
B 0 L T BERANEK AND NEWMAN INC

CONSULTING DEVfLOPMENT

THE BBN - LISP SYSTEM

REFERENCE MANUAL
APR I l 1969

(D.G. Bobrow, D.l. Murphy, W. Teitelman:)

Bolt Beranek and Newman Inc

CAMBRIDGE NEW YORK CHICAGO

RESEARCH

LOS A.NGELES

THE BBN - LISP SYSTEM

REFERENCE MANUAL
APRIL 1969

(D.G. Bobrow, D.L. Murphy, W. Teitelman:)

Bolt Beranek and Newman Inc

ACKNOWLEDGEMENTS

The design, construction and documentation of this system was
sponsored by the Information Processing Techniques section of
the Advanced Research Projects Agency. The basic design and
implementation of this paged LISP was done by D.G. Bobrow and
D.L. Murphy. L.P. Deutsch also participated in the program­
ming of the system and wrote the first versions of our LISP
compiler and editor. Many of the extended interactive features
are the work of Warren Teitelman and the existence of this ex­
panded revised edition of the reference manual is due primarily
to his perseverence and effort. The authors are grateful to
Rita Doherty and Karen O'Sullivan for their hard work and
patience through endless revisions of the text.

Copyright April 1969
by

BOLT BERANEK AND NEWMAN INC
50 Moulton Street

Cambridge, Massachusetts 02138

'BBN-LISP is a trade and service mark of Bolt Beranek and Newman Inc

TABLE OF CONTENTS

SECTION I
Introduction....................... 1.1

SECTION II
Using the LISP Subsystem on the 940 2.1

SECTION III
Data Types and the Organization of

Virt ual Memo ry •....•........................... 3 . 1

Literal Atoms ..•.......•.•........•....... 3.3
Numerical Atoms ...•........................ 3.4
Arrays ...•................................ 3.6
Shared LISP 3.8
Garbage Collector 3.9

SECTION IV

Function Types................................. 4.1

SECTION V

Primitive Functions and Predicates

Primitive Functions•
Predicates and Logical Connectives

SECTION VI

List Manipulation and Concatenation•.......

SECTION VII

5.1
5.9

6.1

Property List Functions••..•.... 7.1

SECTION VIII

Function Definition and Evaluation ...•.....•... 8.1

iii

TABLE OF CONTENTS (cant.)

SECTION IX
Editing Facilities

SECTION X

Editor Language Structure ...•............ 9.1
Attention Commands•.••......• 9.3
Modification Commands 9.9
Structure Changing Commands •...•..... 9.12
Printing Commands•........ 9.13
Edit Macros.............................. 9.15
Using the Editor ...•............•........ 9.18
Internal Organization of the Editor •...•. 9.20
Summary of Edit Commands 9.22

The Expanded Editor •....••..•.....•.•.... 9.26
The 'Location Routine•........•. 9.27
UP•...................•..•.......... 9 • 29
Insertion, Replacement and Deletion

Commands ..•.........................
Switch
Move•..........•.....•.•..•.•.....
Extract
Miscellaneous Commands
Sentence Format•.....•••.......
Summary of New Commands•..........•..

Ed ita•.......•..•....•.••..........
Using Edita on Compiled Functions

9.30
9.32
9.33
9.34
9.35
9.38
9.40

9.41
9.48

Atom, Array, and Storage Manipulation 10.1

SECTION XI

Functions with Functional Arguments •.......... 11.1

SECTION XII

Variable Bindings and Push Down List Functions.
The Push Down List and Interpreter•.
The Push Down List and Compiled Functions.
Push Down List Functions ..•.........•....
Push Down Handles•.....•..........•.•

iv

12.1
12.2
12.6
12.7
12.11

TABLE OF CONTENTS (cont.)

SECTION XIII

Arithmetic Functions

Integer Arithmetic •. •............• 13.1
Floating Point Arithmetic .•..........•.. 13.4

SECTION XIV

Input/Output Functions

SECTION XV

Opening and Closing Files
Input/Output Transmission ...••..••.....•
Input/Output Functions ..•.•.•..•..•....•
Input/Output Control Functions•.•..
Special Functions•......
Symbolic File Input•....•.....
Symbolic File Output (prettyprint) .•....

Debugging and Error Handling

Debugging Facilities•......•...
Breakl .•...•.............•...•........•.
Brkcoms•.......•..•..•....
Bre akmac ro s•..••...
Break Functions•.•......•..........

Error Handling in LISP•.......•..
Unbound Atoms and Undefined Functions ...•
Undefined Function Calls from Compiled

Code•.................
Inducing an Interrupt
"Real" Errors•...•................
Error Type s•..........•.....•.
Error Functions

SECTION XVI

The Compiler and LAP

The Compiler •...•.......................
Compiler Functions
Compiler Questions•.......

v

14.1
14.3
14.6
14.10
14.11
14.13
14.14

15.1
15.5
15.7
15.8
15.12

15.21
15.22

15.24
15.25
15.26
15.29
15.33

16.1
16.3
16.6

TABLE OF CONTENTS (cont.)

Compiler Structure
Open Functions
Affecting the Compiled Code
Changing the Binary Program Buffer

Assemble
Assemble
Assemble

Statements •....................
Macros •........................

Machine Instructions•.......
Compiler Conventions•..........
Compiler rllacros •........................
Lap Macros "

SECTION XVII

Using Forks and the Hybrid Processor in LISP

Fo r k s•.........
LISP Memory Allocation ..•...............
Hybrid Processor and Fork Functions ..•..

SECTION XVIII

Display Capabilities

Initialization '•
The Display Language•..............
Generating Functions•..............
Displaying Text•.•.....
Decoding Figure s ,•.........•
Low-Level Functions•

SECTION XIX

Advising

SECTION XX

Automatic Error Correction

Un b 0 un d At 0 m s •••••••••••••••••••••••••••
Undefined Functions •. , •.....•...••.......
Interaction on Parenthesis Errors .•.....
Interaction on Spelling Errors
Summary of Interaction by Modes
Nofix .•.....•...•••........•.......•..•.•

vi

16.10
16.11
16.12
16.15

16.16
16.17
16.19
16.21
16.26
16.32
16.35

17.2
17.4
17.12

18.2
18.3
18.7
18.11
18.15
18.18

19.1

20.5
20.7
20.8
20.10
20.11
20.16

SECTION XXI

Print structure

SECTION XXII

Miscellaneous

TABLE OF CONTENTS (cont.)

...............................

T irne ..•...........•..................••..
Breakdown
Timex
Enlarging the System (f1ushcode)
Dumping Circular List Structure (savecl).
Group •••••••••..•.•••••••.•••••.•••.••.•.
Arm

SECTION XXIII

Appendices

Converting LISP 1.5 Programs to BBN-LISP.
BBN-LISP Interpreter
Control Characters
Index to Variables•.....
Property Lists •....•.....................

SECTION XXIV

21.1

22.1
22.3
22.5
22.8
22.10
22.13
22.14

23.1
23.7
23.9
23.12
23.17

Index to Functions .•••..••...•••...••.•...... 24.1

vii

SECTION I

INTRODUCTION

This document describes the BEN-LISP system currently implemented

on the SDS 940. It is a dialect of LISP 1.5 and the differences

between IBM 7090 version and this system are described in Appendix

1 and 2. Principally, this system has been expanded from the

LISP 1.5 on the 7090 in a number of different ways. BBN-LISP is

designed to utilize a drum for storage and to provide the user a

large virtual memory, with a relatively small penalty in speed

(using special paging techniques described in Bobrow and Murphy

1967). Secondly, this system has been designed to be a good on­

line interactive system. Some of the features provided include

sophisticated debugging facilities with tracing and conditional

breakpoints, a sophisticated LISP oriented editor within the

system, and compatible compiler and interpreter. Utilization of

a uniform error processing through a user accessible function has

allowed the implementation of a do-what-I-mean feature which can

correct errors without losing the context of the computation.

The philosophy of the DWIM feature is described in Teitelman 1969.
In addition to the sUb-systems described in this manual, a com­

plete format directed list processing sUb-system (FLIP, Teitelman,

1967) is available within BBN-LISP. There is also an assembler for

inserting machine code sub-routines within BEIJ-LISP, and facilities

for using the CRT display and CALCOMP nlotter.

Although we have tried to be as clear and complete as possible,

this document is not designed to be an introduction to LISP.

Therefore, some parts may only be clear to people who have had

some experience with other LISP systems. A good introduction to

1.1

LISP has been written by Clark Weissman (1967). Although not

completely accurate with respect to BUN-LISP, the differences

are small enou~h to be mastered by use of tilis manual and on-line

interaction. Another useful introduction is given by Berkeley

(1964) in the collection of Berkeley and Bobrow (1966).

Changes to this manual will be issued by replacin~"sections or

pages which are faculty and reissuing the index~rr~ table of

contents at periodic intervals.

Bibliography

Berkeley, E.C. (1964) "LISP, A Simple Introduction" in Berkeley, E.C.
and Bobrow, D.G. (1966).

Berkeley, E.C. and Bobrow, D.G. (editors), (1966), The Programming
Language LISP, Its Operation and Applications, MIT Press, 1966.

Bobrow, D.G. and Murphy, D.L. (1967) "The Structure of a LISP
System Using Two Level Storage", Communications of the ACM,
V15 3, March 1967.

r·1cCarthy, J. et aI, LI~P 1.:3 Programmers Manual, MIT Pre ss, 1966 ~

Teitelman, H. "Toward a Programming Laboratory" in Walker, D. (ed)
International Joint Artificial Intelligence Conference. May, 1969.

Teitelman, W. FLIP, A Format,Lirected List Processor in LISP,
BBN Report "1967.

Weissman, C. (1967) LISP 1.5 Primer, Dickenson Press (1967).

1.2

SECTION II

USING THE LISP SUBSYSTEM ON THE 940

Call LISP by typing LIS; the system will respond P; then type ., --- -
when LISP finally responds READY, and types +, you are talking

to the LISP supervisor, usually called evalguote. The system

so obtained contains all of the basic functions and programming

and debugging aids described in the manual, including the LISP

compiler and FLIP. Typing SYSGET(T) to evalguote will return you

to this initial system at any time. Typing control-C will take

you instantly back to the LISP executive at any time except during

garbage collection. To get the effect of typing to a Lisp executive

eval, type E and a space followed by the expression to be evaluated.

This effect is achieved by the function e described in section 8.

When typing in to the LISP read function (used by evalquote and

most other programs), typing a control-Q will clear the input line
buffer erasing the entire line up to the last carriage return.

Typing control-A erases the last character typed in, echoing a t

and the erased character; it will not go beyond the last carriage

return. Pressing control-R while in the middle of a typein to

the LISP executive, evalquote,will clear the entire read buffer
of everything to the last +, and LISP will again type +. Several

other control characters are interpreted by the LISP input fork,

and their functions are summarized in Appendix 3.

2.1

SECTION III

DATA TYPES AND THE ORGANIZATION OF VIRTUAL MEMORY

LISP operates in a 2l-bit address space, though only that portion

currently in use actually exists on the drum. A portion of the

address space above that actually allocated for structures is

used for representation of small integers, as described below.

All data storage is contained within this virtual memory,

including literal atoms, list structure, arrays and compiled code,

large integers, floating point numbers, and pushdown list storage.

This virtual memory is divided into pages of 256 words. References

to the virtual storage are made via an in-core map which supplies

the address of the required page if it is in core, or traps to a

supervisory routine if the page is not in core. This drum super­

visory routine selects an in-core page, writes it back on the

drum if it has been changed, and reads the required page from the

drum. Closed subroutine references to an in-core word through

the map take approximately 40 microseconds. A reference to a

word not in core, which must be obtained from the drum, takes up

to 33 milliseconds, the drum maximum access time. It takes twice

as long if a page must be written out on the drum before the

referenced page can be read in.

Type Determination of Pointers

The virtual memory is divided into a number of areas as shown in

Fig. 1. As can be seen from this map of storage, simple arith­

metic on the address of a pointer will determine its type. We

chose to allocate storage rather than provide in-core descrip­

tors of storage areas, because the descriptors take up valuable

in-core space.

3.1

VIRTUAL
MEMORY

(MAPPED TO
DRUM)

t
CORE

MEMORY

'"

SMALL INTEGERS 0

LARGE INTEGERS

FLOATING POINT NUMBERS
HASH TABLE

..

t ATOM PNAME POINTER -----
t ATOM FN CELLS

-
t ATOM PROP LISTS

t ATOM VALUES

t CONTROL PDL

t PARAMETER PDL

t PNAME STRINGS
- -

'"
LIST STRUCTURE

COMPILED CODE
t AND ARRAYS

OCTAL
ADDRESS

'10 000 000

4 330 40~
-- ~

~.~
661 OOOI~

}H
655 ooq
651 000

5.11 000

554 000

530 000

470 000

40 000

FIG. 1 MEMORY ALLOCATION IN LISP

(/)

0:::
~

r~

Literal Atoms

A literal atom is constructed from any strirg of characters not

interpretable as an integer or a floating point number. When a

string of characters representing a literal atom is read in, a

search is made to determine if an atom with the same print-name

has been seen before. If so, a pointer to that atom is used for

the current atom. If not, a new atom is created~ Thus, as in all

LISP systems, a literal atom has a uni~ue representation determined

by its print name. Special syntactic characters can be included

in ,print names through the use of the quote mark, ~ (see the des­

cription of the function read).

Four cells (940 words) are associated with each literal atom.

These cells contain pointers to the print-name of the atom, the

function which it identifies, its top level or global value, and

its property list. Since atoms occur in only one part of the

address space, one can tell from a pointer (address) whether

or not it is pOinting to a literal atom.

Instead of having the four cells associated with each atom on the

same page, e'ach is put in a separate space in a position compu­

table from the pointer to the atom.

Separating value cells and function cells, for example, is useful

because most users will not use the same name for a global

variable as they will for a function. Therefore, if the four

cells were brought in whenever anyone was asked for, it is

likely that the other three cells would never be referenced. Yet~

they use up room in core which could be used for other storage.

Similarly, the print-name pointers associated with atoms are

needed during input and output, but rarely during a computation.

Therefore, during computation these cells are never in core.

* and initialized with value NOBIND, property list NIL, function
definition NIL. 3.3

Car of a literal atom usually contains the top level binding of

the atom. If the atom has not yet been set the value cell
contains the special atom NOBIND. Cdr of the atom is a pointer

to the atom property list, initially NIL. The PNAME cell contains

a pointer to a packed character table which contains the print_

name of the atom. The function cell contains NIL until a function

by that name is defined. It has been defined that car[NIL] and

cdr[NIL] are NIL, and cannot be changed. These latter two va.lues are
a significant convenience in programming.

Numerical Atoms

Integers

In LISP, most numerical atoms (numbers) do not have a unique re­

presentation; that is, a number of different pointers may reference

numbers with the same value. This implies that for comparison of

numbers, or for arithmetic operations, the values of the numbers

must be obtained. The values of floating point numbers and large

integers are stored in a "full word" space. Pointers to these

values are used in list structure.

However, we utilize the fact that not all addresses in the 21 bit

virtual address space can legitimately appear as pointers in
list structure. These "illegal" pointers are therefore used in

the context of list structure to represent "small" integers

directly, offset by a constant, as indicated in Fig. 1.

The input format for an integer is any string of digits, option­

ally preceded by a "+" or "_". Integers must have magnitude less

than 223. "Small" integers are those of magnitude below approxi­

mately 218 (an assembly parameter). A string of digits followed

by a "Q" will be interpreted as an octal number.

3.4

Floating Point Numbers

Floating point numbers and operations are available in BBN LISP.

They are stored in two contiguous 24 bit words in standard 940
format, in full word space. When creating an atom with read,

ratom or pack, LISP will recognize as a floating point number a

string of digits containing a decimal point. The letter liE"

(exponent of 10; i.e. yyExx=yy * 10xx) will also serve to desig­

nate a floating point number if preceded and followed by one or

more digits. The following are legal floating point input strings.

5. 5.0 5EO 5E-3 5.2E+6 · 3

The floating pOint/string conversion, and the floating point

arithmetic are performed by the POP's and BRS's available in the

940 system. Additional information concerning conversion and

prec1sion is available from the system documentation of these

routines.

The atom printing routine (used by prinl, prin2, prin3, unpack)

will call the system conversion routine when it encounters a

floating point datum. The output format is controlled by the

function fltfmt[n] described later.

3.5

Arrays

Arrays in BBN LISP have the following format.

! Lengtn -+ Block Oriqir!
Header Block Pointer Start

Reloc Start
(- Array Origin

Non-Pointer Area

~

Pointer Area

~

i<elocation Information

Typical Array

The HEADER BLOCK 1s four cells long and contains:

Cell: o Length of entire block=arravsize + ~.

1 Address of first word of nrotActert ~oint~rR,
relative to Array Origin.

2 Address of first worn of 'rploca.tion tnfoTT.'1ation,
relative to Block Origin.

3 Used for temporary storage during garbage
collection.

3.6

An array may contain both pointer and non-pointer data, separated

as shown. Pointer data is assumed to be one of the standard LISP

types, and the pointer data cells in all arrays are used as base

cells for tracing during garbage collection. The non-pointer

data, beginning in the fifth cell.of the array, is of unrestricted

type, and will not be used as trace pOinters during garbage

collection.

Relocation information contains the relative addresses of cells

in the array which are to be relocated when the array is used as

a compiled function, and is placed in core memory.

Examples:

1. Compiled code.

a. Machine instructions and unboxed numeric

literals are in the non-pointer area.

b. Other literals and variable name pointers are

in the pointer area.

c. Relocation information area addresses all

machine instructions whose address is within

the same program, e.g., branch instructions.

2. Array of lists.

All data would be in the pointer area; the other

areas would be of length 0.

3. Array of unboxed numbers.

All data would be in the non-pointer area; the

other areas would be of length 0.

List Structure

List Structure is created in list space as shown in the memory

map. Lists can contain pointers to all data types. As can be

seen from the map, list space and array space grow toward each

other. The total space available 1s an assembly parameter.

The space available in the 4-1-68 LISP system is 144K (K=1024)
SDS 94~ 24 bit words, which if used all for list storage would

provide 72K word~ of free storage.

Shared LISP

The LISP System as presently implemented contains nearly 90,000
words of compiled code constituting the miscellaneous functions,

Editor, Compiler, Break and other service packages. A sharing

mechanism enables one copy of this code residine; on the drum to

be used by all active users of LISP. This nractice results in a

considerable saving of drum space over that required if each user

had a separate, private copy of these functions. When a user starts

a LISP on his console, the virtual memory is set to contain all

the shared pages wtich constitute the basic system. In addition,

roughly 1,000 words of private list storage are also provided. As

the user adds his own private functions and data to the system,

private pages are assigned to contain them. Thus a running

system will typically contain some number of private pages and

the shared pages of the basic LISP system.

Fundamental to the proper operation of the sharing mechanism is

the requirement that no individual user be permitted to change

the contents of a shared page. Therefore, the shared pages in

the virtual memory are initially set to be read-only. This means

that the user can do car of the list structure on a shared page

but not !:Elaca. However, circumstances do arise when it is

3.8

necessary for the user to change his virtual memory in a place

where a shared page has been mapped. For example, the user may

set the top level value of an atom contained in the original

shared system, i.e. change the contents of the value cell. To

properly handle this situation, the LISP page turning routine

takes special note of any attempt to store data into a shared

page and makes a private copy of the page, assigning it to a new

place on the drum. This nrocedure is invoked automati~ally and

is invisible to the user.

Garbage Collector

The garbage collector is a routine which serves to locate cells

no longer in use by the running program and make them again avail­

able for storage. The various data snaces in LISP which may

need to be garbage collected in this way include lists, arrays

(and compiled-code), large integers, floating point numbers, atoms,

and print-names.

An automatic garbage collection is usually initiated whenever a

cell is needed in a space which has become exhausted. This hap­

pens most frequently when the allocated free list words have be­

come exhausted by repeated conses. A garbage collection will also

be initiated whenever print-name space is exhausted. The garbage

collection initiated for either of these reasons will reclaim

lists, numbers, atoms, and print-names. A garbage collection

initiated when array space is exhausted will collect these spaces,

and in addition, will compact array space. This means that unused

arrays will be eliminated, and still-in-use arrays will be moved .

so as to be contiguous.

When either large integers or floating-point numbers are exhaust­

ed, a special type garbage collection called number collection

3.9

is initiated. This operation identifies still-in-use numbers

by performing a linear sweep over all spaces. This may result

in the retention of some numbers which are no longer in use.

Therefore, if a number collection is unsuccessful in obtaining

free number cells, a regular garbage collection is initiated.

The user can initiate a regular garbage collection at any time

via the function reclaim described in Section 10. Note that the

depletion of atom space will not cause an automatic garba8e col­

lection. Instead, the error ATOM SPACE FULL is generated.

However, in this case, an explicit reclaim may be successful in

recovering atoms.

Allocation of List Space

Normally, a user will have in use for list structure only a small

portion of the total space available for this purpose. In order

to prevent scattering lists over many pages(which·increases access

time), LISP allocates and places on the free list only a portion

of the total list structure space~ A garbage collection will be

initiated whenever this allocated portion becomes exhausted,

whether or not additional space is available. After a garbage

collection, additional pages will be allocated to list space if

necessary to raise the total number of available free words to

the minimum, a parameter set bY,minfs (described in Section 10).

The two number spaces, atom space, and print name space have

fixed boundaries, and an error will be generated if additional

spnce is needed and none is available. N6te that list space

and array space are allocated from a common area. Array space

recovered by a garbage collection can be subsequently used by

list space because array space is compacted. However list space

is not and cannot reasonably be compacted, so acquiring all of

LISP's memory for list structure will prevent any further allocation

of arrays for compiled functions.

3.10

Shared Areas

The garbage collector takes special note of the shared areas of

virtual memory. Specifically, compiled functions and arrays re­

siding on shared pages are not traced for the purpose of identify­

ing list structures and numbers to be retained. Instead, a

separate list, created at the time that the shared system was

loaded, serves this purpose. ~r\is results in a consideratle

saving of time over what would be required if the garbage collector

had to trace through all 90,000 words of compiled code in the

shared system.

Initially, LISP memory is over half allocated to the shared portion

of the systems. If a particular user requires more than the re­

maining space for his program, it is possible to remove portions

of the shared system using the function flushcode (described in

Section 22). The portion flushed is automatically available for

allocation to array space. Atoms in this portion that are now

no longer used, e.g. function and argument names, can be reclaimed

via use of the function atomgc described in Section 10.

3.11

SEc'rION .IV

FUNc'rION TYPES

There are basically twelve function types in the BBN LISP System.

These twelve types reflect three characteristics. A
function may independently have:

1. its arguments evaluated or unevaluated,

2. a fixed number of arguments or an indefinite number of

arguments.

3. be defined by a LISP expression,

by permanent system code, or compiled

machine code.

Expressions used to define functions must start with either

LAMBDA, or NLA~BDA; indicating that the arguments of this func-

tion are to be evaluated, or not evaluated, respectively.

Following the LAMBDA or NLAMBDA may be a list of atoms (possibly

empty) or any literal atom (except NIL). If there is a list of atons

each atom in the list is the name of an argument for the function

defined by the expression. Arguments for the function will be

evaluated or unevaluated, as dictated by LAMBDA or NLAMBDA, and

paired with these argument names. This is called "spreading" the

arguments, and the function is called a spread-LAMBDA or spread­

NLAMBDA. If an atom follows the LAMBDA or NLAMBDA, this function

has an indefinite number of arguments.- If it is an NLArv'lBDA expres­

sion, then the atom is paired to the list of arguments (unevaluated)

of the function; that is, to cdr of the form in which this function

name was car. Such a function is called a Ilnospread" function.

If a LAMBDA is followed by an atom, each of its !2 arguments vlill

be evaluated in turn and placed on the parameter push down list.

The atom following the LAMBDA is bound to tIle number of arguments

which have been evaluated. A built-in function arg[m] returns

4.1

the value of th.e mth argument of this function from the push

down list. For m>n or m~o, arg[m] is undefined.

Functions defined by expressions can be compiled by the LISP com­

piler"", as described in the section on the compiler and lap. They

may also be written directly in machine code using the ASSEMBLE

directive of the compiler. Functions created by the compiler,

whether from S-expressions or ASSEMBLE dir~ctives. are referred

to as compiled functions. Built-in system cOded functions

are called subroutines. To determine the type of any

function fn, you can use the function fntyp[fn]. The value of

fntyp is one of the following 12 types:

EXPf{

EXPR*

FEXPR

FEXPR*

CEXPR

CEXPR*

CFEXPR

CFEXPR*

SUBR

SUBR*

FSUBR

FSUBR*

The types in the first column are all defined by expressions.

The * suffix indicates an indefinite number of arguments (i.e. an

atom following the LAMBDA or NLAMBDA). The types in the second

column are compiled versions of the types in the first column, ,as

indicated by the prefix Q. In the third column are the parallel

types for built-in subroutines. Functions of types in the first

two rows evaluate their arguments. The prefix ~ in the third and

fourth rows indicates no evaluation of arguments. Thus, for

example, a CFEXPR* is a compiled form of an NLAMBDA expression with

an atom following the NLAMBDA.

4.2

A standard feature of the BBN LISP system is that no error

occurs if a function is called with too many or too few arguments.

If a function is called with too many arguments, the extra argu­

ments are evaluated but ignored. If a function is called with

too few arguments, the unsupplied ones will be delivered as NIL.

This applies to both built-in and defined functions.

There is a function progn of an arbitrary number of arguments

which evaluates the arguments in order and returns the value of

the last (i.e., it resembles and is an extension of prog2).

The conditional expression has been generalized so that instead

of doublets it accepts n+l-tuplets which will be interpreted in

the following manner:

(COND

(PI Ell E12 E13)

(P2 E21 E22)

(P3)
(p4 E41))

will be taken as equivalent to (in LISP 1.5):

(COND

(PI (PROGN Ell E12 E13)
(P2 (PROGN E21 E22»

(p3 P3)
(P4 E41)

(T NIL)

This is not exactly true, but only because P3 is not evaluated

a second time, if the value is needed in the third item in the

4.3

second conditional expression. ':ehus, a list in a .£Q!!.9. wi th only

a predicate and no following expressions causes the value of the

predicate itself to be returned. Note also that NIL is returned

if all the predicates have value NIL. No error is invoked.

LAMBDA and NLAMBDA expressions also have implicit progn's; thus

for example

(LAMBDA (VI V2) (Fl VI) (F2 V2) NIL)

is interpreted as

(LAMBDA (VI V2) (PROGN (FI VI) (F2 V2) NIL))

The value of the last expression following LAMBDA (or NLAMBDA)

is returned as the value of the expression. In this example,

the function would always return NIL.

4.4

PRIr·1ITIVE FUNCrrIOHS AND PREDICArrES

Primitive Functions

car[x]

cdr[x]

caar[x] = car[car[x]]

cadr[x] = car[cdr[x]]

cddddr[x] =
[cdr[cdr[cdr[cdr[x]]]]

car gives the first element of a

list ~, or the left element of a

dotted pair~. lJominally unde­

fined for literal atoms, it

usually gives the top level

binding (value) of a literal

atom x. For the usually undefined

case of a number, its value is

the number itself.

cdr gives the tail of a list (all

but tne first element). This is

also the right member of a dotted

pair. If x is a literal atom,

cdr[~] gives the property list

of x. Property lists are usually

NIL unless modified by the user.

If ~ is a number, cdr returns NIL.

All 30 combinations of nested

cars and cdrs up to 4 deep are

included in the system. Levels 1,

2 and 3 are subroutines; 4 is

compiled. All are compiled open

by the compiler.

5.1

cons[x;yJ

cons[x;y] is placed

cons constructs a dotted pair of

x and~. If ~ is a list, ~ be­

comes the first element of that

list. To minimize drum accesses

the following algorithm is used

for finding a page on which to

put the constructeG LISP word.

1) on the page with y if Y is a list and there is room;

otherwise

2) on the page with ~ if x is a list and there is room;

otherwise

3) on the same page as the last~C?_~_~ if there is room;

otherwise

4) on a page in core if one is available with a specified

minimum of storage; otherwise

5) on any page with a specified minimum of storage.

The specified minimum is presently 20 LISP words in

both cases.

The user may effect the operation of cons with the following

function:

conspage[x] causes the page on which ~ re­

sides to be used for alternative

3 above instead of the result of

the previous ~~~~. If x is an

atom, alternative 4 or 5 will

be taken.

5.2

conscount[J

rplacd[x;y]

rplaca[x;y]

quote[x]

Returns the number of conses

since LISP started up.

This SUBR places in the

decrement of the cell

pointed to by ~ the pointer ~.

Thus it changes the internal list

structure physically,as opposed

to cons which creates a new list

element. This is the only way

to 8et a circular list inside of

LISP; that is by placing a

pointer to the beginning of a

list in a spot at the end of the

list. Using this function care­

lessly is one of the few ways to

really clobber the system. The

value of rplacd is x.

This SUBR is similar to rplacd,

but it replaces the address

pointer of ~ with~. The same

caveats which applied to using

£.2.!acd apply to rplaca. l1he

value of rnlaca is x. Rplaca

and rplacd of NIL are illegal.

This is a function that prevents

its argument from being evaluated.

Its value is x itself.

5.3

The conditional function of LISP,

cond, takes an indefinite number

of arguments, £1'£2' ... £k' called

clauses. Each clause £i is a list

(el e .) of n>l items. ~he
- l -nl

clauses are considered in sequence

as follows: the first expression

~li of the clause £i is evaluated

and its value is claSSi1"1ed as

false (equal to NIL) or true (not

equal to NIL). If the value of

~li is true, the expressions

e 2 . ••• e i that follow in clause
- l -n
c. are evaluated in sequence, and
-l

the value of the conditional is

the value of e ., the last ex-
-nl

pression in the clause. In par-

ticular, if n=l, i.e., if there is

only one expression in the clause

£i' the value of the conditional

is the value of ~li.

If e l " is false, then the remainder
- l

of clause £i is ignored, and the

next clause c.+l is considered. If
-l

no ~li is true for any clause, the

value of the conditional expression

is NIL.

This conditional expression form

gives the same value as LISP 1.5
for clauses of exactly two items

but allows additional flexibility.

5.4

This very useful function is used

to select a sequence of instruc­

tions based on the value of its

first argument x. Each of the

~i is a list of the form

(s. e l · e 2 · ... eke)
-J. - J. - J. - J.

where s. is the selection key.
-J.

If ~i is an atom the value of x

is tested to see if it is eq to

s. (not evaluated). If so, the
-J.

expressions el., ... e k . are eval-
- J. - J.

uated in sequence, and the value

of the selectq is the value of

the last expression evaluated,

i.e. ~ki.

If ~i is a list, and if any ele­

ment of s. is en to the value of
-J. =-::1..

~, then e l . to eke are evaluated
- J. - J.

in turn as above.

If ~i is not selected in one of

the two ways described then

~i+l is tested, etc. until all

the ~'s have been tested. If

none is selected, the value of

the selectq is the value of z.

z must be present.

5.5

prog2[x;y]

progn[x;y; ..• ;z]

An example of the form of a

selectq is:
(SELECTQ (CAR X)

(Q (PRINT Faa) (FIE X»
«A E IOU) (VOWEL X»

(Y (TRY-AGAIN X»

(COND«NULL X)NIL)

(T (QUOTE STOP»»

which has 3 cases, Q,(A E IOU)

and Y, and a default condition
which is a cond.

selectq compiles open, and is

therefore very fast; however it

will not work for lists, large
integers or floating point num­

bers since it uses a 24 bit open

compare (an open eq).

This function evaluates its

arguments in order, that is, ~l

then ~2 etc. It returns the

value of its first argument ~l.

Evaluates ~, then ~ and returns

~.

progn evaluates each of its

arguments in sequence, and re­

turns the value of its last

argument as its value. It is an

extension of prog2.

5.6

rpt[n;form]

go[x]

Evaluates the expression form

n times. Returns the value of

the last evaluation.

This feature allows the user to

write an ALGOL-like program con­
taining LISP statements to be

executed and is identical to the

~ in LISP 1.5. The first

argument is a list of program

variables. The rest is a se­

quence of (non-atomic) state­

ments (expressions), and atomic
symbols used as labels· for trans­

fer points. The value of a prog

is determined by the function

return. If no return is exe­

cuted, the value of the prog is

not guaranteed, but will not give

an error, if flow of control
"falls off the endtl.

go is the function used to cause

a transfer in~. (GO A) will
cause the program to continue at

the label A. A gQ can be used at

any level in a~. rr a g£ is
executed in an interpreted function

which is not a ~, it will be
executed in the last interpreted

~ entered.

5.7

return[x]

set[x;y]

setq[x;y]

setqq[x;y]

A return is the normal end of a

~. Its argument is evaluated

and is the value of the prog in

which it appears. If a return

is executed in an interpreted

function which is not a prog,

the return will be executed in

the last interpreted ~ entered.

This function sets the atom which

is the value of ~, to the value

of ~, and returns the value of ~.

This FSUBR is identical to set,

except that the first argument

is not evaluated.

Example: If the value x is £,
and the value of ~ is ~, then
set [x;y] would result in c

having value ~, and b returned~

setq[x;y] would result in x

having value b, and b returned.

In both cases, the value of ~

is unaffected.

Identical to setq except that

neither argument is evaluated.

5.8

Predicates and Logical Connectives

atom[x]

arrayp[x]

listp[x]

nlistp[x]

eq[x;y]

atom[xJ=T if x is an atom; NIL
otherwise.

is T if x is an array; NIL
otherwise.

is T if x is a nonatomic list­
structure, i.e., created

by one or more CONSes NIL

otherwise. Since arrays are

not atoms, and will fail an atom
test, listp should be used to

distinguish bona fide list

structure from atoms, numbers,
arrays, et ale

not[listp[x]]

The value of ~ is T if ~ and ~
are pointers to the same structure

in memory, and NIL otherwise.
~ is compiled open by the com­

piler as a 24 bit compare of

pointers. Its value is not

guaranteed T for equal. numbers

which are not small integers.

See ~.

eqp[x;y]

neq[x;y]

nill[]

null[x]

equal[x;y]

and[XI ; • • · xn ']

The value of egp is T if ~ and y
are pointers to tl1e same structure

,in memory, or if ~ and yare num­
bers and have the same value. Its

value is NIL otherwise.

The value of this function is T

if x is not ~ to ~, and NIL
otherwise.

Defined as (LAMBDA,NIL NIL)

eq[x;NIL]

The value of this function is T

if x and ~ are isomorphic, that
is, ~ and y print identically;
the value of equal is NIL

otherwise.

This function is an FSUBR and
can take an indefinite number

of arguments (including 0). Its
value is the value of its last

argument if all of its arguments
have non-null value, otherwise

NIL. and[]=T. Arguments past
the first null argument are not
evaluated.

5.10,

not [x]

memb[x;y]

member[x;y]

intersection[x;y]

union[x;y]

This function is also an FSUBR

and can take an indefinite number

of arguments (including 0). Its

value is that of the first argu-"

ment whose value is non-null,

otherwise NIL. or[J=NIL. Argu­

ments past the first non-null

arguments are not evaluated.

Same as ~; that is, eq[x;NILJ.

This function determines if x is

a member of list ~, i.e. if there

is an element of ~ eq to x. If

so it returns the portion of the

list starting with that element.

If not it returns NIL.

Identical to memb except that it

uses equal instead of eq to check

membership of x in ~.

This function returns with a list

whose elements are members of

both lists x and ~.

This function is entered with two

lists. It returns with a list

consisting of all elements

included on either of the two

original lists. If the same

item is a member of both original

lists, it is included only once

on the new li~t. It ismore_effi­

cient to make x be the shorter list.

5.11

append[x;y]

·.nconc[Ujv]

nconcl[lstjx]

SECTION VI

LIST MANIPULATION AND CONCATENATION

The value of list is a list of

the values of its arguments.

Returns a list of the value of

all arguments (same as LIST),

~ut deletes all NIL's at the end
of this list. Example:

(NLI~T T ~ NIL T Ntt N!t) =

(T T NIL T)

This function copies the top

level of list ~ and appends list

~ to this copy. The value is
the combined list. If x is NIL,

it returns -:L.

This function is similar to
append in effect, but· it causes

this effect by actually modifying
the list structure ~, and making
the last element in the list x
point to the list~. The value
of nconc is a pointer to the first

list ~, but since this first list
has now been modified, it is a
pointer to the concatenated list.
If ~ is TIlL, it returns ~ itself.

performs nconc[lstjlist[x]]. The

.~ will be on the same page as 1st.

6.1

tconc[x;p]

lconc[x;p]

attach[x;y]

This function provides an effi­

cient way for placing an item x

at the end of a list. This list

is the first item on ~, that is,

car[pJ; cdr[pJ is a pointer to

the last element in this list; ~

is placed on the end of the list

by modifying this structure, and

~ is placed on the list as an

item. The effect of this function

is equivalent to

nconc[car[p]; list[x]], with cdr[p]

updated to point to the last ele­

ment of the modified list.

This function is similar to tconc,

except that in this case x is, a

list. An entire list will be

tacked on the end of car[p], and

cdr[p] will be adjusted to be a

pointer to the last element of

this new combined list. Both

tconc and lconc work correctly

given null arguments.

This function attaches the element

x on the front of the list ~ by

doing an rplaca and an rplacd.

This will not work correctly if

~ is an atom. Thus it is similar

to cons, except that it modifies

the contents of the first element

of the non-null list ~.

6.2

remove[x;IJ

dremove[x;IJ

copy[xJ.

reverse[IJ

dreverse[IJ

subst[x;y;zJ

The function remove removes all

occurrences of x from list !,
gi ving a copy of 1 wi th all ele­

ments egual to ~ removed.

This function is identical to

remove, but actually modifies

the list ! when removing !, and
thus does not use any additional

storage.

This function makes a copy of the

list~. The value of copy is the
(~cation of thcl copied list. All

levels of x are copied.

This is a function to reverse the

top level of a list. Thus, using

reverse on

(A B (C D)) gives «C D) B A)

Identical to reverse but dreverse

destroys the list I while reversing

by modifying pointers, and thus

does not use any additional
. storage.

This function gives the result of

substituting the S-expression x
for all occurrences of the
S-expression ~ in the S-expression
z. Substitution occurs whenever

l. ·isequal to car of some· 'sub­

exp~ess~on of z or when ~ is

6.3

subst[x;y;z] (cont.)

dsubst[x;y;z]

sublis[x;y]

both atomic and eq to cdr of

some subexpression of z. For

example:

subst[A;B;(C B (X . B»)] gives

(C A (X • A»

subst[A;(B C);«B C) D B C)] gives

(A D B C), not (A D . A)

The value of subst is a copy of

z with the appropriate changes.

Identical to subst, but physically

inserts a copy of x for ~ in ~,

thus changing the list structure

z itself.

Here x is a list of pairs:

(Cul·v I) (u2 ·v2) (un'vn »

with each u atomic.
i

The value of sublis[x;y] is the

result of substituting each y
for the corresponding ~ in ~.
Copies the structure ~ with

changes.

6.4

lsublis[x;y] x is a list of pairs as for

sublis, except that the vi are
substituted as segments of a list,

not as items. For example,

sublis[((A Be»; (X A y)] = (X (B C) Y)
but

lsublis[((A B C»;(X A Y)] = (X Bey).
Note also that

lsublis[((A); (X A y)] = (X Y)

lsublis is destructive: it

physically changes the list

structure of y itself.

6.5

subpair[x;y;z;fl]

last[x]

nth[x;n]

length[x]

count[x]

Similar to sublis, except that

elements on Yare substituted for

corresponding atoms on X in ~.

New structure is created only if

needed, or if fl=T.

This function has as its value a

pointer to the last cell in the

list ~, and returns NIL if ~ is

an atom. i.e. if x=(A B C) then

last [x] = (C)

The arguments of nth are a list x

and a positive integer g. Its

value is a list whose first ele-

ment is the nth element of list

x. Thus if n = 1, it returns

the list x itself. If n = 2, -
it returns cdr[x] . If n = 3,
it returns cddr[x], etc.

If n = 0 it returns cons[NIL,x].

This function has as a value the

length of the list x. If x is

an atom, it returns 0.

Returns the number of LISP words

in the list structure x. Returns

o if x is an atom.

ldiff[x;y;z]

editnth[x;n]

li[n;x]

ri[m;n;x]

bi[m;n;x]

lo[n;x]

ro[n;x]

bo[n;x]

~ is a tail of ~, i.e., the result

of applying some number of CDRs to

x ldiff[x;y] gives a list of all

elements in ~ but not in ~, i.e.,

the list difference of x and K.
Thus (LDIFF X (NTH X (ADDI M)))

gives the first M elements of X,

(LDIFF X (MEMBER (QUOTE FOO) X»)

gives all elements in X up to the

first FOO.

If z is not NIL the value of ldiff

is effectively

nconc[z;ldiff[x;y]], i.e. the list

difference is added at the end of z.

similar to the function nth except

n may be positive or negative. If

n is positive, car of value is nth

element of x. If n is negative,

car of value is nth element of x

counting from the end. i.e.,

editnth[x;-l] = last[x]. If n is

too large (or too small), editnth

generates an error. Note that

nth does not.

equivalent to executing the edit

command (LI N) when x is the current

level list.

equivalent to corresponding edit

command

makelist[n;m] makes a list of length m consisting
of the contents of cells n, .•• n+m-l.

For example, if FOO is an array
pointer,
(MAKELIST (PLUS (LOC FOO) 4) 3)
is a list consisting of the first
three elements in the array FOO.

6.8

SECTION VII

PROPERTY LIST FUNCTIONS

put[x;y;z]

remprop [x;y]

prop[x;y;u]

changeprop[x;propl;prop2]

This function puts on the pro­

perty list of ~, the label ~

followed by the property~. The

current value of ~ replaces any

previous value of ~ with label ~

on this property list. Its value

is z.

This function removes all occur­

rences of the property with label

~ from the property list of x.

The function prop searches the

list x for an item that is equal

to~. If such an element is

found, the value of prop is the

rest of the list beginning

immediately after that element.

Otherwise, the value is u[],

where ~ is a function of no argu­

ments. Its effect is similar to

memb and member, and they are

more efficient when usable.

Changes name of property propl

to proo2.on atom x, (does not

affect the value of the property).

Value is x. If propl not found,

value is NIL.

7.1 .

get[x;y]

getp[x;y]

getl[x;y]

deflist[x;p]

This function gets from the list

x the item after the atom ~ on

list x. If ~ is not on the list

~, this function returns NIL. For

example, get[(A B C D);B] = C.

This function gets the ~roperty

with label ~ from the property

list of x.

NOTE: Both getp and ~ may be

used on property lists. However,

since getp searches a list two at

a time, the latter allows one to

have the same object as both a

property and a value. e.g., if

the property list of ~ is

(PROPl A PROP2 B A C)

then get[x;A]

but getp[x;A]

= PROP2,

= c.
~ is a list of properties. getl

searches the property list of ~,

two at a time, and returns the

property list as of the first

property on ~ that it rinas, e.g.,

with above property list,

getl[x;(PROP2 PROP3)]=(PROP2 B A C).

This function is used to put

items on property lists. Its

first argument ~ is a list of

two element lists. The first of

each is a name. The second ele­

ment is the value to be stored

after the property ~ on the pro­

perty list of the name. The

second argument £ is the property

that is to be used.

7.2

add[x;y;zJ

assoc[x;aJ

sassoc[x;y;uJ

This function adds the value z to

the list appearing under the

property ~ on the atom x. If x

does not have a property ~, the
effect is the same as

put[x;y;list[zJJ.

If a is a list of dotted pairs,
then assoc will produce the first

pair whose first item is eq to x.
such an item is not found, assoc

will return NIL.

The function sassoc searches ~,

which is a list of dotted pairs,

for a pair whose first element is

equal to x. \ If such a pair is

found, the value of sassoc is this

pair.

Otherwise, the function u of no

no arguments, if given, is taken

If

as the value of sassoc. Otherwise,

its value is NIL.

Note: Many atoms in the system already have property lists, usually

for use by the compiler. Be careful not to clobber their property
lists by using rplacd.

1.3

SECTION VIII

FUNCTION DEFINITION AND EVALUATION

getd[x]

putd[x;y]

. putdq[x;y]

movd[from;to;copyflgl

This function ~ets the ~efinition

of the function whose name is

the value of x. If x is not a

defined function, the value of

getd[x] is NIL; if x is a machine

code function, the value is a

number.

putd places the value of ~ into

the function cell of the atom

which is the value of x. This

is the basic way of defining

functions. putd is mnemonic for

put ~efinition on~. The value of

putd is the definition (value of

~) .

':Phis function is similar to putd,

but both arguments are considered

quoted, and its value is x.

Moves definition of from to to

i.e., redefines to. If copyflg=T,

a cony of the definition of from

is used.

8.1

fntyp[fn]

define[xJ

This function returns NIL if

fn if not the name of a de-

fined function, or a function defi­

nitiQn. Otherwise fntyp returns one of

the following as defined in the

section on function types:

EXPR

EXPR*
FEXPR

FEXPR*

CEXPR
CEXPR*
CFEXPR

CFEXPR*

SUBR

SUBR*
FSUBR

FSUBR*

The prefix F indicates unevalu­

ated arguments; the prefix C in­

dicates compiled code; and the

suffix * indicates an indefinite

number of arguments.

The argument of define is a list.

Each element of the list is it­

self a list containing two

or more items. In a two-item

list, the first item of each ele­

ment of the list is the name of a

function to be defined, and the

second item is the defining

LAMBDA or NLAMBDA expression. In

longer lists, the first item

is again the name of the function

to be defined. The second is the

LAMBDA list of variables and the

remainder of the lists are forms for

evaluation. As an example, consider

the following two equivalent

8.2

expressions for defining the

function null.

1) (NULL (LAMBDA (X) (EQ X NIL»)

2) (NULL (X) (EQ X NIL»

define will generate an error on

encountering an atom where a

defining list is expected.

If dfnflg=T, its normal setting,

an attempt to redefine a function

fn will cause define to print the

message (fnREDEFINED) and to
save the old definition of fn

using savedef before redefining

it.

Note: define will operate correctly if the function is already

defined and broken, advised, or broken-in.

savedef[fn]

unsavedef[fn;prop]

Saves the definition of fn on its

property list under property

EXPR, CODE~ or SUBR depending on
its type. If fn is a list, savedef

operates on each function in the

list.

Restores the definition of fn

from~. If ~ is not given,

unsavedef looks under EXPR, CODE,
and SUBR, in that order, before

giving an error. If dfnflg=T, the

current definition of fn is

saved using savedef. Thus one can
use unsavedef to switch back and

forth between two definitions of
the same function, keeping one

on its property list and the

other in the function cell.

8.3

defineq[x; ..• z]

eval[x]

evala[x;a]

If fn is a list, unsavedef operates

on each function in the list.

This FEXPR is closely related to

define. However, it takes an

indefinite number of arguments

which are not evaluated. Each of
the arguments must be a list, of

the form described in define.

Using defineq instead of define
allows one to eliminate two pairs

of parentheses in writing func­
tions to be defined for loading

with the function load.

Since defineq calls define, dfnflg

affects its operation as well as
that of define.

eval evaluates the expression x

and returns this value.

This is the regular eval from

7094 LISP. Its first argument is

a form which is evaluated by us­

ing the values obtained from ~,

a list of dotted pairs. That is,

any variables appearing free in

~, that also appear on ~, will be
given the value indicated on a.

8.~

evalr[x;a]

e[x]

apply[fn;args]

nargs[fn]

arglist[fn]

Same as evala except with list a

reversed. Used by evala.

This FEXP,R is defined as eval;
however, it is shorter and it re­

moves the necessity for the extra

pair of parentheses for the list

of arguments for eval. Thus,

when typing into evalquote one

can simply type ~ followed by

whatever one would type into eval
and have it evaluated.

apply applies the function fn to

the arguments args. i.e. the

arguments of fn, args, are not
evaluated but given to fn direct­
ly.

Returns NIL if fn is not a func­

tion, and the number of arguments

of fn if it is. It returns 1 for

functions of type

EXPR*, FEXPR*, CEXPR*, CFEXPR*,
CSUBR* and CFSUBR*.

fn is either the name of a function

or its definition. Value of arglist

is the list of names of the arguments,

or in the case of a non-spread function,
the single atom that is the name of

the argument. By convention,arguments

to all functions of type SUBR are

,!!, y, and,!!, in that order. For func­

tions of type SUBR*, FSUBR, FSUBR*,

or undefined functions, arglist causes

a helpable error.

8.5

arg[n]

setarg[n;v]

This function works with a func­

tion of type EXPR* or CEXPR*.

It returns argument g of that

function. It is undefined if

n~o or n~m wherem is the number

of arguments bound.

Sets argument g of an EXPR*

function to v.

8.6

SECTION IX

THE LISP EDITOR

The LISP editor allows rapid, convenient modification of list

structures.' Most often it is used to edit function definitions

(often while the function itself is running) via the function

editf, e.g. EDITF(APPEND). However, it can be used to edit vari­

ables, via editv, property lists, via editp, or arbitrary ex~

presSions, viaedite. (Editf, editv and editp all use edite, see
p. 9.18). It is another important feature which allows good on­

line interaction in the BBN-LISP system.

Editor Language Structure

Let us take a concrete example of a list (not necessarily a func­

tion definition) to be edited. Suppose we are editing the follow­

ing incorrect definition of the append function:

(LAMBDA (X) Y (COND «NUL X) Z) (T (CONS (CAR)

(APPEND (CDR X Y»»».

At any given moment, the editor's attention is confined to a

single list (generally a subcomponent of the original list being,

edited), which it will print when given the command P. To avoid

printing of confusing detail, sublistsof sUblists will be printed

simply as &. Thus:

*p

(LAMBDA (X) Y (COND & &».

where * indicates that this line was typed by the user.

9.1

Only the list on which attention is currently focused may be

changed. Commands thus fall naturally into four classes: moving
around in the list structure; making changes in the current list;
printing parts of the list being edited; and entering and leaving

the editor.

Many commands use the convention that an integer designates a

sublist of the current list· For example, if an integer alone

is typed, attention is focused on the designated sub list of the

current list.

Thus:

*2
*p

(X)

The converse command is the number 0, which causes the current

list to revert to its former state. For example, starting again

with the list at the beginning of the section:

*3 P
Y

*0 P
(LAMBDA (X) Y (COND & &».

Note the use of several commands on a single line. In BBN LISP,

a carriage return is printed automatically whenever a right paren­
thesis is typed which causes the parenthesis level to become a

zero. Therefore, a non-atomic command is necessarily the last
command on its line. No commands on a line are performed until
the user or the system types a carriage return.

9.2

In the remaining examples, unless mentioned specifically, it is

assumed that the state of the edit is that which existed at the

end of the previous example. As above, lines typed by the user

are prefixed with an asterisk.

Attention Commands

The two fundamental commands for moving araund the structure have

already been mentioned: a positive integer g, to examine the nth

sublist, and 0, to revert to the superlist. If n is a positive
integer, then -n examines the nth sublist of the-current list

starting from the end and counting backWards, i.e. -1 examines

the last sublist of the current list.

A more drastic command is t, which clears the editor's memory of

descent through the structure and reestablishes the top level of

the entire list structure being edited as current. Thus:

*4 2 1 t P

(LAMBDA (X) Y (COND & &».

A command similar to n is (NTH n) which caused the list starting

with the nth element of the current list to become current. Thus:

*(NTH 3)
*p

(Y (COND & &».
*0 P

(LAMBDA (X) Y (COND & &».

9.3

(NTH -n) may also·be used, with the expected result:

*(NTH -3)
*p t
«x) Y (COND & &»

The command (F e), where ~ is any S-expression, searches for an

instance of e in the current list, and then acts like NTH, so

that for example:

*(F Y)
*p

(Y (COND & &».

A more thorough (and time-consuming) search is provided by (F e T)

which searches through the entire structure. Thus:

*t(F Z T)
*p

(Z)
*~ p

«NUL X) Z)

*0 p

(COND (& Z) (T &»
*0 p

(LAMBDA (X) Y (COND & &».

9.4 .

One more variation is provided by (F en), which finds the nth

occurrence of ~ anywhere in the structure. The search is done
in printout order, so for example:

*t (F X 1)
*p

(X)

*t (F X 2)
*p

(X)

*0 P
(NUL X)

*t (F X 3)

*0 P
(CDR X Y)

Both the (F e T) and (F e n) commands will automatically ascen,j to

higher level expressions if the structure ~ is not found in the

current list. The entire search is done in printout order,

starting with the current list, and, if ~ is not found, proceeding
to those portions of higher level lists that would be printed

subsequently to the current list. Thus:

* 4 2 P

«NUL X) Z)

*(F X T)
*p

(X)
*(F CONS T)

*P
(CONS (CAR) (APPEND &»

9.5·

*~ P
(T (CONS & &»

*(P NUL T)
(p NUL T) ?

The question mark typed after the command in error is the editor's

all-purpose comment: it simply means something is wrong with the
indicated command. In this case, it is because the search failed

to find a NUL following the current position, although of course a
NUL does appear earlier in the structure.

Another useful variation of the find command is provided by
(F eN), to be distinguished from (F en), n a number. Here N

means ~ext, and the search skips over the first element in the
current list, and then proceeds exactly the same as (F e T).
Thus the command (F e 2) will produce the same results as the
command (F e T) followed by WeN). The find-next command is
useful for cycling through a large structure and examining and/or
changing several instances of the same expression. It is also
extremely useful in conjunction with edit macros, which are

explained later.

For all of the four variants of the F command described, the
argument e need not be a literal S-expression. The symbol! can

be used to match any single element of a list; the symbol -- to
match with the rest of any list. Thus in our example,
(F (NUL &) T) will find (NUL X) and (F (CDR --) T) will find
(CDR X Y), as will (F (CDR & &) T), but not (F (CDR &) T).

9.6

These two special symbols can be useful in finding a particular
expression which is similar to many others. For example, if

there are many places in a program where the variable X is set,
(F SETQ T) may not find the expression you are looking for, nor

perhaps will (F (SETQ X &) T). It may be necessary to type

(F (SETQ X (LIST --» T) to find the correct expression. However,

the usual technique in this case is to pick out a unique expression
or atom which occurs just prior to the desired expression and

then do" two F commands. This "homing in" process seems to be more
convenient than ultra-precise specification of e.

For all find commands,if ~ is atomic, it will be the first element

of the current list after the find command has (successfully) oper­
ated. If e is nonatomic, the corresponding structure will be the

current list. To insert before or after this expression, or to
delete or replace it, the command UP, described on p. 9.29, can be
used to make the current list list be the first element in the next

higher list.

The find commands can be used on a list structure that is circular
through a ~ chain by appropriately setting the free variable
maxlevel. This variable determines how "deep" the editor will
search before abandoning a given structure, where the depth of a

structure is the number of unpaired left parentheses preceding it
in a printout. Maxlevel is initially set to 100 .

An abbreviated form exists for doing the usual find command (F e N).

Typing F e (with no parentheses) achieves the same effect. After
the F is typed in the editor expects a next expression to be typed

in as the search goal. See 9.26 for a more complete explanation.

9.7

Three facilities are available for saving information relating to

the current state of the edit and later retrieving it. At any

stage i I the edit, a mark can be made and later returned to. The

commands are MARK, which marks the current state for future

referen·~; +, which returns to the last mark without destroying

it; and ++, which returns to the last mark and forgets it. For
example:

*t 4 2 P

«NUL X) Z)

*MARK t (F CONS T)
*p

(CONS (CAR) (APPEND &))

*t P
(LAMBDA (X) Y (COND & &))

«NUL X) Z)

+ ?

This last example demonstrates another facet of the error recovery

mechanism: to avoid further confusion when an err6r occurs, all

commands on the line beyond the one which caused the error are
forgotten.

Frequently one wants to move or copy a sub list from one place in

the structure being edited to another. No command for performing.

this particular operation is provided. However, it is possible to

set a variable to the current list, with a command (S v), or to

9.8

the nth sublist of the current list with (S v n), !2 positive or

negative. The! command described below can then be used to treat

this value exactly as though it had been typed in literally. Thus:

*+ (S EL2 2)

will result in setting the value of EL2 to the sublist (X).

Modification commands

Just as most general text editors contain INSERT, REPLACE, and

APPEND commands, the LISP editor provides facilities for these

three basic operations. To insert the S-expressions ~l···~m
before sublist n of the current list, one simply gives the

command (-n e l em)' thus:

9.9

*t (F CAR T)
*p

(CAR)

*(-1 CRR)
p

(CRR CAR)

To rep'lace the gth sublist with ~l ... ~m' one gives the command

(n el ... e~), for example:

*+(F NUL T)
*p

(NUL X)

*(1 NULL IS)
*p

(NULL IS X)

To append the elements e1 ... em to the end of the current list, one

gives the command (N ~l ••. ~m).

*(N THIS LIST)
*p

(NULL IS X THIS LIST)

Deletions may be accomplished by using the replace operation with
no new S-expressions specified: to restore the list we have just

created to the state in which we presumably want it, we can say:

9.10

*(5)
*(4)
*(2)

*p

(NULL X)

Deletions should generally be made from back to front, since other­

wise the indices of later sub lists will change as earlier ones

are deleted, e.g. the above sequence of commands given in front
to back order would have been

*(2)

*(3)
*(3)

Very often one wants to make a simple change in a list structure,

without wanting to know exactly how to trace down the structure

to the point where the emendation is to be made. The command
(R e l e 2) replaces all occurrences of ~] by ~2 in the current

list and all its substructure. This is done using a variant of

subst called dsubst that runs faster, and physically replaces the

old structure in the list,~ya copy of the new structure. For
example :.

*t(R Z Y)
*4 2 P

«NUL X) Y)

A mechanism by which lists saved with the S command may be use~,

is (I c e l , ~ .. en)' 'which is equivalent to
([atorri[c]-+c; T*eval[cJJ evai[e1 J ... eval[enJ).

9.11

If EL2 has been set to (X) as shown above:

*t (I (CAR (QUOTE (F») (CAR EL2) T)
*p

(X)

because the I command is equivalent to (F X T).

Structure changing commands

The commands presented in the last section do not allow convenient

alteration of the list structure itself, as opposed to components

thereof. Consider, for example, the list (A B (C D E) F G). We

can remove the parenthesis around (C D E), which is the third

sublist, by (La 3) (this stands for take Left paren Out). This

produces the list (A BCD E). La simply deletes all elements of
the original list beyond the one specified. If we want to preserve

them, we could say (BO 3), take Both parentheses Out, which pro­
duces (A BCD E F G). Conversely, if we want to take the partial

list beginning at B and subordinate it one level, making
(A (B (C D E) F G», we can say (LI 2), i.e. put a Left parenthe­

sis in before sublist 2 (and a matching right parenthesis at the

end of the list). Again, if we want the matching right parenthe­

sis inserted somewhere other than at the end of the list (after

the F, for example), we can say (BI 2 4), put Both parentheses

In around elements 2 through 4, which results in the list
(A (B (C D E) F) G).

Two other operations of this sort are also possible. If we wanted
to bring only the D and E up to the level of the A B F G, and

leave (C) as a sublist, we can use (RI 3 1), namely move the Right

paren at the end of sublist 3 In to sub list 3 after element 1

9.12

of sub1ist 3. This will produce (A B (e). D E F n). ~ related
operation is (RO 3), which means move the Right parenthesis of

sub1ist 3 Out to the end of the list, producing (A B (C D E F G».

Finally, if one wants to move a right narenthesis only. nart-
way out, for example to produce (A B (e D E F) G), this can be

accomplished by (RO 3) followed by (RI 3 4).

Printing commands

We have already encountered the command P, which prints the current

list showing only one level of nesting. To print a selected sub­

list in the same way without changing the state of the edit,

(P n) is used: for example,

* t P
(LAMBDA (X) Y (COND & &»

*(P 2)

(X).

Furthermore, one may examine the gth sublist (or, if n=O, the

current list) to ~ levels of nesting by using (P n m). The con­

vention is that m=3 yields the usual format: several illustrations

are given below:

*(p 0 1)

&
*(p 0 2)

(LAMBDA & Y &)
*(p 0 3)
(LAMBDA (X) Y (COND & &»

*(p 4 2)

(COND & &)
*(P 4 4)

(COND «NUL X) Z) (T (CONS & &»).

9.13

Another command which is available for examining the environment

during editing is (E e), which simply evaluates e and prints its value
without disturbing the state of the edit. This is done under
errorset, 'so that one can actually try to run the function which
one is editing. It should be mentioned that changes are made as

soon as they are typed in, so that the state of the definition of
a function (which is what is usually being edited) is always

exactly what one expects. Typing E e (without parentheses) also
causes e to be evaluated.

The command (E e T) causes the expression ~ to be evaluated without
being printed. It is primarily useful for defining macros •.

The command PP causes the current list to be printed in a pretty

form using printdef, a subordinate function of prettyprint (see 14.14).
PP is equivalent to the two commands (8 FOO) (E (PRINTDEF FOO) T).

This completes the discussion of the commands built into the editor.
The following section on Edit Macros describes ways of augmenting

this set. It should be emphasized that all user inputs are

interpreted as edit commands, and have no bearing on any external
functions. The connnand (F X T) will not be affected by the

existence of a user function named F. The work done by the'commands

LI,LO,RI,RO,BI, and BO happen to be carried out by edit functions of
the same name; but as far as the user is concerned, he is not calling

these functions when he types (LI 2), but merely giving the

editor a command which in some mysterious way it carries out. The

only way the user can call a function explicitly is to use either

the E or I command, (or to use a macro which uses an E or an I
command)

9.14

Edit 'Macros

In editing a set of functions, to make a consistent change in a nUIT­

ber of places, one must give the same sequence of commands a number of

times. For example, to replace all occurrences of calls to

(Faa &) by calls to (FIE & T), (where & stands for any expression),

one would type

(F Faa T)

(1 FIE)
(N T)

as many times as the replacement was necessary. To save this

typing, one can define an edit Macro, called RF for example, by

typing

(M RF (F Faa T) (1 FIE) (N T»

Then each time you type RF the sequence of commands, following the

RF in the definition list, will be executed. If RF were made the

last command in the list, the sequence would be repeated until FDa
could not be found, that is if RF were define4 by

(M RF (F FOO T) (1 FIE) (N,T) RF)

The simple edit macro described above cannot be given any argu­
ments, and will always do exactly the same thing. One can also

define macros which use parameters. For example, to define a

macro to switch two items in a list, onewould type

(M (SW) (A B) (S SWI A) (S SW2 B) (I B SWI) (I A SW2»

9.15

where the list of argument names (A B) immediately follows the

macro name, SW, which is listed to indicate that SW will always be
used with arguments. To make this macro, SW, switch items 2 and 7

in a list, one would type

(SW 2 7)

This command would substitute 2 for A, and 7 for B, in the macro

definition following the argument list (A B); and then execute

that sequence of commands with the substituted values. In this
case, the sequence would be

(S SWI 2)
(S SW2 7)

(I 7 SWI)
(I 2 SW2)

An example of a macro which calls a function is

(M (FDO) (N FN) (NTH N) (8 FIE 1) (I 1 (FN FIE»)

Thus typing (FOD -1' CADR) would cause the last element in the
current list to be replaced by CADR of that element by executing

the following sequence of edit commands:

(NTH -1)
(S FIE 1)

(I 1 (CADR FIE»

Note that a macro with no parameters is called by typing an atom

9.16

(its name); a macro with parameters must be called by using its
name as the first element of a list, followed by its lfarguments"

which are substituted for the parameters of the macro in its defi­
nition. A macro with arguments may have a fixed or indefinite
number of arguments parallel to the FEXPR and FEXPR* function
types. A macro with a fixed number of arguments, such as SW, has,
following its name in the macro definition, a parameter list con­
taining the argument names. The arguments in the call to the
macro are substituted in the macro definition before executing that
sequence of editor commands. A macro with an indefinite number of
arguments is indicated by having an atomic parameter list following
its name in its definition. In this case, the entire list of
arguments is substituted for this atom in the macro definition, and
then the sequence of editor commands is executed.

All edit macro definitions are kept on a free variable called
EDITMACROS. New definitions supercede old ones, or the value
of EDITMACROS itself can be edited to delete, replace, or
change macro definitions. Purely local macros, i.e., those that
will not be used after the current editing job, can be defin~d
using D, for define, in place of M. These will not be saved on
EDITMACROS, but their definitions will, temporarily, supercede any
macros of the same name that appear on EDITMACROS.

The macro feature allows the user to e'B:"sily expand the repertoire
of edit commands, and thus "program" the editor. Note that entirely
new editing operations can be implemented by defining an appropriate
function, and then introducing it to the editor's vocabulary via ~
macro which calls the function. For example, if no find feature

9.17

were provided in the editor, the user could define a function
FIND, and a macro

(M F (X Y)(E (FIND X Y) T)}

for doing the job.

Using the editor

As presently interfaced to the outside world, the editor consists
of a basic function for editing S-expressions, edite, and three
special NLAMBDA functions for editing values, definitions, and
property lists, respectively editv, editf, and editp. Thus,

*EDITF(APPEND)
EDIT

would be used to begin the edit which ·has been used as the example.

When editing is complete, OK will cause edite to exit with
the edited list as value. The three interface functions all re­
turn as value the atom being edited, and place the edited

expression in the appropriate place.

The editor can be used as a subroutine by giving edite a list
of commands to be executed as its second argument. Each command

will be exe.cuted and, if no errors occur, the edited list returned
after their completion. Otherwise, edite goes into normal on-line
mode and waits for user" commands. Editf, editv, and editp all
accept an indefinite number of commands to be interpreted in this
fashion: they are each non-spread NLAMBDA type functions, where
CAR of their argument is the function/property list/value to be
edited, and CDR the (optiQnal) commands to be supplied to El)ITE.

Edite uses editl, which takes the edit push-down list, L, as its

argument, executes commands until an OK is reached, and then

returns the new L as its value.

9.18

The user can also write his own editing programs which directly
call editcom, the function that does the work in the editor. The

workings of this function are explained below under Internal

Organization of Editor.

Since all input and output commands in the editor specify the file

as teletype~ it is possible to edit a function when input and/or

output standard files are other than tne teletype.

A complete example, starting with the erroneous definition given
at the beginning of Section IX and ending wi th the correct defini­

tion of append, is given below.

+EDITF(APPEND)

EDIT

*(P 0 100)
(LAMBDA (X) Y (COND «NUL X) Z) (T (CONS (CAR) (APPEND

(CDR X Y»»»
*(3)
*(2 (X Y»
*p

(LAMBDA (X Y) (COND & &»

*(R NUL NULL)
*(R Z Y)
*(F' CAR T)

*(N X)

*t(F CONS T)

*3 (RI 2 2)

*p

(APPEND (CDR X) Y)

*t(p 0 100.)
(LAMBDA (X Y) (COND «NULL X) Y) (T (CONS (CAR X) (APPEND

(CDR X) Y»»)
*OK

APPEND
-+-

9.19

In' all fairness, it should be admitted that in this particular

instance it probably would have been faster to type the function

in again. However, LISP functions are typically three times as

big as append and have only one or two errors. It has been found,

after over a year of use at BBN and Berkeley, that the editor just
described does materially decrease the amount of time required
to produce working LISP programs.

Internal Organization of the Editor

The work of the editor is done by the function edit com, which

interprets and executes a single edit command and editcoms which

takes a list of commands. editl does the reading from the teletype,

and transmits commands to editcom under errorset protection, until

an OK command is given. All ~rrors and control-R's are caught by
this errorset, and cause editl to print a "?".

Editcom accepts a single command as an argument and uses as free
variables L, M, and EM which are normally bound in editl. If the

user wishes to define a function which calls editcom or editcoms.
directly, these variables should be bound in that function. Their

interpretation is:

L is the edit push-down list. It is initialized to l~st of
the expression being edited. (CAR L) is always the current
list being examined; (CADR L) is the list you would be examining
if you gave a 0 command, etc. Each operation which descenas
to a lower structure, such as the F command or a number,
causes the higher level structure(s) to be attached at the
front of L. Operations which ascend, such as 0, or!t,
take things off the front of L.

M isa list of marks made by the MARK command. It need not be
bound if marks are not used. Toe command MARK simply performs
(SETQ M (CONS L M», the command + does (SETQ L (CAR M».

9.20

EM contains the list of editmacros being used. It is initialized
to the value of EDITMACROS. M commands change EM and
EDITMACROS, D commands just change EM. EM is searched when­
ever an unfamiliar command is encountered.

When editcom is given a command that it does not recognize, it

searches EM using assoc on the command, if atomic, or ~ of the
command if a list. If the command has been defined as a macro,
editcom performs as described earlier. Otherwise, editcom
calls editdefault, a function of one argument, which is currently

defined as (LAMBDA (C) (ERROR C». This causes an error

which is caught by the errorset in editl However, editdefault

can be redefined by the user. In fact, edit default has been
redefined to implement some of the operations of the expanded
editor described below. For example to treat all unrecog-

nizable forms as expressions to be evaluated ala break, one would
define editdefault as (LAMBDA (C) (PRINT (EVAL C»). If any
error occurred in the evaluation, it would still be caught by the
errorset in editl. Another possibility might be to have editdefault
search the property list of the indicated command to look for a
macro definition, or treat the command as a function call with L
as its argument, etc.

9.21

A Summary of the Editor Commands

Atoms

p

pp

t

MARK

F

Makes nth element be current level list

Makes nth element from end be current level list

Makes previous level be current level list

Prints current level list to· depth 3

~rettyprints current level list
Makes current list be the top level list

Marks this point

Makes current level be last marked list

Makes current level be last marked list and forgets mark

equivalent to (F X N) where X is the next expression

read, e.g. *F COND

E equivalent to (E X) where X is next expression read,
e.g. *E (EDITV FOO)

OK Exit from editor

Other atoms are given to editdefault.

9.22

Lists

(S name)
and

(S name 0)

(S name n)

(R old new)

(P n m) n~O

(F e)

(F e T)

(F e N)

(F e n) n~l

Replace element !! by the k elements

::1 ' · · · , ~k· Deletes the nth ele-

ment if k=O

Inserts ~l ' · · · , ~k before nth ele-
ment

Adds ~l ..• ~k at end of current
level list

Sets name to current level list

Sets name to nth element, if n>O,

Sets name to nth element from end

of list, n<O.

Gives error if no such element.

Replaces all occurrences of the

old item by new in current level
list

Prints element n to depth m

(current list if n=O)

Finds ~ at current level; "&n
matches any item) " __ 'I matches any

remaining list

Finds e at any level

Finds next occurrence of ~ excluding
first element in current list

Finds nth occurrence of ~ any level

9.23

(NTH n) n~l

(E e)

(E_eT)

(LO n)

(LI n)

(RO n)

(RI n m)

n<O

Makes nth element be first element
of current list

Makes nth element from the end be
the first element on the list

Evaluates ~l ... ~k and then performs
command as usual.

Command can be a number" N, R, F,

etc. If command is not atomic,
it is evaluated

Evaluates and prints ~
Evaluates ~ but does not print.

Removes left paren before element

g (and removes a right paren at
end of current list. If there are

no more right parens at end of
list, elements left hanging
"drop off").

Inserts left paren before element
g, (and a corresponding right paren

at the end of the list).

Removes right paren after element

n. It moves it to the end of the
current list.

Inserts right paren in element g
after mth subelement of element!!. In

element n, it moves a right paren from
the end of element !! which must have

more than m elements.

9.24

(BO n)

(BI n m)

Removes both left and right parens
around element n

Inserts both left and right parens,

making a sublist at position ~

containing elements n to ~ inclusive~

All of the above six commands, LO, LI, RO, RI, BO, and BI, accept
positive or negative numbers as arguments. Negative numbers are
positions relative to the end of the list.

Defines ~, as an Edit Macro
equivalent to the sequence of

commands £1' £2' ••• £0' if ~
is atomic, and £2' ••• £n with
substitution of arguments for
parameters when car[nameJ appears

as ~ of a non~~tomic command, and
name is listed in definition.

Same as ~ but effect is temporary -
confined to this call to ed1te.

All other lists are given to editdefault.

9.25

The Expanded Editor

Supereditflg

All of the commands described below are available to the user

whether or not he sets SUPEREDITFLG to T. With SUPEREDITFLG = T,
any unrecognized commands will be interpreted as (F command N), (*)

e.g., (CAR X) is equivalent to (F (CAR X) N). With SUPEREDITFLG = NIL,

these will, of course, cause an error and the editor will print
a ?. SUPEREDITFLG can be set to T by using the edit macro bell

(control G), which flips the state of SUPEREDITFLG and prints its
new value, or by setting it yourself.

New F Command

If the user wishes to operate with SUPEREDITFLG = NIL, or for
those cases where he wants to locate an expression which would

normally be recognized as a command, and therefore not be searched
for, e.g., P, PP, or a number, the following abbreviated form of
the F command is available:

F expression

will cause expression to be found a la SUPEREDITFLG. Note that
in this form, the user is giving two "commands" to the editor to
express a single find operation. The effect is the same as
though SUPEREDITFLG were set to T only for the next input after

the F, except that no attempt will be made to treat this .. input
as an edit command so that F P, or F 6 will work.

(*) (F command) is done first (using MEMB) , so that if LOOP is

a PROG label, and that PROG is the current level list, LOOP will
find the label before looking for any nested GO'S.

9.26

In the discussion that follows, the examples in the text

assumes SUPEREDITFLG 1s set to T. The identical operation

can be performed with SUPEREDITFLG = NIL if the user substitutes

F expression for expression wherever a find command is intended.

The Location Routine

All of the commands in the expanded editor use a single routine
for locating the place at which the operation is to begin. In

this discussion, the symbol @ will be used to mean a location

specification. @ has no meaning to the editor, it is purely a
notational device.

1. @ ,NIL

2. @ atomic

3. @ a list

The following options may appear at @.

Effectively a NOP.

The single command @ is executed, e.g.,
@ = 3 means operation is to begin at 3rd

element of current list. @ = COND means
operation is to begin at the next COND,
i.e., the command COND is executed, and the
next occurrence of COND is found.

Each of the commands in @ is executed and

the operation begins after the last one is
successfully complete, e.g., (COND 3) locates
the second clause in the next COND (the COND
itself counts as 1). Note, (CAR X) will
first find CAR and then find X. It is

equivalent to «F CAR N) (F X N)), or to

(F CAR F X). To find (CAR X) itself, use

9.27

«CAR X» which is equivalent to

«F (CAR X) N», or (F (CAR X».

If the execution of the commands in @ is
not successful, i.e., an error occurs, the

location tries again from the point that the
error occurs until it is successful or until
no progress is being made. Thus, if the

first COND beyond the current point contained
only one clause, @ = (COND 3) would then
look for the next COND after that, etc. At
the point that there were no more CONDs
remaining in the list being edited, the
locator routine would give up. If this
occurs, the status of the edit reverts to
its state when the locater was entered.

The locater routine can be called by the user directly via the

macro LC. To locate @, type (LC . @), e.g., to locate (COND 3)
type (LC COND 3). To locate COND, type (LC COND),

i.e., @ = (COND) which is equivalent to @ = COND, since both

consist of the single command COND.

9.28

UP

Another command used by all of the commands described below is UP.
The effect of UP is the following:

1. If the result of typing P is an element in your list structure,

then after UP, that element will be the first element in your
current list.

2. If the result of typing P is a tail in your list structure,
then UP has no effect.

Examples:

Your current level list structure is (COND «NULL X) (RETURN y))).

1. * 1 P UP P

COND
(COND «NULL X) (RETURN Y)))

2. *-1 P UP P

«NULL X) (RETURN y))

«(NULL X) (RETURN Y)))

3. *NULL P UP P
(NULL X)
«NULL X) (RETURN y))

4. * X P UP P
(X)

(X)

9.29

5. *(NTH 2) P UP P
« (NULL X) (RETURN y»)

«(NULL X) (RETURN y»)

This explanation covers the HOW and WHAT of UP, the WHY will
become clear in the explanation of the commands given below.

Insertion, Replacement, and Deletion Commands

The basic editor provides commands for inserting elements before
a certain position in the current level list, and for replacing
or deleting specified positions in the current level list.
However~ since the operation is tied up with the location, it is
impossible for the user to give single commands for deleting the
last element in the list, inserting a certain structure before

the second element from the end of the current list, etc. The
following three commands are more general than the basic editor's

commands, and do provide such a capability. In the description,
@ indicates a location operation, and expr a sequence of expres­
sions (possibly null).

1. (B @ expr)

2. (A @ expr)

3. (: @ expr)

locates @,does an UP, and inser~s
expression Before current point,
i.e., effectively does (-1 expr).

locates @, does an UP, and inserts
expression after this point, i.e.,
does either a (-2 expr) or (N expr)
whichever is appropriate.

locates @, does an UP, and replaces
first element with expr. If expr is
null, it deletes the first element.

All three commands leave edit position as of locating @ but do

not change marks.

,9.30

Examples: Current list is (COND «NULL X) (RETURN Y»)

1. I(A NULL (PRINT Y»
P

«NULL X) (PRINT Y) (RETURN Y»

2. *(: X (CDR X»

P

(NULL (CDR X»

Current list is (COND «NULL X) (RETURN Y»

3. *(: T) 0 p

«NULL (SETQ Z (CDR Z») (GO LP»
(T (ERROR»

(COND «NULL X) (RETURN Y» «NULL &) (GO LP»)

4. * (B GO (PRINT Y) (PRINT X» P
«PRINT Y) (PRINT X) (GO LP»

5 . * (: (NULL NULL) (EQ X Z» P
((EQ X Z) (GO LP»

6 • * (: (3 1) (EQ X Z» P
((EQ X Z) (GO LP»

7 • I (B -1 «EQ X Z) (GO LPl» P
«(EQ X Z) (GO LPl» (T (ERROR»)

An exception to the above procedure occurs when the expression
is to be replaced by a function. In this case, UP is not per­
formed. For example:

(: CAR X) will replace (CAR &) by X; (: CAR CDR) will

9.31

replace just CAR by CDR; (: CAR (CDR X» will replace
(CAR &) by (CAR X) ..

Note that (: NIL) or just (:) deletes the current level list.

(: NIL expr) replaces it with expr. Similarly (A NIL expr)

and (B NIL expr) insert expr, respectively, after and before current
level list.

SWitcning and Ivloving Expressions

Note: The SW and MV commands described below require two
location specifications. In both cases, the location of
the second position is begun at the same point that the
first location started; i.e., the commands save the state
of the edit upon entering, and return to that position for

the second location. However, a MARK is performed after
the first location so that by making <-- be the first

command for the second location, the user can begin that
locating process where the first one left off.

The Switch Command

(SW@l . @2) @l is located) an UP performed, SWI

set to the first element, and the
current position saved. Then @2 is
located, an UP performed, SW2 set to
the first element, which is then
replaced by a copy of SWI.
A copy of SW2 then replaces the
original SWI. SW leaves marks and
position unchanged.

9.32

Examples:

(SW -1 2)

(SW 2 3 1)

(SW RETURN GO)

The Move Command

(MV ~l C . @2)

Examples:

(MV RETURN B -1)

(MV (COND SETQ) GO)

The last element in the list is
switched with the second element.

switches second element with first
element of third element in current

level list.

The first (RETURN --) is switched with
the first (GO --). Note that they may
be on entirely different levels. How­
ever, one should not be inside of the
other.

@1 located, an UP performed, the vari­
able MVI set to the first element. @2 is

then located and the operation indicated
by C is performed. Then the former occurrence

of MV1 is deleted. MY leaves marks and

position unchanged.

will find the first RETURN expression
and insert it before the last element
in the current level list.

finds the first SETQ after the first
COND, and replaces the first GO by that
SETQ.

9.33

(MV -3 N t 3)

The Extract Command

takes the third element from the end of
the current list and attaches it at the
end of the third expression from the top.

This command is designed to replace a certain expression by one

of ~ts subexpressions.

(XTR @l . @2)

Examples:

(XTR COND SETQ)
(XTR COND 2 2)

locates @l, does an UP, saves the posi­
tion, locates @2 (beginning from the
point @l left off), does an UP, sets
the variable XTRI to the first expres­
sion, returns to saved position, and
replaced first expression by XTRI. XTR
leaves marks and position unchanged.

replaces first COND by first SETQ,
replaces first COND by second expression

in its first clause.

Note: While the XTR command is designed to replace an
expression by a subexpression, there is no check made to
see that the result of locating @2 is in fact inside of @l.

The Embed Command

The embed command is designed to replace a particular expression
by a larger expression containing it.

(MBD @ X)

(MBD @ Xl •.• Xn)

Examples:

@ is located, an UP performed, and the

first expression replaced by the result

of substituting it in X for the variable *
MBD leaves current position as the new

super-expression, with an extra MARK which
is set to the original position when MBD

was entered.

(Xl must be atomic)

Same as (MBD @ (Xl •.• Xn *»

(MBD NIL (COND «NULL X) *»)

(MBD 2 QUOTE)

(MBD -1 SETQ X)

Miscellaneous Commands

(* N)

BK

NX

DELETE

?

replaces current-expression by

(COND «NULL X) current-expression»)

quotes second expression

replaces last expression by

(SETQ X last-expression).

moves editor to current expression plus or
minus N, i.e., (* 1) equivalent to the

command UP followed by 2. If the current
expression is the 4th, (* -1) is equivalent
to 0 followed by 3.

for bac~, same as (* -1).

for ne~t, same as (* 1)

same as (:)
(P 0 100)

9.35

TTY

STOP

(SECOND • X)

(THIRD . X)

(ORR Xl X2 .•• Xn)

(## • commands)

(LCL • commands)

calls editl and sets L to new value, i.e.
accepts commands from user. Useful for
functions that call editor as subroutine,
e.g. breakin[FOO (AFTER COND SETQ TTY)]
allows the user to interact before tne
break is inserted.

used in connection with TTY command, same
as OK command given to next higher call to

edi tl, i. e. aborts the editing operation
of the subroutine that was calling the

editor.

locates SECOND X, no change if not found.

as above

The sequence of commands Xl is executed.

If successful, ORR returns. If not, the
state of the edit is restored to its original

state and X2 executed, etc. This is a way
of executing commands conditionally. e.g., the
command SECOND is defined as (ORR «LC • X)(LC . ~»

sequence of commands is executed for value,
not effect, i.e., (## 2 -1) has as its value
the last element in the second element of
the current list. ## does not change the
state of the edit. ## is also an nlambda-

nospread function.

Commands a::'e executed locally, i. e., find
commands will not be allowed to search beyond

current list.

(IF form)

eLP • commands)

(LPQ • commands)

If the value of form is NIL, an error is
generated. Designed for use with ORR and
locating routine. For example,

(ADDI (IF (NUMBERP (## 2»))

as a location specification will find the
first ADD I followed by a number. IF does not
change state of the edit.

sequence of commands is executed repeatedly
until an error occurs, e.g.,

(LP PRINT (N T» will attach a T at the end

of all PRINTs. LP will print number of
successful iterations.

same as LP but does not print number of

iterations.

Note: the routines that handle A, B, :, and. MBD commands make

special checks (of a flag) so that the user can do commands like

(B PRINT (PRINI ZOT») or (LP (MBD X LIST» without getting in
an infinite loop.

(0+- X) does repeated a commands until finds a
position for which first element 1s X, e.g.,
(0+- COND) takes you up to the COND containing

the expression that is the current level
list. If not found. no chan~e is made in

the state of the edit. Note: it is unnecessary
to have SUPEREDITFLG set to T to execute (0+- COND).
Also (0+- F COND) is the same as (0+- F).

9.37

Miscellaneous Features

(X CONTAINING • @)

(EVERY . @)

(ALL . @)

Sentence Format

Locates X, then locates @ locally, i.e.,
find commands will not go outside of the
expression headed by X, and then backs up

to X using the + command, so that
(X CONTAINING Y) will find the inner X in
(X •..• (X ••• Y) ••). Note: X will be
located regardless of the setting of
SUPEREDITFLG: (X CONTAINING • @) is
identical to (LC F X (LCL • @) (+ X».

Example:
(SECOND (COND CONTAINING (SETQ CONTAINING CDR»

is built into the locate routine. Whenever
(CAR @) = EVERY, the locate routine looks
back up the push down list and finds the
command containing this specification, and
instead performs the corresponding
LP command, e.g., (MBD (EVERY X) LIST) is

equivalent to (LP (MBD X LIST».

same as EVERY.

In addition to the command followed by arguments format, the user ca.n
employ a more flexible, sentence-type format when communicating
with the editor. The chief advantages of this format are that
the names of the commands and the order of the arguments are
somewhat more intuitive, and that there are considerably fewer
parentheses required.

9.38

The following is a list of sentence-types·per~issible: (*)

(INSERT
(INSERT
(INSERT
(PUT .••
(PUT ••.
(REPLACE

BEFORE ...)
AFTER ..•)
FOR ...)

BEFORE •..)
AFTER ••.)
• .• BY ...)

(REPLACE •.. WITH •••)

(CHANGE ... TO ...)
(DELETE •.•)
(Elv1BED ... IN ...)

(EMBED ... WITH ...)
(MOVE •.. TO AFTER ...)
(MOVE •.. TO BEFORE •..)
(SURROUND ... WITH ...)
(SURROUND ... IN ...)
(EXTRACT ... FROM ...)
(SWITCH •.. AND ...)

Examples:

(INSERT (PRINT Y) AFTER -1 NULL)

(REPLACE CDR WITH CAR)
(REPLACE CDR WITH (CAR X»
(EMBED EVERY PRINT IN (COND (FLG *»)
(DELETE (COND CONTAINING RETURN»
(EXTRACT (SECOND SETQ) FROM (COND CONTAINING GO»

(*) " ... " indicates a segment of a list, i.e., no parentheses are
used around" ·11 even if it consists of several elements, see

examples.

9.39 .

Summary of New Cotnmands

Following is a complete list of the commands in the expanded
editor. The ordering is that of their position on EDITMACROS.

UP

NX
BK

A

B

MBD

SW
XTR
MV
LP

*
LC
ORR
LPQ
?

DELETE

TTY
STOP
~ (when used in a list)

·SECOND
THIRD

LCL

9.40

EDITA

The increasing number of applications of LISP, that involve arrays
have motivated the implementation of EDITA, an editor for arrays.
EDITA can be used on any LISP array, including those containing
list structure or unboxed numbers, or both, or on compiled function

definitions.

To theuse~,-EDITA looks very much like DDT with some LISP
extensi'ons. It is a, function of one argument:* the array or func­
tion to be edited. This can be specified directly or indirectly,
,i.e., ~ou can type EDITA(A), or perform (EDITA A) inside of some
other form. EDITA performs an EVAL on its first argument if it
is not already an array or a function.

Once inside of EDITA, individual "registers" or cells in the
,array may be'examined by typing their address followed by a
slash, e.g.,

4/ 6

i.e., (ELT A 4)=6. **,' An address consists of a number or a LISP

form whose value is a number, or a series of numbers or forms
which yield numbers. In the latter case, the address is computed
as the sum of the forms, e.g.,
4 X (MINUS (CAR Y» / ...
(CAR (CHCON (QUOTE A)}) /

* An optional 'second argument can be a list of commands to edita.
These are executed exactly as though they had come from the
teletype.

** If the register is inth~ unboxed area of the array, the
boxed contents· are printed.

9.41

The variable 1f.1f has the value of the address of the current (last)
register examined, and the variable $ has the value of the last
register in the array, i.e~, (ARRAYSIZE A), e.g.,

$ (MINUS .) /

. . /

are acceptable. Since EDITA uses its own read program, it is not
necessary to surround the period in double quotes. Also, since
carriage return has a special meaning, the balancing of paren~

theses in any LISP expression is indicated by a space,
instead"of a carriage return as with the LISP reader. This is the
expl~nation of the extra space before the slash in some of the

examples above.

A sla-sh-. ~s really a command to EDITA to "open" the indicated
register. "'Only one register at a time can be open, and only
open registers ~ be modified. To change the contents of a
register, the user first opens it, types a form* and then closes
the register with a carriage return, e.g.,

4/

./

6

24
(FACTORIAL .) ~

Note: Computations can be executed while a register is opened
without changing its' contents. The contents of a register are
changed only when it is explicitly closed by a carriage return,
line feed, or t. If the register is in the unboxed region of the
array, an unbox will be automatically performed before storing

the new value into the array.

* In the boxed region of th~ ar~ay, only non-atom1cexpressions
'are evaluat'ed; in the unboxed, all e·xpressio.ns.are evaJ.uated.

9.42

If a form is typed followed by a carriage return when no register
is open, the form is simply evaluated and its value typed, e.g.,

41 4096 i2
(RADIX 8»)
(10 T) It.'

.1 10000Q

Used in this way, EDITA behaves the same as BREAK.

EDITA also recognizes the following commands:

OK

line feed

+

=

;Q

which causes a return from EDITA
with the value the array being
edited.

which closes any open register and
opens the next register, i.e., it
is the same as carriage return
followed by (ADDI .)

same as carriage return followed
by (SUBI .)

(when not preceded by a space)
causes EDITA to type value of last
expression, e.g.,

.=41 6 (PRIME 6)=11 (PRIME 717

.1 13
If a register is open, the =
command also operates to negate
the effect of any previous user
input so that if-the register is

closed following an = command, it
will not be changed.

has value of last expression typed

by EDITA, e.g.,

41 6 (FACTORIAL.)=24 (ADDl ;Q12
.1 25

/

Tab (control I)

(when register is already open),
if preceded by user input, EDITA
prints the contents of the indi­
cated register, otherwise EDITA
prints the contents of the register
whose address is the contents of

* the currently open register,
e.g.,

!!L 6 / 10 J 6/ 10 4/ 6

This command does not affect the
currently open register.

similar to / except it closes ·the
currently open register (if any)
and opens the indicated register,
e.g.,

4/

6/

9/

6
10

11

tab
9tab

If the contents of the currently
open register is not a number,
but is another array , or the
name of a function - tab will
call EDITA on it.

* In all cases only low order 14 bits used;
Underliried characters were typed by user.

?

ADI,AD2/

;W expr

expr ;W

negates all user input not yet

processed, leaves state of registers

unchanged.

where ADI and AD2 are addresses,

causes the contents of registers

ADI through AD2 inclusive to be

typed, "." is set to AD2 after

completion.

searches array and prints all

registers whose contents "equal"

expr, in the sense of the match

used by the editor, e.g., ;W (&)
will find and print all registers

containing a list consisting of a

single element. After search,

"." is left set to the last such
register.

same as above except that since

expr will have been evaluated

before the ;W command was read,
its value will be used in the

search, e.g., (CADR X) ;W

9. 45

If th: search command is prefaced by an address and a comma as in
FOO 2~;W NIL or 25,X ;W the search will begin at the indicated
register, otherwise it begin's at register ".", the last opened
register. If the search is to begin in the unboxed region of

the array, the value to be searched for must be a number and is
compared with the result of boxing each element in the unboxed
region. The variable MASK can be set prior to the search for

comparison with just selected bits in the word. The search
terminates at the end of the unboxed region of the array.

If the value tobe searched for is not numeric, no attempt will
be made to search the unboxed region of the array, regardless of
the value of "." or the address specified, i.e., the search

automatically begins at BOXED if "." is less than BOXED.

: name defines name as either (1) the
contents of register If.", or if
no register open (2) the address
typed just before the :, or if

none was typed, (3) the value of
" II

4/
:FIE

*
6

• l:FUM

For example,

:FOO

defines FOO as 6, FIE as 4 and FUM as 5.

EDITA keeps its "symbol tables" on two free variables, USERSYMS
and SYMLST. USERSYMS is a list of elements of the form

(name. value) and is used for encoding input, i.e., all variables
on USERSYMS are bound to their corresponding values during evalua­
tion of any expression inside EDITA. SYMLST is a list of elements
of the form (value . name) that is used for decoding addresses,

* Only low order 14 bits are used.

9.46

and in the case of editing compiled functions, decoding instruc­

tions. USERSYMS is initially set to NIL, while SYMLST contains

certain system parameters such as PPPTR and SPCELL.* Since the :

command adds the appropriate information to these two lists, new
definitions will remain in effect even if the user exits from

EDITA and then reenters it later.

Note that the user can effectively define symbols without using the
command by appropriately binding USERSYMS and/or SYMLST before

calling EDITA. Also, he can thus use different symbol tables for

different applications.

Some general comments

Although EDITA uses its own read program, ~:* which is not line

buffered, it does respond to control-A and control-Q in the same

way as the LISP read program does in almost all situations. In

those cases where it cannot delete previous characters because

they have already been processed, EDITA will ring the teletype
bell to signal its frustration. Similarly double quotes can be

used to input expressions containing break characters for EDITA

such as /, (, ?, etc.

EDITA is buffered against errors and rubouts. Whenever an error
occurs or a control-R is typed, EDITA responds with a ? and closes

any open registers (without modifying them) and clears any flags

that may have been set during the user's last request. It is
quite safe to hit control-R at any time during EDITA's operation.

EDITA will not allow the user to reference any registers outside

the-bounds of his array.

*

**

It is not necessary to place a symbol on USERSYMS that already
has a binding, such as PPPTR or SPCELL, since the correct value
will be obtained when the form in which it appears is evaluated.

Actually, EDITA uses the FLIP read program so do not flush
FLIPREAD if vou DIan to use EDIrrA.

9.47

Using EDITA on comp.1led functions

Since a compiled function is actually an array with the instructions

of the function corresponding to the unboxed region of the array

and the literals to the boxed region, EDITA could be used on a
, function definition exactly the same as though it were an array

generated via ARRAY. However, certain extensions and modifications

to EDITA have been made to facilitate its use with compiled func­
tions with the result that EDITA operates somewhat differently

when working with a function than with an array, although the

basic idea and philosophy of its use remains the same.

The first difference to be noted is that by convention the first
element of an array has address 1, while the first instruction of

a function definition has address O. In other words, the instruc­
tion LDA 25 loads the accumulator with what would be register 26

in an array. EDITA takes care of this problem automatically both
on input and output by following one address convention for func­
tions and the other for arrays.

The greatest difference - and the most useful feature of EDITA in
conjunction with functions - is the decoding of instructions.

EDITA deco{es the contents of all cells in the unboxed portion of
the function definition (in the boxed region, EDITA operates

exactly as it does with an array except that the address convention
is that of function definitions) and types their mnemonic, address

portion, and indirect bit or index register if any. The address
portion is further decoded using SYMLST. Here are some examples:
LDX PPPTR; STA 25,2; LDA* FOO; CONSCLL. The decoding of 'the

address portion also notes references to literals in the function

definition and prints the literal preceded by an "=", instead of

its address, e.~., LDA =(-ARGUMENTS ?); XCLL =PRINT. References
to small integers are also detected, e.g., SUB =1; SKG =5.

9.48

Symbolic input is available, although it is not quite as sophis­
ticated as the output decoding. Op codes are recognized, as are

small integers (this is why the = command must be preceded by a

space: to distinguish it from a small integer). However, the
indirect bit must be indicated by means of the variable J, and

the index register by I. For example, the following is permissible
input: LDX PPPTR; STA 25 I (which would be typed back as

STA 25,2) LDA FOO J, SUB =1. LDA =(-ARGUMENTS ?) is not np.~­

missible. To input this the user would have to know the ad~ress
of the register containing the literal (-ARGUMENTS ?).

When an op code is seen, all subsequent arithmetic is done in the

low 14 bits of the word only, so that LDA -1 is equivalent to

LDA 37777Q, not to SKD* 37777Q.

There are two other small differences when editing a function.

First, read-only out of bounds references ~ permitted,
e.g., 3/ LDX PPPTR / 27. Secondly, the search option will

automatically mask out the address or instruction portion of the

word if the value to be searched for is just an instruction or

an address. For example, LDA =5 ;W will find all occurrences of
that instruction, LDA ;W will find all LDA instructions, =5 ;W
will find all references to the small integer five. The user

can of course still set the variable MASK.

9.49

SECTION X

ATOM, ARRAY, AND STORAGE MANIPULATION

pack[x]

unpack[x d

nthchar[atom;nJ

ncharsJ[atom]

The argument ! of pack must be a

list of atoms. The value of pack

is a single atom whose print name

is a packed version of the print

names of all the atoms given in the

list. Thus:
pack[(A BC DEF G)] = ABCDEFG

pack[(l "." 3)J = 1.3 a floating
point number

The argument of unpack should be an
atom. The value of unpack is a list

which contains, in order, the char­
acters which make up the print name

of that atom.

Returns the nth character of atom
as a single-character atom. Equiva­
lent to (CAR (NTH (UNPACK atom) n»,

but is faster and does no CONS'es.
See note after loc, p. 10.4.

Returns number of characters in

atom. Thus the last character in

an atom is given by

nthchar[atom;nchars[atomJ]

10.1

chcon[x;j]

character[n]

gensym[]

oblist[]

reclaim[flg]

Returns a list of numbers represent­
ing characters in print name of x

which must be an atom.

j = NIL prinl representation

= T prin2 representation

n is a character code. Value is
atom having single character as its

P-name, e.g., character[8]="(".

This function of no argument gener­

ates a unique symbol of the form

Annnn, in which each of g's is

replaced by a digit. Thus, the
first one generated is AOOOl, etc.

This is a way of generating new

atoms for various uses within the
system.

Creates a list of all atoms
currently in the system.

Initiates a garbage collection. If

fIg is T, all spaces are collected:
list words, atoms, large numbers,

. floating point numbers, arrays and

binary programs. If fIg is NIL,

array space (identical to binary

program space) is not collected,

put all others are. Value of
reclaim is number of list words

available and will be ~ the setting
of minfs unless the total list
space has been exhausted. See p. 3.8-
3.12 for more detailed discussion of

garbage collection.

10.2

atomgc[flg]

gctrp[n]

initiates a reclaim which also

collects any unused atoms that
were previously in the shared system

but have been released by flushing

some portion of it. See p. 3.8-3.12

for discussion of garbage collection

and p. 22.8 for flushcode. Argument

fIg is the same as in reclaim.

~arbage £ollection !ra~. Causes a
(simulated) control-H interrupt when

number of free words left equals £,
i.e. when a garbage collection would

occur in n more conses.

At this point, the user can turn off

the display, list a file, logout of

LISP, etc. ~ described on p. 22.2

shows how the user can automate this
procedure.

Value of gctrp is last setting. If

n=NIL, value of gctrp is number of

words left, i.e. (GCTRP (PLUS (GCTRP)

-10)) will cause a trap after 10 more
conses.

10.3

minfs[n]

gcgag[x]

logout[]

closer[a;x]

openr[a]

loc[x]

Sets the minimum amount of free

storage which will be maintained by

the garbage collector. If, after
any garbage collection, fewer

~han ~ f~ee words are present,
sufficient storage will be added in
l2tl word chunks to raise the level to n.

The user may also change the setting

of minfs at any time, even during a

garbage collection, by typing control-F
followed by a number (which becomes

the new setting) followed by a
period.

If x=T garbage collector will print

a message when entered. If x=NIL no

message is printed. Previous setting
is returned. 'Initially set to T.

Deactivates users pro~ram anq returns

the user to the time-sharing system

executive. Closes all open files.

Stores x into location a. Both x

and a must be numbers.
a<2 14 actual core location
a~214 address in virtual

address space.

Value is number in a as defined

in closer.

Makes a number out of ~, i.e.

returns the virtual address of x.

Note: for alphabetizing purposes, it is useful to note that the

atoms consisting of a single character are stored in ASCII code

order, i.e. loc[A]<:loc[B]<locrC] etc.

10.4

vag[x] The inverse of loc. x must be a number. - - -'
value is the unbox of x. An unboxed

number n which doesn't correspond to

the address of a list structure or an

atom is printed #g, n is given in octal,

e.g. array pointers are printed this way.

Note: unboxed numbers should not be passed around as ordinary

values because they cah cause trouble for the garbage collector.

Everything in LISP is essentially an unboxed number, i.e. an ad­

dress. However, certain unboxed numbers are recognized as being

of certain data types, e.g. integers, atoms, list structure~ etc.

If you creat an unboxed number that happens to correspond to an

address in list structure, the garbage collector will not be able

to distinguish this from a bona fide list structure. For example,

suppose the value of ~ were 150000, and you created (VAG X)~ and

this just happened to point into the free storage list! The next

garbage collection would be disastrous.

allocate[n]

statistics[]

Allocates an g word block in array

(binary program) space. Returns a

pointer to the address of the first

word allocated. If sufficient

space is not available, a garbage

collection of array space (RECLAIM T)

is initiated. If this is unsuccessful

in obtaining sufficient space, an

error is generated.

Prints out statistics on number

of wraparounds of compiled code;

number of mapped stores; total

number of mapped references (car's,

cdr's, cons's, rplaca's, rplacd's,

getd' s, etc.); number of drum reads;

10.5

clearstat[]

storage[]

Array Functions

number of drum writes; number of

drum reads for binary function

loading; number of function calls

from binary code. Names and loca­

tions of cells printed are bound

at top level to STATCELLS.

Sets to 0 all statistics cells in

the list bound to STATCELLS.

Prints out current status of

storage including number of binary

program (array) words in use; number

of list words (two 940 words) in

use; number of 940 words available;

and number of words used up for

print names.

Space for arrays and compiled code are both allocated out of a

common array space,. Arrays of pointers and unboxed integers

may be manipulated by the following three functions:

array[n,p,v] This function allocates a block of

n+4 940 words, of which the first

4 ar~ header information. The ne~t

p~n are cells which will contain

unboxed integers, and are initialized

to 0. The last n-p~O will contain

pointers initialized to v. If £ is

NIL it is assumed equal to 0 (i.e.,

10.6

elt[a;mJ

seta[a;m;vJ

arraysize[aJ

arrayp[x]

a symbolic array). The value of

this function is the location of

the array in virtual memory, and

is called an array pointer. Array­

pointers print as #n, where n is the

octal representation of the pointer.

Note than, #n will be read as an

atom, and not an array pointer.

Has as value the mth element of

the array pointed to by~. For

out of bound calls, if m<l or m>n,

where ~ is the length of the array

~, elt gives element 1 if m<l, or

element n if m>n.

Sets the value of the mth element

of a to v. On out-of-bounds

reference no store is made. The

value of this function is always

v. It is the users responsibility

to ensure that no pointers are

placed in the non-pointer area.

Any in that area will not be

traced during garbage collection.

Returns the size of array a if a

is an array pointer.

Returns T if x is a pOinter into the

active array area, otherwise NIL.

No check is made to ensure that x

actually addresses the header of a

legitimate array.

10.7

SECTION XI

FUNCTIONS WITH FUNCTIONAL ARGUMENTS

As in all LISP 1.5 Systems, arguments can be passed which can then

be used as functions. Functions which use functional arguments

should use variables with obscure names to avoid conflict of vari­

able names with variables used free in a functional argument.

There is no "FUNARG device" used in this system. All system func­

tions standardly use variable names consisting of the function

name concatenated with x or fn etc. A FUNARG device may be

implemented in the future.

function[x]

map[mapx;mapfnl;mapfn2]

Identical to quote for interpreted

code. When compiled, function[x]

will cause x to also compile,

quote[x] will not.

If mapfn2 is NIL (i.e. not provided)

this function applies the function

mapfnl to successive tails of the list

mapx. That is, first it computes

mapfnl[mapx], and then mapfnl[cdr[mapx]],

etc. until mapx is NIL (mapx is reset

at each iteration so that its value is

always the current tail); however, if

mapfn2 is provided, mapfn2[mapx] is

used instead of cdr[mapx] for the next

call for mapfnl. Thus if mapfn2 were

cddr~ alternate elements of the list

would be skipped. If mapfn2 is a

11.1

mapc[mapx;mapfnl;mapfn2]

mapcar[mapx;mapfnl;mapfn2]

map Ii s t [:nap x; map fnl ; map fn2 J

mapconc [map x ;mapfnl ;maptn2]

conditional expression, then the next
element to be looked at can be con­

tingent on a computation.

Identical to ~, except that

mapfnl[car[mapx]] is computed each time.

If mapfn2 is NIL, mapfnl is applied to
each element of the list x in turn.

If mapfn2 is NIL, this function applies

the function mapfnl to each of the
elements of the list mapx. It creates

a new list which is a map of the

old list in the sense that each

element of the new list is the

value of applying mapfnl to the
corresponding element of the old

list. If mapfn2 is provided, mapfn2[mapx]
is used instead of cdr[x] for each

succeeding computation with mapfnl.

This function computes successively

the same values that map computes;

it forms a new list consisting of

successive values of applications

of this function.

Identical to mapcar except that it

does an nconc instead of a cons.
This makes it useful for constructing

a new list from an old one where a

variable number of elements is to be

inserted at each iteration.

11.2

mapcon[mapx;mapfnl;mapfn2]

map2c[mapx;mapy;mapfnl;mapfn2]

Identical to maplist except that it

does an nconc instead of a cons.

Identical to mapc except mapfnl is

a function of two arguments, and

mapfnl[car[mapx];car[mapy]] is com~uted
each time. Te~minates if either

mapx or ~ become I\IL.

map2car[mapx;mapy;mapfnl;mapfn2] Identical to mapcar except mapfnl

is a function of two arguments and
mapfnl[car[mapx];car[mapy]] is used

to assemble the new list. Termina\.-es
if either mapx or mapy become NIL.

mapa[mapary;mapfnl;mapfn2;mapn] Cycles through mapary, an array,

applying at each iteration the

function mapfnl, a function of

two arguments, to mapary and n
the index of iteration. n is

initially set to 1, and reset to

mapfn2[n], if mapfn2 is given,
otherwise addl[n]. Process
continues until n exceeds mapn,
if given, or else

arraysize[mapary]. The value of
mapa is mapary.

Example: the following function
will copy an array:

(LAMBDA (A) (MAPA (ARRAY (ARRAYSIZE A»
(FUNCTION (LAMBDA (AI N)

(SETA Al N (ELT AN»»»

11.3

maprint[lst;fl;1;p;s;pfn;6]

every[everyx,everyf]

some[somex;somef]

mapdl

searchpdl

is a general printing function. It

cycles through 1st applying pfn

(or prinl if pfn not given) to each

element of the 1st. Between each

application ~t performs prinl of ~,
or If If if not given. If 1 is given,

it is printed (prinl) initially;
if r is given, it is printed (prinl)
at the end. fl is the file used for'
all printing, c a special argument

used by prettyfl~p.

For example, maprint[x;NIL;If(If,")fI]

is equivalent to print. To print a

list' on the tty with commas between

each element and a final "." one
could use maprint[x; T ;NIL;".";" , "] •.

is true if everyf applied to each
element in everyx is not NIL, e.g.,
every[(X Y Z); ATOM]=T.

is NIL if somef applied to every

element in somex is NIL, otherwise

it is the list beginning with the

first element that satisfies somef,
e. g. ,

somef[X~(LAMBDA (X) (EQUAL X Y»]
is equivalent to member[x,.y].

see p. 12.9

see p. 12.10

'11.4

SECTION XII

VARIABLE BINDINGS AND PUSHDOWN LIST FUNCTIONS

A number of schemes have been used in different versions of LISP

for storing the values of variables. These include:

1. Storing values on an association list paired with the

.variable names.

2. Storing values on the property list of the atom which is

the name of the variable.

3. Storing values in a special value cell associated with

the atom name, putting old values on the pushdown list,

and restoring these values when exiting from a function.

4. Storing values on the pushdown list.

The first three schemes all have the property that values are

scattered throughout list structure space, and, in general, in a

paging environment would require references to many pages to deter­

mine the value of a variable. This would be very undesirable in
our system. In order to avoid this scattering, and possible ex­

cessive drum references, we utilize a variatton on the four-th

standard scheme, usually only used for transmitting values of

arguments to compiled functions; that is, we place these values

on the pushdown list. But since we use an interpreter a~ well as

a compiler, the variable names must be kept. The pushdown list

thus contains pairs, each consisting of a variable name and its

12.1

value. The interpr~ter need only search down the pushdown list
for the binding (value) of a variable.

One advantage of this scheme is that the current top of the

pushdown stack is usually in core, and thus, drum references are

rarely required. Free variables work automatically in a way

similar to the association list scheme.

An additional advantage of this scheme is that it is completely

compatible with compiled functions which pick up their arguments

on the pushdown list from known positions, instead of doing a

search. To keep complete compatibility, our compiled functions

put the names of their arguments on the pushdown list, although

they do not use them to reference variables. Thus, free variables
can be used between compiled and interpreted functions with no

special declarations necessary. The names on the pushdown list

are also very useful in debugging, for they provide a complete

symbolic backtrace in case of error. Thus, this technique, for

a small extra overhead, minimizes drum references, provides
symbolic debugging information, and allows completely free mixing

of· compiled and interpreted routines.

There are two pushdown lists used in BBN 940 LISP: the first
is called the parameter pushdown list, and contains pairs of

variable names and values, and temporary storage of pointers;

the second is called the control pushdown list, and contains

function returns and other control information.

However, it is more convenient for the user to consider the

push-down list as a single "list" containing the names of functions

that have been entered but not yet exited, and the names and values

of the corresponding variables. The multiplicity of push-down lists

in the actual implementation is for efficienty of operation only.

12.2

The Push-Down List and the Interpreter

In addition to the names and values of arguments for functions,

information regarding partially-evaluated expressions is kept on

the push-down list. For example, consider the function FACT:

~PRETTYPRINT«FACTJ

(FACT
(LAMBDA (N)

(COND
«ZERO? N)

L)
(T (TIMES N (FACT (SUBI N»»»)

N IL ..
As soon as FACT is entered, the interpreter begins evaluating the

implicit PROGN following the LAMBDA (seep. 4.3-4.4). The first

function entered in this process is COND. COND begins to process

its list of clauses. After calling ZEROP and getting a NIL value,

COND proceeds to the next clause and evaluates T. Since T is not

NIL, the evaluation of the implicit PROGN that is the consequent

of the T clause is begun (see p. 4.3). This requires calling the

function TIMES. However before TIMES can be called, its arguments

must be evaluated. The first argument is immediately evaluated,

but the second involves a recursive call to FACT, and another .
implicit PROGN, etc.

Note that at each stage of this process, some portion of an ex­

pr~ssion or argument list has been evaluated, and another is await­

ing evaluation. This information is recorded on the pushdown

list as follows:

12.3

1. Whenever a FSUBR* function is entered, i.e. COND, PROG, OR,

AND, SETQ, PROGN, or implicit PROGN (*), the variable NLAMBDA is

bound on the push-down list to the rest of the expression following

the FSUBR*. (Since implicit PROGNs do not appear on the push-down

list as specific function calls, this binding will appear following

the variables of the function previously called.) As the FSUBR*

processes its "argument list," the binding of NLAMBDA is updated

so that car of its value is always_ the expression currently being

worked on. This is more than just a diagnostic ~evice: the slot

on the push-down list corresponding to the binding of NLAMBDA is
actually where the FSUBR* keeps the expression it is processing.

If a function subsequently entered modifies this binding, the

FSUBR* would continue with the evaluation of the modified expres­

sion when control returned to it.

2. Whenever a form is encountered that is headed by a function of

type EXPR, EXPR*, CEXPR. CEXPR*, SUBR, or SUBR*, i.e. those requir.­
ing evaluation of arguments, the function name is entered on the

push-down list and the variable LAMBDA is bound to its argument

l~st. The arguments are then evaluated in turn from left to right.
As each argument is evaluated, it is bound to a variable name select­

ed from the atoms a,b,c, ... Z (**),i.e. the first is bound to a,

the second to b, and so forth, and LAMBDA is bound to cdr of its

previous value. Thus ~ of the value of LAMBDA is always the

(*) QUOTE, GO, and FUNCTION are also FSUBR* type functions, but
since no evaluation of forms takes place inside of them, they
do not modify the push-down list.

(**) Note that these are lower-case characters not present on
model teletype model 33 keyboards. They print out as %A,
%B etc. as described on page 14.4. To evaluate %A, perform
(EVAL (CHARACTER 65», XB, (EVAL (CHARACTER 66», etc.

12.4

argument currently being evaluated.

When all of the arguments to the function are evaluated, the function

is called, and the values of the arguments bound to the names of the

arguments of the function. The bindings for LAMBDA, and a,b, etc.,

disappear. Thus a function has actually been entered if and only if

it does not have a binding for the variable LAMBDA.

The following untrace illustrates the above discussion:

~PRETTYPRINT«rACT»

(rACT
(LAMBDA (N)

(COND
«ZEROP N)

L)
(T (TIMES N (rACT (SUBt N»»»)

N IL
~ rACT(2)

ERROR
(L IS UNBOUND ATOM)
U NTRACE:

NLAMBDA CL)
COND

NLAMBDA CCCOND «ZERO? N) L) (T (TIMES N (rACT (SUBt N»»»
N 0

rACT
LAMBDA «rAeT CSUBt N»)
%A t

TIMES
NLAMBDA «TIMES N (rACT (SUBt N»»

COND
NLAMBDA «COND «ZEROP N) L) (T (TIMES N (rACT (SUBt N»»»
N t

rAeT
LAMBDA «rAeT (SUBt N»)

%A 2
TIMES

NLAMBDA «TIMES N (FACT (SUBt N»»
C OND

NLAMBDA «COND (CZEROP N) L) CT (TIMES N (rAeT (SUBt N»»»
N 2

FACT

The Push-Down List and Compiled Functions

In addition to the function names and values of arguments to com-
piled functions, the push-down list contains the names and values
for all free variables used in compiled functions, as well as any

variables that are locally bound by PROGs or open-LAMBDA expressions.*

The free variables follow the arguments to the function on the push-down

list. Locally bound variables are stored on the push-down list

following the next function call. See p. 16.26-27 for more
detail.

(*) In interpreted functions, the PROG or open-LAMBDA would be
called as a regular function and the bindings of their
variables would automatically appear as arguments on the
push-down list.

12.6

Pushdown List Functions

The following functions allow one to interrogate the pushdown list(s)

from inside another function. The convention used by these functions

regarding push-down list positions is that the position number, n, if

positive, is the number of function calls which have been made -

essentially the depth of nesting of functions from the top level. If

~ is negative, it references back from the current call level. For

example, on the previous page, the position of the last call to fact

is either -2 or 6.

nthfnback[nJ

nthfn[fn;nJ

evalv[var;n]

setv[var; n; val]

variables[n]

rename[old; n; new]

Returns the name of function called

at call level (position) ~

Returns the position (number of

call levels from top) of the nth

occurrence back of function named

fn., e.g. nthfnback[nthfn[fn,lJ] = fn

Returns the value of variable var

evaluated starting at pushdown list
position n

Sets the value of variable var

starting at pushdown position n

to value val

Returns list of variable names on

pushdown list at pushdown position

g, including LAMBDA, NLAMBDA, and

%A-type bindings if any, as well as

free and locally bound variables

for compiled functions as described

earlier.

The variable named old at level n

will be renamed new. The push-list

cell containing the variable name

is changed.

12.7

retfrom[n;vJ

backtrace[n;mJ

baktrace[nJ

rtfrm[rtfn;rtform;rtnJ

Returns from the function at

position ~, with value ~, i.e.

jumps back up the pushdpwn list

through all intervening function
calls.

Prints out the untrace normally

associated with errors, starting

at position n, and going back

to position ~ (i.e. n>m). If

n=NIL; it is assumed equal to

current position; if m=NIL; it

is assumed equal to 0.

Lik~ backtrace except it skips
over calls to breakl, faultl,

faultev~l, interruEt, error~ etc.

Used by the BT macro in break.

is an NLAMBDA that provides a con­
venient way of calling retfrom, e.g.
(RTFRM FOO X 2) is equivalent to

(RETFROM (NTHFN (QUOTE FDa) 2) x).
It does a retfrom from nthfn[rtfn;rtnJ,

(if rtn is not given, 1 is used) with

the value of rtform.

12.8·

mapdl[mpdlfn;mpdln] cycles back up the p~sh-down
list, starting at position mpdln,

(if mpdln=NIL, it is set to

nth,fn[mapdl; I]) applying mpdlfn

to the function entered at that

push-down position, i.e., to

nthfnback[mpdln] and then decre­
menting mpdln by I until it

reaches 0. For example:

mapdl[(LAMBDA (X) (COND

«EQ (FNTYP X) (QUOTE EXPR))
(PRINT X)))))

will print all EXPRs on the push

down list.

Note: Negative value for mpdln

may be used.

Value of mapdl is NIL.

12.9

searchpdl[srchfn;srchm] searches the push-down list
until it finds a position for
which srchfn, applied to the function
called at that position, is not NIL.
For example,

(SEARCHPDL (FUNCTION (LAMBDA (X)
(NOT (ATOM (GETD X»»»

will find the last EXPR called.

If srchm is not given, the search
begins with the function called
just before searchpdl. If srchm

is supplied and is not a number,
the search begins as of
(NTHFN SRCHM 1), otherwise search
begins with srchm. Note that

srchm is bound to the push down
list position at all times, so
that srchfn can use it for calling

evalv, setv, or retfrom. The value
of searchpd1 is (function. position).

12.10

Push-Down Handles

This section describes how to write functions which directly

manipulate the push-down lists, e.g. an nthfn that starts at a
specified point, or one that searches forward instead of backward,

a form of variables that checks to see if a particular variable

is bound without creating a list of all variables, etc.

There are four free variables which provide a direct handle on

the two push lists:
CP Control PDL Pointer

ICP

PP
IPP

Initial CP
Parameter PDL Pointer
Initial PP

The value of each of these variables (also stored under the
property COREVAL on their property list) is a number which is the

location of a cell in core which contains a virtual memory address.
These addresses define the bounds of their respective push-lists:

IPP and ICP are the initial values, PP and CP the current values
(actually they point to the first cell not used). Thus if both
stacks are empty, i.e. at the top level

(OPENR CP) = (OPENR ICP)
and (OPENR pp) = (OPENR IPP)

For each function called, the contents of CP are increased by 4,
corresponding to the four cells required on the control push-down
list for information about this function call. The first two of

these cells contain the functions return and its virtual address,

so should not be of interest to the user. However, the third
cell, i.e. (OPENR ICP)+2,+6,+lO ••. contains the functions name.
Thus, the following definition of nthfn is equivalent to the
machine coded one currently in our system.

12.11

(NTHFN
(LAl1BDA (FN N)

(flROG (x Y)
{SETQ X (PLUS (OPENR CP)

- 4) }
(SETQ y (OP~NR ICP»

LP (COND

)))

«EQ {CAR (VAG (PLUS X 2»)
FN)

(COND

(COND

«ZEROP (SETQ N (SUB1 N»)
(RETURN (QUOTIENT (DIFFERENCE X y)

4»»»)

«NEQ (SE~Q X (PLUS X -4»
y)

(GO LP»)
(RE'XURN NIL)

The fourth cellon the control push-down list is a pointer to the
first cellon the parameter push-down list used by this function.

For each variable bound locally by a function, the contents of PP
are increased by two, i.e. each variable uses two cells on the
parameter push-down list. The first cell, i.e. (OPENR IPP)+O,+2,+4 ... ,
contains the value of the variable; the second contains its name.
Thus, variables can be recognized on the parameter push-down list
by the appearance of an atom, the variable's name, in an odd cell*.
Thus, the following definition can be used for variables:

* The parameter push-down list is used for temporary storage by
the interpreter, and also contains information about bindings
of free variables in compiled functions. Thus, from the user's
standpoint, it may contain some "garbage".

12.12

(VARIABLES
(LAMBDA (N)

(FROG (LST FRUM TO Z)
(SETQ FHOM (OPENR (SETQ N (PLUS (OPENR Iep)

(TIMES N 4)
3))))

(SETQ TU (O~ENR (PLUS N 4»)
LP (COND

)))

((E Q :' ROM TO)
(RETURN LST»

«ATOM (StTQ Z (CAR (VAG (ADD1 FROM»»)
(SETQ L~T (NCUNC LST (LIST Z»»)

(SETQ FROM (PLUS FROM 2»
(GO LP)

The following function is presented as an example of a "new"

push-down list function. Its value is T if the variable VAR is
bound by the function at position N on the push-down list, other-
wise NIL. In other words, it is equivalent to (MEMBER VAR (VARIABLES N».,

(VARIABLE?
(L A ~l B D A (N V A R)

(PROG (FROM TO)
(SETQ FHOM (OPENR (SETQ N (PLUS (OPENR Iep)

(TIMES N 4)
3))))

(SETQ TO (O~ENR (PLUS N 4»)
LP {COND

)))

«EQ fROM TO)
(RE'J.'URN NIL»

«EQ (CAR (VAG (ADD1 FROM»)
VAR)

(RETURN T»)
(SETQ FHOM (PLUS FROM 2»
(GO LP)

12.13

SECTION XIII

ARITHMETIC FUNCTIONS

Integer Arithmetic

The following functions all work on integers. When given floating

point numbers as arguments, these arguments are fixed (converted
to integers) before any operation is performed. Most of these
functions are compiled as open code.

plus[xl ;x2 ; ... ;xn] Returns an integer xI +x2+ ... +xn

minus[x]

difference[x;y]

addl[x]

sUbl[x]

quotient[x;y]

- x

This function has for its value

the numeric difference between its

arguments.

x + I

x - I

Returns an integer equal to the

product of ~1'~2' ... ~n

Greatest integer in quotient x/y

:13.1

remainder [x;y]

divide[x;y]

numberp[x]

greaterp [x;y]

lessp[x;y]

zerop[x]

minusp[x]

logand[x; ... ;zJ

logor[x; ... ;z]

This function computes the number

theoretic re~ainder for fixed­

point numbers.

This function yields a dotted pair

whose first member is quotient[x;y]

and whose second member is

remainder[x;y].

x if ~ is a number; NIL otherwise.

This function works for floating

point numbers as well as integers.

T if x>y; NIL otherwise

T if x<y; NIL otherwise

T if x is zero; NIL otherwise

T if x is negative; NIL otherwise

This function takes the logical

and of all of its argument, and re­

turn this value as an integer.

This function takes the logical

or of all of its arguments, and

return this value as an integer.

Logical exclusive or of xI' ... '~n

13.2

lsh[n;s]

rsh[n;s]

lrsh[x;n]

abs [x]

rand[m,n]

Performs an arithmetic left
shift of s~ on n. Equivalent

to n * 2s .

Performs an arithmetic shift of

s~o on~. Equivalent to n * 2-s .

Performs a logical right shift

of x by n>- places.

Returns absolute value of x.

Returns a random integer r,
m>r>n. Uniformly distributed
in the range m<r<n.

13.3

Floating Point Arithmetic .

The floating point arithmetic functions available in BBN LISP are

fplus, fminus, ftimes, fquotient, and~. They will accept
mixed arguments, i.e. integer or floating point. Just as the

integ~r-type functions fix any floating arguments before perfor­

ming their computation, the floating-type functions float

any fixed arguments qefore performing a computation. Thus the

result of a floating point function is guaranteed to be a floating

point number.

The functions specifically related to floating point are:

fgtp[x;y]

fix[x]

fixp[x]

float[x]

floatp[x]

fminus[x]

fltfmt[x]

Floating greaterp; compares by

subtraction

Returns integer part of x

Returns T if x is an integer,

NIL otherwise.

Produces floating number

Returns T if x is a floating

point number, NIL otherwise

Negative of !

Output format control; ! is
defined as the time-sharing system

formatting of floating- point output

LISP normally operates with

fltfmt[O]. Another useful format

13.4

fquotient [x;y]

expt[m,n]

log[x]

antilog[xl

is 3DDWWOOOQ, where DD is the number
of digits following the decimal

point, and WW the total field width.

Thus with fltfmt[30205000Q],
.62~OOOOOE+2 will be typed as 62.~0
• 38000000E-l will be typed as 0.04

Numbers outside this range will be

typed with E notation.

See time-sharing manual for complete
description of floating formats.

Returns the sum of its arguments

Returns x/y

Product of its arguments

Returns as floating point number the

value of m to nth power. m and n
may be positive, negative, fixed or
floating point numbers except that
if ~ is negative and n fractional
an error occurs.

value is natural logarithm of x as
a floating point number. x can be
integer or floating point.

value is floating point number whose
logarithm is x. x can be integer
or floating pOint.

13.5

slne[theta]

cosine[theta]

Truncates theta to nearest 5
degrees and returns sine of theta
as floating point number. Uses

tab Ie look-up.

sine[theta+90]

Equal and eqp will compare two floating point numbers for equality,

and will float an integer to compare it to a floating point number.

Eq when compiled is an open 24 bit compare which usually won't

work fo.r ari thmetic comparisons. Equal uses eqp.

SECTION XIV

INPUT/OUTPUT FUNCTIONS

Opening and Closing Files

All input (output) functions in BBN LISP can specify their source
(destination) file with an optional extra argument which is the

name of the file. This file must be opened as specified below.
If the extra argument is not given (has value NIL), the file
specified as IIprimary" for input (output) is used. Normally
these are both T for teletype input and output. However, the
primary input (output) file may be changed by

input [name]

output[name]

Sets name to the primary input

file. Its value is the name of
the old primary input file. If
~=NIL, value is current
primary input file which is not

changed.

Same as input except operates on
primary output file.

Any file which is made primary must have been previously opened
for input (output).

The user may have a maximum of 3 files open simultaneously, in
addition to the teletype input and output files, and the output

file NOTHING.

14.1

The three basic file manipulation operations are:

infile [name]

outfile[name;type]

closef[x]

openp[x]

Opens for input the file named

name and sets it as the primary

input file. The value of infile

is the name of the previous pri­

mary input file.

Opens for output the file name,

which is set to type ~ if type

is not NIL, and otherwise to

type 3, symbolic. Its value is

the previous primary output file.

It sets the standard (primary)

output file to name.

Closes the named file. If x is

NIL, it attempts to close the

standard input file if other than

teletype. Failing that, it attempts

to close the standard output file

if other than teletype. Failing

either, it returns NIL. If it

closes any file, it returns the

name of that file. If it closes

either of the standard files, it

resets that standard file to

teletype.

Returns NIL if x is not an open

file, returns x if x is an open

file.

14.2 .

Input/Output Transmission

Most of the functions described below have an (optional) argument

file which specifies the name of the file on which the operation is
to take place. If that argument is NIL, the primary file will
be used.*

Note: in all 940 files, end-of-line is indicated by the characters

carriage-return and line-feed in that order. Unless otherwise

stated, carriage-return appearing in the description of an output

function means carriage-return and line feed.

On input from files, LISP will skip all line-feeds which immediately
follow carriage-returns. On input from teletype, LISP will echo

a line-feed whenever a carriage-return is typed.

The following functions perform output:

prinl [x, file]

prin2[x, file]

prints x on 'file

prints x with double quote marks

inserted where required for it to

read back in properly

Both prinl and prin2 print lists as well as atoms; neither print

a carriage return upon termination; both have value x. prinl is

usually used only for explicitly printing formatting characters,

e.g. (PRINl (QUOTE ".")) might be used to print a period at the

end of a sentence. prin2 is used for printing S-expressions
which can then be read back into LISP with read i .. e. atoms con--
taining the regular LISP formatting characters in their print

names will be printed with surrounding· double-quote marks. If

radix=8, prin2 puts a Q after numbers but prinl does not.

* file is used for tutorial purposes only. The arguments to all
subrs, which includes prinl, prin2 etc., are u, v, and w, as
described in arglist, p. 8.5.

14.3

prin3 [x, file]

print Lx, file]

Prints ~ using double quotes for
separation and break characters
specified by setbrk and setsepr;
p. 14.7.

Prints the S-expression ~ using

prin2; followed by a carriage­

return linefeed. Its value is x.

If any print function is given an atom containing a lower case char­

acter, £, and the output file is the teletype character will print

as %C.*Similarly, control characters print as &C on the teletype.
For all files, unboxed numbers print as #N, where N is the octal

representation. (See p. 10.5).

spaces en, file]

terpri[file]

xcr[]

Produces n spaces; its value is

NIL

Produces a carriage retur~ its value
is NIL

Produces a carriage return without

a line feed; for teletype only; its

value is NIL. Note: this carriage

return is not detected by position.

The print functions print, prinl, prin2, and prin3 are all affect­
ed by a level parameter set by

printlevel[n] Sets print level to n, value is old
setting. Initial value is 100000.

* The line p~inter will print lower-case characters as lower-case
characters. If the file is printed on the teletype, e.g. by
the copy command, lower-case are printed as upper-case.

14.4

The variable~ controls the number of unpaired left parentheses

which will be printed before any list will be printed as &.

Suppose x = (A (B C (D (E F) G) H) K)

Then if n = 2, print[x] would print

(A (B C & H) K)

and if n = 3,

(A (B C (D & G) H) K)

and if n = 0, it prints as just

&

If n is negative, action is similar except that a carriage return

is inserted between all occurrences of right paren followed by

left paren. The value of printlevel[n] is the old parameter

setting.

In order to change the level dynamically, while the system is

printing at you, you can type control-P followed by a number,

i.e. a string of digits, followed by a period or exclamation

point. The print level will immediately be set to this number

for this printout. If the print routine is currently deeper

than the new level, all unfinished lists above that level will

be terminated by " __)". Thus, if a circular or long list of

atoms, is being printed out, typing in

pC 0

will cause the list to be terminated. If a period was used to

terminate the number, level will be returned to its previous

setting after this printout. If an exclamation point was used,

the printlevel is changed permanently. This setting effects

both print and printx which is the name of the printing function
called by evalquote.

Note: printlevel only affects teletype output. Output to all

other files acts as though level is infinite.

14.5

Input Functions

read[file;flg]

readx[file;flg]

rdflx[x]

Reads one S-expression from file.

Atoms are delimited by parentheses,

brackets, spaces, carriage returns.

To input an atom which contains one

of these syntactic delimiters en­

close the atom in double quotes;

e.g., "A,B, (] C. II A double quote

immediately following the first

double Quote will be considered part

of the print name, not as a termina­

tor. To have a double quote internal
to a quoted print name, use three

double quotes; e.g. "(""")A" will
II

prinl as (If)A, and "A'''''''' as A • If

flg = T, then read will not count
parens.

Read program used by evalquote; same

as read.

If x is NIL this function will try to

read one S-expression with read[T];

i.e. from teletype. If no error occur­

red in reading, it will return with

list of the S-expression that was read.

If an error occurs in reading, it re­

turns with NIL. If x is not NIL, it

will attempt to read an S-expression

and gets an error, it will print out
x. In this case it returns with the

S-expression itself (not list of the
S-expression) •

14.6

ratom[file;flg]

ratoms[a,file]

setsepr[x]

setbrk[x]

Reads in one atom from file. Separation

of atoms is defined by tables set by

setsepr and setbrk, if fIg = NIL. If

fIg = T, ratom uses the LISP tables.

Calls ratom repeatedly until atom a

is read. Returns a list of atoms

read not including ~.

Sets break characters

Both setsepr and setbrk are of type

EXPR*. Arguments are octal numbers
which are ASCII codes for teletype

characters, e.g., l55q for carriage

return.

Characters specified by setbrk will

delimit atoms, and be returned as

separate atoms themselves by ratom.

Characters specified by setsepr will

be ignored and serve only to separate

atoms. Read does not use ratom,

but if it did, space (Oq), and car­

riage return (155q) would be separator

characters; and left paren (lOq),

right paren (llq), left bracket (73q),

right bracket (75q), double quote (2q),

and period (16q) would be break

characters.

Thus

setsepr[Oq l55q]

setbrk[lOq llq 73q 75q 2q 16q]

14.7

setseprc[x]

setbrkc[x]

setlsepr[u]
setlbrk[u]

ratest[x]

would set up these characteristics.
The value of setsepr and of setbrk

is NIL.

Same as setsepr except that the

arguments should be single character

atoms.

Same as setbrk except that the arguments

should be single character atoms.

Use setlsepr, setlbrk.

If u = NIL causes all separator
(break) characters to be cleared. If

u is a single character atom or a
numeric code for a character, this

character is added to the set of
separator (break) characters. Returns

T if this character was previously

a separator (break) character, NIL

otherw;ise. Error 10, "illegal argu­
ment" occurs if number is out of

range, or atom is not character atom.

Performs three functions depending on

setting of !.

If x = T ratest returns indicator
which is:

T if a separator was encountered
immediately prior to last atom
read by ratom.

NIL if there was no separator
between last two atoms returned

by ratom.

14.8

readc[file;flg]

unreadc[n,file]

If x = NIL it returns an indicator

which is:

T if last atom returned by

ratom was a break character.

If x = 1 then it returns:

T if last atom read contained

double quotes (on READ or (RATOM

x T)) NIL otherwise.

Reads the next character. Allows

paren counting and line buffering

if fIg = T.

If n is the code for a single character

or a single character atom, it will

be placed at the beginning of the

input buffer and thus taken as the

next character read. May not be done

two or more times w~thout intervening

read.

14.9

Input/Output Control Functions

These functions perform a variety of operations on the state of

files.

clearbuf []

radix[u;v]

control[u;v]

u = T

u = NIL

u =-1

u = 0

u = I

Clears the input buffer of TTY.

Sets output radix to ~ and sign in­

dicator to v. If u is !, negative

numbers will print as sign and 23 bit

value (normal). If u is NIL, all

numbers print as 24 bit unsigned
integers. Returns previous setting.

If v is not NIL, the system echo

table is set to v, which is the 2nd
argument to BRS 12(A REGISTER).

The value of u sets modes for reading

with ratom as follows:

Eliminates LISP'S normal line buffer­

ing, automatic detection of control-A

and control-Q as line-editing char­

acters on the TTY and paren counting.

Restores line buffering (normal).

Restores line buffering and causes

characters in current line not yet

read to be reprocessed by paren

counter and line buffer handler.

Elininates the echo of the character

being deleted by control-A.

Restores the echo (normal). Value is

old setting.

14.10

linelength[n]

position[]

readp[]

Special Functions

sysout[name]

sysin[name]

sysget[name]

Sets the length of the print line for

all files. The value is the former

setting of the line length.

Gives the character position on the

print line. No guarantees are made

about its meaningfulness if output is

being done intermittently to more

than one file.

Gives T if there is something in the

output buffer (either the TSS input

buffer or LISP'S line buffer) and NIL

otherwise.

Saves the user's private memory on the

file name. The value of sysout is the

number of words required. Note:

whenever the LISP system is reassembled,

old sysout files are no longer readable.

Restores the state of LISP from a

sysout file. Value of sysin is the

number of private pages (256 words)

read. If sysin returns NIL or INCOM­

PATIBLE, it was unable to read the

file name.

Initializes LISP and then does

sysin[name]. If name = T, just

initializes LISP.

14.11

rbin[file]

wbin(w;file]

ginfn[name]

goutfn[name]

ginfx[name]

goutfx[name]

filetype[name]

copyfile[from;to]

delfile[file]

renamefile[old,new]

Reads one 940 24 bit word from file,

the specified file. This function

returns the word as a number.

Writes one word, ~, on file specified

by file. W must be a number.

Obtains system's. file number for

previously opened input (output) file.

Useful for performing direct I/O from

hand-coded function. Cannot be used

as file argument for I/O functions.

See ginfx, goutfx.

These functions obtain the LISP file

index for the previously opened input

(output) file. Can be used as argu­

ment to I/O SUBR in place of file

name. It is somewhat faster especially

in case of repeated calls e.g. READC,

RATOM, PRINl, etc.

Obtains number indicating type for

previously opened input or output file.

copies file from to file to, e.g.,

COPYFILE[/FOO/; "LINE PRINTER"].

Value is to.

delete file. Value is file if found,

otherwise NIL.

renames old to new. Value is OLD-FILE

if ~ is an old file, NEW-FILE if new

is a new file, or NIL if unsuccessful.

14.12

Symbolic File Input

load[x;flg;p] load is a function which reads
successive S-expressions from file
x and evaluates each as it is read,

until it reads either NIL, or the
single atom STOP, followed by a
carriage return, at which point it
returns the value NIL.

If p=T, load prints the value of
each S-expression; otherwise it
does not. fIg affects the treatment of

expressions beginning with defineg:
if flg=NIL, dfnflg is bound to T and
the expression evaluated. If flg=T,

dfnflg is bound to NIL and the expression
evaluated. (This reversal is used so

that with the normal usage of load,
with only the first argument
specified, defineq will operate as
though dfnflg were T, its normal
setting.) If flg=PROP, defineg is
not called. Instead, the function

definitions are stored on the
property lists.

Thus if the function definitions
for a particular file were all

14.13'

readfile[v;x]

Symbolic File Output

writefile[v;x]

compiled, and one wished to edit a

function definition, and make a new

copy of the file containing it,

,without disturbing the compiled

definitions, one would perform

load[file;PROP], followed by

editf[fn], since editf automatically

goes to the property list if the

function definition cannot be

edited, followed by

prettydef[fns;file], since prettydef
automatically goes to the property

list if the function definition

cannot be prettyprinted.

reads successive S-expressions from

file x until the single atom STOP

is read, makes a list of these

S-expressions, and sets v to this

list. Value is x.

writes successive S-expressions from

v onto file x. If v is atomic, its

value is used. If x is not open,

it is opened and the date printed out.

When v is finished, a STOP is printed

on x and it 1s closed. Value is x.

14.14

prettyprint[x]

Example:

(FACTORIAL
(LAMBDA (N)

(COND
((ZEROP N) ,)

If ~ is an atom it will be evaluated

to yield a list of functions. The

definitions of the functions will

be printed in a pretty format. If

x is a list, it is used directly

as the list of functions.

(T (TIMBS N (FACTORIAL (SUB1 N»»»)

Note: prettyprint will operate correctly on functions that are

broken, broken-in, advised, or have been compiled with

their definitions saved on their property lists -

it prints the original, pristine definition.

A facility for documentin~ LIRo functions is provided in prettyprint.

Any S-expression beginning with * is interpreted as a comment and

printed in the right margin.* Example:

(FACTORIAL
(LAMBDA (N)

(COND
«ZEROP N)

1)
(T

(TIMES N (FACTORIAL (SUB1 N»»»)

(* COMPUTES NI)

(* 0!=1)

(* RECURSIVE DEFINITION:
Nl=N*N~11)

These comments actually form a part of the function definition.

Accordingly, * is defined as an NLAMBDA NONSPREAD function that

returns its argument, i.e. it is equivalent to QUOTE. When run­

ning an interpreted function, * is entered the same as any other

* Comments begin in column firstcol, initially set to 50, and end
in column lasteol, initially set to 74.

14.15

LISP function. Therefore, comments should only be placed where

they will not harm the computation. For example, writing

(TIMES N(FACTORIAL (SUBI N» (* RECURSIVE DEFINITION» in the

above function would cause an error when TIMES attempted to

multiply N, N-I!, and RECUHSIVE.

For compilation purposes, * is defined as a macro which compiles

into no instructions. Thus, if you compile a function with

comments, and load the compiled definition into another system,

the extra atom and list structures storage required by the com­

ments will be eliminated. This is the way the comment feature is

intended to be used.

endfile[x]

I

printdef[e] .

Prints STOP on and closes the file

specified ·by ~.

prints the expression e on the

primary output file in a pretty

format, i.e., prettyprint does

printdef[getd[fn]] after appro­

priately setting output files,

printlevel, etc.

prettydef[prtyx;prtyy;prtyl] This function is used for the

creation of files containing sys­

tems of functions.

The arguments are interpreted as follows:

prtyx

(first argument)

If a list, it is treated as a list

of function names. If prtyx is an

atom, it should have as a binding

th€ list of functions for prettydef.

The functions on the list are

prettyprinted surrounded by a

(DEFINEQ ...) so that they can be

loaded with load. In addition, a

14.16

prtyy

(second argument)

prtyl

(third argument)

rpaqq will be written which saves

the list of functions on the named
atom, and a print will be written

which informs the user of the named

atom when the file is subsequently
loaded.

is the name of the file on which

the output is to be written. The

following options exist:

file=NIL
The standard output file is

used as determined by the

last setting of output.
file=atom

The file atom is opened if
not already open, and becomes

the standard output file.

file=list

Car of the list is assumed

to be the file name and is

opened if not already open.

The standard output file is

not changed in this case.

is a list of commands, or if

atomic, its value is used as a
list of commands and an rpaga is

written which saves the list of
commands on the named atom, and a

print which informs the user of

the named atom when the file is

subsequently loaded, exactly as
with the first argument.

14.17

These commands are used to save

on the output file top level bindings
of variables, property lists of atoms,

miscellaneous LISP forms to be

evaluated upon loading, arrays, and
advised functions. It also provides

for evaluation of forms at output

time.

The interpretation of each command

in the command list is as follows:

1. if STOP, the file is closed.

2. if atomic, an RPAQQ is written

which will restore the top

level binding of this atom then

the file is loaded.

3. if of the form
(PROP property atoml ... atomn)

for each atom following property,

an appropriate DEFLIST will be

written which will restore the

property for each corresponding

atoml •.• atomn when file is

loaded. If property=ALL, the
entire property list will be

written with an RPLACD. If property
is a list, DEFLISTs will be written
for each property.

4. if the form (ARRAY ...), each

atom following ARRAY should have
an array as its value, and an

appropriate expression will be

written which will set the atom

14.18

to an array of exactly the same
size, type, and contents upon
loading.

5. If of the form (P ••••), each
S-expression following P will

be printed on the output file,

and consequently evaluated upon
loading.

6. If of the form (E ••••), each

form following E will be evalu­

ated immediately, i.e., while

prettyprint is operating.

7. If of the form (ADVISE fnl ..• fnm)
an appropriate expression will be

written for each of the m func­
tions which will upon loading

allow the user to reinstate the
advice using the function

READVISE.

8. If of the form (FNS fnl ••• fnm) ,
a defineg is written with the

definitions of fn1 ••• fnm,

exactly as though (fnl ••• fnm)
where the first argument to
prettydef, e.g. suppose the user
wanted to set some variables or

perform some computations in a file

before defining functions, for example,
do a minfs, he would then write the
definitions using this option in-.

stead of using the first argument

to prettydef.

14.19

9. If of the form
(COMMANDS coml ••• comn), each
of the commands coml ••• comn

will be interpreted as one of
the above eight command types.

In each of the nine commands described above, if the atom u*rr

follows the command type, the form following the *, i.e., caddr,

is evaluated and its value used in executing the option, e.g.,

(FNS * FOOFNS), (PROP * FOOPROPS). Note that in the latter case,
(CAR FOOPROPS) will be the property (ies) to be saved, and

(CDR FOOPROPS) the list of atoms for which this property is to

,be saved.

Note that (COMMANDS * form) provides a way of computing what

should be done by prettydef.

Example:

SET(FOOFNS (FOOl F002 F003»
SET(FOOVARS(FIE (PROP MACRO FOOl F002) (P (MOVD (QUOTE FOOl)

(QUOTE FIEl») STOP)

PRETTYDEF(FOOFNS /FOO/ FOOVARS)

would create a file /FOO/ containing

1. A message which prints the time and date the file was made
(done automatically)

2. DEFINEQ followed by the definitions of FOOl, F002, and F003
3. (PRINT (QUOTE FOOFNS»
4. (RPAQQ FOOFNS (FOOl F002 F003»
5. (PRINT (QUOTE FOOVARS»
6. (RPAQQ FOOVARS (FIE ••• STOP)

7. (RPAQQ FIE value of fie)

8. (DEFLIST (QUOTE«FOOI PROPERTY) (F002 PROPERTY») (QUOTE MACRO»
9. (MOVD (QUOTE FOOl) (QUOTE FIEl»

10. STOP

14.20

printfns[x]

printdate[]

tab[pos,minspaces.file]

makefile[file;flg]

listfile[files]

~ is a list of functions. printfns

prints DEFINEQ and prettyprints the

functions. Used by prettydef, i.e.

command (FNS * FOO) is equivalent

to command (E (PRINTFNS FOO)).

prints the expression at beginning

of prettydefed files that types

date upon loading.

performs appropriate number of

spaces to move to position pOSe

If position + minspaces is greater

than ~, does terpri and then
spaces Cpos]. If minspaces not

given, I is used.

does prettydef[fileFNS;/nfile/; fileVARS]

where /nfile/ is first unused file,
e.g., if user's file directory con-

tains /IFOO/ and /2FOO/ makefile[FOO]

does prettydef[FOOFNS;/3FOO/FOOVARS].
If fileVARS is unbound atom, make file
uses (STOP).

If fIg = T, file is also listed using

listfile .

-/_-----

Lists each file in files on linp.

printer using utility. Value is

files.

14.21

SECTION XV

DEBUGGING AND ERROR HANDLING

Debugging Facilities

Debugging a collection of LISP functions involves isolating problems

within particular functions and/or determining when and where incor­

rect data is being generated and transmitted. In the BBN-LISP system,

there are three facilities which allow the user to (temporarily)

modify selected function definitions so that he can follow the flow

of control in his programs, and obtain this debugging information.
These three facilities together are called the break package, All

three ~edefine functions in terms of a system function, breakl,

described below.

Break modifies the definition of fn so that if a break condition

(defined by the user) is satisfied, the process is halted tempo­

rarily on a call to fn. The user can then interrogate the state

of the machine, perform any computations, and continue or return
from the call.

Trace modifi"es a definition of a function fn so that whenever fn is

called, its arguments (or some other values specified by the user)

are printed. When the value of fn is computed it is printed also.
(Trace is a special case of break).

Breakin allows the user to insert a breakpoint ~nside an expression

defining a function. When the breakpoint is reached and if a break
condition (defined by the user) is satisfied, a temporary halt

occurs and the user c~n again investigate the state of the
computation.

The following two examples illustrate these facilities. In the

first example, the user traces the furlction FACTORIAL. TRACE

redefines FACTORIAL so that it calls BREAKI in such a way that it

prints some information, in this case the arguments and value of

15.1

PRETTYPRINT(f~CTORI~L»

(fl\CTOR IAL
(L~MBD!\ (N)

(COND
«ZERO? N)

L)
(T (TIMESN (f~CTORIAL (SUB} N»»»)

N IL
~TR~CE(f~CTO~I~L)

(f.l\CTOR I,l\L)
~ rACTO.~ IAL (5)

fACTOR IAL:
N = 5

fACTORIAL:
N = 4

fACTORIAL:
N = 3

rACTO;~ IAL:
l\J = 2

F"ACTJRI4L:
N = }

r ACTORIAL:
N = 0

ERROR
CL IS UNBOUND ATOM)
C F"ACrOR IAL BROKEN)
: N
o
: RETURN I
r ACTOR IAL = I

F"ACTOHIAL =
r~C TOH V\L = 2

FACTO:~I·,\L = 6
rf~CTOR IAL = 24

ftACTO~~II.\L = 12:~

1 20

15.2

PRETTYPRINT«~ACTORIAL»

(~ACTORIAL
(LAMBDA (N)

(PROG eM)
(S E of 0 M 1)

LOOP(COND
«ZEROP N)

(RETURN M»)
(SETQ M (TIMES M N»
(SETQ N (SUBI N»
(GO LOOP)

)))

NIL

~BREAKIN(rACTORIAL (A~TER LOO?) (LESS? N 2»
SEARCHING •••
F" ACTOR IAL
~ ~ACTOR IAL (5)

«~ACTORIAL) BROKEN)
: NN

ERROR
(NN IS UNBOUND ATOM)
(rACTORIAL BROKEN ArTER LOOP)
: N
1
: M
1 20
: OK
(rACTOR IAL)

«rACTORIAL) BROKEN)
: N
o
: OK
(, rACTOR IAL),
I 20 ..

15.3

FACTORIAL, and then goes on with the computation. When an error
occurs on the fifth recursion, BREAKI reverts to interactive mode,
and a full break occurs. The situation is then the same as though
the user had originally performed BREAK(FACTORIAL) instead of
TRACE(FACTORIAL), and the user can evaluate various LISP forms and
direct the course of the computation. In this case, the user

- - -

examines the variable N, and instructs BREAKI to return 1 as the
value of this call to FACTORIAL. The rest of the tracing proceeds
without incident. The user would then presumably edit FACTORIAL
to change L to 1. In the second example, the user has constructed
a non-recursive definition of FACTORIAL. He uses BREAKIN to
insert a call to BREAKI just after the PROG label LOOP. This
break is to occur only on the last two iterations, i.e., when N
is less than 2. When the break occurs, the user looks at the
value of N, mistakenly typing NN. However, the break is maintained

and no damage is done. After examining Nand M, the user allows
the computation to continue by typing OK. A second break occurs
after the next iteration, this time with N=O. When this break is
released, the function FACTORIAL returns its value of 120.

15.4

Breakl

The basic function of the break package is breakl. It allows the

user to interrogate the state of the world and to affect the course

of the computation. breakl uses the ready character ":" to in­

dicate it is ready to accept forms for evaluation (by eval). The

user may type in forms to eval and, under heavy errorset protection,

see the value of the computations. In addition, he has the follow­

ing options that are specifically recognized by breakl:

GO

OK

EVAL

Releases the break and allows
the computation to proceed.
BREAKI evaluates BRKEXP, its
fi~st argument, prints the value,
and returns it as the value of
the break. BRKEXP is set up by
the function that created the call
to BREAKI. For BREAK or TRACE,
BRKEXP is (dummy ARGI ARG2
ARGN), where dummy has the original
definition of the function being
broken and ARGl, ARG2, ••• ARGN
are its arguments. BRKEXP is NIL
for BREAKIN using BEFORE or AFTER,
and the indicated expression for
BREAKIN AROUND.

Same as GO except the value of
BRKEXP not printed.

Same as GO or OK except that the
break is maintained after the
evaluation. The user can then
interrogate the value which is
bound on the variable VALUE, and
continue with the break. Typing
GO or OK following EVAL will not
cause reevaluation, but another
EVAL will. This is a useful option
when the user is not sure whether
or not the break will produce the
correct value and wishes to be able
to do something about it if it is
wrong.

15.5

RETURN form

+

The value of form is returned as
the value of the break. For
example, one might use the EVAL
command and follow this with
RETURN (REVERSE VALUE).

Calls error and aborts the break.
i.e. makes it "go away" without
returning a value. This is a use­
ful way to unwind to a higher level
break. All other errors, includ­
ing those encountered while exe­
cuting the GO, OK, EVAL, and
RETURN option, maintain the break.

Once a break occurs, control of the computation reverts to the

user. The computation does not proceed without a specific instruc­
tion from the user. In most cases the user will simply check the
values of certain key variables, and allow the computation to

proceed. If he is not interested in the value of the break, he
probably will use the OK command, and BREAKI will "quietly go
away. " If he is interested in seeing the value, but fai'rly cer­
tain that it will be correct, he may use the GO command. If he

w~s to see the value of the break, but still have the option of
further interaction with BREAKI, he will use the EVAL command,

after which he can examine the variable VALUE. By means of the

RETURN command, he can force BREAKI to return an appropriate
value, even when his function is still "buggy." This can be
useful in localizing a problem in a large program. If substitu­

ting the omniscient user for a faulty function corrects the bug,
then the problem has been isolated.

BREAKI puts all of. the power of LISP at the users co~mand. For
example, he can insert new breaks on subordinate functions simply

by typing:

(BREAK functionl function2)

or he can remove old breaks and traces if too much information

is being supplied:

(UNBREAK function3 function4)

He can edit functions, including the one currently broken:

(EDITF function)

For example, the user might type EVAL, see that the value was
incorrect, call the editor, repair the bug, and type EVAL again,

all without leaving the break.

Similarly, the user can prettyprint functions, define new functions

or redefine old ones, etc., load a file, compile functions, time a

computation, etc. In short~ anything that he can do at the top

level EVALQUOTE can be done while inside of the break. In addition,
the user can examine the pushdown list, via the functions described

in section 12, and even force a return back to some higher function

via the function ret from.

Brkcoms

The fourth argument to breakl is brkcoms, a list of break commands

that breakl interprets and executes exactly as though they were

teletype input. One can think of brkcoms as another input file

which always has priority over the teletype. Whenever brkcoms=NIL,

breakl reads its next command from the teletype. Whenever brkcoms

is not NIL, breakl takes as its next command car[brkcoms] and sets

brkcoms to cdr[brkcoms]. For example, suppose the user wished to

see the value of the variable x after a function was evaluated.

15.7

He would set up a break with brkcoms=(EVAL (PRINT X) OK), which
would have the desired effect. The function trace uses brkcoms:

it sets up a break with two commands; the first one prints the

arguments of the function, or whatever the user specifies, and the

second is the command GO, which causes the function to be evaluated
and its value printed.

Note: if brkcoms is not NIL, the value of a break command is not

printed. If you desire to see a value, you must print it yourself,
as in the above example with the command (PRINT X).

Note: Whenever an error occurs, brkcoms is set to NIL, and a full
interactive break occurs.

Breakmacros

Breakl specifically recognizes the five atomic commands +, GO,
RETURN, EVAL, and OK. Whenever an atomic command is given breakl

that it does not recognize, either via brkcoms or the teletype,

it searches the list breakmacros for the command. The form of
breakmacros is (... (macro commandl command2 ... commandn) •..).

If the command is defined as a macro, breakl simply appends its

definition, which is a sequence of commands, to the front of

brkcoms, and goes on. If the command is not contained in
breakmacros, it is evaluated as before.

15.8

The following breakmacros are currently defined:

?=

!EVAL

!OK

!GO

if from brkcoms, looks at next
command on brkcoms and prints the
value of each member of that list.
For example, if brkcoms were
(EVAL 1= (X Y) OK), the user would
see

(function BROKEN)
function EVALUATED
X= value of x
Y= value of y
function

If the next command on brkcoms
is T, 1= operates on all of the
arguments of the broken function,
i.e. if the arguments of the broken
function are X and Y, ?= T is
equivalent to ?= (X Y). ?= is used by
trace.

1= typed in by user is equivalent
to the commands ?= and T on brkcoms,
i.e. the names and values of the
arguments to the broken function
are printed.

function is first unbroken, then
evaluated, and then rebroken. Very
useful for dealing with recursive
functions.

Function is first unbroken, eval­
uated, rebroken, and then exited,
i.e. !OK is defined as !EVAL fol­
lowed by OK.

Function is first unbroken, eval­
uated, rebroken, and exited with
value typed, i.e. !EVAL -followed
by GO.

15.9

ARGS

%A

Bell (Control-G)

the names of the arguments of the
broken function are printed.

evaluates and prints the value of
the atom a, (lower-case A), see p. 12.4.

reverses the setting of brkevqflg,
and prints new value, i.e. does
(PRINT (SETQ BRKEVQFLG (NULL BRKEVQFLG»)

If brkevqflg=NIL, its normal setting, breakl operates in
eval mode, uses: as its ready character and __ expects one input
which it evaluates using eval (except if input is one-0f the
fi ve commands t, GO, EVAL, OK or RETURN or a breakmacro) ~

If brkevqflg=T, breakl operates in evalquote mode, itsreagy
character 1s +, and it then expects two inputs,a function and
its arguments, which it gives to evalqtiOte. However, -- __
the five regular commands as well as any breakmacros are not
affected by the setting of brkevqflg and will always be recog­
nized. evalquote mode is useful if you have a lot of express­
ions to evaluate that would otherwise have to be quoted, e.g.

:(PUT (QUOTE Faa) (QUOTE FIE) (QUOTE ... »

vs

+Pt~(FOO FIE ..•)

in evalquote mode.

BT Prints a backtrace of function names
only. If BT is followed by a function
name, on the same line of input, the
backtrace starts from the last occur­
rence of that function, e.g.

BT Faa

prints FDa and all functions entered
above it in reverse chronological
order. A number (position on the
push list) can be used instead of
a function name. Otherwise back­
trace starts from the current
position exqept that calls to
error, faulteval; breakl, etc.,
are initially skipped.

15.10

BTV Prints a backtrace of function names
with variables. If followed by a
number on the same line of input,
printlevel is set to that number
during the backtrace only, e.g.

BTV 2

will print a backtrace with the values
of all variables being printed to a
depth of 2. If this number is not
supplied, printlevel is set to 0 for
backtrace. In both cases printlevel
is restored after backtrace, even if
interrupted by a control-R. Note
however, if the backtrace is aborted
by a control-C, the printlevel will
not have been restored.

15.11

Miscellaneous

The fifth argument to breakl is brkfile, and determines the output

file for breakl. If it is NIL, the teletype is used. However,

brkfile can be used to dump diagnostics onto a di'sc file, or eveL
onto the file NOTHING. If brkfile is not open, it is opened. If

an error occurs, brkfile is set to NIL and all output goes to the

teletype.

brkx is a prog variable in breakl which is bound in breakl but not

used. It is available for the user, to provide a local bindin2 for
computations associated with breaks.

Break Functions

breakl[brkexp;brkwhen;brkfn;brkcoms;brkfile]

is an nlambda. brkwhen determines

whether a break is to occur. If

its value is NIL, brkexp is evalu­

ated and returned as the value of

breakl. Otherwise a break occurs

and an identifying message is

printed using brkfn. Commands are

then taken from brkcoms or the

teletype and interpreted. The

commands GO, OK, RETURN, and t,

are the only ways to leave
breakl. The command EVAL causes

brkexp to be evaluated, and saves

the value on the prog variable

value. Other commands can be

defined for breakl via breakmacros.

15.12

break~[fn;when;coms;fileJ sets up a break on the function fn

by redefining fn as a call to

breakl with the original definition

of fn as brkexp,and when, fn, corns,

and file as brkwhen, brkfn, brkcoms

and brkfile. Puts property BROKEN

on property list of fn with value

a gensym defined with the original

definition. Adds fn to the list

brokenfns. Value is fn.

If fn is non-atomic and of the form

(fnl IN fn2), breakO first calls a

function which changes the name of

fnl wherever it appears inside of

fn2 to that of a new function, fnl­

IN-fn2, which it initially defines

as fnl. Then breakO proceeds to

break on fnl-IN-fn2 exactly as des­

cribed above. This procedure is use­

ful for breaking on a function that

is called from many places, but where

one is only interested in the call

from a specific function, e.g.

(RPLACA IN FOO), (PRINT IN FIE), etc.

It is similar to breakin described

below, but can be performed even when

FN2 is compiled whereas breakin only

works for interpreted functions.

If fnl is not found in fn2, breakO

returns the value (fnl NOT FOUND IN

fn2).

15.13

break[x]

If fnl is found in fn2, in addition

to breaking fnl-IN-fn2 and adding

fnl-IN-fn2 to the list brokenfns,

breakO adds fn1 to the property

value for the property NAMES CHANGED

on the property list of ~ and

adds the property ALIAS with value

(fn2 . fnl) to the property list of

fnl-IN-fn2. This will enable unbreak

to recognize what changes have been

made and restore the function fn2 to

its original state.

If fn is nonatomic and not of the

above form, breakO is called for each

member of fn usin~ the same values
for when, corns, and file specified

in this call to breakO. This as­

sociativity permits the user to

specify complicated break conditioBs

on several functions without retyping,

e.g.

breakO[(FOOl (PRINT IN F002)), (NEQ X T)
(EVAL ?= (y Z) OK)]

Associativity is also available for

breaking in e.g. break0[«PRINI PRINT)

IN (FOO FIE)),T]

Value is list of individual values.

is a nonspread nlambda. For each

atomic argument, it performs

break~[atom;T]. For each list, it

performs apply [BREAKg;list]. For
example,

15.14

trace[x]

BREAK(FOOl (F002 (GREATERP N 5) »

will establish breaks on FOOl and
F002, the latter a conditional

break.

is a nonspread nlambda. For each
atomic argument, it performs

break0[atom;T; (TRACE ?= T GO)J* (see

discussion of brkcoms and break­

macros in text). For each list,

it performs

break0[car[list];T;list[TRACE,?=,

cdr[list],GOJJ*

For example, TRACE(FOOI (F002 Y»

will cause both FOOl and F002 to

be traced. All the arguments of

FOOl will be printed; only the

value of Y will be printed when

F002 is entered.

Note: the user can always call break~ himself to obtain combination

of options of breakl not directly available with break and
trace. These two functions merely provide convenient ways of

calling break0, and will serve for most uses.

(*) The flag TRACE is checked for in breakl and causes the
message "function": to be printed instead of (function BROKEN).

15.15

breakin[fn,where,when,coms,file]

breakin is an nlambda. Its last

three arguments correspond to the

last three arguments of breakO,

except if when is NIL, T is used.

where specifies where in the defi­

nition of fn the call to breakl

is to be inserted. There are three

possibilities: (BEFORE ...), (AFTER

...), or (AROUND .•.). " ..• " is
used by the expanded editor's locate

routine to find the correct point

for the break. For example, (BEFORE

COND) will insert a break before the

first occurence of cond, and (AROUND

(SETQ X --» will break around the
first place X is set. Note that

specifications such as (AROUND ALL

(SETQ X --» for breaking around
every place x is set, and (AROUND

(SECOND (COND CONTAINING RETURN») are

perfectly acceptable. See p. 9.26-
9.40 for description of expanded
editor.

If fn is a compiled function, breakin

returns UNBREAKABLE as its value.

If fn is interpreted, breakin typ'es

SEARCHING •.• while it calls the

editor. If the location specified

by where is not found, breakin types

15.16

(NOT FOUND) and exits. If it is

found, breakin adds the property

BROKEN-IN with value to T to the

property list .of fn, and adds fn

to the list brokenfns.

Because of the operation of the UP

command in the expanded editor,

(BEFORE COND) and (BEFORE x) will

both have the desired effect. The

first will insert a break before

the entire expression beginning

with COND, the 'second before X it­

self. A special check is made to

avoid inserting a break in the

wrong place when a variable may

appear as car of an expression, as

in the case of a cond or selectq,

i. e. the X in (COND .•. eX ••) •••)
will not satisfy the locating routine.

Another special check is made to

avoid inserting a break anywhere

inside of an expression headed by
any member of the list nobreaks,

initialized to (GO QUOTE *), since
this break would never be activated.

It is possible to insert multiple

break points, with a single call to
breakin by using a list of the form

«BEFORE •..) .• (AROUND •.•))' for

where. It is also possible to call

15.17

unbreak[x]

unbreakO[fn]

break or trace on a function which

has been modified by breakin , and

conversely to breakin a function

which has been redefined by a call
to break or trace.

unbreak is a non-spread nlambda.

It takes an indefinite number of

functions modified by break, trace,

or breakin and restores them to

their original state by calling
unbreakO. unbreak[] will unbreak

all functions on brokenfns, a list
that is updated by breakO and

breakin. Value is list of values

of unbreakO.

restores fn to its original state.

If fn was not broken, value is
(NOT BROKEN) and no changes

are made. If fn was modified by

breakin, unbreakin is called to

edit it back to its original state.

If fn was created from (fnl IN fn2),

i.e. if it has a property ALIAS,

the function in which fn appears
is restored to its original state.

All dummy functions that were

created by the break are eliminated.

Note: unbreakO[(fnl IN fn2] is

allowed: unbreakO will operate on

fnl-IN-fn2 instead.

15.18

unbreakin[fn]

changename[fn, from, to]

virginfn[fn,flg]

performs the appropriate editing
operations to eliminate all changes

made by breakin. fn may be either

the name or definition of a function.

Does not check to see if any changes

were made. Value is fn.

changes all occurrences of from to

to in fn. fn may be compiled.

Value is fn if from was found,

otherwise NIL. Does not perform

any modifications of property lists.

is the function that knows how to
restore functions to their original

state regardless of any amount of

breaks, breakins, advising, compil­

ing and saving exprs, etc. It is

used by }2Eettyprint, define, and

the compiler. If flg=NIL, as for

prettyprint, it does not modify

the definition of fn in the process

of producing a "clean" version of
the definition. If flg=T as for

the compiler and define, it physically

restores the function to its original

state, and prints the changes it is

making, e.g. FOO UNBROKEN, FOO UNADVIS­

ED, etc. Value is the virgin function
definition.

15.19

valv[x,fn,n] a useful form of evalv for inside
of a break. valv is an nlambda.

x is the name of a variable to be
evaluated, using evalv, as of the
nth occurrence of the function fn,

i.e. nthfn[fn,n]. If n is NIL, 1
is used. If fn is NIL, the last

position used by valv is used (it

is saved on the free variable
vvnlast). For example,

: (VALV X MATCH)
value of X as of last call to MATCH
: (VALV Y)
value of Y as of last call to MATCH

15.20

Error Handling in LISP

There are currently twenty four different error types in the

BBN LISP system. These are discussed in greater detail below.

However, by far the most common "error condition" in LISP pro­

grams: unbound atoms and undefined functions, is not treated as

an error at all, but handled in a special way by the BBN inter­

preter. The basic difference between a bona fide error, and an

unbound atom or undefined function, is that errors are detected

after they occur, e.g. PDL OVERFLOW, NONXMEM, or else they are

detected inside a low-level function (a SUBR, SUBR* or FSUBR*),

like plus or setg e.g. NUN-NUMERIC ARG, NON-ATOMIC ARG, ILLEGAL

REGISTER COMMAND, whereas unbound atoms and undefined functions

are detected by the interpreter when it attempts to evaluate a

LISP form. Consequently, the system is in a better position to

allow the user to correct unbound atom and undefined function

error conditions than the more basic errors, although these too

are "helpable" in the BBN LISP system.

15.21

Unbound atoms and undefined functions

Whenever the interpreter encounters an atomic form with no binding

on the push-down list, and whose value is the atom NOBIND,(*) the

interpreter calls the function faulteval. Similarly, faulteval

is called when a non-atomic form is encountered, car of which is

not a function. (**). The value returned by faulteval is used by

the interpreter as the value of the form. faulteval is defined
to print either UNBOUND ATOM or UNDEFINED CAR OF FORM, followed

by the name of the atom or car of the form, and then to call

breakl giving it as brkexp the offending form. Once inside the

break, the user can set the atom, define the function, return a

specified value for the form using the RETURN command, etc, or

abort the break using the t command. If the break is exited

with a value, the computation will proceed exactly as though no
error had occurred.

This call to breakl can be i~hibited by setting to NIL the vari-

able helpflag, which is initially set to T. In this case, faulteval
instead calls the function error (p. 15.33).· It is at this point .that

the unbound atom or undefined car of form actually becomes a LISP

error. Similarly, error is called instead of breakl if the "error"

(*) All atoms are initialized (when th~y are created by the
read program) with their value cells (car of the.atom)
NOBIND, their function cells NIL. and their nronertv 11~~~
(cdr of the atom) NIL.

(**) See Appendix 2 for complete description of BBN LISP interpreter.

15.22

occurs within helpdepth, initially set to 4, function calls from

the top level evalquote or the last errorset (p. 15.33). In the

example below, a break occurs when FOOO is evaluated inside the

mapcar, but not when typed in to e. Of course, the user can set

helpdepth to any value he wishes. For helpdepth=O, breaks will

always occur .

.. SET(rOO (1 2 3»
(1 . 2 3)

"E (MAPCAR rOOD (rUNCTION ADD1»
UNBOUND ATOM rOOO

(rOOD BROKEN)
: RET~RN rOO
r 000 = (1 2 3)
(2 3 4)

... E rOOO

ERROR
(rOOD IS UNBOUND ATOM)
U NTRACE:

XEEEE rOOD

15.23

Undefined function calls from compiled code

Frequently, a function will be compiled when some of the functions

it calls are not defined. The compiler"merely generates instruct­

ions for calling the function exactly as though it were defined

as a LAMBDA expression (p. 16.7). However, if the function is

undefined at ~ time, the system routine that, performs the actual

calling of functions will instead call the function interrupt,

analagous to faulteval in the interpreter. Interrupt is defined

to type UNDEFINED FUNCTION followed by the function name and then

call breakl.

If the function was undefined at compile time, its arguments will

have been evaluated (see p. 16.7). In this case, they may be
examined using the function arg, p. 8.6. e.g. arg(l), arg(2), or
the function breaknargs can be used to make a list consisting of

all of the arguments to the function. For example, the expression

given to breakl as brkexp is (APPLY FUNCTION (BREAKNARGS

INTERRUPTARGS)) where interruptargs is the argument to interrupt,

and is bound to the number of arguments for the undefined function,

i.e. the number of arguments with which is was called~ and the

variable function is bound by interrupt to the undefined fUnction

name. If the user defines function as a LAMBDA expression, and
executes the OK, GO, or EVAL command in breakl, the correct value
will be computed.

As with faulteval, the value returned by interrupt is used as the
value for the function call, and the computation proceeds exactly

as though no error had occurred.

Similarly, the call to breakl can be inhibited by setting the
variable helpflag to NIL, and no break occurs if the error was

within helpdepth function calls from the top or the last errorset.

In these cases, error is called instead.

Inducing an interrupt

The user can induce an interrupt and subsequent call to breakl at

any point in a computation by typing control-H. At the next

point a function is about to be entered, interrupt is called in­
stead. Interrupt types INTERRUPTED BEFORE followed by the function

name, and then calls breakl exactly as though the function were
undefined. The arguments to the function can be examined using
arg or breaknargs. If the user types OK, GO, or EVAL the function

call will be continued. Control-H interrupts are not affected by

the setting of helpflag or helpdepth. However, they only occur
when a function is about to be entered. If the program is com­

puting in a function which after compilation, does not call any

other functions, (pp. 16.11-16.14) computation will not be inter­
rupted until that function is exited.

15.25

"Real" errors

The conventional treatment of errors in a LISP system is to

cause a trap to a routine which prints an error message and un­

winds the pushdown list. While unwinding the pushdown list, the

system prints the names and arguments of all functions that have

been entered but not yet exited, with the most recently entered

function printed first.(*) If the function errorset has been
entered, unwinding proceeds only as far as the most recent call to it,

and errorset then returns NIL as its value, to indicate an error

occurred. Otherwise, unwinding proceeds until the top level eval­

quote.

In the BBN LISP system, this unwinding process takes place only

as a last resort, i.e. if the variable helpflag is NIL, or if the

error type (p. 15. 29) is specified as non-helpable, or if the error
occurred within helpdepth function calls from the top or the last

errorset. Otherwise, the error diagnostic is printed and breakl

is called to allow the user to examine the state of the computation

and proscribe the next action.

Unfortunately, the user may not always be able to make a correction

and proceed as if no error had occurred, as he can with calls to

faulteval and interrupt. When an error occurs in a low-level
routine, the state of the computation must be backed up to the

last function call before breakl can be called. For example, if

the compiled function hypotenuse were defined as:

(*) In the BBN system, this printout can be terminated by pressing
control-R, or portions of it can be skipped by judicious use
of rubout, or the printlevel can be modified by using control-P,
or the user can always bomb back to the top level via control-C.
See appendix 2, p. 23.7.

15.26

(HYPOTENUSE
(LAMBDA (X 'I)

(EXPT (rPLUS (rTIMES X X)
(rTIMES Y 'I»

o • 50000000)))

and the user performed:

.. E (rTIMES (SINE 30) (HYPOTENUSE 3»

NON-NUMERIC ARG
N IL
I N HYPOTENUSE

C HYPOTENUSE BROKEN)
: BTV
U NTRACE:

'I NIL
X 3

HYPOTENUSE
LAMBDA &
%A 0. 50:a00000

F'TIMES
XEEEE &

E

: CSETQ 'I 4)
4
: EVAL
HYPOTENUSE EVALUATED
: VALUE
5
: OK
HYPOTENUSE
2 .50000000 ..

15.27

the computation would be preserved as of the time hypotenuse was
called, since ftimes and fplus compile open (p. 16.10).
Thus the partial results of the computation would be lost when the

error occurred. In this particular case, the user could proceed
as shown.

However, if the computation made some changes in the program's

environment before the error occurred,the programmer may not be
able to simply repeat the computation. For example, if hypotenuse

were defined as:

~PRETTYPRINT«HYPOTENUSE»

(HYPOTENUSE
(LAMBDA (X Y)

(EXPT (FPLUS CSETQ X (rTIMES X X»
(FTIMES YY»

0.50000000)))
N IL

.. E (rTIMES (SINE. 30) (HYPOTENUSE 3»

NON-NUMERIC ARG
N IL
I N HYPOTENUSE

(HYPOTENUSE BROKEN)
: X
9
: RETURN (HYPOTENUSE 3 4)
HYPOTENUSE = 5
2 .50000000
~

The user must evaluate each situation individually to decide

whether or not he can continue, or should force a returned value,
or perform a retfrom back to some higher level.

15.28.

Error types

There are currently twenty four error types in the BBN LISP system:

o NONXMEM
1 BREAK
2 CAR OF NUMBER
3 PDL OVERFLOW
4 UNDEFINED FUNCTION
5 FUNCTION 'ARG' NOT LEGAL
6 ATOM STORAGE FULL
7 PNAME STORAGE FULL
8 UNREASONABLE LINE LINE LENGTH
9 ILLEGAL RADIX SETTING
10 ILLEGAL INPUT FORMAT
11 ILLEGAL REGISTER COMMAND
12 ILLEGAL FILE NAME
13 NOT USED (UNLUCKY)
14 NON-NUMERIC ARG
15 NON-ATOMIC ARG
16 ATTEMPT TO CLOBBER NIL
17 NUMBER STORAGE EXCEEDED
18 ERROR
19 ILLEGAL GO
20 ILLEGAL RETURN
21 QUIT
22 INCOMPATIBLE
23 NOT FOUND
24 TOO MANY CHARACTERS IN ATOM

15.29

Explanation of error types

NONXMEM

BREAK

CAR OF NUMBER

PDL OVERFLOW

UNDEFINED FUNCTION

FUNCTION 'ARG' NOT LEGAL

ATOM STORAGE FULL

PNAME STORAGE FULL

UNREASONABLE LINE SETTING

ILLEGAL RADIX SETTING

ILLEGAL INPUT FORMAT

ILLEGAL REGISTER COMMAND

reference to non-existent memory.
Can occur if array=pointer-or other
unboxed number is treated as list
str4cture,' i.e. program tries to
take car of it, but more frequently
an indication that system is sick.

User types control-R

occurs when interpreter tries to
take car of number, e.g. (COND 387
(T NIL))

occurs from infinite recursion,
where infinite means more than 1500
nested function calls.

very rare - means calling routine
is very confused - normally it
calls interruEt on undefined function
as described above

arg used inside a function that was
not a no-spread, evaluate type
function

too many atoms, (current system can
hold 3100 new atoms,) if a reclaim
does not collect any of the user's
atoms, he can continue by flushing
part of the system, p. 22.8, ~hd
then performing an atomgc~ p. 10.3.

can occur if you have many atoms
with long names

linelength[n], n > 999.

radix[n], n > 255.
read is confused, e.g. it saw an
expression like (A .)

openr or closer given an illegal
address.

ILLEGAL FILE NAME

NON-NUMERIC ARG

ERROR

ILLEGAL GO

ILLEGAL RETURN

QUIT

INCOMPATIBLE·

NOT FOUND

TOO MANY CHARACTERS IN ATOM

attempt to read from, write on, or
close a file that is not open

from numeric functions like ~lus,
times, etc.

call to function error

"go to nonexistent label

call to return from outside a prog

call to quit

from sysin, see p. 14.11

from sysin see p. 14.11

> 86

The list of non-helpable errors, nherrors, is initially set to

(0118). The rationale behind this is that NONXMEM are usually

system malfunctions; control-R means abort-(control-H should be used
to reouest for interaction), and error ty~e 1M, a call to error should

not be helpable: the function help, p.15.33, is available for that

purpose.
o

However, the use~_~~l'l. set nherrors to any list of error type
numbers for which he does not wish the system to go into a break.

15.31

Error Messages

errorn[]

errorm[n;m]

returns information about the last
error in the form (n m) where n is
the error type number and m is the
argument to errorm which would
normally be printed out after the
error message. Thus if an unbound
atom FOO had been encountered,
errorn[] would yield (18 (FOO IS
UNBOUND ATOM». In the example
with hypotenuse on page 15.2H errorn
would yield (14 NIL).

prints message corresponding to an
errorn that yield (n m). For
example, errorm[18,(FOO IS UNBOUND
ATOM)] would print ERROR

(FOO IS UNBOUND ATOM)
errorm[14;NIL] would print
NON-NUMERIC ARG
NIL
and errorm[24] would print out just

~

TOO MANY CHARACTERS IN ATOM

15.32

Error Functions

error[x]

help[helpx;helpy]

errorset[ersetx;ersetflg]

causes an error, type 18, with

message x.

Generates an error with message

helpx, that is helpable i.e.

breakl will be called, if either

helpflag or helpy is T, regardless

of the depth. help is a convenient
way to program a default condition,

or to terminate some portion of a

program which theoretically the
computation is never expected to

reach.

performs eval[ersetx]. Note that
errorset is a lambda-type of function,

and that its arguments are evaluated

before it is entered, i.e. errorset[x]

means eval is called with the value
of x. If no error occurs in the

evaluation, the value of errorset

is a list containing one element,.

the value of eval[x]. If an error

did occur, the value of errorset is
NIL. Note that NIL can be returned

only if there was an error. If the

value eval[x] is NIL, the value of

errorset is (NIL).

The argument ersetflg controls the
printing of error messages. If

ersetflg=T, the error message is

15.33

ersetq[ersetx]

nlsetq[nlsetx]

esgag[x]

quit[x]

reset[]

printed; if ersetflg=NIL it is not.
If erset~ = IGNORE, the errorset
is ignored. Thus you can make an
errorset "go away" while still in­
side of it.

Note: errorset is defined as just
(LIST (EVAL ERSETX)). All of the

errorset-ing effect is performed

in errorx, described below, after
an error occurs.

nlambda performs errorset[ersetx;t],
i.e. (ERSETQ (FOO)) is equivalent to
(ERRORSET (QUOTE (FOO)) T)

nlambda, performs errorset[nlsetx;NIL].

sets esgag to x, returns old value.
If esgag is T, an untrace will be
printed during unwinding to an error­

set. If it is NIL, no untrace will
be printed. Initially set to NIL.

Induces a "strongU error which will
unwind through errorsets to the top
level. It prints the error message
x and an untrace.

Induces a Ustrong" error which will
immediately return you to the top

level with no untrace. reset 1s
esentially a programmable control-C.

15.34

Errorx

For completeness, and a summary of the error handling facilities,

this section describes howerrorx, the basic error handling routine
of the system is written using nthfn, nthfnback, errorm, errorn,

backtrace, reset, evalv, and retfrom.

Errorx is called for all 23 error types. It first performs an
errorn to determine the error number. If this number is not a

member of the list nherrors and helpflag is T, and the difference
between nthfn[ERRORSET;l] the position of the last call to errorset,

(0 is used if nthfn returns NIL i.e. no calls to errorset) and

nthfn[ERRORX;l] is not greater than helpdepth, errorx calls errorm
to print the error message, and then calls breakl.

If there were no calls to errorset, or the value of ersetflg was

IGNORE for all of the calls to errorset, errorx calls errorm to
print the message, calls backtrace to print the untrace, and calls
reset to get back to the top level.

Otherwise, errorx looks at the value of ersetflg with evalv to
determine whether to print a message. If this value is T,
errorx prints the error message using errorm. If esgag is T, errorx

calls backtrace to print the untrace. Finally, errorx does a

retfrom[nthfn[errorset;l]NIL] to return NIL from the last errorset.

15·35

SECTION XVI

THE COMPILER AND ASSEMBLER

The Compiler

The compiler is available in the regular LISP system. It may be

used to compile individual functions as requested or all function

definitions in a standard format LOAD file. The resulting code

may be loaded as it is corapiled, so as to be available for immediate

use, or it may be written onto a file for subsequent loading.

The compiler also provides a means of specifying sequences of

machine instructions for special purposes.

The most common way to use the compiler is to compile from a

symbolic file, producing a corre~ponding file which contains a

logical set of functions in compiled form which can be quickly

loaded. An alternate way of using the compiler is to compile

from functions already defined in the user's LISP system. In

this case, the user has the option of specifying whether the

code is to be saved on a file for subsequent loading, or

the functions redefined, or both. In either case, the compiler

will ask the user certain questions concerning the compilation.

The first question is

(LISTING?)

The answer to this question controls the generation of a listing

and is explained in full below. However, for most applications,

the user will want to answer this question with either ST or E,

16.1

which will also specify an answer to the rest of the questions
which would otherwise be asked. ST means the user wants the com­

piler to ~ore the new definitions; F means the user is only

interested in compiling ,to 'a File, and no storing of definitions, js

performed. In both cases, the compiler will then ask the user

one more question:

(OUTPUT FILE?)

to which the user can answer

NIL no output file.
file-name file is opened if not already opened, and compiled code

is written on the file.*

Example:

COMPILE«FACT FACTI FACT2»
(LISTING?)
ST "
(OUTPUT FILE?)
/CFACT/
(FACT COMPILING)

· (FACT REDEFINED)

•

· (FACT2 REDEFINED)
(FACT FACTI FACT2)

This process caused the functions FACT, FACTI, and FACT2 to be

compiled, redefined, and the compiled definitions also written on
file /CFACT/ for subsequent loading.

* Note some c'ompi'ler functions will leave the output file open,
others do not. Consult the description of each particular
function.

16.2

Compiler Functions

compile[x] This will compile all the functions

on the list x. Returns a list of
the functions compiled. Leaves

output file open.

Note: Certain compiler functions leave the output file, if any,
open so the user can perform several compilations to the same

file. When finished, compiled files should be closed by per­

forming endfile[file-name].

recompile[prettyfile;compiledfile;fns]
The purpose of recompile is to allow
the user to update a compiled file
without necessitating a complete re­
compilation. recompile does this by
using the results of a previous com­
pilation, and is considerably faster
than compiling an entire file from
scratch.

compiledfile is a disc file contain­
ing functions in compiled form.

prettyfile is a disc file made by
prettydef. recompile makes a new file
that is equivalent to performing a

t.compl ((prettyfile)) • (If the out­

put file fromtcompl would have the

same name ascompiledfile, the uSer is
asked to name the output file.) Every

function defined in prettyfile that
appears on the list fns is compiled

from its definition in prettyfile. For
all other functions in prettyfile,
recompile reads from compiledfile

16.3

until it finds the compiled version
and then simply copies it onto the

output file. Note that the user can
thus modify an old compiled file so

as to add new functions by pretty­
defing them and then including them

on the list fns. Similarly, ~e
can delete functions by not putting
them in prettyfile. Warning: this
procedure assumes that the order of the

functions in compiledfile follows that
of prettyfile.

Note: when a f.unction is compiled from an in core definition,
i.e., via 'compile as opposed to recompile or tcomp1,
which use definitions 'from a fl1e,'and it has been modified by

break, breakin or advised, the function is restored to its
original state before compilation. If the user wishes to compile

a.function with its advice, he should use the function cadvice

described on page 19.10.

~cornp11e[J

tcompl[x]

Compiles from a file whose name

will be requested after the compset

questions have been answered. This
should be a disc file because it will
be open during the entire compilation.
The value of this function is NIL.
Closes output file.

x is a list of file names. Performs

a rcompile for each of the files in
the list. The user is not asked to
specify an output file for each file.
Instead, the output from the compila­
tion of each file will be written on

a file of the same name prefixed with
a c. The value of tcomp1 is a list

16.4

compile2[name;def]

of the names of the output files.

All output files will be properly

terminated and closed. Note: due to

present restrictions of the 94~ file
system, only disc files (names begin­

ning with a slash) should be used.

Example:

TCOMPL «/SYMI/ /SYM2/ /SYM3/»
creates files

/CSYMI/, /CSYM2/, /CSYM3/

Compiles def, redefines ~ if

~=T, (described below). This
is the function to call if you wish

to use the compiler as a subroutine,

i.e., from another function as op­

posed to direct input from teletype;

16.5

/

Cbmpiler Qu~stions

The compiler uses the free (top level) variables LAPFLG, STRF, SVFLG,
NLAMA, NLAML, LCFIL. and LSTFIL which determine various modes o.r

operation. These variables are set by the answers to the "compset"
. .

questions. When any of the top level compiling functions have
been called, the function compset is called which asks a number
of questions. Those that can be answered "yes" or "no lf can be
answered with YES, Y or T for YES; and NO, N, or NIL for NO.
The questions are:

(LISTING?)

The answer to this question controls the generation of a listing.
Possible answers are:

I Prints output of pass l~ the LAP macro code.

2 Prints output of pass 2, the LAP2 machine code.

YES Prints output of both passes.

NO Prints no listings.

The variable LAPFLG is set to your answer.

The LAP and LAP2 code is usually not of interest to the user.

There are three other possible answers to this question, each of
which specifies a complete mode for compiling. They are:

S Same as last setting
F Compile to !ile (no definition of function)
ST . Store new definitions

Implicit in these three are the answers to the questions
on disposition of compiled code, expr's and NLAMBDA's, so these

q~estions will be skipped. These questions are discussed below.

16.6

(STORE AND REDEFINE?)

YES Causes each function to be redefined as it is compiled.
The compiled code is stored and the function definition

changed. The variable STRF is set to T.

NO Causes function definitions to remain unchanged.
The variable STRF is set to NIL.

The answer ST for the first question implies YES for this question,

F implies NO, and S makes no change.

(SAVE EXPRS?)

If you answer this YES~ SVFLG will be set to T, and the exprs
will be saved on the property list of the function name. Other­
wise ~hey will be discarded. The answer ST for the first question
implies YES for this question, F implies NO, and S makes no change.

When compiling the call to a function, the compiler must prepare

the arguments in one of three ways:

1. Evaluated (SUBR, SUBR*, EXPR, EXPR*, CEXPR,CEXPR*)
2. Unevaluated, spread (FSUBR, FEXPR, CFEXPR)
3. Unevaluated, not spread (FSUBR*, FEXPR*, CFEXPR*)

In attempting to determine which of these three is appropriate,
the compiler will examine the definition of the called function
if there is one, otherwise it will check all the functions in
the file being compiled, and failing this, will assume type I
above. Therefore, jf there are type 2 or 3 functions called
from the functions being compiled, and they are only defined in

a separate file, the following two questions must be answered.

16.7

(NO-SPREAD NLAMBDAS-)

The answer to this question sets the variable NLAMA. If there

are any NLAMBDA's with atomic argument lists called from your

functions to be compiled, and they are not defined, answer the
question with one of the following:

S

EDIT

NIL, N, NO

~1eans Same list as now on the
free variable NLAMA

Add fn l to fnk to list saved on

NLAMA

Remove functions from NLAMA

The editor will be called and
you can edit the list of functions

Set NLAMA to the list of functions

Set NLAMA to NIL

Any other atom will cause a question mark to be printed and let

you answer again. Then compset will ask:

(SPREAD NLAMBDAS-)

Answer ~n the, same way. The free variable used by the compile~
is NLAML this time. The answers ST, F, or S to the first question

leave the settings of NLAMA and NLAML unchanged.

16.8

(OUTPUT FILE)

This question is always asked except under TCOMPL. You should

usually provide the name of a disc file on which you wish
to save the code generated. If you answer T, TTY or TELETYPE,

the listing will be typed out on the teletype. If you answer N,
NOTHING or NIL, output will not be done. If the file named is

already open, it will continue to be used. The free variable

LCFIL is set to the name of the file.

When the compiler is operating, it will normally print on the

teletype the name of the function compiling, a list of its bound

variables and a list of its free variables.

When you have finished compiling all the functions you wish to

dump on one disc file, close the file endfile.

The code dumped on the file can be loaded into any standard
system with load.

16.9

Compiler Structure

The compiler has two principal passes. The first compiles its
input into a prefix macro assembly language called LAP. The
second pass expands (and optimizes) the LAP code and produces a
simple assembly language (one instruction per line) called LAP2.

This output is either dumped onto a file and/or loaded into array
(binary program) space and the function redefined.

The input for the compiler can be either a standard LISP function
definition (the normal usage), or an assemble form, which allows
direct machine language coding within LISP in a convenient form.

The compiled code generated always links between functions by
using a special call-enter pair of routines. This is necessary
because a function may not be in core when called, and this is
checked in a binary function hash table. A function must be
brought into the in-core binary program buffer to run.

The linkage routines also set up the parameter and control push

lists as "necessary for variable bindings and return information.
In some cases discussed below, the linkage routine can be avoided
(saving about a millisecond a call) by compiling short functions
"open." Some often used functions, such as ~ and cdr, are
always called open by the compiler (a complete list is given later).

16.10

Open Functions

It is useful to know what LISP forms do not result in function

calls after they are compiled since function calls take a signifi­
cant time. Thus, it is more economical to perform

(AND (NULL (EQ (CAR X) 4)) (OR Y (NULL (ATOM Z))))

in a compiled function 'than to call another function. In addition
to functions such as addl, subl, memb, etc. which compile open
via macros, the compiler specifically checks for certain functions
like plus, times, ~, cdr, etc. and handles them in an efficient
way. Below is a list of those functions which when compiled do
not result in external function calls. Note: that mapc and map
will require a call if their functional argument requires one.

ABS
ADDI
AND
ARRAYP
ASSEMBLE
ATOM
CAR
CAAR
CAAAR
etc.

CDDDAR
CDDDDR
COND
DIFFERENCE
DIVIDE
EQ
FIXP
FLOATP
FMINUS
FPLUS
FQUOTIENT
FTIMES
GO
GREAT~RP
LESSP
LISTP
LOC
LOGAND
LOGaR
LOGXOR

16.11

LRSH
LSH
MAP
MAPC
MEMB
MINUS
MINUSP
NEQ
NLISTP
NOT
NULL
NUMBERP
OR
PLUS
PROG
PROGI
PROG2
PROGN
QUOTE
QUOTIENT
REMAINDER
RETURN
RSH
SELECTQ
SETQ
SUBI
TIMES
VAG
ZEROP

Affecting the Compiled Code

There are three ways to affect code compiled for you. You
can make a function fn compile open (as an open LAr~DA or NLAMBDA
expression) by putting ,the expression defining it (including the
LAMBDA or NLAMBDA) on the property list of fn after the flag MACRO,
and adding fn to the list which is the value of OPENFNS. Abs and
memb are functions currently compiled open. The effect is the same
as if you had written this expression in place of fn wherever it
appears in a function being compiled. This saves the time necessary
to call a function (about a millisecond) at the price of more
compiled code generated.

By putting on the property list of fn under the flag MACRO an
expression starting with an atom other than LAMBDA, one can
actually compute the LISP expression to be compiled in place of
the call to fn. The atom which starts the list is bound to cdr
of the form in which fn appears. The expression following the
atom is evaluated,*and the result of this evaluation is compiled.
List, mapc and map are compiled using this technique. For

example: list has on its property list the expression
(X (GLIST X», where glist is defined as

(LAMBDA(L) (COND((NULL L)NIL) (T (LIST (QUOTE CONS) (CAR L)

(GLIST (CDR L»»)

this causes (LIST X Y z) to be compiled as

(CONS X (CONS Y (CONS Z NIL»).

If the value of the result of this evaluation is the atom

INSTRUCTIONS, no code will be generated. It is then assumed the
evaluation was done for effect and the necessary code has been

* The evaluation is done by the function expandcomp, which takes two
arguments, the property value for MACRO, and cdr of the form in
which fn appears, and returns the expression ro-be compiled. This
is the-runction to break on if you want to see if your macro is ex­
panding correctly.

16.12

added. This is a way of giving direct instructions to the compiler

if you understand it.

Finally, an expression following MACRO on the property list can

start with a list of atoms, which are then used as variables for a

substitution MACRO. Each atom is paired with a corresponding

element in the form containing fn. Then these elements are

substituted for their paired atoms in the expression following

the list of atoms, and this substituted expression is compiled.
The functions

addl, subl, neq, zerop, lessp, minusp, difference, ersetq
and nlsetq

are all compiled open using these substitution macros. For

example, on the property list of add 1 is the expression

«X)(PLUS X 1». Thus, (ADDI (CAR X» is compiled as
(PLUS (CAR X) 1). Note that a function like times2 defined as
(LAMBDA (X) (PLUS X X» could be compiled open or. could be made

a substitution macro. The macro, however, would cause

(TIMES2 (FOO X» to compile as (PLUS (FOa X) (FOO X» and conse­
quently (FOO X) would be evaluated twice. In this case it is

better to use an open macro - i.e., put (LAMBDA (X) (PLUS X X»

on the property list of TIMES2, so that its argument would only

be evaluated once.

16.13

Note:
Expressions that begin with FUNCTION will always be compiled
as separate functions named by attaching a gensym to the end
of the name of the function in which they appear, e.g. FOOA0003.
This latter function will be called at run time. Thus if FOO
is defined as (LAMBDA (X) ... (FOOl X (FUNCTION ... » ...) and
compiled, then when FOO is run, FOOl will be called with two
arguments, X, and FOOAOOOn, and then FOOl will call FOOAOOOn
each time it must use its functional argument. A considerable

savings in time can be achieved by defining FOOl as a macro of
type two:

(MACRO X (LIST (SUBST (CADADR X) (QUOTE FN) *)
(CAR X»)

where * is the definition of FOOl as a function of just its first
argument and FN is the name used for its functional argument.
This expression will be evaluated at compile time and produce an

expression to be compiled that contains the actual definition of
the function that would have been the second argument to FOOl had
FOOl not been compiled open. Thus you save the function call to
FOOl and each of the function calls to its functional argument.
For example, if FOOl operates on a list of length ten, eleven
function calls will be saved. Of course, this savings in time
costs space, and the user must decide which is more important.

Free Variables and EVQ

. As discussed in section 12, free variables used by a function are
detected at compiled time so that when the compiled function is
entered, its free variables can be bound locally. This procedure
saves searching the entire push-down list each time a free variable
is used in the compiled function. However, if the user knows that
the particular portion of the function that references the free
variable will only be reached infrequently, he may opt to search

the push-down list only when the value of the free variable is

16.14

needed. This can be done by using the form (EVQ variable) instead

of variable. (For interpreted purposes, EVQ is defined as

(LAMBDA (X) X).) Note that if a free variable will be used more

than once in a function, it is more efficient to search for its

binding ~, when the function is entered, than each time the

variable is used.

Changing the Binary Program Buffer

While running binary code, a program ring buffer of 4K is used to

contain active program. The size of this buffer can be affected
by the following functions:

contractl[]

expandl[]

Contracts the in-core binary

program buffer by one LISP

(256 word) page, thereby also

adding one virtual page buffer.
Returns value of new higher

boundary. Will not contract

beyond a predetermined minimum

amount, an assembly parameter

(2K in 4-1-68 LISP).

Expands the in-core binary pro­
gram buffer by one LISP

(256 word) page, thereby also

removing one virtual page buffer.

Returns value of new lower boun­

dary. Will not expand beyond

predetermined maximum amount.
(8K in 4-1-68 LISP)

Note: Expanding the BP buffer will usually not be very effective

in speeding up programs unless the code used is just larger than

the current buffer size. Then expanding the "buffer will allow an

16.15

all in core operation, rather than continuous shuffling of code

back and forth from the drum. Contracting the buffer is advanta­

geous only when a relatively small compiled program is to be used

for a considerable period, with a data base that requires more
than 20 buffers.

Assemble

Using the LISP compiler, it is possible to define functions

partially or completely in machine language. Machine language is
specified by the pseudo-function assemble. assemble is, in fact,
a compiler directive, and has no independent definition. Thus,

it is not possible to interpretively run functions defined using

assemble.

The format of ASSEMBLE is similar to that of PROG.

Each of the statements S are interpreted sequentially during n
compilation according to the rules given below. V is a list of

variables to be bound during compilation, not, it must
be noted, during the running of the object code. Interpretation
of each S will usually result in the generation of one or more

instructions of object code. Some S, however, may result in no

object code being generated. Note than an ASSEMBLE statement

can appear anywhere in a LISP function, e.g., you can write

(SETQ Z (PLUS X (LOC (ASSEMBLE NIL (BRS 42») y»

The value of the pseudo-function assemble is determined by what

is left in the A register after the execution of the sequence
of assemble instructions.

16.16

Assemble Statements

If S is an atom, it is taken as a label identifying the next cell
to be assembled. Otherwise, it is one of the following types of

statements.

(CQ Cl C2 •••)
Cl, C2, .•• are literal S expressions which are compiled in order

in the usual way.

(C El E2 .•.)
Same as CQ except the En are first evaluated and then compiled.

The above two statements provide the ability to mix regular com­

pilation with assembly. The value of the A register may be ob­
tained within a compile statement by use of the function AC. It

must, however, appear as the first argument to be evaluated in
the expression.

Example:

(CQ (PLUS FaD 1))

(C (CONS (QUOTE FNl) (CDR FDa»)

(CQ (PLUS (LOC (AC)) FIE -1»)

(E El E2 ...)

The expressions El, E2, •.. are evaluated in order for effect,
i.e., no code is produced.

Example:

(E (SETQ SP (PLUS SP -3)))

16.17

(RETURN)

Assembles an instruction which causes a return from the function

being compiled (not from the ASSEMBLE expression), with the con­
tents of the A register as the value. A return from the ASSE~mLE

expression is done by ilfalling through ll or branching to the instruc­
tion following the last statement. The value is the contents of the

A register at that time.

(CALL NAME N)

Assembles a call to the function NAME giving N arguments. The N

arguments should be in stack positions
SP-N+l, SP-N+2, ••• , SP-l, SP. See Section "Compiler Conventions."
Note: A, B, X registers are destroyed.

(SETQ VAR)

Assembles an instruction which stores the A register in the vari­

able VAR.

Note: The contents of the X register are an index to the parameter

stack and are used by compiled code whenever a variable or temp

storage cell is referenced. If the code specified by an assemble

directive changes the X register, it should (must) be restored

with (LDX PPPTR) before executing any regular compiled code.

16.18

Lap Macros

If CAR of the statement is an atom which has a LAP property-list

macro definition, e.g., LDV, STV, etc., the arguments are evaluated
and the results assembled. If CAR of the statement is a defined

function, the function is called, without evaluating the arguments,

and the result is treated as code. This feature would normally

not be of use to the programmer; it is used by LAP in interpreting

first pass code generated by the compiler.

Assemble Macros

If CAR of the statement has a property list value following the

flag AMAC, it is assumed to be an assembler macro call. There
are two types of assembler macros, substitution and lambda. A

substitution macro is defined by an S expression, CAR of which is

a list of dummy symbols. The arguments of the call will be sub­

stituted for corresponding appearances of the dummy symbols in CDR

of the defining form and the resulting list of statements will be

assembled.

If CAR of the defining form is the atom LAMBDA, the entire
defining form will be applied" to the arguments of the call.

Note that either of these may be indefinitely recursive.

16.19

Example:

DEFLIST «

(UBOX «VAR LaC)
(CQ (VAG VAR»
(STA LaC»)

(UBOXN (LAMBDA XX
(PROG (yy)

)AMAC)

LP (COND
((NULL XX)

(RETURN (CAR YY»)
(T (SETQ YY (TCONC (LIST (QUOTE UBOX)

(CAR XX)
(CADR XX»

YY))
(SETQ XX (CDDR XX»
(GO LP»)

The above defines two macros, one of each type. The first takes

two arguments and expands into instructions which place the

unboxed value of a numeric variable in a local cell. The second

does the same thing for an indefinite number of pairs of arguments.

For each pair, it constructs a call to the first macro.

16.20

the call:

(UBOX SUM XSUM)

expands into:

«CQ (VAG SUM»

(STA XSUM»

the call (UBOXN Sl Ll S2 L2 .•.)

first expands into

((UB 0 X S 1 L 1)
(UBOX S2 L2)

)

Machine Instructions

If CAR of the statement is an atom defined as a machine instruction,

e.g., by having a property OPD with numeric value (see compiler
conventions),

(LDA Al A2)

the remainder of the statement may contain ~, 1 or 2 expressions.

If either Al or A2 or both are not present, 0 is assumed as their
value.

A2 may be used to specify indexing and indirect addressing when

required. I specifies indexing (equivalent to a value of

20000000 8), and J specifies indirect addressing (equivalent to

a value of 400008). OtherWise, A2 may be any expression which
evaluates to a number and will be added into the assembled word.

16.21

If Al is a number, it is added unchanged into the assembled word.

If Al is non-atomic, it is evaluated and the result added into the

assembled word which is assumed to refer to a stack position, and

handled accordingly.

If Al is atomic, it is one of the following:

=

*

Specifies that A2 is a literal.

The instruction will be assembled

to address a cell which contains

A2, e.g., (LDA = NIL). If A2 is a

number, it will be unboxed. Works

only for S expressions, does not
work for local program symbols

(tags).

Has the value of the current

location, e.g., (BHU * 1) is a

jump to next location.

A member of V, the list of variables given to ASSEMBLE, or

the variable SP or CODE: is evaluated and assembled as
a stack position (as for Al

non-atomic).

One of the system defined atoms such as SYSNIL, SPCELL, etc.:

the top-level value of the atom

is added into the assembled word.

16.22

Any other atom is assumed to refer to a tag in the program~
Note: the detection of an undefined label does not occur until

pass 2 of the compiler by which time all labels have been trans­

lated into generated symbols. Thus, the error comment

"UNDEFINED LABEL" will inform the user of the problem, but will

not specify which label is missing.

If CAR of a statement is a number, it is treated as if it were

preceded by an opcode of value 0.

16.23

Examples:

(LDA BUF I)

(ADD = 47)
(SKG = 0)

(BRU * 2)
(BRU LOCI)
(E (BOX SP))
(CAB)

(LDA = NIL)
(PCONS)

label reference, indexing

numeric literal

relative address

evaluate - compiles an ENBOX

non-numeric literal

fast CONS
(CQ (RETURN (TCONC (AC) TCL))) return, use of A register

in compile

LOCI (STA (PSTEP))

(LDA SP)
(STA SPCELL 1)

(STA SPCELL (PLUS J 10))

TMPI (0)

TMP2 (0)

BUF (BSS 100)

stack reference

stack reference
global symbol reference
indirection and address arithmetic

temp storage

block definition

When using locations within the function for temporaries, remember
that the core copy of a compiled function may be overwritten any

time another compiled function is called or a return effected. In

this case, all internal changes will be lost.

16.24

Use

ASSEMBLE should appear in a function defined with the usual
defining forms. To relieve the user of the burden of unnecessary

detail, as much of the function as possible should be compiled.

For example, to obtain a variable, it is best to write

(CQ VAR)

to load the value of a variable into the A register.

Thus the function

(LAMBDA (X) X)

could be written

(LAMBDA (X) (ASSEMBLE NIL

(CQ X»)

and would compile identically.

16.25

Compiler Conventions

The user of assemble should understand the following basic

things about how compiled code is run. As explained in

Section XII, all variable bindings and temporary storage of

values are kept on the parameter pushdown list. When a compiled

function is entered, the parameter pushdown list contains, in
ascending order of addresses:

1. Pairs of words containing the names and values
of arguments passed to the function.

2. Blocks of four words containing the value, name,
and old locations of free variables used in the
function and a flag so indicating.

3. Room for temporary storage, for arguments to lower
level functions, and for PROG and LAMBDA bindings
appearing in the body of the function.

value of VI
VI

value of V2
V2

increasing
addresses

1
value of VN

VN
value of freel

freel

old pOSe of freel

-2

PPPTR

16.26

The index register (and a cell called PPPTR) contain a pointer

to the first cell of the temporary block (just after the free

variable bindings). This portion of the stack is guaranteed to be in
core, and the compiler keeps a variable MSP which contains the

maximum stack position used. SP is the variable which usually

contains the last stack position used. The function pstep adds

one to SP, updates MSP if necessary and returns the incremented

SP. Each increment by 1 of SP changes the PDL position by two

cells. If any functions are called, care must be taken that the

garbage collector and free variable searcher are not confused by

random things on the push list. Use of the LAP macros STT (for

store temporary) and STN (for store gumber unboxed) will avoid

such problems. STT compiles into code which stores the value in

the value word and 0 in the name word of the stack position, thus
erasing any old name left from earlier calls. This also indicates to

the G.C. that the value word of the pair contains a pointer to
be traced. STN stores an unboxed integer in the value word and

a -1 in the name word as a flag to the G.C. not to mark from this

value word.

There are a number of values which are stored on atoms which may
vary for different system assemblies. These are dumped in sym­

bolic form on LAP files to make these files compatible across
assemblies.

16.27

The following are programmea operator instructions used by

compiled code:

CARCLL

CDRCLL

CONSCLL

UNBOX

ENBOX

XCLL

RETURN

IPV

ENTER

car of A register

cdr " " " It

cons of A and B registers

unbox number in A register (VAG)

enbox quantity in A register (LOC)

function call

function return

initialize prog variables

enter function and setup args.

The following top-level bindings are the location of cells con­

taining quantities of interest or used for communication.

SYSNIL

SYST

SYSTAT

SYSNUM

SYSINT

TOPBPS

FREELW

CTEMP

INTZRO

SPCELL

PPPTR

contains NIL

contains T

contains lower boundary of atoms

contains lower boundary of numhers

contains lower boundary of integers

contains upper boundary of array
space in use

contains lower boundary of list
space in use

communication with garbage
collector

intzro+n for -30 < n ~ 30 contains n

first of a block of 100 cells for
general use

index to push list in core

16.28

The following is a list of

operator codes defined in

ADC 57k:1000~

ADD 5500000
ADM 6300000
BAC 46k10012
BID 57600000
BRM 430000k1
BRR 5100000
BRS 57300e;0~

BRU 100000
BRX 410000L!'
BSS1 0
BXC 4600022
CAB 4600004
CAX 460040~

CAXB 4600£+40
CBA 4600010
CBX 460002k1
cIO ::'6100000
CLA 4600001
CtAB 46fb0:2i03
CLB 4600002
CLX 2460000~

CNA 4601210fb
CTRL 57200000
CXA 4600~00
DIY 65~0vHH1
EAX 77000010
EOR 17000010
BTR 1400000
EXU 2300000
FAD 556000010
FOY 5530000k'J
FMP 55400~HH'
FSB :;55000010
Gel 56500000
LCY 6720.00~
LDA 760000~
LDB 75000010
tOE 46~j0140

LDP 5660e00~
LDX 71 ;{Iv.Hj0~
LRSH 6624~0v.J
LSH 6700000
MIN 6100000
[-tRG 160000k1
f-l U L 6400000
NOD 671000!ll
NOP 200000v.J
NSTA 3500000

all machine

the computer

OVT
PFFV
PLAl
PMFN
PSAI
PSTR
RCY
ROV
RSH
SKA
SKB
SKD
SKE
SKG
SKM
SKN
SKR
STA
STB
STE
STP
STX
SUB
sue
SXMA
TeI
TCO
VAL
WCH
WCI
WID
XAB
XMA
XXB

16.29

operation, and programmed

system.

2200101
'13400000
11200000
1350000~
113.00000
14100000

6620000
2200001
6600000
720000~
5200000
740000fO
'S00000k:?
730000~

7000000
5300000
6000000
350000k1
3600000
4600122

5670000'"
3700000
540000~

560000v.l
620000~

5740000k1
5750000kJ

k?
56400000
5570000i()
5600007HO

460001U
6200000
4600060

Appendix

This section contains listings of those compiler and lap macros
which are normally included with the compiler system. There

are no assemble macros pre-defined.

Compiler Macros

(DEFLIST(QUOTE(
(LIST (X (GLIST X»)
(AD01 «X)

(PLUS X 1»)
(SUB1 «X)

(PLUS X .. 1»)
(NEQ «X Y)

(NOT (EQ X Y»»
(NLISTP «X)

(NOT (LISTP X»»
(ZEROP ({X)

(EQ X ~»)
(MINUSP «X)

(GREATERP 0 X»)
(DIFFERENCE «X Y)

(PLUS X (MINUS 1»»
(ABS (LAMBDA (X)

(COND
«GREATERP ~ X)

(MINUS X»
(T X»»

(ERSETQ «X)
(.ERRORSET (QUOTE X)

T)))
(EVQ (X (COND

«ATOM (CAR X)
(STORECOMP (LIST (QUOTE LFV)

(CAR X»»
(T (CEXPR (CAR X»»

(QUOTE INSTRUCTIONS»)
(MAP (X (LIST (SUBPAIR (QUOTE (MAPF MAPr2»

(LIST (CFNP (CADR x»
(COND

«CODR X)
(CFNP (CADDR X)))

(T (QUOTE CDR»»
(QUOTE (LAMBDA (MACROX)

(PROG NIL
LP (COND

))))
(CAR X»»

«NULL MACROX)
(RETURN»)

CHAPF MACROX)
(SETQ MACROX (MAPF2 MACROX»
(GO LP)

16.30

(MAPC {X (LIST (SUBPAIR {QUOTE (MAPCF MAPCr2»
(LIST (CFNP (CADR X»

(CONO
«COOR X)

(CFNP (CADOR X»)
(T (QUO'l'E CDR»»

(QUOTE (LAMBDA (MACROX)
(PROG N.LL

Lil (COND
«NULL MACROX)

(RETURN»)
(HAPCF (CAR MACROX)}
(SETO MACROX (MAPCF2 MACnOX»
(tiO LP)

))))

(CAR X»))
(MEMB {LAMBDA (MACROX HACROY)

(PROG NIL
LP (RETURN (COND

«NULL MACROY)
NIt)

«(EQ HACROX (CAR HACHOY»
(IFPRED T MACROY»

(l (SETQ HACHOY (CDR MACROY»
(GO LP»»

)))

(NLSETQ «X)
(ERRORSET (QUOTE X)

NIL)))
(VAG (X (CEXPR (CAR X»

(COND
«EQ (CAADR CODE)

(QUOTE ENBOX»
(RPLACA (CDR CODE»)

(T {STORECOMP (QUOTE (UNSOX»»)
(QUOTE INSTRUCTIONS»)

(LaC (X (CEXPR (CAR X»
(COND

«EQ (CAADR CODE)
(QUOTE UNi30X»

(RPLACA (CDR CODE»)
(T (BOX S1'»)

(QUOTE INSTRUCTIONS»)

16.31

(FRPLAC (x (CEXPR (CAR X»
(STS)
(CEXPR (CADR X»
(STORECOMP (LIST (QUOTE MSAI)

S P))
(SETQ SP (SUB1 SP»
(QUOTE INSTRUCTIONS»)

(ASSEMBLE (ASEMX (ASEM1 ASEMX»
)

(AC (X (QUOTE INSTRUCTIONS»)
(IFPRED (AA (COND

CEBRF (CAR AA)
(T (CADR AA»))

(ARG ex (CEXPR (LIST (QUOTE VAG)
(CAR X»)

(STORECOMP (LIST (QUOTE ARGN)
(COND

(ARGARG)
(T (ERROR (QUOTE (FUNCTION 'ARG' NOT LEGAL»»»)

(QUOTE INSTRUCTIONS»)
(SETARG ex eCEXPR (LIST (QUOTE VAG)

(CAR X»)
(STORECOMP (LIST (QUOTE STN)

(PSTEP»)
(CEXPR (CADS X»
(STS)
(LACaMP (SUB1 SP»
(STORECOMP (LIST (QUOTE SARGN)

{COND
(ARGARG)
(T (ERROR (QUOTE (FUNCTION 'SETARG' NOT LEGAL»»)

sp.))
{SETQ SF (P~US SP ~2»

(QUOTE INSTRUCTIONS»)
(LSH (X {SHIFTCOMP (CAR X)

(CADR X)
(QUOTE LSH»»

{RSH (X (SHIFTCOMP ~CAR X)
(CAOR X)
(QUOTE RSH»»

(LRSH (X (SHIFTCOMP (CAR X)
(CADR X)
(QUOTE LRSH»»

»(QUOTE MACRO»

16.32

Lap Macros

(CSP1 «LV LF LT)
(LITREF LOA LV)
(LITREF LOX LF)
(LITHEF LDB LT)
(PRGREF PENT (PLUS PLITORG 1»»

(SETIX «N P)
(LDV N)
(UNSOX)
(LSH 1)
(CNA 0)
(ARGSUB N)
(ADD PPPTR)
(STN P»)

(VST1 «PP LV V)

(LITREF LOA PP)
(LITREr LOB LV)
(PRGREF PIPV (PLUS PLITORG V»»

(BE «B N)
(STKREF SKE N)
(RELREF ,BRU 2)
(JUMP B»)

(BNE «8 N)
(STKREF SKE N)
(JUMP B»)

(LOV (LAMBDA (5)
(VREF (QUOTE LDA)

S)))
(STV (LAMBDA (S)

(VREF (QUOTE STA)
S)))

(LFV (LAMBDA (S)
(LITHEF (QUOTE PATV)

5)))
(LOT (LAMBDA (S)

(STKREF (QUOTE LDA)
S)))

(STT (LAMBDA (5)
(STKREF (QUOTE STA)

S)))
(NSTT (LAMBDA (5)

(STKREF (QUOTE NSTA)
5)))

16.33

(MSAI (LAMBDA (5)
(STKREF (QUOTE PSAI)

S)))
(LQT (LAMBDA (X)

(LITREF (QUOTE LOA)
X)))

(LDN (LAMBDA (5)
(NREF (QUOTE LOA)

S)))
(STN (LAMBDA eN)

(NREF (QUOTE STA)
N)))

(eLL (L K U)
(LITREF LOA U)
(LITREF LDB 1<)
(LITREF CLLX L»)

(eLLA «(L K U)
(LITREF LDA U)
(LITREF LDB K)
(STKREF CLLXA L»)

(ARGN ({A)
(CLB 0)
(LsH 1)
(SrrKREF ADD A)
(CAXB 0)
(LOA 0 I)
(CaX 0»)

(SARGN «A B)
(CLB fGI)
(LSH 1)
($TKREF ADD A)
(CAB 0)
(LOT B)
(XXB 0)
(STA 0 I)
(CBX 0»)

(ARGSUB (LAMBDA (A)
(LITHEF (QUOTE ADD)

(PLUS -2 (VREF1 A»»)
(RET {NIL (PRETN ~»)
(BN «8)

(S!(E SYSNIL)
(HELREr BRU 2)
(JUMP B»)

(BNN (B)
(SKE SYSNIL)
(JUMP B))

16.34

(SAP (B)
(SKG TOPBPS)
(LITREF SKG 16383)
(HELREF BRU 2)
(JUMP B»)

(BNAP «8)
(SKG TOPBPS)
(LITREF SKG 163~3)
(JUMP B»)

(BA «(B)
(SKG sySTA'I')
(RELREF BRU 2)
(JUMP B»)

(BNA «B)
(SKG SYSTAT)
(JUMP B»)

(BLST «B)
(SKG SYSTA'I')
(SKG TOPBPS)
(RELREF BRU 2)
(JUMP B»)

(BNLST «B)
(SKG SYSTAT)
(SKG TOPBPS)
(JUMP B»)

(UNBOX (NIL (prVE 0»)
(ENBOX (N)

(PMKN N»)
(FENBOX «N)

(PMFN N»)
(FUNBOX (NIL (PFFV ~»)
(NEG (NIL (CNA 0»)
(OVO «N X)

(RSH 23)
(DIV N X»)

(DIVIDE «S)
(STTN S)
(SWAP 0)
(ENBOX S)
(STKREF SXMA 5)
(ENBOX 5)
(STKREF XMA 5)
(CONSCLL S»))

(Bl «(B)
(SKG SYSNUM)
(RELREF BRU 2)
(JUMP B»)

16.35

(BNI (B)
(SKG SYSNUM)
(JUMP B»)

(BIF «B)
(SKG SYSINT)
(SKG SYSNUM)
(RELREF BRU 2)
(JUMP B»)

(BUF {(B)
(SKG SYSINT)
(SKG SYSNUM)
(JUMP B»)

(BII «B)
(SKG SYSINT)
(RELREF BBU 2)
(JUMP B»)

(BUI «8)
(SKG SYSINT)
(JUMP B»)

(BIS (5 L)
(LITREF1 SKE L)
(RELREF BRU 2)
(JUMP B»)

(BNS «B L)
(LITREF1 SKE L)
(JUMP B»)

(BR1 «B)
(PBGREF BRU (GB~ B»»

(BR2 «B)
(HELBEF BBU 2)
(PRGREF BRU (GBS B»»

(CONSCLL «N)
(CAB 0)
(STKREF LDA N)
(peONS (TIMES N 2»»

(CLLX (eN)
(peLL N»)

(CLLXA «N X)
(peLL N X»)

(SWAP (NIL (XAB 0)})
(JUMP «E)

(PRGREF BRU (GBS B»»
(MPY (N X)

(MUL N X)
(LSH 23»)

(SSS (LAMBDA (N)
(SETQ LOC (FLUS Loe N _1»)
(LIST (LIST (QUOTE aSS1)

N))))

16.36

SECTION XVII

USING FORKS AND THE HYBRID PROCESSOR IN LISP

The FORK logic provided by the 940 time-sharing system is avail­

able for use by LISP programmers. Use of this very powerful fea­

ture has made possible the efficient running of the hybrid pro­

cessor for display output and speech input. Other operations are

also available, such as running independent sUbsystems under con­
trol of LISP.

A fairly complete grasp of the machine-language environment pro­

vided by the time-sharing system and the· 94~ hardware is necessary
for a" complete understanding of the basic operation of forks·

under LISP. However," a large class of jobs may be performed

using the existing system functions which require only a minimal

knowledge of fork operations.

We will first discuss the storage organization of the LISP

system and the conventions which have been established for the

use of forks. The basic nature of forks will be discussed in

sufficient detail to give anyone with a moderate knowledge of

940 machine language "a good understatiding of their mechanics.

Those not interested in programming at the machine language

level should, nonetheless, be able to get a general picture

of the nature of forks sufficient to understand the functions

described below.

17.1

Forks

In a time-sharing system such as that running on the 940, there

may be several users running apparently simultaneously, each

with his own "machine" (which may appear very much different

from the actual machine), memory, files, etc. Obviously, the

monitor program must have the ability to keep track of several

programs at once. The 940 system makes it possible for the

individual user to make use of this ability if he chooses. That

is, he may cause the monitor to handle not one~ but several

"programs" for him at one time. These are called forks in the
94[0 system.

It is important to understand the concept of a fork. A fork

is a complete process, capable of executing instructions and, in

general, of performing all the operations of machine language
programs. A fork is specified by several items:

1. Central registers (PC, A, B, X)

2. Memory (two relabeling registers)
3. Status (running, waiting for I/O, etc.)

The first two of these are needed to define a fork. That is, if

the contents of the A, B and X registers are specified, and

memory is provided (presumably containing instructions), a

computation may be performed by simply telling the "computer"

where to start (the function of the PC). The status is then

determined by the nature of the instructions and how far the

"computer" has gone.

17.2

On the 940, a fork may start one or more forks subordinate to

itself. In fact, all programs are subordinate forks (at some

level) of the EXECUTIVE program. The EXECUTIVE itself is a fork

distinguished only by the fact that it has no higher level con­

trolling fork. When one fork starts another, they are assumed

to run concurrently, although in fact the machine can only be

executing one instruction at any instant.

A fork may have memory separate from or in common with its

controlling fork, or both. It is this fact which gives forks

their main usefulness to LISP. The 940 gives the user up to

32K of private (accessable to no other user) memory divided into

16 pages. Because the address part of a 940 instruction is

14 bits, a program can directly address only 16K of this memory.

A program may, however, change its map or create a fork by which

the same addresses can be made to refer to different sections of

the 32K private memory. (See BRS manual "Memory Allocation and

Sharing" for a detailed discussion of this).

17.3

LISP Memory Allocation

There are several different levels of storage used by LISP, and

it is important to understand the distinctions. First, there is

the large LISP virtual memory, so called because there is, in

fact, no contiguous block of storage corresponding to it. The
allocation of this memory is described in Section III.

Next, there is the core memory in which reside the basic instruc­

tions comprising the LISP interpreter, I/O routines, SUBRS, gar­

bage collector, etc. This is the 16K of memory directly address­

able by instructions. The contiguity of this memory block is also

an illusion, but a very convincing one since it is implemented by

the paging box. Core memory is also used for running compiled

code, holding page buffers and temporary storage as shown in the
figure.

37777]

31O'IO'fJfJ:
1
----------------1 .

t
J 20'0'00' 8-i---------t

r
I~

______________ ~i/

LISP Core Memory Allocation

17.4

basic code

compiled code buffer

virtual memory page
buffer

temp. storage

Because the LISP virtual memory is an illusion created by

the LISP program, it is not possible to use it directly for I/O.

That is, the hybrid processor, for example, cannot be instructed
to read or write a large block of words using a LISP array

because the array will in general be on the drum. Even if in
core, it may be spread out over several non-contiguous page

buffers. Therefore, it is neces~ary to allocate a contiguous

block of core sufficient to hold the information to be transferred.
But as can be seen from the diagram above, core is already
completely allocated. The alternative is to create a fork with
at least some independent memory and use it to do the I/O. The

programs now written which use the fork logic alloc~te fork
memory as shown in the figure.

17.5

Fork
Memory

M~fugry

The shaded area, with addresses from 200008 to 377778, is
common to both the main and the fork memory. The area from

, ,to 177778 in the fork is the independent memory used for I/O.

Because the page buffers are necessary to effect references to the

LISP virtual memory, and the page buffers and the I/O memory do

not exist in the same for~, a two-step process is necessary to
move data between the virtual memory and I/O memory_ This

consists in first copying words from the source memory to a

buffer area common to both forks then copying the buffer area
to the'destination memory. A program running in main memory is

used to move data between the virtual memory and the buffer, and

a program running in fork memory is used to move data between the

I/O memory and the buffer. The LISP functions which perform these

data transfers are compiled code and reside in the compiled code

area when running. This area is common to both forks, and ,so a

single function can contain instructions for execution in the
fork as well as those for execution in the main program. The

function must also contain space allocated for the buffer. The
functions to transfer data to and from forks are called storefork,
stfk, readfork, and rdfk, and are described in detail at the
end of this section. 'The implementation details below should

allow a user to define his own specialized functions for fork
data transfer and running.

17.6

Implementation Details

The information necessary to start a fork has been described

generally above. The specific format prescribed by the time­

sharing system for this information is shown below. This

information is contained in a block of seven words called the

fork table (sometimes called the panic table).

~

1

2

3
4

5
6

Program Counter
1-----------------------------------A Register

_.'------"------B Register

X Register
t----------.~,---.~-, ·"'." .. ".".'~~ ... ~~.,~,.~ .. ~,.~ .. ~w •• _ .. ",~·._

First Relabeling Register
~ ... , ,.., ~.,..' h, •. ,'' ~ ,"" -""~"""""7 '";,.,.; , ~ .. .,', ... A.-',: .. O: :'!¥',. .. "'":>'V'f"\ __ ~·.r'""",·7.:'\!~"'~.1~ ::_'''''*._,.· .. ~

Second Relabeling Register

, Status

To start a fork, the controlling program must place the address

of the fork table in the A register and execute a BRS 9
instruction. The high order five bits of the A register also

contain some control information which is used by BRS 9. More

details are available in the BRS manual.

The BRS 9 causes the fork to commence operation as specified by

the fork table, and both the main program and the fork are then

running. When the fork is dismissed for any reason, the fork

table is updated to show the latest contents of the central

registers and relabeling. The status word indicates what caused­
the dismissal.

17.7

SPCELL+0' PC

1 A
2 B

3 X FIRST FORK TABLE
4, RLI

5 RL2
6 STAT

7
8

9
SPCELL+I0 CONSTANT - ADDRESS OF FIRST FORK TABLE

11 CONSTANT - ~ REGISTER FOR BRS 9 FOR FIRST FORK
12 FDDT RLl] RELABELING FOR FDDT
13 FDDT RL2
14 FDDT ADR START ADDRESS FOR FDDT

15
16

17
18
19

, SPCELL+20 PC
21 A
22 B SECOND FORK TABLE

23 X

24 RLI
25 RL2
26 STAT

17.8

There is a block of words in the temporary storage area of

LISP available to the user for any purpose. The first location

of this block is bound to the atom SPCELL. A portion of this

block has been allocated for fork data as shown.

Note that there are two fork tables. This allows one fork to be

transferring data to or from the fork memory while the other

runs the hybrid processor. The relabeling is the same for both.

In some instances it is useful to have a fork containing DDT

which can examine the running LISP. For example, this allows

examination of compiled code in the binary program buffer. The

following function provides that facility:

ddt[] causes LISP to start a DDT which

is looking at the running LISP.

To continue LISP under this DDT,

type

3.0.0.02;G.
To return to LISP from DDT, hit

2 rubouts or %F. Calling ddt[]

while in a LISP running under

DDT will cause a return to the
higher DDT, not start a lower one.

17.9

Another function called fddt (for fork ddt) is available in the

standard system to facilitate debugging of fork programs.

fddt[] starts a DDT (the regular sub­

system program) under LISP and

sets it to look at the fork

memory as determined by the

contents of RLI and RL2 in the

first fork table. Two rubouts

cause DDT to return to LISP.

This DDT is distinct from the

one described earlier, called by

ddt[J, which looks at the running

LISP memory from the position of

the LISP executive.

Programmers writing fork programs should be aware of the complete

fork structure of LISP as shown below in order to avoid

complications. The user forks mentioned can be any that the

user starts up. In addition, the user can call under LISP other

94~ subsystems using the function subsys.

subsys[name;filel;file2]

utility[file]

starts up a 940 subsystem as a

fork under LISP. Only those sub­

systems listed on the variable

systems can be started. If filel

is given, the subsystem accepts

input from filel, otherwise tele­

type. If file2 is given, output

goes to file2, otherwise teletype.

subsys[UTILITY;file]

17.10

The LISP executi ve fork perfor'ns 'very few functions and is

run only when the interpreter dismisses itself. The TTY service

fork, however, runs concurrently with the interpreter and is

always waiting for TTY input. If a user fork is to do TTY input,
the TTY Service fork must be terminated. A BRS 108 is satisfactory
for this purpose. The TTY service fork is restarted by the
interpreter fork whenever it is needed but not running.

SYSTEM 1.85 EXECUTIVE

LISP EXECUTIVE

.- LISP -1-
-t

(including DDT wh~n called) ,

LISP INTERPRETER

OSER]< including FDDT,
FORKS ybrid processor

__________ ~and subsystem
forks)

LISP FORK STRUCTURE

17.11

Hybrid Processor and Fork Functions

As mentioned earlier, the fork capability in LISP provides a

practical way of driving the hybrid processor. This section
describes a number of functions that have been written to provide,
in various formats, input to and output from the forkts memory, Wllich

is the link between LISP and the hybrid processor. All of these

functions are necessarily low-level, but for display applications,

a very general set of higher level functions have been written,

and are described in the section of the manual entitled Display

Capabilities in LISP. This latter section can be referred to

for a more extended writeup on the use of the hybrid processor

and fork functions in a particular context.

To run a process with the hybrid processor, one must first have

a process number and appropriate devices assigned. The following

functions are used for this purpose:

assignp[pno]

assignd[dev]

unassign[]

assigns process number pno for
hybrid processor, returns pno or

NIL if unable to assign.

assigns device dev, returns device

number actually assigned or NIL

if none available.

releases all devices and process

numbers.

17.12

Before any fork operation can be performed, it is necessary to

define the fork memory. This initialization is performed by

forkinit[] initializes the fork

which sets the contents of the relabeling registers of the first

fork table to specify the memory configuration shown earlier in

this document. It also sets up the two constants in

SPCELL+lO and SPCELL+ll. This initialization should be performed
only once, but is not preserved through a SYSOUT-SYSIN,

i.e., if you save your system and resume via SYSIN, you must

perform another forkinit.

The functions storefork and readfork described below permit

transferring large blocks of data to and from any desired location

in the fork's memory. However, the following conventions have

been found to be extremely useful in communicating with the fork

and the hybrid processor:

1. The fork's memory is divided into a number of distinct, non­

overlapping areas or tables.

2. Each area is identified and referred to by its first location,

called its handle.

3. The contents of handle, i.e., the first cell in a table, is

a pointer to the first unused word in the table. When the

table is completed and given to the hybrid processor to run,

this will be the first cell after the end of the table.

17.13

4. Commands for the hybrid processor begin at location

handle+l, and are contiguous. Data for the hybrid processor

follows the commands, and continues to the cell whose address

is contained in handle.

To repeat, it is not necessary to adhere to these conventions to

use the fork capabilities, although the functions described here

are designed to make it easier to use the fork capabilities with

these conventions.

maketable[place;size] creates a table and initializes

its pOinter. If place is NIL, the

table begins at location 200 (the

fork memory goes from location 0

to location 8192). If place is T,

the, tab Ie begins immediate ly

following the previous table

(assuming it was also created by

maketable). Otherwise, place must

be a number and specifies the

actual starting location of the

table. Size is an optional

argument which, if given, guarantees

that the next table, if created

by a call to maketable with

place=T, will not overwrite this

one. Essentially, it is a device

for reserving a block of memory

for a table without having to fill

up the table. It enables the user

to initially divide up the fork

memory into several tables before

transferring any data.

17.14

The value of maketable is the

handle of the table that was

created.

storefork[ap,incr,handl,rel,np] transfers the first g£ words

from the array: specified by . .§:E.,

an array pOinter, into the fork's

memory, beginning at locations

handl+rel, and at every incr

thereafter. If incr is not given,

1 is used; if g£ is not given,
arraysize[ap] is used; if handl

is not given, free variable

handle is used; if reI is not

given, the contents of handl is

treated as a pointer to the first

unused word in the table and this

latter location is the starting

point for the transfer. In this

latter case, the pointer is

updated after the transfer is

complete. Value is handle

Note: The error mess age CIACHINE SIZE TOO SMALL) means th~ ll!=>P:r

must return to the time sharing executive and chat;ge his machine
size. The error message

(ATTEMPT TO STORE/READ BEYOND END OF FORK)

means the user has tried to reference a fork location> 8192.

17.15

Thus, to create a table and fill it with the arrays AI, A2, and

A3, one must perform the following steps:

MAKETABLE()
200

E (STOREFORK AI)
200

E (STOREFORK A2)
200

E (STOREFORK A3)
200

readfork[ap,incr,handl,rel,npJ transfers ££ points from the

fork's memory beginning at loca­

tion handl+rel, and at every

incr thereafter, into ~, an
array pointer. reI must be given;

if incr, handl, or ££ are suppressed,

they are treated as for storefork.

Value is handle

Note: the arrays for storefork and read fork must be arrays that

contain unboxed numbers, since no boxing or unboxing takes place

in either of these two functions.

stfk[address,x]

rdfk[address]

stores a single word into the fork

at address. x should be a number

which is then unboxed by stfk.

Value is x.

reads a single word from the fork

at address, and boxed this quantity

to return a number.

17.16

Note: maketable, storefork, readfork, stfk, and rdfk all contain

error checks for out of bounds references and machine size too

small error conditions. In addition, storefork and readfork

check to make sure that n£ is not too large for the array ~.

hpstart[st,nt,lc,ld] starts up the hybrid processor.

st is the starting location for

hybrid processor information with

commands coming before data. nt

is the iteration count for the

data table, i.e., the number of

times the data table is to be

run (O=infinity). lc is the

~ength of the command table for
the hybrid processor and ld the

length of the data table. If ld

is NIL, st is assumed to be a

handle, and the first word a

pointer as described earlier. In

this case, hpstart computes ld.

Thus, the user does not have to

keep track of how. long his data

table is. If ld~NIL, st points
directly to the first command.

hpstart uses pno as a free variable

for the process number to be used.

If a process is currently running,

hpstart creates a new data block

(BRS 132) and terminates the

current data block (BRS 142) (see

TSSS Manual). This means that

running displays can be replaced

17.17

hpstop[]

hptest[]

hpwait[]

by new displays without any

flicker. If no process is running,
hpstart creates both a command

block and a data block and starts
a process. If it is necessary to

start an operation with a new

set of commands or iteration count,

be sure to first do an hpstop.

performs a BRS 138 which stops the
hybrid processor. Uses pno as a

free variable.

performs a BRS 137 which tests
the status of the hybrid processor.

Returns T if running, NIL if not.

Uses pno as a free variable.

Warning: hptest immediately

following an hpstart may not return

T: there is a slight time lag

before the process actually gets

going.

performs a BRS 136 which dismisses

user until the hybrid processor

is finished.

17.18

hprun[aPJlcJ~PJiterJpno]

hptable[m,n]

drives the hybrid processor

directly from LISP, i.e., this is

the way displays were done before the

fork capability was implemented.

~ is an array which must lie on

a single page, and therefore must

be less than 253 in size. (note:

all arrays of size less than 253
do not necessarily reside on a

single page - see hptable below.)

Ic is the number of commands,

n£ the number of data words, with

commands preceding data in the

array. iter is the iteration

count for the data table and

pno the process number.

hprun waits for the process to

terminate before returning.

hprun is primarily useful for

short operations, such as reading
a single A-D converter,

because it does not require

separate maketable, storefork,

hpstart, and readfork operations -

the value(s) are returned directly

into the array.

creates an array analogous to

(ARRAY M N) in such a way as to

guarantee that the result is on

one page. M must be less than

253. Returns array as value.

17.19

brs[n,a,b,x] loads the A-register with a, the
B-register with b, and the X­
register with x and does a BRS n.
Value is the A-register. For
example (BRS 81 N) will dismiss a
program for N milliseconds.

17.20

SECTION XVIII

DISPLAY CAPABILITIES IN LISP

Introduction

At the present time the only display facilit~ available on the
BBN Research Computer is hardware which provide~ only a point by
point display (e.g., no character or vector generators in hardware).

Control of this display processor is achieved through the hybrid

processor attached to the SDS 94~. The display itself has no

storage capability, therefore the image must be constantly

refreshed by the hybrid processor from data stored in the com­

puter's corp memory. To enable LISP programs to make efficient

use of this display, functions have been written which provide

a fairly sophisticated and general display language along with

low-level routines for communicating with the CRT via the hybrid

processor. We expect that later hardware additions to the display

will make running the display more efficient, but may require a

few changes in the user programs which describe and construct

displays.

Putting a display on the face of the CRT from within LISP is done
in three distinct steps. The first of these involves constructing

a display structure which specifies the points to be displayed.

The second step is then to transfer the data corresponding te

these points from LISP's memory into the fork's memory, (see

Section XVII)~ from which it will be displayed. The third step:i~

to initiate a program within the fork which starts up the hybrid
processor; the hybrid processor will then maintain the display

18.1

on the face of the screen independent of what is taking place
in the user's LISP program.

Themajo~ effort in providing a display capability in LISP has been
concentrated on the first step of the above operation, the gene­
ration of a display structure. Most users need not even be aware
of the details of steps two and three, beyond the fact that they

must be done, and that some straightforward functions are provided
to do them. For the interested, Section XVII discusses in greater
detail the use of forks and the hybrid processor. The latter
part of this section discusses the details of implementation of
steps 2 and 3 above, and describes the operation of the lower

level functions.

Initialization

In order for the user to actually display figures on the CRT, he
must acquire for his use two D-A converters and a process number.
The function start is available for this purpose. It assigns
process number 1, and the two D-A converters in the list converterlst
initially set to (0 1). Note: in most cases, the converters will

be patcned to the appropriate inputs, and the user can simply use

start[J. However, in the event that the last person used the D-A

converters ror an application other than diso~ay, it may be
necessary for the user to repatch the D-A converters or to find
someone who can.

start calls startl which performs all initialization other than
the assigning of process number and devices. If the user wishes
to use the functions in the display package, but does not intend
to actually display, he can perform startle], and then proceed
exactly as if he had the scope assigned to him. Function calls
that would normally start a display will simply print DISPLAYING

18.2

on the teletype and continue. In this way several users can debug

programs that use the display package, even though only one can

be displaying at a time.

The Display Language

The display structure of step 1 is defined via the display language.
This language provides an aesthetic way of describing displays. It

revolves around the concept of a figure, which in our terminology

is a display gestalt. A figure can be composed of other figures,

and, in turn, be a part of a larger figure, much the same as a
list can be composed of sublists, and be a part of a larger list.

The interpretation of a figure, and consequently the display it
produces, depends on its type. Three of the more common figure­
types are:

1. Translate: if F is a figure, then (F X Y) is a figure

consisting of F translated X units in the horizontal

direction and Y units in the vertical direction.

2. Scale: if F is a figure, (F S) is a figure consisting

of F scaled by a factor of S, i.e., (F l)=F. S can be a

positi ve or negati ve', fixed or floating point number.

3. Combine: if Fl •.• Fn are figures then (Fl ••• Fn) is a
figure consisting of the union of (the pOints of) the

individual figures Fl through Fn.

A primitive figure is an array consisting of X and Y
coordinates in alternation. For example, the array containing

the values (0 0 5 0 10 0 ••• 45 0) specifies a horizontal line,

10 points long, starting at (0 0) and ending at (45 0). If H is

18.3

such a line, and V a vertical line from (0 0) to (0 45), then
the figure (H V (H a 50) (V 50 0» represents a square. Using
SQ for square, we can define ROW as (SQ (SQ 50 0) (SQ 100 0)

(SQ 150 0) •.• (SQ 350 0», and then CHECKERBOARD as
(ROW (ROW a 50) (ROW a 100) .•• (ROW a 350).

The principal advantage of such a language is that it lends itself

nicely to the recursive nature of LISP and list processing. Large,

complicated displays can be conveniently broken down into small,
subroutine-size chunks. A secondary advantage is the reduction
in storage required for displays. For example the primitive

figures Hand D each require 20 a~ray cells, SQ requires
10 LISP words, and ROW, and CHECKERBOARD an additional 29 LISP
words. Therefore, the entire checkerboard requires 68 LISP words

and 40 binary program words, and specifies a display of
2560 points.

In addition to the three figure-types-described above, the follow­

ing figure-types are implemented in the display language:(*)

4. Scale: If F is a figure, (SCALE: F X y) is a figure con­

'sisting of F scaled by X in the horizontal direction and

Y in the vertical direction. (SCALE: F S S) is identical
to (F S), a figure of type 2. However, figure type 4
permits individual X and Y scaling. Note: reflection can

be achieved by using a positive scale factor for one
coordinate and a negative scale for the other.

5. Plot: If A is a primitive figure, i.e., an array, then

(PLOT: A) is a figure consisting of the values of A

plotted as Y coordinates starting at X=O with X advanced

by 1 for each value of Y, i.e., the normal horizontal

(*) An atom can be used to represent a complex figure; it will be
evaluated and its value treated as one of the 11 figure types
discussed here.

18.4

*

graph. Figure type 5 can be combined with type I and

type 4 to produce a graph at any position, any scale.
Note: values of A are treated as unboxed numbers.

Other variations: (PLOT: A T) is a figure consisting of the
values of A plotted as X coordinates starting at y=o
with Y advanced by I for each value of X, i.e., a
vertical graph.

6. Erase: (ERASE: M N) is a pseudo-figure, i.e., it does
not itself transfer any points, but modifies previously

transferred points. Its effect is to erase N words *

7.

8.

9.

th starting from the M word in the top level superfigure,
M and N > O. For example, since ROW consists of 320 points

or 640 words, the figure (CHECKERBOARD (ERASE: 12Rn 640»
would consist of a checkerboard with the third row erased.

Restore: (RESTORE: M N) is a pseudo-figure which

reverses the action of an ERASE pseudo-figure, i.e.,

(F (ERASE: M N) (RESTORE: M N» is equivalent to F.

Move: If F is a figure, (MOVE: FAll Al2 A2l A22) is a

figure which c· the linear transformation
by the matrix All A12), Aij positive or

A21 A22

or floating point number.

of F specified
negati ve, fixed

Rotate: If F is a figure, (MOVE: F Q) is a figure consist­
ing of F rotated Q degrees. (MOVE: F Q) is identical to

(MOVE:" F COSg SINg -SINg COS~).

I point = 2 words.

18.5

10. If A is an array, (A . N) is a primitive figure consisting
of the first N points of A. This type of figure can be

used anywhere a primitive figure can appear. Note that a

figure of the form (F • N) where F is not a primitive

figure, i.e., «A 100 0) . N), is ~ permitted.

11. Label: If F is a figure, then (LABEL: F label) is a

figure that generates the same display as F. The purpose

of this figure-type is to facilitate modification of
selected subfigures in a large and complicated superfigure.

After the Label: figure type has been interpreted and

transferred into the fork its absolute X and Y coordi­
nates, absolute X and Y scaling, relative position in the
display table, and number of words it occupies in the

display table are attached (by rplacd), in that order,
following the label.

New figure types may be defined by adding a definition of the form
(name forml .•• formn) to the list displaymacros. Before assuming

that a figure is of type 1, 2, or 3, this list will be searched

for a definition using assoc and car of the figure. If such a
definition is found, forml through formn are evaluated. For

example, one could define a figure type SHRINK: by adding to
displaymacros

(SHRINK: (DISPLISTI (CADR FIG) X Y

(FQUOTIENT SCALEX (CADDR FIG»

(FQUOTIENT SCALEY (CADDR FIG»» *

* displist is discussed on page 18.15.

18.6

Generating Functions

A generating function is one that constructs a display figure.

Several are included in the display package.

dline[x;y;dx;dy;n] value is a primitive fig~re
representing a line n points long

starting at (~~~) with increments

(dx,~).

Thus from our checkerboard example, H=(DLINE 0 0 5 0 10),

and V=(DLINE ° ° ° 5 10).

dvector[xO,yO,xl,yl,n]

dcircle[radius, dtheta]

value is a primitive figure repre­

senting a line N+l points long

starting at (xO,yO) and ending

at (xl,yl). Note: dline is more

efficient than dvector.

generates a circle of radius radius at

[O,OJ. dtheta represents the arc

between points on the circle, i.e.

360/dtheta = number of points.
Value is primitive figure.

Note: both dline, dVe~t~r and dcircle take two extra optional

arguments a, and m. If given, the array a is used for the primi­

tive figure, starting with postion m of the the array. In this

way more than one primitive figure can be generated into the same

array.

18.7

ds[s] generates (and displays) a figure

for the list structure S in

conventional box-notation. Its
value is a generated symbol

whose value is the figure itself.

For example, DS«A B C» will produce the display

I_A _I _'t-I ~?> I B 1

ds is equipped to handle circularities in both ~ and cdr directiol').
Warning: since it marks each substructure to detect circularities,

and subsequently restores the original structure, interrupting
ds by rub out will cause the original list structure to be
permanently lost.

dtree[tree] generates (and displays) a figure

for the tree structure representa­

tion of tree, i.e., ~ of each
sublist labels the father node,

cdr is treated as a list of the
daughter nodes. For example,

dtree[(S (NP (DET N) (PR P» (VP V»]
will produce the display

I

NP'
/s

/
DET PR VP

I I I
N P V

18.8

The value of dtree is a generated

symbol whose value is the display

figure. dtree is equipped to

handle circularities in the car

direction, i.e., common zubtrees.

Since it marks each subtree as it

encounters them, and subsequently

restores them, interrupting it

by rub out will cause the original

structure to be permanently lost.

The variable trnpts initially set

at 20, specifies the distance

between adjacent levels of the

tree. The variable trspacing,

initially set at 3, specifies the
minimum distance between any two

adjacent nodes on the same
level. If the width of the gene-

rated tree is greater than the

width of the scope, the tree is

automatically scaled down in the

horizontal direction. No scaling

is performed in the vertical

direction. However, deeper trees
can be accommodated by resetting

trnpts to a smaller value.

18.9

movefig[fig;opl;parl; ... opn;parn]

is an NLAMBDA nonspread function.
It evaluates fig, but treats the

rest of its arguments literally
as operations and parameters, e.g.,

(MOVEFIG FIG UP 100 LEFT 100 ROTATE 30).

Its value is a new figure corres­
ponding to fig with the indicated
operations having been performed.
For the above example, this would
be

(MOVE: «F a 100) -100 0) 30)

move fig is designed to free the
user from remembering the

various conventions of figure
types 1 through 9. It recognizes

UP, DOWN, LEF~, RIGHT, SCALE,

SCALEX, SCALEY, ROTATE, MOVE and
LABEL. For MOVE, the parameter
should be the matrix of trans­
formation.

18.10

Displaying Text

A number of generating functions are available for character

strings: dprint, dprinl, dprin2, dspaces, dterpri, datom, and
dischar. The first five perform functions analagous to the

printing functions of the same name without the d. datom

and dischar are lower level routines used by dprinl, but when

called directly provide certain options not available through

the higher level functions. These functions are designed to

allow the user to treat the scope as a teletype, if he so desires.

The size of the characters these functions generate is determined

by the free variable charsize, initially set at 2. charsize is

the spacing between points in a character. Since there are

approximately 100 points per inch, and characters are 5x7 points,

a character generated with charsize=2 would be .11lx.14 11
, which

is approximately teletype sized.

The free variables xorg and ~ determine the next character to

be displayed, and correspond to the teletype position. They are

numbers between -512 and 512, with (0,0) the center of the scope.

xorg is adjusted by the above functions in accordance with the
horizontal motion of the tel~type carriage, ~ in accordance

with the vertical motion of the paper. Their initial value

determines the position of the first character. Their final value

corresponds to the position on the scope where trprinting" stopped.

The free variables lorg and rorg determine the left and right

II margins" of the display. Whenever a word (an atom) would be
positioned at a point to the right of rorg, i.e., when xorg is

greater than rorg, dterpri is called first. This function

performs a scope Itcarriage return" by resetting xorg to lorg and

18.11

moving ~ down by IO*charsize. Similarly, the function dspaces
tfspaces" the display by changing xorg, but does not itself

participate in the construction of any figures.

To complete the analogy with printing, any carriage return or

hlanks that appear inside of an atom will have the obvious
interpretation. Furthermore, dprint anddprin2 would cause this

atom to be displayed in double quotes, while dprinl would not.

dprinl has one additional feature not available on the teletype:

subscripting and superscripting. The characters control-U and

control-D have the effect of displacing ~ up or down by
5*charsize. Thus the atom

IIXU2D + YU2D = ZU2D"

where U and D denote control-U and control-D respectively would
be displayed as

It is important to emphasize that all of these functions do not
display, but merely generate figures. For example, for charsize=2,
xorg= -400, and yorg=400, the value of datom[ABC] is the list

«(al 2) -400 400) «(a2 2) -386 400) «a
3

2) -372 400», where

aI' a 2 , and a 3 are primitive figures for the characters a, b~ and c

respectively. This figure can be r~positioned, rescaled, combined,

and transformed the same as any other figure. It is not displayed

until it is transferred into the fork, step 2, and the hybrid

processor is started, step 3.

18.12

dprint[x]

dprin2[x]

dprinl[x;prin2 J

dterpri [J

dspaces [nJ

datom[atom;prin2;x;y]

performs dprin2[x] followed by

dterpri[] and returns the value

of dprin2

dprinl[x tJ

If xorg is greater than rorg,

performs dterpri[J. Successively

calls datom and dspaces on the

components of x and on lpar,

rpar, and period as required, and

combines the values into a figure,

which is returned as its value.

The second argument of dprinl is

used as the second argument to

datom.

sets xorg to lorg, yorg to

~-IO*charsize.

sets xorg to xorg+n*charsi'ze*7

generates a figure for atom at

coordinates (x,y) if given,

otherwise at (xorg,yorg). It uses

chcon[atom;prin2] for the list of

characters to be displayed. Thus

if prio2=T, and atom is unusually

spelled, double quotes will be

supplied. datom recognizes and

treats specially the character

codes for blank, carriage return,

18.13

dischar[c]

line feed, control U and control D.

Otherwise, it calls dischar.

c is a number used to reference

the array masktable which contains

35 bit masks for all of the tele­

type characters. These masks are

formed by mapping the 5x7 image of

the character into a string of 35

bits by starting at the lower left

hand corner of the character and

proceeding bottom to top, left to

right, with a 1 indicating a point

to be displayed. The first 21 bits,

i.e., the leftmost three columns of

the 5x7 image, are left justified

to form the first word of the mask.

The last 14 bits, also left justi­

fied form the second word. These

are stored in location 2c-l and 2c

in masktable. For example, location

103 in masktable is 00403770Q, loca­

tion 104 is 0040200Q, corresponding

to the mask for the character T,

which has ASCII code 52.

The first time a particular charac­

ter is encountered, a primitive

figure is generated for it, and

stored in the array chartable.

Subsequent use of this character

will not require regeneration.

Thus, the generation of figures

for text is essentially a table

of lookup process.

18.14

Note:

Decoding Figures

arraysize[chartable]=128, and

not all of these are taken by

existing symbols, so the user can

define new symbols by placing an

appropriate mask in masktable via

seta.

Step 2 of producing a display consists of transferring the data

corresponding to the points in a display figure into the fork's

memory. This is done by the function displist.

displist[fig;place;handle] if handle=NIL, maketable[place]

is called followed by

storeforklca] which transfers into

the fork the commands necessary to

display points. Then displistl is

called to decode fig. The value

of disnlist is handle.
+

displistl[fig;x;y;scalex;scaley]

performs the decoding of fig.

The normal way of using dis~list is to call it with place=NIL or T.
In the first case, the display table will begin at the lowest

location in the fork's memory. In the second case, it will begin

at the first location after the previous table. In both cases,

the value of displist is the information that will be required

by drun, the function that starts the display. For more details,

see the description of maketable and the discussion of handles in

Section ~~~II.

18.15

If displ~s~ is called with handle not equal to NIL, maketable and

storefork are not called. This is one way to add a figure to a

nreviously existing table. For example, displist[figl] followed by

displist[fig2;NIL;x] where x is the value of the first call to

displist, i.e., the handle, is equivalent to

displist[list[figl;fig2JJ, since list[figl;fig2J is a figure of
type ::;, combine.

Driving the Display

Once the points have been transferred into the fork, the user can

start the display by calling the hybrid processor and specifying

appropriately the number of commands, number of points, number of

iterations, etc. This is performed by the function drun.

drun[handl;ntJ If handl is NIL, handle is used.

handle has a top level binding of 200,

the first available location in

the fork's memory and the value

of displist when place=NIL. If

nt is NIL, 0 is used which is

interpreted as infinity by the

hybrid processor. If start []

had been called, drun starts the

display, otherwise it prints

DISPLAYING.

18.16

display [fir;J Executes displist[fig], followed

by drun, and returns a gensym

whose value is fig. For example,

E (DISPLAY (DATOM (QUOTE TESTING»)

will generate the figure for this

atom, transfer it into the fork,

start the display, and return a

gensym whose value is the figure.

This can be used for subsequent

calls to displist.

It is important to emphasize that displist only transfers points

into the fork, and drun only calls the hybrid processor. One can

execute several calls to displist before displaying anything and

then switch rapidly back and forth from one display to another by

calling drun with different values for its first argument. Simi­

larly, one can execute a disnlist and a drun, and then be perform­

ing another displist while the display is running. If this latter

displist should happen to overwrite the display table for the

first one, the new points will be seen as soon as they are trans­

ferred, and the entire display will seem to melt into the new one.

18.17

Low-level Functions

The preceding discussion has presented all of the user-level

display functions. These will be sufficient for most users and

most applications. The following sections will describe the

lower level functions, and the details of the present implementa­

tion. To make effective use of these functions, the programmer

should have a greater knowledge of the computer hardware, time­

sharing system, and LISP implementation. Furthermore, changes

in the display hardware will result in changes, additions, and

deletions to these functions. That is, programs, which use these

functions directly will probably be affected by changes in hard­

ware or low-level software. Programs which use the higher-level

functions will not.

Hybrid Processor and Fork Functions

If the reader has not already done so, at this point the portion

of Section XVII entitled 'Hybrid Processor and Fork Functions'

should be read. Briefly, this section discusses the use of the

fork capability in LISP for driving the hybrid processor and

the conventions for communicating with the fork. In particular,

the reader should review the organization of the' fork's memory

into tables, and the use of the function maketable. The functions

assignp, assignd, unassign, forknit, hpstart, hpstop, hptest,

hpwait, and storefork are also of interest for display applications.

18.18

Storepoints

Storepoints, like storefork, is a function for transferring data

from LISP's memory to the fork's memory. It takes among its

arguments ~, handl, reI, and ~ and treats them similarly to

storefork: transferring the first ~ worns of ~ into the fork's

memory beginning at location handl+rel+l. The 3 reflects the

presence of the pointer in the handle and the two command words.

Therefore, reI is relative to the first poInt in the table, not

the first word. If ~ is not given, arraysize[ap] is used; if

handl is not given, the free variable handle is used; if reI is

not given, the contents of handl is treated as a pointer to the

first unused word in the table and this latter location is the

starting point for the transfer. In this latter case, the pointer

is updated after the transfer is complete. The value of store­

points, like storefork, is handle

However, storepoints, unlike storefork, expects that its array

contains the x and y coordinates, in alternation, of points to be

displayed, and operates in a pair-wise fashion. It also includes

among its arguments several options specifically tailored for

display applications:

storepoints[ap;dx;dy;sclx;scly;handl;rel;np]

transfers ~ or arraysize[ap]

words from .§:p. into fork. dx and

~ are the translations and

sclx and scly the scale factors

for the x and y coordinates,

respectively. storepoints moves

each pair of words into the fork's
memory, at the same time multi-
plying by sclx, or scly, and

18.19

adding dx or ~, and converting

to the format required by the

hardware. If dx or ~ are not

given, 0 is used. If sclx or

scly are not given, the free

variable scalex or scaley are

used. These are initially

set to 1. sc~~ or ?~~~
may be positive or negative, fixed

or floating point numbers. The

elements in ~ should be LISP

numbers between -512 and 512,. and

are unboxed and shifted appro­

priately before being transferred.

Another option available in storepoints allows blanking out and

subsequently restoring selected points. This is achieved by

giving storenoints as its first argument, NIL, for erasing, or T
for restoring (instead of an array). Starting at the appropriate

location, the appropriate number of points will then have their

low order bits set to 1, if erasing, or set to 0, if restoring.

When the "blink" switch for the scope is on, points with low

order bits set to 1 are not displayed. If the display were being

run at the time of the operation of storepoints, these points

would instantaneously disappear or reappear. Similarly, the

effect of a moving display can be created by overwritin8 portions

of a table while it is being displayed. Note that appending

to a table, i.e., calling storepoints with rel=NIL, can never

cause an immediate change in a display. This is because the

call to the hybrid processor which starts a display must, in

advance, specify how many points are to be displayed. Any

additions to the table will be seen only when another drun

executed. The only way to achieve the effect of points

18.20

spontaneously appearing in a display while it is in progress

is to initially store "invisible" points in the display,

i.e., points with low order bit set to 1, and then overwrite these

or turn them back on while the display is running.

Plotting Graphs

Many graphs can be specified more efficiently than by a collection.
of x-y coordinates as required by storepoints. It is often

possible to simply give a sequence of values for one axis, and the

first value and increment between successive values for the second

axis. This reduces by half the amount of storage required to

represent the graph. The function plotarray is provided for this
purpose.

plot array [ap; dx; dy ; s clx; scly; vert; handl; reI ;np]

transfers ~ or arraysize[ap]

words from ~ into twice that

many words in the fork's memory.

The interpretation of handl and

reI is the same as for storepoints.

The numbers in ~ are interpreted

as y-coordinates, unless vert=T.
The value of the other coordinate

starts at 0 and is advanced by 1

for each point. dx and ~ are

the translations and sclx and

scly the scale factors for the

x and y coordinates so that any

positioning or scaling can be

achieved. If dx or ~ are

18.21

not specified, 0 is used. If

sclx or scly are not given, scalex

and scaley are used. If the ~

contains all boxed numbers, plot­

array will unbox them.

plotarray is used by displist for figures of the form (PLOT: --).

Moving Points

The function movepoints described below provides an alternate,
more efficient way of effecting linear transformations of

two dimensions such as rotation and shearing. This entails per­

forming modifications on the corresponding points after they have

been stored into the fork's memory, rather than modifying a LISP

array or several arrays and then storing the modified arrays into

the fork using storepoints.

movepoints[matrix;dx;dy;handl;rel;np;from]

If handl is not given, handle is

used. If reI, dX, or ~ is not

given, 0 is used. Modifications

begin at handl+rel+3 and proceed

through ~ words, if ~ is given,

otherwise through entire table,

i.e., up to the location specified

by the pointer in handle

matrix is a list of the form

«all a12) (a21 a 22)) where aij

are the elements of a two by two

matrix, and may be positive or

negative, fixed or floating point

numbers. For each pair of x-y

18.22

coordinates, the new value of x is

given by

x'= all*x + a12* y+ dx

and the new value of y by

y'= a2l*x + a 22* y + dy

The state of the low order bit of

x and y is not disturbed so that

invisible points are transformed

along with visible ones but remain

invisible.

If matrix=NIL, «1 0) (0 1»,
the identity matrix, is used.

If matrix=N, a number,
«COS N -SIN N) (SIN N COS N»

is used, i.e., the effect of the
transformation would be to rotate

the points N degrees.

If from is given, the old values

of x and yare taken from the table
whose handle is from. The new ones

are stored in the table specified

by handle Essentially this allows

you to move from one table to

another and to perform a transfor­

mation if desired.

Movepoints is used by displist for figures of the form

(MOVE: --).

18.23

SECTION XIX

ADVISING

The operation of advising gives the user a way of modifying a

function without necessarily knowing how the function works or

even what it does. Advising consists of modifying the interface

between functions as opposed to modifying the function definition

itself, as in editing. break, trace, breakdown, and follow are

examples of the use of this technique: they each modify user func­

tions by placing relevant computations between the function and

the rest of the programming environment.

The principal advantage of advising, aside from its convenience,

is that it allows the user to treat functions, his or someone

else's, as "black boxes," and to modify them without concern for

their contents or details of operations. For example, the user

could modify sysout so that it did not write any ~ files, i.·e.,

files that did not already appear in this file directory. This
could be done by:

ADVISE(SYSOUT (COND

«INPUT (INFILE U» (CLOSEF U»
(T (PRINT (CONS U (QUOTE (NOT FOUND») T)

(RETURN NIL»)

As with break, advising works equally well on compiled and inter­
preted functions. Similarly, it is possible to effect a mod1fica­

tionwhichonly operates when a function is called from some other

specified function, i.e., to modify the interface between two

particular functions, instead of the interface between one function

and the rest of the world. This latter feature is especially use­

ful for changing the internaJ workings of a system function.

19.1

Consider the following obscure bug in prettyprint (which has since

been fixed): if a prog had two labels for the same statement, and

the first label had more than four characters in it, no spaces

would be printed between the two labels. Consequently, when the
function was loaded back in, only one label would be read:
the concatenation of the two labels that were printed. This con-

dition could have been remedied by:

ADVISE «SPACES IN PRINTPROG)

(COND «ZEROP U) (SETQ U 1»»

Advice can also be specified to operate after a function has been

called, in which case the value of the function is bound to the
variable VALUE, as with BREAK. For example, execution of all com­

mands to the LISP editor is performed under an errorset in the

executive editor function edite. Frequently the user may type in

a long command with a small error in it, and would prefer to be
able to correct the command rather than having to retype it. The

user could modify the editor to automatically save a command when-
\

ever an error occurred during its execution by performing

ADVISE «ERRORSET IN EDITE) AFTER

(COND «NULL VALUE) (SETQ LASTCOM C»»

since the value of errorset is NIL if and only if an error occurs

in the evaluation of its argument.

Note that advising spaces or errorset would have affected all calls
to these very frequently used functions, whereas advising (SPACES

IN PRINTPROG) and (ERRORSET IN EDITE) only affects calls to spaces
from printprog or errorset from edite.

19.2

Advise

Advise is a function of four arguments: ~, ~, where and what.

~ is the function to be modified by advising, what is the modi­
fication, or piece of advise. when is either BEFORE or AFTER with
the obvious interpretation. (If not given, BEFORE is assumed.)
WHERE is optional and can be used to specify exactly where in the
list of advice statements the advise is to be placed, e.g., FIRST or

(BEFORE (ADVICE CONTAINING PRINT»), or (AFTER 3), meaning after
the third piece of advice, or even (FOR ALL (ADVICE CONTAINING
RETURN». If where is specified, advise calls the editor to find
and insert the advice at the appropriate location. Otherwise,
the advice is inserted after any previous modifications. The
structure of a function after it has been modified several times
by advise is given in the following diagram:

MODIFIED
FUNCTION

ENTER

ORIGINAL
FUNCTION

19.3

Advice
BEFORE

Advice
AFTER

The corresponding LISP definition is:

(LAMBDA arguments (PROG (VALUE)

(SETQ VALUE (PROG NIL

advicel

advicen

(RETURN fn arguments»»

advicel

advicem
(RETURN VALUE»)

where fn is the name of the function (~enerated ~Y advise) w'hich

now contains the original, unadvised definition.

Note that the structure of a function modified by advise allows a
piece of advice to bypass the original function by using the LISP

function RETURN. For example, if the LISP form
(COND «ATOM X) (RETURN y») appeared among the advice BEFORE

a function, and this function was entered with X atomic, Y would
be returned as its value, i.e., VALUE would be set to Y, and

control passed to the advic~ if any, to be executed AFTER the
function. If this same piece of advice appeared AFTER the function,

Y would be returned as the value of the entire advised function.

* fn is stored on the property list of the function name under the
property ADVISED.

19.4

The advice (COND «ATOM X) (SETQ VALUE y))) AFTER the function
would have a similar effect but the rest of'the advice AFT~H

the function would still be executed.

advise[name,when,where,what] name is the function to be advised,

when=BEFORE or AFTER, where
specifies where in the advice list

the advice is to be inserted, and
what is the piece of advice. Both

when and where are optional arg,u­

ments, in the sense that they can

be omitted in the call to advise.
In other words, advise can be
thought of as a function of two
arguments: [name,what],or a function
of three arguments: [name,when,what]!
or a function of four arguments:
[name, when,where, or what]. Note
that the advice is always the last
argument.

If name is of the form (fnl IN fn2)~
chngnm[fn2,fnl] is first performed

as with break, and then fnl-IN-fn2
is used in place of name.

If name is non-atomic, every func­
tion in ~ is advised with the
same values (but copied) for

when, where, and what.

If ~ is broken, it is unbroken
before advising.

19.6

If name is not defined, an error
is generated.

If ~ is being advised for the .
first time, an appropriate

S-expression definition is created,

and the original definition stored
on a gBnsym, and the gensym stored

on the property list of ~ under

the property ADVISED.

name is added to the list

advisedfns.

The modification is inserted in

the appropriate position indicated

by where in the list of advice

either BEFORE or AFTER the function

depending on when. If where=NIL,
the advice is added to the end

of the advice. If where=FIRST

or TOP, it is inserted in front
of the advice. Otherwise, where

is treated as a location command
for the expanded editor, e.g.,

(BEFORE 3),
(AFTER (ELEMENT CONTAINING PRINT)).

(when where what) is added to
the front of a list of all calls

to advise for ~ which is kept

on the property ADVICE.

Value of advise is name.

19.7

unadvise[x]

advisedump[x]

is a non-spread NLAMBDA a la
unbreak. It takes an indefinite

number of functions to be restored

to their unadvised state.

unadvise[] or unadvise[ALL] will

cause all functions on advisedfns

to be unadvised. unadvising

,consists of restoring the original
definition, removing the properties

ADVISE and ADVISED from the pro­

perty list, unbreaking if the

~unction is also broken, and if
the function is an alias, i.e.,

created by an advise (fnl IN fn2)
call, the higher level function

in which it appeared is also

restored.

advisedump is the function that

1s called when an expression of

the form (ADVISE fnl •.. fnm)

appears in the third argument to

prettydef. If car[x] is no~
atomic, eval[car[x]] is used

instead of x. Then for each
function on x that has a property

ADVICE, the reverse of the property
value is put on the property

READVICE. Two deflists are

written: one for every function
,that has a property ALIAS, and

one for every function with

property READVICE.

19.8

readvise[name] is designed to be used in con­

junction with advisedump and

prettydef for dumping advised

functions and then loading and

restoring them to their advised

state. If name is of the form

(fnl IN fn2) or there is a pro­
perty ALIAS on the property list

of name, the appropriate chngnm

if first performed. readvise

then calls advise for each

modification on the list stored

under the property READVICE.

The value of readvise is name.

Note: if a function has both the property READVICE and the property

ADVICE, unadvise will first move the reversal of the property

value of ADVICE onto READVICE before it removes the former. Thus

if the user readvises, then executes additional calls to advise,

and then unadvises, all the advice would still be dumped when the

function was prettydef-ed.

In summary, advise puts advice on the property ADVICE. advisedump

takes it from ADVICE, or else from READVICE. readvise uses the

advice on READVICE. unadvise removes the properti ADVICE but

first moves ADVICE to READVICE provided both properties are
present. No function removes READVICE.

19.9

cadvice[fns] fns is a list of advised functions

to be compiled with their advice.

cadvice performs the appropriate

modifications to their property

lists before and after calling the

compiler. After compilation, the

function can still be unadvised,

in which case the compiled code

will be lost. If the function has

a property EXPR this property value

will be preserved through the com­
pilation.

19.10

SECTION XX

AUTOMATIC ERROR CORRECTION IN LISP

Introduction

A surprisingly large percentage of the errors made by LISP users

are of the type that could be corrected by;another LISP programmer

without any information about the purpose or application of the

LISP program or expression in question, e.g. misspellings, certain

kinds of parentheses errors, etc. We have implemented into the

BBN LISP system a DWIM package, short for Do-What-I-Mean, which
is designed to facilitate the correction of these type of errors.

DWIM is called automatically whenever an error occurs in the

execution of a LISP program (provided the user has first enabled

this feature), and then proceeds to try to correct the mistake.

The following output is representative of the kinds of corrections

the program will handle.

20.1

"OErINEQ«rACT (LAMBDA (N)
(COND «ZEROP N9 I) «T (TIMS N (FACrr 8SUBI N]
(rACT)
"PRETTYPRNT(CFACCTJ
= PRETTYPRINT
= rACT

(rACT
(LAMBDA (N)

(COND
C(ZEROP N9 I)

«1 (rIMS N (FACTT 8SUBI N»»»»
. N IL
"rACT(3)
EDITING rACT •••
N 9 »--> N)
EDITING rACT •••
~ONO -- «T.--») »--> (COND -~ (T --»
T IMS=TIMES
r ACTT=rACT.
EDITING rACT •••
8SUBI »--> (SUBI
6

"PRETTYPRINTC(rACT»

(rACT
(LAMBDA (N)

(COi'JD
((ZEf~OP N)

1)
(T (TIMES N (rACT (SUBI N»»»)

N IL

In this example, the user first defines a function FACT, of one

argument, N, whose value is to be N factorial. The function con­
tains several errors: TIMES and FACT have been misspelled. The'

9 in N9 was intended to be a right parenthesis but the teletype
shift key was not depressed. Similarly, the 8 in 8SUBI was in­
tended t6 be a left parenthesis Finally, there are two left

parentheses in front of the T that begins the second clause in the
conditional, instead of the required one.

20.2

After defining the function FACT, the user wishes to look at its

definition using PRETTYPRINT, which he unfortunately misspells.

Since there is no function PRETTYPRNT in the system, an UNDEFINED

FUNCTION error occurs, and the DWIM program is called. DWIM in­
vokes its spelling corrector, which searches a list of functions

frequently used (by this user) for the best pos~iQle match. Finding
one that is extremely close, DWIM proceeds. on the assumption that

PRETTYPRNT meant PRETTYPRINT, informs the user of this, and calls

PRETTYPRINT.

At this point, PRETTYPRINT would normally print (FACCT NOT PRINTABLE)

and exit, since FACCT has no definition. This is not an error

condition, so DWIM would not be called by LISP. However, it is not

what the user meant.

In order to handle these type of situations, when the user first

enables the DWIM facility, ADVISE is called to modify selected

system functions. For example, PRETTYPRINT is advised that when

given a function with no definition, it should call the spelling

corrector. Similarly, DEFINE is advised to add the names of any

new functions defined by the user to the spelling list of user

functions. Thus, with the aid of DWIM, PRETTYPRINT is able to

determine that the user wants to see the definition of the function

FACT, and proceeds accordingly.

The user now calls his function FACT. During its execution, five

errors are generated, and DWIM is called five times. At each point,

the error is corrected, a comment made of the action taken, and the

computation allowed to continue as if now error had occurred. Fol­

lowing the last correction, 6, the value of FACT(3), is printed.

Finally, the user prints the new, now correct, definition of FACT.

20.3

In this particular example, the user was shown operating in a

mode which gave the DWIM system the green light on all corrections.

Had the user wished to interact more and approve or disapprove of

the intended corrections at each stage, he could operate in a

different mode. Or, operating as shown above, he could have at

any point aborted the correction; or signalled his desire to see

the results of a correction after it was made by typing a ? on the
teletype.

Each different user may want to operate with a different "confi­

dence factor," a parameter which indicates how sure DWIM must

be before making a correction without approval. Above a certain'

user-established level, DWIM makes the correction and goes on.
. -

Below another level, DWIM types what it thinks is the problem,

e.g., PRTYPNT = PRETTYPRINT ?, and waits for the user to respond.
In the in-between area, DWIM types what it is about to do, pauses

for about a second, and if the user does not respond, goes ahead

and does it. The important thing to note is that since an error

has occurred, the user would have to intervene in any event, so
any attempt at correction is appreciated, even if wrong,as longtas

the correction does not cause more trouble than the original to

correct. Since DWIM can recognize the difference between trivial

corrections, such as misspellings, and serious corrections, such
as those involving extensive editing, bad mistakes are usually

avoided. When DWIM does make a mistake, the user merely aborts

his computation and makes the correction he would have had to
anyway.

20.4 \

Enabling DWIM

To enable the DWIM package, perform DWIM[T]. DWIM will type

"SET MODE B,N, OR E", for BEGINNER, NOVICE, or EXPERT. (These
will be explained later.) Respond by typing either B, N, or E;

DWIM will complete the rest of the mode name.* To disable DWIM,

perform DWIM[]. This is guaranteed to return the system to a

pristine state.

Error Correction

Once DWIM has been enabled, errors that normally generate either

UNBOUND ATOM or UNDEFINED CAR OF FORM messages (undefined function

call from interpreted code), instead call the functions fixatom

and fixfn, respectively. If an attempted correction is aborted

by typing control-R, or if the user indicates to DWIM not to pro­

ceed with the correction, or if DWIM cannot fix the error, the
action taken is exactly as though DWIM had not been enabled, i.e.

the system goes into a break, as described earlier in the manual.

The general strategy followed by both fixatom andf1xfn, is to

return the correct S-expression for the desired evaluation and

continuing the computation, and also to repair the cause of the

error. DWIM in general is more cautious about making corrections

to user functions than making corrections to S-expressions typed

into evalquote or to break.

Unbound Atoms

Fixatom is currently programmed to handle six different types of

unbound atom errors.

1. If the first character of the atom is an 8, DWIM assumes
that the 8 was intended to be a left parentheses, and calls
the editor on the expression in which the atom appeared.

* Alternatively, call DWIM with mode as argument, e.g. DWIM[E].

20.5

It is assumed that the user did not notice the 8, or attempt
to correct for it. In other words, the user typed in tbe
same number of right parentheses and in the same places, as
he would have had the 8 actually been a left parentheses.
For example, (LAMBDA (N) 8COND «ZEROP N) 1) (T (TIMES N
(FACT (SUBI NJ. If the unbound atom did not appear in
another expression, e~g. if the user typed 8CAR X) into
break for evaluation the appropriate expression is obtained
and evaluated.

2. If the first character of the unbound atom is t DWIM
assumes that the user (intentionally) typed 'ATOM for
(QUOTE ATOM) and makes the appropriate change. If the
unbound atom is just " DWIM assumes that the user typed
'(LIST) for (QUOTE (LIST» and proceeds accordingly.

3. If the last character in the atom is 9, DWIM assumes the
9 was intended to be a right parentheses and operates in
a manner analagous to case 1 ..

4. If 8 appears as a character inside the atom, DWIM assumes
the 8 was intended to be a left parentheses, splits the
atom into two parts, and takes the appropriate corrective
action, e.g. (CONS X8CDR YJ.

5. If the unbound atom is the name of a low level function,
e.g. APPEND, CONS, SUBST, etc., (anything defined before
PRETTYDEF) DWIM assumes a left parentheses was omitted
before the atom, but that the corresponding right paren­
theses was typed. In general, for parentheses errors,
DWIM always assumes the error was undetected by the user
and that no attempts were made to correct for it during
input. If the user notices a parentheses error of the
type handled by-rrwIM while typing in the expression, he
should ignore it.

6. For all other unbound atoms, DWIM assumes that there has
been a spelling error and calls the spelling corrector
(described below). The spelling corrector is given a
list of possible choices consisting of all variables set
by rpaqq, plus, in the case the error occurred in a u~er
function, a list of lambda variables and prog variables
for that function.

20.6

Undefined Functions

Fixfn is currently programmed to handle six different types of

errors.

1. If the undefined function is T, and it appears in an
expression of the form (COND -- (-- (T))), or (COND
«T --))), or immediately following a COND as in (COND --)

"(T ~-), DWIM assumes the T was meant to start the last
clause in the conditional and makes the appropriate change.

2. If the undefined function is not atomic, DWIM assumes an
extra parenthesis was put in e.g. (CONS «CAR X) YJ or
(COND «(ZEROP N) 1) (T (TIMES N (FACT (SUBI NJ.

3. If the undefined function has a binding, and is three or
fewer characters in length, DWIM assumes an extra paren­
thesis was put in e.g. (CONS (X Y)).

4. If the undefined function is F/L, DWIM assumes the user
1intentionally) typed (F!L expression) meaning (FUNCTION
(LAMBDA (X) expression)), or if (F/L arg-list expressionl
... expressionm)), meaning (FUNCTION (LAMBDA arg-list
expressionl .•• expressionm)).

5. If the undefined function contains an 8, DWIM assumes a
left parentheses was intended. If the error occurred on
input to evalquote, e.g. + EDITF8FOO), the appropriate
form is evaluated. If the error occurred inside of
another expression, e.g. (ADD18CAR X), the undefined
function is split into two parts and the 8 treated as a
left parentheses, as in 4. of fixatom.

6. For all other cases, DWIM assumes a misspelling has occurred
and the spelling corrector called. If the depth is greater
than 3, the spelling corrector is ~iven a list of low-level
functions such as addl, atom, cons, etc., i.~. those typically
used inside a function. ~the depth is less than 3, the list
contains top-level functions such as defineq, prettydef.
makefile,lo"ad, etc. In both cases, the lists include all
i'unctlons creTIned by the user with defineq, including those
loaded from files.

20.7

User Modes - Interaction with DWIM

There are currently three modes of operation in DWIM: BEGINNER,

NOVICE, and EXPERT. These modes control the setting of certain

parameters that in turn determine the amount of interaction for

the various errorsdiscussed earlier. Essentially, DWIM always

asks the user for approval when in BEGINNER mode, and its mes­

sages are more explicit and verbose. In NOVICE mode, DWIM asks

the user for approval for action to be taken when the error occurred

in a user function, as opposed' to an expression typed by the user

to evalquote or break. DWIM rarely asks the user for approval in

EXPERT mode. with the exceptions noted below.

Interaction on Parentheses Errors

Errors involving parentheses errors, i.e. errors of type 1,3,4 and

5 of f1xatom. and errors of type, 1,2,3, and 5 or fixfn require

editing. DWIM types an error message: ... UNBOUND ATOM or •.•
UNDEFINED FUNCTION in BEGINNER mode, and U.B.A. or U.D.F. in

NOVICE mode. This is followed by the atom or function name, and

its location (i.e. IN function) if the error occurred in a user

function. DWIM then requests permission to make the correction. For
example, •.. UNDEFINED FUNCTION 8SUBI IN FACT FIX ?

At this point, the correction that DWIM intends to makes has already

been determined by the type of error; DWIM is simply asking for user

approval. If the user types Y, for YES, DWIM will proceed with the

correction. If the user types N, for NO, or hits control-R the cor­

rection is aborted. If the user types t, not only DWIM but also the

subsequent break is aborted, i.e. it is equivalent to typing control-R

followed by t.* If the user types anything else, the editor is called,
for the user to edit the expression himself.

When the editing has been completed, DWIM will type the transformat­

ion that was performed, e.g. 8SUBI »--> (SUBI, and then CONTINUE?

* retfrom[n] where n is position of first errorset previous to call
to faulteval is performed. If none, retfrom[0]is performed.

20.8

If the user types Y for YES, the computation continues, and the

appropriate expression is evaluated. The only possible cause of

trouble in continuing involves an error of the form (COND -- (--

(T --»). Here the value of the conditional should have been the value

of the expression immediately preceding the (T --). This express­

ion must be reevaluated since its value is no longer around. If it

cannot be reevaluated without producing a harmful effect, the user

should type N for NO. The cause of the error will have been fixed,

but the computation will not continue. Instead an error will be

generated, and the system will go into a break. If the user types

anything other than Y or N, DWIM calls the editor again to allow

the user to look at the changes it has made. After exiting from

the editor in the normal way by typing OK, the user is again asked:

CONTINUE ?, etc.

If the user is operating in NOVICE mode and the error did not occur

in a user function, or if the user is in EXPERT mode, DWIM normally

does not ask for approval before attempting a correction. In this

case DWIM simply types EDITING function .•. or EDITING ... and pro­

ceeds with the correction. There are two exceptions, however.

For errors of type 2 and 3 in f~xfn e.g. (CONS «CAR X) Y» and

(CONS (X Y», DWIM will always ask for approval, because these may

be the expressions the user had intended: the undefined function

error may have ~een generated because of a logical problem,

e.g. X was bound to a function that was not defined.

If the user is operating in a mode that does not require DWIM to

interact with him, he can still signal DWIM that he wishes to

examine the changes that were made before continuing the computat­

ion by typing any character while DWIMis editing. When editing

has been completed, DWIM will then ope~ate exactly as though the

user were in BEGINNER mode.

If DWIM-was unable to make the correction, or if the user aborted

the editing by .typing control-R (WARNING in this case some changes

may have been made before the user aborted), DWIM will type COULDN'T.

20.9

Interaction on Spelling Errors

Wh~never an unbound atom or undefined function error occurs that

is interpreted as a misspelling, DWIM types an error message fol~

lowed by the atom or function identification as described earlier.

The spelling corrector then attempts to select the best match with
the list of correct spellings that it has been given. If no

reasonable match can be found, the spelling corrector types the
offending word, followed by = ?, e.g.
U.B.A. FOO

FOO = ?

The user can then type'the correct word. If he mistypes again, the
spelling corrector iterates. The only way to leave the spelling

corrector is to give it a suitable ~ord, or to abort by typing

control-R or t. If the user does type in a suitable word, i.e. a
BOUND ATOM or a DEFINED FUNCTION, the S-expression in which the

misspelling occurred is corrected, and this word is added to the

spelling list so that it will be considered as a possible correct

spelling for future mistakes. In the case of an UNBOUND ATOM, the
user can also type in a non-atomic form which is then used to cor­

rect the S-expression; e.g.

U.B.A. FOO
FOO = (CAR FIE)

If the spelling corrector finds a word or words which are reason­

able matches, it types them followed by?, e.g.

FOQ = FOOl or FOQ2 ?

The acceptable answers to this qtiestion are t, Y, for YES (only if
just one word matches); N, for NO, in which case WHAT THEN? is
typed and the user is in the same situation as when no suitable

match was found; D, for DELETE, in which case these words are
eliminated from the spelling list and will not be considered in

the future; or a number, to indicate which of the various words

20.10

typed is correct. The user is not allowed to type in the correct

word in response to a question of the form FOO= FOOl or F002 ?

He ~ only ~ t, Y, N, D, or a number. - - - - --
If the user is operating in NOVICE mode and the error does not

occur in a user function, or if the user is operating in EXPERT

mode, the spelling corrector does not require interaction if the

match is "good enough." There are two parameters that affect this
determination. These are CFACTl, initially set at .5, and CFACT2

initially set at .B. If the match is better than CFACT2 in reli­

ability, i.e. at least BO% sure, the spelling corrector makes the

correction types it, and goes on, e.g. FOOO = FOO. If the match is

better than CFACTI but less than CFACT2, the spelling corrector

types what it thinks is the correct spelling, and th~n waits a

specified number of milliseconds, as determined by the parameter

DELAYTIME (initially set at 4000). If the user types any character

during this time, the spelling corrector goes into interactive mode

as described earlier. Otherwise it makes the correction and goes

on.

~1.JmmR.rv of Interaction bv Monf'~

Parenthesis error in user function FACT, e.g.

(FACT BSUBI N)
BEGINNER

NOVICE

EXPERT

•.. UNDEFINED FUNCTION BSUBI IN FACT

.~.U.D.F. BSUBI IN FACT FIX?

EDITING FACT ...

FIX ?

unless type 2 or 3 of fixfn, in which case

same as NOVICE mode.

Parenthesis error in user typed expression; e.g.

+E (FACT BSUBI FOO)

BEGINNER

NOVICE

EXOERT

•.. UNDEFINED FUNCTION BSUBI FIX?

EDITING ...

EDITING •••

unless type'2 or 3 of £ixfn

Note: for input like + EDITFBFOO) to evalquote, a subcase of error

5 offixfn, DWIM requires no interaction in any mode.

20.11

Spelling error in user function, e.g. (FACCT (SUBI N))

BEGINNER

NOVICE

EXPERT

... UNDEFINED FUNCTION FACCT IN FACT
FACCT= *** ?

... U.D.F. FACCT IN FACT
FACCT= *** ?

FACCT=FACT(IN FACT) if certainty> CFACT2

FACCT=FACT(IN FACT) and pause for specified time
if certainty> CFACT1. If
no input, make correction
and continue .

... U.D.F. FACCT IN FACT
FACCT=· *** ? if certainty < CFACTl or if

two choices equally good

Spelling error in user expression, e.g. +FACCT(4)

BEGINNER ... UNDEFINED FUNCTION FACCT

NOVICE

EXPERT

FACCT= *** ? .

FACCT=FACT if certainty > CFACT2
FACCT=FACT and pause for specified time

if certa~nty > CFACTl

... U.D.F. FACCT
FACCT = *** ?

same as NOVICE

if certainty·< CFACTl or if
two choices equally good

(*** represents list of possible candidates, if any)

20.12

Private Modes

If the user wants to define his own mode, presumably to combine

certain features of BEGINNER, NOVICE, or EXPERT, or to change the

confidence thresholds, he must add the definition of his mode to

the end of modelst. Eact mode is a list consisting of a single

identifying character (hence do not use B, N, or E), followed by

the rest of the mode name, followed by a list of dotted pairs of

variables and values. For example, the first entry on modelst is

(E XPERT (GREENLIGHT • T) (REDLIGHT) (CFACTI .5) (CFACT2 .8)
(UD F • "U • D • F • ") (UB A • " U • B • A • ")) •

If the variable greenlight is T, as in EXPERT mode DWIM never asks

for interaction, (with the few exceptions mentioned earlier). If

both greenlight and redlight are NIL, as in NOVICE mode, DWIM asks

for interaction only for errors involving user functions. If

redlight is T, as for BEGINNER mode, DWIM always asks for inter­

action. The variables udf and uba are the error messages printed

out for undefined function and unbound atom errors respectively.

Other uses of the spelling corrector

As mentioned in the introduction, the spelling corrector is used

in the DWIM package to correct certain misspellings that would

not cause LISP errors. This has been accomplished by advising

certain system functions, such as prettyprint. to consult the

spelling corrector when given an argument that does not "make sense"
in the context of the operation they perform. Userwords is a list

of words that may contain the spelling the user intended. This

list is built up by certain other system functions; e.g. defineq,

rpaqqwhich have been advised to add to this list. Thus if DWIM

is enabled and the user loads a file, all functions defined and

variables initialized in the file will be added to userwords.

20.13

System Functions Adv~sed by DWIM

EDITF - if argument is (NOT EDITABLE), but has a non-atomic
value, editv is called. If it has a non-null property
list, editp is called. Otherwise it is treated as the
name of a function on userwords.

EDITV - if argument is (NOT EDITABLE), it is treated as the
name of a variable on userwords.

EDITP - if argument is (NOT EDITABLE), it is treated as an
atom on userwords with a non-null property list.

BREAKRJ if function is not defined, it is treated as the name
of a function on userwords.

UNSAVEDEF - if function is not defined, it is treated as the name
of a function on userwords.

PRETTYPRINT - if function is not defined, it is treated as the name
of a function with an S-expression definition on
userwords.

In addition, after they have finished operating, EDITF, EDITV,

EDITP, DEFINEQ, BREAK0" UNSAVEDEF -' and RPAQQ all add their ar_guments

to uSerwords as well as to the approoriate snellin~ lists for
error correction

Load is advised to maintain two lists: a spelling list of user files,

(~ilesDlst) and a list of user files with the functions and variables
they contain (filelst), derived from the first and third argument to
prettydef.* makefile consults filesplst to correct the spefling

of its argument, and editf, editv, and editp add their argument

to filelst under the name of the appropriate file. The function

newfiles can then be used to produce an updated version of any

files that have been changed.

newfiles[flg] does makefile for every file on filelst that

has been modified. If flg=T, the files are

also listed.

(*) This ~ssumes that th~ file was cr~at~d by makefile, p. 14.21
i.e. that its name is of the"form /Nname/.

20.14

If the user wishes to modify his own or other system functions, the

following two functions will be useful:

addspell[x;flg] Adds x to userwords, and, if fIg = T, to
the spelling list for variables, otherwise

to both spelling lists for functions. Sets
lastword to~. If·~ is already on userfns,

no action is taken.

misspelled? [x;fn;splst] If fn is not NIL and fn[x] is not NIL,

value is ~, i.e. ~ was not misspelled.

If ~ is NIL, value is lastword e.g. after

defining a function, you can edit it by
simply performing editf[]. Otherwise

spelling of atom is corrected using splst,

if given, otherwise userwords. If spelling

correction is aborted by control-r, value

is x. If t is typed to spelling corrector,

control is returned to errorset prior to

misspelled?

As an example of the use of these functions, the following advising
operations are performed by DWIM.

ADVISE(DEFINEQ AFTER (MAPC VALUE (FUNCTION ADDSPELL)))

ADVISE(RPAQQ AFTER (ADDSPELL X T))
ADVISE(UNSAVEDEF (SETQ X (MISSPELLED? X (FUNCTION FNTYP)))

20.15

NOFIX

The user may not want to have DWIM bother to operate on certain
types of errors. To facilitate this, DWIM calls the function
nofix, of no arguments, before attempting to make any corrections.
If nofix returns T, the correction is aborted. nofix is currently

defined as (LESSP FAULTD FAULTDEPTH), with FAULTDEPTH set to -1.
If the user wanted to disable DWIM for errors occurring near the
top level, or just inside of a break, he simply needs to set

FAULTDEPTH to an appropriate value, e.g. 5. The user can prescribe
more complicated conditions for aborting corrections by advising
nofix. For example, the user might prefer to retype any misspelling

shorter than four characters in length. He would then advise nofix

ADVISE(NOFIX (AND (ATOM FAULTX) (LESSP (NCHARS FAULTX) 4»)

Of course, such operatives require more intimate knowledge of the
operation of DWIM. For this, contact W. Teitelman.

20.16

SECTION XXI

PRINT STRUCTURE

In trying to work with large programs, a user can lose track of
the hierarchy which defines his program structure; it is often
convenient to have a map to show w~ich functions are called by
each of the functions in a system. If fn is the name of the top

level function called in your system, then typing in
printstructure[fn] will cause a tree printout of the function-call
structure of fn. To describe this in more detail we use the
printstructure program itself as an example.

21.1

"'Pt~ I NTS TkUC f UK E (Pt~ I NT S n~ UCTUf~ E)

Pl'~ I;\J T S n~ UC TUh £ PROGS Tf~ UC PR GSTHC

CALLSI

PJ-< I NT S T.~ uc rUt< E
MAKEClkC" MAKECIHC
T to(E E PHI NT THE E P f.< I NT 1

TKEEPf~ I NT
VAkPkINT "TREEPHINTI

PRGSTRCJ PRGSTRCJ

PH GST~~C
NOTFN
PROGSTRUC
NOTFN

PRGSTt~C

CALL S2C~LL S 1
PJ~ GS Tf~C

Pi-<INT.sTt~UCTU1~E [FN,FILE; X,.IJONELST,NODES;)

PHOGSTi~UC (FN,l); Y,Z,FLG,VAHSl,VAf<S2; DONELSTl

PkGSTRC [X,HEAIJ; Y,Z; VAkSl,FN,DONELST,I),FLGJ

PRGS1"kCI [L; A,B,Y; Y,VARSl,VARS21

NOTFN (FN; UEF;]

CALLSI [A IJ }{, IJ; M, N, X, Y , F L G, VI, V 2, F L G ; V A H S 1 , I N T Z H 0, V A J~ S 2)

(X; ; DJ

\'1 AK Eel F< C . [X; x ; NO I) E S)

Tl<EEPRINT [X,N; Z;]

THEEPf<INTI [X,N;;]

VAHPHINT [X; X,Y,N;]

PkIN r.STHUCTUHE

21.2

The upper portion of this printout is the usual horizontal version

of a tree. This tree is straightforwardly derived from the defi­

nitions of the functions: printstructure calls progrstruc, itself,

makecirc, treeprint, and varprint. progstruc in turn calls

prgstrc and calls. prgstrc: calls prgstrcl itself, and notfn.

prgstrcl just calls itself and prgstrc. Note that a function

who~e substructure has already been shown is not exnanded in its

second occurrence in the tree.

The lower portion of the printout contains information about the

variables that are used in each of the functions. Erintstructure

is a function of two arguments, fn and file. It binds three

variables internally: x, donelst, and nodes. (Variables are

bound internally by either progs or open lambda-expressions.)

makecirc has only one argument, x, and it also binds x internally.

It uses the variable nodes as a free variable.

In addition to the five functions appearing in the above output.

print structure calls many other low-level functions such as

getd, ~, list, nconc, etc. The rey,on these do not appear in
the output is that they were defined "uninteresting" by the user

for the purposes of this analysis. Two functions, firstfn and

lastfn, and two variables yesfns and nofns are used for this

purpose. Any function that appears on the l'ist yesfns is of

interest, any function appearing on nofns is not. OtherWise, all

non-compiled functions are deemed interesting, and only those

compiled functions between the two limits established by firstfn

and lastfn. For example, firstfn[editf] and lastfn[boJ Ctihe last

function in the ed~t package) followed by printstructure[edit~

will cause the structure of the editor to be printed out with

only those functions that actually are part of the edit package

appearing in the printout.

21.3

Three other variables, not~ace, quotefns, and prdepth also affect the

action of printstructure. Functions that appear on the list notrace will
appear in the tree, assuming they are "interesting" functions as

defined above, but will not themselve& be traced, i.e., analyzed.

Functions that appear on guotefns are traced, assuming they are

"interesting," but when they appear as car of a form, the rest of

the form is not analyzed. For example, if the function prinq were

defined as (NLAMBDA X (MAPC X (FUNCTION PRINl))) and the form

(PRINQ NOW IS THE TIME) appeared in a function being analyzed,

pring would appear in the tree, but NOW, IS, THE, and TIME would

not be noted as free variables if pring were included in the list

of guotefns. prdepth is a cutoff depth for analysis. It is inially set

to 100.

printstructure has incorporated in it the necessary information

for analyzing non-standard forms such as cond, ~ and selectq.

It is also capable of analyzing compiled or interpreted functions

equally well. In the case of compiled functions, printstructure

will automatically analyze any functions generated by the compiler,

such as those caused by compiling forms beginning with ersetq,
nlsetg, or function.

If print structure encounters a form beginning with two left paren­

theses in the course of analyzing an interpreted function (other

than a COND clause) it notes the presence of a Eossible Earentheses

~rror by the abbreviation P.P~E., followed by the function in which

the form appears and the form itself, as in the example below.

Note also that printstructure detects functions, i.e., atoms

appearing as CAR of a form, that are not defined. printstructure
is thus a useful tool for debugging.

21.4

~PRETTYPRINT{{FOO»

(FOO
(LAMBDA (X)

(COI\J/)
(X (FOO 1 X»
(T «CONS X (CAR X»»»)

N IL
~PRINTSTRUCTURE(FOO)

F 00 FDa 1
CONS
CAI~

FOO [X; .;]

FOOl IS NOT DEFINED.

P .P.E. IN fOO :.. «CONS X (Cl4H X»)

F 00

21.5

Printstructure Functions

printstructure[fn,file] analyses structure of fn and
stores result on property list of

fn under property PRINTSTRUCTURE.
The form of this result is a list

of two elements, the second of
which is the tree representation
of the structure, and the first

a list consisting, in alternation,
of the functio~s that appear on
the tree, and a variable list vlst

for that function. CAR of the ~ari­
able list is a list of variables

bound in the function; CDR is those
variahles used freely in the function.

Thus in the printstructure[printstructure] example given earlier

the value of the property PRINTSTRUCTURE would be:

«PRINTSTRUCTURE «FN FILE X DONELST NODES)) PROGSTRUC
«FN D Y Z FLG VARSl VARS2) DONELST) PRGSTRC
«X HEAD YZ) VARSl FN DONELST D FLG) ...
VARPRINT «X X Y N))) tree)

Possible parentheses errors are

indicated by a non-atomic form
appearing where a function would
normally occur, i.e., in an odd
position of the list. It is

followed by the name of the func­
tion in which the P.P.E. occurred~

21.6

treeprint[x;n]

varprint[x]

firstfn[fn]

If file=NOTHING, no output is

produced. If flle=SCOPE or

DISPLAY, the structure is dis­

played on the scope. In this

case, the result of the analysis

contains a third element, the
display figure that was generated

by dtree. For any other value of

file, output is to that file.

The value of printstructure is fn.

when given a tree representation

of the structure, (see dtree, p.18.8)

e.g., cadr[getp[fn,PRINTSTRUCTURE]].
treeprint prints the tree in the

horizontal fashion shown in the

examples above. Used by

printstructure.

when given the list of functions

and their variables, i.e.,

car[getp[fn,PRINTSTRUCTURE]],

varprint prints the lower half

of the examples shown above.

fnis the name of a compiled

function. If fn=T, lower boundary

is set to 0, i.e., all compiled

functions will pass this test. If

fn=NIL, lower boundary set at end

of bpspace, i.e., no compiled

functions will pass this test.

Otherwise boundary set at fn.

21.7

lastfn[fn]

calls[fn]

vars[fn]

freevars[fn]

allcalls[fn,tr]

if fn=NIL, upper boundary set at
end of bpspace, i.e., all compiled
functions will pass this test.
Otherwise boundary set at fn. Thus
to accept all compiled functions,
perform firstfn[T], lastfn[NIL]

returns a list of three elements:

a list of all (interesting)
functions called by fn, a list of

variables bound in fn, and a list
of variables used freely in fn,
e.g., calls[prgstrc]=

«PRGSTRCI PRGSTRC NOTFN PROGSTRUC)
(X HEAD Y Z) (VARSI FN DONELST FLG»)

cdr[calls[fn]]

cadr[vars[fn]]=caddr[calls[fn]]

prints fn IS CALLED BY: and returns
list of all functions that call fn
in the tree tr. If tr is atomic,
cadr[getp[tr;PRINTSTRUCTURE]] is
used. Example:

~ALLCALLS(PRGSTRC PRINTST~UCTURE)

PRGSTRC IS CALLED BY:
(PROGSTRUC PRGSTRCI PRGSTRC CALLSl)

21.8

Follow

Follow is a function that enables the user to dynamically watch

the flow of computation through a collection of functions. Follow

uses printstructure to analyze the hierarchy of functions and to

display a tree structure on the scope. Every function appearing

in the tree is then modified to appropriately adjust the display

when it is entered. Whenever one of these functions is entered,

a circle is drawn around the corresponding node in the display,

and a dotted path is displayed from the function that called it.

For example, if the user performs: firstfn[editf], lastfn[bo],
follow[editfJ and then calls the editor, he can watch the editor

as it executes his commands. (Follow is not in current system but

can be loaded from file /(FLIP)CFOL/.)

follow[fn;flg] performs printstructure[fn]

and then modifies (using break)

all functions in the resulting

tree to appropriately update the

display. If flg=NIL and follow[fn]

has been done previously, follow

does not regenerate the display,

instead it obtains it from the

property FOLLOWED on the property
list of fn. unbreak restores the

functions to their unmodified

state.

followspeed initially set to 0,

controls the delay time, in clock

ticks, between changes in the dis­

play. It can be set to slow down

what might otherwise be a confusingly

rapid succession of changes in the

display.

21.9

TINE

time[x;n.;g]

SEcrrION XXII

r'11ISCELLANEOUS

Time executes the computation ~,

~ number of times, and prints out

the number of conses, total time/n

if n~l and computation time per

iteration. Garbage collection

time is not included, i.e., it is
subtracted out. If n is NIL, it is

set to 1. If ~ is T, garbage col­

leetion time is also printed.

Example:

TIME «CONS NIL NIL) 1000 T)

GARBAGE COLLECTION

2458 CELLS

1 CONSES

12/1000=0.12000E-Ol SECONDS

GARBAGE COLLECTION TIME: 23 SECONDS

(NIL)

TIME «PRETTYDEF (QUOTE (FOO»»

o CONSES

9.0 SECONDS

(FOO)

22.1

date[]

clock[n]

tickps[]

Obtains date and time from system

and returns it as single atom in

format "mm/dd/gg hhmm:ss".

where mm is month, dd d~y, gg year,

hh hours, mm minutes, ss seconds,

e.g., If 02/21/68 1352:41"

for n=O value of time of day

clock, i.e., number of

seconds since midnight

for n=l time of day user logged in

for n=2

for n=3

22.2

number of seconds of com-

pute time since user

logged in (garbage

collection time 1s

subtracted off)

time spent in garbage

collections

Value of clock is in "tIcks. II

Number of ticks per second,

usually 50.

BREAKDOWN

Breakdown is a function that produces an analysis of computation

time by function~ although it can be used for an analysis of

CONSes, drum references, garbage collection time, or any other

single numerical quantity. The user calls breakdown giving it a

list of functions of interest. These functions are modified so

that they keep track of the "charge" assessed to them. The func­

tion results gives the analysis of the statistic requested as

well as the number of calls to each function. Sample output is

shown below.

~BREAKDOWN(SUPERPRINT SUBPRINT)
(SUPERPRINT SUBPRINT)
~PRETTYDEF(FOOFNS /FOO/ eSTOP»
F OOF'NS
~RESULTS()

F UNCT IONS TIME
S UPERPRINT 6.30
S UBPR INT
TOT~L
l'lL
~

CALLS
731
274
1005

To add or remove functions from those being monitored, the user

must call breakdown giving it the entire new list of functions.

However~ breakdown[J can be used for simply zeroing the counters

associated with the function already being monitored.

22.3

To use breakdown for some other statistic, the user must set

three variables: breakdownform, the quantity of interest,
e.g., (CLOCK 2) or (CONSCOUNT), label, e.g., TIME or CONSES, and

interp, (optional) which is a function that will be applied to

the statistic to produce the numbers printed by results. Thus,

since the value of (CLOCK 2) in the above example is in clock

ticks, to convert to seconds, interp had been set to

(LAMBDA (X) (FQUOTIENT X (TICKPS»).

Whenever breakdown is called with breakdownform having a non-null

value, breakdown performs the necessary changes to its internal

state to conform to the new analysis. In particular, if this is

the first time an analysis is being run with this statistic, the

compiler is called to compile the charging function. When break­

down is through initializing, it sets breakdownform back to NIL.

Subsequent calls to breakdown will use the new analysis until

breakdownform is again set. Sample output is shown below.

~SET(BREAKDOWNfORM (CONSCOUNT»
(CONSCOUNT)
~SET(LABEL CONSES)
CONSES
~SETCINTERP NIL)
NIL
~BREAKDOWN(MATCH CONSTRUCT)
CA0212 COMPILING)
(A0212 (BDX BDY) (BDLST BDPTR) 5)
(MATCH CONSTRUCT)

22.4

"PILOTCT)
PROCEED:
to' LIP (CAB C D E to' G H C Z) C.. $1 •• #2 ••) (.. # 3 •• »
(A B D E to' G H Z)

> RESUL TS ()
to' UNCTIONS
MATCH
CONSTRUCT
TOTAL
NIL

CONSES
32
47
79

CALLS
1
1
2

Each time breakdown encounters a new value for breakdownform,

it saves the corresponding value of label, interp, and the com­
piled charging function. Thus, if breakdownform is set to a form

already encountered~ it is not necessary to also set label and

interp, nor will the compiler be called.

To restore functions modified by breakdown to their original

state, use unbreak.

TIMEX

Timex is a timing function that reports statistics on number of

function calls, drum references, wraparounds, etc., as well as on

computation time and conses. It accepts input from the teletype

for eval, and prints an analysis after each input. Exit is

achieved by typing OK at which point timex also gives the distri­

bution of drum references analysis. Sample output is given

below.

22.5

..

.. TIMEXC)

> (PRETTYDEF (QUOTE FOOrNS> (QUOTE /rOO/) (QUOTE eSTOP»)
24 CONSES
1 0.06 SECONDS
1 WRAPAROUNDS
1 5162 MAPPED STORES
40923 TOTAL MAPS
51 TOTAL DRUM REFS
1 1 DRUM WR ITES
5161 FUNCTION CALLS
1 5 BP DRUM READS

1.64 SECONDS
0.91 SECONDS
0.19 SECONDS
1.14 SECONDS

> (COMPILE (QUOTE (MAKEPDQ»)
LISTING?
F
(OUTPUT rILE)
N
(MAKEPD~ COMPILING)
GARBAGE COLLECTION

1 906 FREE WORDS
(MAKEPDQ (F) NIL 5)
GARBAGE COLLECTION
6 90 FREE WORDS
2161 CONSES
34.56 SECONDS
2 WRAPAROUNDS
51510 MAPPED STORES
2 15088 TOTAL MAPS
2 405 TOTAL DRUM REFS
266 DRUM WR I TES
S90 FUNCTION CALLS
8 6 BP DRUM READS

8.60 SECONDS
40.88 SECONDS
4.52 SECONDS

12.58 SECONDS

22.6

>OK

DISTRIBUTION OF'
A RRAY SPACE

DRU~ REF'£l~ENCES

1456
L 1ST SPACE
P NAME SPACE
P ARAM PUSHL 1ST
CONTROL PUSHLIST
VALUE CELLS
P ROPL I ST CELLS
F'LJNCTION CELLS
P NAMES & HASH CELLS
BOXED NUMBERS

665
31
1 6
8
61
50
63
I 10
36

DISTRIBUTION OF DRUM REFERENCES
A RRAY SPACE 4
LIST SPACE 174
P NAME SPACE 5
P ARAM PUSHL I ST 1 5
CONTROL PUSHLIST 4
VALUE CELLS 20
P ROPLIST CELLS 1
FUNCTION CELLS 1
? NAMES & HASH CELLS 25

BOXED NUMBERS 36
NIL

WRITE-ONLY

If the first argument to timex is not NIL, it is treated as a

list of inputs for eval exactly as though they had been typed by

the user. If the second argument is T, the analysis after each

evaluation is suppressed. The third argument, also optional, is

a number given to time as its second argument and controls the

number of times each individual input is to be evaluated.

22.7

Enlarg~ng the System

The BBN LISP system uses techniques which allow the system code,

i.e., all of the functions described in this manual, plus those

described in the FLIP manual, to be shared by all users. In

addition to this (approximately) 90K of system code, each user

can acquire another (approximately) 40K 94~ words of private
memory; this allows the user about 20K of LISP words. The LISP

system can be enlarged up to a maximum size of 256K by reassemb­

ling it. However, an individual can effectively acquire additional

private memory in the existing system by "flushing" some of the

system code. The function flushcode is provided for this purpose.
Its effects are not reversible, but the flushed material can be
reloaded from the appropriate disc files.

flushcode[from;to;flg]

(*) (LOGAND (GETD FN) 311117Q)

flushes all binary programs between

from and to. If to = NIL, flushes

all binary programs from from to thE
end of binary program space. If
flg=T, it prints names of functions

being flushed. from and to can be
numbers corresponding to function

definitions (*), or they can be
any atom on the list flushpoints,
which contains the starting loca­

tions of various ~ndependent sub­
systems such as display, flip,

compiler etc. If to=T, just the

subsystem from is flushed e '---- , .g.
flushcode [printstructure; T] will

flush just printstructure. These
systems have been loaded so that

all functions used by any parti­

cular system are loaded before it.
The user can thus safely flush any
subsystems following the ones

22.8

he is planning to use. Of course,

independent aystems such as display,

compiler, etc. can always be

flushed without affecting the

operation of other systems.

When flushcode is called with

to=NIL, the reclaimed space will

be noted by storage. However,

if the user makes a "hole" in his

binary program space, no change

will be observed in storage.

However, when a request is made

for an array or binary program

allocation that can fit in the

hole, the space will be taken

from there. Bpspace is a list of

elements of the form (N M)

corresponding to the user holes.

Note: the user should not flush

the same area twice, as it will

then appear twice on bpspace and

hence be used twice.

22.9

Dumping Circular List Structure

It is often important to save list structures so that reloading

will maintain common substructure. In particular, this is critical

for circular lists which cannot be saved any other way. The func­

tion savecl described below allows a user to dump a representation

of a set of structures onto a file; later, reading them back in

with the function loadcl obtains an isomorphic copy of the

original structures.

The algorithm for dumping is a variation of one first suggested by

Minsky for garbage collection using secondary storage (described

in Bobrow, tlStorage Management in LISP'}. Each structure to be

saved is traced, and as each new LISP word is seen, it is marked

by placing a mark· in its car and a number in its cdr. The number

indicates where this word will be reloaded. The mark is a gensym

created for marking all words which are to be considered part of

this set of structures. The dumped representation consists of

triples for each word in the structure(s): its new (relative)

address, its car and its cdr, both of which are either atoms or

the new addresses of structure. Note that this Erocess destroys

the structures so traced.

savecl[lst;file;identJ 1st is a list similar to the third

argument to prettydef, e.g.,

(A B (PROP Q R S) (DEF FN1) STOP)

will specify saving the values of

A and B, the entire property lists

of Q, R, and S, and the definition

of FNl.STOP specifies closing

file.

22.10

If file is initially open, writing

is continued. If it is not open,

it is opened and the date printed.

If file=NIL (omitted) the primary

file is used.

ident, the third argument to

savecl, is used by the marking

process. If it is omitted, it is

supplied by savecl. In this case,

the structures dumped by this call

to savecl will not have common

substructures with any previously

dumped. To preserve common sub­

structures across several different

calls to savecl, give for ident

the value of the previous call to

savecl. For example, if the user

performs

SAVECL(WORDSI /FLI/)

(A0005 135~)

SAVECL(WORDS2 /FL2/ (A0005 135~))

(A0005 29§a)

and subsequently reloads both files

using loadcl, he will get a struc­

tural copy of the items specified

by WORDSI and WORDS2. If he re­

loads just /FLI/, he will get a

copy of only those items specified

in WORDSI.

22.11

loadcl[file; ... filenJ is a CFEXPR*. Each argument is

a file name corresponding to a

file generated by savecl. loadcl

uses a contiguous block of storage

beyond that currently in use to

load all structures in these files,

changes the internal state of the

user's LISP to bring this block

within list space bounds, and

then initiates a garbage collection

to clean things up. Note: if
loadcl is interrupted before

finishing, strange pointers may

be left around in regular list

space.

An additional advantage of the

savecl - loadcl process is that

all restored lists are linearized

in storage, and compacted onto as

few pages as possible.

22.12

GROUP

Group is a function for parsing lists as LISP forms. It takes a

list such as (CONS CAR X CDR RPLACA X Y), and tries to make a

single LISP form out of it, in this case returning

(CONS (CAR X) (CDR (RPLACA X Y))). The function nargs is used to

determine the number of arguments for each function encountered

in the list. Group allows less than that numbe~ to be specified,

i.e., group[(CONS CAR X)]=(CONS (CAR X)), but if an expression

cannot be grouped without some function exceeding its number of

arguments, group returns NIL, e.g., group[(CONS CAR X CDR Y Z)]=NIL.

If the user has functions with extra arguments in their definition

that are never used, he can indicate the true number of arguments,

for the purposes of group, by putting this number on the func­

tion's property list under the property NARGS. Group looks here
before calling nargs. This is also the way to handle functions

that take an indefinite number of arguments, such as list. Since

nargs[LIST]=l, by definition, group[(LIST X Y CAR Z)]=NIL. How­

ever, if you first perform put[LIST;NARGS;lOO], then

group[(LIST X Y CAR Z)] will yield (LIST X Y (CAR Z)) as desired.
Group is not in basic system but can be obtained by loading file
/(FLIP)CPILOT/

22.13

ARM

Arm is a function for modifying the effect of control-H. Its
name deri ves from the expression lito arm an interrupt, II which is

essentially what arm does. arm takes as its argument a function,

or the name of a function, and modifies interruptI so that when

a control-H is typed following other teletype input, the arming

function (the argument to arm) is called. If it returns NIL as
its value, the normal (INTERRUPTED BEFORE •..) consequence o~

typing control-H occurs. However~ if it returns a non-null value,
the computation continues exactly as though the user had typed

control-H followed by OK. For example, if FOO is defined as

(rOO
(LAMBDA NIL

CCOND
C (READP)

(SELECTQ (READe)
(D (DRUN)

T)
(S (HPSTOP)

T)
NIL»»)

and arm[FOO] is executed, then whenever the user types a D

followed by a control-H, the display will be started without
apparently disturbing the computation in progress. Similarly,

typing an S will stop the display. Typing anything else

followed by control-H will cause a normal interrupt. Similarly,

if nothing is typed previous to a control-H, the arming function

returns NIL and a normal interrupt occurs.

The function disarm of no arguments r.everses the effect of arm

and restores the definition of interruptI.

Note that since the gctrp feature, p. 10.3, operates by simulating

a control-H, ~ can be used to automate the operation(s) the user

wishes performed whenever a garbage collection is about to occur,

i.e. less than N conses away. For example, suppose the user wants

22.14

the display turned off when there are fewer than 200 conses left.
He would then perform gctrp[200], and arm[FOO], where FOO was

defined as:

(rOO
(LAMBDA NIL

(COND

N IL ..

«LESSP (GCTRP)
200 >

(HPSTOP)
T»»

22.15

APPENDICES

Appendix 1

Convertlnc LISP l.~ programs to B~~ LISP

Although we have put considerable effort in the design and imple­

mentation of the BBN LISP system into making it an upwards compa­

tible extension of LISP 1.5 as implemented on CTSS at MIT or the

Q-32 at SDC, nevertheless many LISP programs, particular large

systems, cannot be transferred intact from LISP 1.5 to BBN LISP

and expect to run. However, the modifications required are

usually quite trivial once the user is aware of what is necessary.

This appendix is designed to document and call attention to the

various differences between the two systems, and to facilitate

this transition.

The easiest type of incompatibility to handle are functions that

are defined in LISP 1.5 but not defined in BBN LISP. These are:

advance
attrib
clearbuff
common
cpl
cset
csetq
dash
digit
dump
efface
endread
errorl
evlis
excise
flag
function
intern
label
leftshift
liter
max
min
mknam
numob

23.1

onep
opchar
opdefine
pause
plb
printprop
punch
punchdef
punchlap
readlap
recip
remflag
remob
search
select
speak
special
startread
tempus-fugit
traceset
uncommon
uncount
unspecial
untraceset

The functions advance, clearbuff, dump, endread, errorl, pause,

~, punch, punchdef, punchlap, readlap, startread, and tempus­
fugit relate to input and output, or to the time sharing systems

themselves. These features are always highly system dependent.

The functions £E!, dash, digit, intern, liter, mknam, numob,

opchar, and remob relate to the way LISP 1.5 represents and treats
atoms. In BBN LISP, there are no character objects; BOFFO also does

not exist. remob is not necessary because any atom not being used is
automatically reclaimed by the garbage collector and removed from

the oblist. If the user's programs perform printname manipulations,

he will want to use the BBN LISP functions pack and unpack, and

perhaps chcon, character, nthchar and nchars.

The functions special, unspecial, common and uncommon relate to

the LISP 1.5 compiler. Because of the structure of the BBN push­

down list, it is unnecessary to make a variable special (or common)

when it is to be shared by several compiled (or compiled and inter­

preted) functions. This is taken care of automatically.

The functions speak and uncount relate to the LISP 1.5 ~ counter.

In BBN LISP, the function conscount gives the number of conses.

However, getrp, p. 10.3 is somewhat analagous to the LISP 1.5 function

count, which causes a trap if more than a specified number of conses

occur. Not?: the funct~on count is defined in the BBN LISP system~ but

its value is the count of number of LISP words used by its argument,

which is a LISP S-expression.

23.2

The functions cset and csetg do not exist in BBN LISP because

there are no APVALS; instead set and setg are used at all levels

to change the binding of a variable. If performed when a variable

is not locally bound, they will change the top level binding.

Excise is not defined. Since BBN LISP provides a substantially

larger number of free words, than LISP 1.5, the user should not
miss it. However, the function flushcode can be used to recover

space occupied by certain system functions.

The function traceset and untraceset are not defined. We feel

that the function breakin provides this capability and more.

The function leftshift is called Ish in BBN LISP.

The effects of the function printprop can be achieved by using

prettydef with an appropriate third argument.

The function efface is called dremove. There is also a function

remove which returns the same value but does not destroy the

original list.

Function relates to the funarg device in LISP 1.5, which does not

exist in BBN LISP.

This leaves the function attrib, evlis, flag, label, max, min,

onep, opdefine, recip, remflag, search and select which do not

happen to be implemented.

The next class of incompatibilities concerns functions that are

defined in both systems but whose effects are different. The

functions such as cond, map, mapcon, maplist, prinl, print, and

23.3

read all give the same results as their LISP 1.5 counterparts

when given arguments consistent with their LISP 1.5 definitions.

However, the mapping functions in BBN LISP all permit extra argu­

ments for various options, and similarly the input-output functions

permit an extra argument to designate the destination or source of

the operation. The function cond will return the same value as

its LISP 1.5 counterpart if given clauses containing only two

elements, but also permits an arbitrary number of clauses. There­

fore, these differences should cause no difficulties.

The predicates and, member, numberp, and or in LISP +.5 ail return

T or NIL. In BBN LISP, they return a "useful" quantity or NIL.

When used in a cond as a predicate, the effect is the same. The

only anomaly the user might encounter would occur if he compared

the value of a BBN predicate to T, e.g., (EQ (NUMBERP X) T). In
BBN LISP, numberp[x] is either x or NIL. Thus, one can write

(COND «NUMBERP X)) (0)), or even (OR (NUMBERP X) 0), instead of
(COND «NUMBERP X) X) (T 0)), as would be required in LISP 1.5.

The functions that really differ between the two systems are

apply, eval, load, pack, trace and untrace. Since there is no

a-list in BBN LISP, apply and eval are functions of two and one

arguments respectively. The evaluation of variables depends on

the state of the push-down list. However, the function evala of

two arguments is provided to emulate the LISP 1.5 function eval
complete with a-list.

The function pack in LISP 1.5 takes a character object and add it

to BOFFO. It is used in the process of creating a new atom. The

function pack in BBN LISP takes a list of atoms as its single

argument and makes a new atom out of them. Thus, pack[x] in

BBN LISP is equivalent to performing the following operations
in LISP 1.5:

23.4

CLEARBUFF ()
NIL
MAP (list-of-atoms (FUNCTION (LAMBDA (X)

(NAP (GET X (QUOTE PNAME» (FUNCTION (LAMBDA (y)
(MAP (UNPACK y) (FUNCTION PACK »»»»

NIL
E (INTERN (MKNAM»
new-atom

The functions trace and untrace are part of the debugging package.
Their effects are similar to those of the LISP 1.5 functions, but

in BBN LISP they take an indefinite number of arguments, whereas

in LISP 1.5, they take a single argument which is a list of func­
tions. Also the output produced by tracing differs.

The function load in BBN LISP expects a list of forms for eval;
in LISP 1.5 load expects a list of doublets for evalguote. This

may cause some difficulty initially. However, since most symbolic
files are created by prettydef, which knows the format for load,

once the user has made the initial transition, no further problems

should occur. Note: one easy way to convert a file from LISP 1.5

format to BBN format is to perform:

READFILE(FOO file)
FOO
SETQ(FOO (MAPLIST FOO (FUNCTION (LAMBDA (X)

(LIST (QUOTE APPLY) (LIST (QUOTE QUOTE) (CAR X»
(LIST (QUOTE QUOTE) (CADR X»»)

(FUNCTION CDDR»)
big-hairy-list
WRITEFILE(FOO new-file)
FOQ

In addition to the differences discussed above, the user will

experience difficulty if his LISP 1.5 programs make assumptions
about the internal representation of atoms, function definitions,
etc. To review these differences briefly:

.23.5

In BBN LISP, car of an atom is always its top level binding, cdr

of an atom is always its property list. Consistent with this, ~

of a number is always the number itself, cdr of a number is always

NIL. If the user's LISP 1.5 programs make assumptions about car

of an atom, they will not work in BBN LISP.

In BBN LISP, function definitions are not kept on the property

list, but in a special cell which can only be accessed by the

functions getd and~. If the user's LISP 1.5 program assumes

that the function definitions are on the property list, i.e.,

uses DEFLIST instead of DEFINE or DEFINEQ, it will not work.

The FEXPR's of LISP 1.5 are subdivided into FEXPR's and FEXPR*'s

in LISP 1.5. Similarly, EXPR's in LISP 1.5 are subdivided into

EXPR's and EXPR*'s. The type in each case is indicated by either
LAMBDA or NLAMBDA, and the use of an atomic or non-atomic argument

list. Trying to define an FEXPR in BBN LISP by using DEFLIST will
not work.

There are no properties APVAL or PNAME on the property list of
atoms in BBN LISP.

There 1s no a-list in BBN LISP.

Finally, the following two items should be noted: there are

separate fixed and floating point arithmetic functions in BBN LISP;

and atoms may not be split at column 72 in BBN LISP. A carriage

return in BBN LISP is a separator character and will split an

atom. If your LISP 1.5 file contained atoms split at column 72

and carried over in column 1, it will not read in correctly, i.e.,

you will get two atoms instead of one whenever an atom was split.

23.6

Appendix 2

The BBN LISP Interpreter

The flow chart presented below describes the operation of the

BBN LISP interpreter, and corresponds to the m-expression

definition of the LISP 1.5 interpreter to be found on pp. 70-71

of the LISP 1.5 manual, McCarthy, 1966. Note that CAR of a form

must identify a function, as with LISP 1.5 but the procedure the

interpreter uses to obtain this function can be fairly compli­

cated. 'rhe most ccmmon case occurs when CAR of the form is an

atom. The function is then properly identified if its function

cell contains:

(a) an S-expression of the form (LAMBDA ...) or (NLAMBDA ...) or

(b) a number which is the address of a SUBR or a block of compiled

code.

Otherwise, if the function cell contains NIL, the atom is evalu­

ated, and its value treated as if it were CAR of the original

form. (This is the way functional arguments work.) If the evalu­

ation of the atom produced NIL or T, or if the atom is unbound,

the form is considered faulty, and faulteval is called as des­

cribed in section 15.

If the function cell contains an expression other than NIL, this

expression is evaluated and treated as thougll it were car of the

original form, etc. In other words, it is possible to put the

name of a function, or a form which ~mpu~es the name of a

function, in either the function cell or the value cell of an

atom, and then to use the atom as a function.

23.7

YES CALL
EXPR

CALL
>----.t F E X P R

ENTER EVAL WITH FORM

NO

YES

SET C = CAR FORM

SET D =
CONTENTS OF

DEFINITION CELL.
PUT C ON PDL

AS FUNCTION NAME

CONSTRUCT
(F AU L T E V A L • FO R M)

RE-ENTER EVAL

YES CALL SUBR OR
COMPILED CODE

SET WI----<
C~D

SET D =
BINDING OF C

NIL,T,NOBIND

;Jotc: VarlaL)lC'~} £ arlU ~ ape for description only; they arc

not actua11.'''- tJOUrtij a;; l"cr:u.lar vnriaLles.

23.8

Appendix 3

Control Characters

Several control teletype characters are available to the user for

communicating directly to LISP, e.g. to abort or interrupt a com­

putation, tell LISP to start or stop listening to the teletype,

change the printlevel, etc. This section summarizes the function

of these characters and references the appropriate section of the

manual where a more complete description may be obtained.

1. Rubout Clears tty input and output buffers.
For example, the user would use rub­
out if he had "typed ahead" of the
program, (typed while the program
was computing but not listening),
and wanted to eliminate all unpro­
cessed input. Also this action may
be useful when the program is pro­
ducing a large quantity of tty out­
put and the user wishes to skip some
but not all of it. Ooeration of rubout
when the program is doing output to
tty will cause 30-40 characters to
be skipped, but allow output to
continue.

Rubout also terminates and restarts the
tty input fork. If LISP has stopped
listening because of a control-S, or
its buffer is full, or some other
reason, rubout will start it listen­
ing again.

Note, closely spaced repeated rubouts
will terminate LISP and cause a return
to the exec. This type of return may
make it impossible to continue the
LISP-.-'It should only be used if con­
trol-C and/or logout absolutely fail
to work.

23 .. 9

2. Control-R

3. Control-C

4. Control-H

5. Control-T

6. Control-F

Generates an error, type 1, p. '15.30.

Causes immediate return to evalauote
top level (after garbage collection
if one is in progress).

At next function call, computation
is interrupted and breakl is called
p. 15.25 or other special action '
explicit~y determined by user. (n. 22.2)

Note if you are in a compiled function
that does not call any other functions,
the control-H will not take effect
until the function is exited.

Print Time. Causes an immediate
orintout of the total execution time
~inclock ticks) for the job, (even
during garbage collections), i.e.
clock[2], (p. 14.22). A series of
such printouts should show increasing
numbers if the program is using any
CPU time. Of course, the program is
not using CPU time if it is waiting
for input. This information may
serve to help the user determine if
his LISP and/or the time sharing sys­
tem has crashed.

Set Free Words. Control-F followed
by a decimal number followed by a
period will immediately cause minfs
to be set to the indicated number,
even if a garbage collection has
already started. The garbage col­
lector uses the setting of minfs
about 3/4 ths of the way through, so
if control-F is typed after this time,
it will not take effect until the
next garbage collection (p. 10.3)

23.10

7. Control-P

8. Control-S

9. Control-A,Q

Set printlevel. Control-Pfollowed
by a decimal number followed by an
exclamation point will change the
printlevel to that number, i.e. it
is the same as calling print level
except that it may be performed
while output is actually in progress.
Control-P followed by a decimal num­
ber followed by a period will change
printlevel for the current S-expression
~nly. (14.4-)4.5) -

Terminates LISP teletype input fork,
thus preventing LISP from gobbling
innut and servicing other control
character requests. Can be reversed
by rubout - see 1 above. Normally
this option would only be used if the
user wished to type input to be pro­
cessed by the time sharing system
executive while he was still inside
of LISP, e.g. he had a compilation
going and wanted to leave instructions
for exiting from the system. He could
do this by typing LOGOUT(), control-S,
and EXI.

Control characters for READ, see p. 2.1.

23.11

Appendix 4

Index to Variables

Following is a list of those atoms in the basic system which

are initialized with top level values. Atoms that may be of

interest to the user are given a brief explanation and a page

reference, where applicable. Atoms which are internal and should

normally not be of interest to the user, e.g. list of instruction

codes, various compiler flags, etc. are listed to avoid inad­
vertent clobbering by the user.

In addition to the atoms with top level bindings, the variables

LAMBDA, NLAMBDA, and lower case single character atoms a,b, •.• z,
which are printed as %A, %B ... %Z are used by the interpreter

(see p. 12.4) and the user should not use them in his functions.

General

T

NIL

F

T

NOBIND

STATCELLS

Description and/or Value

T

NIL

NIL

T

means atom hR~ no to~ level bind­
ing, see p. 15.22

list of dotted pairs of form
(name. number), e.g. (WRAPAROUNDS.
199) where name is a statistic kept
by the system, and number the locat­
ion of the cell containing that
statistic, e.g. openr[199] gives
number of wraparounds. Usea oy ti~ex,
p. 22.5-7.

23.12

DFNFLG

HELPDEPTH, HELPFLAG

NHERRORS

ESGAG

FLUSHPOINTS

BPSPACE

CLITRLIST

ADVISEDFNS

SYSTEMS

ICP, CP, IPP, PP

Compiler

used by define, defineq, and unsaveuef
to determine whether function definit­
ions are saved on property lists, p. 8.3

used by error handling routiners to
determine whether or not to call breakl,
p. 15.23, 15.25, 15.26

list of non-helpable errors, i.e.
those error types for which breaks do
not occur, initialized to (0 1 18),
see p. 15.30, 15.31, 15.35.

controls backtrace printout during
unwinding, p. 15.34, 15.35.

list of form (name • location) for use
by flushcode, p. 22.8

list of Ifholes" in user's binary pro­
gram space, p. 22.8.

used by garbage collector

list of functions that have bee advised,
p. 19.7

used by subsys, p. 17.10

push-down handles, P.12.1l

OPENFNS list of functions to be compiled
open, p. 16.12.

LAPFLG, STRF, SVFLG, NLAMA, answers to compset questions p.16.6-9
NLAML, LCFIL, LSTFIL

SYSNIL, SYST~ SYSTAT, SYSNUM. p. 16.28
SYSINT, TOPBPS, FREELW, CTEMP,
INTZRO, SPCELL, PPPTR, FPPTR

PREDLIST, PREDS1, PMAC, SY8,
SYSFNS, SYSNOTFNS, LAMS

internal to compiler.

23.13

Break

BROKENFNS

BRKEVQFLG

BREAKMACROS

BREAKI

CHNGNM

NBREAKS

NOBREAKS

CHNGNM, VVNLAST, NOBREAKIN

Editor

list of functions that are broken,
p. 15.13, 15.14, 15.18

used by breakl to determine whether
user is talking to evalauote or eval
when inside a break, p. 15.10.

p. 15.8

number of spaces indented on each
break, initially set to 3

p.

bound to number of recursive breaks,
o at top level.

list of functions ignored by breakin
search, p. 15.17

internal

EDITMACROS p. 9.17

MAXLEVEL controls depth of find command, p. 9.7,
initialized to 100

SUPEREDITFLG p. 9.26, 9.27

EDITMAKROS, EDITOPS, EDRPTCNT, internal to editor
FINDFLAG

Display

DISPLAYMACROS

CONVERTERLST

XORG, YORG, RORG, LORG,
SCALEX, SCALEY, CHARSIZE

p. 18.6

list of D-A converters to be used,
p. 18.2

p. 18.11

cj.14

HANDLE p. 18.16

MASKTABLE masks for characters, p. 18.14

TRNPTS, TRSPACING used by dtr"ee p. 18.8

ASSIGNFLG, CHARTABLE, CHARRAY, internal to display
CA, PNO

Breakdown

BREAKDOWNFORM p. 22.4

STATFACTORS, CTTAB, internal breakdown
MORESTATCELLS, CWTAB, BKDWNFN,
BKDWNFMS, BDLST, BDPTR, BRKOVHD,
BRKTERP, BRKLABEL

Printstructure

YESFNS, NOFNS, QUOTEFNS,
NOTRACE, PRDEPTH

FIRSTLOC, LASTLOC

Edita

USERSYMS, SYMLST

EDITBRK, OPCODES

FLIP

p. 21.3, 21.4

internal

p. 9. 46

internal

FLIPBRKSAVE, FLIPBRK, A"(NIL)", D1f (NIL)", "(T)", FLIPMODE, LASTREAD,
UNRD, NORMBRK, SEPRS, SAVELST, $TRAN, TRAC, RTRAC, FLIPDEFAULT, INUS~,

NOCONS, SAFE2USE see FLIP Manual

23.15

DWIM

. CFACT1, CFACT2, DELAYTIME

USERWORDS

LASTWORD

REDLIGHT, GREENLIGHT, UBA, UDF

MODELST

FAULTDEPTH

FILELST, FILESPLST,

SPELLINGS1, SPELLINGS2,
SPELLINGS3, SPELL1, SPELL2,
SPELL3, FIXB, FIX9, FIXT,
OPTIONSFNS

PRETTYPRINT

FIRSTCOL, LASTCOL, ABDREVLST

MISCELLANEOUS

Spelling correction, p. 20.11

p. 20.13, 20.15

p. 20.15

modes, p. 20.13, 20.14

list of mode definitions, p. 20.13

nofix, p. 20.16

used by newfiles, p. 20.14

internal

used by comment feature, p. 14.15

MAPRINTL, MAPRINTJ, MAPRIN~I. miscellaneous internal
APN, PATV, PFPA, PENT, PIPV,
·PRETN, PCLL, PMKN, PFVE, peONS,
PCDR, PCAR, SINTABLE

23.16

Appendix 5

Properties and property lists

The following properties are used by system functions:

OPD, MACRO" COREVAL, CTYPE, CROPS

QLITRLIST

EXPR, CODE

BROKEN, BROKEN-IN, NAMESCHANGED,
ALIAS

ADVISED, ADVICE

compiler

garbage collector

savedef, unsavedef

break

advise

The following atoms have their property lists initialized to

other than NIL; the user should avoid clobbering them; i.e. use

DEFLIST, PUT and REMPROP, not RPLACD, for modifying property lists.

PROPERTY OPD:

CSKD LDE srE BAC ROV avr NOD ~S8 WCI WCH GCI psr~ PL~I ~UC
A DC STP LOP rCI TCO crF~L BIO IJIO CIt) EXU NO? LCY i~CY Sr<H
S K N Sl<8 SKA SKM al~H 81~M Bi~ X CLAB CX,A CBA CA X CLX SUt3 M I (·oJ

ADM EAX srx ass MUL XAB OIV P~~V PM~N XXB CBX CAXB CLLX4
CLLX LDN PSAI NSTA 8i~LJ SKE ARGSUB C~\lA SARGN Al~Gi\l VSTI CSPI
C LA XMA LDA LOB srB SXMA S fA Sr<G MPY tJvo ~\lEG EOI~ MI~G E fR
SWAP ~UNBOX FENBOX FDV FMP FAD CLLA Nsrf 8XC CAB CL8 VAL
LDT srN srr LDV JUMP STV LOX CLL LSlT HEr SETIX BUI BII du~
B IF BR2 BR 1 BNLST 8LST BNS B ISBN I BNA SA t3,'JAf> BI\P dNi\l 8N
BNE MSAI BRS BE LFV 81 DIVIDE ADD RSH LRSH LSH aSSl ENAJX
UNBOX CONSCLL PAT V PENT PIPV PRETN PCLL P~r<~ PFVE PCO~S
PCDR PCAR)

23.11

PROPERTY MACRO:

(// AC IFPRED MATCH4 FAILURE EVALPRED TRANSLATE3 ~WOTE ASSEMBLE
ZEROP SUBt SETA NLSETQ MINUSP MAP EVQ ERSETQ ELT DIFFERENCE
~BS RSH LRSH LSH FRPLAC NLISTP MEMB ADDI NEQ MAPC * VAG
S ETARG LaC LIST ARG)

PROPERTY COREVAL:

(ATVAL FPDLA ENTER IPV XCLL ENBOX UNBOX CONSCLL CORCLL CARCLL
CP PP I?P IC? FPPTR PPPTR SPCELL INTZRO CTEMP FREELW TOPBPS
SYSINT SYSNUM SYSTAT SYST SYSNIL ?ATV PENT PIPV PRETN PC~L
P MKN PF'VE PCONS PCDR PCAR RETUt~N)

PROPER'1'Y CTYPE:

(LISTP LESS? DIVIDE ~RRAYP CDDODR CDODAR CDDAAR CDAODR CDADAR
CDAADR CDAAAR CADDDR CADDAR CADADR CADAAR CAADDR CAADAR
CAAADR CAAAAR FIXP CDDAOR TIMES REM~INDER QUOTIENT PLUS
OR NUMBERP NULL NOT MINUS LOGXOR LOGOR LOGAND GREATER? FTIMES
FQUOTIENT FPLUS FMINUS FLOATP EQ COOR CODOR CODAR CDAR CDADR
CDAAR CADR CADDR CADAR CAAR CAADR CAAAR ATOM AND)

PROPER'l'Y CROPS:

(CDDDDR CDDDAR CDDAAR CbADDR CDADAR CDAADR CDAAAR CADDDR
CADDAR CADADR CADAAR CAADDR CAADAR CAAADR CAAAAR CDDADR
CDDR conDR CODAR CDAR CDADR CDAAR CADR CAODR CADAR CAAR
C AADR CAAAR)

In addition, the atom CLITRLIST has a property value LITERALS
which is used by the garbage collector, and the atoms HELP-IN­
UNSAVED1, PRINT-IN-PRETTYPRINT1, ERROR-IN-EDITF, ERRORSET-IN­
EDITE, MAKEFILE, BREAKO, EDITP, EDITV, EDITF, RPAQQ, DEFINEQ,

LOAD, EDITE PRETTYPRINT1" and UNSAVEDl have property lif;ts tH~pd ,
by DWI M, see p. 2 0 . 13 .

INDEX TO FUNCTIONS *

NOTE: ALL FUNCTIONS ARE LAMBDA, SPREAD UNLESS
INDICATED OTHERWISE USING THE CODE
NL=NLAMBDA, .=NOSPREAD

NAMES IN PARENTHESES, E,G. (DWIM), (ADVISE),
REFER TO FLUSHPOINTS.

NAME OF
FUNCTION

ABS[X] . ,
· . ,

ADD1[X] •

ADDSPELL[X,FLG1 (DWIM) • • • • • • • • • • • • • • • •

ADVISE[NAME,WHEN,WHERE,WHAT] (ADVISE)

ADVISEOUMP[XJ (ADVISE) . . ,
ALLCALLS[FN,TRl (PRINTSTRUCTURE) • • • • • •

ALLOCATE[N,LJ ,
•

ANTILOG[X] · ,
APPEND[X,YJ •
APPLY[U,V] •

ARG[UJ •
ARGLIST[X] · , . . ,
ARM[FNJ •
ARRAY[N,P,VV] ,
ARRAYP(X] •

~ FOR INDEX TO VARIABLES SEE APPENDIX 3, P. 23.9

24.1

DESCRIPTION
PAGE

13.3

7.3

13. 1

2~.15

19.6

19.8

21.8

10.5

5,10

13.5

6,1

8.5

8.6

8.5

22.14

5.9,10.7

NAME OF
FUNCTION

ARRAYSIZE[A] • • • • ~ • • • • c • , • • • • • • • • • • • • • •

ASSEMBLE[NOT A FUNCTION] (COMPILER) • • •

ASSIGND[DEVJ (FORK) • • • • • • • • • • • • • • • • • • •

ASSIGNP[PNOJ (FORK) .00 • , • • • • • • 0 • • • • • • •

ASSOC[XSAS,YSAS]0.
ATOM[UJ • • • • • • • • • • • • • • • 0 • • • • • • • • • • • • • • •

ATOMGC[FLG] • 0 • • •

ATTACH[X,YJ • • • • • • • • • • • 0 • • • • • • • • • 0 • • • • •

BACKTRACE[U,V] (POL) • 0 • • • • '0 • • • • • • • • • • •

BAKTRACE(N] (POL) •

Br(M,N,X] (EDIT) • • • • • .0. • • • • • • • • • • • • • 0

BO[N,X] (EDIT) • • • • • • • c • 0 • • • • • • • • • • • • • •

BREAK[X]NL. (BREAK) • • • 0 • • • • • • • • • • 0 0 • • 0

BREAK0[FN,WHEN,COMS p FILEJ (BREAK) • • • • 0

DESCRIPTION
PAGE

10.7

16 • 16

17 • 12

17 • 12

7.3

5.9

6.2

12.8

12.8

6.7

6.7

15.13-14

BREAK1(BRKEXP,BRKWHEN,BRKFN,BRKCOMS,BRKFILE]NL
(BREAK) •••• 0 ••• 0 ••••••••••••••• 0 15.5- 12

BREAKDOWN[X]NL. (BREAKDOWN) • • • • .0' • • • 0 22.3

BREAKIN[FN,WHEBE,WHEN,COMS,FILE]NL
(BREAK) •••••••• 0 •••••••••••••••• 15.1,14

BREAKNARGS[NJ (BREAK) o 0 • • • • • • • • • .0' • • • 15.24

BRS[N,A,B,XJ (MSC) • 17.20

CADVICE[FNS] (ADVISE) o 0 • • • • • • • • • • 0 • • • 0 19.10

CALLS[FNJ (PRINTSTRUCTURE) • • • • • • • • • • • • 21.8

CAR, CDR, ETC.[U] • • • • 0 • • • • • • • • • • • • • • • • 5. 1

24.2

NAME OF
FUNCTION

CHANGENAME[FN,FROM,TOJ (BREAK)

CHANGEPROP(X,PROP1,PROP2] (MSC)

• • • • • • • •

• • • • • • •

CHARACTER[UJ ••••••••• , ••••••••• ,., ••• ,

C H C ON [U , V] • , • • • • • • • • • • • , • • • • • • • • • • • • • •

CLEARBUF [U] •••••••••••••••••••••••••••

CLEARSTAT (] ••••••••••• , •••••••••••••••

CLOCK [U J •••••••••••• ~ •••••••••••••••••

CLOSEF[U J ••••••••••••••••• " ••••••••••

CLOSER(U,V] ,
COMPILE(X] (COMPILER) • • • • • • • • • • •• • • • • •

COMPILE2[FN,DEFJ (COMPILER) . . , , .
COND r ~- JNL* ••••••••• , •••• , •••••••• " ••

CONS [U, VJ ••••••••••• , ., •• , " ••••• , ••••

CONSCOUNT[UJ ••••••••••••• , ••• , ••••••••

CONSPAGE[U1 •••••••••••••••••••••••••••

CONTRACT1[] •••••••••••••••••••••••••••

CONTROL[U,VJ ., ••••••••••••••••••• , ••••

COPY[X] •
COPYFILE[FROM,TO] •

COS~NE[THETAJ (DISPLAY) • • • • • • • • • • • • • • •

COUNT [L] ••••••••••••••••••••••••••••••

D AT E [J

24.3

DESCRIPTION
PAGE

15. 19

7 • 1

14. 10

22.2

14.2

16.3

16.5

4.3,5.4

5.2

5.3

5.2

16. 15

6.3

14. 12

13.6

22.2

NAME OF
FUNCTION

t t • • t t • DATOM[ATOM,PRIN2,X,Y] (DISPLAY)

DCIRCLE[RADIUS,DTHETA,A,M] (DISPLAY) • •
DDT[] t t •• t ••••• t t ••••••••• tJ •• " •• '.' •

DEFINE[XJ • • • • • • • t • • • • • • • • • t • • • • • • • • • t •

DEFINEQ[X]NL*

DEFLIST[L,INDJ

DELFILE[FILE]

DIFFERENCErX,YJ

• t • t • • • t • t • t • t t • t • t • t • • t •

t • t • t • • • t • • • t • • t • • • • t t • •

• t • t • • • • • • • • • • • • • t • • t • t • •

• • • • • • • • • • • • • • • • • • t • • • •

DISARM[J (EREAKDOWN) • • • • • • • • • • • • • • • • • •

DISCHAR[C] (DISPLAY) • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • DISPLAY[FIGJ (DISPLAY)

DISPLIS~[FIG,PLACE,HANDLE] (DISPLAY) • •

DISPLIST1(FIG,X,Y,SCALEX,SCALEYJ
(DISPLA Y) ••• t •••••••••••••••••••

DIVIDE[X,YJ •
DLINE(X,Y,DX,DY,N,A,M,SHXFTJ (DISPLAY)

DPRIN1[X,PRIN2] (DISPLAY) t • • • • • • • • • • • •

DPRIN2(XJ (DISPLAY) • • • • • • • • • • • • • • • • • • •
DPRINT[XJ (DISPLAY) , . . . ,
DREMOVE(X,YJ . , ,
DREVERSE[X] •
DRUN[HANDL~NTJ (DISPLAY) • • • • • • • • • • • • • •
DS[S] (DISPLAY) •

DESCRIPTION
PAGE

18. 13

18.7

17.9

8.2

8.4

7.2

14. 12

13. 1

22.14

18. 14

18. 17

18. 15

18. 15

13.2

18.7

18.13

18. 13

18. 13

6.13

18. 16

18.8

NAME OF
FUNCTION

DSPACES[N] (DISPLAY) • • • • • • • • • • • • • • • • • •
DSUBS'I[X,Y,Z] •

DTERPRI[] (DISPLAY) • • • • • • • • • • • • • • • • • • •
DTREE[TREE] (DISPLAY) • • • • • • • • • • • • • • • • •
DVECTOR[X0,Y~,X1,Y1,N,A,MJ (DISPLAY) • •
DWIM[X] (DWIM) •

E[XEEEElNL* •

EDITA(EDITARRY~COMSJ (ED!TA) • • • • • • • • • •

EDITCOM[C] (EDIT) •••••••••••••••••••••

EDITCOMS[C1 (EDIT) ••••••••••••••••••••

EDITDEFAULT(EDITXJ (EDIT) • • • • • • • • • • • • •

EDITE(X,OPSJ (EDIT) • • • • • • • • • • • • • • • • • • •
EDITF(XJNL* (EDIT) •
EDITL[L,OPSJ (EDIT) • • • • • • • • • • • • • • • • • • •
EDITNTH[X,NJ (EDIT) • • • • • • • • • • • • • • • • • • •
EDITP[XJNL* (EDIT) •
EDITV[EDITVX]Nt* (EDIT) • • • • • • • • • • • • • • •
ELT[A,NJ •
ENDFILE(YJ (PRETTY) • • • • • • • • • • • • • • • • • • •

Ear U, V] ••• '" ••••••••• " •• " ••••••••••

EQP [U, v J •••••••••••••• " •••••• " ., ••••

EQUAL[X,YJ •

24.5

DESCRIPTION
PAGE

18. 13

18. 13

18.8

18.7

2121.5

8.5

9.19,20

9.21

9.18,212J

9.18

9.18,2121

6.7

9.18

9.18

14. 16

5.9

5.10

5.1121

NAME OF
FUNCTION

ERROR[U] •
ERRORMrU,VJ . . , . . . , .
ERRORNCJ , . . . ,
ERRORSET[ERSETX,ERSETFLG] • • • • • • • • • • • • •
ERRORX[ERROaXN,ERRORXFLG] • • • • • • • • • • • • •
ERSETQ[ERSETXJNL ,
ESGAG [X J ••••••••••••••••••••••••••••• ,

EV AL (U] •••••••••••••••••••••••••••••••

EVALA(FEVAL,AEVAL] •
EVALR[U,V] •
EVALV(U,VJ , . . . ,
EVERY[EVERYX,EVERYFJ (MSC) • • • • • • • • • • • •
EVQ[XJ (COMPILER) , ,
EXPAND1[J •
EXPANDCOMP[MF,AJ (COMPILER) • • • • • • • • • • •
EXPT(X,YJ • w •

FAULTEVAL(FAULTX]. •
FDDT(J •

FGTP [U , V J •••••••••••••••••••••••••••••

FILETYPE[U] •••••••••••••••••••••••••••

FIBSTFN[FNJ (PRINTSTRUC~URE) • • • • • • • • • •
FIX[UJ •

24.6

DESCRIPTION
PAGE

15.33

15.32

15.32

15.23,26,33

15.35

15.34

15.34

8.4

8.5

8.S

12.7

11.4

16.14

16.15

16. 12

13.5

15.22,23

17 • 1121

13.4

14.12

21.7

13.4

NAME OF
FUNCTION

FIXP[X] •••••••••••••••••••••••••••••••

FLOAT [U] ••••••••••••••••••••••••••••••

FLOATP[U J •••••••••••• '" •••••••••• " ••

FLTFMT[UJ •••••••••••••••••••••••••••••

FLUSHCODE[FROM.TO,FLG] • • • • • • • • • • • • • • • •

FMINUS [U J ••••• " •••••••••••••••••• " ••

FNTYP ex J ••••••••••••••••••••••••••••••

FOLLOW[FN,FLG] •
FORKINIT(J (FORK) •

FPLUS[--)* •
FQUOTIENT[U,VJ •
FREEVARS[FNJ (PRINTSTRUCTURE) • • • • • • • • •

•
FUNCTION[--JNL* •
GCGAG[UJ •
GCTRP[U] •
GENSYM[J •
GET(X,Y] •
GETD(U] •
GETL[X,YJ •.................... '.'
GETP[X,Y) ••••••••••••••••••••••••••••••

GINFN(U] •

DESCRIPTION
PAGE

13.4

13.4

13.4

13.4

22.8

13.4

8.2

21.9

17 • 13

13.5

13.5

21.8

13.5

11. 1

10.3

10.2

7.2

8. 1

14. 12

NAME OF
FUNCTION

•
GOUTFN[UJ •
GREATERP(U,V] •
GROUP[LSTJ • • • • • • • • • •• • • • • • • • • • • • • • • • • • •
HELP[HELPX,HELPYJ •
HPRUN[AP,LC,NP,ITER,PNO] (FORK) • • • • • • •
HPSTART[ST,NT,LC,LOJ (FORK) • • • • • • • • • • •
HPSTOP r J (FORK) · ,
HPTABLE[M,NJ (OISPLAY) • • • • • • • • • • • • • • • •
HPTEST C J (FORK) •
HPWAIT[J (FORK) •
INFILE[U,V] •
INPUT[U] •
INTERRUPT[INTERRUPTARGSJ* • • • • • • • • • • • • •
INTERSECTION(X,YJ •
LAMBDA[NOT A FUNCTION) • • • • • • • • • • • • • • • •
LAST[XJ •

LASTFNrFN] (PRINTSTRUCTURE) • • • • • • • • • • •

DESCRIPTION
PAGE

5.7

14. 12

13.2

22.13

15.33

17 • 19

17.17

17 • 18

17 • 19

17 • 18

17 • 18

14.2

15.24

5.11

21.8

LCONC[X,P] •••••••••••••••••••••••••••• 6.2

LDIFF[X,Y,ZJ •••••••••••••••••••••••••• 6.7

LENGTHCXJ ••••••••••••••••••••••••••••• 6.6

LESSP[X,YJ ••••••••••••••••••••••••••••

24.8

NAME OF
FUNCTION

LI[N,X] (EDIT) •

LINELENGTH[U] •

LIST[--J* • I • I • • I I •

LISTFILE[FILESJNL* (MSC) • I • • I • I • • • • • • •

LISTP[XJ • I • I I • •

LO[N,XJ (EDIT) • I • •

LOAD[LOAOF,SVFLG,LOADFLGJ I •••• I • I •• • I'

LOADCL[FILES1NL* (SAVECL) • • • • • • • • • • • • •

LOC[U] • • I • I • • • • • • • • • I • • • • • • • I • • • • • • • • •

LOG[X] •

LOGAND (-- J * •••••••••••••••••••••••••••

LOGOR [--] * ••••••••••••••••••••••••••••

LOGOUT[U] •••••••••••••••••••••••••••••

LOGXOR (- ...] * ••••••••••••••••••••• -••••••

LaSH [X, N J ••••••••••••• , •••••••••••••••

LSH[X,N] •
LSUBLIS[X,YJ (MSC) •

MAKEFILE[FL,FLG] (MSC) • • • • • • • • • • • • • • • •
MAKELIST[N,M] (MSC) • • • • • • • • • • • • • • • • • • •
MAKETABLE[PLACE,SIZE] (FORK) • • • • • • • • • •

MAP[MAPX,MAPFN1,MAPFN2J .-.............•
MAP2C[MAPX,MAPY,MAPFN1,MAPFN2] • • • • • • • •

DESCRIPTION
PAGE

6.7

14. 11

6. 1

14.21

5.9

14. 13

22.12

13.5

13.2

13.2

13.2

13.3

13.3

6.5

14.21

6.8

17 • 14

11. 1

11.3

NAME OF
FUNCTION

MAP2CAR[MAPX,MAPY,MAPFN1,MAPFN2J
• I • • • • • • • I • • • • I I • • • • • • • • • • • • • • • • •

MAPA[MAPARy,MAPFN1,MAPFN2,MAPNJ
(MSC) • " ,., •• I I ," ", ", I •••••••

MAPC[MAPX,MAPFN1,MAPFN2J ••••••••••••••

MAPCAR(MAPX,MAPFN1,MAPFN2) ••••••••••••

MAPCON[MAPx,MAPFN1,MAPFN2J ••••••••••••

MAPCONCrMAPX,MAPFN1,MAprN2~ • • I • • • • • • • •

MAPDL[MPDLFN,MPDLNJ (BREAK) • I • • • • • • • • •

· , MAPLIST[MAPX,~APFN1,MAPFN2]

MAPRINT[LST,FL,L,R,S,PFN,C] (MSe) • • • • •
MEMB[X,YJ ••••• I ••••• I •• , ••• " I I. '" I.'

MEMBER[X,YJ I ,.,., •• I.e •••••••••••• I •••

MINFS[U] • • • • • • • • • • I • • • • • • • • • • • • • • • • • • •

MINUS[UJ • • • • • • I • • • • • I • • • • • • • • • • • • • • • • •

MINUSP[XJ • I •

MISSPELLED?[X,FN,SPLSTJ (DWIM) I • • • • • • •

MOVD[FROM,TO,COPYFLG] (MSC)

MOVEFIG[MVFGJNL* (DISPLAY)

• • • • • • • • • • •

• • • • • • • • • • • •

DESCRIPTION
PAGE

11 .3

11 .3

11.2

11 .2

11 .3

11 .2

12.9

11.2

11.4

5. 11

5. 11

13. 1

13.2

2~. 15

8. 1

18.10

MOVEPOINTS[MATRIX,DX,DY,HANDL,REL,NP,FROMJ
(FORK) •••••••••••••••••••••• '. • • • 18.22

NARGS(X] • I • • • • • • • • • • • • • • • • • I I • • • • • • • I • 8.5

NCHARS[U] • • • • • • • • • • • • • • • • • • • I • • • • • • • • • 1 f(J. 1

NeONC(U,VJ •••••• I ••••• " •••••••••••••• 6.1

NCONC1(LST,X) (MSC) • • • • • • • • • • • • • • • • • • • 6.1

NAME OF
FUNCTION

NEQeX,YJ •
NEWFILES[FLGJ (DWIM) • • • • • • • • • • • • • • • • • •

NILL[] • • • • • • • • • • • • • • • • • ••• • • • • • • • • • • • • •

NLAMBDA[NOT A FUNCTION) • • • • • • • • • • • • • • •

NLIST[XNLIST]NL* •
NLISTP(X] •
NLSETQ(NLSETX]NL ~
NOFIX[] (DWIM) •

NOT [U J •••••••••••••••••••• •••••••• " ••

NTH [X" N J .••••••••••••••••••••••••••••••

NTHCHA~rU,VJ •
NTHFN(U,VJ •

NTHFNBACK[UJ ' ,
NULL[U] ~
NUMBERP(UJ ,
OBLIST[] · ,
OPENP[U] · . , , . ,
OPEN~(Ul •

• •••••••••••••••••••••••••••••

OUTFILE(U"V] , .
OUTPUT[UJ •
PACK(U] •

DESCRIPTION
PAGE

5.10

20.14

5. 1'"

4.1-~

6. 1

5.9

15.34

20.16

5 • 1 1

10. 1

12.7

5. 10

13.2

14.2

5,11

14. 1

NAME OF
FUNCTION

DESCRIPTION
PAGE

PLOTARRAY[AP,DX,DY,SCLX,SCLY,VERT,HANDL,REL,NP]
(FORK) • 18.21

PLUS[--J* • 13. 1

POSITION[U] • 14. 11

PRETTYDEF[PRTYX,PRTYY,PRTYL] (PRETTY)

PRETTYPRINT(LJ (PRETTY) • • • • • • • • • • • • • • • 14. 15

PRIN1[U,VJ • 14.3

PRIN2[U,V] • 14,3

PRIN3[U,V] • 14.4

PRINT[U,V) • 14.4

PRINTDATE[] (PRETTY) • • • • • • • • • • • • • • • • • • 14.21

PRINTDEF[E] (PRETTY) • • • • • • • • • • • • • • • • • • 14. 16

PRINTFNS[XJ (PRETTY) • • • • • • • • • • • • • • • • • • 14.21

PRINTLEVEL[U] • 14.4

PRINTSTRUCTURECFN,FILE] (PRINTSTRUCTURE) 21.6

PROG[--JNL* • 5.7

PROG1[U,V] • 5.6

PROG2[U,V] • 5.6

PROGN[--]NL* • 5.6

PROGN[IMPLICITJNL* •
PROpeX,X,oJ • 7 • 1

PUT[X,Y,ZJ • 7 • 1

PUTDCU,VJ • 8. 1

24.12

NAME OF
FUNCTION

PUTDQ[X,Y]NL •

QUITrUJ •

QUOTE[--]NL* ••••••••••••••••••••••••••

QUOTIEN'1'CU,V] ••••••••••••• I •••••••••••

RADIX[U,V] • I I • • •

RAND[M,N] (MSC) • • • I • • • • • • • • • • • • • • • • • • •

RATEST(U] •

RATOM[U])

• • • • • • • • • • I • • • • • • • • • • • • • • • • • • •

RATOMS(A,FNJ I •

RaIN(U] •

RcOMPILE[] (COMPILER) • • • • • • • • • • • • • • • • •

RDFK(ADDRESS] (FORK) • • • • • • • • • • • • • • • • • •

RDFLXCX] •
READ[U] •
READC[U] • •••••••••••••••••••••••••••••

READFILECX,FILEJ (MSC) • • • I • • • • • • • • • • • •

READFORK[AP,INCR,HANDL,REL,NPJ (FORK) •

REAOP[J •
READVISE[NAME] (ADVISE) • • • • • • • • • • • • • • •

RECLAIM[UJ • • • • • • • • • • • • • • I • • • • • • • • • • • • •

RECOMPILE(PRETTYFILE,COMPILEDFILE,FNS]
(COMPILER) •

REMAINDER[U,V] •

24.13

DESCRIPTION
PAGE

8. 1

15.34

5.3

13. 1

14. 1 f2J

13.3

14.9

14.7

14. 12

16.4

17 • 16

14.6

14.6

14.9

14. 14

17 • 16

14. 11

16.3

13.2

NAME OF
FUNCTION

REMOVEr A, X] ••••••••••• " •••••••••• " ••

REMPROP [X, Y J ••••••••••••••••••••••••••

RENAME[U,V,W] •••••••••••••••••••••••••

RENAMEFILE[OLD.NEWJ (MSC) • • • • • • • • • • • • •

RESET[] •
RETFROM[U,V] •

DESCRIPTION
PAGE

7 • 1

12.7

14. 12

15.34

12.8

RETURN[UJ •••••••••••• ••••••••••••••••• 5.8

REVERSE(X] •••••••••••••••••••••••••••• 6.3

RICM,N,X] (EDIT) • 6.7

ROrN,X] (EDIT). • 6.7

RPLACA(U,VJ • 5.3

RPLACO[U,V) • 5.3

RPT[RPTN,RPTFJ • 5.7

RSH[X,NJ •
RTFRM(RTFN,RTFORM,RTNJNL (DWIM) • • • • • • • 12.8

SASSOC[XSAS,YSAS,USASJ • • • • • • • • • • • • • • • • 7.3

SAVECL(LST,FILE,IDENT) (SAVECL) • • • • • • • 22.1rzJ

SAVEOEF[Xl , 8.3

SEARCHPDL[SRCHFN,SRCHM] (DWIM) • • • • • • • • 12. 10

SELECTQ[SEtCQ]NL* • 5.5

SET[U,VJ • 5.8

· . , 1~.7

NAME OF
FUNCTION

SETARG r u, V J ••••••••••• , •••••••••••••••

SETBRK (--]. • ••••••••••••••••••••••••••

SETBRKC[X]NL. • ••••••••••••••••••••••••

SETQ[-- J Nt. • ••••••••••••••••••••••••••

SETQQ[XSET,YSET]NL •

SETSEPR (-- J. • •••••••••••••••••••••••••

SETSEPRC[XJNL. • •••••••••••••••••••••••

SETvru,v,wJ •

SINE[THETA] (DISPLAY) • • • • • • • • • • • • • • • • •
SOME[SOMEX,SOMEF] (MSC) • • • • • • • • • • • • • • •
SPACES[U,V] •
START[J (DISPLAY) •••••••••••••••••••••

START1(] (DISPLAY) ••••••••••••••••••••

STATISTICS[J •
STFK[ADDRESS,Xl (FORK) ••••••••••••• •••

STORAGE[F) •

STOREFORK(AP,INCR,HANDL,REL,NP]
(FORK) ••••••••••••••••••••••••••

DESCRIPTION
PAGE

8.6

14.7

14.8

5.8

5.8

14.7

14.8

12.7

1 1 • 4

18.2

18.2

10.5

17 • 16

17 • 15

STOREPOINTS(AP,DX,DY,SCLX,SCLY,HANOL,REL,NP]
(FORK) • 18. 19

SUB1[X] • 13. 1.

SUBLIS[A,YJ • 6.4

SUBPAIR[N,v,t,FLJ • 6.6

SUBST(X,Y,ZJ •

24.15

NAME OF
FUNCTION

5UBSYS[NAME,FItE1,FItE2J • • • • • • • • • • • • • •

SYSGET(U] •••••••••••••••••••••••••••••

SYSIN C U] ••••••••••••••••••••••••••••••

SYSOUT [U J •••••••••••• , ••••••••• , ••••••

TAB[POS,MINSPACES,FILEJ (PRETTY) • • • • • •
TCOMPL[LJ (COMPILER) • • • • • • • • • • • • • • • • • •
TCONC [X, P J ••••••••••••••••••••••••••••

TERPRI [U J , •••••••••••• , •••••••••••••••

TICKPS [] ••••••••••••••••••••••••••••• ,

TIME[X,N,G)NL •
TIMES(--]* •
TIMEX(L,QT,NJ (BREAKDOWN) • • • • • • • • • • • • •

TRACE[X]NL* (BREAK) • • • • • • • • • • • • • • • • • • •
TREEPRINT[X,N] (PRINTSTRUCTURE) • • • • • • •
UNADVISE(XJNt. (ADVISE) • • • • • • • • • • • • • • •
UNASSIGN[J (FORK) . . , . ,
UNBREAK[X]NL* (BREAK) ,
UNBREAK0[XJ (BREAK) . . , ,
UNBREAKIN[FN] (BREAK) , ,
UNION[X,YJ ., ••••• , ••• , ••••••••••••••••

UNPACK [U] •••••••••••••••••••••••••••••

UNREADC(U,Vl •

24.16

DESCRIPTION
PAGE

17. 1 ~

2. 1

14. 11

14. 1 1

14.21

16.4

22.2

22. 1

13. 1

22.5

15.1,15

19.8

17.12

15.18

15.19

5. 1 1

14.9

NAME OF
FUNCTION

lJNSAVEDEF[X,TYP] . . , , , , , , . .
UTILITY(FL] (MSC) ,
VAG[UJ •

VALV[X,FN,NJNL (BREAK) . , , .
VARIABLES[UJ . . , , . , , . .
VARS[FN] (PRINTSTRUCTURE) . ,
VIRGINFN[FN,FLG] (BREAK) . ,
WBIN[U,V] . ,
WRITEFILE[X,FILE] (MSC) , ,
XCR[] (MSC) . , , , . . . , , , , .
ZEROP[X] . . , , . . . , , . . . , ~

DESCRIPTION
PAGE

8,3

17 , 112'

10.5

15.20

12.7

21.8

15. 19

14. 12

14, 14

14.4

13,2

