BOLT BERANEK AND NEWMAN Inc

C ON S ULTI NG DEV ELOPMENT - R E'S E A R CH

THE BBN-LISP SYSTEM

REFERENCE MANUAL
APRIL 1969

(D.G.Bobrow, D.L. Murphy, W. Teitelman)

Bolt Beranek and Newman Inc

CAMBRIDGE NEW YORK CHICAGDO LOS ANGELES

THE BBN-LISP SYSTEM

REFERENCE MANUAL
APRIL 1969

(D.G.Bobrow, D.L. Murphy, W. Teiteiman)

Bolt Beranek and Newman Inc

ACKNOWLEDGEMENTS

The design, construction and documentation of this system was
sponsored by the Information Processing Techniques section of
the Advanced Research Projects Agency. The basic design and
implementation of this paged LISP was done by D.G. Bobrow and
D.L. Murphy. L.P. Deutsch also participated in the program-
ming of the system and wrote the first versions of cur LISP
compiler and editor. Many of the extended interactive features
are the work of Warren Teitelman and the existence of this ex-
panded revised edition of the reference manual is due primarily
to his perseverence and effort. The authors are grateful to
Rita Doherty and Karen 0'Sullivan for their hard work and
patience through endless revisions of the text.

Copyright April 1969

by

BOLT BEEANEK AND NEWMAN INC
50 Moulton Street
Cambridge, Massachusetts 02138

"BBN-LISP is a trade and service mark of Bolt Beranek and Newman Inc

TABLE OF CONTENTS

SECTION I

IntrOduction © 6 5 6 0 0 0 605 60 60 8 20 0000600 20 s e 00 s 101

SECTION II
Using the LISP Subsystem on the 944 2.1

SECTION III
Data Types and the Organization of
Virtual MemoOry +s.cieeseesosscccscscsasssassasnscs

3
Literal ALOMS «eeveeeecesesssssassansosnsas 3
Numerical AtOMS ...eeeeeeeecessssssnssaassss 3.
ATPEYS +eeseesseccossesssssssssssssssassane 3
Shared LISP....... Ce e et seanr e et e 3
Garbage Collector............ e ceseseee 3

SECTION IV

FunCtionTypeS ® 6 8 0 0 0 8 0 ¢ 0 P s 0 20 s 0 e B e 000 e o uol

SECTION V
Primitive Functions and Predicates

Primitive Functionscceieveieccecnnns 5
Predicates and Logical Connectives 5.

SECTION VI

List Manipulation and Concatenationeveeee.. 6.1

SECTION VII

Property List Functions «..ceceesceceocosnccnsess (.1

SECTION VIII

Function Definition and Evaluation ..ceceeveseses 8.1

1ii

TABLE OF CONTENTS (cont.)

Page
SECTION IX
Editing Facilities
Editor Language Structurececeeeeees 9.1
Attention Commands «..eveeorsessvonsocnsens 9.3
Modification Commands ...eovcenscancens N 9.9
Structure Changing Commandseeeeoeeses g9.12
Printing Commands ...seceeescconseccesonees 9.13
Edit MaCI’OS ® & 6 8 9 8 6 8 0 2 0 s 0 00 0 00 000000 e 9015
Using the EAitor ...eieiiereeeninneneenens 9.18
Internal Organization of the Edltor ceee s 9.20
Summary of Edit Commandseceeececesesan 9.22
The Expanded EAitorcieecceneossosnncns 9.26

The Location Routineceveeneeeneeanens 9.27
UP ® 85 8 0 & ¢ 5 & % 8 & 0 0 8 O S 0 0 0 W P O 0SS B E e e 9'29
Insertion, Replacement and Deletion

COMMANAS e eevessosesoanansssasoscnnse 9.30
SWILCh vt eeeereaeeosososssescosnssnnnsss 9.32
MOVE .. ittt eeroneeeeosorssooentoasosesonns 9.33
G v o= X o v 9.34
Miscellaneous CommandsS .eccesesoacscsossaos 9.35
Sentence FOrmat v.eeeeeeeeeeseoosoncsnases 9.38
Summary of New Commands «..eeeeeesoesceoes 9.40
EAita veeeeeeenacens e e e e eesaeas 9.41

Using Edita on Compiled Functions 9.48

SECTION X
Atom, Array, and Storage Manipulation 10.1

SECTION XI
- Functions with Functional Arguments 1l.1

SECTION XII v
Variable Bindings and Push Down List Functions. 12.1

The Push Down List and Interpreter 12.2
The Push Down List and Compiled Functions. 12.6
Push Down List Functions ...eeeececeensees 12,7
Push Down HandlesS....eeeeveoesasncsssssess 12.11

iv

TABLE OF CONTENTS (cont.)

SECTION XITII
Arithmetic Functions

Integer Arithmetic ..ccviievevevecnnenanan 13.1
Floating Point Arithmeticvievevsvans 13.4

SECTION XIV
Input/Output Functions

Opening and Closing Files ...eveeeencoene 14.1
Input/Output Transmissioneceeeeesees 14.3
Input/Output FUNCtions .eeieceeeceeeeosees 14,6
Input/Output Control Functionss.. 14.10
Special FUNCLIONS +vivveeeerrncecooocnnnns 14.11
Symbolic File Input ...ieiiieiernnonncnns 14,13
Symbolic File Output (prettyprlnt) cecaee 14,14

SECTION XV
Debugging and Error Handling
Debugging Facilities ..vieeieevianenccansns 15.1
Breakl ® 9 & 0 & 5 5 0 0 " 2" s st 80 SO e S e s N 15.5
Brkcoms ® 6 9 6 00 0 0 s 0 0 s s e 0 e 9 & 8 0 00 0 0 e 00 e 0 0 1507
BreakmacCroS cvieeeseeesoesesectacsoconceos 15.8
Break Functionsieceeeeescacssccsasas 15.12

Error Handling in LISP ...cietececcacsoss 15.21
Unbound Atoms and Undefined Functlons.... 15.22
Undefined Function Calls from Compiled

Code it iresieersinssnnsseanasesasans 15.24

Inducing an Interruptccieeeennnnees 15.25
"Real" ErrorS c.eeceiesosssseenceanesanans 15.26
Error TypPesS v eevsesosescsssosnsasccssns 15.29
Error Functionseeeeececiseoscsesanes 15.33

SECTION XVI
The Compiler and LAP

The COmMPiler tivieererteeroeesocecnnnanons 16.1
Compiler FUNCtions .e.eeeeeeeeeeeenenenns 16.3
Compiler QUESEIONS +ieevereeienennnenenns 16.6

Compiler Structure e e ee

TABLE OF CONTENTS (cont.)

Open Functions .
Affecting the Compilled Code
Changing the Binary Program Buffer

Assemble

® o o 0 8 0 0

Assemble Statements
Assemble Macros
Machine Instructions
Compiler Conventions
Compiler Macros
Lap Macros

SECTION XVII

Using Forks and the Hybrid Processor in LISP

Forks

@ o 0 0 0 000 00 0

® @ 0 0 5 0 0 0 0 0 00 0 e

® 0 o e 0 00 0 0 0

LISP Memory Allocation

Hybrid Processor and Fork Functions

SECTION XVIII

Display Capabilities

e 6 06 06 0 00 060 00 0 0 0

e o 00 0 0 0 s

¢ o 0 0 0

Initialization ...i.ieeeeeeeensenonns
The Display Language
Generating Functions
Displaying Text

Decoding Figures

@ 0 8 0 0 0 00500 00

Low-Level Functions ...ee...

SECTION XIX

Advising ..

SECTION XX

(3

® o 90 00 00 0 0 0

Automatic Error Correction

Unbound Atoms ..
Undefined Functionsee..
Interaction on Parenthesis Errors .
Interaction on Spelling Errors

Summary of Interaction by Modes

Nofix

s e 0 0 0 0 0 0

® 60 0 0 00 00 00

® @0 09 0 0 00 0 0 0

vi

* o o 0 s o

o o ¢ o e

* * o0 0 0 0

e« o s 00 0 0

o o e o o .

¢ o 0 0 0 0 0 00 0 0

® o v o 00 0 0

e o o o o o

. e . ¢ e o

e o o o ° o

Page

16.10
16.11
16.12
16.15

16.16
16.17
16.19
16.21
16.26
16.32
16.35

17.2
17.4
17.12

18.2
18.3
18.7
18.11
18.15
18.18

19.1

20.5
20.7
20.8
20.10
20.11
20.16

TABLE OF CONTENTS (cont.)

SECTION XXI

Printstructure .iceveeeeeneeeneee

SECTION XXII
Miscellaneous

Enlarging the System (flushcode)
Dumping Circular List Structure (savecl).

SECTION XXIIT
Appendices

oooooooooooo

Converting LISP 1.5 Programs to BBN-LISP.

BBN-LISP Interpreter

Control Characters

Index to Variables....ee.. ce e

Property Lists....

SECTION XXIV
Index to Functions

oo o0 o

oooooooooo

vii

21.1

22,
22.
22,
22.
22.
22.
22,

H - oUW

=W o

23.1
23.7
23.9
23.12
23.17

24,1

SECTION I

INTRODUCTION

This document describes the BBN-LISP system currently implemented
on the SDS 940. It is a dialect of LISP 1.5 and the differences
between IBM 7090 version and this system are described in Appendix
1l and 2. Principally, this system has been expanded from the
LISP 1.5 on the 7090 in a number of different ways. BBN-LISP 1is
designed to utilize a drum for storage and to provide the user a
large virtual memory, with a relatively small penalty in speed
(using special paging techniques described in Bobrow and Murphy
1967). Secondly, this system has been designed to be a good on-
line interactive system. Some of the features provided include
sophisticated debugging facilitles with tracing and conditional
breakpoints, a sophisticated LISP oriented editor within the
system, and compatible compiler and interpreter. Utilization of

a uniform error processing through a user accessible function has
allowed the implementation of a do-what-I-mean feature which can
correct errors without losing the context of the computation.

The philosophy of the DWIM feature is described in Teitelman 1969.
In addition to the sub-systems described in this manual, a com-
plete format directed list processing sub-system (FLIP, Teitelman,
1967) is available within BBN-LISP. There is also an assembler for
inserting machine code sub-routines within BBN-LISP, and facilities
for using the CRT display and CALCOMP plotter.

Although we have tried to be as clear and comnlete as possible,
this document is not designed to be an introduction to LISP.
Therefore, some parts may only be clear to people who have had

some experience with other LISP systems. A good introduction to

LISP has been written by Clark Weissman (1967). Although not
completely accurate with respect to BBN-LISP, the differences

are small enough to be mastered by use of this manual and on-line
interaction. Another useful introduction is given by Berkeley
(1964) in the collection of Berkeley and Bobrow (1966).

Changes to this manual will be issued by replacing\sections or
pages which are faculty and reissuing the 1ndex and table of
contents at periodic intervals.

Bibliography

Berkeley, E.C. (1964) "LISP, A Simple Introduction" in Berkeley, E.C.
and Bobrow, D.G. (1966).

Berkeley, E.C. and Bobrow, D.G. (editors), (1966), The Programming
Language LISP, Its Operation and Applications, MIT Press, 1966.

Bobrow, D.G. and Murphy, D.L. (1967) "The Structure of a LISP
System Using Two Level Storage', Communications of the ACM,
V15 3, March 1967.

McCarthy, J. et al,LISP 1.5 Programmers Manual, MIT Press, 1966.

Teiltelman, W. "Toward a Programming Laboratory" in Walker, D. (ed)
International Joint Artificial Intelligence Conference. May, 1969.

Teitelman, W. FLIP, A Format Cirected List Processor in LISP,
BBN Report 1967.

Weissman, C. (1967) LISP 1.5 Primer, Dickenson Press (1967).

SECTION II
USING THE LISP SUBSYSTEM ON THE 94g

Call LISP by typing LIS; the system will respond P; then type .;
when LISP finally responds READY, and types +, you are talking

to the LISP supervisor, usually called evalquote. The system

so obtained contains all of the basic functions and programming

and debugging alds described in the manual, including the LISP
compiler and FLIP. Typing SYSGET(T) to evalquote will return you
to this initial system at any time. Typing control-C will take

ybu instantly back to the LISP executive at any time except during
garbage collection. To get the effect of typing to a Lisp executive
eval, type E and a space followed by the expression to be evaluated.
This effect is achlieved by the function e described in section 8.

When typing in to the LISP read function (used by evalquote and
most other programs), typing a control-Q will clear the input line
buffer erasing the entire line up to the last carriage return.
Typing control-A erases the last character typed in, echoing a +*
and the erased character; it will not go beyond the last carriage
return. Pressing control-R while in the middle of a typein to

the LISP executive, evalquote, will clear the entire read buffer

of everything to the last +, and LISP will again type « . Several
other control characters are interpreted by the LISP input fork,
and their functions are summarized in Appendix 3.

SECTION III
DATA TYPES AND THE ORGANIZATION OF VIRTUAL MEMORY

LISP operates in a 21-bit address space, though only that portion
currently in use actually exists on the drum. A portion of the
address space above that actually allocated for structures is

used for representation of small integers, as described below.

All data storage is contained within this virtual memory,
including literal atoms, list structure, arrays and complled code,
large integers, floating point numbers, and pushdown list storage.
This virtual memory is divided into pages of 256 words. References
to the virtual storage are made via an in-core map which supplies
the address of the required page if it is in core, or traps to a
supervisory routine if the page 1is not in core. This drum super-
visory routine selects an in-core page, writes it back on the
drum if it has been changed, and reads the required page from the
drum. Closed subroutine references to an in-core word through

the map take approximately 40 microseconds. A reference to a
word not in core, which must be obtained from the drum, takes up
to 33 milliseconds, the drum maximum access time. It takes twice
as long if a page must be written out on the drum before the

referenced page can be read in.

Type Determination of Pointers

The virtual memory is divided into a number of areas as shown in
Fig. 1. As can be seen from this map of storage, simple arith-
metic on the address of a pointer will determine its type. We
chose to allocate storage rather than provide in-core descrip-
tors of storage areas, because the descriptors take up valuable
in-core space. '

3.1

OCTAL

ADDRESS
10 000 000
4 0 40
swALL INTEGERS 5 @ o0 %
Al
i
661 000lE
= o
A H o
LARGE INTEGERS 655 004 TE
o]
FLOATING POINT NUMBERS | ¢51 g0y |
HASH TABLE | '
+ ATOM PNAME POINTER
+ ATOM FN CELLS
+ ATOM PROP LISTS
4 ATOM VALUES 571 000
VIRTUAL
MEMORY
(MAPPED TO
D) n CONTROL PDL 554 000
4+ PARAMETER PDL 530 000
+ PNAME STRINGS
470 000
v LIST STRUCTURE
COMPILED CODE
b
4 AND ARRAYS
. 40 000
CORE
MEMORY
Yy = g
FIG. 1 MEMORY ALLOCATION IN LISP

3.2

ATOMS

Literal Atoms

A literal atom is constructed from any strirg of characters not
interpretable as an integer or a floating point number. When a
string of characters representing a literal atom is read in, a
search is made to determine if an atom with the same print-name

has been seen before. If so, a pointer to that atom is used for
the current atom. If not, a new atom is created.* Thus, as in all
LISP systems, a literal atom has a uninque representation determined
by its print name. Special syntactic characters can be included

1

in print names through the use of the quote mark, (see the des-

cription of the function read).

Four cells (944 words) are associated with each literal atom.
These cells contain pointers to the print-name of the atom, the
function which it identifies, its top level or global value, and
its property list. Since atoms occur in only one part of the

address space, one can tell from a pointer (address) whether
or not it is pointing to a literal atom.

Instead of having the four cells associated with each atom on the
same page, each 1s put in a separate space in a position compu-
table from the pointer to the atom.

Separating value cells and function cells, for example, is useful
because most users will not use the same name for a global
variable as they will for a function. Therefore, 1f the four
cells were brought in whenever any one was asked for, 1t 1is

likely that the other three cells would never be referenced. Yet,
they use up room in core which could be used for other storage.
Similarly, the print-name pointers associated with atoms are
needed during input and output, but rarely during a computation.
Therefore, during computation these cells are never in core.

¥ and initialized with value NOBIND, property list NIL, function
definition NIL, 3.3

Caf of a literal atom usually contains the top level binding of

EH; atom. If the atom has not yet been set the value cell
contains the special atom NOBIND. ¢dr of the atom is a pointer

to the atom property list, initially NIL. The PNAME cell contains

a pointer to a packed character table which contains the print-

name of the atom. The function cell contains NIL until a function
by that name is defined. It has been defined that car[NIL] and
cdr[NIL] are NIL, and cannot be changed. These latter two values are
a significant convenience in programming.

Numerical Atoms

Integers

In LISP, most numerical atoms (numbers) do not have a unique re-
presentation; that is, a number of different pointers may reference
numbers with the same value. This implies that for comparison of
numbers, or for arithmetic operations, the values of the numbers
must be obtained. The values of floating point numbers and large
integers are stored in a '"full word" space. Pointers to these

values are used in list structure.

However, we utilize the fact that not all addresses in the 21 bit

virtual address space can legitimately appear as pointers in
list structure. These "illegal" pointers are therefore used in

the context of list structure to represent "small" integers

directly, offset by a constant, as indicated in Fig. 1.

The input format for an integer is any string of digits, option-

ally preceded by a "+" or "-". Integers must have magnitude less
than 223. "Small" integers are those of magnitude below approxi-
mately 218 (an assembly parameter). A string of digits followed

by a "Q" will be interpreted as an octal number.

3.4

Floating Point Numbers

Floating point numbers and operations are available in BBN LISP.
They are stored in two contiguous 24 bit words in standard 94g
format, in full word space. When creating an atom with read,
ratom or pack, LISP will recognize as a floating point number a

string of digits containing a decimal point. The letter "E"
(exponent of 10; i.e. yyExx=yy * lOXX) will also serve to desig-
nate a floating point number if preceded and followed by one or
more digits. The following are legal floating point input strings.

5. 5.0 5E0 5E-3 5.2E+6‘ .3

The floating point/string conversion, and the floating point
arithmetic are performed by the POP's and BRS's available in the
94g system. Additional information concerning conversion and
precision is available from the system documentation of these
routines.

The atom printing routine (used Dby prinl, prin?2, prin3, unpack)
will call the system conversion routine when it encounters a

floating point datum. The output format is controlled by the
function fitfmt[n] described later.

3.5

Arrays

Arrays in BBN LISP have the following format.

Header

Length

Block Pointer

Start

1

Reloc

Start

Non-Pointer Area

Block Origir

+ Array Origin

Pointer Area

7

Relocation

Information

Typical Array

The HEADER BLOCK is four cells long and contains:

Cell:

=

Length of entire block=arravsize + M.

Address of first word of nrotected nointers,
relative to Array Origin.

Address of first word of relocation information,
relative to Block Origin.

Used for temporary storage during garbage

collection.

3.6

An array may contain both pointer and non-pointer data, separated
as shown. Pointer data is assumed to be one of the standard LISP
types, and the pointer data cells in all arrays are used as base
cells for tracing during garbage collection. The non-pointer
data, beginning in the fifth cell. of the array, is of unrestricted
type, and will not be used as trace pointers during garbage

collection.

Relocation information contains the relative addresses of cells
in the array which are to be relocated when the array is used as

a compiled function, and is placed in core memory.
Examples:

1. Compiled code.
a. Machine instructions and unboxed numeric
literals are in the non-pointer area.
b. Other literals and variable name pointers are
in the pointer area.
c. Relocation information area addresses all
machine instructions whose address is within

the same program, e.g., branch instructions.

2. Array of 1lists.
All data would be in the pointer area; the other
-areas would be of length #.

3. Array of unboxed numbers.

All data would be in the non-pointer area; the
other areas would be of length #&.

3.7

List Structure

List Structure is created in list space as shown in the memory
map. Lists can contaln pointers to all data types. As can be
seen from the map, list space and array space grow toward each
other. The total space avallable is an assembly parameter.
The space available in the 4-1-68 LISP system is 144K (K=1024)
SDS 94g 24 bit words, which if used all for list storage would
provide 72K words of free storage.

Shared LISP

The LISP System as presently implemented contains nearly 90,000
words of compiled code constituting the miscellaneous functions,
Editor, Compiler, Break and other service packages. A sharing
mechanism enables one copy of this code residing on the drum to

be used by all active users of LISP. This nractice results in a
considerable saving of drum space over that required if each user
had a separate, private copy'of these functions. When a user starts
a LISP on his console, the virtual memory is set to contain all
the shared pages wkich constitute the basic system. In addition,
roughly 1,000 words of private list storage are also provided. As
the user adds his own private functions and data to the system,
private pages are assigned to contain them. Thus a running

system will typically contain some number of private pages and

the shared pages of the basic LISP system.

Fundamental to the prover operation of the sharing mechanism 1is
the requirement that no individual user be permitted to change
~the contents of a shared page. Therefore, the shared pages in
the virtual memory are initially set to be read-only. This means
that the user can do car of the list structure on a shared page

but not rplaca. However, circumstances do arise when it is

3.8

necessary for the user to change hils virtual memory in a place
where a shared nage has been mapped. For example, the user may
set the top level value of an atom contained in the original
shared system, i.e. change the contents of the value cell. To
properly handle this situation, the LISP page turning routine
takes special note of any attempt to store data into a shared
page and makes a private cooy of the page, assigning it to a new
place on the drum. This nrocedure is invoked automatically and

is invisible to the user.

Garbage Collector

The garbage collector is a routine which serves to locate cells

no longer in use by the running program and make them again avail-
able for storage. The various data spaces in LISP which may

need to be garbage collected in this way include 1lists, arrays

(and compiled-code), large integers, floating point numbers, atoms,
and print-names.

An automatic garbage collection is usually initiated whenever a
cell is needed in a space which has become exhausted. This hapé
pens most frequently when the allocated free list words have be-
come exhausted by repeated conses. A garbage collection will also
be initiated whenever print-name space is exhausted. The garbage
collection initiated for either of these reasons will reclaim
lists, numbers, atoms, and print-names. A garbage collection
initiated when array space i1s exhausted will collect these spaces,
and in addition, will compact array space. This means that unused
arrays will be eliminated, and still-in-use arrays will be moved
so as to be contiguous.

When either large integers or floating-point numbers are exhaust-

ed, a special type garbage collection called number collection

3.9

is initiated. This operation identifies still-in-use numbers
by performing a linear sweep over all spaces. This may result
in the retention of some numbers which are no longer in use.
Therefore, if a number collection is unsuccessful in obtaining

free number cells, a regular garbage collection is initiated.

The user can initiate a regular garbage collection at any time
via the function reclaim described in Section 10. Note that the
depletion of atom space will not cause an automatic garbage col-
lection. Instead, the error ATOM SPACE FULL is generated.
However, in this case, an explicit reclaim may be successful in

recovering atoms.

Allocation of List Space

Normally, a user will have in use for list structure only a small
portion of the total space available for this purpose. In order
to prevent scattering lists over many pages(which increases access
time), LISP allocates and places on the free list only a portion
of the total list structure svace. A garbage collection will be
initiated whenever this allocated portion becomes exhausted,
whether or not additional space is available. After a garbage
collection, additional pages will be allocated to list space if
necessary to raise the total number of available free words to

the minimum, a parameter set by minfs (described in Section 10).
The two number spaces, atom space, and print name space have

fixed boundaries, and an error will be generated if additional
space 1s needed and none is available. Note that list space

and array space are allocated from a common area. Array space
recovered by a garbage collection can be subsequently used by

list space because array space is compacted. However list space
is not and cannot reasonably be compacted, so acquiring all of
LISP's memory for list structure will prevent any furtherballocation

of arrays for compiled functions.

3.10

Shared Areas

The garbage collector takes special note of the shared arcas of
virtual memory. Specifically, compiled functions and arrays re-
siding on shared pages are not traced for the purpose of identify-
ing list structures and numbers to be retained. 1Instead, a
separate list, created at the time that the shared system was
loaded, serves this purpose. ‘I'his results in a considerakle

saving of time over what would be recuired if the garbage collector
had to trace through all 90,000 words of compiled code in the

shared system.

Initially, LISP memory 1s over half allocated to the shared portion
of the systems. If a particular user requires more than the re-
maining space for his program, it is possible to remove portions

of the shared system using the function flushcode (described in
Section 22). The portion flushed is automatically available for
allocation to array space. Atoms in this portion that are now

no 1onger used, e.g. function and argument names, can be reclaimed

via use of the function atomgc described in Section 10.

3.11

SECTION .IV
FUNCTION TYPES

There are basically twelve fuﬁction types in the BBN LISP System.

These twelve types reflect three characteristics. A
function may independently have:

its arguments evaluated or unevaluated,
a fixed number of arguments or an indefinite number of
arguments.
3. be defined by a LISP expression,
by permanent system code, or compiled
machine code.

Expressions used to define functions must start with either

LAMBDA, or NLAMBDA; indicating that the arguments of this func-
tion are to be evaluated, or not evaluated, respectively.

Following the LAMBDA or NLAMBDA may be a list of atoms (possibly
empty) or any literal atom (except NIL). If there is a list of atons
each atom in the list is the name of an argument for the function
defined by the expression. Arguments for the function will be
evaluated or unevaluated, as dictated by LAMBDA or NLAMBDA, and
paired with these argument names. This is called "spreading" the
arguments, and the function is called a spread-LAMBDA or spread-
NLAMBDA. If an atom follows the LANMBDA or NLAMBDA, this function
has an indefinite number of arguments. If it is an NLAMBDA expres-
sion, then the atom is paired to the list of arguments (unevaluated)
of the function; that is, to cdr of the form in which this function
name was car. Such a function is called a 'nospread” function.

Ir é LAMBDA is followed by an atom, each of its n arguments will

be evaluated in turn and placed on the parameter puéh down 1list.

The atom following the LAMBDA is bound to the number of arguments
which have been evaluated. A built-in function argl[m] returns

4.1

the value of the mth argument of this function from the push
down list. For m>n or mso, arg[m] is undefined.

Functions defined by expressions can be compiled by the LISP com-
piler, as described in the section on the compiler and lap. They
may also be written directly in machine code using the ASSEMBLE
directive of the compiler. Functions created by the compiler,

whether from S-expressions or ASSEMBLE diredtives. are referred
to as compiled functions. Built-in system coded functions

are called subroutines. To determine the type of any
function fn, you can use the function fntyp[fn]. The value of
fntyp is one of the following 12 types:

EXPR CEXPR SUBR
EXPR¥ CEXPR¥* SUBR¥
FEXPR CFEXPR FSUBR
FEXPR¥ CFEXPR¥ FSUBR¥

The types in the first column are all defined by expressions.

The ¥ suffix indicates an indefinite number of arguments (i.e. an
atom following the LAMBDA or NLAMBDA). The types in the second
column are compiled versions of the types in the first column, as
indicated by the prefix C. In the third column are the parallel
types for buillt-in subroutines. Functions of types in the first
two rows evaluate their arguments. The prefix F in the third and
fourth rows indicates no evaluation of arguments. Thus, for
example, a CFEXPR¥ is a compiled form of an NLAMBDA expression with
an atom following the NLAMBDA.

A standard feature of the BBN LISP system is that no error

occurs if a function is called with too many or too few arguments.
If a function is called with too many arguments, the extra argu-
ments are evaluated but ignored. If a function is called with
too few arguments, the unsupplied ones will be delivered as NIL.
This applies to both built-in and defined functions.

There 1s a function progn of an arbitrary number of arguments
which evaluates the arguments in order and returns the value of

the last (i.e., it resembles and is an extension of prog2).

The conditional expression has been generalized so that instead
of doublets it accepts nt+l-tuplets which will be interpreted in

the following manner:

(COND
(P1 E11 El2 E13)
(P2 E21 E22)
(P3)
(P4 EL1))

will be taken as equivalent to (in LISP 1.5):

(COND
(P1 (PROGN Ell1 El2 E13))
(P2 (PROGN E21 E22))
(P3 P3)
(P4 E41)
(T NIL))

This is not exactly true, but only because P3 is not evaluated
a second time, if the value is needed in the third item in the

h.3

second conditional expression. Thus, a 1list in a cond with only
a predicate and no following expressions causes the value of the
predicate itself to be returned. Note also that NIL is returned
if all the predicates have value NIL. No error is invoked.

LAMBDA and NLAMBDA expressions also have implicit progn's; thus

for example
(LAMBDA (V1 V2) (F1 V1) (F2 V2) NIL)
is interpreted as
(LAMBDA (V1 V2) (PROGN (Fl1 V1) (F2 V2) NIL))

The value of the last expression following LAMBDA (or NLAMBDA)
i1s returned as the value of the expression. In this example,
the function would always return NIL.

b.b

SECTION V

PRIMITIVE FUNCTIONS AND PREDICATES

Primitive Functions

car[x] car gives the first element of a
list x, or the left element of a
dotted pair x. Hominally unde-
fined for literal atoms, it
usually gives the top level
binding (value) of a literal
atom x. For the usually undefined
case of a number, 1ts value is

the number itself.

cdr[x] cdr gives the tail of a list (all
but tne first element). This is
also the right member of a dotted
pair. If x is a literal atom,
cdr[x] gives the property list
of x. Property lists are usually
NIL unless modified by the user.
If x is a number, cdr returns NIL.

caar[x] = car[car[x]] A1l 30 combinations of nested
cars and cdrs up to 4 deep are

cadr(x] = car[ecdr(x]] included in the system. Levels 1,
2 and 3 are subroutines; 4 is

cddddr{x] = compiled. All are compiled open

[cdrledrledrledr{x]]]] by the compiler.

5.1

cons[x;y]

cons[x;y] 1s placed

cons constructs a dotted pair of
x and y. If y 1s a iist, X be-
comes the first element of that
list.

the following algorithm is used

To minimize drum accesses

for finding a page on which to

put the constructed LISP word.

is a list and there is room;

is a l1list and there is room;

last cons if there is room;

on a page in core if one is available with a specified

1) on the page with y if y
otherwise h)

2) on the page with x if x
otherwise

3) on the same page as the
otherwise

)
minimum of storage; otherwise

5)

on any page with a specified minimum of storage.

The specified minimum is presently 20 LISP words in

both cases.

The user may effect the operation of cons with the following

function:

conspage[x]

causes the page on which X re-
sides to be used for alternative
3 above instead of the result of
the previous cons. If x is an
atom, alternative 4 or 5 will
be taken.

502

conscount[] Returns the number of conses

since LISP started up.

rplacd[x;y] This SUBR places in the
decrement of the cell
pointed to by x the pointer y.
Thus 1t changes the internal list
structure physically, as opposed
to cons which creates a new list
element. This is the only way
to get a circular list inside of
LISP; that is by placing a
pointer to the beginning of a
list in a spot at the end of the
list. Using this function care-
lessly is one of the few ways to
really clobber the system. The

value of rplacd is Xx.

rplacalx;y] This SUBR is similar to rplacd,
but it replaces the address
pointer of x with y. The same
caveats which applied to using
rplacd apply to rplaca. The
value of ronlaca is Xx. Rplaca
and rplacd of NIL are illegal.

quote[x] This is a function that prevents

its argument from being evaluated.
Its value is x itself.

5.3

cond[clgcz;...

3¢

The conditional function of LISP,
cond, takes an indefinite number
of arguments, C15855¢++Cy called
clauses. Each clause ¢; i1s a list
(e

=1i""
clauses are considered in sequence

.e_.) of n>1 items. The

as follows: the first expression

e..
=13

and its value is classitied as

of the clause ey is evaluated

false (equal to NIL) or true (not
equal to NIL). If the value of
€,; 1is true, the expressions
€538y that follow in clause
c; are evaluated in sequence, and
the value of the conditional is
the value of e ., the last ex-
pression in the clause. In par-
ticular, if n=1, i.e., if there is
only one expression in the clause
¢;» the value of the conditional
is the value of e.,.

If €11 is false, then the remainder
of clause Cy is ignored, and the
next clause gi+l i1s considered. If
no e,y is true for any clause, the
value of the conditional expression
is NIL.

This conditional expression form
gives the same value as LISP 1.5
for clauses of exactly two items
but allows additional flexibility.

5.4

selectq[x;yi;yz;...;yn;z]

This very useful function is used
to select a sequence of instruc-
tions based on the value of its
first argument x. Each of the

¥y is a list of the form

(85 €15 €o3- -8y

where s, is the selection key.

If s; is an atom the value of X
is tested to see if it is eq to
s; (not evaluated). If so, the

i cgee e . -
expressions e, eyy are eval

uated in sequence, and the value
of the selectq is the value of
the last expression evaluated,

i.e. S

If s; is a 1list, and 1f any ele-
ment of s; 1s eg to the value of

X, then to e, . are evaluated

€11 ki
in turn as above.

If y; is not selected in one of
the two ways described then

Y41 is tested, etc. until all
the y's have been tested. If
none is selected, the value of
the selectq is the value of z.

Z must be present.

5.5

progl[xl;xe;...;x

prog2[x;y]

progn(x;y;...;z]

n

]

An example of the form of a
selectqg is:

(SELECTQ (CAR X)

(Q (PRINT FOO) (FIE X))

((AEIOU) (VOWEL X))

(Y (TRY-AGAIN X))

(COND((NULL X)NIL)

(T (QUOTE STOP))))

which has 3 cases, Q,(A E I 0 U)
and Y, and a default condition
which is a cond.

selectq compiles open, and 1s
therefore very fast; however it
will not work for lists, large
integers or floating point num-
bers since it uses a 24 bit open
compare (an open eq).

This function evaluates its
arguments in order, that is, Xy
then x, etc. It returns the
value of its first argument x,.

Evaluates x, then y and returns
X.

progn evaluates each of its
arguments in sequence, and re-
turns the value of its last
argument as its value. It is an
extension of prog2.

5.6

Evaluates the expression form

rpt[n;form]
n times. Returns the value of

the last evaluation.

prog[args;el;eZ;...pn] " This feature allows the user to
write an ALGOL-like program con-
taining LISP statements to be
executed and is identical to the
prog in LISP 1.5. The first
argument is a list of program
variables. The rest is a se-
quence of (non-atomic) state-
ments (expressions), and atomic
symbols used as labels for trans-
fer points. The value of a prog
is determined by the function
return. If no return is exe-
cuted, the value of the prog is
not guaranteed, but will not give
an error, if flow of control
"falls off the end".

Hgo[x] go is the function used to cause
a transfer in prog. (GO A) will
cause the program to continue at
the label A. A go can be used at
any level in a prog. If a go 1s
executed in an interpreted function
which 1s not a prog, it will be
executed in the last interpreted

prog entered.

5.7

return[x] A return is the normal end of a
prog. Its argument 1s evaluated
and is the value of the prog in
which 1t appears. If a return
is executed in an infterpreted

function which is not a prog,
the return will be executed in
the last interpreted prog entered.

set[x;y] This function sets the atom which
is the value of X, to the value
of y, and returns the value of y.

setqlx;y] This FSUBR is identical to set,
except that the first argument
is not evaluated.
Example: If the value x is ¢,
and the value of y is b, then
set [x3;y] would result in ¢
having value b, and b returned.
setq[x;y] would result in x
having value b, and b returned.
In both cases, the value of y
is unaffected.

setqqlx;y] Identical to setq except that
' neither argument is evaluated.

5.8

Predicates and Logical Connectives

atom[x] atom[x]=T if x 1s an atom; NIL
: otherwise.
arraypl[x] is T 1f x is an array; NIL

otherwise.

listp([x] is T if x is a nonatomic 1list-
structure, i.e., created
by one or more CONSes NIL
otherwise. Since arrays are
not atoms, and will fail an atom
test, listp should be used to
distinguish bona fide 1list
structure from atoms, numbers,
arrays, et al.

nlistp(x] not[listpl[x]]

eqlx;y] The value of eq is T if x and y
are pointers to the same structure
in memory, and NIL otherwise.
eq is complled open by the com-
piler as a 24 bit compare of
pointers. Its value 1is not
guaranteed T for equal numbers
which are not small integers.

See eqp.

5.9

eqplx;y]

neq[x:y]

nillil]
null{x]

equai[x;y]

and[xlg...xn,]

The value of egp is T if X and y
are pointers to the same structure

in memory, or if X and y are num-

bers and have the same value. Its

v value 1s NIL otherwise.

The value of this function is T

if x is not eq to y, and NIL

otherwise.

Defined as (LAMBDA NIL NIL)

eql[x;NIL]

The value of this function is T
if x and y are isomorphic, that
is, x and y print identically;
the value of equal is NIL
otherwise.

-This function is an FSUBR and

can take an 1ndefinite number
of arguments (including 0). 1Its
value is the value of its last
argument if all of its arguments
have non-null value, otherwise
NIL. and[]=T. Arguments past
the first null argument are not
evaluated.

5.10

]

or[xl;...xn,

th[x]

memb [x;y]

member(x;y]

intersection[x;y]

union[x;y]

This function 1is also an FSUBR
and can take an indefinite number
of arguments (including 0). Its
value is that of the first argu-
ment whose value is non-null,
otherwise NIL. or[]J=NIL. Argu-
ments past the first non-null
arguments are not evaluated.

Same as null; that is, eq[x;NILI].

This function determines if x is
a member of list y, 1.e. if there
1s an element of y eq to x. If
so 1t returns the portion of the
list starting with that element.
If not it returns NIL.

Identical to memb except that it
uses equal instead of eq to check
membership of x in y.

This function returns with a list
whose elements are members of
both lists X and y.

This function is entered with two
lists. It returns with a list
consisting of all elements
included on either of the two
original lists. If the same

item is a member of both original
lists, it is included only once

on the new list. It is more effi-

clent to make x be the shorter list.

5.11

SECTION VI
LIST MANIPULATION AND CONCATENATION

list[xig...;xhﬂ The value of list is a list of
the values of its arguments.

nlist[xl;...,xn,] Returns a list of the value of
all arguments (same as LIST),
but deletes all NIL's at the end
of this list. Example:
(NLIST T T NIL T NIL NIL) =
(T T NIL T)

append[x;y] This function copies the top
level of list X and appends list
y to this copy. The value is
the combined list. If x is NIL,
it returns y.
';nconc[u;v] This function 1s similar to
E append in effect, but it causes
this effect by actually modifying
the list structure x, and making
the last element in the list x
point to the list y. The value
of nconc is a pointer to the first
list X, but since this first 1list
has now been modified, it is a

pointer to the concatenated list.
If x is I'TL, 1t returns y 1tself.

nconcl[lst;x] performs nconc[lst;list[x]]. The v
cons will be on the same page as 1lst.

tcone[x;pl

lconc[x;p]

attach(x;y]

This function provides an effi-
cient way for placing an item Xx

at the end of a 1list. This 1list
is the first item on p, that is,
car[(pl; cdrlp] is a pointer to

the last element 1in this list; x
is placed on the end of the list
by modifying this structure, and
X 1is placed on the list as an
item. The effect of this function
is equivalent to

nconclcar[p]; List[x]], with edrlp]
updated to point to the last ele-
ment of the modified list.

This function is similar to tconc,
except that in this case Xx is a
list. An entire 1list will be
tacked on the end of car[p], and
cdr[p] will be adjusted to be a
pointer to the last element of
this new combined list. Both
tconc and lconc work correctly
given null arguments.

This function attaches the element
X on the front of the list y by
doing an rplaca and an rplacd.
This will not work correctly if

y is an atom. Thus it is similar
to cons, except that it modifies
the contents of the first element
of the non-null list y.

remove[x;1]

dremove[x;1]

copyl[x]

reverse[1l]

dreverse[1]

subst[x;y;2]

The function remove removes all
occurrences of x from list 1,
giving a copy of 1lwith all ele-
ments equal to X removed.

This function is identical to
remove, but actually modifies
the 1list 1 when removing x, and
thus does not use any additional
storage.

This function makes a copy of the
list x. The value of copy is the
(location of the) copied list. All
levels of x are copied.

This is a function to reverse the
top level of a list. Thus, using
reverse on

(A B (CD)) gives ((C D) B A)

Identical to reverse but dreverse:
destroys the list 1 while reversing
by modifying pointers, and thus
does not use any additional

‘storage.

This function gives the result of
substituting the S-expression x
for all occurrences of the
S-expression y in the S-expression
z. Substitution occurs whenever
¥y is equal to car of some ‘sub-

expression of 2 or when y is

6.3

subst{x3;y3;z] (cont.)

dsubst[x;y;z]

sublis[x;y]

both atomic and eg to c¢cdr of
some subexpresslon of z. For
example:

subst[A;B;(C B (X . B))] gives
(C A (X . A4))

subst[A;(B C);((B C) DB C)] gives
(ADBZC), not (AD. A)

The value of subst is a copy of
z with the appropriate changes.

Identical to subst, but physically
inserts a copy of x for y in 2,
thus changing the 1list structure

z itself.

Here x is a list of pairs:

((ul.vl) (u2.v2) .o (un.vn))

with each ui atomic.

The value of sublis[x;y] is the
result of substituting each v
for the corresponding u in y.
Copies the structure y with
changes.

6.4

lsublis[x;y]

x 1is a 1list of pairs as for

sublis, except that the vy are
substituted as segments of a list,

not as items. For example,

sublis[((A B C)); (X A Y)] = (X (B C) Y)
but

lsublis[((A B C));(X A Y)] = (XBCY).
Note also that

1sublis[((A)); (X A Y)] = (X Y)

lsublis is destructive: it

physically changes the list
structure of y itself.

6.5

subpair{x;y;zsfl1]

'1ast[x]

nth{x;n]

‘length[x]

count[x]

Similar to sublis, except that

_elements on ¥ are substituted for

corresponding atoms on x in 2.
New structure is created only if

needed, or if f1=T.

This function has as its value a
pointer to the last cell in the
list x, and returns NIL if X is
an atom. i.e. if x=(A B C) then

last [x] = (C)

The arguments of nth are a list x
and a positive integer n. Its
value is a list whose first ele-
ment is the nth element of list
X. Thus if n = 1, it returns

the list x itself. If n = 2,

it returns cdr[x]. If n = 3,

it returns cddr[x], etec.

If n =0 it returns cons[NIL,x].

This function has as a value the
length of the list x. If x is
an atom, it returns d.

Returns the number of LISP words
in the list structure X. Returns
g if x is an atom. '

6.6 -

ldiff{x;y;z]

editnthx;n]

li[n;x]

ri(myn;x]
bilm;n;x]
lo[n;x]
ro[n;x]
boln;x]

y is a tail of x, i.e., the result
of applying some number of CDRs to
X 1difflx;y] gives a list of all
elements in X but not in y, i.e.,
the list difference of X and y.
Thus (LDIFF X (NTH X (ADD1l M)))
gives the first M elements of X,
(LDIFF X (MEMBER (QUOTE FO00) X))
gives all elements in X up to the
first TO0O.

If z is not NIL the value of 1diff
i1s effectively

nconc[z;1diff(x;y]], i.e. the 1list
difference is added at the end of z.

similar to the function nth except
n may be positive or negative. If
n is positive, car of value is nth
element of x. If n 1s negative,
car of value is nth element of x
counting from the end. 1i.e.,
editnth(x;-1] = last[x]. If n is
too large (or too small), editnth
generates an error. Note that
nth does not.

equivalent to executing the edit
command (LI N) when x is the current
level list.

equivalent to cprresponding edit
command

6.7

makelist[n;m] makes a list of length m consisting
of the contents of cells n, ... ntm-1.
For example, if FOO is an array
pointer,
(MAKELIST (PLUS (LOC FOO0) 4) 3)
is a 1list consisting of the first
three elements in the array FO0O.

6.8

SECTION VII
PROPERTY LIST FUNCTIONS

put[x;y;z] This function puts on the pro-
perty 1list of x, the label y
followed by the property z. The
current value of z replaces any

previous value of z with label y
on this property list. Its value
1s z.

remprop[x;y] This function removes all occur-
rences of the property with label
y from the property list of X.

prop[x;y;ul The function prop searches the
list X for an item that is egual
to y. If such an element is
found, the value of prop is the
rest of the list beginning
immediately after that element.
Otherwise, the value is ul[],
where u is a function of no argu-
ments. Its effect is similar to
memb and member, and they are
more efficient when usable.

changeprop[x;propl;prop2] Changes name of property propl
to prop2 on atom x, (does not
affect the value of the property).

Value 1s x. If propl not found,
value is NIL.

7.1

get[x;y]

getplx;y]

getl(x;y]

deflist[x:p]

This function gets from the list
X the item after the atom y on
list x. If y is not on the list
X, this function returns NIL. For
example, get[(A B C D);B] = C.

This function gets the property
with label y from the property
list of x.
NOTE: Both getp and get may be
used on property lists. However,
since getp searches a list two at
a time, the latter allows one to
have the same object as both a
property and a value. e.g., if
the property list of x is
(PROP1 A PROP2 B A C)
then get[x;A]
but getpl[x;A]

PROP2,
C.

y is a 1list of properties. getl
searches the property list of X,

two at a time, and returns the
property 1list as of the first
property on y tnat it finds, e.g.,
with above property list,

getl[x; (PROP2 PROP3)1=(PROP2 B A C).

This function is used to put
items on property lists. Its
first argument x is a list of ,
two element lists. The first of
each 1s a name. The second ele-
mént is the value to be stored
after the property p on the pro-
perty 1list of the name. The
second argument p is the property

that is to be used.

7.2

add[x;y;z] This function adds the value z to
the list appearing under the
property y on the atom x. If x
does not have a property v, the
effect is the same as
put[x;y;list{z]].

assoc[x;al If a is a 1ist of dotted pairs,
then assoc will produce the first
pair whose first item is eq to x. If
such an item is not found, assoc
will return NIL.

sassoc[x;y;ul The function sassoc searches y,
which is a list of dotted pairs,
for a pair whose first element is
equal to x.. If such a pair is
found, the value of sassoc 1s this

pair.

Otherwise, the function u of no

no arguments, if given, is taken

as the value of sassoc. Otherwise,
its value is NIL.

Note: Many atoms in the system already have property lists, usually

for use by the compiler. Be careful not to clobber their property
lists by using rplacd.

7.3

SECTION VIII
FUNCTION DEFINITION AND EVALUATION

getd[x] This function gets the definition
of the function whose name is
the value of x. If X 1is not a
defined function, the value of
getd[x] is NIL; if x is a machine
code function, the value is a

number.

putd(x;y] putd places the value of y into
the function cell of the atom
which is the value of x. This
is the basic way of defining
functions. putd is mnemonic for
put definition on x. The value of
putd is the definition (value of

v).

putdglx;y] This function is similar to putd,
but both arguments are considered

quoted, and its value is X.

movd[from;to;copyflg] Moves definition of from to to
i.e., redefines to. If copyflg=T,
a copy of the definition of from

is used.

8.1

fntyplfn] This function returns NIL if
fn if not the name of a de-
fined function, or a function defi-
nition. Otherwise fntyp returns one of
the following as defined in the
section on function types:

EXPR CEXPR SUBR

EXPR¥ CEXPR¥ SUBR¥
FEXPR CFEXPR FSUBR
FEXPR*¥ CFEXPR* FSUBR¥*

The prefix F indicates unevalu-
ated arguments; the prefix 9 in-
dicates compiled code; and the

suffix ¥ indicates an indefinite

number of arguments.

define(x] The argument of define is a 1list.
‘ Each element of the list is it-

self a list containing two
or more items. In a two-item
list, the first item of each ele-
ment of the list is the name of a
function to be defined, and the
second item 1s the defining
LAMBDA or NLAMBDA expression. In
longer lists, the first item
is again the name of the function
to be defined. The second is the'
LAMBDA 1list of variables and the
remainder of the lists are forms for
evaluation. As an example, consider
the following two equivalent

8.2

expressions for defining the
function null.

1) (NULL (LAMBDA (X) (EQ X NIL)))
2) (NULL (X) (EQ X NIL))

define will generate an error on
encountering an atom where a
defining 1list is expected.

If dfnflg=T, its normal setting,
an attempt to redefine a function
fn will cause define to print the
message (fn REDEFINED) and to
save the old definition of fn
using savedef before redefining
it.

Note: define will operate correctly if the function is already

defined and broken, advised, or broken-in.

savedef[fn]

unsavedef[fn;prop]

Saves the definition of fn on 1its
property list under property

EXPR, CODE, or SUBR depending on
its type. If fn is a list, savedef
operates on each function in the
list.

Restores the definition of fn
from prop. If prop is not given,
unsavedef looks under EXPR, CODE,
and SUBR, in that order, before
giving an error. If dfnflg=T, the
current definition of fn is

saved using savedef. Thus one can
use unsavedef to switch back and
forth between two definitions of
the same function, keeping one

on its property list and the
other in the function cell.

8.3

defineq[x;...z]

eval[x]

evalal[x;a]

If fn is a 1list, unsavedef operates
on each function 1n the 1list.

This FEXPR 1s closely related to
define. However, it takes an
indefinite number of arguments
which are not evaluated. Each of
the arguments must be a list, of
the form described in define.
Using defineq instead of define
allows one to eliminate two pairs
of parentheses in writing func-
tions to be defined for loading
with the function load.

Since defineq calls define, dfnflg

affects its operation as well as
that of define.

eval evaluates the expression x
and returns this value.

This is the regular eval from
7994 LISP. 1Its first argument is
a form which is evaluated by us-
ing the values obtained from a,

a list of dotted pairs. That is,
any variables appearing free in
X, that also appear on a, will be
given the value indicated on a.

8.4

evalr[x;a]

e[x]

apply[fn;args]

nargs[fn]

arglist[fn]

Same as evala except with 1list a
reversed. Used by evala.

This FEXPR is defined as eval;
however,'it is shorter and it re-
moves the necessity for the extra
pair of parentheses for the list
of arguments for eval. Thus,
when typing into evalquote one
can simply type e followed by
whatever one would type into eval
and have it evaluated.

apply applies the function fn to
the arguments args. 1.e. the
arguments of fn, args, are not
evaluated but given to fn direct-
ly.

Returns NIL if fn is not a func-
tion, and the number of arguments
of fn if it is. It returns 1 for
functions of type

EXPR¥, FEXPR¥, CEXPR¥, CFEXPR¥,
CSUBR¥ and CFSUBR¥.

. fn is either the name of a function

or its definition. Value of arglist

is the list of names of the arguments,
or in the case of a non-spread function,
the single atom that is the name of

the argument. By convention, arguments
to all functions of type SUBR are

u, v, and w, in that order. For func-

tions of type SUBR¥, FSUBR, FSUBR¥,
or undefined functions, arglist causes

a helpable error.

8.5

arg[n] ’ This function works with a func?
tion of type EXPR¥ or CEXPR¥.
It returns argument n of that
function. It 1s undefined if
n<0 or n>m where m is the number

of arguments bound.

setarg[n;v] Sets argument n of an EXPR¥
function to v.

8.6

SECTION IX

THE LISP EDITOR

The LISP editor allows rapid, convenient modification of list
structures. Most often it is used to edit function definitions
(often while the function itself is running) via the function
editf, e.g. EDITF(APPEND). However, it can be used to edit vari-
ables, via editv, propérty lists, via editp, or arbitrary ex-
pressions, via edite. (Editf, editv and editp all use edite, see
p. 9.18). It is another important feature which allows good on-
line interaction in the BBN-LISP system.

Editor Language Structure

Let us take a concrete example of a 1list (not necessarily a func-
tion definition) to be edited. Suppose we are editing the follow-
ing incorrect definition of the append function:

(LAMBDA (X) Y (COND ((NUL X) Z) (T (CONS (CAR)
(APPEND (CDR X Y)))))).

At any given moment, the editor's attention is confined to a
single 1list (generally a subcomponent of the original list being.
edited), which it will print when given the command P. To avoid
printing of confusing detail, sublists of sublists will be printed
simply as &. Thus:

¥p
(LAMBDA (X) Y (COND & &)).

where ¥ indicates that this line was typed by the user.

Only the 1list on which attention is currently focused may be

changed. Commands thus fall naturally into four classes: moving
around in the list structure; making changes in the current 1list;
printing parts of the list being edited; and entering and leaving
the editor.

Many commands use the convention that an integer designates a
sublist of the current 1list. For example, if an integer alone
is typed, attention is focused on the designated sublist of the
current list.

Thus:

#2
*p
(X)

The converse command is the number @, which causes the current
list to revert to its former state. For example, starting again
with the list at the beginning of the section:

%3 P
Y
(LAMBDA (X) Y (COND & &)).

Note the use of several commands on a single line. 1In BBN LISP,
a carriage return is printed automatically whenever a right paren-
thesis is typed which causes the parenthesis level to become a

zero. Therefore, a non-atomic command is necessarily the last
command on its line. No commands on a line are performed until

the user or the system types a carriage return.

9.2

In the remaining examples, unless mentioned specifically, it is
assumed that the state of the edit is that which existed at the
end of the previous example. As above, lines typed by the user
are prefixed with an asterisk.

Attention Commands

The two fundamental commands for moving around the structure have
already been mentioned: a positive integer n, to examine the gth
sublist, and @, to revert to the superlist. If n is a positive
integer, then -n examines the gth sublist of the current list
starting from the end and counting backwards, i.e. -1 examines

the last sublist of the current list.

A more drastic command is 4, which clears the editor's memory of
descent through the structure and reestablishes the top level of
the entire list structure being edited as current. Thus:

¥ 2 14P
(LAMBDA (X) Y (COND & &)).

A command similar to n is (NTH n) which caused the list starting
with the nth element of the current list to become current. Thus:

¥*(NTH 3)
*¥p
(Y (COND & &)).
¥g P
(LAMBDA (X) Y (COND & &)).

9.3

(NTH -n) may also be used, with the expected result:

¥(NTH -3)
¥p 4
((X) Y (COND & &))

The command (F e), where e is any S-expression, searches for an
instance of e in the current list, and then acts like NTH, so

that for example:

*(F Y)
*p
(Y (COND & &)).

A more thorough (and time-consuming) search is provided by (F e T) .
which searches through the entire structure. Thus:

¥4 (F Z T)
¥p
(z)
*ij
((NUL X) Z)
*QP
(COND (& Z) (T &))
*gp
(LAMBDA (X) Y (COND & &)).

9.4

One more variation is provided by (F e n), which finds the nth
occurrence of e anywhere in the structure. The search is done

in printout order, so for example:

¥+ (F X 1)
¥Pp

(X)

¥+ (F X 2)
*p

(X)

*g P

(NUL X)
¥+ (F X 3)
*3 P

(CDR X Y)

Both the (F e T) and (F e n) commands will automatically ascend to
higher level expressions if the structure e is not found in the
current list. The entire search i1s done 1n printout order,
starting with the current 1list, and, if e is not found, proceeding
to those portions of higher level lists that would be printed

subsequently to the current 1list. Thus:

¥4 2P

((NUL X) 2Z)

¥(FXT)

*p

(X)

¥(F CONS T)

#p

(CONS (CAR) (APPEND &))

9-5'

*ﬂP

(T (CONS & &))
¥(F NUL T)

(F NUL T) °

The question mark typed after the command in error is the editor's
all-purpose comment: it simply means something is wrong with the
indicated command. In this case, it is because the search failed
to find a NUL following the current position, although of course a
NUL does appear earlier in the structure.

Another useful variation of the find command is provided by

(F e N), to be distinguished from (F e n), n a number. Here N
means Next, and the search skips over the first element in the
current list, and then proceeds exactly the same as (F e T).

Thus the command (F e 2) will produce the same results as the
command (F e T) followed by (F e N). The find-next command is
useful for cycling through a large structure and examining and/or
changing several instances of the same expression. It is also
extremely useful in conjunction with edit macros, which are
explained later.

For all of the four variants of the F command described, the
argument e need not be a literal S-expression. The symbol & can
be used to match any single element of a list; the symbol -~ to
match with the rest of any list. Thus in our example,

(F (NUL &) T) will find (NUL X) and (F (CDR --) T) will find
(CDR X Y), as will (F (CDR & &) T), but not (F (CDR &) T).

9.6

These two special symbols can be useful in finding a particular
expression which is similar to many others. For example, if

there are many places in a program where the variable X is set,

(F SETQ T) may not find the expression you are looking for, nor
perhaps will (F (SETQ X &) T). It may be necessary to type

(F (SETQ X (LIST --)) T) to find the correct expression. However,
the usual technique in this case is to pick out a unique expression
or atom which occurs Jjust prior to the desired expression and

then do two F commands. This "homing in" process seems to be more
convenient than ultra-precise specification of e.

For all find commands, if e 1s atomic, it will be the first element
of the current list after the find command has (successfully) oper-
ated. If e 1is nonatomic, the corresponding structure will be the
current list. To insert before or after this expression, or to
delete or replace 1it, the command UP, described on p. 9.29, can be
used to make the current list list be the first element in the next
higher list.

The find commands can be used on a list structure that is circular
through a car chaln by appropriately setting the free variable

- maxlevel. This variable determines how "deep" the editor will
search before abandoning a given structure, where the depth of a
structure is the number of unpaired left parentheses preceding it
in a printout. Maxlevel is initially set to 100.

An abbreviated form exists for doing the usual find command (F e N).
Typing F e (with no parentheses) achieves the same effect. After
the F 1is typéd in the editor expects a next expression to be typed
in as the search goal. See 9.26 for a more complete explanation.

<

9'07

Three facilities are available for saving information relating to
the current state of the edit and later retrieving it. At any
stage 1. the edit, a mark can be made and later returned to. The
commands are MARK, which marks the current state for future
referen2; <+, which returns to the last mark without destroying
it; and <<, which returns to the last mark and forgets it. For
example:

¥+ 4 2P

((NUL X) 2Z)

¥MARK 4 (F CONS T)

*¥p

(CONS (CAR) (APPEND &))
¥4 P

(LAMBDA (X) Y (COND & &))
¥« P

((NUL X) Z)

¥« P

“« ?

This last example demonstrates another facet of the error recovery
mechanism: to avoid further confusion when an error occurs, all
commands on the line beyond the one which caused the error are
forgotten.

Frequently one wants to move or copy a sublist from one place in
the structure being edited to another. No command for performing,
this particular,operation is provided. However, it is possible to
set a variable to the current list, with a command (8 v), or to

‘9.8

the nth sublist of the current list with (S v n), n positive or
negative. The I command described below can then be used to treat
this value exactly as though it had been typed in literally. Thus:

*¥4 (S EL2 2)
will result in'setting the value of EL2 to the sublist (X).

Modification commands

Just as most general text editors contain INSERT, REPLACE, and
APPEND commands, the LISP editor provides facilities for these
three basic operations. To insert the S-expressions e;...e,
before sublist n of the current 1list, one simply gives the

command (-n e; ... e), thus:

9.9

¥+ (F CAR T)
¥p

(CAR)
¥(-1 CRR)

P

(CRR CAR)

To replace the nth sublist with €q:--8,> One gives the command
(n el...em), for example:

¥+(F NUL T)
*p

(NUL X)
¥(1 NULL IS)
¥p

(NULL IS X)

To append the elements e, to the end of the current list, one

."e.
=m
gives the command (N e;...e).

¥(N THIS LIST)
*p
(NULL IS X THIS LIST)

Deletions may be accomplished by using the replace operation with
no new S-expressions specified: to restore the list we have just
created to the state in which we presumably want it, we can say:

9,10

¥(5)
®(L)
*¥(2)
¥p
(NULL X)

Deletions should generally be made from back to front, since other-
wise the indices of later sublists will change as earliier ones

are deleted, e.g. the above sequence of commands given in front

to back order would have been

¥(2)
¥(3)
¥(3)

Very often one wants to make a simple change in a list structure,
without wanting to know exactly how to trace down the structure

to the point where the emendation is to be made. The command

(R e; e,) replaces all occurrences of e, by €, in the current
list and all its substructure. This is done using a variant of
subst called dsubst that runs faster, and physically replaces the
0ld structure in the list.by a copy of the new structure. For

example:.

¥t(R Z Y)
¥4 2 P
((NUL X) Y)

A mechanism by which lists saved with the S command may be used,

is (I ¢ €15 +.. € n)» which is equivalent to
([atom[c]+c; T*eval[c]j eval[el] .. eval[en]).

9.11

If EL2 has been set to (X) as shown above:

¥4 (I (CAR (QUOTE (F))) (CAR EL2) T)
¥p
(X)

because the I command is equivalent to (F X T).

Structure changing commands

The commands presented in the last section do not allow convenient
alteration of the list structure itself, as opposed to components
thereof. Consider, for example, the list (A B (C D E) F G). We
can remove the parenthesis around (C D E), which is the third
sublist, by (LO 3) (this stands for take Left paren Out). This
produces the list (A B C D E). LO simply deletes all elements of
the original list beyond the one specified. If we want to preserve
them, we could say (BO 3), take Both parentheses Out, which pro-
duces (ABCDEFG). Conversely, if we want to take the partial
list beginning at B and subordinate 1t one level, making

(A (B (CDE) FG)), we can say (LI 2), i.e. put a Left parenthe-
sis in before sublist 2 (and a matching right parenthesis at the
end of the 1list). Again, if we want the matching right parenthe--
sis Inserted somewhere other than at the end of the list (after
the F, for example), we can say (BI 2 4), put Both parentheses

In around elements 2 through 4, which results in the 1list

(A (B (CDE)F)aG).

Two other operations of this sort are also possible. If we wanted
to bring only the D and E up to the level of the A B F G, and
leave (C) as a sublist, we can use (RI 3 1), namely move the Right
paren at the end of sublist 3 In to sublist 3 after element 1

9.12

of sublist 3. This will produce (A B (C) DE R 6). A pelated
operation is (RO 3), which means move the Right parenthesis of
sublist 3 Out to the end of the list, producing (A B (CDEF G)).
Finally, if one wants to move a right parenthesis onlv. nart-

way out, for example to produce (A B (C D E F) G), this can be
accomplished by (RO 3) followed by (RI 3 4).

Printing commands

We have already encountered the command P, which prints the current
list showing only one level of nesting. To print a selected sub-
list in the same way without changing the state of the edit,

(P n) is used: for example,

¥ 4P
(LAMBDA (X) Y (COND & &))
®(P 2)
(X).

Furthermore, one may examine the nth sublist (or, if n=0, the
current list) to m levels of nesting by using (P n m). The con-
vention 1s that m=3 yields the usual format: several illustrations

are given below:

¥*(P g 1)

&
*(P g 2)

(LAMBDA & Y &)
*(P 2 3)

(LAMBDA (X) Y (COND & &))
#¥(P U4 2)

(COND & &)
¥(P 4 4) ,

(COND ((NUL X) Z) (T (CONS & &))).

9.13

Another command which is available for examining the environment
during editing is (E e), which simply evaluates e and prints its value
without disturbing the state of the edit. This is done under
errorset, so that one can actually try to run the‘function which

one is editing. It should be mentioned that changes are made as

soon as they are typed in, so that the state of the definition of

a function (which is what is usually being edited) is always

exactly what one expects. Typing E e (without parentheses) also
causes e to be evaluated.

The command (E e T) causes the expression e to be evaluated without
being printed. It is primarily useful for defining macros.

The command PP causes the current list to be printed in a pretty
form using printdef, a subordinate function of prettyprint (see 14.14).
PP is equivalent to the two commands (S FOO) (E (PRINTDEF FOO) T).

This completes the discussion of the commands built into the editor.
The following section on Edit Macros describes ways of augmenting
this set. It should be emphasized that all user inputs are
interpreted as edit commands, and have no bearing on any external
functions. The command (F X T) will not be affected by the

existence of a user function named F. The work done by the commands
LI,LO,RI,RO,BI, and BO happen to be carried out by edit functions of
the same name; but as far as the user is concerned, he is not calling
these functions when he types (LI 2), but merely giving the

editor a command which in some mysterious way it carries out. The
only way the user can call a function explicitly is to use either

the E or I command, (or to use a macro which uses an E or an I
command)

9.14

Edit Macros

In editing a set of functions, to make a consistent change in a nun-
ber of places, one must give the same sequence of commands a number of
times. For example, to replace all occurrences of calls to .
(FOO &) by calls to (FIE & T), (whére & stands for any expression),
one would type

(F FOO T)
(1 FIE)
(N T)

as many times as the replacement was necessary. To save this
typing, one can define an edit Macro, called RF for example, by

typing
(M RF (F FOO T) (1 FIE) (N T))

Then each time you type RF the sequence of commands, following the
RF in the definition 1list, will be executed. If RF were made the

last command in the list, the sequence would be repeated until FOO
could not be found, that is if RF were defined by

(M RF (F FOO T) (1 FIE) (N T) RF)

The simple edit macro described above cannot be given any argu-
ments, and will always do exactly the same thing. One can also
define macros which use parameters. For example, to define a

macro to switch two items in a list, onewould type

‘(M (SW) (A B) (S SWl 4) (s SWé B) (I B SWl) (I A SW2))

9015

where the list of argument names (A B) immediately follows the

macro name, SW, which is listed to indicate that SW will always be
used with arguments. To make this macro, SW, switch items 2 and 7

in a list, one would type

(sw 2 7)

This command would substitute 2 for A, and 7 for B, in the macro
definition following the argument list (A B); and then execute
‘that sequence of commands with the substituted values. In this
case, the sequence would be

(S sSw1l 2)
(S sw2 7)
(I 7 Swl)
(I 2 sw2)

An example of a macro which calls a function is
(M (FOO) (N FN) (NTH N) (S FIE 1) (I 1 (FN FIE)))

Thus typing (FOO -1 CADR) would cause the last element in the _
current list to be replaced by CADR of that element by executing
the following sequence of edit commands:

(NTH -1)
(S FIE 1)
(I 1 (CADR FIE))

Note that a macro with no parameters is called by typing an atom

9.16

(its name); a macro with parameters must be called by using its
name as the first element of a list, followed by its "arguments"”
which are substituted for the parameters of the macro in its defi-
nition. A macro with arguments may have a fixed or indefinite
number of arguments parallel to the FEXPR and FEXPR¥ function
types. A macro with a fixed number of arguments, such as SW, has,
following its name in the macro definition, a parameter list con-
taining the argument names. The arguments in the call to the

macro are substituted in the macro definition before executing that
sequence of editor commands. A macro with an indefinite number of
arguments 1is indicated by having an atomic parameter list following
its name in its definition. In this case, the entire list of
arguments is substituted for thlis atom in the macro definition, and
then the sequence of editor commands is executed.

All edit macro definitions are kept on a free variable called
EDITMACROS. New definitions supercede old ones, or the value

of EDITMACROS 1tself can be edited to delete, replace, or

change macro definitions. Purely local macros, li.e., those that
will not be used after the current editing job, can be defined
using D, for define, in place of M. These will not be saved on
EDITMACROS, but thelr definitions will, temporarily, supercede any
macros of the same name that appear on EDiTMACROS.

The macro feature allows the user to easily expand the repertolre

of edit commands, and thus "program" the editor. Note that entirely
new editing operations can be implemented by defining an appropriate
function, and then introducing it to the editor's vocabulary via a
macro which calls the function. For example, if no find feature

9.17

were provided in the editor, the user could define a function
FIND, and a macro '

(M F (X Y)(E (FIND X Y) T))

for doing the job.

‘Using the editor

AS presently interfaced to the outside world, the editor consists
of a basic function for editing S-expressions, edite, and three
special NLAMBDA functions for editing values, definitions, and
property lists, respectively editv, editf, and editp. Thus,

¥EDITF(APPEND)
EDIT

would be used to begin the edit which has been used as the example.

When editing is complete, ox will cause edite to exit with
the edited list as value. The three interface functions all re-
turn as value the atom being edited, and place the eaited

expression in the appropriate pigce.

The editor can be used as a subroutine by giving edite a list

of commands to be executed as its second argument. Each command
will be executed and, if no errors occur, the edited list returned
after their completion. Otherwise, edite goes into normal on-line
mode and waits for user commands. Editf, editv, and editp all
accept an indefinite number of commands to be interpreted in this
fashion: they are each non-spread NLAMBDA type functions, where
CAR of their argument is the function/property list/value to be
edited, and CDR the (optignal) commands to be supplied to EDITE.

Edite uses editl, which takes the edit push-down list, L, as its
argument, executes commands until an OK is reached, and then
returns the new L as its value.

9.18

The user can also write hils own editing programs which directly
call editcom, the function that does the work in the editor. The
workings of this function are explained below under Internal
Organization of Editor.

Since all input and output commands in the editor specify the fille
as teletype, it 1s possible to edit a function when input and/or
output standard files are other than tne teletype.

A complete example, starting with the erroneous definition given
at the beginning of Section IX and ending with the correct defini-
‘tion of append, is given below.

«EDITF(APPEND)
EDIT
¥(P g 1929)
(LAMBDA (X) Y (COND ((NUL X) Z) (T (CONS (CAR) (APPEND
(CDR X Y))))))
¥(3)
¥(2 (X Y))
*p
(LAMBDA (X Y) (COND & &))
¥ (R NUL NULL)
¥*(R Z Y)
#(F CAR T)
*(N X)
#¥+(F CONS T)
#3 (RI 2 2)
¥p
(APPEND (CDR X) Y)
¥+(P ¢ 100) .
(LAMBDA (X Y) (COND ((NULL X) Y) (T (CONS (CAR X) (APPEND
(CDR X) Y¥)))))
#QK
APPEND

-~

9.19

In all fairness, it should be admitted that in this particular
instance it probably would have been faster to type the function
in again. However, LISP functions are typically three times as
big as append and have only one or two errors. It has been found,’
after over a year of use at BBN and Berkeley, that the editor just
described does materially decrease the amount of time required

to produce working LISP programs.

Internal Organization of the Editor

The work of the editor is done by the function editcom, which
interprets and executes a single edit command and editcoms which
takes a list of commands. €d1tl does the reading from the teletype,
and transmits commands to editcom under errorset protection, until
an OK command is given. All errors and control-R's are caught by
this errorset, and cause editl to print a "o".

Editcom accepts a single command as an argument and uses as free

variables L, M, and EM which are normally bound in gditi. If the

user wishes to define a function which calls editcom or editcoms

directly, these variables should be bound in that function. Their
interpretation is:

L is the edit push-down list. It is initialized to list of
the expression being edited. (CAR L) is always the current
list being examined; (CADR L) is the 1list you would be examining
if you gave a 0 command, etc. Each operation which descends
to a lower structure, such as the F command or a number,
causes the higher level structure(s) to be attached at the
front of L. Operations which ascend, such as 0, or:¢,
take things off the front of L.

M is a 1list of marks made by the MARK command. It need not be

bound if marks are not used. The command MARK simply performs
(SETQ M (CONS L M)), the command <« does (SETQ L (CAR M)).

9.20

EM contains the 1list of editmacros being used. It is initialized
to the value of EDITMACROS. M commands change EM and
EDITMACROS, D commands just change EM. EM is searched when-
ever an unfamiliar command 1s encountered.

When editcom is given a command that it does not recognize, 1t
searches EM using assoc on the command, if atomic, or car of the
command if a list. If the command has been defined as a macro,
editcom performs as described earlier. Otherwise, editcom

calls editdefault, a function of one argument, which is currently
defined as (LAMBDA (C) (ERROR C)). This causes an error

which is caught by the errorset in editl However, editdefault

can be redefined by the user. In fact, edit default has been
redefined to implement some of the operations of the expanded

editor described below. For example to treat all unrecog-

nizable forms as expressions to be evaluated ala break, one would
define editdefault as (LAMBDA (C) (PRINT (EVAL C))). If any ‘
error occurred in the evaluation, it would still be caught by the
errorset in editl. Another possibility might be to have editdefault
search the property list of the indicated command to look for a
macro definition, or treat the command as a function call with L

as its argument, etec.

9.21

A Summary of the Editor Commands

Atoms

n>o
n<oQ
n=0

PP

MARK

“«<

0K

Makes nth element be current level list

Makes nth element from end be current level list

Makes previous level be current level list

Prints current level 1list to depth 3

Prettyprints current level list

Makes
Marks
Makes
Makes

current list be the top level 1list

this point

current level be last marked 1list

current level be last marked list and forgets mark

equivalent to (F X N) where X is the next expression

read,

e.g. ¥F COND

equivalent to (E X) where X is next expression read,
e.g. *E (EDITV FOO) |
Exit from editor

Other atoms are given to editdefault.

9.22

Eists

(n €1 €55e00, €) N>0 k0

(-n €1 €55.0.5€,) N>0 k1
(N €qsenns ek)
(S name)
and
(S name #)

(S name n)

(R 0l1ld new)

(P n m) n30

(F e)

(FeT)

(F e N)

(F e n) n3l

Replace element n by the k elements

€15+-+5 &, Deletes the nth ele-

ment if k=0

Inserts €ysevs &y before nth ele-
ment
Adds ;... g at end of current

level list

Sets name to current level list

Sets name to nth element, if n>0,

Sets name to nth element from end
of 1list, n<0.

Glives error if no such element.

Replaces all occurrences of the

o0ld item by new in current level

list

Prints element n to depth m
(current list if n=0)

Finds e at current level; "&"
matches any item,"--" matches any
remaining list '

Finds e at any level

Finds next occurrence of € excluding
first element in current list

Finds nth occurrence of e any level

9.23

(NTH n) n3»1

n<0

(I command el...ek)

(E e)

(E e T)

(LO n)

(LI n)

(RO n)

(RI n m)

Makes nth element be first element
of current list

Makes nth element from the end be
the first element on the list

Evaluates €1+ -8y

command as usual.

and then performs

Command can be a number, N, R, F,
etc. If command is not atomic,
it is evaluated

Evaluates and prints e

Evaluates e but does not print.
Removes left paren before element
n (and removes a right paren at
end of current list. If there are
no more right parens at end of
list, elements left hanging

"drop off").

Inserts left paren before element
n, (and a corresponding right paren
at the end of the list).

Removes right paren after element
n. It moves it to the end of the
current list.

Inserts right paren in element n

after mth subelement of element n. 1In
element n, it moves a right paren from
the end of element n which must have
more than m élements.

9.2l

(BO n) Removes both left and right parens
around element n

(BI n m) Inserts both left and right parens,
making a sublist at position n
containing elements n to m inclusive.

All of the above six commands, LO, LI, RO, RI, BO, and BI, accept
positive or negative numbers as arguments. Negative numbers are
positions relative to the end of the list.

(M name Cq Co e cn) Defines name, as an Edit Macro
equivalent to the sequence of
commands C,;, Css -+« Cp» if name
is atomic, and Cos +o & with
substitution of arguments for
parameters when car[name] appears

as car of a non-atomic command, and
name is listed in definitilon.

(D name Cy CH «n cn) Same as M but effect 1s temporary -
confined to this call to edite.

-

All other lists are given to editdefault.

9.25

The Expanded Editor

Supereditflg

All of the commands described below are available to the user
whether or not he sets SUPEREDITFLG to T. With SUPEREDITFLG = T,

any unrecognized commands will be interpreted as (F command N), (¥)

e.g., (CAR X) is equivalent to (F (CAR X) N). With SUPEREDITFLG =
these will, of course, cause an error and the editor will print
a ?. SUPEREDITFLG can be set to T by using the edit macro bell

(control G), which flips the state of SUPEREDITFLG and prints its
new value, or by setting it yourself.

New F Command

If the user wishes to operate with SUPEREDITFLG = NIL, or for
those cases where he wants to locate an expression which would
normally be recognized as a command, and therefore not pe searched

for, e.g., P, PP, or a number, the following abbreviated form of
the F command i1s available:

F expression

will cause expression to be found a la SUPEREDITFLG. Note that
in this form, the user is giving two "commands" to the editor to
express a single find operation. The effect is the same as
though SUPEREDITFLG were set to T only for the next input after
the F, except that no attempt will be made to treat this input
as an edit command so that F P, or F 6 will work.

(¥) (F command) is done first (using MEMB), so that if LOOP is
a PROG label, and that PROG is the current level 1list, LOOP will
find the label before looking for any nested GO'S.

9.26

NIL,

In the discussion that follows, the examples in the text

assumes SUPEREDITFLG is set to T. The identical operation

can be performed with SUPEREDITFLG = NIL if the user substitutes
F expression for expression wherever a find command is intended.

The Location Routine

All of the commands in the expanded editor use a single routine
for locating the place at which the operation is to begin. In

this discussion, the symbol @ will be used to mean a location

specification.

@ has no meaning to the editor, it is purely a

notational device.

1.

2.

3.

@ NIL

@ atomic

@ a list

The following options may appear at @.

Effectively a NOP.

The single command € is executed, e.g.,
@ = 3 means operation is to begin at 3rd
element of current list. @ = COND means

operation is to begin at the next COND,
i.e., the command COND is executed, and the

next occurrence of COND is found.

Each of the commands in @ is executed and
the operation begins after the last one is
successfully complete, e.g., (COND 3) locates
the second clause in the next COND (the COND
itself counts as l). Note, (CAR X) will
first find'CAR and then find X. It is
equivalent to ((F CAR N) (F X N)), or to

(F CAR F X). To find (CAR X) itself, use

9.27

((CAR X)) which is equivalent to
((F (CAR X) N)), or (F (CAR X)).

If the execution of the commands in @ is

not successful, i.e., an error occurs, the
location tries again from the point that the
error occurs until it is successful or until
no progress is being made. Thus, if the
first COND beyond the current point contained
only one clause, @ = (COND 3) would then
look for the next COND after that, etc.. At
the point that there were no more CONDs
remaining in the list being edited, the
locator routine would give up. If this
occurs, the status of the edit reverts to
its state when the locater was entered.

The locater routine can be called by the user directly via the
macro LC. To locate @, type (LC . @), e.g., to locate (COND 3)
type (LC COND 3). To locate COND, type (LC COND),

i.e., @ = (COND) which is equivalent to @ = COND, since both
consist of the single command COND.

9.28

UP

Another command used by all of the commands described below 1s UP.
The effect of UP is the following:

1. If the result of typing P is an element in your list structure,
then after UP, that element will be the first element in your
current 1list.

2. If the result of typing P is a tail in your 1list structure,
then UP has no effect.

Examples:
Your current level list structure is (COND ((NULL X) (RETURN Y))).

1. ¥ 1 P UP P
COND
(COND ((NULL X) (RETURN Y)))

2. ¥.] PUPP
((NULL X) (RETURN Y))
(((NULL X) (RETURN Y)))

3. ¥NULL P UP P
(NULL X)
((NULL X) (RETURN Y))

y, # X pUPP

(X)
(X)

9.29

5. ¥(NTH 2) P UP P
(((NULL X) (RETURN Y)))
(((NULL X) (RETURN Y)))

This explanation covers the HOW and WHAT of UP, the WHY will
become clear in the explanation of the commands given below.

Insertion, Replacement, and Deletion Commands

The basic editor provides commands for inserting elements before
a certain position in the current level list, and for replacing
or deleting specified positions in the current level 1list.
However, since the operation is tied up with the location, it is
impossible for the user to give single commands for deleting the
last element in the list, inserting a certain structure before
the second element from the end of the current list, etc. The
following three commands are more general than the basic editor's
commands, and do provide such a capability. In the description,

@ indicates a location operation, and expr a sequence of expres-
sions (possibly null).

1. (B @ expr) locates €,does an UP, and inserts
expression Before current point,
i.e., effectively does (-1 expr).

2. (A @ expr) locates €, does an UP, and inserts
expresslon after this point, i.e.,
does eilther a (-2 expr) or (N expr)
whichever 1is appropriate.

3, (: @ expr) locates €, does an UP, and replaces
first element with expr. If expr is
null, it deletes the first element.

All three commands leave edit position as of locating @ but do
not change marks.

19.30

Examples: Current list is (COND ((NULL X) (RETURN Y)))

1. *(A NULL (PRINT Y))
P
((NULL X) (PRINT Y) (RETURN Y))

2. ¥(: X (CDR X))
P
(NULL (CDR X))

Current 1list is (COND ((NULL X) (RETURN Y))
((NULL (SETQ Z (CDR Z))) (GO LP))
(T (ERROR))

3. ¥(:T)@P .
(COND ((NULL X) (RETURN Y)) ((NULL &) (GO LP)))

4y, * (B GO (PRINT Y) (PRINT X)) P
((PRINT Y) (PRINT X) (GO LP))

5. %(: (NULL NULL) (EQ X Z)) P
((EQ X Z) (GO LP))

6. *¥(: (3 1) (EQX2Z))P
((EQ X Z) (GO LP))

7. %¥(B -1 ((EQ X 2) (GO LP1)) P
(((EQ X Z) (GO LP1)) (T (ERROR)))

An exception to the above procedure occurs when the expression
is to be replaced by a function. In this case, UP is not per-
formed. For example:

(: CAR X) will replace (CAR &) by X; (: CAR CDR) will

9.31

replace just CAR by CDR; (: CAR (CDR X)) will replace
(CAR &) by (CAR X).

Note that (: NIL) or just (:) deletes the current level list.

(: NIL expr) replaces it with expr. Similarly (A NIL expr)

and (B NIL expr) insert expr, respectively, after and before current
level 1ist.

Switcning and Moving Expressions

Note: The SW and MV commands described below require two
location specifications. In both cases, the location of
the second position is begun at the same point that the
first location started; i.e., the commands save the state
of the edit upon entering, and return to that position for
the second location. However, a MARK 1s performed after
the first location so that by making <— be the first
command for the second location, the user can begin that
locating process where the first one left off.

The Switch Command

(SW @1 . @2) €1 is located, an UP performed, SW1l

set to the first element, and the
~current position saved. Then €2 is

located, an UP performed, SW2 set to
the first element, which is then
replaced by a copy of SWl.
A copy of SW2 then replaces the ‘
original SWl. SW leaves marks and
position unchanged.

9.32

Examples:

(SW -1 2)

(SW 2 3 1)

(SW RETURN GO)

The Move Command

(MV @1 C . @2)

Examples:

(MV RETURN B -1)

(MV (COND SETQ) : GO)

The last element in the list is

switched with the second element.

switches second element with first
element of third element in current

level list.

The first (RETURN --) is switched with
the first (GO --). Note that they may
be on entirely different levels. How-
ever, one should not be inside of the
other.

@1l located, an UP performed, the vari-

able MV1 set to the first element. @2 is

then located and the operation indicated

by C is performed. Then the former occurrence
of MVl is deleted. MV leaves marks and
position unchanged.

will find the first RETURN expression
and insert 1t before the last element
in the current level 1list.

finds the first SETQ after the first

COND, and replaces the first GO by that
SETQ.

9.33

(MV -3 N + 3) takes the third element from the end of
the current list and attaches it at the
end of the third expression from the top.

The Extract Command

This command 1s designed to replace a certain expression by one
of its subexpressions.

(XTR @1 . @2) locates @1, does an UP, saves the posi-
tion, locates €2 (beginning from the
point @1 left off), does an UP, sets
the variable XTR1l to the first expres-
sion, returns to saved position, and

replaced first expression by XTR1l. XTR
leaves marks and position pnchanged.

Examples:
(XTR COND SETQ) replaces first COND by first SETQ,
(XTR COND 2 2) replaces first COND by second expression

in its first clause.
Note: While the XTR command is deslgned to replace an

expression by a subexpression, there is no check made to
see that the result of locating @2 is in fact inside of €1.

The Embed Command

The embed command is designed to replace a particular expression
by a larger expression containing it.

9.34

(MBD @ X)

(MBD @ X1 ... Xn)

Examplesﬁ

(MBD NIL (COND ((NULL

(MBD 2 QUOTE)

(MBD -1 SETQ X)

@ i1s located, an UP performed, and the
first expression replaced by the result

of substituting it in X for the variable ¥.
MBD leaves current position as the new

Super~expression, with an extra MARK which
is set to the original position when MBD
was entered.

(X1 must be atomic)

Same as (MBD @ (X1 ... Xn ¥))

X) ¥)))
replaces current-expression by
(COND ((NULL X) current-expression)))

guotes second expression

replaces last expression by
(SETQ X last-expression).

Miscellaneous Commands

(* N)

BK
NX

- DELETE
?

moves editor to current expression plus or
minus N, i.e., (¥ 1) equivalent to the
command UP followed by 2. If the current
expression is the 4th, (¥ -1) is equivalent
to 0 followed by 3.

for back, same as (¥ -1).
for next, same as (¥ 1)

same as (:)
(P 0 100)

9.35

TTY

STOP

(SECOND . X)

(THIRD . X)

(ORR X1 X2 ... Xn)

(## . commands)

(LCL ., commands)

calls editl and sets L to new value, i.e.
accepts commands from user. Useful for
functions that call editor as subroutine,
e.g. breakin[FOO (AFTER COND SETQ TTY)]
allows the user to interact before the
break is inserted. '

used in connection with TTY command, same
as OK command given to next higher call to
editl, i.e. aborts the editing operation
of the subroutine that was calling the
editor.

locates SECOND X, no change if not found.

as above

The sequence of commands X1 is executed.

If successful, ORR returns. If not, the

state of the edit 1s restored to its original
state and X2 executed, etc. This is a way

of executing commands conditionally. €-.8., the
command SECOND is defined as (ORR ((LC . X)(LC
sequence of commands is executed for value,
not effect, i.e., (## 2 -1) has as its value
the last element in the second element of

the current l1list. ## does not change the
state of the edit. ## 1s also an nlambda-

nospread function.

Commands are executed locally, i.e., find
commands will not be allowed to search beyond

current list.

9.36

- X))

(IF form) If the value of form is NIL, an error is
generated. Designed for use with ORR and
locating routine. For example,

(ADD1 (IF (NUMBERP (## 2)))

as a location specification will find the
first ADD1l followed by a number. IF does not
change state of the edit.

(LP . commands) sequence of commands 1s executed repeatedly
until an error occurs, e.g.,

(LP PRINT (N T)) will attach a T at the end
of all PRINTs. LP will print number of
successful iterations.

(LPQ . commands) same as LP but does not print number of
iterations. '

Note: +the routines that handle A, B, :, and MBD commands make
special checks (of a flag) so that the user can do commands like
(B PRINT (PRIN1 ZOT))) or (LP (MBD X LIST)) without getting in
an infinite loop.

(« X) does repeated 0 commands until finds a
position for which first element is X, e.g.,
(« COND) takes you up to the COND containing

the expression that 1s the current level
list. If not found, no chanege is made in

the state of the edit. Note: it is unnecessary

to have SUPEREDITFLG set to T to execute (+ COND).
Also (« F COND) is the same as (<« F).

9.37

Miscellaneous Features

(X CONTAINING . @) Locates X, then locates € locally, i.e.,
find commands will not go outside of the
expression headed by X, and then backs up
to X using the « command, so that
(X CONTAINING Y) will find the inner X in
(X voe (X +..Y) ..). Note: X will be
located regardless of the setting of
SUPEREDITFLG: (X CONTAINING . @) is
identical to (LC F X (LCL . @) (+ X)).

Example:
(SECOND (COND CONTAINING (SETQ CONTAINING CDR))

(EVERY . @) is built into the locate routine. Whenever
(CAR @) = EVERY, the locate routine looks
back up the push down list and finds theb
command containing this specification, and
instead performs the corresponding
LP command, e.g., (MBD (EVERY X) LIST) is
equivalent to (LP (MBD X LIST)).

(ALL . @) same as EVERY.

Sentence Format

In addition to the command followed by arguments format, the user can
employ a more flexible, sentence-type format when communicating

with the editor. The chief advantages of this format are that
the names of the commands and the order of the arguments are
somewhat more intuitive, and that there are considerably fewer
parentheses required.

9.38

The following is a list of sentence-types permissible: (¥)

(INSERT ... BEFORE ...)
(INSERT ... AFTER ...)
(INSERT ... FOR ...)
(PUT ... BEFORE ...)
(PUT ... AFTER ...)
(REPLACE ... BY ...)
(REPLACE ... WITH ...)

(CHANGE ... TO ...)
(DELETE ...)

(EMBED ... IN ...)

(EMBED ... WITH ...)
(MOVE ... TO AFTER ...)
(MOVE ... TO BEFORE ...)
(SURROUND ... WITH ...)
(SURROUND ... IN ...)
(EXTRACT ... FROM ...)
(SWITCH ... AND ...)

Examples:

(INSERT (PRINT Y) AFTER -1 NULL)

(REPLACE CDR WITH CAR)

(REPLACE CDR WITH (CAR X)) ‘
(EMBED EVERY PRINT IN (COND (FLG ¥)))

(DELETE (COND CONTAINING RETURN))

(EXTRACT (SECOND SETQ) FROM (COND CONTAINING GO))

(¥) "..." indicates a segment of a list, 1.e., no parentheses are

used around "..." even if 1t consists of several elements, see
examples.

9.39

Summary of New Commands

Following is a complete list of the commands in the expanded
editor. The ordering is that of their position on EDITMACROS.

UP
NX
BK

A
B
MBD
SW

XTR
MV
LP
*
LC
ORR
LPQ
?
DELETE

TTY

STOP

+ (when used in a 1list)
SECOND

THIRD

LCL

9.40

EDITA

The increésing number of applications of LISP that involve arrays
have motivated the iﬁpiementation of EDITA, an editor for arrays.
EDITA can be used on any LISP array, including those containing
1ist structure or unboxed numbers, or both, or on compiled function

definitions.

To the user, EDITA looks very much like DDT with some LISP
extensions. It is a function of one argument:* the array or func-
tion to be edited. This can be specified directly or indirectly,
i.e., you can type EDITA(A), or perform (EDITA A) inside of some
other form. EDITA performs an EVAL on its first argument 1if it
is not already an array or a function.

Once inside of EDITA, individual "registers" or cells in the
.array may be examined by typing their address followed by a
slash, e.g., :

4y 6

i.e., (ELT A 4)=6.%% An address consists of a number or a LISP
form whose value 1s a number, or a series of numbers or forms
which yield numbers. In the latter case, the address is computed
as the sum of the forms, e.g.,

4 X (MINUS (CAR Y)) / . e

(CAR (CHCON (QUOTE A))) / . . .

¥ An optional second argument can be a list of commands to edita.
These are executed exactly as though they had come from the
teletype. ;

#%¥ TIf the register is in the unboxed area of the array, the
boxed contents: are printed. - : '

9.41

The variable "." has the value of the address of the current (last)
register examined, and the variable $ has the value of the last
register in the array, i.e., (ARRAYSIZE A), e.g.,

$ (MINUS .) / .« . .
. o/

are acceptable. Since EDITA uses its own read program, it is not
necessary to surround the period in double quotes. Also, since
.carriage return has a special meaning, the balancing of paren-
theses in any LISP expression 1s indicated by a space,

instead.. of a carriage return as with the LISP reader. This is the
explanation of the extra space before the slash in some of the

examples above.

A slash.is really a command to EDITA to "open" the indicated
register. “Only one register at a time can be open, and only
open registers can be modified. To change the contents of a

register, the user first opens it, types a form¥ and then closes
the register with a carriage return, e.g.,

by 6 (FACTORIAL .)£>
./ 24

Note: Computations can be executed while a register is opened
without changing its contents. The contents of a register are
changed only when it is explicitly closed by a carriage return,
line feed, or 4. If the register is in the unboxed region of the
array, an unbox will be automatically performed before storing

the new value into the array.

TIn the boxed region of the array, only non—atomic'expre;sions
‘are evaluated; in the unboxed, all expressions.are evaluated.

9.42

If a form is typed followed by a carriage return when no register
is open, the form is simply evaluated and its value typed, e.g.,

Ly 4096
(RADIX 8)..
(10 1) &

./ 10000Q

Used in this way, EDITA behaves the same as BREAK.
EDITA also recognizes the following commands:

0K which causes a return from EDITA
with the value the array beilng
edited.

linefeed which closes any open register and
opens the next register, i.e., it
is the same as carriage return
followed by (ADD1 .)

4 same as carriage return followed
by (SUB1l .)

(when not preceded by a space)
causes EDITA to type value of last
expression, e.g.,

=l/ 6 (PRIME 6)=11 (PRIME 722
o/ 13

If a register is open, the

command also operates to negate
the effect of any previous user
input so that if the register is
closed following an = command, it
will not be changed.

3Q : has value of last expression typed
by EDITA, e.g.,
L/ 6 (FACTORIAL .)=24 (ADD1 ;Q22
./ 25

9,43

/ (when register is already open),
if preceded by user input, EDITA
prints the contents of the indi-
cated register, otherwise EDITA
prints the contents of the register
whose address 1s the contents of
the currently open * register,

€.,
4 6 4/ 10
6/ 10 4/ 6 J

This command does not affect the
currently open register.

Tab (control I) similar to / except it closes the
‘ currently open register (if any)
and opens the indicated register,

e.g.,
Y 6 tab
6/ 10 9tab
9/ 11

If the contents of the currently
open register is not a number,
but is another array , or the
name of a function - tab will
call EDITA on it.

In all cases only low order 14 bits used;
Underlined characters were typed by user.

9.4k

? negates all user input not yet
processed, leaves state of registers
unchanged.

- AD1,AD2/ where AD1 and AD2 are addresses,
' causes the contents of registers
AD1l through AD2 inclusive to be
typed, "." is set to AD2 after
completion. ’

3W expr searches array and prints all
registers whose contents "equal"
expr, in the sense of the match
used by the editor, e.g., ;W (&)
will find and print all registers
containing a list consisting of a
single element. After search,
"." is left set to the last such
register,.

expr ;W same as above except that since
expr will have been evaluated
before the ;W command was read,
its value will be used in the
search, e.g., (CADR X) ;W

9.45

If ths search command is prefaced by an address and a comma as in
FOO 2, ;W NIL or 25,X ;W the search will begin at the indicated
register, otherwise it begins at register ".", the last opened
register. If the search 1s to begin in the unboxed region of

the array, the value to be searched for must be a number and is
compared with the result of boxing each element in the unboxed
region. The variable MASK can be set prior to the search for
comparison with just selected bits 1in the word. The search
terminates at the end of the unboxed region of the array.

If the value to be searched for is not numeric, no attempt will
be made to seardh the unboxed region of the array, regardless of
the value of "." or the address specified, i.e., the search
automatically begins at BOXED if "." is less than BOXED.

:name defines name as either (1) the
contents of register ".", or if
no register open (2) the address
typed just before the :, or if
none was typed, (3) the value of
".". ¥ Tor example,

4y 6 :FOO
:FIE
. 1:FUM

defines FOO as 6, FIE as 4 and FUM as 5.

EDITA keeps its "symbol tables" on two free varlables, USERSYMS
and SYMLST. USERSYMS is a 1list of elements of the form

(name . value) and is used for encoding input, i.e., all variables
on USERSYMS are bound to their corresponding values during evalua-
tion of any expression inside EDITA. SYMLST is a list of elements
of the form (value . name) that is used for decoding addresses,

¥ Only low order 14 bits are used.

9.46

and in the case of editing compiled functibns, decoding instruc-
tions. USERSYMS 1s initially set to NIL, while SYMLST contains
certain system parameters such as PPPTR and SPCELL.¥ Since the
command adds the appropriate information to these two lists, new
definitions will remain in effect even if the user exits from
EDITA and then reenters it later.

Note that the user can effectively define symbols without using the
command by appropriately binding USERSYMS and/or SYMLST before

calling EDITA. Also, he can thus use differert symbol tables for
different applications.

Some general comments

Although EDITA uses its own read program,** which is not line
buffered, it does respond to control-A and control-Q in the same
way as the LISP read program does in almost all situations. 1In
those cases where it cannot delete prévious characters because
they have already been processed, EDITA will ring the teletype
bell to signal its frustration. Similarly double quotes can be
used to input expressions contailning break characters for EDITA
such as /, (, ?, etc.

EDITA is buffered against errors and rubouts. Whenever an error
ocecurs or a control-R 1is typed, EDITA responds with a ? and closes

any open registers (without modifying them) and clears any flags
that may have been set during the user's last request. It is
quite safe to hit control-R at any time during EDITA's operation.

EDITA will not allow the user to reference any registers outside
the-bounds of his array. ' ‘ '

¥ It is not necessary to place a symbol on USERSYMS that already
has a binding, such as PPPTR or SPCELL, since the correct value
will be obtained when the form in which it appears is evaluated.

¥¥ Actually, EDITA uses the FLIP read program so do not flush
FLIPREAD if vou plan to use LEDITA,

9.47

Using EDITA on compiled functions

Since a compiled function is actually an array with the instructions
of the function corresponding to the unboxed region of the array

and the literals to the boxed region, EDITA could be used on a
'funétion definition exactly the same as though it were an array
generated via ARRAY. However, certain extensions and modificatlons
to EDITA have been made to facilitate its use with compiled func-
tions with the result that EDITA operates somewhat differently

when working with a function than with an array, although the

basic idea and philosophy of its use remains the same.

The first difference to be noted is that by convention the first
element of an array has address 1, while the first instruction of
a function definition has address 0. In other words, the instruc-
tion LDA 25 loads the accumulator with what would be register 26
in an array. EDITA takes care of this problem automatically both
on input and output by following one address convention for func-
tions and the other for arrays. |

The greatest difference - and the most useful feature of EDITA in
conjunction with functions - is the decoding of instructions.
EDITA decoles the contents of all cells in the unboxed portion of
the function definition (in the boxed region, EDITA operates
exactly as it does with an array except that the address convention
is that of function definitions) and types their mnemonic, address
portion, and indirect bit or index register if any. The address
portion is further decoded using SYMLST. ‘Here are some examples:
LDX PPPTR; STA 25,2; LDA¥ FOO; CONSCLL. The decoding of the
address portion also notes references to literals in the function
definition and prints the literal preceded by an "=" instead of

its address, e.g., LDA =(—ARGUMENTS ?); XCLL =PRINT. References
to small integers are also detected, e.g., SUB =1; SKG =5,

9.48

Symbolic input 1s available, although it is not quite as sophis-
ticated as the output decoding. Op codes are recognized, as are
small integers (this is why the = command must be preceded by a
space: to distinguish it from a small integer). However, the
Indirect bit must be indicated by means of the variable J, and

the index register by I. For example, the following 1s permissible
input: LDX PPPTR; STA 25 I (which would be typed back as

STA 25,2) LDA FOO J, SUB =1. LDA =(-ARGUMENTS ?) is not ner=
missible. To input this the user would have to know the address

of the register containing the literal (-ARGUMENTS ?).

When an op code 1s seen, all subsequent arithmetic is done in the
low 14 bits of the word only, so that LDA -1 is equivalent to
LDA 37777Q, not to SKD¥* 37777Q.

There are two other small differences when editing a function.
First, read-only out of bounds references are permitted,

e.g., 3/ LDX PPPTR / 27. Secondly, the search option will
automatically mask out the address or instruction portion of the
word if the value to be searched for is just an instruction or
an address. For example, LDA =5 ;W will find all occurrences of
that instruction, LDA ;W will find all LDA instructions, =5 ;W
willl find all references to the small integer five. The user
can of course still set the variable MASK.

9.49

SECTION X

ATOM, ARRAY, AND STORAGE MANIPULATION

pack[x]

unpack([x]

nthechar(atom;n]

ncharsatom]

The argument x of pack must be a
list of atoms. The value of pack
is a single atom whose print name
is a packed version of the print
names of all the atoms given in the
list. Thus:
pack[(A BC DEF G)] = ABCDEFG
pack[(1 "." 3)] = 1.3 a floating
point number

The argument of unpack should be an
atom. The value of unpack is a list
which contains, in order, the char-
acters which make up the print name
of that atom.

Returns the nth character of atom
as a single-character atom. Equilva-
lent to (CAR (NTH (UNPACK atom) n)),
but is faster and does no CONS'es.
See note after loc, p. 10.4.

Returns number of characters in

atom. Thus the last character 1n

an atom is given by
nthechar[atom;nchars[atom]]

10.1

chcon(x;j] Returns a list of numbers represent-

ing characters in print name of x
which must be an atom.
J = NIL prinl representation
= T prin2 representation

character[n] n 1s a character code. Value is
atom having single character as its
P-name, e.g., character[8]="(",

gensym[] This function of no argument gener-
ates a unique symbol of the form
Annnn, in which each of n's is
replaced by a digit. Thus, the
first one generated is A0001, etc.
This 1s a way of generating new
atoms for various uses within the

. system,

oblist[] ~ Creates a list of all atoms
currently in the system.

reclaim[flg] . Initiates a garbage collection. If
flg 1s T, all spaces are collected:
list words, atoms, large numbers,

- floating point numbers, arrays and
binary programs. If flg is NIL,
array space (identical to binary
program space) is not collected,

- but all others are. Value of
reclaim is number of list words
available and will be > the setting
of minfs unless the total list
space has been exhausted. See p. 3.8~
3.12 for more detailed discussion of
garbage collection.

10.2

atomge[flg]

getrpn]

initiates a reclaim which also
collects any uvnused atoms that
were previously in the shared system
but have been released by flushing
some portion of it. See p. 3.8-3.12
for discussion of garbage collection
and p. 22.8 for flushcode. Argument
flg is the same as in reclaim.

garbage collection trap. Causes a
(simulated) control-H interrupt when
number of free words left equals n,
i.e. when a garbage collection would

occur in n more conses.

At this point, the user can turn off
the display, list a file, logout of

LISP, etc. arm described on p. 22.2

shows how the user can automate this
procedure.

Value of gectrp is last setting. If
n=NIL, value of gctrp is number of
words left, i.e. (GCTRP (PLUS (GCTRP)
-10)) will cause a trap after 10 more
conses.

10.3

minfs[n]

gegagl[x]

logout(]

closer[a;x]

openrlal]

loc[x]

Note:

Sets the minimum amount of free
storage which will be maintained by
the garbage collector. If, after
any garbage collection, fewer

than n free words are present,
sufficient storage will be added in

128 word chunks to raise the level to n.

The user may also change the setting
of minfs at any time, even during a
garbage collection, by typing control-F
followed by a number (which becomes

the new setting) followed by a

period.

If x=T garbage collector will print

a message when entered. If x=NIL no
message is printed. Previous setting
is returned. Initially set to T.

Deactivates users program and returns
the user to the time-sharing svstem

"executive. Closes all open files.

Stores x into location a. Both x
and a must be numbers.
a<2lu actual core location
a>,2lu address in virtual

address space.

Value 1s number in a as defined

in closeg.

Makes a number out of x, i.e.

returns the virtual address of X.

for alphabetizing purposes, it 1is useful to note that the

atoms consisting of a single character are stored in ASCII code

order, t.e. loc[A]l<loc[B]<loclC] ete.

lO.U‘

vag[x] The inverse of loc. x must be a number,
value is the unbox of Xx. An unboxed
number n which doesn't correspond to
the address of a list structure or an
atom is printed #n, n is given in octal,
e.g. array pointers are printed this way.

Note: wunboxed numbers should not be passed around as ordinary
values because they can cause trouble for the garbage collector.
Everything in LISP is essentially an unboxed number, i.e. an ad-
dress. However, certain unboxed numbers are recognized as being
of certain data types, e.g. integers, atoms, list structure, etc.
If you creat an unboxed number that happens to correspond to an
address in 1list structure, the garbage collector will not be able
to distinguish this from a bona fide 1list structure. For example,
suppose the value of x were 150000, and you created (VAG X), and
this just happened to point into the free storage list! The next
garbage collection would be disastrous.

allocate[n] Allocates an n word block in array
(binary program) space. Returns a
pointer to the address of the first
word allocated. If sufficient
space is not available, a garbage
collection of array space (RECLAIM T)
is initiated. If this 1s unsuccessful"
in obtaining sufficient space, an
error 1s generated.

statisties[] Prints out statistics on number
of wraparounds of compiled code;
number of mapped stores; total
number of mapped references (car's,
cdr's, cons's, rplaca's, rplacd's,

getd's, etc.); number of drum reads;

10.5

number of drum writes; number of
drum reads for binary function
loading; number of functlion calls
from binary code. Names and loca-
tions of cells printed are bound
at top level to STATCELLS.

clearstat[] Sets to @ all statistics cells in
the list bound to STATCELLS.

storage[] Prints out current status of
storage including number of binary
program (array) words in use; number
of list words (two 94% words) in
use; number of 94 words available;
and number of words used up for

print names.

Array Functions

Space for arrays and compiled code are both allocated out of a
common array space. Arrays of pointers and unboxed integers
may be manipulated by the following three functions:

array[n,p,v] This function allocates a block of
‘ n+4 94g words, of which the first
i are header information. The next
p<n are cells which will contain
unboxed integers, and are initialized
to #. The last n-p>0 will contain
polnters initialized to v. If p is
NIL it is assumed equal to # (i.e.,

10.6

a symbolic array). The value of
this function is the location of

the array in virtual memory, and

is called an array pointer. Array-
pointers print as #n, where n is the
octal representation of the pointer.
Note than, #n will be read as an
atom, and not an array pointer.

elt[a;m] Has as value the gth element of

the array pointed to by a. For
out of bound calls, if m<l or m>n,
where n is the length of the array
a, elt gives element 1 if m<l, or
element n if m>n.

setala,m;v] . Sets the value of the g?h element
of a to v. On out-of-bounds
reference no store is made. The
value of this function is always
v. It is the users responsibility
to ensure that no pointers are
prlaced in the non-pointer area.
Any in that area will not be
traced during garbage collection.

arraysizel[a] Returns the size of array a if a
is an array pointer.

arrayp[x] Returns T if x is a pointer into the
active array area, otherwise NIL.
No check is made to ensure that x
actually addresses the header of a
legitimate array.

10.7

SECTION XI
FUNCTIONS WITH FUNCTIONAL ARGUMENTS

As in all LISP 1.5 Systems, arguments can be passed which can then
be used as functions. Functions which use functional arguments
should use varilables with obscure names to avoid conflict of vari-
able names with variables used free in a functional argument.
There is no "FUNARG device" used in this system. All system func-
tions standardly use variable names consisting of the function
name concatenated with x or fn ete. A FUNARG device may be

implemented in the future.

Identical to quote for interpreted
code. When compiled, function[x]
will cause x to also compile,
quote[x] will not.

function([x]

map [mapx;mapfnl;mapfn2] If mapfn2 is NIL (i.e. not provided)
this function applies the function

mapfnl to successive tails of the list

mapx. That is, first it computes

mapfnl[mapx], and then mapfnl{cdr[mapx]],

etc. until mapx is NIL (mapx is reset

at each iteration so that its value is

always the current tail); however, if
mapfn2 is provided, mapfn2[mapx] is

used instead of cdr[mapx] for the next

call for mapfnl. Thus if mapfn2 were
cddr, alternate elements of the list
would be skipped. If mapfn2 is a

11.1

conditional expression, then the next
element to be looked at can be con-
tingent on a computation.

mapc[mapx;mapfnl;mapfn2] Identical to map, except that
mapfnl[car[mapx]] is computed each time.

If mapfn2 is NIL, mapfnl is applied to
each element of the list x in turn.

mapcar[mapx;mapfnl;maptn2] If mapfn2 is NIL, this function applies
the function mapfnl to each of the
elements of the list mapx. It creates
a new list which is a map of the
0ld 1list in the sense that each
element of the new list is the
value of applying mapfnl to the
corresponding element of the old
list. If mapfn2 is provided, mapfn2[mapx]
is used instead of cdr[x] for each
succeeding computation with mapfnl.

maplist[mapx;mapfnl;mapfn2 | This function computes successively
the same values that map computes;
it forms a new list consisting of
successive values of applications
of this function.

mapconc[mapx;mapfnl;mapfn2] Identical to mapcar except that it
does an ncenc instead of a cons.
This makes it useful for constructing
a new list from an old one where a
variable number of elements is to be
inserted at each iteration.

11.2

mapcon[mapx ;mapfnl;mapfn2]

map2clmapx;mapy;mapfnl;mapfn2]

map2car[mapx;mapy;mapfnl;mapfn2]

mapalmapary;mapfnl;mapfn2 ;mapn]

(LAMBDA

11.

Identical to maplist except that it

does an nconc instead of a cons.

Identical to mapc except mapfnl is

a function of two arguments, and
mapfnllcar[mapx];car[mapyl] is computed
each time. Terminates if either

mapx or mapy become NIL.

Identical to mapcar except mapfnl

1s a function of two arguments and
mapfnl{car[mapx];car[mapy]] is used
to assemble the new list. Terminaies
1f either mapx or mapy become NIL.

Cycles through mapary, an array,
applying at each lteration the
function mapfnl, a function of
two arguments, to mapary and n
the index of iteration. n is
initially set to 1, and reset to
mapfn2[n], if mapfn2 is given,
otherwise addl[n]. Process
continues until n exceeds mapn,
if given, or else
arraysize[mapary]. The value of
mapa is mapary.

Example: the following function
will copy an array:

(A) (MAPA (ARRAY (ARRAYSIZE A))
(FUNCTION (LAMBDA (Al N)
(SETA A1 N (ELT A N))))))

maprint[1st;fl;1;r;s;pfnzcl

every[everyx,everyf]

some[somex;somef]

mapdl

searchpdl

is a general printing function. It
cycles through lst applying pfn

(or prinl if pfn not given) to each
element of the 1lst. Between'each
application it performs prinl of s,
or " " if not given. If 1 is given,
it is printed (prinl) initially;

if r is given, it is printed (prinl)
at the end. f1l is the file used for-
all printing, ¢ a special argument

used by prettyflip.

For example, mapriht[x;NIL;"(",")"]
is equivalent to print. To print a
list on the tty with commas between
each element and a final "." one

could use maprintlx;T;NIL;".";","].

is true if everyf applied to each
element in everyx is not NIL, e.g.,
every[(X Y Z); ATOM]=T.

is NIL if somef applied to every
element 1N somex is NIL, otherwise
it is the list beginning with the
first element that satisfies somef,
e.g.,

somef[X,(LAMBDA (X) (EQUAL X Y))]

. is equivalent to memberlx,y].

see p. 12.9

see p. 12.10

‘11.4

SECTION XII
VARIABLE BINDINGS AND PUSHDOWN LIST FUNCTIONS

A number of schemes have been used in different versions of LISP
for storing the values of variables. These include:

1. Storing values on an association list paired with the
variable names.

2. Storing values on the property list of the atom which is
the name of the variable.

3. Storing values in a special value cell associated with
the atom name, putting old values on the pushdown list,
and restoring these values when exiting from a function.

4, Storing values on the pushdown list.

The first three schemes all have the property that values are
scattered throughout 1list structure space, and, in general, in a
paging environment would require references to many pages to deter-
mine the value of a variable. This would be very undesirable in
our system. In order to avoild this scattering, and possible ex-
cessive drum references, we utilize a variation on the fourth
standard scheme, usually only used for transmitting values of
arguments to compiled functions; that is, we place these values

on the pushdown list. But since we use an interpreter as well as

a compiler, the variable names must be kept. The pushdown list

thus contains pairs, each consisting of a variable name and its

12.1

value. The interpreter need only search down the pushdown list
for the binding (value) of a variable.

One advantage of this scheme is that the current top of the
pushdown stack 1s usually in core, and thus, drum references are
rarely required. Free variables work automatically in a way
similar to the association list scheme.

An additional advantage of this scheme is that it is completely
compatible with compiled functions which pick up their arguments
on the pushdown 1list from known positions, instead of doing a
search. To keep complete compatibility, our compiled functions
put the names of their arguments on the pushdown list, although
they do not use them to reference variables. Thus, free variables
can be used between compiled and interpreted functions with no
special declarations necessary. The names on the pushdown list
are also very useful in debugging, for they provide a complete
symbolic backtrace in case of error. Thus, this technique, for

a small extra overhead, minimizes drum references, provides
symbolic debugging information, and allows completely free mixing
of compiled and interpreted routines.

There are two pushdown lists used in BBN 94 LISP: the first
is called the parameter pushdown list, and contains pairs of
variable names and values, and temporary storage of pointers;
the second 1is called the control pushdown 1list, and contains
functionkreturns and other control information.

However, it is more convenient for the user to consider the
push-down list as a single "1list" containing the names of functions
that have been entered but not yet exited,vand the names and values
of the corresponding variables. The multiplicity of push-down lists
in the actual implementation is for efficienty of operation only.

12.2

The Push-Down List and the Interpreter

In addition to the names and values of arguments for functlons,
information regarding partially-evaluated expressions is kept on
the push-down list. For example, consider the function FACT:

« PRETTYPRINT((FACT]

(FACT
(LAMBDA (N)
(COND
(CZEROP N)
L)

(T (TIMES N (FACT (SUB1 N>JJ))))
N IL

As soon as FACT 1s entered, the lnterpreter begins evaluating the
implicit PROGN following the LAMBDA (see p. 4.3-U4.4)., The first

function entered in this process is COND. COND begins to process

its 1list of clauses. After calling ZEROP and getting a NIL value,
COND proceeds to the next clause and evaluates T. Since T is not
NIL, the evaluation of the implicit PROGN that 1s the consequent

of the T clause 1s begun (see p. 4.3). This requires calling the

function TIMES. However before TIMES can be called, its arguments
must be evaluated. The first argument is immediately evaluated,

but the second involves a recursive call to FACT, and another
implieit PROGN, etc.

Note that at each stage of this proceés, some portion of an ex-
pression or argument list has been evaluated, and another is awalt-

ing evaluation. This information is recorded on the pushdown
list as follows:

12.3

1. Whenever a FSUBR¥ function is entered, i.e. COND, PROG, OR,
AND, SETQ, PROGN, or implicit PROGN (¥), the variable NLAMBDA is
bound on the push-down list to the rest of the expression following
the FSUBR¥. (Since implicit PROGNs do not appear on the push-down
list as specific function calls, this binding will appear following
the variables of the function previously called.) As the FSUBR¥
processes its "argument list," the binding of NLAMBDA is updated

so that car of its value is always the expression currently being
worked on. This is more than just a diagnostic device: the slot
on the push-down 1list corresponding to the binding of NLAMBDA is
actually where the FSUBR¥ keeps the expression it is processing.

If a function subsequently entered modifies this binding, the
FSUBR¥ would continue with the evaluation of the modified expres-
sion when control returned to it.

2. Whenever a form is encountered that is headed by a function of
type EXPR, EXPR¥, (EXPR, CEXPR*, SUBR, or SUBR¥, i.e. those requir-
ing evaluation of arguments, the function name is entered on the
push-down 1list and the variable LAMBDA is bound to its argument

list. The arguments are then evaluated in turn from left to right.
As each argument is evaluated, it is bound to a variable name select-
ed from the atoms a,b,c, ... z (¥¥),i.e. the first is bound to a,

the second to b, and so forth, and LAMBDA is bound to cdr of its
previous value. Thus car of the value of LAMBDA is always the

(¥) QUOTE, GO, and FUNCTION are also FSUBR¥ type functions, but
since no evaluation of forms takes place inside of them, they
do not modify the push-down list.

(¥%*) Note that these are lower-case characters not present on
model teletype model 33 keyboards. They print out as %A,
%B etc. as described on page 14.4., To evaluate %A, perform
(EVAL (CHARACTER 65)), 2B, (EVAL (CHARACTER 66)), etc.

12.4

argument currently belng evaluated.

When all of the arguments to the function are evaluated, the function
is called, and the values of the arguments bound to the names of the
arguments of the function. The bindings for LAMBDA, and a,b, etc.,
disappear. Thus a function has actually been entered if and only if
it does not have a binding for the variable LAMBDA.

The following untrace illustrates the above discussion:
« PRETTYPRINT((FACT))

(FACT
(LAMBDA (N)
(COND
((ZEROP N)
L)
(T (TIMES N (FACT (SUB1 NJJ>)3)>))
N IL
+FACT(2)

E RROR
(L IS UNBOUND ATOM)
UNTRACE?
NLAMBDA (L) :
C OND
NLAMBDA ((COND ((ZEROP N) L) (T C(TIMES N (FACT (SUB1 N)>)>)>))
N o
FACT
LAMBDA ((FACT (SUB1 N)))
%A 1
T IMES |
NLAMBDA (CTIMES N C(FACT (SUB1 N))>))
C OND
NLAMBDA (C(COND CCZEROP N> L) (T (TIMES N (FACT (SUB1 N)>>>)))
N 1
FACT
'LAMBDA ((FACT (SUB1 N)))
ZA 2
T IMES
NLAMBDA ((TIMES N C(FACT (SUB1 N)>)>))
C OND
NLAMBDA C(CCOND C(CZEROP N> L) (T (TIMES N (FACT (SUB1 N>>))))
N 2
FACT

-

12.5

The Push-Down List‘and Compliled Functions

In addition to the function names and values of arguments to com-

piled functions, the push-down list contains the names and values

for all free variables used in compiled functions, as well as any
variables that are locally bound by PROGs or open-LAMBDA expressions.¥
The free variables follow the arguments to the function on the push-down
list. Locally bound variables are stored on the push-down list

following the next function call. See p. 16.26-27 for more
detail.

(¥) In interpreted functions, the PROG or open-LAMBDA would be
called as a regular function and the bindings of their
variables would automatically appear as arguments on the
push-down 1list.

12.6

Pushdown List Functilons

The following functions allow one to interrogate the pushdown list(s)

from inside another function. The convention used by these functions

regarding push-down list positions is that the position number, n, if

positive, is the number of function calls which have been made -
essentially the depth of nesting of functions from the top level.

n is negative, it references back from the current call level.

For

example, on the previous page, the position of the last call to fact

is either -2 or 6.
nthfnback{n]

nthfn(fn;n]

evalv[var;n]

setv[var; n; val]

variables[n]

rename[old; n; new]

Returns the name of function called
at call level (position) n

Returns the position (number of
call levels from top) of the nth
occurrence back of function named

fn, e.g. nthfnback[nthfn{fn,1]] = fn

Returns the value of variable var
evaluated starting at pushdown list

position n

Sets the value of variable var
starting at pushdown position n

to value val

Returns list of variable names on
pushdown 1list at pushdown position
n, including LAMBDA, NLAMBDA, and
%A-type bindings if any, as well as
free and locally bound variables
for compiled functions as described
earlier.

The variable named old at level n
will be renamed new. The push-1list
cell containing the variable name

is changed.

12.7

retfrom[n;v] Returns from the function at
position n, with value v, 1i.e.

Jumps back up the pushdown list
through all intervening function
calls.

backtrace[n;m] Prints out the untrace normally
associated with errors, starting
at position n, and going back
to position m (i.e. n>m). If
n=NIL; it is assumed equal to
current position; if m=NIL; it
is assumed equal to 4.

baktrace[n] Like backtrace except it skips
over calls to breakl, faultl,
faulteval, interrupt, error, etc.

Used by the BT macro in break.

rtfrm{rtfn;rtform;rtn] is an NLAMBDA that provides a con-
venient way of calling retfrom, e.g.
(RTFRM FOO X 2) is equivalent to
(RETFROM (NTHFN (QUOTE FOO) 2) X).
It does a retfrom from nthfn[rtfn;rtnl],
(if rtn is not given, 1 is used) with
the value of rtform.

12.8

mapdl[mpdlfn;mpdln]

cycles back up the push-down
list, starting at position mpdln,
(if mpdln=NIL, it is set to
nthfn[mapdl;1]) applying mpdlfn
to the function entered at that
push-down position, i.e., to
nthfnback[mpdln] and then decre-
menting mpdln by 1 until it
reaches @. For example:

mapdl[(LAMBDA (X) (COND
((EQ (FNTYP X) (QUOTE EXPR))
(PRINT X)))))

will print all EXPRs on the push

down list.

Note: Negative value for mpdln
may be used.

Value of mapdl is NIL.

12.9

searchpdl[srchfnjsrchm]

searches the push-down list

until it finds a position for

which srchfn, applied to the function
called at that position, is not NIL.
For example,

(SEARCHPDL (FUNCTION (LAMBDA (X)
(NOT (ATOM (GETD X))))))

will find the last EXPR called.

If srchm is not given, the search
begins with the function called
just before searchpdl. If srchm
is supplied and is not a number,
the search begins as of

(NTHFN SRCHM 1), otherwise search
begins with srchm. Note that
srchm is bound to the push down
list position at all times, so
that srchfn can use it for calling
evalv, setv, or retfrom. The value

of searchpdl is (function . position).

12.10

Push-Down Handles

This section describes how to write functions which directly
manlpulate the push-down lists, e.g. an nthfn that starts at a
specified point, or one that searches forward instead of backward,
a form of varlables that checks to see if a particular variable

is bound without creating a list of all variables, etc.

There are four free variables which provide a direct handle on
the two push lists:

Cp Control PDL Pointer
ICP Initial CP

PP Parameter PDL Pointer
IPP Initial PP

The value of each of these variables (also stored under the
property COREVAL on their property list) is a number which is the
location of a cell in core which contains a virtual memory address.
These addresses define the bounds of their respective push-lists:
IPP and ICP are the initial values, PP and CP the current values
(actually they point to the first cell not used). Thus if both
stacks are empty, i.e. at the top level '
(OPENR CP) (OPENR ICP)
and (OPENR PP) (OPENR IPP)

For each function called, the contents of CP are increased by 4,
corresponding to the four cells required on the control push-down
list for information about this function call. The first two of
these cells contain the functions return and its virtual address,
so should not be of interest to the user. However, the third
cell, i.e. (OPENR ICP)+2,+6,+10... contains the functions name.
Thus, the following definition of nthfn is equivalent to the
machine coded one currently in our system.

12.11

(NTHFN
(LAMBDA (FN N)
(PROG (X Y)
' (SETQ X (PLUS (OPENR CP)
~-4))
(SETQ Y (OPENR ICP))
LP (COND
((EQ (CAR (VAG (PLUS X 2)))
FN)
(COND
((ZEROP (SETQ N (SUB1 N)))
(RETURN (QUOTIENT (DIFFERENCE X Y)
4))))))

(COND
((NEQ (SELQ X (PLUS X ~4))
Y)
(GO LP)))

(RETURN NIL)
)))

The fourth cell on the control push-down list is a pointer to the

first cell on the parameter push-down list used by this function.

For each variable bound locally by a function, the contents of PP

are increased by two, i.e. each variable uses two cells on the
parameter push-down list. The first cell, i.e. (OPENR IPP)+0,+2,+4...,
contains the value of the variable; the second contains its name.

Thus, varlables can be recognized on the parameter push-down list

by the appearance of an atom, the variable's name, in an odd cell¥,
Thus, the following definition can be used for variables:

¥ The parameter push-down list is used for temporary storage by
the interpreter, and also contains information about bindings
of free variables in complled functions. Thus, from the user's
standpoint, it may contain some '"garbage".

12.12

(VARIABLES
(LAMBDA (N)
(PROG (LST FROM TO 2)
(SETQ FROM (OPENR (SETQ N (PLUS (OPENR ICP)
(TIMNES N u)
3)))
(SETQ TO (OFPENR (PLUS X 4)))
LP (COND
((EQ FROM TO)
(RETURN LST))
((ATOM (SETQ Z (CAR (VAG (ADD1 FROM)))))
(SETQ LST (NCONC LST (LIST 2)))))
(SETQ FHOM (PLUS FROM 2))
(GO LP)
1))

The following function is presented as an example of a "new"

push-down 1list function. Its value is T if the variable VAR 1is

bound by the function at position N on the push-down list, other-

wise NIL. In other words, it is equivalent to (MEMBER VAR (VARIABLES N)).

(VARIABLE?
(LAMBDA (N VAR)
(PROG (FROM TO)
(SETQ FKOM (OPENR (SETQ N (PLUS (OPENR ICP)
(TIMES N 4)
3))))
(SETQ TO (OPENR (PLUS N H)))
LP (COND
((EQ FROM TO)
(RETURN NIL))
((EQ (CAR (VAG (ADD1 FROM)))
VAR)
(RETURN T)))
(SETQ FROM (PLUS FROM 2))
(GO LP)
)))

12.13

SECTION XIII

ARITHMETIC FUNCTIONS

Integer Arithmetle

The following functions all work on integers. When given floating
point numbers as arguments, these arguments are fixed (converted
to integers) before any operation is performed. Most of these
functions are compilled as open code.

plus[xl;xg;...;xn] Returns an integer x1+x2+...+xn

minus[x] - X

difference[x;y] This function has for its value
the numeric difference between its
arguments.

addl[x] x + 1

subl[x] x -1

times[xl;ng...;xn] Returns an integer equal to the
product of 51’52""§n

quotient[x;y] Greatest integer in quotient x/y

113.1

remainder [x;y] This function computes the number
theoretic remainder for fixed-
point numbers.

divide([x;y] This function yields a dotted pair
whose first member is quotient[x;y]
and whose second member is

remainder(x;y].

numberp[x] x if x is a number; NIL otherwise.
This function works for floating
point numbers as well as integers.

greaterp(x;y] T if x>y; NIL otherwise
lessplx;y] T if x<y; NIL otherwise

zerop[x] T if x is zero; NIL otherwise
minusp([x] ' T 1f x is negative; NIL otherwise
logand[x;...;2] This function takes the logical

and of all of its argument, and re-
turn this value as an integer.

logor[x;...;2] This function takes the logical
or of all of its arguments, and

return this value as an integer.

logxor[xlg...;xn] Logical exclusive or of XpseeesXy

13.2

1sh[n;s]

rsh(n;s]
lrsh[x;n]

abs[x]

rand[m,n]

Performs an arithmetic left
shift of s>0 on n. Equivalent
to n * 25,

Performs an arithmetic shift of
s»0 on n. Equivalent to n ¥ 27

Performs a loglcal right shift
of x by n># places.

Returns absolute value of X.

Returns a random integer r,
m>r>n. Uniformly distributed
in the range m<r<n.

13.3

)

Floating Point Arithmetic -

The floating point arithmetic functions available in BBN LISP are
fplus, fminus, ftimes, fquotient, and fgtp. They will accept
mixed arguments, i.e. integer or floating point. Just as the
integer-type functions fix any floating arguments before perfor-
ming their computation; the floating-type functions float

any fixed arguments before performing a computation. Thus the
result of a floating point function is guaranteed to be a floating

point number.

The functions specifically related to floating point are:

fgtplxsyl , Floating greaterp; compares by
subtraction

fix[(x] Returns integer part of x

fixp[x] Returns T if x 1s an integer,

NIL otherwise.
float[x] Produces floating number

floatp[x] Returns T if x 1s a floating
point number, NIL otherwise

fminus[x] Negative of x

fltfmt[x] Output format control; x is
defined as the time-sharing system

formatting of floating point output

LISP normally operates with
fltfmt[0]. Another useful format

'13.4

fplus[xl;ng...;x]

n

fquotient[x;y]

ftimes[xl;xz;...;xn]

exptim,n]

log[x]

antilogl[x]

1s 3DDWWO00Q, where DD is the number
of digits following the decimal
point, and WW the total field width.

Thus with f£1tfmt[30205000Q],
.62400000E+2 will be typed as 62.40
.38000000E-1 will be typed as 0.04

Numbers outside this range will be
typed with E notation.

See time-sharing manual for complete
description of floating formats.

Returns the sum of 1its arguments

Returns x/y
Product of its arguments

Returns as floating point number the
value of m to nth power. mand n
may be positive, negative, fixed or
floating point numbers except that
if m is negative and n fractional

an error occurs.

value is natural logarithm of x as
a floating point number. x can be
integer or floating point.

value 1is floating point number whose

logarithm is x. x can be integer
or floating point.

13.5

51ne[theta] Truhcates theta to nearest 5
" ' degrees and returns sine of theta
as floating point number. Uses
table look-up.

~cosine[theta] : “sine[theta+90]
Equal and egp will compare two floating point numbers for equality,
and will float an integer to compare it to a flocating point number.

Eq when compiled is an open 24 bit compare which usually won't

work for arithmetic comparisons. Equal uses eqgp.

13.6

SECTION XIV

INPUT/OUTPUT FUNCTIONS

Opening and Closing Files

All input (output) functions in BBN LISP can specify their source
(destination) file with an optional extra argument which is the
name of the flle. This file must be opened as specified below.
If the extra argument is not given (has value NIL), the file
specified as "primary" for input (output) is used. Normally
these are both T for teletype input and output. However, the
primary input (output) file may be changed by

input[name] Sets name to the primary input
file. Its value 1s the name of
the old primary input file. If
name=NIL, value 1s current
primary input file which 1s not
changed.

output[name] Same as input except operates on
primary output file.

Any file which is made primary must have been previously opened
for input (output).

The user mayv have a maximum of 3 files open simultaneously, in
addition to the teletype input and output files, and the output
file NOTHING.

14.1

The three basic file manlipulation operations are:

infile[name] Opens for input the file named
gggg.and sets it as the primary
input file. The value of infile
is the name of the previous pri-
mary input file.

outfile[name;typel Opens for output the file name,

| - which is set to type type if type
is not NIL, and otherwise to
type 3, symbolic. Its value is
the previous primary output file.
It sets the standard (primary)
output file to name.

closef[x] Closes the named file. If x 1is
' NIL, it attempts to close the

standard input file if other than
teletype. Failing that, it attempts
to close the standard output file
if other than teletype. Failing
either, it returns NIL. If it
closes any file, it returns the
name of that file. If it closes
either of the standard files, it
resets that standard file to
teletype. -

openp[x] Returns NIL if X is not an open

file, returns x if x is an open
file. '

4.2

Input/Output Transmission

Most of the functions described below have an (optional) argument
file which specifies the name of the file on which the operation is
to take place. If that argument is NIL, the primary file will

be used.¥

Note: in all 940 files, end-of-line is indicated by the characters
carriage-return and line-feed in that order. Unless otherwise
stated, carriage-return appearing in the description of an output

function means carriage-return and line feed.

On input from files, LISP will skip all line-feeds which immediately
follow carriage-returns. On input from teletype, LISP will echo
a line-feed whenever a carriage-return 1s typed.

The following functions perform output:

prinllx, file] prints x on file
prin2[x, filel prints x with double quote marks

inserted where required for it to
read back in properly

Both prinl and prin2 print lists as well as atoms; neither print
a carriage return upon termination; both have value X. prinl is
usually used only for explicitly printing formatting characters,
e.g. (PRIN1 (QUOTE ".")) might be used to print a period at the
end of a sentence. prin2 1s used for printing S-expressions
which can then be read back into LISP with read i.e. atoms con-
faining the regular LISP formatting characters in their print
names will be printed with surrounding double-quote marks. If
radix=8, prin2 puts a Q after numbers but prinl does not.

¥ file is used for tutorial purposes only. The arguments to all
subrs, which includes prinl, prin2 etec., are u, v, and w, as
described in arglist, p. 6.5. .

14.3

prin3 [x, file] Prints x using double quotes for
separation and break characters

specified by setbrk and setsepr;
p. 14.7.

print[x,file] Prints the S-expression x using

prin2; followed by a carriage-
return linefeed. Its value is x.

If any print function is given an atom containing a lower case char-
acter, ¢, and the output file is the teletype character will print
as %C.*¥ 'Similarly, control characters print as &C on the teletype.
For all files, unboxed numbers print as #N, where N is the octal
representation. (See p. 10.5).

' spaces Dq,file] Produces n spaces; its value is
NIL '
terpri[file]

Produces a carriage return; its value
is NIL

xer[] Produces a carriage return without
a line feed; for teletype only; its
value is NIL. Note: this carriage
return 1s not detected by position.

The print functions print, prinl, prin2, and prin3 are all affect-
ed by a level parameter set by '

printlevell[n] Sets print level to n, value is old
setting. Initial value is 100000.

¥ Thé line printer will print lower-case characters as lower-case
characters. If the file 1s printed on the teletype, e.g. by
the copy command, lower-case are printed as upper-case.

14.4

The variable n controls the number of unpaired left parentheses
which will be printed before any list will be printed as &.

(A (B C (D (EF) G) H) K)

Suppose X

Then if n 2, print[x] would print

(A (B C & H) K)
and if n = 3,
(A (B C (D& G) H) K)
and if n = 0, it prints as just
&

If n is negative, action 1is similar except that a carriage return
is inserted between all occurrences of right paren followed by
left paren. The value of printlevel[n] is the old parameter
setting.

In order to change the level dynamically, while the system is
printing at you, you can type control-P followed by a number,
i.e. a string of digits, followed by a period or exclamation
point. The print level will immediately be set to this number
for this printout. If the print routine is currently deeper
than the new level, all unfinished lists above that level will
be terminated by "--)". Thus, if a circular or long list of
atoms, is being printed out, typing in

P°y
will cause the list to be terminated. If a period was used to
terminate the number, level will be returned to its previous
setting after this printout. If an exclamation point was used,
the printlevel is changed permanently. This setting effects

both print and printx which is the name of the printing function
called by evalquote.

Note: printlevel only affects teletype output. Output to all
other files acts as though level is infinite.

14,5

Input Functions

read[file;flg]

readx[file;flg]

rdflx[x]

Reads one S-expression from file.
Atoms are delimited by parentheses,
brackets, spaces, carriage returns.
To input an atom which contains one
of these syntactic delimiters en-
close the atom in double quotes;
e.g., "A,B,(] C." A double quote
immediately following the first
double quote will be considered part
of the print name, not as a termina-
tor. To have a double quote internal
to a quoted print name, use three
double quotes; e.g. "(""M)A" will
prinl as (")A, and "A"""" as A" If
flg = T, then read will not count
parens.

Read program used by evalquote; same
as read.

If x is NIL this function will try to
read one S-expression with read[T];
i.e. from teletype. If no error occur-
red in reading, it will return with
list of the S-expression that was read.
If an error occurs in reading, it re-
turns with NIL. If Xx is not NIL, it
will attempt to read an S-expression
and gets an error, it will print out

X. In this case it returns with the
S-expression itself (not list of the
S-expression).

14,6

ratom[file;flg] Reads in one atom from file. Separation
of atoms is defined by tables set by
setsepr and setbrk, if flg = NIL. If
flg = T, ratom uses the LISP tables.

ratoms[a,file] Calls ratom repeatedly until atom a
is read. Returns a list of atoms
read not including a.

setsepr[x] Sets separator characters
setbrk[x] Sets break characters

Both setsepr and setbrk are of type
EXPR¥, Arguments are octal numbers
which are ASCII codes for teletype

characters, e.g., 155q for carriage
return.

Characters specified by setbrk will
- delimit atoms, and be returned as
separate atoms themselves by ratom.
Characters specified by setsepr will
be ignored and serve only to separate
atoms. Read does not use ratom,

but if it did, space (Ogq), and car-
riage return (155q) would be separator
characters; and left paren (10q),
right paren (1llq), left bracket (73q),
right bracket (75q), double quote (2q),
and period (16q) would be break
characters.

Thus

setsepr[0q 155q]
setbrk[10q 1lq 73q 75q 2q 16q]

4.7

would set up these characteristics.
The value of setsepr and of setbrk

is NIL.

setseprc[x] Same as setsepr except that the
arguments should be single character
atoms.

setbrke[x] Same as setbrk except that the arguments

should be single character atoms.
Use setlsepr, setlbrk.

setlseprlu] If u = NIL causes all separator

setlbrk[u] (break) characters to be cleared. If
u is a single character atom or a
numeric code for a character, this
character 1s added to the set of
separator (break) characters. Returns
T if this character was previously
a separator (break) character, NIL
otherwise. Error 10, "illegal argu-
ment" occurs if number is out of
range, or atom is not character atom.

ratest[x] Performs three functions depending on
- setting of Xx.

If x = T ratest returns indicator
which is:

T if a separator was encountered
immediately prior to last atom
read by ratom.

NIL if there was no separator
between last two atoms returned
by ratom.

14.8

If x = NIL it returns an indicator
which is:

T if last atom returned by
ratom was a break character.

If x = 1 then it returns:

T if last atom read contained
double quotes (on READ or (RATOM
x T)) NIL otherwise.

readc(file;flg] Reads the next character. Allows
paren counting and line buffering
if flg = T,
unreadc[n,file] If n is the code for a single character

or a single character atom, it will
be placed at the beginning of the
input buffer and thus taken as the
next character read. May not be done
two or more times without intervening

read .

14.9

Input/Output Control Functions

These functions perform a variety of operations on the state of

files.

clearbuf []

radix[u;v]

controllu;v]
u=~"T
u = NIL
u =-1
u=20
u =1

Clears the input buffer of TTY.

Sets output radix to u and sign in-
dicator to v. If u is T, negative
numbers will print as sign and 23 bit
value (normal). If u is NIL, all
numbers print as 24 bit unsigned
integers. Returns previous setting.

If v 1s not NIL, the system echo
table is set to v, which is the 2nd
argument to BRS 12(A REGISTER).

The value of u sets modes for reading
with ratom as follows:

Eliminates LISP'S normal line buffer-
ing, automatic detection of control-A
and control-Q as line-editing char-

acters on the TTY and paren counting.

Restores line buffering (normal).

Restores line buffering and causes
characters in current line not yet
read to be reprocessed by paren
counter and line buffer handler.

Eliminates the echo of the character
being deleted by control-A.

Restores the echo (normal). Value is
old setting.

14.10

linelength(n]

position[]

readpl[]

Special Functions

sysout[name]

sysin[name]

sysget[name]

Sets the length of the print line for
all files. The value 1s the former
setting of the line length.

Gives the character position on the

print line. No guarantees are made

about its meaningfulness if output 1s
being done intermittently to more
than one file,

Gives T if there 1is something 1n the
output buffer (either the TSS input
buffer or LISP'S line buffer) and NIL

otherwise.

Saves the user's private memory on the
file name. The value of sysout is the
number of words required. Note:
whenever the LISP system is reassembled,
0ld sysout files are no longer readable.

Restores the state of LISP from a
sysout file. Value of sysin is the
number of private pages (256 words)
read. If sysin returns NIL or INCOM-
PATIBLE, it was unable to read the
file name.

Initializes LISP and then does
sysin[name]. If name = T, just
initializes LISP.

14,11

rbin[file]

wbin(w;file]

ginfn[name]
goutfnlname]

ginfx[name]
goutfx[name]

filetype[name]

cOpyfile[from;to]

delfile[file]

renamefile[old,new]

Reads one 94g 24 bit word from file,
the speciflied file. This function
returns the word as a number.

Writes one word, w, on file specified
by file. W must be a number.

Obtains system's file number for
previously opened input (output) file.
Useful for performing direct I/0 from
hand-coded function. Cannot be used
as file argument for I/O functions.
See ginfx, goutfx.

These functions obtaln the LISP file
index for the previously opened input
(output) file. Can be used as argu-
ment to I/0 SUBR in place of file

name. It is somewhat faster especially
in case of repeated calls e.g. READC,
RATOM, PRIN1, etc.

Obtains number indicating type for
previously opened input or output file.

copies file from to file to, e.g.,
COPYFILE[/F00/; "LINE PRINTER"].
Value 1is to.

delete file. Value is file if found,
otherwise NIL.

renames old to new. Value is OLD-FILE
if new is an old file, NEW-FILE if new
is a new file, or NIL if unsuccessful.

14,12

Symbolic File Input

load[x;flg;p]

load is a function which reads
successive S-expressions from file
X and evaluates each as 1t is read,
until it reads either NIL, or the
single atom STOP, followed by a
carriage return, at which point it
returns the value NIL.

If p=T, load prints the value of

each S-expression; otherwise it

does not. flg affects the treatment of
expressions beginning with deflneq:

if flg=NIL, dfnflg is bound to T and
the expression evaluated. If flg=T,
dfnflg is bound to NIL and the expression
evaluated. (This reversal is used so
that with the normal usage of load,
with only the first argument

specified, defineq will operate as
though dfnflg were T, its normal
setting.) If flg=PROP, defineq is

not called. Instead, the function
definitions are stored on the

property lists.

Thus if the function definitions
for a particular file were all

14.13

readfile[v;x]

Symbolic File Output

writefile[v;x]

complled, and one wished to edit a
function definition, and make a new
copy of the file containing it,

‘without disturbing the compiled

definitions, one would perform
load[file;PROP], followed by
editf[fn], since editf automatically
goes to the property list if the
function definition cannot be
edited, followed by
prettydef[fns;file], since prettydef
automatically goes to the property
list i1f the function definition
cannot be prettyprinted.

reads successlive S-expressions from
file x until the single atom STOP
is read, makes a list of these
S-expressions, and sets v to this
list. Value 1is Xx.

writes successive S-expressions from
v onto fille x. If v 1s atomic, 1ts
value is used. If X 1s not open,

it is opened and the date printed out.
When v is finished, a STOP is printed
on x and it 1s closed. Value is X.

1424

prettyprint[x] If x is an atom it will be evaluated

to yield a 1list of functions. The
definitions of the functions will
be printed in a pretty format. If
X is a list, it 1s used directly

as the l1list of functions.
Example:

(FACTORIAL
(LAMBDA (N)
(COND
({ZEROP N)
1)
(T (TIMES N (FACTORIAL (SUB1 N)))))))

Note: prettyprint will operate correctly on functions that are
broken, broken-in, advised, or have been compiled with
their definitions saved on their property lists -
it prints the original, pristine definition.

A facility for documenting LISP functions 1s provided in prettyprint.
Any S-expression beginning with ¥ is interpreted as a comment and
printed in the right margin.¥* Example:

(FACTORIAL)
(LAMBDA (N) (* COMPUTES NI)
(COND)
((ZERQP N) (= Bt=1)
(T1) (* RECURSIVE DEFINITION:

Ni=N*xN=11!)
(TIMES N (FACTORIAL (SUB1 N)))))))
- These comments actually form a part of the function definition.
Accordingly, ¥ is defined as an NLAMBDA NONSPREAD function that
returns its argument, i.e. it is equivalent to QUOTE. When run-
ning an interpreted function, ¥ is entered the same as any other

¥ Comments begin in column firstcol, initially set to 50, and end

in column lastcol, initially set to T4.

14,15

LISP function. Therefore, comments should only be placed where
they will not harm the computation. For example, writing
(TIMES N(FACTORIAL (SUBLl N)) (# RECURSIVE DEFINITION)) in the
above function woﬁld cause an errof when TIMES attempted to
multiply N, N-1!, and RECURSIVE.

For compilation purposes, ¥ is defined as a macro which compiles
into no instructions. Thus, if you compile a function with
comments, and load the compiled definition into another system,
the extra atom and list structures storage required by the com-
ments will be eliminated. This 1s the way the comment feature 1is

intended toc be used.

endfile[x] Prints STOP on and closes the file
specified by Xx.

printdef[e]: prints the expression e on the
primary output file in a pretty
format, i.e., prettyprint does
printdef[getd[fn]] after appro-
priately setting output files,

printlevel, etc.

prettydef[prtyx;prtyy;prtyl] This function is used for the
creation of files containing sys-

tems of functions.

The arguments are interpreted as follows:

prtyx If a 1list, 1t is treated as a list
(first argument) of function names. If prtyx is an

atom, it should have as a binding
the list of functions for prettydef.
The functions on the list are
prettyprinted surrounded by a
(DEFINEQ ...) so that they can be
loaded with load. In addition, a

14.16

prtyy
(second argument)

prtyl
(third argument)

rpagq will be written which saves
the list of functions on the named
atom, and a print will be written
which informs the user of the named
atom when the file is subsequently
loaded.

is the name of the file on which
the output is to be written. The
following options exist:
file=NIL
The standard output file is
used as determined by the
last setting of output.
file=atom
The file atom is opened if
not already open, and becomes
the standard output file.
file=1list
Car of the list 1s assumed
to be the file name and is
opened if not already open.
The standard output file is
not changed in this case.

is a 1list of commands, or if
atomic, i1ts value 1s used as a
list of commands and an rpaggq is
written which saves the list of
commands on the named atom, and a
print which informsbthe user of
the named atom when the file is
subsequently loaded, exactly as
with the first argument.

14,17

These commands are used to save

on the output file top level bindings
of variables, property lists of atoms,
miscellaneous LISP forms to be
evaluated upon loading, arrays, and
advised functions, It also provides
for evaluation of forms at output
time.

The interpretation of each command
in the command list is as follows:

1. 1if STOP, the file is closed.

2., 1if atomic, an RPAQQ 1is written
which will restore the top
level binding of this atom then
the file is loaded.

3. 1if of the form
(PROP property atoml ... atomn)
for each atom following property,
an appropriate DEFLIST will be
written which will restore the
property for each corresponding
atoml ... atomn when file is
loaded. If property=ALL, the
entire property list will be
written with an RPLACD. If property
is a 1list, DEFLISTs will be written
for each property.

4y, 1if the form (ARRAY ...), each
atom following ARRAY should have
an array as its value, and an
appropriate expression will be
written which will set the atom

14.18

to an array of exactly the same
slze, type, and contents upon
loading.

If of the form (P), each
S-expression following P will
be printed on the output file,
and consequently evaluated upon
loading.

If of the form (E), each
form following E will be evalu-
ated immediately, i.e., while
prettyprint 1s operating.

If of the form (ADVISE fnl ... fnm)
an appropriate expression will be
written for each of the m func-
tions which will upon loading
allow the user to reinstate the
advice using the function

READVISE.

If of the form (FNS fnl ... fnm),
a defineq is written with the
definitions of fnl ... fnm,
exactly as though (fnl ... fnm)
where the first argument to

prettydef, e.g. suppose the user
wanted to set some variables or

perform some computations in a file

before defining functions, for example,

do a minfs, he would then write the
definitions wusing this option in-
stead of using the first argument

to prettydef.

14,19

9. If of the form
(COMMANDS coml ... comn), each
of the commands coml ..., comn
will be interpreted as one of
the above eight command types.

In each of the nine commands described above, if the atom "#¥"
follows the command type, the form following the ¥, i.e., caddr,
Is evaluated and its value used in executing the option, e.g.,
(FNS * FOOFNS), (PROP # FOOPROPS). Note that in the latter case,
(CAR FOOPROPS) will be the property (ies) to be saved, and

(CDR FOOPROPS) the list of atoms for which this property is to

be saved,

Note that (COMMANDS ¥ form) provides a way of computing what
should be done by prettydef.

Example:

SET(FOOFNS (FOO1l FO02 FO003))

SET (FOOVARS (FIE (PROP MACRO FOOl F002) (P (MOVD (QUOTE FO0O1)
(QUOTE FIE1l))) STOP)

PRETTYDEF(FOOFNS /FOO/ FOOVARS)

would create a file /FO0/ containing

l. A message which prints the time and date the file was made
(done automatically)

2. DEFINEQ followed by the definitions of FOO1l, FOO2, and FOO3
3. (PRINT (QUOTE FOOFNS))
4._ (RPAQQ‘FOOFNS (FOO1 FOO2 FO003))

. (PRINT (QUOTE FOOVARS))

. (RPAQQ FOOVARS (FIE ... STOP)

. (DEFLIST (QUOTE((FOO1 PROPERTY) (FO02 PROPERTY))) (QUOTE MACRO))

5
6
7. (RPAQQ FIE value of fie)
8
9

. (MOVD (QUOTE FOO1l) (QUOTE FIE1))
10. STOP

14.20

printfns[x] X is a 1list of functions. printfns
prints DEFINEQ and prettyprints the
functions. Used by prettydef, i.e.
command (FNS # FOO) is equivalent
to command (E (PRINTFNS F00)).

printdatel[] prints the expression at beginning
of prettydefed files that types
date upon loading.

tab[pos,minspaces, file] performs appropriate number of
spaces to move to position pos.
If position + minspaces is greater
than pos, does ferpri and then
spaces [pos]. If minspaces not
given, 1 is used.

makefile[file;flg] does prettydef[fileFNS;/ nfile/; fileVARS]
where /nfile/ is first unused file,
e.g., if user's file directory con-
tains /1FO0/ and /2F00/ makefile[F00]
does prettydef[FOOFNS;/3F00/ FOOVARS].
If fileVARS is unbound atom, makefile
uses (STOP).

If flg = T, file is also listed using

listfile.
o
listfile[files] Lists each file in files on line

printer using utility. Value is
files.

14,21

SECTION XV

DEBUGGING AND ERROR HANDLING

Debugging Faclilities

Debugging a collection of LISP functions involves isolating problems
within particular functions and/or determining when and where incor-
rect data 1s being generated and transmitted. In the BBN-LISP system,
there are three facilities which allow the user to (temporarily)
modify selected function definitions so that he can follow the flow
of control in his programs, and obtain this debugging information.
These three facilities together are called the break package, All
three redefine functions in terms of a system function, breakl,
described below.

Break modifies the definition of fn so that if a break condition
(defined by the user) is satisfied, the process is halted tempo-
rarily on a call to fn. The user can then interrogate the state
of the machine, perform any computations, and continue or return
from the call.

Trace modifies a definition of a function fn so that whenever fn is
called, its arguments (orvsome other values specified by the user)
are printed. When the value of fn is computed it is printed also.
(Trace is a special case of break).

Breakin allows the user to insert a breakpointkinside an expression
defining a function. When the breakpoint is reached and if a break
condition (defined by the user) is satisfied, a temporary halt
occurs and the user can again investigate the state of the
computation.

The following two examples illustrate these facilities. 1In the
first example, the user traces the furiction FACTORIAL. TRACE
redefines FACTORIAL so that it calls BREAK1l in such a way that it
prints some information, in this case the arguments and value of

15,1

PRETTYPRINT(C(FACTORIALD)

(FACTORIAL
(LAMBDA (N)
(COND
(C(ZEROP ND
L
(T (TIMES N (FACTORIAL (SuBl
N IL
~ TRACE(FACTORIALD
(FACTORIAL)
~ FACTORIAL (5)

FACTORIAL:
N = §

FACTORIAL:
N = 4

FACTORIAL:
N = 3

FACTORIAL:
N = 2

FACTORIAL:
N = 1

FACTORIAL:
N =9

E RROR

(L IS UNBOUND ATOM)
(FACTORIAL BROKEN)
t N

14

¢ RETURN 1
FACTORIAL = 1

FACTORIAL = 1
FACTORIAL = 2
FACTORIAL = 6
FACTORIAL = 24
FACTORIAL = 122
129 ‘

-

15.2

NIIIIIY)

PRETTYPRINTC(FACTORIAL))

(FACTORIAL
(LAMBDA (N)
(PROG (M)
(SETO ™ 1)
LLOOP(COND
((ZEROP N)
(RETURN M)>))
(SETQ M (TIMES M N))
(SETQ@ N (SUB1 N))
(GO LOOP)
)))
NIL

» BREAKIN(FACTORIAL C(AFTER LOOP) (LESSP N 2))
S EARCHINGe oo

FACTORIAL

~ FACTORIAL(5S)

((FACTORIAL)Y BROKEN)
: NN

E RROR
(NN IS UNBOUND ATOM)
(FACTORIAL BROKEN AFTER LOOP)

CTORIAL)
FACTORIAL) BROKEN)

0K
FACTORIAL).
20

15.3

FACTORIAL, and then goes on with the computation. When an error
occurs on the fifth recursion, BREAKl reverts to interactlve mode,
and a full break occurs. The situation is then the same as though
the user had originally performed BREAK(FACTORIAL) instead of
TRACE(FACTORIAL), and the user can evaluate various LISP forms and
direct the course of the computation. In this case, the user
examines the wvariable N; and instructs BREAK1 to return 1 as the
value of this call to FACTORIAL. The rest of the tracing proceeds
without incident. The user would then presumably edit FACTORIAL
to change L to 1. In the second example, the user has constructed
a non-recursive definition of FACTORIAL. He uses BREAKIN to
insert a call to BREAK1l just after the PROG label LOOP. This
break 1s to occur only on the last two iterations, i.e., when N

is less than 2. When the break occurs, the user looks at the
value of N, mistakenly typing NN. However, the break 1is maintained
and no damage 1s done. After'examining N and M, the user allows
the computation to continue by typing OK. A second break occurs
after the next iteration, this time with N=0. When this break is
released, the function FACTORIAL returns its wvalue of 120.

15.4

Breakl

The basic function of the break package is breakl. It allows the
user to interrogate the state of the world and to affect the course
of the computation. breakl uses the ready character ":" to in-
dicate it is ready to accept forms for evaluation (by eval). The
user may type in forms to eval and, under heavy errorset protection,
seevthe value of the computations. In addition, he has the follow-
ing options that are specifically recognized by breakl:

GO : Releases the break and allows
the computation to proceed.
BREAK1 evaluates BRKEXP, its
first argument, prints the value,
and returns it as the value of
the break. BRKEXP is set up by
the function that created the call
to BREAKl. For BREAK or TRACE,
BRKEXP 1is (dummy ARGl ARG2 ...
ARGN), where dummy has the original
definition of the function being
broken and ARGl, ARG2, ... ARGN
are its arguments. BRKEXP is NIL
for BREAKIN using BEFORE or AFTER,
and the indicated expression for
BREAKIN AROUND.

OK , Same as GO except the value of
BRKEXP not printed.

EVAL Same as GO or OK except that the
break is maintained after the
evaluation. The user can then
interrogate the value which is
bound on the variable VALUE, and
continue with the break. Typing
GO or OK following EVAL will not
cause reevaluation, but another
EVAL will. This is a useful option
when the user is not sure whether
or not the break will produce the
correct value and wishes to be able
to do something about it if it is
wrong.

1505

RETURN form The value of form 1s returned as
the value of the break. For
example, one might use the EVAL
command and follow this with
RETURN (REVERSE VALUE).

+ Calls error and aborts the break.
i.e. makes it "go away" without
returning a value. This is a use-
ful way to unwind to a higher level
break. All other errors, includ-
ing those encountered while exe-
cuting the GO, OK, EVAL, and
RETURN option, maintain the break.

Once a break occurs, control of the computation reverts to the
user. The computation does not proceed without a specific instruc-
tion from the user. 1In most cases the user will simply check the
values of certain key variables, and allow the computation to
proceed. If he 1s not interested in the value of the break, he
probably will use the OK command, and BREAK1l will "quietly go
away." If he is interested in seeilng the value, but fairly cer-
tain that it will be correct, he may use the GO command. If he
wants to see the value of the break, but still have the option of
further interaction with BREAKl, he will use the EVAL command,
after which he can examine the variable VALUE. By means of the
RETURN command, he can force BREAK1l to return an appropriate
value, even when his function is still "buggy." This can be
useful in localizing a problem in a large program. If substitu-
ting the omniscient user for a faulty function corrects the bug,
then the problem has been isolated. |

BREAK1 puts all of the power of LISP at the users command. For
example, he can insert new breaks on subordinate functions simply
by typing:

(BREAK functionl function2)

15.6

or he can remove old breaks and traces if too much information

is being supplied:

(UNBREAK function3 function¥)

He can edit functions, including the one currently broken:

(EDITF function)

For example, the user might type EVAL, see that the value was
incorrect, call the editor, repair the bug, and type EVAL again,
all without leaving the break.

Similarly, the user can prettyprint functions, define new functions
or redefine old ones, etc., load a file, compile functions, time a
computation, etc. In short, anything that he can do at the top
level EVALQUOTE can be done while inside of the break. In addition,
the user can examine the pushdown 1list, via the fdnctions described
in section 12, and even force a return back to some higher function
via the function retfrom.

Brkcoms

The fourth argument to breakl is brkcoms, a list of break commands
that breakl interprets and executes exactly as though they were
teletype input. One can think of brkcoms as another input file
which always has priority over the teletype. Whenever brkcoms=NIL,
breakl reads its next command from the teletype. Whenever brkcoms

is not NIL, breakl takes as its next command car[brkcoms] and sets
brkcoms to cdr[brkcoms]. For example, suppose the user wished to
see the value of the variable x after a function was evaluated.

15.7

He would set up a break with brkcoms=(EVAL (PRINT X) OK), which
would have the desired effect. The function trace uses brkcoms :
it sets up a break with two commands; the first one prints the
arguments of the function, or whatever the user specifies, and the

second is the command GO, which causes the function to be evaluated
and its value printed.

Note: if brkcoms is not NIL, the value of a break command is not
printed. If you desire to see a value, you must print it yourself,
as in the above example with the command (PRINT X).

Note: Whenever an error occurs, brkcoms is set to NIL, and a full
interactive break occurs.

Breakmacros

Breakl specifically récognizes the five atomic commands 4, GO,
RETURN, EVAL, and OK. Whenever an atomic command is given breakl
that it does not recognize, either via brkcoms or the teletype,
it searches the list breakmacros for the command. The form of
breakmacros is (... (macro commandl command?2 ... commandn) ...).
If the command is defined as a macro, breakl simply appends its
definition, which is a sequence of commands, to the front of
‘brkcoms, and goes on. If the command is not contained in

breakmacros, it is evaluated as before.

15.8

The following breakmacros are currently defined:

?= if from brkcoms, looks at next
command on brkcoms and prints the
value of each member of that list.
For example, if brkcoms were
(EVAL 2= (X Y) OK), the user would
see

(function BROKEN)
function EVALUATED
X= value of x

Y= value of y
function

If the next command on brkcoms

is T, ?= operates on all of the
arguments of the broken function,

i.e. if the arguments of the broken
function are X and ¥, ?= T 1is
equivalent to ?= (X Y). 2= is used by
trace.

?= typed in by user is equivalent

to the commands ?= and T on brkcoms,
i.e. the names and values of the
arguments to the broken function
are printed.

{EVAL function is first unbroken, then
evaluated, and then rebroken. Very
useful for dealing with recursive
functions.

10K Function is first unbroken, eval-
uated, rebroken, and then exited,
i.e. !0K is defined as !EVAL fol-
lowed by OK.

1GO Function is first unbroken, eval-
uated, rebroken, and exited with
value typed, i.e. !EVAL followed
by GO.

1509

ARGS the names of the arguments of the
broken function are printed.

%A evaluates and prints the value of
the atom a, (lower-case A), see p.12.4,.

Bell (Control-G) reverses the setting of brkevqflg,
and prints new value, i.e. does
(PRINT (SETQ BRKEVQFLG (NULL BRKEVQFLG)))

If brkevgflg=NIL, its normal setting, breakl operates in

eval mode, uses : as its ready character and expects one input
which it evaluates using eval (except if input is one of the
five commands *, GO, EVAL, OK or RETURN or a breakmacro).

If brkevqflg=T, breakl operates in evalquote mode, its ready
character 1Is <, and it then expects two inputs, a function .and
1ts arguments, which it gives to evalguote. However,

the five regular commands as well as any breakmacros are not
affected by the setting of brkevaflg and will always be recog-
nized. evalgquote mode 1s useful if you have a lot of express-
ions to evaluate that would otherwise have to be quoted, e.g.

: (PUT (QUOTE FOO) (QUOTE FIE) (QUOTE ...))
Vs
+PUT(FOO FIE ...)

in evalquote mode.

BT Prints a backtrace of function names
only. If BT is followed by a function
name, on the same line of input, the
backtrace starts from the last occur-
rence of that function, e.g.

BT FOO

prints FOO and all functions entered
above it in reverse chronological
order. A number (position on the
push list) can be used instead of

a function name. Otherwise back-
trace starts. from the current
position except that calls to

error, faulteval, breakl, etc.,

are initially skipped.

15.10

BTV

Prints a backtrace of functilon names
with variables. If followed by a
number on the same line of input,
printlevel 1s set to that number
during the backtrace only, e.g.

BTV 2

will print a backtrace with the values
of all variables being printed to a
depth of 2. If this number is not
supplled, printlevel 1s set to 0 for
backtrace. In both cases printlevel
is restored after backtrace, even if
interrupted by a control-R. Note
however, if the backtrace is aborted
by a control-C, the printlevel will
not have been restored.

15.11

Miscellaneous

The fifth argument to breakl is brkfile, and determines the output
file for breakl. If it is NIL, the teletype is used. However,
brkfile can be used to dump diagnostics onto a disc file, or ever
onto the file NOTHING. If brkfile is not open, it is opened. If
an error occurs, brkfile is set to NIL and all output goes to the
teletype.

brkx i1s a prog variable in breakl which is bound in breakl but not

used. It is available for the user, to provide a local binding for
computations associated with breaks.

Break Functions

breakl[brkexp;brkwhen;brkfn;brkcoms;brkfile]
is an nlambda. brkwhen determlines

whether a break is to occur. If
its value is NIL, brkexp is evalu-
ated and returned as the value of
breakl. Otherwise a break occurs
and an identifying message 1is
printed using brkfn. Commands are
then taken from brkcoms or the
teletype and interpreted. The
commands GO, OK, RETURN, and %,
are the only ways to leave

breakl. The command EVAL causes
brkexp to be evaluated, and saves
the value on the prog variable
value. Other commands can be
defined for breakl via breakmacros.

15.12

break@[fn;when;coms;file]

sets up a break on the function fn
by redefining fn as a call to
breakl with the original definition
of fn as brkexp,and when, fn, coms,
and file as brkwhen, brkfn, brkcoms
and brkfile. Puts property BROKEN
on property list of fn with value
a gensym defined with the original
definition. Adds fn to the 1list

brokenfns. Value is fn.

If fn is non-atomic and of the form
(fnl IN fn2), break0 first calls a
function which changes the name of
fnl wherever it appears inside of
fn2 to that of a new function, fnl-
IN-fn2, which it initially defines
as fnl. Then break0O proceeds to

break on fnl-IN-fn2 exactly as des-

cribed above. This procedure is use-

ful for breaking on a function that

is called from many places, but where

one is only interested in the call
from a specific function, e.g.

(RPLACA IN FOO), (PRINT IN FIE), etec.
It is similar to breakin described

below, but can be performed even when

FN2 is compiled whereas breakin only

works for interpreted functions.

If fnl is not found in fn2, break0
returns the value (fnl NOT FOUND IN
fn2).

15.13

If fnl is found in fn2, in addition
to breaking fnl-IN-fn2 and adding
fnl-IN-fn2 to the list brokenfns,
breakO adds fnl to the property
value for the property NAMESCHANGED
on the property list of fn2 and
adds the property ALIAS with value
(fn2 . fnl) to the property list of
fnl-IN-fn2. This will enable unbreak
to recognize what changes have been
made and restore the function fn2 to
its original state.

If fn 1s nonatomlic and not of the
above form, breakO is called for each

member of fn using the same values
for when, coms, and file specified

in this call to breakO. This as-
soclativity permits the user to
specify complicated break conditions
on several functions without retyping,

e.g.

breakO[(FOO1 (PRINT IN F002)), (NEQ X T)
(EVAL 2= (Y Z) OK)]

Associativity is also available for
breaking in e.g. break@[((PRINI PRINT)
IN (FOO FIE)),T]

Value is list of individual values.

break[x] is a nonspread nlambda. For each
atomic argument, it performs
break@[atom;T]. For each list, it
performs apply [BREAK@,list]. For
example,

15.14

BREAK(F001 (FOO2 (GREATERP N 5)))

wlll establish breaks on FOOl and
FO02, the latter a conditional
break.

trace[x] is a nonspread nlambda. For each
atomic argument, it performs
breakd[atom;T; (TRACE ?= T GO)J]#* (see
discussion of brkcoms and break-
macros in text). For each list,
it performs

break@[car[1ist];T;1ist[TRACE,?=,
cdr[list],GO]]*

For example, TRACE(FOO1l (F002 Y))
will cause both FOOl and F002 to
be traced. All the arguments of
FOOl1l will be printed; only the
value of Y will be printed when
FOO2 is entered.

Note: the user can always call breakd himself to obtain combination
of options of breakl not directly available with break and

trace. These two functions merely provide convenient ways of
calling break#, and will serve for most uses.

(*) The flag TRACE is checked for in breakl and causes the
message "function": to be printed Instéad of (function BROKEN).

15.15

breakin[fn,where,when,coms,file]

breakin is an nlambda. Its last
three arguments correspond to the
last three arguments of breakO,
except if when is NIL, T is used.
where specifies where in the defi-
nition of fn the call to breakl

is to be inserted. There are three
possibilities: (BEFORE ...), (AFTER
«..), or (AROUND ...). "..." is

used by the expanded editor's locate
routine to find the correct point
for the break. For example, (BEFORE
COND) will insert a break before the
first occurence of cond, and (AROUND
(SETQ X --)) will break around the
first place X is set. Note that
specifications such as (AROUND ALL
(SETQ X =-)) for breaking around
every place x is set, and (AROUND
(SECOND (COND CONTAINING RETURN))) are
perfectly acceptable. See p. 9.26-
9.40 for description of expanded
editor. '

If fn is a complled function, breakin
returns UNBREAKABLE as its value.

If fn is interpreted, breakin types
SEARCHING... while it calls the
editor. If the location specified
by where is not found, breakin types

15.16

(NOT FOUND) and exits. If it is
found, breakin adds the property
BROKEN-IN with value to T to the
property list of fn, and adds fn
to the 1list brokenfns.

Because of the operation of the UP
command in the expanded editor,
(BEFORE COND) and (BEFORE X) will
both have the desired effect. The
first will insert a break before
the entire expression beginning
with COND, the second before X it-
self. A speclal check 1ls made to
avoid inserting a break in the
wrong place when a variable may
appear as car of an expression, as
in the case of a cond or selectq,
i.e. the X in (COND ... (X ..) ...)
will not satisfy the locating routine.

Another special check is made to
avoid inserting a break anywhere
Inside of an expression headed by
any member of the list nobreaks,
initialized to (GO QUOTE #¥), since
this break would never be activated.

It is possible to insert multiple
break points, with a single call to
breakin by using a list of the form
((BEFORE ...) .. (AROUND ...)) for
where. It is also possible to call

15.17

unbreak[x]

unbreak0[fn]

break or trace on a function which

has been modified by breakin , and
conversely to breakin a function
which has been redefined by a call
to break or trace.

unbreak 1s a non-spread nlambda.
It takes an indefinite number of
functions modified by break, trace,

or breakin and restores them to
their original state by calling
unbreak0. unbreak[] will unbreak
all functions on brokenfns, a list
that is updated by break0 and
breakin. Value is list of values
of unbreakO.

restores fn to its origilnal state.
If fn was not broken, value is

(NOT BROKEN) and no changes

are made. If fn was modified by
breakin, unbreakin is called to
edit it back to its original state.
If fn was created from (fnl IN fn2),
i.e. if it has a property ALIAS,

the function in which fn appears

is restored to its original state.
All dummy functions that were
created by the break are eliminated.

Note: unbreakO[(fnl IN fn2] is
allowed: unbreak0 will operate on
fnl-IN-fn2 instead.

15.18

unbreakin[fn] performs the appropriate editing
operations to eliminate all changes
made by breakin. fn may be either
the name or definition of a function.
Does not check to see if any changes
were made. Value is fn.

changename[fn, from,to] changes all occurrences of from to
to in fn. fn may be compiled.
Value is fn if from was found,
otherwise NIL. Does not perform
any modifications of property lists.

virginfn[{fn,flg] is the function that knows how to
restore functions to their original
state regardless of any amount of
breaks, breakins, advising, compil-
ing and saving exprs, etc. It is
used by prettyprint, define, and

the compller. If flg=NIL, as for
prettyprint, it does not modify
the definition of fn in the process

of producing a "clean" version of

the definition. If flg=T as for

the compiler and define, it physically
restores the function to its original
state, and prints the changes it is
making, e.g. FOO UNBROKEN, FOO UNADVIS-
ED, etc. Value is the virgin function
definition.

15.19

valv[x,fn,n] a useful form of evalv for inside
of a break. valv is an nlambda.
x is the name of a variable to be
evaluated, using evalv, as of the
nth occurrence of the function fn,
i.e. nthfn[fn,n]. If n is NIL, 1
is used. If fn is NIL, the last
position used by valv is used (it
is saved on the free variable
vvnlast). For example,

: (VALV X MATCH)

value of X as of last call to MATCH
: (VALV Y)

value of Y as of last call to MATCH

15.20

Error Handling in LISP

There are currently twenty four different error types in the
BBN LISP system. These are discussed 1n greater detail below.
However, by far the most common "error condition" in LISP pro-
grams: unbound atoms and undefined functions, is not treated as
an error at all, but handled in a special way by the BBN inter-
preter., The basic difference between a bona fide error, and an
unboﬁnd atom or undefined function, 1s that errors are detected
after they occur, e.g. PDL OVERFLOW, NONXMEM, or else they are
detected inside a low-level function (a SUBR, SUBR¥ or FSUBR¥),
like plus or setq e.g. NUN-NUMERIC ARG, NON-ATOMIC ARG, ILLEGAL
REGISTER COMMAND, whereas unbound atoms and undefined functions
are detected by the interpreter when it attempts to evaluate a

LISP form. Consequently, the system is in a better position to
allow the user to correct unbound atom and undefined function
error conditions than the more basic errors, although these too
are "helpable" in the BBN LISP system.

15.21

Unbound atoms and undefined functions

Whenever the interpreter encounters an atomic form with no binding
on the push-down list, and whose value is the atom NOBIND, (¥) the
interpreter calls the function faulteval. Similarly, faulteval

is called when a non-atomic form is encountered, car of which is
not a function.(¥¥). The value returned by faulteval is used by
the interpreter as the value of the form. faulteval is defined

to print either UNBOUND ATOM or UNDEFINED CAR OF FORM, followed

by the name of the atom or car of the form, and then to call
breakl giving it as brkexp the offending form. Once inside the
break, the user can set the atom, define the function, return a

specified value for the form using the RETURN command, etc, or
abort the break using the + command. If the break is exited

with a value, the computation will proceed exactly as though no
error had occurred.

This call to breakl can be inhibited by setting to NIL the vari-

able helpflag, which is initially set to T. In this case, faulteval
instead calls the function error (p. 15.33). It is at this point,that
‘the unbound atom or yndefined car of form actually becomes a LISP |
error. Similarly, error is called instead of breakl if the "error"

(¥) All atoms are initialized (when they are created by the
read program) with their value cells (car of the atom)

NOBIND, their function ¢€lls NIL, and their pronertv 1iste
(cdr of the atom) NIL.

(%¥%¥) See Appendix 2 for complete description of BBN LISP interpreter.

15.22

occurs within helpdepth, initially set to 4, function calls from
the top level evalquote or the last errorset (p. 15.33). In the
example below, a break occurs when FOOO is evaluated inside the
mapcar, but not when typed in to e. Of course, the user can set
helpdepth to any value he wishes. For helpdepth=0, breaks will

always occur.

« SETC(FOO (1 2 3))

(1 2 3

~E (MAPCAR FOOO0 (FUNCTION ADD1))
UNBOUND ATOM FO0O0O

(FOOO BROKEN)
¢ RETURN FOO
FO00 = ¢1 2 3)
(2 3 4

.+ E FOOO

ERROR
(FOOO0 IS UNBOUND ATOM)
UNTRACE:
XEEEE FO000
E

15.23

Undefined function calls from complled code

Frequently, a function will be compiled when some of the functions
it célls,aré not defined. The compiler merely generates instruct-
ions for calling the function exactly as though it were defined

as a LAMBDA expreséion (p. 16.7). waever, if the function is
undefined at run time, the system routine that performs the actual
calling of functions will instead call the function interrupt,
analagous to faulteval in the interpreter. Interrupt is defined
to type UNDEFINED FUNCTION followed by the function name and then
call breakl. '

If the function was undefined at compile time, its arguments will
have been evaluated (see p. 16.7). In this case, they may be

examined using the function arg, p. 8.6. e.g. arg(l), arg(2), or
the function breaknargs can be used to make a list consisting of

all of the arguments to the function. For example, the expression
given to breakl as brkexp is (APPLY FUNCTION (BREAKNARGS
INTERRUPTARGS)) where interruptargs is the argument to interrugt,'

.and is bound to the number of arguments for the undefined function,
'1.e. the number of arguments with which is was called, and the
variable function is bound by interrupt to the undefined function
name. If the user defines function as a LAMBDA expression, and
~executes the OK, GO, or EVAL command in breakl, the correct value
will be computed.

As with faulteval, the value returned by interrupt is used as the
value for the function call, and the computation proceeds exactly

as though no error had occurred.

15.24

Similarly, the call to breakl can be inhibited by setting the
variable helpflag to NIL, and no break occurs if the error was
within helpdepth function calls from the top or the last errorset.
In these cases, error 1s called instead.

Inducing an interrupt

The user can induce an interrupt and subsequent call to breakl at
any point in a computation by typing control-H. At the next

point a function is about to be entered, interrupt is called in-
stead. Interrupt types INTERRUPTED BEFORE followed by the function
name, and then calls breakl exactly as though the function were
undefined. The arguments to the function can be examined using
arg or breaknargs. If the user types OK, GO, or EVAL the function
call will be continued. Control-H interrupts are not affected by
the setting of helpflag or helpdepth. However, they only occur
when a function is about to be entered. If the program is com-
puting in a function which after compilation, does not call any
other functions, (pp. 16.11-16.14) computation will not be inter-
rupted untll that function is exited.

15.25

"Real" errors

The conventional treatment of errors in a LISP system is to

cause a trap to a routine which prints an error message and un-

winds the pushdown 1list. While unwinding the pushdown list, the
system prints the names and arguments of all functions that have

been entered but not yet exited, with the most recently entered
function printed first.(¥) If the function errorset has been
entered, unwinding proceeds only as far as the most recent call to it,
and errorset then returns NIL as its value, to indicate an error
occurred, Otherwise, unwindingvproceeds until the top level eval-
quote. '

In the BBN LISP system, this unwinding process takes place only

as a last resort, i.e. if the variable helpflag is NIL, or if the
error type (p.15.29) is specified as non-helpable, or if the error
occurred wlthin helpdepth function calls from the tdp or the last
errorset. Otherwise, the error diagnostic is printed and breakl

is called to allow the user to examine the state of the computation
and proscribe the next action.

Unfortunately, the user may not always be able to make a correction
and proceed as if no error had occurred, as he can with calls to
faulteval and interrupt. When an error occurs in a low-level
routine, the state of the computation must be backed up to the

last function call before breakl can be called. For example, if
the compiled function hypotenuse were defined as:

(¥) In the BBN system, this printout can be terminated by pressing
control-R, or portions of it can be skipped by judicious use
of rubout, or the printlevel can be modified by using control-P,
or the user can always bomb back to the top level via control-C.
See appendix 2, p. 23.7.

15.26

(HYPOTENUSE
(LAMBDA (X Y)
(EXPT (FPLUS (FTIMES X X)
(FTIMES Y Y))
0.52000000)))

and the user performed:

~E (FTIMES (SINE 32) (HYPOTENUSE 3))

NON-NUMERIC ARG
N IL .
IN HYPOTENUSE

(HYPOTENUSE BROKEN)
¢t BTy
UNTRACE:
Y NIL
X 3
HYPOTENUSE
LAMBDA &
ZA 2.50200020
F TIMES
XEEEE &
E

(SETQ Y 4)

e N oo

EVAL
HYPOTENUSE EVALUATED
: VALUE
-5
2 OK
HYPOTENUSE
2 «50000000
-

15.27

the computation would be preserved as of the time hypotenuse was
called, since ftimes and fplus compile open (p. 16.10).

Thus the partial results of the computation would be lost when the
error occurred. In this particular case, the user could proceed
as shown.

However, if the computation made some changes in the program's
environment before the error occurred,the programmer may not be
able to simply repeat the computation. For example, if hypotenuse

were defined as:

«PRETTYPRINTC(C(HYPOTENUSE))

(HYPOTENUSE
(LAMBDA (X Y)
(EXPT (FPLUS (SETQ X (FTIMES X X))
(FTIMES Y Y))
0.500000002)))
N IL

«E (FTIMES (SINE 30) (HYPOTENUSE 3))

NON-NUMERIC ARG
N IL
IN HYPOTENUSE

(HYPOTENUSE BROKEN)

t X

9

¢t RETURN (HYPOTENUSE 3 4)
HYPOTENUSE = 5

2 «50020000

-

The user must evaluate each situation individually to decide
whether or not he can continue, or should force a returned value,
or perform a retfrom back to some higher level.

Error types

There are currently twenty four error types in the BBN LISP system:

NONXMEM

BREAK

CAR OF NUMBER

PDL OVERFLOW

UNDEFINED FUNCTION
FUNCTION 'ARG' NOT LEGAL
ATOM STORAGE FULL

PNAME STORAGE FULL
UNREASONABLE LINE LINE LENGTH
ILLEGAL RADIX SETTING
ILLEGAL INPUT FORMAT
ILLEGAL REGISTER COMMAND
ILLEGAL FILE NAME

NOT USED (UNLUCKY)
NON-NUMERIC ARG
NON-ATOMIC ARG

ATTEMPT TO CLOBBER NIL
NUMBER STORAGE EXCEEDED
ERROR

ILLEGAL GO

ILLEGAL RETURN

QUIT

INCOMPATIBLE

NOT FOUND

TOO MANY CHARACTERS IN ATOM

HHHPFFOO~NOWTWMNOHO
whh = o

=
i g

MOV HE
W= OO0 oo oW

15.29

Explanation of error types

NONXMEM

BREAK
CAR OF NUMBER

PDL OVERFLOW

UNDEFINED FUNCTION

FUNCTION 'ARG' NOT LEGAL

ATOM STORAGE FULL

PNAME STORAGE FULL

UNREASONABLE LINE SETTING
ILLEGAL RADIX SETTING

ILLEGAL INPUT FORMAT

ILLEGAL REGISTER COMMAND

reference to non-existent memory.
Can occur if array-pointer or other
unboxed number is treated as list
structure, i.e. program tries to
take car of it, but more frequently
an 1lndication that system is sick.

User types control-R

occurs when intefpreter tries to
take car of number, e.g. (COND 387
(T NIL))

occurs from infinite recursion,
where infinite means more than 1500
nested function calls.

very rare - means calling routine
is very confused - normally it

calls interrupt on undefined function

as described above

arg used inside a function that was
not a no-spread, evaluate type
function

too many atoms, (current system can
hold 3100 new atoms,) if a reclaim
does not collect any of the user's
atoms, he can continue by flushing
part of the system, p. 22.8, and
then performing an atomgc, p. 10.3.

can occur if you have many atoms
with long names

linelength[nl], n > 999,

radix[n], n > 255.

read is confused, e.g. it saw an
expression like (A .)

openr or closer given an illegal
address.

15.30

ILLEGAL FILE NAME attempt to read from, write on, or
close a file that is not open

NON-NUMERIC ARG from numeric functions like plus,
' times, etec.
ERROR call to function error
ILLEGAL GO go to nonexistent label
ILLEGAL RETURN call to return from outside a prog
QUIT call to quit
INCOMPATIBLE - from EXEEE’ see p. 14.11
NOT FOUND from sysin see p. 14.11
TOO MANY CHARACTERS IN ATOM > 86

The list of non-helpable errors, nherrors, is initially set to

(0 1 18). The rationale behind this 1s that NONXMEM are usually
system malfunctions; control-R means abort-(control-H should be used
to reauest for interaction), and error tyne 18, a call to error should
not be helpable: the function help, p.15.33, is available for that
purpose. However, the user can set nherrors to any list of error type
numbers for which he does not wish the system to go into a break.

15.31

Error Messages

errorn(]

errorm[n;m]

returns information about the last
error in the form (n m) where n is
the error type number and m is the
argument to errorm which would
normally be printed out after the
error message. Thus if an unbound
atom FOO had been encountered,
errorn[] would yield (18 (FOO IS
UNBOUND ATOM)). In the example
with hypotenuse on page 15.28 errorn
would yield (14 NIL).

prints message corresponding to an
errorn that yield (n m). For
example, errorm[18,(FO0 IS UNBOUND
ATOM)] would print ERROR

(FOO IS UNBOUND ATOM)
errorm[14 ;NIL] would print
NON-NUMERIC ARG
NIL
and errorm[24] would print out just
TOO MANY CHARACTERS IN ATOM

15.32

Error Functions

error[x] ‘ causes an error, type 18, with

message X.

help[helpx;heipy] Generates an error with message
helpx, that is helpable i.e.
breakl will be called, if either
helpflag or helpy is T, regardless
of the depth. help 1s a convenient
way to program a default condition,

or to terminate some portion of a
program which theoretically the
computation is never expected to
reach.

errorset[ersetx;ersetflg] performs eval([ersetx]. Note that
errorset is a lambda-type of function,
and that its arguments are evaluated
before it is entered, i.e. errorset[x]
means eval is called with the value
of x. If no error occurs in the
evaluation, the value of errorset
is a list containing one element,
the value of eval[x]. If an error
did occur, the value of errorset is
NIL. Note that NIL can be returned
only if there was an error. If the
value eval[x] is NIL, the value of

~errorset is (NIL).

The argument ersetflg controls the
printing of error messages. If
ersetflg=T, the error message 1is

15.33

printed; 1f ersetflg=NIL it 1s not.
If ersetflg = IGNORE, the errorset
is ignored. Thus you can make an
errorset "go away" while still in-
side of 1it.

Note: errorset is defined as just
(LIST (EVAL ERSETX)). All of the
errorset-ing effect is performed
in errorx, described below, after
an error occurs.

ersetqlersetx] nlambda performs errorset[ersetx;t],
i.e. (ERSETQ (FOO)) is equivalent to
(ERRORSET (QUOTE (F0O0)) T)

nlsetqlnlsetx] nlambda, performs errorset[nlsetx;NIL].
esgag[x] sets esgag to x, returns old value.

If esgag is T, an untrace will be
printed during unwinding to an error-
set. If it is NIL, no untrace will
be printed. Initially set to NIL.

quit[x] ' Induces a "strong" error which will
unwind through errorsets to the top
level. It prints the error message
X and an untrace,

reset[] : Induces a "strong" error which will
immediately return you to the top
level with no untrace. reset is
esentially a programmable control-C.

15.34

Errorx

For completeness, and a summary of the error handling facilities,
this section describes howerrorx, the basic error handling routine .
of the system is written using nthfn, nthfnback, errorm, errorn,

backtrace, reset, evalv, and retfrom.

Errorx is called for all 23 error types. It first performs an
errorn to determine the error number. If this number is not a
member of the list nherrors and helpflag is T, and the difference
between_nthfn[ERRORSET;l] the position of the last call to errorset,
(0 is used if nthfn returns NIL i.e. no calls to errorset) and
nthfn[ERRORX;1] is not greater than helpdepth, errorx calls errorm

to print the error message, and then calls breakl.

If there were no calls to errorset, or the value of ersetflg was
IGNORE for all of the calls to errorset, errorx calls errorm to
print the message, calls backtrace to print the untrace, and calls
reset to get back to the top level.

Otherwise, errorx looks at the value of ersetflg with evalv to

determine whether to print a message. If this value is T,
errorx prints the error message using errorm. If esgag is T, errorx

calls backtrace to print the untrace., Finally, errorx does a
retfrom[nthfn[errorset;1]NIL] to return NIL from the last errorset.

15.35

SECTION XVI

THE COMPILER AND ASSEMBLER

The Compiler

The compiler is available in the regular LISP system. It may be
used to compile individual functions as requested or all function
definitions in a standard format LOAD file. The resulting code

may be loaded as 1t 1is compiled, so as to be available for immediate
use, or it may be written onto a file for subsequent loading.

The compiler also provides a means of specifying sequences of
machine instructions for special purposes.

The most common way to use the compiler is to compile from a
symbolic file, producing a corregponding file which contains a
logical set of functions in compiled form which can be quickly
loaded. An alternate way of using the compiler is to compile
from functions already defined in the user's LISP system. In
this case, the user has the option of specifying whether the
code is to be saved on a file for subsequent loading, or

the functions redefined, or both. In either case, the compiler
will ask the user certain questions concerning the compilation.
The first question is

(LISTING?)

The answer to this question controls the generation of a listing
and is explained in full below. However, for most applications,
the user will want to answer this question with either ST or F,

16.1

which will also specify an answer to the rest of the gquestions -
which would otherwise be asked. ST means the user wants the com-
piller to Store the new definitions; F means the user is only
interested in compiling to -a File, and no storing of definitions. is
performed.‘ In both cases, the compiler will then ask the user

one more question:
(OUTPUT FILE?)
to which the user can answer

NIL no output file.
file-name file is opened if not already opened, and complled code
is written on the file.*¥

Example:

COMPILE((FACT FACT1 FACT2))
(LISTING?) -

ST ‘

(OUTPUT FILE?)

"~ /CFACT/ ,

(FACT COMPILING)

(FACT REDEFINED)

(FACT2 REDEFINED)
(FACT FACT1 FACT2)

This process caused the functions FACT, FACT1l, and FACT2 to be
compiled, redefined, and the compiled definitions also written on>
file /CFACT/ for subsequent loading.

* Note some compiler functions will leave the output file open,
'?therf do not. Consult the description of each particular
unction.

16.2

Compiler Functions

compile[x] This will compile all the functions
on the list x. Returns a list of
the functions compiled. Leaves

output file open.

Note: Certain compiler functlons leave the output file, if any,
| open so the user can perform several compilations to the same
file. When finished, compiled files should be closed by per-
forming endfile[file-name].

recompile[prettyfile;compiledfile;fns]

The purpose of recompile is to allow
the user to update a compiled fille
without necessitating a complete re-
compilation. recompile does this by
using the results of a previous com-
pilation, and 1s considerably faster
than compiling an entire file from
scratch.

compiledfile 1s a disc file contain-
ing functioﬁs in compiled form.
prettyfile is a disc file made by
prettydef. recompile makes a new file

that 1is equivalent to performing a

tcompl((prettyfile)). (If the out-
put file from tcompl would have the
same name as compiledfile, the user is
asked to name the output file.) Every
function defined in prettyfile that
appears on the llst fns is compiled
from its definition in prettyfile. For
all other functions in prettyfile,
recompile reads from compiledfile

16.3

until 1t finds the compiled version
and then simply copies it onto the
output file. Note that the user can
thus modify an old compiled file so
as to add new functions by pretty-
defing them and then including them

on the list fns. Similarly, he
can delete functions by not putting

them in prettyfile. Warning: this
procedure assumes that the order of the
functions in compiledfile follows that
of prettyfile.

Note: when a function is compiled from an in core definition,
i.e., via complle as opposed to recompile or tcompl,
which use definitions from a file, and it has been modified by

break, breakin or advised, the function is restored to its
original state before compilation. If the user wishes to compile
a function with its advice, he should use the function cadvice
described on page 19.10.

recompile[] Compiles from a file whose name
will be requested after the compset
questions have been answered. This
should be a disc file because it will
be open during the entire compilation.
The value of this function is NIL.
Closes output file.

tcompl{x] X is a list of file names. Performs
a rcompile for each of the files in
the 1ist. The user is not asked to
specify an output file for each file.
Instead, the output from the complla-
tion of each file will be written on
a file of the same namekprefixed with
a c. The value of tcompl is a list

16.4

compile2[name;def]

of the names of the output files.

All output files will be properly
terminated and closed. Note: due to
present restrictions of the 948 file
system, only disc files (names begin-
ning with a slash) should be used.
Example:

TCOMPL ((/SYM1/ /SYM2/ /SYM3/))
creates files

/Csym1/, /Csym2/, /CSYM3/

Compiles def, redefines name if
strf=T, (described below). This

is the function to call if you wish

to use the compiler as a subroutine,
i.e., from another function as op-
posed to direct input from teletype:

16.5

Compiler Questions

The compiler uses the free (top level) variables LAPFLG, STRF, SVFLG,
NLAMA, NLAML, LCFIL and LSTFIL which determine various modes of
operaﬁion. These variables are set by the answers to the "pompset"‘
quéstions; vwhen ény of.the top level compiling functions have

been called, the function compset is called which asks a number

of questions. Those that can be answered "yes" or "no" can be
answered with YES, Y or T for YES; and NO, N, or NIL for NO.

The questions are:

(LISTING?)

The answer to this question controls the generation of a listing.

Posslble answers are:

1 Prints output of pass 1, the LAP macro code.

2 Prints output of pass 2, the LAP2 machine code.
YES Prints output of both passes.

NO Prints no listings.

The variable LAPFLG 1s set to your answer.

The LAP and LAP2 code is usually not of interest to the user.
There are three other possible answers to this question, each of
which specifies a complete mode for compiling. They are:

S Same as last setting
F Compile to File (no definition of function)

ST Store new definitions
Implicit 1n these three are the answers to the questions

on disposition of complled code, expr's and NLAMBDA's, so these
questions will be skipped. These questions are discussed below.

16.6

(STORE AND REDEFINE?)

YES Causes each function to be redefined as it is compilled.
| The compiled code is stored and the function definltlion
changed. The variable STRF is set to T.

NO Causes function definitions to remain unchanged.
The variable STRF is set to NIL.

The answer ST for the first question implies YES for this question,
F implies NO, and S makes no change.

(SAVE EXPRS?)

If you answer this YES, SVFLG will be set to T, and the exprs

will be saved on the property list of the function name. Other-
wise they will be discarded. The answer ST for the first question

implies YES for this question, F implies NO, and S makes no change.

When compiling the call to a function, the compiler must prepare
the arguments in one of three ways:

1. Evaluated (SUBR, SUBR¥, EXPR, EXPR*, CEXPR, CEXPR¥)
2. Unevaluated, spread (FSUBR, FEXPR, CFEXPR)
3. Unevaluated, not spread (FSUBR¥, FEXPR¥, CFEXPR¥)

In attempting to determine which of these three is appropriate,
the compiler will examilne thé definition of the called function
if there is one, otherwise it will check all the functions in
the file being compiled, and failing this, will assume type 1
above. Therefore, if there are type 2 or 3 functlions called
from the functions being compiled, and they are only defined in

a separate file, the following two questions must be answered.

16.7

(NO-SPREAD NLAMBDAS-)

The answer to this question sets the variable NLAMA. If there
are any NLAMBDA's with atomic argument lists called from your

functions to be compiled, and they are not defined, answer the
question with one of the following:

S Means Same list as now on the
free variable NLAMA

ADD (fng;...;fn,) Add fn, to fn,_ to list saved on
NLAMA

REMOVE (fnl;...;fn Remove functions from NLAMA

K’
EDIT _ ‘ The editor will be called and
you can edit the list of functions

(fn n Set NLAMA to the list of functions

13-+ fny)

NIL, N, NO : Set NLAMA to NIL

Any other atom will cause a question mark to be printed and let
you answer again. Then compset will ask:

(SPREAD NLAMBDAS-)
Ahswer in the same way. The free variable used by the compiler

is NLAML this time. The answers ST, F, or S to the first question
leave the settings of NLAMA and NLAML unchanged. '

16.8

(OUTPUT FILE)

This question is always asked except under TCOMPL. You should
usually provide the name of a disc file on which you wish

to save the’code generated., If you answer T, TTY or TELETYPE,
the listing will be typed out on the teletype. If you answer N,
NOTHING or NIL, output will not be done. If the file named 1is
already open, 1t will continue to be used. The free variable
LCFIL is set to the name of the file.

When the compiler is operating, it will normally print on the
teletype the name of the function compiling, a list of its bound

variables'and a list of its free variables.

When you have finished compiling all the functions you wish to
dump on one disc file, close the file endfile.

The code dumped on the file can be loaded into any standard
system with load.

16.9

Compiler Structure

 The compiler has two principal passes. The first compiles its
input into a prefix macro assembly language called LAP. The
second pass expands (and optimizes) the LAP code and produces a
simple assembly language (one instruction per line) called LAP2,
This butput is either dumped onto a file and/or loaded into array
(binary program) space and the function redefined.

The input for the compiler can be either a standard LISP function
definition (the normal usage), or an assemble form, which allows
direct machine language coding within LISP in a convenient form.

The compiled code generated always links between functions by
using a special call-enter pair of routines. This 1s necessary
because a function may not be in core when called, and this 1s
checked in a binary function hash table. A function must be
brought into the in-core binary program buffer to run.

The linkage routines also set up the parameter and control push
lists as necessary for variable bindings and return information.

In some cases discussed below, the linkage routine can be avoided
(saving about a millisecond a call) by compiling short functions
"open." Some often used functions, such as car and cdr, are

- always called open by the compiler (a complete list is given later).

16.10

Open Functions

It is useful to know what LISP forms do not result in function
calls after they are compiled since function calls take a signifi-
cant time. Thus, it is more economical to perform

(AND (NULL (EQ (CAR X) 4)) (OR Y (NULL (ATOM Z))))

in a compiled function than to call another function. In addition
to functions such as addl, subl, memb, etc. which compile open

via macros, the compller specifically checks for certain functions
like plus, times, car, cdr, etc. and handles them in an efficient
way. Below is a list of those functions which when compiled do
not result in external function calls. Note: that mapc and map

will require a call if their functional argument requires one.

ABS LRSH
ADD1 LSH
AND MAP
ARRAYP MAPC
ASSEMBLE MEMR
ATOM MINUS
CAR MINUSP
CAAR NEQ
CAAAR NLISTP
etec. NOT
CDDDAR NULL
CDDDDR NUMBERP
COND OR
DIFFERENCE PLUS
DIVIDE : PROG
EQ _ PROG1
FIXP PROG2
FLOATP PROGN
FMINUS QUOTE
FPLUS "QUOTIENT
FQUOTIENT REMAINDER
FTIMES RETURN
GO RSH
GREATERP SELECTQ
LESSP SETQ
LISTP SUB1
LOC TIMES
LOGAND VAG
LOGOR ZEROP
LOGXOR

16.11

Affecting the Compiled Code

There are three ways to affect code compiled for you. You

can make a function fn complle open (as an open LAMBDA or NLAMBDA
expression) by putting the expression defining it (including the
LAMBDA or NLAMBDA) on the property list of fn after the flag MACRO,
and adding fn to the list which is the value of OPENFNS. Abs and
memb are functions currently compiled open. The effect is the same
as 1f you had written this expression in place of fn wherever it
appears in a function being compiled. Thils saves the time necessary
to call a function (about a millisecond) at the price of more
compiled code generated.

By putting on the property list of fn under the flag MACRO an
expression starting with an atom other than LAMBDA, one can
actually compute the LISP expression to be compiled in place of
the call to fn. The atom which starts the list is bound to cdr
of the form in which fn appears. The expresslon following the
atom is evaluated,*and the result of this evaluation is compilled.
List, mapc and map are compiled using this technique. For

example: list has on its property list the expression
(X (GLIST X)), where glist is defined as

(LAMBDA(L) (COND((NULL L)NIL) (T (LIST (QUOTE CONS) (CAR L)
(GLIST (CDR L)))))

this causes (LIST X Y Z) to be compiled as
(CONS X (CONS Y (CONS Z NIL))).
If the value of the result of'this evaluation is the atom

INSTRUCTIONS, no code will be generated. It is then assumed the
evaluation was done for effect and the necessary code has been

The evaluation is done by the function expandcomp, which takes two
arguments, the property value for MACRO, and cdr of the form in
which fn appears, and returns the expression to be compiled. This
is the function to break on if you want to see if your macro is ex-
panding correctly.

16.12

added. This is a way of giving direct instructions to the compiler
1f you understand it.

Finally, an expression following MACRO on the property list can
start with a list of atoms, which are then used as variables for a
substitution MACRO. Each atom is paired with a corresponding
element in the form containing fn. Then these elements are
substituted for their paired atoms in the expression following

the list of atoms, and this substituted expression is compiled.
The functions

addl, subl, neg, zerop, lessp, minusp, difference, ersetqg

and nlsetq

are all compiled open using these substitution macros. For
example, on the property list of addl is the expression
((X)(PLUS X 1)). Thus, (ADD1 (CAR X)) is compiled as

(PLUS (CAR X) 1). Note that a function like times2 defined as
(LAMBDA (X) (PLUS X X)) could be cdmpiled open or could be made
a substitution macro. The macro, however, would cause '
(TIMES2 (FOO X)) to compile as (PLUS (FOO X) (FOO X)) and conse-
quently (FOO X) would be evaluated twice. In this case it is
better to use an open macro - i.e., put (LAMBDA (X) (PLUS X X))
on the property list of TIMES2, so that its argument would only
be evaluated once.

16.13

Note:
Expresslons that begih with FUNCTION will always be compiled
as separate functions named by attaching a gensym to the end
of the name of the function in which they appear, e.g. FOOA0003.
This latter function will be called at run time. Thus if FOO
is defined as (LAMBDA (X) ... (FOOl X (FUNCTION ...)) ...) and
compiled, then when FOO 1s run, FOOl will be called with two
arguments, X, and FOOAOOOn, and then FOOl will call FOOA000n
each time it must use its functional argument. A considerable
savings in time can be achieved by defining FOOl as a macro of
type two:

(MACRO X (LIST (SUBST (CADADR X) (QUOTE FN) ¥)

(CAR X)))

where ¥ is the deflinition of FOOl as a function of just its first
argument and FN is the name used for 1ts functional argument.
This expression will be evaluated at compile time and produce an
expression to be compiled that contains the actual definition of
the function that would have been the second argument to FO0l1l had
FOOl not been compiled open. Thus you save the function call to
FOO1l and each of the function calls to 1its functional argument.
For example, 1f FOOl operates on a list of length ten, eleven
function calls will be saved. Of course, this savings in time
costs space, and the user must decide which 1s more important.

Free Variables and EVQ

~As discussed in section 12, free variables used by a function are
detected at compiled time so that when the compiled function is
entered, its free variables can be bound locally. This procedure
saves searching the entire push-down list each time a free varilable
is used in the compiled function. However, if the user knows that
the particular portion of the function that references the free
variable will only be reached infrequently, he may opt to search
thé push-down 1list only when the value of the free variable 1s

16.14

needed. This can be done by using the form (EVQ variable) instead
of variable. (For interpreted purposes, EVQ is defined as

(LAMBDA (X) X).) Note that if a free variable will be used more
than once in a function, it is more efficient to search for its
binding once, when the function 1s entered, than each time the

variable is used.

Changing the Binary Program Buffer

While running binary code, a program ring buffer of 4K is used to
contain active program. The size of this buffer can be affected
by the following functions:

contractl[] Contracts the in-core binary
program buffer by one LISP
(256 word) page, thereby also
adding one virtual page buffer.
Returns value of new higher
boundary. Will not contract
beyond a predetermined minimum
amount, an assembly parameter
(2K in 4-1-68 LISP).

expandl[] Expands the in-core binary pro-
gram buffer by one LISP
(256 word) page, thereby also
removing one virtual page buffer.
Returns value of new lower boun-
dary. Will not expand beyond

predetermined maximum amount.
(8K in 4-1-68 LISP)

Note: Expanding the BP buffer will usually not be very effective
in speeding up programs unless the code used is just larger than
the current buffer size. Then expanding the buffer will allow an

16.15

all in core operation, rather than continuous shuffling of code
back and forth from the drum. Contracting the buffer is advanta-
geous only when a relatively small compiled program is to be used
for a considerable period, with a data base that requires more
than 20 buffers.

Assemble

Using the LISP compiler, it is possible to define functions
partially or completely in machine language. Machine language is
specified by the pseudo-function assemble. assemble is, in fact,
a compiler directive, and has no independent definition. Thus,
it is not possible to interpretively run functions defined using

assemble.

The format of ASSEMBLE is similar to that of PROG.

(ASSEMBLE V Sl 82. . . Sn)

Each of the statements Sn are interpreted sequentially during
compilation according to the rules given below. V is a 1list of
variables to be bound during compilation, not, it must

be noted, during the running of the object code. Interpretation
of each S will usually result in the generation of one or more
instructions of object code. Some S, however, may result in no
object code being generated. Note than an ASSEMBLE statement
can appear anywhere in a LISP function, e.g., you can write

(SETQ Z (PLUS X (LOC (ASSEMBLE NIL (BRS 42))) Y))

The value of the pseudo-function assemble is determined by what
is left in the A register after the execution of the seduence

of assemble instructions.

16.16

Assemble Statements

If S is an atom, 1t 1is taken as a label identifying the next cell
to be assembled. Otherwise, it is one of the following types of

statements.

(cQ Cc1 c2 ...)
Cl, C2, ... are literal S expressions which are compiled in order
in the usual way.

(C E1 E2 ...)
Same as CQ except the En are first evaluated and then compiled.

The above two statements provide the ability to mix regular com-
pilation with assembly. The value of the A register may be ob-
tained within a compile statement by use of the function AC. It
must, however, appear as the first argument to be evaluated in
the expression.

Example:
(cqQ (PLUS FOO 1))
(C (CONS (QUOTE FN1) (CDR F00)))
(CQ (PLUS (LOC (AC)) FIE -1))

(E E1 E2 ...)

The expressions El, E2, ... are evaluated in order for effect,
i.e., no code is produced.

Example:

(E (SETQ SP (PLUS SP -3)))

16.17

(RETURN)

Assembles an instruction which causes a return from the function
being compiled (not from the ASSEMBLE expression), with the con-
tents of the A register as the value. A return from the ASSEMBLE
expression is done by “falling through" or branching to the instruc-~
‘tion following the last statement. The value is the contents of the
A register at that time.

(CALL NAME N)

Assembles a call to the function NAME giving N arguments. The N

arguments should be in stack positions
SP-N+1, SP-N+2, ..., SP-1, SP. See Section "Compller Conventions."

Note: A, B, X registers are destroyed.

(SETQ VAR)

Assembles an instruction which stores the A register in the vari-
able VAR.

Note: The contents of the X register are an index to the parameter
stack and are used by compiled code whenever a variable or temp
storage cell is referenced. If the code specified by an assemble
directive changes the X register, it should (must) be restored

with (LDX PPPTR) before executing any regular compiled code.

16.18

Lap Macros

If CAR of the statement 1s an atom which has a LAP property-list
macro definition, e.g., LDV, STV, etc., the arguments are evaluated
and the results assembled. If CAR of the statement is a defined
function, the function is called, without evaluating the arguments,
and the result is treated as code. This feature would normally

not be of use to the programmer; it is used by LAP in interpreting
first pass code generated by the compiler.

Assemble Macros

If CAR of the statement has a property list value following the
flag AMAC, it is assumed to be an assembler macro call. There

are two types of assembler macros, substitution and lambda. A
substitution macro is defined by an S expression, CAR of which is
a list of dummy symbols. The arguments of the call will be sub-
stituted for corresponding appearances of the dummy symbols in CDR
of the defining form and the resulting list of statements will be

assembled.

If CAR of the defining form is the atom LAMBDA, the entire
defining form will be applied to the arguments of the call.
Note that either of these may be indefinitely recursive.

16.19

Example:

DEFLIST ((

(UBOX ((VAR LOC)
(cQ (VAG VAR))
(STA LOC)))

(UBOXN (LAMBDA XX
(PROG (YY)

LP (COND
((NULL XX)
(RETURN (CAR YY)))
(T (SETQ YY (TCONC (LIST (QUOTE UBOX)
(CAR XX)
(CADR XX))
YY))
(SETQ XX (CDDR XX))
(GO LP)))

JAMAC)

The above defines two macros, one of each type. The first takes
two arguments and expands into instructions which place the
-unboxed value of a numeric variable in a local cell. The second
does the same thing for an indefinite number of pairs of arguments.
For each palir, it constructs a call to the first macro.

16.20

the call:

(UBOX SUM XSUM)

expands into:

((cqQ (VAG SUM))
(STA XSUM))

the call (UBOXN S1 L1 S2 L2 ...)

first expands into

((UBOX S1 L1)
(UBOX 82 L2)

)

Machine Instructions

If CAR of the statement is an atom defined as a machine instruction,

e.g., by having a property OPD with numeric value (see compiler

conventions),
(LDA Al A2)

the remainder of the statement may contain ¢, 1 or 2 expressions.

If either Al or A2 or both are not present, @ is assumed as their
value.

A2 may be used to specify indexing and 1ndirect addressing when
required. I specifies indexing (equivalent to a value of
2ﬂ¢ﬂﬁﬂﬂﬂ8), and J specifies indirect addressing (equivalent to
a value of 4ﬂ¢ﬂ¢8). Otherwise, A2 may be any expression which
evaluates to a number and will be added 1pnto the assembled word.

16.21

If Al is a number, it is added unchanged into the assembled word.

If Al is non-atomic, it is evaluated and the result added into the
assembled word which is assumed to refer to a stack position, and

handled accordingly.
If Al is atomic, it is one of the following:

= Specifies that A2 is a literal.
The instruction will be assembled
to address a cell which contains
A2, e.g., (LDA = NIL). If A2 is a
number, it will be unboxed. Works
only for S expressions, does not
work for local program symbols
(tags).

* Has the value of the current
location, e.g., (BRU ¥ 1) is a
jump to next location.

A member of V, the 1list of variables given to ASSEMBLE, or
the variable SP or CODE: is evaluated and assembled as
a stack position (as for Al

non-atomic).
One of the system defined atoms such as SYSNIL, SPCELL, etc.:

the top-level value of the atom
is added into the assembled word.

16.22

Any other atom is assumed to refer to a tag in the program.
Note: the detection of an undefined label does not occur until
pass 2 of the compiler by which time all labels have been trans-
lated into generated symbols. Thus, the error comment
"UNDEFINED LABEL" will inform the user of the problem, but will
not specify which label is missing.

If CAR of a statement 1s a number, it is treated as 1f it were
preceded by an opcode of value .

16.23

Examples:

LOC1

TMP1
TMP2
BUF

When
that
time
this

(LDA BUF I) label reference, indexing
(ADD = 47) numeric literal
(SKG = @)
(BRU * 2) relative address
(BRU LOC1)
(E (BOX SP)) evaluate - compiles an ENBOX
(CAB)
(LDA = NIL) non-numeric literal
(PCONS) fast CONS

(CQ (RETURN (TCONC (AC) TCL))) return, use of A register
in compile

(STA (PSTEP)) stack reference
(LDA SP) stack reference
(STA SPCELL 1) global symbol reference

(STA SPCELL (PLUS J 10)) indirection and address arithmetic

() temp storage

(2)
(BSS 1g9) block definition

using locations within the function for temporaries, remember
the core copy of a compiled function may be overwritten any
another compiled function is called or a return effected. In
case, all internal changes will be lost.

16.24

Use

ASSEMBLE should appear in a function defined with the usual
defining forms. To relieve the user of the burden of unnecessary
detail, as much of the function as possible should be compiled.
For example, to obtain a variable, it 1s best to write

(CQ VAR)
to load the value of a variable into the A register.
Thus the function

(LAMBDA (X) X)
could be written

(LAMBDA (X) (ASSEMBLE NIL

(cQ X))

and would compile identically.

16.25

Compller Conventions

The user of assemble should understand the following basic
things about how compiled code is run. As explained in

Section XII, all variable bindings and temporary storage of
values are kept on the parameter pushdown list. When a compiled

function is entered, the parameter pushdown list contalns, in
ascending order of addresses:

1. Pairs of words containing the names and values
of arguments passed to the function.

2. Blocks of four words containing the value, name,
and old locations of free variables used in the
function and a flag so indicating.

3. Room for temporary storage, for arguments to lower
level functions, and for PROG and LAMBDA bindings
appearing in the body of the function.

value of V1
V1
value of V2

Ve
increasing
addresses

value of VN
VN
value of freel
freel
old pos. of freel
-2
PPPTR cene

16.26

The index register (and a cell called PPPTR) contain a pointer

to the first cell of the temporary block (just after the free
variable bindings). This portion of the stack is guaranteed to be in
core, and the compiler keeps a variable MSP which contains the
maximum stack position used. SP is the variable which usually
contains the last stack position used. The function pstep adds

one to SP, updates MSP if necessary and returns the incremented

SP. Each increment by 1 of SP changes the PDL position by two
cells. If any functions are called, care must be taken that the

garbage collector and free variable searcher are not confused by
random things on the push list. Use of the LAP macros STT (for

store temporary) and STN (for store number unboxed) will avoid

such problems. STT compiles into code which stores the value in

the value word and # in the name word of the stack position, thus
erasing any old name left from earlier calls. This also indicates to
the G.C. that the value word of the pair contains a pointer to

be traced. STN stores an unboxed integer in the value word and

a -1 in the name word as a flag to the G.C. not to mark from this
value word.

There are a number of values which are stored on atoms which may
vary for different system assemblies. These are dumped in sym-

bolic form on LAP files to make these files compatible across
assemblies,.

16.27

compiled code:

The following are programmed operator instructions used by

CARCLL car of A register

CDRCLL edp """ "

CONSCLL cons of A and B registers

UNBOX unbox number in A register (VAG)
ENBOX enbox quantity in A register (LOC)
XCLL function call

RETURN function return

IPV initialize prog variables

ENTER enter function and setup args.

The following top-level bindings are the location of cells con-
taining quantities of interest or used for communication.

SYSNIL contains NIL

SYST contains T

SYSTAT contains lower boundary of atoms

SYSNUM contains lower boundary of numbers

SYSINT contains lower boundary of integers

TOPBPS contaigs upper boundary of array
space in use

FREELW contaips lower boundary of list
space in use

CTEMP communication with garbage
collector

INTZRO intzro+n for -30 < n < 30 contains n

SPCELL first of a block of 100 cells for

_ general use
PPPTR index to push list in core

16.28

The following is a list of all machine operation, and programmed

operator codes defined in the computer system.

ADC
ADD
ADM
BAC
BIO
BRM
BRR
BRS
BRU
BRX
BSS1
BXC
CAB
CAX
CAXB
CBA
cBX
CIO
CLA
CLAB
CLB
cLX
CNRA
CTRL
CXA
DIV
EAX
EOR
ETR
EXU
FAD
FDV
FNP
FSB
GCI
LCY
LDA
LDB
LDE
LDF
LDX
LRSH
LSH
MIN
MRG
MUL
NOD
NOP
NSTA

5700002
5520000
630020006
4640012
57600006
L30000
5100000
57300090
1090084
41000020
@
LebRp22
4600204
H6BOLDYK
4eBpLUD
Uhrd0210
LevZo2D
56100400
LeddisB
Le2aD3
Ledool
24603030
U6212006
572028339
LevR220
6500820
7743000
1702330
1482206
2302000
55600001
55392031
55u80290
55588001
56508321
6720000
7600030
75002216
4682140
5660C00L
71006480
6626200
6702000
61400200
1600201
6LUBLRZY
6710001
20009000
3580220

ovT
PFFV
PLAT
PMFN
PSAI
PSTR
RCY
ROV
RSH
SKA
SKB
SKD
SKE
SKG
SKM
SKN
SKR
STA
STB
STE
STF
STX
SUB
sucC
SXMA
TCI
TCO
VAL
WCH
WwCI
wIo
XAB
XMA
XXB

16.29

2208101
13402000
11202000
13500200
11300220
14129200

6620000

2200001

660000

7200809

5200000

7420000
5PBBUBY

7300099

7000300

5300000

6600000

3502000

3600000

UEBB122

567080000
3700000
5400200
5600000
6200000

57400000

57500006

v

56400000

55700830

56208030
U6LB1Y
6202000
4660066

Appendix

This section contains listings of those compller and lap macros
which are normally included with the compiler system. There
are no assemble macros pre-defined.

Compiler Macros

(DEFLIST(QUOTE(
(LIST (X (GLIST X)))
(ADD1 ((X)
(PLUS X 1)))
(SUB1 ((X)
(PLUS X ~=1)))
(NEQ ((X Y)
(NOT (EQ X ¥))))
(NLISTP ((X)
(NOT (LISTP X))))
(ZEROP ((X)
(EQ X 3)))
(MINUSP ((X)
(GREATERP @ X)))
(DIFFERENCE ((X Y)
(PLUS X (MINUS Y))))
(ABS (LAMBDA (X)
(COND
((GREATERP 7 X)
(MINUS X))
(T X))))
(ERSETQ ((X)
(ERRORSET (QUOTE X)
T)))
(EVQ (x (COND
((ATOM (CAR X))
(STORECOMP (LIST (QUOTE LFV)
(CAR X))))
(T (CEXPR (CAR X))))
(QUOTE INSTRUCTIONS)))
(MAP (X (LIST (SUBPAIR (QUOTE (MAPF MAPF2))
(LIST (CFNP (CADR X))
(COND
((CDDR X)
(CFNP (CADDR X)))
(T (QUOTE CDR))))
(QUOTE (LAMBDA (MACROX)
(PROG NIL
LP (COND
((NULL MACROX)
(RETURN)))
(MAPF MACROX)
(SETQ MACROX (MAPF2 MACROX))
(GO LP)
Y1)
(CAR X))))

16.30

(MAPC (X (LIST (SUBPAIR (QUOTE (MAPCF MAPCF2))
(LIST (CFNP (CADR X))
(COND
((CDDR X)

(CENP (CADDR X)))
(T (QUOTE CDR))))
(QUOTE (LAMBDA (MACROX)
(PROG NIL
LP (COND
((NULL MACROX)
(RETURN)))
(MAPCF (CAR MACROX))
(SETQ MACROX (MAPCF2 MACROX))

(60 LP)
))))
(CAR X))))
(MEMB (LAMBDA (MACROX MACROY)
(PROG NIL

LP (RETURN (COND
((NULL MACROY)
NIL)
((EQ MACROX (CAR MACROY))
(IFPRED T MACROY))
(T (SETQ MACROY (CDR MACROY))
(GO LP))))
)))
(NLSETQ ((X)
(ERRORSET (QUOTE X)
NIL)))
(VAG (X (CEXPR (CAR X))
(COND
((EQ (CAADR CODE)
(QUOTE ENBOX))
(RPLACA (CDR CODE)))
(T (STORECOMP (QUOTE (UNBOX)))))
(QUOTE INSTRUCTIONS)))
(LOC (X (CEXPR (CAR X))
(COND
((EQ (CARDR CODE)
(QUOTE UNBOX))
(RPLACA (CDR CODE)))
(T (BOX SP)))
(QUOTE INSTRUCTIONS)))

16.31

(FRPLAC (X (CEXPR (CAR X))

(sTS)

(CEXPR (CADR X))

(STORECOMP (LIST (QUOTE MSAI)

SP))

(SBTQ SP (SUB1 SP))

(QUOTE INSTRUCTIONS)))
(ASSEMBLE (ASEMX (ASEM1 ASEMX))

)
(AC (X (QUOTE INSTRUCTIONS)))
(IFPRED (AR (COND

(EBRF (CAR AR))
(T (CADR AA)))))
(ARG (X (CEXPR (LIST (QUOTE VAG)
(CAR X)))
(STORECOMP (LIST (QUOTE ARGN)
(COND
(ARGARG)
(T (ERROR (QUOTE (FUNCTION 'ARG' NOT LEGAL)))))))
(QUOTE INSTRUCTIONS)))
(SETARG (X (CEXPR (LIST (QUOTE VAG)
(CAR X)))
(STORECOMP (LIST (QUOTE STN)
(PSTEP)))
(CEXPR (CADR X))
(STS)
(LACOMP (SUB1 SP))
(STORECOMP (LIST (QUOTE SARGN)
(COND
(ARGARG)
(T (ERROR (QUOTE (FUNCTION 'SETARG' NOT LEGAL)))))
SP))
(SETQ SP (PLUS SP .2))
(QUOTE INSTRUCTIONS)))
(LSH (X (SHIFTCOMP (CAR X)
(CADR X)
‘ (QUOTE LSH))))
(RSH (X (SHIFTCOMP (CAR X)
(CADR X)
(QUOTE RSH))))
(LRSH (X (SHIFTCOMP (CAR X)
(CADR X)
(QUOTE LRSH))))
)) (QUOTE MACRO))

16.32

Lap Macros

(CSP1 ((LV LF LT)
(LTTREF LDA LV)
(LITREF LDX LF)
(LITREF LDB LT)
(PRGREF PENT (PLUS PLITORG 1))))

(SETIX ((N P)

(LDV N)

(UNBOX)

(LSH 1)

(CNA 2)

(ARGSUB N)

(ADD PPPTR)

(STN P)))
(VST1 ((PP LV V)

(LITREF LDA PP)
(LITREF LDB LV)
(PRGREF PIPV (PLUS PLITORG V))))
(BE ((B N)
(STKREF SKE N)
(RELREF BRU 2)
(JUMP B)))
(BNE ((B N)
(STKREF SKE N)
(JUMP B)))
(LDV (LAMBDA (8)
(VREF (QUOTE LDA)
5)))
(STV (LAMBDA (8S)
(VREF (QUQTE STA)
s)))
(LFV (LAMBDA (S)
(LITREF (QUOTE PATV)
5)))
(LDT (LAMBDA (S)
(STKREF (QUOTE LDA)
s)))
(STT (LAMBDA (8)
(STKREF (QUOTE STA)
S)))
(NSTT (LAMBDA (S)
(STKREF (QUOTE NSTa)
s$)))

16.33

(MSAI (LAMBDA (S)
(STKREF (QUOTE PSAI)
S$)))
(LQT (LAMBDA (X)
(LITREF (QUOTE LDA)
X)))
(LDN (LAMBDA (§)
(NREF (QUOTE LDA)
s)))
(STN (LAMBDA (N)
(NREF (QUOTE STA)
N)))
(CLL ((L K U)
(LITREF LDA U)
(LITREF LDB K)
(LITREF CLLX L)))
(CLLA ((L K U)
(LITREF LDA U)
(LITREF LDB K)
(STKREF CLLXA 1)))
(ARGN ((R)
(CLB 2)
(LSH 1)
(STKREF ADD R)
(CAXB 1)
(LDA @ I)
(CrX @)))
(SARGN ((A B)
(CLB Q)
(LSH 1)
(STKREF ADD RA)
(CAB 2)
(LDT B)
(XXB @)
(STA @ I)
(CBX #)))
(ARGSUB (LAMBDA (A)
(LITREF (QUOTE ADD)
(PLUS =2 (VREF1 A)))))
(RET (NIL (PRETN 2)))
(BN ((B)
(SKE SYSNIL)
(RELREF BRU 2)
(JUMP B)))
(BNN ((B)
(SKE SYSNIL)
(JUMP B)))

16.34

(BRP ((B)
(SKG TOPBPS)
(LITREF SKG 16383)
(RELREF BRU 2)
(JUMP B)))
(BNAP ((B)
(SKG TOPBPS)
(LITREF SKG 16383)
(JUMP B)))
(BA ((B)
(SKG SYSTAT)
(RELREF BRU 2)
(JUMP B)))
(BNA ((B)
(SKG SYSTAT)
(JUMP B)))
(BLST ((B)
(SKG SYSTAT)
(SKG TOPBPS)
(RELREF BRU 2)
(JUMP B)))
(BNLST ((B)
(SKG SYSTAT)
(SKG TOPBPS)
(JUMP B)))

(UNBOX (NIL (PFVE @)))
(ENBOX ((N)

(PMKN N)))
(FENBOX ((N)

(PMFN N)))
(PUNBOX (NIL (PFFV 0)))
(NEG (NIL (CNA @2)))
(DVD ((N X)

(RSH 23)

(DTIV N X)))
(DIVIDE ((S)

(STTN s)

(SWAP @)

(ENBOX S)

(STKREF SXMA S)

(ENBOX S)

(STKREF XMA S)

(CONSCLL S)))
(BI ((B)

(SKG SYSNUM)

(RELREF BRU 2)

(JUMP B)))

16.35

(BNI ((B)

(SKG SYSNUM)

(JUMP B)))
(BIF ((B)

(SKG SYSINT)

(SKG SYSNUM)

(RELREF BRU 2)

(JUMP B)))
(BUF ((B)

(SKG SYSINT)

(SKG SYSNUM)

(JUMP B)))
(BII ((B)

(SKG SYSINT)

(RELREF BRU 2)

(JUMP B)))
(BUI ((B)

(SKG SYSINT)

(JUMP B)))
(BIS ((B L)

(LYTREF1 SKE L)

(RELREF BRU 2)

(JUMP B)))
(BNS ((B L)

(LITREF1 SKE L)

(JUMP B)))
(BR1 ((B)

(PRGREF BRU (GBS B))))
(BR2 ((B)

(RELREF BRU 2)

(PRGREF BRU (GBS B))))
(CONSCLL ((N)

(CaB @)

(STKREF LDA N)

(PCONS (TIMES N 2))))
(CLLX ((N)

(PCLL N)))
(CLLXA ((N X)

(PCLL ¥ X)))
(SWAP (NIL (XAB 2)))
(JUMP ((B)

(PRGREF BRU (GBS B))))
(MPY ((N X) ,

(MUL N X)

(LSH 23)))
(BSS (LAMBDA (N)

(SETQ LOC (PLUS LOC N -1))

(LTST (LIST (QUOTE BSS1)

N))))

16.36

"SECTION XVII
USING FORKS AND THE HYBRID PROCESSOR IN LISP

The FORK logic provided by the 94¢ time-sharing system is avail-
able for use by LISP programmers. Use of this very powerful fea-
ture has made possible the efficient running of the hybrid pro-

cessor for display output and speech input. Other operations are

also available, such as running independent subsystems under con-
trol of LISP.

A fairly complete graSp of the machineélanguage environment pro-

vided by the‘time-sharing system and the. 94¢ hardware is necessary
for a complete understanding of the basic operation of forks

under LISP. However, a large class of jobs may be performed
using the existing system functions which require only a minimal
knowledge of fork operations.

We will first discuss the storage organization of the LISP
system and the conventions which have been established for the
use of forks. The basic nature of forks will be discussed in
sufficient detail to give anyone with a moderate knowledge of
947 machine language ‘a good understanding of their mechanics.
Those not interested in programming at the machine language
level should, nonetheless, be able to get a general picture

of the nature of forks sufficient to understand the functions
described below.

17.1

Forks

In a time-sharing system such as that running on the 948, there
may be several users running apparently simultaneously, each
with his own "machine" (which may appear very much different
from the actual machine), memory, files, etc. Obviously, the
monitor program must have the ability to keep track of several
programs at once. The 940 system makes it possible for the
individual user to make use of this ability if he chooses. That
is, he may cause the monitor to handle not one, but several
"programs" for him at one time. These are called forks in the

9Ug system.

It is important to understand the concept of a fork. A fork

1s a complete process, capable of executing instructions and, in
general, of performing all the operations of machine language
programs. A fork is specified by several items:

1. Central registers (PC, A, B, X)
2. Memory (two relabeling registers)
3. Status (running, waiting for I1I/0, etc.)

The first two of these are needed to define a fork. That is, if
the contents of the A, B and X registers are specified, and
memory 1s provided (presumably containihg instructions), a
computation may be performed by simply telling the "computer"
where to start (the function of the PC). The status is then
determined by the nature of the instructions and how far the

"computer" has gone.

17.2

On the 94g, a fork may start one or more forks subordinate to
itself. In fact, all programs are subordinate forks (at some
level) of the EXECUTIVE program. The EXECUTIVE itself 1is a fork
distinguished only by the fact that it has no higher level con-
trolling fork. When one fork starts another, they are assumed
to run concurrently, although in fact the machine can only be
executing one instruction at any instant.

A fork may have memory separate from or in common with its
controlling fork, or both., It is this fact which gives forks
their main usefulness to LISP. The 947 gives the user up to

32K of private (accessable to no other user) m=mory divided into
16 pages. Because the address part of a 94¢ instruction is

14 bits, a program can directly address only 16K of this memory.
A program may, however, charige its map or create a fork by which
the same addresses can be made to refer to different sections of
the 32K private memory. (See BRS manual "Memory Allocation and
Sharing" for a detailed discussion of this).

1703

LISP Memory Allocation

There are several different levels of storage used by LISP, and
it is important to understand the distinctions. First, there is
the large LISP virtual memory, so called because there is, in
fact, no contiguous block of storage corresponding to it. The
allocation of this memory is describedlin Section III.

Next, there is the core memory in which reside the basic instruc-
tions comprising the LISP interpreter, I/0 routines, SUBRS, gar-
bage collector, etc. This is the 16K of memory directly address-
able by instructions. The contiguity of this memory block is also
an illusion, but a very convincing one since it is implemented by
the paging box. Core memory is also used for running compiled
code, holding page buffers and temporary storage as shown in the
figure.

377778
o "‘; basic code
3!3(3979!8 '
2 compiled code buffer
|
20009 B
8
virtual memory page
buffer
o . - - - . /
g temp. storage
g v

LISP Core Memory Allocation

17.4

Because the LISP virtual memory is an illusion created by

the LISP program, it 1s not possible to use it directly for I/0.
That is, the hybrid processor, for example, cannot be instructed
to read or write a large block of words using a LISP array
because the array will in general be on the drum. Even if in
core, it may be spread out over several non-contiguous page
buffers., Therefore, it 1s necessary to allocate a contiguous
block of core sufficient to hold the information to be transferred.
But as can be seen from the diagram above, core is already
completely allocated. The alternative is to create a fork with
at leaSt some independent memory and use it to do the I/0. The
programs now written which use the fork logic allocate fork
memory as shown in the figure.

17.5

The shaded area, with addresses from 2ﬂ¢ﬁﬂ8 to 377778, is
common to both the main and the fork memory. The area from
g to 177778 in the fork is the independent memory used for I/0.

Because the page buffers are necessary to effect references to the
LISP virtual memory, and the page buffers and the I/0 memory do
not exist in the same fork, a two-step process is necessary to
move data between the virtual memory and I/0 memory. This
consists in first copying words from the source memory to a
buffer area common to both forks then copying the buffer area

to the destination memory. A program running in main memory is
used to move data between the virtual memory and the buffer, and
a program running in fork memory 1s used to move data between the
I/0 memory and the buffer. The LISP functions which perform these
data transfers are compiled code and reside in the compiled code
area when running. This area is common to both forks, and so a
single function can contain instructions for execution in the

fork as well as those for execution in the main program. The
function must also contain space allocated for the buffer. The
functions to transfer data to and from forks are called storefork,
stfk, readfork, and rdfk, and are described in detail at the

end of this section. The implementation details below should
allow a user to define his own specialized functions for fork

data transfer and running.

17.6

Implementation Details

The information necessary to start a fork has been described
generally above. The specific format prescribed by the time-
sharing system for this information is shown below. This
information 1s contained in a block of seven words called the
fork table (sometimes called the panic table).

Program Counter
A Register
B Register

X Register

First Relabeligngegister
‘MSéébﬁawﬁelabéling Regigfer
Status

O Ul =w W

To start a fork, the controlling program must place the address
of the fork table in the A register and execute a BRS 9
instruction. The high order five bits of the A register also
contain some control information which 1is used by BRS 9. More
details are available in the BRS manual.

The BRS 9 causes the fork to commence operation as specified by
the fork table, and both the main program and the fork are then
running. When the fork is dismissed for any reason, the fork
table is updated to show the latest contents of the central
registers and relabeling. The status word indicates what caused-
the dismissal.

17.7

SPCELL+@ PC

1 A
2 B
3 X FIRST FORK TABLE
n RL1
5 RL2
6 STAT
.
8
9
SPCELL+10 CONSTANT - ADDRESS OF FIRST FORK TABLE

11 CONSTANT - A REGISTER FOR BRS 9 FOR FIRST FORK
12 FDDT RL{E RELABELING FOR FDDT
13 FDDT RL2
14 FDDT ADR START ADDRESS FOR FDDT
15
16
17
18
19

 SPCELL+20 PC
21 A
22 B SECOND FORK TABLE
23 X
2 RL1
25 RL2
26 STAT

17.8

There is a block of words in the temporary storage area of

LISP available to the user for any purpose. The filrst location
of this block is bound to the atom SPCELL. A portion of this
block has been allocated for fork data as shown. '

Note that there are two fork tables. This allows one fork to be
transferring data to or from the fork memory while the other
runs the hybrid processor. The relabeling is the same for both.

In some instances it is useful to have a fork containing DDT
which can examine the running LISP. For example, this allows
examination of compiled code in the binary program buffer. The
following function provides that facility:

ddat[] causes LISP to start a DDT which
is looking at the running LISP.
To continue LISP under this DDT,
type

399882 ;G.

To return to LISP from DDT, hit
2 rubouts or %F. Calling ddt[]
while in a LISP running under
DDT will cause a return to the
nigher DDT, not start a lower one.

l7~9

Another function called fddt (for fork ddt) is available in the
standard system to facilitate debugging of fork programs.

fadt[] starts a DDT (the regular sub-
system program) under LISP and
sets 1t to look at the fork
memory as determined by the
contents of RL1 and RL2 in the
first fork table. Two rubouts
cause DDT to return to LISP.
This DDT is distinet from the
one described earlier, called by
ddt[], which looks at the running
LISP memory from the position of
the LISP executive.

Programmers wrlting fork programs should be aware of the complete
fork structure of LISP as shown below in order to avoid
complications. The user forks mentioned can be any that the

user starts up. In addition, the user can call under LISP other

9U4g subsystems using the function subsvs.

subsys[name;filel;file2] starts up a 94g subsystem as a
fork under LISP, Only those sub-
systems listed on the variable
systems can be started. If filel
is given, the subsystem accepts
input from filel, otherwise tele-
type. If file2 i1s given, output
goes to file2, otherwise teletype.

utility[file] subsys[UTILITY;file]

17.10

The LISP executive fork perforas very few functions and is

run only when the interpreter dismisses itself. The TTY service
fork, however, runs concurrently with the interpreter and is

always waiting for TTY input. If a user fork is to do TTY input,
the TTY Service fork must be terminated. A BRS 108 is satisfactory
for this purpose. The TTY service fork is restarted by the
interpreter fork whenever it is needed but not running.

SYSTEM 1.85 EXECUTIVE

—— —— — — ——— — — —— — w—— —— — — —— l— o—— ——— — ——

LISP EXECUTIVE
(including DDT whien called)-

LISP INTERPRETER

+ ¥
TTY USER (including FDDT,
SERVICE I FORKS ngbrid processor
nd subsystem

~ forks)
LISP FORK STRUCTURE

17.11

Hybrid Processor and Fork Functions

As mentioned earlier, the fork capability in LISP provides a
practical way of driving the hybrid processor. This section
describes a number of functions that have been written to provide,
in various formats, input to and output from the fork's memory, wihich
is the link between LISP and the hybrid processor. All of these
functions are necessarily low-level, but for display applications,
a very general set of higher level functions have been written,
and are described in the section of the manual entitled Display
Capabilities in LISP. This latter section can be referred to

for a more extended writeup on the use of the hybrid processor
and fork functions in a particular context.

To run a process with the hybrid processor, one must first have
a process number and appropriate devices assigned. The following

functions are used for this purpose:

assignp[pno] assigns process number pno for
hybrid processor, returns pno or
NIL if unable to assign.

assignd[dev] assigns device dev, returns device
number actually assigned or NIL

if none available.

unassignl] releases all devices and process

numbers.

17.12

Before any fork operation can be performed, it is necessary to
define the fork memory. This initialization 1s performed by

forkinit[] initializes the fork

which sets the contents of the relabeling registers of the first
fork téble to specify the memory conflguration shown earlier in
this document. It also sets up the two constants'in

SPCELL+10 and SPCELL+11l. This initialization should be performed
only once, but is not preserved through a SYSOUT-SYSIN,

i.e., if you save your system and resume via SYSIN, you must
perform another forkinit.

The functions storefork and readfork described below permit
transferring large blocks of data to and from any desired location
in the fork's memory. However, the following conventions have
been found to be extremely useful in communicating with the fork
and the hybrid processor:

1. The fork's memory is divided into a number of distinct, non-
overlapping areas or tables.

2. Each area is identified and referred to by its first location,
called its handle.

3. The contents of handle, i.e., the first cell in a table, is
a pointer to the first unused word in the table. When the

table is completed and given to the hybrid processor to run,
this will be the first cell after the end of the table.

17.13

4, Commands for the hybrid processor begin at location

handle+l, and are contiguous. Data for the hybrid processor

follows the commands, and contlinues to the cell whose address

is contained in handle.

To repeat, it is not necessary to adhere to these conventions to

use the fork capabilities, although the functions described here

are designed to make it easier to use the fork capabilities with

these conventions.

maketable[place;size]

creates a table and initializes
its pointer. 1If place is NIL, the
table begins at location 200 (the
fork memory goes from location O
to location 8192). If place is T,
the table begins immediately
following the previous table
(assuming it was also created by
maketable). Otherwise, Elace must
be a number and specifies the
actual starting location of the
table. Size is an optlonal
argument which, if given, guarantees
that the next table, if created

by a call to maketable with
place=T, will not overwrite this
one. Essentially, it is a device
for reserving a block of memory
for a table without having to fill
up the table. It enables the user
to initially divide up the fork
memory into several tables before

transferring any data.

17.14

The value of maketable is the
handle of the table that was
created.

storefork[ap,incr,handl,rel,np] transfers the first np words
from the array: specified by ap,
an array pointer, into the fork's
memory, beginning at locations
handl+rel, and at every incr

thereafter. If incr is not given,
1 is used; if np is not given,
arraysizel[ap] is used; if handl
is not given, free variable
handle is used; if rel is not
given, the contents of handl is
treated as a pointer to the first
unused word in the table and this
latter location is the starting
point for the transfer. In this
latter case, the pointer is
updated after the transfer is
complete. Value is handl.

Note: The error message ((IACHINE SIZE TOO SMALL) means the user
must return to the time sharing executive and change his machine
size. The error message

(ATTEMPT TO STORE/READ BEYOND END OF FORK)
means the user has tried to reference a fork location > 8192.

17.15

Thus, to create a table and fill it with the arrays Al, A2, and
A3, one must perform the following steps:

MAKETABLE()

200

E (STOREFORK Al)
200

E (STOREFORK A2)
200

E (STOREFORK A3)
200

readfork[ap,incr,handl,rel,np} transfers np points from the

fork's memory beginning at loca-
tion handl+rel, and at every

incr thereafter, into ap, an

array pointer. rel must be glven;

if incr, handl, or np are suppressed,

they are treated as for storefork.
Value is handl.

Note: the arrays for storefork and readfork must be arrays that

contain unboxed numbers, since no boxing or unboxing takes place

in either of these two functions.

stfk[address,x]

rdfk[address]

stores a single word into the fork
at address. X should be a number
which is then unboxed by stfk.
Value is Xx.

reads a single word from the fork
at address, and boxed this quantity
to return a number.

17.16

Note: maketable, storefork, readfork, stfk, and rdfk all contain

error checks for out_of bounds references and machine size too

small error conditions.

In addition, storefork and readfork

check to make sure that np 1s not too large for the array ap.

hpstart[st,nt,lc,1d]

starts up the hybrid processor.
st 1s the starting location for
hybrid processor information with
commands coming before data. nt
is the iteration count for the
data table, i.e., the number of
times the data table is to be

run (0=infinity). 1lc is the
length of the command table for
the hybrid processor and 1ld the
length of the data table. If 1d
is NIL, st is assumed to be a
handle, and the first word a
pointer as described earlier. In
this case, hpstart computes 1d.
Thus, the user does not have to
keep track of how.long his data
table is. if 1d#NIL, st points
directly to the first command.

hpstart uses pno as a free variable
for the process number to be used.
If a process 1s currently running,
hpstart creates a new data block
(BRS 132) and terminates the
current data block (BRS 142) (see
TSSS Manual). This means that

running displays can be revplaced

17.17

hpstopl[]

hptest[]

hpwait[]

by new displays without any
flicker. If no process is running,
hpstart creates both a command
block and a data block and starts

a process. If it is necessary to
start an operation wlth a new

set of commands or iteration count,
be sure to first do an hpstop.

performs a BRS 138 which stops the
hybrid processor. Uses pno as a
free variable.

performs a BRS 137 which tests

the status of the hybrid processor.
Returns T if running, NIL if not.
Uses pno as a free variable.
Warning: hptest immedlately
following an hpstart may not return
T: there is a slight time lag
before the process actually gets

going.

performs a BRS 136 which dismisses
user until the hybrid processor
is finished.

17.18

hprun[ap,lc,np,iter,pno] drives the hybrid processor
directly from LISP, i.e., this is
the way displays were done before thé
fork capability was implemented.
ap is an array which must lie on
a single page, and therefore must
be less than 253 in size. (note:
all arrays of size less than 253
do not necessarily reside on a
single page - see hptable below.)
lc is the number of commands,
np the number of data words, with
commands preceding data in the
array. iter is the iteration
count for the data table and
pno the process number.
hprun waits for the process to
terminate before returning.

hprun is primarily useful for
short operations, such as reading
a single A-D converter,

because it does not require
separate maketable, storefork,

hpstart, and readfork operations -
the value(s) are returned directly
into the array.

hptable[m,n] creates an array analogous to
(ARRAY M N) in such a way as to
guarantee that the result is on
one page. M must be less than
253. Returns array as value.

17.19

brs[n,a,b,x] loads the A-register with a, the
B-register with b, and the X-
register with x and does a BRS n.
Value is the A-register. For
example (BRS 81 N) will dismiss a
program for N milliseconds.,

17.20

SECTION XVIII
DISPLAY CAPABILITIES IN LISP

Introduction

At the present time the only display facllity available on the
BBN Research Computer is hardware which provides only a point by
point diSplay (e.g., no character or vector generators in hardware).
Control of this display processor is achileved through the hybrid
processor attached to the SDS 94g. The display itself has no
storage capability, therefore the image must be constantly
refreshed by the hybrid processor from data stored in the com-
puter's core memory. To enable LISP programs to make efficient
use of this display, functions have been written which provide

a fairly sophisticated and general display language along with
low-level routines for communicating with the CRT via the hybrid
processor. We expect that later hardware additions to the display
will make running the display more efficient, but may require a
few changes 1n the user programs which describe and construct
displays.

Putting a display on the face of the CRT from within LISP is done
in three distinct steps. The first of these involves constructing
a display structure which specifies the points to be displayed.

The second step is then to transfer the data corresponding to
these points from LISP's memory into the fork's memory, (see
Section XVII), from which it will be displayed. The third stepfis
to initiate a program within the fork which starts up the hybrid
processor; the hybrid processor will then maintain the display

18.1

on the face of the screén independent of what 1s taking place
in the user's LISP program.

The major effort in providing a display capability in LISP has been
concentrated on the first step of the above operation, the gene-
ration of a display structure. Most users need not even be aware
of the details of steps two and three, beyond the fact that they
must be done, and that some straightforward functions are provided
to do them. For the interested, Section XVII discusses in greater.
detall the use of forks and the hybrid processor. The latter

part of this section discusses the details of implementation of
steps 2 and 3 above, and describes the operation of the lower

level functions.

Initialization

In order for the user to actually display figures on the CRT, he
must acquire for his use two D-A converters and a process number.
The function start is available for this purpose. It assigns
process number 1, and the two D-A converters in the list converterlst
initially set to (0 1). Note: in most cases, the converters will |

be patched to the appropriate inputs, and the user can simply use

start[].- However, in the event that the last person used the D-A
converters for an application other than display, it may be _
necessary for the user to répatch the D~A converters of to find
someone who can.

Start calls startl which performs all initialization other than
the assigning of process number and devices. If the user wishes
to use the functions in the display package, but does not intend
to actually display, he can perform startl[], and then proceed
exactly as if he had the scope assigned to him. Funetion calls
that would normally start a display will simply print DISPLAYING

18.2

on the teletype and continue. In this way several users can debug
programs that use the display package, even though only one can
be displaying at a time.

The Display Language

The display structure of step 1 1s defined via the display language.
This language provides an aesthetic way of describing displays. It
revolves around the concept of a figure, which in our terminology
is a display gestalt. A figure can be composed of other figures,
and, in turn, be a part of a larger figure, much the same as a

list can be composed of sublists, and be a part of a larger list.
The interpretation of a figure, and consequently the display it
produces, depends on 1its type. Three of the more common figure-
types are:

1. Translate: if F is a figure, then (F X Y) is a figure
consisting of F translated X units in the horizontal
direction and Y units in the vertical direction.

2. Scale: if F is a figure, (F S) is a figure consisting
of F scaled by a factor of S, i.e., (F 1)=F. S can be a
positive or negative, fixed or floating point number.

3. Combine: 1if Fl .o
figure consisting of the union of (the points of) the
individual figures Fl through Fn‘

Fn are figures then (F1 ces Fn) is a

A primitive figure is an array consisting of X and Y
coordinates in alternation. For example, the array containing
the values (0 0 5 0 10 0 ... 45 0) specifies a horizontal line,
10 points long, starting at (0 0) and ending at (45 0). If H is

18.3

such a line, and V a vertical line from (0 0) to (0 45), then
the figure (H V (H 0 50) (V 50 0)) represents a square. Using
SQ for square, we can define ROW as (SQ (SQ 50 0) (SQ 100 0)
(SQ 150 0) ... (SQ 350 0)), and then CHECKERBOARD as

(ROW (ROW 0 50) (ROW O 100) ... (ROW 0 350)).

The principal advantage of such a language is that it lends itself
nicely to the recursive nature of LISP and list processing. Large,
complicated displays can be conveniently broken down into small,
subroutine-size chunks. A secondary advantage is the reduction

in storage required for displays. For example the primitive
figures H and D each require 20 array cells, SQ requires

10 LISP words, and ROW, and CHECKERBOARD an additional 29 LISP
words. Therefore, the entire checkerboard requires 68 LISP words
and 40 binary program words, and specifies a diSpiay of

2560 points.

In addition to the three figure-types.described above, the follow-
ing figure-types are implemented in the display language:(*)

4, Scale: If F is a figure, (SCALE: F X Y) is a figure con-
sisting of F scaled by X in the horizontal direction and
Y in the vertical direction. (SCALE: F S S) is identical
to (F S), a figure of type 2. However, figure type 4
permits individual X and Y scaling. Note: reflection can
be achieved by using a positive scale factor for one
coordinate and a negative scale for the other.

5. Plot: If A is a primitive figure, i.e., an array, then
(PLOT: A) is a figure consisting of the values of A
plotted as Y coordinates starting at X=0 with X advanced
by 1 for each value of Y, i.e., the normal horizontal

(¥) An atom can be used to represent a complex figure; it will be
evaluated and its value treated as one of the 11 figure types
discussed here. '

18.4

graph. Figure type 5 can be combined with type 1 and
type 4 to produce a graph at any position, any scale.
Note: values of A are treated as unboxed numbers.

Other variations: (PLOT: A T) is a figure consisting of the
values of A plotted as X coordinates starting at ¥Y=0

with Y advanced by 1 for each value of X, 1.e., a
vertical graph.

6. Erase: (ERASE: M N) is a pseudo-figure, i.e., it does
not itself transfer any points, but modifies previously
transferred points. Its effect is to erase N words ¥

starting from the Mth word in the top level superfigure,

M and N > 0. For example, since ROW consists of 320 points

or 640 words, the figure (CHECKERBOARD (ERASE: 1280 640))

would consist of a checkerboard with the third row erased.

7. Restore: (RESTORE: M N) is a pseudo-figure which
reverses the action of an ERASE pseudo-figure, i.e.,
(F (ERASE: M N) (RESTORE: M N)) is equivalent to F.

8. Move: If F is a figure, (MOVE: F A;; Ay, A,y A,,) 1s a

figure which 2§ the linear transformation of F specified

by the matrix All A1z » Alj positive or negative, fixed
A21 A22

or floating point number.

9. Rotate: If F is a figure, (MOVE: F 8) is a figure consist-
ing of F rotated 8 degrees. (MOVE: F 8) is identical to

(MOVE: F COSe SINe -SINe C0S5Se).

1 point = 2 words.

18.5

10.

11.

If A is an array, (A . N) is a primitive figure consisting
of the first N points of A. This type of figure can be
used anywhere a primitive figure can appear. Note that a
figure of the form (F . N) where F is not a primitive
figure, i.e., ((A 100 0) . N), is not permitted.

Label: If F is a figure, then (LABEL: F label) 1is a
figure that generates the same display as F. The purpose

of this figure~type is to facilitate modification of

selected subfigures in a large and complicated superfigure.
After the Label: figure type has been interpreted and
transferred into the fork its absolute X and Y coordi-
nates, absolute X and Y scaling, relative position in the
display table, and number of words it occupies in the
display table are attached (by rplacd), in that order,
following the 1label.

New figure types may be defined by adding a definition of the form
(name forml ... formn) to the list displaymacros. Before assuming
that a figure is of type 1, 2, or 3, this 1list will be searched
for a definition using assoc and car of the figure. If such a
definition is found, forml through formn are evaluated. For

example, one could define a figure type SHRINK: by adding to
displaymacros

(SHRINK: (DISPLIST1 (CADR FIG) X Y

(FQUOTIENT SCALEX (CADDR FIG))
(FQUOTIENT SCALEY (CADDR FIG)))) #

¥ displist is discussed on page 18.15.

18.6

Generating Functions

A generating function 1s one that constructs a display figure.
Several are included in the display package.

dline(x;y;dx;dy;n] value 1s a primitive figure
representing a line n points long

starting at (x,y) with increments
(dx,dy).

Thus from our checkerboard example, H=(DLINE 0 0 5 0 10),
and V=(DLINE 0 0 0 5 10).

dvector[x0,y0,x1,yl,n] value is a primitive figure repre-
senting a line N+41 points long
starting at (x0,y0) and ending
at (x1l,yl). Note: dline is more
efficient than dvector.

dcircle[radius, dtheta] generates a circle of radius radius at
[0,0]. dtheta represents the arc
between points on the circle, i.e.
360/dtheta = number of points.
Value is primitive figure.

Note: both dline, dvector and dcircle take two extra optional
arguments a, and m. If given, the array a 1s used for the primi-
tive figure, starting with postion m of the the array. In this

way more than one primitive figure can be generated into the same
array.

18.7

ds[s] generates (and displays) a figure
for the list structure S in
conventional box-notation. 1Its
value is a generated symbol
whose value 1s the figure itself.

For example, DS((A B C)) will produce the display

Al —=[8] |—-s[c]—

ds is equipped to handle circularities in poth car and cdr directior.
Warning: since it marks each substructure to detect cifzaiarities,
and subsequently restores the original structure, interrupting

ds by rubout will cause the original 1list structure to be
permanently lost.

dtree[tree] generates (and displays) a figure
for the tree structure representa-
tion of tree, i.e., car of each
sublist labels the father node,
cdr is treated as a list of the
daughter nodes. For example,
dtree[(S (NP (DET N) (PR P)) (VP V))]
will produce the display

e

18.8

The value of dtree is a generated
symbol whose value is the dilsplay
figure. dtree is equipped to
handle circularities in the car
direction, i.e., common subtrees.
Since it marks each subtree as it
encounters them, and subsequently
restores them, interrupting it

by rubout will cause the original
structure to be permanently lost.

The variable trnpts initially set
at 20, specifies the distance
between adjacent levels of the
tree. The variable trspacing,
initially set at 3, specifiles the
minimum distance between any two

adjacent nodes on the same
level. If the width of the gene-

rated tree is greater than the
width of the scope, the tree is
automatically scaled down in the
horizontal direction. No scaling
is performed in the vertical
direction. However, deeper trees
can be accommodated by resetting
frnpts to a smaller value.

18.9

movefig[fig;opl;parl;...opn;parn]

is an NLAMBDA nonspread function.
1t evaluates fig, but treats the
rest of its arguments literally

as operations and parameters, e.g.,

(MOVEFIG FIG UP 100 LEFT 100 ROTATE 30).

Its value is a new figure corres-
ponding to fig with the indicated
operations having been performed.
For the above example, this would
be

(MOVE: ((F O 100) -100 0) 30)

movefig is designed to free the
user from remembering the

various conventions of figure
types 1 through 9. It recognizes
UP, DOWN, LEFT, RIGHT, SCALE,
SCALEX, SCALEY, ROTATE, MOVE and
LABEL. For MOVE, the parameter
should be the matrix of trans-
formation.

18.10

Displaying Text

A number of generating functions are available for character
strings: dprint, dprinl, dprin2, dspaces, dterpri, datom, and
dischar. The first five perform functions analagous to the

printing functions of the same name without the d. datom

and dischar are lower level routines used by dprinl, but when
called directly provide certain options not available through

the higher level functions. These functions are designed to
allow the user to treat the scope as a teletype, if he so desires.

The size of the characters these functions generate is determined
by the free variable charsize, initially set at 2. charsize is
the Spacing between points in a character. Since there are
approximately 100 points per inch, and characters are 5x7 points,
a character generated with charsize=2 would be .1"x.14", which

is approximately teletype sized.

The free variables Xxorg and yorg determine the next character to
be displayed, and correspond to the teletype position. They are
numbers between -512 and 512, with (0,0) the center of the scope.
xorg 1s adjusted by the above functions in accordance with the
horizontal motion of the teletype carriage, yorg in accordance
with the vertical motion of the paper. Their initial value
determines the position of the first character. Their final value
corresponds to the position on the scope where "printing" stopped.

The free variables lorg and rorg determine the left and right

"margins" of the display. Whenever a word (an atom) would be
positioned at a point to the right of rorg, i.e., when xorg is

greater than rorg, dterpri is called first. This function

performs a scope "carriage return" by resetting xorg to lorg and

18.11

moving yorg down by l0*charsize. Similarly, the function dsgaces
"spaces" the display by changing xorg, but does not itself
participate in the construction of any figures.

To complete the analogy with printing, any carriage return or
blanks that appear inside of an atom will have the obvious
interpretation. Furthermore, dprint and dprin2 would cause this
atom to be displayed in double quotes, while dprinl would not.

dprinl has one additional feature not available on the teletype:
subscripting and superscripting. The characters control-U and
control-D have the effect of displacing yorg up or down by
S5%¥charsize. Thus the atom

"XU2D + YU2D = ZU2D"

where U and D denote control-U and control-D respectively would
be displayed as

It is important to emphasize that all of these functions do not
display, but merely generate figures. For example, for charsize=2,
xorg= -400, and yorg=400, the value of datom[ABC] is the list

(((a; 2) -400 400) ((a, 2) -386 400) ((a.3 2) =372 400)), where

a1, 8, and a3 are primitive figures for the characters a, b, and c

respectively. This figure can be repositioned, rescaled, combined,
and transformed the same as any other figure. It is not displayed
until it 1s transferred into the fork, step 2, and the hybrid
processor is started, step 3.

18.12

dprint[x]‘

dprin2[x]

dprinl{x;prin2]

dterprif]

dspaces[n]

datom[atom;prin2;x;y]

performs dprin2[x] followed by
dterpri(] and returns the value
of dprin2

dprinl(x t]

If xorg 1s greater than rorg,
performs dterpri[]. Successively
calls datom and dspaces on the
components of x and on lpar,

rpar, and period as required, and
combines the values into a figure,
which is returned as its value.
The second argument of dprinl is
used as the second argument to
datom.

sets xorg to lorg, yorg to

yorg-10*charsize.

sets xorg to xorg+n¥charsize#7

generates a figure for atom at
coordinates (x,y) if given,
otherwise at (xorg,yorg). It uses
chcon[atom;prin2] for the list of
characters to be displayed. Thus
if prin2=T, and atom is unusually
spelled, double quotes will be
supplied. datom recognizes and
treats specially the character
codes for blank, carriage return,

18.13

discharfc]

line feed, control U and control D.
Otherwise, it calls dischar.

¢ is a number used to reference

the array masktable which contains
35 bit masks for all of the tele-
type characters. These masks are
formed by mapping the 5x7 image of
the character into a string of 35
bits by starting at the lower left
hand corner of the character and
proceeding bottom to top, left to
right, with a 1 indicating a point
to be displayed. The first 21 bits,
i.e., the leftmost three columns of
the 5x7 image, are left justified
to form the first word of the mask.
The last 14 bits, also left justi-
fied form the second word. These
are stored in location 2c¢-1 and Z2c
in masktable. For example, location
103 in masktable is 00403770q, loca-
tion 104 is 0040200Q, corresponding
to the mask for the character T,
which has ASCII code 52.

The first time a particular charac-
ter is encountered, a primitive
figure is generated for 1it, and
stored in the array chartable.
Subsequent use of this character
will not require regeneration.
Thus, the generation of figures

for text is essentially a table
of lookup process.

18.14

Note: arraysizel[chartable]=128, and
not all of these are taken by
existing symbols, so the user can
define new symbols by placing an
approoriate mask in masktable via
seta.
Decoding Figures -

Step 2 of producing a display consists of transferring the data
corresponding to the points in a display figure into the fork's
memory. This 1s done by the function displist.

displist[fig;place;handle] if handle=NIL, maketable[place]
is called followed by
storefork[ca] which transfers into
the fork the commands necessary to
display points. Then displistl is
called to decode fig. The value
of displist is handle.

displistl[fig;x;y;scalex;scaley]
performs the decoding of fig.

The normal way of using displist is to call it with place=NIL or T.
In the first case, the display table will begin at the lowest

location in the fork's memory. In the second case, it will begin
at the first location after the previous table. In both cases,
the value of displist is the information that will be required
by drun, the function that starts the display. For more details,
see the description of maketable and the discussion of handles in

Section TTIT.

18.15

If displist is called with handle not equal to NIL, maketable and
storefork are not called. This is one way to add a figure to a
oreviously existing table. For example, displist[figl] followed by
displist[fig2;NIL;x] where x is the value of the first call to
displist, i.e., the handle, is equivalent to
displist[list[figl;figel]], since list[figl;fig2] is a figure of
type 5, combine.

Driving the Display

Once the points have been transferred into the fork, the user can
start the display by calling the hybrid processor and specifying
appropriately the number of commands, number of points, number of
iterations, etc. This is performed by the function drun.

drun[handl j;nt] If handl is NIL, handle is used.

~handle has a top level binding of 200,
the first available location in
the fork's memory and the value
of displist when place=NIL. If
nt is NIL, 0 is used which is
interpreted as infinity by the
hybrid processor. If start []
had been called, drun starts the
display, otherwise it prints
DISPLAYING.

18.16

displayl fig] xecutes displist[fig], followed
by drun, and returns a gensym
whose value is fig. For example,
E (DISPLAY (DATO#M (QUOTE TESTING)))
will generate the figure for this
atom, transfer it into the fork,
start the display, and return a
gensym whose value 1s the figure.
This can be used for subsequent

calls to displist.

It is important to emphasize that displist only transfers points
into the fork, and drun only calls the hybrid processor. One can
execute several calls to displist before displaying anything and
then switch rapidly back and forth from one display to another by
calling drun with different values for its first argument. Simi-
larly, one can execute a displist and a drun, and then be perform-
ing another displist while the display is running. If this latter
displist should happen to overwrite the display table for the
first one, the new points will be seen as soon as they are trans-
ferred, and the entire display will seem to melt into the new one.

18.17

Low-=level Functions

The preceding discussion has presented all of the user-level
display functions. These will be sufficient for most users and
most applications. The following sections will describe the
iower level functions, and the details of the present implementa-
tion. To make effective use of these functions, the programmer
should have a greatér knowledge of the computer hardware, time-
sharing system, and LISP implementation. Furthermore, changes
in the display hardware will result in changes, additions, and
deletions to these functions. That is, programs. which use these
functions directly will probably be affected by changes in hard-
ware or low-level software. Programs which use the higher-level
functions will not.

Hybrid Processor and Fork Functions

If the reader has not already done so, at this point the portion
of Section XVII entitled 'Hybrid Processor and Fork Functions'
should be read. Briefly, this section discusses the use of the
fork capability in LISP for driving the hybrid processor and

the conventions for communicating with the fork. In particular,
the reader should review the organization of the fork's memory
into tables, and the use of the function maketable. The functions
assignp,_assignd, unassign, forknit, hpstart, hpstop, hptest,:

hpwait, and storefork are also of interest for display applications.

18.18

Storepoints

Storepoints, like storefork, is a function for transferring data
from LISP's memory to the fork's memory. It takes among its
arguments ap, handl, rel, and np and treats them similarly to
storefork: transferring the first np words of ap into the fork's
memory beginning at location handl+rel+3., The 3 reflecfs the

presence of the pointer in the handle and the two command words.
Therefore, rel 1s relative to the first point in the table, not
the first word. If np 1s not given, arraysize[ap] is used; if
handl is not given, the free varlable handle is used; if rel is
not given, the contents of handl is treated as a pointer to the
first unused word in the table and this latter location is the
starting point for the transfer. In this latter case, the pointer
is updated after the transfer is complete. The value of store-
points, like storefork, 1s handl.

However, storepoints, unlike storefork, expects that its array

contains the x and y coordinates, in alternation, of points to be
displayed, and operates in a pair-wise fashion. It also includes
among its arguments several options specifically tailored for
display applications:

storepoints[ap;dx;dy;sclx;scly;handl;rel;np]
transfers np or arraysizelap]
words from ap into fork. dx and
dy are the translations and
sclx and scly the scale factors
for the x and y coordinates,

respectively. storepoints moves

each pair of words into the fork's
memory, at the same time multi-

plying by sclx, or scly, and

18.19

adding dx or dy, and converting
to the format required by the
hardware. If'gz or dy are not
given, 0 is used. If sclx or
scly are not given, the free
variable scalex or scaley aré
used. These are initially

set to 1. sclx or scly

may be positive or negative, fixed
or floating point numbers. The
elements in ap should pbe LISP
numbers between -512 and 512, and
are unboxed and shifted appro-
priately before belng transferred.

Another option available in storepoints allows blanking out and
subsequently restoring selected points. This is achieved by

giving storepoints as its first argument, NIL, for erasing, or T
for restoring (instead of an array). Starting at the appropriate

location, the appropriate number of points will then have their
low order‘bits set to 1, if erasing, or set to 0, if restoring.
When the "blink" switch for the scope is on, points with low
order bits set to 1 are not displayed. If the display were being
run at the time of the operation of storepoints, these points

would instantaneously disappear or reappear. JSimilarly, the
effect of a moving display can be created by overwriting portions
of a table while it 1s being displayed. Note that appending

to a table, i.e., calling storepoints with rel=NIL, can never
cause an immediate change in a display. This is because the

call to the hybrid processor which starts a display must, in
advance, specify how many points are to be displayed. Any
additions to the table will be seen only when another drun
executed. The only way to achieve the effect of point;—__

18.20

spontaneously appearing in a display while 1t 1is in progress

is to initially store "invisible" points in the display,

i.e., points with low order bit set to 1, and then overwrite these
or turn them back on while the display i1s running.

Plotting Graphs

Many graphs can be specified more efficiently than by a collection
of x-y coordinates as required by storepoints. It is often

possible to simply give a sequence of values for one axis, and the
first value and increment between successive values for the second
axis. This reduces by half the amount of storage required to
represent the graph. The function plotarray is provided for this

purpose.

plotarrayl[ap;dx;dy;sclx;scly;vert;handl;rel;np]
transfers np or arraysizelap]
words from ap into twice that
many words in the fork's memory.
The interpretation of handl and
rel is the same as for storepoints.

The numbers in ap are interpreted
as y-coordinates, unless vert=T.
The value of the other coordinate
starts at 0 and is advanced by 1
for each point. dx and dy are
the translations and sclx and
scly the scale factors for the

X and y coordinates so that any
positioning or scaling can be
achieved. 1If dx or dy are

18.21

not specified, 0 is used. If
sclx or scly are not given, scalex

and scaley are used. If the ap
contains all boxed numbers, plot-
array will unbox them.

Qlotarrag is used by displist for figures of the form (PLOT: --).

Moving Points

The function movepoints described below provides an alternate,_
more efficient way of effecting linear transformations of

two dimensions such as rotation and shearing. This entails per-

forming modificatlons on the corresponding points after they have
been stored into the fork's memory, rather than modifying a LISP
array or several arrays and then storing the modified arrays into

the fork using storepoints.

movepoints[matrix;dx;dy;handl;rel;np;from]

If handl is not given, handle is
used. If rel, dx, or dy is not
~given, 0 1s used. Modifications
begin at handl+rel+3 and proceed
through np words, if np is given,
otherwise through entire table,
i.e., up to the location specified
by the pointer in handl.

matrix 1s a list of the fdrm
((all al2) (a21 322)) where 2y 4

are the elements of a two by two
matrix, and may be positive or
negative, fixed or floating point
numbers. For each pair of x-y

18.22

coordinates, the new value of x 1is
given by
1= * * +
X a117% + a12 y + dx

and the new value of y by
e % #
y a21 X + a22 y + dy

The state of the low order bit of
X and y is not disturbed so that
invisible points are transformed
along with visible ones but remain
invisible.

If matrix=NIL, ((1 0) (0 1)),
the identity matrix, is used.
If matrix=N, a number,

((COS N -SIN N) (SIN N COS N))
is used, i.e., the effect of the
transformation would be to rotate
the points N degrees.

If from is given, the old values

of x and y are taken from the table
whose handle is from. The new ones
are stored in the table specified
by handl. Essentially this allows
you to move from one table to
another and to perform a transfor-
mation if desired.

Movepoints is used by displist for figures of the form

(MOVE: --).

18.23

SECTION XIX

ADVISING

The operation of advising gives the user a way of modifying a
function without necessarily knowing how the function works or
even what it does. Advising consists of modifying the interface
between functions as opposed to modifying the function definition
itself, as in editing. break, trace, breakdown, and follow are
examples of the use of this technique: they each modify user func-
tions by placing relevant computations between the function and

the rest of the programming environment.

The principal advantage of advising, aside from 1ts convenience,
is that it allows the user to treat functions, his or someone
else's, as "black boxes," and to modify them without concern for
thelr contents or details of operations. For example, the user
could modify sysout so that it did not write any new files, i.e.,
files that did not already appear in this file directory. This
could be done by:

ADVISE(SYSOUT (COND
((INPUT (INFILE U)) (CLOSEF U))
(T (PRINT (CONS U (QUOTE (NOT FOUND))) T)
(RETURN NIL)))

As with break, advising works equally well on compiled and inter-
preted functions. Similarly, it is possible to effect a modifica-
tionwwhiChonly operates when a function is called from some other
specified function, i.e., to modify the interface between two
particular functions, instead of the interface between one function
and the rest of the world. This latter feature is especially use-~
ful for changing the internal workings of a system function.

19.1

Consider the following obscure bug in prettyprint (which has since
been fixed): if a prog had two labels for the same statement, and
the first label had more than four characters in it, no spaces

would be printed between the two labels. Consequently, when the

function was loaded back in, only one label would be read:
the concatenation of the two labels that were printed. This con-

dition could have been remedied by:

ADVISE ((SPACES IN PRINTPROG)
(COND ((ZEROP U) (SETQ U 1))))

Advice can also be specified to operate after a function has been
called, in which case the value of the function is bound to the
variable VALUE, as with BREAK. For example, execution of all com-
mands to the LISP editor is performed under an errorset in the
executive editor function edite. Frequently the user may type in
a long command with a small error in it, and would prefer to be
able to correct the command rather than having to retype it. The
user could modify the editor to automatically save a command when-
ever an error occurred during i%s execution by performing

ADVISE ((ERRORSET IN EDITE) AFTER
(COND ((NULL VALUE) (SETQ LASTCOM C))))

since the value of errorset 1is NIL if and only if an error occurs
in the evaluation of its argument. ‘

Note that advising spaces or errorset would have affected all calls
to these very frequently used functions, whereas advising (SPACES
IN PRINTPROG) and (ERRORSET IN EDITE) only affects calls to spaces
from printprog or errorset from edite.

19.2

Advise

Advise 1s a function of four arguments: name, when, where and what.
name is the function to be modified by advising, what is the modi-
fication, or plece of advise. when is either BEFORE or AFTER with
.the obvious interpretation. (If not given, BEFORE is assumed.)
WHERE is optional and can be used to specify exactly where in the
list of advice statements the advise is to be placed, e.g., FIRST or

(BEFORE (ADVICE CONTAINING PRINT)), or (AFTER 3), meaning after
the third piece of advice, or even (FOR ALL (ADVICE CONTAINING
RETURN)). If where is specified, advise calls the editor to find
and insert the advice at the appropriate location. Otherwise,
the advice is inserted after any previous modifications. The
structure of a function after it has been modified several times
by advise is given in the following diagram:

Advice
BEFORE
MODIFIED | ,
FUNCTION [advicen]
ENTER
ORIGINAL
FUNCTION
EXIT
Advice
AFTER
\4

19.3

The corresponding LISP definition is:

(LAMBDA arguments (PROG (VALUE)
(SETQ VALUE (PROG NIL
advicel

advicen
(RETURN fn arguments))))
advicel

advicem
(RETURN VALUE)))

where fn is the name of the function (generated hy advise) which
now contains the original, unadvised definition.

Note that the structure of a function modified by advise allows a
plece of advice to bypass the original function by using the LISP
function RETURN. For example, if the LISP form

(COND ((ATOM X) (RETURN Y))) appeared among the advice BEFORE

a function, and this function was entered with X atomic, Y would

be returned as its value, i.e., VALUE would be set to Y, and
control passed to the advice, if any, to be executed AFTER the
function. If this same plece of advice appeared AFTER the function,
Y would be returned as the value of the entire advised function.

¥ fn is stored on the property list of the function name under the

Pproperty ADVISED.

19.4

The advice (COND ((ATOM X) (SETQ VALUE Y))) AFTER the function
would have a similar effect but the rest of the advice AFIER
the function would still be executed.

advise[name,when,where,what]

~name 1s the function to be advised,
when=BEFORE or AFTER, where
Specifies where in the advice 1l1list
the advice is to be inserted, and
what is the piece of advice. Both
when and where are optional argu-
ments, in the sense that they can
be omitted in the call to advise.
In other words, advise can be
thought of as a function of two
arguments: [name,what], or a function
of three arguments: [name,when,what],
or a function of four arguments:
[name, when,where, or what]. Note
that the advice is always the last
argument.

If name is of the form (fnl IN fn2),
chngnm[fn2,fnl] is first performed
as with break, and then fnl-IN-fn2
is used in place of name.

If name is non-atomic, every func-
tion in name is advised with the
~same values (but copied) for

when, where, and what.

If name is broken, it 1is unbroken
before advising.

19.6

If name 1s not defined, an error
is generated.

If name 1s being advised for the
first time, an appropriate
S-expression definition is created,
and the original definition stored
on a nsym, and the gensym stored
on the property list of name under
the property ADVISED.

name is added to the 1list
advisedfns.

The modification is inserted in
the appropriate position indicated
by where in the list of advice
either BEFORE or AFTER the function
depending on when. If where=NIL,
the advice is added to the end

of the advice. If where=FIRST

or TOP, it is inserted in front

of the advice. Otherwise, where

is treated as a location command
for the expanded editor, e.g.,
BEFORE 3),

(AFTER (ELEMENT CONTAINING PRINT)).

(when where what) is added to
the front of a list of all calls
to advise for name which is kept
on the property ADVICE.

Value of advise is name.

19.7

unadvise[x]

advisedump[x]

is a non-spread NLAMBDA a la
unbreak. It takes an indefinite
number of functions to be restored
to their unadvised state.
unadvise[] or unadvise[ALL] will
cause all functions on advisedfns

to be unadvised. unadvising

,consists of restoring the original

definition, removing the properties
ADVISE and ADVISED from the pro-
perty list, unbreaking if the
function is also broken, and if

the function is an alias, i.e.,
created by an advise (fnl IN fn2)
call, the higher level function

in which it appeared is also
restored.

advisedump is the function that
is called when an expression of
the form (ADVISE fnl ... fnm)
appears in the third argument to

prettydef. If car[x] is not

atomic, evallcar[x]] is used
instead of x. Then for each
function on x that has a property
ADVICE, the reverse of the property
value is put on the property
READVICE. Two deflists are
written: one for every function

that has a property ALIAS, and

one for every function with
property READVICE.

19.8

readvise[name] is designed to be used in con-
Junction with advisedump and

prettydef for dumping advised
functions and then loading and
restoring them to their advised
state. If name is of the form
(fnl IN fn2) or there is a pro-
perty ALIAS on the property list
of name, the appropriate chngnm
if first performed. readvise
then calls advise for each
modification on the list stored
under the property READVICE.

The value of readvise is name.

Note: if a function has both the property READVICE and the property
ADVICE, unadvise will first move the reversal of the property

value of ADVICE onto READVICE before it removes the former. Thus
if the user readvises, then executes additional calls to advise,
and then unadvises, all the advice would still be dumped when the
function was prettydef-ed.

In summary, advise puts advice on the property ADVICE. advisedump
takes it from ADVICE, or else from READVICE. readvise uses the
advice on READVICE. unadvise removes the property ADVICE but
first moves ADVICE to READVICE provided both properties are
present. No function removes READVICE.

19.9

cadvice[fns] ' fns i1s a 1list of advised functions
to be compiled with their advice.
cadvice performs the appropriate
modifications to their property
lists before and after calling the
compiler. After compilation, the
function can still be unadvised,
in which case the compiled code
will be lost. If the function has
a property EXPR this property value
will be preserved through the com-
pilation.

19.10

SECTION XX
AUTOMATIC ERROR CORRECTION IN LISP

Introduction

A surprisingly large percentage of the errdrs made by LISP users
are of the type that could be corrected by .another LISP programmer
without any information about the purpose or application of the
LISP program or expression in question, e.g. misspellings, certain
kinds of parentheses errors, etc. We have implemented into the
BBN LISP system a DWIM package, short for Do-What-I-Mean, which

is designed to facilitate the correction of these type of errors.
DWIM is called automatically whenever an error occurs in the
execution of a LISP program (provided the user has first enabled
this feature), and then proceeds to try to correct the mistake.
The following output 1s representative of the kinds of corrections
the program will handle.

20.1

« DEFINEQCCFACT (LAMBDA (N)

(COND (CZEROP N9 1) ((T C(TIMS N (FACTT 8SUB1 NI
¢ FACT) |

~ PRETTYPRNT ((FACCT]

= PRETTYPRINT

= FACT

(FACT
(LAMBDA (N)
(COND
(C(ZEROP N9 1)
CCT (TIMS N (FACTT 8SuUB1 NJ»J)J)2)))

SN IL :

« FACT(3)

EDITING FACT e«so

N9 >>==> N) '

EDITING FACT e

(COND == ((T.=-=))) >>==> (COND == (T ==))
T IMS=TIMES , :
FACTT=FACT

EDITING FACT e«e.
8 suBl >>=-=-> (SUBI
- 6

«PRETTYPRINTC(C(FACT))

(FACT
(LAMBDA (N)
(COND
CCZEROP N)
1) '
(T (TIMES N (FACT (SUBI1 NJ))3))))
N IL

In this example, the user first defines a function FACT, of one
argument, N, whose value 1s to'be N factorial. The function con-
tains several errors: TIMES and FACT have been misspelled. The’
9 in N9 was intended to be a right parenthesis but the teletype
shift key was not depressed. Similarly, the 8 in 8SUBl was in-
tended to be a left parenthesis Finally, there are two left
parentheses in front of the T that begins the second clause in the
conditional, instead of the required one.

20.2

After defining the function FACT, the user wishes to look at 1its
definition using PRETTYPRINT, which he unfortunately misspells.
Since there is no function PRETTYPRNT in the system, an UNDEFINED
FUNCTION error occurs, and the DWIM program is called. DWIM in-
vokes its spelling corrector, which searches & list of functions
frequently used (by this user) for the best‘p08§igle match. Finding
one that is extremely close, DWIM proceeds. on the assumption that
PRETTYPRNT meant PRETTYPRINT, informs the user of this, and calls
PRETTYPRINT.

At this point, PRETTYPRINT would normally print (FACCT NOT PRINTABLE)
and exit, since FACCT has no definition. This 1s not an error
condition, so DWIM would not be called by LISP. However, it 1s not
what the user meant. |

In order to handle these type of situations, when the user first
enables the DWIM facility, ADVISE is called to modify selected
system functions. For example, PRETTYPRINT is advised that when
given a function with no definition, it should call the spelling
corrector. Similarly, DEFINE is advised to add the names of any
new functions defined by the user to the spelling list of user
functions. Thus, with the aid of DWIM, PRETTYPRINT is able to
determine that the user wants to see the definition of the function
FACT, and proceeds accordingly.

The user now calls his function FACT. During its execution, five
errors are generated, and DWIM is called five times. At each point,
the error 1s corrected, a comment made of the action taken, and the
computation allowed to continue as if now error had occurred. Fol-
lowing the last correction, 6, the value of FACT(3), is printed.
Finally, the user prints the new, now correct, definition of FACT.

2003

In this particular example, the user was shown operating in a

mode which gave the DWIM system the green light on all corrections.
Had the user wished to interact more and approve‘or disapprové of
the intended corrections at each stage, he could operate in a
different mode. Or, operating as shown above, he could have at

any point aborted the correction; or signalled his desire to see

the results of a correction after it was made by typing a ? on the
teletype.

Each different user may want to operate with a different "confi-

dence factor," a parameter which indicates how sure DWIM must

be before making a correction without approval. Above a certain
user-established level, DWIM makes the correction and goes on.
Below another level, DWIM types what it thinks 1s the problem,
e.g., PRTYPNT = PRETTYPRINT ?, and waits for the user to respond.
In the in-between area, DWIM types what it is about to do, pauses
for about a second, and if the user does not respond, goes ahead
and does it. The important thing to note is that since an error
has occurred, the user would have to intervene in any event, so
any attempt at correction is appreciated, even if wrong,as long-‘as
the correction does not cause more trouble than the original to
correct. Since DWIM can recognize the difference between trivial
corrections, such as misspellings, and serious corrections, such
as those involving extensive editing, bad mistakes are usually
avoided. When DWIM does make a mistake, the user merely aborts
his computation and makes the correction he would have had to

anyway .

20.4 .

Enabling DWIM

To enable the DWIM package, perform DWIM[T]. DWIM will type
"SET MODE B,N, OR E", for BEGINNER, NOVICE, or EXPERT. (These
will be explained later.) Respond by typing either B, N, or E;
DWIM will complete the rest of the mode name.¥ To disable DWIM,
perform DWIM[]. This is guaranteed to return the system to a
pristine state.

Error Correction

Once DWIM has been enabled, errors that normally generate either
UNBOUND ATOM or UNDEFINED CAR QFAFORM messages (undefined function
call from interpreted code), instead call the functions fixatom
and fixfn, respectively. If an attempted correction 1s aborted

by typing control-R, or if the user indicates to DWIM not to pro-
ceed with the correction, or if DWIM cannot fix the error, the
action taken is exactly as though DWIM had not been enabled, i.e.
the system goes into a break, as described earlier in the manual.

The general strategy followed by both fixatom and fixfn, is to
return the correct S-expression for the desired evaluation and
continuing the computation, and also to repair the cause of the
error. DWIM in general is more cautious about making corrections

to user functions than making corrections to S-expressions typed
into evalquote or to break.

Unbound Atoms

Fixatom 1s currently programmed to handle six different types of

unbound atom errors.

l. If the first character of the atom is an 8, DWIM assumes
that the 8 was intended to be a left parentheses, and calls
the editor on the expression in which the atom appeared.

*# Alternatively, call DWIM with mode as argument, e.g. DWIM[E].
20.5

It is assumed that the user did not notice the 8, or attempt

to correct for it. In other words, the user typed in the

same number of right parentheses and in the same places, as

he would have had the 8 actually been a left parentheses.
For example, (LAMBDA (N) 8COND ((ZEROP N) 1) (T (TIMES N
(FACT (SUB1 N]. If the unbound atom did not appear in
another expression, e.g. if the user typed 8CAR X) into

break for evaluation the appropriate expression is obtained
and evaluated.

If the first character of the unbound atom is ' DWIM
assumes that the user (intentionally) typed 'ATOM for
(QUOTE ATOM) and makes the appropriate change. If the
unbound atom is just ', DWIM assumes that the user typed
'(LIST) for (QUOTE (LIST)) and proceeds accordingly.

If the last character in the atom 1s 9, DWIM assumes the
9 was intended to be a right parentheses and operates in
a manner analagous to case 1.

If 8 appears as a character inside the atom, DWIM assumes
the 8 was intended to be a left parentheses, splits the
atom into two parts, and takes the appropriate corrective
action, e.g. (CONS X8CDR Y].

If the unbound atom is the name of a low level function,
e.g. APPEND, CONS, SUBST, etc., (anything defined before
PRETTYDEF) DWIM assumes a left parentheses was omitted
before the atom, but that the corresponding right paren-
theses was typed. In general, for parentheses errors,
DWIM always assumes the error was undetected by the user
and that no attempts were made to correct for it during
input. If the user notices a parentheses error of the
type handled by DWIM while typing in the expression, he
should ignore 1it.

For all other unbound atoms, DWIM assumes that there has
been a spelling error and calls the spelling corrector
(described below). The spelling corrector is given a
list of possible choices consisting of all variables set
by rpagg, plus, in the case the error occurred in a user
function, a list of lambda variables and prog variables
for that function.

20.6

Undefined Functions

Fixfn is currently programmed to handle six different types of

errors.

1.

If the undefined function is T, and it appears 1n an
expression of the form (COND —-- (-- (T))), or (COND -~
((T -==))), or immediately following a COND as in (COND --)

(T --), DWIM assumes the T was meant to start the last

clause in the conditional and makes the appropriate change.

If the undefined function is not atomic, DWIM assumes an
extra parenthesis was put in e.g. (CONS ((CAR X) Y] or
(COND (((ZEROP N) 1) (T (TIMES N (FACT (SUB1l N].

If the undefined function has a binding, and is three or
fewer characters in length, DWIM assumes an extra paren-
thesis was put in e.g. (CONS (X Y)).

If the undefined function is F/L, DWIM assumes the user
Tintentionally) typed (F/L expression) meaning (FUNCTION
(LAMBDA (X) expression)), or if (F/L arg-list expressionl
... expressionm)), meaning (FUNCTION (LAMBDA arg-list
expressionl ... expressionm)).

If the undefined function contains an 8, DWIM assumes a
left parentheses was intended. If the error occurred on
input to evalquote, e.g. <« EDITF8F00), the appropriate
form is evaluated. If the error occurred inside of
another expression, e.g. (ADD18CAR X), the undefined
function is split into two parts and the 8 treated as a
left parentheses, as in 4. of fixatom.

For all other cases, DWIM assumes a misspelling has occurred
and the spelling corrector called. If the depth is greater
than 3, the spelling corrector is given a list of low-level
functions such as addl, atom, cons, etc., i.e. those typically
used inside a function. 1If the depth is less than 3, the list
contains top-level functions such as defineq, prettydef,

"makefile, load, etc. In both cases, the lists iInclude all

functions defined by the yser with defineq, including those
loaded from files.

20.7

User Modes - Interaction with DWIM

There are currently three modes of operation in DWIM: BEGINNER,
NOVICE, and EXPERT. These modes control the setting of certain
parameters that in turn determine the amount of interaction for

the various errorsdiscussed earlier. Essentially, DWIM always

asks the user for aprroval when in BEGINNER mode, and its mes-~

sages are more explicit and verbose. In NOVICE mode, DWIM asks

the user for approval for action to be taken when the error occurred
in a user function, as opposed to an expression typed by the user

to evalquote or break. DWIM rarely asks the user for approval in
EXPERT mode, with the exceptions noted below.

Interaction on Parentheses Errors

Errors involving parentheses errors, i.e. errors of type 1,3,4 and
5 of fixatom and errors of type, 1,2,3, and 5 of fixfn require
editing. DWIM types an error message: ...UNBOUND ATOM or ...

- UNDEFINED FUNCTION in BEGINNER mode, and U.B.A. or U.D.F. in

NOVICE mode. This is followed by the atom or function name, and
its location (i.e. IN function) if the error occurred in a user
function. DWIM then requests permission to make the correction. For
example, ...UNDEFINED FUNCTION 8SUB1 IN FACT FIX 2

At this point, the correction that DWIM intends to makes has already
been determined by the type of error; DWIM is simply asking for user
approval. If the user types Y, for YES, DWIM will proceed with the
correction. If the user types N, for NO, or hits control-R the cor-
rection is aborted. If the user types 4, not only DWIM but also the
subsequent break is aborted, i.e. it is equivalent to typing control-R
followed by 4,# If the user types anything else, the editor is called,
for the user to edit the expression himself.

When the editing has been completed, DWIM will type the transformat-
ion that was performed, e.g. 8SUBl >>--> (SUBl, and then CONTINUE 2

¥ retfrom[n] where n is position of first errorset pr
previous to call
to faulteval is performed. If none, retfrom[@] is performed.

20.8

If the user types Y for YES, the computation continues, and the
appropriate expression is evaluated; The only possible cause of
trouble in continuing involves an error of the form (COND == (=--

(T -=-))). Here the value of the conditional should have been the value

of the expression immediately preceding the (T --). This express-
ion must be reevaluated since its value is no longer around. If it
cannot be reevaluated without producing a harmful effect;’the user
should type N for NO. The cause of the error will have been fixed,
but the computation will not continue. Instead an error will be
generated, and the system will go into a break. If the user types
anything other than Y or N, DWIM calls the editor again to allow
the user to look at the changes it has made. After exiting from
the editor in the normal way by typing OK, the user is again asked:
CONTINUE ?, etc.

If the user is operating in NOVICE mode and the error did not occur
in a user function, or if the user is in EXPERT mode, DWIM normally
does not ask for approval before attempting a correction. In this
case DWIM simply types EDITING function... or EDITING... and pro-
ceeds with the correction. There are two exceptions, however,

For errors of type 2 and 3 in fixfn e.g. (CONS ((CAR X) Y)) and
(CONS (X Y)), DWIM will always ask for approval, because these may
be the expressions the user had intended: the undefined function
error may have been generated because of a logical problem,

e.g. X was bound to a function that was not defined.

If the user 1s operating in a mode that does not require DWIM to
interact with him, he can still signal DWIM that he wishes to
examine the changes that were made before continuing the computat-
ion by typing any character while DWIM_is editing. When editing
has been completed, DWIM will then openate exactly as though the
user were in BEGINNER mode. |

If DWIM was unable to make the correction, or if the user aborted
the editing by typing control-R (WARNING in this case some changes
may have been made before the user aborted), DWIM will type COULDN'T.

20.9

Interaction on Spelling Errors

Whenever an unbound atom or undefined function error occurs that
is interpreted as a misspelling, DWIM types an error message fol-
lowed by the atom or function identification as described earlier.
The spelling corrector then attempts to select the best match with
the list of correct spellings that it has been given. If no
reasonable match can be found, the spelling corrector types the

offending word, followed by = ?, e.g.
U.B.A. FOO
FOO = ?

The user can then typethe correct word. If he mistypes again, the
spelling corrector iterates. The only way to leave the spelling
corrector is to give it a suitable word, or to abort by typing
control-R or ¢+. If the user does type in a suitable word, i.e. a
BOUND ATOM or a DEFINED FUNCTION, the S—expression in which the
misspelling occurred is corrected, and this word is added,to the
spelling list so that it will be considered as a possible correct
spelling for future mistakes. In the case of an UNBOUND ATOM, the
user can also type in a non-atomic form which is then used to cor-
rect the S-expression, e.g.

U.B.A. FOO
FOO = (CAR FIE)

If the spelling corrector finds a word or words which are reason-
able matches, it types them followed by ?, e.g.
FOO = FOOl1l or FOO2 ?

The acceptable answers to this question are 4, Y, for YES (only if
Just one word matches); N, for NO, in which case WHAT THEN ? is
typed and the user is in the same situationias when no suitable
match was found; D, for DELETE, in which case these words are
eliminated from the spelling list and will not be considered in
the future; or a number, to indicate which of the various wordsk

20.10

typed is correct. The user 1s not allowed to type in the correct
word in response to a question of the form FOO= FOOl or FO002 ?

He can only type 4, ¥, N, D, or a number.

If the user i1s operating in NOVICE mbde and the error does not
occur in a user function, or if the user is operating in EXPERT
mode, the spelling corrector does not require interaction 1f the
match 1s "good enough."™ There are two parameters that affect this
determination. These are CFACT1l, initially set at .5, and CFACT2
initially set at .8. If the match is better than CFACT2 in reli-
ability, i.e. at least 80% sure, the spelling corrector makes the
correction types it, and goes on, e.g. FOOO = FOO. If the match is
better than CFACT1 but less than CFACT2, the spelling corrector
types what it thinks is the correct spelling, and then waits a
specified number of milliseconds, as determined by the parameter
DELAYTIME (initially set at U4000). If the user types any character
during this time, the spelling corrector goes into interactive mode
as described earlier. Otherwise it makes the correction and goes

on.

Summarv of Interaction bv Modes

Parenthesis error in user function FACT, e.g.
(FACT 8SUB1 N)

BEGINNER ... UNDEFINED FUNCTION 8SUB1l IN FACT FIX ?
NOVICE ...U.D.F. 8SUBL1 IN FACT FIX ?
EXPERT" EDITING FACT...

unless type 2 or 3 of fixfn, in which case
same as NOVICE mode.

Parenthesis error in user typed expression; e.g.
+«E (FACT 8SUB1 F0O0)

BEGINNER ... UNDEFINED FUNCTION 8SUBl1 FIX ?
NOVICE EDITING...
EXOERT EDITING...

unless type-2 or 3 of fixfn

Note: for input like <« EDITF8FO0O0) to evalquote, a subcase of error
5 of fixfn, DWIM requires no interaction in any mode.

20.11

Spelling error in user function, e.g. (FACCT (SUBl N))

BEGINNER
'NOVICE

EXPERT

.. .UNDEFINED FUNCTION FACCT IN FACT
FACCT= ¥%% 2

...U.D.F., FACCT IN FACT
FACCT= #¥% 2

FACCT=FACT (IN FACT) if certainty > CFACT2

FACCT=FACT(IN FACT) and pause for specified time
if certainty > CFACT1. 1If
no input, make correction
and continue.

...U.D.F. FACCT IN FACT
FACCT= ¥#%¥ 9 if certainty < CFACT1 or if
two cholces equally good

Spelling error in user expression, e.g. < FACCT(4)

BEGINNER

NOVICE

EXPERT

.. .UNDEFINED FUNCTION FACCT
FACCT= #*%% ¢

FACCT=FACT if certainty > CFACT2

FACCT=FACT and pause for specified time
if certainty > CFACT1

...U.D.F. FACCT - if certainty < CFACT1 or if
FACCT = ¥¥¥ 9 ‘ two choices equally good

same as NOVICE

(*##¥%¥ pepresents list of possible candidates, if any)

20.12

Private Modes

If the user wants to define hls own mode, presumably to combine
certain features of BEGINNER, NOVICE, or EXPERT, or to change the
confidence thresholds, he must add the definition of his mode to
the end of modelst. Each mode is a list consisting of a single
identifying character (hence do not use B, N, or E), followed by
the rest of the mode name, followed by a list of dotted pairs of
variables and values. For example, the first entry on modelst is
(E XPERT (GREENLIGHT . T) (REDLIGHT) (CFACT1 .5) (CFACT2 .8)
(UDF . "U.D.F.") (UBA . "U.B.A.")).

If the variable greenlight is T, as in EXPERT mode DWIM never asks
for interaction, (with the few exceptions mentioned earlier). If
both greenlight and redlight are NIL, as in NOVICE mode, DWIM asks
for interaction only for errors involving user functions. If
redlight is T, as for BEGINNER mode, DWIM always asks for inter-
action. The variables udf and uba are the error messages printed
out for undefined function and unbound atom errors respectively.

Other uses of the spelling corrector

As mentioned in the introduction, the spelling corrector is used

in the DWIM package to correct certain misspellings that would

not cause LISP errors. This has been accomplished by advising
certaln system functions, such as prettyprint to consult the
spelling corrector when given an argument that does not "make sense"
in the context of the operation they perform. Userwords is a list
of words that may contain the spelling the user intended. This

list is built up by certain other system functions, e.g. defineq,
rpagq which have been advised to add to this 1list. Thus if DWIM

is enabled and the user loads a file, all functions defined and
variables initialized in the file will be added to userwords.

20.13

System Functions Advised by DWIM

EDITF - if argument is (NOT EDITABLE), but has a non-atomic
value, editv is called. If it has a non-null property
list, editp is called. Otherwise it is treated as the
name of a function on userwords.

EDITV - if argument is (NOT EDITABLE), it 1s treated as the
name of a variable on userwords.
EDITP - if argument is (NOT EDITABLE), it is treated as an

atom on userwords with a non-null property 1list.

BREAK® if function is not defined, it is treated as the name
‘ of a function on userwords.

UNSAVEDEF -~ if function i1s not defined, it is treated as the name
of a function on userwords.
PRETTYPRINT - if function is not defined, it is treated as the name

of a funetion with an S-expression definition on
userwords.
In addition, after they have finished operating, EDITF, EDITV,
EDITP, DEFINEQ, BREAK@, UNSAVEDEF, and RPAQQ all add their arguments

to userwords as well as to the approoriate svelling lists for
error correction

Load 1s advised to maintain two lists: a spelling list of user files.
(filesplst) and a list of user files with the functions and variables
they contain (filelst), derived from the first and third argument to
prettydef.* makefile consults filesplst to correct the spelling

of 1ts argument, and editf, editv, and editp add their argument

to filelst under the name of the appropriate file. The function
newfiles can then be used to produce an updated version of any

files that have been changed.

newfiles[flg] does makefile for every file on filelst that
has been modified. If flg=T, the files are
also listed.

(¥) This assumes that the file was created by makefile, p. 14,21
i.e. that its name is of the form /Nname/.——————

20.14

If the user wishes to modify his own or other system functions, the
following two functions will be useful:

addspell[x;flg] Adds x to userwords, and, if flg = T, to
the spelling list for variables, otherwise
to both spelling lists for functions. Sets
lastword to X. If x is already on userfns,

no action is taken.

misspelled? [x;fn;splst] If fn is not NIL and fn[x] is not NIL,
value 1s x, i.e. X was not misspelled.
If x is NIL, value 1s lastword e.g. after
defining a function, you can edit it by
simply performing editf[]. Otherwise
spelling of atom is corrected using splst,
if given, otherwise userwords. If spelling
correction is aborted by control-r, value
is x. If 4 1s typed to spelling corrector,
control is returned to errorset prior to
misspelled?

As an example of the use of these functions, the following advising
operations are performed by DWIM.

ADVISE(DEFINEQ AFTER (MAPC VALUE (FUNCTION ADDSPELL)))
ADVISE(RPAQQ AFTER (ADDSPELL X T))
ADVISE (UNSAVEDEF (SETQ X (MISSPELLED? X (FUNCTION FNTYP)))

20.15

NOFI

The user may not want to have DWIM bother to operate on certain
types of errors. To facilitate this, DWIM calls the function
nofix,'of no arguments, before attempting to make any corrections.
If nofix returns T, the correction is aborted. nofix 1s currently
defined as (LESSP FAULTD FAULTDEPTH), with FAULTDEPTH set to -1l.

If the user wanted to disable DWIM for errors occurring near the
top level, or just inside of a break, he simply needs to set
FAULTDEPTH to an appropriate value, e.g. 5. The user can prescribe
more complicated conditions for aborting corrections by advising
nofix. For example, the user might prefer to retype any misspelling
shorter than four characters in length. He would then advise nofix

ADVISE(NOFIX (AND (ATOM FAULTX) (LESSP (NCHARS FAULTX) 4)))

Of course, such operatives require more intimate knowledge of the
operation of DWIM. For this, contact W. Teitelman.

20.16

SECTION XXI

PRINTSTRUCTURE

In trying to work with large programs, a user can lose track of
the hierarchy which defines his program structure; it is often
convenient to have a map to show which functions are called by
each of the functions in a system. 1If fn is the name of the top
level function called in your system, then typing in
printstructure[fn] will cause a tree printout of the function-call
structure of fn. To describe this 1n more detail we use the
printstructure program itself as an example.

21.1

CPRINTSTRUCTURE(PRINTSTRUCTURE)Y
PRINTSTRUCTURE PROGSTRUC PRGSTRC PRGSTRC1 PRGSTRCI
' PRGSTRC
PRGSTRC
NOTFN
PROGSTRUC
CALLS1 NOTFN
CALLS2 CALLSI
PRGSTRC
PRINTSTRUCTURE
MAKECIRC MAKECIRC
TREEPRINT TREEPRINTI1
TREEPRINT
VARPRINT TREEPRINTI
PRINTSTRUCTURE [FNsFILE; XsDONELST>NODESs 3
PROGS TRUC [FN» D3 Y»ZsFLGs VARS1, VARS23 DONELST]

PRGSTRC ~ [X,HEAD3 Y,Z3 VARS1,FN, DONELST»D»FLG]
PRGSTRC1 [L3 AsBsY3s v, VARS1, VARS2]
NOTFN [FN3 DEF; 3

CALLSI CADRS D3 M,N,x,Y,FLG,v},ve,FLG; VARS 15 INTZROS VARS2)
CALLs2 (X3 5 DI

MAKECIRC (X3 X3 NODES]

TREEPRINT [(X>N3 Z3]

TREEPRINTI [X,N; ;)

VARPRINT [X3; X,Y,N;3 1]

PRINISTRUC TURE

-

21.2

The upper portion of this printout 1s the usual horizontal version
of a tree. This tree is straightforwardly derived from the defi-
nitionsof the functions: printstructure calls progrstruc, itself,
makecirc, treeprint, and varprint. progstruc in turn calls

prgstrc and calls. prgstre calls prgstrcl itself, and notfn.

prgstrecl just calls itself and prgstrc. Note that a function
whose substructure has already been shown is not exvanded in its
second occurrence in the tree.

The lower portion of the printout contains information about the
variables that are used in each of the functions. printstructure
is a function of two arguments, fn and file. It binds three
varlables internally: x, donelst, and nodes. (Variables are

bound internally by either progs or open lambda-expressions.)
makecirc has only one argument, X, and it also binds X internally.
It uses the variable nodes as a free variable.

In addition to the five functions appearing in the above output.
printstructure calls many other low-level functions such as

getd, car, list, nconc, etc. The reagson these do not appear in
the output is that they were defined "uninteresting" by the user

for the purposes of this analysis. Two functions, firstfn and
lastfn, and two variables yesfns and nofns are used for this
purpose. Any function that appears on the list yesfns is of
interest, any function appearing on nofns is not. Otherwise, all
non-compiled functions are deemed interesting, and only those
compiled functions between the two limits established by firstfn
and lastfn. For example, firstfnf editf] and lastfn[bo] (the last
function in the edit package) followed by printstructureleditf]
will cause the structure of the editor to be printed out with
only those functions that actually are part of the edit package
appearing in the printout.

21.3

Three other variables, notrace, guotefns, and prdepth also affect the
~action of printstructure. Functions that appear on the list notrace will
appear in the tree, assuming they are "interesting" functions as
defined above, but will not themselves be traced, i.e., analyzed.
Functions that appear on guotefns are traced, assuming they are
"interesting," but when they appear as car of a form, the rest of

the form is not analyzed. For example, if the function pring were
defined as (NLAMBDA X (MAPC X (FUNCTION PRIN1))) and the form

(PRINQ NOW IS THE TIME) appeared in a function being analyzed,

pring would appear in the tree, but NOW, IS, THE, and TIME would

not be noted as free variables 1f pring were included in the list

of quotefns. prdepth is a cutoff depth for analysis. It is inlally set

to 100.

printstructure has incorporated in it the necessary information

for analyzing non-standard forms such as cond, prog and selectgq.

It is also capable of analyzing compiled or interpreted functions
equally well. In the case of compiled functions, printstructure

will automatically analyze any functions generated by the compiler,
such as those caused by compiling forms beginning with ersetgq,
nlsetqg, or function.

If printstructure encounters a form beginning with two left paren-
theses in the course of analyzing an interpreted function (other
than a COND clause) it notes the presence of a possible parentheses
error by the abbreviation P.P.E., followed by the function in which
the form appears and the form itself, as in the example below.

Note also that printstructure detects functions, i.e., atoms
appearing as CAR of a form, that are not defined. printstructure
is thus a useful tool for debugging.

21.4

«PRETTYPRINTC((F00))

(FOO0
(LAMBDA (X))
(COND
(X (FOO1 X))
(T (CCONS X C(CAR X2)3)3))))
N IL
«PRINTSTRUCTURE(FIJO)
F 00 FOO1
CONS
CAR
FO00 £Xs 5 1
F 001 IS NOT DEFINEDS

PePeLe IN FOO = ((CONS X (CAR X))

F OO0

-

21.5

Printstructure Functions

printstructure[fn,file] analyses structure of fn and

stores result on property list of
fn under property PRINTSTRUCTURE.
The form of this result is a 1list
of two elements, the second of
which is the tree representatioﬁ
of the structure, and the first

a list consisting, in alternation,

of the functions that appear on
the tree, and a variable list vlst

for that function. CAR of the vari-
able list is a list of varilables
bound in the function; CDR 1is those
variables used freely in the function.

Thus in the printstructure[printstructure] example given earlier
the value of the property PRINTSTRUCTURE would be:

((PRINTSTRUCTURE ((FN FILE X DONELST NODES)) PROGSTRUC
((FN D Y Z FLG VARS1l VARS2) DONELST) PRGSTRC
((X HEAD Y Z) VARS1 FN DONELST D FLG) ...
VARPRINT ((X X Y N))) tree)

Possible parentheses errors are
indicated by a non-atomic form
appearing where a function would
normally occur, i.e., in an odd
position of the list. I