RN PPLL A

compﬂer
llbrarﬁ‘
aGbUggep

PDP 11 CYoss- compﬂer'

—_—

Selatembek, . 1974

N

L&l‘t Beranek and Newman Inc.

The BCPL Reference Manual

This manual was originally written by Martin
Richards at MIT Project MAC in 1964. It was
revised by Henry Ancona at MIT Lincoln Laboratory
in 1967, and by Paul Rovner, Jerry Burchfiel, and
Jerry Wolf at BBN in 1973. The section on

structures was originally written by Art Evans at
MIT Lincoln Laboratory.

BCPL Reference Manual Page 2
2. Introduction

ABSTRACT

BCPL is a simple recursive programming language designed for
compiler writing and system programming; it was derived from CPL
(Combined Programming Language [1]) by removing those features of the
language which make compilation difficult, namely, the type and mode
matching rules and the variety of definition structures with their
associated scope rules.

BCPL is a language which 1is readable, easy to learn and
efficient. It 1is made self-consistent and easy to define accurately
by an underlying structure based on a simple idealized object machine.
The treatment of data types is unusual and it allows the power and
convenience of a language with dynamically varying types and yet the
efficiency of FORTRAN. BCPL has been used successfully to implement a
number of languages and has proved to be a very useful tool for system
programming. The BCPL compiler itself is written in BCPL and has been
designed to be easy to transfer to other machines.

BCPL Reference Manual Page
2. Introduction

Page

Table gg Contents

Acknowledgements

Introduction

n
1
2
3
4
5
6
7
8

undamental Concepts of BCPL

The Object Machine ,
Names, Variables, and Manifest Constants
Addresses

Simple Assignment

The lv Operator

The rv Operator

Data Structures

Data Types

Expressions

4.1

U g N - L S

4
4

Primary Expressions
Numerical Constants
Character Constants
String Constants
Names
Boolean Constants
Unspecified Initial Value
Parenthesized Expressions
valof Expressions
Function Applications
Vector Applications
lv Expressions
rv Expressions
Half-word Extraction Expressions
. Quarter-word Extraction Expressions
.1.15 Structure References
Arithmetic Expressions
Relational Expressions
Shift Expressions
Logical Expressions
Half-word Combination Expressions
Conditional Expressions
table and list Expressions
.8.1 Tables
.8.2 Lists
selecton Expressions
repnane

. » . . . [] . L]
T Y e el
. L] * L] [] . L] .

= = O 00~ O U1 s W R

B> W NS

BCPL Reference Manual Page
2. Introduction

5. Com
5.
5
5
5

)
1
5.12
5.13
5.14
5.15
5.16
5.17
5.18

m
1
2
3
4
5.5
5.6
5.7
5.8
5.9
5.1
5.1

ands

Simple Assignment Commands
Assignment Commands
Routine Calls
Labelled Commands
oto Commands
1f Commands
unless Commands
while Commands
until Commands
test Commands
Repeated Commands
for Commands
switchon Commands
loop, break, and endcase Commands
finish Commands -
return Commands
resultis Commands
Sections and Blocks

6. Definitions

6.1

= O 00U WN

SN0 OO
=S

Scope Rules

Space Allocation and Extent of Variables
Externals

Globals

Statics

Manifests

Simple Variables

Vectors

Functions

Routines ,
Simultaneous Definitions

7. Structures

7.1
7.2
7.3
7.4

Introduction
Syntax
Semantics
Examples

REFERENCES

BCPL Reference Manual | Pégé' 5
2. Introduction '

APPENDICES
A. BCPL Characteristics _ ,
A.l1 Reserved Words and Symbols
A.2 The TENEX BCPL Character Set
A.3 The BCPL Pre-processor:
Comments y
Semi-colon and DO Insertion
PSEUDO Commands (e.g. GET)
" A.4 Subtle Features (for new users to watch out for)
A.5 Operator Precedence)

B. Usage of TENEX BCPL
B.l Typical source file organization
Using the compiler ;
Constructing a BCPL main program
Routine and Function linkage conventions
Utility programs
B.5.1 FMT.SAV
.2 OCODE.SAV
.3 PSYMB.SAV
.4 PSAVE.SAV
.5 CONC.SAV ‘
mplete, Realistic, Working Example Program

owwmw
Ut W N

wmww
U'l‘bwl\)

.5
.5
)
)
B.6 A Co

C. Functions, Routines, and Special Static Variables in the TENEX BCPL

- Library
c.11/0
C.1.1 I/0 Streams
C.1.2 Character, Word, and String I/O
C.1.3 Integer and Floating Point I/0
C.1.4 ARPANET Interface

C.1l.5 Formatted Output
2 JSYS Interface

3 Byte Manipulation

4 String Manipulation and Number Conversion
5 Error Handling

6 Arrays
7
8
9
.1

Hash-coded Dictionary
"Heap" Free Storage
PSI Handling
@ Miscellany

OOOO()OOOO

D. TENEX BCPL Maker ‘s Guide
E. Debugging

F. PDP-11 BCPL

F.1l Introduction
PDP-11 Objects
PDP-11 Operations
PDP-11 Addressing
The Stack Discipline

s e B s |
| W

BCPL Reference Manual Page 6
2. Introduction

1. Acknowledgements

BCPL was originally designed and implemented by Martin Richards
at MIT Project MAC. Many people have since contributed to the
development of the language, compiler, wutilities, and debugging
system, as represented in the TENEX BCPL system. The language and
compiler were extended to include structures, symbol tables, and
various new language constructs by the group at MIT Lincoln Laboratory
on the TX-2 computer, led by Art Evans. Carl Ellison (University of
Utah Computer Science Department) built a TENEX BCPL bootstrap and
brought an early version of the Lincoln compiler to Utah-TENEX through
the ARPANET. He also built the first TENEX BCPL I/0 library. Paul
Rovner brought the Utah system to BBN-TENEX through the ARPANET, then
used it to bootstrap an improved version of Lincoln’s compiler.
Victor Miller (BBN) helped to upgrade Ellison’s code generators. The
present TENEX BCPL system includes several packages of routines and
functions, and several utility programs that were brought from Lincoln
and modified for wuse on TENEX by Paul Rovner. Other utilities were
contributed by Jerry Wolf, Ray Tomlinson, and Richard Schwartz at BBN.
The TENEX BCPL debugger was designed and implemented by Jim Miller and
Paul Rovner, with help by John Sybalsky. And Gail Hedtler of the
TENEX group at BBN spent many hours puzzling through pencil scratched
versions of this manual as she converted it to RUNOFF format and keyed
it in.

BCPL Reference Manual Page 7
2. Introduction

2. Introduction

This document is designed to be an introduction to the BCPL
programming language, a reference manual for it, and a user s manual
for the BCPL programming system on TENEX. The description here of the
BCPL programming language is independent of any particular
implementation; features of the 1language which depend on the
implementation (like the number of bits in a word) are pointed out
(where appropriate) in the text.

The reserved words and symbols used in the language descriptions
(and in the examples) are taken from the reserved words and symbols
for TENEX BCPL. By convention, reserved words are composed of lower
case characters only. Reserved words are underlined in this manual.

Section 3 (below) is an introduction to the philosophy of BCPL
and to the key elements of the language. The next four sections
describe in detail the form and meaning of the language constructs for
expressions, commands, definitions, and structures, respectively. The
appendices describe the TENEX BCPL programming system and how to use
it. Also 1in the appendices are the 1list of reserved words and
symbols, a description of the features of the pre-processor, and a
description of the inevitable (but very few!) glitches out for which
the new user should look. Attached as addenda to this document are
the figures referred to in the text, and a chart of BCPL operator
precedence relations.

The BCPL convention for prdgrém comments is that two adjacent "/"
characters anywhere in the program identify the remainder of the line
as arbitrary text, to be skipped over and ignored by the compiler.

The syntactic notation used is basically BNF with the following
extensions:

(1) The symbolé N, E, D, and C are used as shorthand for
<name>, <expression>, <definition>, and <command>.

(2) The metalinguistic brackets <" and “>° may be nested
and thus wused to group together more than one constituent
sequence (which may contain alternatives). An integer
subscript may be attached to the metalinguistic bracket >~
and used to specify repetition. 1If it is the integer n,
then the sequence within the brackets must be repeated at
least n times; if the integer is followed by a minus sign,
then the sequence may be repeated at most n times or it may
be absent,

BCPL Reference Manual Page 8
3. Concepts .

3. Fundamental Concepts of BCPL

3.1 The Object Machine

BCPL has a simple underlying semantic structure which 1is built
around an idealized object machine. This method of design was chosen
in order to make BCPL easy to define accurately and to facilitate
machine independence, which 1is one of the fundamental aims of the
language.

The most important feature of the object machine is its memory
store. This is represented diagrammatically in Figure 1. It consists
of a set of numbered boxes (called "storage cells") arranged so that
the numbers 1labelling adjacent cells differ by one. As will be seen
later, this property is important.

Each storage cell holds a binary pattern called a "value". All
storage cells are of the same size and the length of Values is a
constant of the implementation which is wusually between 16 and 36
bits. A Value 1is the only kind of object which can be manipulated
directly in BCPL. Every variable and expression in the language will
always have a Value.

Values are used by the programmer to model abstract objects of
many different kinds such as truth values, strings, arrays, and
functions. There are a large number of basic operations on Values
which have been provided 1in order to help the programmer model the
transformation of his abstract objects. 1In particular, there are the
usual arithmetic operations. These may be understood as operations
which interpret their operands as integers, perform the integer
arithmetic and convert the result back into the Value form;
alternatively, one may think of them as operations which work directly
on bit patterns and just happen to be useful for representing
integers. This latter approach is closer to the BCPL philosophy.
Although the BCPL programmer has direct access to the bits of a Value,
the details of the binary representation used to represent integers
are not defined and he would be losing machine independence if he
performed non-numerical operations on Values he knows to represent
integers. - '

An operation of fundamental importance in the object machine is
that of indirection. This operation has one operand which 1is
interpreted as an integer and it locates the storage cell which is
labelled by this integer. This operation is assumed to be efficient
and, as will be seen later, the programmer may invoke it from within
BCPL using the rv operator.

BCPL Reference Manual Page 9
3. Concepts

3.2 Names, Variables, and Manifest Constants

A BCPL name (see 4.1.4) is associated either with .a storage cell,
in which case the name represents a "variable", or with a constant
Value, in which case the name represents a "manifest constant". The
Value of a BCPL variable is the Value contained in the cell; the term
"variable" is used since this Value may be changed by an assignment
command during execution, Variables are introduced by let and and
declarations, the for command, formal parameter lists, and the static
declaration. From the point of view of how storage cells are assigned
to variables, there are two kinds of variables: "dynamic" and
"static". A Dynamic variable is assigned a storage cell each time the
program in which it 1is defined 1is executed. When this program
finishes, the storage cell is reclaimed for use by other programs. A
static variable is assigned its storage cell by the compiler, before
program execution. This storage cell is uniquely associated with the
static variable, and this association does not change during program
execution,

A "manifest constant"” is a name which 1is associated with a
constant Value; this association takes place at compile time and
remains the same throughout execution. Manifest constants are
introduced by the manifest declaration and by the label declaration
(see 5.4). There are many situations where manifest constants can be
used to improve readability at no cost in run time efficiency, for
example:

manifest { PI : 3.1415926}

3.3 Addresses

As previously stated, each storage «cell 1is 1labelled by an
integer; this integer 1is called the Address of the cell. Since a
variable is associated with a storage cell, it must also be associated
with an Address and one can usefully represent a variable
diagrammatically as in Figure 2.

Within the machine an Address is represented by a binary bit
pattern of the same size as a Value, and so a Value can represent an
Address directly. Thus, a variable may have the Address of some
storage cell as its Value. The programmer might think of this Value
as a "pointer" to the storage cell.

BCPL Reference Manual Page 140
3. Concepts

3.4 Simple Assignment

The syntactic form of a simple assignment command is:

where El1 1is either a wvariable or some other expression which
represents a storage cell (for example, see 4.1.18), and E2 is an
arbitrary expression. Loosely, the meaning of the assignment 1is to
evaluate E2 and store its Value in the storage cell referred to by El.
This process is shown diagrammatically in Figure 3.

Example:

3.5 The lv Operator

As previously stated, an Address is represented by a binary bit
pattern which is the same size as a Value. The lv operator provides
the facility of accessing the Address of a storage cell.

The syntactic form of an lv expression is:
iv E
where E is an expression which represents a storage cell. The process
of evaluation for the 1lv expression is shown diagrammatically in

Figure 4. The Value of thE.lz Expression is the Address of the given
storage cell.

3.6 The rv Operator

The rv operator is important in BCPL since it provides the
underlying mechanism for manipulating data structures; it operates to
yield the storage cell whose address is the Value of the operand.

The syntactic form of an rv expressions is as follows:

rv E

and its process of evaluation is shown diagrammatically in Figure 5.
Note that rv (lv E) is identical to E (but only if E has an Address).

BCPL Reference Manual ’ Page 11
3. Concepts

3.7 Data Structures

The considerable power and usefulness of the rv operator can be
seen by considering Figure 6.

The diagram shows a possible interpretation of the Value of the
expression

V + 3.

Some adjacent storage cells are shown; the top one has an Address
which is the same bit pattern as the value of V. One will recall that
an Address is really an integer and that Addresses of adjacent cells
differ by one, and thus the value of (V + 3) is the same bit pattern
as the Address of the bottom box shown in the diagram. If the
operator rv is applied to (V + 3), then the contents of that cell will
be accessed. Thus the expression:

rv (V + i)

acts very like a vector subscripting operation, since, as 1 varies
from zero to three, the expression refers to the different elements of
the set of four cells pointed to by V. V can be thought of as the
vector and i as the integer subscript. The notion of a "vector" is a
central one in BCPL. A Value which 1is wused to address the first
storage cell in a block of adjacent storage cells is said to define a
"vector" of storage cells.

Since this facility 1is so useful, the following syntactic
sugaring is provided:

E1!E2 or E1|E2 is equivalent to rv (El + E2)
A simple example of its use is the following command:
VI(i + 1) :=v|i + Uli

One can see how the rv operation can be used in data structures
by considering the following:

VI3 = v (V + 3) by definition
=rv (3 + V) since + is commutative
=3_.|—V

Thus V|3 and 3|V are semantically equivalent; however, it is useful to
attach different interpretations to them. We have already seen an
interpretation of V|3 so let us consider the other expression. If we
rewrite 3|v as Xpart|v where Xpart has value 3, we can now
conveniently think of this expression as a selector (Xpart) applied to
a structure (V).

By letting the elements of structures themselves be structures it
is possible to construct compound data structures of arbitrary

BCPL Reference Manual Page 12
3. Concepts

complexity. Figure 7 shows a structure composed of integers and
pointers.

3.8 Data Types

The unusual way in which BCPL treats data types is fundamental to
its design, and thus some discussion of types is in order here. It is
useful to introduce two classes:

(a) conceptual types
(b) 1internal types

The conceptual type of an expression 1is the kind of abstract
object the programmer had in mind when he wrote the expre531on. It
might be, for instance, a time in milliseconds, a weight in grams, a
function to transform feet per second to miles per hour, or it might
be a data structure representing a parse tree. It 1is, of course,
impossible to enumerate all the possible conceptual types, and it is
equally 1mpos51ble to provide for all of them individually within a
programmlng language. One standard practice when designing a language
is to select from the conceptual types some basic ones and provide a
suitable internal representation together with an adequate set of
basic operations. The term "internal type" refers to any one of these
basic types; the intent 1is that all the conceptual types can be
modelled effectively using the internal types. A few of the internal
types provided in a typical language, such as CPL, are listed below:

real

integer

Tabel —

integer function
(real, boolean) vector

Much of the flavor of BCPL is the result of the conscious design
decision to provide only one internal type, namely, the binary bit
pattern (or Value). 1In order to allow the programmer to model any
conceptual type, a large set of useful primitive operations has been
provided. For instance, the ordinary arithmetic operators + - * and /
have been defined for Values in such a way as to model the integer
operations directly. The six standard relational operators have been
defined and a complete set of bit manipulating operations provided.
All the operations provided are uniformly efficient and they have not
been "over-defined". For instance, the effect of adding a number to a
label, or a vector to a function is not defined even though it is
possible for a programmer to cause it to take place.

BCPL Reference Manual Page 13
3. Concepts

The most important effects of designing BCPL in this way can be
summarized as follows:

]-'

There is no need for type declarations in the 1language,
since there 1is only one type of variable. This helps to
make programs concise and also simplifies such 1linguistic
problems as the handling of actual parameters and separate
compilation.

BCPL has much of the power of a language with dynamically
varying types and yet it retains the efficiency of a
language (like FORTRAN) with manifest types; although the
internal type of an expression 1is always known by the
compiler, its conceptual type can never be, and, indeed, it
may depend on the values of variables within the expression.
For instance, the conceptual type of V|i may depend on the
value of 1. One should note that, in languages (such as
ALGOL and CPL) where the elements of vectors must all have
the same type, one needs some other linguistic device in
order to handle more general data structures.

Since there is only one internal type, there can be no
automatic type <checking and it 1is possible to write
nonsensical programs which the compiler will translate
without complaint. This slight disadvantage 1is easily
outweighed by the simplicity, power and efficiency that this
treatment of types makes possible. Interpretations:

(a) The Value of a variable of conceptual type vector
is a storage cell-sized bit pattern (36 bits for TENEX BCPL)
which is interpreted as the Address of the zeroth element of
the vector. I.e., rv v and v|@ represent the same storage
cell.

(b) The Address of the nth element of a vector v may
be obtained by adding the integer n to v; thus lv vin is
equal to v + n.

(c) The vValue of a label is a bit pattern representing
the program position of the labelled command.

(d) The value of a function or routine is a bit pattern
representing the program position of the entry point of the
function or routine (see 6.9 and 6.19).

BCPL Reference Manual
3. Concepts

/

®

[]

[)
n.
n+l.
n+2:

L]

[]

[]

Figure 1:

The Memory Store

Page

CELLS

14

BCPL Reference Manual Page 15
3. Concepts

**%Fig. 2

THE MEMORY STORE

[]
[)
®
10032 : 3 |«— THE STORAGE CELL
WHICH 1S ASSOCIATED
WITH THE VARIABLE
[]
[]
®
“ADDRESS" OF THE "VALUE" OF THE
VARIABLE VARIABLE

Figure 2: A Variable

BCPL Reference Manual
3. Concepts

**k*FPig 3

BEFORE:

ADDRESS OF X:

AFTER:

ADDRESS OF X:

Page 16

THE MEMORY STORE

OLD VALUE OF X

THE MEMORY STORE

THE VALUE (3) 1S PLACED IN THE STORAGE
CELL WHICH IS ASSOCIATED WITH X

Figure 3: The Assignment Statement

(e.g. x:=3)

BCPL Reference Manual Page 17
3. Concepts

***Fig. 4

THE MEMORY STORE

ADDRESS OF E: VALUE OF E

IF E REPRESENTS A STORAGE CELL, (£vE)
IS AN EXPRESSION WHERE VALUE IS THE
ADDRESS OF E. (£v E) IS AN EXPRESSION
LIKE (X + 3): IT DOES NOT ITSELF HAVE
AN ADDRESS. |

Figure 4: The lv Operator

BCPL Reference Manual Page 18
3. Concepts

***Fig. 5

" THE MEMORY STORE

VALUE OF E:

FOR THE EXPRESSION (rv E), THE VALUE
OF E IS INTERPRETED AS THE ADDRESS

OF (OR "POINTER TO") A STORAGE CELL.
THE EXPRESSION (rv E) REPRESENTS THIS
STORAGE CELL.

Figure 5: The rv Opérator

BCPL Reference Manual Page 19
3. Concepts

***Fig. 6

THE MEMORY STORE

VALUE OF V:
VALUE OF THE «—(rv (V +3)) REPRESENTS
EXPRESSION (V + 3): THIS STORAGE CELL

Figure 6: rv (V+3)

BCPL Reference Manual Page 20
3. Concepts

I3
52

\
RO\

Figure 7: A Structure Composed of
Integers and Pointers

BCPL Reference Manual Page 21
4. Expressions -

4. Expressions

All BCPL expressions are described in this section. They are
presented in syntactic classes in the order of decreasing binding
power. The term "binding power" refers to the strength with which an
operator binds 1its arguments. For example, the multiplication
operator "binds more strongly" than the addition operator. The

expression

E1*E2+E3
means

(EL*E2)+E3
not

El1* (E2+E3)

A concise presentation of the relative binding power of the BCPL
operators is given in Appendix A.5.

4.1 Primary expressions

These are the most binding and most primitive expressions. They
are: :
numeric constants, character constants, string constants,
names, Boolean constants, nil, bracketted expressions, valof
expressions, function applications, vector applications, —1v
expressions, rv expressions, half and quarter word
extraction exprEEsions, and structure references.

4.1.1 Numerical Constants

Syntactic form: A
<decimal digit>1
or #<octal digit>1
or <decimal digit>l.<decimal digit>1

Semantics: ,
The sequence of digits is interpreted as a decimal
integer in the first case, as a right justified
octal number in the second, and as a floating
point number in the third. In TENEX BCPL, other
formats for floating point constants are allowed,
per the FLIN JSYS [4].

BCPL Reference Manual Page 22
4. Expressions

4.1.2 Character Constants

Syntactic form:
S$<character>

Semantics:

A character constant has an implementation
dependent Value which is the bit pattern
representation of the character; this 1is right
justified and the remainder of the bits in the
Value are zeros. See appendix A.2 for the list of
TENEX characters and a description of the escape
conventions for special characters.

TENEX example:

$a = #141 (ASCII value)

4.1.3 String Constants

Syntactic form:
"<character>1"
or “<character>1”

Example:
"Abc*n"

Semantics:
A string of characters delimited by " represents a
BCPL string constant. On TENEX, this 1is
represented as a vector, with the characters in
successive words, packed four to a word, from left
to right. The leftmost quarter of the zeroth word
contains the number of characters in the string.
This is limited to 511 (9 bits!). The first
character is stored in the quarter which is second
from the left in the zeroth word. Extra dgquarters
in the last word of a string will be padded with
zZeros.,
A string of characters delimited by ~ 1is also
represented as a BCPL vector: the string
characters are packed in successive words of the
vector, in ASCIZ string format.
Note that the escape conventions for special
characters also hold in string constants.

BCPL Reference Manual Page 23
4. Expressions :

4.1.4 Names

Syntactic form:
A name is a sequence of one or more (less than 24)
characters from a restricted alphabet called the
name character alphabet. The particular
characters in this alphabet and the rules for
recognizing the starts and ends of names are
implementation dependent.

The TENEX name character alphabet contains the
letters A....Z and a....z and the digits 4....9.
A name must start with a letter.

Semantics:

Two names are equal if they have the same sequence
of name alphabet characters. A name may always be
evaluated to yield a Vvalue. If the name was
declared to be a label or a manifest constant (see
section 6.6) then the Value will be the same on
every evaluation, If the name was declared in any
other way then it is a variable and its Value may
be changed dynamically by an assignment command.

4.1.5 Boolean Constants

Syntactic form:

true or false
Semantics: - :
The actual bit patterns which are the Values of
true and false are implementation dependent. On
TENEX, the Value of true is a bit pattern entirely
composed of ones. The Value of false is zero.
Note that true = not false

BCPL Reference Manual Page 24
4. Expressions

4.1.6 Unspecified Initial Value

Syntactic form:
nil

Example:

Semantics:
The Value of nil is undefined. Its purpose is to
allow the user to not specify an initial value for
a newly defined cell. 1In the example, the dynamic
variable x 1is defined without an initial Vvalue.
nil may also be used in formal parameter lists,
actual parameter lists, subword expressions,
tables, lists and static declarations.

4.1.7 Parenthesized Expressions

Syntactic form:
(E)

Semantics:
Any expression may be enclosed in parentheses;
this is used to specify grouping.

4.1.8 valof Expressions

Syntactic form:
valof <section or block>

Semantics:
A valof expression is evaluated by executing the
section or block (see 5.18) until a resultis
statement is encountered (see 5.17), which causes
execution of the section or block to cease. The
Value of the valof expression is the vValue of the
expression in the resultis command.

Example:
char:=valof
[WriteS("Character:") //Ask for a character
resultis Readch () //read and return it
}

BCPL Reference Manual . Page 25

4. Expressions

4.1.9 Function Applications

Syntactic form:

Semantics:

4.1.1G Vector

El (E2, E2, ... En)
where El1 1is one of the primary expressions
introduced above.

The function application is evaluated by
evaluating the expressions El, E2, ... En and
assigning the vValues of E2 ... En to the first
n-1 formal parameters of the function whose Value
is the Vvalue of El. This function 1is then
entered. The result of the application is the
Value of the expression in the function definition
(see section 6.9).

Applications (i;e. vector subscripting)

Syntactic form:

Semantics:

or

E1|E2
E1!E2
where both El and E2 are primary expressions.

A vValue of conceptual type "vector" is the Address
of the zeroth storage cell in a block of adjacent
storage cells. A vector application represents a
storage cell. To obtain the Address of this cell,
El and E2 are evaluated and summed. The Value of
the vector application expression is the Value in
this cell. El is often interpreted as the Value

of a vector and E2 as the subscript. From the

definition of lv expressions (section 4.1.11), the
Address of an element of a vector may be obtained
by evaluating the expression

1lv E1|E2

The representations of Vectors, Addresses and
integers 1is such that the following relations are
true:

E1|E2 = rv (El + E2)
lv E1|E2 = El + E2

Note that
E1|E2|E3|E4
is calculated as
(((EX|E2) |E3) |E4)
also,
E1]JE2 = E2|E1l

BCPL Reference Manual Page 26

4. Expressions

Function applications are more binding than vector
applications, i.e.,

yl£(x) means y| (f(x)).

4.1.11 1lv Expressions

Syntactic form:

Semantics:

lv E
where E is a primary expression

The Address of an expression which represents a
storage cell may be obtained by applying the
operator lv; it is only meaningful to apply lv to
a vector application, an rv expression, or an
identifier which is not a manifest constant. 1lv
expressions are less binding than vector
applications, e.g.,

(lv VIX) is (1v (VIX))

The Value of an lv expression is the Address of
the specified storage cell. Examples of operands
to the lv operator:

(a) A vector application.
The result is the Address of the -element
referenced (see section 4.1.10).

(b) An rv expression.
The result is the Value of the operand of rv.

(c) A name. ,

The result is the Address of the storage cell
which is associated with the given name (this
name must not represent a manifest constant).

BCPL Reference Manual ‘Page 27

4., Expressions

4.1.12 rv Expr

essions

Syntactic form:

Semantics:

Examples:

rv E
where E is a primary expression.

An rv expression represents a storage cell whose
Address is the Value of the operand (TENEX
implementation: The full width of E 1is wused to
compute the Address of the storage cell,
particularly the indirect and index register
fields[CAVEAT!!]). rv expressions are less
binding than vector applications.

v #100000 :=
stores the Value 7 into the storage cell whose
Address is 1900000 (octal).
IV v 3= lA+»£X v

increments the Value of the storage cell whose
address is the value of v,

vig =1+ v|0

same as previous example.

4.1.13 Half-word Extraction Expressions

Syntactic form:
or

or
or

Semantics:

lh E
Th E
Thz E
Thz E

where E is a primary expression.

The Value of a half-word extraction expression 1is
the storage cell-sized bit pattern whose right
half is the right half (for rh and rhz) or left
half (for lh and 1lhz) of E, and whose left half is
all zeros (if lhz or rhz) or sign extended (if 1lh
or rh). The™ 1h and rh half-word extraction
expressons may appear on the 1left side of an
assignment statement (see section 5.1). Half word
extraction expressions are less binding than
vector applications.

4.

Expressions

BCPL Reference Manual Page 28

4.1.14 Quarter-word Extraction Expressions

Syntactic form:

or
or
or
or
or
or
or

Semantics:

4.1.15 Structu

E is a primary expression.

The Value of a guarter-word extraction expression
is the storage cell-sized bit pattern whose
rightmost quarter is the indicated quarter of E
(g1 indicates the rightmost quarter, g4 the
leftmost), and whose remainder is zero (if qlz,
92z, g3z, or g4z), or sign-extended (if ql, q2,
a3, or‘ﬁ?) The ql, 92, g3, and g4 quarter word
extraction expressions may appear on the left side
of an assignment statement (see section 5.1). The
binding power of quarter word extraction
expressions is the same as that of half word
extraction expressions.

re References

Structure refe

rences are primary expressions. See section 7.

BCPL Reference Manual Page 29
4., Expressions

4.2 Arithmetic Expressions

These expressions provide the standard integer and floating point
operations of multiplication, division, remainder, addition and
subtraction. They are less binding than the primary expressions.

Syntactic form:

El * E2
or E1 / E2
or El rem E2
or E1 ¥ E2
or El - E2
or El1 %* E2
or E1 %/ E2
or El1 %+ E2
or El1 %- E2
or -El1
or +E1

The operators %* %/ * / and rem are more binding
than %+ %- + and - and associate to the right
[i.e. El1/E2/E3=El1/(E2/E3)]). The operators %+ %-
+ and - associate to the left

[i.e. El1-E2-E3=(E1-E2)-E3].

Semantics:
The integer operators interpret the Values of
their operands as signed 1integers and yield
integer results. The operator * denotes integer
multiplication. The division operator / yields
the correct result if E1 is divisible by E2; it is
otherwise implementation dependent but the
rounding error is never greater than 1. On TENEX,
the result 1is obtained by an IDIV instruction,
which truncates. The operator rem yields the
remainder of T
(E1 divided by E2)
its exact specification is implementation
dependent. On TENEX, the result is obtained by
the IDIV instruction. The operators + and -
denote integer addition and subtraction. The four
floating point operators interpret the Values of
. their operands as floating point numbers and
perform the indicated operations. (Note:
Automatic conversion between integer and floating
point numbers does NOT occur in BCPL. It 1is the
user ‘s responsibility to use the correct
operators).

BCPL Reference Manual Page 30

4. Expressions

4.3 Relational Expressions

A relational expression takes integer or floating point arguments
and yields a Boolean Value to represent the truth of the relation.

Syntactic Form:

Semantics:

El <relop> E2 ..
where <relop> ::
and n > 1

The relational operators are less binding than the
arithmetic operators.

(NOTE: 1lt and < are synonyms for ls ; gr
synonyms for gt ; = is a synonym for eq).

<relop> En
€9 | ne | 1s | gt | ge [le

and > are

The Value of a relational expression is true 1if
and only if all the individual relations are true.
The Values of the expressions El1 ... En are
interpreted as signed integers and the relational
operators have their usual mathematical meanings.
On TENEX, the floating point number representation
is such that this interpretation is also correct
for floating point relational expressions. Note
that the vValue of an expression such as x=true is
implementation dependent.

4.4 Shift Expressions

The shift operations allow one to shift a binary bit pattern to
the left or right by a specified number of bit positions.

~Syntactic form:

or
or
or

El 1lshift E2

El rshift E2 s2

El Iscale E2

El rscale E2

E2 is any primary or arithmetic expression and E1
is any shift, relational, arithmetic or primary
expression. Thus the shift operators are less
binding than the relations on the left and more
binding than those on the right.

BCPL Reference Manual " Page 31
4. Expressions '

Semantics: »

The shift operations are logical operations; the
scale operations are arithmetic operations. The
Value of El1 1is interpreted as a logical bit
‘pattern and that of E2 as an integer. The result
of E1 1lshift E2 is the bit pattern El 1logically
shifted to the left by E2 bit positions. 1If E2 is
negative, shifting occurs to the right. El rshift
E2 is as for 1shift but shifts in the opposite
direction. For the shift operators, vacated bit
positions are filled with zeros and the result is
zero if E2 is greater than the number of bits in a
machine word. For the scale operators, the result
is:

El times (2 to the power E2).

4.5 Logical Expressions

These expressions allow one to manipulate bits of a Value
directly. They can be used in conjunction with .he shift operators to
pack and unpack data. The standard BCPL representations of true and
false are chosen so that the logical operators may also be used on
Boolean data.

Syntactic form:

~ E1 (also not El)
or El & E2 -
or E1 \ E2
or El eqv E2
or El negv E2

The not operator is most binding; then, in
decreasing order of binding power are:

&, \, egqv, neqv

All the logical operators are less binding than
the shift operators.

Semantics:

The operands of all the 1logical operators are
interpreted as binary bit patterns of ones and
zeros. The application of the not operator yields
the 1logical negation of its operand (bit-by-bit
complement). The Value of the application of any
other 1logical operator is a bit pattern whose nth
bit depends only on the nth bits of the operands
and can be determined by the following table:

BCPL Reference Manual
4. Expressions

The Values of
the nth bits &

both onesvv
both zeros
otherwise

2 &

Operator

S

Page

neqv

[l

32

BCPL Reference Manual Page 33

4. Expressions

4.6 Half-word Combination Expressions

Syntactic form:

Example:

Semantics:

El, E2 L
where El1 and E2 may be any logical expression or
expressions of greater binding power

E3,, E4 & E5
parses as E3,, (E4 & E5)

El,,E2

produces a storage cell-sized Value (36 bits for
TENEX BCPL) whose 1left half is the same as the
right half of El, and whose right half is the same
as the right half of E2.

4.7 Conditional Expressions

A conditional expression allows for conditional evaluation of one
of two expressions.

Syntactic form:

Semantics:

or

El -> E2, E3
El => E2, E3
where E1, E2, and E3 may be any subword
expressions or expressions of greater binding
power. E2 and E3 may, in addition be conditional
expressions.

The Value of the <conditional expression 1is the
Value of E2 or E3 depending on whether the Value
of El1 represents true or false respectively. In
either case only one alternative is evaluated. If
the Value of El1 does not represent either true or
false then the Value of the conditional expression
1s undefined.

BCPL Reference Manual Page 34
4. Expressions o

4.8 table and list Expressions

These represent the two ways of creating initialized vectors: the
table expression causes a vector to be built and initialized at
complle time in static storage; the list expression causes a vector to
be built and initialized at run time in dynamic storage.

4,8.,]1 Tables

Syntactic form:
table E@, E1, ... En
where all the expressions are more binding than
comma.

Semantics:

A table is a static vector whose elements are
initialized prior to execution to the values of
the expressions E@ to En; these expressions must
have Values which can be computed at compile time.
The vValue of a table is a pointer to its zeroth
element. The elements of a table may include
tables, vectors, or strings.

Example: ,
static{ x := table 1,2,3}

'4.8.2 Lists

Syntactic form:
list Ef, E1, ... En
The initial values E@, E1, ... En can be any
expressions.

Semantics:

The expressions are evaluated and stored in the
list at the time the list expression is evaluated.
The storage 1is allocated dynamically as for
vectors.

let L := list EB, E1, ... En
is equivalent to

let L := vec n

©Jé, i1, ... Lln := E@, E1, ... En

- — o o = .

—— . —— >~

BCPL Reference Manual Page 35
4, Expressions

4.9 selecton Expressions

Syntactic form: v) .
selecton E into { <list of cases)> }
where each "case" in the <list of cases> is a
label of the form:
case <constant>:

or) ’

case <constant1> to <constant2>:
or

default:

S et s e

followed by an expression to evaluate.

Semantics:
As for the sw1tchon command (sectlon 5.13), E 1is
evaluated, ~and the indicated "case" is selected.
The Value of the selecton expression is the Value
of the expression which follows the selected case
label. 1If none of the case labels are applicable,
the default label is selected. The default label
should not be omitted.) -

4.10 repname
" This is a mechanism for a shorthand description of

a list of elements which are seperated by commas.
It is useful in table and list expressions (4.8),
argument 1lists = (4.1.9 and 5.3), formal parameter
definition lists (6.9 and 6.10), and on the right
hand side of the assignment command (5.2). The
form

<{expression or name)> repname <number)>
may be used in place of a list element in any of
these contexts. It means the same as if you had
written out <number> list elements, each identical
to <expression or name>.
For example,

let foo(x, nil repname 40) be ...
is a convenient way to define 3 routine (see 6.10)
which can have up to 41 parameters, and in which
you want to deal with a vector of their Values,
rather than each parameter by a unique name. The
"NumbArgs" function in TENEX BCPL (see appendix
C.10) can be used to determine how many parameters
were given in a call on "foo", and the expression

lv x
can be used as a "vector", whose elements
(starting from the zeroth) are the Values of the
parameters to "foo".

5.

Commands

Commands

5.1 Simple Ass

BCPL Reference Manual Page 36

Syntactic fdrm;

Semantics:

ignment Commands
El := E2

El may either be the name of a variable, a vector
application, an rv expression, a half word
extraction expression, a quarter word extraction
expression, or a structure reference, and its
effect is as follows:

(a) If E1 1is the name of a variable: The
assignment replaces the Value of the variable with
the value of E2,

(b) 1If E1l is a vector application: The Value of
the storage cell referenced by El is changed to be
the value of E2.

(c) If El is an rv expression (indirect
addressing):

the value df the operand of rv is interpreted as
an Address; the Value of E2 then is stored in the
storage cell having this Address.

(d) 'If El is a half w~ord expression (only rh and
lh are allowed):

rh E3 := E4
is syntactic sugar for
E3 := lh E3,, E4

and v
~1lh E3 := E4
is syntactic sugar for
E3 := E4,, E3

(See section 4.6)

(e) If El is a quarter word extraction expression
(only ql, g2, g3, and g4 are allowed),

T g2 E3 := E4
causes quarter 2 of E3 to be replaced by quarter 1
of E4. Quarters are numbered from right to left.
See section 4.1.14.

(£) For assignment to structure references, see
section 7.

BCPL Reference Manual

5.

Commands

Page 37

5.2 Assignment Commands

Syntactic form:

Semantics:

5.3

Ll, L2, ... Ln :=Rl, R2, ... Rn

The semantics of the assignment command is defined

in terms of the simple assignment command; the
command given above is semantically equivalent to
the following sequence, except that the order in
which the simple assignments are done 1is not
specified.

L1 := Rl

L2 := R2

Ln := Rn’

Routine Calls

Syntactic form:

Semantics:

S.4

El (E2, E3, ... En)

where E1 is a name or a parenthesized expression.

executed by assigning the
cee En to the first n -1
formal parameters of the routine whose Value is
the Value of El; this routine is then entered.
The execution of this command is complete when the
execution of the routine body is complete (see 6.9
and 6.1@).

The above command is
Values of E2, E3,

Labelled Commands

Syntactic form:

Semantics:

N: C

where N is a name.

This declares a manifest constant which is
associated with name N; its scope (see 6.1) is the
smallest textually enclosing routine or function
body (see 6.9 and 6.10) or block (see 5.18) and
its Value 1is a bit pattern representing the
program positon of the command C.

BCPL Reference Manual _ Page 38
5. Commands o

5.5 goto Commands

Syntactic form:
goto E

Semantics:

E is evaluated to yield a Value, then4execution is
resumed at the statement whose label has the same

Value.

5.6 if Commands
Syntactic form:
if Edo C
also:

Hh
=

i

then C

Semantics:

The Value of E is interpreted as a Boolean Value.

See section 4.1.5 for the representation
Boolean Values. If E is true, C is executed.

E is false, C is not executed. If the Value of E
represents neither true nor false then the effect
is implementation dependent. 1If E is evaluable at

compile time, then C is compiled without any

time check of E if E is true; no code is compiled
if E is false. Similar appropriate compile-time

analysis 1is done for other commands.

5.7 unless Commands

Syntactic form:
unless E do C

Semantics: -
For a boolean expression E, this statement
exactly equivalent to the following:

if not (E) do C

5.8 while Commands

Syntactic form:
while E do C

e

Semantics:
This is equivalent to the following sequence:
goto L
M: C
L: if E then goto M

where L and M represent internally generated

names.

BCPL Reference Manual Page 39
5. Commands

5.9 until Commands

Syntactic form:
until E do C

Semantics: ,
This statement is equivalent to:

while not (E) do C

5.1 test Commands

Syntactic form:
test E then Cl or C2
also:

test E ifso C1 ifnoE C2
also:

test E ifnot C2 ifso Cl

Semantics: , o
This statement is equivalent to the following
sequence:

if not (E) goto L
Cl
ggto M

L: T2

where L and ML represent internally generated
names.

5.11 Repeated Commands

Syntactic form: _
C repeat
or

C repeatwhile E

or

C repeatuntil E

Where C is any command other than an if, unless,
until, while, test, or for command.

Semantics:
C repeat is equivalent to:

L: C
goto L

BCPL Reference Manual Page 49

5. Commands

C repeatwhile E is equivalent to:

L: C
iﬁ E then goto L

C repeatuntil E is equivalent to:

L: C
if not (E) then goto L

where L represents an internally generated name.

the repeatwhile command differs from the while
command in that the repeatwhile loop test is
performed after executing the body of code at
least once. The same relation exists between
repeatuntil and until.

5.12 for Commands

Syntactic form:

whe

Semantics:

for N := E1 to E2 do C
or N := E1 by E3 to E2 do C

for N := E1 to E2 by E3 do C
re N is a name. NOTE: step may be used as a
synonym for by.

The above statement is equivalent to:

{ let N := E1
Tet END := E2
until N gr END do
T<eo -

N := N + E3 }
}

"by E3" or "step E3" is optional; the increment is
assumed to be 1 if not specified.: END represents
an internally generated name. If specified, the
expression E3 must be evaluable at compile time.
Note that the for command is an implicit block
(see 5.18 and 6.1)

BCPL Reference Manual Page 41

5. Commands

5.13 switchon

Commands

Syntactic form:

Semantics:

is

switchon E into { <list of cases> }

where each "case" in the <list of cases> 1is a
"case 1label" followed by a sequence of commands.
A "case label" has the form:

case <constant>:
or |

case <constantl> to <{constant2>:
or

default:

NOTE: If you want to inject a declaration into the
sequence of commands in a "case", then make a
block (see 5.18) out of the declaration and the
relevant sub-sequence of commands [CAVEAT!].

The expression is first evaluated and if a case
exists which has a constant with the same
arithmetic vValue then execution is resumed at that
label; otherwise, if there is a default label then
execution is continued from there, and if there 1is
not, execution 1is resumed just after the end of
the switchon command.

The switch is implemented as a direct switch, a
sequential search or a tree search depending on
the number and range of the case constants.

The case label

case E1l to‘Eg:

equivalent to

case EI:’EEEE (E1+1): cgge'(El+2): ... Case E2:

where E2 must not be léss than El.
NOTE: branchon is a synonym for switchon.

BCPL Reference Manual Page 42

5. Commands

5.14 loop, break, and endcase Commands

Syntactic form:

Examples:

Semantics:

1.

loop

brea&

endcase

for i := 1 to v|@ do
{TIet x := vli
-EE x = 0 then loop

Ll:
}

until j = @ do

T'if A > CaseK|j then break
CaseK| (j+1) := CaseK[j
CaselL| (j+1) := CaseLl|]j
j =3 -1

L2:

switchon Op into

{ case SWITCHON: Transwitch (x) ; endcase
case SEQ: Trans (x|1) ; endcase
defaglg: Trans(x|2) ; endcase

L3:

The loop command causes a jump to a program point
just 1inside the smallest enclosing loop, so that
the end condition is tested and the loop repeated
as required. In a for command the loop command
also causes the index to be incremented before the
test is made (as usual). 1In the first example,
this is the program point labelled Ll. Execution
of the break command causes a jump to the point
just after the smallest textually enclosing loop
introduced by one of the following reserved words:
until, while, repeat, repeatwhile, repeatuntil and
for., In the second example, this 1s the program
point labelled L2. The endcase command causes a
jump to the program point just after the smallest
textually enclosing switchon command. In the
third example, this is the program point labelled
L3.

BCPL Reference Manual Page 43
5. Commands

5.15 finish Command

Syntactic form:
finish

Semantics:
This causes the execution of the program to
(HALTF on TENEX).

5.16 return Commands

Syntactic form:
return

Semantics:

This causes the execution of the smallest
enclosing routine body (see 6.10) to cease and

return.

5.17 resultis Commands

Syntactic form:
resultis E

Semantics:

This causes execution of the smallest enclosing
valof expression (see 4.1.8) to cease and return

the value of E.

BCPL Reference Manual Page 44

5. Commands

5.18 Sections

and Blocks

Syntactic form:

{ <command or declaration>l<;<command or declaration>>0 }

Semantics:

(Note: The semicolon can be omitted between
commands that appear on separate lines (see
Appendix A.3). Square brackets may be used in
place of «curly brackets 1if desired. A matched
pair of brackets may be given the name IMMEDIATELY
ADJACENT to the right of the bracket. This is
useful for documentation and error checking.
Unless you intend to do this, brackets should be
followed by space, tab, or carriage return
(CAVEAT!!) .)

A "section" is a sequence of BCPL commands that is
enclosed in brackets (brackets are called "section
brackets" in BCPL). Labels declared inside a
section may be referenced from outside the
section; e.g., the program is allowed to Jjump
(goto) into the body of an if command. A
"block"is a section in which there are
declarations. Labels declared inside a block may
not be referenced from outside the block. A
section or block 1is executed by performing the
declarations (if any) and commands 1in sequence.
Within a block, the scope of the definee of a
declaration is the region of program consisting of
the declaration itself, and the succeeding
declarations and commands.

—— — -

BCPL Reference Manual Page 45
6. Definitions

6. Definitions

6.1 Scope Rules

The SCOPE of a name N is the textual region of program throughout
which N refers to the same "data item" (either a variable or a
manifest constant). Every occurrence (i.e. use) of a name must be in
the scope of a declaration of the same name.

There are three kinds of declaration:

(1) Each element of the formal parameter list of a function or
routine: its scope 1is the function or routine body (see
6.9 and 6.19).

(2) A label set by colon in a block: its scope is the block.

(3) Each declaration in a block: its scope is the region of
program consisting of the declaration itself and the
succeeding declarations and commands of the block.

Two data items are said to be declared at the same level of
definition if they were declared in the same formal parameter list, as
labels of the same block, or in the same declarations.

There are three semantic restrictions concerning scope rules,
namely:
(a) Two data items with the same name may not be declared at
the same level of definition.

(b) If a name N is used but not declared within the body of a
function or routine, then it must either be a declared
manifest constant or a static variable: that is, it must
have been declared as external, global, an explicit
function or routine, or a static. This restriction on
functions and routines has been imposed in order to
achieve a very efficient recursive call. In terms Sf the
implementation, +this restriction states that either the
Value or the Address of every "free variable" of a
function or routine is known prior to execution.

Note that the following program is illegal:

let a

et b e
Tet £(x

1,2
) *

’
= a

X + b
However, it may be corrected as follows:
1

b := 2}

static { a :
= + b

Tet T(x) = a*x
(c) A label set by colon may not occur within the scope of a
data item with the same name if that data item was

BCPL Reference Manual Page 46
6. Definitions

declared within the scope of the 1label and was not an
external or global.

Declarations are permitted intermixed with statements. The rule
is that a declaration may follow any semicolon, or may follow any
sequence of labels which follows a semicolon. The scope of such a
declaration 1is to the end of the smallest enclosing section or block.
Note that it is not the case that a declaration may appear anywhere
that a 1label may. (For example, an arm of a conditional may be
labelled but it may not be a declaration.) Since a declaration
introduces a block, it follows that labels and case labels that appear
after it are not accessible from outside it (CAVEAT!).

6.2 Space Allocation and Extent of variables

The EXTENT of a variable is the time through which it exists and
has an Address. Throughout the extent of a variable, its Address
remains constant and its Value is changed only by assignment.

In BCPL, variables can be divided into two classes,
(1) Static variables:

Those variables whose extent lasts as long as the program
execution time. Every static variable must have been
declared either in a function or routine definition, or in
an external, global, or static declaration. For static
variables that are initialized to tables or vecs, the
space for the table or vec has the same extent as the
static variable.

(2) Dynamic variables:

Those variables whose extent is limited; the extent of a
dynamic variable starts when its declaration is executed
and continues until execution 1leaves the scope of the
declaration. Every dynamic variable must be declared
either by a simple declaration, a vector declaration or as
a formal parameter.

6.3 Externglg

Syntactic form:
external { <name> <;<name>>@}

Semantics:
The external declaration declares a set of names
(6 character 1length limit in TENEX BCPL for each
such name) to be used in common by separately
compiled programs. For each such name, exactly
one program must declare the name as a function,
routine, or static variable. Within the program

BCPL Reference Manual Page 47
6. Definitions

where the name is defined, it must also appear in
an external declaration. Within a program where
the name is used, it must appear in an external
declaration. The programs that use the name
should be loaded with the program that defines the

name, otherwise the loader will complain.
6.4 Globals

Syntactic form:
global { <name>:<number> <;<name>:<number>>@}

(Note: "colon equals" (:=) may be used in place of
: in global, static, and manifest declarations)

Semantics:

Globals are very similar to externals, except that
numbers are used to identify them. Global numbers
are to be allocated by the user. 1In TENEX BCPL,
he may use numbers between #4068 and #1377. The
numbers between @ and #377 and between #1468 and
#1777 are reserved for the libraries. Globals
exist in TENEX BCPL in addition to externals only
because the number of characters in the name of an
external on TENEX is limited to 6; the number of
characters in a global name is the same as for any
BCPL name (less than 24).

6.5 Statics

Syntactic form:
static { <name>:<constant>
<; <name>:<constant> >0 }

Semantics:
This declares each name to have an initial Value
equal to the vVvalue of the specified constant
expression. Expressions composed of constants and
the operators

+ - * / § " ° table vec ,, rem

are allowable. When used in this context, vec
denotes a static vector.

BCPL Reference Manual Page 48
6. Definitions

6.6 Manifeg&i

Syntactic form:
mgnifest { <name> : <constant>
<3;<name> : <constant> >0 }

Semantics:
This declares each name to be a manifest constant
with a Value equal to the Value of the specified
constant expression. The meaning of a program
would remain unchanged if all occurrences of
manifest named constants were textually replaced
by their corresponding Values.

6.7 Simple Variables

Syntactic form:
let N1, N2,..., Nn:=El, E2,..., En

Semantics:
Dynamic variables with names N1 ... Nn are first
declared, but not initialized, and then the
following assignment command is executed

Nl, N2,..., Nn:=El, E2,..., En
6.8 Vectors

Syntactic form:
let N1, N2,..., Nn := vec El, vec E2,..., vec En

where the Ni are names.

Semantics:

Processing is similar to 6.7, above. The Ei’s
must be expressions which can be evaluated at
compile time. Each of these defines the maximum
allowable subscript of the corresponding vector.
The minimum subscript is always zero. The initial
Value of each Ni 1is the Address of the zeroth
element of the vector; the Ni are dynamic
variables. The vector subscripting operation is
described in section 4.1.10.

6.9 Functions

Syntactic form:
let N(<list of names, separated by commas>) :=E

where N is a name.

Semantics:
This defines a function and a static variable with
name N whose conceptual type is "function". The

BCPL Reference Manual Page 49
6. Definitions

static variable N has its Value initialized (prior
to execution of the program) to the memory
location of the start of the compiled code for the
"function body" (E). Syntactically, E can be any
expression, N defines an external if it is in the
scope of an external declaration for N, or a
global if it is in the scope of a global
declaration for N. The names in the name list (if
any) are called formal parameters and their scope
is the function body (E). Each is a variable
which is initialized to the Value of the
corresponding parameter in the call (see 4.1.9).
The extent of a formal parameter lasts from the
moment of its initialization in a call until the
time when the evaluation of the body is complete.
The Value of the function application expression
is the vValue of E. All functions and routines may
be defined and used recursively. Function
applications are described in section 4.1.9.

6.18 Routineg

Syntactic form:
let N(<list of names, separated by commas)>) be C

where N is a name.

Semantics:

This defines a routine with name N. A routine
declaration 1is like a function declaration except
that the body of a routine is a command and
therefore 1its application may not be used as an
expression. A routine should therefore only be
called in the context of a command. A function
may be called either as an expression or as a
command. Routine calls are described in section
5.3.

6.11 Simultaneous Definitions

Syntactic form:
let D <and D>@

NOTE: ...and let... 1is allowed

Semantics: . .
All the declarations are effectively executed
simultaneously and all the defined variables have
the same scope which includes the simultaneous
definition 1itself; a set of mutually recursive
functions and routines may thus be declared.

BCPL Reference Manual Page 590
7. Structures :

7. Structures

7.1 Introduction

An important problem in programming has to do with accessing and
changing subfields of structured data. Here the term "structured
data" refers to any collection of data -- that is, of bits -- which
has some structure meaningful to one or more programs. As a simple
example, a compiler is concerned with the instruction format of the
object computer. Specifically, on the PDP-10, the 36-bit instruction
word is divided into bit fields as follows (from left to right)...

op 9 operation code

ac 4 accumul ator spec

d 1 indirect (defer) bit

X 4 index register specification
ad 18 address

Here for each field we give a one or two character name, the
width of the field in bits, and its function (which is irrelevant to
the present discussion). Now consider a compiler written to compile
code for this machine. If jj 1is a variable containing the index
register desired, the command

w = (w & #777760777777) \ ((jJ & #17) lshift 18)

might be used to set the index part of w. If y is a pointer to an
instruction, then the command

v y :iy(gx y & #777768777777) \ ((jj & #17) lshift 18)
might be used instead. It would clearly be desirable to be able to
program this operation in a more transparent manner. It is this sort
of problem that the structure definition facility described in this
section helps to alleviate,

Let us continue with the above example. 1In the syntax about to
be described, the instruction format given above might be described by
the following structure declaration:

structure

~ 1 instruction

{ op bit 9 //operation code
ac Bit 4 //accumulator spec
d bit 1 //indirect address
X bit 4 //index register spec
ad bit 18 //address

}

}
This declaration defines the name ‘“instruction" as being

associated with a structure, the structure being composed of fields of

BCPL Reference Manual Page 51
7. Structures

bits as shown. The dot is used to indicate sub-structure, so that
instruction.x

refers to the x-part (that is, the index part) of an instruction. We
can then refer to the index part of the word pointed to by y as

y >> instruction.x

The mark ">>", which may be read "right 1lump", has been selected
because of its resemblance to a pointer. It indicates that we are
concerned with a subfield of a word pointed to. If instead w were the
actual word in question instead of being a pointer to that word, we
might write

w << instruction.x

(the "<<" may be read as "left lump"). The statements given earlier
might then be written as

i

w << instruction.x := jj

y >> instruction.x := jj

respectively. These forms are more readable. Similarly, the
"indirect" bit of the instruction pointed to by p could be set to one
by executing

P >> instruction.d := 1

The structure facility 1in BCPL permits convenient access to and

changing of subfields of Values. An important advantage of the
~facility is that the description of data bases can be separated (in
seperate "get" files fetched by the compiler--see Appendix A.3) from
the code that manipulates them. The idea is to specify the "shape" of
a data item -- 1its representation as a bit pattern in memory. The
shape of a data item is, in general, distinct from its use.

7.2 Syntax

Three structure constructs are included in the 1language -- the
<structure declaration>, the <structure referenced>, and the size
expression. The first may be used wherever a declaration may be and
serves to declare that a particular name references a particular
structure, or shape. The second may be used wherever a primary
expression may be wused and serves to access a structured item. The
last may be used to compute (as a constant expression) the size in
bits of a structure.

BNF syntax follows, using the usual notation. Names of syntactic
classes are enclosed 1in angle brackets, the vertical bar "|" is the
meta-linguistic OR, and "::=" means "is defined to be". All other
characters stand for themselves.

BCPL Reference Manual Page 52
7. Structures

Syntax for structure declarations:

<structure declaration> ::=
structure { <sd-list> }
<sd-1listd> ::=
<sd-item> | <sd-item> ; <sd-list>
<sd-item> ::=
<sd-term> | <sd-term> overlay <sd-item>
<sd-term> ::=
<name> <replicator> <declarator> <size>
<declarator> <size>
fill <declarator>
<name> <replicator> ; { <sd-list> }
{ <sd-1list>}
<replicator> ::=
" <constant expression>
<constant expression> ~ <constant expression>
<empty>
<declarator> ::=
bit | bitn | bitb | byte | byten | char | word
<size> ::=
<constant expression> | <empty>

Syntax for structure references:
<structure reference> ::=
<expression> >> <sri>
<expression> << <sri>

<sri> ::=
<src> | <src> . <sri>
<{src> ::=
<name> | <name> =~ <expression)

In addition, add to the definition of <constant expression>
the possibility

size <sri>

The syntactic categories left undefined in this syntax are

<expression> any expression
<constant expression> any expression whose Value
can be deduced at compile time

<{name> any name

7.3 Semantics

A <structure declaration> is a list of <sd-item>s, separated by
semicolons. (The semicolons missing from the examples shown
throughout this document would be inserted automatically by the
compiler.) Each <sd-item> 1is one or more <sd-term>s, separated by
overlays. Ignoring this possibility for the moment, assume an
{sd-item> to be an <sd-term>. The interest comes in an <sd-term>, of

BCPL Reference Manual Page 53
7. Structures

which there are five flavors. As an example of the first, consider
X bit 5
this specifies a field named "x" which is 5 bits wide. The <sd-term>
y~3 bit 7
specifies three replications of field "y", each replication being 7
bits wide. The "up arrow" indicates a structure subscripting
operator, used in both declarations and references. The three

instances of y would be referred to as y~"1, y 2 and y"3. Note that
the first has "subscript" 1, as opposed to the usual BCPL subscription

convention in which the first item has ‘"subscript" zero. The
difference between structure subscripting and regular BCPL
subscripting is emphasized by wusing different <characters. Now

consider the declaration
z 9”2 bit 7

This uses as much space as the previous example, but the fields are to
be referred to as z"@, z"1 and 2z"2. We see then that if the
replicator is absent, it is taken as one. 1If one value is given (as
for y above), it 1is taken as the upper limit with the lower limit
taken as one. If two fields are given, they are taken as the 1lower
and upper limits, respectively.

Consider now the classes <declarator> and <size>. The keywords
bit, byte and word are self-explanatory, although the number of bits
in a byte and of bytes in a word are of course implementation
dependent. On TENEX, both char and byte represent 9-bit fields. 1In
most implementations char would be the same as byte but they may be
different. (Even if they are identical, the programmer may find it
convenient to think of some items as char and some as byte.) The
declarators bitn and byten refer to numeric fields. When referenced,
they are taken as signed quantities and treated as appropriate in the
implementation. For example, in a computer using one’s complement or
two s complement arithmetic the leftmost bit of the field would be
copied into all bits of the word to the left of the field. The
declarator bitb signifies a Boolean field and is permitted only for
fields of width one. Accessing such a field yields either true or
false.

An <sd-term> such as <declarator> <size> may be used to leave an
unnamed field of the given width. Such fields may straddle word
boundaries, even though named fields may not.

The <sd-term>s fill byte and fill word represent fields wide
enough to go to the next byte boundary or word boundary, respectively.
No name 1is associated with these, as they are used only to insure that
the next field starts on an appropriate boundary. Since a subfield
may not extend over a word boundary, this 1is frequently necessary.
Use of fill frequently permits a given declaration to be used on

BCPL Reference Manual Page 54
7. Structures
different computers with different word lengths.

Note carefully the restriction alluded to above: a named field is
not permitted to extend over a word boundary. Thus the declaration

structure { a { b bit 27 ; ¢ bit 27 }o}

is improper on a machine with a 36-bit word, since a.c extends over a
word boundary. Also illegal is

structure { a"2 bit 27 }

since a"2 is bad. There is no restriction about extending over byte
boundaries, so the declaration

structure { a { b bit 5 ; c byte } o}

is correct. Another way to look at this is that the <sd-term> byte is
synonymous with the <sd-term> bit 9 (on TENEX), and

structure { a { b bit 5 : ¢ bit 9 } }

is clearly acceptable. yAlso acceptable is

structure { a char 3; char 2; b char 3 }

on a computer with 4 char’s per word, since the field that straddles
the word boundary is unnamed.

The <size> specifies the width of the field, 1in units of the
<declarator>. If missing it is taken as one. Thus byte 3 refers to a
field three bytes wide. The <size> may be any expression that can be
evaluated at compile time.

All that remains to be explained'is the keyword overlay. Two
<sd-term>s separated by overlay are to occupy the same storage.
Consider, for example, the declaration

structure { a { b byte 2; c byte 2 overlay cn byten 2 } }

The reference x<<a.b refers to the left half of x, and x<<a.c
refers to x’s right half. (This example assumes four bytes per word.)
However, x<<a.cn interprets x s right half as a numeric quantity, so
that it would be accessed with sign extension. That is, ¢ and c¢cn
refer to the same part of the structure. Consider another example, in
which we assume four 9-bit bytes per word:

structure { a { bvgzgg 2; c"6 bit 3 overlay d"3 bit 6 } }

Here the right half of the word is to be regarded as either three
6-bit fields or six 3-bit fields.

BCPL Reference Manual Page 55
7. Structures

7.4 Examgles

Following are some examples of <structure declaration>s, with
comments on their effect. The examples assume a 36-bit word with four
9-bit bytes per word, as on TENEX.

A string in BCPL on TENEX is stored four characters per word,
with the 1length (in characters) stored in the first (leftmost) byte
position. (The BCPL convention for structures is that byte positions
are counted from left to right.) Then a declaration for such a
structure is

structure { string { n byte; c”"511 char }}

With this declaration, the length in bytes of string x may be referred
to as x>>string.n, and the 4-th character of x as x>>string.c”4. The
number 511 in the declaration comes from the fact that the maximum
string length must be storable in 9 bits. The maximum length of a
string in words is given by the expression

(size string)/36

(the parentheses are not needed.) This expression has value 128 (given
the above declaration of string on TENEX) and is capable of being
evaluated at compile time, so that

let v = vec (size strihg) / 36

is permissable. Note that the structure declaration of string would
be less useful had n been declared to be a numeric field with byten
rather than byte. 1In that case the left-most bit would be interpreted
as a sign bit, so the possible values storable in a 9-bit field would
be from -256 to 255. Since negative string lengths seem
uninteresting, declaring the field to be a byte field gives the more
useful range of @ to 511.

Sometimes it is convenient to store strings one character per
word. A useful format is to put the length in the zero-th word of a
vector and the characters in successive words. Routines for unpacking
and packing strings are then like this:

let unpackstring(s, v) be // unpack string s into vector v

{7vl@ := s >> string.n // the length of the string
for k :=1 to v|@ do v|k :=s >> string.c”k }

and packstring(v, s) be // pack vector v into string s
T s >> string.n := vl|@
for k :=1 to v|@ do s>>string.c"k := v|k }
Note the rather pleasant symmetry between these two routines.

Here is a routine that reverses the bits of a word:

BCPL Reference Manual Page 56
7. Structures ’

let reverse(x) := valof
{ structure { b"@735 bit 1 } // 36 1-bit items

Tet t
for n

Tesultis

2
@ to 35 do t << b"n := x << b" (35-n)
t}

The value of the function is the bit-reverse of its input.

BCPL Reference Manual Page 57
Structures

7.

[1]

[2]

(3]
[4]

REFERENCES

Strachey, C. (Editor) "CPL Working Papers" a technical
report, London Institute of Computer Science and the
University Mathematical Laboratory, Cambridge (1966).

Richards, M. "The BCPL Reference Manual", Project MAC Memo
M-352-1, M.I.T. Cambridge, Mass. (Feb. 1968).

Richards, M. "BCPL: A tool for Compiler Writing and System
Programming”, 1969 Spring Joint Computer Conference.
The TENEX JSYS Manual

BCPL Reference Manual Page 58
Appendices :
APPENDICES

A. BCPL Characteristics

A.l1 Reserved Words and Symbols

The reserved words and symbols of BCPL are implementation
dependent: they depend on the character set that is available. To
simplify the transfer of BCPL from one machine to another, a set of
"canonical symbols" has been developed. Each implementation of the
BCPL compiler has a preprocessor which translates the reserved words
and symbols for that implementation into the canonical symbols. The
"canonical representation" of a BCPL program consists of a sequence of
canonical symbols.

The names of the canonical symbols are given below together with
corresponding examples of how they are represented in TENEX BCPL. The
list of words and symbols under °‘TENEX Form’® includes the 1list of
TENEX BCPL reserved words and symbols.

Canonical TENEX Described
~Symbol Form in Section
number 103 #777 3.56 4.1.1
name abc i H2 4.1.4
stringconst ‘xyz*n® "p" 4.1.3
charconst Sa $3 4.1.2
true true 4.1.5
false false 4.1.5

nil nil 4.1.6
valof ' valof 4.1.8

1v 1lv 3.1, 4.1.11
rv rv 3.1, 4.1.12
lh 1h 4.1.13

rh rh 4.1.13
1hz lhz 4.1.13
rhz rhz 4.1.13
mult * 4.2

div / 4.2

rem rem 4.2

plus + 4.2

minus - 4.2

fplus $+ 4.2
fminus - 4.2

fmult $* 4.2

fdiv _ $/ 4.2

eq eq or = 4.3

get get A.3

size size 7.2
offset of fset 7.2

ne ne 4.3

1s ls or < or 1t 4.3

gt gt or > or gr 4.3

BCPL Reference Manual
Appendices

ge
le

not
1shift
rshift
lscale
rscale
logand
logor
eqv

neqgv
cond
comma
table
list

r epname
and

ass

goto
resultis
colon
test
ifso
ifnot
for

if
unless
while
until
repeat
repeatwhile
repeatuntil
loop
break
return
finish
switchon
branchon
selecton
case
default
endcase
let
manifest
static
external
global
be
sectbra
sectket
rbra
rket
structure

ge

le

not or
lshift
rshift
1scale
rscale
logand or &
logor or \
egv

neqv or xor
=> or =->

r

table
list
repname
and

goto
resultis

test
ifso
ifnot
for

if
unless
while
until
repeat
repeatwhile
repeatuntil
loop
break
return
finish
switchon
branchon
selecton
case
default
endcase
let
manifest
static
external
global
be

{ or [
} or]
(

)

structure

Page

FHEFEOONA A i d =N =00~ RO WW

.
—
Q.

e
=

e & o e o LI }

. » o« o
~J

[LS~ B]

OOV UTULI AU UTUT 0T O b b b b B B B b b BB

5.14
5.16
5.15
5.13
5.13

4.9
5.13,4.9
5.13,4.9

L] *
= R R W 1N
e+ OO M -

Nt OY WD
e« 8 6 o 6 ¢ o s o
~

59

BCPL Reference Manual
Appendices

char
fill
word
overlay
bit
bitb
bitn
byte
byten
semicolon
into

to

by

do

or

vec
vecap

uplump

leftlump
rightlump
dot

Page 60
char 7
fill 7
word 7
overlay 7
bit 7
bitb 7
bitn 7
byte 7
byten 7
7 , 5
into 5.13
to 5.12
by or step 5.12
do or then 5.12
or 5.18
vec 6.7
| or ! 4.1.10
- 7.2
<< 7.2
>> 7.2
. 7.2

A.2 The TENEX BCPL Character Set

Code (Octal) Char

000

001,006

0o7
0109
P11
912
13
014
015

216,031

032
33

034,036

037

040
041
042
043
044
P45
046
047
P50
g51
052
53

]

>
M

g5]

Y > 3 >
NZBORUWCHIQP®®

P I T |

Usage in BCPL source program

Null ... Ignored as if it weren’t there
Illegal

Bell ... Illegal

Backspace ... Illegal

Tab ... Ignorable, like space

Line feed ... Taken as "End Of Line"
Vertical tab ... Illegal

Form Feed ... Ignorable

Carriage Return ... Ignorable

Illegal

[Terminate input stream to the compiler] EOF
Illegal

Illegal

TENEX EOL, BCPL "*n", taken as "End Of Line"

Ignorable

VECAP

Quote Character for BCPL strings
Octal number prefix

Character constant "quote"
Floating-point operation prefix %+ %- %/ %*
Logical AND operator

Quote character for ASCIZ strings
Expression parenthesis

Expression parenthesis

Integer multiply operator

Integer add operator

o —— A

BCPL Reference Manual Page 61
Appendices

854 ’ COMMA
@55 - Integer subtract operator
056 . Structure operator and decimal point for
floating point numbers
857 / Integer divide operator
960,071 0,9 Digits
872 : COLON (for labels)
873 : SEMICOLON
074 < LS operator
375 = EQ operator
876 > GR operator
877 ? Illegal
109 @ If /U, character or word upper case escape char
otherwise, ignored as if it weren’t there (see
B.2)
101,132 A,Z Uppercase letters (mapped to lower case, if /U)
133 [Optional SECTBRA
134 \ Logical OR operator
135] Optional SECTKET
136 - UPLUMP (structure operator)
137 _ part of the name character alphabet
140) (grave) Illegal
141,172 a,z Lowercase letters
173 { SECTBRA
174 | VECAP
175 } SECTKET
176 - Logical NOT operator
177 Rubout Illegal (BCPL "*r")
Escape conventions for non-printing

characters and control characters in character and
string constants are defined for TENEX BCPL.

Example: $*s represents space
Sk* represents *
$"a represents control a
$*” represents °

A complete description of these conventions
follows:
X where x in { [,\,]1,7,a, ... ,z } => that control character

*n => code 37, TENEX EOL (new line)
*r => code 177, Rubout

*s => code 48, Space

*t => code 11, Tab

*h => code 16, Backspace

*p => code 14, "Page", form feed

BCPL Reference Manual Page 62
Appendices

*f => code 14, form feed
*v => code 13, vertical tab
*<Three Octal digits> => octal escape

*c => code 15, carriage return

*] => code 12, line feed

*" => code 136, ~

*¥" => code 42, "

*° => code 47, °

** => code 52, *

*S => altmode

*a => code 100, @

*e => code 777, end of stream

*d => code #, @ (NULL, dummy character)

A.3 The BCPL Preprocessor

The Preprocessor is the name of the part of the BCPL compiler
which transforms the raw source text of a program into canonical
symbols. The conventions in the TENEX version are as follows:

(a) A name is any sequence of upper or lower case letters and
digits, starting with a 1letter, which is not a reserved
word. The character immediately following a name may not be
a letter or digit. A name may be no longer than 23
characters. All reserved words are strings of two or more
lowercase letters.

(b) User’s comments may be included in a program between a
double slash “//° and the end of the line. Example:
let Factorial(n) := valof
“{ // This function Teturns the factorial of
// its argument.

if n = 1 do resultis 1
resultis n * Factorial(n-1)

y =

(c) For documentation purposes, section brackets may be tagged
with a name or integer. CAVEAT: Section bracket tags are
detected as a name or integer which is immediately adjacent
to the bracket. Thus, section brackets which are not tagged
must be separated from a following letter or digit by space,
tab, or carriage return.

(d) The canonical symbol semicolon is inserted by the
preprocessor between pairs of canonical symbols if they
appear on different lines and if the first is from the set
of canonical symbols which may end a command or definition,
namely:

break return finish repeat rket endcase loop nil
sectket name stringconst number true false charconst

BCPL Refer
Appendices

(e)

(f)

(9)

ence Manual Page 63

and the second is from the set of canonical symbols which
may start a command, namely:

test for if unless until while goto resultis
case default break return finish sectbra
switchon endcase loop selecton branchon
charconst not 1lhz rhz number strinconst

rbra valof rv name rh 1lh gl g2 g3 g4

The canonical symbol "do" is inserted by the preprocessor
between ©pairs of canonical symbols if they appear on the
same line and if the first is from the set of canonical
symbols which may end an expression, namely:

rket sectket name number
stringconst true false charconst nil

and the second is from the set of canonical symbols which
must start a command, namely:

test for if unless until while goto
resultis endcase loop
case default break return finish switchon branchon

A directive of the form:
get <specifier>

may be used anywhere in a BCPL program; it directs the
compiler to replace the directive with the file (of text)
referred to by the specifier. The form of the specifier is
a string constant (the file name: see the example program in
Appendix B).

Pseudo commands

There are three special commands to the lexical analysis
component of the compiler. These should be prefixed by two
colons on a new line, and ended by carriage return.

1. ::reserve <word>,<word>,...

This causes the indicated word(s) to be marked as
"reserved" in the compiler’s dictionary. This 1is
useful when new reserved words are added to the
language; existing programs that use such as variables
should not be made obsolete by such changes to the
language. Users who know about such changes and want
to use the new features can do so by using the reserve
command, which has effect until the end of the program,
or until the next unreserve command for the word(s).

2. ::unreserve <word>,<word>,...
Marks the indicated reserved word(s) as unreserved.
Has effect until the end of the program, or until the

BCPL Reference Manual Page 64

Appendices

next reserve command for the word(s).

::synonym <wordl> <word2>

For use only with reserved words. Makes <wordl> a
synonym to the reserved word <word2>. 1If <word2> is
marked as unreserved, <wordl> will nevertheless be
marked as reserved.

A.4 Subtle Features for note by new users (CAVEAT)

l.

Upper and lower case alphabetic characters are
distinct, unless you use the /U switch in the
compiler s command line. In particular, the "Start"
routine should be so spelled.

A section bracket ({ and }) should be followed by
space, tab, or carriage return unless you mean to label
it (see 5.18).

If inside of a switchon case body you desire to wuse
let, you should enclose the case body in section
brackets (see 5.13).

The Value of a string or a vector is a pointer to the
zeroth cell of the string or vector.

The left half of the value of a routine, function, or
label is the JRST op-code.

Especially for FORTRAN Devotees: Arguments are passed
"by Value" in BCPL ; iN particular, a routine can’t
change the vValue of a variable that is passed as an
argument.

~—

BCPL Reference Manual Page 65
Appendices .

A.5 Operator Precedence

BCPL Operator Precedence:

There are 2 numbers associated with each (binary) operator,
to determine both its binding power with despect to operators
to its left, and its binding power with respect to operators
to its right.

In what follows, operator classes are indicated by angle
brackets.

CLASSES

<eqv>::= eqv|neqv|equiv|nequiv
<lshift>::= lshift|rshift|lscale|rsca1e
nel<|>|1e|ge|#<|%>| 2=
<+>::s= +| -] %+| %~ |
<H>:i= ¥|/|rem|%%| %/
<repname>::= repname |repval
<lh>::= 1lv|rv

lhs[rhs|1lh|rh

qlaigl

g28 /g2
<list>::= list|table

<.

o >

means keep scanning to the right (i.e. call Rexp recursively)

means reduce (i.e. return from Rexp)

BCPL Reference Manual

Appendices

Example:

a + b 1lshift

from the chart,

and

+ > lshift;

1shift > |;

| <= &

((a+b) lshift

5)

(a+b) 1lshift....
((a+b) 1shift 5)...

c..{c & 4)

(c & 4d)

Page

66

BCPL Reference Manual Page 67
Appendices
: ey
[~}
8 °
A : g :
> o
> = A A A & & E 4 =
4 « 1 + x g ° E ¢ £
v vV VvV v v g v S 8 = ©
‘ <eqv> | > < < < < < > > > > >
binops (22,22)
> : d : :
\ (23.22) | < < < < < > > > > >
8 > < < : - 3
(24,23) < < < > > > > >
<Ishift> > > > < < < > > > > >
(25,30)
<=> > > > < < < > > > > >
(30,30)
<+> > > > > < < > > > > >
(34,34)
<¥> > > > > < < > > > > >
(35,34)
vecap > > > > > > > > > > >
(40,40)
<repname> < < < < < < > > < < >
(12,12)
comma < < < < < < < < < < >
(12,1
cond. < < < < < < > > < < >
(13,12)
" < < < < < < > > > < >
(14,13)
| <h> | > > > > > < > > > > >
unops (0,35)
vec > > > < < < > > > > >
(0,30)
not > > < < < < > > > > >
(0,25)
<list> < < < < < < < < < < >
(0,1
[°P(N|, NZ)]
rule: ...opl...op2...
opIN2< op2NI —»opl<cop2 else opl>op2

BCPL Reference Manual Page 68
Appendices '

B. Usage of TENEX BCPL
B.1l Typical Source File Organization

By convention, the file name extension for BCPL source files is
“.BCP . A BCPL source file normally starts with a comment which
describes the contents of the file. Following this, there are usually
declarations of externals, globals, statics, and manifests which are
to be in effect during the compilation of the source file. For
convenience, collections of standard declarations are often aept in
separate text files (example: GLOBAL declarations for the I/0O library
are contained in <BCPL>HEAD.BCP); the "get" command tells the compiler
to insert the text from a specified file into the source, and behave
as 1if this text were a part of the source. Thus, the "declaration
portion” of the BCPL source file often contains "get" commands. See
the example program, below.

B.2 Using the Compiler

The BCPL compiler is the subsystem named "BCPL.SAV". 1Its primary
job is to translate a BCPL source file into a TENEX .REL file. Other
jobs that it does include the generation of a MACRO listing of the
program, and the generation of a specially-formatted symbol table for
the program. Typing "?" will cause the compiler to explain its
command line format. The CCL subsystem will select the BCPL compiler
for compilation of .BCP files.

B.3 Constructing a BCPL Main Program

Compile a BCPL source program which contains the definition of a
routine named “"Start", with "Start" declared as GLOBAL #l1 (as in
<BCPL>HEAD.BCP). Then load the resulting .REL file (and any others).
The BCPL library (<SUBSYS>BCPLIB.REL) will be searched automatically.
Starting the resulting core image will cause the routine named "Start"
to be called. Returning from "Start" will cause the program to
terminate (HALTF).

B.4 Routine and Function Linkage Conventions
1. Calling Sequence

call:
.o ;CODE TO STUFF ARGS

;AND NUMBER OF ARGS

;INTO THE NEW STACK FRAME
ADDI 16,n ;MOVE THE STACK POINTER

;TO THE NEW STACK FRAME
JSP 1,subr ;CALL THE ROUTINE OR FUNCTION
SUBI 16,n sMOVE THE STACK POINTER

+BACK TO THE OLD STACK

: FRAME '

BCPL Reference Manual Page 69

Appendices

at routine or function entry:

MOVEM 1,0 (16) ;SAVE THE RETURN POINTER
;IN THE CURRENT STACK FRAME

Routine or function return:
JRST 2,@64(16) ;RESTORE FLAGS AND RETURN

2. On entry to a routine or function, the number of
arguments is expected to be in 1(16)

3. The first argument is expected to be in 2(16)
The kth argument is expected to be in k+1(16)

4. Only register 16 is expected to be preserved across a
routine or function invocation,

5. n is the size of the current stack frame.
This is equal to

2+
number of args declared in the currently active
routine or function + ’
number of registers for local variables on the
stack in the currently active routine or
function when the call is made.

6. subr is the address of a register which contains a
JRST instruction to the first instruction of the
routine or function being called (In BCPL, the Value
of a 1label, routine, or function 1is such a JRST
instruction).

7. The vValue of a function call is returned in AC1.

B.5 Utility Programs

a.

<{BCPL>FMT,SAV

This is a program which formats a BCPL source file.
WARNING: the source file should have no syntactic errors.
The program is experimental; there are pathological cases
which cause it to mess up. Use it at your peril. (We
find it quite useful).

<BCPL>OCODE, SAV

This is a program which prints out the compiler’s
intermediate output code for the idealized object machine
in a human-readable form. The program requires a .0 file
as 1its input; the compiler will produce this if the /O
switch is specified for the compilation.

\

BCPL Reference Manual Page 70
Appendices .

c. <BCPL>PSYMB.SAV

This program prints out the symbol table (i.e. the
.S file) 1in a human-readable form. 1Its output is to the
file named <pgm name>.SYMTAB.

d. <BCPL>PSAVE.SAV

This program prints out useful information about an
SSAVE'd file in which there are BCPL .REL files.

e. <BCPL>CONC.SAV

This program generates a concordance (CREF) for one
or more BCPL source files.

B.6. A Complete, Realistic, Working Example Program

A programming example which demonstrates a simple application of
recursion is known as the "8 Queens Problem". The problem requires
the placement of eight queens on a standard 8x8 chessboard in a
configuration such that no queen threatens any other queen.

The recursive solution to this problem is a function which:
1. Assumes that on entry, there is a queen in each column to the
left, but there are no conflicts.

2. Tries to place a queen in each row of the current column,
failing when it conflicts with any of the queens in previous
columns,

3. For each success above, calls itself recursively to iterate
over the next column to the right. This will discover all
non-conflicting configurations to the right (printing them as
solutions) before returning.

The argument of the function is the current column. The data
structures needed for bookkeeping are vectors indicating that some
queen 1is already placed in a particular row, a particular

upward-diagonal, or a particular downward-diagonal, so the attempt to
place another queen in the same row/updiagonal/downdiagonal results in
a conflict. In addition, a solution vector is needed for type-out:
this specifies which row the queen is in for each column.

The following example illustrates the use of comments, the
labeling of section brackets, the use of the get declaration to
include other files in the compilation, the static declaration to
allocate storage, routine definitions, and the use of several library
functions (WriteN, WriteS) for typeout. The block structure, the long
identifiers, (up to 23 upper/lower case characters) and the mnemonic
operators all contribute to program readability.

BCPL Reference Manual Page 71
Appendices

// Solution of 8 Queens Problem
get "<BCPL>HEAD.BCP"

get "<BCPL>UTILHEAD.BCP" // Link to I/0 subroutine Library
static
{ Solutions: nil // Total number of legal solutions
Row: vec 7 // Array to remember the col
// the Queen is in for each row 0-7
Horiz: vec 7 // True if a gueen is in
// the Horizontal row @-7
Updiag: vec 14 // True if a Queen is in
// the Upward Diagonal #-14
Downdiag: vec 14 // True if a Queen is in
} // the Downward Diagonal #-14
let Start() be
{st
for I:=8 to 7 // Bach Horiz row is empty
do Horiz|I:=false
for I:=0 to 14 // And each diagonal is empty
do { UpdiaglI:=false; Downdiag|I:=false }
Solutions:=0 // No solutions yet
Queens (0) // Types out all solutions
WriteS("*n Number of Solutions= *)
WriteN(Solutions) // Summary
}st

and Queens(Col) be // There are no conflicts in previous columns
{an-

let Updiag2,Downdiag2:=Updiag+7-Col,Downdiag+Col
for N:=@ to 7 do // Try to put a Queen in each row of this column
unless (Horiz|N Updiag2|N Downdiag2|N) do

// No conflict with queens to left

{ Row|Col:=N // Remember where for typeout
test Col=7 // Check for all done
ifso
{ Writes("*n") // Legal Solution

for Col:=@ to 7 do { WriteN(Row|Col); WriteS("*s") }
Solutions:=Solutions+l
}

ifnot

{ Horiz|N:=true // Place a Queen there
Updiag2|N:=true
Downdiag2|N:=true

Queens (Col+l) // Find all legal configs
// in cols to the right
Horiz|N:=false // Now remove Queen

Updiag2|N:=false
Downdiag2|N:=false

}gn

BCPL Reference Manual Page 72
Appendices o o ‘

APPENDIX C. Functions, Routines, and Special Static Variables in the
TENEX BCPL Library

.1
1

C /0
CO I

I
.1 I/0 Streams

There are two kinds of "BCPL I/O streams": JFN streams and
function streams. JFN streams are simply TENEX JFN's. Function
streams are functions which are specified by the user to be either a
source of bytes (for input) or a sink (for output). We are working on
adding "string streams". The global declarations are in
<BCPL>HEAD.BCP and <BCPL>UTILHEAD.BCP.

FindInput (Desc,bytesize)
CreateOutput (Desc ,bytesize)
bytesize: (optional argument) assumed to be 7 (bits) 1if not
specified.
Desc:

-f: use function or routine (f) for 1I/0. For each
character operation, f will be called. The first
arg to f will be the byte size. The char will be
the second arg (output only).

primary input/output JFN

ask user for string at run time

expect string at run time from primary input file,
but don’t prompt the user.

S: s is a string ; do GTJFN

g
1l:
2

The Values of FindInput and CreateOutput are zero if an error
occurs, JFN's for the opened files for cases ¢, 1, 2, and s, and
a 36 bit number for case -f as follows:

g4 = -1 if read, -2 if write

g3 = bytesize

right half = rhz(-f)

BCPL Reference Manual Page 73
I/0 Streams

EndRead (stream,lefthalf)

EndWrite(stream,lefthalf)
These "close" the specified "stream". In both EndRead and
EndWrite, the second argument is optional. 1If present, it is
used as the left half of ACl1 in the CLOSF call (for JFN
streams). If absent, @ is used.

CLOSF(jfn) does just that.

INPUT ' :
The default input stream (used by PBIN, for example)
(initialized to the primary input stream for this process)

OUTPUT v o ‘
The default output stream (used by PBOUT, for example)
(initialized to the primary output stream for this process)

EofFlg ~ : :
A static variable which is set by BIN, PBIN, Readch, and SIN.
Set to true if an EOF is encountered while reading bytes, set to
false otherwise.

rfptr(jfn)
returns the byte pointer ala jsys RFPTR or a negative number
(the negative error number from the JSYS)

sfptr(jfn,byte ptr)
sets the byte pointer, ala jsys SFPTR. The first byte in a file
has byte pointer=g.
Value: a negative number (the negative of the JSYS error number)
if the JSYS fails, zero otherwise.

IsCharInput (input stream)
returns true if there is another input character available on
the specified input stream. (uses SIBE for JFN streams)

EchoMode (boolean)
turns on or off keyboard echoing, ala the argument (true => on).

BCPL Reference Manual Page 74
Character, Word, and String I/0

C.1.2 Character, Word, and String I/0
The global declarations are in <BCPL>HEAD.BCP and <BCPL>UTILHEAD.BCP.

BIN(stream)
Read a byte from the specified input stream.

Value: the byte read.

Note that if BIN (or PBIN or Readch or SIN) reads past End Of
File, the character code returned is #777, and EofFlg is set
true, otherwise EofFlg is set false.

PBIN()
Read a byte from the primary input stream.
Value: the byte read. Note: PBIN() is equivalent to BIN(INPUT)

BOUT (stream,Byte)
Write a byte on a specified output stream.

PBOUT (Byte)
Write a byte on the primary output stream.
PBOUT(Byte) is equivalent to BOUT(OUTPUT,Byte)

Readch(stream, 1lv Ch) is equivalent to
Ch := BIN(stream)

Writech(stream, Ch) (same as BOUT),

For Readch and Writech, if there is only one argument, it 1is
assumed to be a character to either read from INPUT or write on
OUTPUT.

SIN(stream,TENEX string ptr, bytecount, termbyte)
bytecount:
@ => @ byte terminates
>0 => bytecount
termbyte: optional argument ; present => use it for terminating
byte, if it occurs before the byte count is exhausted.

vValue: if bytecount > 8 , Value 1is the number of bytes
transferred. Otherwise, Value is the revised TENEX string
pointer.

SOUT(stream,TENEX string ptr, bytecount, termbyte)
same as SIN, but for output

WriteS(String) or WriteS(stream,String).
Write a BCPL string. Former case uses primary output stream
(OUTPUT) .

BCPL Reference Manual - Page 75
Character, Word, and String I/0

ReadWord(instream, strng, chlv, skipbool, termstring)
reads a word from the specified stream (instream) as delimited
by "terminator characters" (as specified by the 5th argument)
into the specified buffer. Editting via "A, "Q, and "R is
implemented. , ‘
If only one arg, INPUT is used as the instream, and the
specified arg is used as "strng". »
If 1h strng < @, the word goes into the buffer pointed to by rh
strng in unpacked BCPL string format:

[[(rh strng) |@=# chars ; (rh strng) |i=iTH char]] o
Otherwise, the word goes into strng in the packed BCPL string
format. The (optional) third argument specifies the Address of
a variable into which to store the character which terminated
the word. If four or more arguments are given, and the fourth
is false, then ReadWord returns whenever it reads a terminator.
Otherwise, Readword skips over word-initial terminators.

The (optional) fifth argument is a string specifying the set of
terminator characters. 1If this argument is absent, the function
IsTerminator () is used.

The Value of a call on ReadWord is (rhz strng).

IsTerminator (ch) o
returns a Boolean: true if the char is *s *t *c *1 or *n
false otherwise.

BCPL Reference Manual Page 76
Integer and Floating Point I/0

C.1.3 Integer and Floating Point I/0
The global declarations are in <BCPL>HEAD.BCP and <BCPL>UTILHEAD.BCP.

WriteN(number)
writes the (integer) "number" (in decimal) on the primary output
stream.

WriteN(stream,number) does it to the specified stream.

WriteOct(...)
similar to WriteN, but radix 8

WriteR(stream,n,AC3)
Write a single precision floating point number
1 arg: n: OUTPUT assumed as stream and @ assumed as AC3 to FLOUT
2 args: @ assumed as AC3 to FLOUT
Value: error code (for ERSTR) if an error is detected; otherwise
Value is -1.)
A more elaborate formatted output facility 1is described in
C.1.5.

ReadN(instream)
calls ReadWord, (with skipbool = true) then TxtTolInt. If the
argument is missing, INPUT is used.

BCPL Reference Manual Page 77
ARPANET Interface

C.1.4 Network Interface
CreateNetDialogue
FindNetInput
CreateNetOQutput
LISTENING
NETLOCALSOCKET
NETINOPENF2 .
NETOUTOPENF 2
NETWAITTIME
NETPOLLTIME
NETWAITFLAG
LocalSocket
NetStatus
EndNetDialogue
InitNetLibrary

This section describes a package of subroutines for doing ARPA
Network I/O from BCPL programs, or from programs which can interface
to the BCPL subroutine calling conventions. The (BCPL) source file
for the subroutine definitions is <BCPL>NL.BCP. The BCPL head file
with the GLOBAL declarations is <BCPL>NLHEAD.BCP. The REL file to be
loaded with your calling program is <BCPL>NETLIB.REL. The subroutines
work and have been used to implement several programs which use
facilities at Lincoln TX-2 and transfer files both ways between
BBN-TENEX and TX-2. Note that reference is made in the documentation
to "error numbers" which are returned from the subroutines when they
fail for some reason. These aren’t described here.

SUBROUTINES:
I. CreateNetDialogue

CreateNetDialogue (foreign host, outstream-1lv, instream-lv,
localsocket, foreign socket)

foreign host: either a BCPL string (the host name) in the
right half and -1 in the 1left half, or the host
number. If left half is negative, then right half is
taken as a pointer to a BCPL string.

outstreamlv and instreamlv: addresses of storage cells in
which the two new stream identifiers are to be
stored.

localsocket: a local socket number (must be even). This
argument is optional. 1If it is missing or negative,
one is made up.

foreign socket: 1 (for logger) assumed if this argument is
missing.

Returns @ if successful, error number otherwise. If
successful, 8-bit send and receive TTY connections

BCPL Reference Manual Page 78
ARPANET Interface
are opened to the given foreign host.
II. CreateNetOutput and FindNetInput
Arguments (two options):
A. For normal connections:

(bytesize, foreign host, foreign socket, 1local socket,
OPENF ac2, waittime, polltime)

1. bytesize
Either 8, 32, or 36 (BITS)
2. foreign host

Either a BCPL string (the host name) in the rh and -1
in the 1h, or a host number.

3. foreign socket
An absolute foreign socket number.
The remaining arguments are optional. Casual or novice users
can probably ignore them and the subsequent discussion under

"For normal connections":

If an optional argument is omitted, the indicated global
variable is used in its place:

1. 1local socket default variable: NETLOCALSOCKET
If specified, its form is to be
[directory number or # or -1},,[relative local socket number or -1]
-1 in LH means job relative
¢ in LH means local directory relative
>3 in LH means other directory relative
-1 in RH means relative local socket number = 10*JFN

5. OPENF ac2

default variable:; Either NETINOPENF2 or NETOUTOPENF2,
for input and output, respectively.

If specified, its form is to be as described in the
TENEX JSYS Manual.

NOTE: The value of AC2 when OPENF 1is called by
CreateNetOutput or FindNetInput includes the value
of the first argument (bytesize). This is shoved

- —— -

m e -

BCPL Reference Manual Page 79
ARPANET Interface

into the appropriate bits of the fifth argument if
it is specified, or into the value of the
appropriate OPENF2 global variable. The "data
mode" bits allow one to specify whether and how to
buffer messages (for efficient network
utilization), and whether to wait for matching RFC
or CLS. Note that NETWAITFLAG is NOT used to
determine these bits., For more information, see
the JSYS Manual.
6. waittime

default variable; NETWAITTIME This 1is a numbér of
milliseconds to wait before giving up the attempt to
establish the connection.

7. polltime default variable: NETPOLLTIME This 1is the
number of milliseconds to pause between attempts to
establish the connection.

B. For LISTENING connections:

(bytesize, LISTENING, localsocket, OPENF ac2, waittime,
polltime)

This is for opening a LISTENING connection.
1. The bytesize is either 8, 32, or 36 (BITS).

2. The second argument should be the MANIFEST constant
named LISTENING.

The remaining arguments are optional, and are treated as
described above.

Notes

1. Both functions return either a BCPL stream
descriptor (>0), or a negative error number if
they fail.

2. Normally, these functions wait until the
connection gets established, as per the
appropriate arguments or defaults. The functions
may be caused to return immediately by setting the
global variable named NETWAITFLAG to false. It is
then the user’'s responsibility to check the status
of the network stream before doing any 1I/0 (see
NetStatus). An example is the opening of a
LISTENING connection. If NETWAITFLAG is false,
the waittime and polltime arguments are
meaningless.

—

BCPL Reference Manual Page 860
ARPANET Interface

Global variables
1. NETLOCALSOCKET(initially [8,,-1])

2. NETINOPENF2(initially 6 =-> bits 6 thru 9 (data mode:
immediate return. see the TENEX JSYS Manual.) 16 -> bits 19
thru 22 (10 octal) (direction of connection))

3. NETOUTOPENF2(initially same as above, except 4 -> bits

19 thru 22)

4. NETWAITTIME(initially 206060) i.e. 20 seconds

5. NETPOLLTIME(initially 5000) i.e. 5 seconds

6. NETWAITFLAG(initially true)

Defined Constant (manifest) LISTENING := -1 a number
distinct from any foreign host number, or from (-1,,
BCPLstringptr)

III. LocalSocket

LocalSocket (network stream) returns the absolute local socket
number for the specified stream if it succeeds, or
the negative of the CVSKT JSYS error number if it
fails.

IV. NetStatus

NetStatus(network stream,vector) returns status information
ala JSYS 145 (GDSTS) in the vector. vector|l is the
connection state (see the document on the TENEX
ARPANET SOFTWARE INTERFACE) vector |2 is the
connection byte size vector|3 1is the foreign host
number vector| 4 is the foreign socket number
NetStatus returns its second argument as its value.

V. EndNetDialogue

EndNetDialogue (output stream, input stream) CLOSF the two
JFN's, and wait for them to close

VI. InitNetLibrary

InitNetLibrary() initialize the global statics to their
default values.

BCPL Reference Manual Page 81
Formatted Output

C.1.5 Formatted Output

TypeF (formatstring,argl,arg2,....)
PrintF(formatstring,argl,arg2,....)
PWriteF(formatstring,argl,arg2,....)

EndPrint ()
WriteF(stream,formatstring,argl,arg2,arg3,....)
OutputF(stream,formatstring,argvec,nvalues)

The global declarations are in <BCPL>HEAD.BCP,.

These routines are intended to be similar to FORTRAN WRITE
statements. Stream 1is as wusual in BCPL I/0O. 1In TypeF, #1061 is
assumed for the output stream. PWriteF assumes the static OUTPUT as
the stream (like PBOUT). 1In PrintF, a printer stream is opened the
first time it is called, (and is remembered in a local static). This
stays open until all files are shut, or a reset is done, or the JFN is
closed, or the printer stream is closed using Endprint(). PrintF is
meant to mirror the operation of the FORTRAN PRINT statement. All of
these routines call OutputF which takes as its arguments, the stream,
the format string, a vector of values (the first in argvec|1l) and the
number of values (including do loop iteration values). OutputF can be
called directly, if so desired.

The format string is a BCPL string. It is similar in form to the
FORTRAN format statement with some deletions, some additions, and some
modifications. The basic form of a single command field 1is as
follows: ‘

<FMT>::=
/ < T col > \
I I
| / F [wlw.d] \ I
I | E [wlw.d] | |
| /I [w] \ I
/ [VIilv]] < O [w] > \
/ \ / \
\ | A [wi-w] I /
} \ 8 [wl-w] / {
I / $(ch) \ I
I / X \ |
| \ / / I
\ \ “string” / /
where upper case letters indicate those specific characters and lower
case letters are wused to indicate integer numbers. Symbols or
subfields enclosed in [] are optional. Larger brackets means "applies
to". A "|" between two optional subfields means "or". Using "<FMT>"

for the basic command, the following ways are available for combining
them into a Total Format ("<TFMT>"):

BCPL Reference Manual Page 82
Formatted Output

<TFMT>::=
{n] <FMT>
<TFMT> ,<TFMT>
[n] (<TFMT>)

Where the format would not be ambiguous without the comma between
fields it 1is not necessary, but it should be remembered that spaces
are not delimiters., It is assumed that the reader 1is familiar with
FORTRAN FORMAT statements and only differences will be discussed.
(for a general description of FORTRAN FORMAT fields, see the brief
description at the end of this section.)

T field: Will cause the next output to start at the column
specified. The first column 1is column 1. This is accomplished by
outputting spaces or a carriage return and spaces as is necessary.

F field: The free format floating point output (when w.d 1is not
given) wuses the BCPL routine WriteR which uses the FLOUT JSYS with
ac3=f. It leaves no spaces. If w Is specified, and .d is not, then
-1 1is assumed. (d=-1 1is taken to mean no decimal point, but at
present this doesn’t work and it works as if 4 = 0)

E field: The exponent will always be given as E+- and two digits.
There is, at present, no control over the exponent, so that the entire
w columns will be filled (with the possible exception of the first if
the number 1is positive). This may at some date be changed so that
there is one and only one integer digit given, with spaces to the
left. Free E format is E14.7 format or: -i.dddddddE+ee or
*si.dddddddE-ee

I,0 field: Integer (radix 10 and 8, respectively). There are no
spaces with Free format.

ASCIZ strings (A field) and BCPL strings (S field) are
significantly different from FORTRAN. If width is not specified, the
entire string is output.

w-width can be positive or negative., If abs(w) is less than .the

length of the string, then the first abs(w) characters of the string
are output. If +w is greater than the length, the entire string is
output, right-justified to w columns, filled to the left with spaces.
If -w is greater than the length, the string is output left-justified,
and padded to the right with spaces to make up w columns.
" - literal field: Any 1literal string of BCPL characters
terminated by a single quote (°). To include a single guote in the
string, use two successive single quotes(” 7). To include a double
quote use (*")

$§ - single character field: The next BCPL character in the
compiled string will be taken as a literal and output. (special case
of a literal field)

BCPL Reference Manual Page 83
Formatted Output

X - field: Output a space. (special case of single character
field) t

/ - field: Outputs an EOL. (special case of single character
field) -

V - vector field: If a V precedes a data field type, then instead
of wusing the value in the argument list as a value, it is used as a
pointer to a block of values. If i is specified, the i successive
values will be output with the following field specification. The
default is 1. This counts as one value output with respect to the
format statement and argument list. 1If instead of an integer i, the
next character is an upper or lower case V, this specifies a "variable
vector length": the value after the pointer value is taken as an
integer and used as i (using up one of the arguments, of course).

Iteration - Matching parentheses can be nested around parts of
the format string. If an integer is specified, this has the effect of
writing out the enclosed part n times. If a positive integer precedes
a field with no intervening 1left parenthesis, there are implied
parentheses around that one field.

Termination rules - A comma (or right parenthesis-comma) is
expected after all fields, so that a typical properly formed string
would be:

"2(15, 2x,f),/,3x,s"

However, it is generally allowed for the comma to be omitted
except where it must serve as a delimiter between two numbers.
Therefore ~

"2(I5, 2xf)/3xs"
would accomplish the same goal. Notice that the comma between the 5
and the 2 is necessary, otherwise, it would be interpreted as

"2(152, x,£f),/,3x,s"
even though there is a space. Commas (or spaces) may be found to make
the format string more readable, but this is left up to the user,

General rules - All parentheses must be matched. All spaces are
ignored (except within 1literals) and therefore are not valid as
delimiters. All field type specifications and the V can be upper or
lower case.

Error Handling - In the case of column overflow, free format is
used. Errors in the format string are detected at run time. An error
message will be output to the primary output stream (OUTPUT), followed
by the words "Format Error", followed by the compiled string with
"*"*" inserted immediately following the character that is thought to
be wrong. The program then finishes (HALTF). Typing CONTINUE to the
EXEC will cause execution to continue immediately after the call to
WriteF. (This will soon be changed to use the ERRSET facility in
BCPL) .

Execution - continues until:
a) The format string is exhausted. If there are still more

BCPL Reference Manual Page 84
Formatted Output

values left in the argument list, then processing will continue at the
last left parenthesis on the same level, if there are any. If the
last non-space 1is not a right parenthesis, then execution will
continue from the beginning of the format string.

The following examples show where execution will continue if there are
more values:

"F7.4, 15,2(3v2i2,1x, 2(sl@,/))"

"F7.4,i5, 2(3vvi2,3x,2(s-10, /)), I "

" x, 2(I5, * Here “s one*n’), t20, (fl@,I12)"

b) A field requiring a value is encountered, and the argument
list has been exhausted. One value is used each time a value-taking
specification is executed in the expanded string. The vector field
iteration counts as 1 field no matter how many values are used from
the value block. 1If the variable vector length is used, then an extra
value is used to get the number of values to be output from the block.

Examples:
I) If there were two vectors of data x and y and a program were
comparing different values of the two arrays, then the call to WriteF
and the corresponding output for 2 executions might look like this:

WriteF(stream, " Test Case No. °',I,/, 2(I5,£f6.0,/),/", i, j.x|3.,
k,ylk)

Output
Test Case No. 9
24 3454.
142 4240.

Test Case No., 10
105-7523.
7 —450
Here is what the following formatstring would produce with the same
data:

.

"“*nComparison *# “,i2, (t20,i,t26,f,/)"

BCPL Reference Manual Page 85
Formatted Output

Output
Comparison # 9 24 3454.

142 420.
Compatison $# 10 105 -7523.
7 -45.
II) In order to output a véctor or part of vector, which would be done
in FORTRAN by:

WRITE(1,10) (X(I), I = K,L)
10 FORMAT(1X, F6.0)

Output
34.5
-20.7
2473.0
3650.0

etc.
Using WriteF this would be:

WriteF(stream,"x,Vvf6.1,/", x+k, k-=1+1)

III) To put out two vectors and the subscript simultaneously:

FORTRAN
WRITE(1,10) (I,X(I),I,¥Y(I), I = 5,19)
10 FORMAT (" X(,I2,") =",F7.4,2X,°Y(,12,") =",F6.2)
Output
X(9) = 0.3425 Y(9) = 12.45
X(10) = 8.8739 Y(10) = -7.82

Using WriteF this would be:
for i := 5 to 14 do

WriteF(stream," "'x(°,i2,") =",£7.4,2x, y(,i2,") =",f6.2,/",i, xli, i,
yli)

Relevent FORTRAN format rules.

BCPL Reference Manual Page 87
JSYS Interface

C.2 JSYS Interface
The global declaration is in <BCPL>HEAD.BCP.

JSYS(JsysNumber, InputACs, OutputACs)
Perform a JSYS call. .
JsysNumber: just that. The file <BCPL>JSHEAD.BCP has a set of
manifest declarations for the JSYS names.

InputACs: A vector (of at least 16 cells) having the Values of
the input AC's to the JSYS.

vil equals ACl, v|2 equals AC2, etc.

OutputACs: A vector (of at least 16 cells) for the vValues of
the output AC's from the JSYS.

JSY¥S(n,v) 1is equivalent to JSYS(n,v,v)
JSYS(n) allowed also (some JSYS's don’t require parameters).

Value: the number of instructions skipped plus one.
NOTE: There is a "get" file of manifest declarations for JSYS names:

<BCPL>JSHEAD.BCP, in which each JSYS is named by prefixing "js*
to the JSYS name (e.g. JjsGTJFN).

BCPL Reference Manual Page 88
Byte Manipulation

C.3 Byte Manipulation
The global declarations are in <BCPL>HEAD.BCP.

POINT(Size,Location,RightmostBit)
Construct a PDP-10 byte pointer.

Size: the byte size (number of bits in a byte)
Location: the Address of the cell containing the byte

RightmostBit: the bit position in the cell of the right-most
bit in the byte. Bits in a cell are numbered from 8 to
35, from left to right. This argument may be absent; if
so, it is assumed that you mean the first (leftmost) byte
in the indicated word (Location). POINT is meant to be
used like the POINT Pseudo-op in MACRO-14.

LDB (BytePtr)
Extract a byte. Value is the byte.

DPB(Byte, BytePtr)
Deposit the specified byte.

ILDB(BytePtrLV)

Increment the byte pointer and then extract a byte. Value is
the byte.

BytePtrLV: The Address of a cell which contains the byte
pointer.

IDPB(Byte, BytePtrLV)
Increment the byte pointer and then deposit the specified byte.

IBP(BytePtrLV)
Increment the byte pointer.

BCPL Reference Manual Page 89
String Manipulation and Number Conversion

C.4 String Manipulation and Number Conversion

Packstring
Unpackstring
StringToASCIZ
ASCIZToString
Egstr
TxtTolnt
findsubstr
scanuntil
changesubstr
scanpastst
pullch

putch

addch

append
inttotxt
inttoocttxt

The global declarations are in <BCPL>HEAD.BCP, <BCPL>UTILHEAD.BCP, and
<BCPL>STRINGHEAD.BCP.

Conventions:

Characters within a string are numbered starting at 1. the
routines assume adequate storage for strings...e.g. 1in append, the
output string is assumed large enough to hold the result. BCPL
strings can be no bigger than 511 characters. Beware: NO checking for
string buffer overflow or more than 511 characters is done.

Conversion routines for packed and unpacked BCPL strings:
Vector |® is character count [{unpacked format]]
so is g4 (Stringl#¥) {[[packed format]]
Vector|in is the nth character in the string [[unpacked
format]}

Packstring
Packstring(Vector,String) returns the string

Unpackstring
Unpackstring(String,Vector)

Conversion routines for BCPL and ASClZ strings:

StringToASCIZ
StringToASCIZ (BcplString,VectorForASCIzZString)
returns the vector.

ASCIZToString
ASCIZToString (ASCIZString,VectorforBcplString)
returns the vector.

BCPL Reference Manual Page 990
String Manipulation and Number Conversion

Egstr
Egstr(stringl,string2) returns true if the two BCPL strings
are equal, false otherwise

TxtToInt(string)

This subroutine converts the indicated text string into a
number. Leading spaces or tabs are NOT allowed. The string
may be prefixed by a minus sign or a # character or by both.
The minus sign means negative, and the # character means
octal (default case is decimal). 1If the lh of the argument
is negative, the right half 1is wused as the pointer to a
vector, and the string is input unpacked (see Unpackstring).

findsubstr (str,substr,slv,elv,scn)

Find the indicated substring (substr) in the indicated string
(str)- start searching at character number scn. If the
substring is found, return the character number of its first
character. in rv slv, and the character number of its last
character in rv elv, and resultis true, else resultis false.

scanuntil (line,buffer,chnlv,cl,c2,c3, ...)

Search for one of (up to) 18 characters in a string starting
at the indicated character position (rv chnlv). 1If "buffer™
is non-zero, it is taken as a vector in which a BCPL string
having the scanned characters is to be constructed. Resultis
true if one of the indicated characters 1is found, false
otherwise. rv chnlv is the character numpber of the located
termination cnar. 1If none is found, rv chnlv is unchanged.

changesubstr (str,srchsubstr,newsubstr)

Change all instances of the indicated substring (srchsubstr)
in the indicated string (str) to the indicated new substring
(newsubstr) . Resultis a ptr to the changed string
(newsubstr) .

scanpastst(line,chnlv)
Search the indicated string (line), starting at the indicated
character, (rv chnlv). Return the character number of the
first non-space or tab character in rv chnlv. It is assumed
that "line" is a string which has at least one non-(space or
tab) character.

pullch(txt,cp)

This fn returns the element (a character) at the specified
character position (cp) within the specified string (txt).

putch{(ch, txt,cp)

pBCPL Keterence manual rage Yl
string sanipulation and wNumper (onversion

inis proceaure replaces tne cnaracter at the specifiea
character position (cp) within the specitied string (txt)
witn the specitied character (ch).

addacn{cn, txt)

Append tne specitied cnaracter (ch) to the specitied string
{txt) .

append(tl,tZ,t3)
Append tne string tZ to tne string tl and store result in tne
string tJ3. Any two or all three specitied strings can be
itentical. bhe thira argument is returnea as tne value ot
tne tunction cadl.

inttotxt(1,txt)

intcooctext(1,txt)

These functions convert tne inalcated number into a text

string 1in tne 1lnuicated vector. “inttotxt" generates decimail
egulvaient, “lattoocttxt" gJeanerates octal egulvalent (i.e.
preceaeu w0y a # character). If reguirea, a minus 31iyn

appears. ‘Ihe second argument (txt) is returneud as the value
oL tne function caid.

tloat(x)

convert tne speclrled integer (x) to a rdoatiny polnt numoer.
value: tnis numoer,

Lix(x)
truncate tne specifieu fliovating point numver (x). Vvalue: tne
integer result.

LiXrC (X}
same as Lix, put wlitn rouna-orf instead of truncation

BCPL Reference Manual Page 92
Error Handling '

C.5 Error Handling

The global declarations are in <BCPL>HEAD.BCP and <BCPL>UTILHEAD.BCP.

ErrSet(severity,resultlv,function,argl,arg2,...)
A call on ErrSet establishes a point in vyour program’s
environment to which to return if an error occurs (see ERROR,
below) during the call on the indicated function.

severity: a number to indicate how "severe" an error needs to be
to cause a return to this ErrSet call.

resultlv: The Address of a variable into which to store the
Value of the function call if the function returns without
inducing an error. If this argument is zero, it is
assumed that you don't want the Value of the function
call.

function: The function to call
argl,arg2,...: The arguments to the function.

The result of the call on ErrSet is true if the function call
succeeded, and equal to the severity of the error otherwise.

ERROR (n)
A call on ERROR induces an unsuccessful return from the most
recent call on ErrSet such that n is less than or equal to the
severity of the ErrSet. The Value of the ErrSet call will be n.

Level ()
Returns value of stackpointer for current environment. This is
needed (for example) for LongJump and LongDebrk (in PSI pkg.).

LongJump(label, level)
Loads level into stackpointer (AC 16), then jumps to label.

ERSTR(ErrorNumber) or ERSTR(stream,errornumber)
Uses the ERSTR jsys. Arguments are handled like WriteN.

Help(string))
prints out the string, and a help message, and then HALTF s.
CONTINUE will cause Help to return.

BCPL Reference Manual Page 93
Arrays ,

C.6 BCPL Array Package
Dimension

sub

ArrayCheck

The global declarations are in <BCPL>UTILHEAD.BCP.

A function (sub) is provided to compute a vector subscript for a
multidimensional "array," given the subscripts and a "dope vector"
describing the dimensions of the array. A function (Dimension) is
also provided for forming dope vectors. Arrays are indexed so that
for consecutive words in the vector, the 1lst subscript varies most
rapidly, as in FORTRAN, There is a limit of 18 on the number of
dimensions.

Array bound checking is performed given either of two conditions:
1. Global variable ArrayCheck has the Value true (initially
false).
2. The zeroth element of the dope vector is minus the number of
dimensions. This can be accomplished by giving a negative
first argument to the function "Dimension".

The function Dimension forms a dope vector. Arguments:

dopevec = a vector which will be stuffed with the dimension
information. Must be of length 2*ndimensions+3
If dopevec is given as -vector, then the dope vector will be
flagged to cause array bound checks to be done.

There follow pairs of minimum and maximum subscript values for as many
dimensions as the array is to have.

The resulting dope vector has the following form:
ndims, minl, 1, min2, (maxl-minl+l), min3,
(maxl-minl+l)* (max2-min2+1) yeseys Nil,
(maxl-minl+l)*...*(maxN-minN+1)

The function sub computes the vector element given the dope vector and
the array subscript(s).

For example:
let foo,foodim:=vec 121,vec 7
Dimension(foodim,9,16,-5,5)
for i:=@0 to 18 do for j:=-5 to 5 do
{ foolsub(foodim,i,j):=i,,3}

BCPL Reference Manual Page 94
Hash-coded Dictionary

C.7 Hash-Coded Dictionary
DictGetFree
DictRetFree
TBP
InitDict
RestoreDict
Enter
Find
NextDictEntry

The BCPL dictionary package is a collection of subroutines which
are used to construct and maintain a hash-coded dictionary. This
dictionary provides a mechanism for relating a specified BCPL string
to a "dictionary entry" (via Enter and Find). This entry is a block
of adjacent cells which has two parts: a header of at least one cell,
followed (in memory) by enough cells to store the string. The
right-most quarter of the zeroth cell of the header is used to store
the number of cells in the header.

The "get"” file of GLOBAL and EXTERNAL declarations for the
dictionary package is <BCPL>DICTHEAD.BCP. The BCPL library contains
the dictionary package; it will be 1loaded automatically with vyour
program if you need it.

The dictionary package deals with relative pointers. The idea is
that a dictionary may reside anywhere in memory. 1Indeed, the program
can deal with several dictionaries, each residing in a different
portion of memory, by specifying the base address for the relative
pointers in the new dictionary of interest when a switch between
dictionaries is made (via RestoreDict). Accordingly, when the user
constructs and initializes a new dictionary (via 1InitDict), he
specifies its base address; if he doesn’t want to deal with relative
pointers, the base address should be zero.

The dictionary package uses a free storage allocation mechanism
which must be provided by the user. This leaves the user free to
define his own free storage strategy, and decide from whence free
storage cometh. There is a standard free storage allocation package
for TENEX BCPL, described in section C.8 below.

The free storage mechanism for the dictionary is two subroutines,
referenced as GLOBALs by the dictionary package, and expected to be
defined by the user and loaded along with his program:

DictGetFree(n)
should return a pointer to a block of n registers

DictRetFree(pointer)
should put the indicated block of registers back into the free
storage pool

The subroutines which are provided by the dictionary package are
presented below:

BCPL Reference Manual Page 95
Hash-coded Dictionary

InitDict (hashsize,offset)
purpose: create and initialize a new dictionary

hashsize: size of the primary hash table. For best results,

this should be roughly 58% bigger than the number of entries
expected.

offset: base address for dictionary pointers

Value: a relative pointer to the primary hash table (called

"hashstart" below). (Note: InitDict will call DictGetFree
to allocate storage for this table).

RestoreDict(hashsize,offset,hashstart) ,
purpose: reset the dictionary package to consider an old
(previously initialized) dictionary. This 1is useful
when dealing with more than one dictionary, when you
want to switch between them.

hashstart: a relative pointer to the primary hash table

Value: hashsize.

Enter (wrd,address,datalength)
purpose: enter a given word in the dictionary
wrd: a pointer to a BCPL string

address: the address of a storage cell into which to store a
relative pointer to the dictionary entry.

datalength: The number of cells to allocate (except for the

rightmost quarter of the zeroth cell) for the header of the
dictionary entry.

The Value is a Boolean:
true => it was found to be already entered
false => it was not found to be already entered.

Find (wrd,address) .
purpose: find the dictionary entry for a given word

wrd,address: same as for Enter
The Value is the same as for Enter.

Delete(wrd,address)
purpose: delete the dictionary entry for a given word

wrd,address: as above
Value:

true => it was found and deleted
false => it was not found

BCPL Reference Manual Page 96
Hash~-coded Dictionary

NOTE: even though a pointer to the entry is returned in
the specified storage cell, the storage for the entry
will have been reclaimed (i.e. a call will have been
made on DictRetFree) by the time Delete returns.

NextDictEntry(firstblv,entrylv)
purpose: find all the dictionary entries, one at a time, in an
undefined order

firstblv: the Address of a storage cell which should contain
true for the first call on NextDictEntry, and false for
subsequent calls. NextDictEntry will set the value of the
storage cell to false before it returns the first time.

entrylv: the Address of a storage cell into which to store a
relative pointer to the next dictionary entry. Meaningful
only if the result of the call on NextDictEntry 1is true.

Value: true if there is a next entry, false otherwise.
Example: ["base" has the dictionary base address as its value]

// print out all entries in a dictionary
{ let b:=true
let entry:=nil
while NextDictEntry(lv b, lv entry) do
"] WriteS(baset+entry+qlz baselentry)
PBOUT(S*n)
}

(The following discussion is for users who want to replace the
dictionary package’s hash-coding algorithm with their own).

The dictionary subroutines hash-code the input BCPL string to
yield an address into the "primary hash table". This table is marked
to indicate (for each entry) whether it is full, and, ifso, where an
overflow ("secondary") hash table is for that entry. The subroutine
which does the hash coding is named TBP, is referenced as an EXTERNAL
by the dictionary package, and a standard version of it is part of the
BCPL library. The user is free to define his own TBP subroutine, and
load it with his program. For a user who wants to do this, the specs
for TBP are presented below:

TBP()
returns an address relative to the start of the hash table whose
length is the value of GLOBAL #352, where a pointer to the input
string is the value of GLOBAL #351, and where the value of GLOBAL
#3509 is the number of registers used to hold the string, minus 1.
This equals: (g4 GL351|0)/4

BCPL Reference Manual Page 97
Free Storage Allocation

C.8 Free Storage Allocation
GetBlock
RetBlock
ResetFreeStore
GetStorageSpace

This package is meant to manage memory allocation; the user
specifies large regions of memory (via GetStorageSpace) that are to be
carved up into blocks (via GetBlock) in response to his subsegquent
requests. No “"garbage collection" 1is done; i.e. it is the user’s
responsibility to explicitly release blocks of storage when they are
no longer needed (via RetBlock).

The BCPL free storage package consists of three subroutines:

1. GetBlock(n)
returns a pointer to a block of n storage cells

2. RetBlock(pointer)

reclaims a free storage block which was previously allocated
by GetBlock

3. ResetFreeStore()
This re-initializes the free storage routines.

The "get" file of GLOBAL declarations for the free storage
package is

<BCPL>FREESTOREHEAD .BCP

The BCPL library contains the free storage package; it will be
loaded automatically with your program if you need it.

The free storage package expects that the user will provide a
subroutine for allocating big chunks of memory for its use:

4. GetStorageSpace(npages)
Value should be a pointer to a new chunk of memory of the
specified number of pages. Currently, the npages argument
will be 16.

BCPL Reference Manual Page 98
PSI Handling

C.9 PSI System Interface
PSICHN
PSILEV
PSIPC
FNTBL
PSICH®
PSISetCh
PSIOn
PSIOff
PSIClear
PSIChEnb
PSIChDis
PSIChInit
IsPSIChEnb
FreeTICh
ATI
DTI

The software support for use of the TENEX pseudo-interrupt system
from a BCPL environment comes in two pieces. The first, named BPSI,
is a machine language component which is necessary for PSI operation.
The second, named PSI, 1is a set of BCPL functions and subroutines
which interface to the pseudo-interrupt system JSYS's. Both npackages
reside in the BCPL library, and are loaded automatically when a BCPL
program in which they are referenced is loaded. Such a program should
"get" <BCPL>PSIHEAD.BCP. For a detailed discussion of the TENEX PSI
system, see Chapter 5 of the TENEX JSYS Manual.

BPSI: the basic machine language package

The basic operation of a pseudo-interrupt is: When an interrupt
occurs, a table 1is consulted for an address to which control is
transferred. The section of program so selected saves any AC’'s it
needs, <carries out its processing, then either restores AC’s and
debreaks to the previous environment, or initializes any AC's it needs
and debreaks to an arbitrary address. In a BCPL environment, this
needs to get translated to: when an interrupt occurs, consult a table
for the name of a BCPL subroutine, and cause it to be run. If it
returns, restore to the previous environment. Also provide a means by
which the interrupt can be debreaked (debroken?) and control
transferred to some arbitrary label. These services are provided by
the BPSI package.

BPSI contains the following, which are declared external in
<BCPL>PSIHEAD.BCP:

a. PSICHN -~ PSICHN|i, i=06,1,...,35 is the PSI channel table.
b. PSILEV - PSILEV}i, i=1,2,3 is the PSI level table.

c. PSIPC - PSIPC|i, i=1,2,3 holds the PC for level 1i.

BCPL Reference Manual Page 99
PS1I Handling

d. FNTBL - FNTBL|i, 1i=6,1,...,35, contains a JRST to the
subroutine to be executed upon interrupt on channel i.

e. PSICH® - An interrupt on channel i should transfer to
location 4*i + 1lv PSICHA@.

In order to set up an interrupt on channel C, at 1level L, to
execute routine R, do the following:

1. Set PSICHNI|C to L,,4*C + 1lv PSICHA.

2. Set FNTBLIC to R.

3. Enable PSI channel C using the AIC JSYS. If not already
done, set up the entire PSI system with the SIR JSYS (AC2 =
lv PSILEV|1l,,1lv PSICHN|®) and enable it with EIR.

When the interrupt occurs, the routine R will be called with
three arguments:

1. Level of interrupt

2. Channel of interrupt

3. Lv of the PC storage word for this interrupt.

To return from the interrupt, the routine R merely returns. of
course, it can not return a value. To transfer to some label, with
which 1is associated a level (stack pointer), call the routine
LongDebrk(pclv,label,level), where:

pclv = Lv of the PC storage word

label The label to be transferred to

level = The level associated with the 1label (may be obtained
from the function Level() in <BCPL>UTIL.)

WARNING: The present implementation of BPSI contains the
following fudge: when the interrupt subroutine is run, a new stack
frame is made for it by adding 50000 to the existing one. This
obviously will fail in cases where the current stack frame is very
large. Beware of this until the BCPL code generator is modified to
provide a solution to this potential bug. You have been warned!

BCPL Reference Manual Page 104
PSI Handling

PSI: the user routines

PSI contains a number of functions and subroutines which act as
an interface between the user and the JSYS's which control the
pseudo-interrupt system. Use of this package is not necessary for
pseudo-interrupt usage, as 1is BPSI. The information given above is
sufficient for the user to implement direct calls to the appropriate
JSYS s. Although the functions and routines described here are
intended to cover the most common types of pseudo-interrupt usage,
they are not exhaustive or completely general. 1In order to realize
the full flexibility of the TENEX pseudo-interrupt system, the user
may have to supplement them with other direct JSYS calls. 1In
particular these routines do not give access to the JSYS's RWM, SIRCM,
RIRCM, STIW, or RTIW.

The default, where appropriate, 1is for all pseudo-interrupt
operations to refer to the current fork. However, PSISetCh, PSIOn,
PSIOff, IsPSIOn, PSIChEnb, PSIChDis, PSIChInit, and 1IsPSIChEnb can
take a fork handle as an optional first argument in addition to the
arguments shown below.

PSiISetCh(level ,channel,routine) - set up for an interrupt on the
given 1level and channel, to dispatch to the given routine. Also
enable the channel.

PSIOn() - declares the level and channel tables and enables the
pseudo~-interrupt system.

PSIOff() - disables the pseudo~-interrupt system.

PSIClear () - clears all interrupts in process and all waiting
interrupts.

PSIChEnb(channell,channel2,...) - enables channel(s) given by the
argument(s).

PSIChDis(channell,channél2,...) - disables channel(s) given by
the argument(s).

PSIChInit(channell,channel2,...) - initiates interrupt(s) on the
channel (s) given by the argument(s).

boolean:=IsPSIChEnb(channel) - returns true if the channel has
been enabled.

value:=FreeTICh() - returns the number of a free channel which
may be used for a terminal interrupt. terminates with a message
if none is free.

ATI (character,channel) - assigns the character to cause
interrupts on the given channel and sets the terminal interrupt

word (nondeferred) for that character. Does not enable the
channel. Terminates with a message if character is not a valid

BCPL Reference Manual Page 101
PSI Handling

terminal interrupt character.

DTI(character) - breaks the assignment of character to whatever
channel it was assigned to.

Example program:

get "<BCPL>HEAD"
get “<BCPL>UTILHEAD"
get "<BCPL>PSIHEAD"

manifest{ rubout:= 177}
static { savedlabel:=nil; savedlevel:=nil}

let Start() be
{ OUTPUT:= 1081
let foo:=$A-1
let rubchnl:=FreeTICh() //Find a free channel for rubout int.
ATI (rubout,rubchnl) //Assign rubout to it
PSISetCh(l,rubchnl,rubint) //Level 1, that channel, to rubint
PSIONn ()
savedlabel :=here
savedlevel:=Level ()
here:
Writech($*n) //Ridiculous program just
foo:=foo+l // to have something to do
for i:=1 to 72 do // til user types rubouts to
{ Wwritech(foo) // show that PSI's work!
Wait(2060)
}
goto here

}

and rubint(l,c,lvpc) be //rubout causes this routine
{ Writes("*sXXX") // to be run

LongDebrk (lvpc,savedlabel ,savedlevel)
}

BCPL Reference Manual Page 162
Miscellany

C.1# Miscellany

The global declarations are in <BCPL>HEAD.BCP and <BCPL>UTILHEAD.BCP.

InitACs
InitACs is a vector containing the initial AC's
InitACs|® := ACO on start-up ...
in addition, InitACs|16 := base of the runtime stack

ACCall (subr,v,v)
Similar to JSYS, except first argument (subr)is the Vvalue
of a subroutine which expects to be called via

PUSHJ 17,subr
and expects arguments in AC’s

TLOCK (1l ‘LockWord)
Does an "AOSE" (add 1 and skip if result equals zero) on
LockWord, and returns false if the AOSE skips, true
otherwise. T

blt(from,to,last,safe)
from, to, and last are Addresses of:
the zero'th word of the source block
the zero’'th word of the destination block, and
the last (N.B. NOT last+l) word of the destination block,
respectively.
The fourth argument (safe) is optional. If present, a
check is made for overlapped blt and the right thing is
done if necessary

NumbArgs ()
no arguments. The Value returned is the number of
arguments in the most recent call on the function or
routine which called NumbArgs.

Wait (number of milliseconds)

MakeDate(v,d)
builds a BCPL string of the specified date and time (d)
(using the ODTIM JSYS)in the specified string (v). If 4
is missing, the current date and time is used. This also
happens if 4 1is =zero. MakeDate returns its first
argument.

Date()
returns the current date and time ala TENEX. (a 36 bit
number) .

min(argl,arg2,arg3,...)
Returns the minimum of the arguments, Assumes args are
either all integer or all floating point.

BCPL Reference Manual Page 103
Miscellany ’

max (argl,arg2,arg3,...)
as above, but maximum.
FORTRAN-BCPL Interface
FArg(type,arglv)
Returns a Value of the proper form for an argument to a FORTRAN

function or subroutine (i.e. #328B9 + typeBl2 + arglvB35). Argument
types (cf. DEC FORTRAN manual, chapter 9) are:

2 integer 4 octal

1l (unused) 5 hollerith

2 real 6 double precision
3 logical 7 complex

Many FORTRAN routines do not check the type or presence of the #320B9,
but they are necessary for others. FORTRAN arguments are passed by
Address, so arglv must be an Address, not a Value., This means:

l. strings and vectors are passed as "themselves",

2. simple variables are passed by Address.

3. constants can't be passed. You must define a variable with
the value of the constant, then pass its Address.

FCall(globalval, argvec, acllv)

Calls a FORTRAN function or subroutine whose entry address (which
must be declared external) is given by globalval.

argvec|® = number of arguments
argveclil = first argument, a la FArg
(etc.)

acllv is an optional argument, the Address of a variable into
which to stuff the second word of a returned double precision or
complex Value (which FORTRAN returns in ACl).

Example:

manifest { real:=2}

external { AMAX1}

let fargs:=list 2, FArg(real, lv a), FArg(real, lv b)
Tet amax:=FCall(lv AMAX1l, fargs)

Note: FArg and FCall apply to the o0ld DEC FORTRAN system (F48),
not the new one (FORTRAN1®).

Hint: For programs which use FCall often, the following
function, which does not allow the use of the 3rd argument to
FCall, may be useful:

let FFCall(routinelv, nil repname 39) := valof

{ 1let x := routinelv

BCPL Reference Manual Page 104
Miscellany

routinelv := NumbArgs()-1
resultis FCall(x, lv routinelv)

}

This lets the example call above look like:

let amax := FFCall(lv AMAX1l, FArg(real, lv a), FArg(real, 1v
b)) T

BCALL is a FORTRAN-callable function which allows a FORTRAN
program to call a BCPL function or subroutine, providing:

1. The BCPL function’s use of stack space does not exceed the
fixed amount provided within BCALL (currently 5808 words)

2. The BCPL function accepts all arguments as Addresses, which is
what FORTRAN delivers,

3. BCALL is not used recursively: FORTRAN world «calling BCPL
through BCALL, which calls more FORTRAN things through FCall,
which calls still more BCPL stuff through BCALL... (this
restriction will eventually be removed).

Usage:

CALL BCALL(BPROC,ARG1,ARG2,...)
REAL=BCALL (BPROC ,ARG1 ,ARG2,...)
INTEGR=IBCALL (BPROC,ARG]l ,ARG2,...)

where:
BPROC=BCPL procedure, declared in an EXTERNAL statement
ARGl, etc.=arguments to BPROC.

Naturally the only BCPL procedures which can be called by name
directly are those which have external declarations. Those declared
as globals have to be called as GL147, etc.

BCPL Reference Manual Page 105
BCPL Maker's Guide

D. TENEX BCPL Maker 's Guide

There should be a <BCPL> directory and a <XBCPL> directory. The
former 1s for the 1library sources, and HEAD files, and initialized
bpinary data structures for the compiler (e.g. the initial dictionary
and symbol table). The latter is for the compiler source files.

The compiler is
<SUBSYS>BCPL.SAV

The BCPL library is
<SUBSYS>BCPLIB.REL

To make a compiler: load <XBCPL>XBCPL.REL and ssave it on
<SUBSYS>BCPL.SAV

<XBCPL>XBCPL.REL is a FUDGE2 file which is composed of the following
.REL files: .

HANDCD (hand coded stuff -- for efficiency)

NLEX1 (lexical analysis)

NLEX?2

NMAIN1 (The main program and error handling stuff)

NMAIN2

NMAIN3

CAE® (builds the parse tree)

CAEl

CAE2

CAE3

CAE4

TRNY (translate the parse tree to @CODE)

TRN1

TRN2

TRN3

TRN4

TRNS

TRN6

TRN7

TRNS8

TRNI

CGo (translate the PCODE to a .REL file)

CGl

CG2

CG3

CG4

CG5

BCPL Reference Manual
BCPL Maker ‘s Guide

Page 166

The following files should be in the <XBCPL> directory:

BCPLERRORS.DOC

CAED.BCP
CAE1l.BCP
CAEZ.BCP
CAE3.BCP
CAE4.BCP
CGo.BCP
CGl.BCP
CG2.BCP
CG3.BCP
CG4.BCP
CG5.BCP
HANDCD . MAC
HEADBCPL.BCP
HEADCAE.BCP
HEADCAECON.BCP
HEADCG .BCP
HEADJIMREAD.BCP
HEADLEX.BCP
HEADLEXCON,. BCP
HEADMAIN, BCP
HEADSYMB.BCP
BEADTRN. BCP
HEADTRNCON, BCP
INITDICT

MERMSG.SAV
MERMSG.BCP
MKCPDC.SAV
MKCPDC.BCP
NLEX1.BCP
NLEX2.BCP
NMAIN1.BCP
NMAINZ.BCP
NMAIN3.BCP
OCODE.BCP
OCODE.SAV

OCODETXT.BCP
OPCSPLNGS. BCP

PDPOPS.BCP
TREE.BCP

TRN@.BCP
TRN1.BCP
TRN2.BCP
TRN3.BCP
TRN4 .BCP

(text of compiler error messages --

specially formatted)

(head files used by the compiler sources)

(text file for compiler dictionary --
specially formatted)

(program
(program

(utility

to build ERRMSGS.BIN;1)
to build COMPDICT.SAV)

program to convert the binary
@CODE file to text)

(*get" file for OCODE.BCP)

(a llget“

used by
(a “get"
used by
(a Ilgetll

file of MACRO instruction names --

CG)
file of PDP-10 OPCODES --
CG)
file of tree node names --

used by MAIN)

BCPL Reference Manual Page 107
BCPL Maker ‘s Guide

TRNS5.BCP
TRN6.BCP
TRN7.BCP
TRN8.BCP
TRN9,BCP
XBCPL.REL (the compiler REL file)

To make XBCPL.REL, assemble HANDCD.MAC, and compile (using
<SUBSYS>BCPL.SAV) the BCPL programs, then use FUDGE2 to construct the
big .REL file with /A.

BCPL Reference Manual Page 108
BCPL Maker s Guide

The <BCPL> directory should have the following files:
BCALL.MAC (FORTRAN-BCPL interface)
BCFAST.MAC (hand coded library functions and routines)
BCMAIN,MAC (the main program -- required if START is

defined)
BCPLIB.REL (the BCPL library -- a FUDGE2 file)
BDICT.BCP (part of the hash coded dictionary package)
BPSI.MAC (part of the PSI package)
COMPDICT.SAV (the initial compiler symbol table -- binary)
CONC.BCP (the CONC utility)
CONC.SAV (make by compiling, loading, and SSAVing
CONC.BCP)
DICT.REL (a FUDGE2 file composed of BDICT.REL

and TBP.REL)
DICTHEAD.BCP
ERRMSGS.BIN (the compiler error messages =-- binary)
ERRSET.MAC (error handling package part)
FMT.SAV (the BCPL source file formatting utility)
FMT1.BCP
FMT2.BCP
FMT3.BCP
FMT4.BCP
FMT5,.BCP
FMT6.BCP
FMT7.BCP
FMT.CMD (list of files to compile and load to make
FMT.SAV)
FREESTOREHEAD.BCP
FRESTR.BCP (the free storage package)
HEAD.BCP
HEADFMT.BCP
IOFMT.BCP (the formatted I/0 package)
IOLIBE.S
IOLIBE.BCP (I/0 package)
JSHEAD.BCP (JSYS names and manifest definitions)

MANUAL.DOC (the BCPL manual)
NETLIB.REL (a FUDGE2 file composed of NL.REL
and XNTLIB.REL)
NL.BCP (part of the network interface package)
NLHEAD.BCP
PSAVE.SAV (the PSAVE utility ~-- make by compiling and
loading PSAVE.BCP)
PSAVE. BCP (prints useful information about a SSAV file)
PSI.BCP (the rest of the PSI package)
PSIHEAD.BCP
PSYMB.SAV
PSYMB.BCP (the PSYMB utility)
STRING.BCP (the string package)
STRING.REL
STRINGHEAD .BCP
TBP.MAC (the rest of the hash-coded dictionary package)
UTIL.BCP (goodies in the library)

UTIL.S

BCPL Reference Manual Page 109
BCPL Maker s Guide

UTILHEAD.BCP
XNTLIB.MAC (the rest of the network interface package)

BCPL Reference Manual " Page 11¢
BCPL Maker s Guide

The compiler uses the following files at compile time:
<BCPL>ERRMSGS.BIN;1 '
<BCPL>COMPDICT.SAV

To make ERRMSGS.BIN;l
Delete <BCPL>ERRMSGS.BIN;1 and expunge it. Connect to
<XBCPL> directory.
Compile, load, and run MERMSG.BCP
It will use <XBCPL>BCPLERRORS.DOC to create a new
<BCPL>ERRMSGS.BIN;1
This file is used to print error messages.

To make <BCPL>COMPDICT.SAV
Connect to the <XBCPL> directory.
Compile, load, and run <XBCPL>MKCPDC.BCP
It will ask for the name of an input file.
Give it: INITDICT<carriage return>.
It will print out the octal address of the start of
dictionary, and the end. (start: #260000)

the

the

Do an SSAV from 268 to 261 (or to the last used page) onto

<BCPL>COMPDICT.SAV.
This file is used during compiler initialization.

To make OCODE.SAV:
Compile, load, and SSAV OCODE.BCP. The compilation will
OCODETXT.BCP as a "get" file.
When run, OCODE.SAV will ask for a program root name.
assumes a .0 file for that program exists (binary ocode
from the compiler...generated if you use the /0 switch in

compilation) and makes a text file with the extension .OCODE

To make PSYMB,SAV:
Compile, load, and SSAV it onto PSYMB.SAV

use

It
file
the

This program generates a readable (text) version of the binary

symbol table file (<rootname>.S file).

To make BCPLIB.REL
Use FUDGE2 to make a library of the following .REL files, in
order specified:

BCMAIN
IOFMT
FRESTR
BDICT
TBP
PSI
BPSI
UTIL
IOLIBE
BCFAST
BCALL
ERRSET

the

BCPL Reference Manual Page 111
Debugging--The BDDT Subsystem

APPENDIX E: Debugging

The BDDT subsystem on TENEX is used to examine and control the
execution of BCPL programs. 1Two interesting features of BDDT are tne
isolation of the command 1language from the peculiarities of the
machine on which the user’s program runs, and the interface between
BDDT and the user’'s program. Both of these features were designed to
allow BDDT to run on TENEX and debug a BCPL program which runs either
locally or on another machine on the ARPANET, BDDT 1s currently
available on TENEX for debugging B3CPL programs that run locally, and
will soon be available for debugging BCPL programs that run on a
remote TENEX or on a remote PDP-11.

E.l How to invoke BDDI: The EXEC BDD1 Command

The TENEX EXEC language has a BDDT command, similar to the 1IDDT
command, which <calls B8DDT to debug a program. This command can be
used in two ways: either before running a program, or after it has
been interrupted by control-C. The first way is to tell the EXEC

¢RESET
€B8DDT

This will start running 8DDT, which will ask for the name of a program
to debug. The extension (if not given) is assumed to be .5AV. A
variation on this method is to 4o a RLSkT, then GEI the program (using
the EXEC GET command), and then type BDDT. The second way is to give
the BDDT command to the EXEC after stopping your program with
Control-C. This will start BDDT, with the program loaded, and will
act exactly as if BDDT had been used to run the program.

When entered, BDDT types out "!BDDT!", and attempts to 1load thne
symbol tables created by the BCPL compiler for each of the BCPL files
in the program. In order to find these files, BDDT wuses the symbol
table created by tne LCGADER to find the name of the .REL files tnat
were loaded. The symbol files are assumed to have a .S extension, and
only the first 6 letters are used in the file name. If the BCPL file
had more than 6 letters in its name BDDT may not be able to find its
symbols. Symools are not loaded for any part of the program for whicn
the .S file is not found on the CONNECTed airectory.

Once BDDT nas been run using the EXEC BDOT command, you can {Quit
(see E.2.5 below) at any time and later (as long as you don’'t destroy
your program) issue the BDDT command. Instead of loading a new
version of BDDI, the EXEC will re-start the ola version, so that the
sympol files and preakpoints will not be lost (just like witn IDDT).
If you want to load a new version of BDDI you snould Quit BDDT and use
the NU BDDT command to the EXEC (you will thereby lose any breakpoints
you may have set using BDDLY).

The EXEC IDDT and BDDT commands can be used jointly. Typing 3DDT
to the EXEC will cause control to go to BDDT, while typing IDDT to tne
EXEC will cause control to go to IDDT. 1In this way, both debuggers

BCPL Reference Manual Page 112
Debugging--The BDDT Subsystem

can be applied to one program. Since it is not possible to run both
IDDT and BDDT at once, only the one that most recently started or
continued the program will set its breakpoints in the program. Be
sure to exit from IDDT to the EXEC using “";h", and from BDDT to the
EXEC using tne "quit" command.

.2.1 Commands to Control Program Execution

E.2 BDDT Commands
E.Z<.

There are 1% commands which can be used to control the execution
of a vprogram from BDDI. These commands are Start, Break, Unbreak,
Continue, Goto, Retfrom, Set.BDDT.Break.Character, TKet, watch, and
Unwatch,

BDDT nas a special "break character" wnicn is used to stop your
program when it is running. Typing this character (which is initially
RUBOUT, but can be changed using the Set.BDDT.break.cnaracter command)
stops your program as- Soon as it reaches a point where BDDT thinks
tnat the stack is safe (see section E.6 below), and prints out tne
state of your program. It then returns control to BDDI. The break
character is useful for stopping a program when it has "run-away" and
is not encountering any breakpoints, or it is hung for some reason, or
for stopping the program to examine some variables.

In addition, both RUBOUT and the break character can be used at
any time to abort a command to BLDI. In most cases, this will
instantly abort the command, and return to 3DDT command level. when
you are giving a subcommand, however, it will abort only the
supcommand, not the top-leve. command.

Start -- This commnand starts your program at its normal start
aadress., It is usetul for starting a debugging session, and also for
re-starting your program.

Break -- This command allows you to specify a point 1in your
program at which to suspena 1its execution and give control to the
debugger. Since it is essential tnat the stack be ‘"sate" Dpefore
control 1is given to 8DbDT, the debugger will simulate your program
until it thinks the stack 1is safe (see section E.6). The break
command must be followed by an SCD (Source Command Descriptor, see
section E.3), which 1is wused to determine where to place the
breakpoint. An SCD indicates a point in tne program, either in terms
of the source text or as an Address. Break has 6 subcommands, whicn
may be wused if the SCD is terminated with a comma. The subcommands
are: : : :

Namelt -- This subcommand is followed by the name to be
associated with this breakpoint. If this subcommand is not
given, a default name will be created and printed. Default names
for breakpoints are "BP1" followed by a small number.

Co == This subcommand is followed by either a list of BDDT
commands (enclosed in curly-braces) to be executed when the

BCPL Reference Manual Page 113
Debugging--The BDDT Subsystem

breakpoint is hit, or tne name of an action (see below) to call
when the breakpoint is hit. If a list of commands is used, a
default name for this action will be <created and printed.
Default names for actions are "ACI" followed by a small numper.
Action routines are useful for tracing the program flow, for
automatically examining the <contents of variables at certain
points in the program, or for doing simple patching.

it -- Ynis subcommand is followed by a BCPL expression (see
section E.2.2). If the Vvalue of the expression is true, the
breakpoint will occur; if the vValue of expression 1is false tne
preakpoint will not occur. ‘ ' T

Count -- This subcommand is tollowed by a number (n). The
debugger will take control when the breakpoint has been alreaady
passed n times. Thus Count 1 would cause tne program to pass the
breakpoint once, and then stop tne next time and give control to
the debugger.

ListAll -- Tnis subcommand will make BDDT type out the
address, action name, condition, and count associated with this
breakpoint when you have finished giving subcommandas.

No =-- ‘“©his subcommand is followed by one of the keywords If,
Condition, Action, Do. Tnis subcommand causes the corresponding
previously executed subcommand to be ignored. (For convenience,

"Condition" can be used instead of "If", and "Action" can be used
instead of "Do"). For example, typing "No Condition" will cause
any previous If subcommand to be ignored.

An example of a Break command 1is:
*Break Start>2,
**1f DoneProcessing
**pDo {NextVal/
0laval/
Oldval:=Nextval
} (named: ACTI1)

**[istAll
* %

when a breakpoint is encountered wnile executing the program, the
following seguence of events occurs: 1) The If expression is checked.
If it is false, the program proceeds and does not turn over control to

BODT; 2) If the condition is true the Count is cnecked. If it is not
zero, 1 is subtracted from it and the program continues; 1if it is
zero, the Action 1is performed (if tnere is one). when tne action
terminates, or if there is no action, control of BDDT is turned over

to the teletype.

Unbreak -- This command removes a breakpoint that was previously
set. The command 1is followed either by a breakpoint name, or a
carriage return to remove all breakpoints.

BCPL Keference Manual Page 114
Debugging--The BDDT Subsystem

Continue -- Continues the suSpended program, either from a
breakpoint, or from where the BDDT break-character was typed.

Goto -- Followed by an SCD (see section E.3). The program
continues from that SCD. This is similar to Continue, but allows you
to specify where to resume execution in your program. For example, if
you don’t want to execute a piece of code, you could put a breakpoint
at the beginning of it and have BDDT perform a Goto to just after it
as part of the action of the breakpoint.

RetFrom -- This is followed by an SD (Stack Descriptor, see
section E.4). An 5D specifies a particular function or routine
invocation in tne current state of the program. RetFrom causes the

program to return from the indicated function or routine. It can
optionally be tollowed by tne Keyword "“With" and an expression, in
which case the value of the expression is returned as the value of the
function call.

Set.BDLT.Break.Character -- This command changes the character
that 1s used to suspend the running program and give control to BDDT,
and also to cancel BDDT commands. It is initially set to rubout. The
break character can be set to any control-cnaracter, or rubout, except
for control=-A, C, kK, and 9.

Tket -- This command is followed by an SD (see section E.4). It
is the same as the Break command, except that it causes a break when
tne program returns from the specified function or routine invocation.
TRet’s automatically remove tnemselves after they occur. The same
subcommands that exist for the Break command can be used with Tket.

watch -- This command is followed by'a list of eitner complete
SCDs, names of functions or routines, or names of KiEL files followed
by ":". It causes these SCDs, routines, or all routines and functions

defined 1in the files, respectively, to be "watched". Normally, tnis
means that when the routine or function is called, a message 1is
printed out on the teletype, and when the routine or function is
exited its result is printed. There are 4 subcommands to watch, waich
can be given if tne last SCD or file is terminated with a comma. They
are:

Header -- This subcommand means that when the watch occurs,
a message snould be printed 1indicating that the watch has
occurred.

lrace -- This subcommand can optionally be followed by a
number. It means that when the watch occurs a trace of that many
frames snhould be printed.

Result -- This subcommand is followed by a type-out mode
(SA, SC, etc., see secton E.2.2). when the routine in which the
Watch occurs exits, the result is printed in the mode specified.

BCPL Reference Manual Page 115
Debugging-~-The BDDT Subsystem

Special -- This (unimplemented) subcommand 1is used to
specify the names of variables that are to be printed out when
the wWwatch occurs,

No =-- The subcommand can be followed by any of the above
subcommands, and the effect is to negate their effect. Thus “No
Header" will make tne watch not print out tne message that it nas
occured.

0ld -- Tnis subcommand is used to undo a subcommand that may
have been given by mistake. For example, “0ld Header" will
restore the watch to either No Header or Header, depending on
what it was before this watch command was given.

Default subcommands are deader, Result $0, and Trace 8.
For example, the command:

*watch write:,Main:Start,DonePrinting,

**Result $S
x %

woula cause a heading to be printed whenever any function or
routine 1in the file Write, tne function Start (in the file Main), or
the routine DonePrinting is entered. whenever one of these functions
or routines is exitted, tne result is printed in string mode.

Unwatch -- This command is followed by a list like the one in the
watch command. It removes any watches that may have been set on tnose
locations. 1I1f no list is given, all Watches are removed.

E.2.2 Commands to Examine Program Status

These commands allow YOU to examine the BCPL source code, the
compiled machine c¢ode, the Values of variables, and the nest of
function and routine invocations.

Expressions are any valid BCPL expression, including, for example
variables, manifests, and the result of a "valof" statement. The
current implementation of BDDT allows only constants, variables,
variable|constant, variaplelvariable, and constant|constant for
expressions ("|" may be replaced oy "1").

Since all variables 1in 8CPL are scoped, BDDT simulates the

scoping rules. In order to be more convenient, however, BDDT
recognizes a sort of "dynamic scope" made up of tne seguence of
routines that have been called. In order to find the value of a

variable, BDDT first examines the symbol table of the routine or
function that was being executed just before BDDT was entered. If the
variable is not found, a list of globals and externals is checked. 1If
it is still not found, BDDT "backs up" one stack frame and searches
again. If, after backing up all the way to the top of the stack, the
symbol still isn’t found, a list of all the unique statics defined in

BCPL Reference Manual Page 116
Debugging--The BDDT Subsystem

all the symbbl tables that are loaded is searched. If all this fails,
an error message ("?") is printed.

Since it is sometimes necessary to examine a variable that is
defined several stack frames back, but is re-defined as a new local
variable in a later function, BDDT has a special "Attention" command
that can be used to make symbol searches start somewhere other than at
the top of the stack. See section E.2.5.

<expreséion>/ -- This causes the Value of the expression to be
printed. Since slash is also the BCPL division operator, any
expression containing division must be enclosed in parentheses.

<expression>= -- This prints the Address of the expression in
octal. It has the same effect as
"lv <expression>/".
If the expression doesn't have an Address, a guestion mark is printed.
Since equals-sign (=) is a BCPL operator, expressions using it as an
operator must be enclosed in parentheses.

{expression>@ -- This has the same effect as
"rv <expression>/".

. == The symbol "." can be used to mean the last thing examined
by either / or @. Thus, typing ./ will print the value of the thing
just examined, .= will type tne Address of tne thing Jjust examined,
and .¥€ will print tne “rv" of the Value of the thing just examined.
This latter is useful for following a cnain of pointers.

line~-feed, Control-H (backspace) and """ -- These commands can be
used any time after examining a Value with either "/* or "@". They
mean “examine the Value of the next storage cell," where the next
storage cell means the one following the cell represented by "." if
the command is linefeed, or the one preceding the cell represented by
“." if the command is """ or backspace. The number of cells to move
forward or back depends on the type-out mode. For example, on the
PDP-11 in instruction type-out ($I) mode, linefeed may print the next
word, or the one after that, depending on whether the instruction is
one, two, or three words long.

Several commands that examine the Values of expressions, or
change Values of expressions can be placed on one line. Line-feed and
""" can be used until you type a carriage-return. For example:

*Argl/ $#19 $d 3 .:=17(*L)
#1081/ #15 Arg2/ 1673 (*C)
*Table/ $#400000 @ $150 $s

HELP!!*nI ‘m*sdead.*n

$A, $C, D, SF, SI, SO, $S =-- These commands change the print-out
mode to ASCIZ string (A). Character constant (C), Decimal integer (D),
Decimal floating point (F), Instruction (I), Octal integer (0), and
BCPL string format (S). If the command has a single dollar-sign (as
above), tne effect lasts until the command 1line is ended with

BCPL Reference Manual Page 117
Debugging--The BDDT Subsystem

carriage-return. If the command has a double-dollar-sign (e.g. $$A),
the effect lasts until another double-dollar-sign command is given.
If any of these commands is given after an expression nhas been
examined, but before a carriage-return, the Value printed is
re-printed in the new mode. The default print-out mode is $D. (In
order to make tne typing easier, and to be more compatible with DDT,
alt-mode and escape can be used instead of "$", and will print out as
"$") .

Trace -- This command prints the current nest of function and
routine invocations, their arguments, and other useful information.
Trace can optionally be followed by a number of frames to trace back,
and the trace will stop after printing that many frames.

Print -- This command is followed by an SCD and prints the source
text at thnat point in the program. It can be followed by the key
words Up or Down (or both) followed by a number of lines before and
after the 1line to Dbe printed. This command 1is very useful for
locating a program position in the source text. In order to use this
command, the .BCP file in which this SCD is defined must be in your
CONNECTed directory.

For example:
*Print Main:Start[let T := 6}<1 up 2 down 2
and Start () be
{

==> let T:= 6
for i:= 1 to T do
{ A := valof
“>" and "<" -- These commands are identical to typing “Print %>1"

and "Print 3<1" respectively.

Address -- This command is followed by an 3CD. It prints the SCD
as an (octal) Address. Like the Print command, it is useful for
relating source text to compiled code, and is helpful if it is
necessary to switch from BDDT to IDDT.

Code -- This command is followed by an SCD. It prints out the
compiled code for tne given SCD.
E.2.3 Commands to Change Program Status
Anytime a location can be examined, an assignment can be made.
This is done using the charcters ":=" for the assignment operator. If
there is nothing to the 1left of the assignment operator, "." is
assumed. (The assignment operator is currently either "%, or "i=t).
For example:
*X/ #10 :=15(*C)
but not:
*#100/ 64 :=5

(since it is illegal in BCPL to say #106:=5)

BCPL Reference Manual Page 118
Debugging--The BDDT Subsystem

E.2.4 A Command to Call a Function or Routine

The Call command is used to call a routine or function. The
command 1is followed by the name of the function or routine, an open
paren, an argument list (each argument can be an expression), and a
close paren, and terminated with a carriage return. The routine or
function is called, and the returned result 1is printed. If a
preakpoint is hit during execution of the call, it will be handled
normally by the debugger, and the Continue command will continue the
called routine or function. wWhen the routine or function finishes,
the continue command will resume the program where it stopped before
the Call command was given.

E.2.5 Commands to control BDDT

Short.Commands -- This command stops B8DDT from completing the
printing of a command that is prematurely terminated with space or
carriage return.

Long.Commands -- This command returns to automatic printing
command completion mode. BDDT is initially in Long.Commands mode.

Quit -- Stops BDDT and exits to tne EXEC. BDDT can be continued
by typing either Continue or BDDT to the EXEC. Quit snould always be
used to leave BDDT, not Control-C, since Quit removes any breakpoints
that may be set and changes the teletype echoing to what it was when
your program last stopped.

Kkeset -- This re-initializes some internal BDDT information.
Mainly, this command has the effect of “forgetting" about ever having
run the program. It has no effect on either actions or breakpoints,
breakpoints will still be set in the program, and associated with
actions. The only thing which is changed is information about which
actions 1t may have obeen executing previously, and which breakpoints
had been encountered. After you execute a Reset command, you cannot
Continue your program until you have given a Start command.

Get -- This command asks for the name of a program to load. It
effectively re-starts the debugging session by reloading the program
and its symbol files.

Do -- This command is followed by either an action name or a list
of BDDT commands enclosed in curly braces. It can be followed by tne
keyword "if" and an expression. The commands are executed if the
expression is true.

Example: Do { Trace } if Done
(where Done is a variable defined in tne program)

List -- This must be followed by one of the keywords
“"Breakpoints” or “Actions". It 1lists all tne defined actions or
breakpoints, and their contents or subcommands.

o

BCPL Reference Manual Page 119
Debugging--The BDDT Subsystem

Edit.Breakpoint -- This commana is followed by a breakpoint name.
It allows vyou to enter any of the subcommands to the break command,
and the additional subcommand “0l1d", which is like “No", except that
it restores the parameter to the Value it had before you gave the Edit
command.

Edit.Action -- This command, which is not implemented yet, will
be used to allow you to <create or edit action routines. The
specifications are not yet clear, but it will probably invoke TECO to
allow you to edit the routines,

Load.Symbols -- This command is followed by the name of one of
the .KEL files in your program, and the file name wnere the symbols
for that program can be found. It causes BDDT to load those symbols,
This 1is wuseful for obtaining symbols from programs which were not
compiled on your CONNECTed directory, or which do not have the
extension ".S". It types a warning 1if a symbol file was already
loaded for this file., If the rel file was not compiled by BCPL tnis
command should not be used to load symbols for it.

Attention -- This command is followed by an $D. It makes all
subseguent symbol searches begin at tne specified SD.

Unwind -- This command is followed by an SD. It is the same as a
RetFrom command, except that instead of continuing the program, BDDT
retains control. It is usetul for examining variables several frames
back on the stack before returning from the routine.
‘attention. . .retfram" is equivalent to "unwind. . .continue".

E.3 Source Command Descriptors (SCDs)

SCDs are used to identify program points, either as memory
addresses or as "pointers" to the BCPL source text. They are designed
to be independent of the machine for which the code was written. An
SCD has several parts, each of which is described below, along with
the required punctuation. The parts must occur in the order given
below, although some of the parts may be missing.

An example of a complete SCD is:
ACTS:ReadAction|let T :=]}<3+2

The REL file name -- This part is terminated with a colon (:) if
it 1is ©present. It 1is the name of the RELfile in wnich this SCD is
defined. If only one static exists with the function or routine name,
the REL file name can be omitted (this latter feature 1is not
implemented yet).

Tne Function or Routine name -- This is the only required part of
the &5CD. It is the name of the BCPL function or routine in which tne
SCD is defined.

Search Strings -~ A strihg to be searched for in the BCPL code
can be specified. This 1s done by enclosing tne exact string in

BCPL Reference Manual Page 120
Debugging=-~The BDDT Subsystem

Square brackets ("[" and "]"). More than one string can be searched
for. After the search, the SCD points to the first command which
begins after the start of the search string. when using the search
feature 1t is wise to use the Print command to make sure that the
correct SCD has been found. The .BCP file in which the SCD is defined
must be in your CONNECTed directory for search strings to be used.

Number of Commands -- There is a loosely defined idea of a
command in BCPL. For example, the if <expression> construct is a
command, as is the do <statement> construct. It takes some playing
around with BDDT to get a feel for what a command really is. You can
specify the number of commands before or after the part of the SCD you
have already typed oy preceeding this number with > or <. For
example, the second command in the routine Start would have the SCD
“Start>2".

Number of Machine words ~- You can also specify the exact number
of words pefore or after what you have typed by preceding this number
by either + or -. For example, the second word past the beginning of
the first command in the routine Start would have the SCD "Start>1+2".

%t can be used in the routine or function field to represent the
most recent SCD wused in a Print command, or the SCD at which the
program was stopped. (This latter is not implemented vyet.) Example:
the SCD tfor the command following the one just printed could be
represented by %>1.

In addition to the “standard" SCD described above, a number can
be used for an SCD, in which case it stands for the 5CD which occupies
that Address in core. For example, if Start begins at location #1490
(octal), then #142 when used as an SCD is the same as "Start+2".

E.4 Stack Descriptors (SDs)

SDs are used to refer to a particular invocation of a function or
routine in the run-time stack. There are two forms of SDs, either a
number (n), meaning the nth preceeding function or routine (the
current one is designated as #, the one before it is 1, and so on), or
as the name of the function or routine followed by "-n" where "n" is
used to indicate which call on the (recursive) function or routine is
meant.

If “-n" is omitted, the most recent call is meant (i.e. n 1is
assumed to be zero). If n is 1, the call before the most recent is
meant. Example: Foo-2 means the invocation of Foo two previous to the
most recent invocation of Foo.

E.5 Actions

Actions are lists of BDDT commands which are stored for use, and
can be executed when a breakpoint is encountered. Actions can be
Created in three ways, by using the Do subcommand to Break, the Do
command, or the Edit Action command.

B8CPL Reference Manual Page 121
Debugging--The BDDT Subsystem '

To create an action, type in the list of commands, exactly as you
would to BDDT, but enclosed in curly braces ("{" and "}"). BDDT will
print out a name which you can use to refer to the action.

Example: ‘

*Break Start>2,

**pDo {T/

A:=15

Trace

continue

} (named: ACTO0U)

* %k
Tnis creates an action named ACT#3.
Afterwards, you can type

Do ACT@4 if BitSetBool
(Where BitSetBool is one of your program’'s variables).

E.6 where BDDT will Stop Your Program

Since BDDT uses the stack for almost every command, it 1is
important that tne stack be "“safe" before you enter BIDT. In order to
ensure tnis, BDDT examines where the ©program has stopped, and
simulates the program until the stack is "safe". This means that you
cannot have BDLT stop your program inside the sequence of instructions
for calling a routine or function.

E.7 BDDT conventions

There are four major conventions used in BDDT, a convention for
inputting numbers, a convention for editting commands, a case
convention, and a set of conventions for file names. Each of these is
described below.

All numbers input to BDDT are assumed to be 1in decimal unless
preceded oy "#". For example, "15" means 15 decimal, whereas "#15"
means 15 octal (13 decimal). For output, BDDT will always indicate
octal numbers by preceding them with "#", except when printing in
instruction mode, where all numbers are octal, to be consistent with
DDT and IDLLDT. BDDT initially prints Values in decimal.

BDDT has 3 reserved characters that are used for editting input.
They are control-A, which will delete one character at a time until
the beginning of this field (if you try to erase characters before the
field, you will get a bell). Control-R will retype the entire line as
typed so far. Control-Q will cancel the entire current field, and
then retype tne line.

Commands to BDDT may be in either upper or lower <case, or a
mixture. Variable names, however, must be typed exactly as they
appeared in the program, with capitals as required. A future version
of BDLT will provide for easier debugging of programs from all
upper-case terminals. Currently, if a program was compiled with the
“/U" switch on the compiler, all its symbols must be typed to BODT in
lower case.

BCPL Reference Manual Page 122
Debugging--The BDDT Subsystem

When BDDT searches for symbol files, it assumes that the file
will have the ".S" extension. The Load.Symbols command may be used to
load other files. Source files are assumed to have a ", BCp"
extension.

BCPL Reference Manual Page 123
PDP-11 BCPL

APPENDIX F: PDP-11 BCPL

F.1 INTRODUCTION

In 1973, Ray Tomlinson and Jerry Burchfiel of BBN adapted the
TENEX BCPL compiler to generate code for the PDP-11. This effort
turned out to be a two pass learning experience: the fixst version was
a modified code generator driven by standard OCODE. Upon evaluation,
this approach was shown to be unsuitable for production of efficient
code because of the postfix nature of OCODE: expressions must be
computed before any information is available about the disposition of
the results. This makes it impossible to compute values in the
location where they will be stored, to optimize use of the registers
and stack, etc. The net result was impressively poor code.

The second attempt (and current implementation) eliminated the
use of OCODE, instead generating code by subroutine calls while
walking the AE (applicative expression) tree, where all disposition
information 1is readily available. This approach results in excellent
code for expression evaluation: recursive functions do register and
stack allocation by examination of the AE tree, sO results are
computed into the location where they will be needed.

Bvaluation of code generated indicates that cross-compiled PbLP-11
BCPL code takes about 56% more core storage than eguivalent functions
hand-coded in assembly language by a shrewd and creative programmer.
Tnis difference results almost solely from the stack discipline
observed by BCPL: a new stack frame must be created and arguments
pusned into it for each function call. The creative programmer, on
the other hand, tends to twiddle bits and then jump into the middle of
some routine. This saves code but results in debugging nightmares.
Structured programming costs core memory, but pays for itself by
making debugging and orogram modification straightforward.

An additional observation worth making is that the process ot
creating a high-level language compiler for a machine is an excellent
way to evaluate the machine architecture: a macnine whicn does not
gracefully support the constructs of nigh level languages is a poorly
designed machine.

For example, tne stack of the PDP-11 operates backwards, building
towards lower addressees. This was undoubtedly considered a clever
storage allocation trick py some hardware designer, out presented
problems for BCPL: calculating and pushing successive elements of a
dynamlc vector into the stack causes them to appear in backwards order
in the address space: the machine’'s address arithmetic cannot be used
to access the vector elements.

On the other hand, the reversed byte order (byte ¢ 1is tne
low-order byte of a word, byte 1 is the high-order byte) brougnt howls
of anguisn from the AKPA PDP-14 community, and the ILLIAC Project even
made hardware modificatons to their PDP-1ls to reverse the byte

BCPL Reference Manual Page 124
PDP-11 BCPL

ordering. However, the reversed bytes caused no addressing problems,
inconsistencies, or even structure reference difficulties 1in the
PDP-11 BCPL compiler. This was merely a problem of preference, not a
true implementation difficulty.

A number of other addressing difficulties which we discovered are
described in section F.4 below.

F.2 PDP-11 OBJECTS

The objects handled by PDP-11 BCPL are bytes, words, and
structure fields. The wuse of the structure facility for databases
maximizes the machine-independence of programs (permitting use of code
on either the PDP-19 or PDP-11), as long as no structure field is
required to be longer than 16 bits (a field may not «cross a word
boundary) .

Structure ftields are allocated from right-to-left (bit ¢ to bit
15) so that, for example, successive byte-sized fields will fall into
successive byte addresses. Structure references are compiled to put
as much burden on the PDP-1l address arithmetic as possible. For
example, byte instructions are compiled to reference byte fields.

A PDP-11 character is represented as an 8-bit byte. Strings can
be no more than 255 characters long (in successive byte addresses),
since the string length must be stored in the first byte.

F.3 PDP-11 OPEKATIONS

Some of the operators of TENEX BCPL have not been implemented in
FDP-11 BCPL. They are:

1. Floating point operators %*, %1, %+, %-. Our PDP-11 has no
floating point hardware. However, the addition of these
operators would be quite simple for machines with the floating
hardware.

2. Quarter word operators ql, g2, g3, g4, glz, g2z, g3z, qdz. No
application for these operators was apparent.

A restricted set of operators are defined for byte manipulation.
This approach makes available the power of the PDP-11, which deals
with both bytes and words, but violates the spirit of BCPL, which 1is
that all objects remain typeless. As a compromise, the BCPL syntax
has not been changed, but it describes both bytes and words: whether
an object is a byte or a word must be inferred from syntactic context.

To be specific, a byte object is either a byte primitive or a
byte expression. In the BNF definitions below, W is a word object.
<byte primitive>:= rh W lh W (compiles MOVB)

-<byte primitive> (compiles NEGB)
not<byte primitive> (compiles COMB)
<byte primitived>+l (compiles INCB)

BCPL Reference Manual Page 125
PDP-11 BCPL

<byte primitive>-1 (compiles DECB)
<byte primitive>*2 (compiles ASLB)
<byte primitive>/2 (compiles ASRB)
{byte expression>:= <byte primitive>
<byte primitive>s&<byte expression> (compiles BICB)
<byte primitive>\<byte expression> (compiles BISB)

All other operations are fullword operations which operate on word
objects. Byte objects are automatically converted to word objects as
needed in expressions by sign extension.

F.4 PDP-11 ADDRESSING

We already mentioned one addressing problem, the backwards stack.
Elements of a "list" declaration are computed and pushed onto the
stack in reverse order so that they may be referenced as a vector
using the PDP-11"s address arithmetic.

A more serious problem is the inherently schizophrenic behavior
of the PDP-11l: most operatons (ADD, SUB, MUL, DIV) require fullword
operands; however, these operands must be referenced using byte
addresses. Inconsistencies in specified operations can only be
detected by the hardware at runtime: a bus address trap 1is triggered
when an odd byte address is generated during a word operation.

This problem would not be so serious if the high 1level 1language
did not support address arithmetic specifications. However, BCPL
permits the user to manipulate pointers (rv operator) and specify
address arithmetic (vector application, e.g. Fooli). Either of these
can cause a word transfer with an odd byte address, resulting in a
fatal runtime error.

This error can only be avoided by extreme caution on the part of
the programmer (remember to index by 2 when scanning through a word
array) or by avoiding use of rv and vector applicatons through
exclusive use of the structure facility. Vector declarations are also
a source of confusion: for byte addressing consistency, vec(n)
allocates bytes from ¢ to n. This is a drastic example of machine
dependency, as vec(n) means words & to n in TENEX BCPL.

The conclusion to be drawn here is that byte addressing of word
quantities was a very dubious choice on the part of the PDP-11 machine
designers. ‘

One other point should be mentioned with respect to addressing in
PDP-11 BCPL. A new type of entity called a "load-time constant" has
been created for purposes of efficiency. Both 1labels and static
vectors are load-time constants; they cannot be manifest constants
because the compiler cannot determine their address value until the
program has been loaded. In TENEX BCPL, they are variables, which
always causes an extra level of indirection when they are referenced.

BCPL Reference Manual . Page 126
PDP-11 BCPL

For example, in TENEX BCPL, goto L causes an indirect transfer
through a variable cell L which holds the address of the desired
destination, Similarly, reference to a static vector requires
‘explicit addition of wvalues to find the desired address, instead of
using the machine’s address arithmetic. Load time constants eliminate
this extra level of indirection, and permit references to these
elements through indexed addressing.

For example, a static array can be made a load time constant by a
declaration: :

manifest {Foo: vec 100}
and elements of Foo will be referenced by indexed addressing.

At some point in the future, it is likely that TENEX BCPL will
also define labels and static vectors as load time constants, making
it impossible to dynamically redefine a label or static array (a
highly suspect practice).

A related form is the rv of a number, which is permitted as a
manifest constant in PDP-11 BCPL. For example:
manifest{PS:=rv#177776}//Program status word
PS:=PS \ #3080 //Set processor priority to 6
This construction permits convenient access to processor and device
registers. :

F.5 THE STACK DISCIPLINE

Recursive calls on all functions and routines are supported by a
stack discipline which creates a new frame on the top of the stack for
each function invocation. In the PDP-11, two pointers are maintained
to define the current frame: the framebase pointer points to the
beginning of the frame (where the return PC is saved), and the stack
pointer points to the current top of the stack, which moves as
temporary results are pushed onto and popped from the stack. When a
hardware interrupt occurs, the processor state information is pushed
onto this same stack.

As mentioned before, the #th word of the frame base holds the
return PC. The next word holds the number of arguments supplied by
the caller. This permits functions to be <called with a variable
number of arguments, a facility particularly wuseful for library
functions which supply reasonable defaults for all arguments not
suplied by the caller. The calling arguments are pushed into
successive stack words, followed by local variables and temporaries up
to the top of the stack.

The calling procedure is thus:
Caller: Push hole for return PC
Push number of calling args

BCPL Reference Manual rage 127
PDP-11 usCPL

Push calling args

Increment framebase ptr to return PC hole

Call routine

Decrement Framepase ptr by amount it was incremented

and the routine itself is:

Entry: Put return PC into nole at base of frame
Aajust Stacktop ptr to number of detined args
Exit: Copy framebase ptr into stacktop ptr
Subroutine return - restore return PC

This arrangment permits calls with a variable number of arguments
while maintaining a "covered stack", in which no valid information is
ever Dbeyond the stack pointer, where it could be smashed by
interrupts.

BCPL Reference Manual

Index

Allocation

and . . .
Assignment

bit . . .
bitb . .
bitn . .
Blocks .
Boolean .
branchon
break

by .

byte . .
byten . .
case . .
char . .
default .
do .. .
endcase .
eq . . .
eqv . . -
Extent .
external
FITL . .
for . . .

form . .
Functions

Eg . LJ L4
global .

goto . .
t

Half-word

e e e s

ifso . .
Tabel . .
le . . .
let . . .
I .. .
lhz . . .
loo . .
s . . .
lscale .

v . . .
manifest

or . .
overlay

ne . ..
negv . .
nil . .
oot . . .

¢« o @ . . . ¢ e . e o . . . « ® . e o e e s e 0 .

o o e o s o

e o ¢ & o o e s & » . .

« o . .

. o) . 0

e ® e e & 0

. . . . ¢« o o o o e . L]

3 s » e s e e . o ¢ o o o e 5 & o @ .

« o . . o o e & e o . o . * e o s @ 3 .

. e » . o .

. . e e o o o . L] o o o e .

¢ o o e s e o o

INDEX

¢ s e o o * o o o o e s o & o o o . o e o 9 e o

. *« e o @ . . e e o o o . e e o . = s . o . « e o e o & o+ a2 e .

o o e e o o * & o o * e o .

46
49
37
53
53
53
44
23
41
42
49
53
53
35,
53
35,
38,
42
32
31
46
46
53
40,
43
48
39
47
38
39
33
38
39
39
37
30
48
27
27
42
38
30
30
lo,
43
30
31
24
31
39
54

41

41
49

42

26

Page 128

BCPL Reference Manual
Index

gl00 .
glz
g2 ¢ v e e e e e e

92Z ¢+ v e e e e e
93 . e e e e e 0.

e
g4 . . -0 e e ..
gdz0 .
Relational
em o o ¢ v . e e . .
repeat
repeatuntil

repeatwhlle o e e .
regeatwhlle o o e

E é‘t- L] LJ . . L] . .
egname « e e

reserve
resultls e o o 4 a4 s
return e e e e .

rh e e o e & = e e
rhz e e e s e e e e
Routlne e e e e e e .
Routlnes e e e e e

§Eoge e e e e e e

Snift
SIZE & o« & 4 4 e . .
static
Step .+ ¢ . . . e . .
structures

SWIECNON .+ + o o o &

EXEQEXE * L] L] * - - *
test .

then

B0 o e e e e .
unless
unreserve &

Varlables . .

vec .«

VeCtOrs [] L] - L) L] L] L]
WNI1E v v o o o o o

“lett lump”
“right lump”
"subscript"
“"up arrow"

« o o o

28
28
28
28
28
238
28
28
38
29
42
39
42
39
39
35
63
43
43
27
27
37
49
39
34
1¥
45
44
35
3¢
55
47
49
5%
41
64
39
33
46
338
63
39
24
48
47
48
38
53

51
51
53
53

39

Page 129

BCPL Reference Manual

Index

%* . L]

S
%— e s e
%/ e o e .

<< ...
> . . .

Address . .
Address .
Arithmetic
assignment

prackets .
CAVEAT ., .
CAVEAT . e
character .
CONC . . .
conditional
constant .
Dynamic . .

example .
expression

floating .
F¥T
function .
get . [] L] L]
half-word .

integer . .

JFN . . . L

. .
. -
. .
. .
. .
. .
- .
. .
. .
. .
. -
. .
- .
) .
3 .
. .
.)
.

- .
- .
3 .
. .
. .
. .
- .
. .
) .
. 3
) .
. .
3)
. 3
. .
. .

¢ o @ s

29
29
29
29
31
29
29

29
33

29
36
51
51
26
29
lu
44
41
27
22
70
33
46

79
21

29
69
25

63

29

72

’

44,

46,

62,

Page 13¢

64

BCPL keference Manual
Index

list . . «

Manifest'

name * L] L] - . L] L] .
OCODE . ¢« & & & « « .
parentheses
PSAVE . « +« « &« « « &
PsYMB L] - - L] . L] . -

quarter-word

Static
String . . . « o+ . .

table . +
value ¢«

variable
vector e e e s o e

9,
69
24
70
70
28

46
22

23

Page 131

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131

