10-2

and preceding

paragraph for a dis—

cussion of what

constitutes add or

subtract)

State of PS combined sum differ— sum difference;

with operation = sum ence; complement

or difference? comple— partial
ment product
partial
product

New state of PS reset | set set reset

flip—flop + - - +

State of carry— set reset set reset

result gated from the Adder is in true form, low by 1.

The CZ flip—flop

is not set for differencing in QP, as it is during the operation of QS,

but rather the negative partial product formed when the 1's string is

entered is allowed to remain low by 1 until the end of the string. At

that point, a second differencing operation is called for and the partial

product is complemented. Since it was low by 1 before being

complemented, it now goes high by 1.

This has the same affect as

would the setting of CZ and thus results in the formation of the correct

final value.
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Consider the multiplication of 5 by 7, ignoring for the moment the
relevant exponent value. On entry into QP, the PS flip—flop is reset
for mode 0. Examination of the multiplier bits (111) calls for a
subtraction and, with PS reset, a differencing operation. The partial
product is complemented, carry inhibited, and the partial product sign
reversed to indicate both a change of mode from 0's to 1's string and
a change from a positive to a negative partial product. At the end of
the string, the negative partial product is added to the multiplicand,
again calling for a differencing operation. The PS flip—flop is

reversed, carry out inhibited, and the partial product is complemented.

The operands in this example are

multiplicand = 5 = 101

multiplier = 7 = 111
In the notation commonly used for decimal multiplication, this
operation would be handled as follows:

101
11
101
101
101
100011

Straightforward implementation of this using the Adder circuitry would

involve three add cycles:

1) multiplicand 101
initial partial product 000
101 = new partial product
2) shift partial product 1 bit to the right; increment exponent by
1/3; add:
multiplicand 101

partial product _101
1111 = new partial product
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3) shift partial product 1 bit to the right; increment exponent by
1/3; add:
multiplicand 101

1

111
100011

partial product

The number of add cycles is cut from three to two by use of the string
method. The real advantage of this algorithm comes, of course, from
longer strings since a string of any length can be handled by two add
cycles. Using these same values, the QP sequencer would form the

product as is described below.

Recall that the multiplicand has been binary normalized in register N
and that the S register has been cleared to zero for the initial partial
product value. Thus, the Adder input registers are set up as follows:
41 0
multiplicand = (N) [10l10. . .. ... . 0]

41 0
initial partial product = (D) [0000. .. ... . . O]

The multiplier is stored in register A.

41 0
multiplier = (A} [0000. . . .. ... 01l11}

Examination of the 3 least significant bits indicates that a 1's string is
being entered. The multiplier and the partial product are shifted right
3 since all the bits in the multiplier are 1's. The indicated subtract
operation, with PS reset, calls for a differencing operation. Thus,
the initial partial product is complemented while being shifted so that

41 0
(D)={1111 . . . . . . . . 1]

The inputs to the Adder are gated to S and the octal exponent is
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incremented by 1.

multiplicand = (N)= 101000000000000000000000000000000000000000
(D)= 11111111111111131111111111313131111311111111
(S)=100111111111111111111111111111111111111111

partial product

new partial
product

(Carry is not enabled for differencing operations.) The right 3 shift of
the multiplier brings three zeros into the least significant 3 bits of
register A. This indicates the end of the string and that an add cycle
is in order. A negative partial product and an addition call for a
second differencing operation. The multiplier is shifted right 3 bits

while the partial product is complemented and shifted right 3 so that

41 0
(D) = {111011000000000000000000000000000000000000 |

The second add cycle then occurs as follows:

multiplicand = (N) = 101000000000000000000000000000000000000000
partial product = (D) = 111011000000000000000000000000000000000000
(S)=100011000000000000000000000000000000000000

final product

The octal exponent is incremented by 1. Thus, the correct result was

obtained through the use of two add cycles.

This discussion should clarify the action taken when the least significant
3 multiplier bits are all zeros or all ones. It is also obvious that a
zeros string broken by a single 1 bit calls for an addition at that order.
(Mode 0 and 001 indicate add and shift right 3.) It is easy to demon—
strate that the opposite case, mode 1 and 110, is handled analogously,
that is, a subtraction occurs at the order where the zero appears in the

multiplier and shifting continues. This is true since, for example,
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110111 = 1000000 — (1 + 001000)
so that the multiplication of 5 (101) by 678 (110111) is equivalent to
1000000 X 101 -1 X 101 -1000 X 101.

Using decimal format, this multiplication would appear as follows:

101
110111
101
101
101
000
101
101

100010011

This operation, as handled by QP, begins with the operands estab—
lished in N and D:
41 0
multiplicand = (N) = {1010 . . . . . . . . O]

41 0
initial partial product = (D)= {0000. . . . .. .. O]

The multiplier is in register A.

41 0
multiplier = (A) = [0000. . . . . . . . 110111}

Examination of the 3 least significant bits in register A indicates entry
into a 1's string (since PS indicates mode 0). The multiplier is shifted
right 3, the partial product is complementéd and shifted right 3. The

Adder is then gated to S and the octal exponent incremented by 1.

(N) = 101000000000000000000000000000000000000000
(D)= 11111111111111111131311312331313131311311111111111
(S)=1001111111111111111111113111111121111111111

multiplicand

partial product

new partial
product
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Carry is not enabled for differencing operations. The least significant
3 bits in the-multiplier are now 110 and the PS flip—flop indicates
mode 1. It is not necessary to leave the string on account of the zero;
instead; a subtraction is performed at that order and, the other bits
being 1's, shifts of right 3 take place. Referring to Table 13.10-1,
the subtraction when PS is set (negative) calls for summing. PS will
remain set and carry out will be enabled to avoid loss of significance.
The shift of 3 performed on the partial product establishes (D) as
follows:

41 0
(D) = [000100111111111111111111111111111111111111]

The Adder is gated to S and the exponent incremented by 1.

multiplicand = (N) = 101000000000000000000000000000000000000000
(D)= 00010011111111311113111311331113331111111111
(5S)=101100111111111111111131111111111111111111

partial product

new partial
product

The last shift of the multiplier brought a string of zeros into the least
significant 3 bits. This calls for a change of mode through the addition
of the negative partial product (differencing operation). The multiplier
is shifted right 3, the partial product in S is complemented and shifted
right 3 to D.

41 0
(D) = Ll110100110000000000000000000000000000000001

The final add cycle is gated to S. Since this is a differencing operation,
carry out is not enabled.
multiplicand = (N) = 101000000000000000000000000000000000000000

(D) = 111010011000000000000000000000000000000000

(S)=100010011000000000000000000000000000000000

]

partial product

final product
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All other cases involve permutations of those that have been described.
Thus, bits 010 in mode 0 call for a right shift of 1 so that the addition
can take place at that order, while bits 101 in mode 1 call for a right

shift of 1.

There are 4 distinct cases calling for use of the Adder, each of which
results from two possible bit configurations. (The other instances call
for shifting but no add cycle.) A summing or differencing operation
takes place on the basis of the combination of the sign in the PS flip—
flop and the add or subtract sign. The decision to add or subtract is
based on what is happening in the current string. Subtraction is
indicated when a 1's string is entered, addition when it is left. The
occurrence of a single 1 in a string of zeros calls for addition, that of
a single O in a string of ones for subtraction. Thus, summing occurs
if the sign held in the PS flip—flop agrees with that of the operation
called for, i.e., PS high, indicating negative, and a subtraction result
in the sumnming of the operands. These factors and their results are

shown in Table 13.10-2.

TABLE 13.10-2 Determination of Summing or Differencing

Operations
Subtract Add
Bits { Meaning Operation Bits | Meaning Operation

Mode 0| 111 | Entry into Differencing { 010 Single 1 in| Summing

PS or |l's string or |0's string
011 101
Mode 1| 110]Single 0 in{Summing 000 | Entry into | Differencing
PS or |1l's string or |O0's string ~
010 100
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From this it is clear that differencing occurs only on entry into a 1's
string or a 0's string. (It could equally well be stated that differencing

occurs only upon entry into or exit from a 1's string.)

All of the possible cases and the actions taken are shown in

Table 13.10-3. The signals generated by the QP sequencer on exam—
ination of these 3 bits are shown in the table as an aid in relating the
general rule to the implementation as carried out by QP. These

signals have the following meanings:

1) SHT - SHift right Three;

2) SHN - SHift right oNe;

3) AST — Add, Shift right Three;
4) ASW — Add, Shift right tWo.

Note that the cases where right shifts of 2 bits are called for cause
signal SHN to go high whereas the cases where right shifts of 2 bits
occur in conjunction with add cycles cause ASW to go high. This is
due to the fact that it is possible to achieve a right—2-bit shift when
the Adder is used (enabling of S(R3)D followed by gating from the
Adder using R(L1)S accomplishes this) while there is no direct means
for performing a right—2—bit shift without the Adder. Thus, SHN is
used twice in this case and the 2—bit shift results from two single

shifts.

The QP sequencer performs three distinct operations: initialization,
product formation and cleanup. Initialization involves states QPA,
QPB, and QPC. Actions taken here include the clearing of the initial
partial product, resetting of the PS flip—flop, inhibiting of the add

cycle to correctly direct the branching on entry into QPD, etc.

Product formation is carried out by the QPD and QPE states. The

sequencer does not proceed from QPE until the last multiplier bit has
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TABLE 13.10-3 Actions Taken Following Examination of the
Least Significant Three Bits of the Multiplier

MODE 0; PS RESET FOR POSITIVE SIGN gllt,;.];r‘ MODE 1; PS SET FOR NEGATIVE SIGN

Shift |Add/Sub}Sum/Dif PS CYE | Signal Shift [Add/Sub [Sum/Dif | PS CYE Signal
R3 — — -— — SHT 000 R3 Add Dif Reset Reset |AST
R2 —_ —_ — — SHN 100 R2 IAdd Dif Reset Reset |ASW
R1 — — —_ — SHN 010 R2 Sub Sum Set Set JASW
R1 _ —_ — —_— SHN 110 R3 Sub Sum Set Set IAST
R3 Add Sum Reset | Set AST 001 R1 — — — — ISHN
R2 Add Sum Reset | Set ASW 101 R1 —_ —_ —_ — SHN
R2 Sub Dif Set Reset | ASW 011 R2 —_— —_ —_ — SHN
R3 Sub Dif Set Reset | AST 111 R3 — —_— —_— —_ SHT
All shifts refer to the partial product and to the multiplier; the product exponent is incremented in step.
The partial product is complemented before each differencing operation.

been examined. At QPD the multiplier is in register A and the bits
examined are A2, Al and AO0. If no add cycle is called for at this
time, the decision is whether or not a differencing operation (a change
of mode) is called for. This amounts to picking out four cases and
complementing the partial product for each; PS A 011, PS A 111,

PS ~ 100 and PS ~ 000. Only the 2 least significant bits are essential
to this determination. Consequently, the CMP or complement path is
taken if PS A 11 or if PS A 00. Examination of A2, Al and A0 will set
SHN, SHT, ASW or AST to determine the path taken at QPE. At QPE,
the bits that were positioned in A2, Al and AOQ will be in M—1, M—2 and
M-3. (This regardless of what total shift is required; a right 3 shift
always occurs first; sometimes it is erased by not copying it back,
sometimes it is modified by the enabling of the left—2 path as it is sent
back to A.) For the ASW case, SHW is set at QPE to cause a branch
during the add cycle that will correctly complete the 2—bit shift. The
paths taken between QPD and QPE are described in Table 13. 10—4.

Each of these is demonstrated in Figure 13.10-1.
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The cleanup phase of the sequencer includes states QPF, QPG and
QPH. In this-phase, the product is shifted until it is octally justified,
that is, the exponent value is a whole number. Due to the fact that
QPD and QPE represent a loop, the usual rules for establishing
decoding states have been ignored. QPD is on clock 2 and would
normally be decoded by the echo of QPC. Instead, it is decoded by the
echo of QPE, while QPH is the clock 2 state with the echo decoding for
QPC. Thus, at QPC, the QP2 and QP4 flip—flops are set to advance
the sequencer to QPD.

The algorithm for the entire QP sequencer is shown in Figure 13.10-2
and the QP flow chart in Figure 13.10-3.
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QOPD and QPE

TABLE 13.10-4 Paths in Product Formation States of QP:

STATE: BRANCHES: BRANCHES:

QPD A. Add cycle inhibited B. Add cycle enabled
(If change of mode called for by PS AA0OAALVPS ~AAQ0AAL, This assumes that more than 1 multiplier bit remains.
differencing operation is set up by complementing the partial Otherwise, cleanup phase (QPF, OPG, QPH) is entered.
product and inhibiting adder carry.)

QPE Four branches occur based on A above: Two branches occur based on B above:

1.

=)

1.

I

—
=1

Iv.

SHT (SHift Three); increment exponent by 1. Indicates that
current string continues: Mode 0 A 000 or Mode 1 ~ 111

SHN (SHift oNe); increment exponent by 1/3. Indicates that
current string ends or is interrupted after the next 1 or 2
bits: Mode 0 A 100V 010V 110 or Mode 1 A~ 001 v 101 v 011

AST (Add, Shift Three);

Indicates entry into or exit from a string calling for differencing
operation: Mode 0 ~ 111 or Mode 1 ~ 000

or interruption of a string calling for a subtraction if Mode 1 ~ 110,
an addition if Mode 0 ~ 001.

Enable add cycle.

ASW (Add, Shift tWo); increment exponent by 1/3. Indicates

exit from a string calling for differencing operation:

Mode 0 A~ 011 or Mode 1 A 100

or interruption of a string calling for a subtraction if Mode 1 ~ 010,
an addition if Mode 0 A 101.

Enable add cycle, set SHW.

I. * SHW (SHift tWo); increment exponent by 1/3. Adder
gated left 1 to complete partial product shift.
Two right—l—bit shifts necessary between M and A
since no direct means available for 2-bit shifts.

fI—
II. SHW; increment exponent by 1. Adder gated
to S; 3—bit shift has been completed.

x*
For both cases, reverse PS if change of mode is indicated
(differencing operation).
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FIGURE 13.10~1 Demonstration of Paths Between QPD and QPE

A. QPD, add cycle inhibited
41 0o - 44 0 -1
A l MULTIPLIER \ S l PARTIAL PRODUCT
A(R3)M Lost S(R3)D  or S(R3C)\\\\
41 40 39 38 -1 =2 =3 41 =1 -2 =3 —4
M D
Al QPE and SHT (SHift Three)
41 -1 =2 =3 41 =1 =2 =3 —4
M | D |
CHE = CEP = ES(+1)EA M(0)A +Lost D(0)s Lost
41 -1 44 43 42 41 0 -1
A | s
All QPE and SHN (SHift oNe)
41 -1 =2 =3 41 -] =2 =3 —4
M D
M(L2)A D(LZ)S/ / / v
MT(+1)MM Lost Lost
41 0 -1 44 43 -1
A S
AIll QPE and AST (Add, Shift Three)
41 -1 -2 =3 41 —4
M| D
Last shift not copied back to A; the Partial product in D is correctly
shift is repeated during add cycle positioned for add cycle. S cleared
and is copied back at that time. to receive adder output.
41 0 =1 44 -1
Al s CLEARED B
AlvV QPE and ASW (Add, Shift tWo)
41 -1 =2 =3 41 —4
M | D |
No direct right 2 shift is z’xvaillablé; Partial product in D remains positioned
MT(+1)MM 2 shifts of 1 bit are used. This at right 3 until output gated left 1 from
’ accomplishes the first. adder.
’ M(L2)A ’ S cleared to receive adder output.
41 =1 44 -1
Al ] s | CLEARED |
B QPD, add cycle enabled
41 -1 Adder circuitry adding (N) (multiplicand)
A r to (D) (Partial product).
\A(M)M
Lost
41 40 39 38 ~l =2 =3
M |
Bl QPE and SHW (Indicates the AST case; shift has already occurred).
41 -1 -2 =3 41 1 0
M C ADDER )
M(0)A Carry signal R(0)S
CHE = CED = ES(+1)EA determines S42
Lost |if enabled
41 =1 42 41 1 0
A | s |
BII QPE and SHW (SHift tWo)
41 40 39 -1 =2 =3 41 1 0
ADDER
Mr Y ARy a4 [E:n-'rv aional (: ' S A
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42 i L7, alllld CyLiT dlili1LER

41 0 - 44 0 =1
A MULTIPLIER s | PARTIAL PRODUCT
A(R3)M Lost S(R3)D or S(R3C)\\\\
41 40 39 38 -1 =2 -3 41 _ =1 =2 -3 —4
M | D
Al QPE and SHT (SHift Three)
41 -1 =2 =3 41 =1 =2 =3 —4
M | D |
CHE = CEP = ES(+1)EA M(0)A LosY D(0)S Lost
41 -1 44 43 42 41 0 -1
A S
AIl QPE and SHN (SHift oNe)
41 -1 -2 =3 41 -] -2 =3 -4
M D L _
M(L2)A D(LZ)S/ / /
MT(+1)MM Lost Lost
41 0 -1 44 43 -1
A S
AIlI QPE and AST (Add, Shift Three)
41 -1 =2 =3 41 —4
M| D |
Last shift not copied back to A; the Partial product in D is correctly
shift is repeated during add cycle positioned for add cycle. S cleared
and is copied back at that time. to receive adder output.
41 0 -1 44 =1
Al | s CLEARED
A1V QPE and ASW (Add, Shift tWo)
41 -1 =2 -3 41 -4
M| D | B
LA
No direct right 2 shift is évailablg; Partial product in D remains positioned
MT (+1)MM 2 shifts of 1 bit are used. This at right 3 until output gated left 1 from
’ accomplishes the first. adder.
’ M(L2)A ’ S cleared to receive adder output.
41 ~1 44 =1
A ] s | CLEARED |
B QPD, add cycle enabled
41 =1 Adder circuitry adding (N) (multiplicand)
to (D) (Partial product).
\A(R3)M
Lost
41 40 39 38 -1 =2 =3
M |
BI QPE and SHW (Indicates the AST case; shift has already- occurred).
41 -1 =2 =3 41 1 0
M C ADDER )
M(0)A ‘ Carry signal R(0)S
CHE = CED = ES(+1)EA determines S42
‘Lost if enabled
41 -1 42 41 1 0 -1
A | s | ]
BII QPE and SHW (SHift tWo)
41 40 39 -1 =2 -3 41 1 0
M| | ADDER )
Carry signal
determines S43
if enabled R(LL)S
MT(+1)MM M(L2)A
41 43 42 210 =1
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FIGURE 13.10-2 Algorithm for Product Formation by QP

Idle
No( l —I
GO from KD? (WS) = {inal sign of product;
\ (N) = multiplicand, binary normalized; I
Yes | (A} = multiplier;
(EA) = multiplier exponent plus multiplicand |
- - - 71T - — — — — —'1 exponent minus number of octal shifts I
used to octal normalize multiplicand;
(MT) = 3 minus number of binary shifts used
I to binary normalize (N} after octal I
Initialization: normalization
S cleared so that transfer of I_ ___I
(S) to D gives initial partial - — — — — = =
product of zero;

Set partial product sign
to positive;
Inhibit add cycle

(A) right 3 to M;
E:‘egcoi?i lo:sb:i duri Yes Nol g Ltin Yes No Change of mode Yes Set up differencing:
ignificant bits during . Exponent a emaining multiplier s 2 required? | 1
@—— Shifting; 1 Gate adder into S whole number? bits? (A) right 3 to M - Add cycle enabled? (A0, Al = 00 mode (?i:o;np err)x?ented. sent
send DONE signal PCP WAD AD 1 or 11 mode 0?) CMP right 3 to D;
Inhibit adder carry
No PCP |Yes —
CMP | No
Adder gated into S; i
’ D
M) to A; sy rl'ght 3tol
-— f‘“t‘:’; gated left Y25 15 the fraction 1/37 2 bit shift required? | (Mo & exponent by 1; (A) right 3 to M
Inhibit add cycle nable adder carry
No SHW {Yes L
2/3 :
Adder gated left 1 to S;
Gate adder to R;
S:ifet product right 3, (M) leit 2 to A for Analyze least significant
- then Leit 2; Jsecond 1 bit shift; 3 bits in M Add Shift tWo:
Increment exponent to Increment exponent Enable SHift tWo path to gate
whole number by 1/3 for 2/3“0“1; adder left 1;
Inhibit add cycle Multiplier shifted right

1 two times; here:
Yes

Add cycle required? 3 bit shift required? (M} let 2 to A for first )

bit shift;
ASwW First exponent increment
‘N° AST| Yes of 1/3;
SHift oNe: Clear S for adder output;
(D) left 2 to S; Enable add cycle
(M) leit 2 to A; le Mol 3 bit ehift required?
Increment exponent SHN Clear S for adder output;
Parti

by 1/3 SHT | Yes artial product has been

«shifted to D;
Enable add cycle;

If mode change,
(D) to S; reverse partial
(M) to A; product sign
Increment octal

exponent by 1
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TABLE 13.10—5 Terms Used on the QP Flow Chart

ADl, AD2 Add Delay flip~flops; AD2Z is set during multiply if ADD is high at state QPE and AD! is low.
ADD ADD cycle is indicated; ADD is high when the states of the 1east significant multiplier bit and

the partial product sign are opposite one another; hence, ADD = PS1 A~ M-3 vV PS1 A~ M=3.

AST Add and Shift right Three bits; AST = PSl A[(M~1 A M=2 A M=3) v (M=1 A M=2 A M=3)] VPSI ~
[(M=T A M=2 A M=3) v (M=1 A M=2 A~ M=3}].

ASW ADD and Shift right tWo bits; ASW = PS1 A [(M=1 A M—2 A M=3) v (M=1 A M—2 A M-3)] v PS1 A
[{{(M-1 A M=2 A M=3) v (M=1 ~ M—2 ~ M—3)]; ASW high causes a shift of right 1 and sets SHW so
that an additional 1-bit shift will occur at QPE on the add cycle.

CHE CHange octal Exponent signal.

CMP CoMPlement inverter; a change of mod;__getu s this flip—flop which causes the partial product to
be complemented; thus, CMP = (PS2 A Al AA0) Vv (PS2 ~ Al ~ A0) since the mode is changed
when the sign is negative and the least significant 2 bits in the multiplier are 0 and when the
sign is positive and these bits are 1.

CYE CarrY Enable flip—flop; CYE is high to enable a carry into the 42nd or 43rd bit of the S register
(depending upon the path used to gate the output); during the operation of QP, CYE is set at the
QP D state if this is not an add cycle and CMP is low and at the QPH cycle on leaving QP; CYE is
reset at QP D if this is not an add cycle and CMP is high.

DQP Vv RQP DONE QP sequencer or READY QP sequencer; these signals are equivalent to QP2 since QP2 is
always high while QP is in operation.

EA(0)ES Path enabled on all Cl's while QP is in operation since KD is idling at KDG-KDH where this
enable occurs. This updates the octal exponent counter.

ES(+1)EA Path enabled to cause octal increment of product exponent; this path is enabled on C2's if
CHE Vv (QP1 A MT(+1)MM A MT1 A MTO).

GQP GO QP sequencer; GOP = KDF AQPB ~AZ AS44 ~CD10 ASZ.

M-l AM-2 A M~3 Three least significant multiplier bits; these same bits are referred to as A2 ~ Al A A0 when the

multiplier is in register A since the multiplier is shifted 3 bits to the right when it goes to M.

PBL Product Bits Lost flip~flop; PBL is set when significant bits are shifted out of the D register;
PBL is taken into account when the decision is made to round the product or not.

PCP Product Cleanup Phase; PCP is high when at most 1 multiplier bit remains in register A. There
are only 2 possible termination cases: if mode 0, the procedure is to add and shift right 3; if
mode 1, to complement, add and shift right 3. PCP = 41AZ1 APS.

PS1, PS2 Partial_product Sign flip~flop; PS is low for positive, high for negative values. Set PS2 =
QPE A AD1 A M=2 A M-3; reset PS2 = QPE A ADl A~ M=2 A M-3 vV QPC

SHN SHift right oNe bit; SHN is high if PS1 A [(M=Z A M=3) v (M—=T A M—-3)] v PS1 A [(M-2 ~ M—3) v
(M=l ~ M=3)].

SHT SHift right Three bits; SHT is high if (PS] A M—1 A M—2 A M—3) v (BS1 A M=1 A M=2 A M=3).

SHW SHift right tWo bits flip—flop; SHW is set at QPE if an add cycle and 2 bit shift are called for

(ASW high); ASW causes a l-bit shift; SHW gates another l—bit shift to complete the 2-bit
shift; (there is no direct 2—-bit shift path).
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FIGURE 13.10-3

The QP Flow Chart

QP

QPA
000

QPB
000

QPC
010

QPD
110

QPE
110

QOPF
111

QPG
111

QPH
ol0

'

1]

DQP
Set CYE

!

r

R Y
GOP l GOP
1 z
r‘J RQP 2 —_—
“ _1J Clear S
Reset PS2
Reset AD2
MM(0
AD (OMT AD
l PCP l PCP l CMP ‘ CMP
1] 2] 3] AR3)M 4] AR3)M
A(R3IM Reset CYE Set CYE
Set ADI PSZ = Set PS1 S(R3CID SR3ID
PS2 => Reset PS1 Reset AD1 Reset AD1
l ‘ Clear S
AST< Reset SHW
Set AD2
Clear S,M(L2)A
ASW < MT(+1)MM
Set SHW,Set AD2
(M=2~M—3) \
SHW SHW SHN ' SHT ‘ (M=2~M=3) v (M=2~M—3) l M~2~M—3 1 M—2~M—3' ¥ v (M2AM-3) g MEEAMS3 M—2~AM—3
1] 2 3 4 5 6 7 8
R(Ll )S 9 10
S H e S e © B 5 e 3 ] 9
MT(+1 )MM HE — Reset PS2 Set P52 —_— Reset PS2 s
{D=-3vD—4) = Set PBL D-2vD-3vD—4) = Set i“BL MT (+1 MM CHE et P52
Reset AD2 ¢ Reset)ADZ D—4 = Set PBL (D-2vD-3vD~4) > Set PBL
1] S(R3)D
A(R3M
Reset AD1
l D1 ‘ ADIAMT IAMTO l ADIAMTIAMTO 1 AP1IAMTIAMTO
1 Z "
D(L2)S _J R(O i] R(L1)S 4 R(0)S CHE
D—4 -Set PBL (D_szﬁavD_‘ds» Set PBL (Drsvn—i) 2 Set PBL (D-Z\/D—Slm)z)get PBL
e
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SECTION 13.11 — KD SEQUENCER CONTROL OF DIVIDE AND
REVERSE DIVIDE

Quotient formation during division is accomplished by the QQ

sequencer. Before QQ is started, the divide operation is set up by the

QA and KD sequencers. The interaction between these sequencers is

shown in Figure 13.11-1. KD and QA are started simultaneously by

KC; KD waits until QA has reached the QAH state before proceeding.

At this point QA will have accomplished the following:

1)

2)

3)

Formation of the initial quotient exponent. For DIV, this
exponent value = (EA) — (EP); for RDV, the exponent is

(EP) — (EA). QA stores this exponent in register EA, with the
attached sign in EAS.

Determination of quotient sign and storage in the WS flip—flop.

Switching of (A) with (N) for RDV command so that, when QA is

finished, in all cases (A) = numerator, (N) = denominator.

Incrementing and decrementing of this initial quotient value during the

setting up of the divide operation requires some explanation. The

relevant manipulations are as follows:

1)

2)

The exponent of the denominator ey is subtracted from that of
the numerator, e to become the preliminary quotient

exponent, eq; thus, e ~€;= eq.

The denominator is binary normalized. As the denominator is
shifted left, the exponent originally associated with the
denominator, . FL would become smaller; however, the sub—
traction described in 1) above has already occurred and the
result of decreasing the size of €3 is to increase the size of eq;
therefore, ec1 is incremented in step with the left shifts of the

denominator.
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FIGURE 13.11-1

General Algorithm for Divide and Reverse

Divide Operations

DO (DIV) calls for use of the operand from the command word as the denominator.

(This operand

will be in OA at the end of operand assembly.) The operand stored in the Accumulator is the

numerator for this operation.

OA is the numerator, that in the Accumulator, the denominator.

Dl (RDV) calls for reversal of the roles of the operands:

that in
Processing is as follows:

KC

Starts KD and QA sequencers;

Accesses command word containing command D0 or Dl;
Assembles operand and stores it in QA;
Sends exponent of (Accumnulator) to EA;

Returns to normal idle waiting for opcode DONE from QA.

QA
Forms initial quotient exponent:
For DIV = (EA) - (EP),
For RDV = (EP)— (EA);
For RDV, switches (N) with (A);
Determines quotient sign, stores
it in WS flip—flop;
At DONE OA:
(A) = numerator,
(N) = denominator;
Returns to normal idle waiting for
GQA from KD.

Q0
Forms quotient (see Section 13.12);
Terminates when quotient is
14 octals in length without
fractional exponent;
Sends DONE signal to KD and
returns to normal idle.

OA
Stores quotient in register A,

exponent in register AE, sign in

KD
Advances to KDC—~KDD idle loop where it waits
for QA; l

l
l

WHEN QA REACHES STATE OAH:

Checks for 0 denominator:

IF 0: requests interrupt, starts QA to store zero
in Accumulator, returns to normal idle;

Checks for 0 numerator:

IF 0: calls zero final result, starts QA to store
zero in Accumulator, returns to normal idle;

IF NO 0 OPERANDS: shifts denominator left to
binary normalized position, incrementing
exponent in step;

Complements denominator and stores it in D;
Sends numerator from A to N;

Starts QQ to form quotient;

Idles at KDG-KDH for DONE signal from QQ;

|
|

IF EXPONENT UNDERFLOW (-127 < exp < —63):
shifts quotient right and increments exponent in
attempt to bring the exponent into the normal
range; if the quotient becomes zero before the
exponent becomes normal, the final quotient is
normal zero;

IF EXPONENT UNDER-UNDERFLOW (-128 > exp >
—191): quotient = normal zero;

IF EXPONENT OVERFLOW (+64 < exp < +127) OR
OVER-OVERFLOW (+128 < exp < +191}):

requests interrupt;

FOR ALL CASES:

starts QA to store result in Accumulator;

returns to normal idle.

flip—flop AS;
Sends opcode DONE to KC;
Returns to normal idle.
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3) During the operation of QQ, the numerator (or remainder) is
binary normalized before each use of the Adder. The affect of
the left shifts performed on the numerator is a decrease in the
size of its exponent value, e s and also a decrease in the size
of the quotient exponent, eq; thus, QQ decrements ec1 in step

with the normalization of the numerator.

Binary normalization is achieved by means of octal shifts to the left,
with exponent changes of 1, until octal normalization occurs, followed
by binary shifts, with exponent changes of 1/3 (handled by the modulo—

three counter), until binary normalization occurs.

The KD sequencer binary normalizes the denominator, then comple—
ments it and stores it in register D where it remains until the

division is complete. Note that complementation of the binary
normalized value means that the most significant bit in D will always
be a zero. KD requests an interrupt if division by zero is attempted
and supplies a normal zero result if division into zero is attempted.
When QQ completes formation of the 14 octal quotient, KD checks the
exponent range. An overflow results in an interrupt, an under—
underflow in a zero result. If an underflow condition exists, KD will
attempt to bring the exponent into normal range by means of right
shifts combined with exponent increments. If the quotient becomes
zero before the exponent becomes normal, the result is a normal zero.
No rounding takes place in divide; the quotient is truncated to 14 octals.
At completion, KD starts QA to store the result in the Accumulator and

returns to normal idle.

Figure 13.11-2 shows the KD algorithm for the control of divide
operations. Figure 13.11-3 is the corresponding flow chart while
Figure 13.11—4 is the entire KD flow chart, included here for the sake

of completeness.
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FIGURE 13.11-2

Reverse Divide Operations

Algorithm for KD Control of Divide and

No

1dle

!

Start octal shift and

(N) left 1 to S,
{MT) plus 1 to MM

<S’I‘ART signal from KC?

Yes

No Has QA completed

initialization?

Yes

—

_

| sign in EAS; (DIV = (EA) — (EP), |
RDV = (EP) - (EA));

—| RDV: (OA) switched with (Acc); |
For DIV and RDV: {Acc) = numerator,
(OA) = denominator |

I—Quotient sign in flip*lop WS _J

exponent increment: No .
-~ ?
(N) left 3 to S, (N} octal normalized
(EA)to ES F
Yes
Start binary shift and y
exponent increment: No

(N) binary normalized?

Yes

Normalized denominator
left 3,t° S;
Exponent in EA to ES

Clear N for storing of zero
in Acc; Request interrupt;

Yes

. |

Start QA to store zero
in Acc

Clear N for zero result;
Start QA to store

Dividing by zero
denominator?
((s) = 0?)

No

result in Acc

N )

Numerator zero?
((A) = 07)

‘N o

Denominator binary No

normalized in S?

Ke 5

Complement denominator
and’'send right 3 bits, store
binary normalized in D;
Numerator sent from

A to N; Update modulo
three counter — {(MM) to
MT; Start QQ to

-form quotient

Start shift and exponent
increment: quotient in
A right3to M,
(ES)plus 1 toEA

Complete shift and
increment; (M) to A,
(EA) to ES

! I

Quotient shifted to No
zero? ({(A)y= 07f

Exponent normal?
(~63<exp<+63)

1Yes Yes

Clear N; Start QA

[ to store result
Quotient in A sent to N;
Start QA to store result
- Request interrupt;
Start QA to store result

No

Update octal exponent:
(EA) to ES

Yes

Yes

UNDER = UNDERFLOW

Exponent underflow?
(—127<exp<—63)

No

Exponent normal?
(—63<exp<+63)

No

Exponent overflow?
(exp>+63)

No

{exp<—127)

Clear N for zero quotient;
Start QA to store result

C

exponent increment:

omplete shift and

(S) to N; If octal,
{(ES) plus 1 to EA; B
If binary, (MM) to MT

—

(N) = numerator (remainder) ’
-{D) = complemented denominator

(A) = 14 octal quotient, truncated, I
without fractional exponent

| )= remainder _

I1°¢1



13.11

TABLE 13.11-1 Terms Used on the KD Flow Chart for Control—

ling Divide and Reverse Divide Operations

CHE = Set CED

DKD

GQQ
JLE
LJC

N41

544

sz

A register Zero; AZ is high when the contents of register A are zero.

Command Decoding bit used to distinguish betw 1tiply and divide; CD10 is low for divide
and reverse divide. .

Path enabled to effect octal exponent increment during octal normalization of the d inator.
(CHE = CHange octal Exponent signal; CED = Change Exponent Delay signal that will, in this
case, set CEP for enabling of ES(+1)EA path.)

DONE KD sequencer; this signal is non—existent; it is equivalent to the following: GQA, reset CZ,
clear KD.

DONE signal from the QQ sequencer.

Bit 6 in register ES; ES6 is low when an exponent underflow occurs, high for any other negative
exponent range.

Exponent UnderFlow signal; EUF is high when the exponent held in register ES is'in the
~127 to —64 range.

Exponent Under—Underflow signal; EUU is high when the exponent held in register ES is in the
—191 to ~128 range.

Exponent oVerFlow signal; EVF is high when the exponent held in register ES is in the +64 to
+127 range; if EVF is high, an interrupt is requested.

Exponent oVer—oVerflow signal; EVV is high when the exponent held in register ES is in the
+128 to +191 range; if EVV is high, an interrupt is requested.

EXponent Normal signal; EXN is high when the exponent held in register ES is in the —63
to +63 range.

GO signal to the QQ sequencer.

Interrupt request set if attempt has been made to divide by zero.

Signal sent by KC to start the KD and QA sequencers; LJC is equivalent to GO KD.

Bit 41 in register N; N4l is high when there is a 1 in this bit position indicating binary normalization.

(N) octal Normalized signal; NN is high when a 1 bit occurs in any of the 3 most significant binary
positions in register N.

State of the QA sequencer; when QA has advanced to QAH, KD can continue with its own operations.

Bit 44 in register S; when 544 is high, the denominator is binary normalized; (this is equivalent to
the N4l signal since a left 3 shift occurred between N and S).

S register Zero signal; SZ is high when the contents of register S are zero.
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FIGURE 13.11-3

The KD Flow Chart for Control of Divide KD
and Reverse Divide Operations
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FIGURE 13.11—4 The KD Flow Chart
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SECTION 13.12 — QUOTIENT FORMATION BY THE QQ SEQUENCER

In binary division the quotient is formed by means of determination of
the orders at which r > d (where r is the remainder, d the denominator)
and supplying 1 bits in the quotient at those orders. r is compared to

d by means of subtractions of d from r. The result of each subtrac—
tion is the new remainder that will be used in the subsequent
comparison of d to r. If the new remainder is positive, the quotient

receives a 1 bit.

In Section 13. 8 it was demonstrated that the operands must be

properly positioned before each subtraction. In the G-20 this position—
ing is accomplished through left shifts of the remainder along with
appropriate changes in the current quotient exponent value. At GO QQ

these operands are positioned as follows:

1) The denominator has been binary normalized, then comple—
mented, and stored in register D; it remains there, unchanged,

throughout the operation of QQ;

3) The numerator, (the first remainder value) is in register N; it
will be shifted left until it is binary normalized to position it
correctly for the first subtraction of d from r. The new
remainder is gated from the Adder to S, then sent from S to N.
Each new remainder will be binary normalized before a sub—
traction takes place. (This happens because the quotient bits
that would result from subtractions occurring before the
remainder become binary normalized are entirely predictable
and, therefore, these iterations can be bypassed. Handling of
bit determination during shifting is discussed later in this

section. )

The quotient is formed between the A and M registers. These are
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cleared by QQ for the starting quotient value of zero: (S is cleared,
then S(R3)M: is enabled followed by M(0)A or M(L2)A depending upon
whether or not the numerator is already binary normalized). Quotient
bits are sent to the least significant bit position and the quotient is
shifted left in step with the remainder. These quotient bits are 1's for
each successful subtraction, i.e., wherever r > d, 0's for non—
successful subtractions. The division process continues until the
quotient is octal normalized and has a non—fractional exponent (the
modulo—three count is equal to zero). Thus, when QQ is started, the
current quotient exponent is held in the octal exponent counter and the
modulo—three counter while, at DONE QQ, the current quotient

exponent is held in the octal exponent counter.

The division algorithm is speeded up through use of the principal of
non—restorative divide. The familiar form of division employs
restorative divide. This means that, if a subtraction of d from r
results in a negative remainder, i.e., if d > r, the new remainder is
added back into the denominator to restore the former remainder
value before a subtraction occurs at the next order. The objection to
this procedure is that it involves a great many add cycles and, thus, a

good deal of time.

In non—restorative divide the remainder is allowed to become negative.
This condition is taken into account at the next subtraction where a
minus multiple of the denominator is subtracted from the negative
remainder (or, since — (— denominator) = + denominator, the
denominator is added to the negative remainder). The negative
quotient value at that order is added to the partial quotient. Thus, the
division can continue without time being taken to restore the remainder
to a positive value. Consider this principle as applied to a decimal
example: 2822/12. Initially the remainder and denominator are

assumed to be positive. A multiple of the denominator is subtracted
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from the remainder for the first quotient value; the operation
performed, therefore, will be a differencing. A too-large multiple of
the denominator is chosen for this first subtraction to show how a

negative remainder is handled.

300 * 12 = 3600 +2822 Partial quotient = +300
—(+3600)

— 778 = new remainder

To correct for this condition, the next iteration will call for subtract—
ing a minus multiple of the denominator or, since — (— denominator) =
+ denominator, a multiple of the denominator will be added to the

negative remainder. This, again is a differencing operation.

—70 % 12 = -840 -778 +300
—(—840) + (= 70)
+ 62 = new remainder +230 = partial quotient

The new remainder is positive. Thus, the next iteration calls for a

subtraction.
+5 %12 = 60 +62 +230
—(+60) +(+ 5)
+ 2 = new remainder +235 = partial quotient

The two possible cases are demonstrated in this example:

1) positive remainder value = subtract positive denominator;
2) negative remainder value = subtract negative denominator;

(add denominator).

Thus, the subtractions called for during division always involve
differencing operations. To obtain a difference through use of the
Adder, one of the operands must be complemented. Since the normal

case is that in which r > d, the denominator is complemented and
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stored in register D. This complemented value is always one of the

Adder inputs.

Differencing as performed by QQ is almost identical to that carried by
QS. The distinctions between the two cases are pointed out here to
avoid confusion. In QS, (N) are complemented. This is an arbitrary
choice of operand since it doesn't matter which is larger or which is
complemented so long as the output is handled properly in either case.
The normal case in QS is taken to be that in which /D/>/N/. Genera—
tion of a CY signal occurs when the uncomplemented operand, in this
case (D), has the larger absolute value; this indicates that the output
is in normal form. (CZ is set before each differencing operation in
QS to cause a carry in to the zero order; this corrects the normal
output which would otherwise be low by 1.) In divide, the usual case is
that in which (N) (the remainder or, for the first iteration, the
numerator) is larger than (D) (thé denominator). For each such case
the quotient receives a 1 bit. A differencing operation performed by
QQ when the remainder is positive (remainder sign is recorded in the
Remainder Sign flip—flop, RS, which is low for positive) and which
results in a CY signal indicates /N/ is larger. It can be stated that

for RS ACY:
1) /N/>/D/and r > d;

2) the new remainder is positive and in normal form; (CZ is set

throughout the operation of QQ);

3) the subtraction was successful; the quotient receives a 1 bit in

the appropriate order.

In QS, generation of CY indicates that the complemented number has
the larger absolute value, and therefore, the Adder output is in
complement form. QS, on detection of CY, resets CZ and re—enters

the add cycle to avoid a carry in. The result is then in 1's complement
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form. This is handled differently in QQ where CZ remains set for all
cases. Thus, the complement that is formed when CY is high is
assumed to be 1 greater than the 1's complement of the result, or in
2's complement form. The complement paths in the G—20 form the 1's
complement so that complementation of the remainder value yields a
converted remainder that is in normal form, but is low by 1. Thus,

for the case RS A._C_?:
1) /D/>/N/andd > r;

2) the remainder is negative and in 2's complement form; after

conversion (1's complementing) it will be low by 1;

3) the subtraction was not successful; the quotient receives a 0 bit

in the appropriate order.

In QS a single result is required.. When differencing, determination of
the larger absolute value and certain sign manipulations complete the
operation. In QQ a cumulative remainder is formed. Thus, the
occurrence of a negative remainder and its conversion to the form
"normal —1" will be followed by another subtraction as soon as the
remainder has been shifted to the binary normalized position. As has
been demonstrated, the quantity formed is [ —r — ( —d)] or ( —r +d). If
at this iteration d is still larger than r, the new remainder will again
be negative and the quotient will again receive a 0 bit. If r is greater
than d, the remainder will become positive. For this case also, the
CY signal is used to determine which operand is larger. However, the
subtraction between two negative values changes the interpretation of
the output. It is obvious that, for negative values, the larger one is
that with the smaller absolute value. (Thus, of the numbers —7 and -3,
the latter is the larger of the two.) It has been shown that for QQ,
generation of a CY signal indicates /N/>/D/. Since for negative values
the meaning attached to the larger absolute value is reversed, CY

indicates d > r for the [ —r — (—d)] case whereas it indicates r > d for
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the [ +r — ( +d)] case. It is important to notice that this consideration
does not affect the interpretation of the form of the output. This is
always dependent upon which operand has the larger absolute value.
Thus, CY indicates that the absolute value of the uncomplemented
operand is greater than or equal to that of the other operand and that
the result is therefore in normal form. Conversely, cY always
indicates /D/ is larger and, therefore, that the output is in comple—

ment form. Given this information, it can be stated that for RS A CY:
1) /N/>/D/ and, since both r and d are negative, d > r;

2) the remainder is still negative; the uncomplemented operand
has the larger absolute value so that the result is in normal
form; CZ is set for the necessary carry in; however, the result
is still low by 1 due to the fact that no correction was made for
CZ when the remainder became negative; this error is

propagated until the remainder again becomes positive;
3) the subtraction was not successful since d > r; quotient bit = 0;
and for RS A CY:
1) /D/>/N/ and, since both r and d are negative, r > d;

2) the remainder has become positive; the complemented operand
has the larger absolute value so that the result is in comple—
ment form; CZ is still set, thus correcting for the fact that the

remainder has been low by 1 while negative;

3) the subtraction was successful; therefore, the quotient bit is 1.

For each subtraction, the remainder and quotient are shifted left 1 bit
and the current quotient exponent is decremented by 1/3. As has been
stated before, the quotient receives a 1 in the least significant bit
position if r > d, a 0 if r d. The remainder receives a 0 if the

remainder value is positive, a 1 if it is negative. This avoids
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multiplying the error that is present while the remainder is negative
(the remainder is low by 1 because CZ was not reset on the unsuccess—
ful subtraction). If zeros were inserted on the shifts, the remainder
would become lower by a factor of 2 with each shift. The insertion of

1 bit keeps it low by exactly 1 no matter how many shifts occur before

it goes positive again.

When the remainder is not binary normalized, the quotient and the
remainder are shifted to the left 3 bits at a time until octal normali—
zation of the remainder occurs, then 1 bit at a time until it is binary
normalized. The exponent is decremented appropriately. On these
shifts, both the quotient and the remainder receive 0's in the least
significant bits if the remainder is positive, l's if it is negative. For
the remainder, the reason is that mentioned above. For the quotient
value, the choice of bits results from the fact that the result of any
subtraction attempted before binary normalization of the remainder
occurs is predictable. Recall that the denominator is binary normal—
ized before being complemented, and stored in D. Thus, when the
remainder is not binary normalized, /D/>/N/ so that all subtractions
performed under these conditions would result in signal C_Y Thus, it
is possible to determine the correct quotient bits for these orders
without performing any subtractioﬁ operation before normalization of
the remainder occurs. For RS A E?, the quotient bit is 0; for RS AE?,
the quotient receives a 1. This information, along with other relevant

points made in this section, is summarized in Table 13.12-1.

Three shifting sequences are used in QQ. At GO QQ, the denominator
has been binary normalized, complemented, and stored in D. It
remains there, unchanged, throughout the operation. A differencing
operation will occur only when the remainder is also binary normal—
ized. The first shift shown in Figure 13.12-1 is that used to octal

normalize the remainder. Following octal normalization (indicated by
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signal NN), the remainder is binary normalized. This constitutes the
second shift shown in the figure. The differencing cycle itself involves
a 1-bit shift to the left. This is shown as the third shift sequence.
Following the differencing cycle, the remainder is again binary

normalized. Figure 13.12-2 is the QQ algorithm, Figure 13.12-3,

the flow chart.
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TABLE 13.12-1

Actions Taken on the Basis of the Remainder
Sign and Carry Signal During the Operation of QQ

REMAINDER NOT
REMA E
BINARY NORMALIZED MAINDER BINARY NORMALIZED
Shifts Bit Determination Action Interpretation of CY signal: Remainder
During Shifting CY = /N/2/D/ or [r/2/d/ Sign
Form of result Size of Bit Inserted on
Operands Left 1 Shift
Shift Subtract New remainder
remainder positive still positive
RS ACY and quotient RS = 0's in least denominator | CY = normal r>d quotient = 1
left until significant bit positions complement remainder = 0
remainder of quotient and remainder || from positive
binary remainder
normalized; [+r—(+dc)]
decrement
current . New r aind
== = || quotient Shift left 1, | CY = d>r quotient = 0 € renamcer
RS A CY . . has become
exponent in decrement complement; remainder = 0 .
. ' negative;
step; exponent (2's complement .
- . therefore set RS
by 1/3 since CZ set)
RS A CY Ne:w rema?nder
still negative
CY = normal; d>r quotient = 0
Subtract (low by 1 after (negative remainder = 1
negative conversion from values
. 2 .
RS = 1's in least denominator s complement) being
C e . s complement compared)
significant bit positions
- from
of quotient and .
remainder negative — )
RS ~ATT remainder CY = r>d quotient = 1 New remainder
[-r—(=dc)] complement; (negative remainder = 1 has become
= (—r +dc) (1's complement) values positive; therefore
i £ being reset RS
Shift left 1, compared)
decrement
exponent
by 1/3.
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FIGURE 13.12-1 Shift Paths Used in QQ

I.  Shift paths at QQE-QQF if remainder is ngt octal normalized and the quotient is not within 5 bits
of final length (14 octals). This operation is repeated until either NN signals octal normalization
or CPQ signals that the quotient’is within 5 bits of final length.

N L I M | CHE = CEN = ES(~1)EA
N(L3)S // RS(0)250 M(L2)A RS(0)2A0
¥ A
s | | N |

/

S({0)N A(L1)M

N [ ] M

II. Shift paths at QQE-QQF if remainder is octal normalized, but not binary normalized, or if the
quotient is within 5 bits of final length and shifting must therefore proceed 1 bit at a time to

avoid final corrective right shifts.

N 1 M| |

N(L1)s / S(i))SO M(0)A RS(0)AO MT{~1)MM

s [ 1 A ] ]
S(0)N A(L1M /// MM(O)MT
[ |

N | M

III. When r is binary normalized, (N) and (D) are gated from R at QQG. S is cleared to receive
the adder output.

R 7] M I ]
MT(-1 ) MM R(L1)S RS(0)S0O M(0)A AO determined by states
l /of CY and RS flip—flops.
/ :
s ] A

I | |
v il

MM(0)MT S(C)N or S(0)N A(L1)M
IR

N[ J M
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FIGURE 13.12-2 Algorithm for the Formation of 14 Octal
Quotient by QQ
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Send DONE L—__—____J
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TABLE 13.12-2 Terms Used on the QQ Flow Chart

AD2 Add Delay flip—flop; AD is reset to avoid entry into the Adder section of QQ, set to gate the
result from the Adder.

AN (A) octal Normalized; AN is high when any significant bits occursin the most significant octal
position of register A.

CHE CHange octal Exponent signal.

CPD Quotient Cleanup Phase Done signal; CPD is high if AN is high and the current exponent
value is non—fractional, i.e., the modulo—three counter contains zeros; when CPD is
high, QQ exits.

CPQ Cleanup Phase, Quotient signal; CPQ = M4l v M40 v M39 v M38 v M37; CPQ is used to
prevent left—3 shifts from occurring if a 1 bit is already stored in any of the five high—order
positions in M; this is desirable since final octal justification of the quotient might require
right shifts if left—3 shifts were allowed at this stage.

cY CarrY out of Adder flip—flop; during the operation of QQ, the occurrence of CY causes the state
of the RS flip~flop to be reversed.

cz Carry into Zero order of the Adder; CZ remains set throughout the operation of QQ.
DO DONE signal from the QQ sequencer.
EA(0)ES Path enabled on all Cl's while QO is in operation since KD is idling at KDG-KDH where this

enabling occurs. This updates the octal exponent counter on each clock.

ES(-1)EA Path enabled to decrement octal exponent; enabling occurs on C2's if CHE Vv (QQ3 ~ MT(-1)MM A~
MT1 A MTO).

ES(+1)EA Path enabled at QQC when exponent is incremented by 1/3 if the current count in the modulo~three
counter is 2/3; thus, if MT = 10, MT(+1)MM causes enabling of this path (C2 A QQC A MT(+1)MM A
MTI1 A MTO).

GQQ GO signal to QQ sequencer from KD.

N41 Bit 41 in register N; N41 is high if the 42nd bit in the remainder is a 1, and, thus,
indicates that the remainder is binary normalized.

NN (N) octal Normalized; NN is high when any significant bits are stored in the most significant octal
position in register N.

R(L1)S Path enabled to gate the output from the Adder to register S.

RS Remainder Sign flip—flop; RS high indicates a negative sign, low, a positive sign.

RS(0)250 Path enabled to copy the condition of the RS flip—flop into the 3 least significant bits in register S.
543 Bit 43 in register S; S43 is high following the gating of the result from the Adder if CY is high and

enabled by CYE and if the output is gated by means of the R(L1)S path.
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FIGURE 13.12-3 The QQ Flow Chart
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CHAPTER 14
APPENDIX I

REPEAT MODE BLOCK DIAGRAM

A block diagram of sequencer operation in the repeat mode is included
here for reference purposes. This diagram has been used in the
Customer Engineering Central Processor courses and has proven useful to
those who are familiar with the operation of the individual sequencers
but who do not fully grasp the relationship of these sequencers to one
another. This diagram shows the interactions particularly well since
it is organized on the basis of the signals used for communication
between sequencers rather than on the basis of the functions being
performed by each sequencer. Thus, anyone familiar with the basic
concepts involved can determine from this diagram where the signals
that relate to these functions are generated and thereby accustom him—
self to the overall picture. In addition, the inclusion of all possible
repeat operations (those processed by KL as well as those processed
by KA) on the same chart facilitates comparison between the various
operations. The following conventions are observed on the drawing:

1) circles indicate idle loops. Thus,

indicates that the sequencer is idling and that it will advance
from this idle loop on receipt of a KR, SKC or LKC signal.
2) solid lines indicate paths through the states of the indicated

sequencer;
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3) columns are sequencer oriented. Thus, information in
column 1 pertains to Master Control, column 2 to the KM
sequencer, column 3 the building block sequencers QC and QS,
column 4 the repeat mode of KL and column 5 the repeat mode

of KA.

4) rows are time oriented with the first operation being indicated
in the upper left hand corner. Thus, the operation is initiated
by KC, KC starts KM in the second row, KM starts QC in the

succeeding row, and so forth.

5) dotted lines represent the various forms of communication
between sequencers, i.e., the origins and destinations of

signals.

For a detailed description of the repeat mode, see Sections 13.2 and

13.3.
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FIGURE 14-1
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APPENDIX II

CD DECODING FOR GROUPS OF COMMANDS

Group Selective Bits
Designation | in Register CD Designated Commands
CDA CDll1 ACDIlOA P2 VvP4vVR3
CD8 ~CD7
CDB [CD9/\CD7]VK3D6A B0-7 vR0O-3
(CD9 v CD8 v CDT7)]
CDC CD9 ~[CD12 v CDI11 Vv B0-1 v B4-5 v L0-1 Vv
CD6] L4-7 v M0-1 vP0O-3 Vv
R0-3 v S0-1 v S4-7 v X0-5
CDD [CD12 ACDI11 A(CD10 V| A2-3 v B2-3 v B6-7 Vv D02
CDS8 VCD7)]V[CD9A v L2-3 vNO-7 VvR0O-2 Vv
CD6] S2-3 v T2-3
CDE CDl12 ACD8 A~ Ad4—6 v LL4—6 v X2 v X4-5
(CD11 v CD10)
CDF CD12 ACDI1 ACDT A B0O-7
CD6
CDG CD12 ACD7 A CD6 B0-7 v R0O-3
CDG = CDB = CDK =
B0-7 v RO0-3
CDH CDIl11 ACD9 A2—-2 v A6—7 v N2-3 v N6—7
v T2-3 vT6-7
CDJ A0-7 v D02 v LL2-3 v NO-—-7
v S2-3 v T0-7
CDK CDI12 ACD7TACD6 A B0-7 v R0-3
(CD11 v CD9)
CDL CD7A[(CD11 A CDI10) B0-7 v D02 v M0-1 v
v CD12 v CD8] P0—4 vR0-3 vX0-1 vX3
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Group Selective Bits
Designation | in Register CD Designated Commands
CDN CD12 ACDI11 ACD9 A NO-1
CD8 A~ CD7 ~ CD6
CDQ CD9ACD8 ACD7A~CD6| NO—7
CDR CDI12 ACDI11 ACDI1O0O A R2
CD9 ACD8 ~CD7 ~ACD6

CDS CD12 ACD11 ACDI10 N1 v Tl v Al vL1 vSl vBl
v M1 vX1lvB5vVvB7VvB3

CDT High for illegal opcodes.

CDU CDl11 ACDI1O0 N3IVN7VvT3VTTIVA3YV
ATvI3VvVLTIVvVS3VvSTv
P2 vP4vD2VvX3VvRIVR3

CDhw CDl12 ~CDIl1 NO-1 v TO-1 v AO-1 v LO0-1
vS50-1 vM0-1 vX0-1 vB0-7

CDX CDl12 A CDl1 N2-3 v T2-3 v A2-3 v L.2-3
v S2-3 VRO0-3 v D0-2 v P4

CDY CDl12 A CDI11 N4—~5 v T4-5 v A4-5 v LL.4-5
vS54-5 v Pl vP3 v X2vVvX5

CDZ CD12 A CDl1 N6—7 v T6~7 v A6—7 v L6—7
vS6=7VvPOVP2 VX34
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SYMBOL

A

ABR
AC
ACA~G
ADI, 2
ADD
AE

AFC
AM

AN
AS2
AZ
AZ1, 2

BA
BB
BD
BF
BFC
BK
BLA

APPENDIX III

14.0

CENTRAL PROCESSOR LOGIC SYMBOLS

NAME

Accumulator Register

Addressable Bus Register

Address Counter Register

Computed Signals From AC Register
Add Delay Flip—flops

= (PS1 AM=3) Vv (PS1 ~ M=3)

Accumulator Exponent Storage
Register

Finish Cycle, MM-10 Unit A
Address Memory Storage Flip—flops
Register A Octally Normalized
Accumulator Sign Flip—flop
Register A Zero, Computed Signal
Register A Zero Flip—flops
Memory Buffer Register

Buffer Address Register

Bus Busy (to MM-10)

Control Panel Bulb Drivers

Bus Free (to MM—-10)

Finish Cycle, MM-10 Unit B
Borrow Kill (Subtractor)

Block Liine Amplifier

14-7

DRAWING
LOCATION

Z,AD,AA,AB,
W,N,P,Q

ET 3A
C,D,E
C,D,E
AJ

AJ4D
K,L

MIJLF
D,E
Q4F
T3F
AH
AH
HA,B
C,D,E
MNIC
XC
MJ5G
MJ2F
K,L
AKIlA



SYMBOL
BNA
BNF
BP
BRA
BS
BTK
BU

CA
CCF
CDh
CDA—~Z
CED
CFC
CEN
CEP
CHE
CKl, 2
CKA

CKC
CMP
Cp
CPD
cQ
CY
CYE
Cz

DAI1, 2
DAL

NAME

Bus Not Available (to MM—10)

Bus Not Free (to MM-10)

Borrow Propagate (Subtractor)
Branch Flip—flop (Input/Output)
Bootstrap Flip—flop

Computed Signal From KC Sequencer
Bus Register Boosters

Command Address Register

CC~10 Fault Light

Command Decode Register

CD Register Decoding

Count Exponent Delay

Finish Cycle, MM—10 Unit C

Count Exponent Register, Negative
Count Exponent Register, Positive
Change Exponent

Clock Frequency Divider (to MM~10)

KA Sequencer Advance,
Computed Signal

"Reset" Signal for Master Control
Complement, Computed Signal
Character Counter (Input/Output)
Cleanup Phase Done

Character Counter (Input/Output)
Carryout from 41st Stage of Adder
Carryout Enable

Carry in to Zero Stage of Adder

Denominator Register
Data Available Flip—flops

Data Available From Line (From
MM-10)
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DRAWING
LOCATION

MN3D
MJ4G

K,L

EC1A
EC3A

T1A

LE

C,D,E
XC3A
C,D,E,PD
BE

BB4D
MJ3F
BB4A
BB4A
BB4C
MK4A
LJ1B

BX1D
AJ4A
EC,EB
BA2A
EC
Q3C
BB6B
T1D

Z,AD,AA,AB,W,
N,P,Q

AC
MNI1D



SYMBO
DAR
DAS

DAT
DAX
DB2

DKD

DRL
DRT

Dw

EA

EAZ
EC1, 2
ECF
EDF
EE

EE2
EEA, B

ELIL, 2
ELF
EP
EPZ
ER
ERD

NAME

Data Available Recognized

Data Available Signal From QM
Sequencer

Data Transmit (to MM—10)

Data Available From External Memory

Discarded Bits

Done Signal From KD Sequencer
Done Signal From KJ Sequencer
Done Signal From KW Sequencer
Done Signal From QS Sequencer
Done Signal From QW Sequencer

Done Signal From Repeat A and
L Opcodes

Done From Repeat Logic

Done Signal From Repeat, T and
S Opcodes

Delay Write Flip—flop

Exponent of Accumulator Register
Contents of EA Register = Zero
Clock Generation Signals to MM-10
Enable Command Flags

Enable DATA Flags

Exponent Equal, Computed Signal
Exponent Equal Flip—flop

Computed Signals From
Exponent Circuit

(EA) > (EP) Flip—flops

Enable Logic EFlags

Exponent of Operand Register
Contents of EP Register = Zero
Error Signal (Input/Output)
External Memory Ready
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DRAWING
LOCATION

AF4D
AF5D

MK3A
MK2B
THA
BC6C
ET6E
LD4D
S6F
EB4E
LJ3C

LJ4B
LJ2B

AF5B
K,L
J2D
ML
BT2B
BT4E
S3E
T4A

J

T
BT3E
K,L
J1D
ALA4G
MK4B



SYMBOL
ES
ESA—-Y
ESZ

EUF
EXM

EXN
EXT
EXZ
FCl, 2
FCl%, 2%
FCA-C

FCX

FM
FS
GBA

GCA

GDA—~C

GKC
GKL
GKM
GKP
GKT
GKW
GKX
GQS
GQW

NAME

Exponent Sum Register

Computed Signals From ES Register
Contents of ES Register = Zero

Exponent Underflow

External Memory Diagnostic
Routine Flip—flop

Exponent Range Normal

External Memory

Exponent Zero

Finish Cycle From Memory, Panel F
Finish Cycle From Memory, Panel N

Finish Cycle From MM—10 Units
A, Bor C

Finish Cycle From External
(MM-10) Memory

Finish Memory Operation
Forbidden State for Exponent Circuits

Access Memory Address in BA
Register

Access Memory Address in CA
Register

Gate Data From MM=-10 Units
A, BorC

Master Control Advance Signal
"GO" KL, Sequencer
"GO" KM Sequencer
"GO" KP Sequencer
"GO" KT Sequencer
"GO" KW Sequencer
"GO" KX Sequencer
"GO" OS Sequencer
"GO" QW Sequencer

14-10

DRAWING
LOCATION

14.0

K,L
J

J2C
J4C
XC4E

JB4
MK5D
B5F
AC
AC
MN

MK3D

MNI1D
J3D
AGIA

AG4A

MJ

BD4D
LF1B
BY3B
BY5B
BZ5F
LDI1G
BZ4B
S2D

EB5A



SYMBOL
GQZ
GRS
GXC
GXS

HPE
HRE

HTE

JCA
JCB
JDA
JDB
JLA
JLB
JLE
JNC
JRT
JWA
JWB
JWC
JWD

KC

KD

KJ

KM

KR1, 2

NAME

"GO" OZ Sequencer

"GO" Repeat Sequencer

Start KJ Sequencer

Start KJ Sequencer

Line Response Register

Parity Error (Bit 9 of H Register)

REQ Response to Instruction
(Bit 10 of H Register)

Time Error (Bit 11 of H Register)
Interrupt Request Register
Command Flag 31

Command Flag 30

Data Flag 31

Data Flag 30

Logic Flag 31

Logic Flag 30

Large Exponent (Operand Too Large)

Non—existent Code

Real Time Reference Interrupt
Input/Output Interrupt Request
Input/Output Interrupt Request
Input/Output Interrupt Request
Input/Output Interrupt Request
Add/Subtract Sequencer
Master Control Sequencer
Divide/Multiply Sequencer
Jump Sequencer

Logic Sequencer

Multi—Access Sequencer
Put—away Sequencer

Done Signals From All Opcodes
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DRAWING
LOCATION

KAlA
LD2G
BY4B
BZ5B
LA,LB,LC
LB5D
LCID

LC2D
LC
LC5B
LC4B
LC1B
LB5B
L.C3B
LCZ2B
LB4B
LA1B
LB3B
LA5B
LA4B
LA3B
LA2B
LY
BD,BE
BC
EJ
LF
LD
LH
BD




LAP
LCE
LD
LE
LES
LFC
LFK
LJC
LKE
LKC
LP
LPA, C,D

LR
LT

MA
MCA
MF
MMO, 1
MNA
MRA-~C

MS
MSA-~C

NAME

Transfer Sequencer

Block Input/Qutput Opcode Sequencer
Single Character Transmit Sequencer
States in Master Control Sequencer
Line Amplifier

Long Accumulator Put

Leapfrog Carry Extension

Line Drivers

Large Exponent

Recognize Large Exponent

Leapfrog Carry

Leapfrog Kill

Divide/Multiply Start Signal
Leapfrog Kill Extension

Loop KC (Repeat)

Logic Product

Logic Product to Leapfrog on
Panels A, C, and D

Line Receiver Register
Line Transmitter

Multiplicand Register

Memory Address Register

Computed Signals From KC Sequencer
Memory Finish, Computed Signal
Modulo Three Counter Flip—flops
Non—existent Memory Location

Memory Ready From MM-10
Units A, B, or C

Memory Start

Memory Start to MM-10
Units A, B, or C
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14.0

DRAWING
LOCATION

ET

EA

EC

BD,BZ

AK

BC5D

w

AK

S1A

S6A
AA,AB,W,N,P
AA,AB,W,N,P
BT3H

w

BXI1G

AH2E

Y

AL
AK

Z,AD,AA,AB,
W,N,P.,Q

C,D,E
BX,BZ,BY,BS, BT
AF5B

BB

AF1F

MN

AF5B
MH



NN

NN2

NRC
PA
PAA-D
PBL
PC

PCP
PE
PED
PGA—D
PK

PMF

PSl, 2
PSC
PW
QA

QB

QC
QM
QP

Q0

Qs

Modulo Three Counter Flip—flops
Memory Write, External
Memory Timer Flip—flops

Numerator Register

N Register Octally Normalized,
Computed Signal

N Register Octally Normalized
Flip—flop

Illegal Opcode Signal

Memory Parity Checking Circuits
Input/Output Parity Check Circuits
Product Bits Lost

Propagate Carry (Adder)

Product Cleanup Phase

Pickapoint Exponent Register
Input/Output Parity Error Detected
Input/Output Parity Generate Circuits
Propagate Kill (Adder)

Memory Parity Error
(To Indicator Lights)

Product Sign Flip—flops

Prohibit Memory Start

Parity Wrong Memory

Accumulator Put Sequencer

External Memory Control Sequencer
Command Access Sequencer

Memory Control Sequencer (Internal)
Product Sequencer

Quotient Sequencer

Sum/Difference Sequencer
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DRAWING
LOCATION

BB
MJ
AC

Z,AD,AA,AB,W,
N,P,Q

Q4B

T4F

ET4E
HB
AL
BCA4F

Z,AD,AA,AB, W,
N,P,Q

AJ3A
LA,LB
ALS5F
AK

Z,AD,AA,AB, W,
N,P,Q

PF1C

AJ
XC3C
HB3E
BF
MK
LD
AF
AT
BA



SYMBOL
QW

0z

R

RAK
R D2
RDX
RDY
RE

REM
REQ
RET
RKM
RL1, 2
RLR
RM
RML
ROM
RQS
ROQW
RS1, 2
RTA-C
RTM
RTF
RTJ
RTR
RTS
RU
RWA, B

NAME
Input/Output Sequencer
Zero Exponent Sequencer

Adder

Start QA Sequencer
External Memory Ready
Read Driver, X Lines
Read Driver, Y Lines

KC Sequencer Advance,
Computed Signals

Read External Memory

Request for Character (Received)
Return Flip—flop (Input/Output)
Ready From KM Sequencer

Reset LR

Reset LR Register

Read Memory Signal

Start KC Sequencer, Mode 0 and 1
Ready QM Sequencer

Ready QS Sequencer

Ready QW Sequencer

Remainder Sign Flip—flops

Real Time Signals

Read Transmitting Memory

RTJ

Terminate Repeat Operation
Real Time Signals Flip—flop
Real Time Signal ’
Round Up (Sum/Difference)
Echo Flip—flops for UWA, B

Sum Register
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DRAWING
LOCATION

EB
KA

Z,AD,AA,AB,W
N,P,Q

BT4H
MK3C
FAlB

FAIF

BX

MN4C
AL3E
EC4A
LD4E
AL
AL1D
ACI1B
BT3H
AF6D
S5F
EB5A
BA
AK
MN4A
LCIE
LF5A
AK5A
AK5A
TI1A
LA

Z,AD,AA,AB,W,
N,P,Q



SYMBOIL,
SA

SC

SCA

SE
SE1-+3
SHR
SHS
SHT
SJR
SKC
SKJ
SKM
SKP
SM1, 2
SMA-H

SN

SPE
SRH
SRJ
SRU

ST

SUR

Sw
SWA—-D
SYl1, 2

SYA-D
SZ

SZ1, 2
SZA-G

NAME
Sense Amplifier

Subtractor—Comparator

Send CA Register to Bus Register

Master Control Advance Signal
Start External Memory

Send H Register to Bus Register
Shift-Send Signal (Input/Output)
Shift Right Three

Send J Register to Bus Register
Advance Start to KC sequencer
Start KJ Sequencer

Start KM Sequencer

Start KP Sequencer

Do a Sum Operation Flip—~flop

Select Memory A _Through H,
Computed Signals

S Register Normalized

Select Register PE

Select Register H

Select Register J

Select Register U

Strobe Read Inverters

Send U Register to Bus Register
= 542 Vv 543 v 544

Interrupt Synchronizer Flip—flops

Input /Output Synchronization
Flip—flops

States of Input/Output Synchronization

S Register Zero, Computed Signal

S Register Zero Flip—flops

S Register Zero, Computed Signals

14-15

DRAWING

LOCATION

FB
K,L
LEIA
BX
MH
LE4A
EC2ZA
AJ3D
LE3A
BS
BZ5F
BY4B
BZ4F

AF

Q5D
ET5A
ET4B
ET3B
ET4B
AC6A
LE2A
Q6D
LA
LA

AL
AH3B
AH
AH

14.
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SYMBOL
TCA
TCW

T DA
TEl, 2
TED
TKC
TL1, 2
TLA
TR
TRF
TRX, Y
TSB
T™W
TWA-D
TWX, Y
UCA
UucCB
UDA
UDB
UJE
ULA
ULB
UPE
URB
URT
UWA
UWB
UWC, D
WCA
WDX, Y
WwGl, 2

NAME
Start Time Out (1 Second)

Transmit Complete Instruction
Transmit Data

Time of Execute (CC-10) Flip—flops
Time Error Signal

"Tilt" KC Sequencer

Mantissa Too Large Flip—flops
Mantissa Too Large

Time of Read

Transmit Request For Character
Time of Read, X-Y Lines
Transmit 6 Bits

Time of Write

Input/Output Interrupt Buffer
Time of Write, X—=Y Lines
Command Flag 31

Command Flag 30

Data Flag 31

Data Flag 30

Jump Enable

Logic Flag 31

Logic Flag 30

Pickapoint Mode

Ring Bell

Real Time Reference Enable
Transmit Interrupt Request
Transmit Interrupt Request
Reserved Bits in U Register
KW Advance Signal

Write Drivers, X—Y Lines

Waiting to Use QS Sequencer
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14.0

DRAWING
LOCATION

AK5D
AF3A
EB5E
AK5E
AK5E
BX4D
LH

AH3A
AC1D
AK2G
FA

AK2G
AC

LAG6A
FA

LC5C
LC4C
LC1C
LB5C
LAIC
LC3C
LC2C
LB4C
LBIC
LB3C
LA5C
LA4C
LA3C
EA3F
FAIC



WM
WRI1, 2
WwS1, 2
XCM
XJJ
XL
XPC
XR
XRC
Xz
XSD

YL
YR
ZB
ZBA
ZE2
ZM
ZTM

NAME

Write Memory Signal

Write Flip—flops (Memory Control)
Working Sign Flip—flops

Diagnostic Switch on Control Panel
= Interrupt

X Decoding, Left Hand Bits
External Parity Control

X Decoding, Right Hand Bits
Diagnostic Switch on Control Panel
Index Equals Zero

Memory Block Out Switch on
Control Panel

Y Decoding, Left Hand Bits

Y Decoding, Right Hand Bits

Zero Order Borrow

AC Register Equals Zero

Zero Exponent, From QS Sequencer
Zero Machine

Zeros To Memory

14-17

14.

DRAWING
LOCATION

AC2B
AF

T
PR3C
LC5E
AC
PR3C
AC
PR3C
ET2A
PR3C

AC
AC
J3F
E4D
S4F
PH5B
AJ5C



Signal

0(0)CQ

1(0)CQ

2(0)CQ
7EA0(L21)28B21
14M0(0)14B0
20M15(0)20B15
26M21(0)26B21
41AZ0

64(0)CA

A=l

A0

Al

A2

A3

A4

A5

Ab

A7

A8

A9

Al10

APPENDIX IV

INDICATOR LIGHT CONNECTIONS
FOR CENTRAL PROCESSOR LOGIC SYMBOLS

Signal

Location Pin Print
LA51 F ECIB
LAS1 H EC2B
LA51 J ECIB
HA51 R F4D
HAS51 K FI1B
HAS51 L. F2B
HAS51 M F3B
BAS51 P AHID
JA56 C AG5D
AA49 D Z3F
AA49 E Z4F
AA49 F Z5F
AA49 H Z6F
AA49 J ADIF
AA49 K ADZF
AA49 L. AD3F
AA49 M ADA4F
AA49 N ADS5SF
AA49 P ADG6F
AA49 R AAlF
AA49 S AA2F

Signal
All
Al2
Al3
Al4
Al>5
Alb
Al7
AlS8
Al9
A20
A2l
A22
A23
A24
A25
A26
A27
A28
A29
A30
A3l

14-18

Signal

14.

Liocation Pin Print

AA49
CA49
CA49
CA49
CA49
CA49
CA49
CA49
CA49
CA49
CA49
CA49
CA49
CA49
CA49
CA49
DA49
DA49
DA49
DA49
DA49

T

Mo Ow> " @2z oKD HYHEU QD >

AA3F
AA4F
AA5F
AAG6F
ABIF
AB2F
AB3F
AB4F
AB5F
AB6F
WIF
W2aF
W3F
WA4F
W5F
We6F
NI1F
N2F
N3F
N4F
N5F



14.0

Signal Signal
Signal Location Pin Print Signal Location Pin Print
A32 DA49 F Né6F ADI BA51 F E5D
A33 DA49 H PIlF AD2 BA51 H AJSF
A34 DA49 J P2F AE0 KA50 A KIlA
A35 DA49 K P3F AEl KA50 B K3A
A36 DA 49 L. P4F AE2 KA50 C K4A
A37 DA49 M P5F AE3 KA50 D K5A
A38 DA49 N P6F AE4 KA50 E LIA
A39 DA49 P OQIF AE5 KA50 F L3A
A40 DA49 R Q2F AEé6 KA50 H L4A
A4l DA49 S Q3F AE(0O)EA KA53 C M3F
A(O)N CA54 N YA AMS8 JA56 K D4F
A(L1)M DA54 M X3D AM9 JA56 L D5F
A(R3M DA54 N X5D AMlo0 JA56 M EIF
ACO JA51 A ClIE AM11 JA56 N E2F
ACl JA51 B C2E AMI2 JA56 P E3F
AC2 JA51 C C3E AM(0)CA JA56 B AG3D
AcC3 JA51 D C4E AS2 KA51 F T3F
AC4 JAS51 E C5E AS2(0)SM1 KA54 B T4B
ACS5 JA51 F DIE AS2(C)SM1 KA54 C T5B
AC6 JA51 H D2E AS2(0)WS1 KA53 R TIB
ACT JA51 J D3E Azl BA54 A AHIE
ACS8 JA51 K D4E AZ2 BA54 B AHIF
AC9 JA51 L. DSE BO HA49 E HAIlA
ACl0 JA51 M EIE Bl HA49 F HA2A
ACl1 JA51 N E2E B2 HA49 H HA3A
ACl2 JA51 P E3E B3 HA49 J HA4A
AC13 JA51 R E4E B4 HA49 K HAILB
ACl4 JAS51 S ESE B5 HA49 L HA2B
AC(+1)BA JA55 F AGIC Bé6 HA49 M HA3B
AC(+1)CA JA54 F AGID B7 HA49 N HA4B
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B9

B10

Bl1

Bl2

Bl13

Bl4

Bl5

B16

B17

B18

B19

B20

B21

B22

B23

B24

B25

B26

B27

B28

B29

B30

B31

B32

B(0)BA
B(0)D 14/0
B(0)D 20/15
B(0)D 26/21
B(0)D 31/27

Signal

Location Pin Print
HA49 P HALD
HA49 R HA2D
HA49 S HA3D
HA49 T HA4D
HA50 A HAILE
HAS50 B HA2E
HAS50 C HA3E
HAS50 D HAILF
HA50 E HAZ2F
HAS50 F HAS3F
HAS50 H BI1B
HAS50 J B3B
HA50 K B4B
HA50 L B5B
HA50 M BIC
HA50 N B3C
HAS50 P B4C
HA50 R B5C
HAS50 S BIE
HA51 A B3E
HAS51 B BA4E
HAS51 C B5E
HAS51 D BIF
HA51 E B3G
HA51 F BA4F
JA56 H AG3C
CA54 E ULlB
CA54 F U2B
CA54 H U2B
CA54 J U3B

Signal

B(L21)D

B(R15)CD
B(R21)EP
B(R21)EP

BAO
BAl
BAZ2
BA3
BA4
BA5
BA6
BA7
BAS
BA9
BA1O
BAll
BAl12
BA13
BAl4
BA1l5

BA(0)AC
BA(0O)MA

BLA
BLA
BLA
BLA
BLA
BLA
BRA
BS

14-20

*1
*2
*3

Signal

14.

Location Pin Print

CA54
JA56
KA54
KA54
JA50
JA50
JA50
JA50
JA50
JA50
JA50
JA50
JA50
JA50
JA50
JA50
JA50
JA50
JA50
JASB5
JA55
JA54
MA49
MA49
MA5I1
MA51
MA51
MA5I1
LA51
LA51

D
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U5D
AG2F
M2C
M3C
C1C
Ccz2C
C3C
c4C
C5C
D1C
D2C
D3C
D4C
D5C
E1C
E2C
E3C
E4C
E5C
E5C
AG2B
AGl1B
AKI1A
AKIA
AKlA
AKIlA
AKlA
AKIlA
EC1A
EC3A



Signal
BUO
BUl
BU2
BU3
BU4
BU5
BU6
BU7
BUS8
BU9
BUI1O0
BUIl1
BU12
BU13
BUl4
BU(0)D
Cl

Cl-

C2

C2—-
C2~Clear LR
C2~CKC
C2~GKL
CAO
CAl
CA2
CA3
CA4
CA5
CA®b6

Signal
Location

EA51
EA51
EA51
EA51
EA51
EA51
EA51
EA51
EA51
EA5]
EA51
EA51
EAS51
EA51
EA51
CA54
BA50
LA52
BA50
LAS53
MA52
BA52
LA54
JA52
JA52
JA52
JA52
JA52
JA52
JA52
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3
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LE2C
LE3C
LE4C
LE6C
LE2D
LE3D
LE4D
LE5D
LE6D
LEIF
LE3F
LE4F
LE5SF
LE6F
UbF

AH6C

AH6C

ALA4C
BXI1E
LFI1C
ClD
C2D
C3D
C4D
C5D
D1D
D2D

Signal
CA7

CAS8

CA9
CAlO0
CAll
CAl2
CAl3
CAl4
CA(0)AC
CA(0)AM
CA(0O)MA
CDO
CDl
CD2
CD3
CDh4
CD5
CDé6
CD7
CDS8
CD9
CDl10
CDl11
CD12
CDI13
CDl14
CD(0)BA
CDA
CDC
CDD
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Signal
Liocation

JA5B2

JA52
JAB2

JA52
JA5B2
JA52
JAB2
JA52
JA55
JA56
JA54
JA53
JA53
JA53
JA53
JA53
JA53
JA53
JA53
JA53
JA53
JA53
JA53
JA53
JAS53
JA53
JA56
HA52
HA52
HA52

14.0
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D3D

D4D
D5D

E1D
E2D
E3D
E4D
E5D
AG5B
AGIF
AG4B

C2F
C3F
C4F
C5F
DIF
D2F
D3F
D4F
D5F
ElF
E2F
E3F
E4F
E5F
AG5C
BE1D
BEZ2D
BE3D



14.0

Signal Signal
Signal Location Pin Print Signal Location Pin Print
CDE HA52 E BE4D CYE BA54 F BB6B
CDG HA52 F BESE CZ1 KA51 A TID
CDH HA52 H BE5D CZ2 KA51 B TIF
CDK HAS52 K BE3G D-1 AA50 D Z3A
CDL HA52 L. BE4E D-2 AA50 C Z2A
CDN HA52 N BE6D D-3 AA50 B ZI1A
CDR HA52 R BE2G D—4 AA50 A Z1B
CDT HA52 T BE3H DO AA50 E Z4A
CED BA51 E BB4D DI AA50 F Z5A
CKA LA55 P LJIB D2 AA50 H Z6A
CKC * BA52 H BXID D3 AA50 J ADIA
CKC * BA52 J BX2D D4 AA50 K AD2A
Clear 5DO0 JA56 R U5B D5 AA50 L AD3A
Clear 14D0 AA54 B U5B Dé6 AA50 M AD4A
Clear 41Dl15 AA54 C Uu3B D7 AA50 N AD5A
Clear 41N32 AA54 D Y5A D8 AA50 P AD6A
Clear AE KA53 B M4A D9 AA50 R AAlA
Clear B HA51 S AH6E D10 AA50 S AA2A
Clear EA KA53 J M2A Dil AA50 T AA3A
Clear EP KA54 H MIA DI2 CA50 A AA4A
Clear ES KA53 N M3A DIi3 CA50 B AA5A
Clear N CA54 P Y3A Dl4 CA50 C AA6A
Clear S CA54 R R4B DI5 CA50 D ABIA
CP1 LA51 L EC1E Dlé CA50 E AB2A
CP2 LA51 M EC2E D17 CA50 F AB3A
CP3 LA51 N EC2E DI8 CA50 H AB4A
CP(+1)CQ LAS1 E EC1B D19 CA50 J ABS5A
cQl LA51 B ECIC D20 CA50 K AB6A
CcQ2 LA51 C EC1Cc D21 CA50 L WIA
CcQ3 LA51 D Ec2Cc D22 CA50 M W2A
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14.0

Signal Signal
D23 CA50 N W3A DKD BA50 N BC6D
D24 CA50 P W4A DQS KA56 B S6F
D25 ~ CA50 R W5A DQW LA50 A EBA4E
D26 CA50 T W6A DRA LA54 P LJ3C
D27 DA50 A NIA DRL LA54 K LJ4B
D28 DA50 B N2A DW JAS55 L AF5B
D29 DA50 C N3A EA0 KA49 A KIB
D30 DA50 D N4A EAIl KA49 B K3B
D31 DA50 E N5A EA2 KA49 C K4B
D32 DA50 F N6A EA3 KA49 D K5B
D33 DA50 H PlA EA4 KA49 E LIB
D34 DA50 J P2A EA5 KA49 F L3B
D35 DA50 K P3A EA6 KA49 H L4B
D36 DA50 L P4A EA7 KA49 J L5B
D37 DA50 M P5A EA(0)AE KA53 A  M4F
D38 DAS50 N P6A EA(0)ES KA53 K M2D
D39 DA50 P QlA EAZ KA52 A J2D
D40 DA50 R Q2A EE2 KA51 J T4A
D41 DA50 S Q3A ELIL KA52 K T5C
D(0)N CA54 K Y4C EL2 KA52 L T5F
D(0)S DA54 H R3F END(0O)LD MA54 K AKIG
D(L2)S DA54 F R5E EPO KA49 K KID
DAl FA50 N AC3F EPI KA49 L K3D
DA2 FA50 H AC3F EP2 KA49 M K4D
DAR JA55 J AF4D EP3 KA 49 N K5D
DAS JAS55 S AF5D EP4 KA49 P L1D
DATA~PED MA50 D AL4G EP5 KA 49 R L3D
DAX MA50 L MMIE EP6 KA49 S L4D
DAY MA50 M MMIF EP7 KA 49 T L5D
DB2 KAS51 E T6A EP(0)ES KA53 L MIA
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14.0

Signal Signal
Signal Location Pin Print Signal Location Pin Print
EPZ KA52 C JID GKT BA53 J BZ5F
ER MA50 E AL4G GKW LA49 K LD4G
ER * LA51 T EB6B GKX BA53 E BZ4B
ESO KA50 K KIF GOW LA50 B EB5A
ES1 KA50 L K3F GRNAPED MA50 P AL2G
ES2 KA50 M K4F GRS LA52 B LDIG
ES3 KA50 N K5F GXC BA53 C BY4B
ES4 KA50 P LIF GXS BA53 F BZ5B
ES5 KA50 R L3F HO EA52 A LALD
ES6 KA50 S L4F HI1 EA52 B LA2D
ES7 KA50 T L5F H2 EA52 C LA3D
ES(0)EA KA53 D M4D H3 EA52 D LA4D
ES(+1)EA KA53 F M5D H4 EA52 E LA5D
ES(-1)EA KA53 H MID H5 EA52 F LBID
ES(+1)EP KA54 J M5C  Hé6 EA52 H LB2D
ES(-1)EP KA54 K M4C H7 EA52 J LB3D
ES(C)EA KA53 E M3D HS8 EA52 K LB4D
ESZ KA52 B J2C H9 EA52 L LB5D
EXZ HA49 D B5F HI2 EA52 P LC3D
FCl1 FA50 J AC4D HI13 EA52 R LC4D
FC2 FA50 P AC4F HIl4 EA52 S LC5D
FCX MA50 N MM2E HPE EA52 M LCID
FCY MA50 P MM2F HTE EA52 N LC2D
FS KA52 E J3D J5 EA50 F LBIB
GBA JA55 R AG2A Jb EA50 H LB2D
GCA JA55 P AG4A JCA EA50 R LC5B
GKC BA52 C BD4E JCB EA50 S LCA4B
GKC LA54 B BD4D JDA EA50 M LCIB
GKM BA53 A BY3B JDB EA50 L LB5D
GKP BA53 D BY5B JLA EA50 P LC3B
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KCl1
KC2
KC3
KC4
KC5
KC6
KC7
KC8
KDl
KD2
KD3
KD4
KD5
KD6
KD7
KD8

Signal

Location Pin Print

EA50
EA50
EA50
EA50
EA50
EA50
EA50
EA50
LA54
LA55
LA54
LA55
LA54
LA55
BA52
BAS53
BA52
BAS53
BA52
BA53
BA52
BA53
BA49
BA50
BA49
BA50
BA49
BA50
BA49
BA50

N
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LC2B
LB4D
LALlB
LB3B
LA5SB
LLA4B
LA3B
LAZB
LJ2D

LJ2F

LJ3D
LJ3F

1L.J4D
LJ4F

BDI1B
BEIB
BD3B
BE3B
BD4B
BE4B
BD6B
BE5B
BC1D
BCI1F
BCZD
BC2F
BC3D
BC3F
BC3D
BC4F

Signal
KDHADQQ
KJ1

KJ2

KJ3

KJ4

KJ5

KJ6

KL1

KL2

KL3
KL4
KM1
KM2
KM3
KM4
KM5
KM6
KP1
KP2
KP3
KP4
KP5
KP6
KR1
KR2
KT1
KT2
KT3
KT4
Kwl
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Signal

14.

0

Location Pin Print

BA49
EA54
EA53
EA54
EA53
EA54
EA53
LA54
LA55

LAb4
LASB5
LA52
LA53
LA52
LA53
LA5B2
LA53
LA52
LAS53
LA52
LA53
LA52
LA53
BA52
BA52
EA54
EA53
EA54
EA53
LA49

P
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BA2B
EJ1C
EJIF
EJ3C
EJ2F
EJ5C
EJ5F
LFI1C
LFIF

LF2C
LF2F
LD1C
LDIE
LD2C
LD2E
LD3C
LD3E
LHIC
LHIE
LH2C
LH2E
LH4C
LH3E
BD2K
BD3J

ETI1D
ET1F
ET3D
ET3F
EA1B



14.0

Signal Signal

Signal Location Pin Print Signal Location Pin Print
KW2 LA50 L EA1D LP AA54 A AH2E
KW3 LA49 M EA3B LP BA54 E AH2E
KW4 LA50 M EA3D LRO MA52 E ALIA
KW5 LA49 N EA5B LRO MA53 E ALIA
KW6 LA50 N EA5D LRI MA52 F AL2A
KW?7 LA49 P EA6B LRl MA53 F AL2A
KW8 LA50 P EA6D LR2 MA52 H AL3A
KX1 LA49 F [EC3C LR2 MA53 H AL3A
KX2 LA50 F EC3E LR3 MAS52 J  AL4A
KX3 LA49 H EC4C LR3 MA53 J AL4A
KX4 LA50 H EC4E LR4 MA52 K ALS5A
KX5 LA49 J EC5C LR4 MA53 K AL5A
KX6 LA50 J EC5E LR5 MA52 L ALIB
LAP BA51 R BC5D LR5 MA53 L ALI1B
L.DO MA51 E AK2A LR6 MA52 M AL2B
LDl MA51 F AK3A LR6 MA53 M AL2B
LD2 MA51 H AK4A LR7 MA52 N AL3B
LD3 MA51 J AK5A LR7 MA53 N AL3B
LD4 MA51 K AKIB LRS8 MA52 P AL4B
LD5 MA51 L AK2B LR8 MA53 P AL4B
LD6 MA51 M AK3B LR9Y MA52 R ALS5B
LD7 MA51 N AK4B LR9 MA53 R ALS5B
LD8 MA51 P AK5B LRI10 MA53 S

LD9 MA51 R AKID LR(0)S AA53 A RSB
LD10 MA51 S AK2D LR(0)S AA53 B R5B
LDI11 MAS51 T AK3D M-l AA51 B ZIE
LE KA52 H SIA M-2 AA51 C Z2E
LES KA52 F S6A M-3 AA51 D Z3E
LKC BA52 F BXIG MO AA51 E Z4E
LKC LA54 C BXIG Ml AA51 F Z5E
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14.0

Signal Signal

Signal Location Pin Print Signal Location Pin Print
M2 AA51 H Z6E M32 DAS51 F N6E
M3 AA5l J ADIE M33 DA51 H PlE
M4 AA51 K AD2E M34 DA51 J P2E
M5 AA51 L AD3E M35 DA51 K P3E
M6 AA51 M AD4E M36 DA51 L. P4E
M7 AA51 N AD5SE M37 DA51 M P5E
M8 AA51 P AD6E M38 DA51 N P6E
M9 AA51 R AAlE M39 DA51 P QIlE
M10 AA51 S AAZ2E M40 DA51 R QZE
Ml1 AA51 T AA3E M4l DA51 S Q3E
Ml12 CAb5l A AA4E M(0)31B27 HAS5I N F3B
M13 CA5l B AA5BE M(0)A DA54 R X5B
Ml4 CA5l1 C AA6E M(L2)A DA54 P X3F
M15 CA51 D ABIE MAO JA49 A CIlB
M16 CA51 E AB2E MAI JA49 B C2B
M17 CA51 F AB3E MA2 JA49 C C3B
M18 CA5Sl H AB4E MA3 JA49 D C4B
M19 CA51 J AB5SE MA4 JA49 E C5B
M20 CA51 K AB6E MAS5 JA49 F DIB
M21 CA5l L WIE MA®6 JA49 H D2B
M22 CA5bl M W2E MA7 JA49 J D3B
M23 CA5l N W3E MAS JA49 K D4B
M24 CA51 P W4E MA9 JA49 L. D5B
M25 CA51 R W5E MAIO JA49 M EIB
M26 CA51 S W6E MAll JA49 N E2B
M27 DAS51 A N1E MAl2 JA49 P E3B
M28 DA51 B N2E MAI3 JA49 R E4B
M29 DA51 C N3E MAl4 JA49 S E5B
M30 DAS51 D N4E MFI MA50 S MM4F
M31 DA51 E N5SE MFAC2%1 JA54 J AF5B
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14.0

Signal Signal
Signal Location Pin Print Signal Liocation Pin Print
MMO BA51 C BB1D N2l CA52 L WI1B
MMI1 BA51 D BB2D N22 CAb52 M W2ZB
MNA *1 JAbB4 H AFlF N23 CAbB2 N W3B
MS1 MAS50 R MMS3F N24 CA52 P W4B
MSAC2 JA54 K AF5B N25 CA52 R W5B
MTO BA5S1 A BB1B N26 CA52 S WeéB
MT1 BAS51 B BB2B N27 DA52 A NI1B
MY FA50 L AC3B N28 DA52 B N2B
MZ FA50 M AC4B N29 DA5B2 C N3B
NO AA52 E Z4B N30 DA52 D N4B
N1 AAb52 F Z5B N31 DA52 E N5B
N2 AA52 H Z6B N32 DA52 F N6B
N3 AA52 J ADIB N33 DA52 H PIB
N4 AA52 K AD2B N34 DA52 J P2B
N5 AA52 L  AD3B N35 DA52 K P3B
N6 AAB2 M AD4B N36 DA52 L P4B
N7 AA52 N AD5B N37 DA52 M PS5B
N8 AA52 P AD6B N38 DA52 N Pé6B
N9 AA52 R AAl1B N39 DA52 P QIB
N1O0 AA52 S AA2B N40 DA52 R Q2B
N11 AAB2 T AA3B N4l DA52 S Q3B
N12 CA52 A AA4B N(0)BA JA56 D AG2C
N13 CA52 B AA5B N(O0)CA JA56 E AG3D
N14 CA52 C AA6B N(O)PE EA54 J LG5A
N15 CA52 D AB1B N(F)H EA54 P LG2A
N16 CAb2 E AB2B N(F) EA54 M LG3A
N17 CAb52 F AB3B N(F)U EA54 K LG4A
N18 CA52 H AB4B N(L1)S DA 54 E R2B
N19 CA52 J AB5B N(L3)S DA54 D R5F
N20 CAb2 K AB6B N(T)H EA54 R LGIlA
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Signal
N(T)J
N(T)U
PAl6
PAA
PAB
PAC
PAD
PBL
PEO
PEl
PE2
PE3
PE4
PES5
PE6
PE(0O)EP
PE(C)EP
PED
PED
PGA
PGB
PGC
PGD
PS1
PS2
PSC
BW
QA1
QA2
QA3

Signal

Location

EA54
EA54
HAS51
MA54
MA54
MA54
MA54
BA51
EA55
EA55
EA55
EA55
EAbB5
EA5B5
EA55
KA54
KA54
MA50
MA50
MA54
MA54
MA54
MA54
BA51
BA51
HA53
HA51
BA49
BA50
BA49

et
o]
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rin
LG2A
LG4A
HB1E
AL1G
AL2G
AL3G
ALA4G
BCA4F
LAIE
LAZ2E
LA3E
LA4E
LASE
LB1E
LB2E
M5A
Ml1C
ALS5SF
AL5G
AK4F
AK3F
AKIF
AKS5F
AJ4C
AJ4F
XC2B
HB3E
BFI1C
BF1E
BF2C

Signal
QA4
QAEAKDC
QcCl

QC2

QC3

QC4

QCs

QCé

QM1

QM2

QM3

QM4

QM5

QM6

QP1

QP2

QP3

QP4
QP5
QP6
1010}
QQ2
Q3
Q04
QQZ
Qs1
QSs2
QS3
QS4
QS5

14-29

Signal

14.0

Location Pin Print

BA50
BA49
LAbB2
LAS53
LA52

LA53
LA52

LA53
JA54
JA55
JA54
JA55
JA54
JA55
BA49
BA50
BA49

BA50
BA49
BA50
BA49
BA50
BA49
BA50
KA56
KA55
KA56
KA55
KA56
KA55

M
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BF2E
BF2D
LD4C
LD4E
L.D5C

LD5E
LDé6C

LD6E
AF1B
AF1D
AF2B
AF2D
AF3B
AF3D
AJ1C
AJlF
AJ2C
AJ2F
AJ3C
AJ3F
BAI1C
BAIE
BA2C
BAZ2E

S1C
SIF
S2C
S2F
S3G



Signal
Qsé6

Qs8

QW1

Qw2

QW3

Qw4

QW5

QW6

Q71

QZ2

QZ3

Q74

QZ5

QZ6

R(0)S
R(L1)S
RE]

RE3

RE4

RE5

RE7

RES8

RE10
Ready~"PED
REQ
REQ(O0)LD
Reset QS
Reset SMI
Reset WS1
RET

Signal

Location Pin Print
KA56 E S3F
KA56 F SIE
LA49 C EBIB
LA50 C EBID
LA49 D EB2C
LA50 D EB2D
LA49 E EB4C
LA50 E EB4D
KA55 L KAIC
KA56 L KAIF
KA55 M KA3C
KA56 M KA2F
KA55 N KA4C
KA56 N KA4F
DA54 K R2D
DA54 J R2C
BA55 A BX6D
BA55 C BX2G
BA55 D BX2G
BA55 E BX3G
BA55 F BX4G
BA55 H BX5G
BA55 J BX5G
MA50 C

MA50 A AL3E
MA54 M AK2G
KA56 H T6C
KA54 F T4C
KA53 S T2B
LA51 S EC4A

Signal
RKM
RL1
RL2
RLR
RLR *
RM
ROM
RQS
RQW
RS1
RS2
RTA
RTA
RTB
RTB
RTC
RTC
RTR
RU
RU(0)CZ1
RWA
RWB
S—1
S0
S1
S2
S3
S4
S5
Se
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Signal

TL.ocation

LAB2
MA50
MA50
MA49
MA49
FA50
JA55
KA56
LA50
BA5I
BA51
MA49
MA49
MA49
MA49
MA49
MA49
MA49
KAS51
KA51
EA53
EA53
AA53
AAB3
AA53
AA53
AAB3
AA5B3
AA53
AA53

14.
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Print
L.D4E
AL4C

AL4E
AL4D
AL4D
AC1B
AF6D
S5F
EB5A
BA3C
BA3E
AK5A
AK5A
AK5B
AK5B
AK5C
AK5C
AK5A
T1A
T4C
LA5C
LA4C
Z3D
24D
Z5D
Z6D
ADID
AD2D
AD3D
AD4D



Signal
S7
S8
S9
S10
Sl11
S12
S13
S14
S15
Slé6
S17
S18
S19
S20
S21
S22
S23
S24
S25
S26
S27
S28
S29
S30
S31
S32
S33
S34
S35
S36

Signal

Location Pin Print
AA53 N AD5SD
AAB3 P AD6D
AA53 R AAlD
AA53 S AA2D
AAB3 T AA3D
CA53 A AA4D
CA53 B AA5D
CA53 C AA6D
CA53 D ABID
CA5B3 E ABZ2D
CA53 F AB3D
CA53 H AB4D
CA53 J AB5D
CA53 K AB6D
CA53 L WID
CA53 M W2D
CAS53 N W3D
CA53 P W4D
CA53 R W5D
CA53 S W6D
DA53 A NIE
DA5S3 B N2E
DAS53 C N3E
DA53 D N4D
DA53 E N5D
DAS53 F Né6D
DAB3 H PID
DA53 J P2D
DA53 K P3D
DA53 L. P4D

Signal
S37

S38

S39

S40

S41

S42

543

S44
S(0)N
S(C)N
S(R3)D
S(R3C)D
S(R3)M
SC(0)ES
SCA
SEl

Set SM1
SHR
SHS
SHW
SJR
SKC
SKJ
SKM
SKP
SM1
SM2
SM2(C)SM1
SMA
SUR
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Signal

14.

0

Location Pin Print

DA53
DA53
DA53
DA53
DA5B3
DA54
DA54
DA54
CA54
CAb4
CA54
CA54
DA54
KA53
EA55
BA5S5
KA54
EA55
LA51

BA51

EA55
HA49
BA53
BA53
BAS53
KA51
KA51
KA54
JA54
EA55

M
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P5D
P6D
Q1D
Q2D
Q3D
Q4D
Q5D
Q6D
Y2E
Y2C
uz2p
U2F
X2B
M2F
LE1A
BX2G
T3C
LE4A
EC2A
AJ6F
LE3A
BS3C
BZ5F
BY4B
BZ4F
Sé6D
S5D
T5B
AF3E
LEZA



Signal
SWA
SWB
swcC
SWD
SY1

SY1

SY2
SyY2
SYA
SYA
SYB
SYB

Sz

SZ1

sz2
TCA
TCW #2
TCWAS(R26)LD.
TCWAS(R26)L.D
TDA

TDA

TE]
TE2
TED
TKC
TL1
TL2
TR
TRF
TSB

Signal

Location Pin Print

EA55
EA55
EA55
EA55
MA52
MAS53
MAS52
MA53
MA52
MA53
MAS52
MA53
BA54
BA54
BA54
MA49
MA54
MA54
MA53
LA49
MAS54
MA49
MA49
MA49
BA52
LA54
LA55
FAS50
MA54
MA54

H

S
R
P
D
D
C
C
B
B
A
A
J
C
D
N
N
R
T
B
L
L
P
M
D
A
A
D
S
P

LABA
LA4A
LA3A
LAZA
AL3D
AL3D
AL3E
AL3E
AL1ID
ALID
AL1E
ALIE
AH3B
AH3E
AH4F
AK5D

AK5G
AKA4G
EB5SE
AK3G
AK5D
AKSE
AKS5E
BX4D
LH5C
LH4E
ACID
AK2G
AK2G

Signal

TW

U6

UCA

UCB

UDA

UDB

UJE

ULA

ULB

UPE

URB

URT

UWA

UWB

UWC

UWD

WCA

WG2

WM

WRI

ws1
WS1(0)AS2
WS1(C)WS2
wS2
WS2(C)SM1
WS2(C)WS1
ZB

ZE2
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Signal

Location

FA50
EA49
EA49
EA49
EA49
EA49
EA49
EA49
EA49
EA49
EA49

" EA49

EA49
EA49
EA49
EA49
LA50
KA51
FA50
JAbG4
KA51
KA54
KA54
KA51
KA54
KA53
KA52
KAb51
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Print

AC2D
LB2C
LC5C
LC4C
LCI1C
LB5C
LAIC
LC3C
LC2C
LB4C
LBI1C
LB3C
LA52
LA4C
LA3C
LA2Z2C
EA3F
S1A
ACZB
AF4B
TZ2D
T3E
T1E
T2F
T3B
T2B
J3F
S4F
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