Storage organization and management in TENEX

by DANIEL L. MURPHY

Bolt Beranek and Newman Inc.
Cambridge, Massachusetts

INTRODUCTION

In early 1969, BBN began an effort aimed at developing
a new time-shared operating system.* It was felt at the
time that none of the commercially available systems
could meet the needs of the research planned and in
progress at BBN. The foremost requirement of the
desired operating system was that it support a directly
addressed process memory in which large list-pro-
cessing computations could be performed. The cost of
core storage prohibited the acquisition of sufficient
memory for even one such process, and the problems of
swapping such very large processes in a time-sharing
environment made that solution technically infeasible
as well.

Paging was therefore the logical alternative, and our
study and experience with list processing systems!.2
led us to believe that using a demand-paged virtual
memory system for such computations was a feasible
approach.

With demand paged process virtual memory added
to our requirements, we found no existing system which
could adequately meet our needs. Qur approach was
to take an existing system which was otherwise ap-
propriate and add the necessary hardware to support
paging. The system chosen was the DEC PDP-10,}
which, although not paged, was available with a time-
shared operating system and substantial support soft-
ware.

Consideration was given to modifying the existing
PDP-10 operating system to support demand paging,

but that approach was rejected because of the sub-

stantial amount of work which would be required,
because of the inherent constraints imbedded in the
architecture of any large system, and because develop-
ment of a new operating system would allow the in-
clusion of a great many other features and facilities

* The work reported here was supported in part by the Advanced
Research Projects Agency of the DOD, and in part by BBN.

23

which were judged desirable. Among these were a multi-
process job structure with software program interrupt
capabilities, an interactive and well human-engineered
command language, and advanced file handling capa-
bilities.

Reports of some of the other operating system de-
velopment in progress at the time suggested that con-
siderable advantages were obtained by generalizing the
concept of file storage and integrating process memory
with it. Earlier systems had taken the view that files
were sequential streams of bytes or words, perhaps
with a facility for limited random accessing built on
top.

In these earlier systems, process memory was viewed
as the equivalent of the physical core memory that a
program would see when running stand-alone on a
dedicated processor. Time- and core-sharing facilities
provided a means for several independent processes
to use core and processor concurrently, but the basic
concepts still required, for example, a file to be “read
in” byte-by-byte or block-by-block into process mem-
ory.

The file-process memory integration achieved by
MULTICS*5 provided an entirely different view of
these concepts, and opened up many new possibilities
for improved throughput, enhanced ease of pro-
gramming, etc. The MULTICS segmentation concepts
however, would have required substantial modifica-
tion of the address computation logic of the processor
and in other ways seemed to require a level of effort
inappropriate to the scale of system we could support.
Therefore, we began to examine the ways by which
some of these same goals could be achieved in a system
which had only paging hardware.

It was known from that outset that our system would
contain multi-level storage components. A high speed,
rapid access drum would obviously be needed as the
swapping facility to support demand paging, and a
larger and slower disk storage device (at least 50 million
words) was planned for permanent storage. We were

24 Fall Joint Computer Conference, 1972

already using a system, the XDS8-940% which provided
a means of “naming” process storage, and swapping
on the basis of the named elements in a process memory.
Although the file system was not integrated into this
process memory naming scheme, certain basic con-
cepts, e.g., a process memory map into which named
elements could be placed, were present.

Thus, having determined that we would build a new
monitor system to achieve certain specific objectives,
we decided to adopt a more advanced architecture and
obtain many other useful features. In particular, we
realized that very little if any additional complexity
was necessary in the design of the paging hardware in
order to provide the base on which a monitor with
integrated file and process memory could be built.

The system which resulted from this development
effort is called TENEX, and this paper describes the
facilities for naming memory and dealing with named
memory which were developed and implemented in
TENEX. Implementation details of the system are
given, including the operation of the three levels of
storage, and the flow of data between them.

NAMED MEMORY

TENEX terms and conventions

The discussion which follows will require knowledge
of a few of the terms and conventions used in TENEX.
The operating system provides a job structure which
may contain multiple processes. By a job, we mean a
set of active resources normally under control of a
single user. That set may in principle be empty, but
in practice will always contain at least one process.

In TENEX, each process is provided with an inde-
pendent process address space, and is capable of per-
forming computation in parallel with other processes.
That is, TENEX processes are independent virtual
machines with all necessary storage for holding the
state of a computation. Various means are, of course,
provided for allowing communication and control
between processes.

File storage naming

The first and most obvious memory ‘“name” in
TENEX is the file name. A powerful and versatile
directory and file naming facility is provided in which
a particular file is identified by a fixed-depth path which
includes device, directory name, file name, extension,
and version.

The identifiers in each field (except for device and

version) are strings of up to 39 characters. All per-
manent storage resides in files, so the first step in
identifying any particular element of storage is to
specify the path name.

It would be both cumbersome and inefficient to
require that the file name be used for each operation
on a file, even though TENEX provides default con-
ventions which usually allow the user to specify only
the name portion of the path. We therefore provide a
means of associating the full path name with a small
integer called a Job File Number (JFN) which will
serve to identify the file over some limited period of
time.

The JFN is an important concept in TENEX and
deserves some further explanation. The first step in
doing any operation on a file is to execute a monitor
call giving as an argument the string representing the
path name of the desired file.

Various conditions and default options are specified
at that time. If the path name correctly identifies a
single file, the monitor will return a JFN, and the
association of that JFN with the file will remain in
effect until the user program explicitly “releases’” the
JEN (or the job is logged out). JEN’s are 18-bit num-
bers arbitrarily selected by the system, commonly but
not necessarily assigned sequentially upward from O.
The domain of a JFN is the job in which it was as-
signed; therefore it may potentially be used by any
process in the job (subject to various protection mech-
anisms). The system will always know what JFN's are
in use in each job and so can assign at any time one
known to be unique. It is possible for the same file to be
associated with two or more JFN’s within the same
job (and with JFN’s in other jobs), and this often
happens when two processes are performing concurrent
operations on the same file.

Once the initial association of JFN and file has been
established, the JEN is used for all ensuing operations
on the file, including sequential reading and writing,
opening, closing, etc. The 18-bit JFN is a PDP-10
half-word, and so is conveniently manipulated by the
system and user programs. Because the monitor system
chooses JEN’s to be indexes into system tables holding

FILE NAME > JFN
18 BITS
PAGE IDENTIFIER JFN PN
Figure 1

Storage Organization and Management in TENEX 25

information about the relevant file, the lookup time
on individual file function calls is very short and re-
quires only a range test to reject invalid arguments.
Having once identified a particular file and obtained
a JEN, a process need only identify the element within
the file and the naming process will be complete. On a
- word-oriented machine such as the PDP-10, the most
basic element in a file is obviously the word, but since we
are operating in a paged environment, we will want to
identify pages. Therefore, our complete identifier is
constructed from the JEN of a file, and the page
number (PN) within that file, as shown in Figure 1.
The paging facilities will allow us then to reference any
word within that page as described below.

File-to-process mapping

With the naming of our file memory specified, we
next explain how this may be integrated with the
address space of processes. As stated earlier, each
TENEX process has an independent virtual memory
of 256K words, a size fixed by the 18-bit addressing
capability of the processor. With the TENEX page
size of 512 words, each process virtual memory there-
fore consists of 512 pages. But these pages are not fixed
storage. Rather, each page of the process virtual
memory is actually a window through which one can
look at a page of “real” storage.

To specify the contents (possibly null) of these
windows, TENEX provides a virtual memory map,
with one entry for each page of the virtual memory.
Each map location is identified by a map handle which
consists of two items, the process handle (provided by
the system when the process was created), and the page
number of the desired slot (Figure 2). It is important
to understand that the map handle identifies a map
slot and does not represent the contents (if any) of
that slot. The monitor provides two basic operations
for which the map handle is necessary, obtaining the
identifier of the present contents of the slot, and placing
an identified page into the slot.

This brings us to the basic facility for file/process
memory integration. We have constructed a file system
in which each page can be named with a convenient
(one word) identifier, and we have specified a paged

PROCESS ID PN

PROCESS MAP IDENTIFIER

Figure 2

PROCESS
4 FILE, MAP
PN] 3 <
Bl PAGE N
4 FILEp JFNp | PN,
PN,3 3
[“eace

Figure 3—File-to-process mapping

process address space represented by a map into which
page identifiers can be put. Figure 3 shows this graph-
ically. The process address space contains pages from
two files, indicated by identifiers in the process map
which act as pointers to the file pages.

There is some additional information in the map
slots not included in these page identifiers, and that
is the access permission. The TENEX paging hard-
ware provides independent read, write, and execute
access control on each page, so when a process places
a file page identifier in its map, it must specify which
of these accesses (each represented by a bit) is allowed.
The system may further restrict the access according
to arguments given when the file was opened, which
in turn are limited to combinations permitted by the
general protection mechanisms associated with file
names. Thus the access actually permitted to a mapped
page is the logical AND of the specific case access
request (specified by the process) and the general access
permitted to the file (specified by information residing
in the file directory).

Sharing named storage

Since the file path names identify files over the
domain of all jobs in the system, it is evident that our
naming and mapping procedures readily provide a
means for sharing storage. Using the appropriate path
names (including legality checks), processes in two or
more different jobs can identify the same file, and each
can obtain a JFN for it. Nothing in the mapping pro-
cedures specified above requires that either process
be aware of the other’s access, and so each process
constructs an identifier and places it in its process map
(Figure 4). Remember that the JFN is associated with

26 Fall Joint Computer Conference, 1972

FILE PROCESS1

N

JFNy | PN

L

PAGE

PROCESS 2

JFNz | PN

igure 4—Shared file page

a file only within the domain of a job, and so the two
JFN’s shown are probably not the same small number.
The page number (PN) shown is an absolute address
within the file and will appear as the same number in
both process maps. Thus two or more processes in the

same or different jobs can identify and map the same

this is implemented is described below.

Along with this basic sharing mechanism, TENEX
provides a convention to help ensure that the access
to shared or potentially shared information is logically
consistent. We identify two cases:

1. A file contains information which must be in a
consistent state to be used, e.g. a symbolic text
file. Such a file may be read concurrently by
several processes, but one process modifying
the file precludes any other processes reading or
modifying it.

2. A file contains information which, by agreement
of the processes involved, can be simultaneously
modified and used by several processes, e.g., a
common data base or a file used for interprocess
communication.

When a process opens a file, it must specify which of
these two cases applies. The system will not permit any
file to be open both ways at the same time on the
grounds that such a situation can only result from
disagreement among the processes on how the file is to
be used, and is therefore a logical programming error.
The monitor will permit any number of simuitaneous
case 2 openings of a file (which we call thawed access),
and will aliow any of the three types of access legal for
the file to be used for each opening. The consistency
and integrity of the data in the file is the responsibility
of the processes using it.

The monitor will permit any number of case 1

openings of a file (which we call frozen access) providing
all processes request only read and/or execute access.
Orne or more openings of any type will preclude a new
opening for write, and one write opening will preclude
any new openings of any type. Thus the system guaran-
tees the integrity of file data by prohibiting potentially
conflicting access.

Copy-on-write access

One other important TENEX feature which facili-
tates sharing is a type of page access called copy-on-
write. To our knowledge, this facility was first de-
veloped and used on the BBN-LISP system for the
XDS-940°. It was deveioped as the resuit of two
common observations:

i. Some programs, particularly older ones, are not
quite reentrant. That is, they were coded with-
out observing reentrant coding practices with
the result that some code or initial data areas
may be modified. Because of the architecture
of the PDP-10, we in fact find many programs
with completely reentrant code (even lazy
programmers usually use the stack-oriented
subroutine call and return instructions of the
machine), but with local temporaries, data areas,
etc., sprinkled arbitrarily through the program.

2. Some programs use large initial data bases
which are common to all users, but which may
be modified by some users in some specific cases.
The principal example of this is the BBN-LISP
system which initially contains over 100,000
words of compiled function code (reentrant),
and some common list structure. It is however,
necessary and legal for some users and some
functions to modify portions of this base for
local operations. In fact, none of this original
base can be guaranteed immune from modifica-
tion. For example, a list may be appended to,
or a compiled function may have a “break point”
temporarily inserted.

In TENEX, a process may specify this copy-on-
write access whenever a file page is mapped into a
process. Copy-on-write is legal even if write access is
not. A page mapped in this way will remain shared so
long as the process only does read or execute references.
A write reference to the page will be trapped by the
monitor, whereupon a private copy of the page will be
made, and the process map changed so that it points
to the copy rather than the original. Write access is
then permitted to the copy, and the process’ original
write reference is completed.

Storage Organization and Management in TENEX 27

All of this is invisible to the process, except that it
may read its memory map and discover a different
identifier and access than was initially used to map the
page. This facility thus provides a means for allowing
sharing wherever possible without penalizing un-
avoidable modifications or requiring the user program
to handle them explicitly.

Ezamples of use of named memory

Let us consider the most common example of how
file/process memory integration and sharing is used
in TENEX, ie., a file containing a commonly used
program. We will identify this file as PROGRAM.SAV
(the extension SAV by convention implies a core-
image file). The file contains a number of pages of code
and some mapping information as shown in Figure 5.
The mapping information specifies where the code and
data pages are to be placed in a process map to produce
an image of the program. A monitor routine interprets
the mapping information and performs the mapping.
As shown in the figure, the code and data pages are
arranged contiguously in the file, but may be put any-
where in the process map. In fact, the mapping shown
is a common one, with data and temporary storage
assigned to low addresses, and reentrant code assigned
to addresses in the upper half of the process address
space.

One might suggest that instead of placing pointers
to the file in the process map, the file map itself be used
as the process map. This would be analogous to running
in a particular segment in the MULTICS-type seg-
mentation scheme. But without the full power of
general segment addressing, inter-segment references
are not possible, and our procedure offers the following
advantages.

FILE “PROGRAM.SAV" PROCESS MAP

0
7 y
7

7

7
.
A

'/,.// i,

PAGES

4

-
—y

-MlPP?RBﬂFO-

Figure 5

1. A process map may contain pages from several
different files. In our scheme, individual pages
or groups of pages may be viewed as mini-seg-
ments, and used in similar ways.

2. Different processes may have different access
permissions to the same file page. In particular,
when a write reference is done to a copy-on-
write page, only one entry of the process map is
changed to address the copy.

Sequential file access

While mapping operations are readily suggested in
the case of program core images, it must be noted that
the only basic type of file access permitted under
TENEX is page mapping. TENEX provides a num-
ber of monitor facilities for other types of file access,
the most common of which is sequential. To implement,
the file sequential monitor calls (e.g., byte-in, byte-out)
the monitor maintains a number of “window” pages
in a separate map invisible to the user process. For
each file with sequential operations in progress, the
monitor maps the file page which is to receive or pro-
vide the next byte. Each call from the user causes one
or more bytes to be loaded from or stored into this page,
and a count updated to determine if a new page should
be mapped. Movement through the file is accomplished
by mapping successive pages, and the sequential access
module does not have to be aware of the physical device
on which the page resides nor interface with I/0 driver
modules to read or write it. This modularity is very
satisfying from an operating system design point of view.

As a final example, we note that processes may use
shared file pages for interproccess communication. In
this case, a particular file and set of pages within the
file are agreed upon by several processes, and the pages
are mapped into the address space of each of the
processes. The actual map slots chosen by the pro-
cesses need not be the same, i.e., the shared pages may
be put in different places in the various process address
spaces. Since the same physical storage is seen by all
processes, any of a number of common techniques may
be used to pass information in any direction, e.g., flags,
ring buffers, ete.

In itself, this procedure does not provide any direct
means for processes to signal one another, so for
asynchronous events the processes are required to
periodically test flag words in one of the shared pages.

IMPLEMENTATION
Pager

As stated above, paging hardware was designed and
built as part of the TENEX development, and a few of

28 TFall Joint Computer Conference, 1972

LOCATION
PRIVATE
POINTER PHYSICAL
STORAGE
SPT
Y
Y LOCATION
SHARED
POINTER PHYSICAL
STORAGE

Figure 6—Pointer types

the characteristics of the BBN Pager are particularly
relevant to this discussion. The pager is placed logically
between the processor and the core memories and
translates each memory address received from the
processor into a physical core address which is sent to
the memories. Control signals allow the pager to know
what type of access the processor is making (read,
write, or execute), and allow the pager to signal the
processor when for some reason a reference cannot be
completed (e.g., the page is not in core). The virtual
addresses received from the processor are 18-bits, and
the page size is 512 words, so the pager is in fact trans-
lating the high-order 9 bits of address, and passing the
low-order 9 bits through unchanged.

The pager uses a set of associative registers to hold
some number of recent virtual/physical address as-
sociations, but the source of this information is always
a “page table” in core memory. Page tables contain
(or point to) the physical storage address, if any, of
each page of a virtual memory. Thus, each proccss
virtual memory is represented by one page table. Page
table entries are one word, hence a page table for a
256K virtual memory is 512 words, or exactly one page.

The pager references the relevant page table, using
the 9 high-order virtual address bits as an index, when-
ever the associative registers fail to contain the re-
quested virtual address. It is capable of interpreting
three types of page table entries of which two are of
interest here. The first is called a “private” pointer
and contains a physical storage address. Tf this is a
core address, the pager will load an associative register
with the information and complete the requested
reference. If it is any other address, the pager will
initiate a trap to the monitor for appropriate action.
The second type of page table entry is called a “‘shared”
pointer, and contains an index into a system table at

a fixed location. This “shared pages table” (SPT) con-
tains the physical storage address, and the details of
its function are described below.

These two pointer types are shown in Figure 6. The
third type of page table entry is the “indirect” pointer
described in Reference 8, but it is not relevant to this
discussion.

One other fixed table, called the Core Status Table
(CST), is used by the pager. For each page of physical
core, this table contains information about recent
references and notes if the page has been modified.

Hierarchical storage considerations

In any system using hierarchical storage, one is con-
cerned with the movement of data between the various
levels, with knowing where the current ‘‘up-to-date”
copy 1is, with updating lower levels, ete. It is usually
considered essential that the address of the currently
valid copy of an item of storage reside in one and only
one place. This tends to conflict with the goal of sharing
which says that items of storage should be made
available to many processes simultaneously. Replica-
tion of addresses would appear to admit the possibility
of unresolvable phase errors, and the updating problem
by itself would introduce undesirable complexity in
the software.

One quite elegant solution to this problem is the
hash table scheme which is shown in Figure 7. In this
scheme, storage addresscs reside in only one place, the
storage hash table. Processes using an element of
storage are given the “home” (and presumably in-
variant) address of the element, and the current loca-
tion at any time may be found by performing a hash
lookup into the table. Using this scheme, storage ele-
ments may be moved from place to place at any time,
and only the table entry need be changed. Also, the
table entry itself may be deleted when the element is
moved back to its home address even though one or
more processes are still using it. In this case the hash
lookup will fail, and the monitor will have to re-create
the entry.

HASH TABLE
[F]] .x‘
STORAGE ADR 'X' | HASH ooy
POINTER
PHYSICAL
STORAGE

Figure 7—Hash table scheme

Storage Organization and Management in TENEX 29

A second solution to the basic storage management
problem is the shared pages table scheme used in
TENEX and shown in Figure 6. In this scheme,
storage addresses (for shared elements) again reside
in only one place, a fixed table called the shared pages
table. Processes using an element of storage are given
a fixed index Y’ which identifies the SPT entry holding
the current address. Here, also, storage elements may
be moved from place to place by changing only one
address, but unlike the hash table scheme, an entry
cannot be deleted from the SPT so long as pointers
exist which use it. Therefore a share count is required
for each entry to record the number of pointers to it
which have been created.

We considered both of these schemes and a number
of variations for TENEX before choosing the second
of the above approaches. An exhaustive justification
of this decision cannot be given here, but the decision
was based primarily on our judgment that:

1. The cost of hardware to implement the hash
table scheme was somewhat higher in terms of
design effort and overall size and complexity.

2. Additional (time) overhead would be incurred
in making the one or more probes into the hash
table for each associative register reload.

3. The resident storage requirement of the hash
table scheme would be greater.

TENEX implementation—mapping

We are now ready to show exactly how TENEX
implements the file mapping operations discussed in
the previous section, and how data flows between the
several levels of storage. The TENEX storage hierarchy
consists of three levels, core, swapping, and file. In
practice, the swapping device is a fixed head drum with
high transfer rate and fairly short latency time {(e.g.,
less than 30 ms.). The file storage device is usually a
movable head disk with substantially greater capacity,
but reduced transfer and latency speeds.

As described in the previous section, named memory

FILE PAGES
INDEX ON DISK
BLOCK

DISK ADR

Figure 8—File structure

PROCESS
PAGE
TABLES
SPT
PHYSICAL
SHR PTR i DISK PAGE
SPiI‘N
DISK ADR
SHR PTR
INDEX
BLOCK
SHR PTR 1

Figure 9—Two processes map a file page

consists of pages within files, so we start with an ex-
ample file and two of its pages as shown in Figure 8.
The basic structure of the file is an index block con-
taining the storage addresses of all of the data pages.
This index block is in fact a page table, initially con-
taining private pointers. We assume a starting point
where none of the file pages are mapped in any process,
so the “one and only one” place for the storage address
of each of these file pages is logically and properly the
index block of the file which owns them.

Next, a process requests that one of these file pages
be mapped into its address space. The monitor uses the
JEN portion of the identifier to locate the file index
block, and the PN (page number) portion to select the
appropriate entry within it. Although our aim here is
to have just one process using the page, we see that in
fact the page must become shared at this point, that
is, shared between the file and the process. Therefore,
the monitor will assign a slot in the SPT and place in
it the disk address obtained from the file index block.
Simultaneously, it creates a shared pointer which
points to that SPT slot and places a copy in both the
file index block and the process page table. The share
count for the SPT slot is set to reflect the fact that the
page is in use twice, once by the file, and once by a
process. A second process wishing to use the page
proceeds in the same manner, but now it is only neces-
sary to create another copy of the shared pointer and
inerement the share count. This situation is shown in
Figure 9. The subsequent reduction of the share count
to 1 (when all processes unmap the page) will indicate
that the SPT entry may be reclaimed.

Some additional bookkeeping is necessary in order
to keep track of the owner of the page, and the fact

30 Fall Joint Computer Conference, 1972

|
SPTN
l INDE X
FOFN | PN 1 BLOCK

Figure 10—Ownership back pointers

that the file index block is in use. This is shown in
Figure 10. The table labeled SPTH is a table parallel
to and the same length as the SPT. For our example
file page which was assigned slot ‘SPTN’, the parallel

entry in the SPTH records the owning page table of
the page. This is shown as OFN and PN. The OFN
(open file number) is the monitor internal equivalent
of the user’s JFN, except that it identifies open files
over the domain of all jobs in the system. The OFN is
actually an index into a portion of the SPT which is
reserved for index blocks, and the PN is the page num-
ber supplied by the user. The OFN portion of the
SPTH holds the home addresses of the currently in
use index blocks. The monitor must always open files
on the basis of the storage address of the index block
as obtained from the file directory, and a search of this
part of the SPTH is necessary to determine if the file
is already open.

Inter-level data flow

Next we show what happens when one of the pro-

£0sses roforonnng tha fila naoce whish haoa ha ad
CSSCS ICICYCNCEs uad il page wailil 4as oetn mMappea.

This is shown in Figure 11. The pager interprets the
shared pointer found in the process map, and references
the SPT. It finds, however, that the page is not in core
and traps to the monitor. The monitor in turn selects

PHYSICAL PHYSICAL

SeT CORE PAGE DISK PAGES
SPTN 1
I_.. N’ }
1 csT2 csST 1 i
T ‘

CORE N

PAGE i l

NUMBER SPTN HOME DISK ADR 1

Figure 11—Page is referenced and brought into core

a page of real core and initiates a read of the to disk
bring in the page. The SPT slot is then changed to
indicate that the page is in core.

FUJ. bUlllPlCUULIUDD, we must notle thc fu.uytxuu uf two
tables which record the state of physical core. These
are the Core Status Tables (CST1 and CSTZ2). For
each page of physical core, CST1 holds the physical
address of the next lower level of storage for the page.
In our current example, this is a disk address because
the page is just being read from the disk. CST2 records
the name of the page table holding the pointer to that
core page, which in this case is an SPT index. One
additional bit (not shown) is used to record whether
the page has been modified with respect to the next

lower level of storage

PHYSICAL PAGES

CORE DRUM DISK
e e
SPT
SPTN
b o
csT2 CsT1
¥
/ i
i
CORE PAGE =
NUMBER —SPTN T
1z DST
/ DRUM PAGE I
T NUMBER

HOME DISK —=
ADR

Figure 12—Page is swapped onto drum

Next we consider what is necessary for the monitor
to swap the page onto the drum. It is important to note
that during the course of the drum write (including
latency) and for a period of time thereafter, the core
page still contains a current copy of the data, and so we
may properly leave the SPT slot pointing to it. This
will prove useful in the event that a process makes
another reference to the page during this time because
the page will not have to be read into core again. Thus
to begin the swapout, the monitor selects a free drum
page, initiates the drum-write operation, and updates
CST1 to reflect the fact that the next lower level of
storage 18 now the drum.

However, we can’t discard the home address of the
page, so one other table is required. The DST {drum
status table) serves a function for the swapping level
of storage equivalent to that of the CST for core. That
is, for each page in use on the drum, the DST holds the
address of the next lower level of storage. It also records
whether the copy on the drum has been modified with
respect to the copy on the disk so that the monitor will

Storage Organization and Management in TENEX 3

ond

PHYSICAL PAGES
DRUM DISK

SPT

\ DST

* DRUM PAGE
NUMBER

oz}

Figure 13—Core page is released

know whether a write is necessary at some time to
update the disk copy. Our picture of a file page with
copies on all levels of storage is now complete (Figure
12).

One final step is shown in Figure 13. If the page re-
mains unreferenced for some period of time, the monitor
will want to use the core page for some other purpose.
To do this, the monitor will move the drum address
from CST1 of the page being reclaimed to the SPT
slot, and succeeding attempts to reference the page will
discover that it is no longer in core.

Updating lower levels

So long as the page remains mapped by one or more
processes, the share eount will keep the SPT slot in use,
and our convention is that the page will be moved
between the drum and core as needed. This suggests
that some procedure may be necessary to periodically
update the home (disk) copy of pages. This is neces-
sary both to guard against loss due to system crash,
and because some files are mapped when the system
starts up and are never unmapped (e.g., the disk as-
signment bit table). In TENEX, a special system
process takes this responsibility. It periodically scans
the open files, finding pages which have been changed
since being read from the disk. File pages are backed
up to the disk by setting a request bit in the CST which
causes the swapper to move the page to the disk in-
stead of the drum. File index blocks must also be up-
dated but require a different procedure. For these, the
backup process constructs an image of the index block
as it would appear with no pages shared. That is, it
finds the home address of each page and puts it in the
index block in the form of a private pointer. This copy
is then written on the disk. This procedure is a com-
promise of the goal or having only one copy of a storage

address, but a simple interlock mechanism prevents
any phase errors during the updating.

Dynamic storage management

One of the most important and difficult aspects of
storage management in TENEX is the dynamic control
of core and flow between levels of storage. The pager
provides information on the frequency and type
(read/write) of references made to pages in core. It
also provides information on which of the processes
sharing a page (i.e., having it mapped) have actually
referenced it. A detailed description of these facilities
and the algorithms which have been developed to
handle dynamic storage management is beyond the
scope of this paper.

SUMMARY AND CONCLUSIONS

This discussion has shown how named memory can be
incorporated in an operating system having only paging
facilities, and how some of the advantages of segmenta-
tion are thereby obtained. Although there are limita-
tions to this approach, it does have the advantage of
considerably less complex hardware and software. To
date, we have not found a way to use mapping to
provide dynamically linked library subroutines, one
advantage which segmentation does provide. One
possible ‘solution may be to build a library of self-
relocating subroutines and provide a convention for
mapping them in a portion of the address space which
the calling process is not using. Unfortunately, the
PDP-10 processor does not provide a convenient facility
for self-relocating code.

We have found that the process memory map is an
extremely useful facility for a number of purposes. It
is true that the 256K virtual memory eliminates the
need for overlaying procedures in most programs, but
where this technique is still required, it is easily imple-
mented simply by remapping groups of pages.

The implementation of a three-level storage hierarchy
used in TENEX has proved to be workable in over two
years of actual operation. The software complexity
required for the maintenance of the various tables is
perhaps greater than would be required had we adopted
the hash-table approach, but it has nonetheless been
a manageable and programmable system.

ACKNOWLEDGMENTS

In addition to the author, T. R. Strollo, R. §.
Tomlinson, J. D. Burchfiel, and E. R. Fiala actively

32 Fall Joint Computer Conference, 1972

participated in the design of this implementation
strategy. R. S. Tomlinson and J. D. Burchfiel did the
logic design and checkout of the Pager. Appreciation
is also due in large measure to J. I. Eikind and D. G.
Bobrow whose inspiration, leadership, and support
made the TENEX project possible.

REFERENCES

1 D G BOBROW D L MURPHY
The structure of a LISP system using two-level storage
Communications of the ACM Vol 10 No 3 March 1967
2

A note on the efficiency of a LISP computation in a paged

machine
Communications of the ACM Vol 11 No 8 Aug 1968

3

4

DIGITAL EQUIPMENT CORP

PDP-10 reference handbook Dec 1971

V A VYSSOTSKY F J CORBATO R M GRAHAM
Structure of the MULTICS supervisor

Proceedings AFIPS 1965 FJCC Vol 27 Pt 1 Spartan Books
New York

R C DALEY P G NEUMANN

A general purpose file system for secondary storage
Proceedings AFIPS 1965 FJCC Vol 27 Pt 1 Spartan Books
New York

B LAMPSON et al

A user machine in a time sharing system

Proceedings IEEE 54 12 Dec 1966

D G BOBROW D L MURPHY W TEITELMAN
The BBN-LISP system reference manual

BBN April 1969 pp 3.8-3.9

D G BOBROW J D BURCHFIEL D L MURPHY
R S TOMLINSON

TENEX, a paged time sharing system for the PDP-10
Communications of the ACM Vol 15 No 3 March 1972

	23
	24
	25
	26
	27
	28
	29
	30
	31
	32

